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Abstract. A real C∗-algebra with complexification the Jiang–Su algebra is constructed and
some basic properties of the algebra are established.

1. Introduction

In [13], Jiang and Su constructed and established many fundamental proper-
ties of a simple, unital, projectionless, infinite-dimensional, nuclear C∗-algebra
Z with a unique tracial state and the same K-theory as the complex numbers.
If A is a simple C∗-algebra and K0(A) is weakly unperforated as an ordered
group, it was shown in [9] that A and A ⊗ Z have the same Elliott invariant,
leading to intensive work on Z-stable algebras, i.e. those for which A is iso-
morphic to A ⊗ Z. This work has culminated in the result [29, Cor. D] that
if A and B are separable, unital, simple and infinite-dimensional C∗-algebras
with finite nuclear dimension which satisfy the UCT, then A is isomorphic to
B if and only if A and B have isomorphic Elliott invariants. The proof, by
many hands but notably including [35, Thm. 7.1] and [10, Thm. 29.8], relies
heavily on Z-stability and its relation to the regularity properties of having
finite nuclear dimension and having the strict comparison property for positive
elements.

Although, as shown by Rosenberg in [22], real C∗-algebras have a signifi-
cant number of applications, their classification is much less developed than
the complex case, with the only major results being in the AF and simple nu-
clear purely infinite cases. It seems likely that further progress will require an
appropriate real version of Z-stability and its relation to real versions of finite
nuclear dimension and the strict comparison property for positive elements.
The purpose of the present paper is to start this work.

Recent work has revealed analogies between the Jiang–Su algebra and the
hyperfinite II1 factor. The latter algebra has a unique real structure up to
isomorphism, as was shown in [8] and [27], so it can be hoped that the same is
true for the Jiang–Su algebra. However, not only is this not known but even
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the weaker form of uniqueness established in [13] for suitable inductive limits
cannot be proved by the methods of that paper. As a result, different proofs
are given here for results which in the complex case have been derived from
Jiang and Su’s uniqueness theorem.

The construction of a real analog ZR of the Jiang–Su algebra Z, given in
Section 2 of this paper, follows exactly as in [13] but is presented here in detail
to show that the relevant unitaries can be chosen to be real and can be adjusted
if necessary to lie in a given connected component of the orthogonal group. A
real form of the Jiang–Su algebra has also been introduced in [6, Ex. 3.1],
although without an extensive investigation of its properties.

It is checked in Section 3 that the local existence results from [13, §4] can
be adapted without trouble to the real case. However the local uniqueness
results from [13, §5] do not carry over because the orthogonal group is not
connected: an example is presented in Section 4 of two homomorphisms failing
to satisfy [13, Thm. 5.3], which is a key tool in the classification theorem [13,
Thm. 6.2] and in the results, from [13, §8], that Z ∼= Z ⊗ Z and then that
Z ∼=

⊗∞

i=1 Z. An alternative approach, based on [23], is therefore presented
in Section 4, leading to the result ZR ∼= ZR ⊗ZR for a particular algebra ZR
with complexification Z.

In Section 5, it is checked that appropriate minor changes can be made to
results about weak stability and semiprojectivity, leading to a real analog of
the key strongly self-absorbing property of Z. In Section 6, two basic examples
having a real version, ZR-stability, of Z-stability are presented and then, in
Sections 7 and 8, a relation is obtained between ZR-stability and strict com-
parison for positive elements. In [21], the proof that Z-stable algebras have
the strict comparison property for positive elements uses the uniqueness prop-
erty from [13] and so an alternative approach is given here in Section 7, using
properties of the Cuntz semigroup of Z and analogs for Cuntz semigroups of
the complexification and realification maps in K-theory. The partial converse,
from [16] and [26], relies on a property known as excision of pure states, which
does not in general hold in the real case. However appropriate modifications
are made in Section 8 to this and various other arguments from [16] and [26],
to establish Theorem 8.12, which is the real counterpart of [26, Cor. 1.2].

2. Construction

Following [13, §2], let Mn(R) be the algebra of all real n × n matrices and
identify Mm(R)⊗Mn(R) with Mmn(R) by means of

a⊗ b =











b11a b12a · · · b1na
b21a b22a · · · b2na
...

...
...

bn1a bn2a · · · bnna











∈Mmn(R).

Further let the real dimension drop algebra IR[p,m, q] be defined by

IR[p,m, q] =
{

f ∈C([0, 1],Mm(R)) | f(0)∈Mp⊗Im/p, f(1)∈ Im/q⊗Mq(R)
}

.
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The proof of [13, Lem. 2.2] applies unchanged to show that IR[p,m, q] is pro-
jectionless when p, q are relatively prime, in which case IR[p, pq, q] is said to be
prime. In this paper the focus will be only on prime dimension drop algebras.

Lemma 2.3 of [13] gives the K-theory of the complex dimension drop al-
gebra A = I[m0,m,m1], namely (K0(A),K0(A)

+, [1A]) ∼= (Z,N, r), where
r = (m0,m1), and K1(A) ∼= Zp where p = mr/(m0m1). In particular, when
m0 and m1 are relatively prime and m = m0m1, then

(K0(A),K0(A)
+, [1A]) ∼= (Z,N, 1) and K1(A) = 0,

so that the unital injection of C into I[m0,m,m1] gives an isomorphism in
K-theory. As noted in [3, Prop. 1.14], the unital injection from R into
IR[m0,m,m1] therefore gives an isomorphism from the united K-theory
KCRT (R) of R to the unitedK-theoryKCRT (IR[m0,m,m1]) of IR[m0,m,m1].
Similarly any unital homomorphism between non-commutative prime real di-
mension drop algebras (which, as observed in the proof of [13, Prop. 2.8], must
be injective) gives rise to an isomorphism in united K-theory.

As in [13, Lem. 2.4], the induced map from the center defines an isomorphism
from the tracial state space T (IR[p,m, q]) of IR[p,m, q] to that of C([0, 1],R)
and from Aff(T (IR[p,m, q])) to C([0, 1],R). Furthermore each real trace τ on
IR[p,m, q] extends uniquely to a complex-linear trace on I[p,m, q] and each
complex trace on I[p,m, q] restricts to a real-valued trace on IR[p,m, q] (which
is zero on skew-adjoint elements).

Proposition 2.5 of [13] gives the construction of the Jiang–Su algebra Z.
The real version is almost identical.

Proposition 2.1. There exists an inductive sequence

A1
ϕ1
−→ A2

ϕ2
−→ A3

ϕ3
−→ · · · ,

where each An = IR[pn, dn, qn] is a prime real dimension drop algebra, such

that each connecting map ϕm,n = ϕn−1 ◦ · · · ◦ ϕm+1 ◦ ϕm : Am → An is an

injective morphism of the form

ϕm,n(f) = u∗











f ◦ ξ1 0 · · · 0
0 f ◦ ξ2 · · · 0
...

...
...

0 0 · · · f ◦ ξk











u

for all f ∈ Am, where u is a continuous path of unitaries in Mdn(R) and

{ξi} is a sequence of continuous paths in [0, 1], each one of which satisfies

|ξi(x) − ξi(y)| ≤ (12 )
n−m for all x, y ∈ [0, 1].

Proof. Proceed exactly as in [13] to define dimension drop algebras Am =
IR[pm, dm, qm] and paths {ξi}. The construction of the connecting maps re-
quires the unitary elements u0 and u1 to be chosen to be real and with equal
determinants. The following argument explains why this can be done.
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For each 1 ≤ i ≤ r0, where r0 is defined in [13], ξi(0) = 0 and therefore each
matrix f(ξi(0)) is of the form











a 0 · · · 0
0 a · · · 0
...

...
...

0 0 · · · a











∈Mdm(R),

where a ∈ Mpm(R) and is repeated qm times. The remaining k − r0 = sqm+1

blocks in the block diagonal matrix










f(ξ1(0)) 0 · · · 0
0 f(ξ2(0)) · · · 0
...

...
...

0 0 · · · f(ξk(0))











∈Mdm+1
(R)

are of the form b = f(12 ) ∈Mdm(R).
There are therefore qmr0 = tqm+1 diagonal blocks a and sqm+1 diagonal

blocks b, which can be permuted to give qm+1 diagonal blocks










a 0 · · · 0
0 a · · · 0
...

...
...

0 0 · · · b











of size spm + tdm = pm+1, where a occurs t times and b occurs s times. Thus
there exists a real unitary permutation matrix u0 with

u∗0











f(ξ1(0)) 0 · · · 0
0 f(ξ2(0)) · · · 0
...

...
...

0 0 · · · f(ξk(0))











u0 ∈Mpm+1
(R)⊗ Iqm+1

.

The unitary u1 with

u∗1











f(ξ1(1)) 0 · · · 0
0 f(ξ2(1)) · · · 0
...

...
...

0 0 · · · f(ξk(1))











u1 ∈ Ipm+1
⊗Mqm+1

(R)

can be chosen to be real by a similar argument. Firstly note that for any p, q
the unitary

u =











e11 e21 · · · ep1
e12 e22 · · · ep2
...

...
...

e1q e2q · · · epq











,
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where each matrix unit eij is a p× q matrix, satisfies

u(a⊗ Ip) =











e11 e21 · · · ep1
e12 e22 · · · ep2
...

...
...

e1q e2q · · · epq





















a 0 · · · 0
0 a · · · 0
...

...
...

0 0 · · · a











=











e11a e21a · · · ep1a
e12a e22a · · · ep2a
...

...
...

e1qa e2qa · · · epqa











=











a11Ip a12Ip · · · a1qIp
a21Ip a22Ip · · · a2qIp
...

...
...

aq1Ip aq2Ip · · · aqqIp





















e11 e21 · · · ep1
e12 e22 · · · ep2
...

...
...

e1q e2q · · · epq











= (Ip ⊗ a)u

for each a ∈ Mq(R). Therefore each diagonal block f(1) is of the form
v(a ⊗ Ipm)v∗ for some real unitary matrix v and some a ∈ Mqm(R). As in
the construction of u0, a real unitary w can then be found so that

w∗











f(ξ1(1)) 0 · · · 0
0 f(ξ2(1)) · · · 0
...

...
...

0 0 · · · f(ξk(1))











w ∈Mqm+1
(R)⊗ Ipm+1

and then u1 can be found by repeating the argument used to obtain f(1) =
v(a⊗ Ipm)v∗.

If pm is odd, then

diag(−Ipm , Idm−pm)f(ξ1(0)) diag(−Ipm , Idm−pm)∗ = f(ξ1(0)),

so the sign of det(u0) can be adjusted if necessary to make det(u0) = det(u1)
by premultiplying u0 by the matrix diag(−Ipm , Idm+1−pm). If pm is even then
qm is odd and the sign of det(u1) can then be adjusted as for det(u0) after
obtaining v∗f(ξ1(1))v = a⊗ Ipm . Then a path u of unitaries in Mdm+1

(R) can
be found connecting u0 and u1. �

In summary, a real version of the construction of [13, Prop. 2.5] produces
an inductive sequence which, on complexification, gives the sequence of that
proposition. It follows that the inductive limit has complexification Z. Using
[13, Prop. 2.8], the inductive limit is therefore a unital simple real C∗-algebra
with a unique real tracial state. Furthermore, the united K-theory of any al-
gebra A with complexification Z is isomorphic to the united K-theory of R,
using the result from [3, Prop. 1.14] that the K-theory homomorphism in-
duced by the unital injection from R into A is an isomorphism because it is an
isomorphism on its complex part.
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3. Local existence

The irreducible representations Vy of A = IR[m0,m,m1] are defined exactly
as in [13, §3] and the real analog of [13, Lem. 3.3] holds without change of
proof to describe the morphisms from A to Mn(R).

The use of the KK-theory developed in [13] can be avoided when restricting
to the prime case, when all unital homomorphisms give rise to the identity
map on Z under the identifications of [13, §3]. Instead, simpler versions of the
arguments of that section can be used, such as the following, based on [13,
Lem. 3.5].

Lemma 3.1. Let A = IR[m0,m,m1] and B = IR[n0, n, n1] be prime and

satisfy n0 ≥ m and n1 ≥ m. Then there is a unital homomorphism from A
to B.

Proof. The condition ni ≥ m guarantees that a > 0 when ni is written in the
form am0+bm1 with 0 ≤ b < m0. This enables the construction of morphisms
ρi from A to Mni

(R) for i ∈ {0, 1} and hence of morphisms ϕ0 = ρ0 ⊗ In1

and ϕ1 = In0
⊗ ρ1 from A to Mn(R). As in [13, Lem. 3.3] these maps have

compressed diagonalizations of the form

u∗i















V0(f)⊗ idµ0
0 · · · 0 0

0 f(λ1(i)) · · · 0 0
...

...
...

...
0 0 · · · f(λµ(i)) 0
0 0 · · · 0 V1(f)⊗ idµ1















ui.

These compressed diagonalizations both extend by complexification to the cor-
responding complex dimension drop algebras and hence, by [13, Lem. 3.1, 3.4],
µ0, µ1, µ are uniquely determined by n = (m1µ+µ0)m0+µ1m1 with 0 ≤ µ0 <
m1 and 0 ≤ µ1 < m0. If det(u0) 6= det(u1) then, if n1 is odd, ϕ0 can be re-
placed by w0ϕ0w

∗
0 where w0 = v0⊗In1

for some unitary v0 with det(v0) = −1.
If instead n0 is odd then ϕ1 can be replaced by w1ϕ1w

∗
1 where w1 = In0

⊗ v1
for some unitary v1 with det(v1) = −1. Then, as in the proof of [13, Lem. 3.5],
a morphism ϕ can be constructed by connecting u0 to u1. �

Using the notation ∆ϕ introduced in [13, Not. 5.2], the morphism ϕ con-
structed in Lemma 3.1 is of the form u∗∆ϕu where u ∈ C([0, 1],Mn(R)); such
a morphism will here be called standard.

The proof of [13, Thm. 4.1] can now be used to obtain the following existence
theorem.

Theorem 3.2. Let A = IR[m0,m,m1] be a prime dimension drop algebra,

F ⊆ A a finite subset and ε > 0 a constant. Then there exists a number N > 0
such that if

(i) B = IR[n0, n, n1] is prime with n0 > N , n1 > N , and

(ii) θ : T (B) → T (A) is a continuous affine map,

Münster Journal of Mathematics Vol. 10 (2017), 383–407
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then there exists an injective standard morphism ϕ : A→ B such that

|〈f, (ϕ∗ − θ)(τ)〉| < ε for all f ∈ F, τ ∈ T (B).

The proof proceeds exactly as in [13] until the definition of ϕi. (The re-
striction to selfadjoint elements of F is possible here because real traces are
zero on skew-adjoint elements.) There needs to be a continuous unitary path
connecting u0 and u1 but this can be arranged by replacing ϕ0 by v∗ϕ0v or ϕ1

by v∗ϕ1v for a suitable unitary v, as was done above when adapting the proof
of [13, Lem. 3.5].

4. Limited uniqueness

In [13], the reader is referred to [28, Cor. 1.5] for a proof of [13, Thm. 5.3],
which states that if A,B are dimension drop algebras, then two morphisms
ϕ, ψ : A → B with ∆ϕ = ∆ψ are approximately unitarily equivalent. This
result does not hold in the real situation in general. For a counterexample, let
A = B = IR(2, 6, 3), let ϕ = id and let ψ(f) = ufu∗ where u ∈ C([0, 1],M6(R))
is a unitary with u0 = diag(1,−1, 1,−1, 1,−1) and

u1 = v

(

03 I3
I3 03

)

v∗,

where I2 ⊗M3(R) = v(M3(R)⊗ I2)v
∗, so that det(u0) = det(u1) = −1 and u1

commutes with I2 ⊗M3(R). Then ∆ϕ(f) = ∆ψ(f) = (f). Note that if w is
any unitary in A then, for some 3× 3 matrix w′

1,

det(w1) = det

(

v

(

w′
1 03

03 w′
1

)

v∗
)

= det(w′
1)

2 = 1

and therefore det(w0) = 1. Thus w0 = diag(w′
0, w

′
0, w

′
0) where det(w′

0) = 1.
If f ∈ A with ‖ϕ(f)− wψ(f)w∗‖ < ε then, putting f(0) = diag(f ′

0, f
′
0, f

′
0),

we have
∥

∥

∥

∥

f ′
0w

′
0

(

1 0
0 −1

)

− w′
0

(

1 0
0 −1

)

f ′
0

∥

∥

∥

∥

< ε.

So let F be a finite set in A such that every 2× 2 matrix unit eij occurs as f
′
0

for some f ∈ F . If

w′
0

(

1 0
0 −1

)

= v = v11e11 + v12e12 + v21e21 + v22e22,

then, using f ′
0 = e11 and f ′

0 = e12,

‖v11e11 + v12e12 − v11e11 − v21e21‖ = ‖v12e12 − v21e21‖ < ε

and

‖v21e11 + v22e12 − v11e12 − v21e22‖ < ε.

It follows that |v12| < ε, |v21| < ε and |v11−v22| < ε. So v11v22−ε
2 < det(v) =

−1 and then, using |v11| ≤ 1, we deduce v211− ε < v11v22 < −1+ ε2. For ε < 1
2

this gives a contradiction and hence a contradiction to the real analog of
[13, Thm. 5.3].
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Lemma 4.1. Let p, q and P,Q be pairs of coprime natural numbers. Let

ξ1, . . . , ξPQ be paths in [0, 1] with ξi(0) ∈ [0, 12 ] and ξi(1) ∈ [ 12 , 1] for each 1 ≤
i ≤ PQ and let ϕ : IR[p, pq, q] → IR[Pp, PpQq,Qq] be defined by ϕ = u∗∆ϕu
where

∆ϕ(f) =











f ◦ ξ1 0 · · · 0
0 f ◦ ξ2 · · · 0
...

...
...

0 0 · · · f ◦ ξPQ











and u is a unitary in C([0, 1],MPpQq(R)). Then there exists a unital embedding

ψ of IR[P, PQ,Q] into IR[Pp, PpQq,Qq] such that, for every f ∈ IR[p, pq, q]
with ‖∆ϕ(f)(x) −∆ϕ(f)(y)‖ < ε for all x, y ∈ [0, 1],

‖ψ(g)ϕ(f)− ϕ(f)ψ(g)‖ < 2ε

for all g ∈ IR[P, PQ,Q] with ‖g‖ ≤ 1.

Proof. This is just the real version of a special case of [23, Lem. 4.1]. To check
the real version, the details are presented here. Let

ψ′ : IR[P, PQ,Q] → C([0, 1],MPpQq(R))

with ψ′(g) = Ipq ⊗ g for each g. Also let

AL =
{

f ∈ IR[p, pq, q] | f(x) = f(0) for 0 ≤ x ≤ 1
2

}

,

AR =
{

f ∈ IR[p, pq, q] | f(x) = f(1) for 1
2 ≤ x ≤ 1

}

,

and note that

∆ϕ(AL)(0) =Mp(R)⊗ IPQq,

∆ϕ(AR)(1) = Ip ⊗Mq(R)⊗ IPQ.

Thus, for each x ∈ [0, 1], the elements of (ψ′(IR[P, PQ,Q]))(x) commute with
the elements of ∆ϕ(AL)(0) and with the elements of ∆ϕ(AR)(1).

Note also that

∆ϕ(AL)(0) ⊂ u(0)IR[Pp, PpQq,Qq](0)u(0)
∗ ∼=MPp(R),

∆ϕ(AR)(1) ⊂ u(1)IR[Pp, PpQq,Qq](1)u(1)
∗ ∼=MQq(R),

so that, regarding ∆ϕ(AL)(0) and ∆ϕ(AR)(1) as subalgebras of MPpQq(R),

∆ϕ(AL)(0)
′ ∩ u(0)IR[Pp, PpQq,Qq](0)u(0)

∗ ∼=MP (R),

∆ϕ(AR)(1)
′ ∩ u(1)IR[Pp, PpQq,Qq](1)u(1)

∗ ∼=MQ(R).

Within ∆ϕ(AL)(0)
′ ∼=MPQq(R) there exists a unitary wL with

wLψ
′(IR[P, PQ,Q])(0)w∗

L = ∆ϕ(AL)(0)
′ ∩ u(0)IR[Pp, PpQq,Qq](0)u(0)

∗.

After multiplying, if necessary, by an element of ψ′(IR[P, PQ,Q])(0), if Qq
is odd, or an element of its commutant in ∆ϕ(AL)(0)

′, if P is odd, wL can
be connected to 1 by a path of unitaries in ∆ϕ(AL)(0)

′. Similarly within
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∆ϕ(AR)(1)
′ ∼= MPpQ(R) there exists a unitary wR, connected to 1 by a path

of unitaries in ∆ϕ(AR)(1)
′, with

wRψ
′(IR[P, PQ,Q])(1)w∗

R = ∆ϕ(AR)(1)
′ ∩ u(1)IR[Pp, PpQq,Qq](1)u(1)

∗.

Let W be a unitary in C([0, 1],MPpQq(R)) with

W (0) = wL,

W (x) ∈ ∆ϕ(AL)(0)
′ for 0 ≤ x ≤ 1

2 ,

W (12 ) = 1,

W (x) ∈ ∆ϕ(AR)(1)
′ for 1

2 ≤ x ≤ 1,

W (1) = wR.

If ψ = Adu∗W ◦ ψ′ then ψ is a unital embedding of IR[P, PQ,Q] into
IR[Pp, PpQq,Qq]. If f ∈ IR[p, pq, q] with ‖∆ϕ(f)(x) −∆ϕ(f)(y)‖ < ε for all
x, y ∈ [0, 1] and g ∈ IR[P, PQ,Q] with ‖g‖ ≤ 1, let fL ∈ AL and fR ∈ AR with
fL(0) = f(0) and fR(1) = f(1). Then for 0 ≤ x ≤ 1

2 ,

ψ(g)(x)ϕ(f)(x) = ψ(g)(x)u(x)∗∆ϕ(f)(x)u(x)

≈ε ψ(g)(x)u(x)
∗∆ϕ(fL)(0)u(x)

= u(x)∗W (x)ψ′(g)(x)W (x)∗∆ϕ(fL)(0)u(x)

= u(x)∗W (x)ψ′(g)(x)∆ϕ(fL)(0)W (x)∗u(x)

= u(x)∗W (x)∆ϕ(fL)(0)ψ
′(g)(x)W (x)∗u(x)

= u(x)∗∆ϕ(fL)(0)W (x)∗ψ′(g)(x)W (x)∗u(x)

≈ε u(x)
∗∆ϕ(f)(x)W (x)∗ψ′(g)(x)W (x)∗u(x)

= ϕ(f)(x)ψ(g)(x).

Similarly, for 1
2 ≤ x ≤ 1,

ψ(g)(x)ϕ(f)(x) ≈2ε ϕ(f)(x)ψ(g)(x),

as required. �

In order to apply the argument used to prove [23, Thm. 4.3] the following
proposition is needed.

Proposition 4.2. Let S be an inductive system, of the type constructed in

Proposition 2.1, using prime real dimension drop algebras An= IR(pn, pnqn, qn)
of odd order pnqn or order pnqn ≡ 0 (mod 4) and let ZS

R be the inductive limit.

Then the maps ψ1 and ψ2, defined from ZS
R to ZS

R ⊗ZS
R by ψ1(a) = a⊗ 1 and

ψ2(a) = 1⊗ a, are approximately unitarily equivalent.

Proof. The following argument shows that the proof of [13, Prop. 8.3] applies
to show this.

Given F ⊂ Am and ε > 0, pick n and ω as in the proof of [13, Prop. 8.3]
and, as in the complex case, define ϕ : Am → An by ϕ(a)(x) = ϕm,n(a)[ω(x)]
for all x ∈ [0, 1] and a ∈ Am. To simplify notation let pn = p and qn = q. The
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construction in the real case still produces a continuous unitary path u in Upq
with ϕ = u∗∆ϕu, ux = u0 for 0 ≤ x ≤ c and ux = u1 if 1− c ≤ x ≤ 1.

The symmetry Sp ∈ (Mp(R) ⊗ Iq) ⊗ (Mp(R) ⊗ Iq) implementing the flip
automorphism can be chosen to be in the real matrix algebra: note that the
formula

Sp =
∑

1≤i,j≤p

(eij ⊗ Iq)⊗ (eji ⊗ Iq)

is a suitable choice. An analogous result holds for the symmetry

Sq ∈ (Ip ⊗Mq(R))⊗ (Ip ⊗Mq(R)).

With S = SpSq, the continuous U : [0, 1] × [0, 1] → Up2q2 defined in [13] by
Ux,y = [(u∗xuy)⊗ Ipq]S is real-valued and satisfies

‖U∗(ϕ(f)⊗ 1)U − 1⊗ ϕ(f)‖ ≤
ε

3

for all f in F . However the formula in [13] defining the unitary path v in
Up2q2 does not apply to the real case. Note instead that a path v can be
constructed with v0 = Sq, vx ∈ (Ip⊗Mq)⊗ (Ip⊗Mq(R))∩{Sq}

′ for 0 ≤ x ≤ c,
vx = Ip2q2 for c ≤ x ≤ 1 − c, vx ∈ (Mp(R) ⊗ Iq) ⊗ (Mp(R) ⊗ Iq) ∩ {Sp}

′ for
1 − c ≤ x ≤ 1 and v1 = Sp. To see this, note firstly that if pq ≡ 0 (mod 4)
then either p is odd and q ≡ 0 (mod 4) or q is odd and p ≡ 0 (mod 4). When
p is even then det(Sq) = 1 and det(Sp) = 1 if p ≡ 0 (mod 4); when q is even
then det(Sp) = 1 and det(Sq) = 1 if q ≡ 0 (mod 4): to see this note that if
T =

∑n
i,j=1 ei,j⊗ej,i ∈Mn⊗Mn then the trace of T is n and so T has n(n−1)/2

eigenvalues −1. When pq is odd and det(Sq) = −1 then det(−Sq) = 1 and
−Sq is still a symmetry in (Ip⊗Mq(R))⊗ (Ip⊗Mq(R)) implementing the flip;
similarly det(Sp) can be chosen to be 1.

If Qq = 1
2 (1 − Sq), then Qq is a projection of even dimension (onto the

eigenspace of Sq with eigenvalue −1). Rotating −Qq to Qq and adding the
resultant path to 1−Qq produces a unitary path in (Ip⊗Mq(R))⊗(Ip⊗Mq(R))
∩ {Sq}

′ from Sq to Ip2q2 . The path for 1− c ≤ x ≤ 1 is constructed similarly.
For any path v as above, W can be constructed by the same formula as in

[13]. By construction vxS = Svx for each 0 ≤ x ≤ 1 which, as in [13], implies
that W is continuous. Then, just as in [13], checking the boundary conditions
shows that W ∈ An ⊗An, completing the proof. �

Theorem 4.3. Let S = {(An, αn) | n ∈ N} and T = {(Bn, βn) | n ∈ N} be

inductive sequences of prime dimension drop algebras of odd order or order a

multiple of 4, with connecting maps of the form specified in Proposition 2.1.

Then

ZS
R
∼= ZS

R ⊗ZT
R

∼= ZT
R .

Proof. ZS
R can be written as an inductive limit of prime dimension drop alge-

bras IR[pn, pnqn, qn] with pn+1/pn > 2pnqn and qn+1/qn > 2pnqn for each n.
Applying Lemma 4.1 with P = pn+1/pn, Q = qn+1/qn, p = pn, q = qn and
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ϕ = αn, there exists

ψn : IR

[pn+1

pn
,
pn+1qn+1

pnqn
,
qn+1

qn

]

→ IR[pn+1, pn+1qn+1, qn+1]

with the properties specified in the lemma.
Let p, q be relatively prime numbers. By Lemma 3.1 there exists N such

that, for all n ≥ N , there are morphisms

ϕn : IR[p, pq, q] → IR

[pn+1

pn
,
pn+1qn+1

pnqn
,
qn+1

qn

]

and thus morphisms γn : IR[p, pq, q] → ZS
R, defined by γn = αn+1,∞ ◦ψn ◦ϕn.

These give rise to γ : IR[p, pq, q] → ℓ∞(ZS
R) with γ(g)m = γm(g) for allm ≥ N .

Given f ∈ IR[pn, pnqn, qn], with n ≥ N , and ε > 0, there existsM ≥ n such
that ‖∆αn,m+1(f)(x)−∆αn,m+1(f)(y)‖ < ε for all x, y ∈ [0, 1] and all m ≥M .
Applying Lemma 4.1, ‖γm(g)αn,∞(f)− αn,∞(f)γm(g)‖ < 2ε whenever ‖g‖ ≤
1, leading to γ giving rise to a unital embedding of IR[p, pq, q] into the central
sequence algebra (ZS

R)∞. Then as in the proof of [32, Prop. 2.2], starting with
an application of the real version of the Choi–Effros theorem from [12], there
exists a unital embedding of ZT

R into (ZS
R)∞.

The maps ψ1 and ψ2, defined from ZT
R to ZT

R ⊗ ZT
R by ψ1(a) = a ⊗ 1

and ψ2(a) = 1⊗ a, are approximately unitarily equivalent by Proposition 4.2.
Therefore, as in the proof of [32, Prop. 2.2], the real version of [20, Thm. 7.2.2]
gives ZS

R
∼= ZS

R ⊗ZT
R . Interchanging S and T then gives ZT

R
∼= ZS

R ⊗ZT
R . �

The notation ZR will be used for the limit of a sequence of prime dimension
drop algebras of odd order or order a multiple of 4, with connecting maps
of the form in the previous theorem. The following corollary is therefore an
immediate consequence of the theorem.

Corollary 4.4. ZR ∼= ZR ⊗ZR.

5. Strong self-absorption

In [31], a separable unital C∗-algebra D is defined to be strongly self-
absorbing if it is not isomorphic to C and there is an isomorphism ϕ from
D to D ⊗ D which is approximately unitarily equivalent to idD ⊗1D. Re-
placing C by R gives the corresponding definition for real C∗-algebras. The
main step in showing that ZR is strongly self-absorbing is to show that ZR is
isomorphic to

⊗∞

i=1 ZR.
The proof of [13, Prop. 7.3], that I[p, pq, q] is weakly stable, uses the results

from [13, Ex. 7.2] that I[1, p, p] and I[1, p, 1] are both weakly stable. To check
the real analog of these results, firstly note that, when p ≥ 2, the *-isomorphism
from C∗[Gp|Rp] onto I[p, p, 1] given in [13] maps each generator aj in Gp into
IR[p, p, 1], so that IR[p, p, 1] is also the universal (real) C∗-algebra generated
by a finite set of relations. Although the isomorphism from C∗[G′′, R′′] onto
I[1, p, 1] given in [14, Prop. 2.9] does not map the generators v, x1, . . . , xp into
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IR[1, p, 1] it does map each of

1

2
(v + v∗),

1

2i
(v − v∗),

1

2
(x1 + x∗1),

1

2i
(x1 − x∗1), . . . ,

1

2
(xp + x∗p),

1

2i
(xp − x∗p)

into IR[1, p, 1]. Recasting the relations in terms of the generators aj (which
do map into IR[1, p, 1]) and the alternative generators above, IR[1, p, 1] is also
the universal (real) C∗-algebra generated by a finite set of relations. The proof
of [15, Thm. 4.1.4] also holds in the real case, so it suffices to show that both
IR[p, p, 1] and IR[1, p, 1] are weakly semiprojective. As in the complex case, by
adjoining units to C0((0, 1],Mp(R)) ∼= C0([0, 1),Mp(R)) and

I
R
p =

{

f ∈ C0((0, 1],Mp(R)) | f(1) ∈ R
}

,

it suffices to consider these two algebras.
The proofs of [15, Thm. 10.2.1] and the preliminary results also hold for

the real case, to demonstrate that C0((0, 1],Mp(R)) is projective and hence
semiprojective. For IRp as above, it suffices to show that C0((0, 1),Mp(R)) is
semiprojective because the argument on [15, p. 127], the proof of [15, Thm.
16.1.1] and the proofs of the preliminary results from earlier chapters also hold
in the real case, as does the proof that the map γ defined on [15, p. 126] is
corona extendible. Furthermore, the proof of [15, Thm. 14.2.2] and the proofs
of the preliminary results from earlier chapters hold in the real case to show
thatMp(A) is semiprojective for any semiprojective σ-unital real C∗-algebraA,
so it suffices to consider C0((0, 1),R).

The proof that C0((0, 1),R) is semiprojective holds by adjusting the proof of
[15, Lem. 14.1.8] as follows. If u is the canonical unitary generator of C(S1,C),
then a homomorphism α from C(S1,C) into the complexification BC of a real
C∗-algebra B will map C(S1,R) into B precisely when Φ(α(u)) = α(u), where
Φ is the involutory *-antiautomorphism of BC associated with B. Thus to show
C(S1,R) is semiprojective it suffices to show that the unitary lift w obtained
in [15, Lem. 14.1.8] can be chosen to satisfy Φ(w) = w for the appropriate
antiautomorphism Φ. However the invertible lift x can be chosen to satisfy
Φ(x) = x and then the polar decomposition of x satisfies

w|x| = x = Φ(x) = Φ(w)[Φ(w)∗Φ(|x|)Φ(w)].

The uniqueness of the polar decomposition then gives the required result.
The argument above shows that IR[1, p, p] and IR[1, p, 1] are both weakly

stable. Using these facts and that the generators and relations given for
I[p, pq, q] in the proof of [13, Prop. 7.3] are also real generators and relations
for IR[p, pq, q], the proof of that proposition shows that IR[p, pq, q] is weakly
stable.

Theorem 5.1. ZR is strongly self-absorbing.

Proof. As in the proof of [13, Cor. 8.8], the weak stability of real dimension drop
algebras, together with Theorem 4.3, implies that D =

⊗∞

i=1 ZR is the closure
of an increasing union of prime dimension drop algebras of odd order. As in the
proof of Theorem 4.3 there is a unital embedding of each of these dimension
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drop algebras into (ZR)∞ and therefore, again using the real version of [32,
Prop. 2.2], there is a unital embedding of D in (ZR)∞. From Proposition 4.2
it follows that the homomorphisms a 7→ a⊗ 1 and a 7→ 1⊗ a from D to D⊗D
are approximately unitarily equivalent. The real version of [20, Thm. 7.2.2]
thus gives an isomorphism from ZR onto ZR⊗D ∼= D. The result then follows
from the real version of [31, Prop. 1.9], using the approximately inner half flip
property of ZR established in Proposition 4.2. �

6. ZR-stability

The following two results give simple examples of ZR-stability. The proof
of the first result is a minor variant of [32, Thm. 2.3].

Theorem 6.1. Let A be the closure of an increasing sequence An of finite-

dimensional real C∗-algebras. Let A be unital, simple and infinite-dimensional.

Then A is isomorphic to A⊗ ZR.

Proof. Write ZR as the closure of an increasing sequence Bi of prime real
dimension drop algebras Bi ∼= IR(pi, piqi, qi) and, as in the proof of Lemma 3.1
note that there is a unital *-homomorphism from Bi to Mk(R) for each k >
piqi. From [7, Cor. III.4.3] it follows, by omitting terms of the sequence, that,
for each n, each simple summand of An embeds with multiplicity at least
piqi + 1 into An+1 and hence that there is a unital subalgebra of An+1 ∩ A

′
n

isomorphic to Mk1(R) ⊕ · · · ⊕Mkt(R) where kj ≥ piqi for each j. Thus there
is a unital homomorphism ψi,n from Bi into An+1 ∩ A

′
n.

Let γ : Bi → ℓ∞(A)/c0(A) be defined by γ(f) = (ψi,n(f))n∈N+c0(A). Then
γ(Bi) commutes with A, so γ is a *-homomorphism from Bi to A∞. By the
real version of [32, Prop. 2.2] there exists a *-homomorphism from ZR into A∞

and by Proposition 4.2, the maps ψ1 and ψ2 from ZR to ZR ⊗ZR defined by
ψ1(a) = a⊗ 1 and ψ2(a) = 1 ⊗ a are approximately unitarily equivalent. The
real version of [20, Thm. 7.2.2] therefore applies to show that A is isomorphic
to A⊗ZR. �

As in the complex case, the following result follows immediately from the
appropriate classification theorem.

Theorem 6.2. Let A be a unital separable nuclear purely infinite real C∗-

algebra with simple complexification and which satisfies the universal coefficient

theorem. Then A is isomorphic to A⊗ZR.

Proof. KCRT (ZR) is a free CRT -module with generator [1] in the real part
and therefore, by [3, Prop. 3.5, 4.4],

KCRT (A⊗ZR) ∼= KCRT (A)⊗CRT K
CRT (ZR) ∼= KCRT (A),

where the isomorphism takes [1A⊗ZR
] ∈ K0(A ⊗ ZR) to [1A] ∈ K0(A). The

result follows by [5, Thm. 10.2 (2)]. �
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7. The Cuntz semigroup of ZR

As for the complex case, described in [21], the Cuntz semigroup W (A) of a
real C∗-algebra A is defined as follows. LetM∞(A)+ denote the disjoint union
⋃∞

n=1Mn(A)
+. For a ∈ Mn(A)

+ and b ∈ Mm(A)
+ set a ⊕ b = diag(a, b) ∈

Mn+m(A)+ and write a - b if there is a sequence {xk} in Mm,n(A) such that
x∗kbxk → a. Write a ∼ b if a - b and b - a and let W (A) = M∞(A)+/ ∼.
Then W (A) is a partially ordered abelian semigroup when equipped with the
relations 〈a〉 + 〈b〉 = 〈a ⊕ b〉 and 〈a〉 ≤ 〈b〉 ⇔ a - b, where 〈a〉, 〈b〉 are the
equivalence classes containing a, b ∈ M∞(A)+. As in the complex case the
set V (A) of Murray–von Neumann equivalence classes [p] of projections p in
M∞(A) is an abelian semigroup under the operation [p] + [q] = [p ⊕ q] and
[p] 7→ 〈p〉 is a semigroup homomorphism ϕ from V (A) toW (A). The arguments
in [19, Prop. 2.1] and [2, Lem. 2.20] apply also to the real case so ϕ is an
injection when A is stably finite, in which case ϕ(V (A)) will be identified with
V (A). The remaining elements of W (A) will be denoted by W (A)+.

In [21], it is shown that for any Z-stable C∗-algebra A, its Cuntz semigroup
W (A) is almost unperforated, i.e. whenever n〈a〉 ≤ m〈b〉 with n > m then
〈a〉 ≤ 〈b〉. The proof relies on the construction, for each n ∈ N, of a positive
element en of Z with n〈en〉 ≤ 〈1〉 ≤ (n + 1)〈en〉 but the proof of this result
relies on the connectedness of a unitary group and cannot be applied to the
real case. Instead the corresponding result for ZR will be deduced from known
results about W (Z) and the following general facts about Cuntz semigroups
of real and complex C∗-algebras.

If AC = A ⊗ C is the complexification of A and α : a + ib 7→ a − ib is the
involutory automorphism of AC associated with A, let c :W (A) →W (AC) be
the map arising from the embedding of A in AC, let r : W (AC) → W (A) be
the map arising from the embedding

a+ ib 7→

(

a b
−b a

)

of AC in M2(A) and let α : W (AC) → W (AC) arise from α : AC → AC. Then
r and c are semigroup homomorphisms with r ◦ c = 2 id and, using the identity

1

2

(

1 −i
−i 1

)(

a b
−b a

)(

1 i
i 1

)

=

(

a+ ib 0
0 a− ib

)

,

with c ◦ r = id+α.
The proof of the real analog of [21, Lem. 4.2] also uses the strict compar-

ison property of Z. To formulate this and the corresponding notion for real
C∗-algebras, recall that a dimension function on a C∗-algebra A is an addi-
tive order-preserving function d : W (A) → [0,∞] with d(〈1〉) = 1 when A is
unital. The set of dimension functions is denoted by DF(A). The same def-
inition can be used when A is a real C∗-algebra and there are natural maps
c∗ : d 7→ d ◦ c from DF(AC) to DF(A) and r∗ : d 7→ 1

2d ◦ r from DF(A) to

DF(AC), with c∗r∗ = id and r∗c∗(d) =
1
2 (d + d ◦ α). The image r∗d satisfies

(r∗d) ◦ α = r∗d and r∗ gives a bijection between DF(A) and DFα(A
C), the set
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of α-invariant dimension functions on AC. The set LDF(AC) of lower semi-
continuous dimension functions on AC consists of the elements d of DF(AC)
satisfying d(〈x〉) ≤ lim infn d(〈xn〉) whenever xn → x in norm. If LDF(A) is
defined in the same way for a real C∗-algebra A then

r∗(LDF(A)) ⊆ LDF(AC), c∗(LDF(AC)) = LDF(A),

and r∗ gives a bijection between

LDF(A) and LDFα(A
C) = LDF(AC) ∩DFα(A

C).

As in the complex case, a real C∗-algebra is said to have strict comparison if,
for all 〈x〉, 〈y〉 ∈ W (A), 〈x〉 ≤ 〈y〉 whenever d(〈x〉) < d(〈y〉) for all d ∈ LDF(A).

The following real analog of [21, Lem. 4.2] can now be established.

Lemma 7.1. For all natural numbers n there exists a positive element en in

ZR such that n〈en〉 ≤ 〈1〉 ≤ (n+ 1)〈en〉.

Proof. For 0 < λ ≤ 1 and 0 ≤ t ≤ 1 let gλ(t) = max((t + λ − 1)/λ, 0)
and let h(t) = 1 − t. Let τ be the unique trace on ZR and let τ0 be the
normalized trace on I = IR[2n, 2n, 1] arising from Lebesgue measure on [0, 1],
so τ0(g1/(2n+1)1) = 1/(4n + 2). By Theorem 3.2 there is a unital embedding
ψ : IR[2n, 2n, 1] → ZR with

∣

∣

∣(τ ◦ ψ)(g1/(2n+1)1)−
1

4n+ 2

∣

∣

∣ <
1

(4n+ 1)(4n+ 2)

and therefore (τ ◦ ψ)(g1/(2n+1)1) < 1/(4n + 1). Let en = ψ(he11 + he22), so
n〈en〉 = 〈ψ(h1)〉 ≤ 〈1〉.

The trace τ ◦ψ on IR[2n, 2n, 1] defines a probability measure µ on [0, 1] with
τ ◦ψ(f1) =

∫

[0,1]
f dµ for all f ∈ C([0, 1],R) and with the corresponding lower

semi-continuous dimension function dτ◦ψ satisfying

dτ◦ψ(f1) = µ({x | f(x) 6= 0})

for each f ∈ C([0, 1],R).
Suppose firstly that µ({1}) = 0. Then µ([1 − λ, 1]) → 0 as λ → 0, so there

exists λ > 0 with

dτ◦ψ(gλ1) <
1

2n
dτ◦ψ(h1) = dτ◦ψ(he11).

Next let µ = kδ1 + (1 − k)µ′ where µ′({1}) = 0 and k > 0. Then, for each
λ ≤ 1/(2n+ 1),

k ≤ (τ ◦ ψ)(gλ1) ≤ (τ ◦ ψ)(g1/(2n+1)1) <
1

4n+ 1

and so

2k <
1− k

2n
.

Since µ′([1−λ, 1)) → 0 as λ→ 0, there exists λ with (1−k)µ′([1−λ, 1)) < k.
It follows that

dτ◦ψ(gλ1) < 2k <
1− k

2n
= dτ◦ψ(he11).
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In both cases for k, using strict comparison in Z, c〈ψ(gλ1)〉 ≤ c〈ψ(he11)〉 and
then

2〈ψ(gλ1)〉 = rc〈ψ(gλ1)〉 ≤ rc〈ψ(he11)〉 = 2〈ψ(he11)〉 = 〈en〉.

Therefore

(n+ 1)〈en〉 = 〈ψ(h1)〉+ 〈en〉

≥ 〈ψ(h1)〉+ 2〈ψ(gλ1)〉

≥ 〈ψ(h1)〉+ 〈ψ(gλ1)〉

≥ 〈ψ(h1 + gλ1)〉

= 〈1〉,

where the last equality follows from the fact that h + gλ is invertible, so
〈(h+ gλ)1〉 = 〈1〉. �

The following real analog of [21, Thm. 4.5] now follows with the same proof.

Proposition 7.2. Let A be a ZR-absorbing real C∗-algebra. Then W (A) is

almost unperforated.

As with [21, Cor. 4.6], the proof of [19, Thm. 5.2] can also be applied in the
real case to give the following result.

Proposition 7.3. Let A be a simple unital ZR-absorbing real C∗-algebra.

Then A has strict comparison.

In [18, Thm. 3.1], it is shown thatW (Z) is the disjoint union of V (Z) ∼= Z+

and W (Z)+ ∼= R++ with 〈In〉 corresponding to n ∈ Z+, 〈zλ〉 to λ ∈ (0, 1] and
〈In〉 + 〈zλ〉 to n + λ ∈ (n, n + 1], whenever zλ ∈ Z satisfies dτ (zλ) = λ and
z1 ≁ 1. The arguments used in [18] can now be used to establish the structure
of W (ZR).

Proposition 7.4. Let A = ZR. The map c : W (A) → W (Z) is an isomor-

phism, so W (A) ∼= Z+ ⊔ R++.

Proof. From K0(A) ∼= Z with generator [1] it follows that V (A) ∼= Z+ with
generator 〈1〉, so c restricts to an isomorphism from V (A) onto V (Z). The
only involutory automorphism of W (Z) ∼= Z+ ⊔ R+ is the identity, so

c ◦ r = 2 id :W (Z) →W (Z),

from which it follows that cW (A)+ ⊇ 2W (Z)+ = W (Z)+. To show that
cW (A)+ ⊆ W (Z)+, suppose that 〈a〉 ∈ W (A) with c〈a〉 ∈ V (Z). By [18,
Prop. 2.8], 0 is an isolated point of σ(a) or 0 /∈ σ(a), from which it follows using
the functional calculus that 〈a〉 ∈ V (A), as required. It therefore remains to
show that c :W (A)+ →W (Z) is injective.

Let 〈a〉, 〈b〉 ∈W (A)+, with c〈a〉 = c〈b〉 and chose n so that a, b are positive
elements ofMn(A) with 0 ∈ σ(a)∩σ(b). Then 0 is not an isolated point in σ(a)
because otherwise, using the functional calculus, 〈a〉 = 〈p〉 for a projection p.
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So let εn ∈ σ(a)\{0} converge to 0. Let dC be the unique lower semi-continuous
dimension function on Z so that d = c∗d

C is the unique lower semi-continuous
dimension function on A. By [18, Lem. 2.4],

d(〈(a− εn)+〉) = dC(c〈(a− εn)+〉) < dC(c〈a〉) = dC(c〈b〉) = d(〈b〉).

Using Proposition 7.3 it follows that 〈(a−εn)+〉 ≤ 〈b〉 for each n and hence that
〈a〉 ≤ 〈b〉. Repeating the argument with a and b interchanged gives 〈b〉 ≤ 〈a〉
and hence 〈a〉 = 〈b〉, showing that c is injective. �

8. Strict comparison and ZR-stability

In Proposition 7.3 above, it was shown that a simple unital ZR-absorbing
real C∗-algebra has strict comparison. In this section we obtain a real counter-
part to the partial converse from [16] and [26]. We use T (A) for the set of
real traces on a real C∗-algebra and note that the restriction of a trace on AC

need not restrict to a real trace on A because the restriction may not be real-
valued. However, if Φ : a+ ib → a∗ + ib∗ is the involutory antiautomorphism
of AC associated with A, for which A = {x ∈ AC | Φ(x) = x∗}, then Φ-
invariant traces on AC do restrict to real-valued traces and the restriction is a
bijection from the set TΦ(A

C) of Φ-invariant traces onto T (A). The involutory
antiautomorphism Φ gives rise to an affine homeomorphism Φ∗ of T (AC) with
Φ∗(τ) = τ ◦ Φ, which maps ∂eT (A

C) onto itself.
The first step is to obtain a real analog of [16, Prop. 2.2]. This relates to

the property of excision in small central sequences which can be defined for
real algebras in exactly the same way as in [16, Def. 2.1], as follows.

Definition 8.1. Let A be a separable real C∗-algebra with nonempty real
tracial state space T (A). A completely positive map ϕ : A→ A can be excised
in small central sequences when, for any central sequences (en)n and (fn)n of
positive contractions in A satisfying

lim
n→∞

max
τ∈T (A)

τ(en) = 0, lim
m→∞

lim inf
n→∞

min
τ∈T (A)

τ(fmn ) > 0,

there exist sn ∈ A, n ∈ N such that, for any a ∈ A,

lim
n→∞

‖s∗nasn − ϕ(a)en‖ = 0 and lim
n→∞

‖fnsn − sn‖ = 0.

In the following proposition a pure state ω of A is said to be of real type if
it satisfies the equivalent conditions of [4, Thm. 4], for example πω(A)

′ = R1,
where πω is the GNS representation associated with ω. Another equivalent
condition from that theorem is that the canonical Φ-invariant extension ωC

of ω to the complexification AC is pure, where Φ : a + ib → a∗ + ib∗ is the
involutory antiautomorphism of AC associated with A. It is shown in [11,
Cor. 3.6] that when AC is non-type I, separable, simple and unital then it has
a Φ-invariant pure state; this will restrict to a pure state of A of real type.
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Proposition 8.2. Let A be a unital separable simple infinite-dimensional C∗-

algebra with a nonempty real tracial state space T (A) and with AC also simple.

Let ω be a pure state of A of real type and let ci, di ∈ A for 1 ≤ i ≤ N . If A
has strict comparison then the completely positive map ϕ : A→ A defined by

ϕ(a) =

N
∑

i,j=1

ω(d∗i adj)c
∗
i cj

can be excised in small central sequences.

Proof. The proof is a direct adaptation of that in [16]. When [16, Lem. 2.3] is
applied to AC, starting with a central sequence (fn)n of positive contractions

with Φ(fn) = fn, the constructed elements f̃n belong to A. Furthermore, for
each τ ∈ T (AC), τ and 1

2 (τ + τ ◦ Φ) agree on selfadjoint elements of A so
that, in the conclusion of the lemma, the minimum over T (A) is equal to the
minimum over T (AC). Lemma 2.4 of [16] applies directly to AC as does the
proof of [16, Lem. 2.5], noting that the nonzero positive contraction a0 can be
chosen to belong to A and that the strict comparison property of A leads to
qn ∈ A. The proof of [16, Prop. 2.2] can now be followed because ω has been
chosen to be a pure state of real type and so, by [4, Thm. 4], kerω = L+ L∗,
as required for the proof of [1, Prop. 2.2] to apply in the real case. �

As in [26], for a trace τ on a separable simple real C∗-algebra A and a ∈ A,
let

‖a‖τ = τ(a∗a)1/2, ‖a‖2 = sup
τ∈T (A)

‖a‖τ ,

c0 =
{

(an)n ∈ l∞(N, A) | lim
n→∞

‖an‖ = 0
}

,

ct0 =
{

(an)n ∈ l∞(N, A) | lim
n→∞

‖an‖2 = 0
}

,

A∞ = l∞(N, A)/c0, A∞
t = l∞(N, A)/ct0,

A∞ = A∞ ∩ A′, At∞ = A∞
t ∩A′.

The following few results are adapted directly from [26]. The first uses the
notion of a completely positive map of order zero from a finite-dimensional real
C∗-algebra. The definition in the complex case, from [33], is that ϕ(e) ⊥ ϕ(f)
for each pair e, f of mutually orthogonal projections. Applying this definition
directly in the real case results in the completely positive map ϕ : H → R with
ϕ(a+bi+cj+dk) = a being of order 0, although it does not satisfy the structure
properties in [33, Prop. 3.2] and [34, Prop. 1.2.1] and its complexification
ϕC = trace : M2(C) → C is not of order 0. We therefore choose to define
a completely positive map ϕ : F → A between real C∗-algebras to be of order
zero if its complexification ϕC is of order zero. When F is complex, this agrees
with the usual definition.

Lemma 8.3. Let A be a real C∗-algebra for which AC is unital, separable,

simple and infinite-dimensional and for which ∂e(T (A
C)) is compact.
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(i) For any central sequence (fn)n ∈ A∞ and a ∈ A,

lim
n→∞

max
τ∈∂eT (AC)

|τ(fna)− τ(fn)τ(a)| = 0.

(ii) Moreover, if A is nuclear, for mutually orthogonal positive functions fi ∈
C(∂e(T (A

C))) with fi = fi◦Φ
∗ for 1 ≤ i ≤ N there exist central sequences

(ai,n)n of positive elements of A, for 1 ≤ i ≤ N , such that, for 1 ≤ i ≤ N ,

lim
n→∞

max
τ∈∂eT (AC)

|τ(ai,n)− fi(τ)| = 0

and

lim
n→∞

‖ai,naj,n‖ = 0 for i 6= j.

Proof. The only change required in the proof of [26, Lem. 4.2] is to ensure
that Φ(ai,n) = ai,n, which follows from Φ(bi,n) = bi,n. In [26, Prop. 4.1], if
f = f◦Φ∗ then, replacing an by 1

2 (an+Φ(an)), we can arrange that Φ(an) = an.
Therefore, returning to the proof of [26, Lem. 4.2], Φ(b′i,n) = b′i,n. The required

result Φ(bi,n) = bi,n now follows by noting that when Φ(a) = a in [26, Cor. 3.3],
then an can be replaced by 1

2 (an +Φ(an)). �

Lemma 8.4. Let A be a real C∗-algebra for which AC is unital, separable,

simple, infinite-dimensional and nuclear, let τ ∈ ∂e(T (A
C)), let ε > 0 and let

F be a finite set of contractions in AC. Then, for any odd k ∈ N, there exists

a completely positive map ϕτ :Mk(C) → AC, mapping Mk(R) to A such that

‖ϕτ (x)ϕτ (y)‖ < ε‖x‖ ‖y‖ for any x, y ∈Mk(C)
+ with xy = 0,

‖[ϕτ (x), a]‖ < ε‖x‖ for all x ∈Mk(C) and a ∈ F,

‖1− ϕτ (1k)‖τ ≤ τ(1 − ϕτ (1k))
2 < ε.

Proof. As in the proof of [16, Lem. 3.3], let π be the GNS representation of
AC associated with σ = 1

2 (τ + τ ◦ Φ) and note that Φ and τ extend to the

weak closure π(AC)′′ of π(AC). When τ = τ ◦ Φ then π(AC)′′ is isomorphic
to the unique hyperfinite II1-factor N and when τ 6= τ ◦ Φ then π(AC)′′ is
isomorphic to the direct sum of two copies of N . The real form π(A)′′ of
π(AC)′′ associated with Φ is isomorphic to the unique real hyperfinite II1-
factor R, from [27] and [8], in the first case and to N in the second. Thus in
both cases π(A)′′ ⊗R R ∼= π(A)′′, so that, for each k ∈ N, π(A)′′ contains a
sequence of matrix units Ei,j,n for Mk(R) such that

lim
n→∞

‖[Ei,j,n, x]‖σ = 0

for any x ∈ π(A)′′. Since E1,1,n = Φ(E1,1,n), the central sequence (en)n of
positive contractions in π(AC) obtained from [25, Lem. 2.1] can be replaced by
(12 (en +Φ(en))n and thus can be taken to belong to π(A).

As in [16] let

Un =
k

∑

i=1

Ei,i+1,n
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and, as in [25, Lem. 2.1], let Hn = 1
iπ log(Un), where the standard branch

of log is taken. When k = 2r + 1 is odd, from Φ(Un) = U∗
n, the spectral

decomposition of Un has the form

Un =

2r+1
∑

j=1

λjPj =

2r+1
∑

j=1

λjΦ(Pj),

where λj are the (2r + 1)st roots of unity and then

Hn =
1

iπ
log(Un) =

r
∑

j=1

2j

2r + 1
(Pj − Φ(Pj))

so that Hn = −Φ(Hn). It follows that the central sequence (hn)n of posi-
tive contractions in π(AC) obtained from [25, Lem. 2.1] can be replaced by
(12 (hn − Φ(hn)))n and thus satisfy hn = −Φ(hn). The corresponding uni-

tary un = eiπhn then satisfies Φ(un) = u∗n and so belongs to π(A). The
elements Ad ujn(en)en of π(AC) thus belong to π(A), as do the modifications
made in [16, Lem. 3.2], and so the completely positive contractive order zero
map ψ : Mk(C) → AC

∞ from [16] maps Mk(R) to A∞. The argument in the
proof of [26, Prop. 5.1], together with the final calculation in the proof of
[16, Lem. 3.3] now gives the required result. �

Proposition 8.5. Let A be a real C∗-algebra for which AC is unital, separable,

simple, infinite-dimensional and nuclear. Suppose that ∂e(T (A
C)) is compact

and d = dim(∂e(T (A
C))) <∞. Then, for any odd k ∈ N there exist order zero

completely positive maps ϕl :Mk(R) → At∞ for 0 ≤ l ≤ d such that

d
∑

l=0

ϕl(1k) = 1

and

[ϕl(a), ϕm(b)] = 0 for all l 6= m, and a, b ∈Mk(R).

Proof. It needs to be shown that the maps ϕl constructed in [26, Prop. 5.1] can
be chosen to restrict to maps from Mk(R) into At∞. This will entail showing
that the elements ai,n,m of AC can be chosen to belong to A and that the maps
ϕτi can be chosen to map Mk(R) into A. This will be achieved by varying the
argument from [26] to apply to the quotient [∂eT (A

C)] of ∂eT (A
C) under the

action τ 7→ Φ∗τ = τ ◦ Φ; since the inverse image of each point in [∂eT (A
C)]

under the quotient map q has either one or two elements, it follows from
[17, Prop. 9.2.16] that dim([∂eT (A

C)]) = dim(∂eT (A
C)).

For a Φ∗-invariant subset B0 of dimension less than c modify the inductive
assumption of [26] to assume that the maps ψl,n restrict to maps from Mk(R)
into A. To carry out the inductive step, take a Φ∗-invariant closed subset B
of dimension c and proceed as in [26]. The existence of appropriate maps ϕτ
follows from Lemma 8.4. Now apply the argument of [26] to the quotient space
to obtain a partition of unity {f0,n} ∪ {fi,n}

N
i=1 ⊂ C([∂e(T (A

C))]) such that
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supp(f0,n) ⊂ [W0,n] and supp(fi,n) ⊂ [Wi]. Applying Lemma 8.3 to the maps
fi,n ◦ q ∈ C(∂eT (A

C)) gives ai,n,m ∈ A, as required. �

The real counterpart of the main theorem of [26] can now be established.

Theorem 8.6. Let A be a real C∗-algebra for which AC is unital, separable,

simple, infinite-dimensional and nuclear and for which the extreme boundary of

the nonempty trace space T (AC) is a compact finite-dimensional space. Then,

for any odd k ∈ N, there exists a unital embedding of Mk(R) into At∞.

Proof. The isomorphism in [26, Lem. 2.1 (i)] from Ĩ(AC
0 , A

C
1 ) to I(A

C
0 , A

C
1 ) re-

stricts to an isomorphism from Ĩ(A0, A1) to I(A0, A1). Then, replacing u by
−u if necessary, when k is odd the proof of [26, Lem. 2.1 (ii)] shows that if A0

and A1 both contain Mk(R) unitally, then so does I(A0, A1). If Ud,k is the
universal real C∗-algebra generated by the relations of [26, Cor. 2.3], then the

isomorphism of that corollary from UC

d,k to Ĩ(UC

d−1,k,Mk(C)) restricts to an
isomorphism from Ud,k to Ĩ(Ud−1,k,Mk(R)). Then, defining ∆d,k inductively
by ∆0,k =Mk(R) and ∆d,k = I(∆d−1,k,Mk(R)), the isomorphism of [26] from
∆C

d,k to UC

d,k restricts to an isomorphism from ∆d,k to Ud,k. Thus, as in [26],

Ud,k contains Mk(R) unitally and the result follows from Proposition 8.5. �

Corollary 8.7. Let A be a real C∗-algebra for which AC is unital, separable,

simple, infinite-dimensional and nuclear and for which the extreme boundary

of the nonempty trace space T (AC) is a compact finite-dimensional space.

(i) For any odd k ∈ N, there exists a completely positive contractive order

zero map ψ :Mk(R) → A∞ such that

lim
n→∞

max
τ∈T (AC)

∣

∣

∣
τ(cmn )−

1

k

∣

∣

∣
= 0

for anym ∈ N, where [(cn)n] = ψ(e) for e a minimal projection inMk(R).
(ii) For any central sequence (fn)n of positive contractions in A and any odd

k ∈ N there exist central sequences (fi,n)n, for 1 ≤ i ≤ k, of positive

contractions in A such that (fnfi,n)n = (fi,n)n, (fi,nfj,n)n = 0 for i 6= j
and

lim
m→∞

lim inf
n→∞

min
τ∈T (AC)

τ(fmi,n) = lim
m→∞

lim inf
n→∞

min
τ∈T (AC)

τ(fmn )

k
.

Proof. (i) As in [34, Prop. 1.2,4] or [30, Lem. 2.1], lift the unital embedding ϕ
of Mk(R) into At∞ given by Theorem 8.6 to a completely positive order zero
map ψ fromMk(R) to A∞. As in the proof of [30, Lem. 2.5], if (ψn)n is a lifting
of ψ to a sequence of completely positive order zero maps from Mk(R) to A,
then for each τ ∈ T (AC), τ ◦ψmn is a trace onMk(R), so τ(c

m
n ) = τ(ψmn (1k))/k,

from which the result follows.
(ii) Let ψ be the map of (i), let Ei,j be the standard matrix units forMk(R)

and let ψ(Ei,i) = (ei,n)n for 1 ≤ i ≤ k. In [16, Lem. 3.4], fi,n is defined to be
f lnei,Nf

l
n for some sufficiently large N , so fi,n ∈ A. �
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Lemma 8.8. Let A be a real C∗-algebra for which AC is unital, separable,

simple, infinite-dimensional and nuclear and let ω be a Φ-invariant pure state

of AC . Then any completely positive map from A to A can be approximated in

the pointwise norm topology by completely positive maps ϕ of the form

ϕ(a) =

N
∑

i,j=1

ω(d∗i adj)c
∗
i cj,

where ci, di ∈ A for 1 ≤ i ≤ N , where N is odd.

Proof. As in the proof of [16, Lem. 3.1], note that, by nuclearity of A, the
given map can be approximated by completely positive maps of the form σ ◦ ρ
where ρ : A → MN(R) and σ : MN (R) → A are completely positive maps,
where ρ can be taken to be unital. If N is even, replace ρ by γ ◦ ρ and σ by
σ ◦ θ where γ : MN(R) → MN+1(R) and θ : MN+1(R) → MN(R) are defined
by

γ(A) =

(

ANN 0
0 A

)

and θ

(

A B
C D

)

= D,

so that γ is unital and θ ◦ γ = id. Let (π,H, ξ) be the GNS representation
of A on the real Hilbert space H. The proofs given in [7, Lem. II.5.1, II.5.2]
of a result of Voiculescu apply also to real C∗-algebras, yielding a sequence
Vn : RN → H of isometries with limn→∞‖ρ(a)−V ∗

n π(a)Vn‖ = 0 for any a ∈ A.
The state ω has been chosen so that Kadison’s transitivity theorem applies
to π, using the results from [4], so the proof of [16, Lem. 3.1] gives the required
result. �

The next step is to consider the real version of the property (SI) used in
[16].

Definition 8.9. A separable real C∗-algebra A with T (A) 6= ∅ has the prop-
erty (SI) when, for any central sequences (en)n and (fn)n of positive contrac-
tions in A satisfying

lim
n→∞

max
τ∈T (A)

τ(en) = 0, lim
m→∞

lim inf
n→∞

min
τ∈T (A)

τ(fmn ) > 0,

there exists a central sequence (sn)n in A such that

lim
n→∞

‖s∗nsn − en‖ = 0 and lim
n→∞

‖fnsn − sn‖ = 0.

Proposition 8.10. Let A be a real C∗-algebra for which AC is unital, separa-

ble, simple, infinite-dimensional and nuclear and for which the extreme bound-

ary of the nonempty trace space T (AC) is a compact finite-dimensional space.

If A has strict comparison then it has the property (SI).

Proof. As in the proof of [16, Thm. 1.1 (ii) ⇒ (iii)], using Lemma 8.8, Corol-
lary 8.7 (ii) and Proposition 8.2 instead of [16, Lem. 3.1], [16, Lem. 3.4] and
[16, Prop. 2.2], the identity map from A to A can be excised in small central
sequences. The proof of [16, Thm. 1.1 (iii) ⇒ (iv)] completes the proof. �
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To obtain the converse of Proposition 7.3 the following lemma is required.

Lemma 8.11. (i) If k 6≡ 2 (mod 4), then IR[k, k(k+1), k+1] is isomorphic

to the universal real C∗-algebra generated by elements cj for 1 ≤ j ≤ k
and s, subject to the relations c1 ≥ 0, cic

∗
j = δi,jc

2
1, c1s = s and

s∗s+

k
∑

j=1

c∗jcj = 1.

(ii) ZR is an inductive limit of algebras IR[kn, kn(kn+1), kn+1] where kn =
33

n

, for which kn + 1 6≡ 2 (mod 4).

Proof. (i) The proof follows that in [24, §2]. The selfadjoint unitary u1 de-
fined at the bottom of [24, p. 455] (also used, but called T , in the proof of
Proposition 4.2) has trace k and therefore determinant (−1)k(k−1)/2. Thus
det(u1) = 1 when k ≡ 0, 1 (mod 4). When k ≡ 3 (mod 4), u1 can be replaced
by −u1, so in all these cases u1 can be connected to 1 by a unitary path in
Mk(R)⊗Mk(R). The elements cj , s of I[k, k(k + 1), k + 1] defined in [24] be-
long to IR[k, k(k + 1), k + 1] and therefore the isomorphism of [24, Prop. 2.1]
maps the universal real C∗-algebra with the given generators and relations
onto IR[k, k(k + 1), k + 1].

(ii) If pn = 33
n

and qn = 33
n

+ 1 then pn+1 = k0pn and qn+1 = k1qn where
k0 = 32.3

n

and k1 = (1 + 32.3
n

− 33
n

) satisfy k0 > 2qn and k1 > 2pn. The real
version of the construction in [13, Prop. 2.5] can therefore be applied. From
the factorization 3k − 1 = 2(1 + 3 + · · ·+ 3k−1) it follows that when k is odd
then 3k − 1 ≡ 2 (mod 4) and thus qn ≡ 0 (mod 4). The limited uniqueness
result, Theorem 4.3, shows that the limit is isomorphic to ZR. �

The required partial converse to Proposition 7.3 can now be obtained.

Theorem 8.12. Let A be a real C∗-algebra for which AC is unital, separable,

simple, infinite-dimensional and nuclear and for which the extreme boundary

of the nonempty trace space T (AC) is a compact finite-dimensional space. If

A has strict comparison, then A ∼= A⊗ZR.

Proof. By Proposition 8.10, A has property (SI). The previous lemma then
ensures that the proof of [16, Thm. 1.1 (iv) ⇒ (i)] applies directly, replacing
[16, Lem. 3.3] by Theorem 8.6 and Corollary 8.7 above. �
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