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Abstract. The aim of this note is twofold. Firstly, we prove an explicit reciprocity law for
certain diagonal classes in the étale cohomology of the triple product of a modular curve,
stated in [8] and used there as a crucial ingredient in the proof of the main results. Secondly,
we apply the aforementioned reciprocity law to address the rank-zero case of the equivariant
Bloch—Kato conjecture for the self-dual motive of an elliptic newform of weight £ > 2. In
the special case k = 2, our result gives a self-contained and simpler proof of the main result
of [15].

1. INTRODUCTION

Let p > 5 be a rational prime and let N > 1 be an integer. Fix algebraic
closures Q and Q,, of Q and Q,, respectively, embeddings i-: Q < C and
ip: Q = Qp and a finite extension L of Q,(uy). For each positive integers n
and u, denote by M, (n,x)r the space of complex modular forms of weight u,
level I'y (n), character x: (Z/nZ)* — L* and Fourier coefficients in QN L, and
by Su(n, x)r the subspace of cuspidal modular forms.

In the rest of the introduction, assume that p { N and consider three
(nonzero) cusp forms

f S Sk(N7 Xf)La g€ Sl(N7 Xg)L and h e S’m(N7 Xh)L

of weights k > 2,1 > 1 and m > 1, respectively, which are eigenvectors for the
Hecke operator Ty for each prime ¢ which does not divide N, and satisfy the
self-duality condition

(1) XfXg Xn =1
Denote by D(f) the Deligne p-adic representation of (the primitive form
associated with) f, and by V' (f) the tensor product of D(f) with the f-isotypic

component of Si(N, x7)r. If Gq = Gal(Q/Q), the L[Gg]-module V(f) is then
(non-canonically) isomorphic to the direct sum of a finite number of copies
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of D(f). If & denotes either g or h, define similarly V (), after replacing D(§)
with the Deligne—Serre representation DS() if the weight of £ is equal to one.
Equation (1) implies that k + [+ m is even and that the Gq-representation

V(f,9.h) =V (f) @1 V(g) @1 V(h) ©z, Zp((k+1+m —2)/2)

is Kummer self-dual, viz. it is isomorphic to its L-linear dual representation
twisted by Z,(1).

1.1. The geometric and balanced case. Assume in this section that the
triple (k,l,m) is geometric and balanced, that is, [ > 2,m > 2 and k,l and m
are the lengths of the sides of a triangle. In this setting [8] associates to (f, g, h)
a diagonal class k(f,g,h) in the Bloch-Kato Selmer group Sel(Q, V(f,g,h))
of the Gq-representation V(f, g, h). (Its construction is recalled in Section 2.)
The first aim of this note is to prove Theorem A below, a generalization of the
explicit reciprocity law for k(f, g, h) stated as Proposition 3.5 in [8] and used
as a crucial ingredient in the proof of the main results of [8] and [9].

We first introduce the relevant notations. Assume that p does not divide IV,
and denote by £ one of f,g and h. Let a¢ and B¢ be the roots of the Hecke
polynomial hy, ¢(X) = X2 — X\, (€) - X + xe(p)p* ™!, where T,& = M\, (€) - € and u
is the weight of €. Enlarging L if necessary, assume it contains Qp (g, B¢, un).
Assume in the rest of the paper that

ag # Pe.

Assume moreover that ordy,(a¢) < k — 1. Denote by Var(f,g,h) the filtered
L-module Dgr(V(f,g,h)) associated by Fontaine to V(f, g,h). The Faltings
comparison isomorphism and (a suitably twisted) Poincaré duality identify the
Bloch-Kato p-adic logarithm of (the restriction at p of) (f, g, h) with a linear
functional

].ng(ﬁ(f,g,h)): FﬂOVdR(faga h) — L

(cp. Section 3.1.2). The L-module FilVyg(f,g,h) has dimension four, and
contains a distinguished class

nf ® wy @ wy € Fil'Var(f, g, h).

Here we is de Rham class in Var(§) = Deris(V (§)) corresponding to £ under the
Faltings comparison isomorphism and 7% is a natural element in Var(f)P=2s
associated with f, where ¢ is the crystalline Frobenius. (We refer to Section
3.1.3 for precise definitions.) The explicit reciprocity law relates the value of
log,(k(f,g,h)) at nf ® wg ® wp to a p-adic period I,(f,g,h) which we now
define.

Let f* = wy f in My(N, xr)r be the image of f under the Atkin-Lehner
operator w = wy. One has T, f" = x(p)A\p(f) - f*, so that x(p) - oy and
X(p) - By are the roots of the p-th Hecke polynomial hp so(X). Define

(2) fa € Sk(Np:Xs)L
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to be the p-stabilizations of f* satisfying U, f¥ = X7(p)ay - f¥. Regard g and
h as p-adic modular forms and let

Zk(g,h) = d(k—l—M)/Qg[:D] x h,

where ¢! and d*—1=m)/2¢[Pl are defined as follows. If ¢ has g-expansion
Zn>0 an(g) - ¢, then its p-depletion gl! is the weight-1 p-adic modular form
with g-expansion Zn’(p an(g) - ¢" (cp. Equation (15)). Let d = qd% be Serre’s
derivative operator on L[q], which sends (the g-expansion of) a p-adic modular
form of weight u to a p-adic modular form of weight u + 2. For each integer n
(not necessarily positive), the sequence of p-adic modular forms ¢»+®=1p" glp]
then converges, for m — 0o, to a p-adic modular form d"g!?! of weight [ + 2n.
It follows that Zx (g, h) defines a p-adic modular form of weight k. As proved in
Section 4.7 (see in particular Equation (46)) the form Z(g, h) belongs to the
space M}"°(N, L) of nearly-overconvergent forms of weight k defined over L
(cp. Section 3.3 or [41, 14]). Under the additional assumption ord, (o) < k—1,
the work of Coleman defines a natural f¥-isotypic projection

efu: MP(N, L) = Si(Np, L),
where Si(N,L)fw is the fy-isotypic component of Sk(Np,xys)r (cp. Sec-
tion 3.3). In this case define
(f&sefw Exlg, 1)) np
(& fwe
where ((,&§)m = le(M) C(2)€(2)y*~2dx dy is the Petersson scalar product on

Su(M,C).! Tt is easily seen that the p-adic period I,(f, g, h) is algebraic and
belongs to L.

Ip(fagah) =

Theorem A. Assume that pt N and that ord,(af) < k —1. Then
]'ng('%(fv g, h))(ﬁ? ® Wy ® OJh)

is equal to
(—1FN2(c = k)I(1 = E£)(1 = ;2) et
— Bragony(q _ BrogPuyq _ BiBadny(q _ BiBeBny P\ 9T
(1 — Broeony(q — Broghuy(q _ Bibyony(y _ Bilyb)

where ¢ = c(k,l,m) denotes the positive integer (k + 1+ m — 2)/2.

The proof of Theorem A is given in Section 4. It uses the work of Ban-
nai, Bannai-Kings, Besser, Nekovar, Niziot [1, 2, 10, 11, 31, 35, 36, 33] in an
essential way. See also [5, 4, 14, 6, 7, 26] for related results.

1f f& is ordinary (i.e., ordp(ay) = 0), there is no need to prove that Z (g, h) is nearly-
overconvergent in order to define efw - Ex(g, h) and Ip(f, g, h). In this case Hida [22] defines
an ordinary projector eqrq from the space My (N, L) of weight-k p-adic modular forms over
L to the space Mgrd(Np, L) of classical p-ordinary modular forms. The composition of eqq
with the natural projection M;;rd (Np,L) — Sk(Np, L) w onto the fY-isotypic component
is an extension of the Coleman morphism ew to M;. (N, L).
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1.2. Applications to the Bloch—Kato conjecture. Throughout this sec-
tion, (f,g,h) is a triple of newforms of weights (k,I,m) = (k,1,1) and con-
ductors (Ny, Ny, Np,). The following assumption is in force.

Assumption 1.3.

1. The product of x¢, x4 and x; is the trivial character.

2. p does not divide Ny - Ny - Nj, and (Ny, Ny, Nj) = 1.

3. For ¢ = g, h the p-th Hecke polynomial X2 — a,(£) - X + x¢(p) is separable.
4. f is p-ordinary (that is its p-th Fourier coefficient is a p-adic unit).

Let
Sel(Q.V(f,9,h)) = H'(Q,V(f,g,h))
be the Bloch-Kato Selmer group of the Gq-representation V (£, g, h) and let

Hjtr(Qav(fvgvh)) = ker(resp: SGI(Q,V(f,g,h)) - Hl(Qpﬂv(fagvh)))

be its strict Selmer subgroup. Write L(f ® g® h, s) for the complex L-series of
the tensor product of the motives of f, g and h. Under Assumptions 1.3.1 and
1.3.2, it admits an analytic continuation and satisfies a functional equation
with sign +1 at the central critical point s = k/2. The following theorem
(proved in Section 5) is the main result of this note.

Theorem B. If L(f ® g ® h, s) does not vanish at s = k/2, then the Selmer
group Sel(Q, V(f,g,h)) is equal to the strict Selmer group HL (Q,V (f,g,h)).

The Bloch—Kato conjecture predicts that the Selmer group Sel(Q, V(f, g, h))
is trivial if (and only if) the L-series L(f ® g ® h,s) does not vanish at the
central critical point s = k/2. As explained below, the methods of this paper
fall short of proving this conjecture. Nonetheless, the previous result provides
strong evidence in support of it.

When k£ = 2, Theorem B gives a significantly simpler proof of the main
result proved by Darmon and Rotger in [15] (cp. Section 1.3.1 below) and has
important applications to the equivariant Birch and Swinnerton-Dyer conjec-
ture. Let A be an elliptic curve defined over the rationals and let L = L,
be the splitting field of the tensor product o = p; ® g2 of two irreducible,
odd Artin representations satisfying det(o;) = det(p2)~!. Then Theorem B
and the Serre modularity conjecture prove that the non-vanishing of the L-
series L(A4,o,s) at s = 1 implies the triviality of the g-isotypic component
A(L)? = (A(L) @7 V,)9*1E/Q) of the Mordell-Weil group of A over L. Indeed,
L(A,0,5) = L(f ® g ® h,s), where f,g and h are the cusp forms associated
with A, o1 and g2 by modularity, and a non-torsion element of A(L)? gives rise,
via the p-adic Kummer map, to a class in Sel(Q, V' (f, g, h)) with nontrivial re-
striction at p, id est not in HL,.(Q, V(f,g,h)). One can then apply Theorem B
with any (carefully choosen) prime p for which Assumption 1.3 is satisfied.

More generally, let f be a newform of weight k > 2 and let ¢ = 01 ® 02 be
as above. The representation V(f) can be realized in the middle cohomology
Y = HEHEF2 ®q Q,Q,) of the i-fold fibre product & = & (N)’ of the
universal elliptic curve & (N) — Yi(N) over the open modular curve of level
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I'1(N) over Q. The p-adic Abel-Jacobi map and the f-isotypic projection
Y — V(f) gives a morphism

rp: CHM2(EF72)y = Sel(L, Vy),

where £} = &' ®q L, the Gal(L/Q)-module CH'(-), is the Chow group of
homologically trivial codimension ¢ cycles on - modulo rational equivalence and
V¢ denotes the k/2-th Tate twist of V(f). If (Assumption 1.3 is satisfied and)
L(f,0,8) = L(f®g®h, s) does not vanish at s = k/2, Theorem B proves that r,
maps the g-component CH*/2(£872)¢ = HO(Gal(L/Q), CH*?(£8-2)y @7 V)
to the restricted Selmer group HZ (Q,V(f,g,h)). In contrast with the weight
two case, when k > 2, this is far from proving the (conjectural) vanishing of the
f-isotypic component of CH*/ 2(EF72)8, as the injectivity of the Abel-Jacobi
maps is arguably the deepest aspect of the Beilinson—Bloch—Kato conjectures.
Despite this, Theorem B still provides strong evidence in support of the Bloch—
Kato conjecture for the p-twist of the self-dual motive associated with f.

1.3.1. Outline of the proof and comparison with [15]. The general strategy un-
derlying the proof of Theorem B dates back to Kato’s work on the cyclotomic
main conjecture, as revisited and extended in a series of recent works, includ-
ing [14, 4, 28, 7, 42, 15, 27]. It can be summarized as follows. (We refer the
reader to Section 5 for the actual proof of Theorem B.)

For £ = g, h, fix a root ag of the Hecke polynomial X2 — a,(£) - X + xe(p)
and write &4(q) = &(q) — (xe(p)/a) - £(gP) for the corresponding p-stabilization
of & According to a result of Wiles, there exist Hida families g = g, and
h = h,, specializing, respectively, to g, and h, in weight one. For each integer
u in a dense subset of a small p-adic disc U centered at one, the constructions
outlined in the previous section associate to f and the weight-u specializations
g, and h, an algebraic number I,(f, g,,, hy). A method due to Hida (cp. [23])
shows that these algebraic numbers are p-adically interpolated by an analytic
function ., (f, gh) on U. Thanks to the proof by Harris-Kudla of a conjecture
of Jacquet, the value of .Z,(f,gh) at u = 1 is related to the complex special
value L(f ® g ® h,k/2). The key technical step in the proof of Theorem B
consists in showing that there exists a class x(f, gh), in a suitable big Selmer
group with coefficients in the Tate algebra of analytic functions on U, such
that

3) Z,(f.gh) = L(resy(r(f,gh))),

where £ is a branch of the appropriate Perrin-Riou big logarithm map. (We
refer to Theorem 5.3 for a precise statement of this result.) Once this is
proved, the previous discussion relates L(f ® g ® h, k/2) to the value at u = 1
of the right-hand side of Equation (3), which in turn is related by results of
Colmez—Perrin-Riou to the Bloch—-Kato dual exponential of the specialization
K(f, gas ha) of K(f,gh) at v = 1. Assuming that L(f ® g ® h,s) does not
vanish at s = k/2, this produces a ramified class £(f, ga,ha) in the relaxed-
at-p Selmer group of V(f, g,h) over Q. Under Assumption 1.3.3, one actually
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produces four ramified classes k(f,gi, h;), one for each choice of the roots i
and j of the p-th Hecke polynomials of g and h. The p-adic residues of these
classes are easily seen to be linearly independent, hence Theorem B follows
from an application of Poitou-Tate duality.

Theorem 5.3 (or better its proof) shows that Equation (3) can be deduced
directly from Theorem A and a simple density argument. More precisely,
take a sequence u; of integers congruent to 1 modulo p — 1, which converges
to infinity in the ordinary topology and to 1 in the p-adic topology (e.g.,
take u; = 1+ (p — 1)p*). We prove that the existence of a class k(f,gh)
satisfying Equation (3) is a direct consequence of the explicit reciprocity law
at each crystalline weight-u; specialization (f,g,,,h.,;) of the triple (f, g, h).
For this strategy to work, it is crucial to use the good integrality properties
enjoyed by the diagonal classes introduced in [8] (cp. Section 2 and the proof
of Theorem 5.3). This simple method applies to the study of the analytic rank-
zero case of the equivariant Bloch-Kato conjecture in many other interesting
settings (e.g., the one considered in [7]).

In the significant special case & = 2, Theorem B recasts the main result
of [15]. The proof of the latter follows a different pattern. More precisely, loc.
cit. constructs an explicit class k(f, gh) satisfying the identity (3) by using del-
icate geometric arguments. For each positive integer s, a twisted diagonal cycle
is defined in the Chow group of codimension two cycles in the triple product of
the modular curve X;(Np?®) of level I't (Np®) over Q. The p-adic Abel-Jacobi
images of these cycles satisfy certain compatibilities under the natural maps
from X;(Np*Tt) to X1(Np?®), from which x(f,gh) arises as the inverse limit
of classes in the ordinary parts of the middle étale cohomology with constant
coefficients of the cubes of the curves X1 (Np®). Once s(f, gh) is constructed,
reciprocity laws for its specializations at triples of the form (f,gs,,h2 1)
are proved, where g, , denotes the non-crystalline specialization of g at an
arithmetic point of weight 2 and character x of conductor divisible by p. This
entails working on varieties with bad reduction at p, which makes it harder to
obtain the reciprocity laws directly. In this special setting, Equation (3) follows
from these reciprocity laws and the properties of the Perrin-Riou logarithm.

2. DIAGONAL CLASSES

This section recalls the definition of the diagonal classes introduced in [8],
to which we refer for more details.

Let N > 3 be a positive integer and let Y7(V) be the affine modular curve
of level T'1(N) over Z[1/N], classifying isomorphism classes of pairs (E, P),
where FE is an elliptic curve over a Z[1/N]-scheme S and P is a section in
E(S) of exact order N. Let R be a Z[1/N]-algebra, let Y = Y1(N)r be the
base change of Y1(N) to R and let v: E — Y be the universal elliptic curve
over Y. There is a natural functor -4 from the category of p-adic representa-
tions of GL2(Z,) to the category of p-adic étale sheaves on Y. If St denotes
the standard representation of GLa(Z,), then . = St¢; is equal to the relative
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étale cohomology R'v.Z, of E over Y. In particular, one has dets; = Z,(—1)
for the determinant det of St (see [8, Section 3] and the references therein, in
particular, [19, Prop. A 1.8] for more details). For each nonnegative integer
u, denote by S, = Symmyz_ (St) the symmetric quotient of the u-fold tensor
power of St and by ., = Symm%py the étale sheaf corresponding to S, under
-6t Write H;, (Y, .#,) for the continuous étale cohomology groups (in the sense
of Janssen [24]) of Y with coefficients in .%,.

Notation. In this rest of this section Y = Y7 (IV)q denotes the modular curve
over Q. We also fix a rational prime p > 3.

Let (k,I,m) be a balanced triple in (Z>2)3 such that k + 1 + m is even.
(Balanced means that &, and m are the lengths of the sides of a triangle.) The
Clebsch—Gordan decomposition of classical invariant theory gives a canonical
generator Det,. of H°(GL2(Z,), Sy ® det™"), where r = (r1,72,73) is equal to
(k—2,1—2,m—2), ris equal to (r1 +r2 +r3)/2 and S, is a shorthand for
Sy, @z, Sr, @z, Sry. After setting .. = .7, ®z, S, @z, S4,, the invariant
Det,. corresponds (under -4) to a global section

Detl' = Det%’r € HO (Y, Zn(r)).
Let d: Y < Y3 be the diagonal embedding and let
f5ﬂ[r] :y'rl xy’l‘g IZlyrga

so that d*#},) = . The push-forward of Deté' along d gives a class in
H (Y3, 1) (r +2)), and the Hochschild-Serre spectral sequence yields a nat-

ural map HSg; from H, (Y3, .%],)(r+2)) to the global Galois cohomology group
H'(Q,Wy ) of the lattice

WN,» = Hégt(Y(%,y[r])(T +2)
in the p-adic representation Wy » = Wy » ®z Q. The class
(4) KNz = HSg o dy(Detl) € HY(Q, Wy ,)

is called the diagonal class of level N and weights (k, 1, m). The results of [33]
imply that (after inverting p) s, belongs to the Bloch-Kato Selmer group
Sel(Q, Wi ) of Wi, over Q (cp. [8] and Section 4.1 below).

Let L be a finite extension of Q, and consider a triple of modular forms

f € Sk(Na Xf)La g€ Sl(N7 Xg)L and h € Sm(N7 Xh)La

where (k,l,m) is a balanced triple with k,I,m > 2 and k 4+ [ + m even. As-
sume that f,g and h are (nonzero) eigenforms for the Hecke operator T; with
eigenvalues A\¢(f), Ae(g) and Ag(h), for each prime £ not dividing N. As in the
introduction, assume in addition that they satisfy the self-duality condition
Equation (1), namely, that the product of the characters of f,g and h is the
trivial character modulo N. Let

prfgh: WN,’I' ®Qp L— V(faga h)
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be the maximal L-quotient of W , ®q, L on which the Hecke operator T, ®
id®1id (resp., id ® Ty ® id, id ® id ® Ty) acts as multiplication by A\¢(f) (resp.,
Me(g), Ae(h)) for each prime ¢ not dividing N/p°*%(N) and (d;) ® (d2) ® (d3)
acts as multiplication by xf(d1) - x4(d2) - xn(d3) for each d; in (Z/NZ)*. The
L[Gq]-module V(f,g,h) is a direct summand of Wy, ®q, L, isomorphic to
the direct sum of a finite number of copies of the (r + 2)-th Tate twist of the
tensor product of the L-adic Deligne representations of f,g and h. Define

H(fv g, h) = prfgh*(K:NJ‘) € Sel(Q? V(fa g, h))

to be the image of £y, under the map induced in cohomology by pry,.

3. COHOMOLOGY AND MODULAR FORMS

This section briefly recalls the needed facts on the de Rham and rigid co-
homology of modular curves over Z,. We refer to [25, 39, 13, 2, 5] for the
details.

Notation. In this section Y = Y1(N)q, and X = X;(N)q, denote the open
and compact modular curves of level I'1 (V) over Q,. Let C' = X —Y and
let u: E — Y be the universal elliptic curve. Let L be a finite extension of
Q,(Cw), where ¢y = e2™/N,

3.1. De Rham cohomology. Let w = u*QE/Y and SR = Rlu*Q?E/Y de-
note, respectively, the line bundle of relative differentials and the first relative
de Rham cohomology of E/Y, extended to vector bundles on X as in [39,
Section 2.3]. For i > 0, set Sur,; = SymmiﬁxydR and w' = w®*: one has a
natural isomorphism between w? and QY (log C), called the Kodaira-Spencer
isomorphism. For 0 < ¢ < 4, denote by Fil'".%4r,; = w? ¢y Fdr,i—q the ¢-th
step in the Hodge filtration and by 7 ; = #jg ;(X) the logarithmic de Rham
complex of X: /

Firi = [Vi Far,i = Far,i ®ex Ux (log O)]

(concentrated in degrees zero and one), where V is the Gau~Manin connec-
tion. For each open subscheme U of X, write .7y ;(U) for the restriction of
4R, to U. Write

(5) Har (Y, %) = HU(Y, S ;(Y))

for the de Rham cohomology of Y with values in (Z4r;(Y), Fil®, V). According
to [16, Cor. I1.3.15], this is naturally isomorphic to the de Rham cohomology
Hyr(X, ) = Har(X, y&R7i), viz. to the cohomology groups of the derived

complex RI'(X, 5’&}“). The Hodge filtration and the Kodaira—Spencer iso-
morphism then give a natural isomorphism

Mi2(N, L) = Fil' Hig (Y, )1,

where M;(N,L) = I'(X,w?), is the space of weight-i modular forms of level
I'1(N) defined over L.
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3.1.1. Comparison with étale cohomology. Let k > 2 and let f in Sp(N, xf)r
be an eigenvector for the Hecke operator Ty, with eigenvalue Ay(f), for each
prime ¢ not dividing N, = N/ p°rd»(N) | Denote by

Var(f) = H*(Qp, Bar ®q, V(f))

the de Rham module of the restriction to Gq, of the Gq-representation V'(f)
defined in the introduction. The comparison isomorphism between étale and
de Rham cohomology proved by Faltings—Tsuji [18, 40] yields a natural iso-
morphism of filtered modules

(6) Var(f) = Hig (Y, Si2)s,

where the right-hand side is the direct summand of H le(Y, F%—2)r, on which
the Hecke operator T; (resp., diamond operator (d)) acts as multiplication
by Ae(f) (resp., xs(d)) for each prime ¢ not dividing N, (resp., each unit
d in Z/NZ). We identify Var(f) with a direct summand of HJz (Y, %%—2)L
under the previous isomorphism, so that the f-isotypic component Sy (N, L)y
of M (N, L) becomes identified with Fil' Vg (f). Define

wr € FﬂlVdR(f)

to be the element corresponding to the modular form f in My (N, L)y under
these identifications.

If (f,g,h) is a triple of modular forms as in Section 2, the isomorphism (6)
and the Kiinneth decomposition for de Rham cohomology induce a natural
isomorphism of filtered modules (considered as an equality)

(7) Var(f, g, h) = H3g (Y?, L) ron ©q, Qplr + 2]

Here VdR(f,g, h) = HO(QP, V(f,g, h) ®Qp BdR) and Qp[n] = DdR(Qp(n)) for
each n in Z. The filtered vector bundle with connection ) qr on Y3 is
defined by Sgr, k-2 X .74r,1—2 W F4r,m—2. Finally, the fgh-isotypic compo-
nent H3p (Y2, 77) pgn of Hig (Y3, ) = H3g(Y?, Lar,r))1 is defined as in
Section 2.

3.1.2. Duality. Let
(';')3 SAR @6y SAR — ﬁy(—l)

be the perfect relative Poincaré duality pairing, arising from the dualities
() )a: Hig(Ey/k) ®q, Hig(Ez/k) — k on the fibres at x: Spec(k) — Y
(with & a field extension of Q). Here Oy (n) (for n in Z) denotes the sheaf Oy,
equipped with the trivial connection and with the filtration Fil® @y (n), given
by Fil?’Q,(n) = Oy for ¢ < —n and Fil?’0y(n) = 0 for ¢ > 1 —n. For each
1 2 0, the pairing (-, -) induces a duality

(8) (-,)i: Lar,i oy Lar,i — Oy (—1),
whose restriction to the fibre at z: Spec(k) — Y is given by
1
9) (0, B)ie = a1 Zs (a1, Bo1))e -+ (0, Bo(s))a

gES;
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foreach « = a1---a; and B8 = B1---5; in Symm};HéR(Edk). This in turn
induces a perfect duality

(10) (- )i Han(Y, 7 ®q, Hin (Y. 74) = Hip (Y. Oy () = Qp[~i~1].

Let (f,g,h) be as in Section 2 and (as in the introduction) set £¥ = wyé,
for € equal to f, g and h. As £“ is cuspidal, the morphism Hgg . — Hjg maps
the £“-isotypic component of Hjg .(Y,.#;)r isomorphically onto Var(£*) (cp.
Equation (6)), and (-, )u+2 induces a perfect pairing

(11) (5 )e: Var(§) @1 Var(§™) — L1 — v,
where u is the weight of £. With a slight abuse of notation, write again
wy: Hig (Y,%) = Hgg (Y, %)
for the geometric Atkin-Lehner isomorphism (cp. [8, Section 2.3.1]), which

induces an isomorphism wy: Var(§) — Var(€"). The composition of (-, - )¢
and id ® wy then yields a perfect duality

<'7'>€: VdR(g) L VdR(ﬁ) — L[l - u]?

under which S, (N, L)e = Fil' Var (€) is the orthogonal complement of itself.
Define the perfect duality

(12) (s )rgn: Var(f,9,h) @1 Var(f, g, h) — L[1]

to be the tensor product of the pairings (-, - )¢ for £ = f, g, h. As easily checked,
the Bloch-Kato exponential gives an isomorphism exp,, between the tangent
space tgqgr (f,g,h) of Var(f,g,h) and the finite part HL (Qp, V*(f,g,h)) of
the local cohomology group H*(Q,, V(f, g, h)). After identifying tg,r (f, g, h)
with the L-linear dual of Fil®Var(f, g, h) via the perfect duality (-,-)s.n, the
inverse of exp,, then gives rise to an L-linear isomorphism

1ng: Hflm(va V(f7g7 h)) = HOIIIL (FﬂOVdR(f7g7 h)v L)

In particular, the image under log,, of (the restriction at p of) the Selmer class
k(f,g,h) yields a functional

(13) log, ((f,9.h)): Fil’Var(f,g,h) — L.

3.1.3. The class ny. Assume in this section ord,(N) < 1 and let f be as in
Section 3.1.1. Assume in addition that p does not divide the conductor of
the character of f. Then V(f) is a semi-stable representation of Gq,. As a
consequence, Var(f) = H°(Qyp, Bst ®q, V(f)) is equipped with a semi-stable
Frobenius endomorphism ¢. As in the introduction, let ay and Sy be the
roots of the p-th Hecke polynomial hy,(X) = X2 — A\, (f) - X + x7(p)p*~! and
assume that L contains Q,(cy, 8f). Under the assumptions of Section 1.1 the
characteristic polynomial of ¢ is a power of hy ,(X) and Var(f) is the direct
sum of Fil'Var(f) = Sk(N, L); and the g-eigenspace Var(f)?=*/ (cp. [38]).
It follows from this and Section 3.1.2 that there exists a unique de Rham class

nf € Var(f)#=
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such that, for each & in Si(N, L), one has (cp. the introduction)
(gwa fw)N

N7 We)f = T ra

Vel = (o o

If (f,g,h) is a triple of modular forms as in Section 2, the Kiinneth product
of n?‘, wg and wy, defines a class

(14) N} ® wy @ wy, € Fil'Var(f, g, h).
(To show that the class nf ® wg ® wp indeed belongs to the zeroth step of

the Hodge filtration of Var(f, g, h), note that Fil' Vig (€) = Fil*" ' Var(€) for a
modular form £ of weight u and recall that the triple (k,1,m) is balanced.)

3.2. p-adic modular forms. Let X" and Y& be the rigid analytic varieties
over Q,, associated with X and Y, respectively, and let X°*¢ and Y°'4 be their
ordinary loci. Let L be a finite extension of Q,(p) and fix a generator (y of
py(L). For each integer s, denote by

Ms(Na L) = F(Xorda wS)L

the space of Katz p-adic modular forms of weight s and level I’y (N) defined
over L. Let Ry = Op[q] ®z Q and let Tate(q) = (G./q%,(n) be the Tate
generalized elliptic curve with I'; (V)-level structure over Ry. As Tate(q) is
defined by a global affine equation y? + zy = 2% + b(q) -  + c(q) over Z[q], the
invertible sheaf w|rate(q) = #*w has a canonical generator wean = dx/(2y + x)
(cp. [25, Section A.1.2]). Given a section w of w® over a neighborhood of
Tate(q), its restriction w|rate(q) to Tate(q) is then of the form f, - we,, for a
unique element f,, in Ry, called the g-expansion of w. The g-expansion map

indeed gives an injective morphism
M,(N, L) — Ry,

which we consider as an inclusion. If f in Ry is the g-expansion of a p-adic
modular form of weight s, we write wy for the corresponding section of w*~2
over the ordinary locus (so that w = wy,,).

The module M, (N, L) is equipped with the action of the Hecke operator
U = U, and of the Verschiebung V', defined on g-expansions by

U(Zan-q"):ZanP-q” and V(Zan-q”):Zan-q"”,
n=0 n=0 n=0 n>=0

respectively. In particular, for each p-adic modular form f = Zn%) an(f) - ¢™

in M,(N, L), its p-depletion
(15) fPr=1-vO)f =3 an(f)-a"
pin

is again a p-adic modular form of weight s. The derivation d = qdiq on Ry
restricts to Serre’s operator

d: M,(N, L) = M, (N, L).
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In addition, M4(N, L) is equipped with the Hecke operators T; and (d) for
primes ¢ not dividing Np and units d in Z/NZ, which restrict to the usual
Hecke operators on the space M (N, L) of classical modular forms if s > 0.

3.3. Rigid cohomology. In this section p does not divide N, so that Y1(N)z,
and X1(N)z, are smooth models of ¥ and X, respectively, over Z,.

Denote by 2: Y*8 < X8 and by 5: X9 < X" the natural inclusions
and by ' and ;' the corresponding Berthelot functors from the category of
abelian sheaves on X8 to itself [3]. If .% is a coherent sheaf on X and k = 1, ,
we write x1.Z for the image of the analytic sheaf .% |y« under x'. Set

x.ig,i = ZTy&R,i
and denote again by Fil' and V the filtration and connection on
0
xig,i = ‘Zigﬂ'

induced by the corresponding structures on .#4gr,;. The abelian sheaf .#i4 ; is
also equipped with a Frobenius endomorphism ¢, such that (g, Fil', V, )
is an overconvergent filtered @-isocrystal on the special fibre Y&, of Y1(N)z,
(cp. [2, Appendix A]). According to a result of Dwork [25, Thm. A2.3.6], the
restriction of A5y = F1ig,1 to the ordinary locus admits a unique p-equivariant
splitting spl"”: Fig|yora — Fil' Fig|yora = w|yera of the Hodge filtration such
that the Frobenius ¢ acts invertibly on its kernel. Write again

Splur : fjﬂrig,’ih/c’fd — wi|yord

for the map induced on the i-th symmetric powers, called the unit root splitting.
The cohomology of RI'(X™&,41.7;; ;) and RI'(X"8, ). ;) compute the
rigid cohomology groups

Hyig(Yr,, %) = Hyig(Yr, /Qp, 1 Tar.i)

and
Hiig(Y§, 1) = Hyig (YR /Qpy 1 Far,0),

respectively, where Yr, = Y1(N)F, and Ylé’;d is the complement in Yg, of the
finitely many F,2-rational supersingular points. Theorem 5.4 of [13] proves
that the Hodge filtration induces an isomorphism

M (N, L)

. i+2 ~ 17l ord ]
(16) [ o NN D) Hy(YE), S
Here MJ(N, L) = T'(X"8, 5Tw®) is the space of overconvergent modular forms
of level weight s € Z and level I'; (V) defined over L, and d*2 is the (i + 2)-th
iterate of the Serre derivative operator d (denote by 6 in loc. cit.). The L-
submodule M (N, L) of M(N, L) is invariant under the action of the Hecke
operators U, Ty for primes ¢ not dividing Np, (d) for units d in (Z/NZ)*, and
under the action of the Verschiebung V. Loc. cit. proves that the isomorphism
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[ ]i+2 intertwines the action of the rigid Frobenius ¢ on Hrlig(YF?;d, ;) with

that of p**+1(p)V on overconvergent modular forms, that is,
(17) ol liva=1[ lite Opi+1<p>v-

(Note that our model Y7(NN) of the modular curve of level I'1(N), in which
Tate(q) is not defined over Q, differs from the one used in [13]. This explains
the appearance of the diamond operator (p) in the previous equation.)

The restriction of the unit-root splitting to the global sections of .#}is ; and
the Kodaira—Spencer isomorphism induce an injective map

spl"": D(X", .7, ;) < Mipa(N, L).

rig,e
Its image M $(N, L) is called the space of nearly-overconvergent modular
forms. The composition of the inverse of [-];+2 with the natural map

U(X"8, .74, ) = Hi (YR, )

rig,? rig
then yields a morphism
(18) el MMS(N,L) — M/ ,(N,L)/d"* ' M (N, L).

Let f in Sk(N,xf)r be a cusp form of weight k > 2, level I'1(N), char-
acter xr: (Z/NZ)* — L* and Fourier coefficients in L. Assume that f is an
eigenvector of the Hecke operator Ty, with eigenvalue a,(f), for each prime ¢
not dividing N. Let ay, 8¢ and f¥ € Si(Np, Xr)r be as in Section 1.1 (see in
particular Equation (2)). Define

(19) Hrlig(Y]:?:dvyk—Q)L - Hrlig(YF?;dvyk—Q)f&”

to be the maximal quotient on which
e=xsp) Bs, Te=xsWp) ar(f) and (d) =xy(d)
for each prime £ not dividing Np and each unit d in Z/NZ. According to Equa-
tion (17), the inclusion Si(Np, L) < M,I (N, L) and the Coleman isomorphism
[]k defined in Equation (16) induce a morphism
[ ' ]? : Sk(va L)f&“ - Hl (Yngdv yk—Q)f&U

rig
where Si(Np, L) is the f3-isotypic quotient of Si(Np, L).
If one further assumes that f2 has small slope, viz. ord,(ay) < k —1, then
[-]$ is an isomorphism:
(20) [1§: Sk(Np, L) gy = Hyg(VEY, So2) gy
Indeed, [13, Thm. 6.1 and Lem. 6.3] proves that the natural map
Sk(Np, L) = M{(N, L) /d"" M} (M, L)

induces an isomorphism on the fY-isotypic quotients, provided that f¥ has
small slope. In this case, define

(21) Efw: ME_O(N7L)—>Sk(Np,L)f&u
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to be the composition of the morphism ef defined in Equation (18) with the
projection to the f¥-isotypic quotient. The morphism ey« is the (Coleman)
f¥-isotypic projector mentioned in Section 1.1.

3.4. Explicit formulas (cp. [2, Section 4]). Let Y — Y°'d be the affine for-
mal scheme over Z, which classifies trivialized elliptic curves with I'; (N)-level
structure defined over p-rings. (We recall that a trivialization on an elliptic
E — S is an S-isomorphism between the formal multiplicative group G, over
S and the formal completion E of E along the zero section.) Let M(N, Z,) be
the coordinate ring of YV, the space of Katz generalized p-adic modular forms
of level ' (N). Write Ry for the p-adic completion of Z,[¢x](¢). Evaluation
at the Tate curve Tate(q) over Rn gives a g-expansion map

M(N, Z,) < Ry,

which we consider as an inclusion. Then M(N,Z,) is invariant under the
action on Ry of the Hecke operator U, of the Verschiebung V' and of Serre’s
derivative operator d = qdiq.

Denote by @ and %igﬂ- the restrictions of w and .#}ig,;, respectively, to 37
These are free M(N, Z,)-modules. More precisely, let £ — Y be the univer-
sal elliptic curve with trivialization : G, = £. The line bundle & is then
generated by the global section @, satisfying ¢*@ean = dT/(1 + T) (with
G, = Spec(Z[T, T~'])), which specializes to wean on Tate(q). Let  be the
module of Kéhler differentials of the Z,-algebra M(N ,Z,) and denote by Sean
the differential in ) corresponding to @2, under the Kodaira—Spencer isomor-
phism. The derivation of M (N, Z,) corresponding to Scan is Serre’s operator d.
After setting fjecan = Va(@can ), one has

fSZrig - M(N; Zp) . L:Jcan & M(N, Zp) . 'F]cana
and the action of the Gau3—Manin connection V is described by the formula
(22) V(f : a}can + g- ﬁcan) = (df - a}can + (f + dg) - ﬁcan) & Scalr

The action of the Frobenius ¢ can also be described explicitly (paying some
attention to the fact that Tate(q) is not defined over Q). In particular,

) oGy = () (5

Let i be an integer, let L be a finite extension of Q,[Cx] and write M(N, L)
for the base change of M(N,Z,) to L. Identify T'(Y,&") with M(N,Z,) via
@ean, and w? with Q% (log C) under the Kodaira- Spencer isomorphism. Then
restriction to ) gives an injective map M;(N, L) — M(N, L) compatible with
the g-expansion maps, which we consider as an inclusion. As the pullback of
dean to the Tate curve is equal to dgq/q, one deduces that the restrlctlon to Y
of a classical modular form f in M; (N, L) is given by f(q) - &%, ® dcan.
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4. PROOF OF THEOREM A
This section proves Theorem A stated in Section 1.1.

Notation. Let the notations and assumptions be as in loc. cit. In particular,
N > 1 is a positive integer not divisible by p and (k,l,m) is a geometric bal-
anced triple in (Z>2)®. Throughout this section one writes ¥ = Y1 (N)z, and
X = X;i(N)z, for the open and closed modular curves over Z,, respectively.
Moreover, (as in Section 2), r = (ri,72,73) equals (k — 2,1 —2,m — 2) and
r denotes the nonnegative integer (r; + ro + r3)/2. To ease notation, in this
section only we write .. = #%; . for the Q,-linear extensions of the p-adic
étale sheaves denoted by the same symbol in Section 2. (For example, the
étale cohomology groups Hy, (Y, %) = H; (Y, S4.i) are Q,-vector spaces).

4.1. Syntomic and finite polynomial cohomology. This section recalls
the needed facts on rigid syntomic and finite polynomial cohomology. We use
[12] and [2, Appendix A] as main references.

For each smooth pair % = (U,U) over Z,, write S(%) for the category of
admissible filtered overconvergent ¢-isocrystals on % defined in [2, Def. A.2].
We also call an element of S(%) a syntomic sheaf on % . For each syntomic
sheaf .# on % and each polynomial P(t) in 1+ ¢ - L[t], denote by Hp(% ,.F)
the Besser rigid finite-polynomial cohomology groups of % with values in .%.
In the special case P(t) = 1 — t, these are the syntomic cohomology groups
defined in loc. cit. and denoted by Hg,, (% ,%). The definition given there
readily generalizes to the more general setting considered here (cp. [10, 12]).
Moreover, one can define finite polynomial cohomology groups with compact
support Hp (%, 7) as in [12].

4.1.1. Syntomic sheaves I: the case % = Z,. Write Z, for the smooth pair
(Spec(Zy), Spec(Zy)) and let P(t) = [];(1 — a;t) and Q(t) = [[;(1 — B;t) be
polynomials in 1+ ¢ - L[t] (with a;, 3; in Q).

The category S(Z,) of syntomic sheaves on Z,, is simply the one of filtered
p-modules over Q,,. For F' in S(Z,) consider on F; = F ®q, L the (induced
filtration and the) L-linear endomorphism ¢ = ¢ ®q, L. Then the finite
polynomial cohomology group Hs(Z,, F') vanishes when i # 0,1 and one has

HY(Zy, F) = Ff 9= nFil°F, and Hp(Z,, F) = F/P(p) - Fil'Fy,

(where Ff(“’)zo denotes the kernel of P(¢).) Let P*Q(t) =[], ;(1 — ;)
and let a(z,y) and b(z,y) be any pair of two-variable polynomials satisfying
PxQ(zy) = alz,y) - P(z) + b(z,y) - Qy).

Let F', G and H be filtered ¢-modules, let v: F'®q, G — H be a morphism
of filtered p-modules and let i,j be nonnegative integers which sum to one.
Define the cup-product pairing

Utp : H%)(Zp7 F)®r Hé(zpa G) = Hlli'*Q(ZWH)
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by cl(f) Usp g = cl(y(a(x,y) - f ® g)) when i = 1, respectively, f Ug, cl(g) =
c(y(b(z,y)- f®g)) when j =1, for each f in F and g in G, where the variables
x and y act on F'®q, G as ¢ ®id and id ® ¢, respectively.

4.1.2. Syntomic sheaves II: the general case. Let % be a smooth pair over Z,,.
A syntomic sheaf .# in S(%) admits (and is characterized by) de Rham and
rigid realisations Fqr and #;. The de Rham realization Zgr is a filtered co-
herent ﬁUQp -module equipped with an integrable connection with logarithmic

singularities along U — U. Write H ir(Uq,,#) for the de Rham cohomology
groups Hig(Uq,, Zar) = Hig(Uq,, Zar) (cp. [2, Def. A.2] and the discus-
sion surrounding Equation (5)). The rigid realization .%#,i, is an overconvergent
filtered y-isocrystal (in the sense of Berthelot) on the special fibre U, of U.
(If y: Uq, — Z;{QP is the natural inclusion of the Raynaud generic fibre of the
p-adic completion of U into that of U, then Frig = 21 (Far|U™8) as a coherent
9t Opis-module with connection, where U™ is the rigid space over Q, associ-
ated with Uq,. See loc. cit. for more detials.) Denote by H,;,(Ur,,#) the
Berthelot rigid cohomology groups H i, (Ur, /Qp, Frig). By the admissibility of
%, the natural map from de Rham to rigid cohomology gives an isomorphism

H&R(UQ;ﬂ'/) = rlg(UFpag)a

which allows us to view ng(UFp,ﬁ ) as a filtered p-module, i.e., an element

of S(Zy). Indeed, H}, (Ur,,.F) is the i-th direct image R'm,.# of .7 under

the structural morphism 7: % — Z,, and the Leray spectral sequence

SR — HP (Z,, H (Ur,, 7)) = H. (U, 7)

syn rig syn

degenerates into the short exact sequences

(24) 0= Ho(Zy B (Up,. 7)) % Hi (7, )
Payn, i
Pony 5O, (Zy, Hiy(Us,, 7)) — 0.

More generally, for any polynomial P(¢) in 1 + ¢ - L[t] one has short exact
sequences

(25) 0= Hh(Zy Hi ' (Us,. 7)) 2 Hp (U, .7)

rig,
2L HY(Zy, Hyy, (U, F)1) — 0,

(where A, = A®q, L and “,-"= @, “,¢”). If P is clear from the context, we
simply write i = ip and p = pp.

Let P and @ be polynomials in 1+¢- L[¢] and let .#,¥9 and . be syntomic
sheaves on % . To a morphism % ® ¥4 — S in S(% ), one associates as in [12,
Section 2] finite polynomial cup product pairings

Utp: Hp(%, F) @ HYy (%, 9) = Hpily (U, F © ).
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These are compatible with the Leray spectral sequence, viz. the diagram

. . Ufp L
(26) HL(Zp, HiZ (Ur,, 7)) ©1 HY(Zy, B, (Ur,,9))— Hb, o (Zp, HiH 7V (Us,, )

rig rig,c rig,c

iPJ/ TPQ J/iP*Q
Usp

Hp (%, F) ®r H) (U, 4)————————Hp\5, (%, )

ppl TiQ Tip*ce

. . Ufp i
Hp(Zp, Hys, (Ur,, 7)) @L Hy(Zp, HY,  (Ur,, ) — Hp, o (Zp, Hit T (Ur,, )

rig,c rig,c

commutes, where the top and bottom cup-products Ug, are the ones associated
in Section 4.1.1 with

Usig: Hii,'(Ur,, F) ®q, H, (Ur,.9) = HGH (Us,, ).

rig rig,c

For each integer n, denote by Q,(n) the n-th Tate object in S(%). The
de Rham realization of Q,(n) is the free rank-one &g-module 0% - t,,, with
trivial connection and decreasing filtration given by Fil'""Q,(n) = 0 and
Fil™"Qp(n) = Qp(n), and the Frobenius on Q,(n)yig is defined by ¢(t,) = p~™-
tn. (When % = Z, the filtered ¢-module Q,(1) is then equal to Dqr(Q,(1)).)
If U is geometrically connected of relative dimension d over Z,, the trace
tryig in rigid cohomology gives an isomorphism between Hfigc(UFp, Qp(d+1))
and Qp(1) and ip is an isomorphism between Hﬁg!c(UFp,Qp(d + 1)) and
H%’fjl(%, Q,(d +1)). Assuming that P(¢) does not vanish at ¢t = p~!, define
the (normalized) trace isomorphism

trp=P(p~ ') trag oip's HES (%, Qu(d +1)) = L(1).

Given a morphism .% ®q, ¥ — Q,(d +1) in S(%) and polynomials P and @Q
in 1+t L[t] such that Px Q(t) does not vanish at t = p~!, the composition
of Ug, and trp,.g then yields cup-product pairings

(«, ) Hp(%,F) @L HE'T /(% ,4) — L(1).

4.1.3. Syntomic sheaves III: modular curves. We are mainly interested in the
smooth pairs
% =(Y,X) and @ = (v X),

where Yo' = Vi (N )%rf is the open subscheme of Y on which the Hasse invari-
ant E,_; is invertible. For ¢ > 0, the sheaves S4r,; and .#ig,; arise as the de
Rham and rigid realisations of a syntomic sheaf Zy, ; on % (cp. [2]). More
precisely, let &% denote the smooth pair (€%, E?) over Z,, where £ is the i-fold
fibre product of the universal elliptic curve £ — Y and &' is the corresponding
Kuga—Sato variety (viz. Deligne’s canonical desingularization of the i-fold fibre
product of the universal generalized elliptic curve £ — X). Then

Fami =R (E = 9).Q,
is the first higher direct image of the trivial syntomic sheaf on &% under the

smooth proper morphism &° — % attached to the structural map & — X.
We denote by the same symbol #y, ; its restriction to % ord
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Define the syntomic sheaves .#yn » and Sy, [r) on % and w3 = (Y3, X3),
respectively, as in Section 2. Set & = & xz &7 xz, &, The Leray spec-
tral sequences associated with &2" — % and &" — %3 induce, respectively,
natural isomorphisms (“Lieberman’s trick”, cp. the proof of [17, Lem. 5.3])

(27) Hyyo (%, 52 (7) = HT (6%, Qi) (er)
and

Hyo (92, (7)) = Hyi (67, Qu(d)) (),
where - (,.) are defined as follows. Let S; denote the symmetric group on i
letters. The semi-direct product &; = S; x ,ug acts naturally as a group of
automorphisms of & (the nontrivial element of the i-th factor of uo acting
as multiplication by —1 on the i-th factor & of &%). As a consequence, the
subgroup &, = &,, x &,, x &,, of &y, acts by automorphisms on both &2"

and &". For any Q[S,]-module -, one defines - (¢,-) to be the submodule of
elements of - on which &, acts via the character €, = &,, X €, X &,,, Where

gi: 6; = o maps o X (81,...,8;) to sign(o)- sy - - - s;. Similarly, in p-adic étale
cohomology there are natural isomorphisms

(28) H(Yq,, 7+(5)) = Hi 7 (€8, Qp(1) (er)

and

H(Ya,, (7)) = Hi (€5, Qp(1)) (er)-
One has analogues of the isomorphisms (27) and (28) after replacing (%, &)
with (27,&"), where 2 and & denote the proper smooth pairs (X, X) and
(€,&) over Z,, respectively.

The Hecke correspondences on X and & equip the syntomic and finite poly-
nomial cohomology groups which appear in this section with the action of
Hecke operators away from Np, which make the exact sequences (24)—(25)
and the isomorphisms (27) Hecke equivariant.

4.1.4. Comparison with étale cohomology. Let % = (U,U) be a smooth pair
over Z,. The work of Nekovai and Nizot [35, 36, 31, 33] gives comparison
morphisms
Osyn Hgyn(%v Qp(n)) — Hgt(Uva Qp(n))a

satisfying the following properties. (See [11, Section 9] and the references
quoted there for more details):

e The maps gsyn are compatible with pullbacks and proper pushforwards.

o If U is proper over Z,, then the following diagram commutes.
(29) 1 (B 1, (Ur Qo)) s P (%, Q)

syn rig syn
1—¢

te(Hin' (Uq,, Qp(n)) oeyn

expy

. HS¢. .
HY(Qp, Hi (Ug, Qp(n)) ¢—— F' Hi, (Uqy,, Qp(n))
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Here F'H} (Uq,,-) is the kernel of H{ (Uq,, ) — Hét(UQp, -) and

F'H! (%) is the kernel of pgyy, (that is the image of igyn, cp. Equation

(24)). Moreover, exp,, denotes the composition

tg(Hix' (Uq,, ) = Dar(H '(Ug,,-))/Fil” - H'(Qp, Hy H(Ug, )

of Faltings’ comparison isomorphism and the Bloch—Kato exponential.

In light of Equations (27)—(28) and the first property above, the maps ggyn

for %4 = & and % = & induce, respectively, Hecke equivariant comparison
morphisms (denoted again by the same symbol)

(30) Osyn * syn(g/ Sy ) (YvayT’)
and
Osyn : syn(@ ’Sﬂ['r‘]) - Hgt(YQ afjﬂ['r‘])

which are compatible with the pullback d* and pushforward d, along the diag-
onal d: % — %3. (There are similar comparison morphisms for 2~ and 273
in place of % and %3, induced, respectively, by the maps gsyn for % = &"
and % = &7, cp. Section 4.1.3.) In particular,

0
Osyn: Hoyo (¥, 71 (r)) = H(Ya,, (7))
is an isomorphism, given by the composition of the canonical isomorphisms

HY (¥, S0 (1)) = Fil’HY, (Y, , S (r)?=!

rig

= Fﬂo cris(Hgt (Yvayr (T)))Sazl
= H(Qp, H4 (Y, 7+(1)))

= Hgt(Yvay"‘(T))’

where the first equality arises from pgyn, the second is the comparison isomor-
phism, the third follows from the well-known equality Fil®Beys N B = =Q,

Cris

and the forth is defined by the inverse of the base change along the morphism
Spec(Qp) — Spec(Qy) (ie., by the Hochschild—Serre spectral sequence). Let

(31) Det?" € nyn (%, Sn(r)) and Detl® ¢ FlloHrOlg(@, Fp(r))?=t
be defined by the identities ggyn(Det™) = Deté! and pgyn(Det™) = Detli®,

respectively. (Here we write again DetS' in HY (Yq,,-#»(r)) for the Q,-base
change of the Clebsch-Gordan invariant Deté' in HY, (Y1 (N)q, 7 (7)).)

4.2. The syntomic Abel-Jacobi map. Because YSF is a smooth affine
threefold, the de Rham cohomology group H, ﬁR(YSP,éﬂ[T] (r + 2)) vanishes.
As a consequence the inverse of igyy gives an isomorphism

HSeyn: Heyo (72, S (r +2)) = Hy, o (Zp, Hiy (YR, S (r +2))1).

syn rig

After setting Vi (f,9,h) = Var(f",¢g",h"), composing HSsy,, with the map
induced by the natural projection

Prywgwpw : Hrlg(YF 7‘%"‘] (T + 2))L - Vd*R(fa 9, h)
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(arising from the comparison isomorphism between rigid and de Rham coho-
mology) gives a surjective map

Vd*R(f7 ga h)
(1 - QO) ' FﬂOVd*R(fa g, h)
which we denote by HS/9". As p f N, the Ramanujan-Petersson conjecture

syn

implies that 1 — ¢ is an automorphism of V3 (f, g, h). Denote by tgir (f,g,h)

the tangent space of Vi, (f,g,h) and define the syntomic Abel-Jacobi map
AJLI Hyo (92, F0(r + 2)) — teir(fr 9, h)

syn syn

syn(g/?) y (’f’+ 2)) - Hsyn(ZP7Vd*R(fvg7h)) =

to be the composition of HSfyglﬁl with the inverse of 1 — ¢. Then the following
diagram commutes:

Allgy
(32) syn(?’)/?) (T + 2)) tg:{R(fv g, h)
stnJ/ lexpp
4 Achtgh 1 *
H (YQ 7%7‘](7"—’—2)) H (QP?V (fagah))v

where AJgtgh = prf“’g“’h“’* o HS¢ (Cp' Section 2)) V*(fv g, h) = V(fwa ng hw)
and exp,, is the composition of the Faltings comparison isomorphism

tg5r (f:9,h) = Dar(V*(f, g, h))/Fil’

with the Bloch—Kato exponential. This is a consequence of Equation (29)
for i = 4 and % = &" (so that U = £" is smooth and proper over Z,).
Indeed, by construction, the map Anggf (resp., AJgtgh) factors through the
(f*, 9", h*)-isotypic component of HZ, (#?,-) (resp., Hg (Yép, -)), which is
naturally isomorphic to that of HY (272, -) (vesp., Hg (X%p, -)), since f, g and
h are cuspidal forms. Similarly, V*(f,g,h) and Vi (f,g,h) can be realized,
respectively, in the étale and de Rham cohomology of the Kuga—Sato variety
E" (via Equation (28) and its analog for the de Rham cohomology). By the
definition of the maps gsyn (cp. Equation (30)), the previous diagram can then
be rewritten in terms of cohomology groups of &", and once this is done its
commutativity is a direct consequence of Equation (29) and the definitions.

The commutative diagram (32) and the compatibility of gsyn with di (cp
Equation (30)) yield the equality

(33) log, (r(f,g,h)) = N" - AJL" (d.(Det}™))

of L-valued linear forms on Fil’Vyg (£, g, h), cp. Equations (13) and (31). More
precisely, we remind that the left-hand side of the previous equation is identi-
fied with an L-linear form on Fil°Vir(f, g, h) via the twisted Poincaré duality
(-, )fgn introduced in Equation (12). On the other hand, we identify the right-
hand side of the previous equation with a linear functional on FilOVdR( fig,h)
via the perfect duality

(s )fgn: Var(fr9,h) @1 Var(f, g, k) = L(1)
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induced by the pairings (-,-); defined in Equation (10). Equation (33) then
follows from Equations (32), because (as easily checked)

N™ k(% g%, h") = ATLS"(d.(Det)) € HY(Q,V*(f,g,h))
is the image of the diagonal class

under the map induced in cohomology by the Gq-equivariant isomorphism

w: V(f,9,h) 2 V*(f,g,h).
®3

Here wpy” arises from the Kiinneth decomposition and the product of the geo-

metric Atkin-Lehner automorphisms wy of Hg (Y1(N)q, ), for i 4+ 2 equal

to k, I and m. (Recall that x¢ - x4 - x» is equal to the trivial character.)
Because H2 (ng, S1r)(r+2)) = 0, each class

rig,c
w € Fil’Var(f, g,h) C Fil’Hig (Y], S (r +2)),

which is killed by a polynomial P,(T) € 1+ T - L[T] has a unique lift ©
in the (f, g, h)-isotypic component of the finite-polynomial cohomology group
H}, (73, S (r 4 2)). Assuming that P,(p~") is nonzero (so that the trace
on H, (#°,Qp(4)) is defined), the compatibility of the finite polynomial
cup-product with the Leray spectral sequence, viz. Equation (26), gives the
following identity of functionals on HZ, (%3, S (r +2)):

(34) A ()W) = (-, @)as.
Here the finite polynomial cup product pairing
< Tyt >@3 : Hsyn(?’)/Ba ’Sﬂ['r‘] (T + 2)) L H?’w,c(g/gv %r] (T =+ 2))
= Hp, (27°,Qp(4)) = L(1)

is the one arising from the perfect relative Poincaré dualities of syntomic
sheaves (cp. Equations (8))

( Tyt )’L fgﬂsyn,i ®Qp fgﬂsyn,i — Qp(_l)

(Unless otherwise stated, all the cup-product pairings which appear below arise
from the dualities (-,-);.) Since the pullback d* = dZ , and push-forward

dy = dsyn,«, associated with the diagonal embedding d in finite polynomial
cohomology, satisfy the projection formula, Equations (33) and (34) yield

(35) log, (k(f,9,h))(w) = N" - (Det;™, d" (@) &

Take w equal to the class 7% ® wg ® wy, defined in Equation (14) and P,
equal to

pr+2T )(1 B pr+2T )(1 B pr+2T )(1 B pr+2T )

Pron(T) = (1—
9 (T) Qfogap arogfn afBgan, g BgPn
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As by assumption x rxgX# is the trivial character, a direct computation shows
that Prgn(p~"') equals

E(f,g,h) = (1 — M) (1 _ Bfagﬁh) (1 _ 5fﬁgah) (1 B ﬁfﬂgﬁh)7

pr+2 pr+2 pr+2 pr+2

which is nonzero by the Ramanujan—Petersson conjecture under the current
hypothesis pt N.
Let & denote either g or h and set

r1=TT u+1T u+1T
b and Pg(T):(l—p )(1—p )
af ag Be
so that Prgp, = Py * Py x Pj,. Let
(36) 77 € Hllghc(@/,yn (r1—r)), resp. we € H};{(@,Yu(u +1))
(with u + 2 the weight of £), denote the unique lift of
g € Fil'Hig (Yq,, S (r1 — 1)) 7 (#)=0,

Py(T)=1-

resp. a lift of
we € Fil'Hlg (Yq,, Su(u+1))Fe2)=0)
under p. Equation (35) can then be rewritten as
(37) log, (k(f, 9, h))(n;'c‘ ® wyg ® wh) =N". (ﬁ?, Det}™ Uy Uwn)aw.
Write .Zgn = Fyn,rs ® Leyn,rs(r2 + 13 +2) and Pyp = Py + Py. After noting
that H3,(Yq,,gn) vanishes, let
S H1139h (ZPa Hrlig(Yva ygh))
be the class defined by the identity
i(‘b) = Wy U wy,.
Equation (37) and a direct computation using Equation (26) then prove the
following (cp. Equation (31)).

Proposition 4.3. One has
NT‘

logp(ﬁ(f, g, h))(?’]? ® Wy ® Wh) = m . <7]?(7’1 — ’I"), Detf,,ig U (I>>Y,rig'

4.4. Restriction to the ordinary locus. Given a Q,-vector space V, a Q,-
linear endomorphism e of V' and a nonzero element a of L, denote by V.,
(resp., V=) the maximal L-quotient (resp., L-submodule) of V ®q, L on
which e acts as multiplication by a. As explained in the proof of Proposi-
tion I11.1.4 of [34], the restriction map -ora: Hy(Yr,, 7p1) — Hi (YR, 7))
induces an isomorphism

1 ~ 1 ord
Hrig(YFpaym)ga:xf(p)-Bf = Hrig(YFp ’yrl>80:>2f(P)'ﬁf’

which commutes with the action of the Hecke operators Ty and (d) for £t Np
and d € (Z/NZ)*. (This follows from weight considerations, recalling that the
square of 3y has complex absolute value k£ — 1 under the running assumption
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p1 N.) Taking the duals and using Poincaré duality, this induces an isomor-
phism
d. gyl
o Hrig,c
After setting

(38) Det)'! = (Det}® Jora ® t_o_r € HY,

(Yvayr1)¢:af = Hl

rigxc(YF?;dv yr1)w:af'
(YR, 7 (-2))
so that Deto™ U ®g,q4 belongs to H yerd 7)), Proposition 4.3 then gives
T rig\* F, 1
the following.
Proposition 4.5. One has
N?”

log,(k(f,9,h))(nf ®wy@wp) = G0 h) <n?’ord (r1+2),DetZ UPorq)

Yord,rig'
The linear form
<77?,0rd(r1 + 2)) ’ >Y°"d,rig: Hrlig(YFc‘)ida yTl)L — L
factors through the quotient

1 ord 1
Hrig(YFP 7yT’1)L - Hrig

(YF?;dv ym)f;”
defined in Equation (19). As by assumption f»* = (f"), has small slope
(i.e., ordy(af) < k — 1), Equation (20) shows that the latter is isomorphic to
Sk(Np, L)f» under the Coleman map []‘]’c‘ Let

=€ Sk(Np, L)f;;
be the cusp form satisfying

(39) [E]§ = [Det2 U Dora] 1,

where [-]7» denotes the projection of HJ\, (YR, ) onto H}Y, (YR, 77,) fu-

Proposition 4.6. After setting E*(f) =1 — 2—’;, one has

N'E(f) (2. E)ny
g(f?th)( &Uaféu)Np

Proof. One has == (1 — xs(p)Bs - V) - £ for a cusp form & € Si(N, L). Let
(YFp’yTl)

be the class associated with £ and let we ora € Hrlig(YIS;d, ) be the restriction
of we to the ordinary locus. Then

log,,(k(f,9,h) (N} @ wy @ wy) =

1
we € Hrig

or —lo 6 2 *
et U Borg]pn = [2]F = {(1 _ pf;%l ) 'Wg,ord} = E(f) - weoral e,

a

hence
<n?7°rd (r1 +2),Det™ U (I)OTd>Y°rd,rig =&*(f) - <77;"°rd(r1 +2), w&,ord>Y0rd’rig
=&°(f)- <77?(T1 +2), o"Y§>Y,1rig
=&(f)- (& SOIN/F )N
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by the definitions of n¢ and n?’ord As easily checked (&, f)n/(f%, f¥)n is
equal to (2, f2) np/(fY, f&)np. The statement then follows from the previous
equation and Proposition 4.5. g

4.7. Conclusion of the proof. This section concludes the proof of Theo-
rem A.
Let £ in M, 4+2(N, L) denote either g or h and let

we € FilPHYR (Y, Zu(u+ 1))
be the corresponding de Rham class. With a slight abuse of notation, denote
by we in (X, w"(u+ 1) @ QY(C))L, also the section representing we, so that
w€|5) = 5 : @3% ® gcan ® tu+1

in DY, @"(u+1) @ Q') (cp. Section 3.4).

Let &¢ ora in Hllg£ (@ord 7, (u+ 1)) be the restriction to the ordinary locus
of @¢ (cp. Equation (36)). By construction &g orq is a lift under p of the
restriction of we to the ordinary locus. (If w > 1 such a lift is unique, cp. |2,
Lem. 4.2]). According to [2, Prop. A.16], the class @¢ orq is uniquely represented
by (the restriction to the ordinary locus Z°°™ of) a pair (F¢,we), where the
overconvergent section

Fe e F(Xgi,%ig,u(u +1)), satisfies VF; = Pe() - we.

As explained in [5, Sections 3.6-3.8] (see in particular Proposition 3.24), one
can, and will, choose wW¢ in such a way that @¢ orq is represented by the pair
(Fg,wg) with
“ . u 1 U— i~
(40) F§|37 = Z(_I)Jj' <]) d ' ]é‘[P] (q) ' wcanjngan Y tu—i—l
§=0

in T(Y, %y rig(u +1))r. (The equality VF = Pe(p) - we over Y can be easily
checked using Equations (22) and (23). Note that the lift @, of we, and then Fg,
is unique if the weight of £ is strictly greater than two, cp. [2, Lem. 4.2].)

The finite polynomial cup product @g ord U @h,ord = (Wg U @p)ord 1S Tepre-
sented by any 2-cocyle of the form

(41) U(a(x,y)~Fg®wh—b(a},y)'wg®Fh,wg®wh),
where a(z,y) and b(z,y) are polynomials in L|x,y] satisfying

Bon(zy) = a(z,y) - By(x) + b(x,y) - Pa(y)

and z and y act via ¢ ® id and id ® ¢, respectively (cp. [10, Rem. 4.3]).
Proposition 5.2.5 of [29] shows that one can take a(z,y) and b(z,y) of the
form

(42) a(z,y) = 1=xs(P)p"* T2y +y-a,(z,y) and b(z,y) = z-bo(z,y),

with a,(z,y) and by(x,y) in Liz,y]. (Recall that x4xn equals inl.)
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Let F,; € M(N, L) be the &, 2.7 -coefficient of F, gly- The section Fy ;
is p-depleted, viz. the n-th Fourier coefficient of its g-expansion is zero if p
divides n (cp. Equation (40)). On the other hand, the n-th Fourier coefficient
of the g-expansion »_ -, an(h) - ¢"" of V(h) is zero if p does not divide n. It
follows that Fy ;- V(h) is p-depleted, hence so is each coefficient of F,; ® ¢(wp)
(as the restriction of ¢(wp) to Y is a multiple of V() -2, @ bean @ty 41). This
implies that U), kills the class in Hrllg(YF?;d, Zgn) 1 represented by Fy U o(wp).
Because U, is an isomorphism, one deduces that the section Fy,Up(wy,) is exact.
Similarly, one proves that ¢(wg) U F}, is exact. Together with Equations (41)
and (42) this proves that (0g U @p)ora is represented by

(1= xs(p)p™ 1712 - %) - Fy Uwy, 0).

As ®,,q is characterized by the equality i(Pora) = (g U O )ord, the previous
equation then yields

(43) ®orq = class of (1 — xs(p)p™ 2. %) - Fy Uwy,.

Identify the M(N Z,)-module of global sections of %lg r; with the set of
two-variable homogeneous polynomlals of degree r; in M(N Z,)[z;,yi] via
wlyl ™ = ol itin?. Then Frig » = Frigry © Frigrs ® Frigr, becomes identi-
fied with a submodule of M(N, Z,)[z;,v;: 1 < i < 3] and (cp. Equation (38))

(44) Dety™|y = (w1y2 —y122)" " - (x1ys —y1a3)" " - (w2ys — yoas) " @1

in T'(Y, Zigr(—2))r. Note that the rigid Frobenius acts on Det2'd as multi-
plication by p?>*", hence (cp. Equation (39))

2

(45)  [Detd U Bopqlsw = [(1 _xs(p) - ¢?

ord
o2 )-DetT UFgUwh ;

o

= ( — ]%ff) . [Detf,rd UF, Uwh]f&u,

by Equation (43). According to Equations (40) and (44) the restriction of
DetOrd UF, Uwy to :)) is equal to

> <>< D)) C0)

11,92,13,]
cd- 1— ] -h- Z,11Jrl2yzl 11 —1%2 ® Oean
r—r3—i1+i3, r—ri—iz+i .r3—ia—1i3  I2+13 ro—j, J,.T3
@ Ty Y2 T3 Y3 P Uz Y50 @ trgr,
where the sum runs over the tuples (i1,12,143,5), with 0 < j < 7 and 0 <

is < 1y for s = 1,2,3. The only contribution to the z7! ® 5can—component
comes from (i1,i9,13,5) = (r — r3,7 — 12,7 — 71,7 — 1) and is equal to (cp.
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Equation (9))
(1) " (r =1 (

T—7r1, T—7T3 T—73

Qg tys Pys® Uy

ra ) A gl B 2l @ Gcan
r—nr

T—71,.T3
Yp 3 Dtrygrs.

As
-1
T TS TS ) T T TS _( 1)r T2 .t
Ty Yz YT YTy Yy T3 =\ r—ry —ra—r3)
one deduces

spI“ (Det™ U Fy Uwn)|y = (—1)" (r —r1)! - d~ 17 471gP)(q) - h(q) - 27 © bean.

This proves that (as claimed in the discussion preceding the statement of The-
orem A) the p-adic modular form

(46)  datTrimiglellp = spl"” ((=1)" (r — r1)!I" ! - Det™ U Fy Uwy,)

is nearly-overconvergent, and (after unwinding the definitions, cp. Equa-
tions (21), (39) and (45)) yields the identity

1 B —1—r+4+r; —_
(-1) (T—Tl)!(l—zgff) 'ef&v(d 1—r+ g[p}-h)::,

Theorem A follows from Proposition 4.6 and the previous equation.

5. PROOF OF THEOREM B

This section proves Theorem B stated in Section 1.2. Let the notations and
assumptions be as in loc. cit.

5.1. Hida theory. Let L be a finite extension of Q,, and let U be an L-rational
affinoid disc in the weight space W over Q,, centered at an integer u, > 1.
Let O(U) denote the ring of analytic functions on U. It can be identified with
a subring of L]u — u,], where u — u, is a uniformiser at u,. Write U for the
set of positive integers in U which are congruent to u, modulo 2(p—1), and let
x be an L-valued Dirichlet character modulo N. Denote by S&rd(N, x) the set
of formal g-expansions § = > s - ¢" in O(U) [q] satisfying the following
property: For each classical point u in U N Z3 o, the weight-u specialization
£, = Zn>0 rn(u) - ¢" is the g-expansion of a cusp form in S, (Np, x)r, which
is an eigenvector for the Hecke operator Ty, for each prime ¢ not dividing Np,
and for the Hecke operator U, with eigenvalue a p-adic unit in L. For each
classical point w > 2, the form &, is indeed the ordinary p-stabilization of a
p-ordinary eigenform &, in Si(N, x)r. If u =2, then either p divides the level
of §,,, in which case one sets &, = &, or §,, is the p-stabilization of a p-ordinary
eigenform &, of level I'1 (V).

An element of SF4(N, ) (for some U as above) is called a (cuspidal) Hida
family of tame level IV, character x and center u,. One says that £ is primitive
if &, is a primitive form of conductor N for all classical points v > 2. Let
£ be a primitive Hida family in Serd(N,, x) and let N be a multiple of N,,.
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A level-N test vector for &% is a Hida family £ in Serd (N, x) such that, for all
u > 2 in U, the specializations Eﬁ and &, have the same eigenvalues under
the action of the Hecke operators U, and T}, for all primes ¢ not dividing Np.

Let N denote the least common multiple of Ny, Ny and Nj,. For { = f, g,h,
write ag and B¢ for the roots of the p-th Hecke polynomial

X2 —ap(&) - X + xe(p)p" !

of £, where u is the weight of £&. Assume that L contains a¢ and 8¢ and
order ay and By in such a way that oy is a p-adic unit. This is possible by
Assumption 1.3.4. According to a theorem of Wiles [43], there exist primitive
Hida families

9" = bu(u) q" € SFU(Ng,xg) and hF =" c,(u)-¢" € SF(Nn, xn)

n=0 n=0

of levels N, and NNp,, common center u, = 1 and tame characters x4 and xp,
specializing, respectively, to the p-stabilized cusp forms g, and h, at weight
one, namely, satisfying

g'i =g, and h'i = hq-

(Recall that £,(q) = £(q) — B¢ - £(¢P) is an eigenvector for U, with eigenvalue
a¢.) Note that g* = g¥, and hf = hi depend on the choice of the roots o, and
ayp, of the p-th Hecke polynomials of g and h, respectively.

Let g and h be level-N test vectors for g* and h¥, respectively. Moreover,
let f}, be the ordinary p-stabilization of a cusp form fi in Sk (N, x¢)r, which is
an eigenvector of the Hecke operator Ty, with the same eigenvalue as(f) as f,
for each prime ¢ not dividing N. (We call f;, and fi level-N test vectors for f.)
For each u > 2 in U"l, set

Wnp(u) = Hg(Y1(Np)g, Sh—2 B Sy 2 BT, 2) @z, Op(k/2+u—1),
Denote by

(47) prfkguhu : wNp(u) - V(fkvgun h’u)

the maximal & -quotient on which the Hecke operators Up®1®1, 1 U, ®1
and 1@ 1@ U, (resp., Ty®1®1,10T,®1,1®1®T; and (d1) ® (d2) ® (d3)) act
as multiplication by ay, by(u) and cp(u) (resp., ae(f), be(u), ce(u) and x¢(dy) -
Xg(d2) - xn(ds) for any prime ¢{ Np and units d; € (Z/NZ)*), and set

V(fk7gu7 hu) = V(fkagu7 h’u) Rz Q

Note that V(f,g,,h.) depends only on the level N and on the primitive
forms f, g% and hf.

Let || - ||o be the supremum norm on O(U) and let A = Ay be the corre-
sponding unit ball. The work of Hida, Perrin-Riou et al. yields a free A-module
V(f1,gh), equipped with a continuous A-linear action of Gq, satisfying the fol-
lowing properties (cp. [8, Sections 4 and 6]).
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e For each u > 2 in U®, evaluation at u on A induces a natural isomorphism
of 01,[Gql-modules

The representation V(f}, g,, hv) is isomorphic to
@V ®L V(gh) @ V(hE)((k/2 +u— 1)),

where V() =D(-) is the L-adic Deligne representation - and the positive
integer a = ay is independent of u. If uw = 1, the previous formula holds
with V(f;, g, h1) isomorphic to a lattice in V (£, g, h)®.

e Let U be the set of u > 2 in U? with k < 2u. There exists a A[Gq,]-
submodule

ivar: V(f s gh)bal = V(fy, gh),
free of rank grankaV(f}, gh) over A, such that for all u in U, the Bloch—
Kato finite subspace

Hi%n(va V(fkvguv hu))
of HY(Qyp, V(fk, gy, hu)) is equal to the image of the map

(49) HY(Qp, V(1. gh)bal ®u L) = H (Qp, V (1, gu> hu))

induced by py,.

The morphism induced in cohomology by ipa is injective, and its im-
age H! (Qp,V(fi,gh)) is called the balanced subspace. Similarly, for
u in U, one defines the balanced subspace HL (Qp,V(fi,gu,hu)) of
HY(Qp, V(£ i gy, hy)) as the image of H'(Q,, V(£ 4, gh)bal @4 Or) under

the morphism induced by p,. The balanced Selmer group
Héal(Qv V( ' )) — Hl(Qa V( ' ))

is the module of global classes which are balanced at p and unramified at

any prime £ 7 p. Set Hy,\(Q,V(+) ®z, Qp) = Hy1(Q,V(+)) ®z, Qp-
e There exists a (unique) morphism of O(U)-modules

L=Lg, gh: Héal(Qpﬂ V(fk gh)) = O(U)
such that, for each u > 1 in U% and 3 in H},,(Qyp, V(fy,gh)), one has

B Ygy Yhy u—k/2—1 .
(50) L0su) = (1= =) . {((ul)kwlogp(gu) if k < 2u,

(1— 2pfealy | (k/2 - w)lexpp(au)y  if k> 2u

where the notations are as follows. One writes ag, for the unit root of the
p-th Hecke polynomial of f and By, = pk’l/afk Similarly, ag, = by(u),
h, = cp(u), By, = %f’l and fBp, = %”1. The class 3, is the

image of 3 in HY(Q,, V(fy, gy, hu)) under the morphism induced by p,,
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so that 3, belongs to H} (Q,, V (£, gy, hu)) if wis in UPH (cp. Equation
(49)). One writes

]'ng: Hflin(Qp7 V(fkagua hu)) — FﬂOVdR(fkagua h’u)v

(where V denotes the L-linear dual) and

exp;: Hl(Q;m V(fkaguahu)) — VdR(fkagua h’u)v

for the Bloch-Kato logarithm and dual exponential, respectively, and
log,,(-)s and expj (- )y for their evaluations on the class

O, = n?k X Wy, & Wh,, -

When w > 2, this is the class defined in Section 3.1.3, which belongs to
Fil’Var (£4, 9w, hu) if w is balanced, ie., k < 2u (cp. Equation (14)).
Moreover, in the definition of log, and expj, we identify Var(fy,g,,hu)
with its L-linear dual under the product of the wy-twisted Poincaré dual-
ities (-, wn(-))e for € equal to fy, g; and h,, (cp. Equation (11), noting
that here N is the tame level of the relevant modular curves).

When v = 1, the differential Uy in Vag(f, g1, h1) is defined as above,
using a suitable canonical generator wg, of Deyis(V (€1))9=7%, for € = g, h.
The latter is the weight-1 specialization of a big differential we interpo-
lating wg at weight u > 2. Similarly, in the definition of log, and expy,
we identify Var(fj, g7, h1) with its dual under a suitable perfect canoni-
cal pairing (-,-)¢, g,n,, arising as the weight-1 specialization of a twisted
Poincaré duality on V(€). We refer to [8, Section 6.3] and its references
for the details.

5.2. p-adic L-functions and reciprocity laws. The notations and assump-
tions are as in the previous section. Hida’s method (cp. [23]) shows that the
p-adic periods (cp. Section 1.1)

Ip(f i 9 ) = Lp(fi, Gus Bu),
for u in U, are interpolated by an analytic function %, (f,gh) in O(U).

Theorem 5.3. Shrinking U if necessary, there exists a global balanced class
#(fr gh) in HY,(Q,V(fy, gh)) such that

Lt gh (resp(/i(fk,gh))) = Zp(frgh).

Proof. Step 1. There exist an integer A > 0 and, for each balanced point u
in U2 a global cohomology class k(fy, gy, hu) in HY(Q,V(fy, gy, hu)), such
that p? - k(fy, gy, hu) belongs to HE, (Q,V(fx, gu, hy)) and

logp (resp(’%(flw gua h’u))) (U?k ® wgu ® whu)
is equal to

L - St
(1) (D k)2 = D) L (F g ).
(1 _ Bri %y hu)
pk/2tu—1
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Proof of Step 1. Denote by rnp(u) the diagonal class of level Np and weights
(k,u,u) (cp. Equation (4)). Let

“T(fkaguv h.) € HI(Q(MP),V(fk,gu, h.))

be the image of X (p) ~Np(u) under the composition (cp. Equation (47))

() 2 W) S U(f g, ),
where w/, is the dual p-th Atkin-Lehner endomorphism of H} (Y1(Np)q, k—2)
as defined in [8, Section 2.3.1].

The image KT(fka Gu» h’u) @1 of HT(fka Gu> hu) in Hl(Q(MP)? V(fkvgw hu))
is a Selmer class (cp. Section 2), invariant under the action of Gal(Q(u,)/Q)
(as f} is p-old), hence can be identified with a class in the balanced Selmer
group Héal(Qv V(fka 9u; h’u)) by Equation (49)

The explicit computations carried out in Proposition 7.3 and Lemma 7.4
of [8] prove that

logp (reSP(KT (fka gua h’u))) (n?k ® wgu & whu)
is equal to the product of

(1 _ By %ayBhy )(1 _ Bt Bay Xhy )(1 _ 5fk69u5hu)

phk/2Fu—1 pk/2Fu—1 pr/2Fu—1

N7(1 = ) (1= )

ofy pog,
and
]'ng (resp(n(fk, gua hu))) (n?k ® Wgu ® Whu),
According to the explicit reciprocity law Theorem A, this product is in turn
equal to
By, g, n,\ 1
As ay, By, Bh, is in p*/2tu=10 for w in UP?, it follows that the class

w2 ay, By, B,
ﬁ(fkaguah'u) = (_1) k2 1(]‘ - Z)kk/Q%) ) KT(fkaguahu)

belongs to HY(Q,V(fy, gy, h.)) and that

log, (res, (K (1 Gu ha))) (13, ® wg, @ wh,)

is equal to the expression displayed in Equation (51).

It remains to prove that there exists a nonnegative integer A > 0 such that
pAk(Fy, Gy, hu) belongs to HE (Q,V(f}, g, hu)) for each u in UP2. Because
5(f 1, Gu> hu) is an Op-multiple of &7 (£}, g,,, b)) and &1 (Fy, g, hu)®1 belongs
to HE(Q,V(Fy: gu hu)), it is sufficient to exhibit a constant A > 0 such that
p kills the torsion subgroup of H*(Q,, V(f,gh)/V(fx, gh)ba @y O1) for each
balanced point u in U
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Set My, =V(f1,gh)/V(fi, gh)bal ®4 Or. There is then an exact sequence
0—MH—M, > M, =0,
where (for some positive integer a > 1)

ME = O (X2 hu )" @ OL(Xeye”?  thung)” ® OL(Xbye? - Pun)”

and

M, = Op(X2 % ),
and where the characters 1. are unramified and take on an arithmetic Frobenius
o in Gq, the values

Xr\p)Qg, Qn, Xg\P)af, On, Xn\P)y, CQg,
(0) = M PN000 (o) = XL -y, () = X001,
af, Qg Qhp,,

1r/)u,f

and
¢u (U) = O[kaégu ahu .

It follows that the torsion subgroup of H(Q,,M,) is killed by

pw) = ] (1= tuelo).

&=f.9,:h,2

The values pu(u), for u in U, are interpolated by an analytic function g in A.
Moreover, p(1) is nonzero, as by assumption p does not divide the conductor
of f,.. Shrinking U if necessary, one can then assume that ord, (u(u)) equals the
nonnegative integer ord,(x(1)) for all win U. Taking A = e(L/Qy)-ord,(u(1))
concludes the proof.

Step 2. There exist a finite subset & of U' and a constant B > 0 satisfying
the following property: For each u in ¢ = U — &°!, the isomorphism p,,
(cp. Equation (48)) induces a short exact sequence of &p-modules

0— Hl})al(QaV(fkagh’)) ®U ﬁL — Hl})al(vi(fkvgua h’u)) — Erru - 07
where Err,, is a finite &7-module killed by pB.

Proof of Step 2. This follows from the general base-change results for Selmer
complexes proved in [32, 37].

Step 3. One has Lz, gn(resy(k(fy,gh))) = Z£,(fr,gh) for a balanced class
H(fkvgh’) in Héal(Qv V(fkagh’))

Proof of Step 3. The statement is clear if .Z,(f),gh) is zero. Assume that
Z»(f1,gh) is nonzero and let e, be its order of vanishing at u = 1. As
O(U) is a principal ideal domain, the image of L¢, gn is a principal ideal, say
generated by an analytic function %, with order of vanishing ey, at w = 1.
(By convention epa = +oo if Ly gn is the zero map.) According to the
Weierstrafl preparation theorem, shrinking U if necessary one can assume that
Zp(Frogh) = (u— 1) - £ and Gha = (u — 1)1 - G5y, with £ and 97
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units in O(U) (and (u — 1)®=! equal to zero if epa = +00). In order to prove
the theorem, it is sufficient to show that

(52) €pal < €p.

Let < be as in Step 2. Without loss of generality, assume that % ¢ is
contained in UPa! and that Z,(f,gh) does not vanish at any point of % <.
Let A and B be the constants which appear in Steps 1 and 2. Take C > A+ B
such that ||[L, gn(3)||lv < p© for any class 3 in H{, (Q,V(f),gh)). (This is
possible since H! ,(Q,V(f,gh)) is a finitely generated A-module.) According
to Steps 1 and 2, for each u in %!, there exists a global balanced class

I%(fkvguv hU) € Héal(Q’V(flwgh))
such that (cp. Equations (50) and (51))

(53) ‘ka,gh (resp (R(fkvgua h’u)) ) ’LL) = pC : gp(fkvgh)(u) 7é 0.

In particular, %, is nonzero, hence ey, is a nonnegative integer.
Let {u;};>1 be a sequence in %! which converges to 1. For each j > 1,
define v; € O(U) by the equation

‘kavgh (resp(’%(fkvgujvhuj))) =7 gbal-

Because || - %alllv < p© for any j > 1, the sequence v,/ is bounded, say
by pP for some D > 0. Equation (53) and the Weierstraf3 preparation theorem
show that for j > 0,

PG g = 1 =y (ug)lp - Juy = gt < pP - fuy — 1[5,

where {;};0 converges to the positive rational number |Z; (1)],/|% (1) ]p-
Equation (52) follows. O

5.4. Conclusion of the proof. This section concludes the proof of Theo-
rem B. Write HL,(Q,V(f,g,h)) for the relazed Selmer group of V(f,g,h)
over Q, that is the set of global classes in H(Q, V(f, g, h)) which are unram-
ified at every rational prime ¢ # p. Let g' = g, h* = hna, g and h be as in
the previous sections.

Let £ denote either g or h and let Frob, be an arithmetic Frobenius in Gq, .
By Assumption 1.3, the restriction to Gq, of the Artin representation V() is
unramified and splits as the direct sum of the (distinct) Frob,-eigenspaces

V(é-)a — V(&)Frobp:ag/Xﬁ(P) and V(é-)[? _ V(S)Frobp:ﬁf/xg(p)'
As a consequence, the Gq,-representation V(f, g, h) decomposes as

(54) V(fagah) = V(f)ozoz @V(f)ozﬂ @V(f>ﬂa@v(f)ﬂﬁa

where V(f)i; = V(f) ®L V(9)i ® V(h); ®q, Qp(k/2). Similarly, for £ = g, h,
one has V(&§;) = V(&1)a ® V(&) and V(. 91, h1) = @ij V(fi)is-

For each p-adic representation V of Gq,, let VT be the submodule on which
the inertia subgroup of Gq, acts via the k/2-th power of the p-adic cyclotomic
character and set V= = V/VT. A class in H.,(Q,V(f,g,h)) belongs to the

rel

Miinster Journal of Mathematics VoL. 13 (2020), 317-352



DIAGONAL CLASSES AND THE BLOCH-KATO CONJECTURE 349

Bloch-Kato Selmer group Sel(Q, V(f,g,h)) precisely if its restriction at p is
in the kernel of
(55) P~ HYQp, V(f,9.h) = H(Qp, V(f,9.h)7),
and belongs to the balanced Selmer group H,,(Q,V(f,g,h)) precisely if its
restriction at p is in the kernel of the natural map
(56) HY(Qp, V(f,9,h) = H'(Qp, V(f)ap) © H (Qp, V() 50)
& H' (Qp, V(f)aa)
(where V(f) is a shorthand for (V(f).)”). A similar discussion applies with

(f, g, h) replaced by (f}, g7, h1) everywhere. After these preliminaries, we can
begin the actual proof of Theorem B, which is divided in three steps.

Step 1. There exist level-N test vectors (f., g, h) for (f, g, h*) and a nonzero

scalar £ in L* such that
L(f®g®h,k/2
Z(frgh)) =& HL29E R 12)

71—21672(f7 f)N

Proof. Under the running Assumption 1.3, this follows by the special value
formulas proved by Garrett and Harris—Kudla [20, 21] (cp. [14, Section 4]). O

Step 2. Assume that L(f ® g ® h, s) does not vanish at s = k/2. Then there
exists a global class k(f, g, h)aq in the relaxed Selmer group HL,(Q, V(f,g,h))
such that (cp. Equations (54) and (55))

p~ (resp(k(f. g, h)aa)) is a nonzero element in H'(Qy, V(f)ap)-
Proof. Step 1 implies that %, (f}, gh) does not vanish at w = 1 for some triple

of level-N test vectors (fy,g,h). Theorem 5.3 then yields a global balanced
class k(fy,gh) in HL (Q,V(fs,gh)) such that

(57) exp;, (vesy (K( £y, g1, h1))) (nF, @ wg, ® wn,) # 0.

Here x(f}, gy, h1) is the image of x(f;,gh) in HL ,(Q,V(fs, g1, h1)) under
the morphism induced in cohomology by p1 (cp. Equation (48)) and one uses
Assumption 1.3.2 to guarantee that the Euler factors which appear in Equation
(50) are nonzero.

The projection p~ induces a canonical isomorphism

FilOVdR(fk,gl, h1) = Deris(V(f i 91, h1)7),

which we consider as an equality. Then expj, is equal to the composition

HYQp, V(fir91,01)) 2 HY(Qp, V(fr 91, h2)7)
exp*

— Dcris(v(fkagla hl)_)7

where exp* is the dual exponential for V' (f}, g1, h1)~. Similarly, the inclusion
V(f)(k/2)t — V(f,)(k/2) induces a natural isomorphism

Dexis(V(£1)(k/2)7) = Var(£)77% @q, Qplk/2].
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After recalling that we, , for €& = g, h, is a nonzero element of

DcriS(V(sl))WZBE1 = Dexis(V(€1)a);
we can then identify nf, © wg, @ wWh, with an element U; of the crystalline

Dieudonné module of the direct summand V (f)(k/2)T @V (g1)a@LV (h1)a
of V(f1,9,,h1)T. Equation (57) can then be rewritten as

exp” (ki (F191,h1)s5) (B1) # 0,
where k, (fr,91,h1)sp is the BB-component of

by (Fur91,h1) = p~ (vesp(k(fy. g1, h1))).
On the other hand, since x(f}, g;, 1) is the specialization of a balanced class,
it follows that Kj; (.fkagla h’l) = Kj; (fkaglv hl)ﬁB belongs to Hl(QZDa V(fk),gﬁ)
(cp. the discussion around Equation (56)). In particular, k(f;, g, k1) is an el-
ement of the relaxed Selmer group HL,(Q,V(f),g1,h1)) such that
#p (fr,91,h1) is a nonzero element of H'(Qy, V(f},)z5). Because the Gq-
representation V(f;, g, h1) is the direct sum of a finite number of copies of
V(f,g,h), the statement follows. a

Step 8. Set V. =V(f,g,h). Then there is an exact sequence of L-modules
0—Sel(Q,V) = HL(Q,V) & HY(Q, V™)
— Sel(Q, V)™ — H},(Q, V)™ — 0,
where 0 is the composition of p~ and res, and .dual denotes the L-linear dual.

Proof. As V is Kummer self-dual, this is an instance of global Poitou-Tate
duality (cp. [30, Ch. 1]). O

Varying the choices of the roots ay and oy, (cp. Assumption 1.3.3), Step 2
yields four classes (namely, &(f,g,h). for - in {a,5}?) in HL,(Q,V), whose

rel
images under the morphism 0 are linearly independent over L. Theorem B

then follows from Step 3, after noting that H'(Q,,V ™) has dimension four
over L under Assumption 1.3.2.
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