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Abstract
The present thesis addresses two aspects of the Farrell-Jones Conjecture. First, we
generalise certain categories of resolutions due to Waldhausen to construct a spectral
sequence converging to theK-theory of a given group ring, and show that this spectral
sequence is compatible with the Atiyah-Hirzebruch spectral sequence of the classifying
space under the assembly map. Second, we apply a theorem due to Oliver on fixed-
point free actions of finite groups to show that Zn o Z is transfer reducible in the
sense of Bartels-Lück-Reich.

Zusammenfassung
Diese Arbeit verfolgt zwei Fragen, die im Zusammenhang mit der Farrell-Jones-
Vermutung stehen. Zum Einen werden gewisse Kategorien von Auflösungen, welche
auf Waldhausen zurückgehen, verallgemeinert, um eine Spektralsequenz zu konstru-
ieren, die gegen die K-Theorie eines gegebenen Gruppenrings konvergiert. Diese
Spektralsequenz ist vermöge der Assemblyabbildung kompatibel mit der Atiyah-
Hirzebruch-Spektralsequenz des klassifizierenden Raums. Zum Anderen wird ein
Satz von Oliver über fixpunktfreie Wirkungen endlicher Gruppen dazu verwendet,
die Transferreduzibilität von Zn o Z im Sinne von Bartels-Lück-Reich zu zeigen.
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Introduction
The computation of Whitehead groups, reduced class groups and L-groups of discrete
groups belongs among the key algebraic problems arising in surgery theory. At the
heart of this question lies the Farrell-Jones Conjecture, which in the K-theory case
predicts that the assembly map

AV Cyc : HG
∗ (EV CycG;K−∞R )→ K∗(R[G])

is an isomorphism for all discrete groups G and unital rings R. Additional interest
in this conjecture was sparked by the observation that, combining the K-theory and
L-theory case, several important other conjectures can be derived from the validity
of the Farrell-Jones Conjecture, among these the Borel Conjecture and the Novikov
Conjecture (see [LR05] for details).
Let us assume that we are willing to believe in the validity of the conjecture.

Closer inspection reveals a certain disparity between the domain and target of the
assembly map. For example, the classifying space EV CycG is a G-CW-complex, and
therefore comes with the canonical filtration given by its skeleta. This does not only
turn the G-homology of EV CycG into a filtered graded abelian group, but leads via
standard procedures to a spectral sequence converging to HG

∗ (EV CycG;K−∞R ) [DL98,
Thm. 4.7]. In stark contrast, there is no related filtration on K∗(R[G]), regardless of
whether we consider the K-theory of R[G] to be given as the homotopy groups of (a
delooping of) BGL(R[G])+, Fr−1

R[G]FrR[G], QFrR[G] or iS•FrR[G] (where FrR[G] is the
category of finitely generated free R[G]-modules).
The first part of this thesis addresses this “defect”. Building on the ideas of Wald-

hausen [Wal78a, Wal78b, Wal] and how they were transported to the setting of Wald-
hausen categories by Schwänzl and Staffeldt [SS95], we define in Section 2.1 a category
MVG(X) of resolutions of finitely generated free R[G]-modules which are in a certain
way parametrised by a semisimplicial G-set X.
In general, we have no control over the K-theory of these categories. However,

in Section 2.2 we then go on to show that K∗(MVG(X)) does in fact model the K-
theory of R[G], provided the semisimplicial G-set X has sufficiently nice homotopical
properties (Theorem 2.2.1). After this has been done, it is completely painless to
define a filtration of K∗(R[G]), since the skeletal filtration of X induces a filtration
of the categoryMVG(X).
This filtration even gives rise to a spectral sequence, and Section 2.3 makes a first

attempt at shedding some light on the E1-term of this spectral sequence. While
our results are far from complete, they suffice to recover Waldhausen’s computations
(Theorem 2.3.6 and Remark 2.3.8).
Up to this point, the assembly map will have been absent from our discussion. It

will only enter again in Chapter 3, where we give a description which exhibits the
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assembly map as a map of spectra that preserves the respective filtrations on both
sides (Theorem 3.12).
Unfortunately, it turns out that the two spectral sequences behave quite differ-

ently, so one cannot expect the assembly map to induce an isomorphism of spectral
sequences. It remains an open question whether this can be remedied, e.g. by an ap-
propriate modification of the definition ofMVG(X). Nevertheless, one may hope that
this approach is viable to gain some new insights into the behaviour of the assembly
map; this is exemplified by the application of Waldhausen’s results in [DQR11].
The second part of this thesis, albeit also concerned with the Farrell-Jones Con-

jecture, pursues another problem. Over the last few years, the conjecture has been
proved for hyperbolic groups [BLR08], groups acting nicely on CAT(0)-spaces [BL12b,
Weg12] and virtually polycyclic groups [BFL14, BL12a]. Each of these results made
use of a different criterion implying the validity of the Farrell-Jones Conjecture,
custom-tailored to suit the peculiarities of the class of groups under consideration.
Recently, similar methods have been employed to prove the conjecture for even larger
classes of groups (e.g. linear groups [BLRR] and soluble1 groups [Weg]).
The prototypical examples of polycyclic groups are semidirect products of the form

Zn o Z. We will show in Theorem 5.2.2 that these groups do not require the use of
the criterion for polycyclic groups, but can instead be shown to satisfy the Farell-
Jones Conjecture by invoking that criterion which was manufactured to establish the
conjecture for hyperbolic groups.
On the way, we will introduce in Section 4.1 a construction on simplicial complexes

with group action which allows a kind of “resolution of fixed points”. This construction
has another interesting application in the algebraic K-theory of spaces: It enables
us to prove an induction result for the “A-theoretic Swan group” (Proposition 5.1.5),
which entails a corresponding induction theorem for the A-theory of classifying spaces
of finite groups (Corollary 5.1.6).
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Part I.

Filtering the Assembly Map
in Algebraic K-Theory
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1. Preliminaries

Before the start of the thesis proper, let us recall some of the fundamental concepts
and results that will play a role in subsequent chapters. The theory of Waldhausen
categories is central to the content of this thesis, and we outline the basics of it in
Section 1.1. Waldhausen’s machinery produces only a connective K-theory spectrum,
but the context in which we are working forces us to consider non-connectiveK-theory
spectra. Unfortunately, there seems to be no construction of a non-connective K-
theory spectrum for an arbitrary Waldhausen category. Therefore, after a short tech-
nical digression in Section 1.2, we will discuss relevant models of the non-connective
K-theory of additive categories in Section 1.3.
I claim no originality for the content of this chapter; its sole purpose lies in making

this thesis as self-contained as possible, and I will try to give precise references for
the presented material whenever this is possible.

1.1. Waldhausen categories and algebraic K-theory

Even though it is already 30 years old, Waldhausen’s article [Wal85] is still the definite
reference on the K-theory of Waldhausen categories (excepting maybe the proof of
the Additivity Theorem, which has received a shorter proof by now, see [Sta89]).
Let us call a category C pointed if it comes equipped with a choice of zero object.

For the purpose of this chapter, the chosen zero object will always be denoted by ∗.

1.1.1 Definition ([Wal85, p. 320]).
A category with cofibrations is a pointed category C together with a subcategory coC,
called the subcategory of cofibrations, which has the following properties:

(CF1) The unique map ∗ → A is in coC for all A ∈ C.

(CF2) Every isomorphism of C is in coC.

(CF3) For every diagram of the form B1 ← A→ B2 in which the morphism A→ B1

is in coC, the pushout B1 ∪A B2 exists and the morphism B2 → B1 ∪A B2 is
in coC.

The cofibrations of C will usually be denoted by feathered arrows�.

1.1.2 Definition ([Wal85, p. 326]).
A Waldhausen category is a category with cofibrations (C, ∗, coC) together with a
subcategory wC, called the subcategory of weak equivalences, such that the following
two properties are satisfied:
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(WE1) Every isomorphism in C is a weak equivalence.

(WE2) Suppose we have a morphism of pushout diagrams

B1 A B2

B′1 A′ B′2

If all three vertical arrows are weak equivalences, then so is the induced mor-
phism B1 ∪A B2 → B′1 ∪A′ B′2.

The weak equivalences of C will usually be denoted by arrows of the form ∼−→. In some
situations, one category will come equipped with several choices of weak equivalences.
In that case, the symbol ∼ will receive a decoration (usually the name of the category
of weak equivalences) to indicate what kind of weak equivalence it is.

Suppose (C, ∗, coC, wC) is a Waldhausen category. Let us record some easy conse-
quences of the axioms.

• Finite coproducts exist in C: Take the pushout of A � ∗ � B. Denote such a
pushout by A ∨B.

• If A � B is a cofibration, we can form a quotient object B/A by taking the
pushout of the diagram B � A → ∗. The resulting sequence of morphisms
A � B → B/A will sometimes be called a cofibration sequence or an exact
sequence. The morphism B → B/A will be called a quotient map or projection,
and we will often denote such maps by two-headed arrows �.

1.1.3 Definition ([Wal85, p. 327]).
Let (C, ∗, coC, wC) be a Waldhausen category.
We call C saturated if, given two composable arrows f and g in C, whenever two

out of the three morphisms f , g and gf are weak equivalences, so is the third.
We call C extensional if, for any map between exact sequences

A B B/A

A′ B′ B′/A′

in which the left and right vertical arrows are weak equivalences, the middle vertical
arrow is a weak equivalence as well.
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1.1.4 Definition ([Wal85, pp. 321,327]).
Let F : C → D be a functor between categories with cofibrations.
Call F exact if F maps ∗C to ∗D, preserves cofibrations and takes the pushout

diagrams appearing in (CF3) to pushout diagrams.
If C and D are Waldhausen categories, F is called exact if it is an exact functor

of categories with cofibrations and preserves the weak equivalences. If the choice of
weak equivalences w is ambiguous, we will sometimes refer to w-exact functors to
stress which kind of weak equivalences are preserved.

The following lemma sums up some ways how one can construct new Waldhausen
structures. Its validity is tacitly assumed in [Wal85], probably for the reason that
the proof is completely straightforward.

1.1.5 Lemma.
Let C and D be categories with cofibrations.

• Let vC and wC be two subcategories of weak equivalences for C. Denote by vwC
the intersection vC ∩ wC.
Then vwC is also a category of weak equivalences for C. If both vC and wC are
saturated/extensional, the same holds for vwC.

• Let vC and wC be two subcategories of weak equivalences for C, and suppose that
vC ⊆ wC. Let Cw denote the full subcategory of those objects A such that the
unique morphism ∗ → A is in wC – we call these objects w-contractible.

Then coCw := coC ∩Cw is a subcategory of cofibrations, and both vCw := vC ∩Cw
and wCw := wC ∩ Cw are categories of weak equivalences for Cw.

• Let F : C → D be an exact functor of categories with cofibrations. Let wD be a
category of weak equivalences for D. Let wC be the subcategory of C consisting
exactly of those morphisms f such that F (f) ∈ wD. We call this construction
pulling back the equivalences in wD along F .

Then wC is a category of weak equivalences for C. If D is saturated or extensional
with respect to wD, the same is true for wC.

We allow ourselves to be a bit imprecise about the definition of the K-theory space
of a Waldhausen category. The point is that we will never have to dig into the actual
definition, but are comfortable with using only the main structural results.
Let (C, ∗, coC, wC) be a small Waldhausen category. Then the category SnC is

(roughly) given by sequences of cofibrations

A1 � A2 � · · ·� An,

with morphisms being the natural transformations of such diagrams (see [Wal85,
p. 328] for the precise definition). The category SnC inherits a natural Waldhausen
structure from C by declaring a morphism to be a cofibration (resp. weak equivalence)
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if every constituent arrow of the morphism is a cofibration (resp. weak equivalence).
Letting n vary, the categories SnC assemble to a simplicial Waldhausen category
S•C (the 0-th face map only makes sense with the proper definition of SnC). From
this, we obtain a simplicial category wS•C by restricting to the subcategory of weak
equivalences in each degree. This construction is functorial, i.e. an exact functor
F : C → D induces a simplicial functor wS•F : wS•C → wS•D.
1.1.6 Definition ([Wal85, p. 330]).
Let C be a small Waldhausen category. The algebraic K-theory space of C is

K(C) := Ω |d(N(wS•C))| ,

where d(N(wS•C)) denotes the diagonal of the bisimplicial set N(wS•C).
If we want to emphasise the choice of weak equivalences, we also write K(C, w) for

K(C). An exact functor F : C → D induces a continuous map between the K-theory
spaces of C and D which we denote by K(F ).

1.1.7 Remark.
Taking coproducts induces an H-space structure on K(C) (see [Wal85, 1.6.2]). We
denote the H-space structure on C also by ∨.

We will now collect the main properties of the algebraic K-theory space.

1.1.8 Definition.
Let τ : F → G be a natural transformation of exact functors C → D between Wald-
hausen categories. We call τ a natural equivalence if τA : F (A) → G(A) is a weak
equivalence in D for all A ∈ C.

1.1.9 Proposition ([Wal85, Prop. 1.3.1]).
Any natural equivalence τ : F → G induces a natural transformation wS•F → wS•G,
and therefore a homotopy between K(F ) and K(G).

1.1.10 Definition ([Wal85, p. 331]).
Let F,G1, G2 : C → D be exact functors, and let τ1 : G1 → F and τ2 : F → G2 be
natural transformations. We call G1

τ1−→ F
τ2−→ G2 a cofibration sequence (of exact

functors), denoted G1 � F � G2, if the following holds:

• For every A ∈ C, the sequence G1(A)→ F (A)→ G2(A) is a cofibration sequence.

• If A� B is a cofibration, then the canonical map G1(B) ∪G1(A) F (A) → F (B)
is also a cofibration.

1.1.11 Theorem (Additivity Theorem).
Let G1 � F � G2 be a cofibration sequence of exact functors.
Then there is a homotopy

|wS•F | ' |wS•G1| ∨ |wS•G2| .

Proof. [Wal85, Prop. 1.3.2 and Thm. 1.4.2]
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1.1.12 Definition ([Wal85, p. 348f]).
Let Z be the category represented by the graph

• • •

•

Let C be a Waldhausen category. A cylinder functor Cyl is a functor

Cyl : Fun(1, C)→ Fun(Z, C)

from the category of arrows and commutative squares in C to the category of diagrams
of shape Z in C with the following properties:
The image of an arrow f : A→ B is of the form

A Cyl(f) B

B
f

p
=

j1 j2

where j1 is a cofibration called the front inclusion, j2 is a cofibration called the back
inclusion, and p is called the projection. Additionally, we require the following:

(CY1) The front and back inclusion combine to an exact functor

Fun(1, C)→ F1C, (f : A→ B) 7→ (A ∨B j1∨j2−−−→ Cyl(f)),

where F1C is the full subcategory of Fun(1, C) whose objects are the cofi-
brations in C. It has a Waldhausen structure given by those commutative
diagrams (A � B) → (A′ � B′) as cofibrations for which both A → A′

and B∪AA′ → B′ are cofibrations, and those commutative diagrams as weak
equivalences for which A→ A′ and B → B′ are weak equivalences in C.

(CY2) For every A ∈ C, the unique morphism ∗ → A is mapped to

∗ A A

A

=
=

=

A cylinder functor Cyl is called good (with respect to the category of weak equivalences)
if the projection p is a weak equivalence for all morphisms f : A→ B.

7



1.1.13 Proposition ([Wal85, Prop. 1.6.2]).
Suppose C is a small Waldhausen category and has a good cylinder functor. Define
the suspension ΣA of an object A via the cofibration sequence

A� Cyl(A→ ∗)� ΣA.

The suspension construction defines an exact functor and thus gives rise to a map

Σ: wS•C → wS•C

which represents a homotopy inverse to the H-space structure induced by taking
sums.

1.1.14 Theorem (Fibration Theorem).
Let C be a small category with cofibrations, and let vC ⊆ wC be two categories of
weak equivalences for C. Assume C is saturated and extensional with respect to wC.
Suppose that C admits a cylinder functor which is good with respect to wC.
Then the obvious inclusion functors induce a homotopy pullback square

vS•Cw wS•Cw ' ∗

vS•C wS•C

Proof. [Wal85, Thm. 1.6.4]

1.1.15 Theorem (Approximation Theorem).
Let C and D be saturated small Waldhausen categories. Suppose that C has a good
cylinder functor.
Let F : C → D be an exact functor which has the approximation property, i.e.:

(AP1) Weak equivalences are detected by F , meaning if F (f) is a weak equivalence
in D, then f is a weak equivalence in C.

(AP2) For any A ∈ C and morphism g : F (A) → B in D, there is a morphism
f : A→ A′ in C and a weak equivalence e : F (A′)→ B such that g = e◦F (f).

Then the induced maps

wF : wC → wD and wS•F : wS•C → wS•D

are weak equivalences.

Proof. [Wal85, Thm. 1.6.7]
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1.1.16 Remark.
Waldhausen actually has a slightly stronger condition which he calls the approxima-
tion property; namely, he requires in (AP2) the morphism f to be a cofibration in
C. As observed by Thomason [TT90, Proof of 1.9.1], this stronger approximation
property follows from (AP2) by applying the cylinder functor to f since C is assumed
to have a good cylinder functor.
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1.2. Constructions on simplicial sets and spectra
This section serves mainly the purpose of fixing notation and terminology. After in-
troducing a number of important constructions (e.g. homotopy colimits) on simplicial
sets, we discuss how these translate to spectra.
We assume that the reader is familiar with the basic properties of simplicial sets.
Following common practice, let us call a covariant functor from a small category C

to the category of (pointed) simplicial sets a covariant (pointed) C-space. Analogously,
a contravariant (pointed) C-space is a contravariant functor from C to the category
of pointed simplicial sets. A map of C-spaces is a natural transformation of such
functors.

1.2.1 Definition ([DL98, Def. 1.4]).
Let X be a contravariant pointed C-space and Y a covariant pointed C-space. Their
tensor product X ⊗C Y over C is defined as

X ⊗C Y :=
∨
C∈C

X(C) ∧ Y (C)/ ∼,

where ∼ is the equivalence relation generated by (X(c)(x), y) ∼ (x, Y (c)(y)) for
c : C → C ′ in C, x ∈ X(C ′) and y ∈ Y (C).
We denote the equivalence class of a pair (x, y) in X ⊗C Y by x⊗ y.

1.2.2 Remark.
The tensor product X ⊗C Y of two pointed C-spaces is a coequaliser in the category
of pointed simplicial sets:∨

c∈mor C
X(ran(c)) ∧ Y (dom(c))

∨
C∈C

X(C) ∧ Y (C) X ⊗C Y
L

R

Here, L denotes the map whose c-component is given by

X(c) ∧ id : X(ran(c))× Y (dom(c))→ X(dom(c)) ∧ Y (dom(c)),

and R is similarly given by evaluating Y . In particular, since geometric realisation
commutes with arbitrary colimits ([GJ09, p. 7]), there is a natural homeomorphism

|X ⊗C Y | ∼= |X| ⊗C |Y | ,

where the tensor product of compactly generated Hausdorff spaces is defined via the
analogous coequaliser diagram.
Consequently, all constructions we introduce by means of the tensor product for

simplicial sets are also defined for topological spaces, and geometric realisation pre-
serves them.

1.2.3 Remark.
Let X be a pointed topological space and S a topological space. Define the “half-
smash” X o S by

X o S :=
X × S
{∗} × S

.
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The evident map XoS → X∧S+ sending xos to x∧s is a natural homeomorphism.
In some cases, it will be more convenient to use X o S instead of X ∧ S+.

1.2.4 Definition ([DL98, Def. 1.8]).
Let F : C → D be a covariant functor.
If X is a covariant pointed C-space, then the induction indF X of X along F is

defined to be the covariant D-space

indF X := homD(F (−), ?)+ ⊗C X(−).

If X is contravariant, the induction is given by

indF X := X(−)⊗C homD(?, F (−))+.

If Y is a D-space (no matter whether covariant or contravariant), the restriction
resF Y of Y along F (which is a C-space of the same variance as Y ) is simply the
composition

resF Y := Y ◦ F.

1.2.5 Lemma.
Let X be a contravariant pointed C-space. Then there is a natural isomorphism

indIdX = X(−)⊗C homC(?,−)+

∼=−→ X.

Proof. For C,D ∈ C, define maps X(D)ohomC(C,D)
∼=−→ X(C) by xo c 7→ X(c)(x);

these are well-defined since X(c) is a pointed map for every c, and induce a natural
surjective map X(−)⊗C homC(C,−)

∼=−→ X(C). Injectivity follows from the fact that
x⊗ c = X(c)(x)⊗ id for any point x⊗ c ∈ X(−)⊗C homC(C,−)+.
The inverse, given by the maps X(C)→ X(−)⊗C hom(C,−), x 7→ x⊗ id, is clearly

continuous.

1.2.6 Proposition ([DL98, Lem. 1.9]).
Let F : C → D be a functor.

If X is a contravariant pointed C-space and Y a covariant pointed D-space, there
is a natural adjunction isomorphism

indF X ⊗D Y
∼=−→ X ⊗C resF Y.

Similarly, for X a contravariant pointed D-space and Y a covariant pointed C-space,
there is a natural adjunction isomorphism

X ⊗D indF Y
∼=−→ resF X ⊗C Y.

Proof. There is no difficulty in checking that the required isomorphisms are given by

indF X ⊗D Y → X ⊗C resF Y, x⊗ d⊗ y 7→ x⊗ Y (d)(y),

X ⊗D indF Y → resF X ⊗C Y, x⊗ c⊗ y 7→ X(c)(x)⊗ y.

11



1.2.7 Definition ([DL98, Def. 3.13]).
Let X be a covariant pointed C-space. Define the homotopy colimit of X to be

hocolim
C

X := N(−/C)+ ⊗C X(−).

1.2.8 Proposition.
Let f : X → Y be a map of covariant pointed C-spaces. If f(C) : X(C)→ Y (C) is a
weak equivalence for all C ∈ C, then the induced map

hocolim
C

f : hocolim
C

X → hocolim
C

Y

is also a weak equivalence.

Proof. As we observed in Remark 1.2.2, there is a natural homeomorphism∣∣∣hocolim
C

X
∣∣∣ = |N(−/C)+ ⊗C X(−)| ∼= |N(−/C)|+ ⊗C |X(−)| .

Therefore, the proposition follows from [DL98, Thm. 3.11].

1.2.9 Remark.
We have analogous constructions for unpointed C-spaces, in which case the one-point
unions

∨
have to be replaced by disjoint unions

∐
, and the smash products ∧ have

to be replaced by direct products ×. Everything we have said carries over to this
setting, and can also be found in the original reference [DL98, Section 1].

These constructions extend easily to spectra. By a spectrum X, we mean a se-
quence of pointed (compactly generated Hausdorff) spaces X = {Xn}n∈N together
with structure maps σn : Xn ∧ S1 → Xn+1. We call a spectrum X an Ω-spectrum if
the adjoints of the structure maps are weak equivalences for all n. A map of spectra
f : X → Y is a sequence of pointed continuous maps {fn : Xn → Yn}n which are
compatible with the structure maps in the sense that fn+1 ◦ σn = σn ◦ (fn ∧ S1).
A levelwise equivalence of spectra is a map of spectra f : X→ Y such that fn is a

weak equivalence for all n.
Building on these definitions, we obtain all the usual notions; for example, the

homotopy groups π∗(X) of a spectrum X are given by

πn(X) := colim
k→∞

πn+k(Xk).

We call a map of spectra a weak equivalence if it induces an isomorphism on πn for
all n.

1.2.10 Definition.
Let X be a spectrum. For every n, the structure maps of X give rise to a directed
system

Xn
σn−−→ ΩXn+1

Ωσn+1−−−−→ Ω2Xn+2 → . . .

Define the Ω-spectrification XΩ of X to be the spectrum given by

XΩ
n := hocolim

k→∞
ΩkXn.
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In fact, taking Ω-spectrifications defines an endofunctor on the category of spectra.
As the name suggests, XΩ is always an Ω-spectrum. The particularly nice property
of this functor is that it converts weak equivalences into levelwise equivalences.
The tensor product construction on simplicial sets generalises to a tensor product

between simplicial sets and spectra. By a covariant C-spectrum, we mean a covariant
functor from C to the category of spectra.

1.2.11 Definition ([DL98, p. 207]).
Let X be a contravariant pointed C-space, and let E be a covariant C-spectrum. Then
define their tensor product to be the spectrum

X ⊗C E :=
{
|X| ⊗C En

}
n
,

whose structure maps are given by id|X|⊗Cσn.

In particular, the notion of homotopy colimit over a small category C extends
naturally to the category of spectra since it was defined by taking the tensor product
with the contravariant pointed C-space N(−/C)+.
Maps of C-spectra f : X→ Y induce maps between their homotopy colimits, and it

follows from Proposition 1.2.8 that, if f(C) is a levelwise equivalence for every C ∈ C,
then hocolimC f is a levelwise equivalence as well.

We have no desire to delve into the intricacies of actual stable homotopy theory.
Instead, we resort to the rather primitive convention (which is sufficient for our
purposes) that a homotopy fibration of spectra refers to a sequence X → Y → Z
such that on each level n, the sequence Xn → Yn → Zn is a homotopy fibration.
Since taking homotopy colimits over directed systems preserves homotopy fibrations,
applying the Ω-spectrification functor preserves homotopy fibrations of spectra.
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1.3. Models for the K-theory of additive categories

Our original intent is to understand the algebraic K-theory of rings; that is to say,
the algebraic K-theory of the category of finitely generated free or projective modules
over a ring. These categories are additive and essentially small. They fit into the
picture of Waldhausen categories since we may regard any small additive category A
as a Waldhausen category by declaring those morphisms which are isomorphic to the
inclusion of a direct summand to be cofibrations, and letting the weak equivalences
consist exactly of the isomorphisms in A.
However, if we wish to apply the machinery summarised in Section 1.1, it is not

a good idea to consider K(A): Both the Fibration and Approximation Theorem
require cylinder functors, and we do not have these available for an arbitrary additive
category. The remedy for this problem lies in passing to the category of (co)chain
complexes over A.
We let Ch(A) denote the category of finite cochain complexes over A, i.e. diagrams

of the form

· · · → An−1 an−1

−−−→ An
an−−→ An+1 → . . .

such that an+1an = 0 for all n ∈ Z and such that the set {n ∈ Z | An 6= 0} is finite.
Note that we do allow non-zero components in negative degrees.
We could work equally well with chain complexes over A (and this is what most

other people do), given that the categories of finite chain complexes and finite cochain
complexes are isomorphic (by reversing the indices). But using cochain complexes is
more convenient for what we are planning to do in subsequent chapters.
We may equip Ch(A) with a Waldhausen structure: Let coCh(A) be the subcate-

gory consisting of those chain maps1 which are isomorphic to a chain map consisting
of inclusions of direct summands in each degree (the chain map itself is not required
to split). Defining chain homotopies by the usual formulas (being careful about the
index shifts: homotopies consist now of morphisms of degree −1), we obtain the no-
tion of chain equivalence of cochain complexes. Let the weak equivalences hCh(A)
consist of exactly the chain equivalences.
Then Ch(A) is a Waldhausen category, and the natural functor A → Ch(A) map-

ping an object to a cocomplex concentrated in degree 0 is an exact functor. Moreover,
Ch(A) has a cylinder functor, given by the usual mapping cylinder. The following
theorem tells us that we may use the K-theory of Ch(A) as a model for the K-theory
of A:

1.3.1 Theorem (Gillet-Waldhausen).
The canonical functor A → Ch(A) induces a weak equivalence

iS•A
∼−→ hS•Ch(A).

Proof. [TT90, Thm. 1.11.7], [CP97, Prop. 6.1]

1Even though “cochain map” would probably be slightly more appropriate, we prefer the shorter
term in the interest of readibility.

14



While Theorem 1.3.1 makes the Fibration and Approximation Theorems available
to us in the context of additive categories, it has a downside: When dealing with the
algebraic K-theory of group rings, negative K-groups enter the picture quite natu-
rally (via the Bass-Heller-Swan-Theorem); so we would like to have a non-connective
K-theory spectrum at our disposal. Unfortunately, there is no general construction of
a non-connective K-theory spectrum for Waldhausen categories (Waldhausen’s ma-
chinery does produce a delooping of the K-theory space, but this yields a connective
spectrum). Nevertheless, there is a workaround for this in the form of the Pedersen-
Weibel delooping (see [PW85], cf. [CP97] or [CP95, p. 737f.]). In what follows, we
are not intending to give a full exposition of the delooping process, but only wish to
remind the reader of the construction. We assume some familiarity with the concepts
involved, even though some of them are explained in Appendix A.
Let A be a small additive category. Define a category CA, which has as objects

collections A = (Az)z∈Z with Az ∈ A for all z, and whose morphisms are the so-
called bounded morphisms: These are collections of morphisms fz,z′ : Az → Bz′ in
A, indexed over Z2, such that there is some R > 0 for which fz,z′ = 0 as soon as
|z − z′| > R; one may think about these as infinite matrices whose non-zero entries
are only a bounded distance away from the diagonal. Composition of morphisms is
then given by matrix multiplication.
The category CA inherits an additive structure from A. Let C+A and C−A denote

the full additive subcategories of CA which consist of those objects whose support
(the set of integers for which Az 6= 0) is bounded below/above. These categories
possess an Eilenberg swindle, i.e. an endofunctor S such that S ⊕ Id is naturally
isomorphic to S. It is a consequence of the Additivity Theorem that the existence of
such a functor implies the contractibility of the K-theory space.
Since the natural inclusion of A into CA factors through both C+A and C−A, we

obtain two canonical nullhomotopies of the map K(A) → K(CA), which together
define a map

K(A) ∧ S1 → K(CA).

Iterating this construction, we obtain a spectrum K(A) := {K(Cn−1A)}n, where we
interpret K(C−1A) as a point. The non-connective K-theory spectrum of A can now
be obtained by taking the Ω-spectrification of this spectrum.
We do a slight variation on this: The functoriality of taking cochain complexes

over a small additive category yields Eilenberg swindles on Ch(C±A), which again
induce canonical contractions of the associated K-theory spaces (by the Additivity
Theorem). Therefore, the map K(Ch(A)) → K(Ch(C±A)) is also nullhomotopic in
two canonical ways, and we construct a spectrum K(Ch(A)) := {K(Ch(Cn−1A))}n
as before. Again by functoriality, the inclusion maps CnA → Ch(CnA) induce a map
of spectra

K(A)→ K(Ch(A))

which is a levelwise equivalence by the Gillet-Waldhausen theorem.

1.3.2 Definition.
The non-connective algebraic K-theory spectrum of A, denoted K−∞(A), is by defi-
nition the Ω-spectrification of K(Ch(A)).
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The previous discussion exemplifies quite nicely how we will deal with the problem
of generalising results from the connective to the non-connective case; whenever we
would like to do so, we will be able to use the categories CnA to transfer our argument
to negative K-theory.
We are particularly interested in the K-theory of “group ring” categories, by which

we mean the following:

1.3.3 Definition ([BR07, Def. 2.1]).
Let G be a discrete group. Let A be a small additive category on which G acts from
the right. Let T be a (left) G-set. We let

A ∗G T

denote the small additive category whose objects are collections A = {At}t∈T for
which the set {t ∈ T | At 6= 0} is finite, and in which a morphism ϕ : A → B
consists of a collection {ϕg,t : Ag−1t → Btg}g∈G,t∈T of morphisms in A such that the
set {(g, t) ∈ G × T | ϕg,t 6= 0} is finite. Composition of morphisms is given by the
formula

(ψ ◦ ϕ)g,t =
∑
kh=g

ψk,th ◦ ϕh,k−1t.

If T = G/G, we will usually just write A[G] instead of A ∗G G/G.

1.3.4 Remark.
Our definition of A∗G T does not match the definition in [BR07] exactly: Morphisms
are indexed in a slightly different way. Of course, this does not really change the
category. There is an obvious isomorphism between A∗G T and the category bearing
the same name in loc. cit.

1.3.5 Remark.
The construction A∗G T is related to group rings in the following way: Suppose A is
a small model (e.g. a skeletal subcategory) for the category of finitely generated free
R-modules, where R is some unital ring. Letting G act trivially on A, the category
A ∗G G/H can be easily seen to be additively equivalent to the category of finitely
generated free R[H]-modules. Since a decomposition T =

∐
r Tr of T into transitive

G-sets induces an isomorphism
⊕

rA ∗G Tr ∼= A ∗G T , the category A ∗G T is only
built from categories of modules over a group ring. See [BR07, Ex. 2.4–2.6, Section
6] for a more detailed discussion.

If we consider A ∗G T as a rule associating an additive category to every pair
(A, T ), this construction is functorial in A; it is nearly functorial in T , modulo some
problems regarding choices of direct sums and the braiding A ⊕ B ∼= B ⊕ A. The
ambiguity in choosing a direct sum can be eliminated by passing to an equivalent
additive category which possesses a functorial direct sum. A possible remedy for the
remaining problems is given in [BR07, Rem. 2.3]; but since this would burden us
with additional (essentially superfluous) notation, we follow the authors in loc. cit.
and “prefer to ignore this problem”.
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We have already discussed how to obtain a non-connective K-theory spectrum
K−∞(A ∗G T ) for any additive category with right G-action A and G-set T . It will
be important to know that we can construct an equivalent spectrum in a slightly
different fashion:
If A carries a right G-action, so does CA. Consequently, we can form the category

(CA) ∗G T , and we have the associated subcategories (C±A) ∗G T . By functoriality,
we obtain Eilenberg swindles on (C±A) ∗G T , and therefore a map

K(A ∗G T ) ∧ S1 → K((CA) ∗G T ).

By the same reasoning, there are maps K((CnA) ∗G T )∧ S1 → K((Cn+1A) ∗G T ) for
every n; these serve as structure maps in a spectrum

K(A, T ) =
{
K((Cn−1A) ∗G T )

}
n
.

1.3.6 Proposition.
There is a natural levelwise equivalence

K(A, T )
∼−→ K(A ∗G T ).

Proof. The proof relies on the fact that some inclusions of additive subcategories
induce particularly nice homotopy fibration sequences of K-theory spaces, and is
more of an aside to our present discussion. See Appendix A for details.

As before, we can use cochain complexes over (CnA) ∗G T instead of the category
itself to define another spectrum K′(A, T ). Since we know that the other three maps
in the commutative square

K(A, T ) K(A ∗G T )

K′(A, T ) K(Ch(A ∗G T ))

∼

∼ ∼

are levelwise equivalences, it follows that the map K′(A, T )→ K(Ch(A∗G T )) is also
a levelwise equivalence.

1.3.7 Definition.
Define K−∞(A, T ) to be the Ω-spectrification of K′(A, T ).

1.3.8 Corollary.
There is a natural levelwise equivalence

K−∞(A, T )
∼−→ K−∞(A ∗G T ).
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2. Filtering the algebraic K-theory
of group rings

As outlined in the introduction, this chapter is concerned with establishing a poten-
tially interesting filtration on the K-theory of group rings of discrete groups. After
defining the appropriate categoryMVG(X), we give a criterion for when theK-theory
of this category turns out to be the K-theory of a group ring. The chapter closes
with a discussion of a spectral sequence associated to the K-theory ofMVG(X).

2.1. The category WG(X;K)
Our main goal for this section is the definition of the categoryMVG(X). This cate-
gory is a generalisation of the category of “Mayer-Vietoris presentations” considered
by Waldhausen in [Wal78a, Wal78b]. Our definition takes some inspiration from
[SS95], where Waldhausen’s exact categories were promoted to Waldhausen cate-
gories with cylinder functor, thus making it possible to study their K-theory via
Waldhausen’s machinery. Still, our definition does not coincide exactly with that
of Schwänzl and Staffeldt; instead of simplicial modules, we choose to work with
cochain complexes. Interestingly enough, this comes again closer to Waldhausen’s
original take on the subject as contained in his preprint [Wal], in which “Mayer-
Vietoris presentations” still consisted of chain complexes. However, the observant
reader will notice that the contractibility condition in 2.1.15 is somewhat different.
To give the reader some intuition which kinds of objects we intend to study, let us

first give an informal description of a Mayer-Vietoris resolution. So let G be a discrete
group, R a ring, and X a simplicial complex with G-action. Suppose we are given
a finitely generated free R[G]-module M . When we speak of a resolution M → M∗

of such a module, we think of a contractible, finite, free augmented R[G]-cochain
complex. What needs further clarification is what we mean by saying that this is
a “resolution over X”. First of all, we think of the module Mn as based on the n-
simplices of X; i.e., Mn comes equipped with an R[G]-basis, and each basis element
is assigned an n-simplex of X. Thus, each basis element generates a free R[Gx]-
module, x being the simplex assigned to the basis element, which lives entirely on a
single simplex. The actions of other group elements translate this module to other
simplices in the same orbit. So we can regard each Mn as a direct sum of induced
modules, where the subgroups from which the modules are induced are controlled by
the stabilisers of the n-simplices of X. As soon as we wish to define what a morphism
between such resolutions is, we will of course also want the morphism in degree n
to respect this direct sum decomposition, and to be induced from the appropriate
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stabiliser groups.
Moreover, the differentials in the resolution M → M∗ are not allowed to be arbi-

trary. While we have used the simplices of X themselves as well as their stabilisers
in the characterisation of the modules Mn, the simplicial structure of X has not yet
entered the picture. The differentials are supposed to arise as alternating sums of
coface maps. By an i-th coface map, we mean an R[G]-linear map Mn → Mn+1

such that the image of a given basis element of Mn, located on a simplex x, is only
allowed to be based on those (n+ 1)-simplices whose i-th face is x. Additionally, we
will again want to take the stabiliser of x into consideration. Naturally, interpreting
the differentials as alternating sums of coface maps will force us to require the coface
maps to satisfy the usual cosimplicial identities (otherwise we would not be defining
a cochain complex).
In practice, we want to resolve cochain complexes instead of just modules: Remem-

ber that the Fibration and Approximation Theorem are only available to us when
the categories under consideration possess a cylinder functor.

2.1.1 Definition.
A G-coefficient system is a covariant functor K : G-Sets→ Add from the category of
G-sets to the category of small additive categories which is monoidal in the following
sense: For every G-set T , the canonical functor

⊕
r K(Tr) → K(T ) (induced by the

decomposition T =
∐
r Tr of T into transitive G-sets) is an isomorphism of categories,

and these isomorphisms combine to a natural isomorphism K → K̃, where K̃ is the
functor G-Sets→ Add given by K̃(T ) :=

⊕
r K(Tr).

We assume that K(∅) is always the trivial additive category containing only a zero
object.

2.1.2 Remark.
Let K be a G-coefficient system. If T =

∐
r Tr is any decomposition of a G-set T

into G-invariant subsets, it follows that the canonical functor
⊕

r K(Tr) → K(T ) is
an isomorphism.
We also obtain induced isomorphisms

⊕
r Ch(K(Tr))

∼=−→ Ch(K(T )). Consequently,
we can decompose cocomplexes and their maps into smaller pieces. When we speak
about the Tr-component of a cocomplex or map, we mean the summand living in
Ch(K(Tr)).

2.1.3 Example.
Let A be a small additive category with right G-action. Then A induces a G-
coefficient system KA given by

KA(T ) := A ∗G T.

Fix the following data: Let G be a discrete group, K a G-coefficient system, and
let X be a semisimplicial G-set. As a permanent convention, we agree to think of
X as a trivially augmented semisimplicial G-set. That is, there is a set of (−1)-
simplices X−1 = G/G, and there is a unique boundary map d : X0 → X−1 given by
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the obvious projection map. Moreover, when we speak about ordinal number maps
m ↪→ n in ∆inj, we usually also allow the unique map ∅ = −1→ n which induces the
augmentation Xn → X−1.

2.1.4 Definition.
We define a category WG(X;K) as follows: An object (A, a) consists of a col-
lection A = {An}n>−1 of objects An ∈ Ch(K(Xn)), together with a collection
a = {ain}n>−1,06i6n+1 of morphisms ain : An → K(di)(A

n+1) in Ch(K(Xn)) which
satisfy the cosimplicial identities in the sense that

K(di)(a
j
n+1) ◦ ain = K(dj−1)(ain+1) ◦ aj−1

n (2.1)

whenever i < j. Moreover, we require that An = 0 for all but finitely many n.
A morphism ϕ : (A, a)→ (B, b) is a sequence ϕ = {ϕn : An → Bn}n>−1, with each

ϕn a morphism in Ch(K(Xn)), such that K(di)(ϕ
n+1) ◦ ain = bin ◦ ϕn for all n and i.

The composition of two morphisms ϕ : A → B and ψ : B → C is defined to be
ψ ◦ ϕ = {ψn ◦ ϕn}n.

2.1.5 Remark.
Let (A, a) be an object in WG(X;K). Given a morphism µ : m ↪→ n in ∆inj, define

a(µ) := K(dim ◦ · · · ◦ din−2
)(ain−1) ◦ · · · ◦ K(dim)(aim+1) ◦ aim ,

where µ = din−1 ◦ · · ·◦dim is a factorisation of µ into coface maps; because of equality
2.1, this is a well-defined morphism

a(µ) : Am → K(µ∗)(An).

If ϕ : (A, a)→ (B, b) is a morphism in WG(X;K), it follows that for any µ : m ↪→ n,
we have

K(µ)(ϕn) ◦ a(µ) = b(µ) ◦ ϕm.

Note that this applies in particular to the morphism ∅ → n.

We would like to equipWG(X;K) with a Waldhausen structure. As far as cofibrations
are concerned, there is a fairly canonical choice: Let coWG(X;K) be the subcategory
of those morphisms ϕ with the property that ϕn is a cofibration of cocomplexes for
every n.

2.1.6 Lemma.
The triple (WG(X;K), 0, coWG(X;K)) is a category with cofibrations.

Proof. Axiom (CF1) is clearly satisfied. If ϕ is an isomorphism, then each ϕn is an
isomorphism, so (CF2) holds. Suppose a diagram of the form (B, b)� (A, a)→ (C, c)
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is given. Then we obtain for each n a pushout diagram in Ch(K(Xn))

An Bn

Cn Pn

The morphisms pin : Pn → K(di)(P
n+1) are induced by the universal property of

the pushout construction, and the cosimplicial identities also hold by virtue of the
universal property. Each morphism Cn� Pn is a cofibration. This proves (CF3).

There is a seemingly canonical choice of weak equivalences on WG(X;K) where
we require every component of a morphism to be a chain equivalence (in fact, we
will study these weak equivalences in the course of Section 2.3, and it will turn out
that the result is somewhat boring). However, our freedom in the choice of weak
equivalences on WG(X;K) is what makes this category really interesting. A typical
notion of weak equivalence is of the following type:

2.1.7 Definition.
Let T ⊆

∐
n>−1Xn be a non-empty G-subset. Define Tn := T ∩ Xn, and write

Tn =
∐
r T

n
r for the decomposition of Tn into transitive G-sets.

Call a morphism ϕ in WG(X;K) a T -equivalence if, for every n > −1, all Tnr -
components of ϕn are chain equivalences (equivalently, the Tn-component of ϕn is a
chain equivalence for all n).

The composition of two T -equivalences is a T -equivalence, so the collection of T -
equivalences forms a subcategory which we denote by hTWG(X;K). In the special
case where T =

∐
n>−1Xn is the set of all simplices, we denote the corresponding

subcategory of weak equivalences by hWG(X;K).

2.1.8 Proposition.
The quadruple (WG(X;K), 0, coWG(X;K), hTWG(X;K)) is a saturated and exten-
sional Waldhausen category for every non-empty G-subset T ⊆

∐
n>−1Xn.

The mapping cylinder construction on the category of cocomplexes over an additive
category induces a good cylinder functor on WG(X;K) for every choice of T .

Proof. If ϕ is an isomorphism, every ϕn is an isomorphism, so (WE1) holds regardless
of the choice of T . If we have a transformation of pushout diagrams which consists
of chain equivalences in all degrees specified by T , the induced morphism on the
pushouts is also a chain equivalence in all degrees given by T (since (WE2) holds in
any category of cochain complexes). This proves (WE2).
The category WG(X;K) is saturated and extensional because the category of

cochain complexes over an additive category has these properties. Given a mor-
phism ϕ : (A, a) → (B, b), we can apply the cylinder functor to each ϕn separately;
i.e. we define

Cyl(ϕ)n := Cyl(ϕn).
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Since additive functors preserve the cylinder functor, there is a natural isomor-
phism K(di)(Cyl(ϕ

n+1)) ∼= Cyl(K(di)(ϕ
n+1)). This yields the coboundary maps

cin : Cyl(ϕn) → K(di)(Cyl(ϕ
n+1)) by functoriality, and also by functoriality we get

an object (Cyl(ϕ), c) ∈ WG(X;K). The cylinder diagrams

(A, a) Cyl(ϕ) (B, b)

(B, b)

ϕ =

are of the required shape, and (CY2) is clearly satisfied. The induced functor

Fun(1, C)→ F1C, (ϕ : (A, a)→ (B, b)) 7→ ((A, a)⊕ (B, b)� Cyl(ϕ))

preserves the zero object. Suppose (ψA, ψB) : (A
ϕ−→ B) → (A′

ϕ′−→ B′) is a commu-
tative square in WG(X;K), and both ψA and ψB are cofibrations. Then ψA ⊕ ψB
is a cofibration, and the morphism Cyl(ϕ) ∪A⊕B (A′ ⊕B′)→ Cyl(ϕ′) is a cofibration
since Cyl is a cylinder functor on cochain complexes; this shows that the above func-
tor preserves cofibrations. For the same reason, the above functor preserves pushout
diagrams. Clearly, it also preserves weak equivalences, so it is exact (verifying (CY1)).
The projection map is a chain equivalence in all degrees, so it is a T -equivalence

for any choice of T . This proves goodness.

2.1.1. Functoriality

The construction ofWG(X;K) depends on the choice of a discrete groupG, a semisim-
plicial G-set X, and a G-coefficient system K. Let us quickly discuss in which sense
the category WG(X;K) is functorial with respect to K, X and G; the proofs of
the statements in this section are all not difficult, and boil down to unravelling the
definition of WG(X;K) until the claim is obvious. Therefore, we skip most of the
proofs.

2.1.9 Definition.
Let K, L be G-coefficient systems. A map of coefficient systems κ : K → L is a
natural transformation K → L via additive functors such that for every G-set T , the
diagram

K(T ) L(T )

⊕
r K(Tr)

⊕
r L(Tr)

κT

∼= ∼=

⊕rκTr

commutes, where T =
∐
r Tr is the decomposition of T into transitive G-sets.
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2.1.10 Example.
Suppose F : A → B is a G-equivariant, additive functor of small additive categories
with right G-action. Then F induces a map of coefficient systems

κF : KA → KB.

2.1.11 Proposition.
Let T ⊆

∐
nXn be non-empty. A map of G-coefficient systems κ : K → L induces an

hT -exact functor
WG(κ) : WG(X;K)→WG(X;L)

which maps (A, a) to the object given by

WG(κ)(A)n := κXn(An), WG(κ)(a)in := κXn(ain).

2.1.12 Proposition.
Let f : X → Y be a map of semisimplicial G-sets. Let S ⊆

∐
nXn and T ⊆

∐
n Yn

be non-empty such that f
(∐

nXn \ S
)
∩ T = ∅. Then f induces an exact functor

WG(f) : (WG(X;K), hS)→ (WG(Y ;K), hT )

which maps (A, a) to the object given by

WG(f)(A)n := K(f)(An), WG(f)(a)in := K(f)(ain).

2.1.13 Proposition.
Let T ⊆

∐
nXn be non-empty, and let κ : K → L be a map of G-coefficient systems.

If κS is an equivalence for all G-sets S, then the functor WG(κ) is an hT -exact
equivalence.

Proof. The equivalences κS induce exact equivalences Ch(K(S)) → Ch(L(S)). This
suffices to check that WG(κ) is fully faithful and essentially surjective.

As far as functoriality in G is concerned, we have analogues of the usual induction
maps. For the sake of simplicity, we discuss only induction along monomorphisms:
Let H 6 G be a subgroup. Recall the “induction functor”

indGH : H-Sets→ G-Sets, T 7→ G×H T.

This functor extends (regarding G-sets as discrete semisimplicial G-sets) naturally to
a functor

indGH : ssH-Sets→ ssG-Sets

by applying indGH degreewise. For a semisimplicial H-set X, we have in fact an
equality

WH(X;K ◦ indGH) =WG(indGH X;K).
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If K = KA for some small additive category A with right G-action, this gives rise to
an h-exact equivalence

AdGH : WH(X;KresGH A)→WG(indGH X;KA).

This follows from Proposition 2.1.13 in view of the natural additive equivalences

(resGH A) ∗H T
∼−→ A ∗G (indGH T )

given in [BR07, Prop. 2.8].

2.1.2. The category of Mayer-Vietoris resolutions MVG(X;K)
Let • denote the terminal object in the category of semisimplicial G-sets, i.e. • is given
by •n = G/G for every n. By functoriality, we have for every X, prior to any choice
of subcategory of weak equivalences, an exact functor of categories with cofibrations
WG(X;K) → WG(•;K). Observe that WG(•;K) is merely another name for the
category of cosemisimplicial objects in Ch(K(G/G)) which are non-zero in only finitely
many degrees. To each such cosemisimplicial object, we can functorially associate a
finite cochain complex over K(G/G) by retaining the underlying graded object and
taking alternating sums of coface maps; this is sometimes called the associated Moore
complex. Taking Moore complexes produces double cochain complexes, i.e. defines a
functorWG(•;K)→ Ch(Ch(K(G/G))). Denote the composition of these two functors
by

σX : WG(X;K)→ Ch(Ch(K(G/G))).

For an object (A, a) ∈ WG(X;K), note that the two gradings on σX(A, a) arise in
two different ways: One grading comes from the dimension of the simplices on which
the object was based; we will sometimes refer to this as the geometric degree. The
other grading will go by the name of algebraic degree.
Composing with the totalisation functor

Tot : Ch(Ch(K(G/G)))→ Ch(K(G/G))

produces an exact functor of categories with cofibrations

Tot ◦ σX : WG(X;K)→ Ch(K(G/G)).

2.1.14 Definition.
Define the subcategory wtotWG(X;K) by pulling back the weak equivalences in
Ch(K(G/G)) along Tot ◦ σX (see 1.1.5); i.e., a morphism ϕ is in wtotWG(X;K) if
and only if Tot(σX(ϕ)) is a chain equivalence.

Note that (WG(X;K), 0, coWG(X;K), wtotWG(X;K)) is a saturated and exten-
sional Waldhausen category. Since σX and Tot preserve the canonical cylinder func-
tors, WG(X;K) possesses a good cylinder functor with respect to wtot as well.
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2.1.15 Definition.
An object inWG(X;K) is called a Mayer-Vietoris resolution if it is wtot-contractible.
We denote the category of Mayer-Vietoris resolutions by

MVG(X;K) :=WG(X;K)wtot .

If the choice of G-coefficient system K is clear, we sometimes shorten notation and
writeMVG(X) forMVG(X;K).

Observe that the notion of being a T -equivalence restricts to the category of Mayer-
Vietoris resolutions. Formally, we may consider the subcategory of weak equiva-
lences hTwtotWG(X;K) ⊆ wtotWG(X;K). Applying 1.1.5, we see that the category
hTMVG(X;K) := hTwtotWG(X;K)wtot is also a subcategory of weak equivalences
for MVG(X;K). Note that we can safely suppress wtot in the notation: Since
wtotWG(X;K) is saturated, all morphisms in MVG(X;K) are automatically wtot-
equivalences.
For an arbitrary small Waldhausen category, we have only defined a K-theory

space. We want to compare theK-theory ofMVG(X;K) with that of K(G/G) (which
is just an additive category), so we require a non-connective K-theory spectrum
associated to MVG(X;K). Fortunately, the functoriality properties of WG(X;K)
translate in the obvious fashion toMVG(X;K):

2.1.16 Proposition.

1. Let T ⊆
∐
nXn, and let κ : K → L be a map of G-coefficient systems. Then

WG(κ) restricts to an hT -exact functorMVG(κ).

If κS is an equivalence of additive categories for all G-sets S, thenMVG(κ) is
an hT -exact equivalence.

2. Let f : X → Y be a map of semisimplicial G-sets. Suppose that S ⊆
∐
nXn

and T ⊆
∐
n Yn are non-empty such that f

(∐
nXn \ S

)
∩ T = ∅. Then WG(f)

restricts to an exact functorMVG(f) : (MVG(X;K), hS)→ (MVG(X;K), hT ).

3. Let H 6 G be a subgroup, and let X be a semisimplicial H-set. Then
MVH(X;K ◦ indGH) =MVG(indGH X;K).

If K = KA for some small additive category A with right G-action, the h-exact
equivalence AdGH : WH(X;KresGH A) → WG(indGH X;K) restricts to an h-exact
equivalence AdGH : MVH(X;KresGH A)

∼−→MVG(indGH X;K).

In particular, we can exploit the first part of this proposition to produce a delooping
of K(MVG(X;K), hT ) as we did for additive categories. We focus on the case where
K = KA for some small additive category A with right G-action. For every n, we
have a map of G-coefficient systems KCnA → KCn+1A, which factors through both
KC+CnA and KC−CnA. The Eilenberg swindles on C±CnA induce h-exact swindle
functors on MVG(X;KC±CnA), so we obtain two canonical nullhomotopies of the
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map K(MVG(X;KCnA), hT ) → K(MVG(X;KCn+1A), hT ) (regardless of the choice
of T ); these combine to give a map

K(MVG(X;KCnA), hT ) ∧ S1 → K(MVG(X;KCn+1A), hT ),

which is one of the structure maps of the spectrum

K (MVG(X;A), hT ) =
{
K (MVG(X;KCn−1A), hT )

}
n
.

We let K−∞ (MVG(X;A), hT ) denote its Ω-spectrification; this is the non-connective
K-theory spectrum ofMVG(X;KA) with respect to the T -equivalences.

2.1.17 Remark.
The Pedersen-Weibel delooping does not only generalise to coefficient systems of the
form KA. It is equally well possible to define coefficient systems CnK = Cn ◦ K in
order to obtain a spectrum {

K(MVG(X; Cn−1K), hT )
}
n

which is another candidate for a non-connective K-theory spectrum. In the case
where K = KA, there are functorsMVG(X;KCnA)→MVG(X; CnKA) as we saw in
Section 1.3. I conjecture that these maps are equivalences.

It is somewhat harder to picture an object inMVG(X;K) than it is to think of one
in WG(X;K). For this reason, we close this section by describing a method which
produces some “generic” Mayer-Vietoris resolutions.
Let T be a G-set. We define a functor

ρpT : Ch(K(T ))→WG(T ×∆p;K)

as follows: Recall that the set of n-simplices of ∆p is given by hom∆inj(n, p). Observe
that

K
(
T × hom∆inj(n, p)

) ∼= ⊕
µ : n↪→p

K(T ).

Given a cocomplex K over K(T ), set

An := (K)µ ∈
⊕

µ : n↪→p
Ch(K(T ))

for n > −1, and let A−1 be the image of K in Ch(K(G/G)).
Let 0 6 i 6 n+1. Similar to the objects, the morphism ain decomposes into several

components, one for each injective map µ : n→ p. We let the µ-component of ain be
given by the diagonal morphism

∆K : K →
⊕

ν : n+1↪→p,
νdi=µ

K.
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We need to check that this defines an object in WG(T ×∆p;K). If we regard ain as
a hom∆inj(n+ 1, p)× hom∆inj(n, p)-indexed matrix1, it is given by

ain =
(
δνdi,µ

)
ν,µ

,

where δ�,♦ is the Kronecker delta. The cosimplicial identities are now immediate.
Define ρpT (K) := (A, a). Sending a chain map ϕ to the sequence

ρpT (ϕ)n :=
⊕
µ

ϕ, n > −1,

together with the image of ϕ in Ch(K(G/G)) as ρpT (ϕ)−1, turns ρpT into a functor
Ch(K(T ))→WG(T×∆p;K). We want to show that ρpT actually maps to the category
of Mayer-Vietoris resolutionsMVG(T ×∆p;K).
Recall [BL12b, p. 660] that the category of finitely generated free Z-modules acts on

any additive category: We let FrZ denote the following small model for the category
of finitely generated free Z-modules: The set of objects is {Zn | n ∈ N}, and for
m,n ∈ N we set

mor(Zn,Zm) := Mm,n(Z),

with composition of morphisms given by matrix multiplication. This is clearly an
additive category. For any additive category A, we may define a functor

⊗ : A× FrZ → A,

additive in both variables, by setting A⊗ Zn :=
⊕n

i=1A and f ⊗M := (mi,jf)i,j . If
the morphism f is an identity morphism idA, we abbreviate the notation and write
A⊗M for idA⊗M .
This functor extends to a pairing

⊗ : A× Ch(FrZ)→ Ch(A)

by defining (A⊗ C)n := A⊗ Cn.
2.1.18 Lemma.
Let A ∈ A, let C,D ∈ Ch(FrZ), and suppose that s : c ' c′ is a chain homotopy of
chain maps c, c′ : C → D.
Then s induces a chain homotopy A ⊗ s : A ⊗ c ' A ⊗ c′. In particular, if C is a

contractible cochain complex, then A⊗ C is contractible in Ch(A).

Proof. This is a straightforward calculation. We define a chain homotopy A ⊗ s by
(A⊗ s)n := A⊗ sn : A⊗ Cn → A⊗ Cn−1. Then

(A⊗ dn−1)(A⊗ sn) + (A⊗ sn+1)(A⊗ dn) = A⊗ (dn−1sn + sn+1dn)

= A⊗ (cn − (c′)n)

= (A⊗ cn)− (A⊗ (c′)n).

1A word of warning: Not every such matrix defines a morphism in
⊕
µ∈hom∆inj

(n,p)K(T ) (only cer-

tain block matrices). Whenever two matrices do correspond to morphisms, matrix multiplication
is the same as composition of the morphisms.
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The “in particular”-part of the claim is the special case where D = C, c = idC , c′ = 0,
and s is a contraction of C.

Going back to the definition of ρpT (K), it is straightforward to check that in
each algebraic degree k, σT×∆p(ρpT (K)) is given by the tensor product of the im-
age of Kk in K(G/G) with the augmented simplicial cochain complex C∗ε (∆p). So
by 2.1.18, σT×∆p(ρpT ) is contractible in each algebraic degree, and it follows that
Tot(σT×∆p(ρpT )) is contractible; therefore, ρpT is a functor

ρpT : Ch(K(T ))→MVG(T ×∆p;K).

This enables us to construct Mayer-Vietoris resolutions over arbitrary spaces: If
χ : G/H×∆p → X is the characteristic map of an equivariant p-simplex, the compo-
sitionMVG(χ) ◦ ρpG/H converts an arbitrary cocomplex over K(G/H) into a Mayer-
Vietoris resolution over X.
The functor ρpT enjoys the following properties:

2.1.19 Lemma.

1. The functor ρpT is h-exact; it is natural in T and K.

2. Let Fp : MVG(T × ∆p;K) → Ch(K(T )) be the forgetful functor sending an
object (A, a) to Ap. This functor is hS-exact, where S is the set of p-simplices
of T × ∆p. Additionally, Fp ◦ ρpT = Id, and there is a natural transformation
η : Id→ ρpT ◦ Fp whose component in degree p is the identity morphism.

If p = 0, the natural transformation η is a natural h-equivalence.

3. Suppose that K = KA for some additive category A with G-action. Let H 6 G
be a subgroup, and T an H-set. Then the following diagram commutes:

Ch((resGH A) ∗G T ) MVH(T ×∆p;KresGH A)

Ch(A ∗G (indGH T )) MVG(indGH(T ×∆p);KA)

MVG((indGH T )×∆p;KA)

ρpT

AdGH AdGH

ρp
indG

H T
∼=

Proof.

1. This is straightforward.

2. The equality Fp ◦ ρpT = Id is immediate from the definitions.
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Let (A, a) ∈ MVG(T ×∆p;K). Set K := Ap. We have to specify a chain map
ηn : An → ρpT (K)n for each n 6 p. Set

ηn := (a(µ))µ : An →
⊕

µ∈hom∆inj
(n,p)

Ap.

Let 0 6 i 6 n+ 1, and denote the coface maps of ρpT (K) by rin. Then

rin ◦ ηn = rin ◦ (a(µ))µ : n→p

=
(
∆K ◦ a(µ)

)
µ : n→p

=
(
(a(µ))ν : νdi=µ

)
µ : n→p

=
((
K(di)(a(ν))

)
ν : νdi=µ

)
µ : n→p ◦ a

i
n

= K(di)(η
n+1) ◦ ain.

This shows that η is a morphism inMVG(X;K). It is now easy to see that we
have defined a natural transformation η : Id → ρpT ◦ F ; each such morphism η
satisfies ηp = id.

If p = 0, the natural transformation η : Id→ ρpT ◦ F is in fact an h-equivalence:
Given (A, a) ∈ MVG(T ;K), the morphism a−1 is a chain equivalence since
Tot(σT (A, a)) = Cone(a−1). Consequently, a−1 is an equivalence. Since η(A,a)

is given by η0
(A,a) = id and η−1

(A,a) = a−1, this morphism is an h-equivalence.

3. The additive equivalence

AdGH : (resGH A) ∗G (T ×∆p)→ A ∗G indGH(T ×∆p) ∼= A ∗G ((indGH T )×∆p)

is natural with respect to H-maps T → T ′. Therefore, we have

AdGH(ρpT (K))n = AdGH(ρpT (K)n)

=
(

AdGH(K)
)
µ

= ρp
indG

H

(AdGH(K)),

and the claim follows from that.
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2.2. The forgetful functor MVG(X)→ Ch(A[G])

Let us concentrate on a more specific situation: Fix an additive category A with
right G-action, and letMVG(X) stand forMVG(X;KA) for the rest of this section.
Moreover, our focus lies on the very coarse notion of weak equivalence

wMVG(X) := hX−1
MVG(X).

Under certain circumstances, the K-theory of MVG(X) with respect to this notion
of weak equivalence will turn out to be the K-theory of A[G].

2.2.1 Theorem.
Let X be a semisimplicial G-set in which every finite sub-semisimplicial set is con-
tained in a finite contractible sub-semisimplicial set.
Then the forgetful functor F : MVG(X)→ Ch(A[G]) which maps a Mayer-Vietoris

resolution (A, a) to A−1 induces a weak equivalence

wS•F : wS•MVG(X)
∼−→ hS•Ch(A[G]).

2.2.2 Remark.
Examples of such semisimplicial G-sets are more frequent than one might be inclined
to think at first. To name a few, the theorem applies to:

• Finite contractible semisimplicial G-sets, in particular any standard simplex ∆p

with trivial G-action.

• Oriented trees with G-action, i.e. 1-dimensional, contractible, locally ordered
simplicial complexes on which G acts without inversions. In this case, the
theorem was already proved in [SS95, Thm. 2], and the proof of Theorem 2.2.1
is adapted from there.

• Specific models for classifying spaces: Let EG be given by the Milnor construc-
tion, i.e.

EG = colim
n→∞

∗ni=0 G.

Then EG is a contractible simplicial complex, and there is a natural local
ordering which allows us to consider EG as a semisimplicial G-set. If X ⊆ EG
is a finite subcomplex, X is necessarily contained in a finite join ∗ni=0 G. Adding
an addtional copy of G to the join, each element of G allows us to find a copy
of the cone on X in ∗n+1

i=0 G ⊆ EG (since the join of X with a single vertex is
exactly the cone on X).

• Specific models for the classifying space of proper G-actions: Take a free G-set
S (e.g. G itself) and form the full simplex on S; this is the simplicial complex
whose vertex set is S, and in which every finite collection of vertices spans a sim-
plex. The first barycentric subdivision of this complex is a semisimplicial G-set
in a natural way. Any finite subcomplex Y is contained in a finite contractible
subcomplex since Y is contained in the simplex spanned by its vertices.
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• Other classifying spaces: We can repeat the previous construction with an
arbitrary G-set T . The resulting semisimplicial G-set is a classifying space for
the family of subgroups which are virtually stabilisers of T , see [Bar, Ex. 1.2].

The proof of Theorem 2.2.1 consists of an application of the Approximation The-
orem to F . To show that F satisfies (AP2), we will have to lift objects in Ch(A[G])
to Mayer-Vietoris resolutions. This will be done via a “resolution” construction we
introduce next.
For this purpose, it will be convenient to speak about the category of “decom-

positions” over X: An object in DecG(X;A) is defined exactly like an object in
WG(X;KA), the only difference being that each An is an object in A ∗G Xn instead
of a cochain complex. Observe that objects in WG(X;KA) are precisely the cochain
complexes over DecG(X;A). In particular, we can regard every object in DecG(X;A)
as an object in WG(X;KA) (as a cocomplex concentrated in degree 0).
Recall from Definition 1.3.3 that an object An ∈ A ∗G Xn is in fact a collection

An = {Anx}x∈Xn
, and a morphism ϕn : An → Bn in A ∗G Xn is given by a collection

ϕn = {ϕng,x}(g,x)∈G×Xn
. Since the coface maps ain of an object (A, a) ∈ DecG(X;A)

are morphisms An → (di)∗(A
n+1), we can decompose each component (ain)g,x further

into a column vector(
(ain)yg,x

)
y

: Ang−1x → (di)∗(A
n+1)xg =

⊕
diy=x

An+1
y g.

2.2.3 Definition.
Let Y ⊆ X be a finite sub-semisimplicial set, and let A ∈ A[G] (this means, in fact,
that A is simply an object in A). Define the canonical decomposition of A given by
Y

(∆X(A;Y ), δX(A;Y )) ∈ DecG(X;A)

to be

∆X(A;Y )nx :=

{
A x ∈ Yn or n = −1,

0 otherwise,(
δX(A;Y )in

)x′
g,x

:=

{
idA g = e;x′ ∈ Y, di(x′) = x,

0 otherwise.

2.2.4 Lemma.
Suppose Y is contractible. Then σX(∆X(A;Y )) ' 0.

Proof. We observe that σX(∆X(A;Y )) = A⊗C∗ε (Y ); the lemma follows from Lemma
2.1.18.

Before we start with the proof of Theorem 2.2.1, we establish a sufficient criterion
to extend morphisms in A[G] to morphisms in DecG(X;A) (cf. [Wal78a, Prop. 1.1]
and [SS95, Prop. 3.2]). This will be the crucial part in proving (AP2) for F .
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2.2.5 Lemma.
Let A ∈ A[G], (B, b) ∈ DecG(X;A), and let ϕ : A → B−1 be a morphism in A[G].
Let µn be the unique function ∅ → n. Define

suppn(ϕ) :=
{
x ∈ Xn | ∃(k, h) ∈ G×G : ϕh 6= 0, b(µn)khxk 6= 0

}
.

If suppn(ϕ) ⊆ Yn for all n ∈ N, the formula

∆X(ϕ)ng,x :=

{
(b(µn) ◦ ϕ)xg g−1x ∈ suppn(ϕ),

0 otherwise,

defines a morphism ∆X(ϕ) : ∆X(A;Y )→ (B, b) in DecG(X;A).

Proof. Suppose that g−1x ∈ suppn(ϕ) ⊆ Yn. Then Ang−1x = A, so ∆X(ϕ)ng,x is indeed
a morphism Ang−1x → Bnxg. Moreover, since

∆X(ϕ)ng,x = (b(µn) ◦ ϕ)xg =
∑
kh=g

b(µn)xkh ◦ ϕh,

and both ϕ and b have finite supports, this shows that ∆X(ϕ)n has finite support,
too.
We need to check that the morphisms ∆X(ϕ)n are compatible with the coface

maps; i.e., we have to show that for all 0 6 i 6 n+ 1

(di)∗∆X(ϕ)n+1 ◦ δX(A;Y )in = bin ◦∆X(ϕ)n

holds. For the right hand side, we get

(bin ◦∆X(ϕ)n)g,x =
∑
kh=g

(bin)k,xh ◦∆X(ϕ)nh,k−1x

=
∑
kh=g

(
(bin)yk,xh

)
diy=x

◦∆X(ϕ)nh,k−1x

=
∑
kh=g

(
(bin)yk,xh ◦∆X(ϕ)nh,k−1x

)
diy=x

=
( ∑
kh=g

(bin)yk,xh ◦
( ∑
ml=h

b(µn)k
−1x
m l ◦ ϕl

))
diy=x

=
( ∑
kml=g

(bin)yk,xml ◦ b(µn)k
−1x
m l ◦ ϕl

)
diy=x

=
( ∑
hl=g

( ∑
km=h

(bin)yk,xm ◦ b(µn)k
−1x
m

)
l ◦ ϕl

)
diy=x

=
( ∑
hl=g

b(µn+1)yhl ◦ ϕl
)
diy=x

=
(
∆X(ϕ)n+1

g,y

)
diy=x
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Recalling the definition of δX(A;Y ), we see that the latter is indeed what we want
to get:(

(di)∗∆X(ϕ)n+1 ◦ δX(A;Y )in
)
g,x

=
∑
kh=g

( ⊕
diy=x

∆X(ϕ)n+1
k,y

)
◦ (δX(A;Y )in)h,k−1x

=
( ⊕
diy=x

∆X(ϕ)n+1
g,y

)
◦ (δX(A;Y )in)e,g−1x

=
(
∆X(ϕ)n+1

g,y

)
diy=x

This proves that ∆X(ϕ) is a morphism in DecG(X;KA).

2.2.6 Remark.
In the claim of Lemma 2.2.5, we may equivalently assume that the (finite) sub-
semisimplicial set of X spanned by

⋃
n suppn(ϕ) is contained in Y .

Proof of Theorem 2.2.1. As stated before, it suffices to prove that F satisfies both
(AP1) and (AP2). Property (AP1) holds by definition.
So let (A, a) be inMVG(X), let B ∈ Ch(A[G]), and suppose we are given a chain

map ϕ : A−1 → B over A[G]. Take the mapping cylinder of ϕ to factor this morphism
into a cofibration and a weak equivalence. We will extend the natural inclusion
A−1 � Cyl(ϕ) to a cofibration of Mayer-Vietoris resolutions. For the purpose of
this proof, write DecG(X) instead of DecG(X;A). To be more precise, we claim the
following:
There are sequences (Ck)k∈Z, (γk)k∈Z and (ik)k∈Z such that

• Ck is an object in DecG(X), and Ck,−1 = Cyl(ϕ)k.

• γk : Ck → Ck+1 is a morphism in DecG(X) with γk+1 ◦ γk = 0, and γk,−1 is
the k-th differential of the mapping cylinder Cyl(ϕ).

• ik : Ak � Ck is the inclusion of a direct summand (in particular, a cofibration),
and γk ◦ ik = ik+1 ◦ αk.

• the quotient of σX(Ck) by σX(Ak) is contractible.

The proof of the claim requires only a finite downward induction: In sufficiently high
degree k, we can set Ck = 0, γk = 0 and ik = 0. The same is true in sufficiently
small degrees. In effect, we need only consider k ∈ [−K,K] for some K ∈ N.
Let us assume that Cl, γl and il have been constructed with the properties listed

above for l > k. Define

Ck,−1 := Cyl(ϕ)k = A−1,k ⊕A−1,k+1 ⊕Bk,

and let γk,−1 be the k-th differential of the mapping cylinder Cyl(ϕ). Recall that

γk,−1 =

αk − id 0
0 −αk+1 0
0 ϕk+1 βk

 ,
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where αk : A−1,k → A−1,k+1 and βk : Bk → Bk+1 denote the differentials in A−1 and
B. Let ζk : A−1,k+1 ⊕Bk → A−1,k+1 ⊕A−1,k+2 ⊕Bk+1 be the morphism given by

ζk :=

 − id 0
−αk+1 0
ϕk+1 βk

 .

By assumption, there is a finite contractible sub-semisimplicial set Y ⊆ X such that
the sub-semisimplicial set spanned by

⋃
n suppn(ζk) is contained in Y . Set

Ck := Ak ⊕∆X(A−1,k+1 ⊕Bk;Y ).

Applying Lemma 2.2.5, we obtain an extension of ζk to a morphism

∆X(ζk) : ∆X(A−1,k+1 ⊕Bk;Y )→ Ck+1,

and we let γk be the morphism in DecG(X) given by

γk :=
(
ik+1αk ∆X(ζk)

)
.

By definition, Ck contains Ak as a direct summand; let ik denote this inclusion.
Obviously, γkik = ik+1αk. The quotient of σX(Ck) by σX(Ak) is given precisely by
σX(∆X(A−1,k+1 ⊕Bk;Y )), which is contractible by Lemma 2.2.4.

What is left to show is that γk+1γk = 0. We compute

γk+1γk = γk+1
(
ik+1αk ∆X(ζk)

)
=
(
ik+1αk+1αk γk+1∆X(ζk)

)
.

The first component vanishes since α is a differential. For the second component, we
have for g ∈ G and x ∈ Xn

(γk+1,n∆X(ζk)n)g,x =
∑

g1g2=g

γk+1,n
g1,x g2 ◦∆X(ζk)n

g2,g
−1
1 x

=
∑

g1g2=g

γk+1,n
g1,x g2 ◦

( ∑
g3g4=g2

ck+1(µn)
g−1
1 x
g3 g4 ◦ ζkg4

)
=

∑
g1g3g4=g

(γk+1,n
g1,x g3 ◦ ck+1(µn)

g−1
1 x
g3 )g4 ◦ ζkg4

=
∑

g2g4=g

( ∑
g1g3=g2

γk+1,n
g1,x g3 ◦ ck+1(µn)

g−1
1 x
g3

)
g4 ◦ ζkg4

=
∑

g2g4=g

((µn)∗(γk+1,n) ◦ ck+1(µn))xg2
g4 ◦ ζkg4

2.1.5
=

∑
g2g4=g

(ck+2(µn) ◦ γk+1,−1)xg2
g4 ◦ ζkg4

= (ck+2(µn) ◦ γk+1,−1 ◦ ζk)xg .
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Finally, we use the fact that αk and βk are differentials to get

γk+1,−1 ◦ ζk =

αk+1 − id 0
0 −αk+2 0
0 ϕk+2 βk+1

 − id 0
−αk+1 0
ϕk βk


=

 −αk+1 + αk+1 0
αk+2αk+1 0

−ϕk+2αk+1 + βk+1ϕk+1 βk+1βk


= 0.

This finishes the induction step. By now, we have constructed a cofibration i : A� C
in WG(X) such that F (C) = Cyl(ϕ), and i extends the canonical inclusion of A−1

into the mapping cylinder. Therefore, verification of (AP2) has been reduced to
showing that C is actually a Mayer-Vietoris resolution. Indeed, if we apply σX to the
quotient of the cofibration i : A� C, the resulting double complex is contractible in
each algebraic degree; so its total complex is contractible, too. Since A was a Mayer-
Vietoris resolution in the first place, we also have Tot(σX(A)) ' 0. The contractibility
of Tot(σX(C)) follows. This proves that (AP2) holds, so we are finished.

2.2.7 Corollary.
In the situation of Theorem 2.2.1, the forgetful functor F induces a levelwise equiv-
alence

K−∞(MVG(X;KA), w)
∼−→ K−∞(A[G]).

Proof. By Theorem 2.2.1, the map of spectra

K(MVG(X;A), w)→ K′(A, G/G)

is a levelwise equivalence. Composing with the map K′(A, G/G)
∼−→ K(Ch(A[G])),

which is a levelwise equivalence, and taking Ω-spectrifications produces the desired
equivalence.

2.2.8 Corollary.
Let X be a finite contractible semisimplicial G-set. Then the forgetful functor F
induces a levelwise equivalence

K−∞(F ) : K−∞(MVG(X;KA), w)
∼−→ K−∞(A[G]).

Proof. The assumptions of Theorem 2.2.1 are satisfied for trivial reasons.

2.2.9 Corollary.
The functor ρpT : Ch(A ∗G T ) → MVG(T × ∆p;KA) induces a levelwise equivalence
on K-theory.
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Proof. It suffices to show the claim for transitive G-sets. By Lemma 2.1.19, we have
a commutative diagram

Ch((resGH A) ∗G H/H) MVH(∆p;KresGH A)

Ch(A ∗G G/H) MVG(G/H ×∆p;KA)

ρpH/H

AdGH AdGH

ρpG/H

The functors AdGH are exact equivalences. The functor ρpH/H is clearly a section of
the forgetful functor F , and therefore induces a levelwise equivalence on K-theory
by Corollary 2.2.8. This implies that ρpG/H induces a levelwise equivalence on K-
theory.
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2.3. A glimpse of a spectral sequence
The category MVG(X;K) always comes with a filtration induced by the skeletal
filtration of X. Namely, every category MVG(X(p);K) is a full subcategory of
MVG(X;K), and, taking the colimit over p, we have

MVG(X;K) =
⋃
p

MVG(X(p);K).

Since K-theory commutes with directed colimits, we get an induced filtration of the
K-theory of MVG(X;K); this allows us to construct a spectral sequence abutting
to K∗(MVG(X;K)). In view of Theorem 2.2.1, this becomes of some interest; the
resulting spectral sequence gives us some means of calculating the K-theory of A[G]
if K = KA and if X is sufficiently nice.
Our goal for this section is to provide some information on the E1-term of this

spectral sequence. Our treatment will be nowhere near complete; in particular, we
will make no attempt at a characterisation of the differentials.
Suppose that K is of the form K = KA for some small addditive category A with

right G-action. Some arguments in this section work for arbitrary coefficient systems,
but we are only interested in the case K = KA anyway.
For the sake of completeness, let us indicate the construction of the spectral se-

quence. Starting from the filtration

MVG(X(0);K) ⊆MVG(X(1);K) ⊆MVG(X(2);K) ⊆ . . . ⊆MVG(X;K),

we obtain an exact couple as follows: Let Ip : MVG(X(p−1);K) ↪→ MVG(X(p);K)
denote the inclusion functor. Set

Hp := hofib(K−∞(Ip)),

which is the same as the Ω-spectrification of the spectrum obtained from taking the
levelwise homotopy fibres of K(Ip) : K(MVG(X(p−1);K), w)→ K(MVG(X(p);K), w).
Then define

D1
p,q := πp+q(K−∞(MVG(X(p);A))),

E1
p,q := πp+q−1(Hp)

to get the exact couple

⊕
p,qD

1
p,q =: D1 D1 :=

⊕
p,qD

1
p,q

⊕
p,q E

1
p,q =: E1

i

j∂

in which the homomorphisms induced by K−∞(Ip) form a morphism i of bidegree
(1,−1), the homomorphisms induced by Hp → K−∞(MVG(X(p−1);A)) form a mor-
phism ∂ of bidegree (−1, 0), and the boundary morphisms in the long exact sequences
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of homotopy groups form a morphism j of bidegree (0, 0). Hopefully, the reader is not
too confused about the shifted gradings; this comes from the fact that the “relative”
homotopy groups are given by the shifted homotopy groups of the homotopy fibre.

The standard machinery applies from this point on (as explained for example in
[Wei94, Sec. 5.9]) to produce a spectral sequence. We call this the X-resolution
spectral sequence.

Note that this exact couple is bounded below (because the skeletal filtration of X
is bounded below) and that the filtration is exhaustive (because K-theory commutes
with directed colimits). By the usual spectral sequence yoga (e.g. [Wei94, Classical
Convergence Theorem 5.9.7]) we get:

2.3.1 Proposition.
The X-resolution spectral sequence converges strongly to K∗(MVG(X;A)).

The main goal of this section is to obtain a slightly better description of the bigraded
group underlying the E1-term. In the end, the description we give will at least suf-
fice to recover Waldhausen’s results in [Wal78a] and [Wal78b] from the X-resolution
spectral sequence.

Before we can set the Waldhausen machinery to work, we have to introduce a new
category of weak equivalences. For p ∈ N, set

hpMVG(X;K) := h∐
n>p Xn

MVG(X;K).

For each p, we get the following diagram of inclusions of categories (recall Lemma
1.1.5 for the notation whp):

hMVG(X;K) whpMVG(X;K) hpMVG(X;K)

whp+1MVG(X;K) hp+1MVG(X;K)

wMVG(X;K)

⊆ ⊆

⊆

⊆

⊆

⊆

By virtue of Lemma 1.1.5, we may apply the Fibration Theorem to any of these
inclusions.

First of all, we will identify Hp with another homotopy fibre that we obtain by
applying the Fibration Theorem. To do this, we need to show that it is irrelevant
whether we consider resolutions over the p-skeleton of X or arbitrary resolutions
which are contractible above the p-skeleton.
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2.3.2 Definition.
Let (A, a) ∈ WG(X;K). Let p ∈ N. Define the upper p-truncation tr+

p (A, a) of (A, a)

to be the object in WG(X;K) given by (A
∣∣
X(p) , a

∣∣
X(p)), where

A
∣∣n
X(p) :=

{
An n 6 p

0 n > p,(
a
∣∣
X(p)

)i
n

:=

{
ain n < p

0 n > p.

Similarly, we let the lower p-truncation tr−p (A, a) of (A, a) be given by the object
(A
∣∣
X\X(p) , a

∣∣
X\X(p)), where

A
∣∣n
X\X(p) :=

{
An n > p

0 n 6 p,(
a
∣∣
X\X(p)

)i
n

:=

{
ain n > p

0 n 6 p.

2.3.3 Lemma.
Let T ⊆

∐
nXn be non-empty. Then the inclusion functor induces a weak equivalence

hTS•MVG(X(p);K)
∼−→ hTS•MVG(X;K)hp .

Taking upper p-truncations induces a homotopy inverse to this map.

Proof. As indicated in the claim, observe first that taking upper p-truncations defines
an exact functor

tr+
p : MVG(X;K)hp →MVG(X(p);K).

The objects in the image of tr+
p are indeed Mayer-Vietoris resolutions since there is

a cofibration sequence

tr−p (A, a)� (A, a)� tr+
p (A, a)

and Tot(σX(tr−p (A, a))) is contractible (the double complex is contractible in each
geometric degree).
If I is the inclusion functor, the composition tr+

p ◦I equals the identity functor.
Additionally, the projection (A, a) � tr+

p (A, a) is an h-equivalence since An is con-
tractible for n > p; so

∣∣hTS•(I ◦ tr+
p )
∣∣ is homotopic to the identity.

2.3.4 Corollary.
Let T ⊆

∐
nXn be non-empty. Then the inclusion functor induces a levelwise equiv-

alence
K−∞(MVG(X(p);A), hT )

∼−→ K−∞(MVG(X;A)hp , hT ).
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Proof. Applying Lemma 2.3.3 for each coefficient system KCnA, we get a levelwise
equivalence K(MVG(X(p);A), hT )

∼−→ K(MVG(X;A)hp , hT ), and consequently a lev-
elwise equivalence between the Ω-spectrifications.

Setting

H̃p := hofib
(
K−∞(MVG(X;A)hp−1 , w)→ K−∞(MVG(X;A)hp , w)

)
,

we obtain a natural levelwise equivalence Hp
∼−→ H̃p. By virtue of the Fibration

Theorem, the rows and columns containing three entries in the commutative diagram

hp−1S•MVG(X;K)whp hp−1S•MVG(X;K)hp

wS•MVG(X;K)hp−1 whp−1S•MVG(X;K) hp−1S•MVG(X;K)

wS•MVG(X;K)hp whpS•MVG(X;K) hpS•MVG(X;K)

are homotopy fibrations. So we may equally well compute H̃p by investigating the
homotopy fibre of the map hp−1S•MVG(X;K)whp → hp−1S•MVG(X;K)hp . Let us
focus our attention on hp−1S•MVG(X;K)hp . The following square is a homotopy
pullback:

Ω |hp−1S•MVG(X;K)|
∣∣hS•MVG(X;K)hp−1

∣∣
Ω |hpS•MVG(X;K)|

∣∣hS•MVG(X;K)hp
∣∣

This is easy to check as the horizontal homotopy fibres are both Ω |hS•MVG(X;K)|
by the Fibration Theorem. It follows that there is a canonical homotopy equivalence
between the vertical homotopy fibres (identifying the left one by another application
of the Fibration Theorem)

Ω
∣∣hp−1S•MVG(X;K)hp

∣∣ ∼−→ hofib
( ∣∣hS•MVG(X;K)hp−1

∣∣→ ∣∣hS•MVG(X;K)hp
∣∣ ).

Using Lemma 2.3.3 a second time, we see that there is a natural homotopy equivalence

hofib
( ∣∣∣hS•MVG(X(p−1);K)

∣∣∣→ ∣∣∣hS•MVG(X(p);K)
∣∣∣ )

∼−→ hofib
( ∣∣hS•MVG(X;K)hp−1

∣∣→ ∣∣hS•MVG(X;K)hp
∣∣ ).

The homotopy fibre of
∣∣hS•MVG(X(p−1);K)

∣∣→ ∣∣hS•MVG(X(p);K)
∣∣ is readily com-

putable:
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2.3.5 Theorem.
There is a weak equivalence

hS•MVG(X(p+1);K)
∼−→ hS•MVG(X(p);K)× hS•Ch(A ∗G Xp+1),

natural in X and A, which gives rise to a weak equivalence

hS•MVG(X;K)
∼−→ hS•

⊕
n>0

Ch(A ∗G Xn).

The map hS•MVG(X(p+1);K)→ hS•MVG(X(p);K) is split by the inclusion functor.

Proof. WriteMVG(X) forMVG(X;K) =MVG(X;KA). We will define a functor(
T

Fp+1

)
: MVG(X(p+1))→MVG(X(p))× Ch(A ∗G Xp+1)

which is exact with respect to the h-equivalences and induces a weak equivalence in
K-theory. The component Fp+1 is given by the forgetful functor sending (A, a) to
Ap+1; the functor T is yet to be defined. In fact, we will first define the prospective
inverse (

I S
)

: MVG(X(p))× Ch(A ∗G Xp+1)→MVG(X(p+1)).

Here, I is the inclusion functorMVG(X(p)) ↪→MVG(X(p+1)) (i.e. we drop the index
p+ 1 for the purpose of this proof). We define the functor S next.
The characteristic maps χx : ∆p+1 → X(p+1) of the (p + 1)-simplices x ∈ Xp+1

combine to a map of semisimplicial G-sets

χp+1 : Xp+1 ×∆p+1 → X(p+1).

Using naturality, we define S as the composition

S : Ch(A ∗G Xp+1)
ρp+1
Xp+1−−−−→MVG(Xp+1 ×∆p+1)

MVG(χp+1)−−−−−−−−→MVG(X(p+1)).

We claim the existence of a natural transformation τ : Id→ SFp+1: Assume (A, a) is
a fixed object inMVG(X(p+1)). Plugging in the definitions, we have that

SFp+1(A)n =
⊕

µ : n↪→p+1

K(µ∗)(Ap+1).

Define
τn := (a(µ))µ : n↪→p+1 : An →

⊕
µ : n↪→p+1

K(µ∗)(Ap+1).

If µ = id, we interpret a(id) as the identity morphism. We have to check that (τn)n
defines a morphism of Mayer-Vietoris resolutions: Let 0 6 i 6 n+ 1. We can regard
the i-th coboundary map in degree n of SFp+1(A) as a certain hom∆inj(n+ 1, p+ 1)×
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hom∆inj(n, p+ 1)-indexed matrix; to be explicit, the i-th coboundary map is given by
the matrix (

δνdi,µ
)
ν : n+1↪→p+1,µ : n↪→p+1

,

where δ�,♦ denotes the Kronecker delta.
Therefore, the following calculation proves that τ is a morphism:(

δνdi,µ
)
ν,µ
◦ τn =

(
δνdi,µ

)
ν,µ
◦ (a(µ))µ

=
(
a(νdi)

)
ν

=
(
(di)∗a(ν) ◦ ain

)
ν

= (di)∗(τ
n+1) ◦ ain.

Now let ϕ : (A, a)→ (B, b) be a morphism inMVG(X(p+1)). Then

τnB ◦ ϕn = (b(µ) ◦ ϕn)µ

=
(
K(µ∗)(ϕp+1) ◦ a(µ)

)
µ

= SFp+1(ϕ) ◦ τnA,

so τ is indeed a natural transformation.
Having the natural transformation τ at our disposal, we are finally ready to define

T . Set
T := Σ−1Cone(τ).

The object T (A, a) is hp-contractible for every (A, a) ∈ MVG(X(p+1)) as τp+1 = id.
The functor T is now given by the composition

T : MVG(X(p+1))
T−→MVG(X(p+1))hp

tr+
p−−→MVG(X(p)).

Since (
T

Fp+1

)(
I S

)
=

(
TI TS

Fp+1I Fp+1S

)
=

(
Id TS
0 Id

)
,

the induced map on K-theory is a self-homotopy equivalence.
So what is left to show is that if we compose these functors the other way around,

the resulting map on K-theory is homotopic to the identity. Letting J denote the
inclusionMVG(X(p+1))hp ↪→MVG(X(p+1)), we have a cofibration sequence of exact
functors

Id� Cyl(τ)� ΣJT ,

which induces a homotopy |hS•Id| ∨
∣∣hS•ΣJT ∣∣ ' |hS•Cyl(τ)| by the Additivity The-

orem. Since the cylinder functor is good, the projection maps of the cylinder functor
induce a homotopy |hS•Cyl(τ)| ' |hS•SFp+1|. Moreover, the (de-)suspension functor
implements the inversion operation with respect to the H-space structure (Proposi-
tion 1.1.13), so in combination we obtain a homotopy

|hS•Id| ' |hS•SFp+1| ∨
∣∣hS•JT ∣∣ .
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Finally, the natural equivalence I tr+
p → J from the proof of Lemma 2.3.3 yields a

homotopy

|hS•SFp+1| ∨ |hS•IT | ' |hS•SFp+1| ∨
∣∣hS•I tr+

p T
∣∣

' |hS•SFp+1| ∨
∣∣hS•JT ∣∣

' |hS•Id| ,

so we have proved the first part of the theorem.
For finite-dimensional X, the second part of the theorem follows from the first

by induction, where the start of the induction is provided by Lemma 2.1.19. To
generalise the result to arbitrary X, observe that the diagram

MVG(X(p)) MVG(X(p+1))

MVG(X(p))× Ch(A ∗G Xp+1)

I (
T

Fp+1

)

is strictly commutative. So the weak equivalences on each finite skeleton are preserved
under the structure maps of the colimit system, inducing an equivalence

hS•MVG(X)
∼−→ hS•

⊕
n>0

Ch(A ∗G Xn).

Applying Theorem 2.3.5, we can identify

hofib
( ∣∣∣hS•MVG(X(p−1);K)

∣∣∣→ ∣∣∣hS•MVG(X(p);K)
∣∣∣ ) ' Ω |hS•Ch(A ∗G Xp)| .

Consequently, we get a zig-zag of equivalences

Ω
∣∣hp−1S•MVG(X;K)hp

∣∣ ' Ω |hS•Ch(A ∗G Xp)| .

2.3.6 Theorem.
There is a homotopy fibration

Hp → K−∞(MVG(X(p);A)w, hp−1)
K−∞(Fp)−−−−−−→ K−∞(A ∗G Xp).

Proof. Since the previous discussion applies to all small additive categories with right
G-action, it suffices to prove the theorem in the connective case.
So far, we have established the existence of a homotopy fibration sequence

hofib
(
K(MVG(X(p−1)), w)→ K(MVG(X(p)), w)

)
→ K(MVG(X)whp , hp−1)→ K(Ch(A ∗G Xp)).
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Repeating the argument from the proof of Lemma 2.3.3 allows us to identify

K(MVG(X)whp , hp−1) = Ω
∣∣hp−1S•MVG(X)whp

∣∣ ' Ω
∣∣∣hp−1S•MVG(X(p))w

∣∣∣ .
The only thing left to show is that the map

Ω
∣∣hp−1S•MVG(X;K)hp

∣∣→ Ω |hS•Ch(A ∗G Xp)|

is homotopic to the map induced by the forgetful functor Fp. Set

H1 := hofib
( ∣∣hS•MVG(X;K)hp−1

∣∣→ ∣∣hS•MVG(X;K)hp
∣∣ ),

H2 := hofib
( ∣∣∣hS•MVG(X(p−1))

∣∣∣→ ∣∣∣hS•MVG(X(p))
∣∣∣ ).

Then we can wrap up the situation in the following commutative diagram in which
the two rows are homotopy fibrations:

Ω
∣∣hp−1S•MVG(X;K)hp

∣∣
Ω
∣∣hS•MVG(X;K)hp−1

∣∣ Ω
∣∣hS•MVG(X;K)hp

∣∣ H1

Ω
∣∣hS•MVG(X(p−1))

∣∣ Ω
∣∣hS•MVG(X(p))

∣∣ H2

Ω |hS•Ch(A ∗G Xp))|

e1 ∼

tr+
p−1

j

q1

tr+
p t̃r

q2

fp
e2 ∼

s

ip−1 ip ĩ

The maps in this diagram arise as follows: The maps ip−1 and ip are induced by
the inclusion functors Ip−1 and Ip. By abuse of notation, tr+

p denotes the map
induced by the functor with that name. The maps ĩ and t̃r are induced by ip−1 and
ip, respectively tr+

p−1 and tr+
p . The maps q1, q2, e1 and e2 all arise from certain

homotopy fibration sequences. The obvious inclusion functor induces the map j, and
fp is induced by the forgetful functor Fp. Theorem 2.3.5 asserts the existence of a
section (up to homotopy) s of fp.

Define now s′ : Ω
∣∣hp−1S•MVG(X;K)hp

∣∣→ Ω
∣∣hS•MVG(X;K)hp

∣∣ by
s′ := ip ◦ s ◦ e2 ◦ t̃r ◦ e1.

Then s′ is a section of j up to homotopy:

j ◦ s′ ' e−1
1 ◦ q1 ◦ ip ◦ s ◦ e2 ◦ t̃r ◦ e1

' e−1
1 ◦ ĩ ◦ q2 ◦ s ◦ e2 ◦ t̃r ◦ e1

' e−1
1 ◦ ĩ ◦ e

−1
2 ◦ e2 ◦ q2 ◦ s ◦ e2 ◦ t̃r ◦ e1

' e−1
1 ◦ ĩ ◦ e

−1
2 ◦ fp ◦ s ◦ e2 ◦ t̃r ◦ e1

' id .
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There is another forgetful functorMVG(X;K)hp → Ch(A ∗G Xp) mapping (A, a) to
Ap, which we also denote by Fp. Note that the map fp ◦ tr+

p is induced by a forgetful
functor as well, and that fp ◦ tr+

p = Fp ◦ j. Therefore, we get that

e2 ◦ t̃r ◦ e1 ' e2 ◦ t̃r ◦ e1 ◦ j ◦ s′ ' e2 ◦ t̃r ◦ q1 ◦ s′

' e2 ◦ q2 ◦ tr+
p ◦s′ ' fp ◦ tr+

p ◦s′ = Fp ◦ j ◦ s′

' Fp.

This proves that the map which implements the identification

Ω
∣∣hp−1S•MVG(X;K)hp

∣∣ ' Ω |hS•Ch(K(Xp))|

is homotopic to the map induced by the forgetful functor Fp.

2.3.7 Remark.
In Theorem 2.3.6, we can also replace the category of w-contractible Mayer-Vietoris
resolutions by the full subcategory consisting only of resolutions of the zero complex.
Argue as in Lemma 2.3.3 with the lower (−1)-truncation in place of the upper p-
truncation.

2.3.8 Remark.
Theorem 2.3.6 allows us to relate the X-resolution spectral sequence to Waldhausen’s
results on the K-theory of group rings over amalgamated products and HNN exten-
sions (in fact, we will get the non-connective generalisation of Waldhausen’s result as
discussed in [BL06, Sec. 10]). Continue to writeMVG(X) instead ofMVG(X;K).
Take the example of an amalgamated product G = G1 ∗H G2, and let X be the

Bass-Serre tree of G, which can be described as the semisimplicial G-set obtained by
the pushout

G/H × ∂∆1 G/G1

∐
G/G2

G/H ×∆1 X

The attaching map G/H × ∂∆1 = G/H
∐
G/H → G/G1

∐
G/G2 is given by the

coproduct of the obvious projection maps G/H → G/Gi.
TheX-resolution spectral sequence is concentrated in the columns p = 0 and p = 1,

with entries given by the homotopy groups of

H0 = ΩK−∞(MVG(X(0)), w) ' ΩK−∞(A ∗G X0)

' ΩK−∞(A[G1]) ∨ ΩK−∞(A[G2]),

H1 = hofib
(
K−∞(MVG(X(0)), w)→ K−∞(MVG(X(1)), w)

)
.

By Theorem 2.3.6, we have a homotopy fibration

H1 → K−∞(MVG(X)w, h0)→ K−∞(A ∗G X1).
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As usual, we can identify K−∞(A∗GX1) with K−∞(A[H]). Arguing as in the proof of
Lemma 2.3.3, w-contractibility can be strengthened to the condition that we are only
considering objects (A, a) for which A−1 = 0; see Remark 2.3.7. Denote the category
of these Mayer-Vietoris resolutions by SG(X) (the category of “split modules” - we
can deloop the K-theory of this category as we did with the K-theory ofMVG(X)).
Since we are only working with Mayer-Vietoris resolutions, all h0-equivalences are
then automatically h-equivalences, so that we end up with a homotopy fibration

H1 → K−∞(SG(X), h)→ K−∞(A[H]).

In effect, this proves that the square

K−∞(SG(X), h) K−∞(A[G1]) ∨K−∞(A[G2])

K−∞(A[H]) K−∞(A[G])

is a homotopy pullback, which is one way of stating Waldhausen’s main result in
[Wal78a, Wal78b], cf. [SS95, Thm. 4] and [BL06, Thm. 10.2].
Observe that Waldhausen’s result is stronger than what we have shown: He pro-

vides an identification of SG(X) with a certain category of nilpotent morphisms,
which is for example necessary if one wants to prove vanishing results like [Wal78b,
Thm. 11.2]. Moreover, Waldhausen’s theorems are valid for certain amalgamations
of rings which are not necessarily group rings of amalgamated products.

In order to get a first idea of the X-resolution spectral sequence, we conclude by
considering an elementary example: Assume that G is the trivial group (which we
are going to omit from notation), that K = KA for some small additive category
A, and that X is a standard simplex ∆s. By Corollary 2.2.8, we know that the
∆s-resolution spectral sequence converges to K−∞(A).
In case s = 0, the filtration onMV(∆0) is trivial, and nothing interesting happens.

For s = 1, we have to consider the two homotopy fibres

H0 = hofib
(
∗ →

∣∣wS•MV(∂∆1)
∣∣ ) ' Ω |hS•Ch(A)| × Ω |hS•Ch(A)| ,

H1 = hofib
( ∣∣wS•MV(∂∆1)

∣∣→ ∣∣wS•MV(∆1)
∣∣ ).

For a given object (A, a) ∈ MV(∂∆1), the morphism a−1 is a chain equivalence
A−1 → A0 by definition. Therefore, the non-commutative diagram

MV(∂∆1) MV(∆1)

Ch(A)× Ch(A) Ch(A)

I1

F0 F

⊕
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becomes homotopy commutative upon application of the wS•-construction. Since
the forgetful functors F0 and F induce equivalences, we can identify the homotopy
fibre H1 with hS•Ch(A), and the map

H1 →
∣∣wS•MV(∂∆1)

∣∣ ' |hS•Ch(A)| × |hS•Ch(A)|

induces the skew-diagonal on homotopy groups (the direct sum operation ⊕ induces
the H-space addition on hS•Ch(A)).

In total, letting ∇ =

(
1
−1

)
denote the skew-diagonal, the E1-term of the ∆1-

resolution spectral sequence takes the following shape:

2

0

2K2(A) K2(A)

2K1(A) K1(A)

2K0(A) K0(A)

2K−1(A) K−1(A)

0 1

∇

∇

∇

∇

Notably, the ∆1-spectral sequence coincides with the Atiyah-Hirzebruch spectral se-
quence for H∗(∆1;K−∞(A)) in this case.
Things become more interesting for s = 2, and also more complicated. The E1-

term of the X := ∆2-resolution spectral sequence arises from the homotopy fibres

H0 ' Ω
∣∣∣wS•MV(X(0))

∣∣∣ ' Ω |hS•Ch(A)| × Ω |hS•Ch(A)| × Ω |hS•Ch(A)| ,

H1 = hofib
( ∣∣∣wS•MV(X(0))

∣∣∣→ ∣∣∣wS•MV(X(1))
∣∣∣ ),

H2 = hofib
( ∣∣∣wS•MV(X(1))

∣∣∣→ |wS•MV(X)|
)
.

Let us agree that (0), (1) and (2) are the 0-simplices of ∆2, that (01), (02) and
(12) are the 1-simplices, and that (012) is the unique 2-simplex. The face maps are
obvious. Let F be the forgetful functor that maps a resolution (A, a) to the complex
A−1, let Fp be the forgetful functors projecting to A ∗ Xp, and denote by ρi the
functor given by the composition

ρi : Ch(A)
ρ0

−→MV(∆0)
χ(i)−−→MV(∆2),

where χ(i) is the characteristic map of the simplex (i).
The identification of H0 is made via the forgetful functor F0, whose inverse is given

by the functor ρ0 × ρ1 × ρ2. The homotopy fibre H1 fits into the following diagram,
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in which the rows and columns with three entries are homotopy fibrations (combine
the diagram right below Corollary 2.3.4 with Theorem 2.3.5):

H1 hS•MV(X(1))w hS•Ch(A)3

wS•MV(X(0)) hS•MV(X(1))

wS•MV(X(1)) wS•MV(X(1))

η

ι

hS•F1

j2
j1

wS•I1
=

Define an h-exact functor R : Ch(A)3 → MV(X(1))w as follows. Given a triple
(A0, A1, A2) ∈ Ch(A)3, let R(A1, A2, A3) be the resolution

A2

A2 A1

A0 A0 A1
=

=

=

The arrangement of the picture is hopefully suggestive enough to indicate how the
complexes are to be based on X(1) = ∂∆2: one copy of the complex Ai is based on
the 0-simplex (i), another copy on one additional 1-simplex, namely (01) for A0, (12)
for A1 and (02) for A2. All coboundary maps except those depicted above are zero.
This is obviously a resolution of 0, and this mapping is easily extended to form a
functor.
We define another functor R′ : Ch(A)3 → MV(X(1))w in analogous fashion by

sending a triple (A0, A1, A2) to the resolution

A1

A2 A1

A2 A0 A0

=
=

=

Now define

r := |hS•R| − |hS•R′| :
∣∣hS•Ch(A)3

∣∣→ ∣∣∣hS•MV(X(1))w
∣∣∣ .

Depending on the reader’s taste, this map is either only defined up to homotopy or
taking inverses is implemented using the suspension functor (cf. Proposition 1.1.13).
Since F1 ◦ R = F1 ◦ R′, the composition |hS•F1| ◦ r is canonically nullhomotopic,

and we obtain a lift r̃ :
∣∣hS•Ch(A)3

∣∣ → H1, well-defined up to homotopy. In the
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next step, we are interested in the map that we obtain from composing r̃ with the
canonical map ι : H1 → wS•MV(X(0)). Note that wS•MV(X(0)) = hS•MV(X(0)).
The natural inclusion j1 splits the retraction T : hS•MV(X(1)) → hS•MV(X(0))
from the proof of Theorem 2.3.5. In particular, we get that

ι ◦ r̃ = |hS•T | ◦ j1 ◦ ι ◦ r̃ = |hS•T | ◦ j2 ◦ η ◦ r̃ = |hS•T | ◦ j2 ◦ r.

Observe that the latter map is the difference of two maps induced by functors
Ch(A)3 → MV(X(0)). Namely, if J : MV(X(1))w → MV(X(1)) is the inclusion
functor, we have

|hS•T | ◦ j2 ◦ r = |hS•(T ◦ J ◦R)| − |hS•(T ◦ J ◦R′)| .

It is an easy computation to see that

(F0 ◦ T ◦ J ◦R)(A0, A1, A2) ' (A2, A0, A1),

(F0 ◦ T ◦ J ◦R′)(A0, A1, A2) ' (A0, A1, A2).

Consequently, if we identify wS•MV(X(0)) with hS•Ch(A)3 via F0, the map ι ◦ r̃
induces the homomorphism 3Kn(A)→ 3Kn(A) represented by the matrix

M :=

−1 0 1
1 −1 0
0 1 −1

 .

This matrix has rank 2, and its kernel is given by the diagonal in 3Kn(A); in partic-
ular, the kernel can be implemented by the diagonal functor ∆: Ch(A) → Ch(A)3.
In total, the map ι ◦ r̃ ◦ |hS•∆| is nullhomotopic, and this yields a lift

r] : |hS•Ch(A)| → Ω
∣∣∣wS•MV(X(1))

∣∣∣ .
Suppose for a moment that we know that r̃ ◦ |hS•∆| (and thus also r]) is not the
zero map on homotopy groups. If this is the case, it follows that there is a non-trivial
element in some homotopy group of H1 which lies in the kernel of the differential d1,
i.e. we can find a cycle on the column p = 1 of the E1-page. However, it follows
from the fact that wS•MV(∆2) ' hS•Ch(A) that the only permanent cycles of the
spectral sequence lie on the column p = 0. So any cycle on the column p = 1 cannot
survive to the E2-page. Therefore, we can conclude that there must be non-trivial
entries on the column p = 2.
We can even prove a slightly stronger statement. Consider the composition

c : |hS•Ch(A)| r]−→ Ω
∣∣∣wS•MV(X(1))

∣∣∣→ Ω |wS•MV(X)|
F−→ Ω |hS•Ch(A)| ρ0−→ Ω

∣∣∣wS•MV(X(0))
∣∣∣→ Ω

∣∣∣wS•MV(X(1))
∣∣∣ .

Replace r] by r] − c. Then the redefined r] is still a lift of r̃ ◦ |hS•∆| (since the
map c factors via the 0-skeleton). Moreover, the new r] becomes nullhomotopic upon
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composition with the map
∣∣wS•MV(X(1))

∣∣ → |wS•MV(X)|: This can be seen by
further composing with the forgetful functor F and using that ρ0 is a section to F .
Therefore, we can lift r] to a map |hS•Ch(A)| → ΩH2.
This entire discussion can be summed up by saying that we have provided a non-

trivial morphism of differential bigraded abelian groups

2

0

3K2(A)

3K1(A)

3K0(A)

3K−1(A)

3K2(A)

3K1(A)

3K0(A)

3K−1(A)

K2(A)

K1(A)

K0(A)

K−1(A)

0 1

M

M

M

M

∆

∆

∆

∆

E1
∗,∗

If we compare this to the case s = 1, it is noteworthy that the left hand side is iso-
morphic to the E1-page of the Atiyah-Hirzebruch spectral sequence for H(∆2;K−∞A ).
The results of the next chapter will make it clear that it should come as no surprise
that such a morphism exists.
However, we still need to provide a reason why r̃ ◦ |hS•∆| is not always weakly

nullhomotopic. To this end, we will provide a procedure to detect classes in the image
of π1(r); since r factors through r], this will be sufficient to prove the claim.
Consider the subcategory MV(∂∆2)0 ⊆ MV(∂∆2)w of those objects (A, a) for

which A−1 = 0; as we pointed out before, the K-theory of these categories coincides.
Let (A, a) ∈MV(∂∆2)0. We can decompose σ∂∆2(A, a)0 as A0

0⊕A0
1⊕A0

2, where A0
i

is the complex based on the 0-simplex (i). Similarly, σ∂∆2(A, a)1 can be decomposed
into A1

12 ⊕A1
02 ⊕A1

01. Then σ∂∆2(A, a) is a chain equivalence of the form

α =

 0 a01 a02

a10 0 a12

a20 a21 0

 : A0
0 ⊕A0

1 ⊕A0
2
∼−→ A1

12 ⊕A1
02 ⊕A1

01.

The off-diagonal entries of this matrix are induced by the coface maps of (A, a). Let

C0 := Cone
(
A0

1 ⊕A0
2

(
a01 a02

)
−−−−−−−−→ A1

12

)
,

C1 := ΣCone
(
A0

0

a10

a20


−−−−−→ A1

02 ⊕A1
01

)
.

Now define the map c : C0 → C1 as the composition

c : C0 π−→ Σ(A0
1 ⊕A0

2)

 0 −a12

−a21 0


−−−−−−−−−−−−→ Σ(A1

02 ⊕A1
01)

ι−→ C1,
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where π is the obvious projection and ι is the obvious inclusion map. By inspection,
the mapping cone of c is (up to permutation of summands) ΣCone(α); since Cone(α)
is contractible by assumption, the map c is a chain equivalence. Moreover, there is
an easy way to write c as the difference of two chain maps, namely

c = c0 − c1 := ι ◦
(

0 0
−a21 0

)
◦ π − ι ◦

(
0 a12

0 0

)
◦ π.

We can now think of the data (C0, C1, c0, c1) as a resolution of the trivial complex
based on a semisimplicial circle, i.e. as an object in the categoryMV(S1)0:

C0 C1

c0

c1

It is a consequence of the naturality of the cone construction that the assignment
(A, a) 7→ (C0, C1, c0, c1) extends to a functor S : MV(∂∆2)0 →MV(S1)0. The zero
object is preserved by S. Exactness as a functor of categories with cofibrations follows
from the fact that Id� Cyl� Cone is a cofibration sequence of exact functors. Since
Ch(A) is extensional, h-equivalences are also preserved. Therefore, we have defined
an h-exact functor

S : MV(∂∆2)0 →MV(S1)0.

Consider two more categories: Let End(A) be the category whose objects are en-
domorphisms A α−→ A of objects in A, and whose morphisms are given by those
morphisms f : A → B in A such that the appropriate square commutes. This cate-
gory becomes an exact category by pulling back the split exact structure on A along
the forgetful functor End(A) → A. The weak equivalences in this category are the
isomorphisms, which we denote iEnd(A). Similarly, define End(Ch(A)) to be the cat-
egory of endomorphisms of cochain complexes over A. This category can be equipped
with a Waldhausen structure by pulling back the corresponding subcategories along
the forgetful functor End(Ch(A)) → Ch(A); we denote its category of weak equiva-
lences by hEnd(Ch(A)).
There is an exact inclusion functor J : End(A) ↪→ End(Ch(A)) induced by the

canonical inclusion A ↪→ Ch(A). Moreover, mapping an object A α−→ A in End(Ch(A))
to the Mayer-Vietoris resolution

0 A A
α+ 1

α
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defines an h-exact functor E : End(Ch(A)) →MV(S1)0. Finally, we also define two
exact functors I1, I2 : A → End(A); the functor I1 sends an object A to the endomor-
phism A

−1−−→ A, whereas the functor I2 maps A to A 0−→ A.
All this data can be arranged into a single diagram:

hS•Ch(A) hS•MV(∂∆2)0 hS•MV(S1)0

hS•End(Ch(A))

iS•A iS•End(A)

S

E

Σ ◦ J

R ◦∆

I1

R′ ◦∆

I2

Suppose that we pick the dotted arrows in both the top and bottom row. Let A ∈ A.
Considering A as a complex concentrated in degree 0, the composition S ◦R◦∆ maps
A to the Mayer-Vietoris resolution

0 ΣA⊕ Cone(A) ΣA⊕ Cone(A)
0(

1 0
0 0

)
The resolution (E ◦ Σ ◦ J ◦ I1)(A) admits an obvious cofibration into (S ◦R)(A):

0 ΣA⊕ Cone(A) ΣA⊕ Cone(A)

0 ΣA ΣA

0(
1 0
0 0

)

0

−1

(
1
0

) (
−1
0

)

This morphism is natural in A, and also happens to be an h-equivalence (Cone(A) is
contractible). Hence, the diagram above commutes up to homotopy. An analogous
argument works in case we pick the dashed arrows in place of the dotted ones.
We are now going to show that all vertical arrows in the diagram induce isomor-

phisms on π1. This will reduce our problem to studying the difference between I1
and I2.
By virtue of the Gillet-Waldhausen theorem, the map iS•A → hS•Ch(A) is a weak

equivalence, and for similar reasons, the map iS•End(A)→ hS•End(Ch(A)) is a weak
equivalence as well (see the discussion in Section 4 and the proof of Lemma 8.24 in
[LS]). We know that the suspension functor Σ induces a self-equivalence inK-theory.
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2.3.9 Lemma.
The functor E induces an isomorphism on π1.

Proof. Before we start with the actual proof, we prove an easy auxiliary result that
will be used repeatedly. Suppose that we are given two cochain maps c0, c1 : C → C,
another two cochain maps d0, d1 : D → D as well as a cochain map ϕ : C → D such
that d0ϕ is homotopic to ϕc0, and d1ϕ is homotopic to ϕc1.
Then we claim that there are two endomorphisms z0, z1 : Cyl(ϕ) → Cyl(ϕ) such

that the diagram

C Cyl(ϕ) D

C Cyl(ϕ) D

ci zi di

commutes for i = 0, 1, where the indicated cofibrations are the obvious ones.
To prove this, pick homotopies s0 : d0ϕ ' ϕc0 and s1 : d1ϕ ' ϕc1. Then

zi :=

di 0 si

0 ci 0
0 0 ci


defines an endomorphism zi : Cyl(ϕ)→ Cyl(ϕ) with the desired properties.
Note that in this situation, the map D � Cyl(ϕ) is always a chain equivalence,

and the cofibration C � Cyl(ϕ) is a chain equivalence whenever ϕ is one. We are
now ready to turn to the proof of the lemma.
The proof relies on an explicit description of π1 (see e.g. [Wei13, Prop. IV.8.4]).

Namely, if C is an arbitrary small Waldhausen category, π1(|wS•C|) (a.k.a. K0(C)) is
given as the quotient of the free abelian group generated by the objects of C by the
following two relations:

• [A] = [B] whenever there is a weak equivalence A ∼−→ B.

• [B] = [A] + [C] whenever there is a cofibration sequence A� B � C.

We claim now that

E : K0(MV(S1)0, h)→ K0(End(Ch(A)), h)

[C0, C1, c0, c1] 7→ [C0 γc1−−→ C0],

where γ is an arbitrary inverse to c0 − c1, is a well-defined homomorphism. Suppose
for a moment that this is the case. Then E ◦ K0(E) = id since we can choose
idA as an inverse to α+ idA−α = idA. On the other hand, the image of an element
[C0, c1, c0, c1] ∈ K0(MV(S1)0, h) under K0(E)◦E is of the form [C0, C0, γc1 +1, γc1],
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where γ is some inverse to c0 − c1. First of all, note that

C0 C0

C0 C1

γc0

γc1

c0

c1

1 γ

is an h-equivalence, so [C0, C1, c0, c1] = [C0, C0, γc0, γc1]. From 1 ' γ(c0 − c1), it
follows that γc1 + 1 ' γc0. Hence, we can apply our auxiliary claim for ϕ = idC0 to
obtain a zig-zag of h-equivalences between (C0, C0, γc0, γc1) and (C0, C0, γc1+1, γc1);
this shows that K0(E) ◦ E = id, too.

So we only need to show that E is well-defined. Let (C0, C1, c0, c1) be given, and
suppose that γ and γ′ are both inverses to c0 − c1. Then γ is homotopic to γ′, and
we can apply the auxiliary claim (with ϕ = idC0 , and the second endomorphism

also being the identity) to obtain a zig-zag of equivalences between C0 γc1−−→ C0 and

C0 γ′c1−−−→ C0 in End(Ch(A)). Consequently, [C0 γc1−−→ C0] = [C0 γ′c1−−−→ C0].
Let ϕ : (C, c)

∼−→ (D, d) be an h-equivalence inMV(S1)0. Choose inverses γ and δ
to c0 − c1 and d0 − d1. Then

δd1ϕ0 = δϕ1c1 ' δϕ1(c0 − c1)γc1 = δ(d0 − d1)ϕ0γc1 ' ϕ0γc1.

Another application of the auxiliary claim shows that [C0 γc1−−→ C0] = [D0 δd1

−−→ D0].
Now suppose that (C, c)

ι
� (D, d)

π
� (E, e) is a cofibration sequence inMV(S1)0.

Let γ and ε be inverses to c0− c1 and e0− e1, respectively. By assumption, we know
that we can write

di =

(
ci d

i

0 ei

)
.

Therefore, the morphism

δ :=

(
γ −γ(d

0 − d1
)ε

0 ε

)
is an inverse to d0 − d1. With these choices,

(C0 γc1−−→ C0)
ι
� (D0 δd1

−−→ D0)
π
� (E0 εe1−−→ E0)

is a cofibration sequence in End(Ch(A)), showing that

[C0 γc1−−→ C0] + [E0 εe1−−→ E0] = [D0 δd1

−−→ D0] ∈ K0(End(Ch(A))).

Thus, E is a well-defined homomorphism, and we are finished.
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From the information we have gathered, we can deduce that non-trivial elements
in the image of π1(r) may be exhibited by showing that π1(|iS•I1| − |iS•I2|) is non-
trivial. Assume that A is (a skeletal subcategory of) the category of finitely generated
projective R-modules for some commutative ring R. Identifying π1 of the K-theory
space with K0 of the respective category, the homomorphism of interest is

D : K0(A)→ K0(End(A))

[A] 7→ [A
−1−−→ A]− [A

0−→ A]

Using Almkvist’s computation of K0(End(A)), it is quite easy to show that this
homomorphism is non-trivial. Let A be a finitely generated projective R-module,
and let A∗ be its dual. Define the trace homomorphism Tr of A to be the image of
idA∗ under the homomorphism

homR(A∗, A∗) = homR(A∗,homR(A,R))
∼=−→ homR(A∗ ⊗R A,R)

∼=−→ homR(homR(A,A), R).

The characteristic polynomial χ(α) of an endomorphism α : A→ A is then given by

χ(α) :=
∑
i>0

Tr(Λiα)Xi,

where Λiα denotes the i-th exterior power of α. Consider the set

R̃0 :=
{1 + r1X + · · ·+ rmX

m

1 + s1X + · · ·+ snXn
| ri, sj ∈ R

}
.

This becomes an abelian group via multiplication. Almkvist’s theorem now states
the following:

2.3.10 Theorem ([Alm74]).
Let R be a commutative ring. Let A be (a skeletal subcategory of) the category of
finitely generated projective R-modules. Then

K0(End(A))
∼=−→ K0(A)⊕ R̃0

[A
α−→ A] 7→ ([A], χ(α))

is an isomorphism of abelian groups.

By virtue of Almkvist’s theorem, we need only check that the characteristic poly-
nomials of the zero morphism and the identity morphism do not coincide. For the
zero morphism 0: A→ A, we have

χ(0) =
∑
i>0

Tr(Λi(0))Xi = 1.
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On the other hand, it is known that

χ(idA) =
m∑
i=1

ei(1 +X)i

for some pairwise orthogonal idempotents e1, . . . , em ∈ R such that e1+· · ·+em = 1R;
see [Alm73, Thm. 2.2 on p. 271] for the statement and proof. For example, in the
easiest case that A = Rm, we have χ(idA) = (1 + X)m (see [Alm73, Thm. 2.2 on
p. 270]). In any case, we can conclude that D = π1(r) is non-trivial.
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3. Filtering the assembly map

Up to this point we have considered the K-theory ofMVG(X;K) isolated for itself.
Given that it can serve as a model for the K-theory of group rings (Theorem 2.2.1),
we are now going to tie up our discussion with the main computational conjecture
about the K-theory of group rings, the Farrell-Jones Conjecture.
The standard treatment of assembly in the equivariant case is [DL98], where the

authors also show how their characterisations of the assembly map relate to the Weiss-
Williams picture of assembly [WW95]. Since both our models for spaces and for the
K-theory of group rings differ, we repeat the key points about equivariant homology
and the assembly map. The knowledgeable reader will notice some subtle differences
which are necessitated by the fact that semisimplicial sets allow far fewer maps than
simplicial sets. Also, since our homotopy colimit description of the assembly map
uses semisimplicial G-sets while the Davis-Lück description has to rely on simplicial
sets prevents us from a direct application of the universal property of the assembly
map. Our arguments in this section are mostly borrowed from [DL98], even though
in a certain sense we are closer to [WW95] in spirit.
We recapitulate the construction of G-homology spectra from [DL98]: Recall that

every simplicial G-set X gives rise to a contravariant Or(G)-space mapG(−, X):

G/H 7→ mapG(G/H,X) ∼= XH .

3.1 Definition ([DL98, Def. 4.1]).
Let E be an Or(G)-spectrum, and let X be a simplicial G-set. The G-equivariant
homology spectrum of X with coefficients in E is defined to be

HG(X;E) := mapG(−, X)+ ⊗Or(G) E.

3.2 Remark.
Definition 3.1 can be extended to pairs of simplicial G-sets (X,A) using the Or(G)-
space mapG(−, X∪ACone(A)) instead of mapG(−, X). It follows from classical theo-
rems that (X,A) 7→ π∗HG(X,A;E) defines a G-homology theory ([DL98, Lem. 4.2]).
In particular, there is for every G-simplicial setX an Atiyah-Hirzebruch spectral se-

quence which arises from the skeletal filtration of X and converges to the G-homology
of X with coefficients in E; see [DL98, Thm. 4.7], or [Ros04, Sec. 8] for a more detailed
treatment.

We are particularly interested in the G-homology theory arising from the Or(G)-
spectrum K−∞A , which is defined by the rule

G/H 7→ K−∞(A ∗G G/H).
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3.3 Definition ([DL98, Section 5]).
Let X be a simplicial G-set. The assembly map for X is the map

AX : HG(X;K−∞A )→ HG(G/G;K−∞A ) ' K−∞(A[G])

induced by the projection map X → G/G.

3.4 Conjecture (Farrell-Jones Conjecture).
Let G be a discrete group, and A a small additive category with right G-action. Then

AV Cyc : HG(EV CycG;K−∞A )→ K−∞(A[G])

is a weak equivalence, where EV CycG denotes the classifying space for the family of
virtually cyclic subgroups.

See [LR05] for a comprehensive survey on the Farrell-Jones Conjecture; be aware
that the section on the status of the conjecture is outdated. We will now give an
alternative description of the assembly map as in [WW95], and identify this map
with the assembly map as defined in 3.3 using arguments from [DL98, Section 5].

3.5 Definition ([DL98, p. 246]).
Let X be a semisimplicial G-set. The equivariant simplex category simpG(X) of X
has as objects maps of semisimplicial G-sets χ : G/H×∆n → X, where n ∈ N and H
ranges over all subgroups of G. The morphisms in simpG(X) are given by maps over
X, i.e. a morphism f : χ→ χ′ is a map f : G/H×∆n → G/H ′×∆n′ of semisimplicial
G-sets such that the following diagram commutes:

G/H ×∆n G/H ′ ×∆n′

X

f

χ χ′

The composition law in simpG(X) is the obvious one.

Let X be a semisimplicial G-set. Define a functor

K−∞X : simpG(X)→ Spectra

by K−∞X (χ : G/H ×∆n → X) := K−∞(MVG(G/H ×∆n;K), w). There is a natural
transformation α̃ between K−∞X and the constant functor which always takes the
value K−∞(MVG(X;K), w):

α̃χ : K−∞(MVG(G/H ×∆n;K), w)
K−∞(MVG(χ))−−−−−−−−−−→ K−∞(MVG(X;K), w).

This gives rise to a map

αX : hocolim
simpG(X)

K−∞X → K−∞(MVG(X;K), w)
K−∞(F )−−−−−→ K−∞(K(G/G)),
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where F is as usual the forgetful functor mapping a Mayer-Vietoris resolution (A, a)
to A−1.
Suppose for the rest of this section that K = KA for some small additive category
A with right G-action. We wish to identify αX with the assembly map as defined
previously in 3.3. To do this, we will first show that there is a certain zig-zag of
equivalences

hocolim
simpG(X)

K−∞X
∼←− . . . ∼−→ HG(ŝd(X);K−∞A ),

where the latter is the equivariant homology of the first barycentric subdivision of X
turned into a simplicial set; we will explain a bit later what this precisely means. Once
this is done, we can proceed to identify the two competing definitions of assembly.
Let K̃−∞A : simpG(X) → Spectra be the functor mapping G/H × ∆p χ−→ X to

K−∞(A ∗G G/H). The main hurdle we have to overcome is replacing K−∞X by the

simpler functor K̃−∞A .

3.6 Proposition.
There is a zig-zag of natural levelwise equivalences

hocolim
simpG(X)

K−∞X
∼←− . . . ∼−→ hocolim

simpG(X)
K̃−∞A .

Proof. Since homotopy colimits commute among each other, it suffices to prove the
claim in the connective case. Consider the two diagrams of (small) Waldhausen
categories

DX : simpG(X)→WaldhCat, (G/H ×∆p → X) 7→ (MVG(G/H ×∆p;KA), w)

DA : simpG(X)→WaldhCat, (G/H ×∆p → X) 7→ Ch(A ∗G G/H)

which give rise to K−∞X and K̃−∞A upon applying K−∞. We do not have a natural
transformation of these diagrams at hand, but something nearly as good. For every
map G/H ×∆p χ−→ X, let

τχ := ρpG/H : Ch(A ∗G G/H)→MVG(G/H ×∆p;KA),

where ρpG/H is the functor defined at the end of Section 2.1. These are exact functors.
Given a morphism f = (fG, f∆) : χ→ χ′ in simpG(X), the diagram

Ch(A ∗G G/H) MVG(G/H ×∆p;KA)

Ch(A ∗G G/H ′) MVG(G/H ′ ×∆p′ ;KA)

ρpG/H

(fG)∗ MVG(f)

ρp
′

G/H′

does not commute. However, the inclusion f∆ induces a natural transformation

ϑf : ρp
′

G/H′ ◦ (fG)∗ →MVG(f) ◦ ρpG/H
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which corresponds to the projection A ⊗ C∗ε (∆p′) � A ⊗ C∗ε (∆p). Observe that ϑf
consists entirely of w-equivalences. Additionally, for every two composable morphisms
f and f ′ in simpG(X), we have ϑf ′f = ϑf ′ ◦ ϑf .
Consider hocolimsimpG(X) d(NwS•DX) (recall the definition of the K-theory space

1.1.6 if you are uncertain why this diagram of simplicial sets concerns us); by [BK72,
XII.4.3 and XII.3.3], we have natural equivalences

hocolim
simpG(X)

d(NwS•DX)
∼←− hocolim

simpG(X)
hocolim

∆
NwS•DX

∼= hocolim
∆

hocolim
simpG(X)

NwS•DX ,

where hocolim∆ is taken with respect to the S•-direction.
Recall the Grothendieck construction of a diagram of small categories: Given a

diagram of small categories D : I → Cat, the category
∫
I D (the Grothendieck con-

struction of D) has as objects pairs (I,X) with I ∈ I and X ∈ D(I), while a
morphism (i, x) : (I,X) → (I ′, X ′) consists of a morphism i : I → I ′ in I and a
morphism x : D(i)(X)→ X ′ in D(I ′).
By Thomason’s theorem on homotopy colimits [Tho79, Thm. 1.2], there is a natural

equivalence

hocolim
simpG(X)

NwSnDX
∼−→ N

∫
simpG(X)

wSnDX .

The functors τχ induce functors wSnτχ : wSnDA(χ) → wSnDX(χ) by functoriality
of the wS•-construction, and we also have natural transformations wSnϑf satisfying
similar relations as the transformations ϑf .
By [Wal85, Lem. 1.6.6], every functor wSnF is a weak equivalence by virtue of

the Approximation Theorem because we had shown that F has the approximation
property. Arguing as in the proof of Corollary 2.2.9, we see that wSnτχ induces an
equivalence of nerves for each n individually. It follows that the data

{
wSnτχ, wSnϑf

}
induces a weak equivalence∣∣∣∣∣

∫
simpG(X)

wSnDA

∣∣∣∣∣ ∼−→
∣∣∣∣∣
∫
simpG(X)

wSnDX

∣∣∣∣∣ ,
see Appendix B for details. Again using the naturality of the S•-construction, we
obtain a levelwise equivalence of simplicial spaces, inducing an equivalence

hocolim
∆

∣∣∣∣∣
∫
simpG(X)

wS•DA

∣∣∣∣∣ ∼−→ hocolim
∆

∣∣∣∣∣
∫
simpG(X)

wS•DX

∣∣∣∣∣ .
Invoking Thomason’s theorem a second time, using that hocolim commutes with
geometric realisation, and repeating our initial argument, we arrive at a a zig-zag of
equivalences ∣∣∣∣hocolim

simpG(X)
d(NwS•DX)

∣∣∣∣ ' ∣∣∣∣hocolim
simpG(X)

d(NwS•DX)

∣∣∣∣ .
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The rest of the argument is formal, and follows very closely the discussion in [DL98].
From this point until stating Theorem 3.12, we will be solely concerned with making
successive identifications connecting hocolimsimpG(X) K̃−∞A to HG(X;K−∞A ).
We have to introduce some more notation: Set

OD := Or(G)×∆inj,

and let V denote the forgetful functor

V : simpG(X)→ OD, (G/H ×∆p → X) 7→ (G/H, p).

Define also an inclusion functor

J : Or(G)→ OD, G/H 7→ (G/H, 0),

as well as two projection functors

P1 : OD→ Or(G), (G/H, p) 7→ G/H,

P2 : OD→ ∆inj, (G/H, p) 7→ p.

Moreover, consider the functor

K−∞A : OD→ Spectra, (G/H, p) 7→ K−∞(A ∗G G/H).

Observe that K̃−∞A = K−∞A ◦ V and K−∞A = K−∞A ◦ J . Applying Proposition 3.6, it
suffices to consider

hocolim
simpG(X)

K̃−∞A = N
(
?/simpG(X)

)
+
⊗simpG(X) K̃−∞A (?).

The adjunction 1.2.6 yields a levelwise equivalence

N
(
?/simpG(X)

)
+
⊗simpG(X) K̃−∞A (?) = N

(
?/simpG(X)

)
+
⊗simpG(X) K−∞A ◦ V (?)

'
(

indV N
(
?/simpG(X)

))
+
⊗OD K−∞A (−).

3.7 Lemma ([DL98, p. 246f.]).
There is an isomorphism of OD-simplicial sets

N
(
?/simpG(X)

)
⊗simpG(X) hom(−, V (?))

∼=−→ hom(?, X)⊗OD N(−/OD/?).

Proof. For each (G/K, q), we have to specify a simplicial map

N
(
?/simpG(X)

)
⊗simpG(X) hom

(
(G/K, q), V (?)

)
→ hom(?, X)⊗OD N

(
(G/K, q)/OD/?

)
.

We claim that the rule

(G/H ×∆p → G/H0 ×∆p0 → · · · → G/Hn ×∆pn → X)⊗
(
(G/K, q)→ (G/H, p)

)
7→ (G/Hn ×∆pn → X)⊗

(
(G/K, q)→ (G/H, p)→ · · · → (G/Hn, pn)

)
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defines such a map.
It is obvious that the given rule is compatible with the degneracy maps, and also

with all face maps except the n-th face map. In that case, taking the n-th face and
then applying the rule yields

(G/Hn−1 ×∆pn−1 → X)⊗
(
(G/K, q)→ (G/H, p)→ · · · → (G/Hn−1, pn−1)

)
= (G/Hn ×∆pn → X)⊗

(
(G/K, q)→ (G/H, p)→ . . .

· · · → (G/Hn−2, pn−2)→ (G/Hn, pn)
)
,

and the latter is the image after first applying the rule and then taking the n-th
face. So we have in fact defined a simplicial map. To see that it is an isomorphism
it suffices to observe (we have already used this in our notation) that all the maps
G/Hi×∆pi → X are determined via their map to G/Hn×∆pn by the reference map
G/Hn ×∆pn → X.

Applying the lemma, we get levelwise equivalences(
indVN

(
?/simpG(X)

))
+
⊗OD K−∞A (−)

= N
(
?/simpG(X)

)
⊗simpG(X) hom(−, V (?))⊗OD K−∞A (−)

∼−→
(

hom(?, X)⊗OD N(−/OD/?)
)

+
⊗OD K−∞A (−)

' hom(?, X)+ ⊗OD N(−/OD/?)+ ⊗OD K−∞A (−).

3.8 Lemma ([DL98, Proof of Thm. 6.3]).
There is a natural levelwise equivalence

N(−/OD/?)+ ⊗OD K−∞A (−)

∼−→
(
N
(
− /Or(G)/P1(?)

)
+
∧N

(
∆inj/P2(?)

)
+

)
⊗Or(G) K−∞A (−).

Proof. Since the nerve construction commutes with products, we have a levelwise
equivalence

N
(
− /OD/?)

)
+
⊗OD K−∞A (−)

'
(
N
(
P1(−)/Or(G)/P1(?)

)
×N

(
P2(−)/∆inj/P2(?)

))
+
⊗OD K−∞A (−)

'
(
N
(
P1(−)/Or(G)/P1(?)

)
+
∧N

(
P2(−)/∆inj/P2(?)

)
+

)
⊗OD K−∞A (−)

' N
(
− /Or(G)/P1(?)

)
+
⊗Or(G)

(
N
(
�/∆inj/P2(?)

)
+
⊗∆inj K

−∞
A (−,�)

)
.

Now it suffices to give a natural isomorphism(
N(�/∆inj/?)+ ⊗∆inj K

−∞
A (G/H,�)

)
n
→ |N(∆inj/?)|+ ∧ (K−∞A (G/H))n.
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Both sides are realisations of simplicial sets (recall 1.2.2), so we can even define a
simplicial isomorphism by

(p→ p0 → · · · → pn → q ⊗ x) 7→ (p0 → · · · → pn → q ⊗ x),

where we have used that K−∞A (G/H, p0) = K−∞A (G/H). This map commutes with
face and degeneracy maps and is clearly surjective. For injectivity, observe that
K−∞A (id, µ)(x) = x for any map µ in ∆inj. Therefore,

p→ p0 → · · · → pn → q ⊗ x

= p0 → p0 → · · · → pn → q ⊗K−∞A (id, p→ p0)(x)

= p0 → p0 → · · · → pn → q ⊗ x.

Thus, we have levelwise equivalences (suppressing the coherence isomorphisms)

hom(?, X)+ ⊗OD N(−/OD/?)+ ⊗OD K−∞A
∼−→ hom(?, X)+ ⊗OD

(
N
(
− /Or(G)/P1(?)

)
+
∧N

(
∆inj/P2(?)

)
+

)
⊗Or(G) K−∞A

∼−→ hom(?×??, X)+ ⊗∆inj N(∆inj/??)+ ⊗Or(G) N
(
− /Or(G)/?

)
+
⊗Or(G) K−∞A

∼−→
(

hom(?×??, X)⊗∆inj N(∆inj/??)
)

+
⊗Or(G) N

(
− /Or(G)/?

)
+
⊗Or(G) K−∞A .

3.9 Lemma.
There is an isomorphism of Or(G)-simplicial sets

hom(?×??, X)⊗∆inj N(∆inj/??)
∼=−→ N

(
simp(mapG(?, X))

)
.

Proof. Fix G/H ∈ Or(G). Recall that there is a natural bijection between maps of
semisimplicial G-sets G/H × ∆p → X and p-simplices in XH = mapG(G/H,X).
Also, every morphism m ↪→ n corresponds to a map ∆m → ∆n. We claim that the
rule

(G/H ×∆p → X)⊗ (p0 → · · · → pn → p)

7→
(
∆p0 → · · · → ∆pn → mapG(G/H,X)

)
defines a natural isomorphism, where the map ∆pn → mapG(G/H,X) is obtained
as the composition of the obvious map ∆pn → ∆p with the adjoint of the map
G/H × ∆p → X. This map is simplicial. Bijectivity follows from the preliminary
comment and the fact that the Yoneda embedding ∆inj → ssSets is fully faithful.
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3.10 Lemma.
Let C be a small category. Each homomorphism set homC(−, ?) can be regarded as
a discrete category, whose nerve is precisely homC(−, ?) again, now regarded as a
discrete simplicial set.
The “projection” map

N(−/C/?)→ homC(−, ?)

induced by the functor sending C f−→ C0
g−→ D to the composition C gf−→ D defines a

natural weak equivalence of Cop × C-simplicial sets.

Proof. Let C and D be objects in C. By Quillen’s Theorem A ([Qui73, p. 85]),
it suffices to show that (C/C/D)/f has a contractible nerve for every morphism
f : C → D. Indeed, the category (C/C/D)/f has both an initial and a terminal
object, given by C id−→ C

f−→ D and C f−→ D
id−→ D, respectively.

The previous two lemmas combine to a levelwise equivalence(
hom(?×??, X)⊗∆inj N(∆inj/??)

)
+
⊗Or(G) N

(
− /Or(G)/?

)
+
⊗Or(G) K−∞A

∼−→ N
(
simp(mapG(?, X))

)
+
⊗Or(G) homOr(G)(−, ?)+ ⊗Or(G) K−∞A ,

and the latter term is equivalent to N
(
simp(mapG(?, X))

)
+
⊗Or(G) K−∞A by Lemma

1.2.5.

3.11 Lemma (see [WW95, p. 333]).
There is a natural isomorphism of Or(G)-simplicial sets

N
(
simp(mapG(?, X))

) ∼=−→ mapG
(
?, ŝd(X)

)
.

Proof. Recall the relevant definitions: Let Y be a semisimplicial set. An n-simplex in
the barycentric subdivison sd(Y ) is a sequence of proper inclusions of semisimplicial
sets ∆p0 → · · · → ∆pn → Y ; the i-th face map is given by dropping ∆pi .
The functor ̂: ssSets → sSets adjoins degeneracies to a semisimplicial set Y as

follows: The set of n-simplices of Ŷ is given by

Ŷn :=
{

(y, µ) | y ∈ Yp, µ : n� p
}
.

The degeneracy maps in X̂ are simply given by si(y, µ) := (y, si◦µ). For the i-th face
map, one uses the fact that the morphism µ ◦ di has a unique mono-epi-factorisation
µ ◦ di = Sur(µdi) ◦ Inj(µdi), and sets di(y, µ) :=

(
Inj(µdi)∗(y),Sur(µdi)

)
.

Since

mapG(G/H, ŝd(X))n = hom(∆n,mapG(G/H, ŝd(X))

∼= hom(∆n, ŝd(X)
H

)

∼=
(
ŝd(X)

H)
n
,
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it suffices to show that for every semisimplicial set Y , there is a natural isomorphism
of simplicial sets

N
(
simp(Y )

) ∼=−→ ŝd(Y ).

Given an n-simplex σ = ∆p0 → · · · → ∆pn → Y in N
(
simp(Y )

)
, every arrow

∆pi → ∆pi+1 is either a face inclusion or the identity. We let nd(σ) denote the face
of σ in which all the identity maps have been dropped from σ; if n− p is the number
of identity maps in σ denote by µ(σ) the monotone surjection n→ p given by

i 7→ number of proper face inclusions in the sequence ∆p0 → · · · → ∆pi .

We claim that the rule
σ 7→ (nd(σ), µ(σ))

defines such a natural isomorphism of simplicial sets. It is easy to check that we have
defined bijections Nn(simp(Y )) ∼= ŝd(Y )n, and that these are compatible with the
degeneracy maps. Compatibility with face maps is a bit more interesting: We have
that

nd(di(σ)) =

{
nd(σ) ∆pi−1 → ∆pi = id or ∆pi → ∆pi+1 = id

di(nd(σ)) otherwise.

µ(di(σ)) =

{
µ(σ)di ∆pi−1 → ∆pi = id or ∆pi → ∆pi+1 = id

siµ(σ) otherwise.

This equals exactly the definition of di(nd(σ), µ(σ)) we have given in the description
of ŝd(Y ). This proves the lemma.

We have finally arrived at a levelwise equivalence

N
(
simp(mapG(?, X))

)
+
⊗Or(G) K−∞A

∼−→ mapG
(
?, ŝd(X)

)
+
⊗Or(G) K−∞A

= HG(ŝd(X);K−∞A )

This finishes the identification of hocolimsimpG(X) K−∞X with the equivariant homology
theory appearing in the definition of the Davis-Lück assembly map.

3.12 Theorem.
The map αX is the assembly map for ŝd(X), i.e. the diagram

hocolimsimpG(X) K−∞X . . . HG(ŝd(X);K−∞A )

K−∞(A[G])

∼ ∼

αX A
ŝd(X)

commutes.
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Proof. We have to trace through the sequence of levelwise equivalences which consti-
tute the zig-zag at the top of the diagram. There is a natural transformation from
K̃−∞A to the functor taking the constant value Ch(A[G]), which is given by the obvi-
ous map Ch(A∗G G/H)→ Ch(A∗G G/G) = Ch(A[G]). This transformation induces
a map

α̃X : hocolim
simpG(X)

K̃−∞A → K−∞(A[G]).

Via the zig-zag established in Proposition 3.6, we can identify αX with α̃X , essentially
because the diagram

Ch(A ∗G G/H) MVG(G/H ×∆p;KA)

Ch(A[G])

ρpG/H

F

commutes. The remaining equivalences let us identify α̃X with the map

Ã
ŝd(X)

: mapG(?, ŝd(X))+ ⊗Or(G) K−∞A → K−∞(A[G])

which is induced by the obvious natural transformation from K−∞A to the functor
taking the constant value K−∞(A[G]). To be a bit more precise, this natural trans-
formation induces a map mapG(?, ŝd(X))+ ⊗Or(G) K−∞A → mapG(?, ŝd(X))+ ⊗Or(G)

K−∞(A[G]), and Ã
ŝd(X)

is obtained form this map by further composition with the

projection map mapG(?, ŝd(X))+ → S0. It is therefore sufficient to observe that the
triangle

mapG(?, ŝd(X))+ ⊗Or(G) K−∞A

mapG(?, ŝd(X))+ ⊗Or(G) K−∞(A[G]) S0 ⊗Or(G) K−∞(A[G]) ∼= K−∞(A[G])

αX

commutes; indeed, this is true as •⊗x = π∗(•)⊗x = •⊗π∗x, where π : G/H → G/G
is the projection map and S0 = •+.

Recall from earlier on that the map αX can be factored into two maps:

αX : hocolim
simpG(X)

K−∞X
αX−−→ K−∞(MVG(X;K), w)

K−∞(F )−−−−−→ K−∞(A[G]).

Suppose now that X is a semisimplicial G-set in which every finite sub-semisimplicial
set is contained in a contractible finite sub-semisimplicial set. Then Theorem 2.2.1
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applies to show that K−∞(F ) is an equivalence. Therefore, we can identify the
assembly map with the first map hocolimsimpG(X) K−∞X → K−∞(MVG(X;K), w).
The evident filtration of the left-hand side by the skeleta of X can now be seen to

be closely related to the filtration of K−∞(A[G]) we obtained via Theorem 2.2.1: For
every p, the square

hocolim
simpG(X(p))

K−∞X K−∞(MVG(X(p)), w)

hocolim
simpG(X)

K−∞X K−∞(MVG(X), w)

commutes, exhibiting αX as a filtered map. Consequently, we get:

3.13 Corollary.
The map αX induces a morphism from the Atiyah-Hirzebruch spectral sequence con-
verging to π∗ hocolimsimpG(X) K−∞X ∼= π∗HG(X;K−∞A ) (associated to the skeletal fil-
tration of X) to the X-resolution spectral sequence.

Proof. Our observations so far provide a morphism of spectral sequences from the
Atiyah-Hirzebruch spectral sequence of HG(ŝd(X);K−∞A ) to theX-resolution spectral
sequence. The corollary follows since there is a cellular homeomorphism between the
realisation of ŝd(X) and the realisation of X.

At first glance, there is significant temptation to use Corollary 3.13 as justifica-
tion to formulate a “filtered isomorphism conjecture”: This conjecture would predict
that the morphism of spectral sequences whose existence has been asserted is an
isomorphism on E2 (the E1-page is out of the question, see our discussion of the ∆2-
resolution spectral sequence in Section 2.3). This would be a much stronger assertion
than the Farrell-Jones Conjecture, but also looks more tractable than the original
conjecture (even though we do not understand the E2-term yet).
However, such delusions of grandeur are quickly dispersed by the following ob-

servation due to Arthur Bartels: Let G be an arbitrary discrete group, A a small
additive category on which G acts trivially, and let X be a semisimplicial G-set
satisfying the assumptions of Theorem 2.2.1. We claim that the forgetful functor
F : MVG(X(1);KA)→ Ch(A[G]) always induces a surjection on K1 (with respect to
the w-equivalences on the left hand side).
By work of Muro and Tonks [MT08] any element in K1 of a small Waldhausen

category C can be represented by a diagram of the form

C1

A B C

C2

a1

a2

b1

b2

∼

∼
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where A
ai
� B

bi
� Ci are cofibration sequences for i = 1, 2. In case of K1(Ch(A[G])),

it even suffices to consider diagrams of the form

A

0 A A

A

=

=

α

=

(3.1)

where A is concentrated in degree 0 (i.e., it is an object in A[G]) and α is an auto-
morphism; to show surjectivity, it is enough to lift these diagrams along the functor
F (see Appendix C for a proof of both of these claims).
Pick a 0-simplex x ∈ X0, and form the canonical resolution ∆X(A; {x}) (see Def-

inition 2.2.3). The question is whether the two maps α, id : A → A extend to mor-
phisms inMVG(X;KA) with target ∆X(A; {x}). Observe that supp0(α)∪ supp0(id)
(see Lemma 2.2.5) is a finite subset of X0, and suppn(α) ∪ suppn(id) = ∅ for n > 0.
Since X is necessarily connected, we can choose a finite subtree T of the 1-skeleton
which contains supp0(α) ∪ supp0(id). Then we may apply Lemma 2.2.5 to obtain
morphisms

∆X(α),∆X(id) : ∆X(A;T )→ ∆X(A; {x}).

Thus, we can lift diagram 3.1 to the following diagram inMVG(X(1);KA):

∆X(A; {x})

0 ∆X(A; {x}) ∆X(A;T )

∆X(A; {x})

id

id

∆X(α)

∆X(id)

Note that 0→ ∆X(A; {x}) id−→ ∆X(A; {x}) is clearly a cofibration sequence, and that
∆X(α) and ∆X(id) are w-equivalences. So this proves that

K1(F ) : K1(MVG(X(1);KA), w)� K1(Ch(A[G]))

is a surjection.
This provides immediate counterexamples to a prospective “filtered” conjecture:

Say we specialise to the case G = Z2, A is (a small model for) the category of
finitely generated free R-modules for some ring R, and X = R2 (considered as an
ordered simplicial complex). In the X-resolution spectral sequence, all permanent
cycles contributing to K1 are concentrated on the columns p = 0 and p = 1, whereas
the Atiyah-Hirzebruch spectral sequence has permanent cycles on the column p = 2
as soon as R has non-trivial K−1.
That negative K-theory appears to be a problem in general is further exempli-

fied if we investigate the delooping construction: The first structure map of the
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non-connective K-theory spectrum (before taking Ω-spectrifications) fits into a com-
mutative diagram

K(MVG(X(1);KA), w) ΩK(MVG(X(1);KCA), w)

K(Ch(A[G])) ΩK(Ch((CA)[G]))

The bottom arrow is an isomorphism on π1, so that the right vertical map is also
surjective on π1. Indeed, this asserts that the forgetful functor induces a surjection

K2(MVG(X(1);KCA), w)� K2(Ch((CA)[G])).

Similarly, considering CnA as coefficients provides examples where the forgetful func-
tor induces surjections Kn+1(MVG(X(1);KCnA), w)� Kn+1(Ch((CnA)[G])) for any
n > 1. This leaves the following question:

Are there reasonable assumptions under which it is sensible to formulate a
“filtered isomorphism conjecture”?

A possible candidate for such a set of assumptions would be to require G to be
torsionfree and to assume that A has no negative K-theory (e.g. A = FrR for some
regular ring R).
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A. The homotopy fibration of a
filtering subcategory

We omitted the proof of Proposition 1.3.6 in the main text. The reason is that we
require certain fibration sequences which have been formulated in different ways by
various authors. The notion of “Karoubi filtration” is usually employed to produce
homotopy fibration sequences for the K-theory of additive categories (see for example
[CP97]), but Schlichting has shown that this notion can be relaxed quite a bit, and
we would basically like to quote his theorem [Sch04, Thm. 2.1].
However, Schlichting’s theorem contains assumptions about idempotent complete-

ness, whereas we would rather prefer to have a version of his theorem that makes no
additional assumptions. Fortunately, it takes little effort do derive our preferred vari-
ation of the theorem (which has the conclusion drawn in [CP97]) from Schlichting’s
theorem. After this has been done, we give the proof of Proposition 1.3.6.

A.1 Definition.
Let A be a small additive category, and let U ⊆ A be a full additive subcategory. For
any two objects A, B ∈ A, let

homA(A,U , B) := {f ∈ homA(A,B) | f factors through an object in U}.

This is a subgroup of homA(A,B). Define the quotient category A/U to be the
category whose objects are those of A, and whose morphism sets are given by

homA/U (A,B) := homA(A,B)/homA(A,U , B).

The quotient category is again an additive category (direct sums in A are also direct
sums in A/U).

A.2 Definition ([Sch04, Def. 1.3]).
Let A be a small additive category, and let U ⊆ A be a full additive subcategory. We
say that U ⊆ A is a weakly filtering subcategory if, whenever f : U → A is a morphism
from an object U ∈ U to an object A ∈ A, there is a direct sum decomposition
A ∼= A′ ⊕ V into A′ ∈ A and V ∈ U and a morphism f ′ : U → V such that the
following diagram is commutative:

U A

V

f

f ′
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We call U ⊆ A a strongly filtering subcategory (in Schlichting’s terms left s-filtering)
if it is a weakly filtering subcategory and in addition the following holds: If U ∈ U
and V is a direct summand of U in A, then V is isomorphic to an object in U .

A.3 Definition.
Let A be an additive category. The idempotent completion A∧ of A is the following
category: Objects are pairs (A, p) with A ∈ A and p = p2 : A → A an idempotent
endomorphism. A morphism f : (A, p) → (B, q) is given by a morphism f : A → B
in A with the property that qfp = f .
The idempotent completion is again an additive category.

We call an additive category idempotent complete if it is equivalent to its own idem-
potent completion. The idempotent completion of an additive category is idempotent
complete. Our intention is to apply the following instance of Schlichting’s theorem:

A.4 Theorem ([Sch04, Thm. 2.1]).
Let A be a small additive category, and U ⊆ A a strongly filtering, idempotent
subcategory. Then there is a homotopy fibration

iS•U → iS•A → iS•A/U .

For the purpose of this section, we let K0(A) denote the set of path components of
the algebraicK-theory spaceK(A, i). This set is, in fact, an abelian group; in general,
it does not coincide with π0 of the non-connective algebraic K-theory spectrum.
Recall that there is an explicit presentation of K0(A) as the abelian group generated
by isomorphism classes of objects in A, subject to the relation [A] = [A1] + [A2]
whenever A ∼= A1 ⊕ A2. The canonical homomorphism K0(A) → K0(A∧) is always
injective, so we may regard K0(A) as a subgroup of K0(A∧).
Let U ⊆ A be a full additive subcategory of A, and suppose that K ⊆ K0(U∧)

is a subgroup. Then we define U∧K ⊆ U to be the full subcategory whose objects
are those objects (U, p) ∈ U∧ for which [(U, p)] ∈ K. Moreover, we define A∧K to
be the full subcategory of A which consists of those objects which are a direct sum
A⊕ (U, p) with A ∈ A and (U, p) ∈ U∧K . The partial idempotent completion U∧K is
a full additive subcategory of A∧K .
As stated in the introduction, we want to get rid of the idempotent completeness

assumption on U . The correct statement then reads as follows:

A.5 Proposition ([CP97, Thm. 7.1]).
LetA be a small additive category and U ⊆ A a weakly filtering subcategory. LetK ⊆
K0(U∧) be the preimage of K0(A) under the canonical homomorphism K0(U∧) →
K0(A∧). Then there is a homotopy fibration

K(U∧K)→ K(A)→ K(A/U).

Proof. Let A∧U denote the full subcategory of A∧ which consists of those objects
(A, p) for which there is some (U, q) ∈ U∧ such that (A, p) ⊕ (U, q) is isomorphic to
an object in A. Note that U∧ is a full additive subcategory of A∧U .
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We claim that the commutative square

iS•U∧K iS•U∧

iS•A∧K iS•A∧U

(A.1)

is a homotopy pullback. To prove this, recall the notion of a cofinal subcategory :
Given an exact inclusion of Waldhausen categories C ⊆ D, we call C cofinal in D if
for every D ∈ D there is some D′ ∈ D such that D∨D′ is isomorphic to an object in
C. Cofinal inclusions induce monomorphisms on K0. Clearly, if C ⊆ C′ ⊆ D are exact
inclusions and C ⊆ D is cofinal, so is C′ ⊆ D. Since any additive category is cofinal in
its idempotent completion (because (A, p)⊕ (A, 1− p) ∼= A for every A), this implies
that the horizontal maps in A.1 are induced by cofinal inclusions. Set

H := K0(U∧)/K0(U∧K), G := K0(A∧U )/K0(A∧K).

By Staffeldt’s version of the cofinality theorem [Sta89, Thm. 2.1], we can extend
diagram A.1 to a map of homotopy fibrations:

iS•U∧K iS•U∧ BH

iS•A∧K iS•A∧U BG

So as soon as we know that the induced homomorphism H → G is an isomorphism,
we have shown that A.1 is a homotopy pullback.
Let (A, p) ∈ A∧U be arbitrary. By definition, there is some (U, q) ∈ U∧ such that

(A, p) ⊕ (U, q) ∼= B for some B ∈ A. This implies that [A, p] = −[U, q] in G, so the
homomorphism H → G is surjective.

To show injectivity, observe the following: If (U, q) ∈ U∧K there are A1, A2 ∈ A
such that [U, q] = [A1] − [A2] in K0(A∧). That is, there is some (B, p) ∈ A∧ such
that (U, q)⊕A2 ⊕ (B, p) ∼= A1 ⊕ (B, p). Adding (B, 1− p) on both sides, we see that
(U, q) ⊕ A2 ⊕ B ∼= A1 ⊕ B ∈ A. Consequently, if A ⊕ (U, q) ∈ A∧K , there exists
some B ∈ A such that A⊕ (U, q)⊕ B is isomorphic to an object in A. This implies
that K0(A) = K0(A∧K). Now suppose that [U1, q1]− [U2, q2] lies in the kernel of the
homomorphism H → G. Then there are A1, A2 in A such that

[U1, q1]− [U2, q2] = [A1]− [A2]

in K0(A∧U ), which means that there is some (B, p) ∈ A∧U such that

(U1, q1)⊕A2 ⊕ (B, p) ∼= (U2, q2)⊕A1 ⊕ (B, p).
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Since (B, p) ∈ A∧U , we can find (U ′, q′) ∈ U∧ such that (B, p)⊕ (U ′, q′) is isomorphic
to an object in A. That is, there is some A′ ∈ A such that

(U1, q1)⊕A2 ⊕A′ ∼= (U2, q2)⊕A1 ⊕A′.

Set A′i := Ai ⊕A′. Adding (U1, 1− q1) on both sides, we have

U1 ⊕A′2 ∼= (U1, 1− q1)⊕ (U2, q2)⊕A′1,

so [(U1, 1 − q1) ⊕ (U2, q2)] = [U1, 1 − q1] + [U2, q2] = [U1 ⊕ A′2] − [A′1] ∈ K0(A). In
particular, (U1, 1− q1)⊕ (U2, q2) ∈ U∧K . Since

[U1, q1]− [U2, q2] = [U1]− [(U1, 1− q1)⊕ (U2, q2)],

this shows that [U1, q1]− [U2, q2] ∈ K0(U∧K), and therefore represents 0 in H. This
finishes the proof of injectivity, and thus shows that A.1 is a homotopy pullback.
Next, we claim that U∧ ⊆ A∧U is strongly filtering (we adopt the proof from

[HS04, Lem. 2.4]): Let f : (U, q) → (A, p) be a morphism in A∧U with (U, q) ∈ U∧
and (A, p) ∈ A∧U . There is some (U ′, q′) ∈ U∧ such that (A, p)⊕(U ′, q′) is isomorphic
to an object in A. Consider the morphism

f̃ :=

(
f 0 0 0
0 q′ 0 0

)
: Ũ := (U, q)⊕(U ′, q′)⊕(U, 1−q)⊕(U ′, 1−q′)→ (A, p)⊕(U ′, q′).

The domain of this morphism lies in U , the codomain is isomorphic to an object in
A. Therefore, we find an object V ∈ U , a cofibration

ι =

(
ιA
ιU

)
: V � (A, p)⊕ (U ′, q′)

and a morphism g : Ũ → V such that ιg = f̃ . Let

π =
(
πA πU

)
: (A, p)⊕ (U ′, q′)→ V

be a retraction. Then πf̃ = πιg = g, so

g =
(
πAf πUq

′ 0 0
)
.

Since ιg = f̃ , it follows that ιAπAf = f , ιUπUq′ = q′ and ιAπUq
′ = 0. Note that

q′ = id(U ′,q′), which implies that

ιπ =

(
ιAπA ιAπU
ιUπA ιUπU

)
=

(
ιAπA 0
ιUπA ιUπU

)
.

Since ιπ is idempotent, it follows that ιAπA is idempotent, and v := (πAιA)2 : V → V
is an idempotent endomorphism. Then

ιAπAιA : (V, v)→ (A, p) and πAιAπA : (A, p)→ (V, v)
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define morphisms in A∧, and we have

(πAιAπA)(ιAπAιA) = πA(ιAπA)2ιA = v = id(V,v) .

So ιAπAιA is a cofibration in A∧; let (A′, p′) denote its complement. By definition,
(A′, p′) ⊕ (V, v) ∼= (A, p), and it follows that (A′, p′) lies in A∧U . This shows that
ιAπAιA is also a cofibration in A∧U . Now observe that πAιAπAf : (U, q) → (V, v)
defines a morphism in U∧, and since

(ιAπAιA)(πAιAπAf) = ιAπAf = f,

we have found the desired factorisation

(U, q) (A, p)

(V, v)

f

πAιAπAf ιAπAιA

This proves that U∧ ⊆ A∧U is weakly filtering.
Now let (U, q) ∈ U∧ and suppose that (A, p) ∈ A∧U is a direct summand of

(U, p). Then (A, p) is isomorphic to an object of the form (U, q′) for some idempotent
q′ : U → U , and the latter clearly lies in U∧. So U∧ ⊆ A∧U is even strongly filtering.
We can now apply Theorem A.4 to the inclusion U∧ ⊆ A∧U to identify the vertical

homotopy fibres in A.1 as K(A∧U/U∧).
It is straightforward to check that the functor A/U → A∧U/U∧ is an additive

equivalence. Also, we have shown earlier that K0(A) = K0(A∧K), so A ↪→ A∧K
induces a weak equivalence iS•A → iS•A∧K by the cofinality theorem. This finally
yields the desired homotopy fibration

K(U∧K)→ K(A)→ K(A/U).

With Proposition A.5 at our disposal, we can now turn to the proof of Proposition
1.3.6. As a preliminary note, suppose that A is an additive category with right
G-action, and let U be a G-invariant weakly filtering subcategory. We claim that
U ∗G T ⊆ A ∗G T is also weakly filtering: Let ϕ : U → A be a morphism from
U = {Ut}t ∈ U ∗G T to A = {At}t ∈ A∗G T . Recall that ϕ = {ϕg,t : Ug−1t → Atg}g,t
is a collection of morphisms in A. Fix t ∈ T . Let St := {g ∈ G | ϕg,t 6= 0}. This is a
finite set. Since U ⊆ A is filtering, there is a factorisation

⊕
g∈St

Ug−1tg
−1 At

Vt

(
ϕg,tg

−1
)
g

ψt
ιt
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via an object Vt ∈ U . Letting t vary, we define V := {Vt}t ∈ U ∗G T . There is a
canonical cofibration ι : V → A given by ιe,t := ιt and ιg,t := 0 for g 6= e. Moreover,
we let ψg,t := ψtg and set ψ := {ψg,t}g,t. This defines a morphism U → V in U ∗G T .
We can compute

(ιψ)g,t =
∑
kh=g

ιk,th ◦ ψh,k−1t = ιe,tg ◦ ψg,t = ιtg ◦ ψtg = (ιtψt)g = ϕg,t,

so we have found the desired factorisation ϕ = ιψ.

Proof of Proposition 1.3.6. Observe that there is a canonical additive functor

F : (CA) ∗G T → C(A ∗G T ),
{
{Azt }z

}
t
7→
{
{Azt }t

}
z
.

We want to prove that F induces a weak equivalence K((CA)∗GT )→ K(C(A∗GT )).
Let CfinA ⊆ CA denote the full subcategory of objects with finite support. The
inclusions CfinA ⊆ C+A and C−A ⊆ CA are weakly filtering. Therefore, the functor
F induces a map between homotopy pullback squares (the horizontal homotopy fibres
are given by the loops on the K-theory of equivalent categories):

K
(
((CfinA) ∗G T )∧

)
K
(
(C+A) ∗G T

)
K
(
(Cfin(A ∗G T ))∧

)
K
(
C+(A ∗G T )

)
K
(
((C−A) ∗G T )∧

)
K
(
(CA) ∗G T

)
K
(
(C−(A ∗G T ))∧

)
K
(
C(A ∗G T )

)
In both squares, the top right and bottom left corners are contractible since the
categories posssess an Eilenberg swindle. Since CfinA is additively equivalent to A,
it follows that the map on the top left corner is a homotopy equivalence.
Therefore, we conclude that the map

K(F ) : K((CA) ∗G T )→ K(C(A ∗G T ))

is an equivalence. If we iterate the functor F , we get functors

(CnA) ∗G T → C((Cn−1A) ∗G T )→ · · · → Cn(A ∗G T )

which induce equivalences on K-theory spaces. This proves the claim of the propo-
sition.
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B. Maps of Grothendieck
constructions

Recall again the Grothendieck construction of a diagram of small categories: If
D : I → Cat is a diagram of small categories, the category

∫
I D (the Grothendieck

construction of D) has as objects pairs (I,X) with I ∈ I and X ∈ D(I), while
a morphism (i, x) : (I,X) → (I ′, X ′) consists of a morphism i : I → I ′ in I and
a morphism x : D(i)(X) → X ′ in D(I ′). Composition of morphisms is given by
(i′, x′) ◦ (i, x) = (i′i, x′ ◦D(i′)(x)).
We wish to justify the following result which we used in the proof of Proposition

3.6; I thank Thomas Nikolaus for a helpful discussion on this topic.

B.1 Proposition.
Let F,G : I → Cat be two diagrams in the category of small categories. Suppose that
we are given

• for each I ∈ I, a functor τI : F (I)→ G(I) inducing a weak equivalence

NτI : NF (I)
∼−→ NG(I).

• for each morphism i : I → I ′ a natural transformation ϑi : τI′ ◦F (i)→ G(i) ◦ τI
such that ϑid = id and ϑi′i = ϑi′ ◦ ϑi.

Then there is a natural weak equivalence∣∣∣∣N ∫
I
F

∣∣∣∣ ∼−→ ∣∣∣∣N ∫
I
G

∣∣∣∣ .
Let F̌ : I → Cat denote the diagram given by F̌ (I) := F (I)op. In view of the
natural homeomorphisms B(F (I)) ∼= B(F (I)op), it suffices to prove that there is a
weak equivalence

∫
I F̌ →

∫
I Ǧ.

As observed by Thomason [Tho79, 1.3.1], the given data defines a functor

T :

∫
I
F̌ →

∫
I
Ǧ

(I,X) 7→ (I, τI(X))

(i, x) : (I,X)→ (I ′, X ′) 7→ (i, ϑi ◦ τI′(x)).

Our goal is to show that the induced map on the nerves is an equivalence. Let us
introduce some more language:
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B.2 Definition.
Let P : E → B be a functor of small categories.
A morphism e : E′ → E is Cartesian if for every morphism f : F → E in E and

every morphism b : P (F ) → P (E′) with P (e) ◦ b = P (f), there exists a unique lift
b̃ : F → E′ such that P (̃b) = b and e ◦ b̃ = f .
The functor P : E → B is called a fibred category if, for all E ∈ E and morphisms

b : B → P (E), there is a Cartesian morphism e such that P (e) = b.

B.3 Lemma.
Let D : I → Cat be a diagram of small categories. Let P :

∫
I D → I be the projection

functor mapping (I,X) 7→ I.
Then P : (

∫
I D)op → Iop is a fibred category.

Proof. The proof is very elementary, but it is easy to get confused about the correct
directions of arrows, which is why we include a proof.
Let (I,X) ∈ (

∫
I D)op and I ′ i−→ I = P (I,X) be an arrow in Iop, i.e. i is a morphism

I → I ′ in I. The pair (i, idD(i)(X)) defines a morphism (I ′, D(i)(X)) → (I,X) in
(
∫
I D)op, and clearly P (i, idD(i)(X)) = i. We claim that (i, idD(i)(X))) is Cartesian:

Let (j, y) : (J, Y )→ (I,X) be another morphism in (
∫
I D)op, and suppose j′ : J → I ′

is a morphism in Iop such that i ◦ j′ = j. This translates to the equation j′ ◦ i = j
in I; moreover, y is a morphism D(j)(X) = D(j′)D(i)(X)→ Y . Therefore, the pair
(j′, y) defines a morphism (J, Y ) → (I ′, D(i)(X)) in (

∫
I D)op; clearly, the equation

(i, idD(i)(X)) ◦ (j′, y) = (j, y) holds.
Any other lift of j′ must necessarily have j′ as its first component. In addition, if

such a lift (j′, y′) satisfies (i, idD(i)(X)) ◦ (j′, y′) = (j, y), we have y′ ◦ idD(i)(X) = y,
so y′ = y. This shows that the given lift is unique.

Our proposition now follows immediately by applying the following result to the
functor T : (

∫
I F̌ )op → (

∫
I Ǧ)op:

B.4 Theorem ([dH09, dH12, Prop. 4.4.1 resp. Prop. 4.2.1]).
Let P : E → B and P ′ : E ′ → B be fibred categories. Suppose that T : P → P ′ is a map
of fibred categories (i.e. P ′T = P ) and that the induced functor P−1(B)→ (P ′)−1(B)
induces an equivalence on nerves for every B ∈ B.
Then NT is a weak equivalence.
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C. Representing elements in the
K1-group of an additive category

Our goal is to justify two claims made at the end of Section 3: First, we claimed
that elements in K1(Ch(A[G])) have particularly simple representatives; second, it
was asserted that we only need to lift these representatives along a given functor to
show that this functor induces a surjection on K1.

Suppose for the beginning that C is an arbitrary small Waldhausen category. The-
orem 2.2 in [MT08] asserts that any element in K1 of a small Waldhausen category
C can be represented by a diagram of the form

C1

A B C

C2

a1

a2

b1

b2

∼

∼

where A
ai
� B

bi
� Ci are cofibration sequences for i = 1, 2. Such diagrams are called

pairs of weak cofibre sequences.
If F is an exact functor, the induced map on K1 is given by applying F to these

diagrams. This makes it clear that, if we have a particular set of representatives for
elements in K1, it suffices to lift these representatives along F to show that K1(F )
is surjective. Thus, we need only show the following:

C.1 Proposition.
Let A be a small additive category. Then any element in K1(Ch(A)) can be repre-
sented by a diagram of the form

A

0 A A

A

id

id

α

id

where A is an object in A and α is an automorphism.
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Proof. Theorem 3.1 in [MT08] provides the following relations among pairs of weak
cofibre sequences: Suppose we are given six pairs of weak cofibre sequences

A′′1

A′ A A′′

A′′2

jA1

jA2

rA1

rA2

wA1

wA2

B′′1

B′ B B′′

B′′2

jB1

jB2

rB1

rB2

wB1

wB2

Č ′′1

C ′ C C ′′

Č ′′2

jC1

jC2

rC1

rC2

wC1

wC2

C ′1

A′ B′ C ′

C ′2

j′1

j′2

r′1

r′2

w′1

w′2

C1

A B C

C2

j1

j2

r1

r2

w1

w2

Ĉ ′′1

A′′ B′′ C ′′

Ĉ ′′2

j′′1

j′′2

r′′1

r′′2

w′′1

w′′2

and we denote by λA, λB , λC , λ′, λ and λ′′ the corresponding elements they represent
in K1(C). If for i = 1, 2 there is a commutative diagram

A′ A A′′i A′′

B′ B B′′i B′′

C ′i Ci Ĉ ′′i Ĉ ′′i

C ′ C Č ′′i C ′′

jAi

j′i ji ǰi j′′i
jBi

ĵi

jCi

rAi

r′i

rBi

ri ři r′′i
r̂i

rCi

wAi

wBi

ŵi

w′i wi w̌i
wCi

w′′i

in which all arrows whose name is a variation of the letter w are weak equivalences
and the other morphisms are of the type indicated in the diagram, then the following
equality holds in K1(C):

λA − λB + λC = λ′ − λ+ λ′′.

Moreover, according to Proposition 3.2 in [MT08], a pair of weak cofibre sequences
is zero in K1 if the top and bottom half of the pair are identical.
By virtue of the Gillet-Waldhausen Theorem 1.3.1, the functor A → Ch(A) which

embeds A as cochain complexes concentrated in degree 0 induces an isomorphism
on K1. Consequently, it suffices to consider pairs of weak cofibre sequences in the
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additive category A. So let

C1

A B C

C2

a1

a2

b1

b2

c1

c2

be an arbitrary pair of weak cofibre sequences in A. Note that c1 and c2 are isomor-
phisms, so we may define

b′1 := c−1
1 b1, b

′
2 := c−1

2 b2 : B � C.

For i = 1, 2 the diagram

A A 0 0

A B C C

0 Ci C C

0 C C C

id

id ai

ai b′i

bi id id
c−1
i

id

id

id

ci id

id

id

commutes; this gives us the relation
0

A A 0

0

id

id

−


C1

A B C

C2

a1

a2

b1

b2

c1

c2

+


C

0 C C

C

id

id

id

id



=


0

A A 0

0

id

id

−


C

A B C

C

a1

a2

b′1

b′2

id

id

+


C

0 C C

C

id

id

id

id

 ,
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and consequently we have
C1

A B C

C2

a1

a2

b1

b2

c1

c2

 =


C

A B C

C

a1

a2

b′1

b′2

id

id


.

The two cofibration sequences in the latter diagram give rise to two direct sum systems

A B C

A B C

a1

s1

a2

s2

p1

b′1

p2

b′2

Define
β1 := a2p1 + s2b

′
1 : B → B.

This is an automorphism of B since

β1(a1p2 + s1b
′
2) = (a2p1 + s2b

′
1)(a1p2 + s1b

′
2)

= a2p1a1p2 + a2p1s1b
′
2 + s2b

′
1a1p2 + s2b

′
1s1b

′
2

= a2p2 + s2b
′
2 = id .

We also have (a1p2 + s1b
′
2)β1 = id for reasons of symmetry. Moreover,

β1a1 = a2p1a1 + s2b
′
1a1 = a2,

b′2β1 = b′2a2p1 + b′2s2b
′
1 = b′1.

Set β2 := id. The computations we have just done show that for i = 1, 2 there is a
commutative diagram

0 A A A

0 B B B

0 C C C

0 C C C

ai a2 a2

id

βi

b′i b′2 b′2
id

id

id

id

id

id id

id

id
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This yields the relation


0

0 0 0

0

−


C

A B C

C

a1

a2

b′1

b′2

id

id

+


C

A B C

C

a2

a2

b′2

b′2

id

id



=


A

0 A A

A

id

id

id

id

−


B

0 B B

B

β1

id

id

id

+


C

0 C C

C

id

id

id

id



in K1; i.e., ignoring those diagrams that represent 0, we have


C

A B C

C

a1

a2

b′1

b′2

id

id

 =


B

0 B B

B

β1

id

id

id



Finally, the diagrams

0 0 0 0

0 B B B

0 B B B

0 B B B

id

id id βi

id

id

βi

id

id id

id

id
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witness that
0

0 0 0

0

−


B

0 B B

B

id

id

id

id

+


B

0 B B

B

β1

id

id

id



=


0

0 0 0

0

−


B

0 B B

B

id

id

β1

id

+


B

0 B B

B

id

id

id

id

 ,

so that we arrive at the equality
B

0 B B

B

β1

id

id

id

 = −


B

0 B B

B

id

id

β1

id


If we now start with a given element x ∈ K1(Ch(A[G])), we represent −x by

an appropriate diagram, and our discussion shows that x can be represented by a
diagram of the required form.
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Part II.

Transfer Reducibility of ZnoZ
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4. Finite group actions with small
stabilisers

As outlined in the introduction, the second part of this thesis has the purpose to
indicate how some proofs of the Farrell-Jones Conjecture may be unified to a certain
extent. An important component of the argument is the answer to the following
question:

What are the minimal stabilisers of a finite group action on a finite, contractible
simplicial complex?

Admittedly, this question looks quite unrelated on first sight. If the reader wishes to
learn how the answer to this question relates to algebraic K-theory, it is advisable to
read Section 4.1, to accept Theorem 4.2.3 bona fide, to have a look at its Corollary
4.2.4, and then to continue with the next chapter.
Throughout this part of the thesis, our attention will be focussed on actions of

discrete groups G on simplicial complexes X. If not mentioned otherwise, we always
require such an action to satisfy the following property: If x = {x0, . . . , xn} is a
simplex in X and g ∈ G is an element with gx = x, then g fixes the simplex x
pointwise, i.e. gxi = xi for all 0 6 i 6 n. A simplicial complex with G-action which
satisfies this property will be called a G-simplicial complex.
We let FX denote the family of stabilisers of a G-simplicial complex. Note that
FX = FX0

for every G-simplicial complex.

4.1. Resolving fixed points of simplicial complexes
Instead of constructing a finite contractible complex with minimal stabilisers in one
go, we will proceed inductively. Namely, suppose we are given a finite contractible
complex with an action of a group G; if we know that the stabilisers of this action
again allow actions on finite contractible complexes with even smaller stabilisers, we
may try to patch these together to reduce the size of the stabilisers of the original
action. Our goal in this section is to provide a construction which accomplishes
precisely this.
Recall that the transport groupoid TrG(T ) of a G-set T is the category whose set of

objects is T , and in which a morphism t→ t′ is an element g ∈ G such that gt = t′.
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4.1.1 Definition.
Let X be a G-simplicial complex, and let R be a functor TrG(X0) → SCplx to the
category of simplicial complexes. We call R a set of resolution data for X if, for every
endomorphism g : x→ x in TrG(X0), the simplicial map R(g) : R(x)→ R(x) has the
property that, if R(g)(y) = y for some n-simplex y, the map R(g) fixes y pointwise.

4.1.2 Definition.
Given a G-simplicial complex X and a set of resolution data R for X, we define the
resolution of X by R to be the simplicial complex X[R] whose vertex set is given by

X[R]0 :=
∐
x∈X0

R(x)0,

and in which y = {y0, . . . , yn} is an n-simplex if and only if the following holds:

• For all x ∈ X0, the set Sx(y) := {yi | 0 6 i 6 n, yi ∈ R(x)0} is either empty or
a simplex in R(x).

• The set S(y) := {x ∈ X0 | Sx(y) 6= ∅} is a simplex in X.

For g ∈ G and y = {y0, . . . , yn} a simplex in X[R], set

g · y = {R(g)(y0), . . . , R(g)(yn)}.

4.1.3 Remark.
While the definition of X[R] is quite workable for proofs, it does not really elucidate
the construction. The intuition behind Definitions 4.1.1 and 4.1.2 is the following:
We would like to resolve the fixed points of X by other simplicial complexes with

smaller stabilisers. If R is a set of resolution data for X, this gives us for every
vertex x in X a simplicial complex R(x). Since R is a functor whose source is
the transport groupoid of X0, we have for every element in the stabiliser of x a
simplicial automorphism R(x)→ R(x); our requirements on R assure that these maps
assemble to give a Gx-simplicial complex R(x). Since the transport groupoid encodes
all translation actions (not just stabilisers), we also have simplicial isomorphisms
R(x) ∼= R(gx), exhibiting R(gx) essentially as R(x) equipped with the conjugate
action.
To be a bit more precise: Let x be the orbit of a single vertex, and let x0 ∈ x be a

fixed vertex. Observe that the entire group G acts on
∐
x∈xR(x) by g · y := R(g)(y).

Then we obtain G-equivariant simplicial isomorphisms
∐
x∈xR(x) ∼= G×Gx0

R(x0) by
sending a simplex y ∈ R(x) ⊆

∐
x∈xR(x) to the simplex (g,R(g−1)y), where gx0 = x.

The inverse map sends (g, y) ∈ G×Gx0
R(x0) to R(g)(y) ∈ R(gx0) ⊆

∐
x∈xR(x).

The “resolution” construction X[R] now replaces every vertex x of X by the Gx-
simplicial complex R(x), and then takes successive joins of these individual complexes
according to the simplicial structure of X (i.e., for a simplex {x0, . . . , xn} in X, we
find the join R(x0) ∗ · · · ∗R(xn) as a subcomplex of X[R]).
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4.1.4 Proposition.
Let X be a G-simplicial complex, and let R be a set of resolution data for X.

ThenX[R] is a G-simplicial complex, and for every isotropy groupH ofX[R], there
is some x ∈ X0 with H ∈ FR(x). Moreover, if X is N -dimensional and the dimension
of each R(x) is bounded by K, then X[R] is at most (NK +N +K)-dimensional.

Proof. We begin by showing that X[R] is a simplicial complex. Let y = {y0, . . . , yn}
be a simplex inX[R], and suppose that y′ = {yi0 , . . . , yim} ⊆ y is a non-empty subset.
Then for every x ∈ X0, the set Sx(y′) is a subset of Sx(y). Since Sx(y) is a simplex,
Sx(y′) is also a simplex if it is non-empty. Similarly, the set S(y′) is a subset of S(y),
and therefore a simplex in X.
We have defined an action of G on X[R]: Let again g ∈ G and let y be a simplex

in X[R]. Then for every x ∈ X0,

Sx(g · y) = {g · yi | g · yi ∈ R(x)}
= g · {yi | g · yi ∈ R(x)}
= g · {yi | yi ∈ R(g−1x)}
= g · Sg−1x(y).

This implies that S(g · y) = g−1 · S(y); so g · y is also a simplex in X[R].
To show that X[R] is actually a G-simplicial complex, suppose that g · y = y for

some g ∈ G and a simplex y ∈ X[R]. As we have seen, S(y) = S(g ·y) = g−1 ·S(y). If
x ∈ X0 with Sx(y) 6= ∅, then g−1 ·x = x because X was assumed to be a G-simplicial
complex. Therefore, Sx(y) = Sx(g · y) = g · Sg−1x(y) = g · Sx(y); i.e., g acts on each
set Sx(y) individually. But since Sx(y) is a simplex in R(x), this means that g fixes
y pointwise.
To determine the stabilisers of X[R], it suffices to consider the stabilisers of indi-

vidual vertices. Indeed, since X[R] =
∐
x∈X0

R(x)0, if H is the stabiliser of a vertex
in X[R], then there is some x ∈ X0 such that H ∈ FR(x).
For the dimension estimate, observe that we can write every simplex y ∈ X[R] as

a disjoint union
y =

∐
x∈S(y)

Sx(y).

If X is N -dimensional, the set S(y) ∈ X can contain at most N + 1 elements.
Similarly, the size of each Sx(y) is bounded by K + 1. Consequently, a simplex
y can contain at most (N + 1)(K + 1) elements, so X[R] has at most dimension
(N + 1)(K + 1)− 1 = NK +N +K.

Recall that the geometric realisation |Y | of a simplicial complex Y consists of formal
sums η =

∑
y∈Y0

λyy for which λy > 0, the set supp(η) := {y | λy 6= 0} is a simplex in
Y (in particular, it is finite), and

∑
y λy = 1. The geometric realisation is topologised

as a subspace of RY0 . Then we can describe the geometric realisation of a resolution
as follows.
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4.1.5 Lemma.
Let X be a G-simplicial complex, and let R be a set of resolution data for X. Define
the topological space |X,R| as the set of formal sums

|X,R| :=
{ ∑
x∈X0

λx · ηx | λx > 0, {x | λx 6= 0} ∈ X,
∑
x∈X0

λx = 1, ηx ∈ |R(x)|
}
,

topologised as a subspace of
∏
x∈X0

(R× |R(x)|) ⊆
∏
x∈X0

(R× RR(x)0).
Then the map

F : |X[R]| → |X,R| ,
∑

y∈X[R]0

λy · y 7→
∑
x∈X0

λx ·
( ∑
y∈R(x)0

λy
λx
· y
)
,

where λx :=
∑
y∈R(x)0

λy
1, is a homeomorphism.

Proof. F is well-defined: Write η :=
∑
y∈X[R]0

λy · y and ηx :=
∑
y∈R(x)0

λy

λx
· y.

Every λx is non-negative and
∑
x∈X0

λx =
∑
y∈X[R]0

λy = 1. The set {x | λx 6= 0} is
exactly the set S(supp(η)), and therefore a simplex in X. Moreover, we can identify
supp(ηx) = Sx(supp(ηx)) ∈ R(x), and

∑
y∈R(x)0

λy

λx
= 1

λx
·
∑
y∈R(x)0

λy = 1, so ηx is
a point in |R(x)|. F is continuous.
We define an inverse map. If y ∈ R(x)0 ⊆

∐
x∈X0

R(x)0, write x(y) for x. For
x ∈ X0 and ηx ∈ |R(x)|, write ηx =

∑
y∈R(x)0

ηx,y · y. Then set

F ′ : |X,R| → |X[R]| , η =
∑
x∈X0

λx · ηx 7→
∑

y∈X[R]0

λx(y)ηx(y),y · y.

The image of a point under F ′ lies in |X[R]|: The coefficient λx(y)ηx(y),y is always
non-negative, and∑
y∈X[R]0

λx(y)ηx(y),y =
∑
x∈X0

∑
y∈R(x)0

λx(y)ηx(y),y =
∑
x∈X0

λx
∑

y∈R(x)0

ηx,y =
∑
x∈X0

λx = 1.

The set supp(F ′(η)) consists of all those y ∈ X[R] such that both λx(y) and ηx(y),y are
non-zero. For a fixed x, we have Sx(supp(F ′(η)) = supp(ηx) ∈ R(x), and similarly
S(supp(F ′(η))) = {x | λx 6= 0} ∈ X. This shows that F ′(η) is a point in |X[R]|. This
map is also continuous.
It is straightforward to check that F ◦ F ′ = id|X,R| and F ′ ◦ F = id|X[R]|.

If τ : R → R′ is a natural transformation of sets of resolution data for X, we get
an induced map X[τ ] : X[R]→ X[R′] by sending y ∈ R(x)0 to τx(y) ∈ R′(x)0. This
is a G-equivariant simplicial map.

1We are quite liberal with our notation: Since we effectively ignore all summands whose coefficient
λx is zero and think of the formal sums in |X,R| as finite formal sums, we do not worry about
the fact that the “point” we specify for λx is not defined if λx = 0.
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4.1.6 Proposition.
Let R, R′ be sets of resolution data for the G-simplicial complex X. Suppose that
there is a natural transformation τ : R → R′ such that every τx : R(x) → R′(x) is a
homotopy equivalence.
Then the induced map X[τ ] : X[R]→ X[R′] is a homotopy equivalence.

Proof. Since we are only interested in the non-equivariant homotopy type, we ignore
all group actions. Let fx : |R′(x)| → |R(x)| be a homotopy inverse to |τx| for every
x ∈ X0, and pick homotopies Hx : |R(x)|×I → |R′(x)| and Kx : |R′(x)|×I → |R(x)|
witnessing fx ◦ |τx| ' idR(x) and |τx| ◦ fx ' idR′(x).
Using Lemma 4.1.5, the map |X[τ ]| is given by |X[τ ]| (

∑
x λxηx) =

∑
x λx |τx| (ηx).

Similarly, the maps fx induce a map f : |X[R′]| → |X[R]| ,
∑
x λxηx 7→

∑
x λxfx(ηx).

We can now define a homotopy H : |X[R]| × [0, 1]→ |X[R]| by

H
(∑

x

λxηx, t
)

:=
∑
x

λxHx(ηx, t).

This homotopy has the property that

H
(∑

x

λxηx, 0
)

=
∑
x

λxHx(ηx, 0) =
∑
x

λx(fx ◦ |τx|)(ηx) = (f ◦ |X[τ ]|)
(∑

x

λxηx

)
,

and H(
∑
x λxηx, 1) =

∑
x λxHx(ηx, 1) =

∑
x λxηx; so H is a witnessing homotopy

for f ◦ |X[τ ]| ' id|X[R]|. The same argument applied to the collection of homotopies
{Kx}x proves that |X[τ ]| is a homotopy equivalence.

4.1.7 Remark.
It is evident from the proof that we can relax the assumptions in Proposition 4.1.6
a bit: Instead of a natural transformation R → R′, it suffices to have a natural
transformation of functors Tr1(X0)→ SCplx which is a homotopy equivalence in each
component. Then there is still an induced (non-equivariant) map, and the proof goes
through to show that this map is a homotopy equivalence. This should come as no
surprise, as we are only interested in the non-equivariant homotopy type.

Letting • denote the set of resolution data which assigns ∆0 to every vertex, we see
that we can recover X as X[•]. If R is any set of resolution data, the unique natural
transformation R→ • induces a map ε : X[R]→ X[•] ∼= X.

4.1.8 Corollary.
Let R be a set of resolution data for the G-simplicial complex X. If R(x) is con-
tractible for all x ∈ X0, then the natural map X[R] → X[•] is a homotopy equiva-
lence.
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4.2. Oliver’s theorem
Since we can iterate the resolution of fixed points on a G-simplicial complex, the
question about the minimal stabilisers of an action on a finite contractible complex
reduces to the question which groups admit actions on such complexes without a
global fixed point. It is precisely this question that Oliver fully answered in [Oli75].

4.2.1 Definition.
We consider the following families of finite groups:

• Let Cyc denote the class of finite cyclic groups.

• Let p be a prime. Denote by

Cycp := {H | H is finite and there is an extension 1→ P → H → C → 1

such that P is a p-group and C ∈ Cyc.}

the class of finite groups which are cyclic mod p.

• We call

D := {G | There are primes p and q such that there is an extension
1→ H → G→ Q→ 1 with H ∈ Cycp and Q a q-group.}

the Dress family (instead of some rather awkward name like “groups which are
q-hyper-(cyclic mod p) for some primes p and q”).

4.2.2 Definition.
Let G be a finite group. Define the depth of G to be

d(G) := sup{n | There is a properly descending chain of subgroups
G1 ! G2 ! · · · ! Gn in G.}

4.2.3 Theorem ([Oli75]).
There is a monotone function bd: N+ → N+ such that the following holds:

• bd ∈ O(n)2.

• For every finite group G which does not lie in D, there is a finite, contractible
G-simplicial complex X such that the dimension of X is bounded by bd(d(G))
and XG = ∅.

This theorem is stated in [Oli75] without any mention of a bound on the dimension
of X. However, our second application of Oliver’s theorem in Section 5.2 does rely
on the existence of such a bound; it can be read off Oliver’s proof, but has not been
recorded explicitly.
Therefore, we will first apply Oliver’s theorem to answer our original question, and

then revisit the proof of the theorem.
2Recall the Landau O-notation: Let f, g : N→ N be two functions. We say that f ∈ O(g) if there
is some constant C > 0 such that f(n) 6 C · g(n) for almost all n.
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4.2.4 Corollary.
For every finite group G, there is a finite, contractible G-simplicial complex X of
dimension at most

δ(d(G)) :=
∑

∅6=M⊆{1,...,d(G)}

∏
m∈M

bd(m),

all whose stabiliser subgroups lie in D. In particular, the dimension can be bounded
by 2d(G) · bd(d(G))d(G).

Proof. We proceed by induction on d(G). If d(G) = 1, the group G is trivial and we
can pick X = ∆0.
Suppose that d(G) = d+1. If G ∈ D, we can again pickX to be a point. Otherwise,

we apply Theorem 4.2.3 to obtain a finite, contractible G-simplicial complex X ′ such
that the dimension of X ′ is bounded by bd(d(G)) and X ′ does not have a global fixed
point. Let X be a set of representatives of the G-orbits in X0. For every x ∈ X , the
stabiliser Gx is a proper subgroup of G, and therefore d(Gx) 6 d. By the induction
hypothesis, there is for every x ∈ X a finite, contractible Gx-simplicial complex Rx
whose dimension is bounded by δ(d) and whose stabilisers all lie in D. According
to Remark 4.1.3, the collection {G ×Gx

Rx}x∈X defines a set of resolution data R.
Set X := X ′[R]. Corollary 4.1.8 implies that X is contractible. Then X is a finite
G-simplicial complex whose stabilisers all lie in D, and whose dimension is at most

bd(d+ 1) · δ(d) + bd(d+ 1) + δ(d)

=

bd(d+ 1) ·
∑

∅6=M⊆{1,...,d}

∏
m∈M

bd(m)

+ bd(d+ 1) + δ(d)

=
∑

∅6=M⊆{1,...,d}

(
bd(d+ 1) ·

∏
m∈M

bd(m)

)
+ bd(d+ 1) + δ(d)

=
∑
∅6=M,
d+1∈M

∏
m∈M

bd(m) +
∑
∅6=M,
d+1/∈M

∏
m∈M

bd(m)

=
∑

∅6=M⊆{1,...,d+1}

∏
m∈M

bd(m)

= δ(d+ 1).

To obtain the simpler (and less precise) dimension bound, observe that for every
non-empty set M ⊆ {1, . . . , d(G)}, we have∏

m∈M
bd(m) 6

∏
m∈M

bd(d(G)) = bd(d(G))|M | 6 bd(d(G))d(G),

so that

δ(d(G)) 6
∑

∅6=M⊆{1,...,d(G)}

bd(d(G))d(G) = (2d(G) − 1) · bd(d(G))d(G)

6 2d(G) · bd(d(G))d(G).
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4.2.5 Remark.
The G-simplicial complex whose existence is asserted in Corollary 4.2.4 will typically
not be a model of EDG for the following reason:
Suppose that E is a finite classifying space of a finite group G with respect to the

family F . Let H ∈ F , and suppose that H E K 6 G such that K/H is a cyclic
group of order p for some prime p. The normaliser NG(H) acts on the fixed point
set EH ' ∗. Consequently, we get an action of the quotient K/H on EH . If this
action does not have a fixed point, we have found a finite model for E(K/H), which
is nonsense. So the fixed point set must be non-empty. It follows that the family F
must be closed under extensions by p-groups.
This observation is due to Oliver, see [Oli76, bottom of p. 93].

The rest of this section is devoted to the proof of Theorem 4.2.3. The material
covered in this section is taken from [Oli75], with some additional ideas from [Oli78].
I claim no originality for the content; the sole purpose of the proof is to make the
dimension bound explicit. In particular, we do not reprove Oliver’s results in full
generality, but only as much as we need to obtain Theorem 4.2.3.
Let G be a finite group. Define an equivalence relation on finite G-CW-complexes

by setting X ∼χ Y if and only if χ(XH) = χ(Y H) for all subgroups H 6 G.
The Burnside group Ω(G) of G is the set of ∼χ-equivalence classes of finite G-CW-
complexes with group operation induced by taking disjoint unions. The Burnside
group becomes a commutative ring when equipped with the product induced by tak-
ing products of complexes.
Let ∆(G) ⊆ Ω(G) be the subset given by

∆(G) := {x ∈ Ω(G) | There is a finite contractible G-CW-complex X
with x = [X]− 1}.

4.2.6 Lemma ([Oli76, p. 90]).
∆(G) is an ideal in Ω(G).

Proof. Suppose for the beginning that X is an arbitrary finite G-CW-complex. The
suspension ΣX is again a finite G-CW-complex. If H 6 G is a subgroup such that
XH 6= ∅, then (ΣX)H = ΣXH ; otherwise, the fixed point set is (ΣX)H = S0, given
by the two suspension points. Consequently, the double suspension Σ2X represents
the same element in Ω(G) since either χ((Σ2X)H) = χ(Σ2XH) = χ(XH) if XH 6= ∅
or χ((Σ2X)H) = χ(ΣS0) = χ(S1) = 0 = χ(∅) if XH = ∅. Note also that the
suspension of a complex always has a global fixed point.
We are now ready to prove the claim. The 0-simplex ∆0 is a finite contractible

G-CW-complex which represents the unit; so 0 = [∆0] − 1 is a member of ∆(G).
If x, x′ ∈ ∆(G), pick X and X ′ such that x = [X] − 1 and x′ = [X ′] − 1. By the
preliminary remark, [Σ2X] − 1 = x and [Σ2X ′] − 1 = x′. Pick a global fixed point
in Σ2X and Σ2X ′, and form their wedge sum Σ2X ∨ Σ2X ′. The wedge sum of two
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contractible complexes is still contractible, and we can compute

[Σ2X ∨ Σ2X ′]− 1 = [Σ2X] + [Σ2X ′]− 1− 1 = x+ x′.

To prove the existence of inverses in ∆(G), observe that for a finite contractible G-
CW-complex X, we always have χ((ΣX)H) = 2−χ(XH). Given x = [X]−1 ∈ ∆(G),
set y := [ΣX]− 1. Then

x+ y = [X]− 1 + [ΣX]− 1 = [X t ΣX]− 2 = 2− 2 = 0,

since χ((X tΣX)H) = χ(XH) + 2−χ(XH) = 2 = χ((S0)H). So ∆(G) ⊆ Ω(G) is an
abelian subgroup.
To show that ∆(G) is an ideal, let x = [X] − 1 be an element in ∆(G), and let

Y be an arbitrary finite G-CW-complex. As we have seen before, we can assume
without loss of generality that both X and Y have a global fixed point, and that Y is
connected. Pick one fixed point for each complex. Then their smash product X ∧ Y
is again a finite contractible G-CW-complex. By the Künneth theorem,

χ((X ∧ Y )H) =
∑
i

(−1)i dimRH
i((X ∧ Y )H ;R)

=
∑
i

(−1)i dimR H̃
i((X ∧ Y )H ;R) + 1

=
(∑

i

∑
m+n=i

(−1)m dimR H̃
m(XH ;R) · (−1)nH̃n(Y H ;R)

)
+ 1

=
(∑

i

(−1)i dimR H̃
i(X;R)

)
·
(∑

i

(−1)i dimR H̃
i(Y ;R)

)
+ 1

= (χ(XH)− 1) · (χ(Y H)− 1) + 1

= χ(XH)χ(Y H)− χ(XH)− χ(Y H) + 2

= χ((X × Y )H)− χ(XH)− χ(Y H) + 2.

Hence, we have

[(X ∧ Y ) ∨X]− 1 = [X ∧ Y ] + [X]− 2 = [X][Y ]− [X]− [Y ] + 2 + [X]− 2

= [X][Y ]− [Y ] = ([X]− 1)[Y ].

Since (X ∧ Y ) ∨X is contractible, this shows that ([X]− 1)[Y ] ∈ ∆(G).

For a subgroup H 6 G, define a map ghH : Ω(G)→ Z by

ghH([X]) := χ(XH).

This is a well-defined ring homomorphism. Clearly, if H and K are conjugate sub-
groups, then ghH = ghK . Letting H vary, these homomorphisms combine to the
ghost map

gh : Ω(G)→
∏
(H)

Z,

97



where (H) ranges over all conjugation classes of subgroups of G. The map gh is easily
seen to be injective. The image ghG(∆(G)) of the ideal ∆(G) under the homomor-
phism ghG is an ideal in Z. Define nG ∈ N to be the unique natural number such
that

ghG(∆(G)) = nGZ.

The number nG is an obstruction to the existence of a finite contractible G-CW-
complex without a global fixed point: Suppose that X is such a complex. Then
[X]− 1 ∈ ∆(G), and therefore ghG([X]− 1) = χ(XG)− 1 = χ(∅)− 1 = −1. Hence,
if such a complex exists, nG must equal 1. The proof of Theorem 4.2.3 amounts to
showing that the converse is also true, and then calculating nG = 1 whenever G /∈ D.
Suppose that nG = 1. Then there is some x ∈ ∆(G) such that ghG(x) = −1, i.e.

we can find a finite contractible G-CW-complex X such that χ(XG) = 0. The crucial
observation is that the Euler characteristics of the fixed point sets of X provide us
with sufficiently much information to construct a complex without a global fixed
point.

4.2.7 Definition ([Oli75, p. 159]).
Let G be a finite group, and let S(G) denote the poset of subgroups of G. A function
ϕ : S(G)→ Z is called a resolving function if the following holds:

• ϕ is constant on conjugacy classes of subgroups.

• For all H 6 G, the order of the Weyl group [NG(H) : H] divides ϕ(H).

• If H ∈ Cycp for some prime p, then
∑
K⊇H ϕ(K) = 0.

4.2.8 Lemma.
Let X be a finite G-CW-complex. Then there is a unique function ϕX : S(G) → Z
such that for all H 6 G,

χ(XH) = 1 +
∑
K⊇H

ϕX(K). (4.1)

The function ϕ is constant on conjugacy classes of subgroups and for all H 6 G, the
order of the Weyl group [NG(H) : H] divides ϕX(H).
Furthermore, if S ⊆ S(G) is a non-empty subset closed under taking supergroups

and ψ is a function which satisfies 4.1 for all H ∈ S, then

χ(
⋃
H∈S

XH) = 1 +
∑
H∈S

ψX(H).

Proof. [Oli75, Lem. 2].

4.2.9 Corollary.
If X is a finite, contractible G-CW-complex, the function ϕX from Lemma 4.2.8 is a
resolving function.
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Proof. If X is contractible, we have by [Oli75, Prop. 2], whenever H ∈ Cycp for some
prime p,

1 = χ(XH) = 1 +
∑
K⊇H

ϕX(K).

The sum of two resolving functions is again a resolving function, and if ϕ is a
resolving function, so is −ϕ; so the set

{ϕ(G) | ϕ is a resolving function for G} ⊆ Z

forms a subgroup, and we can define rG to be the unique natural number generating
this subgroup. By Corollary 4.2.9, if [X]− 1 is a preimage of nG = χ(XG)− 1, then
the associated resolving function ϕX has the property that χ(XG) = 1 + ϕ(G), i.e.
nG = ϕ(G). It follows that nGZ ⊆ rGZ, or in other words rG | nG.
4.2.10 Theorem.
If rG = 1 and G is not a p-group for any prime p, then there is a finite, contractible
G-CW-complex X with XG = ∅ whose dimension is bounded by 4 · d(G) + 2.

Proof. As a first step, we will construct a G-CW-complex X0 such that XG
0 = ∅, the

dimension n > 1 of X0 is bounded by 2 · d(G), the space X0 is (n− 1)-connected and
the top-dimensional homology Hn(X0;Z) is finitely generated projective over Z[G]
(Oliver calls such spaces G-resolutions of ∅). This will be a reproduction of [Oli75,
Thm. 2]. Once we have the space X0 at our disposal, we will deviate slightly from
the treatment in [Oli75] to construct the space X in such a way that we have better
control on the dimension bound.
To get started, pick a resolving function ϕ : S(G) → Z with ϕ(G) = −1. The

existence of such a function is guaranteed by the assumption that rG = 1.
We need some additional notation which will allow us to relate our dimension

bounds to the order type of S(G) (which we consider as a poset with respect to ⊇).
Define the rank of a subgroup H ∈ S(G) to be

rk(H) := max{rk(K) | K ∈ S(G),K ) H}+ 1,

where max ∅ := 0. Observe that the depth d(G) of G as we defined it in 4.2.2 is
simply the rank of the trivial subgroup, which in turn is the order type of (S(G),⊇).
Conjugate subgroups have equal rank. We can now define a linear order ≺ on S(G)
as follows: Declare two subgroups H and K of G to be equivalent if they have equal
rank. This is clearly an equivalence relation. For each r, pick an arbitrary linear
order �r on the equivalence class of subgroups of rank r, Then we obtain the linear
order � by setting

H � K :⇐⇒ rk(H) < rk(K) or (rk(H) = rk(K) and H �rk(H) K).

Write H ≺ K if H � K and H 6= K. Note that the ≺-minimal element is G,
while the ≺-maximal element is given by the trivial subgroup. In particular, the
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≺-minimal element is not a p-group for any prime p. We proceed by induction along
(S(G) \ {1},≺). To be more precise, we prove the following:

Claim: For every H ∈ S(G), there is a finite G-complex X(H) such that

• the complex X(H) contains only cells of type G/K, where G 6= K � H; by
this we mean that all equivariant cells in X(H) are of the form G/K ×Dd for
some natural number d. Note that the type of a cell is only well-defined up to
conjugation. In particular, X(H) has no global fixed point.

• the dimension of X(H) is bounded by 2 · rk(H).

• the dimension of the K-fixed point set X(H)K is bounded by 2 · rk(K) for
K � H.

• χ(X(H)K) = 1 +
∑
K′⊇K ϕ(K ′) for all K � H.

• X(H)K is Z/pZ-acyclic for all non-trivial p-groups K � H (p any prime num-
ber).

For the start of the induction, we can set X(G) := ∅. Now suppose that H ∈ S(G)
is arbitrary. Let H− be the immediate ≺-predecessor of H, and assume that the
complex X(H−) has been constructed.
If there is an element g ∈ G such that gHg−1 ≺ H, set X(H) := X(H−). This

complex contains only cells of the allowed type. Since gHg−1 � H− ≺ H, we have
rk(gHg−1) 6 rk(H−) 6 rk(H) = rk(gHg−1), so rk(H−) = rk(H), which shows that
the dimension bound on X(H) holds. The dimension bound on the fixed point sets is
automatic. If K � H, then either K � H− or K = H. In the first case, the required
condition on χ(X(H)K) is obvious; in the case that K = H, we use the fact that
the set of subgroups H ′ with H ′ ⊇ H consists exactly of the g−1-conjugates of the
subgroups containing gHg−1 and the invariance of ϕ under conjugation to get

χ(X(H)H) = χ(X(H)gHg
−1

) = 1 +
∑

H′⊇gHg−1

ϕ(H ′)

= 1 +
∑

H′⊇gHg−1

ϕ(g−1H ′g) = 1 +
∑
H′⊇H

ϕ(H ′).

The condition on fixed point sets of p-groups is equally easy.
Suppose now that there is no conjugate of H which is ≺-smaller than H. The

following congruences hold (the second holds since ϕ is a resolving function):

χ(X(H−)H) ≡ χ(
⋃
K)H

X(H−)K)
4.2.8
= 1 +

∑
K)H

ϕ(K)

≡ 1 +
∑
K⊇H

ϕ(K) mod [NG(H) : H].

Write χ(X(H−)H) + n · [NG(H) : H] = 1 +
∑
K⊇H ϕ(K). We have to distinguish

between two cases:
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Assume first thatH is not a p-group for any prime p. If n = 0, setX(H) := X(H−)
and note that all conditions are satisfied. So let n 6= 0.
Define X(H) by taking the disjoint union of X(H−) and

∐|n|
i=1G/H × C, where

C = ∗ if n is positive and C = S1∨S1 if n is negative. Then X(H) has no global fixed
point and the dimension bounds are satisfied. For 1 6= K ≺ H, the fixed point set
(G/H×C)K is empty, so the condition on χ(X(H)K) holds, and the fourth condition
has also been preserved. For H itself,

χ(X(H)H) = χ(X(H−)H) + |n| · χ(NG(H)/H × C)

= χ(X(H−)H) + n · [NG(H) : H] = 1 +
∑
K⊇H

ϕ(K).

We are left with the case that H is a p-group for some prime p. Consider the
H-fixed point set Y0 := X(H−)H . If Y0 has several path components, pick a 0-cell
in every path component, and attach 1-cells of type G/H to X(H−) along these
0-cells to obtain a finite G-CW-complex Z1 whose H-fixed point set Y1 is path-
connected. Proceed by induction along the skeleta (making sure that (d+1)-cells are
only attached to the d-skeleton) to produce a finite G-CW-complex Z whose fixed
point set Y has dimension bigger than dim(X(H−)K) for all K ) H and which is
(dim(Y )− 1)-connected. If we avoid adding superfluous cells, we can arrange that

dim(Y ) = 1 + max{dim(X(H−)K) | K ) H} 6 1 + max{2 · rk(K) | K ) H}
6 2 · rk(H)− 1.

Repeating the argument on p. 162 of [Oli75], it follows that Hn(Y ;Z/pZ) is free.
Therefore, we can glue on a set of (dim(Y ) + 1)-cells of type G/H to get a finite
G-CW-complex X(H) whose H-fixed point set is Z/pZ-acyclic. This complex con-
tains only cells of the type we are allowed to use. Its dimension can be bounded
by max(dim(X(H−)), 2 · rk(H)) 6 2 · rk(H). As before, the conditions regarding
subgroups K ≺ H need not be checked since we only added cells of type G/H. By
construction, X(H)H is Z/pZ-acyclic; this, together with the fact that ϕ is a resolving
function and p-groups are cyclic mod p, implies that

χ(X(H)H) = 1 = 1 +
∑
K⊇H

ϕ(K).

At the end of the induction along ≺, we obtain a finite G-CW-complex X ′ which
has no global fixed point, whose dimenson n′ is bounded by 2(rk(1)−1) = 2(d(G)−1),
whose fixed point sets satisfy χ((X ′)H) = 1 +

∑
K⊇H ϕ(K) for all H 6= 1, and whose

fixed point sets under non-trivial p-groups are Z/pZ-acyclic.
By another induction along the skeleta, glue freeG-cells ontoX ′ to build an (n′+1)-

dimensional and n′-connected finite G-CW-complex X0. Set n := n′ + 1 6 2 · d(G).
Since we only added free cells, X0 still does not have a global fixed point. As in the
proof of [Oli75, Thm. 2], it follows that Hn(X0;Z) is finitely generated and projective
over Z[G].
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Recall the join of two spaces Y and Z is the quotient of Y × [0, 1]×Z obtained by
identifying (y, 0, z) with (y, 0, z′) for y ∈ Y , z, z′ ∈ Z and (y, 1, z) with (y′, 1, z) for
y, y′ ∈ Y , z ∈ Z. The map

Y ∗ Z →
(
C(Y )× Z

)
∪Y×Z

(
Y × C(Z)

)
(y, t, z) 7→

{
(y, (1− 2t, z)) ∈ Y × C(Y ) if t 6 1

2

((y, 2t− 1), z) ∈ C(Y )× Z if t > 1
2

is a homeomorphism. The latter description allows us to see that Y ∗ Z is a G-CW-
complex if Y and Z are G-CW-complexes.
Consider now the join X1 := X0 ∗X0 of two copies of X0. This is a G-CW-complex

of dimension 2n+ 1 6 4 · d(G) + 1, and referring to the alternative description of the
join makes it obvious that this complex does not have a global fixed point.
X1 is 2n-connected: Either use the Seifert-van Kampen theorem to show that

π1(X1) is trivial and work your way up using the Hurewicz theorem and the Mayer-
Vietoris sequence for homology, or use the fact that X0 ∗ X0 is non-equivariantly
homotopy equivalent to the suspension of X0 ∧X0 (after an arbitrary choice of base-
point) and apply the Freudenthal suspension theorem.
Since X0 is (n − 1)-connected, the Mayer-Vietoris sequence for X0 ∗X0 yields an

isomorphism H2n+1(X1;Z) ∼= H2n(X0 ×X0;Z) as Z-modules. Indeed, checking the
construction of the boundary map, which is based on the fact that we have a short
exact sequence of Z-chain complexes

0 C∗(X0 ×X0) C∗(C(X0)×X0)⊕ C∗(X0 × C(X0)) C∗(X1) 0

which is even an exact sequence of Z[G]-chain complexes, it is easy to see that the
isomorphism H2n+1(X1;Z) ∼= H2n(X0 ×X0;Z) is an isomorphism of Z[G]-modules.
By the Künneth theorem, we have a short exact sequence of Z-modules

0→
⊕

p+q=2n

Hp(X0;Z)⊗Z Hq(X0;Z)→ H2n(X0 ×X0;Z)

→
⊕

p+q=2n−1

TorZ(Hp(X0;Z), Hq(X0;Z))→ 0.

The third term vanishes automatically since Hp(X0;Z) = 0 or Hq(X0;Z) = 0 for all
p and q, and Hn(X0;Z) ⊗Z Hn(X0;Z) is the only non-trivial summand in the first
term. Taking singular chains on the two copies of X0 give rise to a bisimplicial object
in the category of Z[G]-modules; it follows that the Eilenberg-Zilber isomorphism

H∗(X0 ×X0;Z) ∼= H∗(C∗(X0)⊗Z C∗(X0))

is an isomorphism of Z[G]-modules (see [Wei94, Thm. 8.5.1]). The algebraic cross
product is seen to be Z[G]-linear by inspection of the defining formula. Therefore,
the isomorphism Hn(X0;Z) ⊗Z Hn(X0;Z)

∼=−→ H2n(X0 × X0;Z) given by the cross
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product map is also Z[G]-linear. To sum up the discussion, we have proved that
the top-dimensional homology group H2n+1(X1;Z) is isomorphic as a Z[G]-module
to the tensor product Hn(X0;Z) ⊗Z Hn(X0;Z) of two finitely generated projective
Z[G]-modules.
Applying [OS02, Prop. C.3], we get thatH2n+1(X1;Z) is a stably free Z[G]-module.

Therefore, we can glue free (2n+1)- and (2n+2)-cells toX1 to obtain a finite, Z-acyclic
G-CW-complexX withXG = ∅. SinceX is simply connected, it is contractible. Note
that dim(X) = 2n+ 2 6 4 · d(G) + 2; so we are done.

4.2.11 Corollary.
The following are equivalent:

1. rG = 1.

2. There is a finite, contractible G-CW-complex X with XG = ∅ whose dimension
is bounded by 4 · d(G) + 2.

3. nG = 1

Proof. Theorem 4.2.10 tells us that rG = 1 implies the existence of a finite, con-
tractible G-CW-complex X with XG = ∅ whose dimension is bounded by 4 ·d(G)+2.
If such a complex exists, this entails nG = 1 as we discussed earlier. If nG = 1, then
rG = 1 since rG | nG.

Oliver has proved that rG = 1 if and only if G /∈ D [Oli75, Thm. 5]. Thus, we
have nearly established the refined version of Oliver’s theorem. The only missing step
consists in replacing the finite G-CW-complex by a G-simplicial complex. That this
can be done is a standard fact in the topology of cell complexes, but seems difficult
to track down in the literature: The non-equivariant case was already considered by
Whitehead [Whi49, Thm. 13], see for example also [LW69, Prop. IV.7.1] or [Hat02,
Thm. 2C.5]. The equivariant case is recorded, with a very short indication of proof,
in [OS02, Prop. A.4]. We consider this an encouragement to include a proof.

4.2.12 Proposition.
Let X be a finite G-CW-complex. Then X is G-homotopy equivalent to a finite
G-simplicial complex K of equal dimension.

The main technical component of the proof is to show the existence of suitable
mapping cylinders. We shall use a model for the mapping cylinder which is due to
Conner and Floyd [CF59, Def. 5.1].

4.2.13 Definition.
Suppose that f : K → L is an equivariant simplicial map between (abstract) finite
G-simplicial complexes. Assume further that K and L are G-locally ordered, i.e.
both K and L are locally ordered in such a way that the bijections of finite sets given
by translation with a group element are order-preserving maps, and that f is order-
preserving. We think of simplices in K and L as ordered sequences. If (x0, . . . , xn)
is a simplex in K, we write f(x0, . . . , xn) for its image (and still think of this as an
ordered sequence).
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Define the mapping cylinder Cyl(f) of f to be the simplicial complex whose vertex
set is the disjoint union K0tL0, and whose vertices are those sequences which define
a simplex in K or L, or are a subsequence of a sequence (x0, . . . , xk, f(xk, ..., xn)),
where (x0, . . . , xn) is a simplex in K.

The simplicial mapping cylinder Cyl(f) is a locally ordered simplicial complex of
dimension max(dim(X) + 1, dim(Y )). The given action of G on Cyl(f)0 induces
a simplicial action on Cyl(f) (this uses the fact that the complexes are G-locally
ordered). We wish to show that Cyl(f) has the property we expect from a mapping
cylinder.

4.2.14 Lemma.
Let f be a map as in 4.2.13. Let iK : |K| ↪→ |Cyl(f)| and iL : |L| ↪→ |Cyl(f)| be the
inclusion maps.
Then there is an equivariant deformation retraction H of |Cyl(f)| onto the subspace
|L| such that (H ◦ iK)

∣∣
t=1

= iL ◦ |f |.

Proof. The pair (K0,6) is a finite poset. Define for x ∈ K0 its rank as

rk(x) := max{rk(x′) | x < x′}+ 1,

where we let max ∅ = 0. Let r be the largest rank attained by some vertex in K0.
Set

K(s) := {x ∈ K0 | rk(x) > s},
and define C(s) ⊆ Cyl(f) to be the subcomplex spanned by K(s)tL0. Since we have
rk(gx) = rk(x) for all x ∈ K0 and g ∈ G, the subcomplex C(s) is G-invariant. Note
that C(1) = Cyl(f), C(s + 1) is a subcomplex of C(s) and L ⊆ C(s) for all s, and
L = C(r + 1).
We are going to define a sequence of homotopies {Hs}16s6r such that Hs is an

equivariant deformation retraction of C(s) onto C(s+ 1). Fix 1 6 s 6 r. Let Hs be
the constant homotopy on |L|. If

∑
i λixi is a simplex in |K| ∩ |C(s)|, set

Hs

( n∑
i=0

λixi, t
)

:=


n−1∑
i=0

λixi + (1− t)λnxn + tλnf(xn) if rk(xn) = s,

n∑
i=0

λixi if rk(xn) > s.

Suppose (x0, . . . , xk, yk+1, . . . , yk+l) is a subsequence of (x′0, . . . , x
′
k′ , f(x′k, . . . , x

′
n))

for some vertex (x′0, . . . , x
′
n) ∈ C(s). In this case, define

Hs

( k∑
i=0

λixi +

k+l∑
j=k+1

µjyj , t
)

:=


k−1∑
i=0

λixi + (1− t)λkxk + tλkf(xk) +
k+l∑
j=k

µjyj if rk(xk) = s,

k∑
i=0

λixi +
k+l∑

j=k+1

µjyj if rk(xk) > s.
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This defines Hs on the entirety of |C(s)| × [0, 1], and it is straightforward to check
that all image points lie in |C(s)|. Moreover, if t = 1, no point in the image of Hs

is supported on a vertex with rank s, so Hs

∣∣
t=1

maps to C(s+ 1). The function Hs

leaves nearly all coordinates untouched. The only coordinates that vary are those of
vertices whose rank is s, and their images. In these coordinates, Hs clearly varies
continuously, so Hs is in fact a homotopy.
Concatenating these homotopies (i.e. deformation retracting |Cyl(f)| = |C(1)| onto
|C(2)|, then deformation retracting |C(2)| onto |C(3)| etc.), we obtain an equivariant
deformation retraction H of |Cyl(f)| = |C(1)| onto |C(r + 1)| = |L|.

Finally, let ξ =
∑n
i=0 λixi ∈ |K|, and let ri := rk(xi). Then Hs(ξ, 1) = ξ for all

s < rn. In case s = rn, we have

ξn := Hrn(ξ, 1) =
n−1∑
i=0

λixi + λnf(xn).

For rn < s < rn−1, the homotopies Hs leave ξn unchanged. Then

ξn−1 := Hrn−1
(ξn, 1) =

n−2∑
i=0

λixi + λn−1f(xn−1) + λnf(xn).

Things go on like this to produce a sequence (ξs)n>s>0, where ultimately

H(ξ, 1) = ξn =

n∑
i=0

λif(xi) = (iL ◦ |f |)
( n∑
i=0

λixi

)
.

This verifies that H has all the desired properties.

Proof of Proposition 4.2.12. We proceed by induction along the skeleta to produce
finite G-simplicial complexes Kn with dim(Kn) = n and G-homotopy equivalences
fn : X(n) → Kn. Then K is given by the complex Kdim(X).

For the start of the induction, set K0 := X(0) and let f0 be the identity map.
Suppose Kn and fn have been constructed. The (n+ 1)-skeleton of X is obtained

from the n-skeleton by a pushout

∐
i∈In+1

G/Hi × Sn X(n)

∐
i∈In+1

G/Hi ×Dn+1 X(n+1)

∐
i αi

where In+1 is some indexing set for the equivariant (n + 1)-cells of X. By the
adjunction isomorphism

mapG(G/Hi × Sn, X(n)) ∼= map(Sn,mapG(G/Hi, X
(n)) ∼= map(Sn, (X(n))Hi),
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each map αi is determined by a non-equivariant map αi : S
n → (X(n))Hi . Let

α :
∐
i S

n → X(n) be the non-equivariant map defined by the collection {αi}i. Define

α̂ as the composition α̂ :
∐
i S

n α−→ X(n) fn−→ Kn. Equip Sn with the structure of
a (finite) simplicial complex, so

∐
i S

n also has the structure of a finite simplicial
complex. After an appropriate subdivision, there is a simplicial map α̃ :

∐
i Σi → Kn

such that the realisation of each Σi is an n-sphere, and the realisation of the re-
striction of α̃ to Σi is homotopic to the restriction of α̂ to the i-th component. The
map α̃ extends to an equivariant simplicial map α] :

∐
iG/Hi × Σi → Kn in the

obvious fashion. Apply the barycentric subdivision functor to get a map α′]. This is
now an equivariant simplicial map between G-equivariantly locally ordered simplicial
complexes. Then set

Kn+1 :=
∣∣Cyl(α′]) ∪∐i Σ′i

C(Σ′i)
∣∣ ,

where Cyl(α′]) denotes the simplicial mapping cylinder, and C(Σ′i) is the cone on
Σ′i. Note that dim(Kn+1) = n + 1. The map fn+1 is now defined as follows: Let
fn+1

∣∣
X(n) be given by fn composed with a G-homeomorphism h between |Kn| and

|K ′n|. Divide the (n+ 1)-disk Dn+1 into a smaller (n+ 1)-disk dn+1 around 0, say of
radius 1

2 , and the closure of the complement cn+1. We can use the homotopy between
α̂ and its simplicial approximation to define fn+1 on X(n) ∪∐

i αi
G/Hi × cn+1 (the

time coordinate of the homotopy corresponds to moving along the line given by radial
projection). Then define fn+1 on the interiors of the smaller disks dn+1 by the obvious
extension to the cones on Σ′i.
What is left to check is that the map fn+1 is a G-homotopy equivalence, so we

can forget about the simplicial structures. Let Ln+1 be the space obtained from K ′n
by attaching the given (n + 1)-cells along the map h ◦ fn ◦

(∐
i αi
)
. Then we get

an induced G-homotopy equivalence g : X(n+1) → Ln+1. Moreover, the deformation
retraction from Lemma 4.2.14 induces, upon restriction to t = 1, a G-homotopy
equivalence e : Kn+1 → Ln+1 such that e ◦ fn+1 and g are homotopic. In particular,
fn+1 is a G-homotopy equivalence.

This gives us finally the proof of Theorem 4.2.3: Set bd(n) := 4n + 2. Then
bd ∈ O(n) is a monotone function. If G /∈ D, it follows that rG = 1, so there
is a finite, contractible G-CW-complex X ′ without fixed point whose dimension is
bounded by 4 · d(G) + 2 = bd(d(G)). By Proposition 4.2.12, we find a finite G-
simplicial complex X of equal dimension which is G-homotopy equivalent to X ′. In
particular, X cannot have a global fixed point, so 4.2.3 has been proven.
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5. Applications

5.1. An application in the algebraic K-theory of
spaces

We would like to sketch an application of Corollary 4.2.4 in A-theory. This application
does not yet use the bound on the dimension, so we will try to be brief, and omit some
details. Recall the definition of A(X) from [Wal85, Sec. 2.1]: For a topological space
X, the category Rf (X) of retractive spaces over X consists of finite CW-complexes
Y relative to X together with maps X i−→ Y

r−→ X such that ri = idX ; morphisms
are given by cellular maps Y → Y ′ which are compatible with the reference maps.
The category Rf (X) becomes a Waldhausen category by picking X =−→ X

=−→ X as a
zero object, declaring those morphisms which are isomorphic to cellular inclusions to
be cofibrations, and picking the (weak) homotopy equivalences as weak equivalences.
The A-theory of X is then defined to be K(Rf (X)). This space can be delooped to
a connective spectrum A(X) as in [Wal85, p. 329f.].

Let G be a discrete group. Consider G as a one-object groupoid, then the space
BG = |NG| is a functorial model for the classifying space of G. We will use the follow-
ing alternative description of A(BG): Let Rf (W,G) be the category of cocompact
free G-CW-complexes relative to the G-space W , and cellular G-equivariant maps
relative to W . We declare morphisms isomorphic to cellular inclusions to be cofibra-
tions, and let the (weak) homotopy equivalences be the category of weak equivalences
(note that G-homotopy equivalences and homotopy equivalences coincide in this case
since the action is free). This is again a Waldhausen category.
Propositions 2.1.1 and 2.1.4 in [Wal85] combine to show that there is a natural

homotopy equivalence
hS•Rf (BG)

∼−→ hS•Rf (∗, G).

We will therefore use the K-theory of Rf (∗, G) as a model for the A-theory of BG.
Let Rep(G) be the category of finite pointed G-CW-complexes and pointed cellular

equivariant maps between them. Let us agree that G acts from the right on these
spaces. Define coRep(G) to consist of all maps isomorphic to a cellular inclusion, and
let hRep(G) be the subcategory of those morphisms which are (ordinary) homotopy
equivalences.

5.1.1 Lemma.
The quadruple (Rep(G), ∗, coRep(G), hRep(G)) is a Waldhausen category.

107



5.1.2 Definition.
Call SwA(G) := K0(Rep(G)) the A-theoretic Swan group.

Suppose that H 6 G is a subgroup. Then there are functors

indGH : Rf (∗, H)→ Rf (∗, G), X 7→ G+ ∧H X,

resGH : Rep(H)→ Rep(G), D 7→ resGH D.

If [G : H] <∞, we can also define

resGH : Rf (∗, G)→ Rf (∗, H), X 7→ resGH X,

indGH : Rep(H)→ Rep(G), D 7→ D ∧H G+.

Moreover, there are pairings

∧ : Rep(G)×Rep(G)→ Rep(G), (D,D′) 7→ D ∧D′,
∧ : Rep(G)×Rf (∗, G)→ Rf (∗, G), (D,X) 7→ D ∧X,

where we equip the resulting space with the diagonal action in both cases (in the
second case, g ∈ G acts on D from the left via g · d := d · g−1). The following lemma
is straightforward (compare the discussion in [Wal82]).

5.1.3 Lemma.
Let G be a group, and H 6 G a subgroup.

1. All restriction and induction functors we have just defined are exact (as long
as they exist).

2. The functor ∧ : Rep(G)×Rep(G)→ Rep(G) is biexact.

3. The functor ∧ : Rep(G)×Rf (∗, G)→ Rf (∗, G) is biexact.

It follows from Lemma 5.1.3, using [Wal85, p. 342] that we have induced pairings

SwA(G)× SwA(G)→ SwA(G),

SwA(G)×An(BG)→ An(BG), n ∈ N,

both of which we denote by a multiplication symbol.

5.1.4 Lemma (Frobenius reciprocity).
Let G be a finite group and H 6 G a subgroup. Then for all s ∈ SwA(H), t ∈ SwA(G)
and a ∈ An(BG) the following holds:

indGH(s) · t = indGH(s · resGH t),

indGH(s) · a = indGH(s · resGH a).
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Proof. Suppose that D ∈ Rep(H), E ∈ Rep(G) and X ∈ Rf (∗, G). It suffices to
observe that there are natural G-equivariant isomorphisms

(D ∧H G+) ∧ E
∼=−→ (D ∧ resGH E) ∧H G+,

((d, g), e) 7→ ((d, eg−1), g).

and

(D ∧H G+) ∧X
∼=−→ G+ ∧H (D ∧ resGH X)

((d, g), x) 7→ (g−1, (d, gx)).

5.1.5 Proposition.
The canonical homomorphism∑

H

indGH :
⊕
H6G,
H∈D

SwA(H)→ SwA(G)

is surjective.

Proof. Suppose that the unit element 1G lies in the image of the map. If this is the
case, write 1G =

∑
H ind(sH). Then we have by Lemma 5.1.4 for every s ∈ SwA(G)

s = 1G · s =

(∑
H

ind(sH)

)
· s =

∑
H

(
indGH(sH) · s

)
=
∑
H

indGH(sH · resGH(s)),

and the latter element is clearly a member of the image of the induction map. There-
fore, it suffices to show that 1G = [S0] lies in the image.
For the beginning, let X be an arbitrary object in Rep(G). We filter X by its

skeleta X(0) ⊆ X(1) ⊆ . . . ⊆ X(n) = X. Two consecutive filtration steps give rise to
a cofibration sequence X(k) � X(k+1) � X(k+1)/X(k). Let Ik+1 be an indexing set
for the equivariant (k + 1)-cells of X. Then

X(k+1)/X(k) ∼=
∨

i∈Ik+1

(Ki\G)+ ∧ Sk+1 ∼= Σk+1
( ∨
i∈Ik+1

(Ki\G)+

)
,

which gives us the relation [X(k+1)] = [X(k)] +
[
Σk+1

(∨
i∈Ik+1

(Ki\G)+

)]
.

Since Y � CY � ΣY is a cofibration sequence for every object Y ∈ Rep(G), and
CY ' ∗, we have [ΣY ] = [∗] − [Y ] = −[Y ] for every Y . It follows by induction that
[ΣkY ] = (−1)k[Y ].
Again by induction, we see that the class [X] ∈ SwA(G) is given by

[X] = [X(0) +
n∑
k=1

(−1)k[
( ∨
i∈Ik

(Ki\G)+

)
] = [X(0)] +

n∑
k=1

(−1)k
∑
i∈Ik

[(Ki\G)+].
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The 0-skeleton X(0) is itself a pointed (right) G-set, so we can write it as a wedge sum
of pointed G-sets X(0) =

∨
i∈I0(Ki\G)+. This shows that the class of X in SwA(G)

equals its Euler characteristic:

[X] =
n∑
k=0

(−1)k
∑
i∈Ik

[(Ki\G)+].

Now let X be a finite, contractible G-simplicial complex whose isotropy groups lie in
D; such a complex exists by Corollary 4.2.4. Then we have

1G = [S0] = [X+].

Each equivariant cell in X is of type H\G for some H ∈ D. Moreover, if H ∈ D, the
pointed G-set (H\G)+ equals indGH((H\H)+). Since the class of [X+] is given by its
Euler characteristic, this proves that 1G = [X+] lies in the image of the induction
homomorphism.

5.1.6 Corollary.
Let G be a finite group. Then the homomorphism∑

H

indGH :
⊕
H6G,
H∈D

An(BH)→ An(BG)

is surjective for all n ∈ N.

Proof. Write 1G =
∑
H indGH(sH) ∈ SwA(G). Then for every a ∈ An(BG) we have

by Lemma 5.1.4

a = 1G · a =
(∑

H

indGH(sH)
)
· a =

∑
H

(
indGH(sH) · a

)
=
∑
H

indGH(sH · resGH(a)).

5.1.7 Remark.
Arguing as in the case of linear algebraic K-theory, Corollary 5.1.6 can be strength-
ened to give a statement about isomorphism of groups if we replace the domain by
an appropriate homology theory. Define an Or(G)-spectrum A by

A(G/H) := A(|N(TrG(G/H))|),

where TrG( ) denotes the transport groupoid. Note that TrG(G/H) is equivalent
to the one-object groupoid H, so |N(TrG(G/H))| ' BH; consequently, both spaces
have the same A-theory, see [Wal85, Prop. 2.1.7]. Then the assembly map

HG
∗ (EDG;A)→ A∗(BG)

is an isomorphism for all finite groups G: This can be seen by invoking Theorem 2.9
from [BL07].
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Proposition 5.1.5 also has a consequence in the linear setting. To state this, recall
the linear Swan group: We can consider any discrete group G as a groupoid G. The
category of integral G-representations RepZ(G) can then be defined to be

RepZ(G) := Fun(G,FrZ),

where FrZ is the category of finitely generated free Z-modules. Equipping FrZ with
the split exact structure, RepZ(G) inherits an exact structure from FrZ. The linear
Swan group of G is then

Sw(G) := K0(RepZ(G)).

A classical result of Swan [Swa60, Cor. 4.2] states that the induction map

∑
H

indGH :
⊕
H6G,
H∈H

Sw(G)→ Sw(G)

is a surjection, where H is the family of hyperelementary subgroups. We can prove
the following variation of this result:

5.1.8 Corollary.
Let G be a finite group. Under the canonical homomorphism∑

H

indGH :
⊕
H6G,
H∈D

Sw(H)→ Sw(G),

the unit element 1G ∈ Sw(G) has a preimage which can be represented by permutation
modules. In particular, this homomorphism is surjective.

Proof. Surjectivity follows again from the fact that 1G lies in the image of the map,
but is also obvious from Swan’s result.
Consider the linearisation map defined by

λ : SwA(G)→ Sw(G)

[X] 7→
∞∑
k=0

[
C̃k(X)

]
,

where C̃∗(X) denotes the reduced cellular chain complex. This map is well-defined:
We have seen in the proof of Proposition 5.1.5 that the class [X] ∈ SwA(G) is given by
the Euler characteristic. It is easy to check that λ is additive, preserves the products,
and that the unit [S0] ∈ SwA(G) is sent to the unit [Z] ∈ Sw(G).
Moreover, λ is compatible with induction, so for every subgroup H 6 G, we get a
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commutative diagram

SwA(H) SwA(G)

Sw(H) Sw(G)

indGH

λH λG

indGH

Now the only thing left to observe is that the image of λ consists entirely of elements
which are represented by permutation modules.

5.1.9 Remark.
Corollary 5.1.8 can be given the following slightly more conceptual proof:
Define a “chain complex version” of the Swan group (cf. [BR05, Sec. 8.3]): Let

Replin(G) := Ch(Fun(G,FrZ)).

This category can be endowed with a Waldhausen structure; cofibrations are the
degreewise admissible monomorphisms, and the weak equivalences hReplin(G) are
defined by pulling back the weak equivalences in Ch(FrZ) along the exact restriction
functor

resG1 : Replin(G)→ Replin(1) = Ch(Fun(1,FrZ)) ∼= Ch(FrZ).

Taking tensor products of complexes defines a biexact functor

Replin(G)×Replin(G)→ Replin(G),

which turns Swch(G) := K0(Replin(G)) into a ring.
The inclusion functor RepZ(G) ↪→ Replin(G) induces a ring homomorphism

j : Sw(G)→ Swch(G).

Then there is a linearisation functor L : Rep(G) → Replin(G) which sends an ob-
ject X to its reduced cellular chain complex C̃∗(X). From here on, the argument
proceeds as before. However, this argument needs the additional input that j is an
isomorphism.
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5.2. An application in linear algebraic K-theory

We are now going to turn to an application of Corollary 4.2.4 in the context of the
K-theoretic Farrell-Jones Conjecture. This time, we do require the bound on the
dimension.
Using a criterion called the Farrell-Hsiang condition, Bartels, Farrell and Lück show

in [BFL14] that virtually polycyclic groups satisfy the Farrell-Jones Conjecture. The
special case of semidirect products of the form Zn o Z is further elaborated on in
[Bar], where the Farrell-Hsiang condition bears the name “Theorem C”.
For this particular case, we will now proceed to show that it is possible to bypass

the Farrell-Hsiang condition, and instead prove the conjecture for Zn o Z by means
of [Bar, Theorem A]. This criterion originally served the purpose of proving the
Farrell-Jones Conjecture for hyperbolic groups, and went under the name of “transfer
reducibility”.
In order to give the statement of “Theorem A”, we have to recall the definition of

the `1-metric on a simplicial complex. Given a simplicial complex X, its realisation
|X| carries a metric d1 given by

d1
(∑

x

λx · x,
∑
x

µx · x
)

:=
∑
x

|λx − µx| .

If X is a G-simplicial complex, this is a G-invariant metric (i.e. G acts by isometries).

5.2.1 Theorem ([Bar, Thm. A]).
Let G be a group generated by the finite set S. Let F be a family of subgroups of G.
Let A be a small additive category with right G-action. Assume that there is N ∈ N
such that for every ε > 0 there are

• an N -transfer space X equipped with a G-action, i.e. a compact contractible
metric space such that for every δ > 0 there is a simplicial complex K of
dimension at most N together with maps i : X → K and p : K → X, and a
homotopy H : p ◦ i ' idX such that the diameter of {H(x, t) | t ∈ [0, 1]} is at
most δ for all x ∈ X,

• a G-simplicial complex E of dimension at most N whose isotropy groups lie in
F ,

• a map f : X → E which is G-equivariant up to ε in the sense that for all s ∈ S
and x ∈ X,

d1(f(sx), sf(x)) 6 ε.

Then the assembly map αF : HG
∗ (EFG;K−∞A )→ K∗(A[G]) is an isomorphism.

Our goal is to show that we can produce the required data for every group of the
form Zn o Z, i.e. we want to prove:
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5.2.2 Theorem.
Every group of the form Zn oM Z satisfies the assumptions of Theorem 5.2.1 with
respect to the family of abelian subgroups.

The proof of this theorem occupies the rest of this section. The basic idea goes as
follows: We obtain transfer spaces by taking a finite quotient F of Zn oM Z, picking
an F -simplicial complex X as in Corollary 4.2.4, and restricting the group action
along the quotient map ZnoM Z� F . If we are sufficiently careful about the choice
of F (see Proposition 5.2.5), we can arrange things so that we can construct almost
equivariant maps on the 0-skeleton of the transfer space - this is asserted essentially
by Propositions 5.2.7 and 5.2.8. After that, we have to extend these to higher skeleta
(see 5.2.9).
We start by proving the existence of certain “normal forms” of extensions for groups

in Cycp and D.
5.2.3 Lemma.
Let H ∈ Cycp. Then there is a group extension 1 → P → H → C → 1 with P a
p-group, C ∈ Cyc and p - |C|.

Proof. Let 1 → P ′ → H
π−→ C ′ → 1 be an extension with P a p-group and C ′ a

finite cyclic group. Let Sp be the Sylow p-subgroup of C. Then C ′ ∼= C × Sp. Let
P := π−1(Sp) E H. Then we have a commutative diagram with exact rows and
columns

1 1

1 P ′ P Sp 1

1 P ′ H C ′ 1

H/P C 1

1 1

=

π

∼=

P is a p-group because it is an extension of the p-group P ′ by Sp. Since H/P ∼= C,
this group is cyclic and its order is not divisible by p.

5.2.4 Lemma.
Let G ∈ D. Suppose that there is a group extension 1 → H ′ → G → Q′ → 1 with
H ∈ Cycp, Q a q-group and p 6= q.
Then there is a group extension 1 → H → G → Q → 1 with H ∈ Cycp, Q a

q-group and q - |H|.
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Proof. Let 1 → P → H ′
π−→ C ′ → 1 be an extension with P a p-group and C ′ a

finite cyclic group. Let Sq be the Sylow q-group of C, so that C ′ ∼= C × Sq. Let
H := π−1(C). Then we obtain a commutative diagram with exact rows and columns

1 1

1 P H C 1

1 P H ′ C ′ 1

H ′/H Sq 1

1 1

=

π

∼=

It follows that H is cyclic mod p, and the order of H is not divisible by q. We claim
that H is normal in G: Let g ∈ G and h ∈ H. Suppose ghg−1 /∈ H. We know
that ghg−1 must lie in H ′ because H ′ is normal in G. Since q - |H|, the order of h
(and therefore also of ghg−1) is not divisible by q. Then the cyclic group generated
by ghg−1 surjects onto a non-trivial cyclic group in H ′/H ∼= Sq. This implies that
q |
∣∣ghg−1

∣∣, which is a contradiction.
Thus, we have an extension 1→ H → G→ G/H =: Q→ 1. We can compute the

order of Q:

|Q| = |G|
|H|

=
|H ′| · |Q′|
|P | · |C|

=
|H ′| · |Q′| · |Sq|
|P | · |C ′|

=
|H ′| · |Q′| · |Sq|

|H ′|
= |Q′| · |Sq| ,

and this is clearly a power of q.

The following proposition is a variant of the results in Section 3.4 of [BFL14]; our
proof is also a direct adaptation of the arguments given there.

5.2.5 Proposition.
Let n ∈ N. Then there is a natural number B such that for all M ∈ GLn(Z) and
ν ∈ N there are natural numbers r and s (which depend only on n and ν) with the
following properties:

• The order of GLn(Z/s) divides r; so the semidirect product (Z/s)n oM Z/r is
defined,M denoting the reduction ofM modulo s. Let π : (Z/s)noMZ/r � Z/r
be the projection.

• The order of (Z/s)n oM Z/r contains at most B prime factors, counted with
their multiplicities.
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• For all subgroups G 6 (Z/s)n oM Z/r which lie in the Dress family D, there is
some ν′ > ν such that G ∩ (Z/s)n ⊆ ν′(Z/s)n or π(G) ⊆ ν′(Z/r).

Proof. We start with some preparatory observations. Suppose s is a product of
pairwise distinct prime numbers s = p1 . . . pk. Then Z/s ∼= Z/p1 × · · · × Z/pk. The
diagram

Mn(Z/s) Mn(Z/p1)× · · · ×Mn(Z/pk)

Z/s Z/p1 × · · · × Z/pk

∼=

dets detp1 × · · · × detpk
∼=

commutes. Since (Z/p1×. . .Z/pk)∗ = (Z/p1)∗×· · ·×(Z/pk)∗, the top homomorphism
(co)restricts to an isomorphism

GLn(Z/s)
∼=−→ GLn(Z/p1)× · · · ×GLn(Z/pk).

For a single prime p, the order of GLn(Z/p) is (pn − 1)(pn − p) . . . (pn − pn−1). Let
on(X) denote the polynomial

on(X) = (Xn − 1)(Xn −X) . . . (Xn −Xn−1) ∈ Z[X].

The order of GLn(Z/s) is then given by

|GLn(Z/s)| = on(p1) . . . on(pk).

We would like to bound the number of prime factors (counted with their multiplicities)
appearing in |GLn(Z/s)|. This can be accomplished by appealing to the following
number-theoretic result.

5.2.6 Theorem ([Mie65]).
Let f(X) ∈ Z[X] be a polynomial. Then there is a constant C > 0 such that there
are infinitely many primes p for which the number of prime factors of f(p), counted
with their multiplicities, is bounded by C.

The result of [Mie65] is even stronger: We can additionally fix integers r and m
with (r,m) = 1, and still find infinitely many primes of this sort such that f(p) is
also congruent to r modulo m. We will not have to use this.
We apply the theorem to on(X), so there is a constant C such that the set P

of prime numbers p for which |GLn(Z/p)| = on(p) has at most C prime factors is
infinite. If we pick the primes p1, . . . , pk from P, it follows that the order of GLn(Z/s)
contains at most k · C prime factors (counted with their multiplicities).
We are now ready for the proof of the proposition. Pick three pairwise distinct

primes p1, p2 and p3 from P, each one of them greater than ν. Set s := p1p2p3, and let
r := s · |GLn(Z/s)|. Since

∣∣M ∣∣ | |GLn(Z/s)|, the semidirect product (Z/s)n oM Z/r
is defined. Moreover, we have

|(Z/s)n oM Z/r| = |(Z/s)n| · |Z/r| = (p1p2p3)n+1 · |GLn(Z/s)| ,
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so the order of the semidirect product contains at most 3(n+1)+3 ·C = 3 ·(C+n+1)
prime factors (this is the B whose existence was claimed). We are left with checking
the index estimates for subgroups which lie in the Dress family D.

Let us first consider the case of a subgroup H 6 (Z/s)noM Z/r which is cyclic mod
p for some prime p. By Lemma 5.2.3, there is an extension 1 → P → H → C → 1
such that P is a p-group, C is a finite cyclic group and p - |C|. Let c ∈ C be a
generator, and pick a preimage vtj ∈ H of c; i.e. v ∈ (Z/s)n and Z/r = 〈t〉. Since p
does not divide |C|, the element (vtj)|P | gets mapped to another generator d = c|P |

of C. Write (vtj)|P | as wtl. Put x := (wtl)[π(H) : π(P )] ∈ H.
Suppose that H ∩ (Z/s)n 6= P ∩ (Z/s)n. Consider the commutative diagram

1 1 1

1 P ∩ (Z/s)n H ∩ (Z/s)n Q 1

1 P H C 1

1 π(P ) π(H) π(H)/π(P ) 1

1 1 1

All rows and columns are exact. The element x lies in the kernel of π because

x = ((vtj)|P∩(Z/s)n|·|π(P )|)[π(H) : π(P )] = (vtj)|π(H)|·|P∩(Z/s)n|.

So x ∈ H ∩ (Z/s)n, and its image in Q is d[π(H) : π(P )] 6= 0. It follows that x does not
lie in P ∩ (Z/s)n.
Let s′ := |x|. We calculate

x|Q| = (vtj)|π(H)|·|P∩(Z/s)n|·|Q| = (vtj)|π(H)|·|H∩(Z/s)n| = (vtj)|H| = e,

so s′ has to divide the order of Q. It follows that p - s′ (because Q 6 C and p - |C|).
Note that s′ | s; we write s = σ · s′. Since every prime factor of s has multiplicity

1, the numbers σ and s′ are coprime. Let k be the product of the powers of all
primes appearing in r′ := |GLn(Z/s)| but not in s′. Then we still have (kσ, s′) = 1.
It follows that (wtl)kσ[π(H) : π(P )] = xkσ 6= 0 ∈ H ∩ (Z/s)n. On the other hand, we
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compute (see [BFL14, Lem. 3.19]):

(wtl)sr
′

=
( sr′−1∑

i=0

M
il

(w)
)
tlsr

′ sr′=r
=

( s−1∑
i=0

r′−1∑
j=0

M
(j+ir′)l

(w)
)

=
( s−1∑
i=0

r′−1∑
j=0

M
jl

(w)
)

=
(
s ·

r′−1∑
j=0

M
jl

(w)
)

=
( r′−1∑
j=0

M
jl

(sw)
)

=
( r′−1∑
j=0

M
jl

(0)
)

= e.

So sr′ - kσ[π(H) : π(P )]. Dividing by kσ on both sides, we get s′r - [π(H) : π(P )],
where r is some natural number containing only prime factors which are also prime
factors of s′. Therefore, there is some i ∈ {1, 2, 3} and a natural number N > 1 such
that pi | s′, pNi | s′r, and pNi - [π(H) : π(P )].
As p - s′, we must have p 6= pi. Clearly, s′ | |H|, so pi is a divisor of |H|. Since we

set r = sr′, the number r must be divisible by pNi . Then [Z/r : π(P )] is still divisible
by pNi because p 6= pi. From the equality

[Z/r : π(H)] · [π(H) : π(P )] = [Z/r : π(P )],

it follows that pi must appear at least once as a prime factor of [Z/r : π(H)]. Conse-
quently, [Z/r : π(H)] > pi > ν.
So far, we have shown that for every group H which is cyclic mod p for some prime

p, we can find an extension 1 → P → H → C → 1 with C ∈ Cyc, P a p-group such
that p - |C|, and one of the following statements is true:

• H ∩ (Z/s)n = P ∩ (Z/s)n.

• There is an i ∈ {1, 2, 3} such that p 6= pi, pi | |H| and pi | [Z/r : π(H)].

Let now G 6 (Z/s)n oM Z/r be a subgroup which lies in D. Using Lemma 5.2.4,
write G as an extension 1 → H → G → Q → 1 such that H ∈ Cycp for some prime
p, the quotient Q is a q-group for some prime q, and we may assume q - |H| if p 6= q.
As before, we obtain a commutative diagram

1 1 1

1 H ∩ (Z/s)n G ∩ (Z/s)n Q′ 1

1 H G Q 1

1 π(H) π(G) π(G)/π(H) 1

1 1 1

118



with exact rows and columns. It follows that [G ∩ (Z/s)n : H ∩ (Z/s)n] is a power of
q, and that [π(G) : π(H)] is also a q-power. Using what we have done so far, we write
H as an extension 1→ P → H → C → 1 with the properties we had just listed.
Assume first that H ∩ (Z/s)n = P ∩ (Z/s)n. Then |G ∩ (Z/s)n| = pkql for some

natural numbers k and l. Pick i ∈ {1, 2, 3} such that p 6= pi 6= q. Choose an arbitrary
element (g1, . . . , gn) ∈ G ∩ (Z/s)n, and write Z/s = 〈γ〉. Then gj = γaj for some aj ,
and γajp

kql = e. Since s = p1p2p3, the exponent aj must be divisible by pi. That is,
the subgroup G ∩ (Z/s)n must be contained in the subgroup pi(Z/s)n 6 (Z/s)n.
Consider now the case that there is an i ∈ {1, 2, 3} such that p 6= pi, pi | |H| and

pi | [Z/r : π(H)]. If q = p, the inequality q 6= pi is automatic. If q 6= p, we can still
deduce that q 6= pi because q does not divide the order of H, but pi does. Looking
at the equality

[Z/r : π(G)] · [π(G) : π(H)] = [Z/r : π(H)],

it follows that pi must divide [Z/r : π(G)], so that π(G) ⊆ pi(Z/r). This finishes the
proof.

We quote the following results, which will allow us to produce almost equivariant
maps on the 0-skeleton of our transfer spaces.

5.2.7 Proposition ([Bar, Prop. 6.7]).
Let S ⊆ Zn oM Z be finite. There is a natural number N (depending only on n)
with the property that for every ε > 0 there is a natural number ν0 such that for all
ν > ν0 the following holds:
If G 6 Zn oM Z is a subgroup which is contained in (νZ)n oM Z, then there is

an N -dimensional (ZnoM Z)-simplicial complex E with cyclic isotropy groups and a
G-equivariant map f : ZnoMZ→ E such that d1(f(g), f(h)) 6 ε whenever g−1h ∈ S.

5.2.8 Proposition ([Bar, Prop. 6.6]).
Let S ⊆ Zn oM Z be finite. For every ε > 0 there is a natural number ν0 such that
for all ν > ν0 the following holds:

If G 6 Zn oM Z is a subgroup which is contained in Zn oM (νZ), then there is a
1-dimensional (Zn oM Z)-simplicial complex E with abelian isotropy groups and a
G-equivariant map f : ZnoMZ→ E such that d1(f(g), f(h)) 6 ε whenever g−1h ∈ S.

We claim that these almost equivariant maps can be patched together in such a
way that we obtain almost equivariant maps on the entire transfer space.

5.2.9 Lemma.
Let G be a group, S ⊆ G a finite subset, and let X be a locally finite G-simplicial
complex. Let R be a set of resolution data for X such that every R(x) is locally finite.
Let ε > 0. Suppose that f0 : X(0) = X0 → |X[R]| is a map which is G-equivariant
up to ε.

Then there is a map f : |X| → |X[R]| extending f0 which is G-equivariant up to ε.
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Proof. We use Lemma 4.1.5 another time to define f as a map |X| → |X,R| by

f
( ∑
x∈X0

λx · x
)

:=
∑
x∈X0

λx · f0(x).

In order to show that this map is G-equivariant up to ε, we have to determine
how the `1-metric is given on |X,R|. This will be accomplished by mapping two
arbitrary points in |X,R| via the map F ′ from the proof of Lemma 4.1.5 to |X[R]|
and calculating the distance of the image points (i.e., we are forcing F and F ′ from
4.1.5 to be isometries; we can do this since the `1-metric induces the usual topology
on the realisation of a locally finite simplicial complex, see [LW69, p. 130]).
Let η =

∑
x λx · ηx and ϑ =

∑
x µx · ϑx be two points in |X,R|. Then

d1
(
F ′
( ∑
x∈X0

λx · ηx
)
, F ′
( ∑
x∈X0

µx · ϑx
))

= d1
( ∑
y∈X[R]0

λx(y)ηx(y),y · y,
∑

y∈X[R]0

µx(y)ϑx(y),y · y
)

=
∑

y∈X[R]0

∣∣λx(y)ηx(y),y − µx(y)ϑx(y),y

∣∣ .
This is the only precise statement we can make. However, this value can always be
bounded:∑
y∈X[R]0

∣∣λx(y)ηx(y),y − µx(y)ϑx(y),y

∣∣
=

∑
y∈X[R]0

∣∣λx(y)ηx(y),y − λx(y)ϑx(y),y + λx(y)ϑx(y),y − µx(y)ϑx(y),y

∣∣
6

∑
y∈X[R]0

∣∣λx(y)ηx(y),y − λx(y)ϑx(y),y

∣∣+
∑

y∈X[R]0

∣∣λx(y)ϑx(y),y − µx(y)ϑx(y),y

∣∣
=
∑
x∈X0

(
λx ·

∑
y∈R(x)0

|ηx,y − ϑx,y|
)

+
∑
x∈X0

|λx − µx|
( ∑
y∈R(x)0

ϑx,y

)
=
∑
x∈X0

λx · d1(ηx, ϑx) +
∑
x∈X0

|λx − µx|

Let s ∈ S. Then we deduce

d1
(
f
(
s
( ∑
x∈X0

λx · x
))
, sf
( ∑
x∈X0

λx · x
))

= d1
( ∑
x∈X0

λx · f0(sx
)
,
∑
x∈X0

λx · sf0(x)
)

6
∑
x∈X0

λx · d1(f0(sx), sf0(x)) +
∑
x∈X0

|λx − λx|

6
∑
x∈X0

λxε

= ε.
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Everything is now in place to prove Theorem 5.2.2.

Proof of Theorem 5.2.2. Fix some finite generating set S, and let ε > 0. Let ν ∈ N
be larger than the maximum of the two numbers dubbed ν0 in Propositions 5.2.7
and 5.2.8. By Proposition 5.2.5, there is a natural number B (depending on n) and
natural numbers r and s (depending on n and ν) with the following properties:

• The order of GLn(Z/s) divides r, so (Z/s)n oM Z/r is defined.

• The order of (Z/s)n oM Z/r contains at most B prime factors (counted with
multiplicities).

• For all subgroups G 6 (Z/s)noM Z/r which lie in D, there is some ν′ > ν such
that G ∩ (Z/s)n ⊆ ν′(Z/s)n or π(G) ⊆ ν′(Z/r).

The second property implies that d((Z/s)n oM Z/r) is at most B + 1. We ap-
ply the corollary to Oliver’s theorem to obtain a finite, (non-equivariantly) con-
tractible ((Z/s)n oM Z/r)-simplicial complex X whose dimension is bounded by
β := 2B+1 bd(B + 1)B+1, and whose isotropy groups lie in D. This complex qualifies
as an N -transfer space for every N > β (we can take X =−→ X

=−→ X as a finite
δ-controlled domination for every δ > 0). Define an action of Zn oM Z on X by
restricting along the projection map Zn oM Z� (Z/s)n oM Z/r.
Let X0 =

∐
x∈G\X0

x be the decomposition of X0 into transitive G-sets. Fix
x ∈ G\X0. Upon choice of a base point x0 ∈ x, we can identify x ∼= (Zn oM Z)/G,
where G = (Zn oZ)x0

is the preimage of some group G 6 (Z/s)n oM Z/r which lies
in D.
The following argument is taken from the proof of Proposition 6.1 in [Bar]:
Case 1: G ∩ (Z/s)n ⊆ ν′(Z/s)n for some ν′ > ν. Apply Proposition 5.2.7 to

obtain a G-equivariant map f ′x : ZnoMZ→ E′ such that d1(f(g), f(h)) 6 ε whenever
g−1h ∈ S, where E′ is a (Zn oM Z)-simplicial complex of dimension at most N ′ (the
number N ′ depending only on n) with cyclic isotropy. Set Ex := (Zn oM Z)×G E′,
and define a map

fx : (Zn oM Z)/G→ Ex, gG 7→ (g, f ′x(g−1)).

If s ∈ S, we get

d1(fx(sgG), sfx(gG)) = d1((sg, f ′x(g−1s−1)), (sg, f ′x(g−1)))

= d1(f ′x(g−1s−1), f ′x(g−1))

6 ε

since (g−1s−1)−1g−1 = sgg−1 = s ∈ S.
Case 2: π(G) ⊆ ν′(Z/r) for some ν′ > ν. We apply Proposition 5.2.8 to obtain a

G-equivariant map f ′x : ZnoM Z→ E′ with the properties listed there. Again, define
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Ex := (ZnoM Z)GE
′ and fx : ZnoM Z/G→ Ex by fx(gG) := (g, f ′x(g−1). The same

calculation as in Case 1 shows that the map fx is G-equivariant up to ε.
We are nearly done: The collection of (ZnoM Z)-simplicial complexes {Ex}x∈G\X0

defines a set of resolution data E as we observed in Remark 4.1.3; to be more precise,
if we choose abstract G-simplicial complexes Ex whose realisation is Ex, these define
a set of resolution data E . The coproduct of the maps fx is a map

f0 : X0 →
∐

x∈G\X0

Ex ⊆ |X[E ]|

which is G-equivariant up to ε. By Lemma 5.2.9, the map f0 extends to a map
f : X → |X[E]| which is G-equivariant up to ε. Moreover, Proposition 4.1.4 tells us
that the isotropy of the simplicial complex X[E ] is abelian, and that its dimension is
bounded by N := βN ′ + β +N ′.
Since both β and N ′ depend only on n, this is all we have to show.

5.2.10 Remark.
The Farrell-Jones Conjecture for Zn oM Z follows from Theorem 5.2.2 by the tran-
sitivity principle [BFL14, Thm. 1.11] since abelian groups satisfy the Farrell-Jones
Conjecture by [BL12b, Weg12].

We have implicitly proven a criterion when a Farrell-Hsiang group (see [BL12a,
Def. 1.1], [BFL14, Def. 1.15] or [Bar, Thm. C]) satisfies the assumptions of Theorem
A. To round up our discussion, we make this more explicit.

5.2.11 Definition.
Let G be a discrete group together with a finite generating set S. Let F be a family
of subgroups of G, and let A be a small additive category with right G-action.
Say that (G,S) is a Farrell-Hsiang group of bounded depth with respect to F if there

are ν ∈ N and B ∈ N such that for every ε > 0 there are

• an epimorphism π : G� F to a finite group with depth d(F ) 6 B and

• for every subgroup H 6 F which is in D, a G-simplicial complex EH of
dimension at most ν whose isotropy groups lie in F , such that there is an
H := π−1(H)-equivariant map fH : G → EH such that d1(fH(g), fH(g′)) 6 ε
whenever g−1g′ ∈ S.

5.2.12 Proposition.
Let G be a discrete group together with a finite generating set S. Let F be a family
of subgroups of G, and let A be a small additive category with right G-action.
If (G,S) is a Farrell-Hsiang group of bounded depth with respect to F , then G

satisfies the assumptions of Theorem A with respect to F .

Proof. Let ε > 0 be given. Pick an epimorphism πε : G � Fε to a finite group Fε
with d(Fε) 6 B. Then there is by Corollary 4.2.4 a finite, contractible Fε-simplicial
complex X whose dimension is bounded by β := 2B · bd(B)B and whose isotropy
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groups lie in D. We obtain a G-action on X by restricting the Fε-action along πε.
Then the complex X is an N -transfer space for every N > β.

Consider the set of vertices X0 of X. This set decomposes into transitive G-sets

X0 =
∐
i

G/Hi,

where Hi is the preimage of some subgroup Hi ∈ D of Fε under πε. For each i, pick
a G-simplicial complex E′i of dimension at most ν whose isotropy groups lie in F as
well as an Hi-equivariant map f ′i : G → E′i such that d1(f ′(g), f ′(g′)) 6 ε whenever
g−1g′ ∈ S.
Define Ei := G×Hi

E′i, and let

fi : G/Hi → Ei, gHi 7→ (g, f ′i(g
−1)).

This map is well-defined, and for s ∈ S we have

d1(fi(sgHi), sfi(gHi)) = d1((sg, f ′i(g
−1s−1), (sg, f ′i(g

−1))

= d1(f ′i(g
−1s−1), f ′i(g

−1))

6 ε

since (g−1s−1)−1g−1 = sgg−1 = s ∈ S. The collection {Ei}i determines a set of
resolution data E for X, and the map

f : X0 =
∐
i

G/Hi

∐
i fi−−−→

∐
i

Ei = |X[E ]|(0) ⊆ |X[E ]|

is G-equivariant up to ε (as we have just verified). Lemma 5.2.9 applies to give a
map fε : |X| → |X[E ]| which is G-equivariant up to ε. The simplicial complex X[E ]
has stabilisers in F , and its dimension is bounded by N := βν + β+ ν. Observe that
β depends only on B, which is given globally, and ν is also a global constant, so N
is independent of the choice of ε. This proves that all assumptions of Theorem A are
satisfied.
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Index of notation

Categories

Add category of small additive categories and additive functors
∆ category of finite ordinal numbers and monotone maps
∆inj category of finite ordinal numbers and monotone injections
G-Sets category of G-sets
sG-Sets category of simplicial G-sets
ssG-Sets category of semisimplicial G-sets
Ch(A) category of finite cochain complexes over A
A ∗G C Bartels-Reich construction
CA category of A-objects based over Z and bounded morphisms
WG(X;K) category of “decompositions” over X
MVG(X;K) category of Mayer-Vietoris resolutions over X
−/C category of objects under −
C/− category of objects over −
−/C/? category of objects under − and over ?
Or(G) orbit category of the discrete group G∫
I F Grothendieck construction of F over I
TrG(T ) transport category of the G-set T
Rf (X) category of finite retractive spaces over X
Rf (∗, G) category of cocompact free G-CW-complexes relative ∗
Rep(G) category of finite pointed G-CW-complexes
RepZ(G) category of integral G-representations
SCplx category of simplicial complexes

Functors

N− nerve of a category
wS• Waldhausen’s wS•-construction
K(−) algebraic K-theory space
K−∞(−) (non-connective) algebraic K-theory spectrum
Σ suspension
⊗C tensor product/balanced product over C
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ind induction
res restriction
hocolim homotopy colimit
|−| geometric realisation
σX “forget basedness over X”-functor
Tot totalisation functor from double complexes to cochain complexes
ρpT resolution functor associated to T ×∆p

∆X(A;Y ) canonical decomposition of A over X given by Y
tr± p upper/lower p-truncation functor
C∗ε (−) augmented simplicial or cellular cochain complex
HG(X;E) G-homology of X with coefficients in the Or(G)-spectrum E
Ω(G) Burnside ring of G
A(X) algebraic K-theory (“A-theory”) of X
SwA(G) A-theoretic Swan group of G
Sw(G) linear Swan group of G

Families of groups

Cyc class of finite cyclic groups
Cycp class of finite groups which are cyclic mod p
H family of hyperelementary groups
D Dress family

Miscellaneous

n (ordered) set {0, . . . , n}
∆p standard p-simplex, usually considered as a semisimplicial set
a(µ) “coaugmentation” map associated to the ordinal number map µ
suppn(ϕ) support of the morphism ϕ over the n-simplices
AX Davis-Lück assembly map of X
αX Weiss-Williams assembly map of X
X[R] resolution of X by the set of resolution data R
|X,R| alternative realisation of X[R]
d1 `1-metric of a simplicial complex
NG(H) normaliser of the subgroup H in G
d(G) depth of the group G
∆(G) Oliver ideal in Ω(G)
gh ghost map of the Burnside ring
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