
Web Service Detection in Service-oriented
Software Development: A Semantic Syntactic

Approach

Carolin Letz

2007

Informatik

Web Service Detection in Service-oriented Software Development:
A Semantic Syntactic Approach

Inaugural-Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften im Fachbereich
Mathematik und Informatik

der Mathematisch-Naturwissenschaftlichen Fakultät
der Westfälischen Wilhelms-Universität Münster

vorgelegt von
Carolin Letz
aus Münster

-2007-

Dekan: Prof. Dr. Dr. h.c. Joachim Cuntz

Erster Gutachter: Prof. Dr. Gottfried Vossen

Zweiter Gutachter: Prof. Dr. Herbert Kuchen

Tag der mündlichen Prüfung: 06.12.2007

Tag der Promotion: 06.12.2007

Abstract
Service orientation has become a buzzword in research and practice during
the last years. Enterprises consider investing in service-oriented architectures
to increase the reuse of their existing software and to decrease development
time and costs. On the one hand, standardization committees have advanced
to define many layers of technical standards that are to become the techni-
cal backbone of a service-oriented infrastructure. On the other hand, the
term service-oriented architecture is not precisely defined and a mature de-
velopment methodology does not exist, as the numerous offers of software
consulting services in this field show.

This thesis makes a contribution to the ongoing discussion on the orga-
nization of service-oriented application development. First, the needs of a
top-down development process for service-oriented architectures are exam-
ined by using a development scenario from financial industry. The ability to
detect existing Web services during the design process is revealed to be the
key to reusability. To support Web service detection, a relational Web ser-
vice operation repository is introduced to store and search for existing Web
services at the level of operations.

The relational representation in the repository is then used to express the
Web service detection problem as a relational schema matching problem on
a syntactic level. The match between a Web service operation sought and an
existing Web service operation is described with extended relational algebra
expressions as a new transformation Web service. This representation is used
to define a match hierarchy.

The syntactic approach is extended to express semantics by adding se-
mantic annotations to the relational Web service operation repository. The
annotations are based on a taxonomy expressed in description logic. An al-
gorithm is presented, that uses the taxonomy to rewrite SQL queries over
the repository for operation retrieval. The algorithm supports the search for
different match types. This approach combines Web service standards with
semantic Web standards to provide structured algorithmic support for design
time detection of Web service operations.

Acknowledgments
I am grateful to my adviser, Prof. Dr. Gottfried Vossen, for his support
and constructive criticism concerning the content and structure of this the-
sis. His opinion that database theory provides solid results that can be reused
in many other application contexts was the starting point for this work.

I would like to thank Prof. Dr. Herbert Kuchen for his willingness to act
as second reviewer and Prof. Dr. Sergej Gorlatch to act as third examiner
during the defense of this thesis.

I am grateful to my colleagues Dr. Jens Lechtenbörger and Stephan Hage-
mann for proof reading, constructive advice, long hours of discussion, litera-
ture hints, and many helpful comments. Further, I thank my colleagues Dr.
Peter Westerkamp, Joachim Schwieren, Gunnar Thies, and Daniel Dahl for
a lively exchange of opinions as well as Barbara Wicher and Ralf Farke for
their organizational and technical help. All of them have encouraged me and
cheered me up many times. I also extend my thanks to Frauke Fuchslocher
for proof reading.

My deepest thanks go to my parents, my sister, and my godfather who
were always reliable companions and have given me moral support whenever
I needed it, and to Martin for his patience, understanding, and unconditional
loving belief in me.

Contents

1 Introduction 1
1.1 Service Reuse . 3
1.2 Thesis Objectives . 6
1.3 Thesis Outline . 8

2 Web Service Operation Repositories 10
2.1 Motivation for Web Service Operation Repositories 11

2.1.1 Scenario Overview . 12
2.1.2 Operation Detection Needs 13
2.1.3 Research Questions . 15

2.2 Foundations of Web Service Detection 16
2.2.1 Web Service Definitions and Characteristics 17
2.2.2 Technical Foundations 19
2.2.3 Web Service Detection Support 27

2.3 Operation Detection in Service-oriented Software Development 36
2.3.1 SOA Overview . 37
2.3.2 Software Engineering Principles for SOA 41
2.3.3 Requirement Analysis 45
2.3.4 Conceptual Design . 47
2.3.5 Logical Design . 49
2.3.6 Physical Design . 54

2.4 Operation Repository for Service-oriented Software Development 56
2.4.1 Information Classification 56
2.4.2 Derivation of a Web Service Operation Repository . . . 59

2.5 Summary . 62

3 Syntactic Matching of Operations 63
3.1 Motivation for Syntactic Matching 64

3.1.1 Scenario Overview . 64
3.1.2 Relational Web Service Model 65
3.1.3 Research Questions . 68

i

CONTENTS ii

3.2 Foundations of Relational Schema
Matching . 69
3.2.1 Relational Database Basics 70
3.2.2 Classification of Schema-Matching Approaches 76
3.2.3 Algorithms and System Implementations 80

3.3 Schema Matching for Relational Web Services 86
3.3.1 Matching of the Operation Name 87
3.3.2 Attribute Matching . 89
3.3.3 Refinement . 92

3.4 Web Service Match Evaluation 94
3.4.1 Identifying Useful Matches 95
3.4.2 Relational Match Expressions 101
3.4.3 Match Hierarchy . 106

3.5 Summary . 111

4 Semantic Matching of Operations 112
4.1 Motivation for Semantic Annotations 113

4.1.1 Scenario Overview . 113
4.1.2 Simple Semantic Queries 119
4.1.3 Research Questions . 124

4.2 Foundations of Semantic Annotations 125
4.2.1 Introduction to Semantic Web Ideas 125
4.2.2 Introduction to Description Logic 130

4.3 Searching Operations with Semantic Annotations 134
4.3.1 Semantic Extension of the Repository 134
4.3.2 Matching of Semantic Operations as Query Answering 137
4.3.3 Variations of Semantic Operation Matching 144

4.4 Terminological Extensions . 149
4.4.1 Distinguishing between Operations and Attributes . . . 150
4.4.2 Using Attributes with Properties 154

4.5 Summary . 160

5 Related Work 162
5.1 Web Catalogs and Search Engines on the Web 162
5.2 Semantic Web Services . 164
5.3 Relational Web Service Models 173
5.4 Software Component Retrieval 174
5.5 Other Web Service Matching Approaches 176

CONTENTS iii

6 Conclusions and Perspectives 178
6.1 Summary of Results . 178
6.2 Outlook on Research Perspectives 180

Bibliography 182

A Case Study from Financial Industry 202
A.1 Introduction to Loan Pricing 203
A.2 Online Loan Application Case Study 210
A.3 Financial Web Service Ontology 226

A.3.1 Requirement Analysis and Specification 226
A.3.2 Conceptual Design . 229

Chapter 1

Introduction

Service orientation has become a buzzword in research and practice during
the last years. On the one hand, many different areas such as computer
networks (e.g., [LZ05]), distributed systems (e.g., [WLWC05]), software en-
gineering (e.g., [BBHN05]), semantic Web technologies (e.g., [BBZ+05]), grid
computing (e.g., [HSHG06]), or even bio-informatics (e.g., [HGHHC05]), e-
learning (e.g., [Wes05]), and information systems research (e.g., [BHB05])
adopt service orientation as a new research perspective. On the other hand,
many software vendors offer new tool suites, such as IBM WebSphere1,
that promise to solve most enterprise application integration (EAI) prob-
lems owing to their support of service orientation and service-oriented ar-
chitectures (SOA). Even more Internet applications describe themselves as
service-oriented or claim to be a Web service provider; Amazon2 is a well-
known example. These examples show that the notion of service orientation
is widespread, but diverse and dominated by a terminology not commonly
defined.

Despite this lack of precision, many companies have embraced the para-
digm of service-oriented architectures. Especially the years 2005 and 2006
have seen an increased interest and rising investments in service-oriented
technology, infrastructure, and software engineering among companies of
many different industry branches as a survey from GCR Research by BEA
Systems, Inc. of October 2006 shows [RE06].

Toyota Australia uses a service-oriented architecture to achieve a better
and more flexible integration of their own ERP systems with the IT systems of
their suppliers and dealers. Before switching to a universal message exchange
format and standardized interfaces, information coming from one system had
to undergo customized transformation functions or had even to be keyed in

1http://www-306.ibm.com/software/websphere/
2http://www.amazon.com/

1

CHAPTER 1. INTRODUCTION 2

manually [IDC04].
The Dutch airport Schiphol has started the introduction of a new service-

oriented system. The main goal of this project is to replace the old pascal-
based information and workflow system with a message-oriented system,
which is based on broadly accepted XML standards to react flexibly to cus-
tomer needs and to provide information in real-time to a large number of
different consumers such as information monitors, the airport’s Web pages,
or the Dutch television [BEA06].

Hewlett Packard (HP) has turned its storefront for business-to-business
(B2B) shopping into a Web service. The service exposes the complex pricing
and configuration logic that resides in an SAP module. Thus, this logic is
now available in many different storefronts and is not limited to HP’s own
B2B solution any longer [BEA03].

The Wachovia Bank, fourth largest bank holding company in the United
States based on assets, started a SOA development project in 2004. Each
of their nine business units, e.g., leasing or trading, is highly specialized
and offers customized financial products. This has led to complex and data-
intensive applications that are unique within each business unit, although
they encapsulate functionality that might also be useful to other units if
they knew about its existence. With the identification of services and a large
scale SOA development project, such redundancies were discovered and the
reuse of software was increased. For example, the Foreign Exchange division
uses a foreign exchange calculator application, which has been reused by the
International Payments and Trade division [Mar06].

These few examples reveal that SOA is increasingly used in enterprise
settings on a larger scale. The main focus of SOA projects lies on informa-
tion integration, service provisioning to internal and external customers, and
internal software reuse.

In most cases, the key driver behind this interest in SOA is the hope
to save IT costs. First, a service-oriented architecture promises an ease of
integration efforts. Particularly in larger companies with a long IT history,
the IT landscape is diverse. Different hardware from mainframe to pocket
PCs and applications by different vendors as well as in different programming
languages co-exist causing either high integration efforts or high redundancy
in data and functionality. SOA is seen as a new attempt to overcome this
heterogeneity.

Second, a service-oriented architecture promises to increase the reuse of
software components, thus increasing the programmers’ and testers’ produc-
tivity. In a survey from November 2006 by [BH06], 90% of all participants
regarded reuse as the most important key driver for investments in a service-
oriented architecture. At the same time, more than 50% of all participants

CHAPTER 1. INTRODUCTION 3

that had already started building a SOA were not experiencing software
component reuse. This indicates that there is a gap between the perception
of opportunities that service orientation promises and the experience gone
through during the implementation of a SOA.

In the survey, half of the participants expect to deploy at least 50 services
within one year from starting SOA implementation efforts. More than three
thirds intend to reuse between 11% and 40% of the available services. Most
participants expect to reuse the services that come from applications built
in-house rather than from packaged applications or over the Web. This also
reveals a discrepancy: service orientation is seen as an integrating technol-
ogy, but the reuse does not encompass third party components. This is in
contrast to the hopes of the standardization comittees, such as the W3C3,
that have always promoted technological standardization as a bridge between
businesses on a global scale.

1.1 Service Reuse

In everyday life, a service is as diverse as the daily delivery of a newspaper,
the flight booking or trip planning executed by a travel agent, the approval
of a loan in the branch of a local bank, the information provided by the
helpdesk in a train station, or the weather forecast provided by an Internet
application. All these examples have in common that a service is regarded as
the provision of an added value in terms of convenience, comfort, or amuse-
ment to customers who seek the service and, in many cases, also pay for it.
As such, a service is intangible. This can be regarded as the economic per-
ception of service orientation: providing added value for external customers
through intangible goods [ZB96].

This perspective has also been adopted within enterprises. For example,
the human resource unit looks for new employees on behalf of other orga-
nizational units. The IT infrastructure team provides Web access, e-mail
accounts, access to information systems and keeps the middleware and infor-
mation systems running. All this ultimately contributes to the companies’
business goals and is also regarded as service orientation in terms of added
value for internal customers.

The enterprise perspective is further expendable. The way how organi-
zational units work and cooperate is defined by business processes [VB96].
A business process defines the flow of activities, the actors involved, and the
resources they need to execute the business process. Every activity can be
associated with costs and duration time. Optimizing a business process can

3http://www.w3.org/

CHAPTER 1. INTRODUCTION 4

result in a re-ordering of activities, in a re-allocation of activities to different
organizational units, or even in the outsourcing of activities to a subsidiary
company or an external provider. Especially the latter presumes the existence
of well-defined business processes that are precisely modeled in a modular
way, e.g., in a formal model such as Petri nets [RR98], and well-understood
among all participants within the application domain. For outsourcing cer-
tain activities, the different parties must agree upon the prerequisites and
the outcome as well as the quality of the service result. From this point of
view, service orientation can be seen as the abstraction of business processes
or subprocesses that virtually belong to an enterprise, but may physically be
executed in a different company, although this is not perceivable from the
outside [WCL+05].

The agile and flexible allocation of activities in business processes also
effects the underlying IT systems. Loose coupling of system components is
necessary to react to changing business requirements. This is an attempt
with a long history in computer science.

Software and programming paradigms reflect the need for decomposition.
Functions and packages in programming languages such as Ada [Bar06] or
PL/SQL [UHMM04] are used for functional decomposition of a program.
Object-oriented languages such as Java [AGH05] offer the class concept to
achieve a semantic clustering of objects. Components as in J2EE [ACM03]
provide a higher level of abstraction and also address application logic, e.g.,
transaction control or security issues.

In [ACKM04] even more examples are given: the evolution from one-
tier architectures to n-tier architectures is an early example of the striving
for modular software architectures beyond programming languages. The in-
troduction of a middleware layer in system architectures serves as a bridge
between heterogeneous software components and offers a layer of abstrac-
tion that helps the programmer to gain easy access. Remote procedure calls
(RPC), for example, hide the communication channel from the programmer
offering an interface to a remote system that looks just like a local procedure
call. Transaction processing monitors (TP monitors) are a widespread mid-
dleware that combines RPC with transaction monitoring and is often used
in enterprise application integration (EAI) scenarios. The queuing system
used in TP monitors to support asynchronous transactional message pass-
ing has evolved into a middleware of its own, the so called message-oriented
middleware (MOM) that allows persistent queuing and transactional access
to queues. These technologies are mostly used in EAI scenarios developed in
the closed software landscape of an enterprise. Bridging systems across enter-
prise boundaries, e.g., using the World Wide Web (WWW), without writing
specialized adapters for every application is the next step in this evolution

CHAPTER 1. INTRODUCTION 5

[ACKM04].
From a software system perspective, service orientation can be seen as the

attempt to provide access to existing business functionality offered by dif-
ferent systems irrespective of their location, their platform, and their imple-
mentation to be able to react flexibly to changing business needs [WCL+05].
This is achieved by componentization of software applications so that ev-
ery component within the architecture is dedicated to a specific aspect of
the application, e.g., replication or authentication [Ber96]. This led to the
paradigm of service-oriented architectures (SOA). Table 1.1 summarizes the
different notions of service orientation as explained in this section.

Table 1.1: Notions of service orientation.

Perspective Service Orientation

Everyday Life Provision of added value
to external customer

Company-internal Provision of added value
to internal customer
according to business goals

Business Process-oriented Ability to flexibly decompose
complex business processes
according to changing business needs

IT Infrastructure-centric Provision of business functionality
irrespective of location,
platform, and implementation

The reuse of services in everyday life and within an enterprise is common,
but often not standardized. Service detection follows common sense, human
experience, or enterprise guidelines. For example, a taxi is ordered via the
Internet, by telephone, or called for in the street. It depends on the cus-
tomer’s situation. If the taxi ride is planned, the service provider is chosen
deliberately; if the ride is a spontaneous decision, the first available taxi is
taken. This shows that service usage is very diverse, although the service
itself remains the same.

Such a diversity of means of service detection prohibits the reuse of soft-
ware services. Therefore, standardization committees have undertaken ef-
forts to define technical standards for the interface definition, communica-
tion with and publication of services delivered via the Internet [OAS04]. By
now, the standards have been defined, but surveys of the public Internet
show that these standards are not actively used in public service registries

CHAPTER 1. INTRODUCTION 6

[FK05, BSFT06]. Publications on practical SOA implementations within en-
terprises reveal that additional meta-information management components
are custom-built in addition to the registry standards that SOA vendors pro-
vide [TM07]. The meta-information repository contains, e.g., software docu-
mentations or internal classification systems to enhance the service descrip-
tion. The apparent gap between the high degree of technical standardization
in service-orientated architectures and the low reuse effect in practical devel-
opment projects shows that standards alone do not increase software reuse
if they are not integrated into the software development process.

1.2 Thesis Objectives

Top-down software development starts with a survey of user needs and pro-
ceeds through various stages of abstraction to the physical system imple-
mentation. During this process, the need arises to compare the design of a
new system to existing functionality and to decide if existing functions in the
form of services can be reused for the new application. At the end of a de-
velopment project newly built functionality needs to be evaluated to decide
if it is suitable to become a new service.

Service detection support in service-oriented software development has
not been the main focus of the Web service standardization efforts of the last
years. As many standards already exist for various aspects concerning Web
services (see Section 2.2.2), detection support for service-oriented software
development ought to adhere to existing standards and use them, rather than
generate a new standard. Furthermore, in this thesis, Web service detection
in service-oriented software development is regarded as a discovery process.
Searching is the central step within the Web service detection process, but the
specification of the search target and the evaluation of the results returned
is also part of the discovery process. Therefore, the term “detection” is
preferred to the term “search” in this thesis. The envisioned detection process
leads to the following central research question:

How can an implemented Web service be found for reuse during
service-oriented software development?

This lead question directly implies subsequent research questions which
will be answered throughout Chapters 2, 3, and 4:

1. Which stages of service-oriented software development need service de-
tection support?

CHAPTER 1. INTRODUCTION 7

2. Which kind of information is available and contributes to service de-
tection at design time?

3. How can the information needed for searching be organized efficiently
for design-time service detection?

4. How can the desired service be described at an appropriate level of
abstraction that fits to the software development process, but does not
imply a documentation overhead?

5. Can search strategies from other research areas be reused efficiently?

6. What is the nature of a match between a service specification that
results from software design and an implemented service?

7. How can the match between service specification and service imple-
mentation be operationalized and assessed?

8. How can a match be categorized to express a gradually increasing de-
gree of compliance between specification and implementation?

If meta-information is added to provide semantics that go beyond the
technical standards, further questions arise:

9. How can additional semantics be attached to a service so that this
additional documentation is generated at design time?

10. How complex is semantic searching based on semantically enhanced
service specifications?

11. In which way do semantic extensions of existing standards enhance the
quality of the service description?

12. What is the contribution to the software-development process?

As a practical application scenario for service-oriented software devel-
opment, an online loan application with an underlying financial calculation
kernel for product pricing is chosen.

CHAPTER 1. INTRODUCTION 8

1.3 Thesis Outline

The first four research questions from above are addressed in Chapter 2.
First, fundamentals of Web services and the basic standards as far as they
are relevant in this thesis are introduced. A methodology for service-oriented
software engineering is presented to analyze which kind of service detection
support is needed during the different design stages. It is shown that the
crucial step for service reuse within the presented top-down approach is the
mapping of designed services to existing services in the logical design step.
The information known in this step allows for syntactic as well as semantic
matching of service capabilities. For the organization of this information,
a relational Web service operation repository is proposed. The subsequent
chapters resume this repository structure to explore its applicability for syn-
tactic and semantic Web service detection.

Research questions 5 to 8 are addressed in Chapter 3. A relational
approach for syntactic Web service matching is developed and examined.
Special emphasis is laid on the reuse of algorithms from relational schema
matching. It is shown by example that already existing schema matching
algorithms can be adapted to provide detection support for Web service op-
erations. These approaches support syntactic search and are dependent on
naming conventions.

The remaining research questions will be answered in Chapter 4. The
relational approach is enhanced with a taxonomy to allow for semantic Web
service matching. This makes syntactic matching independent of naming
conventions. An algorithm for semantic Web service operation retrieval based
on semantic annotations is presented. The combination of semantic and
syntactic matching is examined to determine the complexity and flexibility
of the chosen approach.

Chapters 2, 3, and 4 have a common internal structure: They start with a
motivation of the guiding research questions for the chapter. The motivation
is based on a running example from financial industry that serves as a case
study. After the practical motivation, the theoretical foundations of each
chapter are briefly summarized as far as they are relevant for the following
problem analysis and solution presentation. Then, the research results are
presented. Each chapter closes with a short summary. The complete case
study is documented in the appendix.

In Chapter 5, related work from the areas of software component re-
trieval, Web catalogs, search engines, semantic Web research and Web ser-
vice research is presented and discussed. Differences and similarities to the
approach presented in this thesis are pointed out. This chapter complements
the foundational sections of Chapter 2, 3, and 4 because it presents studies

CHAPTER 1. INTRODUCTION 9

that treat related research aspects, which have not been used or mentioned
before.

In Chapter 6, the results of this thesis are summarized, and an outlook
on open issues in the field of Web service detection is given.

Chapter 2

Web Service Operation
Repositories

In this chapter, the requirements, foundations, and challenges of Web ser-
vice reuse in a service-oriented development project are analyzed and a Web
service operation repository is introduced to help in the detection of existing
Web service operations.

Software reuse in general is a long known idea to decrease development
time and costs of software projects. It has already been the aim of procedural
and object-oriented programming libraries. Despite this long tradition of
reuse as desirable goal of software development, there are still many obstacles
to overcome. [Rog05] has observed that software designers still prefer to build
new applications with their own code instead of reusing existing components
and gives the following reasons for this:

• The existence of reusable components is unknown or undocumented.

• Developers prefer to rely on their own code.

• Developers fear to be held responsible for other program designers’
faults.

• Testing the integration of old and new components is perceived as more
complex than testing an application built from scratch.

This observation contrasts the hopes of companies that introduce service-
orientation in their IT landscape. They want to increase the reuse of their
internal software components in the form of Web services [BH06]. Therefore,
they must overcome the first obstacle for reuse: the existing services must be
published and described in a way that is compatible with the development

10

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 11

process to be discoverable. In this chapter, the major demands of service-
oriented development within an enterprise setting are analyzed and compared
to existing solutions to reveal gaps.

In Section 2.1, the issues of service detection in a service-oriented devel-
opment project within an enterprise are motivated by a use case example.
The detection needs are categorized and the guiding research questions of
this chapter are derived, which will be answered in the remaining sections.

In Section 2.2, the foundations of Web services are introduced. Definitions
and characteristics as well as technical foundations and related standards are
presented to give an overview about the state of the art and standardization
efforts, as far as they are relevant for this thesis. The means to make Web
services available for reuse and the techniques to discover Web services are
addressed in detail as they play an important role in the remainder of this
thesis. Further, different search scenarios and use cases for different detection
solutions are presented, categorized, and discussed.

In Section 2.3, the paradigm of service-oriented architectures is intro-
duced. Software development approaches for service-oriented architectures
and their implications for the software development process are analyzed.
Special emphasis is given to intra-enterprise application development and
the reusability of Web services within this environment. The running exam-
ple is resumed to illustrate a service-oriented development methodology that
encourages reuse and takes the service consumer and the service provider
perspective into account.

In Section 2.4, the different search scenarios that occur during the design
process of a service oriented-development project are compared to the tech-
nical support given by Web service standards. A repository at the level of
Web service operations is presented to make the interface descriptions of Web
services accessible for searching. This repository is proposed as an additional
component within a service-oriented application landscape.

In Section 2.5, the results of this chapter are summarized while answering
the first four questions of Section 1.2.

2.1 Motivation for Web Service Operation Re-

positories

In the following sections, the search for Web service operations in service-
oriented software development is motivated by example. Section 2.1.1 intro-
duces the running example that will be used throughout this thesis. The
need to search for Web services at the level of operations will be explained.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 12

Section 2.1.2 categorizes the different approaches towards Web service oper-
ation detection. Section 2.1.3 outlines the guiding research questions for this
chapter.

2.1.1 Scenario Overview

The following scenario description from the financial industry is used to il-
lustrate operation search in a service-oriented environment.

A fictitious bank is taken into consideration that has decided to specialize
in consumer loans. This type of loan is offered to customers who want to
buy consumer goods and pay by installments. Such a loan contract typically
has a duration from 12 to 60 months, and the net value ranges from 1,000 to
60,000 Euros. Owing to the relatively low amount and short duration, this
type of loan promises a profit only if the application process is completely
standardized and human intervention is not needed except for the final de-
cision if the loan is granted. Therefore, the bank has decided to offer a loan
via the Internet1.

The central functionality of this application is the calculation of the loan
conditions based on customer input. The duration, the net value, and a
score for the customers’ credit worthiness are needed to calculate the interest
rate and the monthly installments. By using personal information such as
profession, income, and family size, the customer score is calculated.

If the implementation of such an Internet application is to be based on
functionality already implemented, the software architects must be able to
find existing operations that fulfill the given task. Here, the need arises
to describe an operation before implementing it. This means an operation
must be logically, not physically represented in a manner that allows for
(semi-)automatic search and match computation. The operation is the search
objective, independent of the physical location of the providing application.

Furthermore, using pre-implemented functionality implies that the devel-
oper is unable to change the internal implementation of the software com-
ponent. It is to be used as a black box. Therefore, the only information
available during the design process is the specification of the operation, its
input and output attributes, which are defined at design time. At this level,
also operations that are already implemented can be described. For ex-
ample, an operation for the retrieval of loan conditions for the consumer
loan as described above is offered by an application realized as Web service,
called Loan_Pricing. The operation itself is called get_condition. It takes
Net_Value, Duration, and Score as input attributes and returns Interest and

1A real life example for such an online product is given at www.easycredit.de.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 13

Table 2.1: Simple schema for consumer loan pricing.

Web Opera- Attri- Attri- Data Data
Service tion bute bute Type Type
Name Name Name Type Domain Range
Loan get Net Value IN Currency not null,
Pricing Conditions [1,000,. . .,

60,000]
Duration IN Integer not null,

{12, 24, 36,
48, 60}

Score IN Integer not null,
{1, 2, 3,
4, 5}

Interest OUT Percentage not null,
[0, . . ., 1]

Install- OUT Currency not null,
ment ≥ 25

Installment. The Net_Value is a currency value between 1,000 and 60,000
Euros. The Duration is an integer value of 12, 14, 36, 48, or 60 months. The
customer Score is an integer value ranging from 1 to 5. The Interest is a
percentage value, the Installment is a currency value of at least 25.00 Euros.
This operation is represented in Table 2.1.

To search for an implemented operation, the above information must be
made available. This can be achieved through various means. A description
of the operation can either be published in a central or a decentral registry for
reusable components. Further, a software designer must be able to execute a
search in this registry either manually or automatically. When the designer
has found a reusable operation this operation can be permanently integrated
into the new application or it is chosen anew each time the application is
executed. These different aspects of operation detection are analyzed in the
next section.

2.1.2 Operation Detection Needs

Approaches to operation detection within service-oriented development can
be distinguished according to the degree of automation they offer for search
execution and the setting in which they are applied as summarized in Figure
2.1.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 14

Result
Control

Search
Speed

Automation

Binding

Business Contact
Duration

Business Contact
Intensity

static dynamicrestricted-
dynamic

long short

intensive loose

automatic

semi-
automatic

manual

high

low

low

high

Thesis
Scope

Figure 2.1: Thesis scope.

Detection can be executed fully automatically without human interven-
tion, semi-automatically with human feedback, or manually by a human
programmer. With increasing automation, the search speed increases. At
the same time the control over the search result through a human program-
mer is given up and delegated to the search algorithms. Detection can either
be used for dynamic, semi-dynamic, or static binding of a single service call.
The more dynamic the binding, the shorter and less intensive is the business
contact between provider and consumer.

It is obvious that choosing Web services manually is time-consuming if it
has to be executed often. This is only worthwhile if the connection between
Web service provider and consumer is tight. Then the service is chosen man-
ually at design time. A semi-automatic search that reduces the search space
automatically before a human programmer starts Web service inspection can
also help in this situation.

If a pool of services is gathered statically to choose from it dynamically
at execution time, manual search or semi-automatic search can be applied
to assemble such a pool of available services. This results in a higher control
over the service pool at design time. The effort spent to assemble this service
pool is needed only once. At run-time, flexibility is given because the choice

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 15

is still possible among the preselected services.
In a highly dynamic setting, it takes too long to choose a Web service

manually. With increasing autonomy in the choice of the service providers,
the degree of automation must increase, too, to achieve an acceptable exe-
cution time. The control over which service is chosen is given up. Policies
may still exist that guide the search. At the same time, the business relation
between service provider and consumer is dissolved as it may happen that,
with every service call, a new service from a different provider is chosen.

The setting taken into consideration in this thesis is motivated by ser-
vice detection for service-oriented development. The service consumers are
developers working in an enterprise setting. In this setting, manual to semi-
automatic search support is appropriate. The services belong either to the
enterprise’s own services or to business partners with which the company
cooperates. Choosing services fully dynamically is not intended. The inte-
gration of services must be reliable and therefore tests must be conducted to
ensure application quality. This is only possible in a static or semi-dynamic
setting where semi-automatic search support is needed.

2.1.3 Research Questions

The following research questions are derived from the introductory example
and the first categorization of operation detection needs, which resume and
deepen the questions of Section 1.2:

• Which stages of service-oriented software development need service de-
tection support? Which requirements must Web service detection sup-
port fulfill to foster service-oriented design and development?

• Which kind of information is available and contributes to service de-
tection at design time?

• How can the information needed for searching be organized efficiently
for design-time service detection? To which extend do existing Web
service detection standards and techniques cover the developers’ needs?

• How can the desired service be described at an appropriate level of
abstraction that fits to the software development process, but does not
imply a documentation overhead? Which additional search support is
realizable using the existing core standards?

To answer these questions, a use case study is conducted that extends
the introductory example. Service detection needs are revealed by follow-
ing a service-oriented development approach. Existing Web service detection

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 16

mechanisms are described, categorized, and compared to the demands of
service-oriented development. Finally, an additional component, a Web ser-
vice operation repository, is presented to enhance search support, especially
geared at service-oriented development.

2.2 Foundations of Web Service Detection

Despite the striving for standardization in Web technology industry, the term
“Web service” as the implementation of the general service concept is vague
and the features emphasized differ among vendors as well as research groups.
A Web service can be anything from a printer device reachable within an
intranet to an online shop on the Internet. Web service detection approaches
must therefore first of all determine their notion of a Web service.

Leyman [Ley03] describes a Web service as a virtual component (see
Figure 2.2) because it serves as an abstraction of an arbitrary piece of code
or can even serve as a place holder for a service executed by a human being.
An example for the latter is the Amazon Mechanical Turk (MTurk)2 Web
service. The service is executed by humans; the software simply establishes
the contact to a person capable of the desired task. This section is dedicated
to the disambiguation of the term “Web service”, its technical foundations
and the practical usage scenarios that require Web service detection support.

Web Service

(E)JB ... (D)COM

implements implementsimplements

Virtual
Component

Figure 2.2: Web Service as virtual component according to [Ley03].

In Section 2.2.1, selected Web service definitions from industry and stan-
dardization committees are examined to achieve a more precise notion of a
Web service. The section closes with a highlighting of the different charac-
teristics that constitute a Web service as perceived within this thesis.

In Section 2.2.2, the technical foundations of Web services are introduced.
From a distance, Web services are described by a large number of standards

2www.amazon.com

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 17

that are either horizontally or vertically related. To give an overview, the
core standards are introduced. Further standards will be described in those
sections where they are needed.

In Section 2.2.3, the support for Web service detection and usage is an-
alyzed. To use a Web service and to make it available for reuse it must be
discovered first. This can be done in different ways and with different use
cases in mind.

2.2.1 Web Service Definitions and Characteristics

Many definitions of Web services addressed to developers as well as IT man-
agers emphasize that a Web service is a “piece of business logic [CJ02]” that
is “well-bounded, defined, and repeatable [Dev06]”, that “can be invoked in
a standard manner” [Dev06], and that is “located somewhere on the Inter-
net” [CJ02]. This can be said about almost every Web application that uses
standard Internet protocols, e.g., Web pages using CGI or PHP scripts. Such
characterizations raise questions such as: what makes a “piece of business
logic”, and how can a Web service be distinguished from an ordinary Web
site.

In an IBM white paper that explains the concept of Web service archi-
tectures, the definition is more detailed:

“A Web service is an interface that describes a collection of op-
erations that are network accessible through standardized XML
messaging . . . The interface hides the implementation details of
the service, allowing it to be used independently of the hardware
or software platform on which it is implemented and also inde-
pendently of the programming language in which it is written . . .
Web Services fulfill a specific task or a set of tasks. They can be
used alone or with other Web Services . . . [Kre01].”

This definition provides a high-level view on Web services for providers
and consumers. From a user perspective, a Web service encapsulates ar-
bitrarily simple or complex business logic in a standardized manner. The
standardized interface hides the complexity of the implementation from the
user; thus, the Web service becomes a black box. Providers must adhere
to a standardized implementation and notation to provide all information
necessary for interaction with the Web service.

Different W3C Working Groups use slightly different definitions of Web
services. Here, the broadest version is used for analysis:

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 18

“A Web service is a software system identified by a URI, whose
public interfaces and bindings are defined and described using
XML. Its definition can be discovered by other software systems.
These systems may then interact with the Web service in a man-
ner prescribed by its definition, using XML based messages con-
veyed by Internet protocols [Wor04h].”

Here, a Web service is first of all a software system that has a unique
identity and standardized XML-based interfaces. This makes them interop-
erable with other software systems. In order to be found by other systems a
Web service must also be discoverable. This is the next important character-
istic, but the definition does not lay down how to achieve this feature. The
communication between different systems via Web services is message-based.
Furthermore, the Web service is self-describing as its interface definition con-
tains all information necessary for interaction.

From these observations and in accordance with [Wor04h, WKR+05,
ACKM04, WCL+05] the following characteristics are identified that Web
services have in common:

Self-describing: A Web service is registered with a description of the mes-
sages it accepts. This technical information is necessary for interaction.

Self-contained: A Web service offers an autonomous functionality that is
independent of the state of other Web services or the context in which
it is invoked. The Web service consumer does not need any specific
software. Any programming language with XML and HTTP support
is suitable to invoke a Web service.

Modular software components: A Web service offers standard business
functionality that is well-defined and clearly distinguishable from other
Web services. Being self-describing and self-contained contributes to
the modular character of Web services.

Programmatic interfaces to existing applications: For cost-efficient
and simple integration old applications remain in place. Their imple-
mentation, platforms, and access devices are not replaced, but a new
standardized interface is added. It defines the identity of a service.

Published, located, and invoked across the Web: The Web as infras-
tructure for Web service implementation is used because it guarantees
platform independence. Usually, three given standards are applied:
SOAP for messaging, the “Web Service Definition Language” (WSDL)
for interface description, binding, and technical reference as well as

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 19

“Universal Description, Discovery and Integration” (UDDI) for publi-
cation and location of services (see Section 2.2.2).

Based on broadly accepted standards: The standards named have been
created in cooperation with major software producers such as IBM, Mi-
crosoft, and SAP. The consent of software vendors is a necessary pre-
requisite for acceptance to achieve a broad penetration of the software
market.

Language and platform independent: The implementation of the ser-
vice functionality is hidden behind its interface. From a consumer per-
spective, the implementation of the application behind it is not impor-
tant. The consumer does not need any knowledge about the language
in which the application is implemented or about the platform it runs
on to interact with the Web service. Having programmatic interfaces,
residing on the Web, and being built on accepted standards contributes
to implementation independence.

Message-based: Web services operate message-based. Their interfaces
wrap the underlying applications. Contact to the service requester or
other Web services takes place via messages that are passed within
a communication channel that supports standardized protocols. Be-
ing implementation-independent contributes to the ease of message ex-
change.

Interoperable: Interoperability is given because Web services are modular
and based on messaging.

Composable: Web services can be composed to execute more complex
tasks. Being interoperable contributes to composability.

These characteristics will serve as framework for the remainder of this
work. Figure 2.3 summarizes the relationship between the different aspects.

2.2.2 Technical Foundations

The general requirements for Web service deployment and use will be ex-
plained, by looking at an information service provider such as Reuters3.
Banks regularly import, e.g., the latest exchange rates or yields of government
bonds from such providers. To achieve interoperability, the information ser-
vice provider must offer a standardized interface that describes how to send

3http://customers.reuters.com/

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 20

Modular
Components

Self-
describing

Self-
contained

Programmatic
interfaces

Language and platform
independent

Published, located, invoked
across the Web

Interoperable

Standard-based

Composable

Message-oriented

contributes

Figure 2.3: Web service characteristics.

and receive messages for information download. This interface is defined us-
ing WSDL, the Web services definition language. The messages also use a
pre-defined format, defined in SOAP. For a better visibility of the service, the
service provider publishes the functionality in a public directory, described by
UDDI. The relationship between SOAP, WSDL and UDDI is summarized in
Figure 2.4. SOAP serves as transportation standard for registration, search,
and invocation. UDDI offers interfaces to publish and search for a service.
The service itself resides with the service provider, may be published using
UDDI, and is invoked using SOAP. The three standards SOAP, WSDL and
UDDI are introduced in more detail in the next paragraphs.

Service
Requestor

Service Provider
(WSDL)

Service Directory
(UDDI)

Internet/
Intranet

Bind
(SOAP)

Find
(SOAP)

Publish (SOAP)

Figure 2.4: General Web services set up according to [WCL+05].

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 21

SOAP

SOAP 1.24 [Wor03a, Wor03b] is a lightweight protocol built to allow loosely
coupled interaction between applications across the Internet. It is based
on XML to convey information in a structured and standardized manner.
According to [ACKM04], SOAP specifies in particular:

• a message format suitable for one-way message exchange,

• a mechanism to enclose an RPC in a SOAP message and to send the
result back,

• all elements of a message that the receiving party ought to understand,

• a binding to HTTP or SMTP for synchronous and asynchronous com-
munication.

A SOAP message consists of an XML envelope that contains an optional
header and a mandatory body. Header and body may contain an arbitrary
number of header blocks and body blocks respectively.

The header contains information for intermediary nodes that pass the
message along to the receiver. The body contains the actual content of the
message exchange. This can either be a simple document, or an RPC with
the name of the called method and its input parameters, or the reply to
such a call. Exchanging documents is called document-style interaction in
contrast to using RPC, which is called RPC-style interaction. This is shown
in Figure 2.5.

SOAP defines an encoding for data structures, but it does not impose this
encoding. Any other encoding that the involved parties agree upon can be
used. For example, IFX 5 is an XML standard for the exchange of financial
data such as stock market orders or other kind of transactions. This stan-
dard has been recently extended to be used within SOAP messages. Thus,
the XML structure of a SOAP message is used for transport, but the data
structures used within the message conform to a domain specific standard
that carries additional meaning for the sending and receiving parties.

To use SOAP, the message must be transported through a network. Dif-
ferent network transport protocols can be bound to a SOAP message. Com-
mon bindings are HTTP and SMTP. When SOAP is used with an HTTP
binding the message is included in an HTTP POST or GET request. The
recipient of the message is defined in the target URL of the HTTP command.

4At the time of writing, the current version of SOAP was SOAP 1.2. The current
version can always be found under http://www.w3.org/TR/soap/.

5http://www.ifxforum.org/home

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 22

Envelope Envelope

Body Body

Request:
XML

Document

Reply:
XML

Document

Envelope Envelope

Body Body

Method
Name

Method
Return

Return
Value

Input
Parameter 1

Input
Parameter 2

Document-style

RPC-stype

Figure 2.5: SOAP interaction styles according to [ACKM04].

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 23

WSDL

WSDL 1.16 [CCMW01] is a generic Web service description language that
can be used for any type of Web service irrespectively of its underlying func-
tionality. According to [ACKM04] a WSDL document describes:

• a Web service interface with service name, operation name, input and
output parameters,

• access mechanisms because Web services can reside on different plat-
forms,

• the location of the service, which is the destination of the SOAP mes-
sage,

• interaction patterns to exchange several messages asynchronously or
synchronously.

A WSDL specification consists of an abstract part and a concrete part as
depicted in Figure 2.6.

Types

Messages

Operations

Port Types

Bindings

Services and
Ports

Abstract Part Concrete Part

Figure 2.6: WSDL service specification according to [ACKM04].

The abstract part contains port type definitions that form a logical group-
ing of related operations. Each operation defines the exchange of messages,
usually SOAP messages. With the current WSDL version, there are four ba-
sic operation primitives: one-way, notification, request-response and solicit-
response. One-way and notification are used for asynchronous messaging.

6At the time of writing the current recommendation of WSDL was still version 1.1.
WSDL 2.0 became a candidate recommendation in March 2006. The current version can
always be found under http://www.w3.org/TR/wsdl.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 24

Request-response and solicit-response messages are for synchronous commu-
nication. These operation types show that a Web service can either act like
a service provider, answering a request or, like a client, initiating a service
call. The data types used in the messages are also defined in the WSDL
document. Usually, the XML type system [Wor04i] is used, but other type
systems are also allowed.

The concrete part supplies interface bindings, ports, and services. In-
terface bindings specify the message encoding, e.g., RPC-style interaction
with SOAP encoding of the abstract WSDL types, and the protocol bind-
ings for the operations and messages of a given port type, e.g., SOAP for
communication, and HTTP for transport.

The separation of abstract interface from concrete bindings is intended
to make the abstract part of a WSDL specification reusable. The same port
type can be used in combination with different bindings and can be made
available at different addresses [ACKM04].

The W3C Working Group suggests three possible usage scenarios for
WSDL:

1. as traditional service description language that defines a service con-
tract,

2. as input information for stub compilers and development environments
that automatically generate the stubs and skeletons to invoke the ser-
vice,

3. as a vehicle to describe the semantics of a service.

The first two usage scenarios are already very common. Usually, a de-
velopment suite automatically generates a WSDL document for a given API
of, e.g, a Java class or a stored procedure in a database system. From this
WSDL file, the development environment can also generate the client stub
and the server stub. The last usage scenario, concerning semantics, is still
very vague. WSDL has been designed to describe the interface of any ser-
vice, irrespectively of its application domain [ACKM04]. This idea will be
resumed in Chapter 4 of this thesis.

The latest W3C candidate recommendation as of time of writing is WSDL
2.0 [Wor07c]. The structure of the WSDL document has changed slightly in
this recommendation compared to the afore-presented WSDL 1.1 standard.
It still consists of an abstract and a concrete part. The concrete part has not
changed much. It still contains bindings, services and ports. In the abstract
part messages, operations, and port types have been combined as elements
of an interface description as shown in Figure 2.7.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 25

Types

Interfaces

Operations

Bindings

Services and
Endpoints

Abstract Part Concrete Part

Input
Message

Output
Message

Figure 2.7: WSDL 2.0 service specification.

The operation primitives have been extended and renamed [Wor07d].
Four operation types in-only, out-only, robust in-only, and robust out-only
are for one-way message exchange. The “robust” messages allow an error
message as reply if the recipient cannot process the message as intended.
The operation types in-out, out-in, in-optional out, and out-optional in are
used for two-way communication.

UDDI

UDDI 3.0.27 [OAS04] is an XML-based framework that describes which data
structures and APIs a Web service registry must implement and offer to
support Web service publication and search.

The information that UDDI offers is often compared to the white and yel-
low pages of a telephone directory [ACKM04]. White pages list companies
and organizations, their contact information, the services they offer, and a
short human-readable description. Yellow pages categorize service providers
and services according to externally defined classification schemes. Addi-
tionally, so-called green pages contain technical information about service
invocation.

To store these different kinds of information, UDDI uses data structures
that are schematically depicted in Figure 2.8. Each information type, busi-
nessEntity, businessService, bindingTemplate and tModel, has a unique key.
A businessEntity contains one or more businessServices, a businessService
comprises a list of one or more bindingTemplates. All three information types

7At the time of writing, the current version of UDDI was UDDI 3.0.2. The cur-
rent version can always be found under http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 26

may contain references to one or more tModels. tModels may be referenced
by more than one UDDI entry.

businessEntity
- Name
- Description
- Contacts
- Identifiers
- Categories

businessService
- Name
- Description
- Categories

bindingTemplate
- Description
- Access Point
- Categories
- References to tModels

tModel
- Name
- Description
- OverviewDoc
- Identifiers
- Categories

tModel
- Name
- Description
- OverviewDoc
- Identifiers
- Categories

Further
Information
on Provider

Side

Figure 2.8: Schematic overview of UDDI data structure according to
[ACKM04].

The businessEntity contains information about the service provider such
as the name of the business, a short textual description, contact infor-
mation (contact person name, telephone number, or e-mail address),
business identifiers such as a tax ID or an ID based on another com-
monly accepted identification scheme, and a list of categories that de-
scribe aspects of the business entity such as industry branch, product
category, or geographic region. To define which kind of identification
scheme is used, pointers to further technical documentations, the tMod-
els, can be included.

The businessService groups related Web services of a businessEntity. It
will usually contain one Web service only that is available under differ-
ent addresses, in different version or under different protocol bindings.
The businessService is described by its name, a short textual descrip-
tion, and a list of categories that can be explained further by references
to tModels.

The bindingTemplate discloses the technical details to use a particular
Web service. This is essentially the access point to the Web service, a

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 27

short textual description and references to tModels that contain further
technical information.

The tModel is a generic container for any kind of technical model, e.g., a
WSDL file or an industrial classification scheme. They can be refer-
enced by multiple Web services and, thus, be reused. A tModel con-
sists of a name, a human-readable description, references to further
documentation (e.g., text documents or WSDL files), identifiers that
conform to an identification scheme, and categories that follow a given
classification.

The UDDI itself offers different APIs that are themselves described as
WSDL interfaces. Therefore, a UDDI is a special kind of Web service that
communicates via SOAP. The UDDI specification defines the following APIs:

The Inquiry API allows to find registry entries that fulfill given search cri-
teria (find business, find service, find binding, find tModel) and to ob-
tain details about a specific entry (get businessDetail, get ServiceDetail,
get bindingDetail, get tModelDetail).

The Publisher API is intended for service providers who want to add,
modify, or delete registry entries.

The Security API provides functionality to authenticate and authorize
users based on security tokens.

The Custody and Ownership API enables the registry to transfer the
custody and ownership to another publisher.

Subscription API offers functionality to track changes within the registry,
e.g., new, modified, and deleted entries.

The Replication API supports the synchronization of distributed UDDIs.

Every UDDI provider must offer the Inquiry API and the Publisher API.
The other APIs are optional.

2.2.3 Web Service Detection Support

Web Service Registry Scenarios

Different scenarios for Web service registries have been described by the
standardization committee OASIS [Ste02], by software vendors such as IBM
[Gra01] or Microsoft [Mic03b, Mic03a], and by software designers and re-
searchers [DJMZ05]. The following paragraphs summarize and consolidate
these scenarios.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 28

Global Business Registry: The first and most general use case is to
operate a UDDI as global, domain independent business registry. In this
scenario, the UDDI is used as public registry service, open to every service
provider and consumer, free of charge. The UDDI functions as registry as
well as as search engine for establishing B2B contacts in an automated way
[DJMZ05, Ste02, Gra01].

A proof of this concept was given by the initiating companies of the
UDDI standard, IBM, Microsoft, SAP and NTT-Communications. They
were operating a global UDDI distributed onto four nodes for five years as
shown in Figure 2.9. The UBR was shut down in January 2006 because
all companies participating regarded the proof of concept as successful and
the UDDI standard version 3 as stable. Since then, companies have started
operating separate UDDIs, e.g., uddi.sap.com.

Microsoft SAP

NTT-Com IBM
UBR

Figure 2.9: UDDI Business Registry according to [DJMZ05].

Domain Specific Business Registry: Instead of offering one global reg-
istry for all domains, it is also possible to establish specialized UDDIs that
contain entries, all related to one industry branch [Gra01]. Such registries
need to establish usage rules that must be adhered to by all users to ensure
the quality of the entries and to avoid unwanted entries that are not domain-
related. Therefore, such a registry needs an administration that supervises
the users [DJMZ05]. This usage scenario is depicted in Figure 2.10.

In such a domain-specific environment, it is also possible to claim a mem-
bership fee, to rate the services, and to use established domain-specific tax-
onomies for service search.

Intranet Service Registry: UDDIs are also used within the Intranet of
an enterprise [DJMZ05, Gra01]. Figure 2.11 summarizes this scenario. Ap-
plication developers use the UDDI to search for available services and as
reference list that does not only contain the services, but that also helps to
find the related technical documentation [Mic03a]. Further, services within

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 29

UDDI

Provider Consumer

Administrator

Policy Policy

publish search

Business Relationship

authorizeauthorize bindingbinding

Figure 2.10: Schema of domain-specific UDDI according to [DJMZ05].

the registry can be approved of by the administrator to be used company-
wide. This approval process may also be extended to include external services
that the application developers are allowed to use [DJMZ05].

Administrator

Internal
UDDI

External
UDDI

Developer

Selection Maintenance

IntranetInternet

Invoke Invoke
Search

Figure 2.11: Schema of internal UDDI registry according to [DJMZ05].

B2B and EAI Service Registry: The Intranet use case can be extended
so that the company does not only use its own and external services but also
acts as an external service provider towards trading partners and customers
[Ste02, Mic03a, Gra01]. In this scenario, it is necessary to ensure that not all
services available on the Intranet UDDI are made public. Only a selection
of services is suitable for external use and must be carefully chosen by an
administrator[DJMZ05]. This is depicted in Figure 2.12.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 30

Administrator

Internal
UDDI

External
UDDI

External Customer

Publication Selection

IntranetInternet

Invoke
Search

Figure 2.12: Schema of a B2B UDDI according to [DJMZ05].

UDDI in the Software Development Cycle: Throughout a structured
software development cycle that follows a process model such as described
by CMMI8 or ITIL9, three phases of software maturity can be distinguished:
the development phase, the test phase, and the operational phase. The
three phases are clearly separated. Often, this is also physically the case
because the three phases take place on different, separate systems. At least
the operational environment is logically and physically separated from the
development and test environment as not to interfere with daily business
[Ste02]. In many companies the development and test environment are also
separated from each other.

Experiment Roll-outTestDevelopment

Intranet

Develop-
ment

UDDI

Test
UDDI

Opera-
tional
UDDI

Play-
ground
UDDI

Figure 2.13: UDDIs in software development.

If an Intranet UDDI is used, the different environments imply that a

8http://www.sei.cmu.edu/cmmi/cmmi.html
9http://www.itil.org/

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 31

development, a test, and a production UDDI are needed [Gra01, Mic03a].
This is depicted in Figure 2.13. The development UDDI contains services
still under development. The test UDDI contains all services that are to be
tested. Finally, all services tested are moved to the UDDI in the operational
environment. If developers need to get acquainted with Web services or if
they merely want to test and play with new services, there may even be a
“playground” UDDI. Such a scenario using four separate UDDIs has been
successfully implemented by Qwest [Mic03b].

This last usage scenario is complementary to the Intranet and B2B/EAI
scenarios. The focus of this thesis is on the Intranet usage scenario, accom-
panied by employment in the software development process.

UDDI Search and Invocation Scenarios

UDDI is designed to support different search patterns, the search by the
human developer at design-time of an application and the search for services
of an application at run-time.

Design-time Search: At design-time, UDDI can be used in a combination
of browse and drill-down search patterns [OAS04]. The application designer
calls a find xyz function of the UDDI Inquiry API and gets a result list
back. This list must be inspected manually or refined through a more spe-
cific search. To inspect a particular entry in the result list, a get zyxDetail
function is executed. Finally, the designer can invoke the service. This se-
quence of browse, drill-down, and invocation patterns is depicted in Figure
2.14. Most often, development tools support this exploratory search pattern
with a GUI. The results of the search at design-time can be used to bind the
service invocation statically into the application.

Run-time Search: Besides static binding the search functionality of the
UDDI can also be used for dynamic binding. Three types of dynamic bind-
ing must be distinguished: the first type of binding is fully dynamic; this
means, at run-time, the application searches for a service it has never used
before that is offered by a provider that is unknown to the consuming appli-
cation. The application chooses a service among the results returned by the
UDDI, e.g., according to quality of service aspects, and binds to it on the fly.
This scenario, although visionary, is considered to be unrealistic for service-
oriented application development. The behavior of such an application would
be unpredictable. At design-time, it is unknown which parameters need to be
passed. The application cannot be thoroughly tested, it is undefined how to
react if an exception is returned, and the service consumer does not even have

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 32

Client

find_xyz(parameters)

UDDI

Result List

get_zyxDetails(bindingKey)

Service Details

Web Service

ServiceCall(Parameters)

Result

Browse
Pattern

Drill-down
Pattern

Invocation
Pattern

Figure 2.14: Patterns supported by UDDI inquiry API [DJMZ05].

a proper service level agreement with the service provider. [ACKM04] doubt
that application designers will ever have use for such a degree of dynamism.

Requestor

tModel
Service Ax

Service A1

Service A2

Service A

Figure 2.15: Dynamic service call via tModel.

The second type of binding is semi-dynamic, i.e., dynamic in a restricted
sense. At run-time, the client application calls a service interface as defined
by an existing tModel. This can be implemented by more than one Web ser-
vice. Thus, the interface and the binding details are known to the requester
a priori. Only the exact service and its provider are chosen at run-time as
shown in Figure 2.15. [ACKM04] consider this to be a realistic scenario for
Web service development.

A variation of dynamic binding is suggested by [Ley03, WCL+05]: it
uses a specialized infrastructure, an enterprise service bus (ESB), for service
selection. The service requester sends a search request to the service bus and
describes the necessary service by defining business goals and policies. All
matching services are considered to be equivalent from the requester’s point
of view. They are represented by a virtual service. The service bus chooses
an appropriate service, binds to it, invokes it, and delivers the result to the
requester. The choice the service bus makes is guided by further policies such
as execution costs or availability. This scenario is depicted in Figure 2.16.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 33

The service bus is an infrastructure component that is delivered by software
vendors; for example, IBM WebSphere10 contains a service bus. However,
the service bus idea is not widely adopted yet (see Section 2.3.1).

Requestor

Environ-
mental

Properties

Business
Properties

Service 1

Service 2

Service 3

Search
Bind

Service Bus Virtual Service

Figure 2.16: Dynamic service selection via service bus according to [Ley03].

The focus of this thesis is on design-time search, which is mostly static,
but can also be semi-dynamic.

Implementations and Standards

The most important standard for Web service detection, UDDI, has already
been introduced in Section 2.2.2. There are additional standards that address
the Web service detection problem in absence of a central UDDI.

WS-Dynamic Discovery: WS-Dynamic Discovery [BKK+05] is a speci-
fication that defines a multicast discovery protocol to find services in ad hoc
networks where Domain Name Services (DNS) or directory services do not
exist. The protocol is not intended for Internet wide usage. It does not define
any data model or any queries over rich meta-data. If a service consumer
wants to find a service on the network, it sends a probe message to a multi-
cast group. Matching services respond directly to the service consumer. The
service consumer then sends a resolution request message to the same group
and the matching service replies directly to the service consumer. If new
services join the network, they send an announcement to the group to mini-
mize polling. If a discovery proxy joins the network the multicast discovery
protocol is automatically abandoned to use the proxy specific protocol. This
protocol is suggested to be used for, e.g., discovery of low level resources such
as printers within a network.

10http://www-306.ibm.com/software/websphere/

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 34

WS-Inspection: UDDI is based on the idea of centralized service registries
that are in general open to every kind of business. In parallel, other ways
of publishing Web services have emerged, e.g., amazon.com Web services are
published directly on the provider’s Web side. WS-Inspection addresses how
to publish Web service in a decentralized, yet structured manner. Thus,
clients can search Web services of providers they trust. An overview of the
different strategies of UDDI and WS-Inspection is given in Figure 2.17.

User

Central
UDDI

Provider
ProviderProvider

search

publishpublish

UDDI

User

Provider
ProviderProvider

searchsearch

WS-Insepction

Figure 2.17: UDDI versus WS-Inspection according to [DJMZ05].

WS-Inspection is document-based: the service provider publishes a doc-
ument with the name inspection.wsil in the home directory of the Web
server. This document contains an arbitrary number of service elements and
an arbitrary number of link elements. Service elements consist of a name
and a description that contains technical information such as the namespace
and the location of the WSDL document that defines the service interface.
Link elements consist of technical information, e.g., the location of another
WS-Inspection document. The WSIL document itself, the service elements,
and the link elements may be described by short human readable abstracts.

The service consumer reads the inspection.wsil document via HTTP
and receives a list of all available service and their WSDL files. The WS-
Inspection standard is extensible, e.g., there are already pre-defined exten-
sions to include UDDI and WSDL. The link elements permit to build hier-
archies of WS-Inspection documents.

Electronic Business XML - ebXML ebXML11 [OAS01a] is a standard-
ization initiative from the e-business domain that started in 1999 to promote

11www.ebxml.org

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 35

an open XML-based infrastructure for world-wide, interoperable, secure and
consistent exchange of information about electronic business. It supports
trade between companies of different sizes and from different geographic areas
by offering open XML standards for business-to-business (B2B) and business-
to-customer (B2C) transactions that replace proprietary, vertical solutions by
a horizontal solution spanning industry and trade. The standard consists of
six specifications as depicted in Figure 2.18.

Business
Process

Core
Components

Collaborative
Partner

Messaging Registry

Implementation

OASIS UN/CEFACT

ebXML Specifications

Figure 2.18: ebXML specifications.

These specifications are compatible with the basic Web service standards
WSDL, SOAP, and UDDI and define the following standards for e-business
[eJC06]:

Messaging Service defines a communication-protocol neutral method to
exchange e-business messages over SOAP 1.1. It supports reliable mes-
saging and digital signatures.

Collaboration Protocol Profile and Agreements defines a bridge be-
tween technical capabilities and partner expectations for business col-
laborations. It contains technical capabilities of a business partner
and the capabilities and preferences of protocol aspects and properties
for specific roles in component services. It enables the monitoring of
sessions and verification of delivery channel features. The agreements
contain data to configure shared aspects of business collaboration pro-
tocols.

Business Process Specification Schema defines a standard language to
describe interoperable business processes. It allows to define transac-
tion patterns, partner roles, documents and it helps to compose and
monitor processes. The business process can also involve Web services.

Registry Service supports registering, locating, and accessing information
resources in a distributed environment.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 36

Core Components Technical Specification presents a methodology for
developing semantic building blocks to represent the general business
data types that are frequently used. This enables reusable and com-
monly understandable concepts and data models. It defines a fixed set
of data types and naming conventions for consistent business represen-
tation.

Implementation, Interoperability and Conformance define standards
to realize, e.g., test frameworks for automatic testing of standard com-
pliance.

ebXML registries can be regarded as Web services and can therefore be
registered in UDDIs; thus, they become available like any other Web service
[MMHM01]. Further, ebXML provides a framework to define core compo-
nents for e-business that can be re-used in any context, such as the naming
of data types in a WSDL document. Thus, the core components help to es-
tablish naming conventions and semantics for WSDL documents and UDDI
entries [OAS01b].

2.3 Operation Detection in Service-oriented

Software Development

Together with Web services, an architecture trend, the “Service-oriented Ar-
chitecture” (SOA) has emerged. Web services are commonly regarded as one
possible implementation vehicle for such an architecture style. Just as the
term Web service, the term SOA is not precisely defined. On the one hand,
not every application that is implemented using Web services deserves to be
described as a SOA. On the other hand, SOAs need not necessarily make
use of Web services for implementation. It is even disputable if it is justified
to speak of an architecture [Vos06]. For some authors, the term “Service-
oriented Integration” (SOI) seems to be more appropriate to describe the
changes that currently take place in the software landscape of larger enter-
prises [Ars05].

In this section, the needs of the software architect within a service-
oriented software development project are examined to derive requirements
for search support. The focus of this section is on the search support that is
needed during a service-oriented development project which includes a study
of the problem scope, a conceptual and logical analysis as well as a physical
design of the solution.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 37

2.3.1 SOA Overview

Generally speaking, a service-oriented architecture is an abstract concept in
which every functionality is described, published, and invoked as a service via
a network [WCL+05, DJMZ05]. The primary goal is to support loose coupling
of services to allow simple and flexible interaction between applications. This
is a long known idea in the design of hardware as well as information systems
and other system architectures [LD04].

The Enterprise Service Bus

The current approach for a SOA implementation are Web services. Their
standards have emerged in a bottom-up fashion as shown in Figure 2.19.
This representation provides a high-level view of the Web service protocol
stack. A new standard has been added for every new aspect that occurs when
implementing service-oriented applications. Yet, building a SOA bottom-
up is neither the recommended strategy suggested by information system
research [Vos06] nor the way software architects and application developers
want to proceed [Noe05].

D
is

co
ve

ry
(U

D
D

I,
 W

S-
In

sp
ec

ti
on

)

Transport
Transport

(TCP/IP, HTTP, SMTP)

Messaging
XML

(SOAP, WS-Addressing)
Non-XML

(JMS)

Description
Interface & Bindings

(WSDL)
Policy

(WS-Policy)

Quality
of Service

Components

Reliable Messaging
(WS-Reliable
Messaging)

Security
(WS -Security)

Composite
Atomic

Transactions
(WS-AT, WS-BA)

Composition
(WS-BPEL)

Coordination
(WS-Coordination)

Figure 2.19: SOA protocol stack according to [WCL+05].

Transport, messaging, security, transactional guarantees, and composi-
tion are cross-cutting concerns of every SOA implementation. Therefore,

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 38

these issues need to be dealt with only once. As already mentioned in Sec-
tion 2.2.3, an ESB may act as “service middleware” [WCL+05, PvdH05].

Vendors such as IBM or SAP already provide ESB implementations in
their SOA suites12, but also “home-grown” decentralized implementations
are reported [Bel06]. Although not every description of a service-oriented
architecture adopts the service bus as a component in which these proto-
cols reside, the service bus is prevailing in recent architecture discussions
[PvdH05, WCL+05]. The ESB itself can be regarded as a service-oriented
middleware layer.

Layered Software Architectures

To show how the service-oriented paradigm is logically related to layered IT
architectures, the schematic representation of the IT landscape in different
logical tiers as in [Bal00, ACKM04] is used. The representation chosen here
is generic and distinguishes the operational, the application, the business
process, and the presentation layer.

Turning such a system into a service-oriented architecture can be achieved
by equipping functions with a service interface and publishing them as ser-
vices as shown in Figure 2.20. This is not restricted to a certain layer of
the different IT systems, but can be used across all layers [WCL+05]. For
example, amazon.com13 offers hard disk storage accessible as a web service,
called “Amazon S3”. [Wes05] suggests to use visualization web services to
display e-learning content. These examples show that Web services can be
exposed at any layer.

Services on the data layer may be simple interfaces to an SQL database.
On the application layer, a service may execute a complex computation such
as the calculation of the present value of a cashflow, calling other services
for input data or auxiliary functionality. On the process layer, services may
be more complex than services on the data layer or on the application layer
because they provide a higher level of abstraction of the business logic and
may be composed of many different services disguised as sub-processes.

The IBM SOA foundation reference architecture also includes further
aspects, that “envelope” a SOA: integration layer, quality of service layer,
data architecture and business intelligence layer, and governance layer. This
is depicted in Figure 2.21.

12IBM WebSphere Enterprise Service Bus:
http://www-306.ibm.com/software/integration/wsesb/
SAP NetWeaver:
http://www.sap.com/platform/netweaver/index.epx

13www.amazon.com

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 39

Presentation Layer

Operational Layer

Business Process Layer

GUI

Web Browser

Process
Choreography

Data Base

File System

ESB

Internet

Intranet

(Service Interface)

Portal

Application Layer

Enterprise
Components

Discovery

Negotiation

T
ransport

M
essaging

D
escription

Security
T

ransactions
R

eliability

C
oordination

C
horeography

Figure 2.20: Logical tiers of IT architectures with ESB.

Operational
Systems

Service
Components

Services
(atomic,
composite)

Business Process
(Composition,
Choreography)

Consumer

OO App Custom App.

Channel B2BS
ervice C

onsum
er

Service Provider

Integration (E
SB

)

Q
oS

 L
ayer (S

ecurity, M
anagem

ent,
M

onitoring Infrastructure Services)

(M
eta-)D

ata A
rchitecture &

 B
usiness

Intelligence

G
overnance

Figure 2.21: SOA foundation reference architecture according to [GAA+06].

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 40

From this, the following types of Web services within a SOA are derived:

Infrastructure Services provide intermediary, low-level, mostly atomic,
data-centric services such as access to remote hard disc storage, queuing
or service wrappers to legacy applications that do not posses generic
Web service interfaces.

Information Services offer access to specific information sources and their
inherent functionality such as databases or data warehouses with their
analytical and statistical functions. Further, information services offer
access to performance data including closely data-related analytical
functions.

Transformation Services occur as simple conversion services, e.g., cur-
rency or time conversion, as adapters that translate between different
data formats or as encryption and decryption services. They do not
produce new information but simply transform information carrying
data. Numerous conversion services can be found on the Internet14 .

Business Function Services offer access to functionality that is specific
for an application domain. These are usually more complex applica-
tions [Vos06, Ars04], e.g., a credit pricing tool.

Business Process Services are responsible for the coordinated and con-
trolled execution of partial or complete business processes that are com-
posed of business function services, transformation services, informa-
tion, and infrastructure services [Vos06, Ars04], e.g., the execution of
a loan application.

Visualizing Services can be used to display the results returned by an in-
formation service, a transformation service, a business function service,
or a business process service to a human user. They are the only pure
software-to-human services. Although they are not mentioned very of-
ten [Ars04], they are likely to gain more attention in the near future,
especially in the e-learning context [Wes05].

State of SOA Adoption in Industry

The examples in the introduction (Toyota Australia, Hewlett Packard, Wa-
chovia Bank, Qwest) show that companies from different industry branches
adopt the idea of service orientation for their IT infrastructure. The road

14Currency conversion, e.g., http://finance.yahoo.com/currency?u and time conversion,
e.g., http://www.timezoneconverter.com/.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 41

towards a service-oriented architecture has been analyzed in different ref-
erence projects by Microsoft and IBM. The following presentation of the
current state of the art in SOA implementation is therefore a synopsis of
[Mic03b] and [AH05] with additional findings of the Aberdeen benchmark
report [Kas06].

The introduction of a SOA often proceeds evolutionary in three stages:

Simple Web Services: In this stage, the company creates services from
functionality that is available in legacy as well as newly built appli-
cations. Mostly small to midsize companies implement light-weight
mission uncritical services. The company offers these services inter-
nally as well as externally, not necessarily using a UDDI, but simply
relying on WS-Inspection or even on direct publication on the Intra- or
Internet. In this stage, Web services are hardly more than a web-based
remote procedure call.

Composite Services: In this stage, services are integrated across appli-
cations inside as well as outside the enterprise to achieve a business
objective. The services are aligned with business goals. The primary
focus is to abandon cumbersome point-to-point integration using the
experiences made in the first stage. An ESB is used for mediation,
routing, and transformations of service invocations.

Virtual Infrastructure: In this stage, the IT infrastructure of an enter-
prise is re-designed. A company-wide service-oriented architecture strat-
egy is in place. The experience with services matures and services are
managed throughout the complete software life-cycle.

In mid 2006, 64% of all participants of the Aberdeen benchmark report
[Kas06] had ESB software already deployed in their service-oriented architec-
ture. Still 46% used a meta-data repository or a service registry respectively.
More than 90% of all questioned companies intended to reach an active level
of service programming at the end of 2006. The participants came from the
industry sectors manufacturing, consumer goods, services, and the public
sector.

2.3.2 Software Engineering Principles for SOA

The development of a SOA follows general modeling principles such as ab-
straction, encapsulation, modularization, and separation of concerns [LP72].
Different design and development strategies can be chosen. To analyze Web
service detection support during the different stages of a service-oriented

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 42

software development project, an iterative, meet-in-the-middle strategy with
four stages of the development cycle is chosen. This is summarized next to
serve as a framework for the enclosed case study.

Iterative Development Models

The development of a SOA from individual service to a virtual infrastructure
is a project that starts with an existing infrastructure and legacy systems in
place. Following modern development models, it is recommended to produce
intermediate results in development cycles working iteratively [Bal00]. Two
models, the evolutionary and the incremental model, have been found in the
literature [Mar06, GAA+06] as recommendations for SOA development.

The incremental model starts with a thorough analysis and tries to cap-
ture all requirements as completely as possible at the beginning of the devel-
opment project. When all requirements are documented, the importance of
each aspect is weighed by the end user. Based on this assessment, a project
plan is drawn up that determines the sequence in which the different re-
quirements are designed in detail and implemented. The Wachovia Bank has
implemented a SOA using an incremental model [Mar06].

The evolutionary model is recommended by IBM [GAA+06]. In the evo-
lutionary model the development proceeds step by step starting with a basic
version of the system without having a complete picture of all requirements.
The first version is revised and new features are added. This is repeated as
long as the system is complete.

Both models (see Figure 2.22) aim at producing early results, encourag-
ing end-user feed back, and reducing development risk because of short and
focused development cycles. The evolutionary model has the drawback that
the final picture is not known in the beginning and, thus, risking to tear
down parts of earlier versions when requirements change. This is avoided in
the early requirement analysis of the incremental model.

Top-Down Versus Bottom-Up Strategy

The starting point of a SOA development project is either the identification of
functionality that qualifies as a service or the analysis of the existing software
systems and their service capabilities. These two approaches correspond to
the well-known software development approaches of top-down and bottom-up
system design. A combination of both strategies is known as fan-out or meet-
in-the-middle approach. The development cycles in the evolutionary or the
incremental model can follow either strategy. Therefore, the three strategy
variations are examined independently of the chosen development model,

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 43

Define
Version X

Design
Version X

Implement
Version X

Partial
Requirements

Partial
Architecture

Product
Version X

Change

Change

X=0

X=X+1

Define
Product

Complete
Requirements

Design
Version X

Implement
Version X

Partial
Architecture

Product
Version X

Change

Define
Changes

Modify
Requirements

Change
X ==0

Change
X>0

X=0

Evolutionary Model Incremental Model

Figure 2.22: Iterative development models according to [Bal00].

looking at a simple service-oriented development scenario, the creation of a
new service.

The way to identify a service and to create it is multifaceted. The top-
down strategy starts with a model of the business process or the use case that
is to be supported. The process is refined step by step into sub-processes and
sub-use cases until individual services can be identified. This is repeated until
the complete process is modeled as a service choreography. The bottom-up
strategy first analyzes the existing systems and the implemented processes
that run on these systems. Functionality that qualifies as a service and seems
appropriate to contribute to the final software solution is identified. Later,
the identified services are integrated into the solution architecture.

In the top-down approach, identified services need to be compared to
existing services to find out if existing services can be reused. If this is
not the case, existing components must be analyzed to check if the desired
functionality is already available in existing systems. Then, this functionality
can be exposed as a new service. If the desired functionality does not exist at
all, a new service must be created. The top-down approach must be combined
with a system analysis to avoid redundant programming of services.

In the bottom-up approach, identified components that qualify as services

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 44

need to be compared to existing business tasks that need IT support. A
mapping between service capabilities and business needs must be conducted
to identify gaps. The bottom-up approach must be complemented with a use
case analysis to evaluate the need for the service and to achieve integrated
service choreographies.

Therefore, starting top-down or bottom-up results in both cases in a meet-
in-the-middle design to map services and business needs for IT alignment.
This always includes the search for already existing services.

Service-oriented Modeling and Design

So far, it has been established that service orientation supports general soft-
ware engineering principles, that iterative development models are preferred
for service-oriented development, and that the identification of services within
such a development model can be pursued in the top-down or bottom-up way.
The next step is to introduce a development methodology for service-oriented
software engineering that takes the special characteristics of Web services into
account. A service has a consumer, a provider and the consumer must be
able to find the service. This linkage of perspectives must be reflected in
service-oriented modeling and design.

A well established development methodology [Bal00] for top-down devel-
opment undergoes the following steps:

Requirement Analysis identifies use cases and relevant user groups of the
application. Information and processing requirements are collected.
The result of the requirement analysis is a requirement specification
for the application.

Conceptual Design produces a conceptual model of the application that
is independent of logical or physical implementation considerations. It
shows the concepts that the application consists of. The result is a
conceptual model.

Logical Design transforms the conceptual design into a logical model that
reflects the chosen model for implementation.

Physical Design defines the internal representation of the application and
the system parameters that are to be observed. Owing to performance
considerations, the physical design may differ from the logical design.

This development methodology is especially appealing as it makes a clear
distinction between conceptual, logical and physical design. At the same

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 45

time, the user is not forced to use a specific modeling language or a pre-
determined physical implementation. For example, this generic design ap-
proach is used for object-oriented applications [Oes01] as well as for relational
databases [Vos00].

The design process from consumer and provider perspective is summa-
rized in Figure 2.23. The service consumer defines the application scope in
the requirement analysis. This serves as starting point for the identification
of desired services on the consumer side and for the identification of realizing
components on the provider side during the conceptual design. In the logical
design step services are categorized by the service consumer and components
are specified by the service provider. Both of them need to agree upon the
mapping between services and components and the overall layering of the
service-oriented application. Here, especially the reuse of existing services
must be examined. A mapping between service specifications and existing
service implementations must take place. In the physical design step the
service consumer decides which services of the new application are to be ex-
posed for future use. The service provider designs the layering and models
new components physically. Implementation standards need to be adhered
to by both sides.

Implementation
Physical
Design

Logical
Design

Conceptual
Design

Requirement
Analysis

Service
Provider

Define
Application

Scope

Identify
Services

Categorize
Services

Decide
Service

Exposure

Identify
Components

Specify
Components

Model
Components

Service
Consumer

Service Allocation SOA Layering

Realize
Service

Figure 2.23: Activities of service-oriented design.

In the following, the scenario from Section 2.1 is resumed to show the
stages of service-oriented software development by example. The complete
use case is documented in Appendix A.2.

2.3.3 Requirement Analysis

The requirement analysis has to identify business goals that drive the cre-
ation of a new application, the stakeholders that have an interest in the

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 46

new application, and the business domains that they represent. This can be
derived from interviews and an analysis of the business use cases that the
application is to support. The requirement analysis is conducted from the
point of view of the end user.

The following business goals are identified for the loan application as
shown in Table 2.2.

Table 2.2: Loan application goals.
No. Description Type

1 Increase revenue general
2 Increase number of consumer loans general
3 Provide self-service loan application capability functional
3.1 Provide user-friendly application experience functional
3.2 Provide customer-specific loan offers functional
4 Monitor usage of Internet application functional

In general, the online application process is to increase revenue by increas-
ing the number of consumer loans, which are granted online. Functionally,
the application must provide a portal for self-service loan applications. This
is to be designed in a user-friendly fashion and must be able to offer customer-
specific loans, e.g., by taking the customer scoring into account. Finally, the
marketing department wishes to monitor the application. The first two busi-
ness goals are general. The other goals are application specific functional
goals that are likely to have an influence on the application realization and
the services needed.

In a second step, candidate use cases are identified that are to be sup-
ported by the new application. The following use cases have been identified
as described in Table 2.3.

In a third step, the business domains are identified that are involved in
the use-cases and in achieving the business goals as shown in Figure 2.24.

Domain:
Marketing

Domain:
Retail

Domain:
Controlling

UC1UC3 UC2

Figure 2.24: Loan application business domains.

Consumer loans belong to the group of retail banking products. There-
fore, the customer front end belongs to the retail domain. Monitoring the

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 47

Table 2.3: Loan application use cases.
No. Description Actors

UC1 The customer applies for a loan on the Internet, Customer,
fills out the forms and gets a contract by post. Application,
This is sent back to the bank and checked by a Sales
sales consultant. Consultant

UC2 A controller regularly updates the loan conditions Controller,
used by the application according to the changes Application
in interest rates.

UC3 A marketing specialist monitors the application. Marketing
Specialist,
Application

usage of the application is a technical facility for marketing purposes. The
information needed to offer a customer specific loan is provided by the con-
trolling department. They monitor the interest rates and prices at the inter-
national banking markets and regularly compute new conditions for consumer
loans that have to be used by the loan application.

In this stage, the analysis is conducted without taking existing services
into account. Search support for services is not needed in the early require-
ment evaluation.

2.3.4 Conceptual Design

In the conceptual design step, the use cases of the requirement analysis are
refined. From this model, the service provider identifies system components,
models the internal behavior of each component and also the flow between
components. On the service consumer side, the results of the analysis are
used to identify candidate services, the communication between them and
other system components (e.g., a GUI), and to map candidate services to
candidate components.

For a more detailed analysis, the business activities are modeled that are
executed in each use case. The activities of the loan application use case
are modeled in the activity diagram shown in Figure 2.25. If an activity
is executed successfully, the next activity is executed. If an error occurs,
an error report is created. For a better readability the error activities are
depicted at the bottom of the diagram. All arrows that do not point to
any activity represent error cases and are logically connected with the error
diagram.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 48

1. Get Loan
Request Data

6. Get Scoring
Data

10. Return
Scoring Result

11. Get
Contact Data

2. Log Loan
Request

3. Calculate
Sample

Conditions

4. Log Sample
Conditions

5. Return
Sample

Conditions

7. Log Scoring
Data

8. Calculate
Customer
Scoring

9. Log
Customer
Scoring

12. Log
Contact Data

13. Calculate
Exact

Conditions

14. Draw Up
Contract

15. Send
Contract

18. Return
Error Report

16. Create
Error Report

17. Log Error
Report

Figure 2.25: Activity diagram for loan application use case (UC1).

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 49

In the first step of the application process, the customers state details
about the loan they need, the net value of the loan, and the duration. De-
pending on this information, the monthly installment and interest rate are
calculated, while it is assumed that the customers have the best credit scor-
ing possible. Next, the customers have to give details about their private and
professional life to assess their credit worthiness using a standardized scoring
method. Finally, the customers enter their address data and ask for a loan
application form that is then computed for the individual customer taking
the exact customer scoring into account. The application form is sent by
traditional mail. All interactions between the customer and the online credit
application are monitored. This is represented by the logging activities.

In the diagram, at least three components can be identified, a logging
component, a component for loan condition calculation, and a component
for customer scoring calculation. The creation and mailing of the contract
can either be assigned to a mailing component or can be executed by a human
being.

The components reflect the service provider view and the logical grouping
of functionality from the perspective of an application designer. The services
show the external perception of the system by the client, e.g., the loan con-
dition component as designed contains at least two services, the condition
look-up service for sample conditions and the condition calculation service
for an exact calculation of loan conditions.

Table 2.4: Conceptual components and services.
Component Service
(Service Provider View) (Service Consumer View)

Loan Condition Component Condition Calculation Service
Condition Look-up Service

Scoring Component Score Calculation Service
Contract Component Contract Creation Service

Mail Service
Logging Component Logging Service

Log Evaluation Service

2.3.5 Logical Design

In the logical design step the following questions must be answered for every
identified service of the conceptual design step:

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 50

• On which layer of the SOA architecture does the service logically reside?
Is it a functional or a non-functional service? Is it an atomic service or
a composite service? Does it govern a business process?

• Is there an already existing service that can be reused for service re-
alization? How can the desired service be mapped to existing service
functionality (top-down)?

• If the service does not exist yet: is there an existing component that
can be exposed as service (bottom-up)? Does the service have to be
implemented from scratch?

For the subsequent analysis, these questions are structured in a service
profile for each identified service as shown in Table 2.5.

Table 2.5: Service profile.
Aspect Description

Functionality Which business aspects, processes or functions does the
service operation support?

Information What data is sent to the service? Where from?
What data is sent by the service? Where to?

Accessibility Which business process uses the service?
Which GUI element uses the service?
Which applications access the service?

Process What is the relationship between the events that the
service reacts to and the actions that the service takes?

Interaction How does the calling application interact with the
service? How does the service interact with other
services or applications?

To derive service profiles for the first use case, a detailed process diagram
is drawn that shows the interaction between the customer at the end user
GUI and the application for the first subprocess in the application process,
the calculation of sample conditions. The interaction between GUI and Loan
Condition Component is shown in Figure 2.26. For a better overview, the
monitoring activities are omitted from this diagram.

To get a sample calculation, the customers must enter the net value and
the duration of the loan. The net value may range from 1,000 to 60,000 Euros,
the duration must be either 12, 24, 36, 48, or 60 months. If the customers
enter invalid loan data, they receive an error message and can either abort
or try again. If the loan data is valid, the monthly installment and interest

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 51

Key in
Loan Request Data

Loan
Data

Error
Message

Checked
Loan Data

Display Message
Sample Conditions

HTTP

Condition
Table

Select from
Condition Table

Calculate Loan
Conditions

Create Error
Message

Create Success
Message

Sample
Conditions

Check Input

Proceed

Success
Message

read

Checked
Loan Data

Create Error
Message

Display Error
Message

Abort

Error Message
read

Error
Message

HTTP

Success
Message

Success
Message

Check
Output

Output
Checked

(UC1 Activity: 1. Get Loan Request Data)
(UC 1 Activity: 3. Calculate Sample Conditions)

(UC 1 Activity: 5. Return Sample
Conditions)

HTTP

User GUI Online Application

Figure 2.26: Calculation of sample conditions.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 52

rate are looked up in a database table that contains all relevant combinations
of net value, duration, and customer scoring. This data retrieval operation
assumes an optimal customer scoring by default. If the information is not
available in the database, it needs to be computed. If the installment is less
than 25 Euros, an error message is created. Otherwise, a success message is
sent, and the users are informed about the monthly installment and interest
rate. Here, users may abort or proceed.

The complete logical model is documented in the appendix. From the
analysis of the subprocesses, the following service profiles are derived that
are to be used within the Internet loan application:

Condition Look-up Service

• Functionality: This service calculates the sample and the exact condi-
tion for the consumer loan, either by look-up or on the fly. It can be
regarded as a business function service.

• Information:

– Operation name: get_Sample_Condition

– Input: net value, duration

– Output: net value, duration, interest rate, installment

– Operation name: get_Exact_Condition

– Input: net value, duration, scoring

– Output: net value, duration, scoring, interest rate, installment

• Accessibility: The operations are called during the loan application
process by the customer for the sample calculation and for the exact
calculation. Both calls are executed via the Internet front end GUI.

• Process: On reception of the input data for the operation get_Sample_

Condition, the sample conditions are fetched from a condition ta-
ble in a data base. On reception of the input data for the operation
get_Exact_Condition, the exact conditions are calculated by a financial
calculation kernel.

• Interaction: The returned data is displayed on the Internet front end
GUI.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 53

Score Calculation Service

• Functionality: This service calculates the private customer scoring
based on information about private and professional circumstances. It
is a business function service.

• Information:

– Operation name: calculate_Customer_Scoring

– Input: Date of birth, marital status, number of children, profes-
sion, income

– Output: Date of birth, marital status, number of children, profes-
sion, income per month, scoring

• Process: On reception of the input data for the operation calculate_

Customer_Scoring, the customer score is calculated by a rating appli-
cation.

• Accessibility: It is called in the loan application process by the customer
to prepare the exact calculation via the Internet front end GUI.

• Interaction: The returned data is displayed on the Internet front end
GUI.

The service profiles resulting from the logical design step have to be
matched with existing services that are already implemented to avoid redun-
dant implementation. UDDI, the technical standard for service publication
and search, has several draw-backs trying to search with the information
documented in the design-time service profile.

For example, the service provider is not defined in the logical design step.
From an internal perspective, a provider is hard to define. [Mic03b] suggest
to define the development team that builds the service as its provider. This
is only a temporary solution, because at the end of a project, the team is dis-
solved. The IT department that maintains the service is not a discriminating
aspect either because they are responsible for all services. These examples
show that the search category “provider”, which is one of the main search
criteria of the UDDI standard, is not applicable in the internal development
context.

Furthermore, the operations get_Sample_Conditions and get_Exact_

Conditions belong together, from a logical point of view, and are logically
grouped into one service. However, if there are two implemented operations
that fulfill the specification, but are not offered by the same Web service,

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 54

they are accepted as well. Therefore, the level of a Web service is not an
appropriate level for the search. The smallest unit to search for is the oper-
ation with its input and output parameters. This level is not available in a
UDDI registry. A solution to fill this gap is presented in Section 2.4.

The result of the logical design step is a mapping from needed services to
existing services and components and from needed services to functionality
newly to be implemented. If the functionality does not exist as a service yet,
it must be assigned to components that will later realize the operation in the
implementation. Finally, for every identified functionality it must be decided
if it is published as a new service for future reuse through other applications.

2.3.6 Physical Design

In the physical design step, it is decided if the software that realizes a new
service will be reused from existing components or services, bought, custom
built, or maybe even outsourced. Furthermore, technical standards for ser-
vice realization are decided. If a SOA strategy is implemented, the designers
often do not have a technical choice, but have to use pre-defined standards,
such as WSDL and SOAP.

Finally, an architecture overview document of the application summarizes
the resulting design from all four design phases. Such a document reflects how
the new application fits into the existing or aspired overall SOA architecture,
as depicted in Figure 2.21. It consists of the following aspects as listed in
Table 2.6.

In the physical design process, the components and services that do not
exist yet, but have to be created are modeled physically to prepare imple-
mentation. The existing services and components are integrated into the
physical design.

Also at this stage, additional non-functional services are added that are
not needed for the business logic, but must be provided by the SOA infras-
tructure. For example, in the case of the loan application the data between
the customer and the application ought to be sent via a secure channel,
e.g., using HTTPS via SSL. This is an example of a non-functional service
provided by the SOA infrastructure.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 55

Table 2.6: SOA overview document.
Layer Description

Scope Which line of business is supported by this architecture?
Operational Packaged applications used by this architecture?
systems Custom applications used by this architecture?

Exposure and componentization decisions?
Enterprise Which business domain is supported by the component?
components Which process is supported by the component?

Mapping of component to service?
Services Which services are newly created and exposed?

Which existing services are reused?
Atomic or composite service realization?

Business Which business processes are represented as service
process choreographies? Which business process is wired into

an existing application component?
How do services collaborate?

Presentation Which GUI component uses which service?
Integration Service level agreements? Quality of service assurance?

Security and authentication? Performance restrictions?
Technology standards to be used? Monitoring tasks?

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 56

2.4 Operation Repository for Service-oriented

Software Development

In service-oriented application development finding already implemented
functionality is the central concern. The smallest unit of functionality that a
Web service has to offer is an individual operation. Section 2.3.5 has revealed
that this is the appropriate level of granularity for searching in a development
project. Looking at the UDDI standard that has been introduced to publish
services and to find them, it is obvious that UDDI does not provide any
information about Web service operations as the examples in Section 2.3.5
have shown. At most, it contains a link to a site where operation descriptions
are documented. For internal service-oriented development, a UDDI is not
the first choice.

An additional component, a Web service operation registry is introduced
in this section. The registry contains the information that WSDL files offer.
It is designed to answer queries at the level of operations, input and output
attributes.

In Section 2.4.1, the data that is technically available in WSDL documents
and UDDI entries once a Web service has been created and published is
examined and categorized.

In Section 2.4.2, a Web service operation repository will be introduced
that fills the gap between the information available in a UDDI and the search
capabilities needed in service-oriented application development.

2.4.1 Information Classification

The XML standards WSDL and UDDI represent descriptions of Web service
interfaces and Web service registries. They are primarily intended to achieve
a technological standard among all software application developers that want
to use these technologies. Further, they convey information about each Web
service that is implemented with these standards. For the purpose of this
thesis, the information elements contained in UDDI and WSDL for Web
service description are categorized in three groups:

Functionality-independent information is not related to the service op-
erations, but exists independently, e.g., the information about the con-
tact data of the service provider in a UDDI is functionality-independent
information. Such information helps to administrate and identify ser-
vices, but does not convey any particular information about the service
functionality.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 57

Functionality-related information is generated automatically when the
service is created, e.g., the operation name, the input and output pa-
rameter of an operation, and their data types. This information can
be used to identify a service through its operations.

Functionality-describing information contains knowledge about the se-
mantics of the service functionality or the elements that contribute to
the service functionality such as the individual service operations. This
kind of information explains what the service does. It is usually not
generated automatically, but must be added manually, e.g., via the
documentation tag in the WSDL file.

All three kinds of information are available in UDDI entries and WSDL
documents and can therefore be used for service search. To draw a better
picture of the complete information that is available for service search, the
most important elements of UDDI and WSDL documents are summarized in
Tables 2.7 and 2.8.

WSDL documents contain mainly functionality-related information be-
cause they describe the service interface. Development environments allow
to create such documents automatically, e.g., from a Java class. Therefore,
they contain mostly technical information specifying how to interact with the
Web service as summarized in Table 2.7. The first half of the table shows
functionality-related and functionality-describing information about a service
and its operations as contained in WSDL files. The second half of the table
shows structural functionality related information such as the relationship
between simple and complex types.

The first kind of information contained in a WSDL 1.1 document is
functionality-related naming information. The names of simple and com-
plex data types and the names of the elements of which they consist provide
functionality-related information about the type system used by the service.
Message names specify which messages a service sends and receives. Opera-
tion names reveal which operations a service offers; and the port type name
is the name of the service.

For a better understanding, all these names can be annotated with a doc-
umentation tag that contains further functionality-describing information. If
the programmer does not manually document the elements and explicitly
fills the documentation tags, the documentation tags are not generated or
remain empty.

Functionality-related structural information is also contained in the WSDL
1.1 document. Complex types consist of simple types; messages consist of
types; operations accept an input message, return output messages, and have
a fault message. Port types are a grouping of operations.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 58

Table 2.7: WSDL 1.1 information classification.
Functionality- Functionality-
related Information describing Information

complex type name (complex type) documentation
simple type name (simple type) documentation
element name (element) documentation
message name (message) documentation
operation name (operation) documentation
port type name (port type) documentation

Functionality- Functionality-
related Relationship describing Relationship
complex type - simple types

message - type
operation - input message
operation - output message
operation - fault message
port type - operation

UDDI provides mostly functionality-independent information. The UDDI
is used for service publication and search but can also be replaced by a
different detection mechanism, e.g., WS-Inspection documents. UDDI entries
need not be created for a service and furthermore, they are not automatically
generated when a service is created. The information classification for UDDI
entries is summarized in Table 2.8. Again, the first half shows the information
elements, the second half the information about relationships contained in
UDDI entries.

Table 2.8 contains only the non-technical data elements. Keys, URLs and
also all binding template information is omitted because the focus of this
analysis is on functional information as available in the logical design phase
of service-oriented development rather than on technical information. The
information of tModels is also omitted as they serve as “universal” informa-
tion provider for businessEntities, businessServices and bindingTemplates. A
tModel can be anything from a human-readable design document to a WSDL
file.

UDDI and WSDL documents do not necessarily contain any functionality
describing meta information if it is not added by the developer in free-text
documentation tags or category bags. Without additional information as
provided, e.g., by tModels the documentation tags, identifier and category
bags are of little use because they lack semantic context information and can

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 59

Table 2.8: UDDI 3.0.2 information classification.
Functionality- Functionality- Functionality-
independent related describing
Information Information Information

businessEntity businessService businessService
name name description
businessEntity businessService
description categories
businessEntity
contacts
businessEntity
identifiers
businessEntity
categories

Functionality- Functionality- Functionality-
independent related describing
Relationship Relationship Relationship

businessEntity -
businessServices

only be used for key word search and inspection by a human reader.

2.4.2 Derivation of a Web Service Operation Reposi-
tory

The preceding analysis has revealed that a UDDI does not contain func-
tionality-related and functionality-describing information that is needed to
search for Web service operations during a service-oriented software devel-
opment project. The better choice are WSDL files, but they are technical
specifications and contain information structured to execute service calls.
They are not structured to support operation search.

For example, to find out which input data an operation expects, its input
message type needs to be determined. The message type itself contains all
necessary input attributes. The data types of these attributes are defined
separately. This decoupling of type information from message format and
operation is intended to support modular reuse of data types, message types,
and operations, but it is not suitable to support operations search based on
the operation itself, its input and output attributes.

Therefore, a new component for a service-oriented architecture is intro-

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 60

duced, a Web service operation repository that contains all information di-
rectly related to Web service operations. The following pieces of information
are needed:

• the Web service name,

• the operation name,

• the parameter names,

• the distinction between input and output parameters,

• the parameter data types.

Further, the logical relationship between these elements is needed:

• the grouping of operations into Web services,

• the grouping of parameters as input of a Web service,

• the grouping of parameters as output of a Web service.

This information is stored in a table structure as depicted in Figure 2.27.
The figure uses an ER-diagram as notation. This representation with

all its abbreviations (PK, FK) is explained in more detail in Section 3.2.1.
Each component, Web service, operation, and data type has a name, which
is assumed to be unique. In practice, this uniqueness assumption is realized
using identifiers, e.g., unique URLs. The relationship between Web services
and operations is represented in a separate relation that consists of the Web
service name and the operation name only. The relationship between param-
eters and operations is represented with additional information. A parameter
has a type that is either “in” or “out”, a name, and a data type.

The central operation is to search for Web service operations based on
their name and their input and output parameters. Search operations will
occur more often than insertions, updates or deletions. Therefore, the above-
mentioned data model is denormalized to provide an integrated view on the
components of a Web service operation as shown in Figure 2.28. Artificial
IDs have been omitted in this representation. In the following examples, the
names are assumed to be unique. Table 2.1 in Section 2.1.1 is an example of
this registry structure. In this table, repeating values have been omitted.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 61

Web Service

PK Web Service Name

Operation

PK Operation Name

Data Type

PK Data Type Name

 Data Type Domain
 Data Type Range

WS has OP

PK,FK2 Web Service Name
PK,FK1 Operation Name

OP has Attr

PK,FK2 Operation Name
PK Attribute Name
PK,FK1 Data Type Name
PK Attribute Type

Figure 2.27: Normalized Web service registry.

Web Service Registry

PK Web Service Name
PK Operation Name
PK Attribute Name
PK Attribute Type

 Data Type Domain
 Data Type Range

Figure 2.28: Denormalized Web service registry.

CHAPTER 2. WEB SERVICE OPERATION REPOSITORIES 62

2.5 Summary

In this chapter, the process of service-oriented design has been analyzed to
find out which search support for Web services is needed in an intra-enterprise
development project. The example that has been chosen, is a real life example
from the financial industry. It has been modeled and presented, following a
generic four step development approach of requirement analysis, conceptual,
logical, and physical design.

The analysis has identified the logical design step as the development
step that needs crucial Web service detection support to avoid redundant
development of functionality. In this design stage, the search is conducted in
an Intranet setting; it is executed manually or semi-automatically to support
static or semi-dynamic binding of services into the final application. The
search takes place at the level of operations.

The technical standard for Web service detection is UDDI. A UDDI con-
tains mostly functionality-independent information. An analysis of the dif-
ferent usage scenarios for this standard has revealed that it is technically
possible to use a UDDI in an Intranet setting, but that the standard is first
of all designed to support global B2B Web service detection, based on the
provider and its line of business. This is not appropriate for internal service-
oriented software design.

Therefore, the interface description of a service as represented by a WSDL
document needs also to be taken into account for service detection. This in-
terface description is the only document that will always be generated if Web
services are used. It provides functionality related information. Functionality-
describing information that contains application semantics must be attached
either to the UDDI entry or to the WSDL document using additional descrip-
tive tags. This information is either human-readable or needs an additional
semantic context to be used in service detection.

As an additional component, a relational Web service repository has been
introduced that gathers the information as offered in a WSDL document. The
repository offers access to information about Web service operations that is
adapted to the search perspective, not the implementation perspective. The
relevant information for operation search as available in WSDL documents
is stored and presented to fit the logical design step.

In the following chapters, different approaches to search within this reg-
istry will be introduced and analyzed. The first approach is primarily syn-
tactic, based on the operation signature. The second approach enhances the
first with additional semantic information.

Chapter 3

Syntactic Matching of Web
Service Operations

In this chapter, a syntactic match approach based on information in the
Web service operation repository is examined. The approach makes use of
schema matching approaches that stem from schema matching of relational
databases. The example from the financial industry is resumed to illustrate
the approach.

Schema matching for relational databases operates on structural, exter-
nally specified information. This perspective will be adopted for Web ser-
vices. To do this, a Web service specification is needed that captures the
information that is available from the outside, i.e., when looking for a Web
service as a consumer who wants to integrate the service into an application
under his control. This is the perspective that the relational Web service
repository offers in a compact form.

In Section 3.1, the example from financial industry is resumed. The re-
lational Web service repository as introduced in Section 2.4 is refined and
formally defined. Based on the introductory scenario the key research ques-
tions for this chapter are derived.

In Section 3.2, foundations of relational schema matching are introduced.
They are needed in the following sections as framework and underlying basis.
Different algorithms are presented that will serve as examples in the following
sections.

In Section 3.3, a three-step approach to match relational Web service
schemata is presented that makes use of the algorithms as presented in the
section before. The approach offers a syntactic solution to operation and
attribute matching.

In Section 3.4 the match results of the section before are analyzed. The
notion of a useful match is introduced and the match is operationalized. The

63

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 64

result is used to define a match hierarchy.
In Section 3.5, the results of this chapter are summarized while answering

the second group of research questions of Section 1.2.

3.1 Motivation for Syntactic Matching

In the following sections, syntactic Web service matching is motivated by
example. Section 3.1.1 resumes the running example from the financial in-
dustry. Different syntactic search queries will be presented. Section 3.1.2
refines the definition of a relational Web service operation repository over
which the search queries will be evaluated. Section 3.1.3 outlines the guiding
research questions for this chapter.

3.1.1 Scenario Overview

Consider, for example, the Web service that returns the loan conditions for
a loan of a given amount and a given duration for a customer with a given
score as introduced in Section 2.1.1. Calling the operation get_condition for
a loan of 2,000 Euros for 12 months and a customer with a score of 2 results
in sending a tuple (2, 000, 12, 2) to the Web service operation and receiving
an output tuple, e.g., (0.05, 175), 5% interest and 175 Euros installment, as
result.

In this example, a Web service is regarded as a collection of operations
each one with its own dedicated input and output specification as depicted
in Figure 3.1. The input and output messages are represented as rows in
a table. Incoming Web service calls are shown as a row in the input table.
The result consists of a row in the output table. The technically necessary
connection between input and output messages is omitted.

Web Service

get_condition

In: Out:

Amount Duration Score
2,000 12 2

Interest Installment

Operation:

0.05 175

Figure 3.1: Web service specification model.

Matching a Web service schema at the depicted syntactic level results in
computing three matches between the designed and the implemented Web

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 65

service operation: one match on the level of operation names, one match
for the input attributes of an operation, and one match for the output at-
tributes as presented in Figure 3.2. As the input message is defined for the
designed Web service operation, the match is computed from the designed
to the implemented input relation. The output message is defined by the
implemented Web service schema. Therefore, the match is computed from
the implemented result to the intended design. Depending on the match
direction the relation that is mapped is called source and the relation that it
is mapped to is called target. To pursue the match approach as sketched in
this section, a formal model of a Web service operation is needed that serves
as foundation for a matching algorithm. The model is presented in the next
Section. Examples of algorithms that are suitable for match computation
are presented and analyzed in Sections 3.3 and 3.4.

Input
Relation

Input
Relation

Operation
Name

Operation
Name

Output
Relation

Output
Relation

Target

Source

Source

Target

Match Match

Web Service Schema
from Implementation

Web Service Schema
from Design Process

Match

Figure 3.2: Three-step syntactic match.

3.1.2 Relational Web Service Model

A relational Web service consists of operations that are described by their
names as well as their input and output attributes. As the sets of input and
output attributes will be regarded as input and output relations, the model

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 66

presented here is called a relational Web service model.

Relational Web Service Definition

To be able to search for a Web service, a Web service description is needed
that is independent of its technical implementation and that provides enough
information to decide if it matches the operation searched for. In correspon-
dence with other approaches that model Web services as, e.g., relational
transducers [AVFY00] or data-driven Web services [DSV04] (see Chapter 5),
a logical model based on relational algebra is introduced here to describe a
logical Web service schema that is used for match computation later.

Let S be an enumerable set of Web service names, O be an enumerable
set of operation schema names, and A an enumerable set of attribute names.
Let S, O, and A be disjoint.

Definition 3.1. A Web service schema is a tuple WS = (sname,O) con-
sisting of a schema name sname ∈ S and a finite set O ⊆ O of operation
schema names.

An operation schema is a tuple OS = (opname, A) consisting of an
operation name opname ∈ O and a finite set A ⊆ A of attribute names.

An attribute A ∈ A has a non-empty value domain dom(A), a type
type(A) ∈ {in, out}, and, optionally, an input constraint constr in(A) or an
output constraint constrout(A), depending on the type of A.

It is assumed that domains are discrete, totally ordered sets of elements
that belong to a defined data type. In the following analysis, the focus will
be on built-in data types, e.g., as defined by the XML schema data type
definition [Wor04i]. Boolean, integer, float, string, date, time, and
datetime are possible domains for attributes in the following examples.
These data types are either built-in primitive types such as boolean or
built-in derived types such as integer. Excluding user defined types is not
a severe restriction as user defined types ultimately rely upon built-in data
types. Match computation can easily be extended to include user defined
types as it will only operate on domain names and constraints, but not on
the domain elements itself.

Every attribute domain includes the special value null . The type of an
attribute is an element t ∈ {in, out} indicating if the attribute is an input or
an output attribute of an operation. If an attribute A occurs as input and
output attribute, it is listed twice in the schema definition, once as attribute
A of type in and once as attribute A of type out. Therefore, the attribute
type in − out is not needed. A constraint of an attribute A is an element c
of the form AΘa, a ∈ dom(A) and Θ ∈ {<,≤, >,≥, =, �=}, or a combination

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 67

of such conditions combined by ¬,∨,∧. If attribute A is of type in, the
constraint is an input constraint. If attribute A is of type out, the constraint
is an output constraint.

An example is given in Table 2.1 in Section 2.1. In this example, WS =
(Loan Pricing, {Get conditions}) and OS = (Get conditions, {Net V alue,
Duration, Score, Interest, Installment}). The types of the different at-
tributes, their domains, and their constraints are shown in Table 3.1.

Table 3.1: Attribute details for consumer loan pricing service.

Attri- Attri- Data Data
bute bute Type Type
Name Type Domain Range
Net IN INT not null
Value ∧ ≥ 1, 000

∧ ≤ 60, 000
Dura- IN INT not null
tion ∧ (= 12

∨ = 24
∨ = 36
∨ = 48
∨ = 60)

Score IN INT not null
∧ (= 1
∨ = 2
∨ = 3
∨ = 4
∨ = 5)

Interest OUT FLOAT not null
∧ ≥ 0
∧ ≤ 1

Install- OUT FLOAT not null
ment ∧ ≥ 25

Relational Web Service Model Characteristics

The relational Web service model as presented above assumes a black-box
perspective. This means, in this model, the internal logic of a Web service is
not considered to be relevant to know from a consumer’s point of view. The

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 68

consumer calls a service to outsource the service functionality. This means
he needs to know the Web service name, the operation name, and the input
and output of the operation. This is structural information abstracting from
any more detailed technical information such as port types.

The relational Web service model captures the information that is rele-
vant for data exchange. Business related information such as costs or the
provider’s name are not included. The primary concern is to model syntac-
tical information that is essential for the integration into a service-oriented
application.

Further, Web services in this model are considered to be stateless. Internal
information about the state of a service execution is not modeled. Therefore,
the model does neither capture any constraints on the execution order of
operations belonging to the same Web service nor any internal temporary
attributes that might be needed for internal processing purposes, e.g., to
store intermediate results.

The underlying assumption of uniqueness of names for Web services, op-
erations, and attributes is realistic and technically realizable when using the
XML namespace [Wor06] concept. This means that the underlying assump-
tion of a unique universe of names is compatible with the current XML-based
implementation standard.

Storing a relational Web service definition in a relational Web service
operation repository as presented in Section 2.4.2 and as shown in Table 3.1
can be regarded as reification of the relational Web service schema.

3.1.3 Research Questions

As the example in Table 3.1 has already shown, information about Web
service operations as specified in WSDL files can be represented in a relational
table. This kind of schema information repository is formally examined in
the next sections answering the following research questions from Section 1.2:

• Can match computation strategies from relational data bases be reused
efficiently? Which existing techniques can be adapted to compute a
match?

• What is the nature of a match between a service specification that
results from software design and an implemented service?

• How can the match between service specification and service imple-
mentation be operationalized and assessed? How complex is the match
computation?

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 69

• How can a match be categorized to express a gradually increasing de-
gree of compliance between specification and implementation? How is
the match evaluated in a qualitative way?

To answer these questions, the relational Web service operation represen-
tation as defined in Section 3.1.2 is used to adapt matching techniques from
relational databases to the problem of Web service operation matching. An
extension to relational algebra expressions will be defined to describe and
evaluate the resulting match.

3.2 Foundations of Relational Schema

Matching

In this section, fundamental concepts and the basic terminology of schema
matching for relational databases are introduced. This is the foundation for
the matching approach as presented in Section 3.3.

Schema matching is a research problem that is encountered in different
areas of computer science such as databases systems and data warehousing
[RB01], model management [Mel04], and ontology engineering for semantic
Web applications [DMDH04].

The terminology used to describe the tasks involved in schema matching
is not precisely defined, e.g., the terms “matching” and “mapping” are often
used as synonyms. For a clear distinction of the different aspects and appli-
cation contexts of schema matching the following terminology according to
[RB01] will be used throughout the remainder of this thesis:

Finding and describing the correspondences between the elements of two
schemata is called schema mapping. A mapping between two schema ele-
ments can be expressed as a triple of the form (element schema1, element
schema2, mapping expression). The mapping expression describes how the
elements of the two schemata are related, e.g., element schema1 = element
schema2. Many algorithms for mapping computation also compute a simi-
larity measure to indicate, how likely it is that the mapping expression holds.
In this case, a mapping is a four-tuple (element schema1, element schema2,
mapping expression, similarity measure). The manual, semi-automatic, or
fully automatic computation of mappings between two or more schemata is
called schema matching. A match between two schemata is defined as an
operation that takes two schemata as input and returns a set of mappings as
output.

Schema matching is often used to map independent schemata onto one
global schema. This is called schema integration. If the global schema does

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 70

not exist a priori, but is computed as a minimal superset of the individual
schemata, this is also called schema merging.

Once a match between the schemata has been computed, either one
schema must be transformed to resemble the other or the data from one
schema has to be transferred into an instance of the other schema. The
computation of schema transformation instructions is called schema trans-
formation; the computation of instance transformation instructions is called
data integration or data transformation.

Schema matching approaches in relational databases make extensive use
of the characteristics of the relational data model. Therefore, Section 3.2.1
introduces basic concepts and terminology of relational database theory, first.
This terminology is adhered to in the remainder of this thesis. In Section
3.2.2, an overview of relational schema matching, basic techniques, and their
classification is given. Section 3.2.3 presents selected matching algorithms for
relational schemata and gives examples of implemented matching systems,
ranging from research prototypes to quasi-industrial strength tools.

3.2.1 Relational Database Basics

An extensive overview on relational database theory can be found in [AHV95,
Vos00]. For the following summary of database fundamentals the terminology
is based on [Vos00].

Definition of Databases

Attributes and relations form the nucleus of relational databases. Every
attribute has an associated non-empty, possibly infinite value domain. A
relation is a finite set of tuples over the value domains of a finite set of
attributes. According to [Vos00], this is formally defined as follows:

Definition 3.2. Let X := (A1, . . . , An) be a finite set1 of attributes with
non-empty domains dom(Ai), 1 ≤ i ≤ n and dom(X) :=

⋃
A∈X dom(A) be

the set of all values from these domains.
A tuple over X is a total function μ : X → dom(X) for which holds:

(∀A ∈ X) : μ(A) ∈ dom(A). The set of all tuples over X is denoted as
Tup(X).

A relation r over X is a finite subset of tuples over X, r ⊆ Tup(X). The
set of all relations over X is denoted as Rel(X).

1Although the notation suggest a sequence, it is a set because duplicates are not per-
mitted and the ordering is unimportant. The notation is kept because it is common.

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 71

The time-invariant structure of a relation is described by its relation
schema, that is the set of attributes and their value domains. To restrict the
valid range of tuples over the value domains of attributes, so-called intrarela-
tional dependencies are introduced and included in the relation schema.

Definition 3.3. Let X be a set of attributes with associated domains as
described in Definition 3.2.

An intrarelational dependency σ : Rel(X) → {true, false} is a partial
mapping that assigns a truth value to some relations over X. The set of all
dependencies over X is denoted as ΣX . A relation r ∈ Rel(X) fulfills ΣX ,
denoted ΣX(r) = true, if σ(r) = true for all σ ∈ ΣX .

A relation schema R = (X, ΣX) consists of a name R, an attribute set X
and a set ΣX of intrarelational dependencies [Vos00].

An example of an intrarelational dependency is the key dependency. A
key is a subset of the attributes of a relation for which the following properties
hold:

Definition 3.4. Let X be a set of attributes with associated domains as
described in Definition 3.2 and K ⊆ X.

K is called a key for r ∈ Rel(X) if the following holds:

1. (∀μ, ν ∈ r) : μ[K] = ν[K] ⇒ μ = ν; μ[K] denotes the restriction of
tuple μ to the attributes of K.

2. ¬∃K ′ ⊂ K so that the first condition also holds for K ′ [Vos00].

This means a key is a minimal subset of attributes that functionally
determines all attributes in the relation. A relation can have more than one
key. Therefore, all keys of a relation are called candidate keys. Among these
keys, one key is designated as primary key.

A relational database consists of a finite set of relations over their relation
schemata. This is formalized in the following definition according to [Vos00]:

Definition 3.5. Let R = (R1, . . . , Rm) be a finite set of relation schemata
Ri = (Xi, Σi), 1 ≤ i ≤ m.

A relational database d over R consists of a set of relations (r1, . . . , rm),
ri ∈ Rel(Xi) and ΣXi

(ri) = true, 1 ≤ i ≤ m.
The set R is called database schema. Dat(R) denotes the set of all

databases over R.

The range of valid instances of a relational database schema can be re-
stricted further by using interrelational dependencies. Most often such de-
pendencies are used to express inclusion dependencies as formalized in the
following definition according to [Vos00]:

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 72

Definition 3.6. Let R be a finite set of relation schemata, Ri, Rj ∈ R,
Ri �= Rj , Ri = (Xi, Σi), Ri = (Xj, Σj). Let V be a sequence on n distinct
attributes of Xi and W a sequence of n distinct attributes of Xj.

An inclusion dependency Ri[V] ⊆ Rj[W] within a database instance d ∈
Dat(R) is defined as follows:

(Ri[V] ⊆ Rj [W])(d) :=

{
1 : {μ[V]|μ ∈ ri} ⊆ {μ[W]|μ ∈ rj} ,
0 : else.

If W is a primary key of the relation schema Rj and (Ri[V] ⊆ Rj [W])(d),
then the inclusion dependency is called a foreign key relationship.

An example of a database schema is shown in Figure 2.27 in Section
2.4.2. In the relational representation of the different elements of a Web
service operation repository, there are three tables representing Web services,
operations, and data types. The data type relation has two more attributes,
domain and range. It is assumed that Web services, operations and data
types are uniquely identified by their names. The grouping of operations into
Web services and the assignment of input and output attributes to operations
is represented in the relations WShasOP and OPhasAttr. Both Web service
name and operation name in the relation WShasOp are foreign keys. The
two attributes together form the primary key of the relation WShasOP. An
attribute is uniquely defined by its operation name, its attribute name, its
data type name, and its attribute type, which is either in or out.

A concise notation, also used in the following for the graphical represen-
tation, is given below for the table OPhasAttr:

Code 3.1.

OPhasAttr((Operation Name , Attr Name ,
Data Type Name , Attr Type),

Primary Key (Operation Name , Attr Name ,
Data Type Name , Attr Type),

Foreign Key (Operation Name) references Operation (
Operation Name),

Foreign Key (Data Type Name) references Data Type (
Data Type Name));

Relational Algebra Operators

For data manipulation in relational databases, the relational algebra (RA)
has been defined by [Cod70]. The algebra contains the operators projection,

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 73

selection, renaming, join, union, difference, and intersection. First, opera-
tions on one relation are defined according to [Vos00].

Definition 3.7. Let X be a set of attributes, r ∈ Rel(X) and X ⊇ Y =
(Y1, . . . Yj). Let F be a condition of the form AΘa or AΘB with A, B ∈ X,
a ∈ dom(A) and Θ ∈ {<,≤, >,≥, =, �=} or a combination of such conditions
combined by ¬,∨,∧. Let D /∈ X − {A} and dom(A) = dom(D).

• πY (r) := {μ[Y]|μ ∈ r} is called projection of r on Y .

• σF (r) := {μ ∈ r|F (μ) = true} is called selection.

• ρD←A :=
{μ ∈ Tup(X ′)|∃ν ∈ r : μ[D] = ν[A] ∧ μ[X ′ − {D}] = ν[X − {A}]},
X ′ := (X − {A} ∪ {D}) is called renaming of attribute A from A to
D. As short-hand notation ρA|D is used in the following.

Relational algebra expressions can also be expressed as SQL queries: Let
R = (A1, . . . , An) be a relation schema. The projection of a relation r over
R on, e.g., A1, A2, A3 is expressed as:

Code 3.2.

select distinct A1, A2, A3 from r;

A selection of this schema, e.g. A1 = a, a constant, and A2 = A3 is
expressed as:

Code 3.3.

select distinct * from r
where A1 = a and

A2 = A3;

Selecting A1 and renaming it as B is expressed as:

Code 3.4.

select distinct A1 as B from r;

Next, operations on more than one relation are defined according to
[Vos00]:

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 74

Definition 3.8. Let X1, X2 be attribute sets, r1 ∈ Rel(X1), r2 ∈ Rel(X2).

r1 �� r2 := {μ ∈ Tup(X1X2)| μ[X1] ∈ r1 ∧ μ[X2] ∈ r2}

is called natural join of r1 and r2.

Note that the definition of a natural join operator can be generalized for
n relations. If X1 and X2 do not have any attributes in common, the natural
join is in fact a Cartesian product. If X1 and X2 have identical attributes,
the natural join becomes an intersection.

Common variation of the natural join are theta-joins as well as left and
right outer joins.

Definition 3.9. Let X1, X2 be disjoint attribute sets, r1 ∈ Rel(X1) and
r2 ∈ Rel(X2), A1 ∈ R1 and A2 ∈ R2, Θ ∈ {<,≤, >,≥, =, �=}.

r1 ��A1ΘA2 r2 := {μ ∈ Tup(X1X2)| μ[X1] ∈ r1 ∧ μ[X2] ∈ r2 ∧ μ[A1]Θμ[A2]}

is called theta join of r1 and r2 on attributes A1 and A2.

r1 � r2 := {μ ∈ Tup(X1X2) | (μ[X1] ∈ r1 ∧ μ[X2] ∈ r2)

∨(μ[X1] ∈ r1 ∧ μ[X2] /∈ r2 ∧ μ[X2]is null)}

is called outer join of r1 and r2.

A theta join is a join that relates data from two tables with a comparison
operator that can be different from equality. If the comparison operator
simply tests for equality, this join variation is also called inner join. A left or
right outer join includes every record from one of the tables and only those
records from the other table in which the related fields match each other
exactly.

The different join operators have also a corresponding SQL query opera-
tion. As an example, an inner join is presented here. Let R, S be two relation
schemata, R = (A1, A2), S = (A3, A4) and let r, s be relations over them.
An inner join on attribute A2 and A3 is expressed as:

Code 3.5.

select distinct r.A1, r.A2, s.A3, s.A4
from r, s

where r.A2 = s.A3;

Definition 3.10. Let r, s ∈ Rel(X).

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 75

• r ∪ s := {μ ∈ Tup(X)| μ ∈ r ∨ μ ∈ s} is called union.

• r − s := {μ ∈ Tup(X)| μ ∈ r ∧ μ /∈ s} is called difference.

• r ∩ s := r − (r − s) is called intersection.

Note that union, difference, and intersection of relations are only defined
if all relations have the same schema. If for instance r ∈ Rel(AB) and
s ∈ Rel(BC), then r∪ s is undefined, whereas r∪ ρC|A(s) and ρA|C (r)∪ s are
defined if dom(A) = dom(C) [Vos00].

Set operators have also corresponding operations in SQL. For example,
let r1, r2 be relations over R. Then the union of r1 and r2 is expressed as:

Code 3.6.

select distinct * from r1
union

select distinct * from r2;

As an example, the operators as defined above are applied to the database
schema that represents the relational Web service operation repository, as
shown in Figure 2.27. Different queries can be asked over this database
schema.

Q1: Select all operations of a given Web service X:

πOperationName(σWebServiceName=X(
WebService ��WebService.WebServiceName=WShasOp.WebServiceName WShasOp))

As this notation is hard to read when the relational algebra expressions
become longer the SQL notation is preferred.

Q2: Select all Web services with their operations, their attributes, at-
tribute types, data type domains, and data type ranges.

Code 3.7.

select WebServiceName , OperationName , AttributeName
AttributeType , DataTypeDomain , DataTypeRange

from WebService , WShasOP , Operation ,
OPhasAttr , DataType

where WebService.WebServiceName =
WShasOP.WebServiceName and
WShasOP.OperationName =

Operation.OperationName and

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 76

Operation.OperationName =
OPhasAttr.OperationName and
OPhasAttr.DataTypeName =
DataType .DataTypeName;

The second query joins all relations of the Web service operation repos-
itory and select the attributes that are relevant for Web service search as
determined in Section 2.4.2. This relation join across five relations has al-
ready been represented in Figure 2.28. In the following, this query will be
named WSOR. Such a symbolic reference to a relational algebra expression or
an SQL statement is called a view.

All elements that describe a relational database and its schema, e.g., re-
lation names, attribute names, domains, primary and foreign key constraints
provide information for database schema matching. When a match on the
schema level has been identified, it is often necessary to generate transforma-
tion instructions that transform one database instance over the first schema
into a database instance over the second schema. The operations of the re-
lational algebra can be used to describe such data integration instructions.
An overview of schema-matching techniques and their classification is given
next.

3.2.2 Classification of Schema-Matching Approaches

Schema-matching approaches have been compared and analyzed in a survey
by Rahm and Bernstein [RB01]. Their classification has been refined by
[SE05] in a more recent approach that does not only apply to relational
schemata but also to ontologies. This section introduces the classification by
[RB01] and gives a brief overview of [SE05].

Classification of Rahm and Bernstein

A concise survey of schema-matching algorithms can be found in Rahm and
Bernstein [RB01]. They distinguish match algorithms according to the fol-
lowing criteria as summarized in Figure 3.3:

Individual vs hybrid matching: Individual match algorithms employ ex-
actly one match strategy based on a specific criterion of the input
schemata. Hybrid matchers either consider several match criteria at a
time or are able to combine the results of several individual matching
algorithms.

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 77

Schema Matching Approaches

Individual matcher
approaches

Combining
matchers

Schema-only
based

Hybrid
matchers

Composite
matchers

Element-
level

Structure-
level

Element-
level

Manual
Composition

Automatic
Composition

Linguistic
Constraint-

based
Constraint-

based
Linguistic Constraint-

based

Further criteria: match cardinality, auxiliary information, ...

Instance/content-
based

Figure 3.3: Classification of schema-matching algorithms according to
[RB01].

Instance vs schema matching: The algorithm works either with the pure
schema definition, e.g., the relational schema definition or with the in-
stance data, e.g., a relation instance. The actual content of a relation
can enhance the match that has been computed using schema informa-
tion. Such a combination is an example of a hybrid matching approach.
Instance matching can also be used on its own, e.g., if sufficient meta-
information about a schema is not available.

Element vs structure matching: The match algorithm uses either single
elements of an input schema, e.g., the names of each attribute within
a relational schema or works on a more complex structure, e.g., the
complete relational schema definition taking all attributes into account.

Language vs constraint matching: The algorithm uses names or textual
descriptions within the schema, e.g., attribute names or comments, or
is based on constraints, e.g., primary keys or foreign key relationships.

Matching cardinality: The mapping that the algorithm returns can relate
one or more elements of the first schema to one or more elements of
the second schema, thus returning matches of cardinality 1:1, 1:n, n:1,
or n:m.

Auxiliary information: Match algorithms may make use of further in-
formation drawn from dictionaries, user input, ontologies, or global

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 78

schema definitions. For instance, name-based linguistic matching algo-
rithms rely on thesauri or sometimes even multi-language dictionaries.

Classification of Shvaiko and Euzenat

The individual, schema-based matchers, as indicated with a circle in Figure
3.3, have also been studied by Shvaiko and Euzenat [SE05]. They propose a
different classification of this subbranch of algorithms that extends relational
schema matching algorithms towards ontology matching.

First, the three aspects of schema matching, input, matching process and
output, are explained because they form the framework for the classification:

Input: Matching algorithms work with different data representations or con-
ceptual models, e.g., relational models, ER models, OO models, or
XML. Further, they rely on individual elements of the models or on
the input as a complete structure. The input can be interpreted as a
string (terminological input), as a structure (structural input), or as a
model (semantic input). Even if two algorithms work on the same in-
put representation, they might still use different parts of it in a different
way.

Matching Process: Every matching algorithm can either compute exact or
approximate results. Syntactic algorithms take the input and process
its structure without using any further information. External algo-
rithms use knowledge as additional input that is provided by an ex-
ternal source such as user input or a dictionary. Semantic techniques
rely on formal semantics to process the input and to verify their result.
Terminological matchers can work string based or regard the input as
a linguistic object. Structural matchers work either on the internal
structure of the input (e.g., an attribute and its data type) or on the
structure of external relationships (e.g., a relation and its foreign keys).
Semantic matchers work with formal models or formal ontologies.

Output: The output can be of different cardinality. The computed mapping
may be weighted and the relationship between mapped elements can
be expressed in different formalism, e.g., as a mathematical function.

The different dimensions for input and matching process are used by
[SE05] to derive two classifications as shown in Figure 3.4. The drawing can
be read in both directions either focusing on how the input is interpreted
(top-down) or on the kind of objects that are processed (bottom-up). The
basic techniques shown in the middle are elementary building blocks for many

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 79

different match algorithms and their implementation. They are encountered
throughout the next sections and are therefore explained next.

Schema-Based Matching Techniques

Schema-Based Matching Techniques

Element-level Structure-level

Syntactic External Syntactic External Semantic

Terminological Structural Semantic

Linguistic Internal Relational

Lan-
guage-
based

Lin-
guistic

re-
source

Con-
straint-
based

Align-
ment
reuse

Upper
level

formal
onto-
logies

Graph-
based

Tax-
onomy-
based

Repos-
itory of
struc-
tures

Model-
based

String-
based

Figure 3.4: Classification of schema-matching algorithms according to [SE05].

String-based: String-based techniques compute the similarity of schema
elements as the similarity of their names represented as strings. This
is based on the intuition that two elements are likely to represent the
same concept if their names consist of similar strings. Examples of
string-based techniques are prefix, suffix, edit distance, and n-gram
[DR02, GSY05].

Language-based: Language-based techniques regard the names of schema
elements as words in a natural language to find morphological similari-
ties. These techniques include tokenization, stemming and elimination
of stop words [MBR01, GSY04]. They are often used as preparatory
step before other techniques are applied.

Linguistic: Linguistic techniques rely on common knowledge or domain
specific thesauri. These thesauri contain synonyms, hypernyms and
homonyms. The hierarchies established are used to compute the simi-
larity of two schema elements [Res95, MBR01].

Constraint-based: Constraint-based techniques make use of the different
constraints that define schema elements such as the data type of an
attribute, its cardinality, and its primary or foreign key relationships
[RB01].

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 80

Alignment reuse: Alignment reuse subsumes all techniques that exploit
previous schema matching results to deduce new matches from the
given alignments. If two elements e and e′ are matched and e′ and
e′′ are also matched, then alignment reuse tries to compute a match
between e and e′′ as well [DR02].

Upper level formal ontologies: Upper level formal ontologies provide ac-
cess to external common knowledge encoded in logic-based systems,
e.g., the Descriptive Ontology for Linguistic and Cognitive Engineer-
ing (DOLCE) [GGMO03]. Such ontologies can be used by matching
algorithms as external information source.

Graph-based: Graph-based techniques transform a schema into a graph
representation to apply graph matching techniques. As graph match-
ing is a computationally expensive combinatorial problem [GJ79], most
algorithms work with approximations such as two inner nodes are con-
sidered to be similar if the set of their immediate children is similar or
if the set of their leave nodes is similar [DR02, MBR01].

Taxonomy-based: Taxonomy-based techniques are special graph-based
techniques. A taxonomy contains information about “is-a” relation-
ships between concepts that can be represented as a graph (see Section
4.2).

Repository of structures: In a repository of structures similarities be-
tween schema fragments are stored that have already been matched
successfully. If a new schema fragment is to be matched the repository
is queried to find elements that are sufficiently similar to the new frag-
ment. This is done to reduce the search space before a thorough match
computation with a more detailed algorithm is executed [RHDM04].

Model-based: Model-based match algorithms are deductive algorithms
that work, e.g., with description logics reasoning techniques [GSY04,
GSY05].

In the next section, different algorithms and system implementations are
discussed that make use of combinations of these basic matching techniques.

3.2.3 Algorithms and System Implementations for Re-
lational Schema Matching

When looking at the problem of match computation from a conceptually
higher level, it reveals similarities to relational join processing in databases.

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 81

Both operations, match and natural join, compute pairs of corresponding
elements between their two input sets. The type of input, the cardinality of
the result and the semantics of the comparison expression are different. The
match operator operates on meta-data, whereas the join operator processes
the relation instance data. The match operator can relate several elements
of one schema to several elements of the other schema, while the natural join
operator combines one element of one table with one element of the other
table. The meaning of match is less precise than the meaning of the natural
join operator that works with a strict equality condition [BR00].

SQL-Based Match Implementation

Based on this observation, the match operator could be implemented us-
ing a dictionary that contains the transitive closure of similar terms and a
similarity measure. If the schema elements and the dictionary are stored in
relations, the match can be computed like a two-way join as explained in
[RB01] and the result can be ordered by decreasing similarity:

Code 3.8.

//One entry per element of Schema1
Schema1 (Name)
//One entry per element of Schema2
Schema2 (Name)
// Dictionary with similarity score
D (Name1 , Name2 , Similarity)

SELECT Schema1.Name ,
Schema2.Name ,
D.Similarity

FROM Schema1 , Schema2 , D
WHERE Schema1.Name = D.Name1

AND D.Name2 = Schema2.Name
ORDER BY D.Similarity DESC

According to the classification of [RB01], this is a schema-based, element-
level linguistic approach. The classifications of [SE05] regard this approach
as schema-based, element-level, external linguistic approach that works on
strings as linguistic objects. To reduce the number of matches, a user-defined
similarity threshold can be used as additional selection condition to reduce
the number of returned results. Then, matching elements are only included
into the result set if their similarity exceeds the given threshold.

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 82

Similarity Flooding Match Implementation

A more sophisticated algorithm is the so-called similarity-flooding (SF) al-
gorithm [Mel04] that has been developed as a generic graph based algorithm
for matching different kinds of schema representations such as ER-diagrams,
relational table definitions, or XML schema definitions. It is chosen here as
an example of a more complex matching algorithm.

Let S1 and S2 be two relational table definitions. The similarity flooding
algorithm consists of the following steps [Mel04] :

Code 3.9.

1. G1 = SQLDDL2Graph(S1); G2 = SQLDDL2Graph(S2);
2. initialMap = StringMatch(G1, G2);
3. product = SFJoin(G1, G2, initialMap);
4. result = SelectThreshold(product);

In the first step (line 1), the table definitions S1 and S2 are turned into
graph structures G1 and G2 that are used as internal data model applying
the function SQLDDL2Graph. In the second step (line 2), an initial mapping
initialMap between the two graphs is computed. This is done using sim-
ple prefix and postfix string comparison algorithms for StringMatch. In the
third step (line 3), an iterative fix point computation SFJoin is executed
until the algorithm terminates. Based in the first mapping initialMap, the
similarity between the two graphs G1 and G2 is computed. In the case of
non-convergence, the algorithm terminates after a given number of iterations.
Otherwise, it terminates when the difference between the results of two iter-
ation steps reaches a defined ε. In the last step (line 4), all similarities below
a certain threshold are discarded with SelectThreshold. This version is the
core of the algorithm. Different variations are described in [Mel04].

The fix point iteration is explained in more detail, using an example from
[MGMR02]. The internal data model for schema representation consists of
directed labeled graphs which are defined as follows:

Definition 3.11. A directed labeled graph G = (V, L, E) is a triple consist-
ing of:

• a set V of vertices,

• a set L of labels and

• a set E ⊆ V × L × V of labeled edges.

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 83

Consider the two directed labeled graphs A = (VA, LA, EA) and B =
(VB, LB, EB) in Figure 3.5 on the left-hand side. An edge in these graphs
is denoted as triple of (source, label, target). A pairwise connectivity graph
PCG(A, B) = (VPCG(A,B), LPCG(A,B), EPCG(A,B)) is computed as preparation
to fix point computation:

((x, y), l, (x′, y′)) ∈ EPCG(A,B) ⇔ (x, l, x′) ∈ EA ∧ (y, l, y′) ∈ EB.

The PCG of the graphs A and B is shown in Figure 3.5 in the middle. Each
node in this graph represents a map pair. Looking at the neighbors (a, b)
and (a1, b1) the graph visualizes if a is similar to b then a1 is also similar to
b1.

a

a1 a2

b

b1 b2

l1 l1

l2

l1 l2

l2

A B

a, b

a1,b1 a2,b1

a1,b2

a1, b

a2, b2

l1 l1

l2

l2

PCG
a, b

a1,b1 a2,b1

a1,b2

a1, b

a2, b2

1.0

1.0

Propagation Graph

1.0

1.0
1.0

1.0
0.5 0.5

Figure 3.5: SF algorithm example according to [MGMR02].

This graph is turned into a propagation graph that shows how the simi-
larity of a map pair contributes to the similarity of its neighbors. For every
edge in the PCG an edge in the inverse direction is added. The weights
at the edges are called propagation coefficients and can be computed in dif-
ferent ways as explained in [Mel04]. In the example given, each edge of
type l1 or l2 makes a contribution of 1. If more than one edge of a type is
present, the weight w is distributed equally, e.g., w((a, b), (a1, b1)) = 0.5 and
w((a, b), (a2, b1)) = 0.5. This is shown in Figure 3.5 on the right-hand side.

Let x ∈ VA, y ∈ VB, then σ(x, y) ≥ 0 denotes the similarity between
the nodes x and y. The similarity is computed iteratively according to the
following formula [Mel04]:

σi+1(x, y) = σi(x, y)

+Σ(au,l,x)∈EA,(bu,l,y)∈EB
σi(au, bu)w((au, bu), (x, y))

+Σ(x,l,av)∈EA,(y,l,bv)∈EB
σi(av, bv)w((av, bv), (x, y))

In every step the computed measures are finally normalized, using a factor
Max. The iteration is repeated until the Euclidean length of the vector
difference ||	σn − 	σn−1|| converges.

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 84

The initial similarity σ0 is computed using string comparison. For the
example in Figure 3.5 this is omitted; instead, the similarity values are all
initialized with 1.0. The first five iteration steps, the normalizing factor Max
and the length of the vector difference ||	σn − 	σn−1|| are shown in Table 3.2.
For example,

σ1(a, b) = σ0(a, b) + σ0(a1, b1) + σ0(a2, b1) = 3

As 3 is the maximum value in the step σ1, 1/3 is used as normalizing factor.
As can be seen in the example, the algorithm converges quickly. Intuitively,
this approach computes the similarity between nodes in a graph taking their
neighboring nodes into account.

Table 3.2: Example SF algorithm iteration steps.
(AxB) σ0 σ1 σ2 σ3 σ4 σ5

(a,b) 1.00 1.00 1.00 1.00 1.00 1.00
(a, b1) 1.00 0.33 0.14 0.06 0.03 0.01
(a, b2) 1.00 0.33 0.14 0.06 0.03 0.01
(a1, b) 1.00 0.67 0.57 0.50 0.44 0.38
(a1, b1) 1.00 0.50 0.43 0.41 0.40 0.39
(a1,b2) 1.00 0.67 0.64 0.66 0.67 0.68
(a2, b) 1.00 0.33 0.14 0.06 0.03 0.01
(a2,b1) 1.00 0.83 0.86 0.87 0.89 0.90
(a2, b2) 1.00 0.67 0.57 0.50 0.44 0.38

Max 3.00 2.33 2.29 2.28 2.29
||σ̃n − σ̃n−1|| 1.39 0.36 0.18 0.11 0.08

Generic Schema Matching Systems

As observed by [RB01] the representation of the schema, e.g., as ER-diagram,
UML diagram, graph, or XML file does not have any influence on the clas-
sification of schema matching algorithms. This is due to the fact that most
matching algorithms work on an internal schema representation suitable for
their purpose. Therefore, most system implementation for automatic match
computation strive to be representation independent. This is achieved by
using an internal schema representation that is suitable for all implemented
match algorithms within the system. Further, the implementation of the
match algorithm usually consists of several different algorithms that are com-
bined either by the system according to some heuristic or according to the

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 85

users’ choice. This makes the matching systems more flexible and extensi-
ble. A high-level process view for such a generic schema matching system
implementation is given in Figure 3.6.

ER-
Diagram

XML
Schema

OO
Model

...

S
ch

em
a

Im
po

rt

In
te

rn
al

 S
ch

em
a

R
ep

re
se

nt
at

io
n

G
en

er
ic

 M
at

ch
 I

m
pl

em
en

ta
tio

n

O
pt

im
iz

at
io

n

R
es

ul
t P

re
se

nt
at

io
n

External
Libraries

Alg.1

Alg n-1

Alg.2

Alg n

Figure 3.6: High-level process view for generic schema matching systems.

A generic matching system supports different schema representations that
can be imported with adapted import routines. The result of the import
step is a generic internal representation of the imported schema. The match
operation itself is implemented as a collection of schema matching algorithms
that are either applied in a sequence implemented in the system itself or can
be chosen by the user. Such matchers make use of external information
resources for matching and may also ask for user input. The result of the
matching can further undergo optional optimization procedures that prune
the best matches from a set of alternatives. The result is usually represented
graphically to the user.

Numerous system implementations for schema matching have been re-
ported and compared, e.g., in [RB01]. For example, the generic schema
matching approach is pursued by the systems Rondo, Cupid, Clio, and
COMA. This makes these systems especially valuable when studying the
analogies between relational schema matching and Web service matching.

Rondo [Mel04] is a prototypical implementation of a tool for model man-
agement. A model is a representation of structured meta-information
such as a relational table DLL or an XML schema document. In Rondo
a number of operators for model manipulation are implemented, such
as uniting two models or matching two models. The match operator in
Rondo is implemented based on the SF algorithm.

Cupid [MBR01] combines name matching with a structural match approach.
The schema definition is internally transformed into a tree. The simi-

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 86

larity of elements is based on the similarity of their components at the
lowest level of granularity, e.g., the similarity between two attributes
in a relational table definition is computed using the similarity of the
attribute names and the data type of the attribute.

Clio [HHH+05] is a research prototype from IBM that claims to have reached
industrial strength. The system computes schema mappings semi-
automatically and, in addition, also produces queries that automate
data transformation from one schema into the other. The mappings
are either computed using an internal schema mapping algorithm or are
provided by the user via a GUI. These mappings are then transformed
into internal logical mappings expressed as declarative assertions which,
in turn, are used to generated physical transformation function as SQL
statement, XQuery, or XSLT script.

COMA [DR02] consists of a library of different matchers. They can be used
in isolation or in combination and take domain specific synonyms and
abbreviations into account that have to be defined once in advance.
All algorithms are schema-based element-level matchers and work on
an internal, rooted, directed acyclic graph representation of the schema.
Recently, this system has also been extended to be used for ontology
matching [ADMR05].

The systems introduced so far return 1 : 1 matches. They do not make
any suggestions on how the mapped elements are related, i.e., they do not
return a mapping expression suggesting, e.g., that an instance in the first
schema element can be transformed into an instance of the second schema
element by a simple type cast function.

3.3 Schema Matching for Relational Web Ser-

vices

The previous section has shown that relational database theory is able to give
structure to persistent data and to describe the relationships between data
instances. Further, based on this model, a wide variety of algorithmic ap-
proaches has evolved to compute the similarity between database schemata.
The different approaches have also been implemented successfully.

Experiences with these implementations have shown that a generic schema
matching process is beneficial. The match computation ought to have the
following characteristics:

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 87

• It should be independent of the representation of the input data and
use a uniform internal data model for computation.

• It should allow the combination of different matching algorithms to be
adaptable and extendable.

This is a promising foundation for the matchmaking problem of Web
services. In this section, it will be shown how relational database theory in
general and relational schema matching theory in particular contributes to
the problem of Web service operation matching.

Match computation for Web services using the relational operation rep-
resentation establishes a match at the syntactic level in terms of operation
names, attribute names, domains, and domain ranges. Following the match
classification of [RB01] as presented in Section 3.2.2 these schema elements
allow for schema-based element-level matching. In the following, the empha-
sis will be on element-level matching at the level of operation names and at
the attribute level.

Motivated by the example in Section 3.1.1 a three-step approach is pro-
posed here to execute match computation at a syntactic level: given a finite
number of match candidate Web services and a Web service schema descrip-
tion that is searched for. First, the number of candidate services is reduced
by matching the operation names. This relies on the assumption that the
operation name adequately describes what the web service does when the
operation is executed. This is presented in Section 3.3.1. Second, for the re-
maining Web services, input and output relations are to be matched as will
be explained in Section 3.3.2. Both steps adapt the matching algorithms as
presented in Section 3.2.3. These algorithms serve as examples to show that
this approach is feasible, but may be replaced with other algorithms. Third,
a manual revision of results must take place to operationalize the match as
Section 3.3.3 will show. For simplicity, it is assumed that the desired Web
service consists of one operation only. If more than one operation needs to
be matched the three steps must be repeated per operation.

3.3.1 Matching of the Operation Name

In a preparatory step, the operation name must undergo simple language-
based transformations such as stemming. For the following analysis, it is
assumed that this preparation has already been executed. The schema spec-
ifications of all available implemented Web services are stored in a repos-
itory relation WSOR = (WebServiceName, OperationName, AttributeName,

AttributeType, DataTypeDomain, DataTypeRange), as introduced in Section

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 88

3.2.1. To compute a match at the level of operation names, the operation
name of the desired operation opname is compared to every operation name
in WSOR.OperationName.

The complexity of this comparison depends on the complexity of the
search algorithm used. The search could be conducted, e.g., with simple
string comparison algorithms or with the help of a dictionary D = (Name1,

Name2, Similarity) containing the transitive closure over similar names and
similarity measures between all terms listed in it. As the last approach also
takes synonyms and homonyms into account, a simple example is given how
such a comparison could be achieved as explained in [RB01] and presented
in Section 3.2.2.

Code 3.10.

select distinct
WSOR.WebServiceName ,
WSOR.OperationName ,
D.Similarity

from WSOR , D
where D.Name1 = <OPNAME >

and D.Name2 = WSOR.OperationName
order by D.Similarity;

Proposition 3.1. Given a dictionary relation D of size d and a Web service
operation repository WSOR of size w. The overall costs of the operation
name comparison given by the algorithmic approach above are in O(d ∗ w).

Proof. The complexity is determined by the size d of the dictionary and the
size of the repository w. Executing the selection on D needs O(d) comparisons
and returns an intermediate result set of size d′ ≤ d. The projection on WSOR is
executed in O(w log w) and returns an intermediate result set of size w′ ≤ w.
If the join is executed as naive nested loop join which compares every entry
in the first table with every entry in the second relation the costs are in
O(d′ ∗ w′).

As the intermediate result sets are usually much smaller than the original
relations this worst case complexity will not occur in practice. Further, better
join strategies than a naive nested loop join can be applied [SB02]. In a
more restricted setting, it could even be assumed that equivalent operations
are equally named. Examples such as ebXML [OAS01a] indicate that this
assumption is realistic. In this case, the dictionary is not needed.

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 89

3.3.2 Attribute Matching

The first step has produced a set of operation names that are similar to the
operation name searched for. This has already reduced the number of match
candidates.

Next, the input and output attributes of the remaining match candidate
operations are compared to the desired operation schema attributes. For
this comparison, attribute names and attribute domains need to be taken
into account. The complexity of this comparison depends on the number n
of match candidate operations and the chosen comparison algorithm. For
example, the similarity flooding algorithm (SF) of [Mel04] could be used as
explained in Section 3.2.3.

Preparation

Among other input formats, the algorithm can take two relational schemata
as input and compare (among other criteria) attribute names and domains.
The relational Web service schema representation can easily be turned into
two SQL table DDLs, one for the input relation rin

0 and one for the out-
put relation rout

0 . The same must be done for the input relations rin
1 , . . . , rin

n

and output relations rout
1 , . . . , rout

n of the n match candidate operations. The
length of the code per operation depends on the number of attributes of the
input relation rin

i and the output relation rout
i for i ∈ {0, . . . , n}, denoted by

|rin
i | + |rout

i |. Let |rin| := maxi(|rin
i |) be the maximum number of attributes

over all input relations and |rout| := maxi(|rout
i |) the maximum number of

attributes over all output relations. Although the number of input or out-
put attributes of an operation is theoretically unbounded, in practice the
number will always be bounded by a constant. Therefore, the complexity
of the schema transformation step is dominated by the number n of match
candidate operations. Further, this transformation steps needs to be exe-
cuted only once for every operation in the operation repository. When the
transformation result is stored, the transformation costs may be neglected.

Lemma 3.1. The overall schema transformation preparation step for n
match candidate operations is in O(n).

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 90

Here, an example is given for the input and output relations of the Loan
Pricing Service that has been defined in Table 3.1.

Code 3.11.

LoanPricing_GetConditions_In (
net_value FLOAT ,
duration INT,
score INT

)
LoanPricing_GetConditions_Out (

installment INT,
interest FLOAT

)

Similarity Flooding

The SF algorithm then turns the two DDLs that are to be matched into two
graphs, G1 and G2, with one node for every attribute and one node for every
domain. Figure 3.7 shows the graph for the LoanPricing GetConditions In
and the LoanPricing GetConditions Out table DDL. The representation shown
here is based on [Mel04], which is an adaptation of the Open Information
Model (OIM) specification of [BBC+99]. The same is done for the input and
output relations of all match candidate operations.

Initially, the similarity between elements of the source relation graph G1

and the target relation graph G2 is computed using simple string comparison.
Then similarity is computed using fix-point iteration. Similar nodes propa-
gate their similarity to their neighbors. The SF algorithm returns a ranked
list of 1 : 1 matches between elements of the two graphs and takes a pre-
defined similarity threshold into consideration. Further filtering techniques
could additionally be used on the results [Mel04].

According to [Mel04], the SF algorithm has a worst-case complexity of
O(|G1| ∗ |G2|) per iteration, with |G1|, |G2| being the number of edges in the
two relation graphs respectively.

A relation r with |r| attributes as used for the description of input and
output in the relational Web service model produces a graph with 4|r| + 5
nodes if each attribute has a different domain. The maximum number of
edges in a graph is reached in a fully interconnected graph. For a graph
representation of an SQL table DDL as used for Web service input and
output, this will not be the case because the node for the table name is
connected to the nodes for the columns and the nodes for the columns are

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 91

&1 &2 &3

LoanPricing_
GetConditions_

In

Net_
Value

INT

Table Column Column
Type

Name Name

Type TypeType

Name

Column

Dura-
tion

&4

Name

Colum
n

&1 &2 &3

LoanPricing_
GetConditions_

Out

Install-
ment

INT

Table Column Column
Type

Data
Type

Name

Type

Column

Interest FLOAT

&4 &5

Name

Colum
nData

Type Data
Type

Score

&5

Name

&6

FLOAT

Data
Type

Name

C
olum

n

Data
Type

Figure 3.7: Input graphs for SF algorithm.

connected to their domains, but there is not any direct connection between
the different columns, the different domains, or between the domains and
the table name. In this model, it can be shown that a graph has at most
6|r| + 2 edges. Therefore, the worst-case complexity for one iteration of the
algorithm is O(|r| ∗ |s|) with |r| and |s| being the number of attributes of the
two relations to be matched. According to [Mel04], the algorithm terminates
after 5 to 30 iterations on the average. As above, the numbers |r| and |s| of
attributes are theoretically unbounded, but in practical implementations the
number of input and output attributes will always be bounded.

Proposition 3.2. Let r be the input or output relation schema searched for
and s1, . . . , sn the implemented input or output relations of relational Web
service operations in an operation repository. The overall complexity for
one single match computation between r and si using the similarity flooding
algorithm is O(|r| ∗ |si|) for the core of the SF algorithm. As the size |r|, |si|
is finite, the overall complexity of the search is in O(n).

Proof. See [Mel04].

Therefore, reducing the number n of match candidates in the Web service
operation repository, e.g., as shown by the dictionary approach in Section
3.3.1 enhances the performance of this second match computation.

Let |rin| and |rout| be defined as above. Let rin
0 and rout

0 be the designated
input and output relation of the Web service schema searched for. Let r0 :=

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 92

max(|rin
0 |, |rout

0 |) be the maximum number of attributes of these two relations
and let m := max(|rin|, |rout|). Then the complexity of the operation name
comparison and the input and output comparison can be summarized as
follows:

Theorem 3.1. The complexity of the two step search strategy using a dic-
tionary of size d for operation name matching and a Web Service repository
with n operations is in O(d ∗ n).

Proof. This follows directly from Proposition 3.1 and Proposition 3.2.

In general, the complexity depends on the number of match candidates
and the complexity of the chosen matching algorithm for the two comparison
steps.

3.3.3 Refinement

If the match computation has found more than one match, the match with the
highest result is chosen or the list of matches can be revised manually. This
is necessary because there might be several target operations with suitable
input and output relations and nearly the same similarity measure.

In general, the users might want to add or remove a mapping between
attributes due to their expert domain knowledge. Furthermore, if the do-
mains of the two attributes mapped are not identical, the user needs to add
transformation functions. This aspect of manual match refinement and its
impact on the computed match are analyzed in detail in Section 3.4. Here,
a short example is given:

A bank wants to buy a service that calculates a private customer scoring.
All information available about private customers in the databases of the
bank consists of name, gender, marital status, town, date of birth, yearly in-
come, and number of children. As scoring a value between “not trustworthy”
(0) and “very reliable” (1) is expected to be returned. The schema of the
desired Web service is shown in Table 3.3. The name of the Web service and
the operation are not repeated in this representation to enhance readability.

A match between operation names has revealed that there is a scoring
service that offers private customer scoring functionality. This service expects
the attributes first name, last name, gender, town, date of birth, monthly
income, and number of family members as input and returns a value between
0 and 1. The schema of this implemented Web service is shown in Table 3.4.
Again, the name of the Web service and the operation are not repeated.

A match has been computed between the attributes with similar names.
Manually, the information has been added that number of family members

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 93

Table 3.3: Desired scoring Web service schema.
Web Opera- Attri- Attri- Data Data
Service tion bute bute Type Type
Name Name Name Type Domain Range
Loan Get Name IN STRING not null
Pricing Scoring

Gender IN CHAR not null
∧ (=′ F ′

∨ =′ M ′)
Marital IN INT not null
status ∧ (= 0

∨ = 1)
Town IN STRING not null
Birth IN DATE not null
date
Income IN FLOAT not null
year ∧ ≥ 12, 000
Children IN INT not null

∧ ≥ 0
Score OUT FLOAT not null

∧ ≥ 0
∧ ≤ 1

Table 3.4: Implemented scoring Web service schema.
Web Opera- Attri- Attri- Data Data
Service tion bute bute Type Type
Name Name Name Type Domain Range
Private Get First name IN STRING not null
Customers Scoring

Last name IN STRING not null
Gender IN INT not null

∧ (= 1
∨ = 2)

Town IN STRING not null
Birth date IN STRING not null
Income IN FLOAT not null
month
Family IN INT not null
size
Score OUT FLOAT not null

∧ ≥ 0
∧ ≤ 1

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 94

can be approximated from the information about marital status and number
of children. To call the implemented Web service the bank must transform
their own information into the format accepted by the Web service operation.
To this end, transformation functions are needed. They are added manually
in the revision step of the matching process. The result is shown in Table 3.5.
The attribute Name is decomposed into First name and Last name using
extraction functions. A mapping is needed that translates the Gender at-
tribute. Further, a conversion function date2string is needed and the number
of family members must be calculated. If a special transformation function
is not needed, the identity function fid is used to indicate this.

Table 3.5: Match and transformation.
Direc- Source Target Instance
tion Attribute Attribute Transformation
IN Names First namet extractfn(Names) = First namet

IN Names Last namet extractln(Names) = Last namet

IN Genders Gendert fmap(Genders) = Gendert

IN Towns Townt fid(Towns) = Townt

IN Birth Birth date2string(Birth dates)
dates datet = Birth datet

IN Income Income f1/12(Income years)
years montht = Income montht

IN Childrens, Family fc+ms+1(Childrens, Marital statuss)
Marital sizet = Family sizet

statuss

OUT Scores Scoret fid(Scores) = Scoret

3.4 Web Service Match Evaluation

Once a match between two relational Web service schemata has been com-
puted, the next step is to define a transformation that turns the schema
match into an executable transformation at the instance level of input and
output messages. With such an executable transformation, it becomes pos-
sible to plug an implemented Web service into a pre-defined series of tasks
without changing the underlying data flow.

This section shows how to derive such a uniform transformation expres-
sion at the implementation-independent level of extended relational algebra
expressions. These extended relational match expressions can be used to es-

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 95

tablish a hierarchy of matches that indicates how close an implemented Web
service meets the original specification.

A set of all transformation functions can be used to describe how to
derive an executable match. At this point, the question arises if this always
yields useful results. To answer this question, the notion of usefulness in this
context must be defined.

Intuitively, a match between a desired Web service schema and the schema
of an implemented Web service is useful if the resulting transformation in-
structions for input and output messages at the instance level yield the same
results as would have been achieved with a new implementation of the de-
sired service. This is given if all values that are possible inputs for the desired
Web service schema are also accepted by the implemented service and if all
outputs of the implemented Web service are also outputs within the desired
Web service schema. This commutative relationship is shown in Figure 3.8.

Desired
WS Input Schema

Implemented
WS Input Schema

Desired
WS Input Message

Implemented
WS Input Message

Implemented
WS Output Schema

Desired
WS Output Schema

Implemented
WS Output Message

Desired
WS Output Message

Input

Outputaccepts accepts

accepts accepts

Match

Match

Trans-
formation

Trans-
formation

Figure 3.8: Information preserving match and transformation.

How schema mappings and transformation functions influence this goal
is analyzed in detail in Section 3.4.1. In Section 3.4.2, it is shown how an
implementation-independent transformation expression can be derived for
useful matches. Section 3.4.3 uses this transformation expression to establish
a match hierarchy.

3.4.1 Identifying Useful Matches

As already motivated in the example in Table 3.5 and Figure 3.8, an imple-
mented Web service can be used in place of a specified service if mappings
and transformation functions for all attributes of input and output can be
defined. To analyze the usefulness of such a combination of mappings and
transformations, the notion of information capacity as studied in [MIR93] is
adopted.

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 96

Definition 3.12. The input information capacity of a Web service instance
I(WS) over a given Web service schema WS is defined as the set of all valid
input tuples that this Web service instance accepts. The output information
capacity of I(WS) is defined analogously as the set of all valid output tuples
that the Web service instance returns.

A Web service instance I1(WS1) has more input information capacity
(output information capacity) than a Web service instance I2(WS2) if every
valid input (output) tuple of I1(WS1) can be transformed into a valid input
(output) tuple of I2(WS2). This is formalized in the following definitions in
analogy to [MIR93].

Definition 3.13. An information preserving mapping between the valid in-
put (output) tuples of two Web service instances I1(WS1) and I2(WS2) is
a total injective function f that maps every valid input (output) tuple of
I1(WS1) to a valid input (output) tuple of I2(WS2). If f is a total onto
function that is not injective, f is called information reducing mapping. If f
is information-preserving and a bijection, the mapping is called equivalence
preserving. If f is total, but neither injective nor an onto function, f is called
information changing.

Definition 3.14. A Web service instance I2(WS2) is called a substitution
for a Web service instance I1(WS1) (I1(WS1) � I2(WS2)) if there exists
an information preserving mapping fI from the set of valid input tuples of
I1(WS1) to the set of valid input tuples of I2(WS2) and an information pre-
serving mapping fO from the set of valid output tuples of I2(WS2) to the set
of valid output tuples of I1(WS1). If either fI or fO is information-reducing,
I2(WS2) is called a replacement for I1(WS1) (I1(WS1) � I2(WS2)). If fI

and fO are both equivalence-preserving, I1(WS1) and I2(WS2) are called
equivalent (I1(WS1) ≡ I2(WS2)).

Lemma 3.2. Let the mapping between two Web services I1(WS1) and
I2(WS2) consist of n transformation functions on the input side and m trans-
formation functions on the output side.

• The two Web services are equivalent if all n + m transformation func-
tions are bijections.

• If Web service I2(WS2) is not equivalent to I1(WS1), but at least one
transformation function is a total injective function and the remaining
n + m − 1 transformation functions are either total and injective or
bijective, then I2(WS2) is a substitution for I1(WS1).

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 97

• If Web service I2(WS2) is neither equivalent nor a substitution for
I1(WS1), but at least one transformation function is a total onto func-
tion and the remaining n+m−1 transformation functions are either to-
tal and onto, total and injective, or bijective, then Web service I2(WS2)
is a replacement for I1(WS1).

Looking at the customer score calculation example in Table 3.5, the out-
put transformation consists of just one function. Only the attribute Score
needs to be mapped. As the domains on both sides are identical, the trans-
formation function is the identity function fid. Therefore, the mapping on
the output side is equivalence preserving.

For the input mapping, the transformation function consists of all indi-
vidual transformation functions at the attribute level as defined in Table 3.5.
The two operations extractfn and extractln that extract the first and the
last name are total onto functions. The logically inverse function is the func-
tion combine(First namet, Last namet) = Names. The mapping fmap from
the set {′F ′,′M ′} to the set {1, 2} is a bijection. The identity mapping for
the attribute town and the date2string operation are bijections as well. The
computation of the monthly income as the twelfth part of the yearly income
is total and injective, but the inverse function is not total because the range
for monthly income is not restricted, whereas the range of the yearly income
must be at least 12,000. The computation of the family size is not injective
but an onto function as, e.g., an unmarried parent with two children has a
family of size three, which is also the size of a family consisting of a couple
with one child. Therefore, the input mapping is information reducing and
the implemented Web service is a replacement for the Web service searched
for. From the perspective of the bank, the implemented Web service offers
the desired functionality based on slightly less detailed information than the
bank has stored.

Only if the computed match can be turned into an operational transfor-
mation of input and output tuples, it is possible to employ the Web service
already implemented in the intended context specified by the Web service
schema sought. This is examined in more detail in the following for the
schema level, the match cardinality, and the instance level of input and out-
put tuples.

Schema Level: The match algorithms as described in Section 3.3 compute
a mapping between operation names, attribute names and domain names. If
the operation name and the attribute names match, an additional domain
match increases the degree of compliance and indicates that a domain trans-
formation function owing to different data types is not needed on the instance

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 98

level. If the domains do not match, a transformation function is needed. If
the attribute names do not match, but the domains match, this information
needs further investigation because it is very likely that two completely differ-
ent attributes are of the same data type without having anything in common.
Therefore, the detailedness or granularity of the match on the schema level
influences the necessary transformations on the instance level.

Cardinality: A similar observation can be made for the aspect of match
cardinality. A 1 : 1 mapping of attributes with matching domains is de-
scribed, using the identity function fid. It is assumed that the two attributes
have the same meaning and a domain transformation is not necessary. If an
n : 1 mapping is discovered, a transformation function is always needed to
combine n attributes. Therefore, n : 1 mappings always induce a transfor-
mation function. For 1 : n mappings, two cases can be distinguished. Such
a transformation is either a replication because the same attribute in its en-
tirety is used several times or it is a decomposition because different parts of
the attribute are used to compute new attributes. In the example above, the
attribute Name is used twice in a decomposition. Therefore, 1 : n mappings
also induce the use of a decomposing or replicating transformation function.
Mappings of cardinality n : m are excluded from this analysis because they
do not contribute enough information or can be reduced to one of the other
three types at a different level of detail as explained in [RB01].

Instance Level: On the instance level, the nature of all transformation
functions finally determines the information capacity of the executable map-
ping instruction. This includes the domain constraints. If f : A → B is a
total injective mapping, it is defined on every element of A, f(A) ⊆ B, and
a1, a2 ∈ A, a1 = a2 implies f(a1) = f(a2). Furthermore, restricting B to the
image of A under f yields a bijection. If A gets restricted by a constraint
cA, this does not change the total and injective character of f . If B gets re-
stricted by a constraint cB, this might have the effect that f is not total any
more, but gets undefined for some a ∈ A. This results in a partial mapping
that is neither information-preserving not information-reducing any more.

Consider the following example: the mapping from attribute income year
to attribute income month assumes an equal distribution of the yearly in-
come across 12 months, income month = income year/12. This transfor-
mation function is total and injective. The inverse function exists and is
total. Therefore, the transformation function is a bijection, income year =
income month∗12 is the inverse function. Adding constraints on both sides,
e.g., 18, 000 ≤ income year and 1, 200 ≤ income month still yields a useful

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 99

match as 18, 000/12 ≤ income year/12 implies that 1, 200 ≤ income month
is also satisfied. Adding a different constraint on the target side, e.g., 2, 000 ≤
income month results in a conflict as a yearly income between 18, 000 and
less than 24, 000 fulfills the source constraint, but violates the target con-
straint.

income month = income year/12

⇔ income year = income month ∗ 12

1, 200 ≤ income month

⇔ 14, 400 ≤ income year

18, 000 ≤ income year ⇒ 14, 400 ≤ income year constraint satisfied

2, 000 ≤ income month

⇔ 24, 0000 ≤ income year

18, 000 ≤ income year � 24, 000 ≤ income year constraint not satisfied

Useful Matches:

Definition 3.15. Useful matches have matching operations names (renam-
ing is allowed), matching attribute names (renaming is allowed), and domains
between which transformation functions f1, . . . , fn exist:

• If f1, . . . , fn are total bijections, the match is called equivalence match.

• If f1, . . . , fn are total injective functions and there exists at least one
fi that is not onto, the match is called substitution match.

• If f1, . . . , fn are total onto functions and there exists at least one fi

that is not injective, the match is called replacement match.

• If one transformation function fi is not total, but the image of the
source domain (doms) under source constraints (cs) has a non-empty
overlap with the target domain (domt) observing the target constraints
(ct), the match is restricted.

If the overlap is empty, the match is not useful. If the operation name does
not match, the attributes are not considered further. If the attribute names

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 100

Table 3.6: Hierarchy of useful matches.

Opera- Attri- Domain Con- Match
tion bute Transfor- straint Type

mation
Match Match total, bijective f(cs(doms)) equivalence

⊆ ct(domt)

Match Match total, injective, f(cs(doms)) substitution
not onto ⊆ ct(domt)

Match Match total, onto, f(cs(doms)) replacement
not injective ⊆ ct(domt)

Match Match total but f(cs(doms)) restrictedl
neither injective � ct(domt)∧
nor onto f(cs(doms))

∩ct(domt) �= ∅
Match Match not total f(cs(doms)) not useful

∩ct(domt) = ∅
Match Match No Match not useful
Match No Match not useful
No Match not useful

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 101

do not match, they are not considered either because matching domains alone
do not justify a match. These definitions are summarized in Table 3.6.

For the mapping, to be at least partially useful, the domain constraint on
the source and on the target must be fulfilled for a non-empty set of elements
of the source domain. It is desirable to know in advance, before implement-
ing the mapping, if the source constraint also implicitly fulfills the target
constraint. In a strict sense, this is only possible if the transformation func-
tion on the domains disregarding the constraints is a bijection. The yearly
and monthly income is an example as shown above. There, restrictions on
the monthly income can be translated into restrictions on the yearly income
using the inverse function f−1.

For n : 1 matches, it is harder to decide if input that is accepted by the
source service is also accepted by the target service. Consider the follow-
ing example: The mapping Family size = 1 + Marital status + Children
is given. The mapping is total but not injective, e.g., the family size of
an unmarried parent with two children is the same as of a couple with
one child. Restricting the Family size to four people can be translated
into constraints for the source side allowing the following combinations of
(Marital status, Children):

{(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)}.

This can only be deduced by evaluation of the transformation func-
tion. The restriction on the target side can be expressed in terms of the
source attributes as a rule like (Marital status = 0 ⇒ Children ≤ 3) ∨
(Marital status = 1 ⇒ Children ≤ 2). This shows that the restriction on
the target domain imposes a restriction on two or more independent values of
the source domain, indicating a dependency that does not exist in the source
domains.

With this classification of useful matches and their characteristics the
following section describes how to derive a self-contained operational match.

3.4.2 Relational Match Expressions

To make the match result operational, the individual match expressions must
be turned into an integrated transformation instruction. In the following,
the necessary transformation from source to target relation are described as
relational algebra expressions using the operations selection σ, renaming ρ
and join �� as defined in Section 3.2.1. The definition of projection π is
extended, allowing extended projections based on the definition of extended
projection in [SKS05] with additional extensions to multi-column input.

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 102

Definition 3.16. Let X be a relation schema and r a relation over X.
Let {A1, . . . An} ⊆ X and B /∈ X − {A1, . . . An}. Note that the Ai need
not be pairwise disjoint, but duplicates are permitted. Let f : dom(A1) ×
. . .× dom(An) → dom(B) be an information equivalent, an information pre-
serving, or an information reducing function. Then the extended projection
operation is defined as follows:

ρB←f(A1,...,An)(πf(A1,...,An)(r))
:= {μ over B| μ[B] = f(ν[A1, . . . An]) for ν ∈ r}

For short, this operation is written as:

πf(A1,...,An)|B(r)

The extended projection translates to SQL as:

Code 3.12.

Select f(A1, ..., An) as B from r

In a generalized projection operation, any number of transformation func-
tions is allowed. The ordinary projection operation as known from relational
algebra can be expressed using the identity function fid and keeping the at-
tribute name. The ordinary renaming operation for an attribute as known
from relational algebra can also be expressed using the identity function for
projection and renaming the result.

The useful matches between two Web service schemata as listed in Table
3.6 can be described with these operations. As an example, the match for
the customer scoring Web service as given in Table 3.5 is used. The matching
expression is built up step by step examining the different cases as identified
in Table 3.6.

The 1:1 matches for the input attributes Gender, Town, Birth_date, and
Income_year can be expressed as extended projections on the source input
relation (In) as follows:

Code 3.13.

select
fmap(Gender) as Gender ,
fid(Town) as Town ,
date2string(Birth_date) as Birth_date ,
f1/12(Income_year) as Income_month

from In

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 103

Here, attribute names are equal or get renamed, domain names match and
bijective transformation functions between attribute domains are applied. As
there do not exist any domain constraints on the target side, the matching
expression does not need any selection condition. A constraint on the source
side needs not to be translated into a selection condition.

Assuming a constraint on the target side, e.g., Income_month ≥ 1, 200
results in a selection condition that is always fulfilled because it is less re-
strictive than the constraint Income_year ≥ 18, 000 that has already been
defined on the source side. In this case, the matching expression is not
changed. If the constraint on the target side is more restrictive, this needs to
be expressed in a selection condition. Assuming that Income_month ≥ 2, 000
results in a matching expression of the following kind:

Code 3.14.

select
f_map(Gender) as Gender ,
f_id(Town) as Town ,
date2string(Birth_date) as Birth_date ,
f1/12(Income_year) as Income_month

from In
where Income_year >= 24,000

The 1 : n match between Name and First_name, Last_name is also inte-
grated using an extended projection:

Code 3.15.

select
extract_fn(Name) as First_name ,
extract_ln(Name) as Last_name ,
f_map(Gender) as Gender ,
f_id(Town) as Town ,
date2string(Birth_date) as Birth_date ,
f1/12(Income_year) as Income_month

from In
where Income_year >= 24,000

The n : 1 match between Children, Marital_status and Family_size is
also integrated:

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 104

Code 3.16.

select
extract_fn(Name) as First_name ,
extract_ln(Name) as Last_name ,
f_map(Gender) as Gender ,
f_id(Town) as Town ,
date2string(Birth_date) as Birth_date ,
f1/12(Income_year) as Income_month ,
fc+ms+1(Children , Marital_status) as Familiy_size

from In
where Income_year >= 24,000

If a constraint is added on the target side, restricting family size ≤ 4,
this cannot be directly expressed as a constraint on the source side as the
transformation is an onto function. The constraint can only be integrated
after the transformation has been computed. This results in a matching
expression of the following form:

Code 3.17.

select * from
(select

extract_fn(Name) as First_name ,
extract_ln(Name) as Last_name ,
f_map(Gender) as Gender ,
f_id(Town) as Town ,
date2string(Birth_date) as Birth_date ,
f1/12(Income_year) as Income_month ,
fc+ms+1(Children , Marital_status) as Familiy_size

from In
where Income_year >= 24 ,000) as Intermediate
where Familiy_size <=4

For the output relation (Out), a second matching expression is needed. In
the example given, this is: select f_id(Score)as Score from Out.

The two matching expressions for the input and output side can be re-
garded as two operations of a new, relational Web service with the following
schema specification as shown in Table 3.7. The transformation Web ser-
vice offers an input transformation operation and an output transformation
operation between the two customer score operations.

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 105

Table 3.7: Transformation Web service schema.
Web Opera- Attri- Attri- Data Data
Service tion bute Bute Type Type
Name Name Name Type Domain Range
Trans- In trans- Name IN STRING not null
formation formation

Gender IN CHAR not null
∧ (=′ F ′

∨ =′ M ′)
Marital IN INT not null
status ∧ (= 0

∨ = 1)
Town IN STRING not null
Birth IN DATE not null
date
Income IN FLOAT not null
year ∧ ≥ 24, 000
Children IN INT not null

∧ ≥ 0
First Name OUT STRING not null
Last Name OUT STRING not null
Gender OUT CHAR not null

∧ (=′ F ′

∨ =′ M ′)
Town OUT STRING not null
Birth OUT STRING not null
date
Income OUT FLOAT not null
month ∧ ≥ 2, 000
Family OUT INT not null
size ∧ ≤ 4

Out trans- Score IN FLOAT not null
formation ∧ ≥ 0

∧ ≤ 1
Score OUT FLOAT not null

∧ ≥ 0
∧ ≤ 1

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 106

This means that a match between two Web service specifications ulti-
mately produces a Web service specification as result. The internal behavior
can be described entirely as an extended relational algebra expression. It
describes in a declarative way the transformation that an implementation of
a transformation Web service needs to conduct. In the next section, it will
be examined if such an extended relational algebra expression can always be
derived from a computed mapping.

3.4.3 Match Hierarchy

The characteristics of the relational matching expression are to be examined
next. First of all, it needs to be observed that this description is indepen-
dent of any programming language, but not unambiguous due to the redun-
dancy inherent in relational algebra. For example, the selection expression
σFamily size≤4 in the example in Section 3.4.2 can be expressed as a join with
a table containing just one column Family_size and four values {1, 2, 3, 4}.
Therefore, the relational algebra expression does not give a direct hint as to
how “good” the match is. To amend this, a normal form is introduced.

Definition 3.17. Let R be a relational Web service schema with n operation
names Op1, . . . , Opn. For every operation name Opi two relation schemata
Rin

i and Rout
i for input and output are defined. rin

i and rout
i denote relations

over these schemata containing all valid input and output tuples. The set of
matching expressions M is recursively defined as follows:

• The relations rin
i and rout

i are matching expressions.

• If E is a matching expression and c is a selection condition on attribute
A ∈ E of the form AΘa, a ∈ dom(A) and Θ ∈ {<,≤, >,≥, =, �=}, or
a combination of such conditions combined by ¬,∨,∧, then σc(E) is a
matching expression.

• If E is a matching expression, X ⊆ E set of attributes of E, B /∈ E
not an attribute of E and f : X → B either a bijective, or total and
injective, or total and onto transformation function, then πf(X)|B (E) is
a matching expression.

• All matching expressions are achieved by applying the above rules a
finite number of times.

The following equivalences apply:

Theorem 3.2. Given a relational Web service schema and r ∈ {rin, rout}
input or output relation over the relation schema R ∈ {Rin, Rout} respectively.

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 107

1. Let X := {A1, . . . An} ⊆ R, B /∈ R − X, C /∈ R − X,
f : dom(A1) × · · · × dom(An) → dom(B),
g : dom(B) → dom(C). Then
⇒ ∃h : dom(A1) × · · · × dom(An) → dom(C) :

πg(B)|C (πf(X)|B (r)) = πh(X)|C (r)

2. σc1(σc2(r)) = σc1∧c2(r) = σc2∧c1(r) = σc2(σc1(r))

3. Let X1 := {A11, . . . A1n} ⊆ R, X2 := {A21, . . . A2m} ⊆ R, X1∩X2 = ∅,
B1 /∈ R − X1, B2 /∈ R − X2, B1 �= B2,
f : dom(A11) × · · · × dom(A1n) → dom(B1),
g : dom(A21) × · · · × dom(A2m) → dom(B2). Then

πB1,g(X2)|B1,B2
(πf(X1),fid(X2)|B1,X2

(r))

= πf(X1),g(X2)|B1,B2
(r)

= πg(X2),f(X1)|B2,B1
(r)

= πB2,f(X1)|B2,B1
(πg(X2),fid(X1)|B2,X1

(r))

The first rule states that consecutive transformation and renaming on
the same attribute can be merged into one single transformation step. This
is easily shown defining h := g(f). The second rule states that selection
conditions can be swapped and follows directly. The third rule is obvious as
the two attribute sets X1 and X2 are disjoint.

In the ordinary relational algebra, projection and selection operation can
be exchanged if all attributes that are referenced in the selection condition
also occur in the projection list. This rule is only valid in a restricted case
for generalized projection operations:

Proposition 3.3. Let X := {A1, . . . An} ⊆ R, B /∈ R − X,
x := (a1, . . . an) ∈ dom(A1) × · · · × dom(An),
XΘx = (A1Θa1 ∧ . . . ∧ AnΘan), selection condition,
f : dom(A1) × · · · × dom(An) → dom(B), monotone bijection. Then

πf(X)|B (σXΘx(r)) = σBΘ̃f(x)(πf(X)|B (r))

In general, if f is not a bijection or not monotone, swapping selection and
projection is not possible. The comparison operator Θ must be adapted to
Θ̃ using the inverse function f−1.

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 108

Definition 3.18. A match between the input or output attributes of two
Web service schemata is in relational match normal form (RMNF) if it has
a matching expression of the following form

σd(ρg(πf1(A11,...,A1k),...,fm(Am,...Aml)(σc(r))))

where 0 ≤ m ≤ n, r is the source relation over the relation schema R =
(A1, . . . , An). c is a selection condition of the form AiΘa, Ai ∈ R, a ∈
dom(Ai) and Θ ∈ {<,≤, >,≥, =, �=} or a combination of such conditions
combined by ¬,∨,∧. ρg is a renaming operator that renames all f(Aij)
to Bi and d is a selection condition of the form BiΘb, b ∈ dom(Bi), Θ ∈
{<,≤, >,≥, =, �=} or a combination of such conditions combined by ¬,∨,∧.

The result of the example in Section 3.4.2 is a matching expression in
RMNF.

Theorem 3.3. Every match result between two Web service input or output
schemata source S and target T of a schema matching algorithm given in
the form ({S.A1, . . . , S.An} , {T.B1, . . . , T.Bm} , exp) with n = 1, m ≥ 1 or
n ≥ 1, m = 1 can be operationalized using an extended relational algebra
expression in RMNF.

Proof. 1. The transformation function is a monotone bijection and there
is a domain constraint on the target side:

(a) The mapping is 1 : 1: The mapping has the form
({S.A} , {T.B} , f(A) = B).
On B there is a domain constraint BΘx defined. As f is a mono-
tone bijection the target domain constraint can be expressed in
terms of the source domain as AΘ̃f−1(x). Θ̃ denotes the adapta-
tion of Θ under f−1.

(b) The mapping is 1 : n: The mapping has the form
({S.A} , {T.B1, . . . , T.Bm} , f1(A) = B1, . . . , fn(A) = bn).
On some Bi there are domain constraints BiΘixi defined. As all
fi are monotone bijections the target domain constraints can be
expressed in terms of the source domain as AΘ̃f−1(x).

(c) The mapping is n : 1: The mapping has the form
({S.A1, . . . , An} , {T.B} , f(A1, . . . , An) = B).
On B there is a domain constraint BΘx defined. As f is a mono-
tone bijection the target domain constraint can be expressed in
terms of the source domains as A1Θ̃f−1(x)1 ∧ . . . ∧ A1Θ̃f−1(x)n.
f−1(x)i denotes the ith component of the vector f−1(x).

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 109

All selection conditions from this case are written into the inner se-
lection condition, followed by projection and renaming. The extended
relational algebra expression has the form:

ρg(πf1(A11,...,A1k),...,fm(Am1,...Aml)(σc(r))).

2. There is no domain constraint on the target side: An inner selection
condition is not needed. Extended projection followed by renaming of
the attributes is used. The extended relational algebra expression has
the form:

ρg(πf1(A11,...,A1k),...,fm(Am,...Aml)(r)).

3. The transformation function is not a monotone bijection and there is a
domain constraint on the target side: In this case, first the attributes
are selected using extended projection followed by renaming. Then an
outer selection condition is applied on the renamed attributes. The
extended relational algebra expression has the form:

σd(ρg(πf1(A11,...,A1k),...,fm(Am,...Aml)(r))).

The above three cases are disjoint and cover all relevant variations. There-
fore the three steps can be applied one after the other to yield the desired
RMNF representation. Further steps are not necessary because a mapping
between two individual relations is considered.

Notice that the selection conditions that are constructed above are not
necessarily satisfiable. Consider, for example, the following transformation
that restricts the number of children in the inner selection conditions and
the family size in the outer selection condition such that the two conditions
together are not fulfilled at the same time.

Code 3.18.

Select * from
(select *

Children as Children
fc+ms+1(Children , Marital_status) as Family_size

from In
where Children <=2) as Intermediate

where Family_size >=5

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 110

Based on the above defined normal form, seven different match types can
be distinguished. The following match hierarchy can be derived:

Perfect Match: All attributes on source and target side are matched 1:1.
The match expression consists of generalized projection using the iden-
tity function only.

Equivalence Match: All attributes on source and target side are matched
1:1. The match expression consists of generalized projection using
monotone bijective transformation functions and renaming operations
only.

Substitution Match: All attributes on source and target side are matched.
The match expression consists of generalized projection using total,
injective transformation functions and renaming operations only.

Replacement Match: All attributes on source and target side are matched.
The match expression consists of generalized projection using total onto
transformation functions and renaming operations only.

Restricted Match: All attributes on source and target side are matched.
One or more domains cannot be mapped completely. The match ex-
pression consists of generalized projection, renaming, and an inner se-
lection condition which is satisfiable.

Partial Match: At least one attribute on source or target side remains
unmatched or the inner selection conditions of the restricted match are
not satisfiable.

Uncertain Match: All attributes on source and target side are matched.
One or more domains cannot be mapped completely. The match ex-
pression consists of generalized projection, renaming, and an outer se-
lection condition.

A perfect match and an equivalence match can be used straightforwardly
without any changes to the logical model that was the starting point for the
search. Transformation functions have to be implemented, but they are all
bijections. A substitution and a replacement match require the program-
ming of transformation functions to adapt the input parameters to the Web
service or to adapt the result parameters. At least one of this transforma-
tion functions is injective or an onto function. A restricted match indicates
that the available Web service possesses the functionality searched for and is
compatible at the schema level but is not able to cover the complete domain
of interest at the instance level.

CHAPTER 3. SYNTACTIC MATCHING OF OPERATIONS 111

3.5 Summary

In this chapter, a relational model that captures the syntactic characteristics
of Web service operations has been defined. It consists of information about
Web services, operations, data types, the grouping of operations into services,
and the input and output attributes of operations. The relational model
adopts a black-box approach. The operation is described by its name, its
input, and output parameters. The internal implementation is hidden. The
model is suitable to administrate schema information using relational algebra
operators.

It has been shown that existing techniques from relational schema match-
ing can be adapted to this relational model. As an example for such an adap-
tation, a dictionary-based approach in combination with similarity flooding
has been examined. The match is computed on the level of operation names,
input and output schema, and is finally refined manually adding transforma-
tion functions. For this, a notation for matching expressions has been defined.
It has been shown that this approach can be realized adapting existing algo-
rithms without increasing their algorithmic complexity. The complexity of
the complete computation is dominated by the number of potential match
candidates, which is decreased in the first step.

Based on the transformation functions, the match is operationalized using
an extended relational algebra expression. Thus, a match between two Web
service operation schemata becomes a Web service transformation operation
itself, returning a Web service as result. The transformation functions are
used to define a class of useful matches. Useful matches are expressed in a
relational match normal form. This normal form is used to define a match
hierarchy and to differentiate between match results.

The approach presented in this chapter has the advantage that it is com-
pletely based on the information available in WSDL files. The relational
representation is suitable to use the tool-box of relational matching algo-
rithms. As a drawback, the approach assumes a likeness in operation names,
attribute names, and domain names. Therefore, the relational syntactic ap-
proach is enhanced with semantic support in the following chapter.

Chapter 4

Operation Matching with
Semantic Annotations

For support of Web service detection in an intra-enterprise setting, it is desir-
able to use domain specific terminology that is typical of the business domain.
The definition of this terminology is often one of the first steps of software
development methodologies, e.g., object-oriented analysis and design [Oes01]
or the entity-relationship approach to database design [Vos00]. The results
of the initial domain analysis are often still visible in the final software prod-
uct, e.g., as hierarchical dimensions in a data warehouse, as categories of the
standard reporting, or as logical groups of input fields on a GUI. The business
analyst and the programmer are both familiar with these terms. Therefore,
these terms are suitable to describe a Web service operation.

When existing software is equipped with a Web service interface, it is
natural to reuse the existing business terminology to describe the operations
that a Web service interface offers. Intuitively, it is desirable to “connect”
a Web service operation, its input and output parameters with terms of the
application domain. This chapter presents an intuitive, yet efficient way
to achieve this: semantic annotations. The idea of semantic annotations is
based on the assumption that the technical Web service interface is generated
from existing, implemented software and that the description is added after
this automatic generation. The terminology for the semantic annotation
exists independently of the Web service and stems from the business domain.

In the following, the idea and the use of semantic annotations are intro-
duced. Section 4.1 presents a simplified usage scenario for semantic annota-
tions in software development and maintenance. In Section 4.2, the underly-
ing foundations of semantic Web technology and description logic are briefly
summarized. They form the basis for semantic annotations for Web services.
Section 4.3 introduces semantic annotations. An algorithm is presented that

112

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 113

retrieves Web service operations, which match a given query, based on se-
mantic annotations. It is shown that the algorithm is correct and efficient,
yet not complete given an open-world assumption. Section 4.4 presents ex-
tensions and variations of the retrieval algorithm. Section 4.5 summarizes
the results of this chapter while answering the remaining research questions
from Section 1.2.

4.1 Motivation for Semantic Annotations

This section resumes the Internet loan application scenario and broadens
the application scope so that it encompasses the functionality of a finan-
cial calculation kernel. The functionality of this software is a typical reuse
candidate to be offered as a collection of Web service operations, which can
be described by using a highly domain-specific terminology. Therefore, it is
chosen as a running example to motivate the usage of semantic annotations
in Web service operation search.

Section 4.1.1 gives a brief overview of the scenario. The complete sce-
nario description can be found in the appendix. The methodology used to
model the vocabulary for semantic annotations follows the methodology as
introduced by [Hüs05].

In Section 4.1.2 typical search queries are categorized to introduce simple
semantic queries. These queries use semantic annotations of Web service
operations for search and retrieval.

Section 4.1.3 summarizes the research questions that arise when using
semantic annotations for Web service operation detection. These questions
will be answered in the remainder of this chapter.

4.1.1 Scenario Overview

The operations of a financial calculation kernel are used in different applica-
tion contexts, e.g., the marketing department uses the algorithms to adjust
the interest rates for loans and savings when the market conditions change.
The calculated condition tables are then used in the Internet loan applica-
tion as introduced in Section 2.1. A corporate customer consultant must
be able to make an individual loan offer for important customers, yet be
able to calculate the profit margin with the same methods as for a private
customer’s standard loan. In these two application scenarios, the price for
loans is calculated ex-ante to make an offer to the customer. Later, when
the loan is granted and the data is entered into the operational database,
the same algorithms are used to calculate the profit margin which is then

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 114

imported into the data warehouse and used for reporting purposes. This
ex-post calculation ought to be executed with exactly the same algorithms
as the ex-ante calculation to ensure consistency between ex-ante and ex-post
results.

These examples show that the functionality of a financial calculation ker-
nel is destined to be reused, not only for technical, but also for conceptual
consistency. To this end, an easy and standardized access as granted by Web
service interfaces is desirable. Neither is it important how the operations
are grouped into individual services, nor is it important which department
provides the service. Therefore, search functionality as offered by a UDDI,
categorized by provider and service, is not sufficient, but it is also necessary
to search on the level of operations and to refine this search based on in-
put and output parameters. For example, an operation that calculates the
present value of a loan can take the expected cashflow as input or take the
loan account as input to calculate the cashflow on the fly.

From the application designer’s point of view an integrated approach to-
wards Web service administration and operation discovery is desirable. When
the interface description of a Web service is published, it must be possible
to annotate this description and attach domain specific information to the
operation name as well as the input and output attributes. For example,
a Web service operation that calculates a gross initial present value for a
deferred payment loan is annotated as follows:

• The operation name is annotated with “Measure Calculation”.

• The input parameter is annotated with “Deferred Payment Loan”.

• The output parameter is annotated with “Gross Initial Present Value”.

Using annotations for Web service operation detection needs two prereq-
uisites:

1. When searching for a Web service operation, the designer refers to the
vocabulary that has been used for semantic annotations. For example,
the designer might search for all Web service operations that output
a gross initial present value. This presumes that the vocabulary for
semantic annotations is controlled and designed in a domain-specific
way. A model is needed to formalize this vocabulary and to use it in
simple semantic queries.

2. Further, it is desirable to relate the terms of the vocabulary to each
other. A search for all Web service operations that return a present

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 115

value is expected to include also all Web service operations that return
a gross initial present value because it is a specialization of a present
value. To achieve such an interpretation of the query the relationships
between the terms of the vocabulary must be modeled explicitly and
the search must be semantically enhanced.

To achieve the first aim, the relational model as used in Chapter 3 is
extended to include domain-specific annotations as shown in Table 4.1. The
programmer has called the operation “Compute PV” and named the input
parameter “Account” and the output parameter “PV”. The semantic anno-
tations saO and saA explain in domain-specific terms the meaning of these
names. The table shows only the newly annotated part of the schema def-
inition. The domain and constraint columns have been omitted for better
readability. They do not contribute to the following explanations.

Table 4.1: Semantically annotated operation schema.
Web Opera- saO Attri- saA Attri-
Service tion bute bute
Name Name Name Type
Calculation Compute PV Measure Account Deferred IN
Service Calcu- Payment

lation Loan
Calculation Compute PV Measure PV Gross OUT
Service Calcu- Initial

lation Present
Value

To achieve the second aim, taxonomies are employed. A taxonomy con-
tains the domain-specific vocabulary and relates these terms to each other by
three basic relationships: “broader-than”, “narrower-than” and “same-as”.
Terms of a taxonomy are also called concepts. International standards for
structured vocabularies are provided by, e.g., the British Standards Institu-
tion [Bri05a, Bri05b].

A concept is visualized as rectangle, a “narrower-than” relationship is de-
picted as an arrow from the specialized concept to the more general concept.
The “broader-than” relationship is the inverse of the “narrower-than” rela-
tionship. The “same-as” relationship between two concepts states that the
first is narrower or broader than the second and vice versa. Therefore, they
are synonyms. In the following examples, the “narrower-than” relationship
is preferred for visual notation.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 116

The vocabulary to describe the financial calculation kernel consists of
five domain-specific taxonomies for financial products, financial measures,
customers, cashflows, and calculations. An overview is given in Figure 4.1.
The complete model is documented in Appendix A.3.

Financial
Product

Financial
Measure

Customer

Cashflow

Calculation

Concept

Historic Cashflow

Private Customer

Periodic Measure

Depot B

Measure Calculation

...

...

...

...

...

Figure 4.1: Domain-specific semantic submodels.

Financial measures are an example of a concept hierarchy of supercon-
cepts and subconcepts as shown in Figure 4.2. The concept hierarchy as
shown here is typical of financial reporting, e.g., for internal controlling.

Financial
Measures

Periodic
Measures

Non-
Periodic

Measures

Initial
Present
Value

Margin

...

Gross Initial
Present
Value

Net Initial
Present
Value

Gross
Margin

Net Margin
...

Figure 4.2: Measure concept hierarchy.

The financial products are also modeled as superconcepts and subcon-
cepts as depicted in Figure 4.3. The online loan that has been the example
of Section 2.1 is a subclass of a consumer loan which is a traditional loan
product with fixed conditions and deferred payment.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 117

Financial
Product

Depot
B

Traditional
Product

Loan
Product

Anuity
Loan

Amortizable
Loan

Fixed
Condition

Loan

...

... ...
...

Consumer
Loan

...

Mortgage
Loan

...

Investment
Loan

...

...

...

...

...

Deferred
Payment

Loan

Figure 4.3: Financial products concept hierarchy.

Operations are also modeled as a concept hierarchy of superconcepts and
subconcepts. The hierarchy shown in Figure 4.4 distinguishes three seman-
tically different operation concepts: cashflow calculations, measure calcula-
tions, and rating calculations. To keep the example simple, only these three
operations concepts are modeled in the beginning. The example will be ex-
tended in later sections.

Calculation Cashflow
Calculation

Measure
Calculation

Rating
Calculation

Figure 4.4: Calculation concept hierarchy.

An application that makes use of these annotations and supports a de-
veloper in adding semantic annotations as well as using them for semantic
search could consist of the following components as shown in Figure 4.5:

• All interface descriptions with semantic annotations are available to
the application (1).

• The taxonomy provides an acknowledged vocabulary for annotations
and for searching (2).

• A GUI permits to explore the taxonomy graphically to choose concepts
for annotations and for searching (3).

• The development environment permits to annotate operations, input,
and output with concepts of the taxonomy (4).

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 118

Data
Layer

Applica-
tion

Layer

GUI
Layer

Query
GUI

Ontology
Browser

Result
Ranking

Query

Result
GUI

Annotation
GUI

Ontology
Browser

Annotation Update

Ontology
GUI

Ontology
Browser

Ontology Update

Ontology Updates Semantic Search Annotations

Taxonomy
Interface
Descriptions

Semantic
Annotations

Query
Rewriting

Reasoner
Ontology

Query Engine
Database

(1)
(2)

(3) (3) (3)

(4)

(4)

(4)

(5)

(5)

(6)

(6) (7) (7)

(8)

(8)

Figure 4.5: Ontology-based search.

• The development environment permits to extend and update the tax-
onomy (5).

• The development environment permits to search for available opera-
tions using concepts of the taxonomy (6).

• The search uses the taxonomy for inferences (7).

• The returned results are ranked according to their similarity with the
query and displayed (8).

For this application, to work effectively, the developer must meet the
following prerequisites in using the taxonomy:

• The developer uses a given application taxonomy to annotate the oper-
ation as well as its input and output parameters. Free text descriptions
instead of annotations are not allowed, only in addition to annotations.

• The developer chooses the correct and most specific concept for an-
notation. The more general the chosen concept is the less it is useful
for distinction, e.g., if all calculation operations are annotated as “cal-
culations”, the information provided is too general for useful search
support.

• The developer extends the ontology if a concept is missing rather than
using a concept too general for annotation. The taxonomy represents
the vocabulary allowed for annotations, but this vocabulary is not ex-
haustive. It needs constant maintenance and extensions.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 119

Techniques for visualization and graphical user support are offered, e.g.,
by Touchgraph interfaces1. Implementations that provide the necessary sup-
port for taxonomy creation and maintenance, such as OntoEdit2 or Protege3

exist. Reasoners for inferencing such as RACER [HM03] are often already
integrated.

Based on this vision of semantic annotations for Web services and seman-
tic search for operations the following section shows how this approach can
be used for semantic match computation. The focus is on steps (6) and (7)
of Figure 4.5.

4.1.2 Simple Semantic Queries

During software design and implementation reuse aspects need to be taken
into account. Therefore, software designers as well as programmers must be
able to find implemented functionality. The following questions represent
typical searches for Web service operations based on operations, input, and
output that are all expressible with the help of semantic annotations.

1. Select all operations that implement a specific operation concept.

2. Select all operations that have a specific concept as input resp. output.

3. Select all operations that implement a specific operation concept and
have a specific concept as input resp. output.

4. Select all operations that have concept A or concept B as input resp.
output.

5. Select all operations that implement a specific operation concept and
have either concept A as input or concept B as output.

6. Select all operations that have concept A and concept B as input resp.
output.

7. Select all operations that implement a specific operation concept and
have concept A as input and concept B as output.

Further, more complex relationships between the concepts used for search-
ing and the results need to be expressed. For example, the programmer
searches for an operation that takes an annuity loan as input and returns the

1http://touchgraph.sourceforge.net/
2http://www.ontoknowledge.org/tools/ontoedit.shtml
3http://protege.stanford.edu/

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 120

gross present value of the account but this operation is not available. Only
two operations are available: one that takes a fixed condition loan as input
and returns its initial cashflow as output and a second operation that takes
a cashflow as input and returns its present value. In this situation different
searches must be expressible.

8. Select all operations that implement a specific operation concept and
have a specific concept as input resp. output. Accept also operations
with more specialized operation concepts, input and output concepts.
This kind of search is called subsumption search.

9. Select all operations that implement a specific operation concept and
have a specific concept as input resp. output. Accept also operations
with a more generalized input concepts and more specialized operation
and output concepts. This kind of search is called plug-in search be-
cause the results can be “plugged” into the place of operations that are
exactly annotated with the search concepts.

10. Given an operation with a specific input concept, select all operations
that generate this concept or more specialized concepts as output. This
kind of search is called a sequence search because it allows to construct
sequences of operations.

11. Given an operation with a specific output concept, select all operations
that accept this concept or more generalized concepts as input. This
is also a sequence search.

12. Select all operations that have a concept as input that has a given
property. This is a property-based search that relies on the property of
concepts when the exact concept is unknown to the user.

Examples for the first group of search queries are categorized next. The
more complex queries are analyzed later in Section 4.3 and Section 4.4. Table
4.2 contains two Web service operation schemata that are used as running
examples in the remainder of this chapter. The query examples shown make
use of the SQL-notation for conjunctive queries instead of relational algebra
expressions to keep the code readable.

Examples for the first two types of questions are shown in the following
queries Q1 and Q2. Q1 returns a result bag containing the tuples (Calculation
Service, Compute MGL) and (Calculation Service, Compute PVL) twice. Q2
returns the same results as Q2 without duplicates. The SQL implementation
does not eliminate duplicates from the result set. Duplicate elimination is

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 121

Table 4.2: Web service operation example.
Web Opera- saO Attri- saA Attri-
Service tion bute bute
Name Name Name Type

Calculation Compute Measure Account Loan IN
Service MGL Calculation Product
Calculation Compute Measure MG Margin OUT
Service MGL Calculation
Calculation Compute Measure Account Loan IN
Service PVL Calculation Product
Calculation Compute Measure PV Initial OUT
Service PVL Calculation Present

Value

achieved by applying the distinct operator to the final result bag. In the
following examples, this duplicate elimination is omitted.

Code 4.1.

Q1: Select (WSNAME , OPNAME) from WSSCHEMA
where SAO = ‘‘Measure Calculation’’;

Q2: Select (WSNAME , OPNAME) from WSSCHEMA
where TYPE = ‘‘In’’

and SAA = ‘‘Loan Product ’’;

An example for the third type of query is given in the next code example.
Q3 returns the set {(Calculation Service, Compute MGL)}.
Code 4.2.

Q3: Select (WSNAME , OPNAME) from WSSCHEMA
where SAO = ‘‘Measure Calculation’’

and TYPE = ‘‘Out’’
and SAA = ‘‘Margin’’;

Queries like Q1, Q2, and Q3 are selection-projection queries and will be
called SP queries in the following.

Examples for the fourth and fifth query are given in the following. Q4
and Q5 both return the result set {(Calculation Service, Compute MGL),
(Calculation Service, Compute PVL)}.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 122

Code 4.3.

Q4: Select (WSNAME , OPNAME) from WSSCHEMA
where TYPE = ‘‘Out’’

and (SAA = ‘‘Margin’’
or SAA = ‘‘Initial Present Value’’);

Q5: Select (WSNAME , OPNAME) from WSSCHEMA
where SAO = ‘‘Measure Calculation’’

and ((TYPE = ‘‘In’’
and SAA = ‘‘Loan Product ’’)

or (TYPE = ‘‘Out’’
and SAA = ‘‘Margin’’));

Queries like Q4 and Q5 are selection-projection-union queries because the
disjunction in the where-clause is equivalent to a union of SP queries. This
type of query will be called SPU query in the following.

In the last two queries, a join is used to express the conjunction of search
criteria on input and output attributes. Therefore, this type of query will
be called SPJ query. The first query returns an empty set, the second query
returns the result set {(Calculation Service, Compute PVL)}.

Code 4.4.

Q6: Select * from
(Select WSNAME , OPNAME from WSSCHEMA

where TYPE = ‘‘Out’’
and SAA = ‘‘Margin’’)

MARGIN_VW ,
(Select WSNAME , OPNAME from WSSCHEMA

where TYPE = ‘‘Out’’
and SAA = ‘‘Initial Present Value’’) IPV_VW

where MARGIN_VW.WSNAME = IPV_VW.WSNAME
and MARGIN_VW.OPNAME = IPV_VW.OPNAME;

Q7: Select * from
(Select WSNAME , OPNAME from WSSCHEMA

where SAO = ‘‘Measure Calculation’’
and TYPE = ‘‘In’’
and SAA = ‘‘Loan Product ’’) IN_VW ,

(Select WSNAME , OPNAME from WSSCHEMA
where SAO = ‘‘Measure Calculation’’

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 123

and TYPE = ‘‘Out’’
and SAA = ‘‘Initial Present Value’’) OUT_VW

where IN_VW.WSNAME = OUT_VW.WSNAME
and IN_VW.OPNAME = OUT_VW.OPNAME;

If the queries are evaluated, they return all operation names that match
the query, not the complete Web service schema. If the complete Web service
schema is wanted the information about Web service name and operation
name as contained in the result set can be used to select the complete schema.

All queries that are discussed here are typical questions a software de-
signer might ask to determine if a specific operation implementation exists.
They are a special form of (unions of) conjunctive queries [AHV95], which
use semantic annotations in the where-clause and are therefore called simple
semantic query in the following. Conjunctive queries consist of selection,
projection, and join operations, allowing positive conjunctions of selection
conditions.

Definition 4.1. Given a set of concepts C and a set of Web service opera-
tions whose operation name, input, and output parameters are described by
concepts of C as shown in Table 4.2. Then simple semantic queries (SSQ)
are constructed applying the following construction rules:

1. A query which projects the Web service name and the operation name
by using at most two concepts of C in the where-clause combined
by a positive conjunction is a simple semantic query, called semantic
selection-projection query (SP-query).

2. Unions of SP-queries are also simple semantic queries, called semantic
selection-projection-union queries (SPU-queries).

3. Joins of SP-queries or SPU-queries are also simple semantic queries,
called semantic selection-projection-join queries (SPJ(U)-queries).

4. All SSQs are constructed applying the above rules a finite number of
times.

Simple semantic queries are SPJU-queries of relational algebra with the
additional constraint that at least one selection condition always refers to a
semantic annotation. Thus, complexity results for the evaluation of SPJU-
queries are applicable to SSQs, which will be used in Sections 4.3 and 4.4.
The examples of the previous section show that simple semantic queries are
sufficient for meaningful searches and represent the main objects of investi-
gation for the remainder of this chapter.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 124

4.1.3 Research Questions

Section 4.1.1 has introduced the general setting for semantic annotations
of Web services. Section 4.1.2 has shown by example that simple semantic
queries can be expressed as SP, SPU, and SPJ queries with semantic anno-
tations in the where-clause. This approach is used to answer the remaining
questions of Section 1.2:

• How can additional semantics be attached to a service so that this
additional documentation is generated at design time?

• How complex is semantic searching based on semantically enhanced
service specifications?

• In which way do semantic extensions to existing standards enhance the
quality of service description?

• What is the contribution to the software-development process?

The answers to these questions are given in three steps:

• A formalized model for simple knowledge representation systems such
as taxonomies is presented, which is suitable for semantic annotations
of Web service operations.

• The relational Web service repository is extended with semantic anno-
tations and the meaning of a semantic annotation in the context of the
formalized knowledge representation system is defined.

• An algorithm is presented that efficiently computes the answer to the
semantic queries as motivated in the above examples. The correctness
of the algorithm is shown and its complexity is analyzed.

Along this line, the impact of semantic annotations for service-oriented
software development is examined. The search algorithm is based on de-
scription logic and embedded into the larger research scope of semantic Web
services. Therefore, the following section first outlines the foundations of
semantic annotations to prepare for the aspired solution.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 125

4.2 Foundations of Semantic Annotations

The semantic Web and Web services represent complementary techniques
to make information on the Web machine-processable and to make services
on the Web machine-consumable. A combination of both techniques has
resulted in semantic Web services. The semantic Web vision and the chal-
lenges of a combination of semantic Web and Web service techniques is briefly
summarized in Section 4.2.1.

One of the most important formalisms to describe semantics is description
logic (DL). DL is a first order calculus that allows to model knowledge bases
and that has also been used to propose various models for semantic Web
services, e.g., [MBH+06, dBBD+05]. The basics of DL that are used in the
main part of this chapter are succinctly introduced in Section 4.2.2.

4.2.1 Introduction to Semantic Web Ideas

The semantic Web vision as described by Tim Berners-Lee [BLHL01] is an
extension of the known WWW that enables machines to derive the meaning
of the displayed information and to process it automatically.

For this vision to become true, Web pages must contain semantic meta-
information about the meaning of the displayed information. This context
must be represented in a structured way to be machine-processable and it
must be possible to express knowledge in terms of concepts and rules that
hold between concepts. For example, if a Web page contains a person’s
address, this information must be marked unambiguously as either the place
where the person lives or works or as the text of a speech that the person
delivers,. This “terminological control” [Gau05] is established through so-
called ontologies. The resulting “semiotic triangle”[OR23] is shown in Figure
4.6.

Word/
Symbol

Object

Concept

Ontology
specifies context

represents

refers
to

associated
with

Figure 4.6: Semiotic triangle with ontological context control according to
[OR23].

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 126

Originally, “ontology” is a technical term of Aristotelean philosophy and
denotes the science (Greek “logos”) of being (Greek “onta”). Its aim was
to create a classification of all existing things to be able to talk about them
and to identify their order and their nature. In philosophy the ontology tries
to capture the essence of the material world [Sow00] in one classification
schema.

In computer science the term ontology is often defined as “a formal ex-
plicit specification of a shared conceptualization” [Gru95]. A conceptualiza-
tion is a model of concepts. Concepts consist of objects that usually have
several attributes. Concepts are related to each other either by horizon-
tal “synonym-of”- or vertical “specialization-of”-relationships . An ontology
models concepts, attributes and relationships explicitly and formally. This
makes ontologies suitable for automatic processing. Usually, an ontology is
restricted to a specific domain. Within this domain, the ontology represents
a shared model of concepts which means that there must be a mutual con-
sensus among the majority of users within the domain about the relevant
domain specific concepts. Therefore, many ontologies exist in computer sci-
ence, e.g., [Mil95]. They are language-dependent and none of them raises the
claim to be complete.

If terminological control does not exist, the communication process may
result in a misunderstanding because a symbol is ambiguous. Figure 4.7
shows this situation with an informal and a formal interpretation of the term
“address”.

Search Symbol:
“Address”

Consumer

Provider

Informal
Concept

Informal
Concept

Object

Object

Consumer

Provider

Formal
Concept

Object
Search Symbol

“Address” +
Semantic Markup

<Concept_id = Speech>

Figure 4.7: Communication with informal and formal interpretation of con-
cepts.

If both communication partners agree upon a common formalization of
context this can be used as additional explicit and formal semantic infor-

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 127

mation in the communication process to avoid misunderstandings. The se-
mantic markup must be added by the information provider and used by the
consumer.

Different types of ontologies are distinguished according to [Gua98] as
depicted in Figure 4.8. So-called top-level ontologies are used to describe
general concepts that do not belong to a specific domain. Such ontologies
represent a common consensus on a very high level of abstraction and do not
go into detail. They specify general concepts like space, time, or object. Top-
level ontologies are refined by domain ontologies and task ontologies. Domain
ontologies refine concepts of the top-level ontologies related to a domain, e.g.,
multi-media. Task ontologies describe concepts that are related to specific
activities within this domain, e.g., selling. An example for a domain ontology
is the multimedia reference ontology as defined in [Hüs05]. A combined
specialization of task and domain ontologies is used to define an application
ontology.

Top-Level
Ontology

Domain
Ontology

Task
Ontology

Application
Ontology

Figure 4.8: Ontology types according to [Gua98].

The combination of Semantic Web and Web service techniques has let to
semantic Web services. As Figure 4.9 shows, there are at least two possible
ways to combine the two technologies: on the one hand, Web services can
be used to give access to semantic Web technology (arrows marked with A
in Figure 4.9), e.g., as a Web service interface to a knowledge representation
base; on the other hand, semantic Web technology can be used to describe
the functionality of Web services, to find them, and to compose them (arrows
marked with B in Figure 4.9). The latter is the more common understanding
of the term semantic Web service [MCSZ01, QW04]. This notion will also
be used in the remainder of this work and described in more detail in the
following sections.

The syntactic representation of a Web service, the WSDL file, is techni-
cally machine-processable, but the meaning of the different syntactic elements
is not machine-processable. To achieve automatic processing of the seman-
tics of a description element, a uniform and unambiguous interpretation of

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 128

dynamic

static
human machine

WWW Semantic Web

Web Services
Semantic Web

Services

A

AB

B

Figure 4.9: Technology evolution on the Web.

the elements must be provided for. Web applications based on machine pro-
cessable semantics rely on simplifying assumptions [Usc03]:

1. The representation language that the application understands is widely
used on the Web. If different representation languages are used on the
Web, an application must be able to process all of them.

2. The assumptions about the concepts of a representation language must
be compatible, e.g., the concept of time must either be represented as
a time interval or as time points.

3. The concepts modeled in an ontology must be publicly declared. This is
to prevent two independent ontology designers from inventing different
ontologies for the same domain.

On the one hand, there are a number of publicly available categorization
schemes and high level ontologies, such as the lexical reference system for
the English language WordNet4, the NISO-Standard Dublin Core5 for gener-
alized cross-domain resource descriptions, or the “Suggested Upper Merged
Ontology” (SUMO6), which is intended as a categorization scheme for lower
level ontologies. These ontologies are general enough for a broad consent.
On the other hand, there are many, very domain specific ontologies, mainly
concerned with a discipline of natural science, that already posseses a very
standardized vocabulary, e.g., the Gene Ontology7, the Protein Ontology8,

4http://wordnet.princeton.edu/
5http://dublincore.org/
6http://www.ontologyportal.org/
7http://www.geneontology.org/
8http://proteinontology.info/

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 129

or the Plant Ontology9. These examples show that there are at least two
ways to achieve consensus about the concepts of an ontology: Either it is so
general that it fits to many domains of discourse, or it is the formalization
of an already established vocabulary that is only disputable in details by
experts. In both cases, the assumptions on machine processable semantics
as stated above, are fulfilled.

The application scenario of this thesis, company internal service-oriented
software engineering, is situated in between a generalized high-level and a
domain specific low-level ontology because it is assumed that the ontology
evolves with the company needs. The developers do not only use a fixed set
of terms but also develop the ontology. In the internal setting, it is possible to
choose one representation language for semantic Web service description and
to assume compatibility of conceptualizations and public consensus about
their meaning. Public, in this case, means “among the employees of the
enterprise”. In a more general setting encompassing several enterprises of
the same industry or even different industries, this consensus is harder to
achieve. For the financial industry, different international standards exist,
e.g., XBRL10 as mentioned before.

Using machine-processable semantics always requires first, to identify the
meaning of a Web service and then, to add an ontological reference. This is
an additional step after the creation of the Web service. In general, there
are different approaches how to derive the meaning of machine-processable
information:

Creating sophisticated search engines: The analysis of Web pages is
based on information retrieval techniques and artificial intelligence to
deduce meaning from word frequencies and additional information such
as the links between pages which Google uses in the PageRank algo-
rithm [BP98]. The Web service search engine Woogle [DHM+04] has
also used information retrieval techniques to detect Web service op-
erations. This approach is only applicable in an environment with a
considerable number of services that can be clustered. In an enterprise-
internal setting redundant service development is to be avoided. There-
fore, an information retrieval approach is not applicable.

Involving the user in the evaluation of results: User feedback is en-
couraged in the Search Wikia11 project. This is the attempt to develop
an open source search engine with user editable results to improve the

9http://www.plantontology.org/
10http://www.xbrl.org/
11http://search.wikia.com/

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 130

quality of search results. Yahoo!Mindset12 sorts results based on user
feedback. Each result has a score between -2 and 2 indicating whether
content of the page is commercial (-2) or informational (2). Seman-
tic Wikipedia is combination of semantic Web and Web 2.0 [VH07]
techniques. Instead of employing semantic annotations by experts the
content of Web pages is semantically enhanced by a community of users
replacing expert judgment with collective judgment. These techniques
could be employed to improve the quality of a Web service search en-
gine as well, but they are not geared towards Web service discovery in
particular.

Engaging the provider: Searching the Web becomes less difficult if pro-
viders annotate their content in a machine processable standardized
way to encode the meaning of a text fragment explicitly into the docu-
ment. This can be done by using standardized XML tags. As already
mentioned, standards such as XBRL13 for financial reporting define an
XML vocabulary for a specific application domain. In such an XML
page, the tag <revenue> has a defined meaning; and a search engine
that is programmed to “understand” the specialized XML vocabulary
can exploit this information. As a standardized vocabulary is a basic
result of software development activities, this approach is also applica-
ble for Web services as software artifacts.

The provider-centric solution is the approach of the semantic Web and
Web services. In an internal enterprise setting, a combination of user and
provider involvement is also a possible solution scenario. As the vocabulary
for annotation evolves with the software needs, constant maintenance by the
community of users is necessary. The vocabulary of the ontology can be
formalized using description logic which will be introduced in the following
section.

4.2.2 Introduction to Description Logic

Description Logic (DL) offers a family of knowledge representation formal-
isms based on first-order predicate calculus to build knowledge bases (KB).
In DL, an application domain or so-called world of discourse is modeled
by, first, defining the different concepts and roles within the domain and,
second, by specifying properties of individuals within the domain with the
help of concepts and roles. Concepts can be thought of as unary predicates,

12http://mindset.research.yahoo.com/
13www.xbrl.de

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 131

roles as binary predicates, which represent relationships between concepts,
and individuals as constants.

A KB consists of two parts: the TBox, which defines concepts and roles,
provides the terminology to model the intensional knowledge about the ap-
plication domain. The ABox consists of assertions about the individuals of
the application domain and contains extensional knowledge. KBs vary in
the constructs that they allow to specify new concepts and roles from al-
ready existing ones. The expressive power of a DL is determined by these
constructors [BN03].

Definition 4.2. Given a set C of concepts. Terminological axioms between
concepts A, B ∈ C are either inclusions A � B or equalities A ≡ B. A
concept is called atomic if it occurs only on the left-hand side of an equality.
An equality with an atomic concept on the left-hand side is called a definition.
A set of axioms is called a terminology or TBox, if each atomic concept is
defined only once.

This definition can be extended to include roles and role constructors. As
an example, DL-Lite [CGL+04] is presented, which is a simple yet expressive
DL language. In DL-Lite the following concept constructors are allowed:

B := A|∃R|∃R−

C := B|¬B|C1 � C2

As a notational convention, A denotes an atomic concepts, R an atomic role,
and R− the inverse of an atomic role. Atomic concepts and roles are not
defined with the help of other concepts and roles. B denotes basic concepts.
C or also D are used for non-basic and non-atomic concepts.

The TBox allows inclusion and functionality assertions: B � C and
(func R), (func R−). An inclusion assertion states the a basic concept is
subsumed by a more general concepts. A functionality assertion of a role
states that the relationship is functional.

The ABox allows membership assertions of the form: B(a), R(a, b) stating
that a constant a belongs to a concept B or that the pair (a, b) belongs to
role R.

The interpretation I = (Δ, ·I) consists of an infinite domain Δ and an
interpretation function ·I with the following semantics:

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 132

AI ⊆ Δ

(¬B)I = Δ \ BI

(C1 � C2)
I = CI1 ∩ CI2

RI ⊆ Δ × Δ

(∃R)I =
{
c|∃c′ : (c, c′) ∈ RI

}
(∃R−)I =

{
c|∃c′ : (c′, c) ∈ RI

}

In addition, ↑ denotes the universal concept and ↓ represents the empty
concept.

↑I = Δ

↓I = ∅

The main reasoning tasks for TBoxes in general are checking satisfiability
and subsumption of concepts [BN03].

Definition 4.3. Given a TBox T .

• A concept C is satisfiable with respect to a TBox T if there exists a
model I of T so that CI �= ∅. I is called a model of C.

• A concept C is subsumed by a concept D with respect to a TBox T if
CI ⊆ DI for every model I of T .

The reasoning tasks of satisfiability checking and subsumption checking
can be mapped onto each other [BN03]:

Lemma 4.1. Given a TBox T .

• A concept C is unsatisfiable ⇔ C �↓.

• C is subsumed by D ⇔ C � ¬D is unsatisfiable.

Inclusion axioms express that a concept C is contained in a concept A,
usually because there is a specializing characteristic that all members of C
possess, but that is not common in all members of A. Therefore, C � A is
a short-hand notation for C := C � A, where C represents the concept that
is characteristic of all members of C. For example, the concept woman is
contained in the concept person. The specializing characteristic concept is
female [BN03]. Therefore:

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 133

woman � person ⇔ woman := female � person.

In this example, woman is a defined concept or name that uses the concepts
female and person for definition.

Definition 4.4. A concept A directly uses a concept B if B appears on the
right-hand side of the definition of A. The relation uses is the transitive
closure of directly uses. A TBox is cyclic if there exists an atomic concept
that uses itself. Otherwise, the TBox is acyclic [BN03].

In an acyclic terminology T , all defined concepts are determined by atomic
concepts. This can be shown through expansion of T . The expansion of T ,
T ′, is derived by replacing each occurrence of a name for a defined concept
by its right-hand side definition. It can be shown that T and T ′ have the
same models [BN03]. This means that T is satisfiable if T ′ is satisfiable.

An ABox contains membership assertions like C(c) or R(a, b) stating that
an individual c belongs to concept C or that two individuals a, b belong to a
role R. The semantics of an ABox is defined by extending the interpretation
I to individual names so that for each individual name a, aI is an element
of Δ. Such an interpretation usually relies on the unique name assumption.
This means if a �= b, then also aI �= bI . I satisfies the membership assertions
of the ABox if for each C(a) and R(a, b) the following holds: aI ∈ CI and
(aI , bI) ∈ RI [BN03].

An interpretation I is a model for a knowledge base KB=(ABox, TBox)
if it satisfies the TBox and respects the membership assertions of the ABox
at the same time. An ABox is consistent with respect to the TBox if there
exists an interpretation that is a model for both, the TBox and the ABox.

The main reasoning tasks for ABoxes are consistency checking and in-
stance testing [BN03]. The later means to test if a given individual belongs
to a given concept or, as generalization, to find all instances of a given con-
cept.

DL relies on an open-world assumption. This means that ABoxes are
not assumed to be complete. There may exist individuals x that belong to a
concept C for which a membership assertion C(x) does not exist. Selecting
all members of a concept, for which a membership assertion exists, does not
ensure that this set is complete.

In the following section, DL formalisms will be employed to improve Web
service operation search with semantics. The concept hierarchy as modeled
for the financial domain is translated into DL, e.g., the concept Financial

Measure (FM) subsumes the concept Periodic Measure (PM), which is
translated into PM � FM . Next, the semantic annotations are interpreted
as membership assertions, e.g., the operation Compute_PV (cpv) is a member

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 134

of the concept Measure Calculation (MC), which is expressed as MC(cpv).
Then, this formalization is used to extend the SSQs taking the formalized
knowledge of the ontology into account. A search for an operation that
returns an FM is extended to search for an operation that returns an FM
or a PM based on the knowledge that PM � FM .

4.3 Searching Operations with Semantic An-

notations

Searching Web service operations with semantic annotations means to find
all matches for a given SSQ. For this approach, the following is needed:

• a terminology that provides a vocabulary for annotations,

• an extension to the relational model that permits semantic annotations
using the terminology, as already used in Table 4.1,

• an algorithm that uses the terminology and the semantic annotations to
find Web service operations that match given search criteria expressed
as SSQ.

Section 4.3.1 presents the terminology and the semantic extension of the
relational Web service repository. Section 4.3.2 is dedicated to the analysis of
the search algorithm. Section 4.3.3 shows variations of the search algorithm
to achieve different match semantics.

4.3.1 Semantic Extension of the Relational Web Ser-
vice Repository

A terminology (TBox) contains all terms and terminological axioms used to
describe an area of knowledge, e.g., a software system. In the following, parts
of DL-Lite [CGL+04] are used to define a simple terminology that consists
of atomic and basic concepts as well as acyclic inclusion axioms only.

Definition 4.5. A simple terminology M = (B, T) consists of a set of basic
concepts B and a set T of acyclic inclusion axioms of the form C � D with
C, D ∈ B. Basic concepts B ∈ B are defined as follows: B ::= A| ↑ | ↓. A
denotes an atomic concept. B is not empty. It contains at least the universal
concept ↑ and the bottom concept ↓. T is not empty. For all concepts B ∈ B
the following two inclusion axioms hold: ↓� B and B �↑.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 135

The formal semantics of this terminology is defined as an interpretation
I that consists of a non-empty set ΔI as interpretation domain and an in-
terpretation function ·I [BN03].

Definition 4.6. The formal semantics I = (ΔI , ·I) of the simple termi-
nology M = (B, T) consists of a non-empty set ΔI and an interpretation
function ·I with:

↑I = ΔI

↓I = ∅
CI ⊆ ΔI

(C � D)I ⇔ CI ⊆ DI

for C, D ∈ B.

The simple terminology M represents intentional knowledge about the
world of discourse. It is used as vocabulary to extend the relational Web
service model with semantic annotations at the level of operations as well as
input and output attributes. The semantic annotations provide extensional
knowledge about individual instances in the form of operations and attributes
which exist in the interpretation domain.

The Web service as a whole is not annotated as the UDDI standard
already permits descriptive attributes and references to external classification
systems. Semantic annotations are modeled as extensions of the relational
Web service registry schema. They provide additional semantics, stating that
a Web service operation or an attribute is a member of a semantic concept of
M. In this sense, a semantic annotation represents a membership assertion.

Let M = (B, T) be a simple terminology, S an enumerable set of Web
service names, O be an enumerable set of operation schema names, and A an
enumerable set of attribute names. Let B, S, O, and A be pairwise disjoint.

Definition 4.7. Semantic annotations for operation names in O given a
simple terminology M are defined as a function saO from OS ⊆ O to B,
saO : OS → B. OS is the subset of operation names in O for which semantic
annotations exist.

Semantic annotations for attribute names in A, given a simple terminol-
ogy M, are defined as a function saA from AS ⊆ A to B, saA : AS → B. AS

is the subset of attribute names in A for which semantic annotations exist.

In this definition, operation names in O and attribute names in A need
not have a semantic annotation. Further, the semantic annotation is a func-
tion but it is neither injective nor onto. Several operation names or attribute
names may be annotated with the same semantic element but every element
from OS and AS is annotated with at most one concept from M.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 136

Definition 4.8. A Web service schema with semantic annotations is a pair
WS = (sname,O) consisting of a schema name sname ∈ S and a finite set
O of operation schemata with semantic annotations.

An operation schema with semantic annotation is a tuple OS = (opname,
A, saO(opname)) consisting of an operation name opname ∈ O, a finite set
A ⊆ A of semantically annotated attributes, and a semantic annotation
saO(opname).

A semantically annotated attribute consists of an attribute name name ∈
A, a semantic annotation saA(name), and a type type(A) ∈ {in, out}.

An example for a semantically annotated Web service operation has al-
ready been presented in Section 4.1.1 in Table 4.1.

In terms of descriptions logic, the simple terminology represents the TBox,
and the semantic annotations represent the ABox. Both in combination form
a knowledge base K = (TBox, ABox).

Lemma 4.2. The knowledge base K = (TBox, ABox) represented by the
simple terminology M = (B, T) and the semantic annotation functions saA

and saO is satisfiable.

Proof. A knowledge base is satisfiable if there exists a model for it that
fulfills the inclusion axioms of the TBox and the membership assertions of
the ABox. This model is given by the interpretation I that is based on the
semantic annotation functions. The construction proceeds in four steps:

• The domain Δ consists of all operation and attribute names that are
annotated.

ΔI :=
⋃̇

C∈B ({x|saA(x) = C} ∪̇ {x|saO(x) = C}) .

• For all atomic concepts A ∈ B that appear only on the left-hand side
of inclusion axioms or that are not used in inclusion axioms at all, the
interpretation consists of the operation and attributes names that are
annotated with A.

AI := {x|saA(x) = A} ∪̇ {x|saO(x) = A}.

• For each inclusion axiom A � B, the interpretation of B consists of
all operation and attribute names that are annotated with B and all
operation and attribute names that are annotated with A.

BI := AI∪̇ {x|saA(x) = B} ∪̇ {x|saO(x) = B}.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 137

• The last step is repeated until no further changes occur in the con-
structed sets.

By definition, the interpretation I fulfills the membership assertions of the
ABox as given by the semantic annotations. The interpretation also fulfills
the inclusion assertions of the TBox by construction [BN03].

The satisfiability of the knowledge base, given by semantically annotated
Web service operations, is the prerequisite which is needed to use seman-
tic annotations for the semantic search of Web service operations. In the
following section, an algorithm will be presented that is based on a satisfi-
able knowledge base as shown in Lemma 4.2. This section has served as a
preparation to present and examine this algorithm.

The approach assumes that each element of the relational Web service
model is annotated with at most one identifier from the semantic model. If
more than one semantic model for the same world of discourse is needed,
e.g., ontologies in different technical formats, this can be integrated into the
model in two ways:

1. There exists a mapping between the two ontologies. Then, it is suffi-
cient to annotate the elements from the relational Web service model
with one semantic element from one of the two ontologies as defined
above.

2. If the two ontologies are not mapped explicitly, then the semantic re-
lational Web service model can be extended to allow more than one
semantic annotation per element defining a second semantic annota-
tion function for operations and attributes.

From a modeling perspective, the first solution is better because the map-
ping between the two ontologies is documented unambiguously, whereas in
the second solution the mapping is only indirectly expressed through the se-
mantic annotation of an interface definition. This might cause inconsistencies
and is therefore not considered further.

4.3.2 Matching of Semantic Operations as Query An-
swering

All queries considered in Section 4.1.2 use the concepts of the semantic model
as a defined vocabulary for selection. The selection does not take inclusion
assertions into account. If concept C is subsumed by concept D, C � D, all
operation or attribute names annotated with C are implicitly also annotated

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 138

with D. Therefore, the semantic search for all elements annotated with D is
expected to return all elements annotated with C or D. The simple semantic
queries as shown above do not use inclusion assertions, yet. This draw-back
is amended in this section. The inclusion axioms of the semantic model
are applied to the queries as rewriting rules as illustrated in the following
example.

If a user searches for operations that return an initial present value, opera-
tions that return a gross initial present value or a net initial present value are
also elements of the query result because the two concepts are specializations
of an initial present value (see Figure 4.2). Therefore, the simple semantic
query Q8, interpreted as a semantic query, can be rewritten as shown in
Code 4.5. Applying the inclusion axioms “Gross Initial Present Value” �
“Initial Present Value” and “Net Initial Present Value” � “Initial Present
Value” results in a union of conjunctive queries with semantic annotations,
thus, in the simple semantic query Q+8.

Code 4.5.

Q8: Select WSNAME , OPNAME from WSSCHEMA
where TYPE = ‘‘Out’’

and SAA = ‘‘Initial Present Value’’;

Q+8: Select WSNAME , OPNAME from WSSCHEMA
where TYPE = ‘‘Out’’

and (SAA = ‘‘Initial Present Value’’
or SAA = ‘‘Gross Initial Present Value’’
or SAA = ‘‘Net Initial Present Value’’);

This intuitive understanding of the meaning of a semantic query is for-
malized in the following definition.

Definition 4.9. Given a simple terminology M = (B, T) with interpre-
tation I as defined in Lemma 4.2 and a relational Web service registry
R = (WSNAME, OPNAME, SAO, NAME, SAA, TY PE) with semanti-
cally annotated Web service schemata.

Let q be a simple semantic SP-query over R with concepts C and D
as selection criteria on SAO and SAA resp. Then tuple t ∈ R is in the
answer set ans of the semantic interpretation of q, qI , if t[SAO] ∈ CI and
t[SAA] ∈ DI resp. qI is called a semantic SP-query over R and M.

Let q = q1 ∪ . . . ∪ qn be a simple semantic SPU-query over R consisting
of unions of n SP-queries. Then qI := qI1 ∪ . . . ∪ qIn .

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 139

Let q = q1 �� . . . �� qn be a simple semantic SPJ query over R consisting
of joins of SP- and SPU-queries. Then qI := qI1 �� . . . �� qIn .

The following algorithm applies the same rewriting technique as shown in
Code 4.5 to compute the semantic interpretation of an SP-query. It rewrites
the semantic SP-query qI and returns a union of simple semantic queries.
It will be shown that the answer set to the semantic query qI is equal to
the answer set of the union of simple semantic queries as returned by the
algorithm. The query expansion is an adaptation of the algorithm suggested
by [CGL+04]. An inclusion A � B is represented as a pair (A, B).

Code 4.6.

Query Expansion Algorithm
input:
semantic query q of type SP,
inclusion assertions T

output:
union of simple semantic queries P

% Preparation step %
T+ := transitive -closure(T);

% Expansion of first concept %
P := {q};
let C be the first semantic concept in q

for each inclusion I = (A,B) in T+ do
% A subsumed by B %
if C = B
then

% Replace C with A %
P := P union {q[C|A]};

% Expansion of second concept %
for each query q in P

let C be the second semantic concept in q
if C exists
then

for each inclusion I = (A,B) in T+ do
% A subsumed by B %
if C = B
then

% Replace C with A %

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 140

P := P union {q[C|A]};
return P;

In the first step the transitive closure of the inclusion assertions is com-
puted. A semantic query is a conjunctive query over a relational Web service
operation repository R. Such a query has at most two semantic concepts in
the where-clause. The first concept is expanded in the first step. If a second
concept exists, it is expanded in the second step.

Informally speaking, the suggested method of query rewriting compiles
the knowledge of the semantic model into the query so that the query can
then be answered like any other union of conjunctive queries over a relational
database.

Lemma 4.3. Given a semantic query qI . The query expansion algorithm
returns a simple semantic query q′.

Proof. Disregarding the interpretation I, a semantic SP-query qI is also a
simple semantic SP-query q. The query rewriting algorithm produces a union
of SP-queries. Thus, according to Definition 4.1 the algorithm returns a
simple semantic query.

With these preparations, correctness of the re-writing algorithm can be
shown. The algorithm is correct iff the original semantic query and the
rewritten simple semantic query return the same result set.

Theorem 4.1. Given a satisfiable simple semantic terminology M = (C, T),
a schema repository for semantically annotated Web services R and the an-
notation functions saO and saA. Let qI be a semantic SP-query over R and q′

the simple semantic query returned by the query expansion algorithm. Then
t ∈ ans(qI) iff t ∈ ans(q′).

Proof. The following proof runs along the proof sketch given in [CGL+04].
If t ∈ ans(q′) then t ∈ ans(qI). This is obvious as q′ is obtained using

the inclusion assertions of the simple semantic model.
To proof the other direction, a chase-like technique is applied to the

schema repository R. The chase of R, chase(R), is obtained from R by
applying the following chase rule: if concept B is contained in concept D,
B � D, and B is used to annotate a Web service schema WS in R then
copy the entries for WS and insert them into chase(R), replacing the se-
mantic annotation B with D. This is repeated until the set chase(R) does
not change any more. The chase algorithm terminates and produces a unique
result because the inclusion assertions are acyclic [AHV95]. Further, if M

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 141

is satisfiable,, then chase(R) is a representative of all models that satisfy M
[CGL+04]. Thus, if t is an element of chase(R) and t is in the result set of
the semantic query qI over R then t is also in the result set of the simple
semantic query q′ over chase(R) and vice versa.

Theorem 4.2. The query expansion algorithm runs in time polynomial in
the number m of inclusion assertion of the simple semantic terminology. It
returns at most O(m2) unions of conjunctive queries for a semantic SP-query
as defined in Section 4.1.2.

Proof. If a semantic terminology has m inclusion assertions, then at most
m + 1 different concepts are used to express the inclusion assertions.

The first step of the algorithm computes the transitive closure of the
inclusion assertions. This computation is polynomial in m, e.g., O(m3) with
Warshall’s algorithm.

As the inclusion assertions are acyclic, a concept C contains at most a
number of sub-concepts linear in m after the transitive closure is computed.

The second step, the expansion of the first concept, therefore produces a
number of conjunctive queries which is linear in m.

The third step, the expansion of the second concept, is executed a number
of times linear in the number of conjunctive queries as returned by step two.
The inner loop returns a number of conjunctive queries which is linear in m.
Therefore, the third step of the algorithm is in O(m2) and returns O(m2)
conjunctive queries.

Summing up, the algorithm is polynomial in m for a semantic SP-query.

Computing the transitive closure is the most “expensive” part of the
algorithm. However, the transitive closure may be computed only once so
that the result can be stored and reused. As long as the terminology does
not change, a new computation of the transitive closure is not necessary.

The simple terminology may degenerate in two ways: Either it is flat and
consists of concepts, which are all derived from the general top-level concept,
or it is a deep linear list. These two extreme variations are depicted in Figure
4.10.

Assuming that the semantic SP-query references the top-level concept,
the algorithm returns O(m2) conjunctive queries. As soon as the SP-query
does not reference the top-level concept, but the more specific concept Ai, the
algorithm will return only one conjunctive query in the first case and O(m−
i)2 queries in the second case. In practice, the construction of a terminology
tries to avoid these two degenerate cases. Further, it is desirable to use

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 142

A0 A1

...
Am

A0 A1 ... Am

Case 1: Case 2:

Figure 4.10: Degenerated terminologies.

more specific concepts for querying than the top-level concept. Therefore,
the worst case behavior is unlikely.

Next, the computational complexity of query answering is analyzed. For
that purpose, three parameters that influence complexity are distinguished:

1. The size n of the repository R determines the data complexity.

2. The number m of inclusion axioms in the simple semantic terminology
determines the size of the TBox.

3. The length |q| of the query q determines the expression complexity.

In general, the length of a query q can be measured in terms of

• the number of variables in the select-clause,

• the number of relations and their arity in the from-clause, or

• the length of the query string itself.

For a semantic query q, the number of variables in the select-clause is
fixed as the examples in Section 4.1.2 show. The number of relations and
their arity is also fixed because all queries are posed against the Web service
operation repository R. The only applicable measure of expression com-
plexity is the length of the query string that is returned by the rewriting
algorithm. This is determined by the number of inclusion assertions in the
terminology. For each inclusion assertion a new union is added. Therefore,
the length |q| is dependent on m, the number of inclusion axioms. As a con-
sequence, the combined complexity of answering a semantic query is defined
by two independent parameters:

Lemma 4.4. The combined complexity of answering a semantic query is
determined by the data complexity of the repository and the number of
inclusion axioms in the simple semantic terminology.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 143

Theorem 4.3. Given a service operation repository R with n rows, a sim-
ple terminology with m acyclic inclusion assertions and a semantic query q.
Answering a semantic query q is in O(f(m) ∗ nc) with f polynomial and c
constant.

Proof. The complexity result is established for each of the three query types
identified in Section 4.1.2, SP, SPU, and SPJ.

Queries of type SP, regarded as simple semantic queries, are selections,
thus, each such query is evaluated in O(n). A simple semantic query has at
most two semantic annotations in the where-clause for the operation itself
and either one in- or one out-attribute. Therefore there are at most f(m) =
i∗m2 with i constant simple semantic queries after the execution of the query
expansion algorithm, as already argued in the proof of Theorem 4.3.

Queries of type SPU consist of j queries which are each of type SP.
Therefore, f(m) = i ∗ j ∗ m2. Although, in theory, the number of unions in
a SPU is unbounded the disjunction is used to execute a selection according
to different concepts of the terminology. Therefore, it is safe to assume that
j ≤ m2.

Queries of type SPJ consist of c acyclic joins of queries of type SP or
SPU. Therefore, the result set can be computed in O(f(m)∗nc) with f(m) =
i∗ j ∗m2c, i, j as above. Although, in theory, the number of joins in a SPU is
unbounded, the join is used to select operations that fulfill several selection
criteria at once. Therefore, c can be bounded by the maximal number of
input (in) and output (out) attributes that a Web service operation in R
has, c ≤ 1 + in + out.

Although answering arbitrary conjunctive queries over an arbitrary data-
base schema is NP-complete in combined complexity [AHV95], this is not the
case for semantic queries as defined in Section 4.1.2 over a relational Web
service operation repository. The size of the terminology and the number of
Web service operations result in polynomial time complexity.

For the finance example, the application of this search strategy becomes
feasible if the size of the terminology does not outsize the number of avail-
able Web service operations. If the terminology is too detailed so that each
bottom-level concept references exactly one operation, many queries are gen-
erated that return an empty result set or just one element. The distinction
between gross initial present value and net initial present value is an example
for a level of detail that might not be needed more than once. This trade-off
between the detailedness of the taxonomy and the number of services needs
to be observed.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 144

4.3.3 Variations of Semantic Operation Matching

Query rewriting can be applied to find more specialized and more general
results to a given query. This technique is applied to different types of oper-
ation searches. In preparation, a hierarchy of matches based on the inclusion
axioms is defined:

Match Hierarchy In a terminology as defined in Definition 4.5, concepts
may overlap. Based on the interpretation of the semantic model as defined
in Section 4.3.1, the following match hierarchy is defined:

1. If A ≡ B, then concept B is an exact match for concept A.

2. If B � A, then concept B is a specialized match for concept A.

3. If A � B, then concept B is a generalized match for concept A.

4. If A overlaps B, then concept B is a partial match, i.e., ∃a ∈ AI : a /∈
BI ∧ ∃b ∈ BI : b /∈ AI .

First, queries that return exact and specialized matches are examined.

Subsumption Matches A subsumption match to a given query is de-
scribed as:

• The input concepts of the returned results are exact or specialized
matches of the original input concepts of the query.

• The operation concepts of the returned results are exact or specialized
matches of the original operation concept of the query.

• The output concepts of the returned results are exact or specialized
matches of the original output concepts of the query.

This means query rewriting is applied to input, operation, and output
concepts alike, traversing the inclusion axioms from left to right.

A search like the following query for a measure calculation operation
that is annotated with, “Initial Present Value”is then extended by taking all
subconcepts of “Initial Present Value” into account.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 145

Code 4.7.

Q9: Select subsuming WSNAME , OPNAME
from WSSCHEMA

where TYPE = ‘‘Out’’
and SAA = ‘‘Initial Present Value’’;

The direction of semantic expansion is indicated by the keyword “sub-
suming” in the SQL pseudo-query Q9. The translation into an expanded
SQL query is shown in Code 4.5.

The returned results can be ranked qualitatively according to the hierar-
chy of matches as established above. Research results from other areas, such
as Information Retrieval, can be used to compute a quantitative ranking,
e.g., computing a weight for each annotation and computing a rank from the
weights [Fer03].

Plug-In Matches So far, exact and subsumption matches have been con-
sidered. As the search is a search for operations, also plug-in matches are
desirable. A plug-in match is an operation into which the sought operation
can be “plugged-in”. This means the input concepts of the operation sought
must be subsumed by the operation found. The output concepts of the op-
eration found must be subsumed by the operation sought. The operation
concept found is a subconcept or contained in the operation concept sought
to avoid too general matches. This is the type of match that has already
been considered in Section 3.1.1. In the relational model with semantic an-
notations, a plug-in match is defined as follows:

• The input concepts of the returned results are exact or generalized
matches of the original input concepts of the query.

• The operation concepts of the returned results are exact or specialized
matches of the original operation concepts of the query.

• The output concepts of the returned results are exact or specialized
matches of the original output concepts of the query.

In the following example a plug-in match for a measure calculation oper-
ation is wanted that calculates the initial present value for consumer loans.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 146

Code 4.8.

Q10: Select plugIn * from
(Select WSNAME , OPNAME from WSSCHEMA

where SAO = ‘‘Measure Calculation’’
and TYPE = ‘‘In’’
and SAA = ‘‘Consumer Loan’’)

IN_VW ,
(Select WSNAME , OPNAME from WSSCHEMA

where SAO = ‘‘Measure Calculation’’
and TYPE = ‘‘Out’’
and SAA = ‘‘Initial Present Value’’) OUT_VW

where IN_VW.WSNAME = OUT_VW.WSNAME
and IN_VW.OPNAME = OUT_VW.OPNAME;

Q+10: Select * from
(Select WSNAME , OPNAME from WSSCHEMA

where SAO = ‘‘Measure Calculation’’
and TYPE = ‘‘In’’
and (SAA = ‘‘Consumer Loan’’

or SAA = ‘‘Deferred Payment Loan’’
or SAA = ‘‘Fixed Condition Loan’’
or SAA = ‘‘Loan Product ’’
or SAA = ‘‘Traditional Product ’’
or SAA = ‘‘Depot B’’
or SAA = ‘‘Financial Product ’’))

IN_VW ,
(Select WSNAME , OPNAME from WSSCHEMA

where SAO = ‘‘Measure Calculation’’
and TYPE = ‘‘Out’’
and (SAA = ‘‘Initial Present Value’’

or SAA = ‘‘Gross Initial Present Value
’’

or SAA = ‘‘Net Initial Present Value’’
)) OUT_VW

where IN_VW.WSNAME = OUT_VW.WSNAME
and IN_VW.OPNAME = OUT_VW.OPNAME;

The input attribute annotation is expanded to include all superconcepts.
The operation concept is not expanded because the example as modeled so
far does not show any subconcepts for the measure calculation operation.
The output parameter annotation is expanded to include all subconcepts.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 147

The direction of semantic expansion of the query is indicated by the keyword
“plugIn” in the pseudo-code query Q10. Q+10 is the rewritten expanded
SQL query.

The algorithm as presented in Section 4.3.2 can be modified without
increasing its overall complexity.

Code 4.9.

Query Expansion Algorithm Plug In
input:
semantic SP-query q,
inclusion assertions T

output:
union of simple semantic queries P

% Preparation step %
T+ := transitive -closure(T);

% Expansion of first concept %
P := {q};
let C be the first semantic concept in q
if C is an input concept
then

for each inclusion I = (A,B) in T+ do
% A subsumed by B %
if C = A
then

% Replace C with B %
P := P union {q[C|B]};

else
for each inclusion I = (A,B) in T+ do
% A subsumed by B %
if C = B
then

% Replace C with A %
P := P union {q[C|A]};

% Expansion of second concept %
for each query q in P

let C be the second semantic concept in q
if C exists
then

if C is an input concept

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 148

then (
for each inclusion I = (A,B) in T+ do

% A subsumed by B %
if C = A
then

% Replace C with B %
P := P union {q[C|B]};)

else (
for each inclusion I = (A,B) in T+ do

% A subsumed by B %
if C = B
then

% Replace C with A %
P := P union {q[C|A]};)

return P;

Sequence Suggestions Semantic annotations can also be used to make
suggestions to the designer and retrieve operations that can be executed in
sequence with a given operation. For example, the designer searches for an
operation that takes deferred payment loan as input and returns its initial
present value. If such an operation does not exist, the search is split up in
two parts. First, operations are detected that return an initial present value
and their input parameters are determined, e.g., a cashflow. In this case, the
second step of the search is executed to find operations that take a deferred
payment loan as input and return a cashflow or a more specialized concept
as output to combine the two operations found.

A graphical example is given in Figure 4.11. In general, a sequence search
is described as follows. The developer searches for an exact match first:

Code 4.10.

Q11: Select * from
(Select WSNAME , OPNAME from WSSCHEMA

where SAO = ‘‘Measure Calculation’’
and TYPE = ‘‘In’’
and SAA = ‘‘Deferred Payment Loan’’)

IN_VW ,
(Select WSNAME , OPNAME from WSSCHEMA

where SAO = ‘‘Measure Calculation’’
and TYPE = ‘‘Out’’
and SAA = ‘‘Initial Present Value’’) OUT_VW

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 149

where IN_VW.WSNAME = OUT_VW.WSNAME
and IN_VW.OPNAME = OUT_VW.OPNAME;

Based on the returned result, the user starts a new search to find all
operations that can be plugged into the input parameter of the operation
found:

Code 4.11.

Q12: Select subsuming WSNAME , OPNAME from WSSCHEMA
where TYPE = ‘‘Out’’

and SAA = ‘‘Deferred Payment Loan’’;

Alternatively, the user searches for all operations that the output param-
eters of the operation found can be plugged into:

Code 4.12.

Q13: Select plugIn WSNAME , OPNAME from WSSCHEMA
where TYPE = ‘‘In’’

and SAA = ‘‘Initial Present Value’’;

This shows that the suggested simple semantic terminology can be used
flexibly for different search use cases to compute matching Web service sche-
mata based on semantic annotations. The search can be expressed as se-
mantic queries which can be rewritten as a union of simple semantic queries
to include the knowledge of the semantic terminology. The different search
types have been examined separately for ease of exposition to show that
the algorithm presented in Section 4.3.2 can be flexibly applied to different
search situations. It is possible, to combine the different search types and to
generate a unified result.

So far, the semantic terminology expresses generalizations only without
any further constraints or information. It exists independently of the imple-
mented Web service operations. Extensions to this type of semantic termi-
nology are analyzed in the next section.

4.4 Terminological Extensions

The terminology as used so far serves as a controlled vocabulary for querying
the relational schema repository. It does not imply any restrictions on the
developers’ usage of it.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 150

Deferred
Payment Loan

Measure
Calculation

Initial Present
Value??????

??????

Subsumption Match

Plug-In Match

Exact Match

Figure 4.11: Sequence of match queries.

In Section 4.4.1, a distinction between operations and attributes is added.
In the simple semantic terminology, the designer is not restricted in the use of
the annotations, but can freely annotate each operation and attribute with
any concept. As the terminology does not distinguish operation concepts
from attribute concepts, it is even possible to use an operation concept for
attribute annotation. An extension to the simple semantic terminology is
added to provide a consistency check.

In Section 4.4.2 structured attribute concepts are introduced and also
used for query rewriting. A concept like a loan often consists of other con-
cepts that are a part of it, e.g., the loan amount or the interest rate. In
object-oriented data models, this is expressed as attributes of a class. In
other programming languages, this is modeled as a structured record. In the
given relational model, it is not possible to represent structured attributes,
and in the semantic model, the parts of a concept are not described either.
Therefore, the simple semantic terminology is extended to contain informa-
tion about properties of a concept.

4.4.1 Distinguishing between Operations and Attributes

So far the semantic terminology does not distinguish between operation and
attribute concepts, but treats all semantic annotations alike. The only way
to find out if a concept is an operation is to find an interface description
that uses this concept for semantic annotation of an operation name. This
information is only contained in the relational schema repository. This is a
source of inconsistency because in the relational model it is even possible that
a concept is used to annotate an input or output attribute and an operation
name at the same time. Neither the semantic terminology nor the relational
model prevent this inconsistent usage.

Therefore, the distinction between operation and attribute concepts is,
first of all, a support for the programmer who wants to annotate an exist-
ing Web service operation. Additionally, the distinction between operation

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 151

and attribute concepts splits the terminology into two parts. Thus, it helps
to prevent the degenerated terminology cases as discussed in Section 4.3.2
because the query expansion of an attribute concept excludes all operation
concepts and vice versa.

A desirable extension to the semantic model is the capability to distin-
guish between operation and attribute concepts. To achieve this distinction,
the definition of the semantic model and the semantic annotations is extended
as follows:

Definition 4.10. An extended semantic terminology M = (C, T) is a seman-
tic terminology as defined in Definition 4.5. C contains the universal concept
↑, the bottom concept ↓, a distinguished atomic operation concept OP , a
distinguished atomic attribute concept AT , OP, AT ∈ C with AT � ¬OP ,
OP � ¬AT , and OP, AT �↑. For the set T of acyclic inclusion axioms the
following holds: � ∃C ∈ C\{↑, ↓} : AT �+ C and � ∃C ∈ C\{↑, ↓} : OP �+ C.

This means that the set of concepts C contains two disjoint subsets: COI
contains operations, CAI contains attributes, CIO ∩ CAI = ∅. All concepts are
either operation concepts or attribute concepts. The necessary change in the
semantic terminology of the example scenario is depicted in Figure 4.12. The
hierarchy of concepts is split into two disjoint directed acyclic graphs with a
general operation concept reps. attribute concept as root.

Financial
Product

Financial
Measure

Customer

Cashflow

Calculation

Concept

...

...

...

...

...Operation
Concept

Attribute
Concept

Figure 4.12: Extended concept hierarchy.

The formal semantics used so far in Definition 4.6 needs to be extended
to include the interpretation of negation:

Definition 4.11. The formal semantics I = (ΔI , ·I) of the extended termi-
nology M = (C, T) is defined as in Definition 4.6 with the following exten-
sion:

(¬C)I = Δ \ CI

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 152

The definition of semantic annotations needs to be extended to express
the following two constraints:

• Operation names may be annotated with operation concepts only.

• Attribute names may be annotated with attribute concepts only.

Definition 4.12. Semantic annotations for operation names in O, given an
extended semantic model M, are defined as a function saO from OS ⊆ O
to CO, saO : OS → CO. OS is the subset of operation names for which se-
mantic annotations exist. CO is the set of operation concepts in the extended
terminology M.

Semantic annotations for attribute names in A, given a semantic model
M, are defined as a function saA from AS ⊆ A to CA, saA : AS → CA. AS

is the subset of attribute names for which semantic annotations exist. CA is
the set of attribute concepts in the extended terminology M.

The algorithm for query expansion does not need to be extended because
negative inclusion axioms do not contribute to a solution. They are not used
in the inclusion algorithm. However, before the algorithm can be executed
it must be checked if the knowledge base of concepts, positive and negative
inclusion axioms and of semantic annotations is satisfiable.

As already shown in Lemma 4.2 a model can be constructed from the
semantic annotations that fulfills the membership assertions and the positive
inclusion axioms. With the negative inclusion axioms it must be ensured
that the negative inclusions do not make the knowledge base unsatisfiable.

For this, it must be tested if there exists a semantic annotation of an
attribute name that is annotated with an operation concept or an operation
name that is annotated with an attribute concept. In preparation of this test,
the set of inclusion assertions must be closed with respect to the following
rules [CGL+04]:

A � B ∧ B � ¬C ⇒ A � ¬C

A � B ∧ C � ¬B ⇒ A � ¬C

Lemma 4.5. The original knowledge base and the knowledge base closed
with respect to the closure rules have the same models [CGL+04].

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 153

Proof. For each pair of inclusion axioms A � B and B � ¬C the following
holds:

A � B ∧ B � ¬C

⇔ A � B ∧ B � C = ∅
⇔ A � B ∧ B � C = ∅ ∧ A � C = ∅
⇔ A � B ∧ B � ¬C ∧ A � ¬C

For each pair of inclusion axioms A � B and C � ¬B the following holds:

A � B ∧ C � ¬B

⇔ A � B ∧ B � C = ∅
⇔ A � B ∧ B � C = ∅ ∧ A � C = ∅
⇔ A � B ∧ B � ¬C ∧ A � ¬C

Therefore, the original knowledge base and the knowledge base closed with
respect to the above closure rules have the same models.

The only negative inclusion assertions in the extended semantic termi-
nology are AT � ¬OP and OP � ¬AT . Therefore, closing the inclusion
assertions with respect to the above rules leads to a set of negative inclusion
assertions of the form C � ¬OP and C � ¬AT where C is some subconcept
of AT , respectively OP . For each negative inclusion assertion C � ¬OP the
following conjunctive query is executed: Select * from WSSCHEMA where SO

= C. For each negative inclusion assertion C � ¬AT the following conjunctive
query is executed: Select * from WSSCHEMA where SA = C.

Lemma 4.6. The knowledge base is consistent if each query returns the
empty set.

In this case, the knowledge base is satisfiable and the model can be con-
structed as in Lemma 4.2.

The distinction between operation and attribute concepts in the semantic
model influences the set of available semantic annotations for Web service
operations. The information of the ontology allows to restrict the semantic
annotations and make a consistency check once the programmer has anno-
tated the interface. This consistency check can prevent the programmer from
using operation concepts as annotations for attributes and vice versa. This
enhances the quality of the program design and also of the ontology because

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 154

the designers of both are forced to reflect which role a concept has. This is
the first extension suggested for the semantic model.

The next extension integrates structured attribute concepts that possess
other attribute concepts as parts.

4.4.2 Using Attributes with Properties

In the given relational model attributes with properties are not defined ex-
plicitly. If a cashflow for a loan is to be computed in an operation the input
parameter can either be a single input parameter annotated with the atomic
concept “loan” or the operation can have several input parameters such as
net value, opening date, closing date, installment, installment periodicity,
and interest rate, each annotated with its own atomic concept of the seman-
tic model. These concepts represent a loan as well because a loan has the
property to have a net value, an opening date, a closing date, etc. If the
user searches for an operation that takes a net value as input parameter then
operations that have an annuity loan or an amortization loan as input pa-
rameter are missed although every such loan has the property to have a net
value. Neither the semantic model nor the interface description provide this
information about properties of concepts.

In the following the semantic terminology is extended to include parti-
cipation constraints, stating that all instances of a concept take part in a
relation as first component denoting that all instances of this concept have
a certain property. For example, all annuity loans and also all amortizable
loans have a gross interest rate (GIR). They take part in the relation hasGIR
on one side and there might be even more concepts that have a gross interest
rate. On the other side, the concept gross interest rate is always the second
concept that belongs to the relation hasGIR. This is a type constraint. The
following definition formalizes the example.

Definition 4.13. A structured semantic terminology M = (C,R, T) is a
semantic terminology as defined in Definition 4.10 with an additional set R
of binary relations called roles.

The concepts C ∈ C are defined as follows:

C :=↑ | ↓ |AT |OP |A|¬A|∃R|∃R−

with A atomic concept, negations of a concept ¬A, ∃R the set of instances
that are first components of a binary role, ∃R− the set of instances that are
the second component of a binary role. In particular, the universal concept
↑, the bottom concept ↓, the distinguished atomic operation concept OP ,
and the distinguished attribute concept AT are elements of C.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 155

The elements of T consist of acyclic inclusion assertions of the form:

• A � B where A, B are atomic concepts,

• OP � ¬AT stating that the distinguished concept OP is disjoint from
the distinguished concept AT

• A � ∃R, stating that all instances of concept A participate in the
relation R as first component,

• ∃R− � A, stating that the second component of R is of type A,

• R � P , stating that relation R is a subrelation of P .

Roles are graphically depicted as arrow with a round head, indicating that
two concepts form a role-relation as depicted in Figure 4.13. The concept
that the arrow head points to is the left-hand side the role, the other concept
is the right-hand side of the role. For example, in Figure 4.13 an annuity loan
has a gross interest rate. The role between the concepts annuity loan and
gross interest rate is called hasGIR. As a gross interest rate is a specialization
of an interest rate an annuity loan also has an interst rate. This relation is
called hasIR. hasGIR is a sub-role of hasIR.

The formal semantics of the extended semantic model needs to be ex-
tended a second time to cover the structured semantic model.

Definition 4.14. The formal semantics I = (ΔI , ·I) of the structured se-
mantic model M = (C, T) is defined as in Definition 4.11 with the following
extension:

(R)I ⊆ ΔI × ΔI

(∃R)I =
{
c|∃c′ : (c, c′) ∈ RI

}
(∃R−)I =

{
c|∃c′ : (c′, c) ∈ RI

}
(R � P)I = (R)I ⊆ (P)I

Notice that the definition of semantic annotations is not extended to
include roles. It is only possible to annotate a Web service operation with
concepts but not with roles. This means it is not possible to use ∃R, ∃R−,
or R as annotation.

Lemma 4.7. The knowlede base K = (TBox, ABox) as represented by the
semantic terminology M = (C,R, T) and the semantic annotation function
saa, sao is satisfiable.

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 156

Proof. As the relations are not used for semantic annotations the proof starts
with a closure of the TBox as shown in Lemma 4.5 to test consistency. Then
the model is constructed as shown in Lemma 4.2.

Figure 4.13 shows a part of the financial product hierarchy. A fixed condi-
tion loan (FCL) has an installment (I), periodicity of installment payments
(ILP), and an interest rate (IR). The interest rate has two subconcepts, net
interest rate (NIR) and gross interest rate (GIR). A deferred payment loan
(DPL) has a total debt (TD) whereas a annuity loan (ANL) and an amorti-
zable loan (AML) both have a net value (NV). In addition, an amortizable
loan has a periodicity of interest payments (IRP).

Loan
Product

Anuity
Loan

Amortizable
Loan

Fixed
Condition

Loan

Consumer
Loan

Mortgage
Loan

Investment
Loan

Deferred
Payment

Loan

 Interest Rate

Installment

Installment
Periodicity

Total Debt

Net Value

Interest
Periodicity

Gross IR

Net IR

Figure 4.13: Financial product hierarchy with roles.

The graphical depiction of the semantic model is formalized as follows:
Atomic concepts: FCL, I, ILP, IR, NIR, GIR, DPL, TD, ANL, AML, NV,
IRP
Roles: hasI, hasILP, hasIR, has GIR, hasNIR, hasTD, hasNV, hasIRP
Atomic concept inclusions:

DPL � FCL

ANL � FCL

AML � FCL

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 157

Role inclusions:

hasGIR � hasIR

hasNIR � hasIR

Participation inclusions:

FCL � ∃hasI

FCL � ∃hasILP

DPL � ∃hasNIR

DPL � ∃hasTD

ANL � ∃hasGIR

ANL � ∃hasNV

AML � ∃hasNV

AML � ∃hasIRP

AML � ∃hasGIR

Type inclusions:

∃hasI− � I

∃hasILP− � ILP

∃hasIR− � IR

∃hasTD− � TD

∃hasNV − � NV

∃hasIRP− � IRP

As the concept interest rate has the sub-concepts net interest rate and
gross interest rate a deferred payment loan which has a net interest rate also
has an interest rate. All sub-concepts inherit the roles of the super-concepts,
e.g., an amortizable loan also has an installment like a fixed condition loan.
A net value is part of an amortizable loan and an annuity loan.

Note that this type of unqualified existential quantification does not allow
to restrict the domain of a sub-property according to the context in which
it appears. The above model expresses the following: All deferred payment
loans have a net interest rate. All amortizable and annuity loans have a gross
interest rate. As having a net or a gross interest rate is a sub-property of

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 158

having an interest rate, all deferred payment loans, all amortizable and all
annuity loans also have an interest rate. This does not completely define the
domain of the property hasIR. It only says that the domain of this property
contains all deferred payment loans, all amortizable and all annuity loans.
This need not be all classes that have an interest rate.

Intuitively, a query that searches operations with a net value as part of
the input concept ought to take the participation constraints into account as
shown in the following code example:

Code 4.13.

Q14: Select WSNAME , OPNAME from WSSCHEMA
where TYPE = ‘‘In’’

and SAA = ‘‘exists hasNV’’;

Q+14: Select WSNAME , OPNAME from WSSCHEMA
where TYPE = ‘‘In’’

and (SAA = ‘‘Annuity Loan’’
or SAA = ‘‘Mortgage Loan’’
or SAA = ‘‘Amortizable Loan’’
or SAA = ‘‘Investment Loan’’;

For the replacement, the following inclusions are applied:

• MortgageLoan � ANL � ∃hasNV

• InvestmentLoan � AML � ∃hasNV

Finally ∃hasNV is removed from the query as the schema repository does
not contain this type of concept definitions as semantic annotation but only
atomic concepts are allowed.

Searching for all operations with an interest rate as part of the input
concept ought to take the inclusion axioms and the participation constraints
into account:

Code 4.14.

Q15: Select WSNAME , OPNAME from WSSCHEMA
where TYPE = ‘‘In’’

and SAA = ‘‘exists hasIR’’;

Q+15: Select WSNAME , OPNAME from WSSCHEMA

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 159

where TYPE = ‘‘In’’
and (SAA = ‘‘Deferred Payment Loan’’

or SAA = ‘‘Consumer Loan’’
or SAA = ‘‘Annuity Loan’’
or SAA = ‘‘Mortgage Loan’’
or SAA = ‘‘Amortizable Loan’’
or SAA = ‘‘Investment Loan’’;

For the replacement, the following inclusions are applied:

• ConsumerLoan � DPL � ∃hasGIR � ∃hasIR

• MortgageLoan � ANL � ∃hasNIR � ∃hasIR

• InvestmentLoan � AML � ∃hasNIR � ∃hasIR

The algorithm is extended to include subproperties and participation in-
clusions:

Code 4.15.

Query Expansion Algorithm
iinput:
semantic SP-query q,
inclusion assertions T

output:
union of simple semantic queries P

% Preparation step %
T+ := transitive -closure(T);

% Expansion of first concept %
P := {q};
let C be the first semantic concept in q

for each inclusion I = (A,B) in T+ do
% A subsumed by B %
if C = B
then

% Replace C with A %
P := P union {q[C|A]};

% Expansion of second concept %
for each query q in P

let C be the second semantic concept in q

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 160

if C exists
then

for each inclusion I = (A,B) in T+ do
% A subsumed by B %
if C = B
then

% Replace C with A %
P := P union {q[C|A]};

% Removal of participation concepts %
for each query q in P

for each concept C in q do
if C = ’exists�X’
then P := P - {q}

return P;

As before, for subsumption queries the graph is traversed as shown in the
algorithm. For PlugIn queries the graph is traversed as shown in Code 4.9.

Lemma 4.8. Participation constraints and sub-role relationships do not in-
crease the complexity of answering semantic queries over a given semantic
terminology M = (C,R, T) and a relational Web service operation repository
R with semantic annotations.

Proof. The first part of the algorithm has not changed. The additional loop
to remove participation constraints is linear in the number of unions of con-
junctive queries returned by the first part because each query contains at
most two concepts. Therefore, the complexity is not increased.

4.5 Summary

In this chapter a semantic terminology has been introduced that allows to
express ISA-relationships, disjointness constraints, participation, and type
constraints. These are common properties of many data models, such as
ER-diagrams or UML-class diagrams. Further, taxonomies can be expressed
with this terminology which are common classification schemes in many fields
of science and industry.

The terminology has been used to define the meaning of semantic queries
searching for matching Web service operations over a relational Web service
operation repository which has been extended to contain semantic anno-
tations. The proposed Web service matching approach based on semantic
annotations has the following advantages:

CHAPTER 4. SEMANTIC MATCHING OF OPERATIONS 161

• The semantic constructs used to model Web services arise from business
semantics and are consistent with enterprise wide business knowledge.

• The Web service and the semantic annotations exist independently of
each other.

• The approach is not restricted to a specific ontology or technical stan-
dard because the semantic model is a general model, yet, all DL con-
structs used in the approach can be mapped to, e.g., RDFS.

• The semantic model is applied for efficient query expansion.

• The query expansion is able to express subsumption and plug-in matches.

• It is also applicable to make sequence suggestions.

• The semantic model can be used to check the consistency of user an-
notations.

• The semantic model is extendable to contain roles and make use of
roles for searching although roles are not used for annotations.

It has been shown that answering typical semantic queries over a rela-
tional Web service operation repository is in O(f(m)nc), with f(m) poly-
nomial in the number m of terminological concepts, n number of entries in
the repository and c constant. This shows that the relational model of a
Web service operation repository uses the standardization that WSDL in-
terface descriptions have to offer and combines it with the efficiency of a
relational database management system. Further, decoupling the technical
WSDL interface description from its semantic description allows to exchange
the semantic terminology without changing the technical specification.

Chapter 5

Related Work

In this chapter, research approaches related to this thesis will be discussed,
which have not been mentioned in the previous chapters. The following
sections encompass:

• Web service search on the public Internet as opposed to an intra-
enterprise setting,

• semantic Web service standards and selected research on semantic Web
services,

• relational Web service models and their application to research prob-
lems,

• software component retrieval and tool support,

• other approaches to detect matching Web services.

5.1 Web Catalogs and Search Engines on the

Web

As Web services are built upon the infrastructure of the Internet it is close
at hand to use techniques that have been developed for Internet search to
find Web services. Besides UDDI (see Section 2.2), Web catalogs and search
engines are typical examples of such techniques. Surveys on Web service
catalogs and the use of general purpose search engines have been conducted
by [FK05, BSFT06, HLV07]. The main results are summarized briefly.

[FK05] come to the conclusion that discovery of Web services through
public catalogs is inhibited because developers who register their services do
not make enough use of the available description tags. Many registry entries

162

CHAPTER 5. RELATED WORK 163

are described by less than five words and the chosen terms are very general.
The survey shows that service description is a manual task that does not
seem to be embraced by developers but it is the only vehicle to transport
information for the human user searching for a service in a Web catalog.

[BSFT06] focus on the search functionality, the size of the Web catalog
and additional features that go beyond the central search functionality of the
UDDI search API. The survey shows that this search functionality can be
integrated into Web catalogs with additional offerings that help the user to
make a decision for or against the service. A detailed, human readable service
description is the most important feature. Additional information such as
user ratings, user comments and price information are also considered to
be a desirable surplus. General purpose search engines are regarded as an
alternative to Web catalogs that has to be considered as well. [BSFT06] see a
promising development in Web service search support through Web catalogs
and search engines.

[HLV07] show that Web catalogs are not growing any longer. Web cat-
alogs have not advanced since [BSFT06]. First of all, the offer of a catalog
must be attractive. Most public catalogs offer very common functionality,
such as unit conversion services. Second, the offer must be described care-
fully. Finally, the Web catalog provider must take care to keep available
services up to date. Many entries in public Web service catalogs are invalid
and their descriptions make a derelict impression. General purpose search
engines have not improved the support of Web service search, either. For
example, Google returns far too many irrelevant links when searching for
WSDL files. Search for operations is not possible.

An alternative to Web service catalogs and general purpose search en-
gines are search engines, specialized on Web services. A research prototype
called Woogle1 has been implemented to augment keyword based search with
template search and composition search as documented in [DHM+04]. The
user specifies a Web service template by defining the names of the desired
functionality as well as the names of the input and output parameters. This
template is then used to search for Web service operations with similar names
of operations, input, and output parameters. Further, this algorithm can also
be used to search for Web services that are suitable to be composed with a
given service. This search functionality treats composition as concatenation
of services. The search returns Web services whose input parameters match
the output parameters of the search template or vice versa. In this respect,
the search functionality is comparable to the sequence suggestions examined
in Section 4.3.3.

1http://data.cs.washington.edu/webService/

CHAPTER 5. RELATED WORK 164

The underlying algorithm of Woogle is a clustering algorithm. As similar-
ity measure Term Frequency/Inverse Document Frequency (TF/IDF) [SB88]
is used. To compute the similarity between two Web services the similarity of
their operations and of their input and output parameters is computed. The
computed similarities are combined linearly according to chosen weights.

This approach relies on the same kind of information as the relational
matching approach proposed in Section 3.3 except for domains which are
not explicitly taken into account by Woogle. Instead of a semantic enhance-
ment as used in Section 4.3, the approach relies on clustering and is therefore
implicitly based on the assumption of redundancy. In an Internet setting,
redundancy of services is a result of competition for customers. In an In-
tranet setting, a Web service repository is used to avoid redundant software
development. Therefore, the conditions of internal search are not adequate
for a clustering approach.

5.2 Semantic Web Services

Different approaches towards semantic Web services can be distinguished
in the research literature. Many of them are based on the Web Ontology
Language (OWL) or its predecessors. Therefore, OWL and the underlying
frameworks RDF and RDFS are presented briefly. They can also be used as
a technical implementation vehicle for semantic annotations of Web service
operations as presented in Chapter 4.

Three research directions, semantic annotations for WSDL, OWL-S, and
WSMF are summarized succinctly to show divergent approaches that make
use of the afore presented underlying techniques. Each approach reveals its
own attitude towards the idea of a semantic Web service.

Resource Description Framework (RDF)

RDF is a general purpose XML-based description framework to represent
information about resources on the Web, in particular meta-data about Web
resources, e.g., a homepage or its owner. RDF can also be used for infor-
mation about things that are not network-accessible such as people, com-
panies, or abstract concepts as long as they can be identified on the Web.
RDF is serializable in XML. A complete documentation of RDF is given in
[Wor04d, Wor04g, Wor04j, Wor04e].

Resources posses properties and RDF specifies these properties in simple
subject-predicate-object statements, e.g., “http://www.example.org/index.
html has creator whose value is John Smith”. In this sentence the subject is

CHAPTER 5. RELATED WORK 165

http://www.example.org/index.html

John
Smith

http://purl.org/dc/elements/1.1/creator

http://www.example.org/index.html

http://purl.org/dc/elements/1.1/creator

http://www.example.org/staffid/85740

Figure 5.1: RDF graph according to [Wor04d].

the homepage, the predicate is “has creator” and the object is John Smith.
This can be graphically depicted as shown on the left-hand side in Figure 5.1.
The Web page in this example is identified by its URL. The abstract concept
of a creator is represented using a URI reference2 (URIRef) which is a URI,
optionally followed by a fragment identifier. The URI http://purl.org/dc

/elements/1.1/creator is an element of a pre-defined RDF vocabulary, the
Dublin Core Meta-Data3 (dc).

The URIrefs in RDF play the role of a vocabulary and help to uniquely
identify a resource. Although RDF offers a standardized way to make state-
ments about resources it does not specify the meaning of the URIs used. If
the dc:creator URI is used, an application or a programmer familiar with
the Dublin Core Meta-Data knows the meaning of it. For applications or
programmers unfamiliar with this vocabulary, the string does not mean any-
thing and RDF does not help in understanding the meaning. The means to
define a vocabulary are provided by RDF Schema (RDFS).

Resource Description Framework Schema (RDFS)

RDFS is documented in [Wor04f]. In the example above, the existence of
a class homepage that has the property creator needs to be defined for a
vocabulary about homepages. The object of the creator property must be
an instance of a class called person. This can be formalized as RDF statement
as shown in Figure 5.2.

As the schema definition is an RDF statement it is serializable as an XML
document. RDFS allows to define classes, subclasses, properties, and sub-
properties. Thus, RDFS provides the means to define domain-specific vocab-
ularies, but it does not provide them. Well-known examples of RDFS vocab-
ularies besides Dublin Core are RSS 4 or the Gene Ontology5. RDFS is a lim-

2http://ftp.ics.uci.edu/pub/ietf/uri/
3http://dublincore.org/
4http://www.rssboard.org/rss-specification
5http://www.geneontology.org/

CHAPTER 5. RELATED WORK 166

ex:homepage
rdf:type

rdfs:class

ex:person
rdf:type

rdfs:class

ex:creator
rdf:type

rdf:property

rdfs:domain

rdfs:range

Figure 5.2: RDF schema as graph.

ited language because it is not able to express cardinality constraints, range
restrictions depending on classes, properties of properties such as transitiv-
ity or disjointness. To express such constraints a richer language is needed.
The Web Ontology Language (OWL) is an example of such a language and
introduced next.

Web Ontology Language (OWL)

The Web Ontology Language (OWL) is based on RDF and RDFS adding
more expressions to describe classes and properties. The language is designed
to model machine processable ontologies and is fully documented in [Wor04b,
Wor04a, BvHH+04, Wor04c]. OWL contains three increasingly expressive
sub-languages:

OWL Lite allows to express simple constraints and a classification hierar-
chy. It is intended as an easy migration path for thesauri and tax-
onomies. Its vocabulary is reduced compared to OWL DL. Cardinality
constraints are restricted to 0 and 1. OWL Lite has a lower complexity
than OWL DL.

OWL DL provides the same language constructs as OWL Full but with
some constraints that guarantee that OWL DL remains decidable, e.g.,
a class cannot be an instance and a subclass of another class. OWL
DL corresponds to description logics in its complexity.

OWL Full provides the full language support for OWL giving up decidabil-
ity. OWL Full constructs can augment the pre-defined RDF and OWL
vocabulary.

CHAPTER 5. RELATED WORK 167

The formal semantics of OWL is defined in [Wor04c]. The language con-
structs permit to make logical inferences. For example:

• Derived classification: If an instance belongs to a class A and A is a
subclass of class B then the instance also belongs to class B.

• Derived identity: If a property is declared to be functional and an
instance has two different range values assigned for it, the two values
must have the same meaning, i.e., denote the same instance.

• Derived equivalence: If class A is equivalent to class B and class B is
equivalent to class C then A is equivalent to C.

The description logic DL Lite, presented as example in Chapter 4, is
expressible with OWL Lite [CGL+04]. The terminology used to describe
the financial taxonomy can also be technically implemented as OWL Lite
ontology. Therefore, the approach suggested in Chapter 4 can be realized
with the help of existing standards without adding an additional layer to the
Web service standard stack.

An alternative approach, which also avoids the creation of a new Web
service standard, starts from the existing Web service standards UDDI and
WSDL and adds semantics within this framework. This direction of research
is presented next.

Semantic Annotations for WSDL

Semantic Annotations for WSDL (SAWSDL) is a current W3C candidate rec-
ommendation [Wor07a] that has emerged from a member submission called
WSDL-S by the LSDIS lab6 and IBM research. Basically, WSDL files are
annotated with references to ontological concepts. The annotated WSDL file
can further be turned into a UDDI entry making use of the implicit support
of ontologies in UDDI via tModels. The discovery of semantically annotated
Web services is based on these extended UDDI entries. This approach is com-
patible with current Web service standards. SAWSDL is based on WSDL 2.0,
but an extension for WSDL 1.1 is also defined. The following presentation
is based on WSDL 2.0.

SAWSDL defines two types of extension attributes as shown in Figure
5.3:

modelReference is an extension attribute that defines a connection be-
tween a WSDL interface, an operation, XML Schema complex type

6http://lsdis.cs.uga.edu/

CHAPTER 5. RELATED WORK 168

definitions, simple type definitions, element declarations, attribute dec-
larations and a concept in some semantic model. This can be an RDF-S
vocabulary, an OWL ontology, or other kinds of semantic conceptual-
izations. Applications that understand the vocabulary may use this
additional information for service detection.

liftingSchemaMapping, loweringSchemaMapping are attribute exten-
sions that define a mapping between XML Schema element declara-
tions, complex type definitions, simple type definitions, and seman-
tic data. These expressions can be in any language such as SparQL
[Wor07b], XSLT [Wor99], or XQuery [Wor07f]. They are used after
service detection for mediation purposes.

Bindings

Services
and

Endpoints

Concrete Part

Simple Types,
Complex Types,

Elements
sawsdl:

modelReference

Interfaces
sawsdl:

modelReference
Operations

sawsdl:
modelReference

Input
Message

Output
Message

Abstract Part

Simple Types,
Complex Types,

Elements
sawsdl:

modelReference

Interfaces
sawsdl:

modelReference
Operations

sawsdl:
modelReference

Input
Message

Output
Message

Abstract Part

Bindings

Services
and

Endpoints

Concrete PartSemantic Model

lifting

SchemaMapping
loweringSchemaMapping

Figure 5.3: SAWSDL overview.

As SAWSDL does not demand the usage of any specific semantic model
loweringSchemaMappings and liftingSchemaMappings depend on the chosen
model. If a semantic model based on RDF is used, liftingSchemaMappings
can be defined using XSLT or XQuery. The inverse loweringSchemaMappings

is more complex as the XML serialization of RDF triples is not unique.
Several equivalent XML representations of an RDF model exist. First, RDF
must be pre-processed using a query language such as SparQL to produce
an XML table of variable bindings. Then an XSLT transformation can be
applied to produce the needed XML data format.

CHAPTER 5. RELATED WORK 169

[Ver06] has used SAWSDL to create executable processes from given ab-
stract process specifications and to adapt the process during execution in
case of a technical failure. The approach has been applied to a supply chain
scenario for computer hardware. The impact of the expressiveness of the
ontology for the complexity of the search by semantic annotations has not
been studied so far. In this respect, this thesis makes a contribution to the
SAWSDL approach.

Other approaches to give semantics to Web services take a different turn.
They define an additional layer of semantic Web service standards that are
mapped to UDDI and WSDL, or can be used to generate WSDL files and
UDDI entries. Two representatives are OWL-S and the Web Service Model-
ing Framework (WSMF).

Web Ontology Language for Services (OWL-S)

The semantic Web language OWL DL has been used by the OWL-S coali-
tion of the DARPA Agent Markup Language (DAML) Program7 to create a
machine understandable description of services based on an OWL service on-
tology. This description is intended to support service discovery, invocation,
composition, and interoperation. The service ontology is designed as a stan-
dard language for describing services, consisting of a set of basic classes and
properties. The current OWL-S 1.2 Pre-Release is documented in [MBH+06].

OWL-S provides an abstract top-level ontology8 for describing a service
as an OWL class Service that is described by a class called ServiceModel,
presented by a class called ServiceProfile and supported by a class called
ServiceGrounding. This top-level ontology is graphically depicted in Fig-
ure 5.4. The ServiceModel provides a process description of how the ser-
vice works. The ServiceGrounding describes how to use a service. The
ServiceProfile contains information to support service discovery.

Grounding a service using WSDL relies on the following three correspon-
dences which are summarized in Figure 5.5:

1. An atomic process of a ServiceModel corresponds to a WSDL operation.

2. The input parameters of an atomic process correspond to an input
message of a WSDL operation. The output parameter correspond to
an output message respectively.

3. OWL-S classes as DL-based types are regarded as abstract types that
can be used in WSDL messages.

CHAPTER 5. RELATED WORK 170

ServiceProfil

Service

ServiceModel ServiceGrounding

presents presentedBy

describes
describedBy supports

supportedBy

Figure 5.4: OWL-S service ontology.

Process Model DL-based Types

Atomic Process Input/Output

Operation Message

Binding to SOAP, HTTP etc.

WSDL

OWL-S

Figure 5.5: Overview of OWL-S GroundingProfile according to [MBH+06].

CHAPTER 5. RELATED WORK 171

The OWL-S ServiceProfile aims at creating a service registry for service
detection. Thus, its goal is similar to UDDI. In contrast to UDDI the Servi-
ceProfile does not specify registry APIs, only registry entries in the form of
ServiceProfiles. The businessEntity element of a UDDI entry contains con-
tact information similar to the ServiceProfile contactInformation property.
A reference to a tModel allows to retrieve the service interface information
from a WSDL file which contains the input and output parameters of the
service operations. This information is directly contained in a ServiceProfile.
It permits to express rules as pre- and postconditions. Therefore, it is seman-
tically richer than a UDDI entry. From the side of the semantic Web service
community proposals have been made to map a Service Profile to a UDDI
entry, thereby deriving the UDDI entry from the ServiceProfile [MBL+03].
Only recently, the W3C working group for WSDL has published a note on
the inverse mapping from WSDL to RDF [Wor07e].

The OWL-S ontology languages is a representative of the approach to
describe Web service capabilities using semantic Web techniques as an addi-
tional layer on top of or as replacement for Web service standards. OWL-S
has been used in a number of research approaches on Web service description,
composition, and matching, e.g. [LH03, MBE03, BHL+05, KFS06, SPS06].

Another standard that also adds an additional standard layer to the Web
service standard stack is presented in the following paragraph.

Web Service Modeling Framework

The Web Service Modeling Framework (WSMF) [FB02] is a conceptual mod-
eling framework for the development and description of Web services, espe-
cially in e-commerce, that tries to combine the principle of loose coupling of
services with a strong mediation to enable cooperation among Web services.
The framework consists of four main components: ontologies as common
terminology, goal repositories to describe problems to be solved by Web ser-
vices, Web service descriptions, and mediators to overcome interoperability
obstacles. The Web Service Modeling Ontology (WSMO) [LdBKL06] is the
conceptual basis of the WSMF and refines the four core artifacts ontologies,
goals, Web services and mediators. The ontologies of the WSMO provide for-
mal and explicit specifications of the vocabularies which are used to describe
goals, Web services and mediators.

• Ontologies in WSML consist of concepts forming the basic terminology

7http://www.daml.org/services/owl-s/
8http://www.ai.sri.com/daml/services/owl-s/1.2/Service.owl

CHAPTER 5. RELATED WORK 172

with different attributes, relations between concepts, instances of con-
cepts, relation instances and axioms to refine concepts and relations.

• Web services are described from the provider perspective by their capa-
bilities and their interfaces. The capabilities are expressed as precon-
ditions that hold in the information space before service execution and
postconditions which describe the state after execution. The pre- and
postconditions can be formulated using a WSML ontology. Therefore,
goals are also expressed in terms of capabilities and interfaces.

• Mediators are designed to bridge differences in representation formats,
encoding styles, and business protocols between Web services, goals
and ontologies.

The WSMO is described in a specialized ontology language called Web
Service Modeling Language (WSML). There exist five different variants that
vary in expressiveness, summarized according to [dBLPF06]:

• WSML Core: Intersection of Horn Logic [Gup98] and Description Logic,

• WSML DL: Description Logic,

• WSML Flight: Rule language based on a logic programming variant of
F-Logic [AL04],

• WSML Rule extension of WSML Flight,

• WSML Full: First order unification of WSML DL and WSML Rule.

A concise overview is given in, e.g., [RdBM+06]. Both, WSMO and
WSML, have been submitted to the W3C [dBBD+05, dBFK+05] for con-
sideration. The research initiative behind this submission is primarily lead
by DERI9 and also lays the foundation for their current research effort in
Semantically Enabled Service-oriented Architectures (SESA) [ABdB+06].

The WSMO approach has been applied to e-business [dBFKL05], espe-
cially an investment banking scenario in [Lar06, KLL+05, LF05], searching for
Web services that supply information about investment funds from different
European countries in a two-step approach. First, the number of candidate
services is restricted based on the output description of the service. Then,
the result is refined based on a semantic description of the input.

Semantic Web approaches are also used to describe quality of service
properties and to use semantic descriptions of non-functional service aspects

9http://www.deri.org/

CHAPTER 5. RELATED WORK 173

for Web service matching, e.g., in [DOH+01, OEtH02, OEtH05] a semantic
framework for non-functional Web service description is presented that mod-
els, e.g., temporal and spatial availability, communication channels, payment,
pricing, security, and reputation. This description is not limited to Web ser-
vices, but is extended to services in general.

5.3 Relational Web Service Models

Relational models of Web services have been used to study Web service com-
position and properties of Web service executions.

A relational view on Web services has been taken in [LN04] to study
the execution of Web service compositions. In this approach, a Web service
operation is regarded as a function with n input and m output arguments. It
is represented as a relation with access pattern. The access pattern defines
if an attribute of the given relation is an input or output argument of the
Web service operation. A conjunctive query is regarded as a declarative
description of a Web service composition. The central question in this setting
is, if the composition is feasible, i.e., if the conjunctive query can be executed
observing the given access patterns of the involved relations disregarding the
specific syntactic form of the query.

In general, it is possible to formulate conjunctive queries with limited
access patterns which are not executable while observing the given syntactic
order. However, if it is possible to compute an equivalent conjunctive query
that is executable, the original query is feasible. Deciding feasibility is NP-
complete [Li03] and a variation of the query containment problem [AHV95].
In [NL04], approximative algorithms for containment checking are presented,
which avoid worst case complexity for unions of conjunctive queries with
negation. The executable conjunctive query represents a variation of the
original Web service composition plan.

A relational Web service representation is also used in [DSVZ06] to verify
Web service compositions. A Web service is modeled as a set of relations
consisting of an underlying database, a state relation, an input relation, an
action relation, and two relations representing input and output queues. In
this model, Web services communicate asynchronously by messages exchange.
Human interaction with the Web services is also possible. Rules are used
to express which messages are sent and received and into which state the
Web service changes. The internal state, the internally available information
and the content of the exchanged messages are modeled explicitly. This
representation abandons the idea of a Web service as a black box.

The model is used to verify properties of Web service compositions ex-

CHAPTER 5. RELATED WORK 174

pressed as first order temporal logic properties and as conversation protocols
[DSV07]. Different sub-cases of bounded and unbounded input and output
queues as well as lossy and lossless channels are distinguished. This Web
service model is also used to verify properties of runs over sequences of Web
pages with human interaction [DSV04].

In earlier work [AVFY00], Web services are represented as relational
transducers for electronic commerce [Spi03], assuming a finite number of
internal states and describing state changes as well as output messages as
datalog rules. The exchanged messages are saved in a log relation. This
model is used to verify runs of programs based on their log, to verify tem-
poral properties and to decide goal reachability. In contrast to the work in
[DSV07], the number of states in [AVFY00] is finite.

5.4 Software Component Retrieval

The Web service search problem can be regarded as a variation of the earlier
research subject of software component retrieval for software libraries. Here,
two aspects of this line of research are presented by example of selected
publications:

• signature and specification matching, which is related to the approach
presented in this thesis and

• search by refinement with a quantitative match classification, which is
a complementary approach to this thesis.

In software component retrieval, often a two-step search strategy is ap-
plied. First, the signature is matched, which describes the operations with
their input and output parameters. Then, the specification is matched, which
describes the intended behavior of the component. Prominent examples are
found in [MZW93, MZW95, MZW97]. In this work, the signature of a soft-
ware component is described by its ML10 interface. It consists of one or more
functions in combination with the input and output data types. Different
degrees of matching signatures, exact, generalized, and specialized are exam-
ined in [MZW95]. An exact signature match between two functions requires
at most renaming of parameters. For a generalized match, the library com-
ponent has more general types than the user request signature. A specialized
match is the inverse of a generalized match.

The specification of a software component is described by pre- and post-
conditions that need to be fulfilled before, respectively after the execution

10ML interfaces are similar to Modula-3 interface modules.

CHAPTER 5. RELATED WORK 175

of the component. The pre- and postconditions are described using first-
order logic in [MZW97]. Match or mismatch is then decided using a theorem
prover, distinguishing different match degrees. An exact specification match
presumes a matching signature. The pre- and postconditions of the two
components are equivalent. For a plug-in match, the precondition of the first
component implies the precondition of the second component and vice versa
for the postcondition. For a generalized match, the conditions of the second
component are more general and imply the conditions of the first component.
A specialized match is the inverse of a generalized match.

In this respect, the classification hierarchy of [MZW97] is similar to the
different match types presented in this thesis. However, an operational de-
scription of the match is not added. Sequence suggestions based on the dif-
ferent match types are not considered by [MZW97]. Further, partial matches
are not taken into account. Finally, the approach is based on an extensive
specification of components, comparable to the formal specification of ab-
stract data types. The approach has been applied to the specification of
basic data types such as stack, queue, or list. For Web services, such exten-
sive descriptions are not necessarily available.

A coupled approach of signature and specification matching has also been
applied to the Web service search problem in [KKR04]. Here, a state-oriented
service description is used for description of service request and service of-
fer. This approach also accepts partial matches, comparable to the partial
matches defined in Section 3.4, which do not have a completely matching
signature.

Other research approaches do not categorize a match based on a quali-
tative notion, as has been done in this thesis, but they focus on computing
a quantitative distance between software components and computing an ap-
proximation by refinement if an exact match is not available. An example
of this line of research, which also takes a relational approach towards spec-
ification matching, is found in [MMM94]. A specification of a software com-
ponent is represented as a relation of all accepted pairs of input and output
parameters. Two specifications are compared by comparing their relational
representations. A specification is “more-defined” than another specification
if the underlying relation has a larger domain.

Based on this criterion of comparison, a partial ordering of specifications
is constructed. The more instances two relational specifications have in com-
mon the closer they match each other. Computing a (partial) match to a
given specification is turned into the search of a minimal relation that max-
imizes the set of common elements between itself and the relation of the
component sought. This approach is elaborated further in [LJDF+97]. The
approach has been applied to compute the distance between different Pascal

CHAPTER 5. RELATED WORK 176

compilers.

5.5 Other Web Service Matching Approaches

Other Web service matching approaches can be distinguished by:

• the model they use to represent a Web service,

• the use case for searching, design-time search or run-time search, and

• the intended usage of the match, e.g., for service composition, for work-
flow planning, or for quality of service negotiations.

An overview of different automata-based and model theoretic approaches
towards Web service modeling, match computation and composition is given
in [Dra01, NM02, HBCS03, HS04, HS05, Hul05]. Other approaches to Web
service matching are based on different concepts that do not fall into one of
the categories mentioned above, e.g., contract-based [ELS05], graph-based
[HCL04], or model-driven [HKC05], to name just a few examples.

Finally, the support offered by case tools needs to be mentioned. Case
tools are often designed to support a specific modeling language or design
methodology for software engineering. For example, the conceptual, logical,
and physical design of relational databases is supported by Sybase PowerDe-
signer11. It allows the graphical design of ER-diagrams with a stepwise re-
finement down to code generation for different database systems. The UML
notation is supported by case tools such as IBM Rational Rose12 or Borland
Together, to name just a few.

So far, a specific service-oriented design methodology with a tailored case
tool support has not emerged. Different suggestions are reported, for exam-
ple, domain-oriented design (e.g., [HVH06]), pattern-based approaches (e.g.,
[GAA+06]) or UML-variations (e.g., [SB05, MdCV03]). Nevertheless, soft-
ware vendors support Web service standards in their tool suites. At least,
the automatic generation of a WSDL file from existing code is possible.

An example to increase reuse on a meta-level is the reusable asset browser
in the IBM Rational Professional Bundle [Ger05]. To facilitate SOA design,
it supports the OMG standard RAS 2.2 for the description of reusable assets
[Obj05]. Reusable assets are artifacts that provide a solution to a given
problem in a given context. They describe design patterns, models, or simply
“recipes” that describe how to combine different assets. Reusable assets can

11http://www.powerdesigner.de/
12http://www-306.ibm.com/software/de/rational/design.html

CHAPTER 5. RELATED WORK 177

be stored in an enterprise wide repository. Search is supported through an
hierarchical asset browser.

Chapter 6

Conclusions and Perspectives

Finding Web services within an enterprise-wide development environment is
a crucial step in the development process of service-oriented applications to
increase service reuse and to avoid proliferation of services in the service-
oriented architecture.

6.1 Summary of Results

The starting point for this thesis has been the observation that current Web
service standards are not seamlessly integrated with service-oriented software
development. Standards such as UDDI are technical standards that have
been created with B2B service brokerage for e-commerce as major application
scenario. The central aim of standards such as UDDI is that many service
providers offer their Web services globally through central registries. These
registries may contain many versions of equivalent Web services to give the
consumers a choice. Redundancy as a consequence of competition is wanted
and not avoided.

This is in contrast to the motivation of enterprises that invest in service-
oriented applications. They want to save costs by reducing development and
maintenance of redundant functionality, as market research shows. They
want to avoid the duplication of functionality that is caused by heterogeneous
environments. Therefore, detecting duplicates when software programs are
already implemented is too late. As a consequence, a central repository of
Web services within an enterprise must, first of all, support the detection of
available functionality at development time. Such a repository can be built
up step by step while developing the service-oriented applications or added
afterwards.

During the case study, the logical design step of a structured development

178

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 179

process has been identified as the step that benefits most from a central Web
service operation repository at the level of operations. The major concern
of such a repository is the internal administration of interface information.
Therefore, a relational database approach has been chosen. The information
of the WSDL files is turned into the content of the relational Web service
operation repository. This avoids the creation of a new technical standard
but reuses the existing standard approach.

The relational representation in the repository is used to express the Web
service search problem as a relational schema matching problem. A syntactic
search approach based on relational schema matching algorithms has been
suggested. The analysis of this purely syntactic approach has revealed that
it is possible to adapt existing match algorithms to the problem of Web ser-
vice operation matching. This has been shown using two classical match
algorithms in combination. The match result is described as an extended
relational algebra expression. This is regarded as the description of a trans-
formation Web service which turns the messages of one Web service into the
format of the other. Thus, the match operation executed on two relational
Web service schema descriptions returns a relational Web service schema as
result. The matching expression has served to define a hierarchy of matches.
The approach works self-contained on the available interface information and
does not need any additional meta-information. This relieves the developer
of documentation overhead. As the approach is purely syntactic, it relies on
naming conventions for operations, attribute, and domains.

Therefore, the repository has been further enhanced with semantic an-
notations at the level of operation and attribute names. The case study
from financial industry has shown that the necessary taxonomies often exist,
e.g., in terms of data warehouse dimensions, reporting categories, or product
catalogs. The semantic annotations must be added at Web service develop-
ment time and need maintenance. Once added, they provide a richer search
functionality than purely syntactic matching. An efficient search algorithm
has been presented that exploits the semantic annotations and the taxon-
omy to compute matches of different degrees. The match computation takes
semantic dependencies into account and supports the automatic generation
of alternatives. The operation retrieval is expressed as a semantic extension
of SQL. This approach combines Web service standards with semantic Web
standards. Further, the taxonomy can be used to increase the quality of the
technical documentation and definition of suitable criteria for encapsulation
of Web services.

The case study from financial industry has shown that functionality is
especially suited to be offered as a Web service if:

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 180

• it encapsulates central, non-trivial business logic,

• the business logic is needed in more than one application context, e.g.,
operational and back-office systems,

• consistency of results is needed across different applications contexts,
possibly with different stakeholders.

In the ongoing discussion about a service-oriented development process,
this thesis closes a gap in the logical design step of service-oriented architec-
ture. The relational operation repository with semantic annotations does not
only provide structured algorithmic support for Web service operation search
from the point of view of the developer, but also documentation related to
the development of the service landscape.

6.2 Outlook on Research Perspectives

The semantic syntactic search support of the relational Web service repos-
itory is intended for search at design time. The search takes place at the
logical design level. Run time search support is a different research direction
with different needs, e.g., service redundancy is wanted in this setting to com-
pensate for technical failure of individual services. The search takes place
on the physical level of the service-oriented application. Still, similarities
between the two search scenarios exist. Search at run time must ultimately
generate a Web service operation call which might include the transformation
of input and output messages to make them fit the WSDL service interface.
Such transformation instructions could be computed before-hand and stored
in an extension to the relational Web service registry that contains syntactic
matches and relational match expressions.

This thesis has shown that it is possible to create search support for
service-oriented development and design without adding new standards to
the already existing standards for Web services. Other aspects of the service-
oriented software life-cycle such as the test and roll-out phase or the mainte-
nance and governance phase can also benefit from structured meta-informa-
tion support as presented in this thesis in terms of semantic annotations.
They may also be used, e.g., for planning the next development projects.
These development aspects are still regarded as a subject for software con-
sulting.

Finally, the semantic extension of the relational Web service operation
repository relies on semantic annotations. The developer must make addi-
tional effort to add semantic annotations to the implemented Web service,

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 181

and there is additional effort involved in maintaining the taxonomies. Anno-
tations, or tags, are also a popular phenomenon of Web 2.0. There, tags help
users to structure their own digital information, e.g., photo collections. In
Web 2.0 communities, the acceptance of common tags and their meaning is
based on public consensus. Every user creates his or her own tags. Popular
tags are reused by others. This is different in an enterprise setting where
the meaning of software components must be clearly defined. In Web 2.0,
tagging is accepted and popular, whereas in software-development additional
documentation is often dreaded by developers. This rises the questions how
incentives and experience of the social Web 2.0 can be used to enhance se-
mantic annotation of Web services and to support a comfortable annotation
process for developers.

Bibliography

[ABdB+06] D. Anicic, M. Brodie, J. de Bruijn, D. Fensel, T. Hasel-
wanter, M. Hepp, S. Heymans, J. Hoffmann, M. Kerri-
gan, J. Kopecky, R. Krummenacher, H. Lausen, A. Mo-
can, and J. Scicluna. A Research Roadmap for DERI
Innsbruck. Technical Report deri-tr-2006-09-15, DERI, 9
2006. URL: http://www.deri.at/fileadmin/documents/deri-tr-
2006-09-15.pdf (2007-10-01).

[ACKM04] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web
Services. Concepts, Architectures and Applications. Springer-
Verlag, Berlin, Germany, 2004.

[ACM03] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns. Best
Practicies and Design. Prentice Hall, Upper Saddle River, NJ,
USA, 2003.

[ADMR05] D. Aumueller, H. Hai Do, S. Massmann, and E. Rahm. Schema
and Ontology Matching With COMA++. In Proc. of the ACM
SIGMOD International Conference on Management of Data,
Baltimore, Maryland, USA, 14-16 June 2005, pages 906–908,
2005.

[AGH05] K. Arnold, J. Gosling, and D. Holmes. The Java Programming
Language. Addison-Wesley, Reading, MA, USA, 2005.

[AH05] A. Arsanjani and K. Holley. Increase Flexibil-
ity with the Service Integration Maturity Model
(SIMM). IBM Corporation, 2005. URL: http://www-
128.ibm.com/developerworks/webservices/library/ws-soa-
simm/ (2007-10-01).

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesly, Reading, MA, USA, 1995.

182

BIBLIOGRAPHY 183

[AL04] J. Angele and G. Lausen. Ontologies in F-logic. In Staab and
Studer [SS04], pages 29–50.

[Ars04] A. Arsanjani. Service-Oriented Modeling and Architecture.
How to Identify, Specify, and Realize Services for Your
SOA. Technical report, IBM, 2004. URL: http://www-
128.ibm.com/developerworks/webservices/library/ws-soa-
design1/ (2007-10-01).

[Ars05] A. Arsanjani. Toward a Pattern Language for
Service-Oriented Architecture and Integration. Tech-
nical report, IBM, 2005. URL: http://www-
128.ibm.com/developerworks/webservices/library/ws-soa-soi/
(2007-10-01).

[AVFY00] S. Abiteboul, V. Vianu, B. S. Fordham, and Y. Yesha. Rela-
tional Transducers for Electronic Commerce. Journal of Com-
puter and System Sciences, 61:236–269, 2000.

[Bal00] B. Balzert. Lehrbuch der Software-Technik, volume 1. Spektrum
Akademischer Verlag, Heidelberg, Germany, 2 edition, 2000.

[Bar06] J. Barnes. Programming in ADA 2005. Addison-Wesley, Read-
ing, MA, USA, 2006.

[BBC+99] P. A. Bernstei, T. Bergstraesser, J. Carlson, S. Pal, P. Sanders,
and D. Shutt. Microsoft Repository Version 2 and the Open
Information Model. Information Systems, 24(2):71–98, 1999.

[BBHN05] R. Breu, M. Breu, M. Hafner, and A. Nowak. Web Service En-
gineering - Advancing a New Software Engineering Discipline.
In Proc. of the 5th International Conference on Web Engineer-
ing (ICWE), Sydney, Australia, 27-29 July 2005, volume 3579
of Lecture Notes in Computer Science, pages 8–18, 2005.

[BBZ+05] M. H. Burstein, C. Bussler, M. Zaremba, T. W. Finin, M. N.
Huhns, M. Paolucci, A. P. Sheth, and S. K. Williams. A Se-
mantic Web Services Architecture. IEEE Internet Computing,
9(5):72–81, 2005.

[BEA03] BEA Systems Inc. Customer Case HewlettPackard, 2003.
URL: http://h71028.www7.hp.com/enterprise/downloads/
HP%20IT%20and%20Workshop.pdf(2007-10-01).

BIBLIOGRAPHY 184

[BEA06] BEA Systems Inc. Customer Case
Study Schiphol Airport, 2006. URL:
http://www.bea.com/content/news events/white papers/
BEA Schiphol Airport cs.pdf(2007-10-01).

[Bel06] J. Belger. Die Service Oriented Platform der Deutschen Post.
Java Spektrum, (1):22–25, 2006.

[Ber96] P. A. Bernstein. Middleware: A Model for Distributed System
Services. Communications of the ACM, 39(2):86–98, 1996.

[BH06] C. Baroudi and F. Halper. Executive Sur-
vey: SOA Implementation Satisfaction. Techni-
cal report, Hurwitz and Associates, 2006. URL:
http://www2.mindreef.com/hurwitz.aspx?cid=aebc8bb4-
8a15-48fa-94f3-473f9fc4c96c (2007-10-01).

[BHB05] J. Becker, S. Hallek, and C. Brelage. Fachkonzeptionelle Spez-
ifikation konfigurierbarer Geschäftsprozesse auf Basis von Web
Services. Technical Report WWU-WI-113, Arbeitsberichte
des Instituts für Wirtschaftsinformatik, Westfälische Wilhelms-
Universität Münster, 2005.

[BHL+05] B. Benatallah, M. S. Hacid, A. Léger, C. Rey, and F. Toumani.
On Automating Web Services Discovery. VLDB Journal,
14(1):84–96, 2005.

[BKK+05] J. Beatty, G. Kakivaya, D. Kemp, T. Kuehnel, B. Lovering,
B. Roe, C. S. John, J. Schlimmer, G. Simonnet, D. Walter,
J. Weast, Y. Yarmosh, and P. Yendluri. Web Services Dynamic
Discovery (WS-Discovery). Microsoft Corporation Inc., 2005.
URL: http://schemas.xmlsoap.org/ws/2004/10/discovery/ws-
discovery.pdf (2007-10-01).

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.
Scientific American, 2001(May issue), 2001.

[BN03] F. Baader and W. Nutt. Basic Description Logics. In F. Baader,
D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors, Description Logic Handbook, pages 43–95.
Cambridge University Press, 2003.

BIBLIOGRAPHY 185

[BP98] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine. Computer Networks, 30(1-7):107–117,
1998.

[BR00] P. A. Bernstein and E. Rahm. Data Warehouse Scenarios for
Model Management. In Conceptual Modeling, Proc. of the 19th
International Conference on Conceptual Modeling (ER), Salt
Lake City, Utah, USA, 9-12 October 2000, volume 1920 of Lec-
ture Notes in Computer Science, pages 1–15, 2000.

[Bri05a] British Standards Institution. Structured vocabularies for infor-
mation retrieval. Guide. Definitions, symbols and abbreviations,
2005.

[Bri05b] British Standards Institution. Structured vocabularies for in-
formation retrieval. Guide. Thesauri, 2005.

[BSFT06] D. Bachlechner, K. Siorpaes, D. Fensel, and I. Toma.
Web Service Discovery - A Reality Check. Techni-
cal Report DERI-TR-2006-01-17, DERI, 1 2006. URL:
http://www.deri.at/fileadmin/documents/DERI-TR-2006-01-
17.pdf (2007-10-01).

[BvHH+04] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks,
D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein.
OWL Web Ontology Language Reference. W3C Recommen-
dation. World Wide Web Consortium, 2004. URL:
http://www.w3.org/TR/2004/REC-owl-ref-20040210/ (2007-
10-01).

[CCMW01] E. Christensen, F.o Curbera, G. Meredith, and S. Weerawarana.
Web Services Description Language (WSDL) Version 1.1. W3C
Note. World Wide Web Consortium, March 2001. URL:
http://www.w3.org/TR/2001/NOTE-wsdl-20010315 (2007-10-
01).

[CGL+04] D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, and
G. Vetere. DL-Lite: Practical Reasoning for Rich Dls. In
Proc. of the 2004 International Workshop on Description Log-
ics (DL), Whistler, British Columbia, Canada, 6-8 June 2004,
volume 104 of CEUR Workshop Proceedings, 2004.

[CJ02] D. Chappell and T. Jewell. Java Web Services. OReilly, Cam-
bridge, MA, USA, 2002.

BIBLIOGRAPHY 186

[Cod70] E. F. Codd. A Relational Model for Large Shared Data Banks.
Communications of the ACM, 13(6):2, 1970.

[dBBD+05] J. de Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp,
U. Keller, M. Kifer, B. Knig-Ries, J. Kopecky, R. Lara,
H. Lausen, E. Oren, A. Polleres, D. Roman, J. Scicluna, and
M. Stollberg. Web Service Modeling Ontology. W3C Mem-
ber Submission. World Wide Web Consortium, 2005. URL:
http://www.w3.org/Submission/WSMO/ (2007-10-01).

[dBFK+05] J. de Bruijn, D. Fensel, U. Keller, M. Kifer, H. Lausen,
R. Krummenacher, A. Polleres, and L. Predoiu. Web
Service Modeling Language. W3C Member Submis-
sion. World Wide Web Consortium, 2005. URL:
http://www.w3.org/Submission/WSML/ (2007-10-01).

[dBFKL05] J. de Bruijn, D. Fensel, U. Keller, and R. Lara. Using the
Web Service Modeling Ontology to Enable Semantic e-Business.
Communications of the ACM, 48(12):43–47, 2005.

[dBLPF06] J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The Web
Service Modeling Language WSML: An Overview. In The Se-
mantic Web: Research and Applications, Proc. of the 3rd Euro-
pean Semantic Web Conference (ESWC), Budva, Montenegro,
11-14 June 2006, volume 4011 of Lecture Notes in Computer
Science, pages 590–604, 2006.

[Dev06] B. Devlin. Opening the Door to a Service-
Oriented Architecture. Technical report, IBM
Dublin Software Laboratory, 2006. URL:
ftp://ftp.lotus.com/pub/lotusweb/wplc/WPLC SOA white
paper.pdf (2007-10-01).

[DHM+04] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and J. Zhang.
Similarity Search for Web Services. In (e)Proc. of the 30th
International Conference on Very Large Data Bases (VLDB),
Toronto, Canada, 31 August - 3 September 2004, pages 372–
383, 2004.

[DJMZ05] W. Dostal, M. Jeckle, I. Melze, and B. Zengler. Service-
orientierte Architekturen mit Web Services. Konzepte-
Standards-Praxis. Spektrum Akademischer Verlag, Heidelberg,
Germany, 2005.

BIBLIOGRAPHY 187

[DMDH04] A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy. On-
tology Matching: A Machine Learning Approach. In Staab and
Studer [SS04], pages 385–404.

[DOH+01] M. Dumas, J. O’Sullivan, M. Hervizadeh, D. Edmond, and
A. H. M. ter Hofstede. Towards A Semantic Framework for Ser-
vice Description. In Semantic Issues in E-Commerce Systems,
IFIP TC2/WG2.6 Ninth Working Conference on Database Se-
mantics, Hong Kong, 25-28 April 2001, volume 239 of IFIP
Conference Proceedings, pages 277–291, 2001.

[DR02] H. Hai Do and E. Rahm. COMA - A System for Flexible Com-
bination of Schema Matching Approaches. In Proc. of 28th
International Conference on Very Large Data Bases (VLDB),
Hong Kong, China, 20-23 August 2002, , pages 610–621, 2002.

[Dra01] V. Draluk. Discovering Web Services: An Overview. In Proc.
of 27th International Conference on Very Large Data Bases
(VLDB), Roma, Italy, 11-14 September 2001, pages 637–640,
2001.

[DSV04] A. Deutsch, L. Sui, and V. Vianu. Specification and Verifica-
tion of Data-driven Web Services. In Proc. of the Twenty-third
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS), Paris, France, 14-16 June 2004,
pages 71–82, 2004.

[DSV07] A. Deutsch, L. Sui, and V. Vianu. Specification and Verification
of Data-Driven Web Applications. Journal of Computer and
System Science, 73(3):442–474, 2007.

[DSVZ06] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of Com-
municating Data-Driven Web Services. In Proc. of the Twenty-
Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, Chicago, Illinois, Maryland, USA,
26-28 June 2006, pages 90–99, 2006.

[eJC06] The OASIS ebXML Joint Committee. The Frame-
work for eBusiness. An OASIS White Paper. Tech-
nical report, OASIS, 2006. URL: http://www.oasis-
open.org/committees/download.php/17817/ebxmljc-
WhitePaper-wd-r02-en.pdf (2007-10-01).

BIBLIOGRAPHY 188

[ELS05] G. Engels, M. Lohmann, and S. Sauer. Design by Contract
zur semantischen Beschreibung von Web Services. In INFOR-
MATIK 2005 - Informatik LIVE! Band 2, Beiträge der 35.
Jahrestagung der Gesellschaft für Informatik e.V. (GI), Bonn,
19. bis 22. September 2005, volume 68 of LNI, pages 612–616,
2005.

[FB02] D. Fensel and C. Bussler. The Web Service Modeling Frame-
work WSMF. Electronic Commerce Research and Applications,
1(2):113–137, 2002.

[Fer03] R. Ferber. Information Retrieval. dpunkt.verlag, Heidelberg,
Germany, 2003.

[FK05] J. Fan and S. Kambhampati. A Snapshot of Public Web Ser-
vices. SIGMOD Record, 34(1):24–32, 2005.

[GAA+06] J. Ganci, A. Acharya, J. Adams, P. Diaz de Eusebio, G. Rahi,
D. Strachan, K. Utsumi, and M. Washio. Patterns: SOA Foun-
dation Service Creation Scenario. IBM Redbooks, 2006.

[Gau05] W. Gaus. Dokumentations- und Ordnungslehre. Theorie und
Praxis des Information Retrieval. Springer-Verlag, Berlin, Ger-
many, 5 edition, 2005.

[Ger05] B. Gerson. Build and Test IT Applications with
the IBM Rational Professional Bundle. Techni-
cal report, IBM Rational Software, 2005. URL:
ftp://ftp.software.ibm.com/software/rational/web/white-
papers/btia-probundle.pdf (2007-10-01).

[GGMO03] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Sweet-
ening WORDNET with DOLCE. AI Magazine, 24(3):13–24,
2003.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman,
San Francisco, CA, USA, 1979.

[Gra01] S. Graham. The Role of Private UDDI Nodes in Web Services,
Part 1: Six Species of UDDI. IBM, 2001. URL: http://www-
128.ibm.com/developerworks/webservices/library/ws-
rpu1.html (2007-10-01).

BIBLIOGRAPHY 189

[Gru95] T. R. Gruber. Toward Principles for the Design of Ontologies
Used for Knowledge Sharing? International Journal of Human-
Computer Studies, 43(5-6):907–928, 1995.

[GSY04] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-Match: An
Algorithm and an Implementation of Semantic Matching. In
The Semantic Web: Research and Applications, Proc. of the
1st European Semantic Web Symposium (ESWS), Heraklion,
Crete, Greece, 10-12 May 2004, pages 61–75, 2004.

[GSY05] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Se-
mantic Schema Matching. Technical Report DIT-
05-014, University of Trento, Italy, 2005. URL:
http://dit.unitn.it/ p2p/RelatedWork/Matching/CoopIS05-
SSM-GSY.pdf (2007-10-01).

[Gua98] N. Guarino. Formal Ontology and Information Systems. In
Proc. of the 1st International Conference of Formal Ontology in
Information Systems (FOIS), Trento, Italy, June 1998, 1998.

[Gup98] G. Gupta. Horn Logic Denotations and Their Applications. In
K. R. Apt, V. W. Marek, M. Truszczynski, and D. S. Warren,
editors, The Logic Programming Paradigm. A 25-Year Perspec-
tive, pages 127–160. Springer-Verlag Berlin, Germany, 1998.

[HBCS03] R. Hull, M. Benedikt, V. Christophides, and J. Su. E-services:
a look behind the curtain. In Proc. of the Twenty-Second
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, San Diego, CA, USA, 9-12 June 2003, pages
1–14, 2003.

[HCL04] R. Heckel, A. Cherchago, and M. Lohmann. A Formal Approach
to Service Specification and Matching Based on Graph Trans-
formation. Electronic Notes in Theoretical Computer Science,
105:37–49, 2004.

[HGHHC05] T. Hong Gao, J. Huffman Hayes, and H. Cai. Integrating
Biological Research through Web Services. IEEE Computer,
38(3):26–31, 2005.

[HHH+05] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth.
Clio Grows Up: From Research Prototype to Industrial Tool.
In Proc. of the ACM SIGMOD International Conference on

BIBLIOGRAPHY 190

Management of Data, Baltimore, Maryland, USA, 14-16 June
2005, pages 805–810, 2005.

[HKC05] Y. Huang, S. Kumaran, and J. Y. Chung. A Model-Driven
Framework for Enterprise Service Management. Information
Systems and E-Business Management, 3(2):201–217, 2005.

[HLV07] S. Hagemann, C. Letz, and G. Vossen. Web Service Discov-
ery - Reality Check 2.0. Technical Report 5, ERCIS, Münster,
Germany, July 2007.

[HM03] V. Haarslev and R. Möller. Racer: A Core Inference Engine for
the Semantic Web. In Proc. of the 2nd International Workshop
on Evaluation of Ontology-based Tools (EON) held at the 2nd
International Semantic Web Conference (ISWC), Sundial Re-
sort, Sanibel Island, Florida, USA, 20th October 2003 (Work-
shop day), volume 87 of CEUR Workshop Proceedings, 2003.

[HS04] R. Hull and J. Su. Tools for Design of Composite Web Services.
In Proc. of the ACM SIGMOD International Conference on
Management of Data, Paris, France, 13-18 June 2004, pages
958–961, 2004.

[HS05] R. Hull and J. Su. Tools for Composite Web Services: A Short
Overview. SIGMOD Record, 34(2):86–95, 2005.

[HSHG06] Y. Huang, A. Slominski, C. Herath, and D. Gannon. WS-
Messenger: A Web Services-Based Messaging System for
Service-Oriented Grid Computing. In Proc. of the 6th IEEE
International Symposium on Cluster Computing and the Grid
(CCGrid), Singapore, 16-19 May 2006, pages 166–173, 2006.

[Hul05] R. Hull. Web Services Composition: A Story of Models, Au-
tomata, and Logics. In Proc. of the IEEE International Confer-
ence on Web Services (ICWS), Orlando, FL, USA, 11-15 July
2005, 2005.

[Hüs05] B. Hüsemann. Entwurf und Realisierung von Ontologien für
Multimedia-Anwendungen. PhD thesis, Westfälische Wilhelms-
Universität Münster, Germany, 2005.

[HVH06] B. Humm, M. Voss, and A. Hess. Regeln für serviceorientierte
Architekturen hoher Qualität. Informatik Spektrum, 29(6):395–
411, 2006.

BIBLIOGRAPHY 191

[IDC04] IDC Marketing Services. Toyota Australia Drives Out Cost and
Increases Visibility with BEA Solution for Dealers, 2004. URL:
http://www.bea.com/content/news events/white papers/IDC
ToyotaAustralia cs.pdf(2007-10-01).

[Kas06] P. Kastner. Enterprise Service Bus and SOA Middle-
ware. Benchmark Report. Aberdeen Group, 2006. URL:
http://www.aberdeen.com/summary/report/benchmark/RA
IT ESB PK 3170.asp (2007-10-01).

[KFS06] M. Klusch, B. Fries, and K. Sycara. Automated semantic web
service discovery with OWLS-MX. In Proc. of the 5th Interna-
tional Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), Hakodate, Japan, 8-12 May 2006,
pages 915–922, 2006.

[KKR04] Michael Klein and Birgitta König-Ries. Coupled Signature and
Specification Matching for Automatic Service Binding. In Proc.
of the European Conference on Web Service (ECOWS), Erfurt,
Germany, 27-30 September 2004, volume 3250 of Lecture Notes
in Computer Science, pages 183–197, 2004.

[KLL+05] U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Au-
tomatic location of services. In Asunción Gómez-Pérez and
Jérôme Euzenat, editors, The Semantic Web: Research and Ap-
plications, Proceedings of the Second European Semantic Web
Conference, ESWC 2005, volume 3532 of Lecture Notes in Com-
puter Science, pages 1–16, Heraklion, Crete, Greece, May 2005.
Springer.

[Kre01] H. Kreger. Web Services Conceptual Architec-
ture (WSCA 1.0). Technical report, IBM Software
Group, 2001. URL: http://www.cs.uoi.gr/ zarras/mdw-
ws/WebServicesConceptualArchitectu2.pdf (2007-10-01).

[Lar06] R. Lara. Two-phased web service discovery. In Proceedings of
the Workshop for AI-Driven Technologies for Services-Oriented
Computing at the Twenty First National Conference on Arti-
ficial Intelligence (AAAI-06), Boston, USA, July 16th, 2006,
Boston, USA, July 2006.

[LD04] P. C. Lockemann and K. R. Dittrich. Architektur von Daten-
banksystemen. dpunkt.verlag, Heidelberg, Germany, 2004.

BIBLIOGRAPHY 192

[LdBKL06] H. Lausen, J. de Bruijn, U. Keller, and R. Lara. Semantic Web
Services with WSMO. Upgrade, European Journal for the Infor-
matics Professional, Special issue on Web Services, VII(5):34–
37, 9 2006.

[Ley03] F. Leymann. Web Services: Distributed Applications With-
out Limits. In BTW 2003, Datenbanksysteme für Business,
Technologie und Web, Tagungsband der 10. BTW-Konferenz,
Leipzig, Germany, 26.-28. February 2003, volume 26 of LNI,
pages 2–23, 2003.

[LF05] R. Lara and B. Foncillas. Economic and financial information
management and the semantic web. In Proceedings of the Indus-
try Forum at the Second European Semantic Web Conference
2005 (ESWC 2005), Crete, Greece, 30 May, 2005., Heraklion,
Crete, Greece, May 2005.

[LH03] L. Li and I. Horrocks. A software framework for matchmak-
ing based on semantic web technology. In Proc. of the Twelfth
International World Wide Web Conference, WWW2003, Bu-
dapest, Hungary, 20-24 May 2003. ACM, 2003, pages 331–339,
2003.

[Li03] C. Li. Computing Complete Answers to Queries in the Pres-
ence of Limited Access Patterns. VLDB Journal, 12(3):211–227,
2003.

[LJDF+97] L. Labed Jilani, J. Desharnais, M. Frappier, R. Mili, and
A. Mili. Retrieving Software Components that Minimize Adap-
tation Effort. In Proc. of the International Conference on Au-
tomated Software Engineering (ASE), Lake Tahoe, CA, USA,
2-5 November 1997, pages 255–262, 1997.

[LN04] B. Ludäscher and A. Nash. Web Service Composition Through
Declarative Queries: The Case of Conjunctive Queries with
Union and Negation. In Proc. of the 20th International Con-
ference on Data Engineering (ICDE), Boston, MA, USA, 30
March - 2 April 2004, page 840, 2004.

[LP72] D. Lorge Parnas. On the Criteria to Be Used in Decom-
posing Systems into Modules. Communications of the ACM,
15(12):1053–1058, 1972.

BIBLIOGRAPHY 193

[LZ05] J. Liu and F. Zhao. Service-Oriented Computing in Sensor
Networks. In Proc. of the 1st IEEE International Conference
on Distributed Computing in Sensor Systems (DCOSS), Marina
del Rey, CA, USA, 30 June - 1 July 2005, volume 3560 of
Lecture Notes in Computer Science, pages 397–398, 2005.

[Mar06] D. L. Margulius. Banking on SOA. InfoWorld, 29(2006-07-17),
2006.

[MBE03] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Com-
posing Web services on the Semantic Web. VLDB Journal,
12(4):333–351, 2003.

[MBH+06] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne,
E. Sirin, N. Srinivasan, and K. Sycara. OWL-S: Semantic
Markup for Web Services. OWL-S Coalition, 2006. URL:
http://www.ai.sri.com/daml/services/owl-s/1.2/ (2007-10-01).

[MBL+03] D. Martin, M. Burstein, O. Lassila, M. Paolucci,
T. Payne, and S. McIlraith. Describing Web Services
using OWL-S and WSDL. OWL-S Coalition, 2003.
URL: http://www.daml.org/services/owl-s/1.0/owl-s-
wsdl.html(2007-10-01).

[MBR01] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema
Matching with Cupid. In Proc. of 27th International Confer-
ence on Very Large Data Bases (VLDB), Roma, Italy, 11-14
September 2001, pages 49–58, 2001.

[MCSZ01] S. A. McIlraith, T. Cao Son, and H. Zeng. Semantic Web Ser-
vices. IEEE Intelligent Systems, 16(2):46–53, 2001.

[MdCV03] E. Marcos, V. de Castro, and B. Vela. Representing Web Ser-
vices with UML: A Case Study. In Proc. of the First Inter-
national Conference on Service-Oriented Computing (ICSOC),
Trento, Italy, 15-18 December 2003, volume 2910 of Lecture
Notes in Computer Science, pages 17–27, 2003.

[Mel04] S. Melnik. Generic Model Management, volume 2967 of LNCS.
Springer-Verlag, Berlin, Germany, 2004.

[MGMR02] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flood-
ing: A Versatile Graph Matching Algorithm and Its Application

BIBLIOGRAPHY 194

to Schema Matching. In Proc. of the 18th International Confer-
ence on Data Engineering (ICDE), San Jose, CA, 26 February
- 1 March 2002, pages 117–128, 2002.

[Mic03a] Microsoft Corporation Inc. Enterprise UDDI
Services: Three Usage Scenarios, 2003. URL:
http://www.microsoft.com/windowsserver2003/techinfo/over-
view/ uddiscen.mspx (2007-10-01).

[Mic03b] Microsoft Corporation Inc. UDDI Services:
Qwest Technical Case Study, 2003. URL:
http://www.microsoft.com/windowsserver2003/techinfo/over-
view/qwest.mspx (2007-10-1).

[Mil95] G. A. Miller. WordNet: A Lexical Database for English. Com-
munications of the ACM, 38(11):39–41, 1995.

[MIR93] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. The Use of
Information Capacity in Schema Integration and Translation.
In Proc. of the 19th International Conference on Very Large
Data Bases (VLDB), Dublin, Ireland, 24-27 August 1993, pages
120–133, 1993.

[MMHM01] S. Macroibeaird, A. T. Manes, S. Hinkelman, and B. Mc-
Kee. Using UDDI to Find ebXML Reg/Reps, 2001. URL:
http://www.ebxml.org/specs/rrUDDI.pdf (2007-10-01).

[MMM94] A. Mili, R. Mili, and R. Mittermeir. Storing and Retrieving
Software Components: A Refinement Based System. In Proc.
of the 16th International Conference on Software Engineering,
Sorrento, Italy, 16-21 May 1994, pages 91–100, 1994.

[MZW93] A. Moormann Zaremski and J. M. Wing. Signature Match-
ing: A Key to Reuse. In Proc. of the First ACM SIGSOFT
Symposium on Foundations of Software Engineering (SIGSOFT
FSE), Los Angeles, California, USA, volume 18(5) of ACM
SIGSOFT Software Engineering Notes, pages 182–190, 1993.

[MZW95] A. Moormann Zaremski and J. M. Wing. Signature Matching:
A Tool for Using Software Libraries. ACM Transactions on
Software Engineering and Methodology, 4(2):146–170, 1995.

BIBLIOGRAPHY 195

[MZW97] A. Moormann Zaremski and J. M. Wing. Specification Match-
ing of Software Components. ACM Transactions on Software
Engineering and Methodology, 6(4):333–369, 1997.

[NL04] A. Nash and B. Ludäscher. Processing Unions of Conjunctive
Queries with Negation under Limited Access Patterns. In Ad-
vances in Database Technology - EDBT 2004, Proc. of the 9th
International Conference on Extending Database Technology,
Heraklion, Crete, Greece, 14-18 March 2004, volume 2992 of
Lecture Notes in Computer Science, pages 422–440, 2004.

[NM02] S. Narayanan and S. A. McIlraith. Simulation, Verification
and Automated Composition of Web Services. In Proc. of the
Eleventh International World Wide Web Conference (WWW),
Honolulu, Hawaii, USA, 7-11 May 2002., pages 77–88, 2002.

[Noe05] J. Noel. BPM and SOA. Better To-
gether. Technical report, IBM, 2005. URL:
ftp://ftp.software.ibm.com/software/bigplays/AP-BPMSOA-
BTW-00.pdf (2007-10-01).

[OAS01a] OASIS. ebXML Catalog of Common Business Pro-
cesses v1.0. Approved Catalog, May 2001. URL:
http://www.ebxml.org/specs/ (2007-10-01).

[OAS01b] OASIS, UN/CEFACT. Core Component Overview.
Version 1.05 ebXML Core Components, 2001. URL:
www.ebxml.org/specs/ccOVER.pdf (2007-10-01).

[OAS04] OASIS. UDDI Version 3.0.2, UDDI Spec. Technical Committee
Draft, October 2004. URL: http://uddi.org/pubs/uddi-v3.0.2-
20041019.pdf (2007-10-01).

[Obj05] Object Management Group. RAS 2.2: Reusable Asset
Specification. OMG Available Specification, 2005. URL:
http://www.omg.org/technology/documents/formal/ras.htm/
(2007-10-01).

[Oes01] B. Oesterreich. Objektorientierte Softwareentwicklung: Analyse
und Design mit der UML. Oldenbourg Verlag, Munich, Ger-
many, 5 edition, 2001.

BIBLIOGRAPHY 196

[OEtH02] J. O’Sullivan, D. Edmond, and A. H. M. ter Hofstede. What’s
in a Service? Distributed and Parallel Databases, 12(2/3):117–
133, 2002.

[OEtH05] J. O’Sullivan, D. Edmond, and A. H. M. ter Hofstede. The Price
of Services. In Service-Oriented Computing, Proc. of the Third
International Conference (ICSOC), Amsterdam, The Nether-
lands, 12-15 December 2005, volume 3826 of Lecture Notes in
Computer Science, pages 564–569, 2005.

[OR23] C. K. Ogden and I. A. Richards. The Meaning of Meaning. A
study of the Influence of Language upon Thought and of the Sci-
ence of Symbolism. Routledge & Kegan Paul, London, England,
10 edition, 1923.

[PvdH05] M. P. Papazoglou and W.J. van den Heuvel. Service Oriented
Architectures. to appear in VLDB Journal, 2005.

[QW04] J. Quantz and T. Wichmann. Report on Cur-
rent Usage of Web Services and Semantic Web.
Technical Report D12.1, DERI, 06 2004. URL:
http://www.deri.at/fileadmin/documents/deliverables/DIP/
D12.1.pdf (2007-10-01).

[RB01] E. Rahm and P. A. Bernstein. A Survey of Approaches to
Automatic Schema Matching. VLDB Journal, 10(4):334–350,
2001.

[RdBM+06] D. Roman, J. de Bruijn, A. Mocan, H. Lausen, J. Domingue,
C. Bussler, and D.r Fensel. WWW: WSMO, WSML, and
WSMX in a Nutshell. In The Semantic Web, Proc. of the First
Asian Semantic Web Conference (ASWC), Beijing, China, 3-
7 September 2006, volume 4185 of Lecture Notes in Computer
Science, pages 516–522, 2006.

[RE06] T. Ritter and R. S. Evans. SOA Justification. A survey of
financial justification among SOA adopters in North America
and Western Europe. GCR Custom Research, 2006. URL:
http://www.bea.com/content/news events/white papers/
BEA Costs and Benefits GCR Survey Final.pdf (2007-10-01).

[Res95] P. Resnik. Using Information Content to Evaluate Semantic
Similarity in a Taxonomy. In Proc. of the 14th International

BIBLIOGRAPHY 197

Joint Conference on Artificial Intelligence (IJCAI), Montral,
Qubec, Canada, 20-25 August 1995, pages 448–453, August
1995.

[RHDM04] E. Rahm, H. Hai Do, and S. Massmann. Matching Large XML
Schemas. SIGMOD Record, 33(4):26–31, 2004.

[Rog05] R. Rogers. Reuse Engineering for SOA. Tech-
nical report, IBM, 2005. URL: http://www-
128.ibm.com/developerworks/webservices/library/ws-reuse-
soa.html (2007-10-01).

[RR98] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I:
Basic Models, Advances in Petri Nets, the volumes are based on
the Advanced Course on Petri Nets, held in Dagstuhl, Septem-
ber 1996, volume 1491 of Lecture Notes in Computer Science.
Springer, 1998.

[SB88] G. Salton and C. Buckley. Term-Weighting Approaches in Au-
tomatic Text Retrieval. Information Processing and Manage-
ment, 24(5):513–523, 1988.

[SB02] D. Shasha and P. Bonnet. Database Tuning. Principles, Ex-
periments and Troubleshooting Techniques. Morgan Kaufman
Publishers, San Francisco, CA, USA, 2002.

[SB05] Q. Z. Sheng and B. Benatallah. ContextUML: A UML-Based
Modeling Language for Model-Driven Development of Context-
Aware Web Services. In Proc. of the International Confer-
ence on Mobile Business (ICMB), Sydney, Australia, 11-13 July
2005, pages 206–212, 2005.

[Sch97] H. Schierenbeck. Ertragsorientiertes Bankmanagement. Grund-
lagen, Marktzinsmethode und Rentabilitäts-Controlling, vol-
ume 1. Gabler Verlag, Wiesbaden, Germany, 5 edition, 1997.

[SE05] P. Shvaiko and J. Euzenat. A Survey of Schema-Based Matching
Approaches. Journal on Data Semantics, 3730:146–171, 2005.

[SKS05] A. Silberschatz, H. Korth, and S. Sudarshan. Database System
Concepts. McGraw-Hill, New York, USA, 5 edition, 2005.

[Sow00] J. F. Sowa. Knowledge Representation: Logical, Philosophical,
and Computational Foundations. Brooks Cole Publishing Co.,
Pacific Grove, CA, USA, 2000.

BIBLIOGRAPHY 198

[Spi03] M. Spielmann. Verification of Relational Transducers for Elec-
tronic Commerce. Journal of Computer and System Sciences,
66(1):40–65, 2003.

[SPS06] N. Srinivasan, M. Paolucci, and K. P. Sycara. Semantic Web
Service Discovery in the OWL-S IDE. In Proc. of the 39th
Hawaii International International Conference on Systems Sci-
ence (HICSS-39 2006), Kauai, HI, USA, 4-7 January 2006,
2006.

[SS04] S. Staab and R. Studer, editors. Handbook on Ontologies. Inter-
national Handbooks on Information Systems. Springer-Verlag
Berlin, Germany, 2004.

[Ste02] The Stencil Group, Inc. The Evolution of
UDDI. UDDI.org White Paper, 2002. URL:
http://uddi.org/pubs/the evolution of uddi 20020719.pdf
(2007-10-01).

[TM07] A. Thomas-Manes. Tools unterstützen die SOA Verwaltung.
Computer Woche, (1):22–23, 2007.

[UHMM04] S. Urman, R. Hardman, M. McLaughlin, and M. MacLaugh-
lin. Oracle Database 10g PL/SQL Programming. McGraw-Hill,
New York, USA, 2004.

[Usc03] M. Uschold. Where Are the Semantics in the Semantic Web?
AI Magazine, 24(3):25–36, 2003.

[VB96] G. Vossen and J. Becker, editors. Geschäftsprozessmodellierung
und Workflow-Management. Modelle, Methoden, Werkzeuge.
mitp, Bonn, Germany, 1996.

[Ver06] K. Verma. Configuration and Adaptation of Semantic Web Pro-
cesses. PhD thesis, Department of Computer Science, The Uni-
versity of Georgia, 2006.

[VH07] G. Vossen and S. Hagemann. Unleashing Web 2.0 - From Con-
cepts to Creativity. Morgan Kaufmann Publishers, San Fran-
cisco, CA, USA, 2007.

[Vos00] G. Vossen. Datenmodelle, Datenbanksprachen und Daten-
bankmanagementsysteme. Oldenbourg Verlag, Munich, Ger-
many, 4 edition, 2000.

BIBLIOGRAPHY 199

[Vos06] G. Vossen. Have Service-oriented Architectures Taken a Wrong
Turn Already? In Proc. of the IFIP TC 8th International Con-
ference on Research and Practical Issues of Enterprise Infor-
mation Systems (CONFENIS), Vienna, Austria, 24-26 April
2006, volume 205 of IFIP International Federation for Infor-
mation Processing, 2006.

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.
Ferguson. Web Services Platform Architecture. SOAP, WSDL,
WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messag-
ing, and More. Prentice Hall PTR, Munich, Germany, 2005.

[Wes05] P. Westerkamp. Flexible Elearning Platforms: A Service-
Oriented Approach. PhD thesis, Westfälische Wilhelms-
Universität Münster, Germany, 2005.

[WKR+05] U. Wahli, T. Kjaer, B. Robertson, F. Satoh, F. J. Schneider,
W. Szczeponik, and C. Whyley. WebSphere Version 6 Web
Services Handbook Development and Deployment. IBM Red
Books, 2005.

[WLWC05] L. Wang, P. Li, Z. Wu, and S. Chen. A Service Oriented Im-
plementation of Distributed Status Monitoring and Fault Di-
agnosis Systems. In Proc. of the 5th International Conference
on Computational Science (ICCS), Atlanta, GA, USA, 22-25
May 2005, Part I, volume 3514 of Lecture Notes in Computer
Science, pages 568–575, 2005.

[Wor99] World Wide Web Consortium. XSL Transforma-
tions (XSLT) 1.0. W3C Recommendation, 1999. URL:
http://www.w3.org/TR/xslt (2007-10-01).

[Wor03a] World Wide Web Consortium. SOAP Version 1.2. Part
1: Messaging Framework. W3C Recommendation, June
2003. URL: http://www.w3.org/TR/2003/REC-soap12-part1-
20030624/ (2007-10-01).

[Wor03b] World Wide Web Consortium. SOAP Version 1.2. Part
2: Adjuncts. W3C Recommendation, June 2003. URL:
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/
(2007-10-01).

[Wor04a] World Wide Web Consortium. OWL Web Ontology
Language Guide. W3C Recommendation, 2004. URL:

BIBLIOGRAPHY 200

http://www.w3.org/TR/2004/REC-owl-guide-20040210/
(2007-10-01).

[Wor04b] World Wide Web Consortium. OWL Web Ontology Lan-
guage Overview. W3C Recommendation, 2004. URL:
http://www.w3.org/TR/2004/REC-owl-features-20040210/
(2007-10-01).

[Wor04c] World Wide Web Consortium. OWL Web Ontology Lan-
guage Semantics and Abstract Syntax. W3C Recommenda-
tion, 2004. URL: http://www.w3.org/TR/2004/REC-owl-
semantics-20040210/ (2007-10-01).

[Wor04d] World Wide Web Consortium. RDF Primer. W3C Recom-
mendation, 2004. URL: http://www.w3.org/TR/2004/REC-
rdf-primer-20040210/ (2007-10-01).

[Wor04e] World Wide Web Consortium. RDF Semantics. W3C Recom-
mendation, 2004. URL: http://www.w3.org/TR/2004/REC-
rdf-mt-20040210/ (2007-10-01).

[Wor04f] World Wide Web Consortium. RDF Vocabulary Descrip-
tion Language 1.0: RDF Schema. W3C Recommendation,
2004. URL: http://www.w3.org/TR/2004/REC-rdf-schema-
20040210/ (2007-10-01).

[Wor04g] World Wide Web Consortium. Resource Description Frame-
work (RDF): Concepts and Abstract Syntax. W3C Recommen-
dation, 2004. URL: http://www.w3.org/TR/2004/REC-rdf-
concepts-20040210/ (2007-10-01).

[Wor04h] World Wide Web Consortium. Web Services Architecture
Requirements. W3C Working Group Note, 2004. URL:
http://www.w3.org/TR/2004/NOTE-wsa-reqs-20040211/
(2007-10-01).

[Wor04i] World Wide Web Consortium. XML Schema Part 2:
Datatypes Second Edition. W3C Recommendation, 2004. URL:
http://www.w3.org/TR/xmlschema-2/ (2007-10-01).

[Wor04j] World Wide Web Consortium (W3C). RDF/XML Syntax
Specification (Revised). W3C Recommendation, 2004. URL:
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-
20040210/ (2007-10-01).

BIBLIOGRAPHY 201

[Wor06] World Wide Web Consortium. Namespaces in XML 1.0
(Second Edition). W3C Recommendation, 2006. URL:
http://www.w3.org/TR/REC-xml-names/ (2007-10-01).

[Wor07a] World Wide Web Consortium. Semantic Annotations for
WSDL and XML Schema. W3C Recommendation, 2007.
URL: http://www.w3.org/TR/2007/REC-sawsdl-20070828/
(2007-10-01).

[Wor07b] World Wide Web Consortium. SPARQL Query Language
for RDF. W3C Candidate Recommendation, 2007. URL:
http://www.w3.org/TR/2007/CR-rdf-sparql-query-20070614/
(2007-10-01).

[Wor07c] World Wide Web Consortium. Web Services Descrip-
tion Language (WSDL) Version 2.0 Part 1: Core
Language. W3C Recommendation, June 2007. URL:
http://www.w3.org/TR/2007/REC-wsdl20-20070626/ (2007-
10-01).

[Wor07d] World Wide Web Consortium. Web Services Description Lan-
guage (WSDL) Version 2.0 Part 2: Adjuncts. W3C Recommen-
dation, June 2007. URL: http://www.w3.org/TR/2007/REC-
wsdl20-adjuncts-20070626 (2007-10-01).

[Wor07e] World Wide Web Consortium. Web Services Description Lan-
guage (WSDL) Version 2.0: RDF Mapping. W3C Working
Group Note, 2007. URL: http://www.w3.org/TR/2007/NOTE-
wsdl20-rdf-20070626/ (2007-10-01).

[Wor07f] World Wide Web Consortium. XQuery 1.0: An XML
Query Language. W3C Recommendation, 2007. URL:
http://www.w3.org/TR/2007/REC-xquery-20070123/ (2007-
10-01).

[ZB96] V. Zeitham and M. Bitner. Service Marketing. McGraw Hill,
New York, USA, 1996.

Appendix A

Case Study from Financial
Industry

In the following, the application scenario for a service-based calculation kernel
for pricing of financial products is summarized.

The operations of such a calculation kernel are used in different applica-
tion contexts:

• The marketing department uses the algorithms to adjust the interest
rates for loans and savings when the market conditions change. The
aim is to keep the profit margin up.

• A corporate customer consultant must be able to make an individual
loan offer for important customers, yet be able to calculate the profit
margin with the same algorithms as for a private customer’s standard
loan.

• Later, when the loan is granted, the same algorithms are used to calcu-
late the profit margin which is then imported into the data warehouse
and used for reporting purposes. This ex-post calculation ought to
be executed with exactly the same algorithms to ensure consistency
between ex-ante and ex-post results.

These examples show that the functionality of a financial calculation ker-
nel is destined to be reused, not only for technical, but also for conceptual
consistency. Therefore, a standardized access as granted by Web service

202

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 203

interfaces is desirable. Mathematically, a profit margin can be defined
in many different ways, depending on the product type, the opportunity
that the transaction is compared to, and additional regulatory restrictions.
Different departments are the users of the same algorithms. Technically, the
algorithms are provided by programs in the care of the IT department.

Therefore, the search categories of a UDDI such as the provider and its
field of industry are insufficient classification criteria. It is neither important
how the operations are grouped into individual services nor is it important
who provides the service. For internal software development and mainte-
nance, it is necessary to search on the level of operations and refine this
search based on input and output parameters. The financial calculation
kernel is used as an example of company-internal service-oriented software
development.

Section A.1 gives an introduction to loan calculation and pricing math-
ematics. This scenario is then used to show how an application ontology is
developed that supports search for operations, including their input and out-
put parameters. As a financial calculation kernel is highly domain specific, an
application ontology is modeled that combines domain and task ontologies.
Section A.3.1 briefly summarizes the requirements for the financial calcula-
tion ontology. Section A.3.2 documents the conceptual design of the ontology
for financial calculations.

The modeling approach for the ontology follows the design method as
introduced by [Hüs05]. First, a conceptual model is designed. This is trans-
formed into a logical model based on RDFS and OWL. How to derive this
logical model is explained in [Hüs05] and is not shown here as the conceptual
model is sufficient to motivate the suggested semantic search approach and
to analyze its characteristics.

A.1 Introduction to Loan Pricing

This section gives a short introduction to different types of loans which are
of interest for the following ontology model. For brevity, the presentation is
restricted to loans with fixed interest rate and fixed duration. The expla-
nations how these loans are calculated are based on examples. A detailed
description of different products including variable condition loans and the
related calculation methods is given in [Sch97].

A loan with fixed conditions, e.g., a mortgage loan is determined by the
initial amount that the customer gets from the bank, the so-called net value,
the installment, the interest rate, the payment periodicity, and the time
that the customer has to pay back the money. This information is already

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 204

sufficient to calculate the cashflow that is the sequence of in- and out-going
payments. There are different types of fixed condition loans that vary in the
way installment and interest are payed. Three basic types are introduced
here to explain the importance of the chosen product type for all following
calculations.

Deferred Payment Loan: A deferred payment loan is often chosen when
consumer goods are financed. For example, a customer buys a new TV set for
2,000 Euros. The department store offers to finance this set for one year. The
customer must pay money for the TV, the interest and a service charge. The
sum of these three components is called the total debt. Assuming that the
gross interest rate is 5.0% per year the customer must pay 2, 000 ∗ 1.05/12 =
175 Euros per month. The intial service charge is 60 Euros. Legally, the
service charge must be regarded as part of the net interest rate which results
in a net interest rate of (2, 000∗0.05+60)/2, 000 = 160/2, 000 = 0.08 per year.
In total, the customer pays 2, 160/12 = 180 Euros per month as installment,
which includes amortization, interest, and service charge. The total debt is
2,160 Euros. The cashflow is depicted in Figure A.1.

Net Value: 2,000 Duration: 12 months
Net Interest: 8%+ Gross Interest: 5%

+ Service Charge: 60

Total Debt: 2,160 Periodicity: monthly
Installment: 180

-2,000

Time
180

...

Figure A.1: Deferred payment loan.

Typically, the cashflow of a deferred payment loan does not allow to
differentiate between installment, interest, and additional charges. The total
debt is payed back in equal payments according to the payment periodicity.

Annuity Loan: An annuity loan is often used for mortgage loans. The net
value of the loan is usually larger than a deferred payment loan. The cus-
tomer pays back the loan in installments that consist partially of interest and
partially of amortization. The interest portion of the installment decreases

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 205

over time, whereas the amortization increases. For comparison with the con-
sumer loan, the same example is calculated with the same interest rate and
for one year. The monthly installment is 174 Euros. This is depicted in
Figure A.2.

Net Value: 2,000
Duration: 12 months
Gross Interest: 8%

Periodicity: monthly
Installment: 173.98

-2,000

Time
174

...

Interest

Amortization

Month Balance Interest Amortization Installment
0
1
2
3
4
5
6
7
8
9

10
11
12

2,000.00
1,839.36
1,677.64
1,514.85
1,350.97
1,186.00
1,019.93

852.75
684.46
515.05
344.50
172.82

0.00
Total:

0.00
13.33
12.26
11.18
10.10
9.01
7.91
6.80
5.69
4.56
3.43
2.30
1.15

87.72

0.00
160.64
161.71
162.79
163.88
164.97
166.07
167.18
168.29
169.41
170.54
171.68
172.82

2,000.00

0.00
173.98
173.98
173.98
173.98
173.98
173.98
173.98
173.98
173.98
173.98
173.98
173.98

2,087.72

Figure A.2: Annuity loan cashflow.

Typically, the cashflow of a deferred payment loan consists of equal in-
stallments with varying interest and amortization parts. Interest and amor-
tization are therefore always payed with the same periodicity.

Amortization Loan: An amortization loan allows to choose independent
periodicities for amortization and interest payments. The amortization pay-
ments are fixed; the interest payment is payed independently and decreases
throughout the payment period. Therefore, the total installment of amorti-
zation and interest varies. The given example of a 2,000 Euros loan with 8%
interest per year is repaid with amortizations of 166 Euros per month and
quarterly interest payments. This is shown in Figure A.3.

Operations in Loan Pricing: For every loan, the cashflow is the deter-
mining factor for pricing. Therefore, the cashflow calculation routines are
central components of a financial calculation kernel and are to be exposed
as Web service operations. The initial cashflow is the cashflow as calculated
ex-ante for loan pricing. It is only calculated once at the beginning. The
remaining cashflow is also calculated. It consists of all remaining payments
that are still to be payed by the customer.

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 206

Net Value: 2,000
Duration: 12 months
Gross Interest: 8% per year

Amortization Periodicity: monthly
Amortization: 166.66

-2,000

Time
166

...

Interest

Amortization

Interest Periodicity: quarterly

Month Balance Interest Amortization Installment
0
1
2
3
4
5
6
7
8
9

10
11
12

2,000.00
1,833.33
1,666.67
1,500.00
1,333.33
1,166.67
1,000.00

833.33
666.67
500.00
333.33
166.67

0.00
Total:

0.00
166.67
166.67
166.67
166.67
166.67
166.67
166.67
166.67
166.67
166.67
166.67
166.67

2,000.00

0.00
166.67
166.67
203.33
166.67
166.67
193.33
166.67
166.67
183.33
166.67
166.67
173.33

2,086.67

0.00
0.00
0.00

36.67
0.00
0.00

26.67
0.00
0.00

16.67
0.00
0.00
6.67

86.67

Figure A.3: Amortizable loan cashflow.

A financial consultant does not only need a cashflow routine to calculate
a payment plan for the customer but also different additional routines which
compute some of the factors that influence the cashflow. Given a fixed in-
terest rate which is determined by the marketing department the following
situations are possible:

• The customer is willing to pay installments of a given amount for a
given period of time and with a given periodicity. The consultant must
calculate the net value of the loan that can be payed back under these
conditions.

• The customer needs a loan of a given net value and wants to pay it
back within a given period of time in a given payment frequency. The
consultant must calculate the amount of the installments.

• The customer needs a loan of a given net value and is able to pay
installments of a fixed amount in a given periodicity. The consultant
must calculate how long it takes to pay back the loan.

These routines are also derived from the cashflow calculation operations.
They can also be used in ETL processes if missing data is to be replaced in a
data warehouse. Therefore, these operations are also to be exposed as Web
service operations.

The price of a loan is calculated in many different ways, for example, as
periodical profit margin or as present value of the expected cashflow. Both
pricing methods are explained next using simple examples.

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 207

Profit Margin Calculation A financial product like any product that is
sold on a market needs a price calculation method that allows to monitor
if the producer of the product creates a revenue by selling the product. In
industry, a producer has costs producing a product and sells it at a higher
price. Simplified, the revenue is the difference between production costs and
sales price.

A bank sells loan and savings products. The price that the customer pays
for a loan is the interest rate that the bank charges. If the bank grants a loan
the treasury department has to re-finance this investment with money from
the inter-bank money market. The costs for the “production” of the loan is
the interest rate that the bank has to pay at the inter-bank money market.
The revenue is the spread between the interest rate that the bank charges
the customer and the interest rate that the bank has to pay for refinancing.
If the bank gives a one-year loan to a customer for an interest rate of 4%
and has to pay 3.5% at the inter-bank market, the revenue is 0.5%, assuming
that the two loans have exactly the same cashflow. This is shown in Figure
A.4. The interest rate at the inter-bank market varies depending on the time
period for which it is fixed. Under normal market conditions, the interest
rate increases with increasing loan duration.

Customer

$

Bank A

$

Bank B

1,000 Euro
4% for
1 year

1,000 Euro
3.5% for

1 year

Revenue: 0.5%

Figure A.4: Loan revenue.

This simple comparison between customer loan conditions and inter-bank
market conditions is simplified as it assumes that the customer loan and the
loan between two banks have the same cashflow. If this is not the case, the
profit margin calculation is more complex, but the idea remains the same.

A second simplification is the difference in credit worthiness between an
ordinary customer and a bank. In reality, the risk that a bank cannot pay
back a loan issued by another bank is less than the risk that a customer is
unable to pay back the money. To estimate the risk that the bank runs in
giving money to a customer the bank evaluates personal information about
the customer, compares this information to statistical findings, and assigns
a score to each customer. This scoring expresses the probability that the
customer will fail to pay back the money within a fixed time-period, usually

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 208

within one year. Customers with a bad score have to pay a higher interest
rate than customers with a good score. The surcharge on the interest rate
is like an insurance fee against loan default. It is not considered as revenue,
but as cost. This is depicted in Figure A.5.

Customer

$

Bank A

$

Bank B

1,000 Euro
4% for
1 year

1,000 Euro
3.5% for

1 year

Revenue: 0.3%

Credit Risk
Surcharge: 0.2%

Figure A.5: Loan revenue and risk costs.

The information evaluated for scoring depends on the customer type.
Private customers have to state what they earn, how many people they have
to sustain with their income, etc. Corporate customers have to disclose
their financial statements. The statistical information and the mathematical
computations needed to calculate a scoring are usually contained in packaged
applications by third party software vendors or by financial associations.

This simple example shows that the interest rate for the customer is
determined by the conditions of the inter-bank market depending on two
aspects: the loan cashflow and the customer score. As the interest rates at
international markets vary, customer conditions must be updated regularly.
Other aspects such as the amount of the loan and the pay back modalities
also influence the interest rate.

Present Value Calculation: The profit margin, as explained above, dis-
tributes the revenue equally across the loan duration as yearly revenue. The
present value is a time independent measure that calculates the value that
the complete future cashflow has on the day the loan is granted. If a customer
gets a loan of 1,000 Euros and pays it back after one year with 4% interest,
i.e., the customer pays back 1,040 Euros, the bank re-finances this future
payment at the inter-bank market for 3.5%. The question is: how much
money can the bank borrow at the inter-bank market on the day the loan
is issued to have 1,040 Euros at the end of one year with an interest rate of
3.5%? In the given example, the bank borrows 1,004.83 Euros on the day the
loan is granted. When the customer pays back 1,040 Euros after one year the

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 209

bank can repay its own loan at 3.5% interest because 1004.83∗1.035 = 1, 040.
Therefore, the bank has earned 4.83 Euros on the day the loan is granted.
This is depicted in Figure A.6.

Net Value: 1,000
Duration: 12 months
Customer Interest: 4% per year

-1,000

Time

Interest Periodicity: yearly
Refinancing Interest: 3.5% per year

1,040

3.5%
+1,004.83

4.83 Present Value

Figure A.6: Present value calculation.

The inter-bank loan is a theoretical construction to calculate a present
value for the customer loan. Each payment of the customer cashflow must be
refinanced as shown above at the interest rate that is applicable for the given
time period. The treasury of the bank is responsible for the refinancing strat-
egy of all loans, savings, etc. Therefore, the treasury also needs the cashflow
calculation routines of the financial calculation kernel, but the treasury is not
forced to refinance every loan exactly as it is granted to the customer. The
present value calculation as presented here results in an initial gross present
value. In a second step, the value must be adjusted to reflect the customer
rating. This results in an initial net present value that is risk-adjusted.

The different application contexts for financial calculations show that a
financial calculation kernel offers a high potential for software re-use be-
cause many calculation routines are needed by the marketing department,
the customer consultants, the ETL process of a data warehouse for internal
controlling, and the treasury department. Therefore, it is justified to expose
these operations as Web service operations. Further, the calculation routines
are highly embedded into the application domain. Therefore, a semantic
search for these operations that supports software designers must be based
on a domain and application specific ontology. This is modeled in Appendix
A.3.

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 210

A.2 Online Loan Application Case Study

Requirement Analysis

The requirement analysis has to identify business goals that drive the cre-
ation of a new application, the stakeholders that have an interest in the
new application and the business domains that they represent. This can be
derived from interviews and an analysis of the business use cases that the
application is to support. The requirement analysis is conducted from the
point of view of the end user.

The following business goals are identified for the loan application as
shown in Table 2.2.

Table A.1: Loan application goals.
No. Description Type

1 Increase revenue general
2 Increase number of consumer loans general
3 Provide self-service loan application capability functional
3.1 Provide user-friendly application experience functional
3.2 Provide customer-specific loan offers functional
4 Monitor usage of Internet application functional

The first two business goal are general business goals. The other goals
are application-specific functional goals that are likely to have an influence
on the application realization and the services needed.

In a second step, candidate use cases are identified that are to be sup-
ported by the new application. The following use cases have been identified
as shown in Figure A.7.

The use cases are described in detail in Table 2.3.
In a third step, the business domains are identified that are involved in

the use-cases and in achieving the business goals as shown in Figure 2.24.
Consumer loans belong to the group of retail banking products. Therefore,
the customer front end belongs to the retail domain. Monitoring the usage
of the application is a technical facility for marketing purposes. The infor-
mation needed to offer a customer-specific loan comes from the controlling
department. They monitor the interest rates and prices at the international
banking markets and regularly compute new conditions for consumer loans
that have to be used by the loan application.

In this stage, the analysis is conducted without taking existing services
into account. Search support for services is not needed in the early require-
ment evaluation.

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 211

Customer

Apply for loan

Conclude
contract

Retail
Consultant

Fix loan
conditions

Controller

Monitor
usage

Marketing
Specialist

Application

Application

Application

UC1

UC2

UC3

Figure A.7: Loan application use cases.

Table A.2: Loan application use cases.
No. Description Actors

UC1 The customer applies for a loan on the Internet, Customer,
fills out the forms and gets a contract by post. Application,
This is sent back to the bank and checked Sales
by a sales consultant. Consultant

UC2 A controller regularly updates the loan conditions Controller,
used by the application according to the changes Application
in interest rates.

UC3 A marketing specialist monitors the application. Marketing
Specialist,
Application

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 212

Domain:
Marketing

Domain:
Retail

Domain:
Controlling

UC1UC3 UC2

Figure A.8: Loan application business domains.

Conceptual Design

In the conceptual design step, the use cases of the requirement analysis are
refined. From this model, the service provider identifies system components,
models the internal behavior of each component, and also the flow between
components. On the service consumer side, the results of the analysis are
used to identify candidate services, the communication between them and
other system components (e.g., a GUI), and to map candidate services to
candidate components.

For a more detailed analysis, the business activities are modeled that are
executed in each use case. The activities of the loan application use case
are modeled in the activity diagram shown in Figure A.9. If an activity
is executed successfully, the next activity is executed. If an error occurs,
an error report is created. For a better readability, the error activities are
depicted at the bottom of the diagram. All arrows that do not point to any
activity represent error cases and are to be connected with the error diagram

In the first step of the application process, the customers state details
about the loan they need, the net value of the loa, and the duration. Depend-
ing on this information, monthly installment and interest rate are calculated
assuming that the customers have the best credit scoring possible. Next, the
customers have to give details about their private and professional life to as-
sess their credit worthiness by using a standardized scoring method. Finally,
the customers enter their address data and ask for a loan application form
that is then computed for the individual customer while taking the exact
customer scoring into account. The application form is sent by traditional
mail. All interactions between the customer and the online credit application
are monitored. This is represented by the logging activities.

From this diagram, at least three components can be identified, a logging
component, a component for loan condition calculation and a component for
customer scoring calculation. The creation and mailing of the contract can
either be assigned to a mailing component or executed by a human being.

The monitoring results are read and displayed when the marketing spe-
cialist requests them. This short activity sequence for the monitoring use

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 213

1. Get Loan
Request Data

6. Get Scoring
Data

10. Return
Scoring Result

11. Get
Contact Data

2. Log Loan
Request

3. Calculate
Sample

Conditions

4. Log Sample
Conditions

5. Return
Sample

Conditions

7. Log Scoring
Data

8. Calculate
Customer
Scoring

9. Log
Customer
Scoring

12. Log
Contact Data

13. Calculate
Exact

Conditions

14. Draw Up
Contract

15. Send
Contract

18. Return
Error Report

16. Create
Error Report

17. Log Error
Report

Figure A.9: Activity diagram for loan application use case (UC1).

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 214

case is shown in Figure A.10.

1. Get Log
Data

2. Display Log
Data

3. Create Error
Report

Figure A.10: Acticity diagram for monitoring use case (UC2).

The activities are executed by a monitoring component in the online
application that offers a service to read the log data.

The update of the loan conditions is executed regularly by a controller.
For this, interest rate information from an information provider is requested
and stored in the interest rate table of the online application. Then, the
relevant loan data is fetched from the basic configuration of the online appli-
cation. This information consists of all pre-configured combinations of loan
duration, net value, and customer scoring. For these combinations the new
loan conditions, installment and interest rate, are computed. Finally, the
loan condition table of the online application is updated. This is depicted in
Figure A.11.

In this activity diagram, the online application, a component for loan
condition calculation, and an information service provider for interest rates
are involved.

In the conceptual design phase, the following system components and
services have been identified as listed in Table A.3. An initial mapping of
services to components has already taken place in this table.

The components reflect the service provider view and the logical grouping
of functionality from the perspective of an application designer. The services
show the external perception of the system by the client.

Logical Design

In the logical design step, the following questions must be answered for every
identified service of the conceptual design step:

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 215

1. Get Current
Interest Rates

3. Get Relevant
Loan Data

4. Calculate
Loan

Conditions

5. Update Loan
Conditions

6. Create Error
Report

2. Store
Current

Interest Rates

Figure A.11: Activity diagramm for controlling use case (UC3).

Table A.3: Conceptual components and services.
Component Service
(Service provider view) (Service consumer view)

Interest Rate Information Service
Loan Condition Component Condition Calculation Service

Condition Look-up Service
Scoring Component Score Calculation Service
Contract Component Contract Creation Service

Mail Service
Monitoring Component Logging Service

Log Evaluation Service
Administration Component Interest Rate Administration Service

Loan Condition Administration Service
End User GUI
Monitoring GUI
Administration GUI

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 216

• On which layer of the SOA architecture does the service logically reside?
Is it a functional or a non-functional service? Is it an atomic or a
composite service? Does it govern a business process?

• Is there an already existing service that can be reused for service re-
alization? How can the desired service be mapped to existing service
functionality (top-down)?

• If the service does not exist yet: is there an existing component that
can be exposed as service (bottom-up)? Does the service have to be
implemented from scratch?

A service profile for each service identified is compiled as shown in Table
A.4.

Table A.4: Service profile.
Aspect Description

Functionality Which business aspects, processes or functions
does the service support?

Accessibility Which business process uses the service?
Which GUI element uses the service?
Which applications access the service?

Process What is the relationship between the events that
the service reacts to and the actions
that the service takes?

Information What data is sent to the service? Where from?
What data is sent by the service? Where to?

Interaction How does the calling application interact with
the service? How does the service interact with other
services or applications?

On the component side, the existing components that help to realize the
application must be specified further. The identified sub-systems must be
refined to reflect the individual components and the flow between them.

The result of this step is a mapping from needed services to existing ser-
vices and components and from needed services to newly to be implemented
functionality respectively. For every functionality identified, it is decided if
it is published as new service for future reuse through other applications.

For the first use cas, a detailed process diagram is drawn that shows the
interaction between the customer at the end user GUI and the application
for the first subprocess in the application process, the calculation of sample

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 217

conditions. The interaction between GUI and Loan Condition Component is
shown in Figure A.12. For a better overview, the monitoring activities are
omitted from this diagram.

Key in
Loan Request Data

Loan
Data

Error
Message

Checked
Loan Data

Display Message
Sample Conditions

HTTP

Condition
Table

Select from
Condition Table

Calculate Loan
Conditions

Create Error
Message

Create Success
Message

Sample
Conditions

Check Input

Proceed

Success
Message

read

Checked
Loan Data

Create Error
Message

Display Error
Message

Abort

Error Message
read

Error
Message

HTTP

Success
Message

Success
Message

Check
Output

Output
Checked

(UC1 Activity: 1. Get Loan Request Data)
(UC 1 Activity: 3. Calculate Sample Conditions)

(UC 1 Activity: 5. Return Sample
Conditions)

HTTP

User GUI Online Application

Figure A.12: Calculation of sample conditions.

To get a sample calculation, the customers must enter the net value and
the duration of the loan. The net value may range from 1,000 to 60,000 Euros,
the duration must be either 12, 24, 36, 48, or 60 months. If the customers
enter invalid loan data, they receive an error message and can either abort
or try again. If the loan data is valid, the monthly installment and interest
rate are looked up in a database table that contains all relevant combinations
of net value, duration, and customer scoring. This data retrieval operation
assumes an optimal customer scoring by default. If the information is not
available in the database, it needs to be computed. If the installment is less
than 25 Euros, an error message is created. Otherwise, a success message is

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 218

sent and the users are informed about the monthly installment and interest
rate. Here, users may abort or proceed.

Key in
Scoring Data

Scoring
Data

Error
Message

Checked
Scoring Data

Display Message
Scoring Result

HTTP

HTTP

Calculate
Scoring

Create Error
Message

Create Success
Message

Scoring
Result

Create Error
Message

Proceed Abort

Display Error
Message

Error
Message

Check Input

Checked
Scoring Data

Success
Message

read

Error Message
read

HTTP
Success
Message

Check
Output

Output
Checked

Success
Message

User GUI Online Application
(UC1 Activity: 6. Get Scoring Data)

(UC 1 Activity: 8. Calculate Customer Scoring)

(UC 1 Activity: 10. Return Scoring
Result)

Figure A.13: Calculate customer scoring.

In the second subprocess, the exact customer scoring is calculated as
shown in Figure A.13. The customers must enter details about their profes-
sional and private living conditions. If they omit a required information or
make a mistake, they get an error message. Otherwise, the data is sent to
the bank. There, a private customer scoring needs to be computed. If the
customer has an acceptable score, a success message is sent back. Otherwise,
an error message is created. At the end of this step, customers may abort or
proceed.

The last subprocess is the final loan application as shown in Figure A.14.
The users enter their contact data to receive a loan application form. If
the users enter invalid data, they get an error message. If the data is valid,

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 219

Key in
Contact Data

Contact
Data

Loan
Conditions

Draw Up
Contract

Checked
Contact Data

Contract

Send Contract
LetterLetter

HTTP

Customer &
Loan Data

Condition
Table

Select from
Condition Table

Calculate Loan
Conditions

Printer

Create Error
Message

Abort

Message
read

Check Input

Checked
Contact Data

User GUI Online Application
(UC1 Activity: 11. Get Contact Data)

(UC 1 Activity: 13. Calculate Exact Conditions)

(UC 1 Activity: 14)

(UC 1 Activity: 15)

Figure A.14: Calculation of exact conditions.

the exact loan calculation is executed. Just like the sample calculation, the
exact calculation can either look up the monthly installments and the interest
rate in a table with precalculated results or calculate the conditions on the
fly. This time, the exact customer scoring that has been computed in the
step before is taken into account. All information is processed so that an
application form can be printed. This is then sent to the customers by post.

These are the core processes of the application. Behind the scenes, an
additional administration process is needed as shown in Figure A.15. As
interest rates fluctuate on the international banking market, it is necessary
to compute a new condition table once a month to keep up the profit margin.
This calculation needs current interest rates for the Euro currency zone as the
bank only offers loans in Euro currency. The calculation of the condition table
repeatedly executes the step “Calculate Loan Conditions” for all relevant
combinations of net values, durations, and customer scorings.

From the analysis of information processed in the business subprocesses
the following data model can be derived as shown in Figure A.16. The table
InterestRates contains the current interest rates for a given currency and a
given duration. It is refreshed by the information service provider and used to
calculate the entries in the table LoanConditon. This table contains interest
and installment for a loan with a given net value, duration, and customer

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 220

Get Euro
Interest Rates

SOAP

SOAP Interest
Rates

Interest
Rates

Insert Euro
Interest Rates

Calculate Loan
Conditions

Update
Condition Table

Condition
Table

Interest
Rates

Rates
Request

Rates
Request

Rates
Refreshed

Loan
Conditions

Conditions
Refreshed

Interest
Rates
Info

Service

Figure A.15: Calculation of condition table.

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 221

scoring. A customer’s scoring is determined depending on the date of birth,
the marital status, the number of children, the profession, and the monthly
income. This and the customer’s address data is saved in the Customer

table. The loan proposal used to draw up the contract is stored in the table
LoanProposal and consists of the customer ID, the net value, the installment,
the interest, and the duration. When the loan is contracted, an account is
created in the Account table. The loan proposal data is copied except for the
duration. This is turned into fixed opening and closing dates.

LoanConditions

PK Duration
PK NetValue
PK Scoring

 Interest
 Installment

Customer

PK CustomerID

 FirstName
 Surname
 Street
 StreetNumber
 PostCode
 City
 BirthDate
 MaritalStatus
 NumberChildren
 Profession
 IncomeMonth
 Scoring

Account

PK AccountID

 CustomerID
 NetValue
 Interest
 Installment
 OpeningDate
 ClosingDate

LoanProposal

PK ProposalID

 CustomerID
 NetValue
 Interest
 Installment
 Duration

InterestRates

PK Currency
PK Duration

 Interest

Figure A.16: Loan application data model.

From the analysis of the subprocesses and the data model, the following
service profiles can be derived that are to be used within the application:

Euro Interest Rate Service

• Functionality: This service returns the current Euro interest rates. It
is an atomic data-centric information service.

• Accessibility: It is called in the loan application administration process
via the administrator GUI.

• Information:

– Operation name: get_Interest_Rate

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 222

– Input: Currency according to ISO 4217 Code

– Output: List of (duration, interest) pairs

• Interaction: The returned data is stored in the table InterestRates.

Condition Look-up Service

• Functionality: This service calculates the sample and the exact condi-
tion for the consumer loan, either by look-up or on the fly. It can be
regarded as a service of type business function service.

• Accessibility: It is called in the loan application process by the customer
for the sample calculation and for the exact calculation. Both calls are
executed via the internet front end GUI.

• Information:

– Operation name: get_Sample_Condition

– Input: net value, duration

– Output: net value, duration, interest rate, installment

– Operation name: get_Exact_Condition

– Input: net value, duration, scoring

– Output: net value, duration, scoring, interest rate, installment

• Interaction: The returned data is displayed on the internet front end
GUI.

Score Calculation Service

• Functionality: This service calculates the private customer scoring
based on information about private and professional circumstances. It
is a business function service.

• Accessibility: It is called in the loan application process by the customer
to prepare the exact calculation via the Internet front end GUI.

• Information:

– Operation name: calculate_Customer_Scoring

– Input: Date of birth, marital status, number of children, profes-
sion, income

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 223

– Output: Date of birth, marital status, number of children, profes-
sion, income per month, scoring

• Interaction: The returned data is displayed on the internet front end
GUI.

Condition Calculation Service

• Functionality: This service refreshes the condition table for consumer
loans once a month. It must execute the loan pricing service for all
possible combinations of net value, duration, and customer scoring and
update the conditions table with the results. Therefore, this service is
a process-oriented, composite service as it is based on the loan pricing
service and controls its repeated execution.

• Accessibility: It is called in the administration process to refresh the
condition table. Further, it is called in the loan application process
if the condition look-up service does not return any data because the
desired combination of net value, duration and customer scoring is not
pre-calculated.

• Information:

– Operation name: calculate_Condition

– Input: net value, duration, scoring

– Output: net value, duration, scoring, interest rate, installment

• Interaction: The returned data is stored in the condition table for
administrative purposes and displayed for the customer if called via
the front end GUI.

Contract Service

• Functionality: This service generates the text of the loan application
form using the customer contact data, the loan data, and the scoring
data. It is a visualizing service.

• Accessibility: It is called in the loan application process by the customer
to finalize the loan contract.

• Information:

– Operation name: create_Contract

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 224

– Input: customer ID, first name, surname, street, street number,
post code, city, net value, interest rate, duration, installment

– Output: contract text as PDF document

• Interaction: The returned data is sent to a printer.

Mailing Service This service is not a Web service, but sending the printed
contract to the customer must be executed manually. Therefore, it is out of
the scope of the application.

Creating and displaying messages at the customer front end can also be
encapsulated into services, but this is omitted in the following. The focus is
on calculation intensive functionality, as this is more likely to be reused. The
other services for monitoring and administration are not modeled further for
this example.

The service profiles resulting from the logical design step have to be
matched with existing services that are already implemented to avoid re-
dundant implementation. If the services do not exist, they must be assigned
to components that will later realize the services in the implementation. Fur-
ther, the services must be assigned to the different SOA layers.

Physical Design

In the physical design step, it is decided if the software that realizes a new
service will be reused from existing components or services, bought, custom-
built, or maybe even outsourced. Further, technical standards for service
realization are decided. If there is a SOA strategy already implemented, the
designers often do not have a technical choice but have to use predefined
standards, such as WSDL and SOAP.

For existing and new services other non-core business functions, such
as security, performance, and monitoring, must be chosen and taken into ac-
count for physical design. If an ESB is already installed, these non-functional
tasks will simply be delegated to the ESB. If an ESB is not used, other physi-
cal implementation patterns as described in [GAA+06] will have to be studied
and chosen.

Finally, an architecture overview document of the application summarizes
the resulting design from all four design phases. Such a document reflects how
the new application fits into the existing or aspired overall SOA architecture
as depicted in Figure 2.21. It consists of the following aspects as listed in
Table A.5.

In the physical design process, the components and services that do not
exist yet, but have to be created, are modeled physically to prepare imple-

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 225

Table A.5: SOA overview document.
Layer Description

Scope Which line of business is supported by this architecture?
Operational Packaged applications used by this architecture?
systems Custom applications used by this architecture?

Exposure and componentization decisions?
Enterprise Which business domain is supported by the component?
components Which process is supported by the component?

Mapping of component to service?
Services Which services are newly created and exposed?

Which existing services are reused?
Atomic or composite service realization?

Business Which business processes are represented as service
process choreographies? Which business process is wired into

an existing application component?
How do services collaborate?

Presentation Which GUI component uses which service?
Integration Service level agreements? Quality of service assurance?

Security and authentication? Performance restrictions?
Technology standards to be used? Monitoring tasks?

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 226

mentation. The existing services and components are integrated into the
physical design.

At this stage also additional non-functional services are added that are
not needed for the business logic but that must be provided by the SOA
infrastructure. For example, in the case of the loan application the data
between the customer and the application ought to be sent via a secure
channel, e.g., using HTTPS via SSL to protect privacy. This is an example
of a non-functional service provided by the SOA infrastructure.

A.3 Financial Web Service Ontology

A.3.1 Requirement Analysis and Specification

In the requirement analysis, organizational, procedural, and data aspects
of the application are analyzed, which the ontology is designed to support.
The ontology is used to annotate Web service interfaces and to discover Web
service operations based on operation names, input and output parameters.
An application that makes use of these annotations and supports a developer
in adding semantic annotations and using them for semantic search could
consist of the following components as shown in Figure A.17:

• All interface descriptions with semantic annotations are available to
the application (1).

• The taxonomy provides an acknowledged vocabulary for annotations
and for searching (2).

• A GUI permits to explore the taxonomy graphically to choose concepts
for annotations and for searching (3).

• The development environment permits to annotate operations, input
and output with concepts of the taxonomy (4).

• The development environment permits to extend and update the tax-
onomy (5).

• The development environment permits to search for available opera-
tions using concepts of the taxonomy (6).

• The search uses the taxonomy for inferences (7).

• The returned results are ranked according to their similarity with the
query and displayed (8).

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 227

Data
Layer

Applica-
tion

Layer

GUI
Layer

Query
GUI

Ontology
Browser

Result
Ranking

Query

Result
GUI

Annotation
GUI

Ontology
Browser

Annotation Update

Ontology
GUI

Ontology
Browser

Ontology Update

Ontology Updates Semantic Search Annotations

Taxonomy
Interface
Descriptions

Semantic
Annotations

Query
Rewriting

Reasoner
Ontology

Query Engine
Database

(1)
(2)

(3) (3) (3)

(4)

(4)

(4)

(5)

(5)

(6)

(6) (7) (7)

(8)

(8)

Figure A.17: Ontology-based search.

In the organizational analysis, stakeholders, potential users, and potential
systems that will benefit from an ontology and semantic annotations of Web
services are identified. This is summarized in Table A.6.

Table A.6: Target groups and systems.
Target Group Usage Description

O1: Software developers are system designers or pro-
Developers grammers. They want to use an ontology of Web

services to optimize software re-use, especially for
computation-intensive mathematical routines.

System Usage Description

O2: A service-oriented development tool suite supports
Service-oriented developers in building service-oriented applications.
Development Suite It can use ontologies to provide a graphical interface

for Web service detection during development for
search and annotation.

In the process analysis, the processes that the ontology is to support or
is involved in are described as shown in Table A.7.

In the data analysis, available data sources for the conceptual design,
e.g., related ontologies are identified. The result for the application scenario
is briefly summarized in Table A.8.

After the requirement analysis is completed, a more detailed requirement
specification is executed. This step aims at deriving an integrated view of
the different analysis perspectives, the compilation of a glossary through

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 228

Table A.7: Processes and system functions.
Process Process Description

P1: The search for services is executed based on
Service operation names and refined through input and
Search output. This is to be supported by the ontology.
P2: If the search does not return an exact match, the
Alternative search for an alternative operation that supports
Search input or output transformation is to be enhanced

by the ontology.
System Function System Function Description

P3: If a developer assigns an existing operation
Consistency concept from the ontology to a Web service
Check operation, it can be checked if the concept is

an operation concept or an attribute concept
in the given semantic model.

P4: If a developer has implemented a new operation,
Registering which does not exist in the operation ontology,
Concepts the ontology must be extended.

Table A.8: Data sources.
Text Document Description

D1: The conceptual software design of the financial
Software calculation kernel contains the description of
Documentation all implemented computation routines.
Ontologies Description

D2: For internal reporting purposes a taxonomy of
Product financial products exists. The financial calculation
Taxonomy kernel is able to calculate them.
D3: For internal controlling purposes a taxonomy of
Measure financial measures exists. The financial calculation
Taxonomy kernel is able to compute them.

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 229

stepwise refinement of relevant terms, and a quality evaluation of the result.
The integration of different use cases for the ontology is documented with
a use case diagram in Figure A.18 and additional competence questions in
Table A.9. Finally, a glossary of terms is derived.

Developer

Service-oriented Development Suite

Service
Search

Alternative
Search

Consistency
Check

Operation
Registration

<extends>

<uses>

Figure A.18: Integrated use case diagram.

Table A.9: Competence questions.
Question Description Data Source

K1 Which Web services implement the chosen
operation concepts?

K2 6 Is there an attribute concept that matches D2, D3
the chosen input and output?

K3 Does the service implementation represent
a valid operation concept?

K4 Does an operation concept already exist?

A.3.2 Conceptual Design

The conceptual design of the Web service ontology is also aligned with the
approach in [Hüs05]. First, concept hierarchies are modeled as generaliza-
tions and aggregations using the notation introduced in Chapter 4. The
concept hierarchies cover the aspects: financial products, financial measures,
customers, cashflows, simulation, calculation of cashflows, and calculation
of measures as indicated in Figure A.19. Simulations and calculations are
operation concepts, whereas the other concepts represent attribute concepts.

In many banks a product hierarchy exists, e.g., in the data warehouse
product dimension or in report definitions. The concept hierarchy for the

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 230

Financial
Product

Financial
Measure

Customer

Cashflow

Cashflow
Calculation

Measure
Calculation

Calculation

Concept Attribute

Operation

Simulation

Figure A.19: General concepts for concept hierarchy.

given example is refined in Figure A.20. The concepts in grey shades have
been used in the example in Section A.1. The different concepts are explained
in the glossary given in Table A.10.

The second important concept hierarchy, which is used to build the Web
service ontology, is the measure hierarchy that defines financial measures,
e.g., for reporting purposes. This concept hierarchy is depicted in Figure
A.21. The glossary explaining this ontology is given in Table A.11.

The customer concept hierarchy can also be derived from existing docu-
ments such as the customer data warehouse dimension or reporting categories
for customer reporting. In the example scenario, only the customer rating is
relevant for loan calculations. Therefore, only a small portion of the customer
concept hierarchy is modeled here as shown in Figure A.22. The concepts
are explained in Table A.12.

There is also a conceptual hierarchy for the different types of cashflows
that are the basis for the calculation of different measures. This is depicted
in Figure A.23 and explained in Table A.13.

Finally, the different financial calculations are modeled as concept hierar-
chies. As the calculation result is regarded as most important feature of each
computation, the concept hierarchy is refined following the result hierarchy.
The cashflow calculations are shown in Figure A.24. The measure calcula-
tions are shown in Figure A.25. Both concept hierarchies are restricted to
the calculations as relevant for the application scenario.

Note that there are not only calculations for measures, but also for other
loan related concepts such as the total debt or the net value. As the result
concepts have already been explained in glossaries, an additional glossary for

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 231

Financial
Product

Depot A

Depot B Structured
Product

Traditional
Account

Loan
Account

Anuity
Loan Acc.

Amortizable
Loan Acc.

...

Fixed
Condition
Loan Acc.

...

...

...

...

...

...

...

Consumer
Loan Acc.

...

Mortgage
Loan Acc.

...

Investment
Loan Acc.

...

...

...

...

...

Opening
Date

Closing Date

Interest Rate

Installment

Total Debt

Installment
Periodicity

Net Value

Interest
Periodicity

Margin

Initial
Present
Value

Saving
Account

Variable
Condition
Loan Acc.

Overdraft
Credit Acc.

Deferred
Payment

Loan Acc.

Remaining
Cashflow

Initial
Cashflow

Customer

Figure A.20: Financial products.

Financial
Measures

Periodic
Measures

Non-Periodic
Measures

Initial
Present
Value

Margin

Interest
Rate

Allocation
Base

Gross Initial
Present Value

Net Initial
Present Value

Gross
Margin

Net Margin

Gross Interest
Rate

Net Interest
Rate

Total Debt

Net Value

Figure A.21: Financial measures for reporting.

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 232

Table A.10: Financial products glossary.
Concept Description Context General

Concept

Financial Bank product Financial Concept
Product Product
Depot A Bank product traded Financial Financial

between banks Product Product
Depot B Bank product sold Financial Financial

from bank to customer Product Product
Structured Combination of Financial Depot B
Product depot B products Product Depot B
Traditional Interest-based Financial Depot B
Account depot B product Product Depot B
Saving Account to deposit Financial Traditional
Account money at the bank Product Product
Loan Account to let money Financial Traditional
Account to the customer Product Product
Variable Loan with uncertain Financial Loan
Cond. Loan interest and duration Product
Overdraft Loan granted on Financial Variable
Credit debit account Product Cond. Loan
Fixed Loan with fixed Financial Loan
Cond. Loan interest and duration Product
Deferred Total debt including Financial Fixed
Payment interest is payed back Product Condition
Loan in installments Loan
Consumer Deferred payment loan Financial Deferred
Loan to buy consumer goods Product Payment
Annuity Net Value payed back Financial Fixed
Loan in installments which Product Condition

include interest Loan
Mortgage Annuity loan to Financial Annuity
Loan to buy property Product Loan
Amortizable Net Value payed back Financial Fixed
Loan in installments, Product Condition

interest payed Loan
independently

Investment Amortizable loan Financial Amortizable
Loan to make investments Product Loan

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 233

Table A.11: Measure glossary.
Concept Description Context General

Concept

Financial Measure for Financial Concept
Measure financial product Measure
Periodic Time-based Financial Financial
Measure financial measure Measure Measure
Non-periodic Time-independent Financial Financial
Measure financial measure Measure Measure
Margin Revenue; difference Financial Periodic

in customer and Measure Measure
bank interest rate

Interest Customer fee, Financial Periodic
Rate charged for loan Measure Measure
Initial Present value of Financial Non-periodic
Present initial customer Measure Measure
Value cashflow
Allocation Amount, reference Financial Non-periodic
Base for periodic measure Measure Measure
Gross Margin without Financial Margin
Margin additional costs Measure
Net Risk-adjusted Financial Margin
Margin margin Measure
Gross Interest without Financial Interest
Interest Rate additional costs Measure Rate
Net Interest incl. Financial Interest
Interest Rate additional costs Measure Rate
Gross Initial Value of loan compared Financial Initial
Present Value to refinancing loan Measure Present Value
Net Initial Risk-adjusted Financial Initial
Present Value initial present Measure Present Value

value
Total Debt Sum of net value, Financial Allocation

interest, and Measure Base
additional costs

Net Value Sum granted to Financial Allocation
customer with a loan Measure Base

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 234

Customer
Corporate
Customer

Private
Customer

Rating

...

...

...

Figure A.22: Customer concept hierarchy.

Concept Description Context General
Concept

Customer Client Customer Concept
Private Customer is an Customer Customer
Customer individual
Corporate Customer is an Customer Customer
Customer enterprise
Rating Score for customer Customer Customer

credit worthiness

Table A.12: Customer glossary.

Cashflow
Variable
Cashflow

Fixed
Cashflow

Initial
Cashflow

Remaining
Cashflow

Payment
Date

Payment

...

...

Figure A.23: Cashflow concept hierarchy.

Cashflow
Calculation

Variable
Cashflow

Calculation

Fixed
Cashflow

Calculation

Initial
Cashflow

Calculation

Remaining
Cashflow

Calculation

...

Figure A.24: Cashflow calculation concept hierarchy.

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 235

Concept Description Context General
Concept

Cashflow Sequence of payments Cashflow Concept
Variable Cashflow with Cashflow Cashflow
Cashflow uncertain payments
Fixed Cashflow with Cashflow Cashflow
Cashflow fixed payments
Initial Cashflow at Cashflow Fixed
Cashflow contracting time Cashflow
Remaining Cashflow during Cashflow Fixed
Cashflow contract duration Cashflow
Payment Date of a payment Cashflow Cashflow
Date in a cashflow
Payment Amount of money Cashflow Cashflow

payed in a cashflow

Table A.13: Cashflow glossary.

Measure
Calculation

Periodic
Measure

Calculation

Non-Periodic
Measure

Calculation

Margin
Calculation

Net Margin
Calculation

Total Debt
Calculation

Net Value
Calculation

Initial Present
Value

Calculation

Gross Initial
Present Value
Calculation

Net Initial
Present Value
Calculation

Net Interest Rate
Calculation

Installment
Calculation

 Gross Interest
Rate Calculation

Interest Rate
Calculation

Gross Margin
Calculation

Figure A.25: Loan calculation concept hierarchy.

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 236

the operation concept hierarchies is omitted.
Following the modeling approach of [Hüs05], the next step assigns roles

to concepts. A concept is either a class or a property or both. The analysis
starts with the aggregation hierarchies of the concept model and then con-
tinues with the generalization hierarchies. The intermediate steps of this ap-
proach are omitted. Only the final result of the role assignment is presented.
Figure A.26 shows the role assignment for financial products. Classes are
denoted with a “C”, properties with a “P”. Concepts can appear in both
roles, as classes and as properties of other classes.

Financial
Product

Depot A

Depot B Structured
Product

Traditional
Account

Loan
Account

Anuity
Loan Acc.

Amortizable
Loan Acc.

...

Fixed
Condition
Loan Acc.

...

...

...

...

...

...

...

Consumer
Loan Acc.

...

Mortgage
Loan Acc.

...

Investment
Loan Acc.

...

...

...

...

...

Opening
Date

Closing Date

Interest Rate

Installment

Total Debt

Installment
Periodicity

Net Value

Interest
Periodicity

Margin

Initial
Present
Value

Saving
Account

Variable
Condition
Loan Acc.

Overdraft
Credit Acc.

Deferred
Payment

Loan Acc.

Remaining
Cashflow

Initial
Cashflow

Customer
P

P

P

P

P

P

P

P

P

P

C

C

C C

C

C

P

P

P

C

C

C C C

C

C

C

CC

C

C

C

Figure A.26: Role assignment for financial products.

As financial products have measures as properties, the concept hierarchy
of financial measures is turned into a property hierarchy as shown in Figure
A.27.

The role assignment for customers and cashflows is straight forward as
shown in Figures A.28 and A.29.

All calculation concepts are classes. Therefore, the figure showing this
assignment is omitted. The calculation concepts represent a class hierarchy

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 237

Financial
Measure

Periodic
Measure

Non-Periodic
Measure

Initial
Present
Value

Margin

Interest
Rate

Allocation
Base

Gross Initial
Present Value

Net Initial
Present Value

Gross
Margin

Net Margin

Gross Interest
Rate

Net Interest
Rate

Total Debt

Net Value

P

P

P

P

P

P

P

P

P

P

P

P

P

PP

Figure A.27: Role assignment for financial measures.

Customer
Corporate
Customer

Private
CustomerRating

...

...

...P

CP CP

CP

Figure A.28: Role assignment for customers.

Cashflow
Variable
Cashflow

Fixed
Cashflow

Initial
Cashflow

Remaining
Cashflow

Payment
Date

Payment

...

...

P

C

P

P

P

C

C C

C

P

Figure A.29: Role assignment for cashflows.

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 238

independent of the other ontological classes and properties.
After these preparation steps a class hierarchy (see Figure A.30) and a

property hierarchy (see Figure A.31) is derived. Note that the property hi-
erarchy uses additional concepts from top-level ontologies, e.g., time instant.
Top-level ontologies for time, currencies, or money in general are not shown
here.

The conceptual model can be translated in a logical model such as given
by RDFS and OWL. This is explained in [Hüs05] and not shown here because
the conceptual model is already sufficient to analyze the search support that
ontological references for Web service operations offer.

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 239

Calculate
Measure

Calculate Periodic
Measure

Calculate Non-
Periodic Measure

Calculate
Margin

Calculate Gross
Margin

Calculate Net
Value

Calculate Initial
Present Value

Calculate Gross
Initial

PresentValue

Calculate Net
Interest Rate

Calculate Gross
Interest Rate

Calculate
Installment

Financial
Product

Depot A

Depot B Structured
Product

Traditional
Account

Loan
Account

Anuity
Loan Acc.

Amortizable
Loan Acc.

Fixed
Condition
Loan Acc.

Consumer
Loan Acc.

Mortgage
Loan Acc.

Investment
Loan Acc.

Saving
Account

Variable
Condition
Loan Acc.

Overdraft
Credit Acc.

Deferred
Payment

Loan Acc.

Corporate
Customer

Private
Customer

 Customer

Calculate
Cashflow

Class

Cashflow Variable
Cashflow

Fixed
Cashflow

Initial
Cashflow

Remaining
Cashflow

Calculation Calculate
Variable Cashflow

Calculate
Fixed Cashflow

Calculate
Initial Cashflow

Calculate
Remaining
Cashflow

Calculate Net
Margin

Calculate Total
Debt

Calculate
Interest Rate

Calculate Net
Initial

Present Value

Figure A.30: Class hierarchy.

APPENDIX A. CASE STUDY FROM FINANCIAL INDUSTRY 240

time
instant

 customer

property financial
measure

periodic
measure

non-periodic
measure

initial
present
value

margin

interest
rate

allocation
base

gross initial
present value

net initial
present value

gross
margin

net margin

gross interest
rate

net interest
rate

total debt

net value

fixed
cashflow

remaining
cashflow

initial cashflow

corporate
customer

private
customer

rating

payment interest

installment

payment
periodicity

interest
periodicity

installment
periodicity

payment date

opening date

closing date

Figure A.31: Property hierarchy

