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Abstract

Sometimes, business applications perform constraint-logic search, e. g., for finding solu-

tions to planning problems. Most business applications are written in object-oriented

programming languages that are not particularly suited for search applications. In con-

trast, logic and constraint-logic programming languages offer useful features for search.

However, such programming languages are less suited for the development of arbitrary

(business) software. Consequently, there currently is a gap that established programming

languages can only bridge by using impractical solutions. Intending to improve this

situation, this work describes the multi-paradigm programming language Muli (short

for the Münster Logic-Imperative Language). Muli is based on Java, adding support for

constraint-logic features. Most notably, Muli offers logic variables, symbolic execution,

and encapsulated search. It is accompanied by a compiler and a sophisticated runtime

environment. So far, Muli has been successfully applied to several domains, namely to

logistics, the development of neural networks, and classical search problems.
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1
Exposition

This chapter sets the stage for this dissertation. In the beginning, Section 1.1 motivates the

development of an integrated programming language for object-oriented and constraint-

logic programming. Subsequently, Section 1.2 states the challenge approached by this

research, followed by a description of the research design in Section 1.3. Finally, Section 1.4

outlines the structure of the dissertation.

1.1 Motivation

In contemporary software development, object-oriented programming languages are

ubiquitous. Throughout the past years, object-oriented programming languages such as

Java, C#, and C++ have dominated in popularity rankings [TIO20; Sta17; Sta1़; Sta19].

This is not surprising, seeing that object-oriented programming offers useful features

such as inheritance as well as encapsulation of data and behaviour. These features con-

tribute towards structure, maintainability, and re-usability of software artefacts [Lou93].

Moreover, the widespread usage of these programming languages yielded a lot of soft-

ware components that developers can embed into their own applications, thus making

object-oriented programming languages even more useful [Mvn20]. The availability

of these software components contributes to the dominant position of object-oriented

programming in software development.

Yet, there are application scenarios in which the use of other paradigms would provide

relevant benefits. Specifically, business software that occasionally solves search problems,

such as route or production planning, can benefit from constraint-logic programming.

As a specialization of declarative programming, languages from the constraint-logic

paradigm enable the declarative specification of a search problem and rely on solver

algorithms of the runtime environment that will implicitly find solutions for the problem

[FA03].

For instance, consider a simplified dynamic scheduling problem of a logistics company

that transports goods using a set of trucks. A transport order 𝑜𝑖 = (𝑤𝑖, 𝑣𝑖) has a specific

weight 𝑤𝑖 and volume 𝑣𝑖 depending on the goods that are transported. Moreover, every
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1 Exposition

truck 𝑇𝑗 = (𝑊𝑗, 𝑉𝑗) has a maximum capacity w. r. t. weight 𝑊𝑗 and volume 𝑉𝑗. With

any given assignment 𝐴 of orders to trucks, where 𝐴(𝑜𝑖) = 𝑇𝑗, the following constraint

enforces that the assignment does not exceed the trucks’ capacities:

(∑𝑖 ∈ {𝑖 | 𝐴(𝑜𝑖) = 𝑇𝑗} 𝑤𝑖) ≤ 𝑊𝑗 ∧ (∑𝑖 ∈ {𝑖 | 𝐴(𝑜𝑖) = 𝑇𝑗} 𝑣𝑖) ≤ 𝑉𝑗 ∀𝑗

A constraint solver can find a solution to this problem, i. e., a feasible assignment. As soon

as a solution is found, business software is responsible for putting the solution into effect

by communicating loading orders to the respective truck drivers. Developing the search

problem in a constraint-logic programming language benefits from the possibility to

declaratively specify the problem, whereas the communication of loading orders is more

intuitively implemented using an imperative (object-oriented) programming language.

Moreover, in the context of a long-running business application, the scheduling problem

in this example is a dynamic one as new transport orders arrive at runtime, thus imposing

additional constraints that require an adapted solution. Consequently, a software for this

scenario would frequently switch between non-deterministic search and deterministic

execution. Therefore, this scenario and similar ones would benefit from the possibility to

seamlessly interleave object-oriented and constraint-logic application parts.

As a consequence, it is desirable to integrate facilities for constraint-logic search into

an object-oriented programming language. There are approaches that intend to achieve

such an integration, but they come with limitations. One option is a cross-language

integration, e. g., combining a Java business application with a Prolog program that is

executed in Prolog using the Java Native Interface [KO0़]. However, there are semantic

mismatches between the programming languages, making this approach fragile and

error-prone [KO0़]. Another option is to use one of several constraint-solver libraries,

e. g., OptaPlanner [The17], JaCoP [Kuc03], or Choco [PFL16] for Java. However, these

libraries do not share a common interface that would make them interchangeable. In the

worst case this results in a lock-in effect once a library has been selected. In the past

there has been at least one initiative that aimed at standardizing a solver library interface.

However, that initiative’s efforts have ceased [Fel12].

In summary, even though object-oriented and constraint-logic programming both

provide complementary benefits for the development of business software, there is no

convenient, integrated, safe, and future-proof way to use constraint-logic features from

software that is implemented in an object-oriented language. Ideally, a programming

language would provide integrated facilities for the development of such software.
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1.2 Problem Statement

Due to the absence of an integrated programming language for the development of

software that would benefit from object-orientation as well as from constraint-logic pro-

gramming, development of such software requires unnecessary effort. An ideal integrated

programming language would be primarily object-oriented in order to be appealing as a

mainstream programming language for business contexts, while treating constraint-logic

features as first-class citizens. Specifically, logic variables should be syntactically similar

to regular variables and constraints should be expressed and imposed seamlessly without

having to resort to a library. Moreover, the virtual machine (VM) should take care of

solving search problems transparently. This includes non-deterministic branching as well

as constraint solving, i. e., finding specific values for logic variables given the imposed

constraints.

Programming languages that facilitate all this in an integrated way can be subsumed

under the term constraint-logic object-oriented programming (CLOOP). The absence of

such a programming language constitutes a research gap that this dissertation sets out to

fill. In short, the research objective of this dissertation is

Research objective The design and development of a programming language that
provides integrated support for object-oriented programming and constraint-logic
programming.

Three artefacts are developed in order to achieve this objective:

• First and foremost, a programming language for CLOOP that integrates constraint-

logic features as a first-class citizen into an object-oriented programming language.

• Second, a VM as the runtime environment that executes applications that are de-

veloped in the programming language. Throughout the execution of an application,

the VM provides support for non-deterministic search and employs a constraint

solver.

• Third, a compiler that transforms source code that is written in the programming

language into an intermediate representation that the VM can read and execute.

The work on these research artefacts yields additional contributions. Examples in-

clude a non-deterministic operational semantics for the execution of an imperative core

language, a structure that encodes non-deterministic execution of (object-oriented and)

imperative applications, and the implementation of different strategies for search over
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the non-deterministic execution of stateful applications. Moreover, the concept of logic

variables is extended beyond primitive types, so that logic variables can be used in lieu of

objects.

1.3 Research Methodology

With the objective to design and develop a programming language, this dissertation

contributes to computer science research. Ultimately, the results are also intended to

benefit businesses, since a novel programming language that integrates facilities for object-

oriented programming as well as for constraint-logic search improves the development of

business software that frequently resorts to search. Consequently, this dissertation also

provides a contribution to the field of information systems (IS) research that is concerned

with solving problems that arise where people, organizations, and information technology

intersect [SMB95]. To that end, IS research applies knowledge that is rooted in other

disciplines (e. g., computer science) [Pef+07].

In IS research, there are two major streams that are distinguished regarding the kind

of research objectives that they pursue [Hev+04]. One stream is primarily interested in

behavioural research and aims at describing, understanding, explaining, and predicting

the effects of technology in general and IS in particular [Gre02]. In contrast, the primary

focus of the other stream is towards design-oriented research, viewing IS research as an

engineering discipline with the aim of creating and evaluating innovative information-

technology artefacts (e. g., software) [Öst+10; GH13].

The stated objective of this research is to design and to develop a programming

language. This involves constructive tasks, so that this dissertation pertains to the design-

oriented stream. Hevner et al. formulate guidelines that ensure the rigor and relevance

of design-oriented research in IS [Hev+04]. The Design Science Research Methodology

(DSRM) for IS research is based on these guidelines, proposing an iterative process model

that comprises six steps [Pef+07]:

1. Identify problem and motivate. The first step of the DSRM requires researchers

to state the problem that should be addressed. Moreover, researchers motivate

the value of a future solution. For the present work, the motivation is the lack

of an integrated programming language that would improve the development of

(business) software that requires search.

2. Define objectives of a solution. Given that the process of designing solutions is an

incremental one, the identified problemmight not directly translate into an objective.
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1 Identify problem and motivate

2 Define objectives of a solution

3 Design and develop the artefact

4 Demonstrate the artefact

5 Evaluate the artefact

6 Communicate the results

Section 1.1.

Sections 1.2 and 3.1.

Chapters 3 to 6 and Part II.

Part II.

DSRM step Presented in

Figure 1.1: Relationships between DSRM steps and the structure of this dissertation.

Therefore, based on the problem specification, researchers infer objectives of the

desired solution artefact. The objective of this research is presented in Section 1.2.

3. Design and develop the artefact. This step focusses on the creation of the artefact, i. e.,

of an “object in which a research contribution is embedded in the design” [Pef+07,

p. 55]. For the present work, these artefacts are the programming language, the

runtime environment, and the compiler.

4. Demonstrate the artefact. After the creation of an artefact, researchers apply it to

the identified problem in order to demonstrate that it is useful. For instance, this

can be achieved by using it in an experiment or in a case study.

5. Evaluate the artefact. As an alternative to demonstration, or as a complementary

activity, a formal evaluation can prove that the artefact solves the identified problem.

The DSRM is defined as an iterative process, enabling researchers to return to step

2 or 3 after the evaluation step.

6. Communicate the results. Last but not least, researchers need to publish the outcomes

of all steps, including the problem, the motivation, and the artefact, in order to

advance the state of research. Moreover, based on the received feedback or on

own observations, researchers can make use of the iterative nature of the DSRM by

returning to step 2 or 3 in order to continue research.
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This dissertation applies the DSRM in order to achieve the stated research objective.

Figure 1.1 illustrates how the structure and the contents of this thesis relate to the process

steps of the DSRM.

1.4 Dissertation Outline

This dissertation is structured into two parts, with Part I providing an overview of the

contributions of the research and Part II comprising the individual publications. In Part I,

this exposition is followed by a presentation of the theoretical background of the research

in Chapter 2. This lays the ground for the main chapters:

• The Münster Logic-Imperative Language (Muli) is introduced in Chapter 3, com-

prising a description of the language features, the compiler, and an accompanying

runtime library. Moreover, examples demonstrate applications for Muli.

• Afterwards, Chapter 4 presents implementation details of a runtime environment

for Muli applications, the Muli Logic Virtual Machine (MLVM). This is accompanied

by a description of its main features, namely, symbolic execution, constraint solving,

search trees, and trails.

• Based on that, Chapter 5 discusses extensions to CLOOP search. Specifically, it

provides insights on how individual solutions can be calculated and retrieved, as

opposed to exhaustively exploring the entire search space before returning all solu-

tions to the invoking application at once. Moreover, it describes the implementation

of different search strategies for CLOOP applications.

• Another extension to the previous concepts is the introduction of logic variables that

represent objects. This extension and its implications regarding non-deterministic

execution are presented in Chapter 6.

• Chapter 7 concludes Part I by summarizing the contributions of this research, also

stating its limitations. Moreover, perspectives for future research are outlined.

Last but not least, Part II reproduces the eight academic publications that form part of

this thesis.

़



2
Foundations

This chapter presents and explains the theoretical background of this thesis. Initially,

logic programming is explained in Section 2.1. Afterwards, Section 2.2 provides an

introduction to constraint-logic programming. Moving towards imperative programming

languages, Section 2.3 presents Java bytecode in the context of the Java Virtual Machine

(JVM) and explains how certain approaches facilitate symbolic execution of Java bytecode.

Section 2.4 discusses existing support for constraint solving in contemporary imperative

and object-oriented languages, with a focus on Java. Moreover, other concepts from

declarative programming that have found their way into mainstream programming

languages are outlined in Section 2.5.

2.1 Logic Programming and Non-Deterministic
Execution

In logic programming, programs consist of declarative descriptions of a problem domain

[CM03, Section 10.7]. A program specifies a set of propositions and relations between

propositions, thus defining properties of elements from the program’s problem domain

as well as relationships between these elements. The program can then solve a logic

problem by inferring implicit propositions about the problem domain from the ones in the

explicit specification. In contrast to programming with typical imperative programming

languages, logic programming does not require developers to explicitly define a sequence

of operations that must be performed in order to solve a logic problem. Instead, a runtime

environment that executes the logic program draws conclusions using a resolution

algorithm (cf. [CM03, Section 10.4; Doe94]).

A prominent logic programming language is Prolog [CM03]. Prolog programs can

be executed using an appropriate runtime environment, such as SWI-Prolog [Wie03].

The Warren Abstract Machine (WAM) describes an abstract machine for the execution of

Prolog programs [War़3]. In Prolog, a program consists of facts and rules regarding the

problem domain [CM03, Section 1]. A question about the problem domain is specified as

a goal, causing the runtime environment to infer whether the statement in the question is
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correct. Alternatively, if the goal contains at least one variable, the runtime environment

will attempt to find values for that variable so that the goal is satisfied.

In an excerpt from a recipe database in Prolog, Listing 2.1 presents facts for a predicate

ingredient(X, Y) . A human reader would interpret the predicate as “Y is an ingredient

of X”. Note that, in Prolog, names of variables begin with an uppercase letter, whereas

names of constants start in lowercase.

1 ingredient(bolognese, spaghetti).
2 ingredient(bolognese, sauce).
3 ingredient(sauce, oil).
4 ingredient(sauce, tomatoes).
5 ingredient(sauce, oregano).

Listing 2.1: Specification of facts in a Prolog program.

A program can already formulate a goal with a query against these facts, such as

?- ingredient(bolognese, oil). ,

to which the runtime environment responds with false. because the statement in the

goal cannot be inferred from the given facts. Alternatively, facts can be used in rules. In

Listing 2.2, the rule contains(X, Y) describes that X contains Y , either directly or indirectly,

using two clauses. The Prolog syntax for a clause A :- B. is read as the implication B ⇒ A ,

i. e., A is true if B is true.

1 contains(X, Y) :- ingredient(X, Y).
2 contains(X, Y) :- contains(X, Z), ingredient(Z, Y).

Listing 2.2: Rule definition in a Prolog program.

Note that the rule definitions in Listing 2.2 overlap: While the left-hand sides match

the same pattern, the clauses differ w. r. t. their right-hand sides. The implication is that

contains(X, Y) is true if at least one of the clauses that define it can be inferred to be

true. As a consequence, this rule considers direct ingredient relations as well as transitive

ones via a recursive definition. With the rule definitions from Listing 2.2, the previous

goal can be modified to

?- contains(bolognese, oil).

and would evaluate to true. because the relation contains(bolognese, oil) can be in-

ferred from the specified facts and rules.

Moreover, goals can contain variables such as

10
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?- contains(bolognese, Q). ,

causing the runtime to find bindings for Q , i. e., specific values for which the goal is

satisfied. In this example, there are five alternative bindings for Q that render the statement

contains(bolognese, Q) true.

A Prolog runtime environment performs non-deterministic search in order to find all

alternative bindings. In the non-deterministic execution of Prolog applications, choices

are made regarding the bindings of variables as well as regarding the selection of clauses.

The runtime environment creates a choice point when making a non-deterministic choice.

Once an alternative has been evaluated in full (i. e., found to result either in a true or in

a false statement), the runtime environment performs backtracking to the latest choice

point, undoing the choice that was made in order to evaluate further alternatives. For

instance, in order to infer bindings for Q in the goal

?- contains(bolognese, Q). ,

a runtime environment could choose to consider the first clause of contains(X, Y) first,

which results in the first choice point as well as in the evaluation of ingredient(bolognese,

Q). With the next choice point, the runtime environment binds Q = spaghetti , which

results in a true statement. Afterwards, backtracking occurs in order to evaluate another

binding, Q = sauce . The runtime environment continues non-deterministic search in

this way until all alternatives have been considered, or until execution is interrupted

externally, e. g., from user interaction.

Concepts from logic programming, particularly w. r. t. non-deterministic execution,

have found their way into other programming languages. For example, Curry is a

functional-logic programming language [HKM95] whose syntax is largely based on that

of Haskell [Jon03]. In Curry, a logic variable is declared using the free keyword. For

example, in the Curry progam

main = one && two where one, two free ,

both one and two are boolean variables that are not bound (and, therefore, “free”). Evaluat-

ing the above expression already results in non-deterministic execution, branching over

the possible bindings of one (True and False ). Furthermore, expressions can explicitly be

formulated as non-deterministic using the choice operator ? . For example, the expression

main = 1 ? 2 ,

can evaluate to 1 as well as to 2. Moreover, non-determinism is implicitly introduced when

there are overlapping function definitions. For example, both left-hand side definitions

of nonDeterministicFun in Listing 2.3 are identical. Therefore, the runtime environment

non-deterministically chooses one of the right-hand sides during evaluation. As in Prolog,

11
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1 nonDeterministicFun :: a -> a -> a
2 nonDeterministicFun first second = first
3 nonDeterministicFun first second = second

Listing 2.3: In Curry, overlapping function definitions result in non-deterministic evalu-
ation.

the runtime environment will eventually consider all alternatives unless only one solution

is required.

Curry internally represents the non-deterministic evaluation of expressions using a

search tree that is defined as (cf. [BHH04])

data SearchTree a = Value a

| Fail

| Or [SearchTree a] .

In that representation, Or is the non-deterministic choice that maintains a list of alternative

expressions. Leaves of the search tree are either of the form Value a that holds the value

of an expression of a type that matches the type variable a , or Fail that represents an

unsuccessful computation. For example, evaluating the Curry expression

nonDeterministicFun 1 2

with the function definitions from Listing 2.3 results in the search tree

Or [Value 1, Value 2] .

These search tree representations are used, for example, in the context of encapsulated

search [BHH04]. In a recent KiCS2 implementation of Curry (KiCS2 2.1.0), the function

someSearchTree :: a -> SearchTree a

can be used in order to obtain the above search tree [HPR16]. In combination with the

KiCS2 function

allValuesDFS :: SearchTree a -> [a] ,

the expression

allValuesDFS $ someSearchTree $ nonDeterministicFun 1 2

encapsulates non-deterministic search. The results are collected in a list, returning [1, 2]

for this example. allValuesDFS uses a depth-first search strategy to traverse the search

tree of the encapsulated search. Analogously, further functions offer breadth-first search

and an iterative-deepening strategy as alternatives for traversing the search tree.

There are several implementations of Curry that make Curry code executable on

different platforms, including PAKCS that creates Prolog code from Curry programs

[Han+19], KiCS2 that transpiles to Haskell code [Bra+11], or the Münster Curry Compiler
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𝑟1

𝑟2
(𝑥1, 𝑦1 + ℎ1) (𝑥1 + 𝑤1, 𝑦1 + ℎ1)

(𝑥1, 𝑦1) (𝑥1 + 𝑤1, 𝑦1)

(𝑥2, 𝑦2 + ℎ2) (𝑥2 + 𝑤2, 𝑦2 + ℎ2)

(𝑥2, 𝑦2) (𝑥2 + 𝑤2, 𝑦2)

Figure 2.1: Rectangles 𝑟1 and 𝑟2 must intersect.

that compiles a Curry program for a custom Curry runtime system implemented in C

[LK99; Lux99].

2.2 Constraint-Logic Programming

Like logic programming, constraint programming and constraint-logic programming

both rely on declarative descriptions for the specification of problems. The introduc-

tion to constraint-logic programming first requires a short presentation of constraint

programming concepts. A constraint program specifies a constraint problem as a set

of variables, combined with (arithmetic and non-arithmetic) constraints that describe

the relationships between the problem’s variables [MS9़, Section 1.2]. In contrast to an

imperative implementation, a constraint program does not specify the steps for solving

the problem. Instead, the program serves as the input for a constraint solver that collects

the constraints and provides algorithms that are executed in order to solve the constraints

[MS9़, Section 1.3].

Constraint solvers differ regarding their supported theories, i. e., by the kinds of

constraint problems that they can solve [FA03, Section ़.3]. For example, consider the

following constraint problem. It specifies that two rectangles 𝑟1 and 𝑟2 must intersect

(each represented by a tuple 𝑟𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑤𝑖, ℎ𝑖), with coordinates growing from left to right

and from bottom to top as illustrated in Figure 2.1):

(𝑥2 + 𝑤2 ≥ 𝑥1) ∧ (𝑥1 + 𝑤1 ≥ 𝑥2) ∧ (𝑦1 + ℎ1 ≥ 𝑦2) ∧ (𝑦2 + ℎ2 ≥ 𝑦1)

Depending on the assumed domain of the variables, solvers for different theories are

adequate. For example, assuming the variables are real numbers, i. e.,

𝑥1, 𝑦1, 𝑤1, ℎ1, 𝑥2, 𝑦2, 𝑤2, ℎ2 ∈ R,
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the problem can be solved using algorithms for the linear arithmetic theory [FA03].

Alternatively, under the assumption that all variables are integers from a finite domain,

e. g.,

𝑥1, 𝑦1, 𝑤1, ℎ1, 𝑥2, 𝑦2, 𝑤2, ℎ2 ∈ {1, 2, … , 5000},

the problem can be solved by a constraint solver that implements algorithms for the finite

domain (FD) theory. Non-numeric theories are also possible, for example in the context

of solvers for string constraints (e. g., [Kie+09; Kri+20]). Satisfiability Modulo Theories

(SMT) solvers implement algorithms with support for constraints from several theories

[Bar+09].

After a constraint is imposed, the relationships that is formulated by the constraint must

hold for all the values that are substituted for the involved variables. During execution

of a constraint program, a constraint solver collects the constraints that are imposed

incrementally, thus creating a constraint system that is the conjunction of all imposed

constraints [FA03]. Among other tasks such as simplification [MS9़, Section ़.3], the

constraint solver uses the constraint system in order to perform the following tasks that

are particularly relevant to this work and constraint-logic object-oriented programming:

Determining satisfiability The solver decides whether there is a possible substitution

for every variable such that the conjunction of all constraints holds [MS9़, Section

़.3]. For example, a constraint system of 𝑥 = 𝑦 ∧ 𝑥 ≠ 𝑦 is not satisfiable because

of the contradiction, whereas checking 𝑥 = 1 ∧ 𝑥 = 𝑦 for satisfiability succeeds

because there is a substitution for 𝑥 and 𝑦 that satisfies the constraint system.

Satisfiability is used synonymously with consistency, i. e., a constraint system that

is satisfiable is also consistent.

Solving A solution is a substitution for all (or all relevant) variables that satisfies all

constraints of a constraint problem [Apt09, Section 2.1]. The way this is achieved

depends on the underlying theory or theories. For example, in the context of FD

solving (and for discrete domains in general), a solver might use non-deterministic

search to try out possible values from the variables’ domains for each variable,

using backtracking to try other values if a substitution renders a constraint system

inconsistent [FA03, Section ़.5]. In literature, such an enumerative approach is

also referred to as labelling. Constraint systems consisting of linear arithmetic

constraints can be solved using simplex-based algorithms [DD06]. Solvers can also

combine labelling with other operations or algorithms [FA03, Section ़.5].
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1 :- use_module(library(clpfd)).
2 must_intersect([X1, W1, Y1, H1, X2, W2, Y2, H2]) :-
3 X2 + W2 #>= X1, X1 + W1 #>= X2, Y2 + H2 #>= Y1, Y1 + H1 #>= Y2.
4 ?- Coords = [X1,W1,Y1,H1,X2,W2,Y2,H2], Coords ins 1..5000,

must_intersect(Coords), label(Coords).↪

Listing 2.4: CLP(FD) program that searches for intersecting rectangles.

In the worst case, a labelling approach will enumerate all possible bindings for the

variables of a constraint problem, so that the effort that is required for search depends

on the combinatorial complexity. For instance, consider a constraint problem with two

variables 𝑥 and 𝑦, where each variable is an unsigned integer that is stored in 32 bits.

Therefore, the variables initially have a finite domain with 232 possible values each. Given

a constraint system 𝑐1 ∧ 𝑐2 with the constraints 𝑐1: 𝑥 > 𝑦 and 𝑐2: 𝑥 = 0, labelling tries

232 values for 𝑦 in the worst case until finding out that there is no substitution that

satisfies the constraint system. As a mitigation, constraint propagation algorithms can

reduce the combinatorial complexity [Apt09, Section 5]. In this example, constraint

propagation leverages the facts that, first, 𝑐2 reduces the domain of 𝑥 to the single value 0
and that, second, 𝑐1 involves both 𝑥 and 𝑦, in order to reduce the domain of 𝑦. Therefore,
immediately as soon as both constraints are imposed, a constraint propagation algorithm

will reduce the domain of 𝑦 to contain only values 𝑦 < 0, resulting in an empty domain.

This reduces the required effort for solving as well as for determining satisfiability. During

solving, labelling tries only values from the domain of a variable. As the domain is empty,

the solver can easily determine that there is no substitution. This fact also helps when

satisfiability is determined, as a constraint system is not satisfiable if the domain of at

least one variable is empty. For details on specific constraint propagation algorithms,

refer to the presentation by Apt [Apt09, Section 7].

Constraint-logic programming incorporates concepts from constraint programming

in logic programming. In the example of Prolog, it is possible to use constraint-logic

programming by importing a library, thus allowing to define and solve constraints as

part of Prolog rules. For example, the CLP(FD) library adds support for FD constraints to

Prolog [Tri12], whereas CLP(B) provides support for constraints over boolean variables

[Tri1़].

For demonstration, consider the implementation of the rectangle intersection problem

using Prolog with CLP(FD). The first line of Listing 2.4 loads the CLP(FD) library, thus

enabling the definition and use of FD constraints in the program. In CLP(FD) programs,
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arithmetic constraints are prefixed by # , e. g., #= for equality. The must_intersect rule

uses #>= to specify the greater-than constraints. Conjunctions are expressed with a

comma (, ) between individual terms, thus using regular Prolog syntax. Furthermore, the

last line shows the goal that is used to search for concrete instances of rectangles. Coords

is defined as the list of the variables that specify the rectangles’ bounds. The domain of

the variables is restricted to {1..5000} using ins . After the constraints of must_intersect

are applied, label is used in order to find specific coordinates.

2.3 Symbolic Execution of Java Bytecode

Instead of operating on the human-written source code files of Java applications, a

JVM parses and executes a binary intermediate representation of the application that is

produced by a Java compiler [Lin+15, § 1.2]. For each class of the compiled application,

this intermediate representation contains a single file that describes all aspects of the

class. The intermediate representation defines the behaviour of the class’s methods using

so-called bytecode, i. e., instructions for the VM [Lin+15, § 6.5]. Executing a bytecode

operation has an immediate effect on the execution state that the JVM maintains during

the execution of an application. The JVM represents execution state using a combination

of [Lin+15, §§2.5 f.]

• the frame stack that contains one element per executed frame, i. e., for every method

that has been invoked and that has not terminated yet, representing the part of the

execution state that is local to a method, such as values of local variables;

• one operand stack per frame, containing intermediate calculations on which most

bytecode instructions operate;

• a program counter (PC) that references a specific instruction from the method that

belongs to the topmost frame on the frame stack, thus defining which instruction

is currently executed; and

• a heap that stores objects and arrays.

In standard Java, a variable can only be used after a value has been assigned to it, i. e., a

variable always has a value [Gos+15, § 16]. As a result, the value that can be obtained from

using a variable is always a constant, even though the value of non-final variables may

be changed by a subsequent assignment (thus changing the value that will be obtained in

later uses of the variable). In non-standard contexts, such as for the purpose of test-case

generation, it may be desirable to initialize a variable with a logic variable instead of a

constant [Kin76; MLK04]. For instance, consider an application that intends to derive
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Figure 2.2: Comparison of the effects of non-branching instructions on the operand stack.

test cases for a given method under test boolean m(int a) . Assume that the behaviour

of m() depends on the value that is passed as a parameter. For the purpose of finding

all distinct behaviours, it is desirable to invoke and execute m() , passing a logic variable

instead of a constant value, in order to observe how the behaviour of the method depends

on the value. Symbolic execution facilitates the use of logic variables in the execution of

applications by changing the execution semantics for computations that involve logic

variables [Kin76]. Therefore, the runtime environment has to provide support for the

representation of logic variables and other symbolic expressions.

For a comparison, consider how the regular execution semantics of the Iadd bytecode

instruction in Java differs from that in symbolic execution. In order to add two integer

variables from the current operand stack, Iadd takes the two topmost elements from the

stack, adds them, and pushes the result back to the stack. In regular execution semantics,

the elements that are originally on the stack are all constants, so that the addition produces

another constant that is pushed as a result. This is illustrated in Figure 2.2a. In contrast,

if at least one element on the stack is a symbolic expression, such as a variable, the result

of addition is a symbolic expression instead of a constant. The symbolic expression

maintains the relationship between the result of the computation and the logic variable(s)

that the computation depends on [Kin76]. For instance, executing Iadd on a constant and

a logic variable yields a symbolic expression that represents their addition (Figure 2.2b).

The difference in execution semantics becomes even more interesting for instructions

that branch the control flow of execution. For example, If_icmpeq jumps to a specific

bytecode instruction if a condition is fulfilled, e. g., 1000 + 𝑥 > 0. If that condition

is a symbolic expression, it is possible that the condition evaluates to true for specific

substitutions of the involved logic variables whereas, for other substitutions, the condition

evaluates to false . If this is the case, the control flow could continue either way, so that

symbolic execution performs a non-deterministic choice [Kin76].

As a consequence, if all possible execution behaviours are of interest, symbolic execu-

tion has to take all possible decisions of non-deterministic choices into consideration.

The execution paths of an application can be represented in a symbolic execution tree as
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1000 + 𝑥 ≤ 0 1000 + 𝑥 > 0

𝑥 = 𝑦 𝑥 ≠ 𝑦

Starting instruction Non-deterministic choice
End of execution Instruction

Key

Figure 2.3: A symbolic execution tree, with branch constraints denoted at the edges.

illustrated in Figure 2.3, in which each inner node represents a non-deterministic choice

with one subtree per decision alternative [Kin76].

Taking a decision at a non-deterministic choice results in a constraint that describes

the prerequisite for taking that decision. This constraint is called a branch constraint.

Branch constraints are indicated by the edge labels of the symbolic execution tree in

Figure 2.3. For instance, if execution branches at an If_icmpeq instruction, the condition

of the original if statement becomes the branch constraint of the true branch. As a

consequence, the else branch for which the condition evaluates to false uses the negated

condition as its constraint. The leaves of the symbolic execution tree are the outcomes of

the program. For example, if the purpose of symbolic execution is to generate test cases

for a method under test, there will be one leaf per value that is returned (or exception that

is thrown) after taking a specific sequence of decisions at choices. Therefore, a single path

from the root to a leaf corresponds to a specific execution of the method under test that

can only happen if all branch constraints on the path hold. The conjunction of all branch

constraints for a given path is called the path constraint [God+0़]. Symbolic execution

approaches can leverage constraint solvers for checking whether path constraints are

satisfiable. Moreover, constraint solvers can be used to solve the constraint system in

order to generate concrete values, e. g., as input data for generated executable test cases

[Lem+04].

The symbolic execution of Java applications requires a custom JVM. Prominent ex-

amples of symbolic JVMs that have been developed for the purpose of test-case generation

are IBIS [DM03], GlassTT [MLK04], and the Münster Generator of Glass-Box Test Cases

(Muggl) [MK09]. Symbolic execution is also used in the context of languages other than

Java [Meu01; TS06; TH0़; CDE0़; Cad+11]. Several implementations of symbolic execu-

tion only support single-threaded applications and disregard multi-threading [KPV03;

MLK04]. In the presence of more than one application thread, a decision for the sub-

sequently executed thread has to be taken after the execution of every single instruction.

As a result, non-deterministic choices are made at branching instructions as well as after

every single instruction [DK19a]. Therefore, support for multi-threading in combination
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with non-deterministic search inflates the search tree, thus increasing the complexity

of search. As a consequence, proper support for multi-threading in symbolic execution

would require sophisticated techniques that reduce the search space.

2.4 Constraint Solving in Object-Oriented Languages

Object-oriented applications can embed constraint solving and search by implementing a

custom solver or by importing a constraint solver library. For example, the automated test-

case generator GlassTT implements the Münster Constraint Solving Toolkit (Muconst).

Muconst is a custom constraint solver that is specialized for solving constraints in order to

generate test data [Lem+04; EMK12]. However, most application scenarios do not require

the additional effort that results from developing and maintaining a custom solver. A

plethora of library implementations exist for several mainstream programming languages

[Ceb20].

For the development of Java applications, contemporary constraint solver libraries

include, e. g., Choco [PFL16], OptaPlanner [The17], and JaCoP [Kuc03]. These libraries are

implemented in Java. Moreover, constraint solvers implemented in other programming

languages offer bindings for Java, such as the Z3 solver [DB0़].

In the context of this dissertation, Muconst and JaCoP are used as constraint solvers

(see Section 4.3). The first solver, Muconst, is an SMT solver specifically geared towards

the generation of test data after symbolically executing a Java method under test [Lem+04;

EMK12]. It offers SAT solving for propositional logic as well as support for non-linear

and linear arithmetic theories. Moreover, it is aware of potential rounding errors in

floating-point solutions and ensures that rounding is correct w. r. t. the active constraint

system. However, since Muconst relies on the Simplex algorithm for problems that

involve numeric variables [EMK12], it can only decide the satisfiability of a constraint

system by solving the entire problem using the Simplex algorithm. Therefore, checking

the consistency of a branch’s constraint system is computationally intensive. The second

solver, JaCoP, is a library with a specific focus on FD constraints [Kuc03] that also

includes experimental support for constraints involving floating-point variables. It

leverages constraint propagation techniques in order to reduce the domains of finite-

domain variables early, and uses labelling in order to find solutions to the imposed

constraints [Kuc03].

A problem of using constraint solver libraries, as well as of developing a custom solver,

is that there are no standardized interfaces. For instance, even though both the Choco
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solver and JaCoP are libraries for Java, their facilities for defining constraints as well as

for starting search differ [Kuc03; PFL16]. The Java Specification Request 331 describes an

intention towards standardization [Fel12]. However, the latest activity on that request

was recorded in 2012, and the efforts have not resulted in a uniform interface. As a

consequence, switching the code of an application to a different solver library results

in a tremendous effort. This results in problems once a used solver library is no longer

maintained, or if the application requires novel kinds of constraints that the used library

does not support.

2.5 Concepts from Declarative Programming in
Imperative Languages

There are several approaches that integrate declarative programming and imperative

programming, either as additions to existing languages or in the form of new, integrated

programming languages. The selection that is presented is far from exhaustive, but

it demonstrates that there is a continuous effort regarding the integration of useful

concepts from multiple paradigms into a single programming language, in both research

and practice. These additions and integrations increase the versatility of programming

languages and reduce the need to develop manual integrations.

Alma-0 integrates non-deterministic choice into the imperative language Modula-2

[Apt+9़; Wir़5]. Non-deterministic choice is added to Alma-0 using special syntax. For

example, the statement EITHER 𝑠1 ORELSE 𝑠2 END will cause the runtime environment to

branch, first evaluating the statements in the 𝑠1 branch and, after backtracking, those in

𝑠2. It is possible to specify more than one ORELSE in order to create additional branches

at the choice. Other statements add support for non-deterministic choice to loops and

facilitate controlling the behaviour of search (e. g., statements for cutting alternative

branches of execution). In an extension, the authors of Alma-0 also discuss the addition

of constraints to the language, but leave the implementation of a solver to future work

[AS99].

Logic Java attempts to integrate constraint-logic programming with object-oriented

programming [MK11a]. The approach is based on Java and uses the symbolic JVM

of Muggl for symbolic execution and constraint definition. In Logic Java, the @Search

annotation is added to methods that the runtime environment should execute using

non-deterministic search. That annotation is parameterized in order to allow specifying

whether depth-first search or iterative deepening should be used as the search strategy.
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Moreover, developers annotate variables that should be treated as logic variables with the

@LogicVariable annotation. Even though the annotation-based approach allows writing

valid Java code that compiles with a standard compiler, the use of annotations has a

disadvantage. The Java compiler as well as the Java Virtual Machine Specification (JVMS)

both limit support for variable annotations to field variables. Therefore, logic variables

cannot be declared as local to a method and must be fields of a class instead. As a result,

the structure of Logic Java code deteriorates in comparison to regular Java code.

PROLOG++ integrates object-orientation into Prolog [Mos94; KJ00]. This adds the

ability to specify rules in the context of instantiable types, thus facilitating the specific-

ation of behaviour that depends on instance values. In contrast to Logic Java, Alma-0,

and Muli, PROLOG++ tackles the integration from the opposite direction, adding the

concept of objects to a declarative language. Visual Prolog has taken a similar approach

that differs from PROLOG++ in its concrete syntax [Sco10]. Additionally, Visual Prolog

includes facilities for creating graphical user interfaces. The programming language Oz

is an additional example for an integration from the opposite direction. Oz integrates

features from object-orientation into a constraint-logic programming language [Van+03].

In contrast to the other presented languages, Oz does not use a Prolog-based syntax.

The CAPJa approach sees benefits in the integration of object-oriented and logic

programs [Ost15]. The integration consists of a so-called connector architecture that

allows Java applications to call Prolog code aswell as using Java objects fromwithin Prolog

code. The CAPJa approach is a useful addition to Java-based applications that heavily

rely on search using Prolog applications. However, even though CAPJa syntax seamlessly

integrates into the respective programming languages, application parts for search and

application parts that comprise business logic are still implemented using different

programming languages. Therefore, these parts are kept separate from each other,

making this approach slightly less seamless than a single multi-paradigm programming

language.

Further concepts from declarative programming have been introduced into popular

imperative (and object-oriented) programming languages. With LINQ for C# [MBB06]

and the Java Stream API for Java [UFM14; Ora20c], two mainstream programming

languages prominently facilitate the use of concepts from functional programming in

object-oriented programming languages, such as higher-order functions, lambda ex-

pressions, and non-strict evaluation. Recent C++ standards [Cuk17] as well as Python

and JavaScript also introduce concepts from functional programming into imperative

programming languages.
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Moreover, programming language platforms that provide a single runtime environment

for multiple programming languages contribute to the integration of programming

languages from different paradigms. For example, the JVM serves as a platform for

multiple languages besides Java [LWS13]. All programming languages for the JVM

are compiled to the same bytecode, so that applications from different programming

languages that run on the same JVM are interoperable. For example, Scala is a language for

functional programming on the JVM that, since it compiles to the same bytecode, is able

to invoke methods from classes developed in Java (and vice versa) [Hun1़]. Similarly, all

.NET programming languages compile to a common so-called Intermediate Language that

is executed on the .NET Common Language Runtime [BS03]. With F#, .NET also offers

a functional programming language that can be used in combination with C# or other

imperative languages that are executed on the .NET Common Language Runtime [PS09].
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3
The Münster Logic-Imperative
Language as a Multi-Paradigm
Language

This chapter introduces the Münster Logic-Imperative Language (Muli) that constitutes

the principal research artefact of this thesis. Section 3.1 describes the principles guiding

the design of Muli, including the relationship of Muli to its base language Java. This

is followed by an outline of the main features of the Muli programming language in

Section 3.2. Syntactic additions require the implementation of a compiler as presented in

Section 3.3. Other language features do not require syntactic changes and are therefore

implemented as a runtime library (Section 3.4). Section 3.5 demonstrates the Muli pro-

gramming language using some exemplary applications. Finally, Section 3.6 summarizes

the chapter and provides pointers to relevant publications from Part II.

3.1 Design Principles

Muli is designed as an extension to the object-oriented programming language Java, with

Java ़ as the base version (cf. [Gos+15]). Consequently, Muli is a superset of Java, so that

every Java program can be compiled and executed by Muli as well. Several benefits come

from using Java as a starting point for the development of a new programming language.

Firstly, the novel programming language might appeal to a large audience that is already

familiar with Java, given the ubiquity of Java in contemporary software development (cf.

e. g. [Sta19]). Secondly, a multitude of libraries is available for Java which will also be

usable from the new programming language, thus yielding a highly useful and flexible

language right away. Thirdly, there is extensive documentation on the syntax of the

programming language [Gos+15] as well as on the Java bytecode format and its execution

semantics [Lin+15] which, in combination, facilitate the implementation of a derivative

language.
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3 The Münster Logic-Imperative Language as a Multi-Paradigm Language

Muli is developed with a set of design principles in mind [DK1़a]:

Transparent problem solving The programming language can be used to develop

object-oriented programs, with a means to formulate search problems that a spe-

cialized VM solves transparently.

Encapsulated search Search, and therefore non-deterministic execution, is encapsu-

lated and returns solutions as well as a representation of the search space. Non-

deterministic execution is only performed if it is required explicitly by the program.

In contrast, remaining parts of the program are deterministic in execution. Moreover,

encapsulation allows application developers to influence the behaviour of search.

Minimal syntax extension The syntax additions compared to Java are kept to a min-

imum. This includes the definition of constraints that can be expressed using

the relational operators that exist in Java [Gos+15], as opposed to adding special

constraint definition operators.

No lazy evaluation As opposed to integrations of (constraint) logic programming with

other paradigms (cf. e. g. Curry [Han97]), Muli applications are not executed lazily.

For instance, the assignment of an expression to a variable causes the expression to

be evaluated, regardless of whether the result of the assignment is actually used by

subsequent instructions. This is done so that the execution semantics of bytecode

instructions in Muli remains consistent with that in Java.

Maintain Java backwards compatibility Compatibility with Java is maintained as

much as possible, so that most pre-existing Java programs and libraries can be used

in combination with Muli programs. This implies that Muli extends Java syntax, but

that existing syntax is not removed. Another implication is that, in deterministic

execution, bytecode instructions are evaluated according to the official JVMS (cf.

[Lin+15]), i. e., in deterministic execution contexts there is no semantic difference

between bytecode of Muli programs and bytecode of Java programs.

As a notable exception to the effort of maintaining backwards compatibility, Muli

currently assumes single-threaded applications and therefore does not support multi-

threading for the reasons outlined in Section 2.3. In particular, the Monitorenter and

Monitorexit bytecode instructions for thread synchronization are ignored, and there is

no implementation for the native methods in java.lang.Thread that would otherwise

start new threads [Lin+15]. Therefore, the development of multi-threading facilities for

Muli is left to future work.
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3.2 Language Features of Muli

3.2 Language Features of Muli

A core feature of Muli is the possibility to declare logic variables. In contrast to a regular

variable, a logic variable is not initially bound to a specific value. For that reason, logic

variables in Muli are also called free variables; the terms are used interchangeably. A

free variable is declared by adding the free keyword to a variable declaration, e. g., int i

free; . Any variable of a primitive type can be a logic variable, therefore all declarations

shown in Listing 3.1 are valid declarations. Both class fields and local variables can be

free variables.

1 boolean z free;
2 byte b free;
3 short s free;
4 int i free;
5 long j free;
6 char c free;
7 float f free;
़ double d free;

Listing 3.1: Valid declarations for free variables that have a primitive type.

In a Muli program, free variables and regular variables can be used interchangeably.

Consequently, a free variable can be employed as part of any expression in the same

way as a regular variable, as long as the types are otherwise compatible. For instance,

consider the declarations in Listing 3.2. An invocation of plusOne(i1) is trivially valid

because both the parameter and i1 are of type int . Since free variables can be used in

lieu of regular ones, plusOne(i2) is valid in Muli as well. In contrast, plusOne(d1) cannot

compile, even with a standard Java compiler, because an implicit cast of a double variable

to int results in potential loss of information. For the same reason, plusOne(d2) is also

not allowed in Muli.

1 int plusOne(int arg) { return arg + 1; }
2 int i1 = 1000;
3 int i2 free;
4 double d1 = 1000.0;
5 double d2 free;

Listing 3.2: A demonstration of how free and regular variables can be used interchange-
ably.
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1 int exampleSearchRegion() {
2 int coin free;
3 if (coin > 0) { // Branch A.
4 return coin;
5 } else { // Branch B.
6 if (coin == 2) { // Branch B-1.
7 throw new RuntimeException(”Exceptions are solutions, too.”);
़ } else { // Branch B-2.
9 throw Muli.fail(); } } }

Listing 3.3: Abstract search region, demonstrating the specification of constraints and
solutions.

Moreover, variables of a class or interface type, i. e. objects, can be free variables as

well. As their interpretation in an object-oriented program is more complex than that of

primitive types, details are provided in Chapter 6.

A Muli application specifies a search problem in a method. Such methods are called

search regions. Search region methods can contain arbitrary code, i. e., they can invoke

other methods and use recursion, create and interact with objects, or perform other

non-search-related tasks. Solutions to the search problem can be values or exceptions

and are determined based on how the execution of the search region ends. Specifically,

a solution is either the return value of the search region, or an uncaught exception

that is thrown inside the search region. Consider the abstract example search region in

Listing 3.3. Branch A returns the (constrained, see below) free variable coin as a value.

Branch B-1 throws a runtime exception that is also considered as a solution. Alternatively,

throw Muli.fail() throws a special exception in Branch B-2. This is not a solution;

instead, invoking Muli.fail() expresses an explicit failure in order to stop execution of

the current branch and to exempt it from the final solutions.

Muli offers non-deterministic search by making a non-deterministic choice whenever

the execution flow is branched in two or more ways that are equally possible. For instance,

consider the equivalent of flipping a coin, shown in Listing 3.3: As the coin variable is

not bound, it is equally feasible to evaluate the first if condition either to true or false .

Therefore, initially, both Branch A and Branch B are candidates for further execution and

the runtime environment (e. g., the MLVM) has to take a decision [DK1़b]. The resulting

execution paths can be conceptualized as a search tree that is a symbolic execution tree

whose leaves represent either the solutions to the search problem or failures. Figure 3.1a
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Choice1

Choice2

Fail

𝑐𝑜𝑖𝑛 ≠ 2

Exception(RuntimeException(”...”))

𝑐𝑜𝑖𝑛 = 2

𝑐𝑜𝑖𝑛 ≤ 0

Value(coin)

𝑐𝑜𝑖𝑛 > 0

(a) Conceptual search tree, disregarding the satis-
fiability of the path constraints.

Choice1

Fail

𝑐𝑜𝑖𝑛 ≤ 0

Value(coin)

𝑐𝑜𝑖𝑛 > 0

(b) Actual search tree that is known after the
search region has been executed in full.

Figure 3.1: Search trees that represent non-deterministic search for the search region
specified in Listing 3.3.

illustrates the search tree for the example search region from Listing 3.3, depicting the

non-deterministic choices as well as the solutions.

Taking a decision at a choice causes the runtime environment to impose a constraint
that represents and enforces the decision. That way, applications can impose constraints

dynamically at runtime in order to specify a search problem. Constraints are derived

from the condition [DK1़b]. In the first if condition of Listing 3.3, two alternative

constraints are derived, namely, 𝛾1 = coin > 0 and 𝛾2 = ¬ 𝛾1 = coin ≤ 0. As a result of

deriving constraints from branch conditions, Muli does not add or require any special

syntax for constraint specification. Instead, the runtime environment imposes the derived

constraint in order to commit to a branch [DK1़b]. For example, after imposing 𝛾1 the

condition uniquely evaluates to true , so that execution can continue with Branch A,

returning the constrained coin variable as a solution. Alternatively, Branch B is executed

after imposing 𝛾2. Unless only a single solution is required, the runtime environment is

expected to evaluate all available alternatives non-deterministically so that all alternatives

are considered eventually [DK19a]. For a core imperative language, a non-deterministic

operational semantics that describes non-deterministic branching is presented in [DK1़b].

Moreover, Chapter 4 describes the implementation of non-deterministic search with

backtracking in the MLVM.

Taking several non-deterministic choices in sequence imposes a constraint system that

comprises the conjunction of all imposed constraints, i. e., the path constraint [DK1़b].

The constraint system ensures that future evaluations of the involved variables are

consistent with the assumptions that were made at the time of branching. In the example

from Listing 3.3, this implies that coin in Branch A cannot assume any value less than or

equal to 0, because that would violate the assumption that was made to enter that branch.

For Branch B, the constraint is negated, so that coin may only assume values less than or

equal to 0. The condition of the second if in Listing 3.3 violates this constraint, so that
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1 class HardyRamanujan {
2 int search() {
3 int a free, b free, c free, d free, e free;
4 positiveDomain(a, b, c, d, e);
5 if (a != c && a != d && cube(a) + cube(b) == e && cube(c) + cube(d) == e)
6 return e;
7 else throw Muli.fail(); }
़

9 int cube(int x) { return x * x * x; }
10

11 void positiveDomain(int... vars) {
12 for (int v : vars)
13 if (v <= 0) throw Muli.fail(); } }

Extended from [DK20a]

Listing 3.4: Muli code that searches for an integer 𝑒 that can be expressed in two different
ways as the sum of two positive integer cubes.

Branch B-1 cannot be executed. Therefore, the exception in Branch B-1 is actually not a

solution because the constraint system 𝑐𝑜𝑖𝑛 ≤ 0 ∧ 𝑐𝑜𝑖𝑛 = 2 that would be required to reach

that solution is not satisfiable due to the contradictory constraints. As a consequence,

evaluating the second if does not result in non-deterministic branching at all. This is

reflected in the updated search tree in Figure 3.1b, replacing Choice2 with the failure from

Branch B-2.

As a less abstract search problem, consider an example that searches for an integer 𝑒 that
can be expressed in two different ways as the sum of two positive integer cubes (ideally

the smallest integer; i. e., the Hardy-Ramanujan number 𝑒 = 1729). The corresponding

constraint is [DK20a]:

𝑒 = 𝑎3 + 𝑏3 = 𝑐3 + 𝑑3

∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑

∧ 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ N − {0}

These constraints can be expressed by the Muli search region search() shown in List-

ing 3.4. This example also demonstrates the use of explicit failure in Muli: A solution in

which the constraints are not fulfilled is not interesting w. r. t. the problem, so the explicit

failure is used to exclude the branch from the found solutions.
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Starting instruction Non-deterministic branching
Final instruction: Exit status Deterministic instruction

Key

Adapted from [DK1़a]

Figure 3.2: Deterministic main execution control flow of a Muli application. Parts that are
executed non-deterministically are restricted to encapsulated search. Results
are collected and returned to the surrounding application.

In Muli, search is encapsulated. Non-deterministic branching is limited to encapsulated

search and is disallowed outside of search. After all, contemporary operating systems

require a single exit status of an application, therefore it is not possible to have one

exit status per leaf of the symbolic execution tree. As illustrated in Figure 3.2, the main

execution control flow of a Muli application is deterministic and ends in a single exit

status, but the control flow may break out into non-deterministically executed program

parts using encapsulated search. The surrounding main execution control flow ensures

that the results of encapsulated search are collected (indicated in Figure 3.2 using dashed

lines), thus joining the branches of non-deterministic execution before continuing with

deterministic execution. Encapsulated search returns solutions, including representations

of the search space that correspond to each solution.

Muli provides encapsulated search operators that accept a search region as a parameter,

causing the runtime environment to start non-deterministic search for the search region,

while collecting the found solutions in order to return them to the surrounding application.

Search regions can be formulated either in a lambda expression (cf. [Lin+15, § 15.27]) or,

facilitating reuse, in a method that is passed to the operator using a method reference (cf.

[Lin+15, § 15.13]). A static class offers multiple encapsulated search operators that differ in

the number of returned solutions and in the way that they are returned to the surrounding

application. Details on the static class and its encapsulated search operators are presented

in Section 3.4. Listing 3.5 shows exemplarily how the Muli.getAllSolutions() operator

is used with a method reference that points to the search region from Listing 3.4.
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3 The Münster Logic-Imperative Language as a Multi-Paradigm Language

1 Solution<Integer>[] integers = Muli.getAllSolutions(HardyRamanujan::search);

Listing 3.5: A search region, i. e. a method that formulates a search problem, can be
passed to an encapsulated search operator using a method reference.

In summary, Muli programs can declare logic variables, allowing their use in symbolic

expressions in any part of the program. Non-deterministic search is encapsulated, whereas

execution is deterministic outside encapsulated search. The tight integration of imperative

(object-oriented) programming with non-deterministic search facilitates the development

of applications that interleave constraint definition and search with imperative statements,

instead of having to maintain imperative program parts separate from search. Compared

to Java, the only modification of the syntax is the addition of the free keyword. The

remaining features either re-use existing syntax (e. g., for constraint definition) or can

be implemented as methods of a static class (e. g., search operators). The static class is

made available as a runtime library (cf. Section 3.4). Nevertheless, adding a keyword

and encoding additional information about free variables into the bytecode motivate the

development of a custom compiler for Muli as presented in Section 3.3.

3.3 The Muli Compiler

Muli requires a custom compiler in order to add support for the free keyword for de-

clarations of fields and variables. The Java Language Specification (JLS) defines the

productions for field declarations as follows (definitions adapted from [Gos+15, § ़.3]):

FieldDeclaration ::= FieldModifier* Type VariableDeclarator (, VariableDeclarator)*;
FieldModifier ::= Annotation ∣ public ∣ protected ∣ private ∣ static ∣ final

∣ transient ∣ volatile
Type ::= ReferenceType ∣ boolean ∣ byte ∣ short ∣ int ∣ long ∣ char ∣ float ∣ double
VariableDeclarator ::= VariableDeclaratorId ( = VariableInitializer)?
In these productions, Annotation stands for an @-annotation, such as @NotNull . Further-

more, ReferenceType is a type variable or a class, interface, or array type. Both Annotation
and ReferenceType are dynamic non-terminal symbols that depend on the types that are

available from the class path at runtime, so neither rule can be reproduced here. Further-
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more, VariableDeclaratorId is a valid identifier name by which the field can be referenced

after its declaration,1 and VariableInitializer is an expression or an array initialization.

Moreover, for local variables, Java uses the following productions (definitions adapted

from [Gos+15, § 14.4]):

LocalVariableDeclaration ::= VariableModifier* Type VariableDeclarator
(, VariableDeclarator)*;

VariableModifier ::= Annotation ∣ final
FieldDeclaration and LocalVariableDeclaration reference the same VariableDeclarator.

Therefore, free fields and variables are both added to the syntax by modifying a single

non-terminal symbol. The VariableDeclarator non-terminal is changed so that the free

keyword becomes an alternative to initialization [DK19a]:

VariableDeclarator ::= VariableDeclaratorId ( free ∣ ( = VariableInitializer))?
In comparison to the existing Java syntax (cf. [Gos+15, § 19]), the extension is very

small. The ExtendJ framework (formerly known as JastAddJ) is a compiler for Java ़

that offers full support of the syntax and bytecode, while providing the opportunity to

add incremental modifications [EH07]. ExtendJ enforces a layer structure of language

modifications: Its compiler for Java ़ is a layer of incremental modifications of the ExtendJ

compiler for Java 7 that, in turn, is a modification layer on top of the ExtendJ compiler for

Java 6 (and so on, with Java 1.4 as the base language) [EH07]. As opposed to implementing

a compiler for Muli from scratch with full support for Java ़, leveraging ExtendJ facilitates

a simple compiler implementation by adding a layer of Muli modifications.

In the parser generator of ExtendJ, existing parser rules can be modified incrementally.

For example, in Listing 3.6, line 1 adds the free_variable_declarator as an alternative

to the variable_declarator production rule that the ExtendJ framework defines. The

parser generator implicitly adds repeatedly defined rules as alternatives to previous

definitions, so that it is not necessary to reproduce the existing definition of variable_de-

clarator . The ExtendJ syntax is peculiar: FREE is a reference to the terminal symbol for

the free keyword, whereas the syntax rule.result (as for instance in free_variable_de-

clarator_id.v ) signifies that the production rule rule should be applied, storing the result

in a variable result . Additional Java code that will be applied is specified between {:

and :} . Usually this additional code involves creating, modifying, or returning abstract

syntax tree (AST) nodes. An optional rule application is marked with a question mark ? ,

such as in the optional specification of array dimensions (dims.s?). For instance, in

1This is simplified for the purpose of explaining the modification. According to the JLS, VariableDeclarat-
orId also optionally accepts further annotations and array dimensions for individual fields [Gos+15, §
़.3], but that feature is not relevant in this context.
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Listing 3.6, free_variable_declarator returns the FreeVariableDeclarator AST object

that is instantiated as a result of applying the free_variable_declarator_id rule. In com-

bination, the rules in Listing 3.6 modify the allowed syntax, implementing free variables

as an alternative to regular variables. The field_declarator rule that is also pre-defined

in the framework is augmented analogously.

1 VariableDeclarator variable_declarator = free_variable_declarator;
2 FreeVariableDeclarator free_variable_declarator =
3 free_variable_declarator_id.v FREE {: return v; :};
4 FreeVariableDeclarator free_variable_declarator_id =
5 IDENTIFIER dims.d? {: return new FreeVariableDeclarator(IDENTIFIER, d, new

Opt()); :};↪

6

7 FieldDeclarator field_declarator = free_field_declarator;
़ FreeFieldDeclarator free_field_declarator =
9 free_field_declarator_id.v FREE {: return v; :};
10 FreeFieldDeclarator free_field_declarator_id =
11 IDENTIFIER dims.d? {: return new FreeFieldDeclarator(IDENTIFIER, d, new

Opt()); :};↪

Listing 3.6: Implementing the modification to the production rules using ExtendJ’s parser
generator.

As a result, the productions generate FreeVariableDeclarator and FreeFieldDeclar-

ator nodes for the AST. Free variable declarators are a specialization of (regular) variable

declarators and free field declarators specialize (regular) field declarators. This rela-

tionship is defined by the specification shown in Listing 3.7 that ExtendJ adds to its

pre-defined AST declarations.

1 FreeVariableDeclarator : VariableDeclarator;
2 FreeFieldDeclarator : FieldDeclarator;

Listing 3.7: Declaring Muli’s new AST node types for the ExtendJ framework.

Based on the generated AST, the Muli compiler generates bytecode structures that

encode information about free variables and fields in the compiled .class files. The

bytecode format of the .class files conforms to the JVMS (see [Lin+15]), so that existing

Java bytecode parsers are able to read files compiled by the Muli compiler. Additional

information needed for free variables is encoded in so-called attribute structures that
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0..*

0..*

Attribute

+ attribute_name: CONSTANT_Utf़_info
+ attribute_length: u4

LocalVariableTable

LocalVariableEntry

+ index: u2
+ name: CONSTANT_Utf़_info
+ descriptor: CONSTANT_Utf़_info
[...]

FreeField

FreeVariablesTable FreeVariableEntry

+ index: u2
references

Adapted from [DK19a]

Figure 3.3: Attribute structures that are generated into the compiled bytecode. Types
used in this figure follow the JVMS [Lin+15], where u𝑛 signifies an 𝑛-byte
unsigned integer and CONSTANT_Utf8_info is a string constant.

allow the addition of custom attribute types [Lin+15]. Muli leverages this flexibility for the

representation of free variables and fields in bytecode, adding the three custom attributes

that are depicted in the class diagram in Figure 3.3: FreeField , FreeVariablesTable , and

FreeVariableEntry . In contrast, attributes depicted in gray are standard Java attributes.

While parsing a bytecode file, parsers that do not know about the custom Muli attributes

are able to skip over them, thus ignoring them, because attributes are required to specify

their own length in their header (attribute_length in the specification of Attribute, see

Figure 3.3).

Per method, in the method_info attribute structure, compiled bytecode contains a Local-

VariableTable that holds one LocalVariableEntry for each declared local variable [Lin+15,

§ 4.7.13]. It is not possible to extend the LocalVariableEntry definition with a flag that

signifies a free variable without breaking bytecode compatibility. Therefore, the custom

FreeVariablesTable attribute mimicks the structure, containing a FreeVariableEntry per

declared free variable. The FreeVariableEntry only contains the index of a local variable,

which is used to reference the corresponding LocalVariableEntry that holds information

about the type (encoded in the descriptor) and the name of the free variable.

Representing free fields is simpler, as compiled bytecode contains individual field_info

structures for every field. In this structure, the custom FreeField attribute serves as a

marker: A field is a free field if its field_info structure contains a FreeField attribute.

Therefore, the attribute does not need to store any additional data.
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Muli

+ muli(Supplier<T>): Stream<Solution<T>>
+ muli(Supplier<T>, SearchStrategy): Stream<Solution<T>>
+ getAllSolutions(Supplier<T>): Solution<T>[]
+ getAllSolutions(Supplier<T>, SearchStrategy): Solution<T>[]
+ getAllSolutionsEx(Supplier<T>): Solution<T>[]
+ getAllSolutionsEx(Supplier<T>, SearchStrategy): Solution<T>[]
+ getOneSolution(Supplier<T>): Solution<T>
+ getOneSolution(Supplier<T>, SearchStrategy): Solution<T>
+ getOneSolutionEx(Supplier<T>): Solution<T>
+ getOneSolutionEx(Supplier<T>, SearchStrategy): Solution<T>
+ fail(): MuliFailException
+ getVMExecutionMode(): ExecutionMode
+ setVMExecutionMode(ExecutionMode)

ExecutionMode

+ Deterministic
+ NonDeterministic

SearchStrategy

+ BreadthFirstSearch
+ DepthFirstSearch
+ IterativeDeepening

MuliFailException
Solution

+ value: T

+ isExceptionControlFlow(): boolean

T

Figure 3.4: Public API offered by the Muli runtime library.

3.4 The Muli Runtime Library

Language features that do not require changes to the syntax, such as explicit failures and

encapsulated search operators, are made available to Muli programs in a runtime library.

This library serves as an application programming interface (API) and is always loaded on

the class path of Muli applications. As a consequence, Muli applications can use classes

from the library without having to load it explicitly. This approach is similar to that

of the Java Platform SE API, which defines the standard set of classes that are always

available on the class path of Java applications without explicitly loading them [Ora20a].

Figure 3.4 gives an overview of the classes in the public API. The central class of

the Muli runtime library is de.wwu.muli.Muli (subsequently abbreviated to Muli). Muli

applications do not need to instantiate this class; instead, all features are offered as static

methods. The Muli class offers a method that applications can use to express the explicit

failure, methods that alter the execution behaviour of the MLVM, and encapsulated search

operators. These features are explained in the following.
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The method Muli.fail() is offered to Muli applications for expressing an explicit

failure in non-deterministic execution, thus exempting it from the found solutions. Even

though its full definition is

public static native MuliFailException fail(); ,

the MuliFailException cannot be caught by a surrounding program, because invoking this

method causes the MLVM to immediately perform backtracking to the latest choice that

offers another alternative. Therefore, the MuliFailException class is never instantiated

and serves merely as a syntactic detail that allows developers to write

throw Muli.fail();

in their Muli applications, which helps static analyses of Java integrated development

environments (IDEs) to determine that a Muli.fail() validly ends the execution of a

method. Otherwise, contemporary IDEs would complain about the absence of a throw

or return statement in branches that specify an explicit failure. Furthermore, the native

keyword in the declaration specifies that the method is not actually implemented in the

library. Instead, an invocation of this method is picked up by the MLVM that provides an

appropriate implementation.

Another method that is declared native is Muli.setVMExecutionMode() . It accepts one of

two values: ExecutionMode.Deterministic and ExecutionMode.NonDeterministic , where

the enumeration type ExecutionMode is provided as part of the Muli runtime library as

well. Invoking this method instructs the MLVM to switch execution modes, thus chan-

ging the interpretation of bytecode instructions that have potentially non-deterministic

behaviour (e. g., If_icmpeq that compares two integers for equality). The method is only

meant to be used by the encapsulated search operators, not by Muli applications. In-

stead, encapsulated search operators use Muli.setVMExecutionMode() to begin and end

encapsulated search. In combination with Muli.getVMExecutionMode() that obtains the

current mode of execution from the MLVM, an encapsulated search operator changes

MLVM roughly as demonstrated in Listing 3.़. Obtaining the previous execution mode

is important because it facilitates nesting of search regions.

1 ExecutionMode previousExecutionMode = Muli.getVMExecutionMode();
2 Muli.setVMExecutionMode(ExecutionMode.NonDeterministic);
3 // <Perform search using non-deterministic execution.>
4 Muli.setVMExecutionMode(previousExecutionMode);
5 // <Wrap and return solution.>

Listing 3.़: Changing the MLVM execution mode before and after search.
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Last but not least, the Muli runtime library provides encapsulated search operators that

accept a search region in the form of an object of a type that implements the functional

interface java.util.function.Supplier<T> . Typically, instances of the Supplier type are

transparently created by the JVM (and, therefore, by the MLVM) at runtime, serving

as a substitute for a method reference or a lambda expression from the original source

code. Regardless of whether the search region is formulated as a method reference or

as a lambda expression, a prerequisite for both is that they do not have any parameters

and that they have a return value, as per the definition of Supplier<T> [Ora20b]. Search

operators return a solution, an array of solutions, or a stream of solutions. Every found

solution is wrapped in a Solution<T> object, where T is identical with T of the Supplier<T>

parameter. Furthermore, all search operators are overloaded, offering an additional

parameter that specifies the search strategy used by the MLVM for processing the search

region. Developers use the enumeration type SearchStrategy for choosing whether a

given search region should be explored using depth-first search, breadth-first search,

or an iterative-deepening strategy. If that parameter is not provided, depth-first search

is currently used as the default strategy. Details on the search strategies and their

implementations are presented in Section 5.2.

Muli.muli() is the main encapsulated search operator. The invocation of Muli.muli()

returns a stream of solutions. Since Muli.muli() returns a stream object and Java streams

are non-strict, invoking Muli.muli() does not cause the MLVM to search for solutions

immediately. Instead, the stream object can be used as the source in a so-called stream

pipeline that processes objects from a source by composing stream operations from the

Java Stream API [Ora20c]. In a stream pipeline, a source is followed by intermediate

operations that modify a stream (e. g., map() , filter() , or limit() ). A terminal operation

concludes a pipeline, e. g., forEach() or count() . The solution stream of Muli causes

the MLVM to find individual solutions as soon as they are demanded by a terminal

operation invoked on the solution stream or pipeline. Section 5.1 provides details on the

implementation of the solution stream.

The remaining encapsulated search operators are convenience methods that process

the solution stream returned by Muli.muli() . Like Muli.muli() , they are overloaded

and can be invoked with only a search region, or with a search region and a strategy.

Muli.getAllSolutions() processes the entire search region and returns an array with all

solutions that were collected from the evaluation of return statements, therefore omitting

any exceptions thrown during the evaluation of the search region. Listing 3.9 shows how

this convenience method that anticipates the need for processing all solutions is imple-

mented on the basis of Muli.muli() . Muli.getAllSolutionsEx() is similar, but the returned
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1 public static <T> Solution<T>[] getAllSolutions(Supplier<T> searchRegion,
SearchStrategy strategy) {↪

2 Stream<Solution<T>> search = Muli.muli(searchRegion, strategy);
3 return (Solution<T>[]) search
4 .filter(x -> !x.isExceptionControlFlow())
5 .toArray(size -> new Solution[size]); }
6 public static <T> Solution<T> getOneSolution(Supplier<T> searchRegion,

SearchStrategy strategy) {↪

7 Stream<Solution<T>> search = Muli.muli(searchRegion, strategy);
़ return (Solution<T>) search
9 .filter(x -> !x.isExceptionControlFlow())
10 .findFirst().get(); }

Listing 3.9: Several encapsulated search operators are convenience methods that anticip-
ate frequent ways of accessing the results of search, processing the stream
returned by Muli.muli() in predefined ways.

array includes thrown exceptions as well. Therefore, the only difference in the implement-

ation is that the filter() operation is omitted. Note that Muli.getAllSolutions() and

Muli.getAllSolutionsEx() do not return a result if infinite non-deterministic branching

occurs in the search region, because the collect() terminal operation unsuccessfully

waits for the solution stream to finish. Furthermore, Muli.getOneSolution() and Muli

.getOneSolutionEx() process the solution stream as well, where Muli.getOneSolutionEx()

is indifferent to whether the first solution of a search region is a thrown exception or a re-

turned value. Exemplarily, the implementation of Muli.getOneSolution() is also depicted

in Listing 3.9. The findFirst() terminal operation only requests a single element from the

solution stream so that, even for search regions with infinite non-deterministic branching,

Muli.getOneSolution() and Muli.getOneSolutionEx() are able to return a solution.

3.5 Applications of Muli

Muli’s language features facilitate the implementation of various search applications using

an object-oriented syntax. Muli is useful for solving constraints in several applications.

Moreover, non-deterministic execution can be exploited for the purpose of enumerating

alternatives. The following presents examples for both cases.

A classic search problem is the 𝑛-Queens problem (for details refer to, e. g., [Apt09,

Section 2.2]). The goal is to find locations for 𝑛 queens on an 𝑛 × 𝑛 board, 𝑛 ≥ 3, such that

no queen is able to attack any other queen according to the queen’s movement rules of
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1 public class NQueens {
2 public static void main(String[] args) {
3 Solution<Queen[]> solution = Muli.getOneSolution(() -> {
4 final int n = 8;
5 Board board = new Board(n); Queen[] qs = new Queen[n];
6 for (int i = 0; i < n; i++) {
7 Queen q free; qs[i] = q; }
़ for (int i = 0; i < n; i++) {
9 if (!board.isOnBoard(qs[i]))
10 Muli.fail();
11 for (int j = i+1; j < n; j++)
12 if (board.threatens(qs[i], qs[j]))
13 Muli.fail(); }
14 return qs; });
15

16 for (Queen q: solution.value)
17 System.out.println(”(” + q.x + ”,” + q.y + ”)”); } }

[DK20b]

Listing 3.10: Muli application that returns a solution for the 𝑛-Queens problem (here,
𝑛 = 8).

chess. Listing 3.10 presents a solution approach that uses CLOOP and Muli, in which the

search region is formulated using a lambda expression. The search region first initializes

representations of the board and of the 𝑛 queens. Methods that impose constraints are

implemented in the Board class, namely isOnBoard() that restricts the positions of queens

on the board to 0 < 𝑥 ≤ 𝑛 and 0 < 𝑦 ≤ 𝑛 (where 𝑥 and 𝑦 are coordinates on the board),

and threatens() that, for two queens that are passed as arguments, imposes that the two

queens may not be on the same column, row, or diagonal. Muli.fail() excludes wrong

solutions, and solutions that satisfy all constraints are returned using return qs; .

As another application example, Muli has been successfully used for the generation of

hidden layers of feed-forward neural networks [DK20a]. The NNGenerator application

does not perform constraint solving; instead, it leverages non-deterministic branching to

systematically generate directed acyclic graphs. The goal is to find the smallest neural

network that is able to solve a given problem. The smallest hidden layer is an empty

one, so that all the input nodes are directly connected to all output nodes. Starting from

the hidden layer, two operations that modify the graph are possible: Adding a layer,

or adding a node to one of the existing layers. By using as little graph operations as

possible, Listing 3.11 shows how NNGenerator uses a free integer variable to branch over
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1 Network generateNetwork() {
2 return generateNetwork( new Network(4, 2) ); }
3

4 Network generateNetwork(Network network) {
5 int operation free;
6 switch (operation) {
7 case 0: // Return current network.
़ return network;
9 case 1: // Add layer.
10 network.addLayer();
11 return generateNetwork(network);
12 default: // Add node. But where?
13 if (network.numberOfLayers > 0) {
14 int toLayer free;
15 for (int layer = 0; layer < network.numberOfLayers; layer++) {
16 if (layer == toLayer) {
17 network.addNode(layer);
1़ return generateNetwork(network);
19 } else {
20 // Add at a different layer!
21 } }
22 throw Muli.fail();
23 } else {
24 throw Muli.fail(); } } }

[DK20a]

Listing 3.11: Search region from NNGenerator that non-deterministically selects graph
operations in order to generate graph structures systematically.

the available operations, adding a third (technical) operation that returns the generated

graph. Moreover, adding a node requires additional non-deterministic branching in order

to decide to which layer the node is added. In that example, the overloaded method

generateNetwork() without parameters is the search region that instantiates a network

with four input and two output layers. That initial network is passed to the other

overloading of generateNetwork() that recursively performs the graph operations.

NNGenerator fetches the generated graphs from a stream by invoking Stream<Solu-

tion<Network>> solutions = Muli.muli(NNGenerator::generateNetwork); , passing the

search region using a method reference. Obtaining solutions individually from the stream

is essential, because Muli.getAllSolutions() would not terminate for the lack of a termin-

ation criterion in the search region. Graphs are fetched from the stream and transformed
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into a Python script that uses PyTorch (cf. [Pas+19]) for implementing, training, and

using a neural network according to the generated graph. The neural network is trained

and used for solving a specific problem, such as the pole balancing problem, where the

aim is to balance a single pole on a movable cart (refer to [BSA़3] for details on the

problem and to [DK20a] for its implementation). If the performance of a neural network is

above a certain threshold, NNGenerator terminates search and returns that neural network

implementation.

3.6 Summary

The language features presented in this chapter form the programming language Muli.

The Muli compiler generates JVMS-compatible bytecode that can be parsed by stand-

ard Java bytecode readers and executed by specialized VMs such as the MLVM that is

presented in Chapter 4. Language features that do not require a compiler are provided

in the Muli runtime library, implemented in Muli, that is on the class path at compile

time and execution time. Based on Java, Muli serves as a prototypical reference language

for the novel integrated paradigm of constraint-logic object-oriented programming. By

integrating non-deterministic search with imperative (object-oriented) programming

seamlessly in search regions, Muli and CLOOP facilitate the development of applications

that interleave constraint definition and search with imperative statements. Consequently,

developers are relieved from the task of maintaining imperative program parts separate

from search.

For its backwards compatibility with Java, existing Java applications can be transformed

to Muli applications by executing them in a Muli runtime environment. This facilitates

augmenting an existing Java application with search using Muli language features.

The Muli compiler2 and the Muli runtime library3 are published at GitHub.com under

the General Public License (GPL) v3.0. This facilitates future modifications and extensions

as well as collaborations with researchers from other groups.

Part II contains publications with more details on the contributions presented in this

section, including some evaluations. Specifically, these publications provide additional

insights:

1. Chapter 9: Jan C. Dageförde and Herbert Kuchen. ‘A Compiler and Virtual Ma-

chine for Constraint-logic Object-oriented Programming with Muli’. In: Journal of

2muli-lang at https://github.com/wwu- pi/muli/ .
3muli-classpath at https://github.com/wwu- pi/muli/ .
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Computer Languages 53 (2019), pp. 63–7़. issn: 2590-11़4. doi: 10.1016/j.cola.

2019.05.001

2. Chapter 10: Jan C. Dageförde and Herbert Kuchen. ‘Applications of Muli: Solving

Practical Problems with Constraint-Logic Object-Oriented Programming’. In: Ana-
lysis, Verification and Transformation for Declarative Programming and Intelligent
Systems. Ed. by Pedro Lopez-Garcia, Roberto Giacobazzi and John Gallagher. LNCS.

Springer, 2020. Under review

3. Chapter 15: Jan C. Dageförde and Herbert Kuchen. ‘A Constraint-logic Object-

oriented Language’. In: Proceedings of the 33rd ACM/SIGAPP Symposium On Applied
Computing. ACM, 201़, pp. 11़5–1194. doi: 10.1145/3167132.3167260

4. Chapter 16: Jan C. Dageförde and Herbert Kuchen. ‘An Operational Semantics

for Constraint-Logic Imperative Programming’. In: Declarative Programming and
Knowledge Management. Ed. by Dietmar Seipel, Michael Hanus and Salvador Abreu.

Vol. 10977. Lecture Notes in Artificial Intelligence. Cham: Springer, 201़, pp. 64–़0.

doi: 10.1007/978-3-030-00801-7_5
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4
Non-Deterministic Execution
of Constraint-Logic
Object-Oriented Applications

The Muli Logic Virtual Machine (MLVM) is a runtime environment for the execution of

Muli applications. As a customization of a VM for Java applications, it features symbolic

execution and non-deterministic search in search regions. Section 4.1 introduces the

general concepts of the MLVM and its main components. The representation of symbolic

expressions at runtime is explained in Section 4.2, followed by a description of the solver

component that derives constraints from symbolic expressions (Section 4.3). Furthermore,

Section 4.4 describes the implementation of non-deterministic execution of search regions

in the MLVM, including the explicit search tree representation that represents alternative

execution paths. Afterwards, Section 4.5 provides details on how the MLVM is able

to reverse side effects that result from the execution of (object-oriented) imperative

applications, which is a prerequisite for backtracking during search. The behaviour

of the MLVM is continuously tested using an automated set of JUnit tests. The test

suite is presented in Section 4.6. Last but not least, the contributions of this chapter are

summarized in Section 4.7.

4.1 A Virtual Machine for Constraint-Logic
Object-Oriented Programs

The MLVM is a runtime environment for the execution of CLOOP applications that

are developed in Muli. Since Muli is based on Java, the implementation of the MLVM

closely follows the JVMS (cf. [Lin+15]) and adds customizations for the support of the

Muli-specific features described in Chapter 3. The MLVM is derived from the symbolic

JVM of Muggl (cf. [MK11b]), generalizing it from a domain-specific JVM for test case

generation to a general-purpose one for the non-deterministic execution of arbitrary

applications [DK1़a].
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Figure 4.1: Components of the MLVM.

Muggl’s symbolic JVM and, therefore, the MLVM are implemented in Java. This makes

the MLVM and Muli just as platform-independent as Java. Moreover, the implementation

is able to leverage the plethora of libraries that are available on the JVM, where constraint

solvers and libraries for parsing and writing bytecode are particularly useful. In addition

to that, running the MLVM inside an actual JVM ensures that the set of basic Java classes

from the Java Platform SE API that most Java applications rely on is available as well.

Figure 4.1 illustrates the main components of the MLVM. The MLVM is started using

a command-line interface, passing the name of an executable Muli class (i. e., one with

a method matching the public static void main(String[] args) descriptor known

from Java). On start-up, the name of the initial class is passed to the execution core
that is responsible for the evaluation of Java bytecode. It relies on the bytecode parser

component to read the initial class as well as the classes from the Muli runtime library.

Moreover, the bytecode parser will be used throughout execution when additional classes

are used, such as ones from the Java Platform SE API or classes that belong to the executed

application.

In order to maintain the execution state of an application at runtime, the MLVM imple-

ments all data structures that the JVMS prescribes for the execution of Java applications

[Lin+15, §§2.5 f.]. Therefore, execution state for deterministic and non-deterministic
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execution is represented in the MLVM using a combination of a PC, a heap, frame stack,
and an operand stack for every frame (see Section 2.3). The standard data structures for

execution state are all part of the execution core component [DK1़a]. Moreover, sup-

port for non-deterministic execution requires additional data structures: The constraint
store maintains the active constraint system, which is the conjunction of all imposed

constraints [DK1़a]. Moreover, trails record all changes that are made to the execution

state as a result of side effects, which is a prerequisite for being able to restore a specific

execution state during search [DK19b] (Section 4.5 elaborates on this). Finally, using

a representation of search trees, in combination with a pointer to the currently active

tree node, the search tree management component keeps track of the non-deterministic

execution of search regions [DT20]. In such a search tree, which is essentially a symbolic

execution tree (cf. [Kin76]), inner nodes represent non-deterministic choices and leaves

correspond to solutions or explicit failures.

The execution core is responsible for interpreting bytecode instructions at runtime

and updates the execution state after the execution of every bytecode instruction. Within

search regions, the execution of a bytecode instruction that has non-deterministic be-

haviour results in the creation of an object representation of the choice, describing the

alternatives that it offers (details on this are presented in Section 4.4). The created choice

object is then passed to the search tree management component, thus updating the search

tree that corresponds to the search region that is currently being executed. Afterwards,

the execution core delegates the decision for an alternative to the search & backtracking
component, which adds the corresponding constraint to the constraint store and checks

whether the resulting constraint system is still satisfiable using the solver. If it is not,

the search & backtracking component performs backtracking in order to try the next

available alternative with a satisfiable constraint system. Once a (satisfiable) alternative

is selected, the execution core continues execution on the chosen path.

Methods that are declared native do not provide a Muli/Java method body. Therefore,

they need to be handled by the MLVM. The VM instrumentation methods (in particu-

lar, Muli.fail() , Muli.getVMExecutionMode() , and Muli.setVMExecutionMode() from Sec-

tion 3.4) change the behaviour of the execution core. The native wrapper component

forwards the remaining native methods to the JVM in which the MLVM is executed.
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Figure 4.2: Class structure for the representation of symbolic expressions in the MLVM.

4.2 Representation of Symbolic Expressions

In addition to primitive types and reference types of the Java, Muli adds symbolic types

for the representation of free variables and for expressions that involve free variables

[DK1़a]. The symbolic representation of an array uses an instance of the Arrayref

class that maintains information about the intended type of the array and its elements.

Similarly, the symbolic representation of an object is an instance of Objectref , that

maintains information about field values instead of array elements. Variables of primitive

types are represented by NumericVariable instances or, for boolean variables specifically,

by instances of the BooleanVariable class. In NumericVariable objects, a flag indicates

the particular primitive type. It does not hold a value; instead, its possible values are

restricted using constraints in the constraint store.

Figure 4.2 illustrates the class structure for the representation of symbolic expressions

involving numeric types, i. e., constants, variables, arithmetic, and boolean operations.

Arithmetic expressions (including numeric constants and variables) are represented by

subtypes of the abstract class Term . Expressions from arithmetic operations on (symbolic)

expressions are represented using subtypes of BinaryOperation , e. g., Sum for an addition

of two subterms. The Term representations of the subterms are linked to the representa-

tion of the operation using the composite design pattern (cf. [Gam+94]). For instance,

executing the Iadd bytecode instruction for the addition of two integers pops the two

topmost elements from the operand stack, adds them, and pushes the result onto the stack

afterwards. If one or both popped elements are instances of a subtype of Term , the MLVM

implementation of Iadd constructs a symbolic expression representing the addition using

an instance of Sum , as illustrated in Figure 4.3a. For the sake of completeness, the effect
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Figure 4.3: Effects of the Iadd instruction on the execution state.

of executing Iadd in the case that both operands are constants is depicted exemplarily in

Figure 4.3b.

The evaluation of boolean expressions, such as in conditions, is similar. Symbolic ex-

pressions will make use of subtypes of ConstraintExpression , for instance, the evaluation

of an If_icmpeq instruction creates an instance of NumericEqual for an equality constraint.

Constraint expressions created by symbolic execution are not necessarily added to the

constraint store. They are only added to the constraint store if the constraint expression

is relevant for branching at a choice. The instructions that can potentially create a choice

are listed in Table 4.1. If a constraint expression is relevant for branching and is therefore

imposed as the constraint for one branch, it is likely that the constraint of the other

branch is derived from the original constraint expression. For example, the constraint

expression that is created from the condition of an If_icmpeq instruction will be used for

the first branch and its negation for the second branch.

Note that the presented class structure from Figure 4.2 is only used for internal repres-

entations in the MLVM. From a Muli application’s point of view, variables of symbolic

types can be used interchangeably with variables of regular types as described in Sec-

tion 3.2. The implementations of bytecode instructions take care that this is actually

the case at runtime. For instance, a symbolic expression created as a result of the Iadd

operation is compatible with the int type. Similarly, if the evaluation of boolean expres-

sions involves symbolic expressions (both, terms or constraint expressions), the resulting

symbolic expression is compatible with the boolean type.
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Bytecode instruction Type of choice Constraint types

If<cond> , If_icmp<cond> if instruction, integer comp. =, ≠, <, ≤, >, ≥
Idiv integer division =, ≠
FCmpg , FCmpl , DCmpg , DCmpl floating point comparison =, <, >
LCmp long comparison =, <, >
Lookupswitch , Tableswitch switch instruction =, ∉

Extended from [DK1़a]

Table 4.1: Types of boolean expression constraints that can be generated as a result of
evaluating certain Bytecode instructions. <cond> is substituted with either eq ,
ne , lt , le , gt , or ge .

4.3 The Solver Component

Constraints are added incrementally at runtime when decisions for a choice are taken

and, to revoke the decisions during backtracking, need to be removed from the constraint

system in reverse order. Therefore, the active constraint system is represented as a stack

of constraints. The solver component is responsible for maintaining this constraint stack.

Moreover, in order to find solutions for variables that satisfy the constraint system, the

solver component leverages the functionality of a solver library. The library that is used

for constraint solving is configured during start-up of the MLVM.

Figure 4.4 illustrates the class structure of the solver component. ConstraintExpression

is the representation of constraints containing symbolic expressions from Section 4.2. The

central interface that the MLVM uses is SolverManager . The MLVM calls hasSolution() in

order to determine whether the current constraint system is consistent and, when actual

values for the variables are required, the MLVM invokes getSolution() in order to solve

the constraint system. Moreover, addConstraint() accepts a new ConstraintExpression

that is added to the constraint store. In contrast, removeConstraint() always removes

the most recently added constraint. Therefore, the combination of addConstraint() and

removeConstraint() realizes the stack structure of the constraint system. That way, Muli is

constraint solver agnostic, relying only on the SolverManager interface. This facilitates the

integration of additional constraint solvers in the future, since the classes that implement

the interface serve as adapters (cf. [Gam+94]) to the actual constraint solvers. The

adapters manage the addition and removal of constraints to their respective solver’s

store and transform Muli-specific ConstraintExpressions to library-specific constraint

representations.
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Figure 4.4: Interface and implementations of solver managers that integrate libraries in
the solver component.

At the time of writing, the MLVM solver component integrates the two constraint

solvers that are introduced in Section 2.4 [DK1़a]. First, Muconst is integrated as it is

the original solver of Muggl, relying mostly on the Simplex algorithm [EMK12]. Second,

the FD solver JaCoP is used because, after adding a new constraint, its use of constraint

propagation facilitates the computationally inexpensive detection of whether (FD) con-

straint systems are rendered unsatisfiable. As a consequence, many infeasible execution

branches can be cut off with little effort, as opposed to Muconst’s requirement of per-

forming a full run of the Simplex algorithm in order to determine whether an execution

branch is infeasible. Therefore, for many applications that mostly use constraints in-

volving finite-domain numeric variables, selecting JaCoP as the underlying solver results

in quicker execution. However, the “best” solver depends on the specific application and

its constraints. Therefore, it needs to be determined experimentally for every individual

application. For that reason, the MLVM offers the facility to configure the underlying

solver before it is started, instead of imposing a specific solver on the user.

As illustrated in Figure 4.4, MuconstSolverManager and JaCoPSolverManager implement

the SolverManager interface and integrate the respective solvers. The solver manager

implementation for JaCoP can serve as an example for future integrations of third-

party solver libraries. Particularly relevant is the implementation of a transformer class

similar to the JaCoPTransformer that is called by the implementation of addConstraint()

in JaCoPSolverManager . The method transformAndImpose() accepts constraints that are

49



4 Non-Deterministic Execution of Constraint-Logic Object-Oriented Applications

represented using Muli’s ConstraintExpressions and converts them into a representation

that uses JaCoP’s classes. The JaCoP representation is then immediately added to the

active constraint store, which is an instance of the Store class provided by the JaCoP

library.

4.4 A Structure that Encodes Non-Deterministic
Execution Paths

The bytecode instructions that are presented in Table 4.2 exhibit potentially non-

deterministic execution behaviour (if they are executed within search regions, see Sec-

tion 3.2). For instance, the If_icmpeq instruction performs a jump by setting the PC to a

specified bytecode instruction within the current method if the two topmost values or

symbolic expressions (subsequently, 𝑒1 and 𝑒2) on the operand stack are equal [Lin+15, §

6.5]. Otherwise, the PC is moved to the subsequent instruction as usual. Within search

regions and if at least one of 𝑒1, 𝑒2 is a symbolic expression, both cases are potentially

possible, but not at the same time. Specifically, they can be made equal by imposing an

equality constraint 𝑒1 = 𝑒2, or made not equal by imposing the inverse 𝑒1 ≠ 𝑒2. This scen-
ario constitutes a choice with two alternatives. Once one of the constraints is imposed,

execution can continue accordingly. At a later time, execution of the second alternative

can follow, provided that

• all changes to the execution state that happened after committing to the first

alternative are undone, and

• the constraint of the first alternative is removed from the constraint store.

The implication is that, before selecting the second alternative, the execution state

must be exactly the same as it was before the first alternative was chosen.4 The only

exception to that are the search trees that permanently reflect whether choices and their

respective execution alternatives have been evaluated yet. Taking decisions at every

choice conceptually produces a search tree in which the inner nodes are choices and

the leaves represent alternative ends of execution paths, i. e., a symbolic execution tree

[Kin76; DT20]. As a consequence, the search tree represents all alternative execution

paths.

For every executed search region, the MLVM stores an explicit representation of the

corresponding search tree as part of its execution state [DT20]. The explicit representation

4Section 4.5 presents details on how a specific previous execution state is achieved.
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Bytecode instruction Type of choice No. of alternatives

If<cond> , If_icmp<cond> if instruction, integer comp. 2
Idiv integer division 2
FCmpg , FCmpl , DCmpg , DCmpl floating point comparison 2
LCmp long comparison 3
Lookupswitch , Tableswitch switch instruction 1 per case + 1 default
Checkcast , Instanceof instance type check 2
Invokevirtual , Invokein-
terface

method invocation depends on class path

Adapted and extended from [DT20]

Table 4.2: Bytecode instructions whose execution potentially results in non-deterministic
branching. <cond> is substituted for specific comparisons, e. g., eq for equality.

is useful for debugging non-deterministic execution behaviour, as it allows developers of

the MLVM to introspect the generated choices in the search tree at runtime by setting a

breakpoint in the MLVM code. However, the search tree structure is primarily used to

support search algorithms, keeping track of which decision alternatives have not been

evaluated yet.

Inspired by the search tree structure of Curry (see Section 2.1), the search tree of the

MLVM distinguishes five types of nodes [DT20]: exceptions that ended execution, values

that were returned, choices, failed computations (implicit or explicit), and (as placeholders)

subtrees that are not evaluated yet. These types and their relationships are illustrated

with the class diagram in Figure 4.5, with ST as the abstract supertype of all node types.

Two node types describe solutions of a search region, namely a Value node holds the

value returned by a computation, whereas thrown exceptions are encapsulated in an

Exception node. Explicit failures or branches whose constraint system is inconsistent are

represented by a Fail node which, even though it is a leaf node, does not hold a value

because it is not a solution. Applying the composite design pattern (cf. [Gam+94]), a

Choice node stores a list of its subtrees, each of which is of type UnevaluatedST at first.

In turn, each of the subtrees point to the parent choice node, thus facilitating direct

navigation towards the root node. The parent attribute of the root node equals null .

Last but not least, UnevaluatedST is a placeholder for subtrees that are not evaluated

yet, in order to be able to represent partial search trees. This aids in the construction

of the search tree while the search region is executed, instead of having to wait for

the exhaustive evaluation of a search region before the tree can be constructed. The

intention is to evaluate an instance of UnevaluatedST and then immediately replace it
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parent 0..1

children
1..*ST<A>

+ frame: Frame
+ pc: int
+ constraintExpression: Optional<ConstraintExpression>
+ backwardTrail: Stack<TrailElement>
+ forwardTrail: Stack<TrailElement>

UnevaluatedST<A> Value<A>

+ value: A

Exception<A>

+ exception: java.lang.Exception

Fail<A>

Choice<A>

[DT20]

Figure 4.5: MLVM class structure for the representation of search trees.

with an adequate instance of one of the other types. Note that neither of these node types

implement their own behaviour, such as decision taking in the Choice type. Instead, the

intention of these types is to reflect the execution state, so that information about the

execution state can be made available, for instance, to search strategies implemented in

the MLVM.

With the fields of the abstract supertype ST , all nodes of a search tree store data that

prepares for later execution starting from that node. Using the frame and pc fields, the

MLVM stores the (mutable) stack frame as well as the PC from the execution state

at which the node has been created, thus pointing to the specific instruction whose

execution resulted in the node. Optionally, a node stores a constraint expression from

non-deterministic branching. That expression must be satisfied in order to evaluate the

node. Moreover, a node stores two fields for trails. Trails and the meaning of these fields

are described in Section 4.5 and Section 5.1.

The representation of a search tree is created throughout search, i. e., during non-

deterministic execution of a search region. A search strategy evaluates UnevaluatedST

nodes as long as there are such nodes left and the encapsulating program demands

additional solutions. The specific order by which unevaluated search tree nodes are

selected and, consequently, replaced by their results, depends on which search strategy a

Muli application selects (see Sections 3.4 and 5.2).

Generally, the MLVM first chooses an UnevaluatedST node. Second, it imposes the

node’s constraint. If this new constraint renders the constraint store inconsistent, the

chosen node is replaced with a Fail node immediately. Otherwise, the MLVM executes
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the search region starting from the PC that is stored with the node. Execution continues

until either

• the search region method body uses a return statement to return a value,

• an exception is thrown but not caught,

• the code invokes Muli.fail() in order to explicitly fail a branch, or

• an instruction from Table 4.2 is executed with non-deterministic behaviour.

Regardless of the encountered situation, the UnevaluatedST node in the search tree is

replaced with its evaluated counterpart, i. e., with an appropriate instance of either Value ,

Exception , Fail , or Choice . A fresh Choice node initializes all its children with instances

of UnevaluatedST .

When the execution of a search region begins, the corresponding search tree is un-

known. Therefore, the initial search tree is just a single UnevaluatedST node that points

to PC 0 of a frame for the search region. Moreover, the (optional) constraint expression

is empty as well as the trails.

In order to illustrate the construction of a search tree during search, consider the search

region with four free variables that is provided in Listing 4.1. For that search region,

Figure 4.6 depicts the three representations of the same search tree. The representations

have been evaluated to different degrees, corresponding to (intermediate) evaluation

stages under the assumption of a depth-first search strategy. If a different search strategy

is used, other intermediate stages are possible.

With this explicit search tree representation, the MLVM is better at structuring

non-deterministic execution than the symbolic JVM of Muggl. As a structure for non-

deterministic execution, Muggl’s symbolic JVM uses a stack of objects that represent

the choices encountered along a single execution path [MK11a]. As a result, Muggl’s

support for search strategies is limited to depth-first strategies, and iterative-deepening

depth-first search requires search to start from scratch if the search depth is increased,

thus re-calculating known solutions. In contrast, the MLVM’s search tree represents all

execution paths, thus facilitating the implementation of arbitrary search strategies as

presented in Section 5.2. Moreover, Muggl mixes the responsibilities regarding search, in

that the instruction implementations already take the decision to select the first alternat-

ive when they are executed, while creating a representation of the choice. Effectively, this

enforces depth-first search. The choice representations in Muggl are only responsible for

selecting subsequent alternatives. As a result, the process of taking decisions is imple-

mented redundantly: Once in the implementations of bytecode instructions and once

in the choice representations. In contrast, the search-tree based MLVM uses the search

53



4 Non-Deterministic Execution of Constraint-Logic Object-Oriented Applications

1 String commentOnPasta() {
2 boolean spaghetti free, tomatoes free, cheese free, zucchini free;
3 if (!spaghetti)
4 throw Muli.fail();
5 else if (!tomatoes) {
6 if (!cheese)
7 return ”boring”;
़ else
9 return ”unhealthy”;
10 } else if (!cheese) {
11 if (!zucchini)
12 return ”too simple”;
13 else
14 return ”vegan&tasty”;
15 } else
16 return ”vegetarian&tasty”; }

Listing 4.1: Muli search region example that comprises three solutions and a failure.

tree purely as a data structure whereas the selection of branches is only implemented

once in the search algorithms. As a consequence, the implementation is cleaner and less

redundant.

These benefits do not come at the cost of decreased performance. Experimental results

indicate that the execution times of the depth-first search implementation that uses the

explicit search tree representation is comparable, if not slightly faster, than those of the

original Muggl implementation that relies on the choice stack [DT20]. At the same time,

storing the search tree instead of just the current execution path results in higher memory

requirements. However, this has not resulted in any problems in experiments yet. In

case of problems in the future, an optimization can be to remove subtrees that have been

evaluated exhaustively.

4.5 Making Side Effects of Imperative Execution
Reversible

An execution path ends when a solution is encountered or when an implicit or explicit

failure occurs. As soon as that happens, the MLVM attempts the evaluation of another

solution, provided that the current search tree offers a feasible decision alternative that

has not been evaluated yet. To that end, the MLVM performs backtracking to the latest
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(a) Initial, unevaluated
search tree.

Choice1

Choice2

Choice3

Value1(”vegetarian&tasty”)
𝑐ℎ𝑒𝑒𝑠𝑒 ¬ 𝑐ℎ𝑒𝑒𝑠𝑒

𝑡𝑜𝑚𝑎𝑡𝑜𝑒𝑠 ¬ 𝑡𝑜𝑚𝑎𝑡𝑜𝑒𝑠

𝑠𝑝𝑎𝑔ℎ𝑒𝑡𝑡 𝑖 ¬ 𝑠𝑝𝑎𝑔ℎ𝑒𝑡𝑡 𝑖

(b) Partially evaluated search tree after encountering the
first solution.

Choice1

Choice2

Choice3

Value1(”vegetarian&tasty”)

𝑐ℎ𝑒𝑒𝑠𝑒

Choice4

Value2(”vegan&tasty”)

𝑧𝑢𝑐𝑐ℎ𝑖𝑛𝑖

Value3(”too simple” )

¬ 𝑧𝑢𝑐𝑐ℎ𝑖𝑛𝑖

¬ 𝑐ℎ𝑒𝑒𝑠𝑒

𝑡𝑜𝑚𝑎𝑡𝑜𝑒𝑠

Choice5

Value4(”unhealthy”)

𝑐ℎ𝑒𝑒𝑠𝑒

Value5(”boring”)

¬ 𝑐ℎ𝑒𝑒𝑠𝑒

¬ 𝑡𝑜𝑚𝑎𝑡𝑜𝑒𝑠

𝑠𝑝𝑎𝑔ℎ𝑒𝑡𝑡 𝑖

Fail1

¬ 𝑠𝑝𝑎𝑔ℎ𝑒𝑡𝑡 𝑖

(c) Fully evaluated search tree.

Figure 4.6: Intermediate stages of the construction of the search tree for the search region
from Listing 4.1, assuming a depth-first search strategy. An edge label specifies
the constraint of the corresponding subtree.

choice with a feasible alternative. As a prerequisite for taking the alternative decision

and following its execution path, the execution state (with the exception of search trees)

has to be identical with the state in which the original decision was taken. Otherwise,

side effects from the previous execution path would remain in place, thus yielding an

inconsistent execution state. If no feasible alternative is left, i. e., if the search region

is evaluated exhaustively, the MLVM backtracks until the root of the search tree, thus

removing all side effects from encapsulated search.

For the purpose of restoring a previous execution state, theMLVM stores trail structures
in search tree nodes, as seen in Figure 4.5. The trails in the MLVM are inspired by the trail

structure of the WAM. The WAM trail is responsible for recording variable bindings so

that they can be unbound on backtracking. Analogously, the MLVM trails record all side

effects that have been applied, so that these side effects can be reverted in order to achieve

specific previous execution states. However, the MLVM’s ability of reverting previous

side effects is limited to modifying the MLVM-internal state, i. e., the PC, operand stacks,
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frame stacks, constraint store, and the heap. External side effects cannot be undone safely,

since other applications that run concurrently are able to make conflicting modifications

to the same external state. Invoking an external application is another kind of external

side effect that cannot be reversed, as it would require the cooperation of the other

application. As a consequence, when a previous execution state is reinstated by changing

the core data structures of the MLVM, external side effects will remain in place, such

as modifications of files or console output of an application. Nevertheless, performing

operations that result in external side effects in search regions is allowed intentionally as

there are useful scenarios for irreversible side effects during non-deterministic execution,

for instance for logging purposes [DK19a].

The backward trail of a node 𝑛 records all (internal) side effects that were applied after

a decision was taken in the parent of 𝑛 until the node 𝑛 was created during execution,

thus providing information about state changes that is required for backtracking towards

the parent of 𝑛. As the counterpart of the backward trail, the forward trail of 𝑛 stores

state change information that facilitate reaching 𝑛 from the parent of 𝑛. This facilitates
the continuation of search in arbitrary unevaluated subtrees, instead of limiting search to

depth-first search. For instance, the backward tree of Choice1 from Figure 4.6b contains

information for undoing changes made to the execution state changes since the beginning

of the search region, until the choice was reached. In contrast, the forward trail prepares

for re-applying the same state changes for the same part of the execution path. Details

on using the forward trail are presented in Section 5.1. In this section, the focus is on

backtracking using the backward trail for the purpose of explaining the concept of trails

in the MLVM.

The MLVM trails are stacks of trail elements. Executing a bytecode instruction with

a side effect results in the application of the side effect as well as in the creation of a

trail element that contains partial information of the state prior to the application of

the side effect. The created trail element is pushed to the stack of the current backward

trail. As a result, later backtracking can use the information stored in the trail element

parameters for reverting the field modification. Table 4.3 presents the types of trail

elements. Exemplarily, a FieldPut trail element is created during the execution of putfield

and putstatic bytecode instructions that modify the value of an instance field, or a static

field, respectively. The parameters of FieldPut specify the target instance (or class), the

modified field, and the value prior to the change. As another example, consider the Pop

and Push elements that describe manipulations of the operand stack using Figure 4.3 from

earlier. Evaluating the Iadd instruction pops two elements from the stack and pushes

the result. At the same time, this results in creating two Push elements for every popped
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Trail element type Affects execution state Parameters

PCChange PC, frame pc
Restore Frame variable index, value

FrameChange Frame stack frame
VmPop Frame stack

VmPush Frame stack value
Pop Operand stack

Push Operand stack value
PopFromFrame Operand stack
PushToFrame Operand stack frame, value

FieldPut Heap instance/class, field, value
ArrayRestore Heap array, index, value

Adapted from [DK19b]

Table 4.3: Trail element types and their respective parameters.

stack element, containing the previous value in the parameter; and a Pop element that

will later remove the pushed result.

Assuming a depth-first search strategy and that a solution node 𝑣 was reached, the

MLVM can take a new decision at the most recent choice 𝑐1 that offers a feasible, unevalu-

ated alternative. Under the depth-first search assumption, 𝑐1 is directly or transitively

a parent of 𝑣. The execution state that was valid during the creation of 𝑐1 can then be

restored by using the backward trail of 𝑣, popping trail elements and applying the corres-

ponding state changes until the trail is empty. If 𝑐1 is the direct parent of 𝑣, the execution

state is correct in order to continue with the execution of the alternative. Otherwise,

the backward trail of the direct parent 𝑐𝑛 is used in the same way, thus achieving the

execution state of 𝑐𝑛’s parent 𝑐𝑛−1. This is repeated until reaching 𝑐1. In any case, the

backward trail of 𝑐1 is left untouched and, starting from 𝑐1, the next decision is taken and

implemented.

An alternative to using a trail for restoring specific previous execution states is to store

snapshots of the entire execution state at every choice by copying the state [DK19b].

However, storing a trail that describes incremental changes is (depending on the applica-

tion) more memory-efficient [MK11b]. Moreover, it is more reliable since the JVM (and,

therefore, the MLVM) does not provide any immutability guarantees, so that application

code is able to accidentally modify snapshots after their creation [DK19b]. An ideal

compromise would be to maintain the entire execution state, including operand stacks

and the heap, in copy-on-write data structures. This would be a prerequisite to storing

incremental snapshots of the execution state at every choice. However, classes of the JVM
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Choice

Value(true)

𝑐𝑜𝑖𝑛 ≠ 0

Fail

𝑐𝑜𝑖𝑛 = 0

Figure 4.7: Expected search tree for FailCoin , as checked by the JUnit test in Listing 4.2.

as well as of arbitrary Muli applications do not reliably provide copy-on-write structures,

so that snapshots are not immutable.

4.6 Continuous Testing and Integration of the MLVM

A test suite ensures that the MLVM works as expected, particularly after making changes

to its implementation. In fact, several Muli application examples from previous publica-

tions now serve as high-level test applications in JUnit tests. Every time a change to the

source code is created and pushed to the source code repository at GitHub, these JUnit

tests are executed by the Travis CI service.5 This continuous testing process facilitates

the early detection of regressions during development. Therefore, the process ensures

that changes to the MLVM that are integrated to the master branch on GitHub are stable.

For testing purposes, the MLVM provides a small testing framework. The class Testa-

bleMuliRunner is essential in this framework. This class is not immediately executed on the

command line. Instead, it provides a static method TestableMuliRunner.runApplication()

that should be called from JUnit tests. TestableMuliRunner.runApplication() is invoked

with the name of a class that implements a public static void main(String[] args)

method, i. e., a Muli application. That causes the specified application to be executed.

After execution finishes, the method returns the final state of all search trees that were

generated during the execution of the application’s search regions. In addition, the output

of applications started with the TestableMuliRunner is redirected to a special string buffer,

TestablePrintStreamWrapper . Tests can use the string buffer to obtain the output of an

application and can check whether the output matches the assertions.

Exemplarily, a JUnit test case of the MLVM is provided in Listing 4.2. It executes the

application that is implemented in the class FailCoin . When the execution finishes, the

test checks whether there is just one search tree, corresponding to the single search

region that FailCoin implements. Moreover, the test checks that the tree looks like the

illustration in Figure 4.7, i. e., that it only has a single choice and two leaves, and that one

leaf is a Value node, whereas the other one is a Fail node.

5https://travis- ci.org/github/wwu- pi/muli .
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1 @Test public final void test_FailCoin() {
2 ST[] searchTrees =
3 TestableMuliRunner.runApplication(”applications.muliST.FailCoin”);
4 assertEquals(1, foundTrees.length);
5 Object[] leaves = foundTrees[0].toArray();
6 assertEquals(2, leaves.length);
7 assertEquals(1, Arrays.stream(leaves)
़ .filter(x -> x instanceof Value).count());
9 assertEquals(1, Arrays.stream(leaves)
10 .filter(x -> x instanceof Fail).count()); }

Listing 4.2: JUnit test case that checks whether the MLVM executes a Muli application as
expected.

4.7 Summary

The MLVM is a custom VM that is based on the specification for Java VMs and customized

in order to support CLOOP features. The MLVM features WAM-inspired trail structures

for the purpose of restoring previous execution states, an explicit representation of the

structure of non-deterministic execution, and uses solver libraries for finding solutions

to constraints that are derived from symbolic execution.

Muli refrains from adding Muli-specific or solver-specific syntax for the specification

of constraints and uses Java syntax instead. Consequently, the solver component is

responsible for transforming the constraints into a form that is appropriate for the solver

that is selected for the execution of a Muli application. As a result, the solver component

makes Muli applications solver-agnostic, avoiding a lock-in effect with specific solver

libraries.

The explicit structure of non-deterministic execution encodes the intermediate and

final states of the execution of a search region. This structure is useful for developing

different search strategies for encapsulated search, see Section 5.2. Moreover, it aids in

debugging the MLVM as it facilitates introspection of execution states, for example when

a debugging breakpoint is hit (thus making intermediate stages of the search tree visible)

or after execution of a Muli application ends (thus investigating the final search tree).

Like the other components of Muli, the MLVM is published at GitHub.com under

the GPL v3.0.6 That repository also contains the modifications that are presented in

subsequent chapters.

6muli-env at https://github.com/wwu- pi/muli/ .
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Publications that present details on the concepts and components of the MLVM, as

well as their implementations, are provided in Part II. The following publications are

particularly relevant in the context of this chapter.

1. Chapter 12: Jan C. Dageförde and Finn Teegen. ‘Structured Traversal of Search Trees

in Constraint-logic Object-oriented Programming’. In: Declarative Programming and
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2. Chapter 13: Jan C. Dageförde and Herbert Kuchen. ‘Retrieval of Individual Solutions

from Encapsulated Search with a Potentially Infinite Search Space’. In: Proceedings
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5
Search in a Constraint-Logic
Object-Oriented Language

In the context of object-oriented programming, search by non-deterministic execution is

particularly challenging. As opposed to declarative languages, such as Curry [HKM95]

or Prolog [War़3], the execution of object-oriented programs results in side effects and

is, therefore, stateful. Consequently, search in CLOOP has to consider the execution state

carefully. Subsequently, Section 5.1 describes how the MLVM trails are used to interrupt

and resume encapsulated search, thus facilitating the retrieval of individual solutions

even from search regions with a theoretically infinite number of choices. Moreover, the

combination of trails and the explicit search tree structure allow the implementation

of arbitrary search strategies as described in Section 5.2. Lastly, Section 5.3 provides a

chapter summary.

5.1 Interrupting and Resuming Search

There are search regions that create an infinite number of non-deterministic choices.

In theory, the non-deterministic execution of such search regions in full would not

terminate; in practice, it would terminate as soon as the main memory is exhausted

[DK19b]. Therefore, calculating all solutions before returning them to the surrounding,

deterministic application is not always feasible. As an example, consider theMuli methods

in Listing 5.1 that branch over the free variable coin . Themethods do not use a termination

criterion. As a consequence, the corresponding search tree (theoretically) has an infinite

depth and an infinite number of solutions.

It is desirable that applications that formulate such search regions can be executed,

regardless of the theoretically infinite number of choices. After all, the example from

Listing 5.1 only uses ten solutions eventually. Moreover, even for problems with a

finite but large number of solutions it may be impractical to explore the search space

exhaustively. Therefore, Muli needs a mechanism that calculates individual solutions
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1 void powersOfTwo() {
2 Stream<Solution<Integer>> powers = Muli.muli(() -> {
3 return twoPower(0); });
4 powers.limit(10).forEach(System.out::println); }
5

6 int twoPower(int y) {
7 boolean coin free;
़ if (coin) return Math.pow(2, y);
9 else return twoPower(y+1); }

Adapted from [DK19b]

Listing 5.1: Muli code excerpt that uses non-deterministic evaluation in order to generate
all powers of two for non-negative integer exponents.

from encapsulated search, resuming search for further solutions on demand, while at the

same time retaining deterministic execution behaviour of the surrounding program parts.

Using a single trail per choice would be sufficient in order to implement local (or

partial) backtracking to the most recent choice that offers another alternative. However,

that would only cater to scenarios that use depth-first search only and that are able to

exhaustively evaluate all solutions before returning to the main program. Alternatively,

instead of evaluating all solutions, it is simple to end search after 𝑛 solutions if 𝑛 is known

before search is started, but resuming search for additional solutions is hard. Neither of

these scenarios is acceptable in Muli applications. For this reason, the MLVM maintains

two complementary trails per choice, backward trail and forward trail, thus preparing

for arbitrary jumps between execution states instead of just backtracking. This is an

integral part of providing a way to stop search immediately after a solution is found,

while maintaining the ability to resume it on demand.

5.1.1 Using Dual Trails for the Retrieval of Individual Solutions

Recall that a trail is a stack of trail elements, each of which describes an operation on the

execution state. The operation described by a trail element is the inverse of an original

change to the execution state, and the trail element exists for the specific purpose of

reverting that original change. Refer to Section 4.5 for a description of how the backward

trails of search tree nodes are built during the execution of a search region. In contrast,

the forward trail of a search tree node is the inverse of that node’s backward trail, meaning

that the elements on the forward trails are inverses to the elements on the backward

trails. Moreover, since both trails are stack structures, the order of the elements on the
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⋮
Sum

−5 𝑥

𝑥
−5
⋮

𝜖

Pop

Push(−5)
Push(𝑥)

⋮

𝜖

⋮
Pop

Pop

Push(−5 + 𝑥)

Backward trailsOperand stacks Forward trails(Heap)

backtracking

Figure 5.1: Processing the backward trail in order to establish a former execution state
while creating the corresponding forward trail.

forward trail is reversed compared to their inverse counterparts on the backward trail.

Exemplarily, Figure 5.1 illustrates how processing the backward trail pops the symbolic

expression −5 + 𝑥 from the operand stack, while creating a corresponding Push trail

element on the forward trail in order to be able to restore the symbolic expression on the

operand stack at a later stage. Table 5.1 specifies the inverse trail element types for every

element type, thus showing that there are inverses for all trail element types.

The two trails of a search tree node are complementary in that at least one of the two

is always empty (unless the trails are being processed, in which case both trails hold

elements temporarily). While the elements on the backward trail are (at first) generated

during execution of a search region, elements for the forwards trail are created while the

backward trail is processed. Subsequently, processing the forward trail also results in

re-creating the backward trail. Using a forward trail in that direction is useful, because

otherwise the bytecode instructions would have to be executed again. This is not desirable,

because re-executing the same bytecode instructions does not necessarily result in the

exact previous state. Consider, for example, instructions that rely on state outside the

MLVM, such as an instruction that invokes a method which reads content from a file

whose contents have changed in the meantime.

With the two trails in place, the MLVM can perform full backtracking after finding

a solution, i. e., revert the execution state to the state from before starting encapsulated

search by processing all backward trails from the most recent solution node and of its

parents, until (and including) that of the root of a search tree. Recall the example search
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Trail element type Affects execution state Inverse type

PCChange PC, frame PCChange
Restore Frame Restore

FrameChange Frame stack FrameChange
VmPop Frame stack VmPush

VmPush Frame stack VmPop
Pop Operand stack Push

Push Operand stack Pop
PopFromFrame Operand stack PushToFrame
PushToFrame Operand stack PopFromFrame

FieldPut Heap FieldPut
ArrayRestore Heap ArrayRestore

Extended from [DK19b]

Table 5.1: Trail element types and their respective inverses.

Choice1

Choice2

Choice3

Value1(”vegetarian&tasty”)
𝑐ℎ𝑒𝑒𝑠𝑒 ¬ 𝑐ℎ𝑒𝑒𝑠𝑒

𝑡𝑜𝑚𝑎𝑡𝑜𝑒𝑠 ¬ 𝑡𝑜𝑚𝑎𝑡𝑜𝑒𝑠

𝑠𝑝𝑎𝑔ℎ𝑒𝑡𝑡 𝑖 ¬ 𝑠𝑝𝑎𝑔ℎ𝑒𝑡𝑡 𝑖

Figure 5.2: Using backward trails (dashed) and forward trails (dotted) in order to achieve
specific execution states.

region from Listing 4.1. After the first solution has been found, the backward trails (each

indicated with a dashed line in Figure 5.2) are processed in order to achieve the execution

state from before search. This leaves the application in an execution state in which it

can accept the found solution, and in which it can trigger the MLVM to resume search

in the search region. Once another solution is requested, the MLVM will then resume

search by processing the newly created forward trails (dotted lines in Figure 5.2) in order

to establish the execution state of the choice that provides the next feasible alternative.

By using the combination of backward and forward trails at every search tree node, as

well as the stored PC and frame (cf. Section 4.4), theMLVM is able to navigate in the search

tree arbitrarily while ensuring a consistent execution state [DT20]. As a result, the MLVM

is no longer restricted to performing backtracking only. Therefore, the term navigating
upwards is used as a synonym for backtracking, i. e., a navigation in the direction from a

leaf or inner node towards the root of the tree, whereas navigating downwards describes
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1 void navigateUpwards(ST from, Choice to) {
2 while (from != to) {
3 if (from.constraintExpression.isPresent())
4 vm.constraintStack.pop();
5 vm.processTrail(from.backwardTrail, from.forwardTrail);
6 vm.setFrame(from.frame);
7 vm.setPc(from.pc);
़ from = from.parent; } }

[DT20]

Listing 5.2: Navigating upwards in a search tree.

the opposite direction. Certain search strategies, such as breadth-first search, will use

a combination of both directions (see Section 5.2). In upwards direction, the target of

navigation is always a choice node, since inner nodes of the search tree are choices. In

downwards direction, the target is also a choice, because navigating downwards is only

sensible for the purpose of reaching an unevaluated subtree that is the child of the target

choice (and then evaluating the subtree afterwards).

The MLVM navigates upwards from a search tree node from to a target node to

navigation via the node’s parent references, as outlined in Listing 5.2. The parameter

to must be set to null in order to revert all effects of encapsulated search because null

is the parent of the root node. Alternatively, to may be any node that is a (transitive)

parent of from . While moving towards the target node, the execution state is reverted

using the information stored at each visited node: If the evaluation of a node has required

a constraint, that constraint is removed from the solver manager’s constraint stack.

Moreover, processTrail() uses the elements on the node’s backward trail in order to

revert the effects on the execution state. Afterwards, frame and PC are explicitly set

to the state in which the visited node was created. Note that processTrail() has two

parameters. The first parameter is the trail that contains information on how to revert

execution state. While processing the elements on that trail (and changing execution

state in the process), processTrail() creates appropriate inverse elements and pushes

them to the trail that is passed in the second parameter.

Downwards navigation requires the same steps, but in reverse order. Additional effort

is needed initially in order to find the path from the source to the target node, as the

search tree describes the path in reverse order, i. e., from target to source. To that end,

the downwards navigation method first records the nodes along the path on a stack

(see Listing 5.3). Afterwards, the stack is used to visit nodes from the path and to restore
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1 void navigateDownwards(Choice from, Choice to) {
2 Stack<ST> nodes = new Stack<>();
3 while (to != from) {
4 nodes.put(to);
5 to = to.parent; }
6 while (!nodes.empty()) {
7 to = nodes.pop();
़ vm.setFrame(to.frame);
9 vm.setPc(to.pc);
10 vm.processTrail(to.forwardTrail, to.backwardTrail);
11 if (to.constraintExpression.isPresent())
12 vm.constraintStack.push(to.constraintExpression.get()); } }

[DT20]

Listing 5.3: Navigating downwards in a search tree.

execution state according to the data stored in the nodes. Specifically, frame and PC are

set first, followed by using processTrail() to process the forward trail (while re-creating

the backward trail in the process). Finally, if a node requires a constraint, that constraint

is imposed by adding it to the constraint stack.

5.1.2 Obtaining Individual Solutions in Muli Applications

For the purpose of retrieving individual solutions and passing them to the surrounding

application, the MLVM internally uses navigateUpwards() to navigate to the root once a

solution leaf node is encountered, while memorizing the most recent choice along the

path that offers another alternative. Accordingly, when the application requests another

solution of a search region, the MLVM uses navigateDownwards() in order to navigate

from the root to the choice that was memorized earlier.

Externally, i. e. as the API for Muli applications, the Muli runtime library offers the Muli

.muli() operator that returns a stream from which individual solutions can be obtained.

According to the Stream API documentation, streams are sequences of elements [Ora20c]

• that are of (potentially) infinite length, and

• whose elements are not evaluated unless they are consumed individually.

Moreover, a consumer of a stream can consume every element from that stream only

exactly once. This has two consequences [DK19b]. First, a stream is an appropriate

representation for returning solutions of Muli search regions, as there is an unknown and
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SolutionIterator

- searchRegion: Supplier<T>
- strategy: SearchStrategy

+ SolutionIterator(Supplier<T> searchRegion)
+ tryAdvance(Consumer<Solution<T>> action): boolean

NoFurtherSolutionsIndicator

≪interface≫
Spliterator

+ tryAdvance(Consumer<G>): boolean
+ forEachRemaining(Consumer<G>)

G

≪G → Solution<T>≫

Muli

+ muli(Supplier<T> region,
SearchStrategy strategy): Stream<Solution<T>>

+ muli(Supplier<T> region): Stream<Solution<T>>
[...] (see Figure 3.4)

≪create≫

StreamSupport

+ <T> stream(Spliterator<T>): Stream<T>
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Adapted from [DK19b]

Figure 5.3: Relationships between the stream-related classes of the Java Platform SE API
and the encapsulated search operator Muli.muli() .

potentially infinite number of solutions. Second, as soon as a solution has been returned,

the MLVM does not need to produce it again. Furthermore, since the Stream API requires

stream implementations to follow the Iterator behavioural pattern (cf. [Gam+94]), it does

not require the MLVM to produce solutions in a certain way or order.

In the Muli runtime library, the main encapsulated search operator Muli.muli() accepts

a search region as a parameter and returns a stream of Solution objects. As a second

parameter the search strategy can be specified. This second parameter is optional by

overloading. Figure 5.3 illustrates the relationship between the public API provided by

Muli.muli() and its supporting classes that come from either the Java Platform SE API or

from the Muli runtime library.

In the creation of the stream object, Muli.muli() relies on the helper method

StreamSupport.stream() that accepts an implementation of an iterator. That iterator

class must implement the interface Spliterator<G> from the Java Platform SE API, where

the type parameter G is the type the objects returned by the iterator. In this case, G is

specialized to Solution<T> , because the MLVM will wrap returned solutions in objects of

that type.

The Muli runtime library implements the Spliterator interface in the class Solution-

Iterator<T> . That class is responsible for controlling the MLVM execution behaviour

regarding encapsulated search. The method tryAdvance() is called (directly or indirectly)
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from the terminal operation of the stream pipeline. Since the number of elements in the

stream is unknown, that method either returns false if no additional element could be

computed, or true otherwise, passing the computed element to the action consumer that

has been passed to the tryAdvance() method. action is a consumer that corresponds to

the next operation in the stream pipeline.

In order to search for a solution of the search region, tryAdvance() instructs the MLVM

to switch to non-deterministic execution as described in Section 3.4 and Listing 3.़. When

the first element is requested, tryAdvance() invokes searchRegion.get() , i. e., the search

region’s functional interface method. For subsequent elements, the MLVM is instructed

to change the execution state to that of the next choice with a feasible alternative by

using navigateDownwards() , and to continue execution from there. In either case, a found

solution is passed to the action consumer, after using navigateUpwards() to remove

all effects from search and setting the MLVM execution mode to the previous mode.

If search ends without finding a solution, the MLVM creates an object of the special

NoFurtherSolutionsIndicator type from the Muli runtime library. This object serves as

an indicator that is interpreted by the tryAdvance() , thus causing it to return false .

5.2 Search Strategy Selection at Runtime

The dual trails at every search tree node are also useful to implement arbitrary search

strategies for the traversal of the search tree of a search region. The search strategies

also leverage the navigateDownwards() and navigateUpwards() methods presented in

Section 5.1 [DT20]. Muli applications can choose a search strategy that will be used

for a search region by passing an appropriate second parameter to any of the encap-

sulated search operators. Allowed values for the second parameter are instances of

the enumeration type SearchStrategy from the Muli runtime library (see Figure 3.4);

specifically, SearchStrategy.DepthFirstSearch , SearchStrategy.BreadthFirstSearch , or

SearchStrategy.IterativeDeepening . These three strategies are currently implemented

in the MLVM.

Since the search strategy can be selected on a per-search-region basis, the MLVM

instantiates a search strategy class for every search region, indicated with the composition

relationship between LogicVirtualMachine and AbstractSearchAlgorithm in Figure 5.4.

The search strategy instance is then responsible for managing search-related execution

state; namely, the search tree and the tree node that is currently under evaluation. The

AbstractSearchAlgorithm supertype implements functionality that is shared across all
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*

LogicVirtualMachine

AbstractSearchAlgorithm

# currentNode: UnevaluatedST
# searchTree: ST

+ recordChoice(Choice)
+ recordValue(Value)
+ recordException(Exception)
+ recordFail(Fail)
+ trackBackToRoot()
+ trackBackAndTakeNextDecision(): boolean
+ takeNextDecision(): boolean
# navigateDownwards(Choice, Choice)
# navigateUpwards(ST, Choice)

IterativeDeepeningDFS

- depthIncrement: int
- currentMaximumDepth: int
- nextNodes: Stack<ST>
- nextStack: Stack<ST>

+ recordChoice()
+ takeNextDecision(): boolean
+ trackBackAndTakeNextDecision(): boolean

DepthFirstSearch

- nextNodes: Stack<ST>

+ recordChoice()
+ takeNextDecision(): boolean
+ trackBackAndTakeNextDecision(): boolean

BreadthFirstSearch

- nextNodes: Queue<ST>

+ recordChoice()
+ takeNextDecision(): boolean
+ trackBackAndTakeNextDecision(): boolean
- findCommonAncestor(ST, ST): Choice

Figure 5.4: Simplified class structure showing the search strategy implementations and
their relation to the VM class.

strategies. In particular, these are fields that represent the current evaluation state of

the search tree as well as the current node, and methods that update the search tree

by replacing the current node with a found node (record<Nodetype>() , where Nodetype

indicates the type of the found node). Furthermore, AbstractSearchAlgorithm implements

the navigation methods from Section 5.1 so that they are available to the strategy imple-

mentations, as well as a trackBackToRoot() method that the MLVM uses when a solution

is found.

Two methods are declared as abstract methods because they will be invoked from

the MLVM, but their implementation depends on the specific strategy. The method

trackBackAndTakeNextDecision() is used when a failure is encountered during search, so

that the strategy immediately tries to evaluate the next feasible alternative. In contrast,

takeNextDecision() is invoked when search is resumed. Both methods return false if no

further alternative is available and true otherwise. The strategy implementations are

presented subsequently.

69



5 Search in a Constraint-Logic Object-Oriented Language

Depth-first search In order to perform depth-first search, the strategy implementation

in the class DepthFirstSearch stores unevaluated subtrees for future evaluation on

the nextNodes stack (see Figure 5.4). When the strategy class is instantiated, the

instance of UnevaluatedST that represents the entire search tree is pushed to the stack

[DT20]. Moreover, recordChoice() is overridden so that, in addition to replacing

the node under evaluation with the found choice, all subtrees corresponding to

decision alternatives are pushed to the nextNodes stack. In order to resume search

in takeNextDecision() , the implementation pops the next unevaluated subtree

from the nextNodes stack and uses navigateDownwards() to provide the appropriate

execution state. trackBackAndTakeNextDecision() also pops the next subtree from

the stack, but since it is invoked during search when a leaf is encountered it uses

navigateUpwards() to go to the next parent that offers another alternative (if any).

Breadth-first search Breadth-first search is novel in the context of (non-deterministic)

execution of imperative or object-oriented programs [DT20]. The BreadthFirst-

Search class uses a first-in-first-out queue of unevaluated subtrees. When search is

started or resumed, the next subtree is taken from the head of the queue, whereas

the decision alternatives of encountered Choice nodes are appended at the end

of the queue. The recordChoice() method is overridden in order to add the de-

cision alternatives to the queue, but also to take the next decision according to the

strategy. As opposed to depth-first search, navigation is not strictly downwards

or upwards only: When a failure is encountered or when a choice is encountered,

trackBackAndTakeNextDecision() may navigate to a subtree that is not the direct

subtree of a parent node, but to a subtree that is within an entirely different sub-

tree. Even though navigation via the root is possible, it may be more efficient to

find a shorter path via a closer common ancestor node as illustrated in Figure 5.5.

In the illustration, the current node Choice4 has just been encountered and the

next node for evaluation is the subtree of Choice5 that has not been evaluated

yet. Since the execution state has to remain consistent, switching from the cur-

rent node to the next one has to be performed using the backward and forward

trails. An inefficient implementation could navigate upwards until the root using

the backward trails, followed by navigation downwards towards the new node.

However, in the example, using the backward trail to revert the execution state to

that of Choice1 only to immediately change it back to that of Choice2, is unneces-

sarily inefficient (red sequence of arrows). Finding a shorter path (blue sequence)

avoids such redundant usage of trails. The simple method in Listing 5.4 is used to
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1 Choice findCommonAncestor(ST a, ST b) {
2 Set<ST> set = {};
3 while (b != null) {
4 set.add(b);
5 b = b.parent; }
6 while (!set.contains(a))
7 a = a.parent;
़ return a; }

Adapted from [DT20]

Listing 5.4: Calculation of the closest common ancestor of two nodes.

Choice1

Choice2

Choice3

Value1(”vegetarian&tasty”)

𝑐ℎ𝑒𝑒𝑠𝑒

Choice4
𝑧𝑢𝑐𝑐ℎ𝑖𝑛𝑖 ¬ 𝑧𝑢𝑐𝑐ℎ𝑖𝑛𝑖

¬ 𝑐ℎ𝑒𝑒𝑠𝑒

𝑡𝑜𝑚𝑎𝑡𝑜𝑒𝑠

Choice5
𝑐ℎ𝑒𝑒𝑠𝑒 ¬ 𝑐ℎ𝑒𝑒𝑠𝑒

¬ 𝑡𝑜𝑚𝑎𝑡𝑜𝑒𝑠

𝑠𝑝𝑎𝑔ℎ𝑒𝑡𝑡 𝑖

Fail1

¬ 𝑠𝑝𝑎𝑔ℎ𝑒𝑡𝑡 𝑖

current node

next node

Figure 5.5: Efficient navigation between two nodes in arbitrary subtrees is possible via
the closest common ancestor (blue path) instead of navigating via the root
node (red path).

find the first common ancestor of two nodes in the search tree. It never returns

null since the root node can always be an ancestor. Once that ancestor is found,

trackBackAndTakeNextDecision() combines navigateUpwards() to set the execution

state to that of the found ancestor with navigateDownwards() in order to prepare

the execution state for the next subtree.

Iterative deepening depth-first search Iterative deepening bounds depth-first search

at a maximum tree depth that can be increased if necessary [Kor़5]. In a differ-

ent form, iterative deepening depth-first search was already applied to the (non-

deterministic) execution of imperative or object-oriented programs, specifically, in

test case generation with Muggl [MK11b]. However, that implementation requires

starting search over at the root if the maximum depth is increased, thus recomputing

solutions that have already been found. In contrast, the explicit representation
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1 boolean nonTerminatingCoin() {
2 int coin free;
3 if (coin == 0)
4 return true;
5 else
6 return nonTerminatingCoin(); }

Adapted from [DT20]

Listing 5.5: Search region that theoretically produces a search tree of infinite depth.

of the search tree, with trails and UnevaluatedST as placeholders for unevaluated

subtrees, facilitates a more efficient implementation that does not have to recom-

pute known solutions [DT20]. In the IterativeDeepeningDFS implementation, two

stacks are maintained: nextNodes is used as described for depth-first search, but

contains only unevaluated subtrees with a depth that is less or equal to the current

maximum depth stored at currentMaximumDepth . In contrast, subtrees with a greater

depth are pushed to the nextStack stack. Once the nextNodes stack is depleted,

currentMaximumDepth is increased by the depthIncrement constant. Moreover, the

stack in nextStack becomes the new nextNodes stack, thus providing new candidates

for evaluation. The strategy implementation overrides the recordChoice() method

in order to implement this behaviour.

The ability to select a strategy from Muli application code facilitates the execution of

search regions for which depth-first search is counterproductive. For example, consider

a search region as depicted in Listing 5.5 that branches over a variable and that uses

recursion in one of the branches. The result is infinite recursion and, conceptually, an

infinite search tree. If the depth-first search strategy is implemented to always evaluate

the else branches first, the MLVM can never return a single solution as that is the branch

that invokes the search region recursively. However, developers are able to determine

manually that this is a potential problem and can choose to employ a different search

strategy accordingly. As a result, a Muli application that uses this search region is able

to obtain solutions from search. In order to prove this, an experiment was conducted

with two search regions for which depth-first search is deficient [DT20]. The results are

reproduced in Table 5.2, demonstrating that the breadth-first and iterative-deepening

strategies are able to produce solutions when depth-first search is not.
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Depth-first Breadth-first Iterative deepening

Simple infinite recursion 0 1469.7 1555.2
Water jug problem 0 29.5 34.4

Adapted from [DT20]

Table 5.2: Comparison of search strategies using two search regions, w. r. t. the average
number of solutions that are found and returned within ten seconds.

5.3 Summary

With the extension of the trail concept from Section 4.5 towards a set of dual trails per

search tree node, trails provide benefits for CLOOP in at least two ways. On the one

hand, the dual trails are a prerequisite for stopping and resuming encapsulated search

in a stateful execution environment. On the other hand, they can be combined with

the explicit search tree structure presented in Section 4.4, serving as a basis for the

implementation of arbitrary search strategies.

In contrast to the depth-first search strategy that was already implemented in Muggl

and could therefore be re-used in Muli (but has been rewritten to use the explicit search

tree representation, see Section 4.4), the other search strategies are novel for CLOOP in

general and Muli in particular. Breadth-first search can only be implemented with the

described data structures in place, whereas iterative deepening depth-first search is novel

in the efficiency of its implementation since it does not recompute previously known

solutions after increasing the maximum search depth. As an outlook, the data structures

allow the implementation of further search strategies. For instance, an interactive strategy

could interrupt the execution of a Muli search region whenever a search tree node is

encountered, thus allowing the user to choose which subtree to descend into. This kind of

interactivity could be useful for debugging during the development of Muli applications.

Presumably, these results can be generalized for future implementations of other

CLOOP languages. The combination of an explicit search tree representation that encodes

the state of search, and trails that encode differences in execution state between search

tree nodes, serves as a bluebrint for the development of VMs for other CLOOP languages.

As a result, these languages would also benefit from stopping and resuming encapsulated

search, thus facilitating the retrieval of individual solutions, and could offer arbitrary

search strategies to application developers as well.

The following publications from Part II go into more detail regarding search in CLOOP

and Muli, thus providing additional insights that complement this chapter:
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1. Chapter 10: Jan C. Dageförde and Herbert Kuchen. ‘Applications of Muli: Solving

Practical Problems with Constraint-Logic Object-Oriented Programming’. In: Ana-
lysis, Verification and Transformation for Declarative Programming and Intelligent
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6
Free Objects

Syntactically, a logic variable can be of an arbitrary type. However, variables of reference

types allow more kinds of interactions than variables of primitive types. Consider,

for example, the possibility of invoking a method on an object. As a consequence,

the introduction of logic variables of reference types into a programming language

requires a careful definition of how interactions with such variables are treated at runtime.

Section 6.1 discusses the different kinds of reference types that are defined by the JVMS.

Afterwards, Section 6.2 names and defines specific interactions with free objects and

discusses their treatment and implementation in the MLVM. Finally, the chapter is

concluded with a summary in Section 6.3.

6.1 Reference Types

According to the JLS, reference types are distinguished into [Gos+15, § 4.3]

• class or interface types,

• array types, or

• type variables.

As Muli is based on Java, Muli follows this distinction.

Type variables are fundamentally different from the other reference types [Dag19]. A

type variable is the result of a type parameter in the declaration of generic types, e. g., E

in ArrayList<E> [Gos+15, § 4.4]. Therefore, at runtime, type variables never correspond

to an object on the heap at runtime, whereas variables of the other reference types are

either null or point to an object on the heap. By excluding type variables from further

considerations regarding reference types, the remaining definition of reference types

is congruent with that of C# [Mic20]. Therefore, the findings on reference-type logic

variables presented in this chapter could be transferable to a future CLOOP language

based on C#.

This chapter describes the implementation of support for class-type or interface-type

logic variables, or short: free objects. Adding support for array-type logic variables (or

free arrays) is left for future work.
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≪interface≫
Shape

+ getArea(): int

Square

+ width: int

+ equals(Object o): boolean
+ getArea(): int
+ toString(): String

Rectangle

+ width: int
+ height: int

+ equals(Object o): boolean
+ getArea(): int
+ toString(): String

Cuboid

+ length: int

+ equals(Object o): boolean
+ getArea(): int
+ toString(): String

Cube

+ equals(Object o): boolean
+ getArea(): int
+ toString(): String

[DK20b]

Figure 6.1: Application class structure comprising an interface and four implementations.

1 String search() {
2 Shape s free;
3 if (s.getArea() == 16)
4 return s.toString();
5 else
6 throw Muli.fail(); }

Adapted from [DK20b]

Listing 6.1: Search region that invokes a method on a free object.

6.2 Types of Interaction with Free Objects

By facilitating the use of objects as logic variables, i. e. free objects, it is possible to

specify constraints over entire objects, for example regarding their types or field values.

Furthermore, it is important to keep in mind that objects in object-oriented programming

languages encapsulate data and behaviour. For example, consider an application’s class

structure as illustrated in Figure 6.1 in combination with the search region in Listing 6.1.

The variable s is a free object of type Shape , but Shape is an interface type. Therefore,

the actual type of s can be any subtype of Shape , each of which implements getArea()

according to its respective needs. In general terms, the actual object behind a declaration

C o free; can be of any type that is type-compatible with C , i. e., C itself, or classes or

interfaces that are subtypes of C . As a consequence, the declaration of a free object o only

provides partial information about the actual type of specific objects that would meet the

constraints over o .
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The possible types that a free object may assume also depend on the types that are

available to an application at runtime. In Java and Muli, types may be available even

though they are not (yet) loaded into main memory, because the class loader usually

loads the classes from the filesystem (specifically, from the class path) when they are

first used [Lin+15, § 5.3.5]. Therefore, in order to make use of the full type hierarchy in

interactions with free objects, the MLVM has to discover the classes that are available on

the class path prior to their first explicit use [DK20b].

Subsequently, various specific kinds of interactions with free objects are detailed,

namely,

• their instantiation (and initialization) in Subsection 6.2.1,

• accesses to their fields of a free object in Subsection 6.2.2,

• method invocations in Subsection 6.2.3,

• type operations in Subsection 6.2.4, and

• finally, in Subsection 6.2.5, equality checks on free (and regular) objects.

6.2.1 Instantiation and Initialization

Consider a free object declaration C o free; . Subsequently, o is available as a symbolic

object that the MLVM internally represents using the Objectref type (see Section 4.2).

As a consequence, the free object o is instantiated as a fresh object instance that can be

used in all expressions that syntactically allow the use of objects [DK20b]. A specific

object, however, is not yet known; i. e., the free object does not hold any data, its actual

type is unknown, and no constructors are invoked.

Fields that occur in the definition of C are initialized with free variables (according

to their respective type). For instance, against the background of the class structure in

Figure 6.1, a declaration of Rectangle rect free; would result in a symbolic object with

two fields, width and height , that both are free integer variables. An important exception

are fields that the type definition of C declares static : In order to maintain consistency

with regular objects of the type C , static fields are not initialized with free variables.

Instead, they share their static value with other objects of the same type. Consequently, if

the free object is the first of its type to be initialized at runtime, the MLVM has to execute

the static initializer that the type definition implements (<clinit>() , see [Lin+15, § 2.9]),

thus preparing the shared fields for future free and regular objects of the same type.

Afterwards, the application code that has declared a free object o can refine it by

interacting with it. For instance, it can invoke a method that pertains to o or use any of

its fields in a constraint, thus specifying aspects of o as needed.
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The alternative to treating the free object symbolically would be to generate specific

object instances that fit the declaration C o free; at the time of instantiation. Afterwards,

the MLVM could branch non-deterministically over the specific instances. However, this

results in large or infinite sets of alternatives even for simple class structures [DK20b].

6.2.2 Field Access

Given a free object that is declared Rectangle rect free; and no additional constraints,

its fields are accessible via rect.width or rect.height , respectively. Java and Muli do

not offer runtime polymorphism for fields: Even if the actual type of rect is a subtype

of Rectangle that provides its own field definition for width , the original field is not

overridden [Gos+15, §§ ़.3 and 9.3]. Instead, such an instance would in fact store two

fields of the same name; and accesses through the variable rect would result in accessing

the original field because of the declaration as Rectangle rect .

This has two implications [DK20b]. First, a field access operation is always determin-

istic and depends only on the type of the variable through which the field is accessed,

regardless of whether subtypes re-define the accessed field. Second, accessing the field of

a freshly instantiated free object returns a free variable to be used as part of symbolic

expressions. Depending on its type, that free variable can be a free object as well.

6.2.3 Method Invocation

The behaviour that objects encapsulate via methods may, in fact, change along the

implementation hierarchy due to overriding [Dag19]. Since Muli inherits its support for

runtime polymorphism from Java, invoking a method on a free object results in non-

deterministic branching over the available implementations, based on the implementation

hierarchy of the object’s type. For instance, consider the example from Listing 6.1 that

invokes getArea() on an unconstrained free object of the Shape type. Since there are four

different implementations for getArea() (cf. Figure 6.1), that invocation has to result in a

choice with four alternatives, one per implementation [DK20b].

Each of the generated choice alternatives is accompanied by an appropriate constraint

that restricts the type of the free object accordingly [DK20b]. This ensures that the

type assumption made for the purpose of invocation is enforced for future interactions

with the same free object. The example from Listing 6.1 invokes a second method

on the same free object, namely, toString() , which is implicitly available in the Shape

interface per the definition in the JLS (see [Gos+15, § 4.3.2]). Again, there are four distinct
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1 Set<Method> implementations(Object target, Method m) {
2 Set<Method> impls := {};
3 Method mostSpecificFromSupertypes := jvmsLookup(m, target.getClass());
4 if (mostSpecificFromSupertypes != null) {
5 impls += mostSpecificFromSupertypes; }
6 Set<Type> types := target.getPossibleTypes();
7 foreach (type ∈ types) {
़ Method implementation := type.getMethod(m);
9 if (implementation != null && !implementation.isAccAbstract()) {
10 if (type.isAccAbstract() || type.isAccInterface()) {
11 Set<Type> subtypes := type.getImmediateInstantiableSubtypes();
12 foreach (subtype ∈ subtypes) {
13 impls += subtype.getMethod(m); }
14 } else {
15 impls += implementation; } } }
16 return impls; }

Adapted from [DK20b]

Listing 6.2: Discovering the set of method implementations that are candidates for invoc-
ation.

implementation candidates for toString() . However, since branching over getArea()

already makes assumptions over the free object’s type, the implementation that is selected

for toString() has to be consistent with that assumption. Therefore, in this example, the

invocation of toString() is deterministic, because the invocation of getArea() imposes

a constraint that specifies the free object’s type uniquely (and, therefore, the selected

implementation for toString()).

Listing 6.2 presents the pseudocode of a method implementations() that the MLVM

uses to find implementation candidates when a method m() is invoked on a free ob-

ject target . If the implementations() returns more than one element, invocation will

result in a choice that branches over the returned implementations. First, the MLVM

looks up the implementation that will be invoked if the free object assumes its super-

type (target.getClass()). That is the most specific implementation upwards along the

class hierarchy, and lookup is performed using the default deterministic JVMS lookup

mechanism as specified for the Invokeinterface and Invokevirtual instructions [Lin+15,
§ 6.5]. This default mechanism is implemented in jvmsLookup() . Afterwards, imple-

mentations are obtained using getMethod() from every type that the free object may

assume (target.getPossibleTypes()). These implementations are added to the result of

implementations() , unless they belong to a type that is abstract. If the type that imple-
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A

+ m()

B

+ m()

C D

+ m()

selected implementation of m() reduced types after choosing B

original types

Adapted from [Dag19]

Figure 6.2: Types that a free object with the declaration A a free may assume, before
and after choosing a method implementation for invocation.

ments a method is abstract, it cannot be instantiated. For such cases, the implementations

from their immediate, instantiable subtypes are added; i. e. those from direct non-abstract

subtypes and, for abstract subtypes, implementations from their immediate, instanti-

able subtypes. Finally, all found implementations are returned, which will result in the

creation of an appropriate choice node that offers the found candidates as alternatives.

When the MLVM selects a branch from the choice, thus committing to an implement-

ation and, therefore, to a type that provides the desired implementation, it imposes an

appropriate constraint on the free object that restricts its possible types in accordance

with the selected method implementation. However, this does not necessarily mean

that the type of the free object is now known. Consider the artificial implementation

hierarchy that is illustrated by Figure 6.2. Classes A , B , and D provide their own imple-

mentations of m() , thus exhibiting distinct behaviour. In contrast, C does not implement

m() and therefore inherits the behaviour of B . Therefore, with a free object A a free; ,

invoking a.m() creates a choice with three branches, one per distinct implementation.

While the unconstrained free object may assume either of the four types from Figure 6.2,

every branch of the choice has a constraint restricting the type of a . After selecting a

method implementation, a may assume the type that provides the selected implementa-

tion. Alternatively, it may assume any of its subtypes, unless a subtype provides its own

implementation, because selecting a subtype with an implementation would require a

contradictory constraint. For the example, this means that selecting the implementation

provided by class B still allows the free object to assume the type of B or C , but not D

because D overrides the implementation of B . The created choice, and constraints for

all branches, are illustrated as a partial search tree in Figure 6.3. types(a) is the type

constraint that specifies the exact allowed types for a free object a .
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a.m()
types(a) = {𝐴}

types(a) = {𝐵, 𝐶}
types(a) = {𝐷}

Figure 6.3: Partial search tree created from the invocation of a.m() in the example from
Figure 6.2.

ConstraintExpression≪interface≫
Expression

≪interface≫
TypeConstraint

ClassConstraintExpression

- target: Objectref
- types: Set<Type>

(see Figure 4.2)

Figure 6.4: Representation of type constraints in the solver component of the MLVM.

Implementing the type constraint types() over free objects requires an extension of the

solver component of the MLVM. After all, the solver libraries that the solver component

uses (see Section 4.3) can solve constraints involving arithmetic and boolean expressions,

but they have no notion of Muli and/or Java types. The MLVM represents type constraints

in the class ClassConstraintExpression that has two fields, as illustrated in Figure 6.4.

First, target holds the target Objectref that the constraint refers to. Second, the set types

exhaustively describes all types that the target may assume, i. e., it may become any type

that is explicitly specified in the set. The class ClassConstraintExpression extends from

ConstraintExpression so that it can be added to the active constraint system by passing

it to addConstraint() in the solver manager. Furthermore, it implements a new marker

interface class TypeConstraint , symbolizing that the solver manager cannot transform

and impose the constraint with the used solver library. Instead, a type constraint needs

to be handled by the MLVM itself. Specifically, imposing a type constraint results in

changing the allowed types that are specified in the target class Objectref , and removing

the constraint reverts that change. Since type constraints are handled by the MLVM

instead of the solver library, they work regardless of the selected solver.

6.2.4 Type Check and Type Cast

There are two bytecode operations that check the validity of type operations at runtime

[Lin+15, § 6.5]. Checkcast is the bytecode equivalent of the Muli statement (T)o which

attempts to cast an object o to the type T , whereas the bytecode instruction Instanceof
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is the compiled result of the boolean expression o instanceof T , checking whether the

object o is type-compatible with the type T , i. e., the type of o is T or a subtype of T . The

two instructions differ in their behaviour, but not in their criterion. Both pop the topmost

element o from the operand stack and check whether it is type-compatible with the

intended type T . Checkcast throws an exception if that is not the case and does nothing

otherwise, whereas Instanceof pushes the result of the check (i. e., true or false) to the

operand stack.

For regular objects, these bytecode instructions are deterministic. In contrast, for free

objects, evaluation of these operation results in the creation of a non-deterministic choice

if the object’s possible types allow either result for the type-compatibility check [DK20b].

However, they are evaluated deterministically if the type constraints are sufficiently

specific. In order to determine whether the evaluation of (T)o or o instanceof T is

deterministic or non-deterministic for a free object Object o free; with a type constraint

types(𝑜), two sets are created. The first set consists of those possible types in types(𝑜)
that would render the operation successful:

SuccessfulTypes𝑜,T = {𝑡|𝑡 ∈ types(𝑜), 𝑡 ⪯ T}

For the opposite case, a second set comprises the types that o may assume but that

would result in an unsuccessful type-compatibility check.

AdverseTypes𝑜,T = {𝑡|𝑡 ∈ types(𝑜), 𝑡 � T}

In these equations, 𝑎 ⪯ 𝑏 signifies that 𝑎 is type-compatible with 𝑏. Since types(𝑜)
is never empty, at least one of the sets holds at least one type. If one of the sets is

empty, execution is deterministic and its outcome depends solely on the instruction-

specific behaviour. Otherwise, execution is non-deterministic and a choice node with

two branches is created. The branch representing the successful operation has a con-

straint types1(𝑜) = SuccessfulTypes𝑜,T , whereas the constraint of the other branch is

types2(𝑜) = AdverseTypes𝑜,T . An example for the resulting branch constraints is illus-

trated in Figure 6.5b.

6.2.5 Equality

Muli follows Java in the distinction of reference equality from value equality [Dag19;

Gos+15, § 15.21.3]. Neither kind of equality needs special handling w. r. t. their (potentially
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1 Shape s free;
2 Rectangle r = new Rectangle();
3 r.width = 100; r.height = 101;
4 return s.equals(r); // Variation 1,
5 // or...
6 return r.equals(s); // Variation 2.

[DK20b]

Listing 6.3: Excerpt from a search region that introduces non-determinismwhile checking
for value equality in two variations.

1 public boolean equals(Object o) {
2 if (!(o instanceof Rectangle)) return false;
3 return this.width == ((Rectangle)o).width
4 && this.height == ((Rectangle)o).height; }

Listing 6.4: Implementation of Rectangle.equals() .

non-deterministic) evaluation, but the consequences of comparing equality between

(potentially free) objects are interesting regardless.

Reference equality is checked using the == or != operators that resort to a comparison of

the addresses of two objects on the heap, thus effectively checking whether two variables

point to the same object. Here, the presence of free variables does not make a difference.

Therefore, reference equality is always deterministic.

Value equality is slightly more complicated, because it is checked by invoking the

equals() method on a (potentially free) object, passing another object for comparison as a

parameter. As a consequence, value equality is not commutative. Moreover, the behaviour

depends on the implementation of the invoked equals() method as well as on the object

that the equals() method is invoked on, thus potentially adding non-determinism if that

object is a free object. For example, Listing 6.3 instantiates a free and a regular object.

The example invokes equals() to compare the two objects in two variations in order

to demonstrate that the operation is not commutative, and to illustrate the different

outcomes. For reference, the used implementation of Rectangle.equals() is provided in

Listing 6.4. The other implementations of equals() in the class structure from Figure 6.1

are similar.

In the first variation, the equals() method is invoked on the free object, resulting in

a choice with one per subtype that provides an implementation (see Figure 6.5a). The

second variation invokes a specific method on a regular object, so the invocation in itself

़3



6 Free Objects

s.equals(r)

false

types(𝑠) = {Cuboid}

==

==

true

𝑠.height = 𝑟.height

false

𝑠.height ≠ 𝑟.height

𝑠.width = 𝑟.width

false

𝑠.width ≠ 𝑟.width

types(𝑠) =
{Rectangl

e}

false

types(𝑠) = {Square} false

types(𝑠) = {Cube}

(a) Variation 1: Invocation on the free object.

instanceof

==

==

true

𝑠.height = 𝑟.height

false

𝑠.height ≠ 𝑟.height

𝑠.width = 𝑟.width

false

𝑠.width ≠ 𝑟.width

types(𝑠) = {Rectangle , Cuboid}

false

types(𝑠) = {Square , Cube}

(b) Variation 2: Invocation on the regular object.

Adapted from [DK20b]

Figure 6.5: Search trees created from the invocation of equals() on free or regular objects.

is deterministic. However, the implementation of Rectangle.equals() first checks the

type of the passed object using instanceof . As the type is not sufficiently constrained yet,

instanceof computes two sets of types that would render the operation either successful

or failing, respectively, as follows:

SuccessfulTypes𝑠,Rectangle = {Rectangle , Cuboid}

AdverseTypes𝑠,Rectangle = {Square , Cube}

Since both sets contain types, a choice with two branches is created, using the sets of

types for the branch constraints as illustrated in Figure 6.5b. Note that, once the types

are sufficiently constrained, the remaining subtrees of the two search trees look identical,

adding constraints over the two fields of Rectangle .

As a final note, keep in mind that value equality depends on the specific implementa-

tions of equals() that are invoked. In the presented example, equals() compares types

and field values for equality. Other classes can use other criteria that need not necessarily
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result in non-deterministic execution, even if a free object is passed as a parameter. For

example, consider an implementation for equals() that always returns true .

6.3 Summary

As a result of the considerations in this chapter, Muli offers logic variables for objects. This

gives application developers the ability to perform the same interactions with these logic

variables as those that are allowed for regular objects. With respect to non-deterministic

execution, specific measures are necessary for handling invocation and type operations

on free objects. Indirectly, these measures have potential effects on checks for value

equality. Moreover, free objects require special initialization. However, reference equality

and field accesses behave exactly the same for free objects as they do for regular objects.

The implementation of free objects in the MLVM requires a new kind of constraint

that restricts the types that a free object may use at runtime. To that end, the solver

manager component has been extended, managing type constraints in addition to the

previously existing constraints.

For the moment, these considerations only apply to logic variables with class types or

interface types. Future work can consider the introduction of free arrays, i. e., array-type

logic variables.

1. Chapter 11: Jan C. Dageförde and Herbert Kuchen. ‘Free Objects in Constraint-

logic Object-oriented Programming’. In: Proceedings of the ACM on Programming
Languages (OOPSLA). 2020. Under review

2. Chapter 14: Jan C. Dageförde. ‘Reference Type Logic Variables in Constraint-Logic

Object-Oriented Programming’. In: Functional and Constraint Logic Programming.
Ed. by J. Silva. Vol. 112़5. Lecture Notes in Computer Science. Cham: Springer,

2019, pp. 131–144. doi: 10.1007/978-3-030-16202-3_8

़5

https://doi.org/10.1007/978-3-030-16202-3_8




7
Conclusion

With this chapter, Part I of this thesis is concluded. Section 7.1 presents and summarizes

the contributions of this work. Afterwards, Section 7.2 notes current limitations. Last but

not least, Section 7.3 provides a perspective regarding future research opportunities.

7.1 Contributions

The research presented in this work has set out to improve the state of the development of

object-oriented software that involves constraint-logic search. To that end, the objective

of this research has been to design and to develop a programming language that provides

integrated support for object-oriented programming and constraint-logic programming.

Themain output of this research is the CLOOP languageMuli that, based on Java, provides

features from object-oriented programming as well as from constraint-logic proramming.

Therefore, the objective has been achieved.

With the support of the Muli compiler and the MLVM runtime environment, Muli

allows developers to integrate non-deterministic search with other, deterministic business

logic in a single Muli application. To that end, constraint-logic features are first-class

citizens in a programming language that primarily uses an object-oriented syntax. Free

variables (i. e., logic variables) in Muli can be of primitive types as well as of class or

interface types. Since the MLVM supports symbolic execution, free variables can be used

in the same contexts as regular variables of compatible types, regardless of whether the

variables are numeric, boolean, or objects. Therefore, Muli’s seamless integration of

non-deterministic search and object-oriented programming facilitates the development of

applications that interleave constraint definition and search with imperative statements.

The MLVM structures the non-deterministic execution of Muli search regions in a

search tree and makes this structure explicit. For the development of the MLVM as

well as during the development of Muli applications, this explicit structure is helpful for

explaining non-deterministic search in Muli applications. The search tree also serves as

a basis for the implementation of strategies how the MLVM explores the search space
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of a search region. This allows Muli application developers to select a strategy that is

suitable for a given search problem.

All things considered, using Muli for the development of business applications that re-

quire search relieves developers from having to separate object-oriented application parts

from search-related parts of the application. Moreover, using Muli avoids deficiencies

that would arise from manual integration with Prolog or other external tools for search,

and does not result in vendor lock-in regarding the used constraint solver. Since Muli is

syntactically and semantically based on Java ़ and maintains backwards compatibility

with Java, developers with experience in Java can easily learn Muli and start using it for

development.

The research has culminated in several contributions for practice as well as for theory.

Contributions for practice As a result of using Java as a base language, Muli is a pro-

gramming language whose syntax is mainly an object-oriented one. This could

be helpful in an attempt to establish Muli among mainstream programming lan-

guages. At the same time, the constraint-logic features that Muli offers are helpful

for applications that rely on search as part of their business logic. Even though the

MLVM is a research prototype that may not cater to every practical need, and that

has room for improvement in future work, its stability is assured using a set of test

cases that are executed on every change to the source code. Moreover, the source

code of all tools that have been developed as part of this research and that are

presented in this dissertation are publicly available,7 thus facilitating the adoption

of the programming language.

Contributions for theory Furthermore, the results of this research add to the scientific

body of knowledge. The concept of constraint-logic object-oriented programming is

novel and no such programming language existed prior to this research. Moreover,

the idea of executing object-oriented programs non-deterministically for purposes

other than test-case generation is novel. The Münster Logic-Imperative Language

fills these research gaps, presenting a programming language that integrates the

object-oriented and constraint-logic paradigms. Furthermore, the concept of dual

trails is a novel modification of the WAM trail. The dual trails facilitate the restor-

ation of arbitrary execution states in an environment in which side effects from

execution play a role, so that dual trails are a prerequisite for stopping and resuming

search in a stateful environment. The trails also facilitate the implementation of

7https://github.com/wwu- pi/muli/ .
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breadth-first search as a search strategy that is novel in the context of (stateful)

execution of imperative applications. Last but not least, this dissertation and its

related publications define language concepts for Muli that can also serve as a

blueprint of future CLOOP languages. This encompasses future languages based

on Java as well as ones based on other object-oriented programming languages.

7.2 Limitations

Even though this research has been able to achieve its objective, it has its limitations

as certain aspects have been disregarded so far. These aspects do not depreciate the

accomplishments, but should nevertheless be duly noted.

This research proposes CLOOP as a novel paradigm, however, it only focusses on a

single language by developing Muli. Therefore, future research needs to show whether

the novel concepts can contribute to the development of further CLOOP languages.

Moreover, Muli is based on Java ़. As a result, the development has not considered

more recent Java features (yet). Major recent features that might also be useful for Muli

applications include the Java Platform Module System [MB17], type inference for local

variables [Goe1़], and switch expressions [Bie20]. Basing Muli on top of a more recent

Java version would also improve the compatibility of Muli applications with existing Java

libraries.

As a custom implementation of a JVM, the MLVM does not benefit from advanced

features that a standard JVM offers. In particular, the MLVM does not provide just-in-time

compilation of the bytecode, so that the bytecode of Muli classes has to be interpreted.

Nevertheless, at least the MLVM can be executed on a standard JVM, so that the JVM’s

just-in-time compilation can optimize the execution of MLVM.

Finally, it should be noted that Muli supports single-threaded applications only. Adding

support for multi-threading in the context of non-deterministic search requires sophistic-

ated techniques that reduce the search space.

7.3 Perspectives for Future Research

The progress of this work has by far not exhausted the opportunities for research, neither

on CLOOP in general nor on Muli in particular. A non-exhaustive set of ideas for future

work is presented subsequently.
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So far, Muli is restricted to single-threaded applications, thus breaking a bit of back-

ward compatibility with existing Java applications and libraries. Future research could

investigate possible support for multi-threaded Muli applications. Here, differentiations

could be made regarding the mode of execution; that is, support for non-deterministic

execution of search regions with multi-threading will require different considerations

than multi-threaded execution of deterministic parts of an application outside search

regions.

Multi-threading provides another opportunity for research. Currently, non-determin-

istic decisions at choices are evaluated in sequence. However, given sufficient computing

resources, it is theoretically possible to evaluate multiple decision alternatives in paral-

lel. To that end, it is particularly important that the execution of decision alternatives

is isolated so that they strictly cannot interfere with the execution state of the other

alternatives that are executed in parallel.

Another aspect of the MLVM that lends itself for future research is the use of trails

for achieving specific execution states. Alternatively, a programming language with

immutability guarantees and copy-on-write data structures could be more efficient in

representing specific execution states by creating incremental snapshots at choices. This

hypothesis can be evaluated experimentally by implementing an alternative to the MLVM

in a programming language that provides such guarantees.

The considerations regarding reference-type logic variables are focused on free objects.

Future research can investigate how logic variables with an array type should be treated

in CLOOP. Last but not least, all the presented concepts for CLOOP can be transferred to

another programming language, particularly to one that is based on a different object-

oriented language.
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ࢽ
Publication Overview

Part II reproduces the eight publications pertaining to this cumulative dissertation. The

individual contributions of the publications have been presented and put into perspective

in Part I.

The reproductions are identical in content compared to the original publications.

However, their formatting has been adapted to match the formatting of this thesis, for the

purpose of improving readability as well as providing an appearance that is consistent

with that of Part I.

This overview presents title, authors, and outlets of each publication. Furthermore, it

indicates how the respective outlets are ranked according to the CORE conference and

journal rankings.़ For publications that are still under review at the time of writing, the

ranking is indicated in parentheses.
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़http://portal.core.edu.au/conf- ranks/ and http://portal.core.edu.au/jnl- ranks/ , respectively.
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103

https://doi.org/10.1016/j.cola.2019.05.001
http://portal.core.edu.au/conf-ranks/
http://portal.core.edu.au/jnl-ranks/


8 Publication Overview

Book chapter

No. Publication CORE

B1 Chapter 10 [DK20a]: Jan C. Dageförde and Herbert Kuchen. ‘Applications of Muli: Solving

Practical Problems with Constraint-Logic Object-Oriented Programming’. In: Analysis,
Verification and Transformation for Declarative Programming and Intelligent Systems. Ed. by
Pedro Lopez-Garcia, Roberto Giacobazzi and John Gallagher. LNCS. Springer, 2020. Under

review

(-)

Conference (post-)proceedings

No. Publication CORE

C1 Chapter 11 [DK20b]: Jan C. Dageförde and Herbert Kuchen. ‘Free Objects in Constraint-logic

Object-oriented Programming’. In: Proceedings of the ACM on Programming Languages
(OOPSLA). 2020. Under review

(A*)

C2 Chapter 12 [DT20]: Jan C. Dageförde and Finn Teegen. ‘Structured Traversal of Search

Trees in Constraint-logic Object-oriented Programming’. In: Declarative Programming
and Knowledge Management. Ed. by Petra Hofstedt, Salvador Abreu, Ulrich John, Herbert

Kuchen and Dietmar Seipel. Vol. 12057. Lecture Notes in Artificial Intelligence. 2020,

pp. 199–214. doi: 10.1007/978-3-030-46714-2_13

C

C3 Chapter 13 [DK19b]: Jan C. Dageförde andHerbert Kuchen. ‘Retrieval of Individual Solutions

from Encapsulated Search with a Potentially Infinite Search Space’. In: Proceedings of the
34th ACM/SIGAPP Symposium On Applied Computing. Limassol, Cyprus, 2019, pp. 1552–1561.

doi: 10.1145/3297280.3298912

B

C4 Chapter 14 [Dag19]: Jan C. Dageförde. ‘Reference Type Logic Variables in Constraint-Logic

Object-Oriented Programming’. In: Functional and Constraint Logic Programming. Ed. by
J. Silva. Vol. 112़5. Lecture Notes in Computer Science. Cham: Springer, 2019, pp. 131–144.

doi: 10.1007/978-3-030-16202-3_8

C

C5 Chapter 15 [DK1़a]: Jan C. Dageförde and Herbert Kuchen. ‘A Constraint-logic Object-

oriented Language’. In: Proceedings of the 33rd ACM/SIGAPP Symposium On Applied Com-
puting. ACM, 201़, pp. 11़5–1194. doi: 10.1145/3167132.3167260

B

C6 Chapter 16 [DK1़b]: Jan C. Dageförde and Herbert Kuchen. ‘An Operational Semantics for

Constraint-Logic Imperative Programming’. In: Declarative Programming and Knowledge
Management. Ed. by Dietmar Seipel, Michael Hanus and Salvador Abreu. Vol. 10977. Lecture

Notes in Artificial Intelligence. Cham: Springer, 201़, pp. 64–़0. doi: 10.1007/978-3-030-

00801-7_5

C

104

https://doi.org/10.1007/978-3-030-46714-2_13
https://doi.org/10.1145/3297280.3298912
https://doi.org/10.1007/978-3-030-16202-3_8
https://doi.org/10.1145/3167132.3167260
https://doi.org/10.1007/978-3-030-00801-7_5
https://doi.org/10.1007/978-3-030-00801-7_5


9
A Compiler and Virtual
Machine for Constraint-Logic
Object-Oriented Programming

Jan C. Dageförde∗ · Herbert Kuchen∗

Citation Jan C. Dageförde and Herbert Kuchen. ‘A Compiler and Virtual Machine for

Constraint-logic Object-oriented Programming with Muli’. In: Journal of Computer Languages 53

(2019), pp. 63–7़. issn: 2590-11़4. doi: 10.1016/j.cola.2019.05.001 .

Citation

Abstract The development of enterprise software typically relies on object-oriented (OO) pro-

gramming languages. However, OO languages are not particularly suited for the implementation

of software which involves solving complicated search problems with dynamically appearing

constraints, e. g. as found in logistics. Aiming to improve this situation, we propose the Münster

Logic-imperative Language (Muli). As a constraint-logic OO language, it facilitates an integrated

implementation of applications that use aspects from both constraint-logic and object-oriented

programming, thus eliminating the need to resort to JNI for the integration of search applications

that are written in a (constraint) logic language. Muli extends Java by logic variables and encap-

sulated search. Its runtime is based on a symbolic Java virtual machine and leverages constraint

solvers. Outside of search regions, Muli behaves just like Java.

We motivate the benefits of integrating object-oriented programming and constraint-logic

programming into a single language and introduce novel concepts that are required for a seam-

less integration. Furthermore, we present an operational semantics and transfer concepts and

semantics into implementations of a compiler and a virtual machine.

Keywords Programming paradigm integration · programming language · constraint-logic

programming · operational semantics · virtual machine implementation.

∗University of Münster, Germany

105

https://doi.org/10.1016/j.cola.2019.05.001
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9.1 Motivation

In contemporary software development, object-oriented (OO) programming is prevalent,

as languages such as Java and C# continue to dominate usage rankings [Sta1़; Sta19;

TIO19]. Inheritance and encapsulation of behaviour and structure are examples of features

that contribute to reusability as well as maintainability, thus making them useful for most

industry applications [Lou93]. However, there are scenarios in which languages from

other paradigms are more suitable.

Consider search problems. Constraint-logic programming languages, such as Prolog

with the CLP(FD) package, allow developers to declaratively specify a search space in

terms of variables and their constraints [Tri12]. As a result, the search for solutions is

performed implicitly by the runtime environment and the included constraint solver. In

contrast, solving search problems in Java requires either a manual implementation of an

imperative solver or relies on importing third-party constraint solver libraries. Self-made

implementations of solvers are often highly specialised towards a given problem, which

might be beneficial for performance but harms generalisability. In contrast, several

third-party constraint solvers are efficient for a variety of problems, but do not provide a

standardised application programming interface (API), which results in a lock-in effect.

Another option, using (e. g.) Prolog via the Java Native Interface (JNI), is tedious and

error-prone due to the nature of the JNI [KO0़].

In an effort to remedy this situation, we propose a novel approach to integrating

constraint-logic and OO paradigms based on Java. TheMünster Logic-Imperative Language
(Muli), a constraint-logic object-oriented programming language. Instead of developing

yet another constraint solver library, of which there are many (cf. e. g. [PFL17; The1़;

Kuc03]), our solution provides means for constraint-logic programming within Java

programs by adding the concept of free variables directly to the language, i. e. variables

that are not initialised to a particular value but to a symbolic value of a certain Java

type. This is combined with symbolic execution by a specialised Java virtual machine

(JVM) that adapts concepts from the Warren Abstract Machine [War़3]. Within code

parts that we refer to as search regions, execution becomes non-deterministic whenever

branching conditions involve one or more free variables whose domains are insufficiently

constrained so that more than one branch is applicable. By backtracking, the JVM ensures

execution of all applicable branches whose conditions satisfy all imposed constraints.

Muli is particularly suited for enterprise applications of which most of the business

logic can be expressed adequately in Java, but which occasionally require solving search

problems whose details have been assembled in previous inputs or calculations. An
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example of such an application is a truck scheduling system which dynamically adapts its

schedule depending on traffic information and newly arriving orders, thus incrementally

adding constraints.

Building on prior work presented at SAC 201़ [DK1़a], this paper introduces Muli as

a constraint-logic OO language and motivates concepts for language and runtime that

are required to achieve this integrated paradigm, including an operational semantics. To

these ends, our paper is structured as follows. We start off by describing novel language

concepts and the resulting syntactic extension in Section 9.2, with a corresponding

compiler detailed in Section 9.3. Furthermore, an operational semantics for a core subset of

Muli is described in Section 9.4. Section 9.5 presents a custom implementation of a runtime

environment, detailing structures and runtime concepts required for the execution of

Muli applications. Using sample applications, we discuss the advantages and weaknesses

of this approach in Section 9.6. Related work is summarised in Section 9.7. In Section 9.़,

we then draw a short conclusion and sketch future work.

9.2 Muli Language

Muli is a language extension to Java, with Java ़ as the reference language. Additions to

the language are kept to a minimum, and we entirely refrain from making modifications

to existing Java concepts and features in order to minimise the burden on Java developers

to understand Muli programs. As a result, Muli is a superset of Java, so that every Java

program is also a Muli program that can be compiled and executed by Muli.

Our approach follows some design principles that we deem useful. First, we want to

solve search problems supported by a custom-tailored SJVM. Second, we want search to

be encapsulated. As a result, non-deterministic execution is only performed if explicitly

required, whereas other parts of the program remain deterministic and cause no overhead

w. r. t. Java. Third, we refrain from adding more special syntax than absolutely necessary,

especially for defining constraints. For example, we do not want to add operators for

constraints that can be expressed using relational Java operators. Fourth, since Java

programs are not executed lazily, Muli should not be evaluated lazily either, in contrast

to integrations of logic programming with other paradigms (cf. e. g. Curry [Han97]). Last

but not least, Muli should be considered an extension of Java, as opposed to an entirely

new language. This implies that functionality (and therefore understanding!) of Java

constructs remains unchanged and performance of deterministic program parts should

not be adversely affected.
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We decided to use Java as the reference language as it is a ubiquitous programming

language which is well-known and well-understood among most developers. Moreover,

it comprises advantageous features of OO imperative languages, such as platform inde-

pendence, inheritance, and encapsulation of data and operations [Lou93]. In contrast

to programs written in C++, which are compiled and then executed directly on the

machine, Java programs compile to intermediate bytecode and are then executed on a

(software) virtual machine. As a result, it is relatively easy to implement a custom runtime

to evaluate modifications to the language. Even though no official formal operational

semantics exists, Java and its corresponding runtime are documented extensively in

natural language ([Gos+15] and [Lin+15], respectively), which facilitates both conceiving

an extension and deriving implementations.

9.2.1 Language Concepts

Extending Java to become a constraint-logic OO language requires a few concepts that

are novel to Java. First, we need to add the concept of logic variables. Actually, given

the SJVM, any Java variable can be considered a logic variable. However, regular Java

enforces that every variable must be initialised to a particular value before it is used. In

contrast to that, Muli introduces free variables using the free keyword, indicating that

they are initialised, although not bound to a particular value. In principle, a logic variable

can be of any type. However, full support is limited to logic variables of primitive types

for now, whereas an extension towards full support of reference types is going to be part

of future work.

Second, we add encapsulated search, adapting the identically named concept from the

functional constraint-logic language Curry [Han+95], to provide an abstraction from

non-deterministic execution. Within encapsulated search, non-deterministic execution

can happen, whereas any program part outside encapsulation is deterministic, just as

regular Java programs are. We refer to a program part inside encapsulation as search
region. An encapsulated search region is executed symbolically.

Whenever conditional branching occurs that involves insufficiently constrained (logic)

variables, non-determinism is introduced. As a consequence, constraints are imposed

incrementally once a valid branch is chosen. Its branching condition is imposed as an

additional constraint in conjunction with the ones that existed previously. Afterwards,

symbolic execution continues. Later, execution of the branch is backtracked, the former

constraint is removed, and the next branch is chosen analogously. By deriving con-

straints from the branching condition, we avoid having to introduce additional keywords,

10़



9.2 Muli Language

symbols, or classes for the definition of constraint. This gives Muli a representational

advantage over constraint solver libraries that require instantiating their proprietary

object representations in order to define (and impose) constraints. More insight on this

advantage is provided in Section 9.6.

A search region is specified as a method that takes no parameters as input and that

returns a value. Such a method definition is consistent with the Supplier functional

interface (cf. [Gos+15]), i. e., it can be specified as an appropriate lambda expression or by

explicitly implementing Supplier . Effectively, the result can be multiple return values due

to non-determinism. The values returned by a search region are considered solutions that
the encapsulation collects and returns to its caller. Furthermore, we enable developers to

explicitly cut execution branches, resulting in immediate backtracking without adding a

solution.

Generally, we consider runtime exceptions that occur during execution of a search

region as a kind of solution, as they are just another result of the execution. Although

they do not represent a particular value, they may be of interest to the surrounding

application. To facilitate control over this behaviour, we propose operators that configure

encapsulated search and the expected kinds of solutions. The most general case is that all

solutions of a search region, including exceptions, are to be returned (getAllSolutionsEx ).

This general case can be modified to return the first solution (getOneSolutionEx), to

discard exceptions (getAllSolutions ), or in combination to return the first non-exception

solution (getOneSolution).

As an introductory example, Listing 9.1 presents a simple Muli application that makes

use of the constraint-logic OO programming style. The example application searches

and prints the square root of a fixed number. We express this by the constraint 𝑥 == 𝑦/𝑥
(i. e. 𝑥 == ⌊√𝑦⌋) over integer variables 𝑥 and 𝑦, resorting to a constraint solver for finding

𝑥. As in Java, a method with the signature public static void main(String[]) is used

by the SJVM as the entry point. Computation remains deterministic, i. e. non-searching,

until encapsulation begins. Assuming that we are interested in only one solution that

should not be an exception, we use the getOneSolution operation that returns a single

non-exception value. We use this operation in main() in order to create an encapsulated

search region that calls the method sqrt() . For elegance, the search region is expressed

as a lambda abstraction. Alternatively, a method reference could be used, thus facilitating

reuse of search regions across an application. By using a lambda abstraction rather than

an expression in the argument of the encapsulation operators, we make sure that the

search region is not immediately evaluated, but only under control of the encapsulated

search mechanism.
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1 public static void main(String[] args) {
2 int i = Muli.getOneSolution(() -> sqrt(5));
3 System.out.println(i); }
4 public static int sqrt(int y) {
5 int x free;
6 if (x == y/x) return x;
7 else throw Muli.fail(); } // Not defined.

Listing 9.1: Muli program that searches the (integer) square root of 5 and prints the result
(class header omitted).

1 public static void main(String[] args) {
2 Stream<Solution<Integer>> factorials = Muli.getAllSolutionsEx(() -> {
3 int n free;
4 return fact(n); } );
5 factorials.limit(100).forEach(i -> System.out.println(i)); }
6 private static int fact(int n) {
7 if (n == 0) return 1;
़ else if (n >= 1) return n * fact(n - 1);
9 else throw Muli.fail(); } // Not defined.

Listing 9.2: Muli program that searches factorials using non-deterministic evaluation and
prints the first 100 of them (class header omitted).

In sqrt() , x is declared as a free variable which might later be bound to a value. The

branching condition of the if statement cannot be evaluated to a single boolean value, as

x is unconstrained. Therefore, the constraint x == x/y is added to the constraint store and

the computation continues with the first branch of the if statement, namely return x .

Since the return statement finishes the considered execution branch, the constraint solver

searches and finds a solution satisfying the accumulated constraints (here consisting of a

single constraint) and returns the obtained value for x , namely 2, as a result. Solutions

that do not satisfy the above constraint are cut off by the fail() operator.

An example of finding multiple solutions is printed in Listing 9.2. In this case,

getAllSolutionsEx() is used to start encapsulated search. This operator returns multiple

solutions that may also include thrown exceptions, using a stream of Solution objects

that each encode one solution.

In this example, the search region declares a free variable int n that is passed as

an argument to a method fact() which is supposed to compute 𝑛!. Since int n is still

unconstrained, all three execution branches remain possible andwill therefore be executed
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2 class MuliIncrementalArgs {
3 public static void main(String[] args) {
4 int x = Muli.getOneSolution(() -> {
5 int x free; int i = 0;
6 while (i < args.length) {
7 if (!(x<Integer.parseInt(args[i++])
़ && x>Integer.parseInt(args[i++])))
9 break; }
10 });
11 System.out.println(x); } }

Listing 9.3: Incrementally adding constraints from user input in Muli.

non-deterministically. In our implementation, this means that all possible branches will

be tried one after another by backtracking and that all found solutions will be delivered to

the resulting stream. One branch is exempted from the overall solution using the fail()

operator, whereas any other exception would be considered a solution. The first branch

imposes the constraint n == 0 and returns the constant 1. The second branch imposes

the constraint n >= 1 and returns an arithmetic expressions over n and recursion. Since n

is still not bound to a fixed integer value, the expression cannot be evaluated yet and will

be represented symbolically. Note that, by recursion, further branching is introduced.

These branches will bind n to 1, 2, 3, …, respectively, such that the expression can then

be evaluated to an integer and returned as a result. Note also that the finally resulting

stream of factorials is infinite. This is not a problem as long as only a finite part of it

is actually needed and computed, such as in our example that only prints the first 100

factorials.

Muli realises additional potential in search problems that are not fully defined at once,

but that add new, incremental constraints during execution. For instance, Listing 9.3

exhibits a program that iteratively adds constraints over a free variable x based on

the passed command line parameters and, eventually, finds a solution for x . Consider

also a variation that derives additional constraints from user input at runtime, e. g. via

BufferedReader.readLine() , where the full constraint system cannot be known before

the application starts.

As a side note, a solution can be a data structure containing the values of possibly

several free variables, in case these values are required outside of encapsulation as part

of the solution. For instance, this is achieved by the Assignment structure that is used in

Listing 9.6.
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In general, each solution can be a single value if constraints over the involved variables

are sufficiently restrictive. In other cases, the solution might describe a search space, i. e.

a symbolic expression accompanied by its relevant constraints. If a particular value is

required from that search space, the developer needs to explicitly use solve() to label the
variables, i. e. successively try specific values for them, as it is usual in constraint solving.

We decided not to do this implicitly, as developers might want to refine search spaces by

constraints in later search regions, which they would be unable to do if labelling occurred

in the meantime. For example, solve() could be called right before returning a solution:

1 int x free; if (x >= 4 && x < 7) {

2 Muli.solve(x);

3 return x; }

thus ensuring that a single value for x (where x ∈ {4, 5, 6}) is returned, instead of a

logic variable with a domain that is reduced accordingly. A more complex example of

using solve() in the context of an actual logic problem is provided in the discussion

(cf. Listing 9.6).

Moreover, Muli also leverages concepts that were introduced in Java ़. Search regions

implement the Supplier functional interface, i. e., they are classes with a single method

that does not accept parameters and produces a value. As a result, a search region can be

elegantly specified using a lambda abstraction with no parameters and a return value,

thus implicitly implementing that functional interface. Alternatively, if a search region

is used in multiple places, a reference to an appropriate static method is allowed, thus

avoiding code duplication. In either case, the evaluation of the search region is deferred

until encapsulated search begins. Solutions of encapsulated search are returned to the

caller by means of the Stream API in order to facilitate easy handling of solutions by the

application.

9.2.2 Syntactic Extension of Java

Our examples suggest that only minimal language extensions are necessary in order to

implement these concepts. Syntactically, they are limited to adding the free keyword.

Given Java’s EBNF rules for declaring a field (adapted from [Gos+15]):

FieldDeclaration ::= FieldModifier* Type VariableDeclarator (, VariableDeclarator)*;
VariableDeclarator ::= VariableDeclaratorId (= VariableInitializer)?;
we can add free as an alternative to initialisation by changing the VariableDeclarator
rule to:
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VariableDeclarator ::= VariableDeclaratorId ( free ∣ (= VariableInitializer))?;
Free local variables in methods are enabled by an analogous syntax extension. Method

parameters cannot be declared free as parameter values are supplied by the caller. How-

ever, the caller may pass a free variable as a parameter, but for that purpose no special

syntax is required.

Note that the keyword could even be avoided completely. In pure Java, using a

FreeVariable<T> class with a generic type T or an @FreeVariable annotation come to

mind as alternatives. However, using a class with generic type introduces much overhead,

especially when considering boxing and unboxing for free variables of primitive types.

Annotations also fall short, since annotations of local variables are not preserved until

runtime, whereas only those of class fields remain accessible by the runtime. Using

declarations without initialisation is also insufficient as this results in uninitialised local

variables or, in the case of fields, in implicitly initialised instance variables. Instead,

a compiler can parse the free keyword and transform it into bytecode, which is then

interpreted by a specialised runtime.

9.2.3 Muli Classpath

The remaining concepts do not require syntactic changes to the language. Therefore, no

further additions to the compiler are necessary. Instead, we propose a small library that

will be on the classpath during compilation and execution.

A class Muli implements encapsulated search operators and the fail() operator as static

methods that influence the SJVM’s runtime behaviour. The most general encapsulated

search operator is getAllSolutionsEx() , from which further operators are derived.

For reasons of readability we implemented the classpath library directly using Java as

far as possible. However, the library has to be able to change the state of the VM in order

to switch the execution mode before and after encapsulation, to record solutions, and

to enforce backtracking. Methods with that purpose are declared private static native

and therefore do not provide a direct Java implementation within the library. Instead, the

Muli runtime engine provides their actual implementations that perform state changes.

9.3 A Future-Proof Muli Compiler

Variables and class fields that are declared free need to be represented in bytecode

accordingly. The JVM specification provides a set of attribute structures that can be

extended arbitrarily without breaking bytecode compatibility [Lin+15]. In bytecode,
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each attribute declares its type using a string constant, together with its total length

in bytes. Every JVM implementation is required to read all attributes and silently skip

attributes whose names it does not recognise, using the declared length. We leverage this

by specifying custom attribute types that are ignored by regular JVM implementations

but that will be picked up by the Muli one. The benefit of staying bytecode compatible

with the JVM is that existing parsers and metaprogramming tools are also usable for

Muli.

Compiled bytecode comprises four kinds of attribute structures that allow adding

custom attribute types [Lin+15]. For instance, for each field of a class there is a field_info

structure. This structure records information on that field, namely name, descriptor,

and a table (i. e. a list) of arbitrary attributes encoding additional details that make use

of the behaviour described above. Similarly, the ClassFile structure contains (among

other things) a table of attributes describing details of the class, the method_info structure

describes specifics of a method, and Code_attribute provides details on the code of a

method.

In order to represent free fields, we add a FreeField attribute to the field_info structure.

Since every field maintains its own structure, the mere existence of a FreeField attribute

is sufficient to indicate that that field is free, whereas its absence implies a regular variable.

Therefore, no additional data is required (as illustrated by the empty FreeField class in

Figure 9.1).

Java maintains a table of local variables in bytecode as part of the structure Code_at-

tribute that is associated with a method, thus representing all variables of a method in a

single tabular attribute LocalVariableTable . Extending the existing attribute by a boolean

flag (indicating whether a variable is a free or a regular one) is a feasible alternative in

theory, but that would break bytecode compatibility. Therefore, we add a new FreeVari-

ablesTable attribute to the method_info structure. This attribute maintains one entry per

free variable, each comprising a reference to an entry in the LocalVariableTable by their

index (FreeVariableEntry in Figure 9.1), thus specifying which of the local variables is a

free one.

As a result, Muli requires a compiler that is able to understand the changed syntax

and that generates bytecode as specified above, so that information on free variables

and fields can be used at runtime. We have constructed a Muli compiler based on the

extensible compiler framework ExtendJ (formerly JastAddJ) [EH07]. Leveraging ExtendJ

as a compiler framework comes at several benefits. In contrast to writing a compiler

from scratch, we avoid having to redefine the entire frontend and backend, which is

useful given that our modification to the original Java syntax is minor. Furthermore,
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FreeVariablesTable FreeVariableEntry

+ index: u2

Attribute

+ attribute_name: CONSTANT_Utf8_info

+ attribute_length: u4

1          0..*

LocalVariableTable LocalVariableEntry

+ index: u2

+ name: CONSTANT_Utf8_info

+ descriptor: CONSTANT_Utf8_info

[...]

1           0..*

FreeField

re
fe

re
nc

es

Figure 9.1: Attribute structures generated into the compiled bytecode. Types used in
this figure follow the specification of [Lin+15], where u𝑛 signifies an 𝑛-byte
unsigned integer and CONSTANT_Utf8_info is a string constant.

1 FreeVariableDeclarator : VariableDeclarator;
2 FreeFieldDeclarator : FieldDeclarator;

Listing 9.4: Declaration of additional AST subtypes for the Muli compiler.

compilers developed using ExtendJ are easily modifiable because extensions are organised

in layers, i. e. the compiler for Java ़ is defined by a small extension layer on top of the

Java 7 compiler (which, in turn, is an extension layer to the Java 6 compiler, and so

on) [EH07]. Each extension layer modifies the extended compiler in an aspect-oriented

way, particularly regarding scanner, parser, and bytecode generation. Similarly, we add a

small extension layer for Muli on top of the (ExtendJ) Java ़ compiler. As a consequence,

it will be fairly easy to rebase the Muli compiler onto a later Java compiler as soon as we

intend to make new Java language features accessible to Muli developers as well.

Our Muli compiler imports abstract syntax tree (AST), parser, and bytecode generator

from ExtendJ’s Java ़ modules. In the frontend, the AST is extended by two declarator

subtypes for free variables (cf. Listing 9.4), that are instantiated by the parser when it

encounters the free keyword instead of a regular variable initialisation. The parser is

modified according to the EBNF specification provided in Subsection 9.2.2. The backend

picks up instances of the new AST types and generates the aforementioned attributes

into the classes’ bytecode correspondingly.

9.4 Operational Semantics of Muli Programs

Following the design goals of our language, execution of Muli programs is identical to the

behaviour of a standard JVM [Lin+15] for deterministic program parts, i. e. except within
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encapsulated search. In contrast, execution of search regions inside of encapsulation can

become non-deterministic. This changes the semantics of Java and adds subtleties that

need to be explicated, particularly regarding the interaction of imperative statements,

free variables, and non-determinism.

Therefore, we formally define the semantics for non-deterministic evaluation of search

regions (adapted from [DK1़b]), focussing on an imperative, procedural core subset

of Muli (and Java). The formulated semantics is helpful to get an understanding of

the mechanics behind concepts that are novel to imperative and OO programming

and serves as a formal basis for implementing the symbolic JVM. It can also be used

for reasoning about applications developed in Muli. In particular, the interaction of

imperative statements, free variables, and non-determinism is of interest

For simplicity, this core language abstracts from inheritance, multi-threading, and re-

flection, because those features do not exhibit interesting behaviour w. r. t. our semantics.

Apart from multi-threading, Muli’s symbolic JVM supports these features exactly ac-

cording to the JVM specification [Lin+15] (but does not add interesting details w. r. t.

non-determinism). The decision against adding support for multi-threading is sensible

as this feature would be highly detrimental to performance in non-deterministic search.

The subsequent rules define that non-deterministic branching occurs whenever there are

multiple alternatives for statements or expressions that could be evaluated next (as we

will demonstrate, for instance, for the rules If𝑡 and If𝑓). However, in the presence of more

than one active thread, there are always multiple alternatives. Specifically, one per active

thread in addition to one per non-deterministic instruction that is a candidate in a thread.

Consequently, allowing multi-threading in combination with non-deterministic search

results in state space explosion, which would require additional sophisticated techniques

to combat. In the meantime, until appropriate techniques exist, it is sensible to forbid

multi-threading in order to avoid this.

We begin with a description of the syntax of our core language. Variables are taken

from a finite set 𝑉 𝑎𝑟 = {𝑥1, … , 𝑥𝑚}, for simplicity all of type integer (𝑚 ∈ ℕ). In addition,

let 𝑂𝑝 = 𝐴𝑂𝑝 ∪ 𝐵𝑂𝑝 ∪ 𝑅𝑂𝑝 = {+, −, ∗, /} ∪ {&&, ||} ∪ {==, ! =, <=, >=, <, >} be a

finite set of arithmetic, boolean, and relational operation symbols, respectively. We focus

on binary operation symbols. Furthermore, ℳ is a finite set of methods.10

The syntax of arithmetic expressions and boolean expressions as well as statements

is described by the following grammar. 𝐴𝐸𝑥𝑝𝑟, 𝐵𝐸𝑥𝑝𝑟, and 𝑆𝑡𝑎𝑡 denote the sets of all

10In this presentation, they are in fact functions as we do not consider object-orientation.
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arithmetic expressions, boolean expressions, and statements, respectively, that can be

constructed by the rules of this grammar.

𝑒 ∶∶= 𝑐 ∣ 𝑥 ∣ 𝑒1 ⊕ 𝑒2 ∣ 𝑚(𝑒1, … , 𝑒𝑘)
where 𝑐 ∈ ℤ, 𝑥 ∈ 𝑉 𝑎𝑟, 𝑒1, … , 𝑒𝑘 ∈ 𝐴𝐸𝑥𝑝𝑟, ⊕ ∈ 𝐴𝑂𝑝, 𝑚 ∈ ℳ, 𝑘 ∈ ℕ,

𝑏 ∶∶= 𝑒1 ⊙ 𝑒2 ∣ 𝑏1 ⊗ 𝑏2 ∣ true ∣ false

where 𝑒1, 𝑒2 ∈ 𝐴𝐸𝑥𝑝𝑟, 𝑏1, 𝑏2 ∈ 𝐵𝐸𝑥𝑝𝑟, ⊙ ∈ 𝑅𝑂𝑝, ⊗ ∈ 𝐵𝑂𝑝,

𝑠 ∶∶= ; ∣ int 𝑥; ∣ int 𝑥 free ; ∣ 𝑥 = 𝑒; ∣ 𝑒; ∣ {𝑠} ∣ 𝑠1 𝑠2 ∣
if (𝑏) 𝑠1 else 𝑠2 ∣ while (𝑏) 𝑠 ∣ return 𝑒; ∣ fail ;

where 𝑥 ∈ 𝑉 𝑎𝑟, 𝑒 ∈ 𝐴𝐸𝑥𝑝𝑟, 𝑏 ∈ 𝐵𝐸𝑥𝑝𝑟, 𝑠, 𝑠1, 𝑠2 ∈ 𝑆𝑡𝑎𝑡.

Note, in particular, the possibility to declare unbound logic variables using e. g.

int 𝑥 free ;.
After describing the syntax of the core language, let us now define its semantics. In

the sequel, let 𝒜 = {𝛼0, … , 𝛼𝑛} be a finite set of memory addresses (𝑛 ∈ ℕ). Moreover, let

𝑇 𝑟𝑒𝑒(𝒜 ,ℤ) = 𝒜 ∪ ℤ ∪ {⊕(𝑡1, 𝑡2) ∣ 𝑡1, 𝑡2 ∈ 𝑇 𝑟𝑒𝑒(𝒜 ,ℤ), ⊕ ∈ 𝑂𝑝}

be the set of all symbolic expression trees with addresses and integer constants as leaves

and operation symbols as internal nodes.

We provide a reduction semantics, where the computations depend on an environment,

a state, and a constraint store. Let 𝐸𝑛𝑣 = (𝑉 𝑎𝑟 ∪ ℳ) → (𝒜 ∪ (𝑉 𝑎𝑟∗ × 𝑆𝑡𝑎𝑡)) be the set

of all environments, each of which maps a variable to an address and a function to a

representation ((𝑥1, … , 𝑥𝑘), 𝑠) that describes its parameters and code. As an additional

restriction, elements of 𝐸𝑛𝑣 may neither map variables to parameters and code nor

functions to addresses. We consider functions to be in global scope and define a special

initial environment 𝜌0 ∈ 𝐸𝑛𝑣 that maps functions to their respective parameters and code.

Moreover, let Σ = 𝒜 → ({⟂} ∪ 𝑇 𝑟𝑒𝑒(𝒜 ,ℤ) ) be the set of all possible memory states. In

𝜎 ∈ Σ, a special address 𝛼0 with 𝜎(𝛼0) = ⟂ is reserved for holding return values of method

invocations. Furthermore, 𝐶𝑆 = {true} ∪ 𝑇 𝑟𝑒𝑒(𝒜 ,ℤ) is the set of all possible constraint

store states. Since constraints are specific boolean expressions, only conjunctions and

relational operation symbols such as == and > will appear at the root of such a tree. As

a result, the constraint store will comprise a conjunction of atomic boolean expressions.

In the sequel, 𝜌 ∈ 𝐸𝑛𝑣, 𝜎 ∈ Σ, 𝛾 ∈ 𝐶𝑆; if needed, we will also add discriminating indices.

We will use the notation 𝑎[𝑥/𝑑] when modifying a state or environment 𝑎, meaning

𝑎[𝑥/𝑑](𝑏) = {
𝑑 , if 𝑏 = 𝑥

𝑎(𝑏) , otherwise.
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A free variable is represented by a reference to its own location in memory. Con-

sequently, 𝜎(𝜌(𝑥)) = 𝜌(𝑥) if 𝑥 is a free variable. Initially, a constraint store 𝛾 is empty, i. e.

it is initialised with true . During execution of a program, constraints may incrementally

be added to the store. This is done by imposing a conjunction of the existing constraints

and a new constraint, thus replacing the constraint store by the new conjunction. As a

result, the constraint store is typically described by a conjunction of atomic boolean ex-

pressions. For the purposes of describing an operational semantics, we treat the constraint

solver as a black box.11 In our virtual machine implementation, the constraint solver is

exchangeable and any solver implementation can be used that meets our requirements

as outlined in Subsection 9.5.3.

Note that the above definitions limit variables to an integer type in an attempt to

focus the discussion of the semantics. Nevertheless, Muli supports other types which

can be represented by making minor modifications to syntax and the subsequent rules.

Support for logic variables of non-primitive types is part of future work, therefore non-

primitive types are disregarded here. Internally, the JVM represents boolean variables

as integers [Lin+15], so adding support for variables of type boolean is straightforward.

The only remaining non-integer primitive types are float and double . As they use the

same arithmetic expressions as int (i. e., the rules do not need to be modified), support

for these types only depends on the used constraint solver’s capabilities – a pure finite

domain solver will not provide efficient support for floating-point domains, whereas an

SMT solver with support for floating-point arithmetic and finite domains will be well

suited.

Moreover, our definition of functions does not fully cover the concept of methods

in object-oriented languages, since we abstract from classes and, therefore, inheritance.

However, a function in our semantics can be compared to a static method, since a function

in this semantics can access and modify its own arguments and variables, but not instance

variables of an object. Static fields could be modelled as global variables, i. e. further

entries in 𝜌0.
Since classes, inheritance, instance variables, and static variables have little influence on

the interaction between imperative statements, free variables, and non-determinism, the

semantics of object orientation can be considered (almost) orthogonal to our semantics.

11A very simple constraint solver could just take equality constraints into account. In this case, 𝛾 ⊧ 𝑥 == 𝑣,
if 𝛾 = 𝑏1 ∧ … ∧ 𝑏𝑘 and for some 𝑗 ∈ {1, … , 𝑘} 𝑏𝑘 = (𝑥 == 𝑣).
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9.4 Operational Semantics of Muli Programs

9.4.1 Semantics of Expressions

Let us start with the semantics of expressions. The semantics of expressions is described

by a relation → ⊂ (𝐸𝑥𝑝𝑟 × 𝐸𝑛𝑣 × Σ × 𝐶𝑆) × ( (𝔹 ∪ 𝑇 𝑟𝑒𝑒(𝒜 ,ℤ)) × Σ × 𝐶𝑆), which we use

in infix notation. Note that evaluating an expression can, in general, change state and

constraint store as a side effect, although only the Invoke rule actively does so. We will

point out expressions that make use of this, whereas the others merely propagate changes

(if any) resulting from the evaluation of subexpressions.

The treatment of constants and variables is trivial.

⟨𝑐, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑐, 𝜎 , 𝛾 ), if 𝑐 ∈ ℤ ∪ 𝔹 (Con)

⟨𝑥, 𝜌, 𝜎 , 𝛾 ⟩ → (𝜎(𝜌(𝑥)), 𝜎 , 𝛾 ) (Var)

Nested arithmetic expressions without free variables are evaluated directly, whereas

expressions comprising free variables result in a (deterministic) unevaluated (!) symbolic

expression (∈ 𝑇 𝑟𝑒𝑒(𝒜 ,ℤ)).

⟨𝑒1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), ⟨𝑒2, 𝜌, 𝜎1, 𝛾1⟩ → (𝑣2, 𝜎2, 𝛾2),
𝑣1, 𝑣2, 𝑣 = 𝑣1 ⊕ 𝑣2 ∈ ℤ

⟨𝑒1 ⊕ 𝑒2, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎2, 𝛾2)
(AOp1)

⟨𝑒1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), ⟨𝑒2, 𝜌, 𝜎1, 𝛾1⟩ → (𝑣2, 𝜎2, 𝛾2),
{𝑣1, 𝑣2} ⊈ ℤ

⟨𝑒1 ⊕ 𝑒2, 𝜌, 𝜎 , 𝛾 ⟩ → (⊕(𝑣1, 𝑣2), 𝜎2, 𝛾2)
(AOp2)

A boolean expression of the form 𝑒1 ⊙ 𝑒2 is evaluated analogously.

Coherent with Java, conjunctions of boolean expressions are evaluated non-strictly.

The rules for the non-strict boolean disjunction operator ∣∣ are defined analogously to the

following rules for && .
⟨𝑏1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), 𝛾 ⊧ ¬𝑣1
⟨𝑏1 && 𝑏2, 𝜌, 𝜎 , 𝛾 ⟩ → (false , 𝜎1, 𝛾1)

(And1)

⟨𝑏1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), 𝛾 ̸⊧¬𝑣1, (𝑏2, 𝜎1, 𝛾1) → (𝑣2, 𝜎2, 𝛾2)
⟨𝑏1 && 𝑏2, 𝜌, 𝜎 , 𝛾 ⟩ → (∧(𝑣1, 𝑣2), 𝜎2, 𝛾2)

(And2)

We consider a function invocation to be an expression as well, as the caller can use

its result in a surrounding expression. Evaluation of the function is likely to result in a

state change as well as in additions to the constraint store. Invoking 𝑚 implies that its

description 𝜌(𝑚) is looked up and corresponding fresh addresses 𝛼1, … , 𝛼𝑘, one for each of

its 𝑘 parameters, are created. The corresponding memory locations are initialised by the
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caller. Note that the respective values can contain free variables. 𝜎𝑘+1(𝛼0)will contain the

return value from evaluating the return statement in the body, whose semantics will be

defined later (cf. rule Ret). As the compiler enforces the presence of a return statement,

we can safely assume that 𝜎𝑘+1(𝛼0) holds a value after reducing 𝑠. Invoke resets that value

to ⟂ for further evaluations within the calling method. We use the shorthand notation

̄𝑎𝑘 = (𝑎1, … , 𝑎𝑘) for vectors of 𝑘 elements.

⟨𝑒1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), ⟨𝑒2, 𝜌, 𝜎1, 𝛾1⟩ → (𝑣2, 𝜎2, 𝛾2), … ,
⟨𝑒𝑘, 𝜌, 𝜎𝑘−1, 𝛾𝑘−1⟩ → (𝑣𝑘, 𝜎𝑘, 𝛾𝑘), 𝜌(𝑚) = ( ̄𝑥𝑘, 𝑠),

⟨𝑠, 𝜌0[ ̄𝑥𝑘/ ̄𝛼𝑘], 𝜎𝑘[ ̄𝛼𝑘/ ̄𝑣𝑘], 𝛾𝑘⟩ � (𝜌𝑘+1, 𝜎𝑘+1, 𝛾𝑘+1), 𝜎𝑘+1(𝛼0) = 𝑟
⟨𝑚(𝑒1, … , 𝑒𝑘), 𝜌, 𝜎 , 𝛾 ⟩ → (𝑟 , 𝜎𝑘+1[𝛼0/⟂], 𝛾𝑘+1)

(Invoke)

9.4.2 Semantics of Statements

Next, we describe the semantics of statements by a relation � ⊂ (𝑆𝑡𝑎𝑡 × 𝐸𝑛𝑣 × Σ × 𝐶𝑆) ×
(𝐸𝑛𝑣 × Σ × 𝐶𝑆), which we also use in infix notation.

A variable declaration changes the environment by reserving a fresh memory location

𝛼 for that variable. A free variable is represented by a reference to its own location.

Enclosing declarations in a block ensures that changes of the environment stay local.

⟨int 𝑥;, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌[𝑥/𝛼], 𝜎 , 𝛾 ) (Decl)

⟨int 𝑥 free ;, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌[𝑥/𝛼], 𝜎[𝛼/𝛼], 𝛾 ) (Free)

⟨𝑠, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1)
⟨{ 𝑠 }, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌, 𝜎1, 𝛾1)

(Block)

As a particularity of a constraint-logic OO language, an assignment x = e cannot just

overwrite a location in memory corresponding to x , since this might have an unwanted

side effect on constraints that involve x and refer to its former value. This side effect might

render such constraints unsatisfiable after they have been imposed and checked, thus

leaving a currently executed branch in an inconsistent state. We avoid this by assigning

a new memory address 𝛼1 to the variable on the left-hand side. At the new address, we

store the result from evaluating the right-hand side. Consequently, old constraints or

expressions that involve the former value of x are deliberately left untouched by the

assignment. In contrast, later uses of the variable refer to its new value. The environment

is updated to achieve this behaviour.

⟨𝑒, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎1, 𝛾1)
⟨𝑥 = 𝑒, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌[𝑥/𝛼1], 𝜎1[𝛼1/𝑣], 𝛾1)

(Assign)
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Since the syntax does not enforce that no statements follow a return statement, we

provide sequence rules that take into account that the state may hold a value in 𝛼0
(indicating a preceding return ) or not (⟂). Further statements are executed iff the latter is

the case. Otherwise, further statements are discarded as a preceding return has already

provided a result in 𝛼0.

⟨𝑠1, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1), 𝜎1(𝛼0) == ⟂,
⟨𝑠2, 𝜌1, 𝜎1, 𝛾1⟩ � (𝜌2, 𝜎2, 𝛾2)

⟨𝑠1 𝑠2, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌2, 𝜎2, 𝛾2)
(Seq)

⟨𝑠1, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1), 𝜎1(𝛼0) ≠ ⟂
⟨𝑠1 𝑠2, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1)

(SeqFin)

The two following rules for if-statements introduce non-determinism in case that the

constraints neither entail the branching condition nor its negation.In the implementation,

the applicability of these rules depends on the constraint propagation abilities of the

employed constraint solver, whichmay allow the runtime environment to detect infeasible

branches early (cf. Subsection 9.5.3).

⟨𝑏, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎1, 𝛾1), 𝛾1 ̸⊧¬𝑣, ⟨𝑠1, 𝜌, 𝜎1, 𝛾1 ∧ 𝑣⟩ � (𝜌1, 𝜎2, 𝛾2)
⟨if (𝑏) 𝑠1 else 𝑠2, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎2, 𝛾2)

(If𝑡)

⟨𝑏, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎1, 𝛾1), 𝛾1 ̸⊧𝑣, ⟨𝑠2, 𝜌, 𝜎1, 𝛾1 ∧ ¬𝑣⟩ � (𝜌1, 𝜎2, 𝛾2)
⟨if (𝑏) 𝑠1 else 𝑠2, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎2, 𝛾2)

(If𝑓)

As with if , the evaluation of a while statement can also result in the introduction of

non-determinism.

⟨𝑏, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎1, 𝛾1), 𝛾1 ̸⊧¬𝑣, ⟨𝑠, 𝜌, 𝜎1, 𝛾1 ∧ 𝑣⟩ �
(𝜌1, 𝜎2, 𝛾2), ⟨while (𝑏) 𝑠, 𝜌1, 𝜎2, 𝛾2⟩ � (𝜌2, 𝜎3, 𝛾3)

⟨while (𝑏) 𝑠, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌2, 𝜎3, 𝛾3)
(Wh𝑡)

⟨𝑏, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎1, 𝛾1), 𝛾1 ̸⊧𝑣
⟨while (𝑏) 𝑠, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌, 𝜎1, 𝛾1 ∧ ¬𝑣)

(Wh𝑓)

All branching rules If𝑓, If𝑡, Wh𝑓, and Wh𝑡 could be accompanied by more efficient ones

that deterministically choose a branch if its condition does not involve free variables, i. e.

without having to consult the constraint store. We omit these rules in an effort to keep

our definitions concise, as the provided ones can also handle these cases.

We assume that the code of a user-defined function is terminated by a return statement,

i. e. the existence of this statement needs to be ensured by the compiler. The corresponding

return value is supplied to the caller by storing it in 𝛼0, causing remaining statements of
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the function to be skipped (cf. rule SeqFin), and letting the caller extract the result from

𝛼0 (cf. rule Invoke). The return statement is handled as follows:

⟨𝑒, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎1, 𝛾1)
⟨return 𝑒, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌, 𝜎1[𝛼0/𝑣], 𝛾1)

(Ret)

Furthermore, we do not define an evaluation rule involving a fail statement. This

is intentional, as the evaluation of such a statement leads to a computation that fails

immediately.

The following (optional) substitution rule allows simplifying expressions and results.

𝛾 ⊧ 𝛾 (𝛼) == 𝑣, ⟨𝑠, 𝜌, 𝜎[𝛼/𝑣], 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1)
⟨𝑠, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1)

(Subst)

When variables are not sufficiently constrained to concrete values, labelling can be

used to substitute variables for values that satisfy the imposed constraints [FA03]. This

non-deterministic rule is applied with the least priority, i. e. it should only be used if

no other rule can be applied. Otherwise, it would result in a lot of non-deterministic

branching, thus preventing the constraint solver from an efficient reduction of the search

space by constraint propagation.

𝛾 ̸⊧𝜎(𝛼) ≠ 𝑣, ⟨𝑠, 𝜌, 𝜎[𝛼/𝑣], 𝛾 ∧ (𝜎(𝛼) == 𝑣)⟩ � (𝜌1, 𝜎1, 𝛾1)
⟨𝑠, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1)

(Label)

9.4.3 Evaluation of an Example Program

We demonstrate the use of the reduction rules using a simple example program. We

compute one possible result of the Muli method depicted in Listing 9.5 that is invoked by

an additional method

public static int search() { return twoPower(0); } ,

thus yielding a solution 2𝑥 non-deterministically, where 𝑥 is an integer greater or equal

to 0.12

In order to present the computations in a readable form, the code of twoPower is

abbreviated by 𝑠1. Furthermore, 𝑠1 includes the statements 𝑠2 = return Math.pow(2, y);

and 𝑠3 = return twoPower(y+1); . Moreover, nested expressions use infix notation, e. g.,

instead of +(0, 1) we write 0 + 1. Last but not least, we decompose the full computation

into a couple of lemmas in order to simplify understanding it. The computation is

12Correspondingly, a program Muli.getAllSolutions(() -> return search()) would enumerate all 2𝑥,
𝑥 ≥ 0.
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1 public static int twoPower(int y) {
2 int coin free;
3 if (coin == 0) return Math.pow(2, y);
4 else return twoPower(y+1); }

Listing 9.5: Muli program that non-deterministically searches for a solution 2𝑎 where 𝑎
integer, 𝑎 ≥ 𝑦 for a given 𝑦.

presented top-down. If you prefer a bottom-up fashion, just read the lemmas in reverse

order. Each step specifies the names of the rules that are applied in it.

Initially, let 𝜌0 = {𝑠𝑒𝑎𝑟𝑐ℎ ↦ (𝜖, return twoPower(0);), 𝑡𝑤𝑜𝑃𝑜𝑤𝑒𝑟 ↦ ((𝑦), 𝑠1)}. As inter-

mediate results, some auxiliary definitions are needed: 𝜌1 = 𝜌0[𝑦/𝛼1], 𝜌2 = 𝜌1[𝑐𝑜𝑖𝑛/𝛼2],
𝜎1 = 𝜎0[𝛼1/0], 𝜎2 = 𝜎1[𝛼2/𝛼2], and 𝜎3 = 𝜎2[𝛼0/1]. In addition, the initial constraint store

is trivially satisfiable (𝛾1 = 𝑡𝑟𝑢𝑒) and the initial state is 𝜎0 = {𝛼0 ↦ ⟂}. Computation

begins with the evaluation of search() as follows.

⟨0, 𝜌0, 𝜎0, 𝛾1⟩ → (0, 𝜎0, 𝛾1) (Con),
𝜌0(𝑡𝑤𝑜𝑃𝑜𝑤𝑒𝑟) = ((𝑦), 𝑠1), (Lemma 1), 𝜎3(𝛼0) = 1
⟨twoPower(0), 𝜌0, 𝜎0, 𝛾1⟩ → (1, 𝜎3[𝛼0/⟂], 𝛾2)

(Invoke)

⟨return twoPower(0);, 𝜌0, 𝜎0, 𝛾1⟩ � (𝜌0, 𝜎3, 𝛾2)
(Ret)

Subsequently, invoking twoPower with the parameter 0 changes environment and state,

so that the parameter is known for the evaluation of the method body. The sequence of

statements in the body evaluates as

⟨int coin free ;, 𝜌1, 𝜎1, 𝛾1⟩ � (𝜌1[𝑐𝑜𝑖𝑛/𝛼2],
𝜎2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜎1[𝛼2/𝛼2], 𝛾1) (Free),
𝜎2(𝛼0) == ⟂, (Lemma 2)

⟨int coin free ; if(coin == 0) 𝑠2 else 𝑠3, 𝜌1, 𝜎1, 𝛾1⟩ � (𝜌2, 𝜎3, 𝛾2)
(Seq) (Lemma 1)

The declaration of a free variable is evaluated deterministically, whereas evaluating

if introduces non-determinism as there are possible bindings for 𝑐𝑜𝑖𝑛 that render the

condition either true or false . Therefore, either If𝑡 or If𝑓 are applicable, respectively. For

the purpose of this example, we continue with choosing the If𝑡 rule, thus following the

true branch.
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⟨𝑐𝑜𝑖𝑛, 𝜌2, 𝜎2, 𝛾1⟩ → (𝛼2, 𝜎2, 𝛾1) (Var),
⟨0, 𝜌2, 𝜎2, 𝛾1⟩ → (0, 𝜎2, 𝛾2) (Con), {𝛼2, 0} ⊈ ℤ
⟨𝑐𝑜𝑖𝑛 == 0, 𝜌2, 𝜎2, 𝛾1⟩ → (𝛼2 == 0, 𝜎2, 𝛾1)

(AOp2),

𝛾1 ̸⊧¬(𝛼2 == 0), (Lemma 3)
⟨if(coin == 0) 𝑠2 else 𝑠3, 𝜌2, 𝜎2, 𝛾1⟩ � (𝜌2, 𝜎3, 𝛾2)

(If𝑡) (Lemma 2)

The constraint store is updated, reflecting that the true branch has been chosen:

𝛾2 = 𝛾1 ∧ 𝛼2 == 0. As a result, future evaluations take the additional constraint into

account. Subsequently, evaluation continues with the code of the true branch. Given

that in this example the common Java method Math.pow(a,b) only operates on bound

variables, we treat it as a black box that evaluates to 𝑎𝑏 without making modifications to

state and constraint store. Therefore, the following invocation is abbreviated.

⟨2, 𝜌2, 𝜎2, 𝛾2⟩ → (2, 𝜎2, 𝛾2) (Con),
⟨𝑦, 𝜌2, 𝜎2, 𝛾2⟩ → (0, 𝜎2, 𝛾1) (Var), 1 = 20

⟨Math .pow(2 , y), 𝜌2, 𝜎2, 𝛾2⟩ → (1, 𝜎2, 𝛾2)
(𝐼 𝑛𝑣𝑜𝑘𝑒, 𝑎𝑏𝑏𝑟𝑒𝑣.)

⟨return Math .pow(2 , y);, 𝜌2, 𝜎2, 𝛾2⟩ � (𝜌2, 𝜎2[𝛼0/1]⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜎3

, 𝛾2)
(Ret) (Lemma 3)

In the final state, 𝜎3 = 𝜎0[𝛼1/0, 𝛼2/𝛼2, 𝛼0/1]. Therefore, the final result is 𝜎3(𝛼0) = 1,
assuming a constraint store 𝛾2 = 𝛼2 == 0. Other possible outcomes of non-deterministic

search can be computed analogously by choosing differently in Lemma 2.

In this example, the free variable coin is only used in a condition in order to create

non-deterministic choice, but never becomes part of a solution. Therefore, the Label

rule is never used, thus keeping the state space minimal. As an additional reference,

[DK1़b] demonstrates and discusses the evaluation of a different example program that

also includes the use of the Label rule.

9.5 A Backtracking, Symbolic Virtual Machine

In addition to using Java as the reference language for an extension, we also choose Java

as an implementation platform for the virtual machine runtime. Incidentally, this makes

the resulting constraint-logic OO language just as platform-independent as Java. As a

positive side effect, we are able to leverage the multitude of third-party libraries written

for the JVM that are useful for our work, constraint solvers in particular.
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Figure 9.2: Components structure of the Muli runtime environment.

The heart of the Muli runtime environment is the SJVM, i. e. a custom virtual machine

that symbolically executes Java programs. Muli’s SJVM builds on earlier work that was

directed at automated glass-box test case generation for Java programs [MK09], allowing

a tester to load a Java class and specify a method for which test cases are to be generated.

Symbolic execution of that method in the SJVM resulted in a systematic discovery of all

execution paths while creating a set of path constraints involving the method parameters.

Finally, a constraint solver is used to provide particular values for unit test cases. The Muli

runtime environment generalises that work, thus evolving the SJVM into a self-contained

general purpose runtime. A user interacts with the command-line interface (CLI) that

accepts a list of bytecode-compiled Muli classes as a classpath and a compiled Muli

class to be run (in the following; Application). The CLI adds the Muli classpath library

(see Subsection 9.2.3) to the classpath list, parses the application class from bytecode,

initialises the SJVM, and invokes the class’s public static void main(String[]) method

on the execution core of the SJVM. Figure 9.2 illustrates the structure of the runtime

environment, depicting relevant components and their interrelations.

Since Muli programs are compiled to JVM-compatible bytecode, a specialised bytecode

parser is not required. Therefore, the runtime environment executes all applications,

regardless of whether they were implemented in Java or Muli. Nevertheless, only Muli

programs can specify logic variables that are picked up by the runtime. Java programs

by themselves will only be executed deterministically. However, Muli programs are fully

able to reference Java classes and interact with them non-deterministically. Consequently,
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9 A Compiler and Virtual Machine for Constraint-Logic Object-Oriented Programming

it is possible that Java methods are executed symbolically, as long as they are invoked

from a Muli program.

We explain the components and the concepts that influenced their implementation in

the following. As Muli’s SJVM is implemented in Java, it also runs on a JVM which will

be referred to as the enclosing JVM for distinction.

9.5.1 Data Structures

The Muli runtime environment implements all data structures that are required to execute

Java programs, according to the JVM specification [Lin+15]. This includes data structures

that contain object representations of class files, i. e. the result after parsing them. Standard

classes of Java, such as java.lang.String , need not be re-implemented, as they are parsed

from the enclosing virtual machine’s classpath. The most important one, the Frame
stack, consists of frames, each representing an executed method call. The top of the

stack corresponds to the method that is currently being executed. When it invokes

another method, a frame for the invoked method is instantiated and pushed to the stack.

On return, the topmost element of the frame stack is popped and the SJVM continues

execution of the new top. Recursive invocations of the same method result in multiple

frame instances for that method, each individually recording its respective state, so that

the recursion can be unrolled later.

Within a frame, the represented execution state comprises the program counter, values

of local variables, and an operand stack. As in a regular JVM, most bytecode instructions

operate on the operand stack, taking their input(s) from the top of the stack and pushing

computation results. In contrast to a regular JVM, the operand stack does not only contain

constant primitive values or addresses to objects. Instead, elements can also be symbolic

representations of free variables or expressions that result from computations involving

another symbolic representation (cf. rule AOp2 in Section 9.4).

For simplicity, the SJVM does not implement its own heap. Instead, it shares the heap

with the enclosing JVM. Moreover, the SJVM also does not implement own garbage

collection mechanisms, as those of the enclosing JVM are sufficient. Our rationale behind

this is that an own implementation of the heap would not provide advantages over the

existing one for Muli, since the heap does not influence symbolic execution or search.

Nevertheless, backtracking affects objects on the heap as well.

The aforementioned structures are required for a bytecode-compatible runtime that

is modified to support symbolic execution and search. More importantly, the SJVM

implements data structures derived from the Warren Abstract Machine (WAM) that is
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specifically designed to execute Prolog programs [War़3]. In the WAM, the local stack

comprises environments, which can be roughly compared to Muli’s and Java’s frame

instances, and choice points, for which there is no corresponding structure on a regular

JVM. Thus, the SJVM stores choice points in an additional choice point stack. Each choice

point maintains a trail, which is a concept also borrowed from the WAM [War़3]. The

trail is implemented as a stack as well. Each element represents an operation that must

be performed on some component of the SJVM in order to undo a state change.

Additionally, the solver component of Muli maintains the constraint store. During

execution of a program, constraints may be incrementally added to the store. Typically,

the constraint store is described by a conjunction of atomic boolean expressions that cor-

respond to branching criteria. Every choice point also maintains references to constraints

that were added by it, in order to remove them from the store on backtracking.

Last but not least, the SJVM has status flags that control its execution. Execution

can either be deterministic, i. e. non-searching, or non-deterministic, i. e. searching. The
latter state is only assumed during encapsulated search, ensuring deterministic execution

outside the encapsulation. Further flags include e. g. the search strategy (currently only

iterative deepening depth-first search is supported) and the requested logging level, which

can provide helpful output during our development of the VM.

9.5.2 Symbolic Types

Muli supports all types known from regular Java, including reference types and arrays.

However, in order to accommodate for logic variables, additional types are introduced.

According to the JVM specification, two basic kinds of types need to be distinguished:

Primitive types and reference types [Lin+15]. However, we further split considerations of

reference types into array reference types and object reference types due to their distinct

structure.

Logic arrays are represented by instances of an Arrayref class, maintaining a logic

array’s element type (e. g. int ), its dimensions, and its element values, which can be either

regular values or logic variables. Similarly, logic objects are represented using Objectref

instances, each containing its class type and a map of its fields to their respective values,

which can also be logic variables. A logic variable of numeric primitive type is an instance

of class NumericVariable . It contains a flag indicating the particular primitive type. It

does not have a value, but its domain is restricted by constraints in the constraint store.

Analogously, logic boolean variables are described by BooleanVariable instances.
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When encountering an instruction that performs operations on variables, the semantics

of the SJVM does not distinguish between logic variable types and regular variable

types. For example, primitive int variables are type-compatible to NumericVariable

representations with integer type. Performing an iadd operation on an int variable and

an NumericVariable will result in a symbolic expression representing the addition. The

result is then pushed to the operand stack.

9.5.3 Solver Component

The logic variable types are part of the Solver component, which is the runtime’s abstraction

layer from constraint solvers. It specifies types that are used to generate variables,

expressions, and constraints during execution without having to consider particularities

of constraint solvers. Before they become part of a constraint, expressions collected

during symbolic execution are not mapped into a particular solver’s object representation.

Currently, Muli integrates two constraint solvers from which a user can choose. Mu-

const is an SMT solver that was originally developed with automated glass-box test

case generation in mind [Lem+04]. It supports linear and non-linear arithmetic theories

as well as SAT solving. Its distinguishing advantage over other solvers is its handling

of rounding errors in floating point solutions, ensuring that solutions still satisfy all

constraints after rounding [EMK12]. Alternatively, the finite domain solver JaCoP is

integrated, which is a free software constraint solver library for Java [Kuc03]. JaCoP’s

constraint propagation achieves early, computationally inexpensive detection of infeasible

branches for applications that mostly involve finite domain numeric variables.

The SJVM is able to work with multiple constraint solvers and abstractly defines con-

straints, so that the constraint solver can be treated as a black box for most considerations.

Nevertheless, we formulate the following requirements for a constraint solver to be ap-

plicable: It needs to be able to label variables in order to find solutions where constraints

are not sufficiently restrictive for finding solutions. Moreover, variables and labelling

strategies for both finite domain problems and floating point problems need to be present

and the constraint solver must be able to handle combinations of these problems.

9.5.4 Symbolic Execution, Encapsulated Search, and Choice
Points

Symbolic execution affects the interpretation of many Java bytecode instructions. For

example, when an instruction loads a free variable, a corresponding symbolic representa-
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Triggering bytecode instruction Choice point type Possible constraints

FCmpg , FCmpl , DCmpg , DCmpl floating point comparison =, <, >
LCmp long comparison =, <, >
If<cond> , If_icmp<cond> if instruction, integer comp. =, ≠, <, ≤, >, ≥
Lookupswitch , Tableswitch switch instruction =, ∉

[DK1़a]

Table 9.1: Bytecode instructions, resulting choice points, and applicable constraint types.
<cond> is one of eq , ne , lt , le , gt , or ge .

tion is pushed to the operand stack. Arithmetic operations that manipulate the operand

stack involving symbolic representations push a symbolic representation of the result.

Analogously, relational operators result in symbolic relational expressions.

Non-determinism may be introduced if a branching condition contains logic variables

or symbolic expressions (cf. e. g. rules If𝑓, If𝑡 in Section 9.4). On the bytecode level,

this corresponds to e. g. a conditional jump instruction such as ifne with two possible

outcomes. Also, bytecode instructions that may cause an exception (e. g., getfield ,

invokeinterface , invokevirtual , and checkcast), can cause branching. Whenever non-

determinism is introduced, the runtime environment instantiates a choice point and

pushes it to the choice point stack, representing the state before branching, the possible

choices, as well as state regarding the choices that already been evaluated. Depending on

the branch that is chosen first, the branching condition or its negation will be pushed to

the constraint stack and the execution will be continued at the corresponding instruction.

The other branch will be considered after backtracking. Table 9.1 shows a selection of

typical bytecode instructions which may cause branching, as well as their corresponding

choice point types and possibly generated constraints.

Each choice point maintains a trail, which is a stack that, for every executed instruction,

records the operation that will be necessary to reverse the effects of that instruction. For

example, executing an instruction that takes two elements from the operand stack and

pushes one results in recording three trail elements. One that will take one element from

the operand stack and two that will push the values of the previous elements to the stack.

At the end of a symbolic execution path (i. e. when encountering the final return or a

non-caught exception e. g. caused by throw ), the SJVM will backtrack to the most recent

choice point and undo the corresponding changes recorded on the trail by replaying its

trail stack. Moreover, the constraints imposed since the choice point will be removed from

the constraint store. Afterwards, the next choice is realised by imposing its constraint and

execution continues. Figure 9.3 illustrates how backtracking rolls back the trail, removes
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Figure 9.3: Effect of backtracking on execution state. As a result of backtracking, the
operand stack, trail stack, constraint stack, and program counter have changed
(highlighted blue in the web version of this article). Operand stack elements
with dashed lines reside on the heap, which we omitted for simplicity.

a choice point’s constraint, and imposes the next choice’s constraint before execution

continues. When no further choice can be realised, the choice point is removed from the

choice point stack and backtracking to the previous choice point occurs.

To illustrate the execution of non-deterministic search using an example, consider the

program presented in Listing 9.2 that generates factorials. The first levels of the symbolic

execution tree, or search tree, that corresponds to this program are depicted in Figure 9.4.

Execution of the search region begins by declaring a free variable n that is passed to

fact() . There, the free variable used directly as part of boolean (in)equalities, resulting

in non-deterministic branching. To that end, a choice point (Choice0 in Figure 9.4) with

three choices is created.13

Choosing the first alternative binds n to the value 0 by imposing the corresponding

constraint and returns 1, i. e. 0!. This marks the end of this path through the search tree.

Consequently, the returned value is a solution of this search region (Solution0) that will

later be returned after encapsulated search is finished. After backtracking to Choice0

13In fact, bytecode if is binary, as a single condition can evaluate to either true or false . As a result,
Choice0 would actually correspond to two choice points in this program with two alternatives each,
one being an alternative of the other. One then represents the else if and else branches. In this
presentation, we merge the two into a single choice point for simplicity.
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Choice0

Fail0Choice1

(inconsistent – path not followed)Choice2

…Solution2 (2)

Solution1 (1)

Solution0 (1)

n == 0
n ≠ 0 ∧ n ≥ 1
⇒ n ≥ 1

n ≠ 0 ∧ n < 1
⇒ n < 0

n ≥ 1 ∧ n − 1 == 0
⇒ n == 1

n ≥ 1
∧ n − 1 ≠ 0
∧ n − 1 ≥ 1
⇒ n ≥ 2

n ≥ 1
∧ n − 1 ≠ 0
∧ n − 1 < 1

n ≥ 2 ∧ n − 2 == 0
⇒ n == 2

fact(n)

Figure 9.4: Excerpt from the search tree that is effectively generated by executing the
search region depicted in Listing 9.2.

(thus removing the previous constraint and reversing effects on the SJVM), choosing the

second alternative imposes two constraints in conjunction. First, the negation of the first

constraint, i. e. n ≠ 0. Second, n ≥ 1 as that is the condition for else if . These constraints

can be simplified to n ≥ 1. The second alternative results in recursion, passing n − 1 as

the parameter. Consequently, Solution1 is reached by making the appropriate choice in

𝐶ℎ𝑜𝑖𝑐𝑒1 and adding the constraint n − 1 == 0 to the constraint stack, thus imposing it in

conjunction with the previous constraint. Considering Choice0 again, the constraint for

the third alternative is the conjunction of negations of both conditions, which simplifies

to n < 0. As the factorial is only defined for non-negative integers, we invoke Muli.fail()

in order to actively discard this branch (we mark this by denoting Fail0). Hence, no

solution is added. Note that the path constraints for making an analogous choice in

Choice1 are inconsistent as they simplify to n > 1 ∧ n < 2. Therefore, the SJVM will not

make that choice in the first place, thus saving execution time.

For the search strategy, we currently rely on iterative deepening depth-first search,

following the ideas of Java PathFinder [VPK04] and Muggl [MK11b]. Like depth-first

search, iterative deepening depth-first search facilitates memory-efficient search. How-

ever, depth-first search does not cope well with situations in which a sequence of choosing

the first alternatives leads to a long path in the search tree (or to an infinite one, such as

from the evaluation of infinite loops), whereas other alternatives would result in finding

a solution earlier. In contrast, iterative deepening depth-first search ensures that we will
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Figure 9.5: Unrestricted symbolic execution versus encapsulated symbolic execution.

quickly find solutions corresponding to short paths, which is particularly useful if just a

few solutions are required.

As we do not want to support non-determinism outside of encapsulated search regions,

non-deterministic jumps are restricted to the searching mode of the SJVM. Therefore,

encapsulation bounds the execution tree at the end of search regions, ensuring that

effects of symbolic execution and backtracking remain local. Consequently, at the end

of encapsulated search regions, the control flow is linearised again and the collected

solutions (or solution spaces) are returned to the caller (see Figure 9.5). Encapsulated

search can also be nested, thus achieving search hierarchies. If an unbound logic variable

or a symbolically represented expression is accessed outside of a search region, an

exception will be thrown.

It is debatable whether input/output should be disallowed in search regions, as this

introduces side effects that cannot be backtracked by the SJVM. These issues are known

from Prolog [Sco10]. On the other hand, such side effects may be wanted, as they facilitate

printing (partial) solutions, logging, and asking end-users to supply additional data that

may only be relevant in certain execution paths. Therefore, we decided not to forbid

possible non-backtrackable side effects. Instead, as with many advanced programming

constructs, we require software developers to assume responsibility to check whether

this is expected behaviour.

9.6 Discussion

Our approach towards an integration of constraint-logic and OO programming is useful

for applications that are mainly programmed in an object-oriented language, e. g. Java,

while requiring a substantial amount of search. We expect it to be particularly suited for

programs in which new constraints are discovered over time that are incrementally added

to the existing set of constraints. The implementation of the constraint store facilitates

such applications by reusing results from former searches when new constraints are
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1 public static Assignment money() {
2 int s free, e free, n free, d free, m free, o free, r free, y free;
3 if (domain(s,e,n,d,m,o,r,y) && s != 0 && m != 0 &&
4 diff(s,e,n,d,m,o,r,y)) {
5 if ( 1000*s + 100*e + 10*n + d +
6 1000*m + 100*o + 10*r + e ==
7 10000*m + 1000*o + 100*n + 10*e + y) {
़ Muli.solve(s,e,n,d,m,o,r,y);
9 return new Assignment(s,e,n,d,m,o,r,y);
10 } else throw Muli.fail();
11 } else throw Muli.fail(); }

Listing 9.6: Muli search region implementing the Send More Money Puzzle; class headers
and helper functions omitted.

added, thus preventing recomputation of partial solutions unless this cannot be avoided.

Further benefits are achieved by solvers with effective constraint propagation.

We quantify the performance of Muli programs in our runtime environment. Moreover,

we demonstrate how Muli improves the programming style for search problems over

pure Java using example applications.

The example application in Listing 9.1 already demonstrates constraint solving, al-

though with a problem that can be solved trivially in an imperative language as well.

Less trivial is an application that solves the Send More Money Puzzle: Eight free in-

teger variables 𝑠, 𝑒, 𝑛, 𝑑, 𝑚, 𝑜, 𝑟, and 𝑦 need to be labelled with values from 0 to 9

such that every binding is different from the others, while satisfying the constraint

1000𝑠 + 100𝑒 + 10𝑛 + 𝑑 + 1000𝑚 + 100𝑜 + 10𝑟 + 𝑒 = 10000𝑚 + 1000𝑜 + 100𝑛 + 10𝑒 + 𝑦.
Additionally, 𝑠 ≠ 0 and 𝑚 ≠ 0. This can be specified as a Muli search region as shown in

Listing 9.6.

The helper method diff imposes the constraint that every variable be different from

the others, while domain limits the variables’ domains to {0, … , 9}. The Assignment class

that is used here is a simple data structure comprising the eight variables, which is used

to return all eight bindings.

We have compared the runtime of the application provided in Listing 9.6 with that of

a corresponding pure Java application that attempts an imperative solution using eight

for loops (one per variable) and backtracking. As an additional example application we

implemented the Safe Lock Key puzzle, each also in Muli and pure Java. Moreover, to

be able to observe the runtime behaviour of a set of problems with increasing size we

implemented the 𝑛-Queens problem, again in Muli and pure Java. We then executed it
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Figure 9.6: Comparison of sample implementations by mean execution time (in milli-
seconds), each averaged over 500 executions.

with increasing 𝑛, thus being able to compare the implementations for problems with a

similar structure while increasing the solution space as well as the number of imposed

constraints.

The Muli applications have been executed on the Muli SJVM, using the JaCoP-based

finite domain solver in the solver component. In order to exclude possible overhead

of the SJVM, we have executed the pure Java applications on a regular OpenJDK JVM

(version 1.़.0_191). All experiments were executed on an Intel Core i5-5200U CPU, using

Ubuntu 1़.04.2 with a 4.15.0 x64 Kernel. Each application attempts to solve the puzzle

510 times. The first 10 results are dropped in order to disregard effects of Just-In-Time

compilation of the enclosing JVM.

The experimental results for the SendMoreMoney problem indicate that the constraint-

logic OO implementation, while more elegant to write, is also consistently more than an

order of magnitude faster at finding a solution for the problem at hand (cf. Figure 9.6).

Similarly, the Muli implementation of the Safe Lock Key puzzle is faster than its counter-

part in Java, except for the maximum execution time, where the Muli implementation was

slightly slower (37.13 ms compared to 33.31 ms in Java). The relative difference between

minimum and maximum is higher for Muli in both sample applications (e. g., Send More

Money in Muli ranges from ़.74 ms to 43.59 ms, whereas in Java it ranges from 294.39

ms to 416.2़ ms). This could be due to the increased need for garbage collection over

(unused) object representations of symbolic expressions and constraints, whereas the

regular Java version can naturally use primitive values only. Nevertheless, we can still see

a major advantage in performance for the Muli variants, particularly for larger problems.

This improvement can be attributed to constraint propagation by the finite domain solver,

allowing for more efficient search than simple backtracking mechanisms.
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Figure 9.7: Comparison of implementations solving the 𝑛-Queens problemwith increasing
𝑛 bymean execution time (in milliseconds), each averaged over 500 executions.

We have limited ourselves to executing the 𝑛-Queens experiments to 𝑛 ∈ {12, 14, … , 22},
because the solution space for 𝑛 = 12 is already larger than those of the Send More Money

and Safe Lock Key problems; and the execution time of the Java implementation already

exceeds more than 10 seconds per execution with 𝑛 = 22. The results of these experiments

demonstrate that, for smaller 𝑛, a pure Java implementation has an advantage over a

Muli implementation (cf. Figure 9.7). This can be attributed to the fact that a pure Java

solution has less overhead as opposed to a Muli program that first defines free variables

and later has to solve them explicitly. Furthermore, after decades of development the

official OpenJDK JVM is of course more optimised than our novel, custom SJVM. However,

that advantage diminishes quickly with increasing 𝑛, i. e., with increasing solution space,

where the benefits of a constraint-logic OO implementation become visible. The execution

times of the Muli implementation increase with increasing 𝑛, which can be explained with

the time that is required for defining the additional constraints as well as for labelling

additional variables. Despite this increase, the total execution time of an average single

run for 𝑛 = 18 using Muli is less than a quarter of the corresponding average time of

the Java implementation. For 𝑛 = 22, the time spent finding a solution using Muli is still

hardly noticeable by a human (about 117 ms), whereas executing the Java implementation

requires more than ten seconds, i. e. about two orders of magnitude more time, and is

therefore impractical.

Another highly interesting application scenario for Muli is automated glass-box test

case generation, as it is a prime example for incrementally added constraints [EMK12].

In order to generate JUnit assertions for a Java method, we need to create an appropriate

output from free parameters and the method’s results. For the factorial method from

Listing 9.2, this can be done by changing the search region as demonstrated in Listing 9.7.

135



9 A Compiler and Virtual Machine for Constraint-Logic Object-Oriented Programming

1 Muli.getAllSolutions(() -> {
2 int n free;
3 int factorial = fact(n);
4 String test = ”assertEquals(” + factorial + ”, fact(”+n+”));”);
5 return test; });

Listing 9.7: Modification of the factorials search region from Listing 9.2 in order to gener-
ate JUnit assertions for testing fact() .

Moreover, consider that Listing 9.7 could be extended to generating integration test cases

by calling sequences or compositions of methods. As fact(n) has an infinite search space,

writing the assertion into a file before returning it results in output into that file until

execution is interrupted (manually).

Furthermore, the example in Listing 9.3 demonstrates how Muli facilitates a simpler

programming style. In contrast, writing a similar program in Java is much more chal-

lenging, particularly for handling backtracking and negation in case that the constraint

store is rendered inconsistent by a recent addition (cf. Listing 9.़), thus introducing more

potential for implementation mistakes. Declaring a logic variable in Muli is syntactically

close to declaring any variable in Java, as int name free; is not a long way from int

name; . In contrast, using the JaCoP API results in the formulation IntVar name = new

IntVar(store, name, min, max) which requires developers to think of several aspects

in addition to just the variable itself. First, they need to use the JaCoP-specific object

representation of a logic variable that corresponds to the intended base type (such as,

IntVar for int). Second, they have to specify the constraint store that is in use and

remember to have it instantiated first. Third, the declaration is partly redundant; having

to specify an internal name in addition to the variable’s name. Consequently, the shorter

Muli version requires less syntactic and cognitive overhead and is, therefore, more natural

to a developer who is used to programming in Java. Additionally, the constraint system

that is active in Muli can always be assumed to be consistent, because imposing a new

constraint that would render the constraint system inconsistent results in immediate

backtracking. In contrast, developers who are using a library need to actively check for

consistency.

The comparison of the program versions provided in Listings 9.3 and 9.़ demonstrates

that Muli also has an advantage w. r. t. the representation of constraint-logic problems

compared to using a library in Java. This advantage can be emphasised by comparing the

Muli implementation of Send More Money (Listing 9.6) to an implementation that uses
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3 class JacopIncrementalArgs {
4 public static void main(String[] args) {
5 Store store = new Store();
6 int i = 0;
7 IntVar x = new IntVar(store, ”x”, -1000000, 1000000);
़ while (i < args.length) {
9 // Prepare for later backtracking.
10 int backtrackingLvl = store.level+1;
11 store.setLevel(backtrackingLvl);
12 // Create constraints from user input.
13 int c1 = Integer.parseInt(args[i++]);
14 int c2 = Integer.parseInt(args[i++]);
15 Constraint cons1 = new XltC(x, c1);
16 Constraint cons2 = new XgtC(x, c2);
17 store.impose(cons1);
1़ store.impose(cons2);
19 if (!store.consistency()) {
20 // Backtrack and add negations.
21 store.removeLevel(backtrackingLvl);
22 store.setLevel(backtrackingLvl);
23 XgteqC cons1n = new XgteqC(x, c1);
24 XlteqC cons2n = new XlteqC(x, c2);
25 Or or = new Or(cons1n, cons2n);
26 store.impose(or);
27 store.consistency();
2़ break; } }
29 System.out.println(x); } }

Listing 9.़: Implementation of adding constraints from user input incrementally and of
manual backtracking requires more effort in Java (in combination with the
JaCoP solver) than in Muli.

JaCoP as a library (Listing 9.9). Again, the JaCoP implementation requires the explicit

initialisation of a constraint store, which is implicit in Muli. On the one hand, JaCoP

provides benefits for logic variables with small domains, as the initial domain can already

be provided as part of the variable declaration. Nevertheless, the declaration of logic

variables in Muli is arguably easier, given that it requires just a slight addition to a regular

declaration. On the other hand, the definition of a linear constraint in JaCoP is harder

to read, as the involved logic variables are defined in one array, whereas the respective

weights need to be defined in a separate array. Additional complexity results from the fact

that JaCoP does not allow using an arithmetic expression as the right-hand side (directly),
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6 class JacopSendMoreMoney {
7 public static Assignment jacopSendMoreMoney() {
़ Store store = new Store();
9 IntVar s = new IntVar(store, ”s”, 1, 9);
10 IntVar e = new IntVar(store, ”e”, 0, 9);
11 IntVar n = new IntVar(store, ”n”, 0, 9);
12 IntVar d = new IntVar(store, ”d”, 0, 9);
13 IntVar m = new IntVar(store, ”m”, 1, 9);
14 IntVar o = new IntVar(store, ”o”, 0, 9);
15 IntVar r = new IntVar(store, ”r”, 0, 9);
16 IntVar y = new IntVar(store, ”y”, 0, 9);
17 // Define constraints.
1़ IntVar[] vars = {s, e, n, d, m, o, r, y};
19 store.impose(new Alldifferent(vars));
20 IntVar[] eqVars = {s, e, n, d, m, o, r, e,
21 m, o, n, e, y};
22 int[] eqWeights = {+1000, +100, +10, +1, +1000, +100, +10, +1,
23 -10000, -1000, -100, -10, -1};
24 Constraint equation = new LinearInt(eqVars, eqWeights, ”==”, 0);
25 store.impose(equation);
26 // Label variables.
27 Search<IntVar> label = new DepthFirstSearch<IntVar>();
2़ SelectChoicePoint<IntVar> select = new InputOrderSelect<IntVar>(
29 store, vars, new IndomainMin<IntVar>());
30 label.labeling(store, select);
31 return new Assignment(s, e, n, d, m, o, r, y);
32 } }

Listing 9.9: Implementation the Send More Money problem in Java (in combination with
the JaCoP solver) also requires more effort than in Muli.

only either a constant or a single logic variable. Consequently, we had to express the

expected sum by reformulating the Send More Money equation. In contrast, the Muli

representation of the constraint is more straightforward, as it facilitates defining the

constraint by using Java’s arithmetic and relational operators.

Moreover, constraint solving is transparent in Muli – once a free variable is sufficiently

constrained so that it has a single allowed value, accessing the variable results in retrieving

its value. In contrast, accessing a JaCoP variable merely retrieves the logic variable’s

object representation, regardless of whether it can already be simplified. Its value can

only be obtained after explicitly executing search, followed by getting the value from

the search result. This is similar in other solvers; for instance, Choco (cf. [PFL17]) offers

13़



9.6 Discussion

Java LOC Muli LOC Δ

Send More Money 34 2़ -17.6 %
Safe Lock Key 36 27 -25 %

𝑛-Queens 30 25 -16.7 %

Table 9.2: Lines of code (LOC) required for implementing the experiments, not counting
lines that are empty or comments.

a getValue() method that can be invoked on object representations of logic variables,

but it only returns values after search has been executed (successfully). Generally, the

API offered by JaCoP is similar to that of Choco, which is why we refrain from also

discussing the differences between Choco and Muli in more detail here. For instance,

where JaCoP requires developers to write new IntVar(store, name, min, max) , Choco

uses the formulation store.intVar(name, min, max) . However, the fact the APIs are

similar but not identical demonstrates the lack of standardisation. As a consequence,

solver libraries are usually not interchangeable, resulting in lock-in scenarios. In contrast,

Muli has an advantage in that it handles solver-specific details transparently, providing

the same API regardless of the constraint solver used in the solver component.

The simpler programming style that Muli offers is also reflected in the fact that the

pure Java version requires three times as many lines of code. This reduction in lines

of code holds in general, because the handling of logic variables and constraint store

manipulations are implicit and therefore never require any code. Furthermore, constraints

can be expressed more directly using boolean expressions instead of instantiating their

corresponding object representations. Muli programs can also require fewer lines of code

compared to their pure Java counterparts. For the experiments used in the evaluation

above, lines of code are reduced by up to a quarter (cf. Table 9.2).

Moreover, the pure Java version requires a constraint solver-specific implementation

for logic variables, constraint definition, and backtracking, so that the used constraint

solver cannot easily be exchanged. In contrast, the Muli program makes use of implicit

backtracking and negation by the SJVM. Established Java operators and the if control

structure are used to add constraints, as well as the primitive int type to declare both

free and non-free variables. Last but not least, the constraint solver is exchangeable

by configuring the SJVM’s solver component, thus facilitating later migrations to more

advanced constraint solvers.

Based on the discussed experiments, we conclude that constraint-logic OO program-

ming is able to reduce execution times for search applications, at least in comparison

to pure Java implementations. Moreover, the constraint-logic OO programming style
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enables applications that interleave constraint-logic parts with imperative parts (such as

requesting additional user input) during search, which is far less convenient and more

error-prone to achieve without an SJVM using pure Java with a solver library.

Free variables create a little overhead at runtime, since information about them is stored

in bytecode and the SJVM has to accommodate symbolic types and expressions. However,

this overhead is limited to logic variables and expressions that involve them, whereas

deterministic computations that do not use these concepts are not handled symbolically.

Therefore, no overhead is added for non-symbolic, deterministic applications. Compared

to state-of-the-art JVM implementations, e. g., OpenJDK or OpenJ9 (formerly IBM J9), we

actually expect the Muli SJVM to be inferior as it does not perform any optimisations

at runtime, such as just-in-time or ahead-of-time compilation. Therefore, we have not

conducted any experiments to that end. Similarly, we do not expect Muli to perform better

than constraint solver libraries such as JaCoP, since Muli transparently makes use of

such an (interchangeable) solver library in its backend. However, those established JVM

implementations lack constraint-logic programming features, while existing constraint

solver libraries do not support imperative programming. Therefore, neither is able to

execute any of the programs that make use of features from both paradigms. In contrast,

Muli is novel in that it provides an integrated approach to the constraint-logic and

object-oriented programming paradigms.

While we are certain that the idea of constraint-logic OO programming is beneficial to a

range of use cases, we acknowledge that some limitations apply to our results. Our current

implementation supports constraints over primitive variable types only. Nevertheless,

recall that Muli already supports the use of classes (including inheritance), in addition to

logic variables in (primitive) object fields. Consequently, Muli applications are not limited

to using only non-OO features. Instead, objects can also be used in the formulation of

constraint-logic problems. In the future, constraint-logic OO programming would benefit

from support for solving constraints over object graphs or arrays. However, this is an

endeavour that we will tackle in upcoming work.

9.7 Related Work

There are many libraries that add constraint programming to Java (and, therefore, to

JVM languages). Choco [PFL17] and OptaPlanner [The1़] are examples that seem to

have gained attraction from research and industry. However, their interfaces are non-

standardised, so they can be unintuitive to use and hard to exchange. The finalised JSR
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331 defines a standard for constraint programming and solving in Java, but efforts seem to

have ceased since 2012 [Fel12]. Furthermore, they share the disadvantage that they always

work somewhat separate from the Java program that leverages them. Thus, imperative or

OO code parts are not seamlessly integrated. Instead, the imperative code can only invoke

the constraint solver, but it cannot intervene with the search for a solution. In contrast,

Muli allows integrating search and an imperative style tightly, allowing to freely mix both

paradigms in the most appropriate way to solve a given problem. Muli uses constraint

solver libraries internally to check the consistency of branching constraints in order to

skip infeasible paths, as well as to find specific solutions after sets of constraints have

been collected. However, the solver libraries are used transparently, i. e., developers do

not need to adapt Muli code to the solver they intend to use, as solver-specific encodings

are created by the SJVM.

As an alternative to Muli, there are several approaches which add OO features such as

inheritance to a (constraint) logic programming language, often to Prolog. For instance,

Visual Prolog extends Prolog by OO features, primarily aiming at artificial intelligence ap-

plications [Sco10]. Similarly, McCabe presents an OO language based on Prolog [McC92].

Another OO layer on top of Prolog is presented by Shapiro and Takeuchi, focussing on

concurrency [ST़3]. Similarly, Prolog++ adds OO features to Prolog [Mos94]. tuProlog

approaches the integration of Prolog and Java differently, by providing a Prolog imple-

mentation written in Java [DOR05]. This enables Prolog programs to run on the JVM, thus

facilitating integrated applications without a need for the JNI as well. Yet, this results

in applications implemented using two different languages, running in two separate

environments on the JVM. Therefore, non-deterministic program parts are separated

from imperative program parts and cannot be mixed. As an example of a non-Prolog-

based language, Mozart/Oz is a constraint language that, among concurrency and lazy

evaluation, also offers OO features [Van+03]. Again, this approach has a declarative

focus. Compared to Muli, all these approaches have a different flavour and runtime

behaviour. They are mainly declarative languages which simulate object-orientation.

Assignments and state changes are not provided (natively). Although approaches adding

OO features to a (constraint) logic programming language are interesting for declarative

programmers, it is unlikely that they will receive much attention from mainstream OO

developers due to the unfamiliar programming style.

Closest to Muli are approaches that extend OO programming with concepts from

constraint-logic programming. All those that we are aware of are aimed at automated

software testing. This includes glass-box test case generators, such as Muggl [MK09] and

IBIS [DM03], that add symbolic execution and constraint programming to Java bytecode
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execution. Pex works similarly for the .NET intermediate language by analysing programs

in .NET’s intermediate language [TH0़]. Similar to the symbolic execution approach

that this work leverages for Java, there is ongoing work for adding symbolic execution

and constraint solving to the imperative programming language Rust [Ren1़; LAL1़].

Other work already attempted integrating logic programming into Java by extending

Muggl’s symbolic VM into a self-contained runtime [MK11a]. However, their approach

falls short in the handling of logic variables, as only class fields can be declared free

using annotations. Entire methods are declared either searching or non-searching by

annotation, so defining search regions is tedious. The annotation is barely visible, thus

harming effective understanding of an application.

Alma-0 is a language that integrates elements from logic programming into an im-

perative language [Apt+9़; AS99]. It extends the Pascal-based language Modula-2 by

defining several new keywords that facilitate the encoding of first-order logic formulae. In

particular, keywords are introduced for expressing negation, disjunction, and existential

quantification. An in-depth comparison of the language (and programs written in it) to

Muli would be desirable, however, neither the Alma-0 compiler nor related resources

are available anymore as development has ceased for over a decade. Nevertheless, we

can point out a few conceptual similarities and differences. Programs written in Alma-0

are also executed non-deterministically. As its basis is a purely imperative language,

Alma-0 data structures can only encapsulate data, whereas Muli objects also encapsulate

behaviour as is usual in Java. Furthermore, non-deterministic branching occurs wherever

logic variables can hold more than one value, thus labelling instantly, similar to the

mechanisms of Curry and Prolog. In contrast, Muli only introduces non-determinism

only when there are multiple alternatives for the control flow, collecting constraints in

the process, and defers labelling of a logic variable until a specific value is required for it.

There are also several integration approaches involving further programming

paradigms. Contemporary OO languages have added features that originate in functional

programming, making combinations of functional programming and OO programming

increasingly prominent among OO software developers. In Java, a combination of lambda

abstractions and the Stream API enables development in a functional programming style

where appropriate [UFM14], whereas LINQ provides similar functionality for C# [MBB06].

Also, Scala integrates functional and OO programming and also runs on the JVM [Ode+17].

Functional and constraint-logic programming have also been integrated. For example,

Curry combines both paradigms using a Haskell-based syntax extended by logic variables,

non-determinism, and encapsulated search [Han+95; AJ16; Bra+11; LK99]. Encapsulated

search and variable definition concepts of Curry provided ideas for our constraint-logic
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OO language, although the implementation of these concepts in an imperative context

fundamentally differs from theirs, particularly w. r. t. the handling of side effects.

ࢽ.9 Conclusions and Future Work

Muli achieves the integration of imperative OO programming with constraint-logic

programming. Although Muli is a new programming language, it preserves the Java

syntax and the functionality of Java concepts outside encapsulated search, and adds non-

deterministic execution inside encapsulation as formalised by the operational semantics.

Moreover, programs written in Muli compile to bytecode that, in theory, could also be

read by a regular JVM (even though a regular JVM would ignore Muli-specific parts

of the bytecode). Instead, it is accompanied by a custom SJVM runtime environment

that supports symbolic execution, encapsulated search, backtracking, and constraint

solving within Muli programs. In terms of portability, our prototype is just as platform-

independent as Java as a result of having chosen Java for the implementations of compiler

and SJVM.

Compared to other attempts at adding constraint solving to Java, our approach is

novel in that the entire runtime is capable of searching and backtracking (but only when

requested explicitly, i. e. within encapsulated search). The Muli runtime environment

implicitly traverses search spaces that are described by search regions in Muli programs

as specified in the operational semantics, and collects solutions so that they can be re-used

in later parts of the programs, including subsequent search regions. Implicit traversal

gives developers the advantage to selectively mix declarative constraint definition and

imperative control flows if appropriate, which is not possible with other approaches in

Java.

All in all, we believe that our approach achieves a smooth integration of constraint-logic

and OO paradigms, thus enabling Java developers to leverage the benefits of constraint-

logic programming in a native Java style. In addition, developers are no longer required

to manually invoke Java constraint solvers, or to bother with integrating external search

applications, Prolog or otherwise, via JNI. This avoids a lot of programming effort and

reduces potential for mistakes.

The presented operational semantics provides the basis for implementations of com-

piler, symbolic JVM, and tools for processing Muli programs. Our own prototypical

implementations, including the classpath library, compiler, and runtime, have been made
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available on GitHub as free software.14 We welcome contributions of any kind, including

reports of issues that arose or successes that you would like to share after trying out our

approach.

Ourwork results in further novel ideas that we have yet to tackle. The degree of freedom

that imperative (OO) programming already offers makes it impossible to decide for a

constraint-logic OO program whether its search regions create an infinite search space.

Currently, this can prevent encapsulated search from terminating, which is undesirable.

Future work will attempt to work on separating producer and consumer of solutions to

achieve means for interrupting encapsulated search, for providing intermediate solutions,

and for continuing search.

Furthermore, future work will tackle solving for constraints involving non-primitive

variables, such as solving of arrays, objects, and object graphs. Moreover, we intend to

evaluate the integration of additional constraint solvers and will consider providing more

convenient means to declare combinatorial constraints. Additionally, we want to extend

reflection for Muli programs, thus exposing useful information about logic variables at

runtime, particularly their domains, thus enabling Muli programs to inspect their own

state.

Our approach would be very useful in solving such search problems that are also

optimisation problems. For now, an application would first have to compute all solutions

and then iterate over all solutions to find the optimum. Here, support for optimisation

problems during encapsulated search would be very convenient. However, this is not

trivial since branching conditions are found dynamically, so that we never know the

entire optimisation problem unless we execute it. We hope to find a sophisticated solution

that integrates symbolic execution with optimisation problems.
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10 Constraint-Logic Object-Oriented Programming for Practical Problems

10.1 Motivation

Constraint-logic object-oriented programming augments object-oriented programming

with concepts and features from constraint-logic programming [DK19a]. As a result, logic

variables, constraints, and non-deterministic application execution become available

in an object-oriented context, facilitating the search for solutions to constraint-logic

problems from an object-oriented application in an integrated way.

The Münster Logic-Imperative language (Muli) is such a constraint-logic object-

oriented language. Earlier publications on Muli focused on developing the language and

its runtime environment, using artificial examples and constraint-logic puzzles for the

purpose of demonstration and evaluation. With the current work, we demonstrate that

Muli can be used for solving practical problems as well. We present and discuss the

following application scenarios:
• The generation of graph structures for simple feed-forward neural networks de-

signed to solve the pole balancing problem (see Section 10.3).

• Solving vehicle routing problems with dynamic constraint systems (see Section 10.4).

To start off, Section 10.2 introduces concepts of constraint-logic object-oriented pro-

gramming with Muli. Concluding the paper, Section 10.5 presents related work, followed

by final remarks in Section 10.6.

10.2 Constraint-Logic Object-Oriented Programming

As a rather novel paradigm, constraint-logic object-oriented programming languages

feature the benefits of object-oriented programming while offering logic variables, con-

straints, and search, as known from constraint-logic programming. In this paper we use

Muli, a constraint-logic object-oriented programming language based on Java [DK19a].

Muli uses the free keyword to declare variables as logic variables. For example,

int operation free;

declares a logic variable with an integer type. Instead of assigning a constant value to

operation , the logic (or free) variable will be treated symbolically, unless it is sufficiently

constrained such that it can be safely substituted by a constant. Logic variables can be

used interchangeably with other variables of the same type, so that they can be used in

the formulation of arithmetic expressions or conditions [DK1़]. Furthermore, they can

be passed to methods as parameters.

Logic variables are used as part of constraints. For simplicity, Muli does not provide

a dedicated language feature for imposing constraints. Instead, a constraint is derived
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10.2 Constraint-Logic Object-Oriented Programming

from relational expressions, whenever their evaluation results in branching execution

flows. As an abstract example, consider the following condition that involves the logic

variable operation :

if (operation == 0) { 𝑠1 } else { 𝑠2 } .

Since operation is not sufficiently constrained, the condition can be evaluated to true as

well as to false (but not both at the same time). Consequently, evaluating the condition

causes the runtime environment to make a non-deterministic choice. From that point

on, the runtime environment evaluates the available alternatives non-deterministically.

When an alternative is selected, the runtime environment imposes the corresponding

constraint. In the example above, when the runtime environment selects 𝑠1 for further

evaluation it imposes operation == 0, ensuring that later evaluations cannot violate the

assumption that is made regarding the value of operation .

Search problems are specified in Muli in methods that are termed search regions for they
will be executed non-deterministically. Consider a problem that looks for the smallest

integer 𝑒 that can be expressed in two different ways as the sum of two positive integer

cubes (the Hardy-Ramanujan number, namely, 1729). The corresponding constraint is:

𝑒 = 𝑎3 + 𝑏3 = 𝑐3 + 𝑑3

∧ 𝑎 ≠ 𝑐 ∧ 𝑎 ≠ 𝑑

∧ 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ 𝒩 − {0}

A Muli search region that calculates 𝑒 using this constraint is implemented by the method

solve() as depicted in Listing 10.1, assuming that there is a method cube(𝑛) = 𝑛3 and

another method positiveDomain(𝑥1, … , 𝑥𝑛) that imposes the constraint 𝑥𝑖 ∈ 𝒩 − {0} ∀1 ≤
𝑖 ≤ 𝑛.

1 class Taxicab {
2 int solve() {
3 int a free, b free, c free, d free, e free;
4 positiveDomain(a, b, c, d, e);
5 if (a != c && a != d &&
6 cube(a) + cube(b) == e &&
7 cube(c) + cube(d) == e) {
़ return e; }
9 else throw Muli.fail(); } }

Listing 10.1: Muli search region that calculates the Hardy-Ramanujan number.
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The runtime environment realizes search transparently: It takes non-deterministic

decisions at choices. Once a solution has been found, the runtime environment backtracks

until the most recent choice is found that offers an alternative decision. Afterwards, it

takes that alternative decision and continues execution accordingly. In the backend, the

runtime environment leverages a constraint solver for finding appropriate values for logic

variables that satisfy all imposed constraints. Furthermore, when a branch of a choice is

selected, the solver checks whether the current constraint system has become inconsistent

in order to cut off infeasible execution branches early. Found solutions are collected by

the runtime environment and made available to the invoking application. Conceptually,

following a sequence of decisions at choices, in combination with backtracking to take

different decisions, produces a search tree that represents execution paths. In such a

search tree, inner nodes are the choices whereas the leaves represent ends of alternative

execution paths [DT20]. Execution paths in Muli end with a solution, e. g., a return

value, or with a failure, e. g., if an execution path’s constraint system is inconsistent.

Moreover, applications sometimes require an explicit failure denoting the end of an

execution path without a solution. An explicit failure is expressed by throw Muli.fail() ,

which is specifically interpreted by the runtime environment to end search and backtrack

to the next alternative.

In Muli, execution of the main program is deterministic. In contrast, all non-

deterministic search is encapsulated, thus giving application developers control over

search. Muli.muli() accepts a search region, i. e. either a lambda expression or a refer-

ence to a method, and returns a stream of Solution objects. The search region that is

passed to Muli.muli() is the method that will be executed non-deterministically. For

instance, search for the Hardy-Ramanujan number from the example in Listing 10.1 is

started with

Stream<Solution> solutions = Muli.muli(Taxicab::solve); ,

thus offering a stream of solutions that can be consumed from the solutions variable.

Muli uses the Java Stream API in order to evaluate solutions non-strictly, thus allowing

applications to assess a returned solution individually before continuing search to obtain

additional solutions [DK19b]. This is made possible with the help of an adaptation of the

trail structure of the Warren Abstract Machine (WAM) [War़3]. In contrast to the WAM

trail, the Muli trail records changes to all elements of the execution state in order to be

able to revert them. Furthermore, Muli features an inverse trail (or forward trail) that

is leveraged when search at a specific point is resumed, i. e., when the consumer of the

stream queries another element.

152



10.3 Generation of Graph Structures for Neural Networks

10.3 Generation of Graph Structures for Neural
Networks

A current research trend in artificial neural networks (ANN) is that not only the weights

of the inputs of each neuron are corrected via back-propagation, but also the structure of

the network is adapted [PC04]. Thus, the goal is to find the smallest ANN producing an

acceptable output quality. A application implemented in Muli can generate structures of

directed acyclic graphs that define an ANN. In this section, we implement the application

NNGenerator that demonstrates how the non-deterministic evaluation of Muli search

regions can be used to systematically generate a set of feed-forward ANNs.Each generated

ANN is then trained against a specific problem; in our case balancing a single pole on a

moving cart as illustrated in Figure 10.1 [BSA़3]. Every time that a network is generated,

NNGenerator assesses the network’s fitness in order to decide whether its output quality

is acceptable, and continues the search for better ANN graph structures otherwise.

left ← → right

-2.4 2.4cart

Figure 10.1: The pole balancing problem as simulated by the CartPole-v1 implementation
from OpenAI.

For the generated ANNs we use Python, because PyTorch [Pas+19] is a powerful

Python-based library for the implementation of ANNs and because the OpenAI Gym

collection of reinforcement learning tasks [Ope20] provides a simulation environment

for the pole balancing problem, namely CartPole-v1, implemented in Python. Moreover,

this provides us with the opportunity to demonstrate that Muli applications can integrate

applications written in other programming languages as well.

The CartPole-v1 simulation provides a so-called environment that our application will

interact with. As long as the pole is in balance, the environment accepts one of two

actions, left and right (as illustrated in Figure 10.1), that move the pole-balancing cart
into a specific direction. As a result of an action, the environment updates its state and

returns four observations:
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Inputs OutputsHidden layer(s)

?

(a) General structure.

Inputs OutputsHidden layer(s)

(b) Example instance.

Figure 10.2: Feed-forward neural networks for solving the pole balancing problem.

• The position of the cart ∈ [−2.4, 2.4],
• the velocity of the cart ∈ [−∞, ∞],
• the angle of the pole, and ∈ [−41.8 °, 41.8 °], and
• the velocity of the tip of the pole ∈ [−∞, ∞].

These observations can be used to make a decision about a subsequent action. We

generate feed-forward neural networks with reinforcement learning. Of these networks,

two parameters are fixed: The input layer contains four nodes, one per observation,

whereas the output layer contains two nodes, namely the probability of selecting the left
action and that of selecting the right action, accordingly. The next step is decided by

comparing the output nodes and choosing the action with the highest probability. The

step is then passed to the environment. The structure of the hidden layer(s) is not fixed

and will be generated by NNGenerator . The general structure of the intended ANNs is

illustrated in Figure 10.2a, and a concrete instance is exemplarily given in Figure 10.2b.

We first describe the Muli application NNGenerator that generates graph structures for

the hidden layers of ANNs, followed by a subsection with details on the neural network

implementation using PyTorch. Afterwards, we experiment with NNGenerator and present

the results.

10.3.1 Generating Neural Network Graph Structures from a Muli
Application

The goal of the NNGenerator Muli application is to search for directed acyclic graphs that

will constitute the hidden layers of the final neural networks, with the aim of producing

the simplest graph structure. The simplest network has no hidden layer; i. e., all input

154



10.3 Generation of Graph Structures for Neural Networks

nodes are directly connected to all output nodes. Starting from the simplest network,

two operations that modify the graph are possible:

1. AddLayer Add a hidden layer (with one node as a starting point), or

2. AddNode add a node to one of the existing hidden layers.

We can implement NNGenerator as a Muli search region that enumerates graphs by

non-deterministically choosing one of these operations and, for the AddNode operation, by

non-deterministically selecting one of the existing layers. As an implementation detail

we add a third operation, Return , that returns the current graph structure as a solution.

The other two operations recursively invoke the generation method in order to select

the next operation. Listing 10.2 shows the recursive implementation of the generation

method and exhibits the use of the free variable int operation free in conditions, thus

implementing the non-deterministic choice for one of the three operations, as well as int

toLayer free for selecting a layer in the AddNode case.

As the search region of Listing 10.2 does not have a termination criterion, an infinite

number of solutions is found (i. e., infinitely many graphs with all numbers and sizes of

layers). Returning all of them in a fixed array is impossible. However, Muli offers an

encapsulated search operator that delivers solutions lazily and returns immediately after

a solution has been found, while maintaining state such that search can be resumed for

additional solutions on demand [DK19b]. For our application, the operator is invoked as

Stream<Solution<Network>> solutions = Muli.muli(NNGenerator::generateNetwork);

As a result, individual solutions can be obtained from the solutions stream.

Another caveat of the application is the selected search strategy. Even though the

Muli runtime environment takes non-deterministic decisions at choices, the decisions

are not random. Instead, it will systematically traverse the choices of the search region.

With a depth-first search strategy, this means that the generated graphs are probably

bad solutions: First, a graph with no hidden layers; second, a graph with one hidden

layer with a single node; third, a graph with two hidden layers and one node each, and

so on. Under a depth-first search assumption and with the presented search region, there

would never be layers with more than one node except for the input and output layers.

Rewriting the search region does not help either, as that would only generate graphs with

a single layer and an ever-increasing number of nodes on that layer. As a remedy, Muli

offers the well-known iterative deepening depth-first search (IDDFS) strategy [DT20]

ensuring that every number of layers and every size of each layer can eventually be

considered. In order to use IDDFS we have to slightly modify the encapsulated search

operator call:
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1 Network generateNetwork() {
2 return generateNetwork( new Network(4, 2) ); }
3

4 Network generateNetwork(Network network) {
5 int operation free;
6 switch (operation) {
7 case 0: // Return current network.
़ return network;
9 case 1: // Add layer.
10 network.addLayer();
11 return generateNetwork(network);
12 default: // Add node. But where?
13 if (network.numberOfLayers > 0) {
14 int toLayer free;
15 for (int layer = 0; layer < network.numberOfLayers;
16 layer++) {
17 if (layer == toLayer) {
1़ network.addNode(layer);
19 return generateNetwork(network);
20 } else {
21 // Add at a different layer!
22 } }
23 throw Muli.fail();
24 } else {
25 throw Muli.fail(); } } }

Listing 10.2: Muli search region that systematically generates graph structures by non-
deterministic selection of operations.

Stream<Solution<Network>> solutions = Muli.muli(NNGenerator::generateNetwork,

SearchStrategy.IterativeDeepening);

Listing 10.3 shows how the solution stream is used. The forEach consumer demands

and obtains individual solutions from the stream. n.toPyCode() creates Python code that

implements an ANN according to the generated graph (for details on what the code looks

like see Subsection 10.3.2), and the helper method writeAndRun() writes the generated

code into a .py script. Afterwards, the script is run via Runtime.getRuntime().exec() . We

assume that the generated Python application prints the network’s fitness after training

and use to standard output, so that output is captured and stored in the fitness variable.

In Listing 10.3 we consider a solution “good enough” (thus ending search) if its cumulative

fitness value is greater than 400.
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1 solutions.forEach(solution -> {
2 Network n = solution.value;
3 // Execute python script.
4 String fitness = NNGenerator.writeAndRun(n.toPyCode());
5 // Quit if a working neural network is found.
6 if (Float.parseFloat(fitness) > 400) {
7 System.out.println(n.toString());
़ System.exit(0); } });

Listing 10.3: Processing the solution stream in Muli.

10.3.2 Using Generated Neural Networks to Solve the Pole
Balancing Problem

In our feed-forward ANNs we assume that all layers are linear ones. In addition to that,

between every layer we use dropout [Sri+14] to randomly cancel the effect of some nodes

with a probability of 0.6, in combination with a rectified linear unit activation function

ensuring that values are positive [HSS15]. Finally, the output layer values are rescaled

using the softmax activation function, ensuring that each output is in the range [0, 1]
and that the sum of the two outputs is 1. Initially, the edge weights assume the default

values provided by PyTorch for nn.Linear layers. Afterwards, the network is trained in

order to learn weights such that the network can balance the pole for as long as possible.

To that end, we use the Adam optimizer [KB15] with a learning rate of 0.01 and train

the network using a monte-carlo policy gradient method for 500 episodes, each for a

maximum of 500 steps. We process an entire episode and learn new weights based on the

rewards obtained in throughout that episode, before continuing with the next episode.

The toPyCode() method of NNGenerator will generate Python code that implements

ANNs according to the above specification of the network and to the structure that was

generated. In the end, we do not want to generate full implementations of ANNs for

every found graph. After all, major parts of the resulting programs are static and could

therefore be implemented once and then be used as a library by all generated networks.

We implement a Python class ENN that implements the ANN itself using PyTorch, and we

provide two methods train() and use() that each accept an instance of ENN in order to

work with it. The Muli application NNGenerator can generate small Python programs that

import ENN , train() , and use() . The generated programs then instantiate the ENN class

according to the parameters found by Muli and use the provided methods. Listing 10.4

provides an example of the code that is generated from the NNGenerator application,
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demonstrating that implementation details of the ANN are abstracted away into the

library. Subsequently, we provide more details about the class and the methods.

1 net = ENN(ins = 4, hidden = [100, 50], out = 2)
2 train(net)
3 fitness = use(net)
4 print(fitness)

Listing 10.4: Structure of the Python program as generated by the NNGenerator Muli ap-
plication. Note that the constructor parameters of ENN are shown exemplarily;
they need to be substituted according to a specific configuration.

In its constructor, the ENN class accepts three parameters: The number of input nodes,

an ordered list containing the numbers of nodes on the inner layers, and the number

of output nodes. For instance, the network illustrated in Figure 10.2b is instantiated by

invoking ENN(ins = 4, hidden = [2, 4, 3], outs = 2) . Since the number of inner layers

and the number of nodes on each layer is expressed as an array, ENN is able to construct

an ANN with arbitrary hidden layers, allowing NNGenerator to specify the hidden layer.

Listing 10.5 demonstrates how the constructor parameters, and the list of hidden layers

in particular, are used to represent the network. In Listing 10.5, the forward() method

specifies the sequential model, inserting the additional layers as described above.

The train() method accepts the ENN instance and creates an Open AI Gym environment

using the CartPole implementation. It then starts a training loop with 500 episodes. At

the beginning of every episode, the environment is reset to an initial state. An episode

ends either when the pole is out of balance, or when the maximum of 500 steps is reached.

As soon as an episode ends, the network weights are learned according to the description

above, thus preparing the network for the next episode.

The trained network is passed to the use() method that creates a new OpenAI Gym

environment and performs a single simulation of the pole balancing problem, up to a

maximum of 500 steps. In order to allow NNGenerator to judge the quality of a final, i. e.,

generated and trained, network, we define a fitness function based on the position of the

cart that is applied after every step and summed over all steps that the pole is in balance:

𝑓 (𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛) = −0.1736 ∗ 𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛2 + 1

𝑓 (𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛) is 1when the cart is at the centre and decreases to 0when the cart is nearing

one of the edges at −2.4 or 2.4. As a consequence, solutions that keep the pole near the

centre, with just minor movement, are favoured. A perfect solution would keep the

15़
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1 class ENNPolicy(nn.Module):
2 def __init__(self, ins, hidden, outs):
3 # < some initialization omitted >
4 lastnodes = ins
5 for nodes in hidden:
6 newlayer = nn.Linear(lastnodes, nodes, bias=False)
7 self.layers.append(newlayer)
़ lastnodes = nodes
9 # Final layer:
10 newlayer = nn.Linear(lastnodes, outs, bias=False)
11 self.layers.append(newlayer)
12 self.layerout = newlayer
13 def forward(self, x):
14 args = []
15 for layer in self.layers[:-1]:
16 args.append(layer)
17 args.append(nn.Dropout(p=0.6))
1़ args.append(nn.ReLU())
19 args.append(self.layers[-1])
20 args.append(nn.Softmax(dim=-1))
21 model = torch.nn.Sequential(*args)
22 return model(x)

Listing 10.5: Python class ENN that creates hidden layers dynamically from the constructor
parameters.

pole balanced for all 500 steps and ∑500
𝑖=1 𝑓 (𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛𝑖) is approximately 500. We augment

the use() method to record the fitness values throughout all steps and to return the

cumulative fitness value. The last two lines of Listing 10.4 demonstrate how the sum is

printed to the standard output, so that it can be read and judged by NNGenerator .

10.3.3 Experiments

We conduct two experiments with NNGenerator in order to evaluate Muli’s ability to

generate directed acyclic graphs. In the first experiment we are interested in the smallest

ANN that is able to solve the pole balancing problem, i. e., whose cumulative fitness

is greater than 400. Incidentally, the structures that were generated until finding an

adequate ANN all only have a single hidden layer. The smallest network capable of solving

the problem has just ten nodes on a single hidden layer (Table 10.1). The generation of the

first network takes longer than that of the other, larger ones. This can be attributed to the
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Nodes on
first layer Generation time [ms] Training time [s] Fitness Solved

1 115.712 6.़9़ 14.9़7 no
2 14.़32 ़.402 9.992 no
3 2.446 ़.117 76.़़़ no
4 2.350 10.662 14.9़7 no
5 2.426 15.710 125.005 no
6 1.930 1़.0़6 75.़़9 no
7 1.991 1़.़25 125.491 no
़ 2.4़़ 3़.4़3 52.977 no
9 2.351 17.703 371.425 no
10 2.240 50.963 499.623 yes

Table 10.1: Graph structures generated before the smallest neural network that solves
the problem is found. For each network, the time spent on its generation (in
milliseconds) and training (in seconds) are indicated as well as its fitness.

just-in-time compilation of the JVM that increases the speed of generating subsequent

solutions. Moreover, it was also the first network to be generated at all, so that the

generation time includes some initialization effort for the virtual machine and the search

region. In contrast, subsequent graphs are created by local backtracking and/or by

applying minor modification operations, so generating those is quicker.

In the second experiment we are interested in the ability to generate larger hidden

layers. To that end, we multiply the number of nodes added in the AddNode step by 50.

Moreover, we switch the order in which IDDFS takes decisions, thus favouring larger

networks over smaller ones first. The first generated ANN is already able to solve the pole

balancing problem. Therefore, execution could already be stopped after that according

to the termination criterion in Listing 10.3. However, we are curious about additional

solutions, so we remove that criterion. Table 10.2 exemplarily shows the first 15 generated

networks that were able to solve the problem, i. e., whose cumulative fitness is greater

than 400 each. In fact, all these networks exhibit a value of over 4़3, and most of them are

able to reach a cumulative fitness greater than 499. Not shown in Table 10.2 are networks

that are unable to solve the pole balancing problem. As an additional finding, both

experiments indicate that the generation of graph structures with NNGenerator is faster

than training the ANNs afterwards. This is expected since the structural modifications

between two graph structures are minor, whereas each generated ANN has to be trained

from scratch.
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Hidden layers Generation time [ms] Training time [s] Fitness

[400] 155.547 ़0.5़3 499.952
[350, 50] 0.044 35.114 499.390
[300] 0.060 94.019 499.653
[300, 100] 2.224 47.930 499.़99
[250] 0.040 77.497 499.704
[250, 150] 1.474 126.405 499.569
[250, 50] 0.031 52.727 499.50़
[200, 150] 0.042 9़.520 499.29़
[200, 100] 0.027 112.001 49़.324
[200, 50, 100] 0.036 115.636 4़3.321
[150] 0.025 76.72़ 499.223
[150, 200] 0.025 73.006 49़.517
[150, 150, 50] 0.02़ ़0.517 49़.564
[150, 50] 0.02़ ़7.़62 499.916
[100, 100, 50, 100] 0.036 101.163 499.540

Table 10.2: Times spent on generating (in milliseconds) and training (in seconds) the first
15 generated large neural networks that were able to solve the problem.

10.4 Solving a Dynamic Scheduling Problem with
Constraint-Logic Object-Oriented Programming

Another application which can benefit from interleaved deterministic object-oriented

computation and non-deterministic search can be found in logistics. Imagine a logistics

company which runs a large number of trucks carrying goods from various sources to

destinations. New orders arrive on the fly while trucks are running. Each order has a

quantity of a certain good (that has a specific size and weight), a source location, a destin-

ation, an earliest and latest pick-up time, a latest delivery time, and so on. Moreover, the

trucks have a maximum capacity w. r. t. volume and weight of goods that are transported

at the same time. Consequently, the current set of orders imposes a set of constraints.

The current schedule is based on a solution that satisfies these constraints and, optionally,

on an optimal solution that maximizes the revenues of the accepted orders.

The described problem is transferred into a class structure as illustrated in Figure 10.3.

Dispatching new orders to trucks results in additional constraints regarding size and

weight, ensuring that trucks are not over capacity after scheduling. For an array of trucks,

the constraints can be formulated with Muli using the code presented in Listing 10.6.

Capacity violations result in an explicit failure, whereas a successful dispatch of all goods

will result in the return value true and Truck-Order relationships are set via addOrder()
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status

good

orders
*

truck
0..1

source
1

destination 1

Truck

+ maxVolume: int
+ maxWeight: int

+ remainingVolume()
+ remainingWeight()
+ addOrder(Order o)

Order

+ quantity: int
+ earliestPickup: DateTime
+ latestPickup: DateTime
+ latestDelivery: DateTime

Good

+ volume: int
+ weight: int

Location

+ address: String

≪enum≫
Status

+ Pending
+ InDelivery
+ Completed

Figure 10.3: Class structure that models our logistics planning problem.

accordingly. Constraints w. r. t. location and pickup/delivery timing are formulated

analogously.

The solution can be found by non-deterministic search and constraint solving, e. g.,

using the Muli.muli() encapsulated search operator. However, the encapsulated search

does not only deliver a solution. It also delivers a representation of the search space

for potential later use. After the solution has been found, deterministic computations

are required for instance for keeping track of the current positions of the trucks and for

communicating the determined schedule with truck drivers.

As soon as new orders arrive, a new solution of the now extended scheduling problem

has to be found. As a consequence, this is a dynamic problem in which the entire set of

constraints is not known prior to the start of an application. Instead, the set of constraints

develops over time. Now, the additional constraints caused by the new order can be

added to the saved representation of the search space and a new encapsulated search can

be started producing a new solution (and a new representation of the search space). The

possibility to continue search based on the previous solution facilitates faster search, as

opposed to solving the constraint problem from scratch.

10.5 Related Work

There are several approaches that extend object-oriented (OO) programming or imperative

programming with concepts from constraint-logic programming, see e. g. [DM03; MK11;

Ren1़; TH0़]. The integration of the two paradigms that these approaches achieve is not

as smooth as the integration provided by Muli. Typically, these approaches show a clear
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1 boolean dispatch(Truck[] trucks, Order[] newOrders) {
2 for (Order o : newOrders) {
3 int selection free;
4 selection = domain(truck, 0, trucks.length-1);
5 int orderWeight = o.quantity * o.good.weight;
6 int orderVolume = o.quantity * o.good.volume;
7 for (int truck = 0; truck < trucks.length; truck++) {
़ if (truck == selection) {
9 if (orderWeight <= trucks[truck].remainingWeight() &&
10 orderVolume <= trucks[truck].remainingVolume()) {
11 trucks[truck].addOrder(o);
12 } else {
13 throw Muli.fail(); } } } }
14 // All orders dispatched; good to go.
15 return true;
16 }

Listing 10.6: Muli code snippet to dispatch orders to trucks with non-deterministic search,
modelling weight and volume constraints.

syntactic and semantic separation of the imperative and object-oriented part. Moreover,

none of these approaches provides encapsulated search.

An alternative to using Muli is to just call a constraint solver from an OO language,

such as JaCoP or Choco from Java [Kuc03; PFL17]. However, this also does not lead to

a seamless integration of both paradigms. In particular, alternating deterministic OO

computations and non-deterministic search are more cumbersome.

There are also approaches adding object-orientation to (constraint) logic languages

[McC92; Mos94; Sco10; ST़3; Van+03]. However here, the object orientation is just

syntactic sugar and constraint-logic features are used to simulate the object orientation.

This typically causes some performance penalty compared to pure OO languages. Also,

these languages keep the declarative flavour and do not provide assignments. Thus, they

will hardly be considered by object-oriented programmers, whereas Muli is very close to

Java and hence easier to use for developers who are used to object-oriented languages.

The general idea of Muli’s encapsulated search was taken from the functional-logic pro-

gramming language Curry [AJ16; Bra+11; HKM95; LK99]. However, in contrast to Curry,

our encapsulated search can deal with side-effects, which causes the implementation to

be quite different.
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10.6 Conclusion and Outlook

With the present work we use the Muli programming language for the development of

applications that solve practical search problems. As the first example, the NNGenerator

application leverages non-deterministic execution for the systematic generation of direc-

ted acyclic graphs that are used to describe the structure of PyTorch-based ANNs. The

networks generated by NNGenerator solve the pole balancing problem; this problem can be

substituted for different ones as the ANNs are problem-agnostic. Moreover, NNGenerator

runs and evaluates each generated network, judging whether one of them is good enough

or whether to proceed search in order to find additional networks. As the second example,

we discuss how to apply Muli to a scheduling problem from logistics, demonstrating how

to model constraints in an constraint-logic object-oriented way.

The presented applications demonstrate the practical applicability of Muli. Compiler

and runtime environment are publicly available as open source software on GitHub,15

inviting others to use Muli in research or for their practical applications. Future work

will use Muli for further planning problems, refining the language and the runtime

environment in the process.
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11.1 Programming with Free Objects

With constraint-logic object-oriented programming (CLOOP), software engineers are offered

an integrated programming paradigm for the development of business software that occa-

sionally requires search for solutions to constraint-logic problems. As a mixed paradigm,

CLOOP provides well-known benefits of object-oriented programming languages (e. g.,

encapsulation of data and behaviour) as well as of constraint-logic programming (declar-

ative specification and solving of search problems). For example, the CLOOP language

Muli is based on Java and adds logic variables, symbolic execution, constraints, and

encapsulated search. Muli code is executed by the Muli Logic Virtual Machine (MLVM),

which is a custom Java virtual machine that also provides support for symbolic execution

and constraint solving [DK19]. Syntactically, logic variables in Muli can be of arbitrary

types. However, so far, constraints can only be defined over logic variables of primitive
types. Primitive logic variables may still be assigned to fields of objects, so they can

already be used in an object-oriented context. Nevertheless, adding support for logic

variables that represent entire objects requires additional work.

Adding support for reference-type logic variables (free objects in particular) raises

interesting questions. After all, objects in object-oriented languages (and, therefore, also

in CLOOP) encapsulate data and behaviour. For instance, consider the following code

from Listing 11.1 in the context of the class hierarchy illustrated in Figure 11.1, which will

serve as a running example.

1 Shape s free;
2 if (s.getArea() == 16) {
3 System.out.println(s.toString()); }

Listing 11.1: Excerpt from a constraint-logic object-oriented program that invokes a
method on a free object.

As Shape merely provides the interface, the invocation of s.getArea() can be interpreted

in multiple ways depending on the number of implementations of Shape . Like in this

example, we generally assume that the type of a free object is only partially known,

i. e., when a variable that is declared as Object o is of type Object , o may in fact hold an

instance of Object or of any subtype. Consequently, there is only partial information

about the (actual) type of an object, so that there are implications for

• how free objects are instantiated,

• how accesses to fields of a free object are handled,
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≪interface≫
Shape

+ getArea(): int

Square

+ width: int

+ equals(Object o): boolean
+ getArea(): int
+ toString(): String

Rectangle

+ width: int
+ height: int

+ equals(Object o): boolean
+ getArea(): int
+ toString(): String

Cuboid

+ length: int

+ equals(Object o): boolean
+ getArea(): int
+ toString(): String

Cube

+ equals(Object o): boolean
+ getArea(): int
+ toString(): String

Figure 11.1: Class structure assumed for the running example.

• invocations of methods on free objects,

• type operations on free objects, and

• the notion of equality of free (and regular) objects.

Some of these implications have been discussed conceptually in a research-in-progress

paper, but the discussion was incomplete and did not yet result in an implementation

[Dag19].

In order to effectively realize the benefits of an integrated CLOOP language, these

implications need to be discussed in order to define the semantics and to implement a

runtime environment. In CLOOP, we expect the applicable alternatives to be evaluated

non-deterministically until all alternatives are considered (“don’t know” non-determinism)

[DK19]. Therefore, the example in Listing 11.1 would result in at least four lines of output

as there are four classes that implement the Shape interface.

This paper provides the following contributions to CLOOP, all of which we have

exemplarily implemented in a modified MLVM:

• A semantics for non-deterministic method invocations on free objects, i. e., on

objects whose type is only partially known (Section 11.3). This is achieved in

combination with a dynamic type constraint that restricts the valid types of an

object at runtime.

• A discussion of how fields of free objects are accessed (Section 11.4).

• Another application of the dynamic type constraint for the implementation of type

operations, namely casts and checks in Subsection 11.5.1, followed by a discussion

of equality of (free) objects (Subsection 11.5.2).
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• Throughout the paper we use several examples that demonstrate how free objects

are useful in programming. In addition, we display larger example applications for

demonstration purposes in Section 11.6.

Moreover, related research is outlined in Section 11.7. Finally, Section 11.़ summarizes

the contribution and provides an outlook. Subsequently, we start by giving a short

introduction to Muli in Section 11.2, followed by a description of preliminaries of free

objects (Subsection 11.2.1). All example programs presented in this paper can be compiled

with the Muli compiler and executed on our modified MLVM.

11.2 Constraint-Logic Object-Oriented Programming
with Muli

We base our work on the Münster Logic-Imperative Language (Muli).16 Muli is a CLOOP

language whose syntax and semantics are based on those of Java ़ [DK19]. The Muli

Logic Virtual Machine (MLVM) is a modification of a JVMS-compliant [Lin+15] Java

virtual machine and serves as the runtime environment. We briefly introduce the main

features of the Muli programming language.

In Muli, an unbound (“free”) variable is declared using the free keyword, e. g.,

int width free; .

At runtime, free variables are treated as logic variables to be used in symbolic expressions.

Free objects are declared analogously, but prior to our work their semantics was undefined

and the MLVM did not provide an implementation for treating free objects yet. Therefore,

the following code was able to compile but the method invocation in the second line

failed:

Shape s free;

s.getArea(); .

This issue is tackled in the present paper, adding full support for logic variables that

represent objects.

In Muli, the way all (logic and regular) variables are used in boolean or arithmetic

expressions is identical to Java. However, an expression that contains unbound variables

cannot be evaluated to a constant. Therefore, the MLVM treats those variables symbolic-

16https://github.com/wwu- pi/muli .
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ally and creates a symbolic expression [DK1़].17 To give an example, after executing the

Muli program in Listing 11.2, five holds the constant value 5 , whereas symbolic holds the

symbolic expression x + 5 .

1 int x free;
2 int two = 2, three = 3;
3 int five = three + two;
4 int symbolic = x + five;

Listing 11.2: Example that demonstrates symbolic evaluation of expressions that contain
logic variables.

Ultimately, symbolic arithmetic expressions can evaluate to numeric constants (e. g.,

after substituting all contained symbolic variables by appropriate constants). For instance,

an arithmetic expression that contains only int (logic) variables and int constants can

be used anywhere where an int expression is expected. Therefore, symbolic expressions

can be passed as parameter values, assigned to variables, or used as the return value of a

method. A symbolic expression is preserved until all comprised logic variables can be

substituted by a constant, either via sufficiently specific constraints or via labelling.

The behaviour described so far is deterministic. However, as soon as a symbolic

expression is used as part of a condition that leads to branching (e. g., in an if statement),

it is possible that the execution environment cannot decide on a unique outcome because,

given appropriate constraints, a condition could be evaluated to both, false and true .

For example, in the context of Listing 11.2 we could add

if (symbolic > 5) ,

which is true iff 𝑥 ≥ 1, and false otherwise. Since symbolic is free, both alternatives are

equally possible.

Whenever more than one choice is applicable, the MLVM searches over all possible

branches [DK1़]. TheMLVMnon-deterministically selects a branch that implies a specific

outcome (e. g., the condition shall be false). The resulting constraint is imposed on a

constraint store that the MLVM maintains as part of its execution state [DK19]. After

executing that branch, the MLVM backtracks execution state (constraint store, operand

and frame stacks, program counter, and heap values) to the point where a choice was

made, and then proceeds with the next branch.

17In contrast, arithmetic expressions in Java are immediately evaluated to a constant result, i. e., the original
expression is lost immediately after its evaluation. This also happens in Muli for expressions that are
constant.
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Figure 11.2: Conceptual structure of the MLVM. Adapted from [DK19] and updated in
order to reflect recent developments.

With the purpose of limiting the effects of non-deterministic execution, non-

deterministic branching is encapsulated. Non-deterministic programs, or search regions,
are written in lambda expressions or methods and are passed as a parameter to one

of Muli’s encapsulation methods (e. g., getAllSolutions() or muli()). The result of an

execution branch, i. e., either the final return value or an uncaught exception, becomes a

solution to a CLOOP. The encapsulation method collects all solutions and returns them

to the calling, deterministic program. Depending on the chosen encapsulation method,

the surrounding program can process solutions from an array or from a stream that

is evaluated non-strictly, i. e., individual solutions are computed and returned on an

on-demand basis.

These features are implemented in the MLVM, whose main components are depicted

in Figure 11.2. The execution core is a JVMS-compliant custom Java virtual machine

[Lin+15] with modifications for symbolic execution of Java bytecode and encapsulated

non-deterministic search [DK19]. The search tree management component maintains

a search tree that represents the non-deterministic execution of search regions, where

inner nodes represent non-deterministic choices and each leaf corresponds to a solution

or an explicit failure. Within the execution core, the evaluation of a bytecode instruction

that has non-deterministic behaviour in a search region results in the creation of a

representation of the choice and its alternatives. This choice is then passed to the

search tree management component, thus updating the search tree. The decision about

which alternative to follow is delegated to the search & backtracking component, which

imposes a corresponding constraint on the constraint store and checks whether the
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resulting constraint system is still satisfiable using the solver component [DK19]. The

solver component currently leverages the finite domain solver JaCoP [Kuc03]; alternative

solvers can easily be integrated. Once an alternative is selected, the execution core

continues execution on the corresponding path. The search tree management component

also maintains a set of trails that record side effects during execution. The trails are

used during backtracking in order to revert side effects so that a virtual machine state is

achieved that is consistent for subsequent evaluations.

11.2.1 Setting the Stage for Free Objects

Reference types As Muli is based on Java, Muli distinguishes the same four distinct

kinds of reference types as Java does [Gos+15, § 4.3]: type variables, array types, interface

types, and class types. In this work we focus on class and interface types. Subsequently,

they are subsumed under reference types and their instances are objects, where our focus

is on free objects in particular. Regarding classes and interfaces, the language C# has a

definition of reference types that is congruent with Java’s definition [Mic20]. Therefore,

even though the considerations in this paper are focused on Muli, they are also applicable

to other constraint-logic object-oriented programming languages, e. g., languages based

on C#.

Due to the nature of Java (and, therefore, Muli), reference types are not limited to data

encapsulation. With the concept of methods, class types and interface types notably

encapsulate behaviour. As a consequence of method overriding and runtime polymorph-

ism, the behaviour may also change along the implementation hierarchy. Recall the

object-oriented representation of shapes from Figure 11.1 which will serve as our run-

ning example. The Shape interface prescribes subtypes to implement an appropriate

method getArea() that calculates the area from relevant field values. Moreover, in Muli,

all classes inherit from java.lang.Object implicitly as they do in Java [Gos+15, § 4.3.2].

For the purpose of the running example, assume that each shape also overrides the

default implementations of toString() and equals() that were inherited from java.lang

.Object , facilitating representations of field values in a human-readable form as well as

comparisons with other objects.

As a result, when a variable is declared, e. g., Shape s free , s can in fact hold an instance

of any class that implements Shape . If Shape were a non-abstract class, an instance of

Shape would be a possible object as well. The fact that the actual type potentially differs

from the declared type affects the type casts that can (validly) be performed on s at
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runtime, as well as the behaviour that is expected from invoking methods on the object.

Consequently, adding support for free objects requires

• a non-arithmetic constraint that enforces the type (or, rather, a set of possible types)

of a free object, and

• a way to discover the implementation hierarchy from all available classes.

Class discovery In order to tackle the latter, we need to make a decision regarding

which classes are considered. In Java and Muli programs, classes may be available to an

application even though they are not (yet) in memory from the start of an application.

Instead, they reside as .class files in a pre-defined location on disk (the so-called class

path) and are loaded on-demand by the class loader [Lin+15, § 5.3.5]. As a consequence,

we can decide whether only those classes are considered that have already been loaded,

as opposed to taking all classes into consideration that are on the class path. The first

alternative implies that a fresh program such as

Shape s free;

might not find any implementations for s , unless classes that implement Shape were

actively loaded, e. g., by constructing dummy objects from relevant classes as in

new Rectangle(); new Cuboid(); new Cube(); new Square();

Shape s free; .

Since a necessity for creating dummy objects creates additional mental load for developers,

we instead propose to consider all available classes on the class path, at the cost of

additional overhead for discovering and parsing all classes that are on the class path. In

that case,

Shape s free;

is sufficient to instantiate a free object that can be specialized to any of its subtypes.

Performing ex-ante class discovery imposes a limitation, namely that we operate under a

closed-world assumption and only take classes into consideration that are present on disk

at the start of the application. In Java, applications are able to create and load additional

classes on the fly. However, as this feature is used rarely, it is hardly a practical issue that

these classes would not be discovered.

Instances of free objects With a declaration C o free; , o becomes a logic variable

that could, in theory, be substituted for either of the following:

1. an existing object from memory (the heap) that is type-compatible with C , thus

re-using existing objects from different contexts;

176



11.2 Constraint-Logic Object-Oriented Programming with Muli

otherSimple

+ flag: boolean
+ count: int

Rec

+ flag: boolean
+ count: int

Figure 11.3: Class definitions. With a recursive definition, e. g., for Rec , exhaustive gener-
ation of concrete objects does not terminate.

2. a fully-generated fresh object, making a non-deterministic choice to branch non-

deterministically over all possible alternative instances at the time of declaration;

or

3. a fresh symbolic object o , which is further specified on an on-demand basis by

imposing constraints on o .

In other contexts, a declaration C p implies that p is a fresh object, unless an existing

object is assigned to p explicitly. As a consequence, we consider the first alternative

semantically dangerous. Moreover, if existing objects were re-used, we would need to

ensure that their respective scopes are not violated.

The second alternative is problematic as well since we would need to generate concrete

object instances, or rather, full(!) object graphs: For an arbitrary class C in C o free; ,

the number of possible instances for which o can be substituted can be very large or

even infinite. Firstly, because there may be (finitely) many specializations for C . Secondly,

because the definition of C (or of a subtype) may be recursive, in turn containing a field of

type C (or a subtype).1़ For instance, consider the definitions of Simple and Rec presented

in Figure 11.3. The set of possible instances for objects of type Simple is a combina-

tion of the field values: {(𝑡𝑟𝑢𝑒, −2147483648), (𝑓 𝑎𝑙𝑠𝑒, −2147483648), (𝑡𝑟𝑢𝑒, −2147483647),
(𝑓 𝑎𝑙𝑠𝑒, −2147483647), …}. Therefore, with 233 possible instances, the set is already very

large to branch over, even though the class definition is relatively simple. Consequently,

the state space becomes very large if we generate objects and branch non-deterministically

at the point of declaration. The situation becomes even worse given a recursive class

definition such as Rec , for which the generation of an instance does not terminate unless,

at some level, other == null . For the same reason, exhaustively generating all instances
is impossible.

For these reasons we resort to the third alternative, i. e., the declaration merely con-

structs a symbolic variable that can be substituted for a fresh object which is not yet

known. For instance, with the definitions from Figure 11.3 and a closed-world assumption,

1़Alternatively, the same situation occurs if C contains a field of a type that has a recursive definition.
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1 public boolean isRing(C o) {
2 Set<C> seen = new HashSet<>();
3 while (o != null) {
4 if (seen.contains(o)) {
5 return true;
6 } else {
7 seen.add(o);
़ o = o.o; } }
9 return false; }

Listing 11.3: A method that checks whether an object o contains a ring structure, such as
the one from Figure 11.4.

o o

o

o : C

: C

: C

Figure 11.4: Example for an object structure that forms a ring.

an object Rec s free; is sufficiently specific since there are no subtypes of Rec , and for a

symbolic variable it is possible to ignore the recursive type definition. The free object

can then be made more specific by using it, e. g., by invoking a method (see Section 11.3)

or by adding constraints over its fields (see Section 11.4).

Since we do not re-use existing objects, free objects are always fresh instead of picking

applicable instances from memory. Consider a method isRing(C o) as displayed in

Listing 11.3. As a consequence of excluding re-use, an invocation C o free; isRing(o) ,

cannot construct an object graph as illustrated in Figure 11.4, since each free object of

type C would only generate another fresh free object of type C as its field, without being

able to refer to existing objects from the heap. Therefore, generating a ring structure by

chance is not possible.

Nevertheless, we can still use non-deterministic search to generate ring structures of

arbitrary lengths intentionally. This is achieved with a search region that closes a ring

structure by explicit assignment, as demonstrated in Listing 11.4. Using non-deterministic

choice over a free boolean variable, the search region either grows the ring by instantiating

a fresh free object and assigning it as the next element, or closes it by assigning the first

element of the ring as the next.
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1 public static void main(String[] args) {
2 Stream<Solution<C>> rings = Muli.muli(() -> {
3 C o free; return generateRing(o, o); }); }
4 public C generateRing(C first, C o) {
5 boolean closeRing free;
6 if (closeRing) {
7 o.o = first;
़ return first;
9 } else {
10 C next free;
11 o.o = next;
12 return generateRing(first, o.o); } }

Listing 11.4: Using non-deterministic choice for generating ring structures of arbitrary
length, such as the one in Figure 11.4.

Instantiating a free object Since free objects are treated symbolically, a lot of instan-

tiation effort is skipped. Specifically, constructors that would normally initialize an object

are ignored. This is necessary for two reasons: first, because the MLVM only has partial

information about the actual type; and second, because a class may present multiple

constructors (and might even block the default constructor). Instead, since at least the

supertype is known, the MLVM can initialize fields according to the definition of the

supertype by putting appropriate free variables into every field. For example, a free object

of type Rec (Figure 11.3) is initialized with {flag = boolean free, count = int free,

other = Rec free} . However, there is one notable exception: We want free objects of a

type to be consistent with regular objects of the same type. This implies that static fields

of a type need to hold the same values for all objects of that type, regardless of whether

an object is free. Therefore, if a free object is the first of its type to be instantiated, we do

call static initializers of the type to ensure consistency with objects that are created later.

If it is not the first, it will consistently use the same static values as other objects of its

type.

Now that we have clarified what free objects look like, we continue by discussing

specific interactions with free objects. Section 11.3 tackles method invocation, whereas

Section 11.4 presents field access. In addition, Subsection 11.5.1 discusses operations that

work explicitly on types, and Subsection 11.5.2 explains the notion of equality against the

presence of both, free objects and regular objects.
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1 public static void main(String[] args) {
2 List<Solution<String>> solutions = Muli.getAllSolutions( () -> {
3 Shape s free;
4 if (s.getArea() == 16)
5 return s.getClass().getName();
6 else
7 Muli.fail(); }); }

Listing 11.5: A search region that branches over the types of a free object and returns the
selected classes’ names.

11.3 Method Invocations on Free Objects

Recall the example structure from Figure 11.1, in which Shape s free; instantiates a

free object that can, in fact, assume one of four distinct actual types. Its actual type is

irrelevant, unless the free object is used. Therefore, once we attempt to invoke a method

that is defined in Shape , e. g., getArea() , the type becomes important since the behaviour

changes depending on the type. Moreover, given a single free object, using getArea()

from one implementation and toString() from another would result in inconsistent

behaviour and therefore does not make sense. As a consequence, when we select an

implementation for invocation, we commit the free object to the type that corresponds

to the selected implementation. All implementations are equally possible, so choosing is

non-deterministic.

For instance, consider the program presented in Listing 11.5. It searches for instances

of Shape s whose area (as determined by getArea()) is 16, and then returns the name

of the actual class whose implementation has been selected. Consequently, given the

structure in Figure 11.1, we expect a solution array containing the following strings (in

any order): {”Rectangle”, ”Square”, ”Cuboid”, ”Cube”} .

The program contains two method invocations on s that are discussed in the following.

The first invocation is to s.getArea() on an unbound s . Non-deterministically selecting

and invoking an implementation commits s to a specific type, thus binding s . Therefore,

on the second invocation to s.getClass() , s is sufficiently specific, so that only a unique

implementation of getClass() is possible, namely, the one that a class inherits from

java.lang.Object . Consequently, the second invocation is deterministic. Similarly, an

invocation s.toString() would be deterministic as well, even though every class provides

its own implementation: Resulting from the binding that occurs when s.getArea() is
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called, the type of s is sufficiently specific so that only one toString() implementation

can possibly be selected while maintaining consistency with previous behaviour.

Generalizing from this example, for a given object o on which an invocation o.m() is

performed, the runtime environment needs to discover the set of types that provide an

implementation for m() . This discovery needs to take into consideration which types

o may assume. Algorithm 1 calculates the set of possible implementations for m() , as

explained subsequently. For non-free objects o whose class has a definition for m() ,

the returned set is a singleton (or empty in the invalid case that the type of o does not

provide an implementation, thus yielding a runtime exception). Therefore, invocation is

deterministic. For free objects, the returned set may have more elements. In that case,

invocation results in a non-deterministic choice.

Algorithm 1: Discovering the set of method implementations that are candidates
for invocation.

1 implementations(Object target, Method m)
2 Let 𝑖𝑚𝑝𝑙𝑠 := { };
3 Method 𝑚𝑜𝑠𝑡𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝐹 𝑟𝑜𝑚𝑆𝑢𝑝𝑒𝑟 𝑡𝑦𝑝𝑒𝑠 := jvmsLookup (𝑚, 𝑡𝑎𝑟𝑔𝑒𝑡.class);
4 if 𝑚𝑜𝑠𝑡𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝐹 𝑟𝑜𝑚𝑆𝑢𝑝𝑒𝑟 𝑡𝑦𝑝𝑒𝑠 != null then
5 𝑖𝑚𝑝𝑙𝑠 += 𝑚𝑜𝑠𝑡𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝐹 𝑟𝑜𝑚𝑆𝑢𝑝𝑒𝑟 𝑡𝑦𝑝𝑒𝑠;
6 Let 𝑡𝑦𝑝𝑒𝑠 := 𝑡𝑎𝑟𝑔𝑒𝑡.getPossibleTypes ();
7 foreach type ∈ types do
8 Method 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 := 𝑡𝑦𝑝𝑒.getMethod (𝑚);
9 if implementation != null && !implementation.isAccAbstract () then
10 if type.isAccAbstract () || type.isAccInterface () then
11 Let 𝑠𝑢𝑏𝑡𝑦𝑝𝑒𝑠 := 𝑡𝑦𝑝𝑒.getImmediateInstantiableSubtypes ();
12 foreach subtype ∈ subtypes do
13 𝑖𝑚𝑝𝑙𝑠 += 𝑠𝑢𝑏𝑡𝑦𝑝𝑒.getMethod (𝑚);

14 else
15 𝑖𝑚𝑝𝑙𝑠 += 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛;

16 return 𝑖𝑚𝑝𝑙𝑠;

Methods in Java and Muli can be overloaded, so in order to target a specific overloading,

Method signifies a combination of a method name and its descriptor, i. e., parameter types

and return type [Lin+15, § 4.3.3]. In the beginning, Algorithm 1 initializes an empty set

impls that will later contain the invocation candidates. Afterwards, jvmsLookup() looks

up a method implementation upwards along the class hierarchy using the known lookup

procedures defined in the JVMS [Lin+15, § 6.5 (invokeinterface and invokevirtual)]. This
implementation is the one that will be invoked if the free object assumes its supertype
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(𝑡𝑎𝑟𝑔𝑒𝑡.class). Afterwards, implementations looks at each type that the free object may

assume (𝑡𝑎𝑟𝑔𝑒𝑡.getPossibleTypes() ), searching for individual implementations (getMethod

()). If the type that contains a found implementation is not marked as abstract or as an

interface, its implementation is directly added to impls. Otherwise, methods from the

type’s immediate, instantiable subtypes19 are added to impls as the original type could

not be instantiated. Finally, impls is returned to the MLVM and is used to create the

non-deterministic choice for invocation.

When an implementation alternative is selected, the runtime environment has to add

a constraint 𝑡𝑦𝑝𝑒𝑠(𝑜) = 𝑇 to the constraint store before executing a specific method

body, where the set of types 𝑇 depends on the selected implementation alternative. This

constraint is added in order to ensure that, after the MLVM chooses an implementation

alternative, it commits to that choice regarding later interactions with the object o , thus

narrowing its type.

To explain the construction of the set 𝑇, have a look at the artificial implementation

hierarchy displayed in Figure 11.5: There is a class A that implements a method m() .

B inherits from A and overrides m() , adding custom behaviour. In contrast, C inherits

from B but does not add custom behaviour. Last but not least, D inherits from C and

provides an implementation for m() . Now, for a free object A a free , 𝑆 = {A , B , C , D}
contains the possible instance types. On invocation of a.m() , Algorithm 1 discovers the

implementations provided by A , B , and D . After selecting one of the implementations, the

actual type of a can still be one from a set of types. Specifically, the type of a can either

be the type that provides the implementation or one of its subtypes, except for subtypes

that provide their own implementation (as their respective implementation would have

needed to be invoked otherwise). We call this reduced set of types 𝑇. Exemplarily, this

is illustrated in Figure 11.5 where the possible types are constrained to 𝑇 = {B , C} after
selecting the implementation B.m() . Even though D also is a subtype of B , it is not part of

𝑇 as it provides an own implementation of m() and would therefore conflict with having

chosen B ’s implementation.

Furthermore, for the sake of completeness, assume that B ’s implementation of m() calls

a method n() , for which C provides its own implementation. Choosing an implementation

for m() still reduces the set of types to B and C , but the later invocation of n() from within

m() results in further non-deterministic branching over the two types and their respective

implementations.

19That is, direct subtypes that are not abstract or, otherwise, their immediate instantiable subtypes.
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A

+ m()

B

+ m()
- n()

C

- n()

D

+ m()

possible types of a after choosing B.m()

possible types of a
= 𝑆

= 𝑇

Figure 11.5: Applicable instance types for a given object A a free before and after choosing
a specific implementation.

In Section 11.़ we present a modification of Muli’s operational semantics, esp. Equa-

tion (Invoke-ND), that incorporates non-deterministic choice in method invocation. The

MLVM implements Algorithm 1 and represents the non-deterministic choice by creating

a Choice node in the active search tree. The newly created Choice node has one branch

for each invocable implementation alternative. For each branch, an appropriate type con-

straint is declared that maintains integrity regarding the selected implementation. When

the MLVM selects an alternative from the Choice node, the corresponding constraint is

imposed by adding it to the constraint store, and the constraint is removed again before

an alternative is evaluated.

11.4 Field Access on Free Objects

As in Java, fields of an object are accessed in Muli using a dot notation, e. g., square.width

given an object Square square . In an implementation hierarchy, fields are special in that

subclasses cannot override fields that they inherit. For instance, consider the example

presented in Listing 11.6. The subclass declares a field with a name that is identical to that

of a field in the superclass, and assigns a different value. However, as a result, the original

field is merely hidden from the subclass, i. e., instances of the subclass actually have two

fields with the same name [Gos+15, §§ ़.3 and 9.3]. In the example of Listing 11.6, this

implies that the condition a.field == b.field is true, even though b is an instance of

Subtype . Since both instances a and b are accessed through the Supertype type, the field

field from the superclass is used in both accesses.

The example from Listing 11.6 is limited to non-free objects. But as the implementation

hierarchy is irrelevant for accesses to fields of regular objects, accessing fields of free

objects also does not need to consider all possible types of an instance. Therefore,
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1 class Supertype { public int field = 2; }
2 class Subtype extends Supertype { public int field = 1; }
3 class FieldShadowing {
4 public static void main(String[] args) {
5 Supertype a = new Supertype();
6 Supertype b = new Subtype();
7 a.field == b.field; // This is true!
़ } }

Listing 11.6: Subclasses can hide fields of their supertypes, but fields are never overridden.

accessing a field of objects, free or non-free, is a deterministic operation that only depends

on the type of the variable through which an instance is accessed.

Following the considerations regarding the initialization of free objects from Subsec-

tion 11.2.1, field access to a fresh free object yields an appropriate free variable, unless the

accessed field is static. So for instance, assuming the class structure from Figure 11.1,

Rectangle r free;

return r.width;

returns a free variable of type int .

11.5 Other Operations on Free Objects

Method invocation and field access constitute basic functionality in object-oriented

programs. However, there are further operations on objects that are affected by the intro-

duction of free objects. In the following, we present the handling of explicit operations

on the type of free objects, followed by a short discussion of the equality of (free) objects.

11.5.1 Type Operations

The handling of type operations is interesting for free objects as there is only partial

information about their types. In Java/Muli bytecode, this affects the implementation of

type checks (instanceof instruction) and type casts (checkcast instruction) [Lin+15, § 6.5].

These two instructions differ in that instanceof returns the result of the type check as a

boolean value, whereas checkcast throws an exception if the (free) object on the operand

stack cannot be cast to the intended type (otherwise, checkcast does nothing). For free

objects, these operations are evaluated non-deterministically if either outcome is equally

possible. For instance, consider the snippet in Listing 11.7, in which both type operations
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are used. When the condition is evaluated, two cases are possible: Either instanceof

returns true if 𝑡𝑦𝑝𝑒𝑠(𝑠) = {Rectangle , Cuboid} holds, or false otherwise. The cast in the

true branch is always possible since the possible types of s are sufficiently constrained

as a result of evaluating instanceof . Therefore, the cast operation is deterministic in this

example.

1 Shape s free;
2 if (s instanceof Rectangle) {
3 Rectangle r = (Rectangle) s;
4 r.width = r.height; }

Listing 11.7: Using type operations on a free object.

Generally, whether type operations on a free object are non-deterministic depends on

the type constraints that are imposed on the object. A type operation o instanceof T or

(T)o involves a free object 𝑜 and a target type 𝑇. For the decision whether an operation

is non-deterministic, we define the set 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓 𝑢𝑙𝑇 𝑦𝑝𝑒𝑠𝑜,𝑇 that contains all types that 𝑜
may assume and that are also subtypes of or equal to 𝑇 (with 𝑎 ⪯ 𝑏 meaning that 𝑎 is a
subtype of 𝑏 or 𝑏 itself):

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓 𝑢𝑙𝑇 𝑦𝑝𝑒𝑠𝑜,𝑇 = {𝑡|𝑡 ∈ 𝑡𝑦𝑝𝑒𝑠(𝑜), 𝑡 ⪯ 𝑇 }

If 𝑜 is of a type ∈ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓 𝑢𝑙𝑇 𝑦𝑝𝑒𝑠𝑜,𝑇, the type operation is successful w. r. t. the Java Virtual

Machine Specification [Lin+15, § 6.5]. An additional set, 𝐴𝑑𝑣𝑒𝑟𝑠𝑒𝑇 𝑦𝑝𝑒𝑠𝑜,𝑇, contains all

types for which the operation would fail if 𝑜 assumes one of these types:

𝐴𝑑𝑣𝑒𝑟𝑠𝑒𝑇 𝑦𝑝𝑒𝑠𝑜,𝑇 = {𝑡|𝑡 ∈ 𝑡𝑦𝑝𝑒𝑠(𝑜), 𝑡 � 𝑇 }

In relation to the set of currently possible types 𝑡𝑦𝑝𝑒𝑠(𝑜) that the object 𝑜 may assume,

the two sets are disjoint and their union comprises all possible types. 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓 𝑢𝑙𝑇 𝑦𝑝𝑒𝑠𝑜,𝑇
and 𝐴𝑑𝑣𝑒𝑟𝑠𝑒𝑇 𝑦𝑝𝑒𝑠𝑜,𝑇 can be used for determining how both type operations are evaluated:

If there is at least one element in 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓 𝑢𝑙𝑇 𝑦𝑝𝑒𝑠𝑜,𝑇 the implication is that the type

operation can be successful. Similarly, if 𝐴𝑑𝑣𝑒𝑟𝑠𝑒𝑇 𝑦𝑝𝑒𝑠𝑜,𝑇 is not empty, the type operation

can fail. These two cases are not mutually exclusive; if both sets contain at least one

element, execution branches non-deterministically.

Similar to how invocation is implemented in the MLVM, this implies that, at runtime, a

Choice node is created, containing the two alternatives as branches with appropriate type

constraints that make use of the sets calculated previously. For the branch that represents
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1 Shape s free;
2 Rectangle r = new Rectangle();
3 r.width = 100; r.height = 101;
4 return s.equals(r); // Variation 1,
5 // or...
6 return r.equals(s); // Variation 2.

Listing 11.़: Example program involving non-determinism in the check for value equality.

a successful type operation on a free object 𝑜, the MLVM imposes a constraint 𝑡𝑦𝑝𝑒𝑠(𝑜) =
𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓 𝑢𝑙𝑇 𝑦𝑝𝑒𝑠𝑜,𝑇. Similarly, for the alternative branch, 𝑡𝑦𝑝𝑒𝑠(𝑜) = 𝐴𝑑𝑣𝑒𝑟𝑠𝑒𝑇 𝑦𝑝𝑒𝑠𝑜,𝑇.
Before continuing execution with one of the branches of a non-deterministically evaluated

type operation, the MLVM imposes the corresponding constraint, thus ensuring that the

assumptions regarding a free object are consistent within a branch of execution.

11.5.2 Equality

In Java, and therefore in Muli, there are two distinct notions of equality of objects [Gos+15,

§ 15.21.3]. Reference equality is different from value equality in that reference equality

compares the addresses of two objects, but not their contents. Therefore, reference

equality of two objects implies that they are, in fact, the same. Reference equality is tested

using the == or != operators. In contrast, value equality between two objects is tested by

invoking the equals() method on one object, passing the other as an argument.20 Classes

may override equals() in order to determine whether two objects are value-equal, thus

giving developers the opportunity to decide which fields must be identical for two objects

to be considered equal (if any).

In the context of free objects, we do not need to make any particular considerations on

how to handle equality for two reasons. First, using == or != on objects deterministically

compares the addresses, where free objects make no exception. Second, invoking an

equals() method on a free object will cause the MLVM to non-deterministically eval-

uate the method invocation. Since equals() does not differ from other methods, no

special handling is required other than what we discussed w. r. t. method invocation (see

Section 11.3).

For the purpose of illustration, consider Listing 11.़ in the context of our running

example. The code uses two variations for comparing the same two objects w. r. t. value

equality. Variation 1 invokes the equals() method on the free object s . In contrast,

20The default implementation provided by the Object class falls back to comparing reference equality.
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s.equals(r)

false

𝑡𝑦𝑝𝑒𝑠(𝑠) = {𝐶𝑢𝑏𝑜𝑖𝑑}

==

==

true

𝑠.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑟 .ℎ𝑒𝑖𝑔ℎ𝑡

false

𝑠.ℎ𝑒𝑖𝑔ℎ𝑡 ≠ 𝑟 .ℎ𝑒𝑖𝑔ℎ𝑡

𝑠.𝑤𝑖𝑑𝑡ℎ = 𝑟.𝑤𝑖𝑑𝑡ℎ

false

𝑠.𝑤𝑖𝑑𝑡ℎ ≠ 𝑟.𝑤𝑖𝑑𝑡ℎ

𝑡𝑦𝑝𝑒𝑠(𝑠) =
{𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒

}

false

𝑡𝑦𝑝𝑒𝑠(𝑠) = {𝑆𝑞𝑢𝑎𝑟𝑒} false

𝑡𝑦𝑝𝑒𝑠(𝑠) = {𝐶𝑢𝑏𝑒}

(a) Variation 1

instanceof

==

==

true

𝑠.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑟 .ℎ𝑒𝑖𝑔ℎ𝑡

false

𝑠.ℎ𝑒𝑖𝑔ℎ𝑡 ≠ 𝑟 .ℎ𝑒𝑖𝑔ℎ𝑡

𝑠.𝑤𝑖𝑑𝑡ℎ = 𝑟.𝑤𝑖𝑑𝑡ℎ

false

𝑠.𝑤𝑖𝑑𝑡ℎ ≠ 𝑟.𝑤𝑖𝑑𝑡ℎ

𝑡𝑦𝑝𝑒𝑠(𝑠) = {𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒, 𝐶𝑢𝑏𝑜𝑖𝑑}

false

𝑡𝑦𝑝𝑒𝑠(𝑠) = {𝑆𝑞𝑢𝑎𝑟𝑒, 𝐶𝑢𝑏𝑒}

(b) Variation 2

Figure 11.6: Execution trees created as a result of calling equals() on free (Variation 1) or
non-free (Variation 2) objects.

Variation 2 invokes that method on a specific object, but passes s as a parameter. The

resulting execution flows are illustrated in Figure 11.6. Variation 1 branches immediately

on invocation of equals() , thus creating one branch per implementation of equals() ,

whereas the invocation itself is deterministic in Variation 2. In contrast, Variation 2

branches primarily because instanceof is called, checking the type of the free object (cf.

Subsection 11.5.1). Both variations create comparable branches in case both the regular

object and the free object are instances of Rectangle , which is ensured for the free object

by imposing an adequate constraint. In that case, Rectangle ’s implementation of equals()

also compares the field values, ensuring that the custom value equality criterion is met.

Furthermore, the illustration of the execution trees emphasizes that, in contrast to == ,

equals() is not commutative for free objects.

11.6 Demonstration

The shape application example has been useful for explaining the concepts introduced by

free objects. We proceed by discussing two example applications in order to demonstrate

that free objects improve the expressiveness of other Muli applications as well.
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1 public static void main(String[] args) {
2 Solution<Queen[]> solution = Muli.getOneSolution(() -> {
3 final int n = 8; Board board = new Board(n);
4 Queen[] qs = new Queen[n];
5 for (int i = 0; i < n; i++) {
6 Queen q free; qs[i] = q; }
7 for (int i = 0; i < n; i++) {
़ if (!board.isOnBoard(qs[i])) Muli.fail();
9 for (int j = i+1; j < n; j++)
10 if (board.threatens(qs[i], qs[j]))
11 Muli.fail(); }
12 return qs; });
13 for (Queen q: solution.value)
14 System.out.println(”(” + q.x + ”,” + q.y + ”)”); } }

Listing 11.9: 𝑛-Queens search region that makes use of object-oriented features for the
implementation of a search problem.

As the first example, consider the 𝑛-Queens problem as a classic search problem (cf.

e. g., [FA03, Section 12.3]). Listing 11.9 presents a solution in Muli, assuming a class

structure as illustrated in Figure 11.7. The search region initializes object representations

of the board and of the 𝑛 queens. Constraints are imposed by invoking isOnBoard() on

the board object, thus restricting the positions of queens to 0 < 𝑥 ≤ 𝑛 and 0 < 𝑦 ≤ 𝑛 in

accordance with the board size 𝑛 × 𝑛. Moreover, threatens() imposes constraints such

that two queens may never share a diagonal, row, or column.21 Muli.fail() is invoked

when constraints are not fulfilled. As a result, the search region only returns placements

that satisfy the constraints. This example results in two interesting observations. First,

CLOOP facilitates logical grouping of data and constraint definitions using classes and

objects. This is illustrated by the Board class that stores its dimensions in a field and

derives constraints accordingly, thus demonstrating encapsulation of data and behaviour

in CLOOP programs. Consequently, encapsulation in classes can be used for the purpose

of structuring the constraint problem, instead of using intransparent encodings that

would require additional explanations. Second, we can leverage free objects for encoding

the unknown state, i. e., the placement of queens on the board.

As the second example, consider an application that systematically generates directed

acyclic graphs using non-deterministic search. Such an application is useful, for example,

in order to use the generated graphs to describe the hidden layers of a feed-forward

21For reference, the specific implementation of these two methods is displayed in Section 11.़.
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Board

+ dim: int

+ isOnBoard(Queen): boolean
+ threatens(Queen, Queen): boolean

Queen

+ x: int
+ y: int

Figure 11.7: Object-oriented representation of board and queens.

artifical neural network (ANN). In an ANN, the simplest structure is an empty graph, so

that the ANN’s input nodes are directly connected to all output nodes. Starting from

the empty graph, two operations increase the size of the graph: Either adding a hidden

layer (with one node as a starting point), or adding a node to one of the hidden layers.

Using Muli, we can implement a search region that enumerates graph structures by

non-deterministically choosing one of these operations. Additionally, for the AddNode

operation, it non-deterministically selects the layer to which a node is added. The non-

deterministic choice for one of the operations can be implemented using the equivalent

of a coin flip, i. e., using a free variable boolean coin free; and branching over that,

adding a layer if it evaluates to true and adding a node to a layer otherwise. However,

the mappings of true and false require explanation. Instead, with free objects and non-

deterministic choice for method invocation, we can express the non-deterministic choice

for selecting an operation using a free object. Given the class structure from Figure 11.़,

we can implement a search region that instantiates an empty graph and systematically

grows it by non-deterministic choice. The search region is displayed in Listing 11.10.

In particular, note the free variable Operation op free; that the runtime environment

non-deterministically binds to a specific type by invoking perform() on it, thus choosing

an operation. As an implementation detail, a third operation is added that returns the

current graph structure as a solution. In contrast, the other operations perform their

modification on the Graph object and subsequently invoke generate() with the modified

graph in order to proceed with the next operation. As a result, the possible variations

in behaviour are encapsulated in classes that are named according to their function.

Consequently, the search region itself can remain on a high abstraction level, whereas

implementation details are moved into the respective classes.

Limitations This work comes with some limitations. First, it only considers objects

as logic variables. Other kinds of reference types, esp. arrays, have a different structure

and have therefore been left out of scope. Future work needs to tackle arrays as logic

variables. Second, a potential parallelization of Muli applications is currently disregarded.
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Operation

+ perform(Graph): Graph

Graph

- structure: List<Integer>

+ main(String[])
+ generate(Graph): Graph
+ addLayer()
+ addNode(int)

AddLayer

+ perform(Graph): Graph

AddNode

+ perform(Graph): Graph

Return

+ perform(Graph): Graph

Figure 11.़: Representation of graph modification operations in a class structure for the
purpose of non-deterministic choice.

1 public class Graph {
2 // <...>
3 public static void main(String[] args) {
4 Stream<Solution<Graph>> graphs = Muli.muli(() -> {
5 Graph basic = new Graph();
6 return Graph.generate(basic); });
7 // Consume graphs from the stream, e.g., for output.
़ public static Graph generate(Graph g) {
9 Operation op free;
10 return op.perform(g); } }

Listing 11.10: Search region that generates directed acyclic graphs using non-deterministic
method invocation on a free object.

The reason for that is that non-deterministic search in combination with parallelism

results in state space explosion, resulting in search trees that can hardly be managed.

Third, all considerations were discussed using a Java-based CLOOP language. However,

they should be applicable to other (future) CLOOP languages as well because, for instance,

C# uses a similar definition of reference types as that of Java.

11.7 Related Work

The present work is inspired by the concepts introduced by [Dag19]. In addition to the

concepts discussed previously, our work is novel in that it provides a set of algorithms and

an actual implementation in the context of the MLVM. As opposed to treating free objects

symbolically and only resolving them as needed, other work has considered the object
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generation approach, particularly against the background of software test-data generation

[Kor90; ZL07; DZZ0़]. The authors present different ways of generating all possible

object instances before they are used in a program. Also in the context of test-case

generation, symbolic execution for Java objects has been explored, mutating object types

in order to generate test data [LLX17]. However, their approach requires initialization of

reference-type logic variables, as opposed to treating them purely symbolically. Moreover,

they require bytecode to be augmented with instrumentation instructions for symbolic

execution, thus requiring re-compilation even of used libraries. In contrast, the MLVM

operates on standard-compliant, unmodified JVM bytecode. Moreover, special kinds of

objects, namely strings and lists, have been investigated, but the results are limited to data

encapsulation. [Kri+20] translate string operations into constraints using a Prolog-based

constraint-handling rules system. Since even the resulting strings are formulated only in

Prolog, the applicability in an integrated language is limited. Lists can also be treated

symbolically like our free objects, initializing just as much of them as needed for a specific

program that uses the lists [KPV03].

Generally, integrating features from declarative paradigms into mainstream program-

ming languages has proven useful. Prominent examples are the integrations of concepts

from functional programming, such as the Stream API for Java and LINQ for .NET, but

also integrated languages such as Scala [Ode+17; Hun1़]. The language Kaleidoscope’91

attempts an integration of an object-oriented language with constraints, facilitating the

specification of constraints over fields of one or more objects [FB92]. This already adds

a sense of declarativity that is unknown in most current object-oriented programming

languages, as fields could be formulated as expressions that combine other fields. Nev-

ertheless, the authors do not discuss objects that are completely free as in the sense

of this work, i. e., whose types are only partially known. Other work leverages object-

orientation capabilities by using objects for modelling declarative expressions, e. g., for

integrating Prolog search into Java programs [Ost15]. Alternatively, there are constraint

solver libraries for Java, such as OptaPlanner [The20] and JaCoP [Kuc03]. Neither of

these approaches achieve a full integration of constraint-logic features into an object-

oriented programming language and merely provide an object-oriented abstraction layer

for (some) constraint-logic features.

Closely related to CLOOP is the paradigm of functional-logic programming, most

prominently represented by Curry [HKM95]. Analogous to CLOOP, functional-logic pro-

gramming adds features from logic programming to a functional programming language,

resulting in programming languages that are similarly non-deterministic. On the one

hand, Curry has algebraic data types that resemble the data-encapsulation behaviour
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of Muli objects. On the other hand, neither Curry nor other functional-logic program-

ming approaches consider encapsulation of behaviour. Similarly, constructors in Prolog

merely encapsulate data. Therefore, encapsulation of behaviour and its non-deterministic

evaluation are novel contributions of the present work.

ࢽ.11 Concluding Remarks

In this paper we add the concept of free objects to constraint-logic object-oriented pro-

gramming. Specifically, this work contributes the concept of logic variables with a class

type or an interface type. These are particularly interesting because, in addition to

encapsulating data, they also encapsulate behaviour. To that end, we propose and imple-

ment a semantics for interacting with free objects at runtime, taking non-deterministic

choice over the encapsulated behaviours into account. We demonstrate our concepts by

implementing them in the MLVM, i. e., in the runtime environment used by the CLOOP

language Muli. A modified MLVM that includes our implementation is available on

GitHub.22

We have shown that adding free objects to a constraint-logic object-oriented program-

ming language improves the expressiveness of the language. CLOOP languages were

already useful in applications that interleave imperative code with non-deterministic

search. With the recent additions, CLOOP can also be used to express traditional

constraint-logic problems in novel ways using object representations that also encapsulate

behaviour, such as 𝑛-Queens with methods that explain constraints by using descriptive

names. Moreover, CLOOP can be used for an effective formulation of new problems.

Even though the considerations in this paper are focused on Muli, they are also

applicable to other constraint-logic object-oriented programming languages. For instance,

since C#’s definition of reference types is congruent to that in Java, future work could

port the results to a (future) constraint-logic object-oriented programming language that

is based on C#. Future work sets out to add support for free arrays in order to incorporate

another kind of reference type.

Appendix A: Operational Semantics of Muli (Excerpt)

[DK1़] define an operational semantics for a core subset of Muli. Here, we first display an

excerpt from the reduction rules that are relevant to a rule that we modify with this paper.

22https://github.com/wwu- pi/muli .
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Subsequently, the modified rule is presented. Throughout the definitions, modifications

to their respective originals that were necessary in order to add support for free objects

are indicated in red.

Symbols In this reduction semantics, computations depend on an environment, a state,

and a constraint store [DK1़].

• 𝐸𝑛𝑣 = (𝑉 𝑎𝑟 ∪ ℳ) → (𝒜 ∪ (𝑉 𝑎𝑟∗×𝑆𝑡𝑎𝑡)): Set of all environments, mapping variables

∈ 𝑉 𝑎𝑟 to addresses ∈ 𝒜 and methods ℳ to a tuple ((𝑥0, 𝑥1, … , 𝑥𝑘), 𝑠), signifying
parameters and a code body 𝑠. Note that we add 𝑥0 to the original definition. 𝑥0
shall hold the object that a method was invoked on, unless the method is static.

• 𝜌0 ∈ 𝐸𝑛𝑣 is a special initial environment that maps functions to their respective

parameters and code (under the simplifying assumption that classes and their

methods are in global scope).

• Σ = 𝒜 → ({⟂} ∪ 𝑇 𝑟𝑒𝑒(𝒜 ,ℤ) ): Set of all possible memory states.

• A special address 𝛼0 with 𝜎(𝛼0) = ⟂ is reserved for holding return values of method

invocations.

• 𝐶𝑆 = {true} ∪ 𝑇 𝑟𝑒𝑒(𝒜 ,ℤ): Set of all possible constraint store states.

• 𝜌 ∈ 𝐸𝑛𝑣, 𝜎 ∈ Σ, 𝛾 ∈ 𝐶𝑆. Discriminating indices are added if necessary.

• 𝑎[𝑥/𝑑] is used for modifications to a state or environment 𝑎, meaning

𝑎[𝑥/𝑑](𝑏) = {
𝑑 , if 𝑏 = 𝑥

𝑎(𝑏) , otherwise.

• The semantics of expressions is described with the infix relation → ⊂ (𝐸𝑥𝑝𝑟 ×
𝐸𝑛𝑣 × Σ × 𝐶𝑆) × ( (𝔹 ∪ 𝑇 𝑟𝑒𝑒(𝒜 ,ℤ)) × Σ × 𝐶𝑆 ).

• The semantics of statements is described by the infix relation � ⊂ (𝑆𝑡𝑎𝑡 × 𝐸𝑛𝑣 ×
Σ × 𝐶𝑆) × (𝐸𝑛𝑣 × Σ × 𝐶𝑆).

Syntax The grammar is only modified slightly, incorporating method invocations on

objects and reference type variables. Otherwise, taken from [DK1़].

𝑒 ∶∶= 𝑐 ∣ 𝑥 ∣ 𝑒1 ⊕ 𝑒2 ∣ 𝑥.𝑚(𝑒1, … , 𝑒𝑘)
where 𝑐 ∈ ℤ, 𝑥 ∈ 𝑉 𝑎𝑟, 𝑒1, … , 𝑒𝑘 ∈ 𝐴𝐸𝑥𝑝𝑟, ⊕ ∈ 𝐴𝑂𝑝, 𝑘 ∈ ℕ,

𝑥.𝑚 can be resolved to an implementation 𝑖 ∈ ℳ,

𝑏 ∶∶= 𝑒1 ⊙ 𝑒2 ∣ 𝑏1 ⊗ 𝑏2 ∣ true ∣ false
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where 𝑒1, 𝑒2 ∈ 𝐴𝐸𝑥𝑝𝑟, 𝑏1, 𝑏2 ∈ 𝐵𝐸𝑥𝑝𝑟, ⊙ ∈ 𝑅𝑂𝑝, ⊗ ∈ 𝐵𝑂𝑝,

𝑠 ∶∶= ; ∣ int 𝑥; ∣ int 𝑥 free ; ∣ T 𝑥; ∣ T 𝑥 free ; ∣ 𝑥 = 𝑒; ∣ 𝑒; ∣ {𝑠} ∣ 𝑠1 𝑠2 ∣
if (𝑏) 𝑠1 else 𝑠2 ∣ while (𝑏) 𝑠 ∣ return 𝑒; ∣ fail ;

where 𝑥 ∈ 𝑉 𝑎𝑟, 𝑒 ∈ 𝐴𝐸𝑥𝑝𝑟, 𝑏 ∈ 𝐵𝐸𝑥𝑝𝑟, 𝑠, 𝑠1, 𝑠2 ∈ 𝑆𝑡𝑎𝑡, T is a class or interface type.

Reduction Rules The following reproduces reduction rules from [DK1़] as prelimin-

aries, before presenting a rule modification for non-deterministic invocation as required

for this paper.

Variable resolution:

⟨𝑥, 𝜌, 𝜎 , 𝛾 ⟩ → (𝜎(𝜌(𝑥)), 𝜎 , 𝛾 ) (Var)

Arithmetic expressions, resulting either in a constant value if nested expressions are

constant, or in a symbolic expression otherwise:

⟨𝑒1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), ⟨𝑒2, 𝜌, 𝜎1, 𝛾1⟩ → (𝑣2, 𝜎2, 𝛾2),
𝑣1, 𝑣2, 𝑣 = 𝑣1 ⊕ 𝑣2 ∈ ℤ

⟨𝑒1 ⊕ 𝑒2, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎2, 𝛾2)
(AOp1)

⟨𝑒1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), ⟨𝑒2, 𝜌, 𝜎1, 𝛾1⟩ → (𝑣2, 𝜎2, 𝛾2), {𝑣1, 𝑣2} ⊈ ℤ
⟨𝑒1 ⊕ 𝑒2, 𝜌, 𝜎 , 𝛾 ⟩ → (⊕(𝑣1, 𝑣2), 𝜎2, 𝛾2)

(AOp2)

Non-deterministic Invocation Under the assumption of global functions and disreg-

arding object-oriented features, [DK1़] originally define the operational semantics of

invocation as a deterministic operation:

⟨𝑒1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), ⟨𝑒2, 𝜌, 𝜎1, 𝛾1⟩ → (𝑣2, 𝜎2, 𝛾2), … ,
⟨𝑒𝑘, 𝜌, 𝜎𝑘−1, 𝛾𝑘−1⟩ → (𝑣𝑘, 𝜎𝑘, 𝛾𝑘), 𝜌(𝑚) = ( ̄𝑥𝑘, 𝑠),

⟨𝑠, 𝜌0[ ̄𝑥𝑘/ ̄𝛼𝑘], 𝜎𝑘[ ̄𝛼𝑘/ ̄𝑣𝑘], 𝛾𝑘⟩ � (𝜌𝑘+1, 𝜎𝑘+1, 𝛾𝑘+1), 𝜎𝑘+1(𝛼0) = 𝑟
⟨𝑚(𝑒1, … , 𝑒𝑘), 𝜌, 𝜎 , 𝛾 ⟩ → (𝑟 , 𝜎𝑘+1[𝛼0/ ⟂], 𝛾𝑘+1)

Adding support for object-orientation and the availability of multiple implementations

for an object, we modify and replace the rule as presented subsequently (changes high-

lighted in red). The new rule uses the set 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝑜, 𝑚) that is calculated using

Algorithm 1 in order to find possible implementing types.
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11.8 Concluding Remarks

⟨𝑜, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣0, 𝜎 , 𝛾 ), ⟨𝑒1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), ⟨𝑒2, 𝜌, 𝜎1, 𝛾1⟩ → (𝑣2, 𝜎2, 𝛾2),
… , ⟨𝑒𝑘, 𝜌, 𝜎𝑘−1, 𝛾𝑘−1⟩ → (𝑣𝑘, 𝜎𝑘, 𝛾𝑘), 𝑖 ∈ 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝑣0, 𝑚),

𝜌(𝑖) = ( ̄𝑥𝑘, 𝑠), ⟨𝑠, 𝜌0[ ̄𝑥𝑘/ ̄𝛼𝑘], 𝜎𝑘[ ̄𝛼𝑘/ ̄𝑣𝑘], 𝛾𝑘 ∧ 𝑡𝑦𝑝𝑒𝑠(𝑜) = 𝑇⟩ � (𝜌𝑘+1, 𝜎𝑘+1, 𝛾𝑘+1), 𝜎𝑘+1(𝛼0) = 𝑟
⟨𝑜.𝑚(𝑒1, … , 𝑒𝑘), 𝜌, 𝜎 , 𝛾 ⟩ → (𝑟 , 𝜎𝑘+1[𝛼0/ ⟂], 𝛾𝑘+1)

(Invoke-ND)

For non-free objects 𝑡𝑎𝑟𝑔𝑒𝑡whose class has a definition for𝑚, 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝑡𝑎𝑟𝑔𝑒𝑡, 𝑚)
is a singleton. Therefore, invocation is deterministic. For free objects,

𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝑡𝑎𝑟𝑔𝑒𝑡, 𝑚) may have more elements. In that case, the evaluation of

this rule becomes non-deterministic. Moreover, note that a constraint 𝑡𝑦𝑝𝑒𝑠(𝑜) = 𝑇 is

added after selecting a specific implementation. 𝑇 depends on the selected implementation

alternative as explained in Section 11.3 (illustrated with Figure 11.5).

The new rule depends on the rule in Equation (Var) for resolving the object variable o

based on the state of environment and memory, and on the rules in Equations (AOp1)

and (AOp2) for substituting parameter expressions. The definition assumes that the

environment 𝜌 contains every method definition, comprising a parameter definition ̄𝑥𝑘
and a body 𝑠.

Appendix B: Implementation of Board and Queens

The following code implements the class structure as illustrated in Figure 11.7.

1 public class Board {

2 final int dim;

3

4 public Board(int dim) { this.dim = dim; }

5

6 public boolean isOnBoard(Queen q) {

7 if (q.x < 0) return false;

़ if (q.x > dim-1) return false;

9 if (q.y < 0) return false;

10 if (q.y > dim-1) return false;

11 return true; }

12

13 public boolean threatens(Queen p, Queen q) {

14 if (p.x == q.x) return true;
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11 Free Objects in Constraint-Logic Object-Oriented Programming

15 if (p.y == q.y) return true;

16 if (p.x - p.y == q.x - q.y) return true;

17 if (p.x + p.y == q.x + q.y) return true;

1़ return false; } }

19

20 public class Queen { int x, y; }
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Abstract In this paper, we propose an explicit, non-strict representation of search trees in

constraint-logic object-oriented programming. Our search tree representation includes both

the non-deterministic and deterministic behaviours of executing an application. Introducing

such a representation facilitates the use of various search strategies. In order to demonstrate the

applicability of our approach, we incorporate explicit search trees into the virtual machine of the

constraint-logic object-oriented programming language Muli. We then exemplarily implement

three search algorithms that traverse the search tree on-demand: depth-first search, breadth-first

search, and iterative deepening depth-first search. In particular, the last two strategies allow for a

complete search, which is novel in constraint-logic object-oriented programming and highlights

our main contribution. Finally, we compare the implemented strategies using several benchmarks.
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12 Structured Traversal of Search Trees in Constraint-Logic Object-Oriented Programming

1 boolean flipCoin() {
2 int coin free;
3 if (coin == 0)
4 return false;
5 else
6 return true; }

Listing 12.1: A simple non-deterministic search region in Muli for the demonstration of
constraint-logic object-oriented programming concepts.

1 boolean flipTwoCoins() {
2 int coin1 free, coin2 free;
3 if (coin1 == 0)
4 return false;
5 else if (coin2 == 0)
6 throw Muli.fail();
7 else
़ return true; }

Listing 12.2: Muli search region example that comprises two solutions and a failure.

12.1 Motivation

In constraint-logic object-oriented programming, combining imperative code with fea-

tures from logic programming causes the runtime to execute parts of the imperative code

non-deterministically (“don’t know” non-determinism). To give an example, the program

(or search region) depicted in Listing 12.1 has two solutions. The example is written using

the Münster Logic-Imperative Language (Muli), which we explain in Section 12.2. The

search region declares a boolean logic variable coin . Subsequently, evaluating the if

statement causes the runtime environment to take and implement a decision regarding

the potential value of coin , thus introducing non-determinism. Consequently, imple-

menting the decision selects a single branch of execution, eventually resulting in one of

the two outcomes.

Non-deterministic execution is useful for applications involving search, i. e., an applica-

tion would usually cause the runtime environment to evaluate more than one branch. To

that end, the runtime environment systematically evaluates multiple alternative branches

in sequence. Non-deterministic branching dynamically creates an implicit search tree

that represents the various execution paths that lead to alternative outcomes of a program.

The goal of the present work is to make this search tree explicit at runtime. It encodes
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12.2 Constraint-Logic Object-Oriented Programming

the various execution paths of a program, the choices encountered along every path,

and every path’s outcome (i. e., solution or failure). As there can be paths of infinite

length, our search tree representation is non-strict. Our search tree then serves as a basis

for structured traversal by arbitrary search algorithms, including iterative deepening

depth-first search. Furthermore, by making the search tree explicit, it is possible to inspect

the search tree at any given point in time, e. g., after search or even at an intermediate

stage. This way, the search tree aids in effective debugging.

This paper provides the following contributions:

• A general search tree structure for constraint-logic object-oriented programming

that encapsulates execution state (Section 12.4).

• Search algorithm implementations that traverse the search tree structure for finding

solutions to constraint-logic object-oriented programs (Section 12.5).

• A discussion of the implications of our work for executing object-oriented (imper-

ative) programs non-deterministically (Section 12.6).

First of all, Section 12.2 introduces concepts of constraint-logic object-oriented pro-

gramming, followed by an outline of the Muli virtual machine in Section 12.3.

12.2 Constraint-Logic Object-Oriented Programming

Constraint-logic object-oriented programming combines the flexibility of imperative

and object-oriented programming with features from constraint-logic programming,

namely logic variables, constraints, and search. Muli is a constraint-logic object-oriented

programming language that is based on Java [DK19a].

InMuli, logic variables are declared in a way that is similar to declaring regular variables.

As indicated in Listing 12.1,

int coin free;

declares a logic variable of a primitive (integer) type. Instead of assigning a constant

value, the free keyword specifies that coin is a logic variable. A logic integer variable

can be used interchangeably with other integer variables, i. e., they can become part of

conditions or arithmetic expressions and can be passed to methods as parameters [DK1़].

In contrast to regular variables, logic variables are used symbolically. Recent work is

looking into support for reference-type logic variables [Dag19], but here we focus on

logic variables of primitive types.

Constraints are defined as relational expressions, (typically) involving logic variables.

For simplicity, Muli does not provide a dedicated language feature for imposing con-
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12 Structured Traversal of Search Trees in Constraint-Logic Object-Oriented Programming

straints. Instead, a constraint is imposed whenever the flow of execution branches, such

as when a branching condition is evaluated. Therefore, constraints are derived from

boolean expressions. For instance, in Listing 12.1

if (coin == 0) { 𝑠1 } else { 𝑠2 }

coin occurs in the condition and is not sufficiently constrained, so that the condition can

be evaluated to either true or false. As a result, the evaluation of the condition creates

a choice, from which alternatives are evaluated non-deterministically. The runtime

environment selects an alternative by imposing the corresponding constraint. In our

example, by imposing 𝑐𝑜𝑖𝑛 ≠ 0 the runtime environment can proceed with the evaluation

of 𝑠2. The runtime environment leverages a constraint solver for finding solutions as

well as for cutting execution branches early as soon as their constraint system becomes

inconsistent.

Search transparently performs non-deterministic evaluation in combination with back-

tracking until a solution is found. Implicitly, following a sequence of choices (and taking

decisions at each choice) produces a (conceptual) search tree that represents the order of

execution. In such a search tree, inner nodes are choices and leaves represent alternative

ends of execution paths. In Muli, an execution path ends with a solution (specified by

either return or throw ) or with a failure, e. g., if a path’s constraint system is inconsistent.

The full listing of our example in Listing 12.1 demonstrates how solutions are returned.

After search completes, solutions of the example are false and true (in any given order).

Moreover, applications sometimes require an explicit failure denoting the end of an

execution path without a solution. In Muli, an explicit failure is expressed by throw

Muli.fail() . Nevertheless, executing that statement will not return an exception. In-

stead, the statement is specifically interpreted by the runtime environment, resulting in

backtracking. Listing 12.2 provides a slightly extended search region with three execution

paths, one of which ends in a failure.

The main program is executed deterministically, whereas all non-deterministic search

is encapsulated. Encapsulation gives application developers control over search. In

addition to coarse-grained control (i. e., requesting either a single solution or an array

comprising all solutions), Muli offers fine-grained control by returning a Java stream that

evaluates solutions non-strictly. Muli.muli() accepts a Supplier and returns a stream of

Solution objects. In Java (and, therefore, in Muli), a Supplier denotes either a lambda

expression or a method reference (both without arguments). We refer to the method that

is passed as an argument as a search region, as it will be executed non-deterministically

and therefore describes the constraint-logic object-oriented problem. Following the
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12.3 Muli Logic Virtual Machine

principles of the Java Stream API, solutions can be retrieved from the stream individually

on demand [DK19b]. For instance, considering Listing 12.1, a stream is initialised using

Stream<Solution<Boolean>> stream = Muli.muli(self::flipCoin) ,

and the actual search starts as soon as the first solution is requested from the stream.

12.3 Muli Logic Virtual Machine

The Muli Logic Virtual Machine (MLVM) is a runtime environment for Muli. The MLVM

is a custom Java Virtual Machine (JVM) that complies with the JVM Specification (see

[Lin+15]) for deterministic execution. Moreover, it adds modifications that support Muli-

specific extensions, particularly symbolic execution and non-deterministic execution

[DK19a]. As in a regular JVM, execution state is represented in the MLVM by a com-

bination of program counter (PC), a heap, a stack of executed method frames (frame
stack), and an operand stack per frame. Additional state serves the purpose of supporting

non-deterministic execution and constraints. In particular, this includes the constraint

stack and the trail.

The constraint stack maintains the active constraint system, i. e., the conjunction of all

constraints on the stack [DK19a]. Representing the constraint system in a stack structure

is beneficial as constraints are added dynamically during execution. Consequently, on

backtracking, only the most recently added constraints need to be removed from the

stack. Moreover, the trail records changes that are made to the virtual machine (VM)

state during execution. On backtracking, the information on the trail can be used to

revert to a previous execution state. More precisely, using the trail, backtracking achieves

the specific state of the choice at which the next decision can be made. In fact, the

trail is therefore split up into incremental trails, one per choice, each describing how to

backtrack towards the next choice. In addition, in order to be able to not only backtrack

to a choice (upwards along a search tree) but to achieve an arbitrary previous state

(including downward navigation), the MLVM maintains two trails per choice, one being

the inverse of the other [DK19b]. In the following, we call the trail for backtracking

backward trail, as opposed to the forward trail that is used to navigate downwards.

Like a regular JVM, the MLVM reads applications from bytecode and executes bytecode

instead of the original source. Muli’s bytecode format is compatible with that described

in [Lin+15], merely adding custom attributes in order to represent logic variables [DK19a].

For instance, the example application from Listing 12.2 compiles to the bytecode instruc-

tions in Listing 12.3. Some bytecode instructions exhibit non-deterministic behaviour. For

203



12 Structured Traversal of Search Trees in Constraint-Logic Object-Oriented Programming

1 0: iload_1 // coin1
2 1: iconst_0
3 2: if_icmpne 7 // coin1 != 0
4 5: iconst_0
5 6: ireturn // return false
6 7: iload_2 // coin2
7 8: iconst_0
़ 9: if_icmpne 16 // coin2 != 0
9 12: invokestatic #91 // fail()
10 15: athrow
11 16: iconst_1
12 17: ireturn // return true

Listing 12.3: Bytecode generated by the Muli compiler for the program in Listing 12.2.

Triggering bytecode instruction Type of choice No. of decisions

If<cond> , If_icmp<cond> if instruction, integer comp. 2
FCmpg , FCmpl , DCmpg , DCmpl floating point comparison 2
LCmp long comparison 3
Lookupswitch , Tableswitch switch instruction 1 per case + 1

Table 12.1: Bytecode instructions that may cause non-deterministic branching upon exe-
cution. <cond> is a placeholder for specific comparisons, e. g., eq for equality.

instance, if_icmpne in Listing 12.3 jumps to the specified instruction if the two integer op-

erands on the operand stack are not equal. Otherwise, execution continues linearly with

the following instruction. If one or both operands are logic variables, both jumping and

not jumping are feasible alternatives. As logic variables are used in the current example,

the execution of if_icmpne instructions creates choice points that offer two decision

alternatives. While if instructions always provide two alternatives (i. e., jumping to the

else branch or not), switch instructions result in alternatives according to the number of

cases plus one for the default case, each jumping to instructions accordingly. Table 12.1

provides a reference of instructions that may exhibit non-deterministic behaviour and

counts the decision alternatives from which the MLVM chooses.

Executing a bytecode instruction with non-deterministic branching creates a choice

point in the MLVM [DK19a]. Prior to this work, the implementation of the choice point

itself was responsible for managing the execution of its branches. More specifically,

executing a bytecode instruction created a choice point representation in the MLVM.

204



12.4 Search Trees

Consequently, the created choice point contained information about applicable branches,

but also implemented the behaviour of search. That is, upon creation, the choice point

representation immediately selected the first decision alternative and applied it, thus

committing to a specific branch. The created choice point representations are stored in a

stack of choice points. The MLVM referred to the choice point stack during backtracking.

Starting from the top, it popped choice points until reaching one with an alternative that

had not been evaluated yet. It then immediately committed to this alternative by adding

its constraint and following its path.23 As a consequence, the runtime environment

never actually stored an explicit representation of the search tree. Instead, the choice

point stack merely maintained a single path through the (implicit) search tree. Therefore,

diverting from the currently executed path was not possible, effectively restricting the

search capabilities of the MLVM to depth-first search. All things considered, the previous

MLVM used a complex, tangled mixture of responsibilities in which bytecode-instruction

implementations, choice-point implementations, and the VM realise non-deterministic

search in combination.

In a cleaner architecture,

• declaratively executing a bytecode instruction creates choice objects and just returns

them to the MLVM (instead of performing a decision right away), and

• choice objects only hold information about available decision alternatives (but no

implementation for taking decisions).

As a consequence, the MLVM is the only element that is allowed to change execution

state by committing to decisions, instead of sharing this permission with choice objects

or instruction implementations. The search tree structure that we discuss subsequently

facilitates an explicit representation that holds a declarative representation of choices

and of the alternatives that each choice provides. Overall, the structure serves as a clean

basis for following arbitrary execution paths through the tree.

12.4 Search Trees

A declarative, explicit search tree representation lays the groundwork for following

arbitrary execution paths instead of limiting execution to depth-first search only. We

first explain the conceptual representation, outlining the intuition of the elements that

constitute the search tree. Afterwards, we describe how a search tree is constructed
23Provided that the constraint system was still consistent. Otherwise, backtracking occurred until the

next choice point that offered an unevaluated, feasible alternative.
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dynamically during the execution of a Muli application. Last, we abstractly describe

navigation through the search tree as the basis for search.

12.4.1 Representation

Conceptually, our explicit search tree comprises five distinct node types. There are

node types for returned values, thrown exceptions, choices between non-deterministic

branches, failed computations, and yet unevaluated search trees. Figure 12.1 shows a class

diagram for our search tree representation. Basically, this representation corresponds to

an algebraic data type and therefore does not implement any decision-taking in contrast

to the previously used choice points.

As solutions of a search region, a Value node holds the value returned by a computation

while an Exception node does the same with an exception that has been thrown. A

Fail node represents either an explicit failure or branches whose constraint system is

inconsistent. As a consequence, it does not hold any values. Furthermore, Choice nodes

store a list of subtrees which, in turn, reference their parent choice. Having an explicit

reference to each node’s parent allows for easy and direct navigation through the search

tree. For the root node of a search tree, the parent attribute is null . Finally, UnevaluatedST

serves as a proxy for subtrees that have not been evaluated yet, facilitating non-strict

usage.

Moreover, each node in the search tree stores fields that prepare for later execution.

The frame and pc fields represent a reference to the (mutable) stack frame and the value

of the PC at which the node has been created. Each node holds an optional constraint

expression that has to be satisfied in order to reach this node, e. g., as a consequence of

non-deterministic branching. Additionally, the backward trail stores the changes to the

VM state that were made in order to reach this node (thus preparing for backtracking),

whereas the forward trail stores changes that are needed in order to return to this

node afterwards. In combination, these fields are used to properly manipulate the state

of the MLVM during the traversal of the search tree, which is discussed in detail in

Subsection 12.4.3.

12.4.2 Construction

The actual search tree is constructed during search. A search strategy is responsible for

determining the order in which the search tree is traversed. Regardless of the order, a

search strategy evaluates UnevaluatedST nodes as long as there are such nodes left and the
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parent 0..1

children
1..*

ST<A>

+ frame : Frame
+ pc : int
+ constraintExpression : Optional<ConstraintExpression>
+ backwardTrail : Stack<TrailElement>
+ forwardTrail : Stack<TrailElement>

UnevaluatedST<A> Value<A>

+ value : A

Exception<A>

+ exception: java.lang.Exception

Fail<A> Choice<A>

Figure 12.1: Class diagram for the representation of search trees.

encapsulating program demands additional solutions. In general, the MLVM evaluates

an UnevaluatedST node by imposing the node’s constraint and executing the bytecode

of the search region starting from the PC, which the node points to, until either of the

following situations occurs.

• The computation in the search region returns with a value,

• an uncaught exception occurs during execution,

• the method Muli.fail() signals a failed computation, or

• one of the instructions in Table 12.1 is executed, which results in the creation of a

Choice object.

In any case, the UnevaluatedST node in the search tree is replaced by its evaluated coun-

terpart, i. e., by a Value , Exception , Fail , or Choice node. Note that all children of a newly

created Choice node are unevaluated search trees initially. Furthermore, state changes

that were made during this evaluation are received from the MLVM and stored within

the new node as its backward trail.

At the beginning of search, the search tree is unknown and therefore initially rep-

resented by a single UnevaluatedST node. The PC of that node points to the start of the

search region, and the optional constraint expression is left empty since no constraints

apply to the start of a search region. Similarly, the trails are empty as this node has not

yet been evaluated. Figure 12.2 exemplarily shows three search trees for the program

from Listing 12.2 that all are evaluated to a different degree, and thus illustrate various

intermediate evaluation stages that can occur during a search. The illustration assumes

a depth-first search strategy; therefore, other search strategies will result in different

intermediate stages.
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(a) Unevaluated
search tree

Choice

Choice

Value(true)
𝑐𝑜𝑖𝑛2 ≠ 0 𝑐𝑜𝑖𝑛2 = 0

𝑐𝑜𝑖𝑛1 ≠ 0 𝑐𝑜𝑖𝑛1 = 0

(b) Partially evaluated search tree
after encountering the first
solution

Choice

Choice

Value(true)
𝑐𝑜𝑖𝑛2 ≠ 0

Fail
𝑐𝑜𝑖𝑛2 = 0

𝑐𝑜𝑖𝑛1 ≠ 0

Value(false)
𝑐𝑜𝑖𝑛1 = 0

(c) Fully evaluated search tree

Figure 12.2: Different evaluation stages of the search tree corresponding to the search
region in Listing 12.2. The constraint of each subtree is noted at the respective
edge.

12.4.3 Traversal

The implementation of any search algorithm requires to be able to navigate through the

search tree in any direction, i. e., upwards and downwards. For example, if a branch of

a search tree has been fully evaluated, search continues elsewhere. While navigating

through the search tree, it is vital to ensure that the MLVM remains in a consistent state.

A node’s forward and backward trail together with its frame and PC are used for that

purpose. In general, navigation takes place from an already evaluated node to another

evaluated node, since only evaluated nodes have a trail (see Subsection 12.4.2). More

specifically, a Choice node is always the target node or source node when navigating

upwards or downwards.

We navigate upwards in a search tree by following references to the parents until we

reach the target node (e. g., the root), backtracking the VM state in the process. In doing

so, we remove previously imposed constraints from the constraint stack and undo the

changes to VM state by processing the backward trails of nodes along the path. At the

same time, the backward trails are converted into forward trails so that a node from

which we navigate away can be reached again later when navigating downwards, e. g.,

for the evaluation of another subtree of that node. Last but not least, the frame and PC of

the VM are set accordingly, using the information that was recorded at each node when

it was created.

Navigating downwards is slightly more complicated as we first need to determine

how to reach a target node from the current (source) node. However, we always have

a reference to the target. Therefore, we can use the target’s parents in order to find

the path to the source. Afterwards, we process the path in reverse order, thus getting

from the source node to the target node. We basically do the opposite of what is done

in upwards navigation: For each node, we set the frame and PC to what is recorded in
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1 void navigateUpwards(ST from, Choice to) {
2 while (from != to) {
3 if (from.constraintExpression.isPresent())
4 constraintStack.pop();
5 vm.processTrail(from.backwardTrail, from.forwardTrail);
6 vm.setFrame(from.frame); vm.setPc(from.pc);
7 from = from.parent; } }
़

9 void navigateDownwards(Choice from, ST to) {
10 Stack<ST> nodes = new Stack<>();
11 while (to != from)
12 nodes.put(to); to = to.parent;
13 while (!nodes.empty()) {
14 to = nodes.pop();
15 vm.setFrame(to.frame); vm.setPc(to.pc);
16 vm.processTrail(to.forwardTrail, to.backwardTrail);
17 if (to.constraintExpression.isPresent())
1़ constraintStack.push(to.constraintExpression.get()); } }

Listing 12.4: Methods for navigating upwards and downwards in a search tree.

the node, apply the forward trail to reapply changes to the execution state, and impose a

node’s constraint if present. Simultaneously to processing the forward trail, we convert

it again into a backward trail to be later able to navigate upwards. For clarity, Listing 12.4

shows simplified implementations for navigating upwards and downwards, respectively.

Subsequently, these general navigation methods serve as primitives for traversal.

12.5 Search Strategies

As a demonstration of how the explicit search tree representation can be employed for the

implementation of search strategies, we outline the implementations of three particular

ones.

Depth-first Search

The implementation of depth-first search maintains a stack of unevaluated subtrees from

the search tree. At the beginning of the search, the initial node (see Subsection 12.4.2) is

pushed to the stack. Then, depth-first search repeatedly pops an unevaluated search tree

node from the stack and tries to evaluate it. If its evaluation results in a Choice node, its
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1 Choice findCommonAncestor(ST a, ST b) {
2 initialise empty set;
3 while (b != null) {
4 add b to set;
5 b = b.parent; }
6 while (!set.contains(a))
7 a = a.parent;
़ return a; }

Listing 12.5: Algorithm for finding the first common ancestor of two nodes.

children are pushed to the stack and search continues by popping the next node from the

stack (i. e., a local subtree). Otherwise, if a Value or Exception node is encountered, the

search strategymust be able to return the result to the encapsulating program. To that end,

it reverts execution state to the state from the beginning of search using navigateUpwards .

When search is picked up again, the search strategy uses navigateDownwards in order to

evaluate the next node from the stack. Finally, if the node at hand is evaluated to a Fail

node, local backtracking is performed, i. e., we navigate upwards to the nearest parent

that has at least one unevaluated subtree.

Breadth-first Search

Instead of a stack, a FIFO queue keeps track of unevaluated subtrees. Beginning or

resuming search dequeues nodes from the head of the queue. In contrast, when a Choice

node is encountered, its children are enqueued at the end. Another difference is the

fact that breadth-first search requires navigating between arbitrary nodes within the

search tree. While it is, of course, possible to go over the root node, it is more efficient to

navigate along a path going over the first common ancestor of the two involved nodes.

Listing 12.5 shows a simple algorithm that determines the first common ancestor of two

nodes in the search tree. Once the first common ancestor is found, search combines

navigateUpwards (to the found ancestor) and navigateDownwards in order to efficiently

navigate between two arbitrary nodes.

Iterative Deepening Depth-first Search

Our search tree can also be used to implement an exciting variant of iterative deepening

search. Iterative deepening provides the strength of depth-first search while ensuring

that solutions can be found even if there are execution paths of infinite length. In iterative
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deepening, search is bounded by a constant maximum depth. Search proceeds in a depth-

first manner until nodes are reached that are at the maximum depth. In that case, search

first evaluates other nodes up to that depth, thus assuming breadth-first search behaviour.

Only if additional solutions are required, search increases the bound, again by a constant,

and so on. In Muli, aided by the inverse trails, when the bound is increased, the runtime

environment does not need to restart computation at the root, which usually leads to a

reevaluation of known execution paths (and solutions). Instead, it leverages the (partial)

search tree and the recorded inverse trails in order to restart computation from known

states that provide further alternatives.

12.6 Discussion

The implementation of our search tree structure in the MLVM facilitates the non-

deterministic execution of imperative (object-oriented) programs in novel ways, using

search strategies that could not be implemented without an explicit structure. The exist-

ing depth-first search strategy has been reimplemented and is now based on the explicit

search tree structure as well. In order to ensure that the required changes do not adversely

affect the performance of depth-first search, we first compare the runtime behaviour

before discussing novel aspects of search. Note that we measure only performance, not

memory consumption. Obviously, maintaining the search tree requires more memory

than merely storing the current execution path. However, a possible memory optimisa-

tion would be to discard search tree nodes that belong to exhaustively evaluated subtrees

— especially in depth-first search strategies.

We are interested in comparing the performance of depth-first search in the new

search-tree-based and old choice-point-stack-based implementations. To that end, a set

of experiments is conducted in a modified MLVM that contains our search-tree structure

as well as in an MLVM without modifications, each executed by OpenJDK 1.़.0_212.24

Since the MLVM is executed by a JVM, we drop the first 15 executions in order to

account for effects caused by just-in-time compilation and take the performance values of

subsequent executions. In total, we aggregate performance values of 500 executions per

experiment, tackling classic search problems. The first experiment calculates a solution

to the 3-partition problem for a fixed set of integer values using a depth-first search

strategy. Until the first solution is found, search passes 374 choices. The second finds a

solution to the Send More Money puzzle. For reference, we also execute corresponding

24Ubuntu 1़.04.2 with 4.15.0 x़6_64 GNU/Linux kernel; Intel Core i5-5200U CPU.
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Figure 12.3: Comparison of execution times in MLVM with or without explicit search
trees, both using depth-first search. Execution times in PAKCS for reference.

Curry implementations on PAKCS 2.1.1 using depth-first search. Figure 12.3 features the

average execution times. Our experiment indicates that the implementation and use of an

explicit search tree do not negatively affect depth-first search performance. Moreover, the

comparison to PAKCS is encouraging, seeing that Muli search regions offer competitive

performance while providing support for using side-effects during non-deterministic

execution.

Since the use of explicit search trees does not add visible overhead to execution times,

we can focus on the benefits of using a search tree representation at runtime. The

MLVM now features additional search algorithms beyond depth-first search that all

leverage the search tree structure. In particular, using breadth-first search is novel to the

non-deterministic execution of imperative programs that have side-effects.

Consider the search region from Listing 12.6. For lack of a termination condition,

there is one infinite execution path. Therefore, it is impossible to evaluate the search

tree (or the application) strictly. In our depth-first search implementation, the infinite

execution path is the leftmost one. As a result of this structure, depth-first search is

unable to compute a single solution. In contrast, several solutions can be returned using a

breadth-first or iterative deepening strategy, even though the tree can never be evaluated

in full. As a more sophisticated example, we have implemented a search region that finds

solutions to the Water jugs problem. Here the MLVM is unable to evaluate a full search

tree as there are cyclic execution paths that result in valid solutions or failures. We have

executed these programs using the available strategies 500 times for up to ten seconds

each and indicate the average number of solutions in Table 12.2.
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1 private static boolean nonTerminatingCoin() {
2 int coin free;
3 if (coin == 0)
4 return true;
5 else
6 return nonTerminatingCoin(); }

Listing 12.6: Muli search region featuring an infinite amount of execution paths.

DFS BFS ID-DFS

Simple infinite recursion 0 1469.7 1555.2
Water jug problem 0 29.5 34.4

Table 12.2: Comparison of search strategies w. r. t. the number of solutions that are
returned within ten seconds.

Note that the results do not imply that depth-first search is generally a bad strategy. On

the contrary, the combination of increased memory requirements and the time needed for

changing VM state using the trail still speaks against using breadth-first search by default.

Iterative deepening shares this disadvantage in case that additional levels of the search

tree need to be evaluated (but is as efficient as depth-first search if the initial depth is

sufficient). Consequently, the results indicate that iterative deepening depth-first search

is a good trade-off, if not a better strategy. Further evidence is needed to conclusively

argue that iterative deepening is a superior strategy in general. In any case, both are

useful strategies in certain situations in which depth-first search falls short.

The search tree structure that is presented in this paper is conceptually similar to the

ST structure known from the KiCS2 compiler for Curry [HPR12]. However, Curry search

trees only encode evaluation alternatives of an expression. In contrast, search trees for

constraint-logic object-oriented programming need to encode the execution behaviour,

i. e. VM state changes, that results from different alternatives. Consequently, the state

changes are recorded on the corresponding paths that lead to solutions, so that the VM

can change state depending on the alternative that is being evaluated. In our current

work, we do this by maintaining the forward and backward trails on edges of the search

tree.

Prior to our work, the execution state of constraint-logic object-oriented programming

in Muli was represented by the PC, frame stack, operand stacks, constraint stack, trail,

and choice point stack. Our work results in a slightly altered definition of execution state.
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What previously was a choice point stack is now replaced by the search tree and a pointer

to the current search tree node that is under evaluation. In addition, a search algorithm

is responsible for maintaining a suitable data structure that keeps track of the progress of

traversing the search tree, e. g., a stack of not-yet-evaluated choices in depth-first search

algorithms.

Moreover, the explicit search tree structure is useful for the development of constraint-

logic object-oriented programs, as it can be helpful to visualise the structure of search.

Specifically, we can visualise at which points different kinds of choices are introduced and

which solutions are encountered by the runtime environment. During the development

of the MLVM, the search tree structure is useful for ensuring that non-deterministic

branching and search algorithms are implemented correctly. In contrast, the structure

of the previous approach impeded the diagnosis of problems with non-deterministic

execution, as only the current execution path was represented. Consequently, relevant

information about previously encountered choices and solutions was lost, whereas this

information is adequately represented in the explicit search tree. All in all, the discussed

benefits of an explicit search tree structure outweigh the increased memory requirements.

12.7 Related Work

For software testing, symbolic execution trees describe possible execution paths of an

imperative program under test [Kin76; MK09]. Similar to our search tree, a symbolic

execution tree represents choice points where execution branches and collects path

constraints. However, a symbolic execution tree usually describes the entire execution of

an application. In contrast, our search tree for constraint-logic object-oriented program-

ming describes the execution of specific application parts, namely the non-deterministic

execution of a search region. Its leaf node types are tailored to describing the result (i. e.,

solutions or failures) of execution paths. Moreover, a symbolic execution tree is the result

of performing depth-first search, whereas the dual trails of our search tree specifically

support arbitrary traversal.

The idea of using an explicit data structure for non-deterministic computations in

order to facilitate different search strategies is extensively used in functional logic pro-

gramming [BHH04; HPR12]. In functional logic programming, search trees cover non-

determinism of expressions, i. e., they encode alternatives for the values to which a

pure expression can be evaluated. In contrast to that, constraint-logic object-oriented

programming is non-deterministic in its execution behaviour, which includes side-effects
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incurring during execution. Therefore, the present search tree structure has to encode

alternative behaviour, including side-effects, in addition to final results. In addition to the

representation usually used in functional logic programming, our representation includes

node types for exceptions (as a different kind of solution) and unevaluated search trees.

The latter types are a prerequisite for the on-demand construction of the search tree

during search, which is innately given with the non-strict evaluation in functional logic

programming.

An explicit data structure for representing a search tree structure has also been used

in a monadic definition of constraint programming [SSW09]. In contrast to our work, it

abstracts from side effects and asserts an ordering of subtrees. Another explicit search tree

is used for implementing a domain-specific language (DSL) for probabilistic programming

in OCaml [KS09]. As OCaml is strict, the on-demand characteristic of the search tree is

modelled explicitly using lambda functions. Although OCaml is not purely functional,

the authors disregard backtracking w. r. t. behaviour, modelling only non-deterministic

results of pure expressions.

As an alternative to using an explicit search tree, the interface of the probabilistic

DSL in OCaml has also been implemented by using continuation passing style and by

using delimited continuations, i. e., using shift and reset [DF90]. Using continuations

provides an implementation in a direct style and removes the run-time overhead of

the search tree data structure. Therefore, implementing Muli by means of shift and

reset is an interesting option for future work. In this case, however, monadic reflection

(i. e., inspecting the search tree) is expensive, and its efficient implementation requires

additional techniques [PK15].

The concept of trails has initially been adapted from the trail described for the Warren

Abstract Machine (WAM) [War़3] and has been extended towards dual trails for arbitrary

execution state in [DK19b]. Dual trails facilitate their use for backtracking upwards

along a search tree as well as for descending towards nodes that have been (partially)

evaluated. For their duality, the two trails were originally termed trail and inverse trail.

Here we call them backward trail and forward trail, respectively, in order to improve

clarity regarding the direction in which they are used. Extending previous work, the

present paper leverages dual trails for the implementations of search strategies other

than depth-first search.
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ࢽ.12 Conclusion and Future Work

Our search tree structure represents the paths of non-deterministic execution of a search

region. A runtime environment of a constraint-logic object-oriented language can con-

struct the search tree non-strictly while executing a search region, thus encoding the

solutions that are found as well as the execution behaviour of imperative code that leads

to solutions or intermediate choices. As a result, the explicit search tree representation

can serve several purposes. First, it provides a structure that arbitrary search strategies

utilise for traversing the search tree. Furthermore, we found it to make debugging of

non-deterministic execution behaviour more productive by allowing developers who

use a debugger to introspect intermediate state at breakpoints. More opportunities for

utilising the search tree in constraint-logic object-oriented programming will be part of

future work.

We also extend Muli’s runtime environment, the MLVM, to implement depth-first

search, breadth-first search, and iterative deepening depth-first search. Even though they

are well-known as search algorithms for tree traversal, they are of particular interest

in the context of constraint-logic object-oriented programming where the search tree

is not (entirely) known before the program that it represents has been executed in its

entirety. TheMLVMalready supported depth-first search using the previous, unstructured

approach, but our evaluation demonstrates that using a structured approach does not

add any overhead. On the contrary, the explicit representation provides opportunities

for novel search algorithms that could not be used for executing constraint-logic object-

oriented programs prior to our work. The modifications have already been integrated

into the open source MLVM and are available at https://github.com/wwu- pi/muli .

The current work is the basis for future endeavours. The search tree structure could

be used for implementing an interactive search strategy in which a developer could

manually decide how to explore the search space when a choice is encountered. This

interactivity could be an additional aid for debugging. Moreover, it is interesting to

explore alternatives to explicit search trees, such as the use of delimited continuations

for the implementation of non-deterministic execution.
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13 Retrieval of Individual Solutions from Encapsulated Search with Infinite Search Space

1 public static void powersOfTwo() {
2 Solution[] powers = Muli.getAllSolutions(() -> {
3 return twoPower(0); });
4 for (int i = 0; i < 10; i++)
5 System.out.println(powers[i].value); }
6 public static int twoPower(int y) {
7 boolean coin free;
़ if (coin) return Math.pow(2, y);
9 else return twoPower(y+1); }

Listing 13.1: Muli search region generating 2𝑦 for all integer 𝑦 ≥ 0.

13.1 Motivation

Muli (Münster Logic-imperative Language) augments the object-oriented (OO) program-

ming language Java by features from constraint-logic programming, namely logic vari-

ables, constraints, and encapsulated search. By running Muli applications on a specialised

symbolic Java virtual machine (SJVM), Muli facilitates the development of business ap-

plications that occasionally require search involving constraints that are dynamically

added at runtime, e. g. as found in logistics. In Muli, search problems are defined in

so-called search regions. These are methods (also implemented in Muli, i. e. augmented

Java) which are symbolically and non-deterministically executed by the SJVM [DK1़a],

thus exploring the search space.

However, as a result of symbolic execution of an OO (imperative) program, the complete

search space is only known after fully evaluating all alternative execution paths [Kin76].

Consequently, it is possible that the search space comprises an infinite number of solutions.

In contrast, a typical program requires only a few solutions. For example, consider the

program in Listing 13.1 that intends to use the first ten solutions of a constraint-logic

program that computes 2𝑦 for all 𝑦 ≥ 0 that are integers.25 To that end, the runtime

environment first has to find all solutions, which is not possible as the search space

is infinite. But even if the number of solutions were finite, it could still be practically

infeasible to explore the entire search space of a search region if its search space is large.

As a result, a more sophisticated approach is required for performing non-deterministic

search in constraint-logic OO programming.

So far, no such approaches exist. Therefore, our research sets out to develop methods

that facilitate the retrieval of individual solutions in constraint-logic OO programming,

25The program is explained in detail in Section 13.3.
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even given an infinite search space. This paper presents the results as follows. Section 13.2

explains the syntax and core concepts of Muli. Subsequently, Section 13.3 details the

problem at hand and Section 13.4 discusses methods that implement search for non-

deterministic constraint-logic OO programs. Section 13.5 describes the implementation

of one of these methods in the Muli runtime environment. The changed runtime environ-

ment is then evaluated in Section 13.6. Section 13.7 relates our work to existing literature,

followed by concluding remarks in Section 13.़.

13.2 Constraint-Logic Object-Oriented Programming

Muli is an extension of Java, integrating features of constraint-logic programming into

the language. To that end, it allows defining logic variables and fields using the free

keyword [DK1़a], e. g.,

int x free .

Constraints are defined by formulating control structure conditions that involve logic

variables, such as

if (x > 5) ,

where x is a logic variable. A specialised runtime, the SJVM, performs symbolic eval-

uation of expressions and statements. If conditions of control structures involve vari-

ables that are (at runtime) free or insufficiently constrained to decide whether a con-

dition evaluates to true or false , all applicable execution branches are executed non-

deterministically [DK1़b]. To that end, one branch is selected and a corresponding

constraint is imposed on the SJVM’s constraint store. That branch is then executed.

Subsequently, backtracking occurs in order to ensure that all applicable branches are

executed systematically.

In order to make the effects of non-deterministic execution manageable in a Java-

oriented context, non-deterministic execution only happens within encapsulated search.
Outside encapsulated search, execution is deterministic, but may involve the construction

of symbolic expressions. Encapsulated search executes a search region, i. e. a method that

formulates the search problem. The implementation of search regions as methods allows

arbitrarily mixing imperative statements with manipulations of the constraint store, and

facilitates their reuse across the program. Furthermore, encapsulation of search ensures

that the overall application terminates in a single consistent exit state. Otherwise, if

non-determinism were allowed outside of encapsulation, the program would yield one

exit state per leaf of the symbolic execution tree. Instead, a symbolic execution tree only
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exists for the encapsulated execution of search regions. There, every leaf of the symbolic

execution tree corresponds to one solution of encapsulated search.

Found solutions are returned to the (deterministic) invoking program so that it can

work on them. Encapsulated search is started by invoking operators that accept a search

region and define the number of solutions to be returned. Specifically, getOneSolution

terminates non-deterministic search after the first solution is found and returns that,

whereas getAllSolutions first explores the entire search space and collects all solutions

afterwards. For instance, the program in Listing 13.1 uses getAllSolutions , causing Muli

to collect solutions in an array. Execution of the invoking program continues after the

search space has been explored exhaustively.

13.3 Infinite or Large Search Spaces

As an example for a search region with an infinite number of solutions, consider the

program powersOfTwo() in Listing 13.1 that generates all powers of two. powersOfTwo()

creates a search region by defining a lambda expression that invokes twoPower(int y) ,

passing the constant 0 as the initial parameter value. twoPower() declares a free boolean

variable coin . By branching over the variable coin in the condition of if , the search region

simulates a coin flip as the condition can be both true or false . In the true branch, 2𝑦 is

computed and returned; otherwise twoPower() is called recursively, with its parameter

incremented by one. Encapsulated search is started by invoking getAllSolutions with

the search region as a parameter, which causes the SJVM to evaluate the search region

non-deterministically. Afterwards, solutions will be returned by the SJVM as an array of

type Solution[] , of which each element encodes one solution. This array is used by the

remaining (deterministic) program.

At each recursive invocation, a fresh local coin variable is created. Consequently,

execution is branched at every invocation. The result of non-deterministic evaluation

of this search region is an infinite symbolic execution tree (cf. Figure 13.1; subtree of

infinite height abbreviated by ‘…’), corresponding to an infinite amount of solutions.

Effectively, getAllSolutions will never terminate for this search region, except if memory

is exhausted (which will terminate the entire application in an error state).

Prior to this work, if more than the first solution was needed by a program, the SJVM

was required to compute all solutions of a search region before returning them to the

invoking program for two reasons. First, the entire search space is not known before the

symbolic execution tree is fully evaluated [Kin76]. Second, backtracking is local [DK1़a].
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twoPower(0)

coin0

coin1

coin2

…return 22

return 21

return 20

•⟶ beginning of encapsulated search
non-deterministic choice: true
non-deterministic choice: false

return solution

Figure 13.1: Simplified symbolic execution tree for the program in Listing 13.1 with condi-
tional branching.

Consequently, getAllSolutions only terminates if the search region has a finite number

of solutions. As a result, the getAllSolutions operator falls short for search regions that

exhibit an infinite search space, particularly if a program intends to examine only a few

solutions from encapsulated search, e. g. using an external system (and only resumes

search to obtain additional solutions if the previous ones are found to be insufficient).

This behaviour is consistent with Prolog [Wie03], whose findall predicate will not

terminate if there is an infinite number of solutions to a goal. Similarly, Curry provides

allValues methods to traverse a search tree. However, as the Curry language is lazy,

the allValues methods work well even with large or infinite search spaces even though

no mechanism is implemented to handle this problem specifically. However, constraint-

logic OO programming is not lazy per se. Therefore, a mechanism is needed to achieve

retrieving individual solutions lazily from a constraint-logic OO problem.

Prior to our work, the Muli API as used in Listing 13.1 defined the set of all solutions to

be returned as an array and was therefore not suited, unless a program actually required

all solutions (and the set of solutions is finite). Alternatively, Muli offers getOneSolution

which explicitly aborts encapsulated search after one solution and returns that. Invoking

getOneSolution a second time on a search region, however, will yield the same solution

again, as the SJVM does not maintain state and is therefore unable to recognise a solution

as being found already. Generally speaking, calculating only the first 𝑛 solutions is trivial,

as search can be terminated after 𝑛 solutions have been obtained (or earlier, if the search

space contains less than 𝑛 solutions), but resuming search for further solutions is hard.

Even though it would be possible to re-start search from the beginning and dropping the

first 𝑛 (previously found) solutions, the resulting re-computation of these 𝑛 solutions is

unnecessary and may also incur unwanted (repeated) side effects.
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Choice point type Triggering bytecode instruction

Floating point comparison FCmpg , FCmpl , DCmpg , DCmpl
Long comparison LCmp
if instruction, integer comp. If<cond> , If_icmp<cond>
switch instruction Lookupswitch , Tableswitch

Adapted from [DK1़a]

Table 13.1: Subset of bytecode instructions that may introduce non-determinism if they
involve logic variables. <cond> is one of eq , ne , lt , le , gt , or ge .

Since search regions are executed on the same virtual machine as program parts

outside of them, a suitable mechanism is required for resuming search, i. e. for lazily

retrieving individual solutions from encapsulated search, while at the same time retaining

deterministic execution behaviour of the surrounding program parts. The subsequent

section presents and discusses possible methods for traversal along the symbolic execution

tree to facilitate non-deterministic search, accounting for the possibility that the symbolic

execution tree may contain an infinite number of paths and that the program needs to be

able to retrieve individual solutions from encapsulated search regardless.

13.4 Individual Retrieval of Solutions from
Encapsulated Search

Traversing the symbolic execution tree requires a backtracking mechanism that is able

to restore a previous state if the entire SJVM, so that it can resume execution from

there. Similar to a regular JVM [Lin+15], the SJVM maintains a program counter and

a stack of frames, where each frame maintains the values of its local variables and an

operand stack [DK1़a]. Additionally, to support constraint-logic OO programming, the

SJVM maintains a constraint store, as well as a stack of choice points. Each choice point

tracks where non-determinism was introduced, which choices have been taken, and the

constraints that were added. On backtracking to a previous state, all these data structures

(in the following subsumed as SJVM state) need to be reverted to their previous contents.

Choice points are created whenever execution branches non-deterministically, i. e. by

evaluation of only a few bytecode instructions that are depicted in Table 13.1.

Approaches that come to mind for achieving restoration of previous states are out-

lined in the following. They roughly fall into two fundamentally different categories,

distinguished by their basic concept for describing the SJVM state(s). The trail-based
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approaches leverage a trail data structure, adapted from the identically-named concept

used in the Warren Abstract Machine [War़3], describing individual state changes that

have been applied to the SJVM during execution. In contrast, the copy-based approaches

store copies of the entire state at pre-defined points during the execution, instead of

tracking individual changes.

13.4.1 Copy-Based Backtracking

Serialisation One option is to introduce explicit savepoints at specific points during

application execution, similar to transaction management of relational database manage-

ment systems. In the serialisation approach, whenever a savepoint is reached, the SJVM

state data structures are serialised and stored in a location separate from SJVM state, e. g.

in files on disk. These stored data structures are referred to as snapshots in the following.

Savepoints need to be introduced at the beginning of encapsulated search, andwherever

non-deterministic choice occurs. For example, for the application in Listing 13.1 savepoints

𝑠1, 𝑠2, … need to be added when the conditional expression is evaluated, which will

introduce non-determinism as it involves a free variable. Another savepoint 𝑠0 is added

at the beginning of encapsulated search, i. e. the root. Figure 13.2 augments the symbolic

execution tree from Figure 13.1 with savepoints accordingly.

The implementations of bytecode instructions that introduce non-determinism

(cf. Table 13.1) would need to be changed in the SJVM in order to support savepoints.

To that end, the implementations of each of these bytecode instructions would first

create a snapshot of the current state and store it with the corresponding savepoint for

later retrieval, together with the selected choice. Afterwards, the instruction’s effect is

executed on the SJVM as before, followed by subsequent instructions of the program.

twoPower(0)

coin0

coin1

coin2

…return 22

return 21

return 20

𝑠1

𝑠2

𝑠3

𝑠4

𝑠0 (root)

Figure 13.2: Placement of savepoints within the symbolic execution tree.
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Once the SJVM reaches a leaf of the symbolic execution tree, i. e. finds a solution,

the return value (or exception) of the search region is wrapped in a Solution object

and backtracking to the first savepoint 𝑠0 occurs by deserialising the object structures

corresponding to its state, thus discarding the current SJVM state. As a result, the

SJVM is now in the state from when encapsulated search has begun, without the effects

from the executed search region. However, instead of executing the next branch as

before, encapsulated search terminates and returns the found solution to the surrounding

application.

When the next solution is required, the SJVM creates a new savepoint 𝑠𝑐 at the current

point in the deterministic execution (not visible in the illustrations, as this can occur

at any later time during deterministic control flow) and stores a snapshot. After that,

the state of the SJVM is restored from a snapshot that corresponds to the most recent

choice point that still has another choice. Based on the recorded choice that has been

taken before, the next choice is selected. The effect of the new choice is then executed

by executing the subsequent instructions. If the latest choice point of that search region

does not offer a choice that has not been selected yet, the SJVM tries that choice point’s

parent choice point, and so on. Once the root is reached, that indicates that all choice

points in the symbolic execution tree have been exhaustively tried, and that there is no

further solution. In either case, the state from savepoint 𝑠𝑐 is restored and, if there has

been another solution, that is yielded to the program.

Overall, this approach is rather straightforward to understand, as well as to implement.

However, there are issues with how serialisation is generally performed in OO languages.

All classes have the opportunity to override deserialisation of objects of their type so that,

for instance, no new instances can be created for singleton classes on deserialisation. As

intentional as that may be for regular applications, this implies that the state of singleton

classes is not reverted to a previous state on deserialisation; instead the deserialisation

method might return the corresponding singleton object in its most recent, now invalid,

state. As a result, the resulting SJVM state becomes inconsistent on backtracking if such

classes or similar overrides to their deserialisation method are involved, thus rendering

this approach unreliable. Moreover, this approach falls short if the SJVM state’s object

graph involves classes that are not serialisable, which is likely the case for arbitrary

applications. Another major disadvantage is that each savepoint requires a full snapshot

of the entire SJVM state, regardless of how much of it is changed during snapshots, and of

whether a snapshot of a savepoint is actually used at a later point in time. Therefore, the

amount of memory required depends on the data structures managed by the application,
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multiplied with the number of choice points times their respective choices. This results

in high memory requirements for this approach.

Object cloning Another option relies on the same savepoints as the serialisation

approach. The object cloning approach is generally similar, however in contrast to that,

the state is not serialised. Instead, snapshots are created by generating clones of the

SJVM state data whenever a savepoint is encountered. The snapshots are kept in a map,

recording snapshots for each savepoint. That map is used on backtracking in order to

obtain an earlier snapshot of the SJVM state. The SJVM needs to ensure that the map of

SJVM state clones is not stored as part of the SJVM state itself, as otherwise it would be

modified on backtracking as well.

A virtual machine implementation in Java can leverage the fact that every class in

Java inherits a clone() method from java.lang.Object that it can override. However,

the default implementation only creates a shallow copy of an object [Ora1़a]. This is

problematic because, if an object that references another (or more) object(s) is cloned

using that implementation, the clone will reference the exact same object. In contrast, a

deep copy has to be created in order to copy the state consistently, i. e. the entire object

graph needs to be copied in order to ensure that snapshot clones are not changed by later

evaluations.

Consequently, all objects that occur in the object graph need to override the clone()

method accordingly so that a deep copy can be obtained. This is unlikely, therefore

serialisation followed by immediate deserialisation can be used as a workaround to

achieve a deep copy. Alternatively, a virtual machine could create a deep copy using a

reflection-based approach [Kou1़]. However, this is not supported by all classes either,

e. g., creating a clone of a file stream will crash the JVM.

As a result, this approach falls short in several ways, depending on the chosen imple-

mentation alternative. Some disadvantages are shared with the serialisation approach.

Classes might implement the clone, serialisation, and/or deserialisation methods in ways

that prevent deep copies from being created. Therefore, changes made to objects during

current execution might have unexpected side effects on snapshots. Alternatively, if

reflection is used the use of classes that do not support deep copying via reflection is

forbidden implicitly. As cloning such classes results in a crash of the JVM, there is no

opportunity to recover from that. Moreover, this approach potentially requires a lot of

memory for maintaining all snapshots. In fact, that problem might be even more relevant

here, as snapshots are now stored in main memory.
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Trail element Affects state of Parameters Inverse element

PCChange Frame pc PCChange
Restore Frame variable index, value Restore

FrameChange Frame stack frame FrameChange
VmPop Frame stack VmPush

VmPush Frame stack value VmPop
Pop Operand stack Push

Push Operand stack value Pop
FieldPut Heap instance, field, value FieldPut

Table 13.2: Trail elements, representing inverse operations to reverse previous SJVM state
changes in trail-based backtracking approaches.

13.4.2 Trail-Based Backtracking

The Muli SJVM maintains a stack structure for each choice point, the so-called trail, on

which operations are recorded that need to be performed in order to reverse changes

that instructions effected on the SJVM state. During encapsulated search, whenever

an instruction is executed that changes the SJVM state, an object representation of the

inverse of that change is instantiated, which is referred to as the trail element. A choice

point only contains trail elements collected since a choice was made that results from

that choice point, whereas previously collected elements are stored with parent choice

points.

A trail element comprises an operation on virtual machine state and, if applicable,

parameters that specify details of the operation, such as a value or the name of an affected

field. All possible trail elements and their parameters are listed in Table 13.2. As an

example, executing the iadd bytecode instruction pops two elements from the current

operand stack and pushes the result, either the constant sum [Lin+15] or a corresponding

symbolic expression [DK1़a], onto the operand stack. As an additional result, three

trail elements are generated that correspond to the original operations changing the

SJVM state. Two Push trail elements with the values that were on the stack originally

are generated, as well as one Pop element to remove the result. Since constraints are

only added whenever choice points make a choice, there is no explicit trail element for

changes to the constraint store. Instead, when a choice point is backtracked, its constraint

is removed from the constraint store implicitly.

On backtracking, trail elements are popped from the trail and the corresponding

changes that they represent are effected on the SJVM, thus reverting the SJVM to its

state prior to making the last choice. One trail is maintained per choice point, so that all
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actions taken after making a choice can be reverted by looking at that choice point’s trail.

As soon as the trail of a choice point is empty and its constraint is removed, the next

choice can be made by imposing the new constraint and setting the virtual machine’s

program counter for the next control flow branch.26 Otherwise, the next choice of that

choice point will be imposed or, if no more changes are left, further backtracking to its

parent choice point occurs, now using the parent’s trail.

Partial backtracking So far, Muli worked under the assumption that a program will

require either one or all solutions. For that reason, backtracking in the original Muli

implementation occurred locally. As an example, consider the symbolic execution tree

in Figure 13.1. After a solution has been found in one of the return leaves, backtracking

to the last choice point needs to occur to get to the next alternative path. To that end,

the trail of that particular choice point is unrolled so that the changes that have lead to

this leaf are reversed. Afterwards, the SJVM is in the exact state needed for following the

next path. If that choice point does not provide another choice, its parent choice point’s

trail is unrolled analogously. Otherwise, the next path is evaluated. Still, backtracking

happens only as far as required until the next choice can be made.

We refer to this behaviour as partial backtracking, because after backtracking the SJVM

is still in a state corresponding to an inner node of the symbolic execution tree. Since

encapsulated search relies on the execution of a method, that method’s frame (and all

frames directly or indirectly created by it) could be popped from the frame stack in order

to return to deterministic control flow of the surrounding application. This way, the

SJVM could end encapsulated search immediately and return an individual solution to

the surrounding application.

However, this mechanism is only useful if search is not expected to be continued at

a later point in time. Particularly, this generalises badly under the assumption that an

arbitrary number of solutions will be queried. The underlying problem is that it is not

possible to resume search in a state in which the next solution could be computed. After

frames corresponding to search are popped from the stack, their former state is lost. As

an ad-hoc mitigation, frames could be stored before popping them from the frame stack.

However, the mechanism for storing frame state would be serialisation or a different

form of deep copy. Therefore, this mitigation suffers from the same deficiencies as the

copy-based approaches, so partial backtracking is insufficient for the problem at hand.

26In fact, after making a choice and imposing its respective constraint, Muli checks the resulting constraint
system for consistency. As a result, Muli only follows the corresponding execution path if all imposed
constraints are satisfiable [DK1़b].
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Full backtracking The problems of partial backtracking can be resolved by extending

the approach. Instead of performing backtracking locally by using the trail of the current

choice point only, full backtracking reverses all effects that encapsulated search has had

on the state of the SJVM using all trails of the current choice point and its parents, until

reaching the very beginning of encapsulated search. This way, the SJVM can cleanly

return from encapsulated search and pass the value to the surrounding (deterministic)

application, thus allowing regular execution to continue. Consequently, in order to be

able to evaluate a subsequent choice later, the SJVM has to be able to restore the state

that is valid right before making that choice, i. e. the state that the SJVM would be in

after partial backtracking reaches a choice point that offers another choice. To that end,

the SJVM is augmented by two additional data structures.

The first is a pseudo choice point that marks the root of a symbolic execution tree.

We call it pseudo, because it always offers only one ‘choice’. Instead, its purpose is to

record a trail for all SJVM state changes performed from the beginning of encapsulated

search to the first actual choice caused by non-deterministic evaluation. This is necessary

because the SJVM maintains trails per choice point. Consequently, the SJVM will be able

to reverse the entire effects of evaluation within encapsulated search, so that the SJVM is

in a clean state to continue evaluating the invoking application.

The second data structure is an inverse trail. Like the trail, the inverse trail is a stack

structure that records operations necessary to restore a given SJVM state. However, it

is not used for backtracking the effects of encapsulated search, but for restoring these

effects in order to be able to resume search, i. e. to undo backtracking. Consequently,

elements are not added to the inverse trail during execution of a search region. In fact,

the inverse trail remains empty during encapsulated search. Elements are only added

to the inverse trail during backtracking, directly corresponding to elements that are

removed from the trail. Therefore, after backtracking the effects that followed making

a choice, that choice point’s trail stack is empty, whereas its inverse trail stack may be

full. There is a bijective mapping of trail elements to their inverses (cf. Table 13.2), thus

ensuring that for every trail the SJVM is able to create a corresponding inverse trail.

For example, backtracking the iadd instruction is performed by first executing the Pop

element from a choice point’s trail, thus removing the last operand 𝑒 from the operand

stack. Simultaneously, the corresponding inverse trail element Push is created, holding

the operand 𝑒. The inverse element is pushed to the inverse trail.

Leveraging these additional data structures, the trail-based full backtracking method

works as follows. After making a choice at a choice point, executing subsequent in-

structions results in changed SJVM state, as well as in elements recorded on the trail
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that describe how to revert to the previous state. Upon finding a solution, trails of all

choice points are used in order to obtain the SJVM state from before search has begun (in

contrast to partial backtracking, which uses the most recent choice point’s trail only).

The trail of the most recent choice point is only relevant for the solution that has just

been found, so that the SJVM will not need to be able to revert to that state anymore

as no additional solution can follow from that state. Therefore, during backtracking of

this choice point, no elements are added to the inverse trail. Instead, the choice point is

marked to proceed with the next choice when it is encountered next. For the remaining

choice points until the root of the symbolic execution tree, elements are added to their

respective inverse trails during backtracking: For each element popped from the trail

stack, the corresponding effect is performed on the SJVM, and an inverse trail element

that describes how to reverse this effect is pushed on the inverse trail stack.

Maintaining an inverse trail ensures that, when effects of search are later restored

using the inverse trail, the underlying bytecode does not have to be executed again to

reach a specific state. Instead, the relevant consequences of its computations (results

as well as side effects) are already captured by the (inverse) trail elements and can be

obtained from there. This is illustrated in Figure 13.3, where backtracking pops a symbolic

expression 5+𝑦 from the operand stack, while creating a corresponding Push trail element

on the inverse trail in order to prepare for restoring the former state later on. As a result,

the use of the inverse trail enables the SJVM to undo the effects of backtracking until

reaching the next relevant choice point. At the same time, after backtracking the effects

of encapsulated search and before resuming search for a search region by unrolling

its inverse trail, the SJVM is in a clean state that allows deterministic computation to

examine the found solutions or to perform unrelated tasks.

Advantages of the full backtracking method include that an established structure of

the Muli SJVM, the trail, can be re-used for implementing the inverse trail. Moreover, the

operations that are needed to restore state using the inverse trail are identical to those

used by the regular trail. There is a bijective mapping from a trail element to its inverse,

thus ensuring that for every trail there is a unique inverse trail and vice versa.

In order to maintain the inverse trail, the full backtracking method requires memory

corresponding to the number of executed instructions within a search region. However,

the required memory does not exceed the amount of memory that was required for the

regular trail in the first place, since the inverse trail only holds elements that are inverses

to those that have been on the trail prior to backtracking. Furthermore, only one sequence

of trails and inverse trails representing a single path through the symbolic execution

tree is required per search region in order to be able to reach previous states from which
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Figure 13.3: Effects on trail and inverse trail resulting from backtracking a choice point.

execution can continue. In contrast, the copy-based approaches require maintaining

multiple copies corresponding to several savepoints along the symbolic execution tree.

13.5 Full Backtracking in the SJVM Using an Inverse
Trail

For the Muli SJVM, the full backtracking method is preferable over the copy-based

approaches as it is a straightforward extension of the existing Muli SJVM while providing

a balance of memory requirements and reliability. Moreover, for the problem at hand it is

more suited than the partial backtracking method, given that it facilitates fine-granular

control of encapsulated search, allowing programs to compute and retrieve individual

solutions for a given search region, regardless of the size of the search space. Therefore,

we extend the Muli SJVM [DK1़a] to implement a prototype of the full backtracking

method, thus achieving support for the retrieval of individual solutions from encapsulated

search, as well as offering an interface to resume search.

As a basis for defining a new interface to Muli’s encapsulated search, the Java Stream

API introduced in Java ़ comes to mind. In the Stream API, a stream may be a (poten-

tially) infinite sequence of elements that are not evaluated unless consumed individu-

ally [Ora1़b]. Each element of a stream can be consumed exactly once, and may be

computed on an on-demand basis, i. e. as soon as an element is required by a terminal op-

eration. Consequently, the stream is allowed to comprise an infinite number of elements.

Moreover, as soon as an element is consumed, the stream is not expected to be able

to produce it again. Additionally, the API does not prescribe how stream elements are
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SolutionIterator

- searchRegion: Supplier<T>

+ SolutionIterator(Supplier<T> searchRegion)
+ tryAdvance(Consumer<Solution<T>> action): boolean

≪interface≫
Spliterator

+ tryAdvance(Consumer<G>): boolean
+ forEachRemaining(Consumer<G>)

G

≪G → Solution<T>≫

Muli

+ search(Supplier<T> region): Stream<Solution<T>>

≪create≫

StreamSupport

+ <T> stream(Spliterator<T>): Stream<T>

java.util.*
muli.*

Figure 13.4: UML class diagram conceptualising the relationships between Java Stream
API and the Muli implementation for retrieving individual solutions from
encapsulated search.

obtained, i. e. a stream implements the iterator pattern [Gam+95]. All things considered,

this interface is very suitable for accessing the full backtracking method for encapsulated

search. In order to accommodate for the Java Stream API, the goal is to find a suitable

implementation for a new encapsulated search operator search() that accepts a search

region as a parameter and returns a stream of Solution objects.

The search region is passed to search() as an implementation of the functional interface

type Supplier<T> , where T represents the type of individual solutions returned by the

search region (cf. Figure 13.4). A search region implicitly implements this functional

interface type if it is in the form of a lambda expression or a method reference, as long as

the lambda or the referencedmethod do not accept parameters and return a value of type T .

The runtime environment wraps a found value (or an exception that occurred at runtime)

in objects of type Solution<T> . The return type of search() is Stream<Solution<T>> , i. e. an

object representation of the stream whose elements are lazily computed by encapsulated

search as soon as they are required by a terminal operation.

For the purpose of constructing the stream, search() uses a helper method in java.util.

stream.StreamSupport that accepts an implementation of an iterator and converts it into

a stream. This iterator must implement the generic interface java.util.Spliterator<G> ,

where G represents the type of returned elements, here Solution<T> . This interface is im-

plemented in Muli by the class SolutionIterator<T> , which is responsible for controlling

encapsulated search in the SJVM. Control logic that starts encapsulated search and (on

subsequent invocations on the same search region) reverts SJVM state is implemented in

the method tryAdvance of SolutionIterator , which is called indirectly from a consuming

stream operation.
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Adhering to the interface prescribed by Spliterator , the implementation of tryAdvance

returns false if no additional solution has been computed, i. e. if no choice point of

the corresponding search region offers another choice, or true if a solution has been

computed. In case of the latter, the found solution is passed to the accept method of the

consumer that needs to be passed to tryAdvance . More precisely, tryAdvance performs

the following steps, given a consumer c and a search region r . First, it changes the

SJVM’s execution mode so that non-deterministic computations are allowed and sets this

iterator’s search region to be the active one in the SJVM. This is required to assign trail

elements created during execution to the correct choice point. Second, the method either

(before computing the first solution) creates a pseudo choice point to mark the root of

encapsulated search and invokes r to compute the first solution, or (before computing

subsequent solutions) instructs the SJVM to revert the state to that of the current choice

point using the inverse trail and to calculate an additional solution. Third, as soon as a

solution is found, tryAdvance instructs the SJVM to wrap it into a Solution object s and

to perform full backtracking. Fourth, it reverts the SJVM’s execution mode and active

search region to those prior to this search. Finally, it invokes c.accept(s) in order to

pass the found solution on to the next operation of the stream.

Inside the SJVM, the existing backtracking mechanism is modified to accommodate for

the inverse trail. So far, the mechanism for backtracking operated locally, i. e. only on a

choice point’s trail stack, iterating over its elements and thus reversing the changes to

the SJVM state. The new implementation extends this mechanism to operate on both

trail and inverse trail. As a result, backtracking can now be executed in three modes:

First, SimpleRestore effectively uses the former backtracking mechanism, i. e. it processes

the trail without creating inverse elements. This is used when processing the trail to

backtrack to the most recent choice point. Second, TrailToInverse processes the regular

trail and pushes corresponding inverse elements to the inverse trail. This mode is applied

for backtracking to the remaining choice points until the root of symbolic execution,

i. e. the pseudo choice point, is reached. Third, InverseToTrail is used for restoring the

effects of encapsulated search from the inverse trail. Analogously, it restores a previous,

mid-search state of the SJVM and pushes corresponding inverses to the regular trail, thus

preparing for later backtracking.

Prior to this work, that mechanism was only invoked to process the most recent choice

point, as it implemented the partial backtracking method. We extend the scope to process

all choice points as follows. Backtracking begins in SimpleRestore mode with the most

recent choice points until a choice point is reached that offers another choice. This is

the state that needs to be restored when resuming search later. From that choice point
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1 public static void powersOfTwo() {
2 Stream<Solution<Integer>> powers =
3 Muli.search(() -> {
4 return twoPower(0); });
5 powers.limit(10).forEach(System.out::println); }

Listing 13.2: Modified powersOfTwo method using the new interface. Guaranteed to ter-
minate after computing at most 10 solutions.

on, backtracking continues in TrailToInverse mode until reaching the root choice point.

This mechanism is invoked by tryAdvance after a found solution is wrapped. Moreover,

we implement an additional method in the SJVM that is invoked by tryAdvance to resume

search. It uses the same backtracking mechanism, but in the InverseToTrail mode.

Since the new mechanism leverages Java’s Stream API by offering an interface that im-

plements java.util.stream.Stream , Muli programs can now control encapsulated search

in the same way as they use other stream-based iterators on arbitrary data structures. In

particular, this means that programs can invoke methods on the solution stream gener-

ated by encapsulated search using the new search() operator, such as count , filter , skip ,

limit , map , and forEach . These methods can be combined using the Stream API’s fluent

interface style. For example, Listing 13.2 exhibits a modified version of the program from

Listing 13.1 that uses Muli’s new API in combination with standard stream operations

from Java. The modified example creates the solution stream by invoking search() using

a search region, but search is not actually started at this point. Subsequently, the resulting

stream is limited to at most 10 elements using the limit method. Actual elements are

calculated as soon as the terminal operation forEach is invoked, which retrieves solutions

from the stream individually.

13.6 Evaluation

Search problems tackled by Muli programs may exhibit a search space containing an

infinite number of solutions. As in lazy functional languages, such a search space may

have been created intentionally in order to avoid adding imperative, deterministic checks

for termination conditions that would be detrimental to a rather declarative style. In

any case, the runtime environment is not able to detect whether full execution can

terminate and it must therefore be capable of retrieving individual solutions from the

search space. Prior to our work, the runtime environment of Muli did not cope well
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with such a situation, as it can either return the first solution of a specified search region

only, or return all its solutions. In the latter case, the application would not terminate for

search regions with an infinite search space, since the SJVM would not return from search

before all solutions have been computed, which is trivially impossible in this situation.

Our novel approach and implementation provide support for this. Applications are now

able to evaluate a search region in a way that individual solutions can be retrieved, by

facilitating to resume search in order to obtain additional solutions at any later point

during runtime.

A direct comparison of the implementations in Listing 13.1 and Listing 13.2 demonstrates

that the programming style that follows from using the Stream API is beneficial to

the understanding of Muli source code. The example exhibits how post-processing of

individual solutions can now be expressed elegantly using a functional style.

We have performed a set of experiments in order to conduct a quantitative evaluation

of the modified runtime as well. Muli applications are executed on the Muli SJVM running

in an OpenJDK JVM, version 1.़.0_171. Constraint solving is performed using a solver

component in the SJVM that employs the JaCoP finite domain solver [Kuc03]. The

experiments are conducted using Ubuntu 1़.04 with a 4.15.0 x़6_64 GNU/Linux kernel on

an Intel Core i5-5200U CPU. Each experiment is executed 510 times in a row, from which

the first 10 results are dropped in order to exclude results from before JIT compilation.

In a first experiment, we have evaluated how well the new approach supports the

retrieval of individual solutions from encapsulated search of a problem with an infinite

search space. To that end, we compared the execution of the program depicted in

Listing 13.1 on the SJVM prior to our work to the execution of the program in Listing 13.2

on our modified SJVM. Both search regions solve the same problem and generate the same

set of constraints on the SJVM during search. In both cases, we try to obtain 10 solutions

from the search region and print them to the command line. As expected, using the old

SJVM implementation the program never terminated within a pre-defined time limit of 5

seconds and did not print a single solution. Using the new SJVM implementation, the

respective program terminated after 0.66 milliseconds on average, successfully printing

the first 10 solutions.

In a second set of experiments, we have let our modified Muli SJVM solve three classic

search problems.27 We compare their execution times to those of implementations of

identical problems in Prolog in two variations: Each problem is implemented once using

the CLP(FD) package [Tri12], and once using pure Prolog only [Wie03]. The Prolog

27The source code of the example applications is available at https://github.com/wwu- pi/muli/tree/
master/examples/sac19 .
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Figure 13.5: Comparison of execution time needed to solve search problems, each averaged
over 500 executions.

applications are each executed 500 times using the 64-bit version of SWI-Prolog 7.6.4, on

the same machine as the Muli applications.

For all three applications, the Muli implementations exhibit a strong advantage over

the pure Prolog implementations, as execution takes drastically shorter (cf. Figure 13.5).

This is likely the result of the constraint propagation abilities of the solver employed by

the Muli SJVM, which allow the SJVM to rule out execution paths early if their sets of

constraints are not satisfiable. In contrast, for most experiments the Muli application

performs slightly worse than its CLP(FD) counterpart in Prolog. That was to be expected,

given that our prototypical implementation of the SJVM has been implemented in Java,

leading to one virtual machine running nested into another. This costs us about an

order of magnitude. This overhead can be avoided by a low-level implementation once

the concepts of Muli are stable and have shown to be useful. Having this in mind, the

comparison to CLP(FD) is encouraging nonetheless. After all, in contrast to Prolog

programs that use CLP(FD), Muli allows greater flexibility for expressing programs

that contain search problems, with the option of mixing the OO and constraint-logic

programming paradigms as needed. Moreover, in the case of the Knapsack problem, Muli

is even better than CLP(FD). Here, encapsulated search is used to find a valid solution.

This search is included in a loop which looks for better solutions in each iteration, thus

combining an imperative style for defining the exit condition with the constraint-logic

OO search for solutions. This behaviour can be elegantly implemented in Muli, whereas

this is harder to achieve in Prolog (with or without CLP(FD)).

In addition to using these applications for execution time comparisons, the Muli applic-

ations exhibit some implementation details that demonstrate how constraint-logic OO

programming can be useful to developers coming from an OO programming background.

For example, the Knapsack application manages three arrays of the same length (weights ,
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benefits , and amounts), where each array element describes a different property of an

entity that is consistently described by its index. Muli facilitates initialisation of these

properties in an imperative style using for loops, e. g. for declaring each element of the

amounts array free. Furthermore, developers are able to access and modify individual

elements without requiring a recursive predicate iterating over all of them. While that

may come natural to a Prolog programmer, it is strange for developers who are used to

imperative programming. Additionally, the Graph colouring application demonstrates

how constraint-logic OO search can include object representations by declaring a class

Edge and using it inside the search region.

13.7 Related Work

Closest to Muli are approaches that extend OO programming or imperative programming

with concepts from constraint-logic programming. Such approaches are presented in

e. g. [DM03; MK11; TH0़]. Neither of these approaches provides encapsulated search

and hence the possibility to cleanly separate search from other computations. Moreover,

none of the mentioned approaches integrate OO programming and constraint-logic

programming as smoothly as Muli.

An alternative to using an integrated constraint-logic OO language is to call constraint-

solver libraries from an OO language. Constraint solvers for Java are e. g. JaCoP [Kuc03]

and OptaPlanner [The17]. Clearly, a seamless integration of OO and constraint-logic

programming cannot be achieved this way. For instance, a close interaction between

search and search control will not be possible.

Moreover, there are several approaches which add OO features such as inheritance to

a (constraint) logic programming language, mostly to Prolog, e. g., Visual Prolog [Sco10],

the work of McCabe [McC92], the approach by Shapiro and Takeuchi [ST़3], Pro-

log++ [Mos94], and Mozart/Oz [Van+03]. All of these languages are declarative languages,
which just provide syntactic sugar for OO concepts but do not integrate them directly.

Their flavour is completely different from that of Muli. Assignments and state changes

are not supported. Moreover, these languages do not provide encapsulated search.

tuProlog achieves the integration of Prolog and Java by providing a Prolog implement-

ation written in Java [DOR05]. However, this results in applications implemented using

two different languages. CAPJa combines Java and Prolog by facilitating the mapping

of Java objects to Prolog terms, but distinct code in each language is required never-
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theless [Ost15]. Consequently, both approaches offer neither seamless integration nor

encapsulated search.

There are also approaches such as Scala [Ode+17] integrating functional and OO pro-

gramming. Also, Java itself now offers support for writing lambda abstractions [UFM14].

Although functional programming is another declarative programming paradigm, these

approaches are rather different from Muli as they do not provide built-in search mech-

anisms. However, these and other approaches demonstrate how software development

benefits from mixed-paradigm languages.

The encapsulated search of Muli is similar to the corresponding concept provided

by the functional-logic programming language Curry [AJ16; Bra+11; HKM95; LK99].

However, our implementation works differently, since the Curry approach (particularly

the try operator) would not work properly in the presence of side effects. Particularly,

when encountering non-deterministic choice during evaluation (cf. choice points in

Muli), Curry’s try operator stops evaluation at that point and returns a list of lambda

abstractions representing partially evaluated results, where each element of the list

represents one choice. As subsequent branches might rely on a given state (i. e. the one

prior to making a particular choice), this approach only works if it is safe to assume

that no side effects are incurred during non-deterministic evaluation. However, this

assumption does not hold in Muli due to the nature of OO (imperative) programming,

thus requiring the SJVM to evaluate an individual solution in full.

ࢽ.13 Conclusions and Future Work

We have provided a set of contributions. First, we have integrated encapsulated search

into a constraint-logic object-oriented language and presented approaches to traverse the

solutions of a search problem, in particular if that problem – expectedly or unexpectedly –

has an infinite number of solutions. Second, we contribute a prototypical implementation

of a suitable approach in theMuli runtime environment. The prototypical implementation

is able to undo the effects of trail-based backtracking, thus facilitating the retrieval of

individual solutions from encapsulated search over search regions, while allowing for

arbitrary computations outside of encapsulation. As a result, we show that it is possible

to lazily compute a stream of solutions in constraint-logic OO programming.

The trail-based full backtracking method allows runtime environment to compute

solutions of search regions in encapsulated search, while allowing applications to retrieve

individual solutions. As a result, solutions to given problems are computed on an on-
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demand basis. This improves performance if only a subset of solutions is required (for

search regions with finite search spaces) and allows encapsulated search to terminate

even in the case of infinite search spaces. For example, this can be used in order to

first obtain a small set of solutions and to evaluate them deterministically according to a

separate target function, e. g. one that is supplied by an external system. If these solutions

are considered insufficient according to that target function, encapsulated search can

resume in order to determine further solutions.

To that end, the method augments Muli’s trail concept used for backtracking by adding

an inverse trail. On backtracking, this inverse trail is used to record operations that are

necessary for restoring the state of the SJVM, i. e. to undo backtracking. That way, effects

on the state resulting from non-deterministic computation can be reversed after one (or

more) solutions have been found, thus facilitating deterministic computation, while still

maintaining the ability to re-enter encapsulated search in its previous state in order to

resume search for further solution This method has been found to perform well in our

evaluations using a Muli runtime environment that was modified accordingly.

The presented method is prototypically implemented in the Muli SJVM, enabling Muli

application developers to control encapsulated search and to obtain individual solutions.

The resulting modified Muli SJVM is available on GitHub as free software.2़

As a complement to our prototype, future work can consider implementing an al-

ternative virtual machine using a language that offers immutable data structures in

combination with copy-on-write, as this might be a way to achieve a reliable and efficient

implementation of a copy-based method. For example, this could be done using Scala,

Haskell, or Curry. Moreover, once concepts of Muli are stable, a low-level implementation

of the runtime environment should be considered to improve execution performance.

Furthermore, the Java Stream API is designed to facilitate parallel computation of stream

elements, by splitting a stream and delegating the consumption of the resulting partial

streams to multiple threads. We have disregarded (and disabled) parallel computation for

now, because this feature is not mandatory for custom streams and because the SJVM is

not capable of parallel execution. Nevertheless, future work could tackle increasing the

performance of search by evaluating non-deterministic branches in parallel.

2़Available at https://github.com/wwu- pi/muli .
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14 Reference Type Logic Variables in Constraint-logic Object-oriented Programming

14.1 Motivation

Constraint-logic object-oriented programming can be used to develop business software

that involves finding solutions to constraint-logic problems in an integrated way, par-

ticularly for applications that add constraints dynamically during runtime. The mixed

paradigm leverages benefits of well-known object-oriented programming languages as

well as of constraint-logic programming. For example, the constraint-logic object-oriented

programming language Muli augments Java with logic variables, symbolic execution,

constraints, and encapsulated search using a customised symbolic Java virtual machine

(SJVM) [DK1़a].

So far, symbolic expressions in Muli can involve logic variables of any type, but

constraints can only be defined over (logic) variables of primitive types [DK1़b]. While

those variables may be fields of objects, thus proving useful in an imperative context as

well as in an object-oriented one, such constraints are not applicable to entire objects.

Similarly, the semantics of further interactions (particularly invocations and field accesses)

with unbound reference type logic variables is not defined yet. After all, objects in object-

oriented languages usually do not just encapsulate data, but behaviour as well. As a

result, such interactions lead to interesting behaviour, e. g., when methods are invoked

on unbound logic variables or objects are compared for equality. In order to realise

the benefits of an integrated programming language, the expected behaviour of such

interactions needs to be defined and implemented.

Consider the following case that will be used as a running example. We have an object-

oriented representation of shapes, namely Rectangle and Square that both implement an

interface Shape (cf. Figure 14.1), assuming integer edge lengths in millimetres. Implement-

ations of Shape provide an appropriate method getArea() that calculates the area from

field values of an object, as well as a method toString() that outputs the object’s field

values in a human-readable form.29

As a simple example, Listing 14.1 formulates a constraint to search for arbitrary shapes

that have an area of 16 square millimetres. No specific instance is provided for s ; instead,

s is declared as a logic variable. On invocation of either getArea() or toString() on

s , the execution environment has to consider that multiple implementations of these

methods are applicable, as per the definitions depicted in Figure 14.1. In Muli, we expect

the applicable alternatives to be evaluated non-deterministically until all alternatives are

29Even though toString() is not declared explicitly in the given interface, the Java language specification
implicitly augments interfaces with abstract methods that correspond to every method that is declared
in java.lang.Object [Gos+15, § 9.2]. Among others, this includes an implicit declaration of toString()
that is consistent with the corresponding declaration in Object .
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≪interface≫
Shape

+ getArea(): int

Square

+ width: int

+ getArea(): int
+ toString(): String
+ equals(): boolean

Rectangle

+ width: int
+ height: int

+ getArea(): int
+ toString(): String
+ equals(): boolean

Figure 14.1: Class structure assumed for the running example.

1 Shape s free;
2 if (s.getArea() == 16) {
3 System.out.println(s.toString()); }
4 else { Muli.fail(); }

Listing 14.1: A constraint-logic object-oriented program that involves a free object.

considered [DK1़a] (“don’t know” non-determinism), here resulting in at least two output

lines, namely one per actual type of s . Among other things, this paper will elaborate and

discuss where exactly non-determinism can be introduced during the evaluation of this

example and similar programs.

This paper contributes a concept for reference type logic variables in the context of

constraint-logic object-oriented programming. To that end, all types of interactions of a

program with reference type logic variables are discussed based on the example of Muli.

This takes peculiarities of comparing equality of Java objects into account. For each

possible interaction, this paper defines the expected behaviour and outlines approaches

for handling it in the context of arbitrary object graphs. These approaches account for

varying positions of objects’ types in the class hierarchy that result from inheritance and

implementation relations between classes.

This paper presents the contribution as follows. Section 14.2 provides a brief introduc-

tion to the constraint-logic object-oriented programming language Muli. Afterwards,

Section 14.3 discusses interactions and explains how they can be handled. Furthermore,

that section introduces constraints that are necessary to achieve these interactions. As

this is a report on research in progress, Section 14.4 presents an initial implementation

idea for a prototype that is going to be used for evaluation. Related research is outlined in

Section 14.5. Finally, Section 14.6 summarises the contribution and provides an outlook.
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1 int x free;
2 int i = 2, j = 3;
3 int y = i + j; // y == 5.
4 int z = x + y; // z == x + 5.

Listing 14.2: Arithmetic expressions containing bound or unbound variables.

14.2 Constraint-Logic Object-Oriented Programming
with Muli

As a constraint-logic object-oriented language, Muli allows developers to use program-

ming styles of object-oriented programming, while facilitating the specification of

constraint-logic problems and finding solutions to them in the same language [DK1़a].

Muli syntax is based on Java ़. The SJVM serves as the execution environment that sup-

ports logic variables by means of symbolic execution and leverages a constraint solver to

solve constraint-logic problems. Compared to Java, the syntax extension is minimal and

limited to the free keyword. It occurs in declaration statements to indicate an unbound

(“free”) variable:

1 int x free;

At runtime, free variables of primitive types are treated as logic variables to be used as

part of symbolic expressions. Similarly, free objects can be defined, but their semantics

is undefined and the execution environment does not provide an implementation for

treating such variables yet. Therefore, the following code compiles but invoking the

method in the second line will fail:

1 Object o free;

2 o.toString();

All variables, including unbound ones, can be used in boolean or arithmetic expressions

in the same way as in Java. However, if an expression contains unbound variables, they

cannot evaluate to a specific value. Therefore, the execution environment treats those

variables symbolically and creates a symbolic expression [DK1़b]. For instance, after

executing Listing 14.2, y holds the constant value 5 (as expected in Java), whereas z holds

the symbolic expression x + 5 .

Ultimately, symbolic arithmetic expressions can evaluate to numeric constants (e. g.,

after labelling symbolic variables they contain). Therefore, an arithmetic expression that
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contains only int (logic) variables and int constants can be used anywhere where an int

expression is expected.

The behaviour described so far is deterministic. However, as soon as a symbolic

expression is used as part of a condition that leads to branching (e. g., in an if statement),

it is possible that the execution environment cannot decide on a unique outcome, e. g.

whether a condition evaluates to true or false . When there is more than one choice,

non-determinism is introduced, so that execution may continue with any of the possible

branches [DK1़b]. The execution environment makes a choice by selecting a branch,

thus asserting a particular outcome (e. g., the condition shall be false). That assertion

is maintained by imposing a corresponding constraint on the constraint store. After

executing that branch, the execution environment backtracks state (constraint store,

operand and frame stacks, program counter, and heap values) to the point where a choice

was made, and then proceeds with the next choice. In Muli, this behaviour is referred to

as search.

In order to limit the effects of non-deterministic execution, non-deterministic branching

has to be encapsulated in the program. To that end, Muli offers encapsulation methods

such as getAllSolutions() or getOneSolution() that take a lambda expression or amethod

reference as a parameter which is then executed non-deterministically. The result of non-

deterministic branching is a symbolic execution tree [Kin76]. Solutions to a constraint-

logic problem correspond to the leaves of that tree, i. e. where execution ends, such as by

throwing an exception or returning a value or expression. The encapsulation method

collects the required solutions and returns them to the calling, deterministic program.

14.3 Reference Type Logic Variables (or Free Objects)

As Muli is based on Java, Muli distinguishes the same four kinds of reference types as

Java [Gos+15, § 4.3]: class types, interface types, array types, and type variables. Type

variables are fundamentally different from the other kinds, as they are substituted by a

reference type. For example, ArrayList<E> contains the type variable E that is substituted

by a reference type, e. g., Object or String . In contrast, the other kinds of reference types

imply that they are instantiated at runtime with values that come from the heap, i. e. they

point to data structures such as objects or arrays. Since type variables are that different,

they are excluded from further considerations in this work, resulting in a definition of
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reference types that is congruent to that of C# [Mic15].30 Class and interface types exhibit

an identical structure [Gos+15], whereas array types are interpreted differently. Even

though array types are interesting as well, this work focuses on class and interface types

for now. In the following, they are subsumed as reference types for improved legibility.

Due to the nature of Java (and, therefore, Muli), the reference types that this work

focuses on are not limited to data encapsulation. They also encapsulate behaviour (via

methods) that may change along the implementation hierarchy as a consequence of

overriding. Therefore, when a variable that is declared by Object o is of type Object , o

may hold an instance of Object or of its subclasses. This affects the typecasts that can

(validly) be performed on o at runtime, as well as the behaviour that is expected from

invoking methods on the object. This implies that interactions with a reference type

logic variable declared by Object o free need to consider that o may represent instances

of subclasses of Object as well.

Consequently, we first need to define at which point exactly non-determinism may

be introduced when interacting with reference type logic variables. Options are either

during declaration/initialisation of a reference type logic variable (i. e. at Object o

free), or when a feature of a variable that is not sufficiently specified is required later

during runtime (e. g., on invocation of o.toString() or on access to a field such as square

.width). If non-determinism were already introduced at declaration/initialisation time,

this would introduce many branches that are potentially irrelevant, because the SJVM

cannot determine how many choices will be required. Therefore, aiming to reduce the

state space, Muli creates choices only if discriminating behaviour is expected, e. g., when

control flow branches. For reference type logic variables, discriminating behaviour is not

expected at the declaration of a logic variable (which can be done deterministically) but

can be expected when one of its fields is accessed or its methods are invoked. Hence, we

propose that non-determinism is incurred when a feature of a logic variable 𝑣 is required,
where 𝑣 is not sufficiently specified to be handled deterministically. As a result, this

allows search to focus on branches relevant to the respective access, thus effectively

reducing the state space. Note that these considerations are similar to those regarding

the Label reduction rule from [DK1़b] that is used for substituting primitive type logic

variables with their potential values. Similar to the present case, Label is suggested to

be used only as a last resort if no other rule can be applied as its application results in

30Note that only the standalone use of type variables is disregarded here. Consequently, the reference
types that we consider in the following may still make use of type variables as part of parameterised
(generic) types.
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1 class Demo {
2 public static void main(String[] args) {
3 A a = new A();
4 A b = new B(); } }
5 class A { public int i = 2; }
6 class B extends A { private int i = 1; }

Listing 14.3: Fields are only hidden, but not overridden.

one branch per potential value, which usually are a lot. If this is done too early during

evaluation, this increases the state space unnecessarily [DK1़b].

With this in mind, there are six different kinds of interactions between a program

and a reference type logic variable that need to be examined in the following as they

potentially result in non-determinism. First, accesses to fields of an object by a program,

followed by invocations of methods. Moreover, the program can compare equality, which

occurs in two forms in Java (and therefore in Muli), i. e. comparing reference equality

or value equality, which are the third and fourth kind, respectively. Fifth, a program

can perform operations on the type of a variable. Last but not least, as a novel kind of

interaction, programmers may expect to be able to compare objects for structural equality,

i. e. equality based on objects’ field values instead of the entire object. This is similar

to unification of constructor terms, which is common in logic programming but not in

object-oriented programming languages.

14.3.1 Accessing a Field of a Free Object

In Muli and Java, fields are accessed using a dot notation, e. g., square.width . In contrast

to methods, fields of a Java class cannot be overridden by subclasses. Although subclasses

can declare fields with names identical to those in superclasses, this merely results in

the original field being hidden from the overriding class, but not from the original one.

Consider an artificial Java example in Listing 14.3. Accesses to i in both cases a.i and

b.i result in the same value 2 because a and b are accessed via variables of type A . Of

course, if b were stored in a variable of type B , that would not be the case. Muli shares

this semantics with Java.

As a result, accesses to fields of free objects do not need to consider the class hierarchy

of the object’s type, but only the type of the reference type logic variable through which

access takes place (here, A). Since a free object is uninitialised, in its initial state all its

fields are to be treated as logic variables as well. Therefore, accessing a field of a free
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object is a deterministic operation. Its result is the logic variable that is the field of the

object. For instance, in the running example accessing square.width yields the logic

variable of type int that is stored at that field.

14.3.2 Invoking a Method on a Free Object

For a variable Shape s free , consider the statement s.getArea() as seen in Listing 14.1.

As s is declared free, this causes the execution to evaluate the method getArea() . Shape

is merely an abstract supertype, so all the subtypes need to be taken into consideration,

as they provide implementations for getArea() . Similarly, even in the deterministic

nature of Java, the method that is actually invoked depends on the type of the referenced

instance, not on that of the variable. Consequently, in order to determine which actual

implementation is going to be invoked, the statement s.getArea() causes the SJVM to

discover the set 𝑆 of non-abstract subtypes that extend Shape .31 If the supertype can

be instantiated as well, the set of relevant types then is 𝑆′ = 𝑆 ∪ {X} for a non-abstract

supertype X . Otherwise, the set of relevant types is just 𝑆′ = 𝑆. For the running example,

𝑆′ = 𝑆 = {Square , Rectangle}, as the supertype is an interface type and is therefore

abstract.

In general, the set of relevant subtypes can be restricted further, thus reducing the

number of non-deterministic branches that the SJVM needs to evaluate. After all, we are

only interested in those branches that potentially exhibit distinct behaviour. Therefore,

the SJVM needs to discover 𝑆″ ⊆ 𝑆′, comprising only those classes that provide their own

implementations of getArea() , thus omitting all types that merely inherit an implement-

ation from their supertype. Afterwards, the SJVM only needs to evaluate one branch

per element of 𝑆″. If 𝑆″ holds exactly one type, execution continues deterministically by

invoking that type’s implementation on 𝑠. Otherwise, evaluation creates a choice point in

order to execute all ((t)s).getArea() , where t ∈ 𝑆″. As a result, the number of choices

that this choice point provides is equal to the cardinality of 𝑆″.
Looking at the running example from Listing 14.1, 𝑆′ cannot be reduced as all sub-

types provide their own implementations, i. e. 𝑆″ = 𝑆′ = {Square , Rectangle}. For this
reason the System.out.println statement is expected to be executed twice, as indicated

in Section 14.1; once per type in 𝑆″. To discuss a different example with a more detailed

implementation hierarchy, consider the classes depicted in Figure 14.2. For a logic vari-

able A a free , invoking a.m() results in discovering the subtypes 𝑆 = {B , C , D} first. The

31In general, this includes parameterised (generic) types that remain in parameterised form (e. g., ArrayL-
ist<E>). Therefore, this set is finite.
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A

+ m()

B

+ m()

C D

+ m()

selected implementation of m() applicable instance types after choosing B

applicable instance types
= 𝑆″

Figure 14.2: Applicable instance types for a given object A a free before and after choosing
a particular subtype.

supertype A is non-abstract, therefore 𝑆′ = {A , B , C , D}. However, since C does not provide

its own implementation of m() and relies on that of B instead, the set is reduced further

to 𝑆″ = {A , B , D}. The SJVM then continues the evaluation based on 𝑆″.
After making a choice for a type 𝑡 ∈ 𝑆″ whose method implementation is used, the

actual type of the instance that the method is invoked on can be an arbitrary one from a

set of types. Specifically, either the determined type or any of its subtypes. However, the

set of allowed types is restricted further, as it may not contain subtypes that provide their

own implementation (as their implementation would need to be invoked otherwise). This

is illustrated in Figure 14.2, where the set of types is constrained only to B and C . Even

though D is a subtype, it provides an own implementation of m() and would therefore

conflict with having chosen B ’s implementation.

As a result of choosing an implementation, the SJVM needs to add a constraint to

its constraint store that restricts the type of s according to the above description. This

ensures that later interactions with that object do not make conflicting assumptions

regarding the type of s , i. e. to avoid assuming s to be of a type that is not in the reduced

set of applicable types. Similarly, a type 𝑡 cannot be assumed for s if that would violate

a previously imposed constraint, so the corresponding branch must not be evaluated.

Consequently, the constraint that restricts an instance’s type is a set-based constraint.

This type of constraint is novel to Muli, as existing constraints are only of arithmetic

nature.

14.3.3 Comparing Reference Equality of Reference Type Logic
Variables

In Muli and Java, objects are typically compared by one of two means, either reference

equality or value equality. First, let us focus on the former. Based on the program in
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1 Object o free;
2 Object p = new Object();
3 Object q free;

Listing 14.4: Declaration of a set of reference type variables.

Listing 14.4, consider the conditional control flow statements if (o == p) and if (o ==

q) that compare references of reference type (logic) variables.

As o and q are declared free, it needs to be discussed whether the constraint created by

evaluating reference equality should result in the SJVM unifying their references upon

evaluation of the condition, i. e. result in o pointing to the instance referenced by p (for o

== p), or to the same reference as the other logic variable q (for o == q). Arguably, this

should not be the case. Listing 14.4 expressly declares the three variables to be three

different instances, unlike an assignment, such as Object w = p , which would explicitly

make w assume the same reference as p .

Therefore, the evaluation of a condition comparing reference equality is a deterministic

operation even for reference type logic variables that yields true iff two variables reference

the same free object, which is consistent with the Java semantics of comparing reference

equality. No implicit unification is performed.

14.3.4 Comparing Value Equality of Reference Type Logic
Variables

In addition to the means described in Subsection 14.3.3, Java (or Muli) code can also

compare objects in terms of value equality, e. g., by if (o.equals(p)) or if (p.equals(o))

(after an initialisation as depicted in Listing 14.4). This presents another opportunity for

unifying objects if free objects are involved.

As equals() is a method that every class can implement individually, the interpretations

of these two examples are fundamentally different. In p.equals(o) , p is a concrete instance

of Object , so Object ’s default implementation is invoked deterministically, effectively

checking for reference equality. Other implementations might compare instances by

accessing fields of the free object o , thus resorting to the case described in Subsection 14.3.1.

In contrast, o.equals(p) is an invocation of equals() on the logic variable o . As a result,

this case reduces to the invocation of methods (cf. Subsection 14.3.2), resorting to specific

implementations of equals() , e. g., of Square and Rectangle . Consequently, equals() is

not commutative.
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As a result, Muli does not need to handle value equality comparisons specifically,

as they are implicitly covered by other considerations regarding reference type logic

variables.

14.3.5 Performing Type Operations on a Free Object

The (super-) type of a logic variable is determined by its declaration, but initially the

corresponding instance may be of that type or of its subtypes (cf. the definition of 𝑆
in Subsection 14.3.2). This affects operations that operate on the type of a free object;

namely instanceof and typecasts. For example, the set of allowed types for the instance

is reduced by (successful or failed) typecasts. Considering Listing 14.4 again, a program

might try to cast a reference type logic variable to a subtype, e. g., (Square)o . In that case,

given that this is a valid cast, the actual type of o can be Square or any of its subtypes.

Typecasts can be either valid or invalid at runtime. Invalid typecasts are those that

violate the class hierarchy, such as casting an object of type Square to Rectangle . This

deterministically yields a ClassCastException and therefore does not result in a choice

point. The result of evaluating instanceof statements in a similarly invalid contexts is

deterministically false .

In contrast, performing a valid typecast results in two choices as to how execution

can continue. Either the cast is successful (unless a contradictory constraint exists in the

constraint store at runtime), so a new constraint can be imposed narrowing the logic

variable’s type; or the cast is not successful. In regular Java, the latter case is not caught

by a compiler and results in a runtime exception (ClassCastException). Similarly, Muli

can handle this case by imposing a corresponding constraint and throwing that exception.

Therefore, a valid typecast of a reference type logic variable results in a choice point with

at most two options, depending on existing constraints in the constraint store. Similarly,

using instanceof in a valid context results in non-deterministic execution that imposes

the same constraints as successful or unsuccessful typecasts.

To support non-deterministic branching, a constraint is needed that is imposed when a

choice is made for a branch that corresponds to a type operation. This constraint reduces

the set of possible instance types. The set-based constraint from Subsection 14.3.2 can be

re-used, but the sets are computed differently. Given that 𝑆 describes the set of applicable

types prior to imposing a constraint and 𝑈 describes the set of types comprising the

cast target types and all of its subtypes, on a successful cast, the set of applicable types

is narrowed to the intersection 𝑉 = 𝑆 ∩ 𝑈, whereas for a failed typecast all remaining

types are applicable, i. e. the type is constrained to the set difference 𝑉 ′ = 𝑆 ⧵ 𝑈. The
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resulting sets of types are used to impose the corresponding constraints, i. e. 𝑉 for the

constraint that is added to the constraint store when making the choice that the typecast

is successful, and 𝑉 ′ for the other choice.

14.3.6 Imposing a Constraint for Structural Equality between
Two Objects

The cases discussed so far refer to the interpretation of object-oriented concepts against

the background of a constraint-logic object-oriented language. In addition to that, Muli

creates a novel opportunity regarding unification of objects that cannot exist in plain

object-oriented languages without symbolic execution, namely comparing (free) objects

for structural equality (in combination with constraints that enforce it).

Value equality relies on the equals() method that a class can implement individually

(cf. Subsection 14.3.4), for example so that equality depends only on a specific field. In

contrast, we use the term structural equality to refer to a situation in which all fields of two

(free) objects of the same type either share identical values (for fields of primitive types)

or are structurally equal again (for reference-type fields), i. e. the following recursive

definition applies: 𝑜1 ⊙ 𝑜2 ⇔ 𝑡𝑦𝑝𝑒(𝑜1) = 𝑡𝑦𝑝𝑒(𝑜2) ∧ ((𝑜1.𝑥 primitive ∧ 𝑜1.𝑥 = 𝑜2.𝑥) ∨
(𝑜1.𝑥 not primitive ∧ 𝑜1.𝑥 ⊙ 𝑜2.𝑥)) ∀𝑥 ∈ 𝑓 𝑖𝑒𝑙𝑑𝑠(𝑜1),32 where 𝑡𝑦𝑝𝑒(𝑜) is the type of an object

𝑜 and 𝑓 𝑖𝑒𝑙𝑑𝑠(𝑜) is the set of its fields. For example, given two free objects Rectangle r1

free, r2 free , imposing structural equality r1 ⊙ r2 implies that r1.width == r2.width

and r1.height == r2.height in addition to sharing their type. Similarly, if r2 were an

initialised object of type Rectangle , the values of r1 ’s fields are unified with those of

the corresponding fields in r2 . As a result, r1 ⊙ r2 ⇔ r2 ⊙ r1 , i. e. structural equality is

commutative.

A new operator is needed to denote the structural equality constraint ⊙ in source code.

For that purpose, I introduce the symbol #= to be used as a boolean, binary operator in

conditions in order to add this constraint to the constraint store at runtime. It evaluates to

true if fields of two objects are unifiable as described above, and to false if they are not.

In both cases, a corresponding constraint is added to the constraint store that maintains

this equality.

32Note that here 𝑓 𝑖𝑒𝑙𝑑𝑠(𝑜1) = 𝑓 𝑖𝑒𝑙𝑑𝑠(𝑜2) since 𝑡𝑦𝑝𝑒(𝑜1) = 𝑡𝑦𝑝𝑒(𝑜2), so 𝑓 𝑖𝑒𝑙𝑑𝑠(𝑜2) could be used just as well.
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14.4 Implementation

The considerations in Section 14.3 require modifications to the Muli SJVM in terms of

additional constraints and choice point types. This results in changes that need to be

made to the SJVM’s solver component and its choice point generator (cf. [DK1़a]).

The applicable type constraint is a set-based constraint that restricts possible types

for a free object. It maintains a reference to the free object that it affects, and a set

of fully qualified names of types that the object may assume. This set is defined prior

to instantiation of that constraint. In the solver manager, a constraint is imposed in

conjunction with all other constraints in the constraint store. Therefore, the solver

manager can verify consistency of a constraint store by collecting all imposed applicable

type constraints involving a free object and checking that the intersection of the sets

of types is non-empty for each object, i. e. there is at least one type that any object can

assume; in addition to verifying consistency of the remaining constraints.

Additionally, the structural equality constraint translates into a conjunction of arith-

metic equality and type equality constraints as specified in Subsection 14.3.6, hence it

does not need to be represented on its own. The type equality constraint references two

involved objects that need to be of the same type. A constraint store comprising a type

equality constraint is consistent if both objects are trivially of the same type (such as for

regular objects) or if there is a type that is among the applicable types of both objects.

At runtime, evaluations of bytecode instructions that incur non-determinism result in

the creation of choice points. These are responsible for controlling search and, hence, for

imposing constraints and removing them afterwards [DK1़a]. Therefore, the support

for type operations on logic reference type variables requires a corresponding choice

point. It offers choices according to the description in Subsection 14.3.5 and imposes an

appropriate instance of the applicable type constraint for each choice. Similarly, a choice

point for invoking a method according to Subsection 14.3.2 is required. Both choice point

implementations require the implementation of new helper methods that discover sets of

available types. The method Type[] getSubtypes(Type) discovers, for a given type, all

of its subtypes from the loaded classpath. A further method Type[] getImplementations

(Type[], Method) is required that filters a list of types such that it returns only those

types that can be instantiated and that provide an own implementation of a particular

method, thus supporting the case from Subsection 14.3.2.

Last but not least, another choice point is generated if free objects are compared for

structural equality as specified in Subsection 14.3.6. It comprises two choices. One choice
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represents that equality is maintained, resulting in the corresponding constraint being

imposed. The other one corresponds to imposing the negation of that constraint.

14.5 Related Work

Several approaches intend to integrate elements from object-oriented programming

into declarative languages, mostly based on Prolog. For example, tuProlog provides a

Prolog engine implemented in Java, offering access to Java features from Prolog [DOR05].

However, referring to Java types is done rather artificially by means of string literals

which cannot be checked by a compiler, and free objects and accessing their fields

are not considered. As a non-Prolog-based example, Oz is a constraint language that

offers OO features, but does not seem to support constraints involving logic objects

[Van+03]. Despite their integration, the mentioned programming languages follow

a declarative style, which might not be as accessible for developers who are used to

imperative languages.

CAPJa intends to seamlessly integrate Prolog search into Java programs, e. g. by

providing a Java-based abstraction layer from Prolog [Ost15]. The integration supports

a mapping of data structures from Java to Prolog and vice-versa, but focuses on logic

objects used for encapsulating data. It does not consider free (unbound) objects in terms

of method invocations and field accesses, which become relevant if we consider that

objects also encapsulate behaviour, which is expected in object-oriented programming.

As another example, the library heya-unify facilitates unification of data structures in

JavaScript [Laz14], particularly in order to compare object contents or to perform pattern

matching on them. However, it does not support defining entire objects as logic variables

and is limited to comparing structural equality on weakly typed objects and arrays.

The type unification algorithm presented by [Plü09] can be used for Java type inference.

Although their work emanates from a different standpoint, the type unification could be

re-used for formulating the subtype relations for the constraints in this work.

Other work demonstrates that the use of languages integrating multiple paradigms

is beneficial, most notably the Java Stream API [UFM14] and Scala [Ode+17], which

integrate object-oriented programming with functional programming on the JVM. LINQ

offers a similar integration, but for languages on the .NET CLR [MBB06]. A very relevant

integration of logic and functional programming is Curry [Han+95], which incorporates

logic programming into a language with Haskell syntax. Muli lends and adapts some ideas

from Curry, such as encapsulated search and constraint definition via boolean equalities
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[AH15]. However, the adaptation of these concepts to constraint-logic object-oriented
programming results in fundamentally different considerations and implementations.

14.6 Concluding Remarks

This work contributes a concept for reference type logic variables in constraint-logic

object-oriented languages. It details interactions of programs with reference type logic

variables and discusses approaches for handling such interactions, on the basis of the

programming language Muli. As a result, there now is a concept for invocations on free

objects and accesses to their fields, comparisons of different kinds of equality, and type

operations in constraint-logic object-oriented programming.

The discussed approaches efficiently introduce non-determinism where it is specifically

required and take class hierarchies into account. This requires a novel constraint that

restricts types of free objects to support these approaches. Since the constraints previously

supported by Muli were of a purely arithmetic nature, this work also contributes a set-

based constraint to restrict the possible types of free objects.

The contribution is helpful not just for Muli but for constraint-logic object-oriented

programming in general, because it allows non-deterministic search to extend beyond

logic variables of primitive types. For example, a constraint-logic object-oriented language

based on C# could also make use of these approaches. Furthermore, it facilitates the

usage of object-oriented features in combination with free objects.

Subsequently, the implementation of this approach in the Muli SJVM will be completed

in order to evaluate its benefits. The resulting virtual machine implementation will be part

of the open source distribution of Muli provided via GitHub.33 It is also planned to provide

an augmented formal semantics, incorporating the aspects discussed in this paper, thus

yielding an integrated semantics for a constraint-logic object-oriented language. Future

work will tackle the extension of these considerations towards further reference types,

particularly array types.
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Abstract Object-oriented (OO) programming languages prevail in the development of en-

terprise software, but they do not particularly support the implementation of software which

includes solving complicated search problems with dynamically appearing constraints, e. g. as

found in logistics. Such problems could be tackled by implementing the main business logic in e. g.

Java and the search in a constraint-logic language. However, integrating both aspects is clumsy.

Thus, we propose the constraint-logic OO language Muli. It facilitates an integrated implement-

ation of applications that use both aspects. Muli extends Java by logic variables and encapsulated

search. Its implementation is based on a symbolic Java virtual machine and constraint solvers.

Outside of search regions, Muli behaves just like Java.

We motivate the benefits of integrating object-oriented programming and constraint-logic

programming and introduce concepts that are required to achieve a seamless integration. We

also describe our implementation of these concepts and discuss our approach.

Keywords Programming paradigm integration · Java · symbolic execution · constraint-logic

programming · virtual machine implementation.
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15.1 Motivation

In contemporary software development, object-oriented (OO) programming is prevalent,

as languages such as Java and C# continue to dominate usage rankings [Sta17; TIO17].

Inheritance and encapsulation of behaviour and structure are examples of features that

make them useful for most industry applications and provide reusability as well as

maintainability [Lou93]. However, there are scenarios in which languages from other

paradigms are more suitable.

Consider search problems: Constraint-logic programming languages, such as Prolog

with the CLP(FD) package, allow for declarative specifications of the search space by

means of variables and their constraints [Tri12]. As a result, finding solutions within

the search space is performed implicitly by the runtime environment and the included

constraint solver. In contrast, solving search problems in Java requires either manually

implementing an imperative solver or importing non-standardised constraint-solver

libraries. Self-made implementations of solvers are often highly specialised towards a

given problem, which might be beneficial for performance but harms generalisability.

Another option, using (e. g.) Prolog via the Java Native Interface (JNI), is tedious and

error-prone due to the nature of the JNI [KO0़].

In an effort to remedy this situation, we propose a novel approach to integrating

constraint-logic and OO paradigms based on Java: the constraint-logic object-oriented

programming language Muli. Instead of developing yet another constraint solver library,

of which there are many (cf. e. g. [PFL16; Opt17; Kuc03]), our solution provides means

for constraint-logic programming within Java programs by adding the concept of free

variables directly to the language, i. e. variables that are not initialised to a particular

value but to a symbolic value of a certain Java type. This is combined with symbolic

execution by a specialised Java virtual machine (JVM) that adapts concepts from the

Warren Abstract Machine [War़3]. Within code parts that we refer to as search regions,
execution becomes non-deterministic whenever branching conditions involve one or

more free variables whose domains are insufficiently constrained. By backtracking, the

JVM ensures that all applicable branches are executed.

Muli is particularly suited for enterprise applications where most of the business logic

can be expressed adequately in Java, but which occasionally require the solution of search

problems whose details have been assembled in previous inputs or calculations. An

example of such an application is a truck scheduling system which dynamically adapts its

schedule depending on traffic information and newly arriving orders, thus incrementally

adding constraints.
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This paper introduces Muli as a constraint-logic OO language and motivates concepts

for language and runtime that are required to achieve this integrated paradigm. Fur-

thermore, it explains our implementation of these concepts. To these ends, our paper

is structured as follows. We start off by describing novel language elements and a cor-

responding compiler in Section 15.2. Section 15.3 presents a custom implementation

of a symbolic JVM (SJVM) that supports search and backtracking, detailing structures

and runtime concepts required for the execution of Muli applications. Using sample

applications, we discuss our approach in Section 15.4, outlining its advantages but also

its current weaknesses. We then summarize related work in Section 15.5. In Section 15.6,

we conclude and point out future work.

15.2 Muli Language

Muli is a language extension to Java, with Java ़ as the reference language. Additions to

the language are kept to a minimum and we entirely refrain from making modifications

to existing Java concepts and features in order to minimise the burden on Java developers

to understand Muli programs. As a result, Muli is a superset of Java, so that every Java

program is also a Muli program that can be compiled and executed by Muli.

Our approach follows some design principles that we deem useful. First, we want to

solve search problems supported by a custom-tailored SJVM. Second, we want search to

be encapsulated. As a result, non-deterministic execution is only performed if explicitly

required, whereas other parts of the program remain deterministic and cause no overhead

w. r. t. Java. Third, we refrain from adding more special syntax than absolutely necessary,

especially for defining constraints. For example, we do not want to add operators for

constraints that can be expressed using relational Java operators. Fourth, since Java

programs are not executed lazily, Muli should not be evaluated lazily either, in contrast

to integrations of logic programming with other paradigms (cf. e. g. Curry [Han97]). Last

but not least, Muli should be considered an extension of Java, as opposed to an entirely

new language. This implies that functionality (and therefore understanding!) of Java

constructs remains unchanged and performance of deterministic program parts should

not be adversely affected.

We decided to use Java as the reference language as it is a ubiquitous programming

language which is well-known and well-understood among most developers. Moreover,

it comprises advantageous features of OO imperative languages, such as platform inde-

pendence, inheritance, and encapsulation of data and operations [Lou93]. Furthermore,
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although no official formal operational semantics exists, Java and its corresponding

runtime are documented extensively in natural language ([Gos+15] and [Lin+15], respect-

ively), which facilitates both conceiving an extension and deriving implementations.

15.2.1 Language Concepts

Extending Java into a constraint-logic OO language requires a few concepts that are novel

to Java. First, we need to add the concept of logic variables. Actually, given the SJVM,

any Java variable can be considered a logic variable. However, regular Java enforces that

every variable must be initialised to a particular value before it is used. In contrast to that,

Muli introduces free variables using the free keyword, indicating that they are initialised,

although not to a particular value.

Second, we add encapsulated search, adapting the identically named concept from the

functional constraint-logic language Curry [Han+95], to provide an abstraction from

non-deterministic execution. Within encapsulated search, non-deterministic execution

can happen, whereas any program part outside encapsulation is deterministic, analogous

to Java. We refer to a program part inside encapsulation as search region. An encap-

sulated search region is executed symbolically. Constraints are incrementally imposed

whenever branching occurs that involves insufficiently constrained (logic) variables, thus

introducing non-determinism. Once a valid branch is chosen, its branching condition is

imposed as an additional constraint, and symbolic execution continues. Later, execution

of the branch is backtracked and the next branch is chosen analogously.

The search region’s return values, which can be multiple due to non-determinism, are

considered solutions that the encapsulation collects and returns to its caller. Furthermore,

we enable developers to cut execution branches, resulting in immediate backtracking

without adding a solution.

Generally, we consider runtime exceptions that occur during execution of a search

region as a kind of solution, as they are just another result of the execution. Although

they do not represent a particular value, they may be of interest to the surrounding

application. To facilitate control over this behaviour, we propose operators that configure

encapsulated search and its return value. The most general case is that all solutions

of a search region, including exceptions, are to be returned (getAllSolutionsEx). This

general case can be modified to return the first solution (getOneSolutionEx), to discard

exceptions (getAllSolutions ), or in combination to return the first non-exception solution

(getOneSolution).
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1 public static void main(String[] args) {
2 int i = Muli.getOneSolution(() -> sqrt(5));
3 System.out.println(i); }
4 public static int sqrt(int y) {
5 int x free;
6 if (x == y/x) return x;
7 else throw Muli.fail(); } // not defined

Listing 15.1: Muli program that searches the (integer) square root of 5 and prints the result
2 (class header omitted).

As an introductory example, Listing 15.1 presents a simple Muli application that makes

use of the constraint-logic OO programming style. The example application searches

and prints the square root of a fixed number. We express this by the constraint 𝑥 == 𝑦/𝑥
(i. e. 𝑥 == ⌊√𝑦⌋) over integer variables 𝑥 and 𝑦, resorting to a constraint solver for finding

𝑥. As in Java, a method with the signature public static void main(String[]) is used

by the SJVM as the entry point. Computation remains deterministic, i. e. non-searching,

until encapsulation begins. Assuming that we are interested in only one solution that

should not be an exception, we use the getOneSolution operation that returns a single

non-exception value. We use this operation in main() in order to create an encapsulated

search region that calls the method sqrt() . For elegance, the search region is expressed

as a lambda abstraction, but a method reference could be used instead, facilitating reuse

of search regions across an application. By using a lambda abstraction rather than an

expression as argument of getOneSolution (or other operators), we make sure that the

search region is not immediately evaluated, but only under control of the encapsulated

search mechanism.

In sqrt() , x is declared as a free variable which might later be bound to a value. The

branching condition of the if statement cannot be evaluated to a single boolean value, as

x is unconstrained. Therefore, the constraint x == x/y is added to the constraint store and

the computation continues with the first branch of the if statement, namely return x .

Since the return statement finishes the considered execution branch, the constraint solver

searches and finds a solution satisfying the accumulated constraints (here consisting of a

single constraint) and returns the obtained value for x , namely 2, as a result. Solutions

not fulfilling the above constraint are cut off by the fail() operator.

An example to finding multiple solutions is printed in Listing 15.2. In this case,

getAllSolutionsEx() is used to start encapsulated search. This operator returns multiple
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1 public static void main(String[] args) {
2 Stream<Solution<Integer>> factorials =
3 Muli.getAllSolutionsEx(() -> {
4 int n free; return fact(n); } );
5 factorials.limit(100).forEach(i ->
6 System.out.println(i)); }
7 private static int fact(int n) {
़ if (n == 0) return 1;
9 else if (n >= 1) return n * fact(n - 1);
10 else throw Muli.fail(); } // not defined

Listing 15.2: Muli program that searches factorials non-deterministically and prints the
first 100 of them (class header omitted).

solutions that may also include thrown exceptions, using a stream of Solution objects

that each encode one solution.

In this example, the search region declares a free variable int n that is passed as

an argument to a method fact() which is supposed to compute 𝑛!. Since int n is still

unconstrained, all three execution branches remain possible andwill therefore be executed

non-deterministically. In our implementation, this means that all possible branches will

be tried one after another by backtracking and that all found solutions will be delivered to

the resulting stream. One branch is exempted from the overall solution using the fail()

operator, whereas any other exception would be considered a solution. The first branch

imposes the constraint n==0 and returns the constant 1. The second branch imposes the

constraint n >= 1 and returns an arithmetic expressions over n and recursion. Since n is

still not bound to a fixed integer value, the expression cannot be evaluated yet and will

be represented symbolically. Note that, by recursion, further branching is introduced.

These branches will bind n to 1, 2, 3, …, respectively, such that the expression can then

be evaluated to an integer and returned as a result. Note also that the finally resulting

stream of factorials is infinite. This is no problem, as long as only a finite part of it is

actually needed and computed, as in our example, where only the first 100 factorials are

printed.

Muli realises additional potential in search problems that are not fully defined at once,

but that add new, incremental constraints during execution. As an example, Listing 15.3

exhibits a program that iteratively adds constraints over a free variable x from user input

and finds a solution for x . Consider also a variation that derives additional constraints
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1 import de.wwu.muli.Muli;
2 class MuliIncrementalArgs {
3 public static void main(String[] args) {
4 int x = Muli.getOneSolution(() -> {
5 int x free; int i = 0;
6 while (i < args.length) {
7 if (!(x<Integer.parseInt(args[i++])
़ && x>Integer.parseInt(args[i++])))
9 break; }
10 });
11 System.out.println(x); } }

Listing 15.3: Iterative addition of constraints from user input in Muli.

from user input at runtime, e. g. via BufferedReader.readLine() , where the full constraint

system cannot be known before the application starts.

Note that a solution can be a data structure containing the values of possibly several

free variables, in case that these values are required after leaving encapsulation (cf. the

Assignment structure in Listing 15.4).

In general, each solution can be a unique value if constraints over the involved variables

are sufficiently restrictive. In other cases, the solution describes a search space, i. e. an

expression accompanied by its relevant constraints. If a particular value is required from

that search space, the developer needs to explicitly use solve() to label the variables, i. e.

successively try specific values for them, as it is usual in constraint solving. We decided

not to do this implicitly, as developers might want to refine search spaces by constraints

in later search regions, which they would be unable to do if labelling occurred in the

meantime.

15.2.2 Syntactic Extension of Java

Our examples suggest that only minimal language extensions are necessary in order to

implement these concepts. Syntactically, they are limited to adding the free keyword.

Given Java’s EBNF rules for declaring a field (adapted from [Gos+15]):

FieldDeclaration ::= FieldModifier* Type VariableDeclarator (, VariableDeclarator)*;
VariableDeclarator ::= VariableDeclaratorId (= VariableInitializer)?;

we can add free as an alternative to initialisation by changing the VariableDeclarator rule

to:

VariableDeclarator ::= VariableDeclaratorId ( free ∣ (= VariableInitializer))*;
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Free local variables are enabled by an analogous extension. Method parameters cannot

be declared free as parameters are supplied by the caller. Free variables may be passed as

a parameter, but that does not require special syntax.

Note that the keyword could even be avoided completely. In pure Java, using a

FreeVariable<T> class with a generic type T or an @FreeVariable annotation come to

mind as alternatives. However, using a class with generic type introduces much overhead,

especially when considering boxing and unboxing for free variables of primitive types.

Annotations also fall short, since annotations of local variables are not preserved until

runtime, whereas only those of class fields remain. Using declarations without initialisa-

tion is also insufficient as this results in uninitialised local variables or, in case of fields, in

implicitly initialised instance variables. Instead, a compiler can parse the free keyword

and transform it into bytecode, which is then interpreted by a specialised runtime.

15.2.3 Muli Classpath

The remaining concepts do not require syntactic changes to the language. Therefore, no

further additions to the compiler are necessary. Instead, we propose a small library that

will be on the classpath during compilation and execution.

A class Muli implements encapsulated search operators and fail() as static methods

changing the SJVM’s runtime behaviour. getAllSolutionsEx() implements the most

general encapsulated search operator, from which further operators are derived.

For reasons of readabilitywe implemented the classpath library directly using Java as far

as possible. However, the library has to be able to change the state of the VM to switch the

execution mode around encapsulation, to record solutions, and to enforce backtracking.

Methods with that purpose are declared private static native and therefore do not

provide a direct Java implementation. Instead, the Muli runtime engine provides their

actual implementation that performs state changes.

15.2.4 Implementing a Compiler for Muli

Variables and class fields that are declared free need to be represented in bytecode

accordingly. The JVM specification provides a set of attribute structures that can be

extended arbitrarily without breaking bytecode compatibility [Lin+15]: In bytecode, each

attribute names its type. Every JVM implementation is required to read all attributes and

silently skip attributes whose names it does not recognise. We leverage this by specifying

custom attribute types that are ignored by regular JVM implementations but that will be
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picked up by our own one. The benefit of staying bytecode compatible with the JVM is

that existing parsers and metaprogramming tools are also usable for Muli.

The bytecode provides four attribute structures that allow custom attribute types

[Lin+15]. For free fields, we add a FreeField attribute to the field_info structure. Since

every field maintains its own structure, the existence of a FreeField attribute is sufficient

to indicate that that field is free, whereas its absence implies a regular variable.

Java maintains a table of local variables in bytecode as part of the method_info structure.

Extending the tabular attribute LocalVariableTable by a boolean flag (i. e. free/regular) is

a feasible alternative but that would breaks bytecode compatibility. Therefore, we add a

FreeVariablesTable next to the LocalVariableTable with one entry per free variable that

references entries from the LocalVariableTable by ID.

We have constructed a compiler based on the extensible compiler framework ExtendJ

(formerly JastAddJ) which facilitates to easily extend an existing language in an aspect-

oriented way [EH07]. The Muli compiler imports abstract syntax tree (AST), parser,

and bytecode generator from ExtendJ’s Java ़ modules. In the frontend, the AST is

extended by two declarator subtypes for free variables, that are instantiated by the parser

when it encounters the free keyword. The parser is modified according to the EBNF

specification above. The backend picks up instances of the new AST types and generates

the aforementioned attributes into the classes’ bytecode in a JVM-compatible way.

15.3 A Backtracking, Symbolic VM

In addition to using Java as the reference language for extension, we also chose Java as

an implementation platform for the virtual machine runtime. Incidentally, this makes

the resulting constraint-logic OO language just as platform-independent as Java. As a

positive side effect, we are able to leverage the multitude of third-party libraries written

for the JVM that are useful for our endeavour, constraint solvers in particular.

The heart of the Muli runtime environment is the SJVM, i. e. a custom virtual machine

that symbolically executes Java programs. Figure 15.1 depicts relevant components of the

runtime environment and their relations, including subcomponents of the SJVM.

Since Muli programs are compiled to JVM-compatible bytecode, a specialised bytecode

parser is not required. Therefore, the runtime environment executes all applications,

regardless of whether they were implemented in Java or Muli. Nevertheless, only Muli

programs can specify logic variables that are picked up by the runtime. Java programs

by themselves will only be executed deterministically. However, Muli programs are fully
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Figure 15.1: Components structure of the Muli runtime environment.

able to reference Java classes and interact with them non-deterministically. Consequently,

it is possible that Java methods are executed symbolically, as long as they are invoked

from a Muli program.

We explain the components and the concepts that influenced their implementation in

the sequel. As Muli’s SJVM is implemented in Java, it also runs on a JVM which will be

referred to as the enclosing JVM for distinction.

Data structures

The Muli runtime environment implements all data structures that are required to execute

Java programs, according to the JVM specification [Lin+15]. The most important one,

the Frame stack, consists of frames, each representing an executed method call. The top

of the stack corresponds to the method that is currently being executed. On return, the

topmost element of the frame stack is popped and the SJVM continues execution of the

new top. In a frame, the represented execution state comprises the program counter,

values of local variables, and an operand stack. As in a regular JVM, most bytecode

instructions operate on the operand stack, taking their input(s) from the top of the stack

and pushing computation results. In contrast to a regular JVM, the operand stack does

not only contain constant primitive values or addresses to objects. Instead, elements

can also be symbolic representations of free variables or expressions. For simplicity, the
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SJVM does not implement its own heap. Instead, it shares the heap with the enclosing

JVM.

The aforementioned structures are required for a bytecode-compatible runtime that

are modified to support symbolic execution and search. More importantly, the SJVM

implements data structures derived from the Warren Abstract Machine (WAM) that is

specifically designed to execute Prolog programs [War़3].

In theWAM, the local stack comprises environments, which can be roughly compared to

Muli’s and Java’s frame instances, and choice points, for which there is no corresponding

structure on a regular JVM. Thus, the SJVM stores choice points in an additional choice-
point stack. Each choice point maintains a trail, which is a concept also borrowed from

the WAM [War़3]. The trail is implemented as a stack as well. Each element represents

an operation that must be performed on some component of the SJVM in order to undo a

state change.

Additionally, the solver component of Muli maintains the constraint store. During exe-

cution of a program, constraints may be incrementally added to the store. Typically, the

constraint store is described by a conjunction of atomic boolean expressions that corres-

pond to branching criteria. Every choice point also maintains a references to constraints

that where added by it, in order to remove them from the store on backtracking.

Last but not least, the SJVM has status flags that control its execution. Execution

can either be deterministic, i. e. non-searching, or non-deterministic, i. e. searching. The
latter state is only assumed during encapsulated search, ensuring deterministic execution

outside the encapsulation. Further flags include e. g. the searching mode (currently only

iterative deepening depth-first search is supported) and the requested logging level, which

can provide helpful output during our development of the VM.

Symbolic types

Muli supports all types known from regular Java, including reference types and arrays.

However, in order to accommodate for logic variables, additional types are introduced.

According to the JVM specification, two basic kinds of types need to be distinguished:

Primitive types and reference types [Lin+15]. However, we further split considerations of

reference types into array reference types and object reference types due to their distinct

structure.

Logic arrays are represented by instances of an Arrayref class, maintaining a logic

array’s element type (e. g. int ), its dimensions, and its element values, which can be either

regular values or logic variables. Similarly, logic objects are represented using Objectref
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instances, each containing its class type and a map of its fields to their respective values,

which can also be logic variables. A logic variable of numeric primitive type is an instance

of class NumericVariable . It contains a flag indicating the particular primitive type. It

does not have a value, but its domain is restricted by constraints in the constraint store.

Analogously, logic boolean variables are described by BooleanVariable instances.

When encountering an instruction that performs operations on variables, the semantics

of the SJVM does not distinguish between logic variable types and regular variable

types. For example, primitive int variables are type-compatible to NumericVariable

representations with integer type. Performing an iadd operation on an int variable and

an NumericVariable will result in a symbolically expression representing the addition.

The result is then pushed to the operand stack.

Solver component

The logic variable types are part of the Solver component, which is the runtime’s abstraction

layer from constraint solvers. It specifies types that are used to generate variables,

expressions, and constraints during execution without having to consider particularities

of constraint solvers. Before they are part of a constraint, expressions collected during

symbolic execution are not mapped into a particular solver’s object representation.

Currently, Muli integrates two constraint solvers from which a user can choose. Mu-

const is an SMT solver that was originally developed with automated glass-box test

case generation in mind [Lem+04]. It supports linear and non-linear arithmetic theories

as well as SAT solving. Its distinguishing advantage over other solvers is its handling

of rounding errors in floating point solutions, ensuring that solutions still satisfy all

constraints after rounding [EMK12]. Alternatively, the finite domain solver JaCoP is

integrated, which is a free software constraint solver library for Java [Kuc03]. JaCoP’s

constraint propagation achieves early, computationally inexpensive detection of infeasible

branches for applications that mostly involve finite domain numeric variables.

As the SJVM is able to work with multiple constraint solvers and abstractly defines

constraints, we will treat the constraint solver as a black box in the remainder of this

paper. Nevertheless, we formulate the following requirements for a constraint solver

to be applicable: it needs to be able to label variables in order to find solutions where

constraints are not sufficiently restrictive for finding solutions. Moreover, variables and

labeling strategies for both finite domain problems and floating point problems need to be

present and the constraint solver must be able to handle combinations of these problems.
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Triggering bytecode instruction Choice point type Possible constraints

FCmpg , FCmpl , DCmpg , DCmpl floating point comparison =, <, >
LCmp long comparison =, <, >
If<cond> , If_icmp<cond> if instruction, integer comp. =, ≠, <, ≤, >, ≥
Lookupswitch , Tableswitch switch instruction =, ∉

Table 15.1: Bytecode instructions, resulting choice points, and applicable constraint types.
<cond> is one of eq , ne , lt , le , gt , or ge .

Symbolic execution, encapsulated search, and choice points

Symbolic execution affects the interpretation of many Java bytecode instructions. For

example, when a free variable is loaded by an instruction, a corresponding symbolic

representation is pushed to the operand stack. Arithmetic operations that manipulate

the operand stack involving symbolic representations push a symbolic representation of

the result. Analogously, relational operators result in symbolic relational expressions.

Non-determinism may be introduced, if a branching condition contains logic variables.

On the bytecode level, this corresponds to e. g. a conditional jump instruction such

as ifne with two possible outcomes. Also, bytecode instructions, which may cause

an exception (e. g. getfield , invokeinterface , invokevirtual , and checkcast), can cause

branching. Depending on the branch that is chosen first, the branching condition or its

negation will be pushed to the constraint stack and the execution will be continued at

the corresponding instruction. The other branch will be considered after backtracking.

A selection of typical bytecode instructions, which may cause branching, as well as

their corresponding choice-point types and possibly generated constraints are shown in

Table 15.1.

Each choice point maintains a trail, a stack that, for every executed instruction, records

the operation that will be necessary to reverse the effects of that instruction. For example,

executing an instruction that takes two elements from the operand stack and pushes one

leads to in three trail elements: one that will take one element from the operand stack

and two that will push the values of the previous elements to the stack.

At the end of a symbolic execution path (i. e. when encountering the final return or a

non-caught exception e. g. caused by throw ), the SJVM will backtrack to the latest choice

point and undo the corresponding changes recorded on the trail by replaying its trail

stack. Moreover, the constraints imposed since the choice point will be removed from the

constraint store. Afterwards, the next choice is realised by imposing its constraint and

execution continues. Figure 15.2 illustrates how backtracking rolls back the trail, removes
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Figure 15.3: Unrestricted symbolic execution versus encapsulated symbolic execution.

a choice point’s constraint, and imposes the next choice’s constraint before continuing

execution. When no further choice can be realised, the choice point is removed from the

choice point stack and backtracking to the previous choice point occurs.

As we do not want to support non-determinism outside of encapsulated search regions,

non-deterministic jumps are restricted to the searching mode of the SJVM. Therefore,

encapsulation bounds the execution tree at the end of search regions, ensuring that

effects of symbolic execution and backtracking remain local. Consequently, at the end of

encapsulated search regions, the control is linearized again and the collected solutions

(or solution spaces) are returned to the caller (see Figure 15.3). Encapsulated search

can also be nested, thus achieving search hierarchies. If an unbound logic variable or a

symbolically represented expression is accessed outside of a search region, an exception

will be thrown.
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It is debatable whether input/output should be disallowed in search regions, as this

introduces side effects that cannot be backtracked by the SJVM. These issues are known

from Prolog [Sco10]. On the other hand, such side effects may be wanted, as they facilitate

printing (partial) solutions, logging, and asking end-users to supply additional data that

may only be relevant in certain execution paths. Therefore, we decided not to forbid

possible non-backtrackable side effects.

15.4 Discussion

Our approach towards an integration of constraint-logic and OO programming is useful

for applications that are mainly programmed in Java while requiring a substantial amount

of search. We expect it to be particularly suited for programs in which new constraints

are discovered over time that are incrementally added to the existing set of constraints.

The implementation of the constraint store facilitates such applications by reusing results

from former searches when new constraints are added, thus preventing recomputation

of partial solutions unless this is absolutely necessary. Further benefits are achieved by

solvers with effective constraint propagation.

We demonstrate how Muli improves the programming style for search problems over

pure Java using exemplary applications. Moreover, we quantify the performance of Muli

programs in our runtime environment.

The example application in Listing 15.1 already demonstrates constraint solving, al-

though with a problem that can be solved trivially in an imperative language as well.

Less trivial is an application that solves the Send More Money Puzzle: Eight free in-

teger variables 𝑠, 𝑒, 𝑛, 𝑑, 𝑚, 𝑜, 𝑟, and 𝑦 need to be labelled with values from 0 to 9

such that every binding is different from the others, while fulfilling the constraint

1000𝑠 + 100𝑒 + 10𝑛 + 𝑑 + 1000𝑚 + 100𝑜 + 10𝑟 + 𝑒 = 10000𝑚 + 1000𝑜 + 100𝑛 + 10𝑒 + 𝑦. For
𝑠 and 𝑚, the value 0 is prohibited. This can be specified as a Muli search region as shown

in Listing 15.4.

The helper method diff imposes the constraint that every variable be different from

the others, while domain limits the variables’ domains to {0, … , 9}. The Assignment class

is a simple custom data structure comprising the eight variables, used to return all eight

bindings.

We have compared the runtime of the application in Listing 15.4 with that of a corres-

ponding pure Java application that attempts an imperative solution using eight for loops

and backtracking. As an additional example application we implemented the Safe Lock
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1 public static Assignment money() {
2 int s free, e free, n free, d free,
3 m free, o free, r free, y free;
4 if (domain(s,e,n,d,m,o,r,y) && s != 0 &&
5 m != 0 && diff(s,e,n,d,m,o,r,y)) {
6 if ( 1000*s + 100*e + 10*n + d +
7 1000*m + 100*o + 10*r + e ==
़ 10000*m + 1000*o + 100*n + 10*e + y) {
9 Muli.solve(s,e,n,d,m,o,r,y);
10 return new Assignment(s,e,n,d,m,o,r,y);
11 } else throw Muli.fail();
12 } else throw Muli.fail(); }

Listing 15.4: Muli search region implementing the SendMore Money Puzzle; class headers
and helper functions omitted.

Application Environment Minimum Maximum Average Median

Send More Money Muli (on SJVM) ़.99 44.9़ 1़.22 17.़5
Java (on JVM) 324.़7 426.17 33़.40 337.25

Safe Lock Key Muli (on SJVM) 6.59 3़.10 12.़0 12.12
Java (on JVM) 24.76 33.64 25.44 25.03

Table 15.2: Comparison of sample implementations by execution time (in milliseconds).

Key puzzle, also in each pure Java and Muli. In order to exclude possible overhead of the

SJVM, we have executed the pure Java application on a regular OpenJDK JVM (version

1.़.0_131). The Muli application has been executed on our SJVM, using the JaCoP-based

finite domain solver in the solver component. All experiments were executed on an Intel

Core i5-5200U CPU, using Ubuntu 16.04.3 with a 4.10.0 x64 Kernel. Each application at-

tempts to solve the puzzle 510 times. The first 10 results are dropped in order to disregard

effects of Just-In-Time compilation of the enclosing JVM. The aggregated execution times

are provided in Table 15.2.

The results indicate that, for Send More Money, the constraint-logic OO solution,

while more elegant to write, is consistently more than an order of magnitude faster at

finding a solution for the problem at hand. Similarly, except for the maximum runtime

values, the Safe Lock Key search implementation is faster on Muli than on Java. The

relative difference between minimum and maximum is higher for Muli, which could be

due to increased need for garbage collection over constraint representations, whereas the

regular Java version uses primitive values only. Nevertheless, we can see a significant
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1 Muli.getAllSolutions(() -> { int n free;
2 int factorial = fact(n);
3 String test = ”assertEquals(” + factorial
4 + ”, fact(”+n+”));”);
5 return test; });

Listing 15.5: Modification of the factorials search region from Listing 15.2 to generate
JUnit assertions for testing fact() .

improvement in performance for the Muli variant, that can be attributed to constraint

propagation by the finite domain solver, allowing for more efficient search than a simple

backtracking mechanism.

Another highly interesting application scenario for Muli is automated glass-box test

case generation, as it is a prime example for incrementally added constraints [EMK12]:

In order to generate JUnit assertions for a Java method, we need to create an appropriate

output from free parameters and the method’s results. For the factorial method from

Listing 15.2, this can be done by changing the search region as demonstrated in Listing 15.5.

Moreover, consider that Listing 15.5 could be extended to generating integration test

cases by calling sequences or compositions of methods.

As fact(n) has an infinite search space, writing test into a file before returning it

results in output in that file until execution is interrupted.

Furthermore, the example in Listing 15.3 demonstrates the simpler programming style

that Muli facilitates. In contrast, writing a similar program in Java is much more challen-

ging and requires three times as many lines of code, particularly for handling backtracking

and negation in case that the constraint store is rendered inconsistent by a recent addition

(Listing 15.6), thus introducing more potential for implementation mistakes. Moreover,

the pure Java version requires a constraint solver-specific implementation for logic vari-

ables, constraint definition, and backtracking, so that the used constraint solver cannot

easily be exchanged. In contrast, the Muli program makes use of implicit backtracking

and negation by the SJVM. Established Java operators and the if control structure are

used to add constraints, as well as the primitive int type to declare both free and non-free

variables. Last but not least, the constraint solver is exchangeable by configuring the

SJVM’s solver component, thus facilitating later migrations to more advanced constraint

solvers.

From the aforementioned examples, we conclude that constraint-logic OO program-

ming is able to reduce runtime, at least compared to pure Java search applications.
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1 import org.jacop.constraints.*;
2 import org.jacop.core.*;
3 class JacopIncrementalArgs {
4 public static void main(String[] args) {
5 Store store = new Store();
6 int i = 0;
7 IntVar x = new IntVar(store, ”x”,
़ -1000000, 1000000);
9 while (i < args.length) {
10 // Prepare for later backtracking.
11 int backtrackingLvl = store.level+1;
12 store.setLevel(backtrackingLvl);
13 // Create constraints from user input.
14 int c1 = Integer.parseInt(args[i++]);
15 int c2 = Integer.parseInt(args[i++]);
16 Constraint cons1 = new XltC(x, c1);
17 Constraint cons2 = new XgtC(x, c2);
1़ store.impose(cons1);
19 store.impose(cons2);
20 if (!store.consistency()) {
21 // Backtrack and add negations.
22 store.removeLevel(backtrackingLvl);
23 store.setLevel(backtrackingLvl);
24 XgteqC cons1n = new XgteqC(x, c1);
25 XlteqC cons2n = new XlteqC(x, c2);
26 Or or = new Or(cons1n, cons2n);
27 store.impose(or);
2़ store.consistency();
29 break; } }
30 System.out.println(x); } }

Listing 15.6: Implementation of adding constraints from user input incrementally and of
manual backtracking requires more effort in Java (using the JaCoP solver)
than in Muli.

2़0



15.5 Related Work

Moreover, the constraint-logic OO programming style enables applications that inter-

leave constraint-logic parts with imperative parts (such as requesting additional user

input) during search, which is far less convenient and more error prone to achieve without

an SJVM using pure Java with a solver library.

Having free variables creates a little overhead, since information about them is stored

in bytecode and the SJVM has to accommodate symbolic types and expressions. However,

this overhead is limited to logic variables and expressions that involve them, whereas

deterministic computations that do not use these concepts are not handled symbolically.

Therefore, no overhead is added for non-symbolic, deterministic applications.

While we are certain that the idea of constraint-logic OO programming is beneficial to a

range of use cases, we acknowledge that some limitations apply to our results. Our current

implementation supports constraints over primitive variable types only. Constraint-logic

OO programmingwould benefit from support for solving constraints over object graphs or

arrays. However, this is an endeavour that we will tackle in upcoming work. Nevertheless,

recall that Muli does support constraint-logic programming using (primitive) object fields

already, so Muli applications are not limited to non-OO features.

15.5 Related Work

There are many libraries that add constraint programming to Java (and, therefore, to

JVM languages). Choco [PFL16] and OptaPlanner [Opt17] are examples that seem to

have gained attraction from research and industry. However, their interfaces are non-

standardised, so they can be unintuitive to use and hard to exchange. The finalised JSR

331 defines a standard for constraint programming and solving in Java, but efforts seem to

have ceased since 2012 [Fel12]. Furthermore, they share the disadvantage that they always

work somewhat separate from the Java program that leverages them. Thus, imperative or

OO code are not seamlessly integrated. Instead, the imperative code can only invoke the

constraint solver, but it cannot intervene with the search for a solution. In contrast, Muli

allows to integrate search and an imperative style tightly, allowing to freely mix both

paradigms in the most appropriate way to solve a given problem. Muli uses constraint

solver libraries internally to check the consistency of branching constraints in order to

skip infeasible paths, as well as to find specific solutions after sets of constraints have

been collected.

Moreover, there are several approaches which add OO features such as inheritance to

a (constraint) logic programming language, often to Prolog. For instance, Visual Prolog

2़1



15 A Constraint-Logic Object-Oriented Language

extends Prolog by OO features, primarily aiming at artificial intelligence applications

[Sco10]. Similarly, McCabe presents an OO language based on Prolog [McC92]. Another

OO layer on top of Prolog is presented by Shapiro and Takeuchi, focussing on concurrency

[ST़3]. Similarly, Prolog++ adds OO features to Prolog [Mos94]. tuProlog approaches the

integration of Prolog and Java differently, by providing a Prolog implementation written

in Java [DOR05]. This enables Prolog programs to run on the JVM, thus facilitating

integrated applications without a need for the JNI as well. Yet, this results in applications

implemented using two different languages, running in two separate environments on the

JVM. Therefore, non-deterministic program parts are separated from imperative program

parts and cannot be mixed. As an example of a non-Prolog-based language, Mozart/Oz

is a constraint language that, among concurrency and lazy evaluation, also offers OO

features [Van+03]. Again, this approach has a declarative focus.

Compared to Muli, all these approaches have a different flavour and runtime behaviour.

They are mainly declarative languages which simulate object-orientation. Assignments

and state changes are not provided (natively). Although approaches adding OO features

to a (constraint) logic programming language are interesting for declarative programmers,

it is unlikely that they will receive much attention from mainstream OO developers due

to the unfamiliar programming style.

Closest to Muli are approaches that extend OO programming with concepts from

constraint-logic programming. All those that we are aware of are aimed at automated

software testing. This includes glass-box test case generators, such as Muggl [MK09] and

IBIS [DM03], that add symbolic execution and constraint programming to Java bytecode

execution. Pexworks similarly for the .NET intermediate language [TH0़]. Quite recently

we discovered Seer, an application that intends to add symbolic execution and constraint

solving to the imperative programming language Rust [Ren17]. Although Seer is currently

in an initial stage and also aimed towards software generation, development is ongoing

and could be similarly useful in the context of Rust, as our approach is in that of Java.

Other work already attempted enabling logic programming in Java by extending

Muggls symbolic VM into a self-contained runtime [MK11]. However, their approach

falls short in the handling of logic variables, as only class fields can be declared free

using annotations. Entire methods are declared either searching or non-searching by

annotation, so defining search regions is tedious. The annotation is barely visible, thus

harming effective understanding of an application.

There are also several integration approaches involving further programming

paradigms. Contemporary OO languages have added features that originate in functional

programming, making combinations of functional programming and OO programming
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increasingly prominent among OO software developers. In Java, a combination of lambda

abstractions and the Stream API enables development in a functional programming style

where appropriate [UFM14], whereas LINQ delivers a similar approach to C# [MBB06].

Also, Scala integrates functional and OO programming and also runs on the JVM [Ode+17].

Functional and constraint-logic programming have also been integrated. For example,

Curry combines both paradigms using a Haskell-based syntax extended by logic variables,

non-determinism, and encapsulated search [Han+95; AJ16; Bra+11; LK99]. Encapsulated

search and constraint definition concepts of Curry provided ideas for our constraint-logic

OO language, although the implementation of these concepts in an imperative context

differs from theirs.

15.6 Conclusions and Future Work

Muli achieves the integration of imperative OO programming with constraint-logic

programming. Although Muli is a new programming language, it preserves the Java

syntax and the functionality of Java concepts. Moreover, programs written in Muli

compile to bytecode that could also be read by a regular JVM, albeit not being very

useful. Instead, it is accompanied by a custom SJVM runtime environment that supports

symbolic execution, encapsulated search, backtracking, and constraint solving within

Muli programs. Incidentally, due to our choice of Java for the implementations of compiler

and SJVM, our prototype is just as platform-independent as Java.

Compared to other attempts at adding constraint solving to Java, our approach is

novel in that the entire runtime is capable of searching and backtracking (but only when

requested explicitly, i. e. within encapsulated search). The Muli runtime environment

implicitly traverses search spaces that are described by search regions in Muli programs

and collects solutions, so that they can be re-used in later parts of the programs, including

subsequent search regions. Implicit traversal gives developers the advantage to selectively

mix declarative constraint definition and imperative control flows if appropriate, which

is not possible with other approaches in Java.

All in all, we believe that our approach achieves a smooth integration of constraint-logic

and OO paradigms, thus enabling Java developers to leverage the benefits of constraint-

logic programming in a native Java style. In addition, developers are no longer required

to manually invoke Java constraint solvers, or to bother with integrating external search

applications, Prolog or otherwise, via JNI. This avoids a lot of programming effort and

reduces potential for mistakes.
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We made the resulting classpath library, compiler, and runtime available on GitHub as

free software34. We welcome contributions of any kind, including reports of any issues

that may arise when you are trying out our approach.

Ourwork results in further novel ideas that we have yet to tackle. The degree of freedom

that imperative (OO) programming already offers makes it impossible to decide for a

constraint-logic OO program whether its search regions create an infinite search space.

Currently, this can cause encapsulated search to never terminate, which is undesirable.

Future work will attempt to work on separating producer and consumer of solutions to

achieve means to interrupting encapsulated search, to providing intermediate solutions,

and to continue search.

Furthermore, future work will tackle solving for constraints involving non-primitive

variables, such as solving of arrays, objects, and object graphs.

Our approach would be very useful in solving such search problems that are also

optimisation problems. For now, an application would first have to compute all solutions

and then iterate over all solutions to find the optimum. Here, support for optimisation

problems during encapsulated search would be very convenient. However, this is not

trivial since branching conditions are found dynamically, so that we never know the

entire optimisation problem unless we execute it. We hope to find a sophisticated solution

that integrates symbolic execution with optimisation problems.
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Abstract Object-oriented (OO) languages such as Java are the dominating programming lan-

guages nowadays, among other reasons due to their ability to encapsulate data and operations

working on them, as well as due to their support of inheritance. However, in contrast to constraint-

logic languages, they are not particularly suited for solving search problems. During development

of enterprise software, which occasionally requires some search, one option is to produce com-

ponents in different languages and let them communicate. However, this can be clumsy.

As a remedy, we have developed the constraint-logic OO language Muli, which augments Java

with logic variables and encapsulated search. Its implementation is based on a symbolic Java

virtual machine that supports constraint solving and backtracking. In the present paper, we focus

on the non-deterministic operational semantics of an imperative core language.
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16 An Operational Semantics for Constraint-Logic Imperative Programming

16.1 Introduction

Contemporary software development is dominated by object-oriented (OO) programming.

Its programming style benefits most industry applications by providing e. g. inheritance

and encapsulation of structure and behaviour, since these concepts can positively con-

tribute towards reusability and maintainability [Lou93]. Nevertheless, some industry

applications require search, for which constraint-logic programming is more suited than

OO (or imperative) programming. However, developing applications that integrate both

worlds, e. g. a Java application using a Prolog search component via Java Native Interface

(JNI), is tedious and error-prone [KO0़].

For that reason, we propose the Münster Logic-Imperative Programming Language
(Muli), integrating constraint-logic programming with OO programming in a novel way.

Based on Java, it adds logic variables and encapsulated search to the language, supported

by constraint solvers and non-deterministic execution on a symbolic Java virtual machine

(JVM). The symbolic JVM adapts concepts from the Warren Abstract Machine, such as

choice points and trail [War़3]. Muli’s tight integration of both paradigms facilitates

development of applications whose business logic is implemented in Java, but which also

require occasional search, such as operations research applications [Hoo06].

In this paper, we describe a reduction semantics for a core subset of Muli. In particu-

lar, the interaction of imperative statements, free variables, and non-determinism is of

interest. For simplicity, this core language abstracts from inheritance, multi-threading,

and reflection, because those features do not exhibit interesting behaviour w. r. t. our

semantics. The formulated semantics is helpful to get an understanding of the mechanics

behind concepts that are novel to imperative and OO programming, and serves as a

formal basis for implementing the symbolic JVM. It can also be used for reasoning about

applications developed in Muli.

To that end, our paper is structured as follows. We provide an overview of the new

language and its concepts in Section 16.2. Section 16.3 formalises the operational semantics

of the core language. An example evaluation using this semantics is shown in Section 16.4.

Section 16.5 presents a discussion of our concepts. Related work is outlined in Section 16.6.

We then conclude in Section 16.7 and provide an outlook towards further research.

16.2 Language Concepts

The Muli language is derived from Java ़. We do not change existing concepts and

features of Java, so that Muli also benefits from Java’s well-known and well-received
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features, such as OO and managed memory. Instead, the language is defined by its

additions to Java, i. e. Muli is a superset of Java.

Muli adds the concept of free variables, i. e. variables that are declared and instantiated,

but not to a particular value. Instead, they are treated symbolically and can be used in

statements and expressions. Constraints on symbolic variables and expressions are im-

posed during symbolic execution of conditional statements. For example, an if statement

with a condition that involves insufficiently constrained variables results in multiple

branches that can be evaluated. Conceptually, we can non-deterministically choose a

branch and evaluate it. Our implementation considers all these branches using backtrack-

ing and a (complete!) iterative deepening depth-first search strategy. This is supported by

a specialised symbolic JVM that records choice points for each non-deterministic branch.

Furthermore, we enforce that non-determinism only takes place inside encapsulated
search regions, whereas code outside encapsulation is executed deterministically. This

ensures that non-determinism is not introduced by accident, intending not to harm

the understanding of known Java concepts. Furthermore, this ensures that the overall

application exits in a single state. In contrast, unencapsulated symbolic execution could

result in multiple exit states, which could cause difficulties on the side of the caller.

Encapsulation is expressed by using either of the getAllSolutions and getOneSolution

operators. The logic of encapsulated search is described by search regions that are

implemented as methods, e. g. as lambda abstractions, in order to defer their evaluation

until encapsulation begins.

Solutions of encapsulated search are defined by values or expressions returned from

search regions. Due to non-determinism, multiple solutions can be returned from search.

Additionally, we introduce the special statement fail; , whose evaluation results in

immediate backtracking in the symbolic JVM without recording a solution for the current

branch.

From a syntactic perspective, these concepts extend Java only minimally. The resulting

syntax of Muli can best be demonstrated using an example. Listing 16.1 exhibits a Muli

method log() that searches for the logarithm of a number 𝑥 to the base 2 using a free

variable 𝑦 and a method pow that calculates 𝑏𝑦 imperatively, which is constrained to be

equal to 𝑥.
Let us assume that the considered search region consists of a call to log , e.g. log(4) .

When calling log with a given 𝑥, the free variable 𝑦 is created and then passed to pow

that calculates the power 𝑏𝑦 symbolically, as 𝑦 is free. Therefore, it returns a value that

is accompanied by a set of accumulated constraints from which this particular value
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1 int log(int x) {
2 int y free;
3 if (pow(2,y) == x) return y;
4 else fail; }
5 int pow(int b, int y) {
6 int i; int r; i = 0; r = 1;
7 while (i < y) {
़ r = r * b; i = i + 1; }
9 return r; }

Listing 16.1: Non-deterministic computation of the logarithm of a number to the base 2
using (core) Muli.

follows.35 Consequently, log computes the logarithm by defining a constraint system

using an imperative method that calculates the power.

If the variables involved in a branching condition (of if or while in Listing 16.1) are

not sufficiently constrained, one of the feasible branches is chosen non-deterministically.

Actually, our symbolic JVM would try them systematically one after the other, aided by a

backtracking mechanism. When selecting a branch, the corresponding condition is added

to the constraint store and consistency is checked. For example, while (i < y) can be

either true or false as 𝑦 is a free variable. As a result, one branch assumes the condition

to be true and therefore adds the constraint 𝑖 < 𝑦 to the constraint store by imposing a

conjunction of the existing store and the new constraint. In contrast, the second branch

assumes it to be false and therefore adds the negated condition as a constraint. If an added

constraint renders the store inconsistent, backtracking occurs, i. e. that branch is pruned

and execution continues with a subsequent branch. Similarly, backtracking occurs when

a solution is found so that the next branch can be evaluated to find further solutions.

Muli’s encapsulated search operators use lazy streams to return collected solutions to

the surrounding deterministic computation, such that the surrounding computation can

decide how many solutions it wants to obtain.

35In other problems the return value could be a symbolic expressions if the accumulated constraints do
not reduce the return value’s domain to a concrete value.
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16.3 A Non-Deterministic Operational Semantics of
Muli

Muli is an extension to Java and therefore intends to fully support all Java functionality.

In fact, all Muli programs even compile to regular JVM bytecode that can be parsed

and executed by a regular JVM (but incorrectly), and all Java programs can be executed

correctly by Muli’s symbolic JVM. Outside of encapsulated search, execution in Muli is

deterministic and replicates the behaviour of a standard JVM [Lin+15]. Inside encapsula-

tion, search regions are executed non-deterministically. This changes the semantics of

Java and adds subtleties that need to be explicated, particularly regarding the interaction

of imperative statements, free variables, and non-determinism. Therefore, we formally

define the semantics for non-deterministic evaluation of search regions.

For the purpose of describing a (non-deterministic) operational semantics of Muli, we

focus on an imperative, procedural subset of Java (and Muli). This concise subset allows

us to focus on the interaction between imperative and constraint-logic programming. It

therefore abstracts from some features that are expected from Java but that would not

contribute to the discussion in the present paper, such as inheritance.36 Furthermore,

this semantics abstracts from the execution of deterministic program parts and therefore

does not prescribe an implementation for the encapsulation operators, getAllSolutions

and getOneSolution .

Let us first describe the syntax of our core language. We will use variables taken

from a finite set 𝑉 𝑎𝑟 = {𝑥1, … , 𝑥𝑚}, for simplicity all of type integer (𝑚 ∈ ℕ). Also let

𝑂𝑝 = 𝐴𝑂𝑝 ∪ 𝐵𝑂𝑝 ∪ 𝑅𝑂𝑝 = {+, −, ∗, /} ∪ {&&, ||} ∪ {==, ! =, <=, >=, <, >} be a

finite set of arithmetic, boolean, and relational operation symbols, respectively. We focus

on binary operation symbols. Furthermore, ℳ is a finite set of methods.37

The syntax of arithmetic expressions and boolean expressions as well as statements

can be described by the following grammar. 𝐴𝐸𝑥𝑝𝑟, 𝐵𝐸𝑥𝑝𝑟, and 𝑆𝑡𝑎𝑡 denote the sets of all

arithmetic expressions, boolean expressions, and statements, respectively, which can be

constructed by the rules of this grammar.

𝑒 ∶∶= 𝑐 ∣ 𝑥 ∣ 𝑒1 ⊕ 𝑒2 ∣ 𝑚(𝑒1, … , 𝑒𝑘)
where 𝑐 ∈ ℤ, 𝑥 ∈ 𝑉 𝑎𝑟, 𝑒1, … , 𝑒𝑘 ∈ 𝐴𝐸𝑥𝑝𝑟, ⊕ ∈ 𝐴𝑂𝑝, 𝑚 ∈ ℳ, 𝑘 ∈ ℕ,

𝑏 ∶∶= 𝑒1 ⊙ 𝑒2 ∣ 𝑏1 ⊗ 𝑏2 ∣ true ∣ false

36Nevertheless, Muli’s symbolic JVM supports these features exactly according to the JVM specification
[Lin+15] (but does not add interesting details w. r. t. non-determinism).

37In fact they are functions, since we ignore object-orientation in this presentation.
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where 𝑒1, 𝑒2 ∈ 𝐴𝐸𝑥𝑝𝑟, 𝑏1, 𝑏2 ∈ 𝐵𝐸𝑥𝑝𝑟, ⊙ ∈ 𝑅𝑂𝑝, ⊗ ∈ 𝐵𝑂𝑝,

𝑠 ∶∶= ; ∣ int 𝑥; ∣ int 𝑥 free ; ∣ 𝑥 = 𝑒; ∣ 𝑒; ∣ {𝑠} ∣ 𝑠1 𝑠2 ∣
if (𝑏) 𝑠1 else 𝑠2 ∣ while (𝑏) 𝑠 ∣ return 𝑒; ∣ fail ;

where 𝑥 ∈ 𝑉 𝑎𝑟, 𝑒 ∈ 𝐴𝐸𝑥𝑝𝑟, 𝑏 ∈ 𝐵𝐸𝑥𝑝𝑟, 𝑠, 𝑠1, 𝑠2 ∈ 𝑆𝑡𝑎𝑡.

Note, in particular, the possibility to create free logic variables by int 𝑥 free ;.
After describing the syntax of the core language, let us now define its semantics. In

the sequel, let 𝒜 = {𝛼0, … , 𝛼𝑛} be a finite set of memory addresses (𝑛 ∈ ℕ). Moreover, let

𝑇 𝑟𝑒𝑒(𝒜 ,ℤ) = 𝒜 ∪ ℤ ∪ {⊕(𝑡1, 𝑡2) ∣ 𝑡1, 𝑡2 ∈ 𝑇 𝑟𝑒𝑒(𝒜 ,ℤ), ⊕ ∈ 𝑂𝑝}

be the set of all symbolic expression trees with addresses and integer constants as leaves

and operation symbols as internal nodes.

We provide a reduction semantics, where the computations depend on an environment,

a state, and a constraint store. Let 𝐸𝑛𝑣 = (𝑉 𝑎𝑟 ∪ ℳ) → (𝒜 ∪ (𝑉 𝑎𝑟∗ × 𝑆𝑡𝑎𝑡)) be the

set of all environments, mapping each variable to an address and each function to a

representation ((𝑥1, … , 𝑥𝑘), 𝑠) that describes its parameters and code, with the additional

restriction that elements of 𝐸𝑛𝑣 may neither map variables to parameters and code nor

functions to addresses. We consider functions to be in global scope and define a special

initial environment 𝜌0 ∈ 𝐸𝑛𝑣 that maps functions to their respective parameters and code.

Moreover, let Σ = 𝒜 → ({⟂} ∪ 𝑇 𝑟𝑒𝑒(𝒜 ,ℤ) ) be the set of all possible memory states. In

𝜎 ∈ Σ, a special address 𝛼0 with 𝜎(𝛼0) = ⟂ is reserved for holding return values of method

invocations. Furthermore, 𝐶𝑆 = {true} ∪ 𝑇 𝑟𝑒𝑒(𝒜 ,ℤ) is the set of all possible constraint

store states. Since constraints are specific boolean expressions, only conjunctions and

relational operation symbols such as == and > will appear at the root of such a tree.

In the sequel, 𝜌 ∈ 𝐸𝑛𝑣, 𝜎 ∈ Σ, 𝛾 ∈ 𝐶𝑆; if needed, we will also add discriminating indices.

We will use the notation 𝑎[𝑥/𝑑] when modifying a state or environment 𝑎, meaning

𝑎[𝑥/𝑑](𝑏) = {
𝑑 , if 𝑏 = 𝑥

𝑎(𝑏) , otherwise.

A free variable is represented by a reference to its own location in memory. Con-

sequently, 𝜎(𝜌(𝑥)) = 𝜌(𝑥) if 𝑥 is a free variable. Initially, a constraint store 𝛾 is empty, i. e.

it is initialised with true . During execution of a program, constraints may incrementally

be added to the store. This is done by imposing a conjunction of the existing constraints

and a new constraint, thus replacing the constraint store by the new conjunction. As

a result, the constraint store is typically described by a conjunction of atomic boolean
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expressions. We treat the constraint solver as a black box. In our implementation, we use

the external constraint solver JaCoP [Kuc03] in its most recent version 4.4. In fact, the con-

straint solver is exchangeable and any solver implementation fulfilling our requirements

(particularly incremental adding/removal of constraints) can be used. 3़

Note that our definition of functions does not fully cover the concept of methods in

object-oriented languages, since we abstract from classes and, therefore, inheritance.

However, a function in our semantics can be compared to a static method, since a function

in this semantics can access and modify its own arguments and variables, but not instance

variables of an object. Static fields could be modelled as global variables, i. e. further

entries in 𝜌0.
Since classes, inheritance, instance variables, and static variables have little influence

on the interaction between imperative statements, free variables, and non-determinism,

object orientation can be considered (almost) orthogonal to our work.

16.3.1 Semantics of Expressions

Let us start with the semantics of expressions. The semantics of expressions is described

by a relation → ⊂ (𝐸𝑥𝑝𝑟 × 𝐸𝑛𝑣 × Σ × 𝐶𝑆) × ( (𝔹 ∪ 𝑇 𝑟𝑒𝑒(𝒜 ,ℤ)) × Σ × 𝐶𝑆 ), which we use

in infix notation. Note that evaluating an expression can, in general, change state and

constraint store as a side effect, although only the Invoke rule actively does so. We will

point out expressions that make use of this, whereas the others merely propagate changes

(if any) resulting from the evaluation of subexpressions.

The treatment of constants and variables is trivial.

⟨𝑐, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑐, 𝜎 , 𝛾 ), if 𝑐 ∈ ℤ ∪ 𝔹 (Con)

⟨𝑥, 𝜌, 𝜎 , 𝛾 ⟩ → (𝜎(𝜌(𝑥)), 𝜎 , 𝛾 ) (Var)

Nested arithmetic expressions without free variables are evaluated directly, whereas

expressions comprising free variables result in a (deterministic) unevaluated (!) symbolic

expression (∈ 𝑇 𝑟𝑒𝑒(𝒜 ,ℤ)).

⟨𝑒1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), ⟨𝑒2, 𝜌, 𝜎1, 𝛾1⟩ → (𝑣2, 𝜎2, 𝛾2),
𝑣1, 𝑣2, 𝑣 = 𝑣1 ⊕ 𝑣2 ∈ ℤ

⟨𝑒1 ⊕ 𝑒2, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎2, 𝛾2)
(AOp1)

3़A very simple constraint solver could just take equality constraints into account. In this case, 𝛾 ⊧ 𝑥 == 𝑣,
if 𝛾 = 𝑏1 ∧ … ∧ 𝑏𝑘 and for some 𝑗 ∈ {1, … , 𝑘} 𝑏𝑘 = (𝑥 == 𝑣).
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⟨𝑒1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), ⟨𝑒2, 𝜌, 𝜎1, 𝛾1⟩ → (𝑣2, 𝜎2, 𝛾2),
{𝑣1, 𝑣2} ⊈ ℤ

⟨𝑒1 ⊕ 𝑒2, 𝜌, 𝜎 , 𝛾 ⟩ → (⊕(𝑣1, 𝑣2), 𝜎2, 𝛾2)
(AOp2)

A boolean expression of the form 𝑒1 ⊙ 𝑒2 is evaluated analogously.

Coherent with Java, conjunctions of boolean expressions are evaluated non-strictly.

The rules for the non-strict boolean disjunction operator ∣∣ are defined analogously to the

following rules for && .
⟨𝑏1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), 𝛾 ⊧ ¬𝑣1
⟨𝑏1 && 𝑏2, 𝜌, 𝜎 , 𝛾 ⟩ → (false , 𝜎1, 𝛾1)

(And1)

⟨𝑏1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), 𝛾 ̸⊧¬𝑣1, (𝑏2, 𝜎1, 𝛾1) → (𝑣2, 𝜎2, 𝛾2)
⟨𝑏1 && 𝑏2, 𝜌, 𝜎 , 𝛾 ⟩ → (∧(𝑣1, 𝑣2), 𝜎2, 𝛾2)

(And2)

We consider a function invocation to be an expression as well, as the caller can use

its result in a surrounding expression. Evaluation of the function is likely to result in a

state change as well as in additions to the constraint store. Invoking 𝑚 implies that its

description 𝜌(𝑚) is looked up and corresponding fresh addresses 𝛼1, … , 𝛼𝑘, one for each of

its 𝑘 parameters, are created. The corresponding memory locations are initialised by the

caller. Note that the respective values can contain free variables. 𝜎𝑘+1(𝛼0)will contain the

return value from evaluating the return statement in the body, whose semantics will be

defined later (cf. rule Ret). As the compiler enforces the presence of a return statement,

we can safely assume that 𝜎𝑘+1(𝛼0) holds a value after reducing 𝑠. Invoke resets that value

to ⟂ for further evaluations within the calling method. We use the shorthand notation

̄𝑎𝑘 = (𝑎1, … , 𝑎𝑘) for vectors of 𝑘 elements.

⟨𝑒1, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣1, 𝜎1, 𝛾1), ⟨𝑒2, 𝜌, 𝜎1, 𝛾1⟩ → (𝑣2, 𝜎2, 𝛾2), … ,
⟨𝑒𝑘, 𝜌, 𝜎𝑘−1, 𝛾𝑘−1⟩ → (𝑣𝑘, 𝜎𝑘, 𝛾𝑘), 𝜌(𝑚) = ( ̄𝑥𝑘, 𝑠),

⟨𝑠, 𝜌0[ ̄𝑥𝑘/ ̄𝛼𝑘], 𝜎𝑘[ ̄𝛼𝑘/ ̄𝑣𝑘], 𝛾𝑘⟩ � (𝜌𝑘+1, 𝜎𝑘+1, 𝛾𝑘+1), 𝜎𝑘+1(𝛼0) = 𝑟
⟨𝑚(𝑒1, … , 𝑒𝑘), 𝜌, 𝜎 , 𝛾 ⟩ → (𝑟 , 𝜎𝑘+1[𝛼0/⟂], 𝛾𝑘+1)

(Invoke)

16.3.2 Semantics of Statements

Next, we describe the semantics of statements by a relation � ⊂ (𝑆𝑡𝑎𝑡 × 𝐸𝑛𝑣 × Σ × 𝐶𝑆) ×
(𝐸𝑛𝑣 × Σ × 𝐶𝑆), which we also use in infix notation.

A variable declaration changes the environment by reserving a fresh memory location

𝛼 for that variable. A free variable is represented by a reference to its own location.

Enclosing declarations in a block ensures that changes of the environment stay local.

⟨int 𝑥;, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌[𝑥/𝛼], 𝜎 , 𝛾 ) (Decl)
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⟨int 𝑥 free ;, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌[𝑥/𝛼], 𝜎[𝛼/𝛼], 𝛾 ) (Free)

⟨𝑠, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1)
⟨{ 𝑠 }, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌, 𝜎1, 𝛾1)

(Block)

As a particularity of a constraint-logic OO language, an assignment x = e cannot just

overwrite a location in memory corresponding to x , since this might have an unwanted

side effect on constraints that involve x and refer to its former value. This side effect

might turn such constraints unsatisfiable after they have been imposed and checked, thus

leaving a currently executed branch in an inconsistent state. We avoid this by assigning

a new memory address 𝛼1 to the variable on the left-hand side. At the new address, we

store the result from evaluating the right-hand side. Consequently, old constraints or

expressions that involve the former value of x are deliberately left untouched by the

assignment. In contrast, later uses of the variable refer to its new value. The environment

is updated to achieve this behaviour.

⟨𝑒, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎1, 𝛾1)
⟨𝑥 = 𝑒, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌[𝑥/𝛼1], 𝜎1[𝛼1/𝑣], 𝛾1)

(Assign)

Since the syntax does not enforce that no statements follow a return statement, we

provide sequence rules that take into account that the state may hold a value in 𝛼0
(indicating a preceding return ) or not (⟂). Further statements are executed iff the latter is

the case. Otherwise, further statements are discarded as a preceding return has already

provided a result in 𝛼0.

⟨𝑠1, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1), 𝜎1(𝛼0) == ⟂,
⟨𝑠2, 𝜌1, 𝜎1, 𝛾1⟩ � (𝜌2, 𝜎2, 𝛾2)

⟨𝑠1 𝑠2, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌2, 𝜎2, 𝛾2)
(Seq)

⟨𝑠1, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1), 𝜎1(𝛼0) ≠ ⟂
⟨𝑠1 𝑠2, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1)

(SeqFin)

The two following rules for if-statements introduce non-determinism in case that the

constraints neither entail the branching condition nor its negation.39

⟨𝑏, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎1, 𝛾1), 𝛾1 ̸⊧¬𝑣, ⟨𝑠1, 𝜌, 𝜎1, 𝛾1 ∧ 𝑣⟩ � (𝜌1, 𝜎2, 𝛾2)
⟨if (𝑏) 𝑠1 else 𝑠2, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎2, 𝛾2)

(If𝑡)

39In the implementation, the applicability of these rules will depend on the constraint propagation abilities
of the employed constraint solver. We discuss the implications in Section 16.5.
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⟨𝑏, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎1, 𝛾1), 𝛾1 ̸⊧𝑣, ⟨𝑠2, 𝜌, 𝜎1, 𝛾1 ∧ ¬𝑣⟩ � (𝜌1, 𝜎2, 𝛾2)
⟨if (𝑏) 𝑠1 else 𝑠2, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎2, 𝛾2)

(If𝑓)

As with if , while can also behave non-deterministically.
⟨𝑏, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎1, 𝛾1), 𝛾1 ̸⊧¬𝑣, ⟨𝑠, 𝜌, 𝜎1, 𝛾1 ∧ 𝑣⟩ �

(𝜌1, 𝜎2, 𝛾2), ⟨while (𝑏) 𝑠, 𝜌1, 𝜎2, 𝛾2⟩ � (𝜌2, 𝜎3, 𝛾3)
⟨while (𝑏) 𝑠, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌2, 𝜎3, 𝛾3)

(Wh𝑡)

⟨𝑏, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎1, 𝛾1), 𝛾1 ̸⊧𝑣
⟨while (𝑏) 𝑠, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌, 𝜎1, 𝛾1 ∧ ¬𝑣)

(Wh𝑓)

All branching rules If𝑓, If𝑡, Wh𝑓, and Wh𝑡 could be accompanied by more efficient ones

that deterministically choose a branch if its condition does not involve free variables, i. e.

without having to consult the constraint store. We omit these rules in an effort to keep

our definitions concise, as the provided ones can also handle these cases.

We assume that the code of a user-defined function is terminated by a return statement,

i. e. its existence has to be ensured by the compiler. The corresponding return value is

supplied to the caller by storing it in 𝛼0, causing remaining statements of the function

to be skipped (cf. rule SeqFin), and letting the caller extract the result from 𝛼0 (cf. rule

Invoke). The return statement is handled as follows:

⟨𝑒, 𝜌, 𝜎 , 𝛾 ⟩ → (𝑣, 𝜎1, 𝛾1)
⟨return 𝑒, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌, 𝜎1[𝛼0/𝑣], 𝛾1)

(Ret)

Furthermore, we do not define an evaluation rule involving a fail statement. This

is intentional, as the evaluation of such a statement leads to a computation that fails

immediately.

The following (optional) substitution rule allows to simplify expressions and results.

𝛾 ⊧ 𝛾 (𝛼) == 𝑣, ⟨𝑠, 𝜌, 𝜎[𝛼/𝑣], 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1)
⟨𝑠, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1)

(Subst)

When variables are not sufficiently constrained to concrete values, labeling can be

used to substitute variables for values that satisfy the imposed constraints [FA03]. This

non-deterministic rule is applied with the least priority, i. e. it should only be used if

no other rule can be applied. Otherwise, it would result in a lot of non-deterministic

branching, thus preventing the constraint solver from an efficient reduction of the search

space by constraint propagation.

𝛾 ̸⊧𝜎(𝛼) ≠ 𝑣, ⟨𝑠, 𝜌, 𝜎[𝛼/𝑣], 𝛾 ∧ (𝜎(𝛼) == 𝑣)⟩ � (𝜌1, 𝜎1, 𝛾1)
⟨𝑠, 𝜌, 𝜎 , 𝛾 ⟩ � (𝜌1, 𝜎1, 𝛾1)

(Label)
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16.4 Example Evaluation

We demonstrate the use of the reduction rules defined in Section 16.3 by computing one

possible result of the logarithm program from Listing 16.1 that will be invoked by an

additional method int main() { return log(1); } . Other possible results can be computed

analogously. We abbreviate the code of log and pow by 𝑠1 and 𝑠3, respectively, to improve

readability. The substatement 𝑠2 is included in 𝑠1, while 𝑠3 includes the substatements

𝑠4, 𝑠5, and 𝑠6. Moreover, we use the infix notation for nested expressions, e. g. we write

𝑛 ≥ 1 instead of ≥ (𝑛, 1).
Initially, let 𝜌0 = {𝑚𝑎𝑖𝑛 ↦ (𝜖, return log(1);), 𝑙𝑜𝑔 ↦ ((𝑥), 𝑠1), 𝑝𝑜𝑤 ↦ ((𝑏, 𝑦), 𝑠3)}.

Furthermore, let 𝛾1 = 𝑡𝑟𝑢𝑒 and 𝜎0 = {𝛼0 ↦⟂}. We begin in method main() , which

evaluates to
⟨1, 𝜌0, 𝜎0, 𝛾1⟩ → (1, 𝜎0, 𝛾1) (Con), 𝜌0(𝑙𝑜𝑔) = ((𝑥), 𝑠1),

(Lemma1), 𝜎6(𝛼0) = 0
⟨log(1), 𝜌0, 𝜎0, 𝛾1⟩ → (0, 𝜎6[𝛼0/⟂], 𝛼2 == 0)

(Invoke)

⟨return log(1), 𝜌0, 𝜎0, 𝛾1⟩ � (𝜌0, 𝜎6[𝛼0/0], 𝛼2 == 0)
(Ret)

Performing an entire evaluation with this example is interesting, but lengthy. We

therefore moved the detailed evaluation into the appendix (cf. Lemma1) and use the

opportunity to highlight some interesting evaluation steps here. In the final state,

𝜎6 = 𝜎0[𝛼0/0, 𝛼1/1, 𝛼2/𝛼2, 𝛼3/2, 𝛼4/𝛼2, 𝛼7/0, 𝛼8/1].
The final result 𝜎6(𝛼0) = 0 results from the constraint 𝛼2 ≤ 0 obtained from evaluating

Wh𝑓 (Lemma9 in the appendix provides context):

⟨i , 𝜌4, 𝜎3, 𝛾1⟩ → (0, 𝜎3, 𝛾1) (Var),
⟨y , 𝜌4, 𝜎3, 𝛾1⟩ → (𝛼2, 𝜎3, 𝛾1) (Var)

⟨i < y , 𝜌4, 𝜎3, 𝛾1⟩ → (0 < 𝛼2, 𝜎3, 𝛾1)
(AOp2),

𝛾 ̸⊧(0 < 𝛼2)
⟨while (i < y) s6 , 𝜌4, 𝜎3, 𝛾1⟩ � (𝜌4, 𝜎3, 𝛾1 ∧ ¬(0 < 𝛼2) )

(Wh𝑓)

where 𝜌4 = 𝜌0[𝑏/𝛼3, 𝑦/𝛼4, 𝑖/𝛼7, 𝑟/𝛼8] and 𝜎0[𝛼1/1, 𝛼2/𝛼2, 𝛼3/2, 𝛼4/𝛼2, 𝛼7/0, 𝛼8/1]. 𝛼2 ≤ 0
is further refined to 𝛼2 == 0 by the labeling rule in Lemma2 in the appendix.

In Lemma2, the constraint store is used to deduce that 𝛼2 == 0 is consistent with the

current constraint, 𝛼2 ≤ 0, as well as with the constraint store 𝛾2. Therefore, labeling
non-deterministically imposes the more restrictive constraint 𝛼2 == 0. Other branches

may impose further constraints consistent with 𝛼2 < 0.
If we had non-deterministically chosen rule Wh𝑡 in Lemma9, we would have performed

an iteration of the while loop, leading to more computations that would not result in

solutions, as they would be discarded as incorrect by the fail statement of the log method.
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The evaluation of rule Assign in Lemma7 creates a new memory location 𝛼7 in 𝜎2 for

the new value of i and updates the environment accordingly. At this point, no references

to the old location 𝛼5 exist, so an implementation could use garbage collection to free

that location. Hypothetically, if rule Wh𝑡 had been chosen in Lemma9, an iteration of

the loop would have resulted in additional evaluations of rule Assign, e.g. to increment

i , thus reserving additional locations. In the case of i , the new value would depend on

the value in 𝛼7. However, as the old value and the increment are constant, the new value

would be computed by evaluating rule AOp1, so that, again, no reference to 𝛼7 is needed.

16.5 Discussion

The key aspect of the semantic rules for the presented core language is the interaction

between constraint-logic programming and imperative programming. Some aspects of it

offer themselves for thorough discussion.

The (potentially) non-deterministic evaluation of our rules If𝑓, If𝑡, Wh𝑓, and Wh𝑡 highly

depends on the included constraint solver. Our definition allows to follow a branch if

the negation of its condition is not entailed by the current constraint store 𝛾. When

implementing this, a constraint solver will be used to check whether 𝛾 ̸⊧¬𝑣 (analogously
for 𝛾 ̸⊧𝑣). If the constraint solver is not able to show that the constraints entail ¬𝑣, this may

have three reasons: 1) 𝛾 ⊧ 𝑣, or 2) the current constraints neither entail 𝑣 nor ¬𝑣, or 3) the
constraint propagation abilities of the employed constraint solver are insufficient to show

that 𝛾 ⊧ ¬𝑣, but in fact 𝛾 ⊧ ¬𝑣. In case 1), the system behaves deterministically and only

one rule for if (or while ) will be applied. In case 2), one of the two rules for if (or while )

can be chosen non-deterministically. Only case 3) is problematic. In this case, a branch

can be chosen that corresponds to inconsistent constraints. In practice, solvers do not

achieve perfect constraint propagation and also no global consistency of the constraints.

Consequently, results corresponding to inconsistent constraints may only be discovered

later, e. g. during labeling. In the meantime, non-backtrackable statements (e. g. ones

that result in input / output) of search regions may have been executed in branches that

prove infeasible later. Thus, we suggest to avoid input / output in search regions.

We would like to point out that the aforementioned problem is not specific to Muli, as

this can occur in Prolog (using CLP(FD) [Tri12]) as well. Consider the Prolog program

provided in Listing 16.2. When you execute the first goal, the output will (among the

unreduced constraint system) contain a line that says successful , even though it is

apparent to the human reader that there is no solution, so that the write statement should
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1 use_module(library(clpfd)).
2 ?- [X,Y,Z] ins 0..1, all_different([X,Y,Z]),
3 write('successful').
4 ?- [X,Y,Z] ins 0..1, all_different([X,Y,Z]),
5 label([X,Y,Z]), write('successful').

Listing 16.2: Demonstration of the limits of constraint propagation using an example in
Prolog+CLP(FD).

not have been reached. In contrast, if label is invoked before write (second goal), Prolog

realises that there is no solution and therefore gives the correct result false .

We see two options to handle this situation in Muli programs. The first option is to

explicitly label variables sufficiently at every branch such that the constraint solver is

able to either infer 𝛾 ⊧ 𝑣 or 𝛾 ⊧ ¬𝑣. However, as explained in context of the Label rule,

this also introduces a lot of non-deterministic branching by creating one branch per

label. Therefore, the effectivity of constraint propagation is reduced and the overall effort

for search is increased. For the same reason we decided that Muli should not implicitly

perform labeling at every branch either, as performance would deteriorate.

The second option is to perform labeling only after a solution has been found during

encapsulated search. In fact, such a solution is merely a potential solution, under the

condition that the corresponding constraints are also satisfiable. As a result, encapsulated

search produces a stream of pairs, each of which comprises one potential solution and its

corresponding set of constraints. Thus, at this point the enclosing application can iterate

over this stream and perform (sufficient) labeling, until it is clear whether the constraints

are actually satisfiable. This rules out infeasible solutions afterwards. The implementation

of Muli provides an explicit label operation, which the application developer can use for

this purpose. We decided not to do this implicitly in order to give the developer more

flexibility. It is easy to wrap this functionality into a search operation which labels every

found solution implicitly.

Both mentioned options are available to the developer. We recommend the second

one, possibly in the wrapped version with implicit labeling. For search regions that

involve only backtrackable statements, the result does not depend on the chosen option,

but the second option is presumably more efficient as fewer branches have to be eval-

uated. For other search regions, only the first option can avoid unwanted side effects

of illegally accessed branches. However, search then becomes less efficient. Therefore,

in case that non-backtrackable side effects have to be avoided, we recommend that the
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1 int x = 5; int y = x;
2 x = 3;

Listing 16.3: Minimal example demonstrating that variables may be mutated directly, in
contrast to results of their uses: After evaluation, y is 5.

developer removes input / output operations from search regions and moves them behind

encapsulation instead.

Formalising the operational semantics of Muli has also helped uncover some operations

whose semantics are sufficiently clear in deterministic Java, but become ambiguous when

non-determinism and symbolic execution are added. Consequently, some alternatives

could be discussed on a conceptual level using this semantics, before deriving a cor-

responding implementation. This particularly involves the interpretation of symbolic

variables (rules Invoke and Var) and assignments, as outlined subsequently.

By rule Assign, an assignment x = e creates a new memory address for the variable x

and changes the environment accordingly. As a result, memory usage of a Muli program

is increased with every assignment, instead of with every declaration of a variable as

in imperative OO languages. Nevertheless, this behaviour is required in order to avoid

unwanted side effects on previous constraints involving x . The alternative, mutating

𝜎(𝜌(𝑥)) directly, would result in assignments to x that could render constraints involving x

unsatisfiable ex post, i. e. after branching has occurred that depended on such a constraint.

As another consequence, rule Assign ensures that the interpretation of symbolic

variables is equivalent to that of regular values. Consider the simple excerpt from a

Java program given in Listing 16.3 as an example: After evaluating the last line, y is still

expected to be 5, even though x now holds a different value. After all, although primitive

variables can be directly mutated in Java, their previous interpretations cannot. Similarly,

for symbolic values, rule Assign ensures that references before and after an assignment

are treated distinctly, even though memory efficiency is adversely affected. Nevertheless,

unreferenced former meanings of a variable may be destroyed by the garbage collector,

thus reclaiming (some) memory.

Implicitly, our rules Assign (or Invoke) and Var enable sharing of symbolic values.

Assigning a free variable 𝑥 to another free variable 𝑦 means that the address 𝜌(𝑥) of 𝑥 is

stored in the memory location corresponding to 𝑦 by modifying state as 𝜎[𝜌(𝑦)/𝜌(𝑥)].
Consequently, subsequent constraints and expressions that involve either variable will

actually reference the same variable. The sharing behaviour is exhibited in the example in

Lemma5 in the appendix, where a free variable is passed to the pow method as its second
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parameter. pow adds constraints to that variable that only come into effect when labeling

is performed in its invoking context in log (Lemma2 in the appendix).

Regarding backtracking, the implementation is only implicitly affected by the presented

operational semantics. Here, the semantics defines the desired state of the overall VM

that must be achieved before evaluation in terms of 𝜌 ∈ 𝐸𝑛𝑣, 𝜎 ∈ Σ, 𝛾 ∈ 𝐶𝑆. Considering
the multitude of options for achieving the desired VM state that lend themselves for

the implementation, we briefly outline the options without prescribing either. Firstly,

“don’t care” non-determinism considers only one evaluation alternative and therefore

does not require backtracking at all. Secondly, it would be possible to fork at statements

that introduce non-determinism, thus evaluating all alternatives in parallel. This does

not require backtracking either, however, consider that this generates a lot of overhead

in terms of memory and computation, as the VM must be forked in its entirety to

accommodate for any side effects, and as all forks must be joined in order to return to

deterministic computation after a search region is fully processed. Thirdly, the alternatives

can be evaluated sequentially. To achieve this, the VM must record changes to the data

structures on a trail equivalent to that of Prolog in order to reconstruct a previous state

during backtracking. Our implementation resorts to the latter option using a trail adapted

from the Warren Abstract Machine. Nevertheless, the remaining options would also be

interesting to pursue.

16.6 Related Work

To the best of our knowledge, this paper is the first to present a formal semantics of an

imperative language enhanced by features of constraint-logic programming. For sake of

clarity we focused on a core language. A full formal semantics of Java alone may require

an entire book as in the work by Stärk et al. [SSB01]. K-Java [BR15] is another approach

to define a formal semantics of Java. However, in the cited paper the authors focus on

selected aspects of the language. The official semantics of Java is extensively described

in natural language (cf. [Lin+15; Gos+15]).

Some existing core languages of Java such as Featherweight Java [IPW01] are tailored

to the investigation of the typing system and not meant to be executable. Hainry [HP15]

investigates an object-oriented core language focussing on computational complexity.

As a result of their respective foci they were not suitable to be extended for Muli.

The encapsulated search of Muli has been inspired and adapted from the corresponding

feature of the functional-logic language Curry. An operational semantics of Curry can
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be found in [Alb+02]. It is simpler than our semantics, since Curry is purely declarative

and does not have to bother with side effects.

Approaches for integrating object-oriented features into a (constrained) logic language

are e. g. Oz [Van+03], Visual Prolog [Sco10], Prolog++ [Mos94], and Concurrent Prolog

[ST़3]. However, these approaches maintain a declarative flavour and mainly provide

syntactic sugar for object-orientation. They are unfamiliar for mainstream object-oriented

programmers.

There are also approaches which add constrained-logic features to an imperative /

object-oriented language. Typically, the integration is less seamless than in Muli and the

language parts stemming from different paradigms can clearly be distinguished [CV0़;

CV07]. CAPJa combines Java and Prolog and provides a simplified interface mapping Java

objects to Prolog terms, but requires distinct code in each language nevertheless [Ost15].

LogicJava [MK11] is more restrictive than Muli and only allows class fields to be logic

variables. Moreover, entire methods have to be declared as searching or non-searching.

16.7 Conclusions and Future Work

Our work formalises an operational reduction semantics for an imperative core of the

novel integrated constraint-logic object-oriented language Muli. Muli extends Java by

logic variables, non-determinism, encapsulated search, and constraint solving. Muli

is particularly suited for enterprise applications that involve both searching and non-

searching business logic. Encapsulated search ensures that non-determinism is only

introduced deliberately where needed, instead of spreading out over the whole program.

Thus, the code outside of encapsulated search regions behaves just as ordinary Java code.

The presented operational semantics provides a basis for implementations of compiler,

symbolic JVM, and tools for processing Muli programs. In particular, the formalisation

has helped clarify possible ambiguities w. r. t. the semantics of certain statements under

non-determinism, such as that of assignments to variables and uses of them. Furthermore,

the semantics will facilitate reasoning about programs developed in Muli as demonstrated

in the example evaluation. We made the symbolic JVM that executes Muli programs

available as free software on GitHub.40

As future work, we would like to extend our core language and its semantics by more

features of Java, such as classes and inheritance. We expect these additions to be quite

orthogonal to the presently supported concepts. However, when (non-deterministically)

40https://github.com/wwu- pi/muli- env .
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instantiating a free variable with an object type, we have to take the whole corresponding

inheritance hierarchy into account.

Appendix: Full Example Evaluation

In addition to 𝜌0, 𝜎0, and 𝛾1 defined in section Section 16.4, the following auxiliary defin-

itions will be needed as intermediate results: 𝜌1 = 𝜌0[𝑥/𝛼1, 𝑦/𝛼2], 𝜌2 = 𝜌0[𝑏/𝛼3, 𝑦/𝛼4],
𝜌3 = 𝜌2[𝑖/𝛼5, 𝑟/𝛼6], 𝜌4 = 𝜌3[𝑖/𝛼7, 𝑟/𝛼8], 𝜎1 = 𝜎0[𝛼1/1, 𝛼2/𝛼2], 𝜎2 = 𝜎1[𝛼3/2, 𝛼4/𝛼2],
𝜎3 = 𝜎2[𝛼7/0, 𝛼8/1], 𝜎4 = 𝜎3[𝛼0/1], 𝜎5 = 𝜎4[𝛼0/⟂], 𝜎6 = 𝜎5[𝛼0/0], 𝛾2 = 𝛾1 ∧ 𝛼2 ≤ 0, and
𝛾3 = 𝛾2 ∧ 𝛼2 == 0. To simplify the understanding of the full computation provided in

Section 16.4, we have decomposed it into a couple of lemmas. We present the computation

in a top-down fashion. If you prefer a bottom-up fashion, just read the lemmas in reverse

order. The names of the applied rules are specified in each step.

⟨int y free ;⟩ � (𝜌0[𝑥/𝛼1, 𝑦/𝛼2], 𝜎0[𝛼1/1, 𝛼2/𝛼2], 𝛾1) (Free),
(Lemma2)

⟨int y free ; s2 , 𝜌0[𝑥/𝛼1], 𝜎0[𝛼1/1], 𝛾1⟩ � (𝜌1, 𝜎6, 𝛾3)
(Seq) (Lemma1)

(Lemma3), 𝛾2 ̸⊧¬true ,
𝛾2 ̸⊧𝜎5(𝛼2) ≠ 0, (Lemma4)

⟨return y ;, 𝜌1, 𝜎5, 𝛾2⟩ � (𝜌1, 𝜎6, 𝛾3)
(Label)

⟨𝑠2, 𝜌1, 𝜎1, 𝛾1⟩ � (𝜌1, 𝜎6, 𝛾3)
(If𝑡) (Lemma2)

(Lemma5), ⟨𝑥, 𝜌1, 𝜎5, 𝛾2⟩ → (1, 𝜎5, 𝛾2) (Var), 1 == 1 = true

⟨pow(2 , y) == x , 𝜌1, 𝜎1, 𝛾1⟩ → (true , 𝜎5, 𝛾2)
(AOp1) (Lemma3)

⟨𝑦, 𝜌1, 𝜎5[𝛼2/0], 𝛾2 ∧ 𝛼2 == 0⟩ → (0, 𝜎5, 𝛾3) (Var)
⟨return y ;, 𝜌1, 𝜎5, 𝛾2⟩ � (𝜌1, 𝜎5[𝛼0/0], 𝛾3)

(Ret) (Lemma4)

⟨2, 𝜌1, 𝜎1, 𝛾1⟩ → (2, 𝜎1, 𝛾1) (Con),
⟨𝑦, 𝜌1, 𝜎1, 𝛾1⟩ → (𝛼2, 𝜎1, 𝛾1) (Var),
𝜌1(𝑝𝑜𝑤) = ((𝑏, 𝑦), 𝑠3), (Lemma6), 𝜎4(𝛼0) = 1
⟨pow(2 , y), 𝜌1, 𝜎1, 𝛾1⟩ → (1, 𝜎4[𝛼0/⟂], 𝛾2)

(Invoke) (Lemma5)

⟨int i ;, 𝜌2, 𝜎2, 𝛾1⟩ � (𝜌2[𝑖/𝛼5], 𝜎2, 𝛾1) (Decl),
⟨int r ;, 𝜌2[𝑖/𝛼5], 𝜎2, 𝛾1⟩ � (𝜌2[𝑖/𝛼5, 𝑟/𝛼6], 𝜎2, 𝛾1) (Decl),

(Lemma7)
⟨int r ; i = 0 ; r = 1 ; s4 , 𝜌2[𝑖/𝛼5], 𝜎2, 𝛾1⟩ � (𝜌4, 𝜎4, 𝛾2)

(Seq)

⟨int i ; int r ; i = 0 ; r = 1 ; s4 , 𝜌2, 𝜎2, 𝛾1⟩ � (𝜌4, 𝜎4, 𝛾2)
(Seq) (Lemma6)

305



16 An Operational Semantics for Constraint-Logic Imperative Programming

⟨0, 𝜌3, 𝜎2, 𝛾1⟩ → (0, 𝜎2, 𝛾1) (Con)
⟨i = 0 ;, 𝜌3, 𝜎2, 𝛾1⟩ � (𝜌3[𝑖/𝛼7], 𝜎2[𝛼7/0], 𝛾1)

(Assign),

⟨1, 𝜌3[𝑖/𝛼7], 𝜎2[𝛼7/0], 𝛾1⟩ → (0, 𝜎2[𝛼7/0], 𝛾1) (Con)
⟨r = 1 ;, 𝜌3[𝑖/𝛼7], 𝜎2[𝛼7/0], 𝛾1⟩ � (𝜌4, 𝜎3, 𝛾1)

(Assign),

(Lemma8)
⟨r = 1 ; s4 , 𝜌3[𝑖/𝛼7], 𝜎2[𝛼7/0], 𝛾1⟩ � (𝜌4, 𝜎4, 𝛾2)

(Seq)

⟨i = 0 ; r = 1 ; s4 , 𝜌3, 𝜎2, 𝛾1⟩ � (𝜌4, 𝜎4, 𝛾2)
(Seq)

(Lemma7)
(Lemma9),

⟨𝑟 , 𝜌4, 𝜎3, 𝛾2⟩ → (1, 𝜎3, 𝛾2) (Var)
⟨return r ;, 𝜌4, 𝜎3, 𝛾2⟩ � (𝜌4, 𝜎3[𝛼0/1], 𝛾2)

(Ret)

⟨s5 ; return r ;, 𝜌4, 𝜎3, 𝛾1⟩ � (𝜌4, 𝜎3[𝛼0/1], 𝛾2)
(Seq) (Lemma8)

⟨i , 𝜌4, 𝜎3, 𝛾1⟩ → (0, 𝜎3, 𝛾1) (Var),
⟨y , 𝜌4, 𝜎3, 𝛾1⟩ → (𝛼2, 𝜎3, 𝛾1) (Var)

⟨i < y , 𝜌4, 𝜎3, 𝛾1⟩ → (0 < 𝛼2, 𝜎3, 𝛾1)
(AOp2),

𝛾 ̸⊧(0 < 𝛼2)
⟨while (i < y) s6 , 𝜌4, 𝜎3, 𝛾1⟩ � (𝜌4, 𝜎3, 𝛾1 ∧ ¬(0 < 𝛼2) )

(Wh𝑓) (Lemma9)

References

[Alb+02] Elvira Albert, Michael Hanus, Frank Huch, Javier Oliver and Germán Vidal.

‘An operational semantics for declarative multi-paradigm languages’. In:

Electronic Notes in Theoretical Computer Science 70.6 (2002), pp. 65–़6. issn:

15710661. doi: 10.1016/S1571-0661(04)80600-5 .

[BR15] Denis Bogdanas and Grigore Rosu. ‘K-Java: A Complete Semantics of Java’.

In: POPL ’15 (2015), pp. 1–12. issn: 15232़67. doi: 10.1145/2676726.2676982 .

[CV07] Maurizio Cimadamore and Mirko Viroli. ‘A Prolog-oriented Extension of

Java Programming based on Generics and Annotations’. In: Proceedings PPPJ.
Ed. by Vasco Amaral and et al. Vol. 272. ACM ICPS. ACM, 2007, pp. 197–202.

isbn: 97़-1-59593-672-1. doi: 10.1145/1294325.1294352 .

[CV0़] Maurizio Cimadamore andMirko Viroli. ‘Integrating Java and Prolog through

generic methods and type inference’. In: Proceedings of the 2008 SAC. Ed. by
Roger L. Wainwright and Hisham Haddad. ACM, 200़, pp. 19़–205. isbn:

97़-1-59593-753-7. doi: 10 . 1145 / 1363686 . 1363740 . url: http : / / doi . acm .

org/10.1145/1363686 .

306

https://doi.org/10.1016/S1571-0661(04)80600-5
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/1294325.1294352
https://doi.org/10.1145/1363686.1363740
http://doi.acm.org/10.1145/1363686
http://doi.acm.org/10.1145/1363686


References

[FA03] Thom Frühwirth and Slim Abdennadher. Essentials of Constraint Program-
ming. Berlin Heidelberg: Springer, 2003. isbn: 97़-3-642-0़712-7.

[Gos+15] James Gosling, Bill Joy, Guy Steele, Gilad Bracha and Alex Buckley. The
Java® Language Specification – Java SE 8 Edition. 2015. url: https://docs.

oracle.com/javase/specs/jls/se8/jls8.pdf (visited on 09/06/2017).

[Hoo06] John N. Hooker. ‘Operations Research Methods in Constraint Programming’.

In: Handbook of CP. Ed. by Francesca Rossi, Peter van Beek and Toby Walsh.

Elsevier, 2006. Chap. 15. doi: 10.1016/S1574-6526(06)80019-2 .

[HP15] Emmanuel Hainry and Romain Péchoux. ‘Objects in Polynomial Time’. In:

Programming Languages and Systems: 13th Asian Symposium, APLAS 2015.
2015, pp. 3़7–404. isbn: 97़33192652़5. doi: 10 . 1007 / 978 - 3 - 319 - 26529 -

2_21 .

[IPW01] Atsushi Igarashi, Benjamin C. Pierce and Philip Wadler. ‘Featherweight Java:

A Minimal Core Calculus for Java and GJ’. In: ACM Trans. Program. Lang.
Syst.z 23.3 (2001), pp. 396–450. doi: 10.1145/503502.503505 .

[KO0़] Goh Kondoh and Tamiya Onodera. ‘Finding bugs in Java Native Interface

programs’. In: ISSTA ’08 (200़), p. 109. doi: 10.1145/1390630.1390645 .

[Kuc03] Krzysztof Kuchcinski. ‘Constraints-driven scheduling and resource assign-

ment’. In: ACM Transactions on Design Automation of Electronic Systems ़.3

(2003), pp. 355–3़3. issn: 10़44309. doi: 10.1145/785411.785416 .

[Lin+15] Tim Lindholm, Frank Yellin, Gilad Bracha and Alex Buckley. The Java®
Virtual Machine Specification – Java SE 8 Edition. 2015. url: https://docs.

oracle.com/javase/specs/jvms/se8/jvms8.pdf (visited on 09/06/2017).

[Lou93] Kenneth C Louden. Programming Languages: Principles and Practice. Ed.
by Patricia Adams. Belmont, CA, USA: Wadsworth Publ. Co., 1993. isbn:

0534932770.

[MK11] Tim A Majchrzak and Herbert Kuchen. ‘Logic Java: Combining Object-

Oriented and Logic Programming’. In: WFLP 2011. 2011, pp. 122–137. isbn:
97़-3-642-22530-7.

[Mos94] Chris Moss. Prolog++ - the power of object-oriented and logic programming.
International series in logic programming. Addison-Wesley, 1994. isbn: 97़-

0-201-56507-2.

307

https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://doi.org/10.1016/S1574-6526(06)80019-2
https://doi.org/10.1007/978-3-319-26529-2_21
https://doi.org/10.1007/978-3-319-26529-2_21
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/1390630.1390645
https://doi.org/10.1145/785411.785416
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf


16 An Operational Semantics for Constraint-Logic Imperative Programming

[Ost15] Ludwig Ostermayer. ‘Seamless Cooperation of Java and Prolog for Rule-

Based Software Development’. In: Proceedings of the RuleML 2015, Berlin.
2015.

[Sco10] Randall Scott. A Guide to Artificial Intelligence with Visual Prolog. Outskirts

Press, 2010. isbn: 97़1432749361.

[SSB01] Robert Stärk, Joachim Schmid and Egon Börger. Java and the Java Virtual
Machine – Definition, Verification, Validation. Springer-Verlag, 2001. isbn:
97़-3-642-63997-5. doi: 10.1007/978-3-642-59495-3 .

[ST़3] Ehud Shapiro and Akikazu Takeuchi. ‘Object oriented programming in Con-

current Prolog’. In: New Generation Computing 1.1 (19़3), pp. 25–4़. issn:

02़़3635. doi: 10.1007/BF03037020 .

[Tri12] Markus Triska. ‘The Finite Domain Constraint Solver of SWI-Prolog’. In:

FLOPS. Vol. 7294. LNCS. 2012, pp. 307–316.

[Van+03] Peter Van Roy, Per Brand, Denys Duchier, Seif Haridi, Christian Schulte and

Martin Henz. ‘Logic programming in the context of multiparadigm program-

ming: the Oz experience’. In: Theory and Practice of Logic Programming 3.6

(2003), pp. 717–763. issn: 147106़4. doi: 10.1017/S1471068403001741 .

[War़3] David H. D. Warren. An Abstract Prolog Instruction Set. Tech. rep. Menlo Park:

SRI International, 19़3.

30़

https://doi.org/10.1007/978-3-642-59495-3
https://doi.org/10.1007/BF03037020
https://doi.org/10.1017/S1471068403001741


Curriculum Vitae
The curriculum vitae that appeared in the printed version of this thesis is 
omitted from the digital version for data protection reasons.

309





List of Publications
Since the year 2014, the following scientific publications that I authored and co-authored

have been published or are currently undergoing formal review procedures. Some

publications tackled issues that did not match the focus of this thesis, so they were

neither reproduced in Part II nor incorporated into the research overview in Part I.

1. Jan C. Dageförde and Herbert Kuchen. ‘Applications of Muli: Solving Practical

Problems with Constraint-Logic Object-Oriented Programming’. In: Analysis, Veri-
fication and Transformation for Declarative Programming and Intelligent Systems.
Ed. by Pedro Lopez-Garcia, Roberto Giacobazzi and John Gallagher. LNCS. Springer,

2020. Under review

2. Jan C. Dageförde and Herbert Kuchen. ‘Free Objects in Constraint-logic Object-

oriented Programming’. In: Proceedings of the ACM on Programming Languages
(OOPSLA). 2020. Under review

3. Jan C. Dageförde and Finn Teegen. ‘Structured Traversal of Search Trees in

Constraint-logic Object-oriented Programming’. In: Declarative Programming and
Knowledge Management. Ed. by Petra Hofstedt, Salvador Abreu, Ulrich John, Her-

bert Kuchen and Dietmar Seipel. Vol. 12057. Lecture Notes in Artificial Intelligence.

2020, pp. 199–214. doi: 10.1007/978-3-030-46714-2_13

4. Jan C. Dageförde. ‘Reference Type Logic Variables in Constraint-Logic Object-

Oriented Programming’. In: Functional and Constraint Logic Programming. Ed. by
J. Silva. Vol. 112़5. Lecture Notes in Computer Science. Cham: Springer, 2019,

pp. 131–144. doi: 10.1007/978-3-030-16202-3_8

5. Jan C. Dageförde, Sandra Dylus, Jan Christiansen, Finn Teegen and Jan Rasmus

Tikovsky. ‘Strukturierte Traversierung des Ausführungsbaums von Muli-

Programmen’. In: 36th Annual Meeting of the GI Working Group ”Programming
Languages and Computing Concepts”. Ed. by J. Knoop, M. Steffen and Trancón y

Widemann, B. 2019, pp. 1–6. url: https://www.duo.uio.no/handle/10852/72477

6. Lars Beyer, Jan C. Dageförde, Herbert Kuchen and Claus A. Usener. ‘Automated

Data-Flow Analysis and Validation in Process Automation Projects’. In: Advancing
Technology Industrialization Through Intelligent Software Methodologies, Tools and
Techniques. 2019, pp. 333–346. doi: 10.3233/FAIA190061

311

https://doi.org/10.1007/978-3-030-46714-2_13
https://doi.org/10.1007/978-3-030-16202-3_8
https://www.duo.uio.no/handle/10852/72477
https://doi.org/10.3233/FAIA190061


List of Publications

7. Jan C. Dageförde and Herbert Kuchen. ‘A Compiler and Virtual Machine for

Constraint-logic Object-oriented Programming with Muli’. In: Journal of Computer
Languages 53 (2019), pp. 63–7़. issn: 2590-11़4. doi: 10.1016/j.cola.2019.05.001

़. Jan C. Dageförde and Herbert Kuchen. ‘Retrieval of Individual Solutions from

Encapsulated Search with a Potentially Infinite Search Space’. In: Proceedings of
the 34th ACM/SIGAPP Symposium On Applied Computing. Limassol, Cyprus, 2019,

pp. 1552–1561. doi: 10.1145/3297280.3298912

9. Jan C. Dageförde and Herbert Kuchen. ‘Muli: Constraint-Programmierung in

Java auf symbolischer JVM’. in: 35th Annual Meeting of the GI Working Group
”Programming Languages and Computing Concepts”. Ed. by J. Knoop, M. Steffen and

B. Trancón y Widemann. 201़, pp. 23–29. url: http : / / urn . nb . no / URN : NBN : no -

65294

10. Jan C. Dageförde and Herbert Kuchen. ‘An Operational Semantics for Constraint-

Logic Imperative Programming’. In: Declarative Programming and Knowledge
Management. Ed. by Dietmar Seipel, Michael Hanus and Salvador Abreu. Vol. 10977.

Lecture Notes in Artificial Intelligence. Cham: Springer, 201़, pp. 64–़0. doi:

10.1007/978-3-030-00801-7_5

11. Jan C. Dageförde and Herbert Kuchen. ‘A Constraint-logic Object-oriented Lan-

guage’. In: Proceedings of the 33rd ACM/SIGAPP Symposium On Applied Computing.
ACM, 201़, pp. 11़5–1194. doi: 10.1145/3167132.3167260

12. Tim A. Majchrzak, Jan C. Dageförde, Jan Ernsting, Christoph Rieger and Tobias

Reischmann. ‘How Cross-Platform Technology Can Facilitate Easier Creation of

Business Apps’. In: Apps Management and E-Commerce Transactions in Real-Time.
Ed. by Sajad Rezaei. Hershey PA: IGI Global, 2017. Chap. 5, pp. 104–140. doi:

10.4018/978-1-5225-2449-6.ch005

13. Florian Runschke, Jan C. Dageförde, Hendrik Scholta and Sebastian Bräuer. ‘Man-

agement von Informationsobjekten in hybriden Wertschöpfungsnetzwerken’. In:

Planung koordinierter Wertschöpfungspartnerschaften. Ed. by Jörg Becker, Torben

Bernhold, Ralf Knackstedt and Martin Matzner. Berlin, Heidelberg: Springer Gabler,

2017, pp. 179–202. isbn: 97़-3-662-55361-9

312

https://doi.org/10.1016/j.cola.2019.05.001
https://doi.org/10.1145/3297280.3298912
http://urn.nb.no/URN:NBN:no-65294
http://urn.nb.no/URN:NBN:no-65294
https://doi.org/10.1007/978-3-030-00801-7_5
https://doi.org/10.1145/3167132.3167260
https://doi.org/10.4018/978-1-5225-2449-6.ch005


14. Jan C. Dageförde, Tobias Reischmann, Tim A. Majchrzak and Jan Ernsting. ‘Gener-

ating app product lines in a model-driven cross-platform development approach’.

In: Proceedings of the Annual Hawaii International Conference on System Sciences.
2016. isbn: 97़0769556703. doi: 10.1109/HICSS.2016.718

15. Jörg Becker, Kevin Ortbach, Sebastian Köffer, Jan C. Dageförde and Björn Niehaves.

‘Old dogs and new tricks – Exploring the benefits and drawbacks of IT consumer-

ization in the context of aging workforces’. In: Tagungsband Multikonferenz
Wirtschaftsinformatik, MKWI 2014. 2014. isbn: 97़3000453113

313

https://doi.org/10.1109/HICSS.2016.718

	Title
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	I Research Overview
	1 Exposition
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Methodology
	1.4 Dissertation Outline

	2 Foundations
	2.1 Logic Programming and Non-Deterministic Execution
	2.2 Constraint-Logic Programming
	2.3 Symbolic Execution of Java Bytecode
	2.4 Constraint Solving in Object-Oriented Languages
	2.5 Concepts from Declarative Programming in Imperative Languages

	3 The Münster Logic-Imperative Language as a Multi-Paradigm Language
	3.1 Design Principles
	3.2 Language Features of Muli
	3.3 The Muli Compiler
	3.4 The Muli Runtime Library
	3.5 Applications of Muli
	3.6 Summary

	4 Non-Deterministic Execution of Constraint-Logic Object-Oriented Applications
	4.1 A Virtual Machine for Constraint-Logic Object-Oriented Programs
	4.2 Representation of Symbolic Expressions
	4.3 The Solver Component
	4.4 A Structure that Encodes Non-Deterministic Execution Paths
	4.5 Making Side Effects of Imperative Execution Reversible
	4.6 Continuous Testing and Integration of the MLVM
	4.7 Summary

	5 Search in a Constraint-Logic Object-Oriented Language
	5.1 Interrupting and Resuming Search
	5.1.1 Using Dual Trails for the Retrieval of Individual Solutions
	5.1.2 Obtaining Individual Solutions in Muli Applications

	5.2 Search Strategy Selection at Runtime
	5.3 Summary

	6 Free Objects
	6.1 Reference Types
	6.2 Types of Interaction with Free Objects
	6.2.1 Instantiation and Initialization
	6.2.2 Field Access
	6.2.3 Method Invocation
	6.2.4 Type Check and Type Cast
	6.2.5 Equality

	6.3 Summary

	7 Conclusion
	7.1 Contributions
	7.2 Limitations
	7.3 Perspectives for Future Research

	References

	II Included Publications
	8 Publication Overview
	9 A Compiler and Virtual Machine for Constraint-Logic Object-Oriented Programming
	9.1 Motivation
	9.2 Muli Language
	9.2.1 Language Concepts
	9.2.2 Syntactic Extension of Java
	9.2.3 Muli Classpath

	9.3 A Future-Proof Muli Compiler
	9.4 Operational Semantics of Muli Programs
	9.4.1 Semantics of Expressions
	9.4.2 Semantics of Statements
	9.4.3 Evaluation of an Example Program

	9.5 A Backtracking, Symbolic Virtual Machine
	9.5.1 Data Structures
	9.5.2 Symbolic Types
	9.5.3 Solver Component
	9.5.4 Symbolic Execution, Encapsulated Search, and Choice Points

	9.6 Discussion
	9.7 Related Work
	9.8 Conclusions and Future Work
	References

	10 Applications of Muli: Solving Practical Problems with Constraint-Logic Object-Oriented Programming
	10.1 Motivation
	10.2 Constraint-Logic Object-Oriented Programming
	10.3 Generation of Graph Structures for Neural Networks
	10.3.1 Generating Neural Network Graph Structures from a Muli Application
	10.3.2 Using Generated Neural Networks to Solve the Pole Balancing Problem
	10.3.3 Experiments

	10.4 Solving a Dynamic Scheduling Problem with Constraint-Logic Object-Oriented Programming
	10.5 Related Work
	10.6 Conclusion and Outlook
	References

	11 Free Objects in Constraint-Logic Object-Oriented Programming
	11.1 Programming with Free Objects
	11.2 Constraint-Logic Object-Oriented Programming with Muli
	11.2.1 Setting the Stage for Free Objects

	11.3 Method Invocations on Free Objects
	11.4 Field Access on Free Objects
	11.5 Other Operations on Free Objects
	11.5.1 Type Operations
	11.5.2 Equality

	11.6 Demonstration
	11.7 Related Work
	11.8 Concluding Remarks
	References

	12 Structured Traversal of Search Trees in Constraint-Logic Object-Oriented Programming
	12.1 Motivation
	12.2 Constraint-Logic Object-Oriented Programming
	12.3 Muli Logic Virtual Machine
	12.4 Search Trees
	12.4.1 Representation
	12.4.2 Construction
	12.4.3 Traversal

	12.5 Search Strategies
	12.6 Discussion
	12.7 Related Work
	12.8 Conclusion and Future Work
	References

	13 Retrieval of Individual Solutions from Encapsulated Search with a Potentially Infinite Search Space
	13.1 Motivation
	13.2 Constraint-Logic Object-Oriented Programming
	13.3 Infinite or Large Search Spaces
	13.4 Individual Retrieval of Solutions from Encapsulated Search
	13.4.1 Copy-Based Backtracking
	13.4.2 Trail-Based Backtracking

	13.5 Full Backtracking in the SJVM Using an Inverse Trail
	13.6 Evaluation
	13.7 Related Work
	13.8 Conclusions and Future Work
	References

	14 Reference Type Logic Variables in Constraint-logic Object-oriented Programming
	14.1 Motivation
	14.2 Constraint-Logic Object-Oriented Programming with Muli
	14.3 Reference Type Logic Variables (or Free Objects)
	14.3.1 Accessing a Field of a Free Object
	14.3.2 Invoking a Method on a Free Object
	14.3.3 Comparing Reference Equality of Reference Type Logic Variables
	14.3.4 Comparing Value Equality of Reference Type Logic Variables
	14.3.5 Performing Type Operations on a Free Object
	14.3.6 Imposing a Constraint for Structural Equality between Two Objects

	14.4 Implementation
	14.5 Related Work
	14.6 Concluding Remarks
	References

	15 A Constraint-Logic Object-Oriented Language
	15.1 Motivation
	15.2 Muli Language
	15.2.1 Language Concepts
	15.2.2 Syntactic Extension of Java
	15.2.3 Muli Classpath
	15.2.4 Implementing a Compiler for Muli

	15.3 A Backtracking, Symbolic VM
	15.4 Discussion
	15.5 Related Work
	15.6 Conclusions and Future Work
	References

	16 An Operational Semantics for Constraint-Logic Imperative Programming
	16.1 Introduction
	16.2 Language Concepts
	16.3 A Non-Deterministic Operational Semantics of Muli
	16.3.1 Semantics of Expressions
	16.3.2 Semantics of Statements

	16.4 Example Evaluation
	16.5 Discussion
	16.6 Related Work
	16.7 Conclusions and Future Work
	References

	Curriculum Vitae
	List of Publications




