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Zusammenfassung

In dieser Arbeit werden z-Isokristalle mit Hodge-Pink Gittern untersucht. Diese treten beim
Studium von Anderson t-Motiven und lokalen Shtuka als kristalline Realisierungen auf und
erfiillen in diesem Fall die numerische Bedingung der schwachen Zuldssigkeit.

Um bei fixiertem Isokristall einen Modulraum fiir variierende Hodge-Pink Gitter zu kon-
struieren, werden Familien von Hodge-Pink Gittern definiert und eine Beschranktheitsbe-
dingung fiir diese eingefiihrt. Dieser Modulraum, dessen Konstruktion als Untervarietét
einer Grakmannschen beschrieben wird, parametrisiert Hodge-Pink Gitter, die kleiner oder
gleich einem vorgegeben Hodge-Pink Gewicht sind. Auf diesem Modulraum der beschriank-
ten Hodge-Pink Gitter operiert eine algebraische Gruppe, die durch Anwenden eines Funk-
tors aus der algebraischen Gruppe der Automorphismen des Isokristalls entsteht.

Um einen Zusammenhang zur geometrischen Invariantentheorie herzustellen, der im ana-
logen Fall von Hodge-Filtrierungen existiert, wird ein linearisiertes Geradenbiindel auf dem
Modulraum der beschriankten Hodge-Pink Gitter definiert. Dieses Geradenbiindel erhilt
man durch Zuriickziehen des Biindels /(1) unter einer Einbettung der Grakmannschen in
einen projektiven Raum PV ~!. Es werden zwei verschiedene Méglichkeiten dieser Einbettung
prasentiert und es wird analysiert, inwiefern sich diese beiden Linearisierungen des Geraden-
biindels unterscheiden. Der Zusammenhang zur geometrischen Invariantentheorie besteht
darin, dass ein Hodge-Pink Gitter iiber einem Korper genau dann schwach zuldssig ist,
wenn der zugehorige Punkt im Modulraum das Hilbert-Mumford-Kriterium fiir Semistabili-
tét beziiglich dieses linearisierten Geradenbiindels und gewisser 1-Parameter-Untergruppen
erfiillt. Diese 1-Parameter-Untergruppen entstehen aus den 1-Paramter-Untergruppen der
algebraischen Gruppe der Automorphismen des zugrunde liegenden Isokristalls.

Zuletzt wird das funktorielle Verhalten der Modulrdume, Einbettungen und linearisierten
Geradenbiindel untersucht, das auftritt, wenn man zwei verschiedene Hodge-Pink Gewichte

betrachtet, von denen eins kleiner als das andere ist.
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Terminology

Let ¢: A — B be a morphism of rings and let M (resp. N) be an A-modules (resp. a
B-module). If we consider N via ¢ as an A-module we denote it by Nj4. Furthermore
M ® 4 B considered as a B-module is denoted by Mp.

By GL4(M) we mean the group of invertible endomorphisms of M. They are the A-
valued points of the corresponding algebraic group GL(M). Thus in our notation we have
GL(M)(B) = GLg(Mp).

Let S be a scheme. Furthermore let X be a scheme over S and let .#Z be an O'x-module.
If f: T — S is a morphism of schemes we denote the base change X x¢ T by Xt and by
A1 we mean the Ox,.-module that is induced by .# .
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Introduction

Let O be a complete discrete valuation ring with perfect residue field s of characteristic
p > 0 such that the fraction field L of &, is of characteristic 0. The ring of p-typical Witt
vectors of k is denoted by W(k) and L is a totally ramified extension of Ly = W(/@)[%]
On W(k) we have the Frobenius lift ¢ of the morphism x — k, = — 2P. We consider
a smooth proper scheme X over ¢, and denote X ® x by X. Associated to X we have
different cohomology groups. For example the étale cohomology Hi (X x4, SpecL®s Z,)
which is a Z,-module, the crystalline cohomology H!; (X/ W (k)) which is a W(x)-module

and the de Rham cohomology Hiz(X/&1,) which is a module over €. These are related

via comparison-isomorphisms
Hir(X/0L) @, L = Heyo(X/ W(k)) @wie Ly

HL (X x g, Spec L2, Z,,) ®7, Beris — HLi (X/ W(k)) @w(s) Beriss

H;lét(X X@’L Spec Lalg7 Zp) ®Zp BdR :> H1dR<X/ﬁL> ®@>L BdR'

Beside being modules, the cohomology groups carry more structure. First note that
H (X/Lo) = Hi(X/ W(k)) ®w(s) Lo is what is called an F-isocrystal, i.e. a finite di-
mensional Lg-vector space together with a o-linear automorphism, and Hiy (X/01) ®4, L
provides a filtration on H. (X/Lg). Such objects are called filtered isocrystals. For the
other two comparison isomorphisms we need the rings B and Bgr which were con-
structed by Fontaine [Fon2|. Actually he associated with a p-adic Galois representa-
tion V such as Hi (X xg L¥, Q,) = HL(X xg, LY, Z,) ®z, Q, a filtered isocrystal
Deis(V) = (V ®q, Beris)“% and calls V crystalline if dimy, Deys(V) = dimg, (V). Here
a p-adic Galois representation is a finite dimensional Q,-vector space together with a
continuous group homomorphism G = Gal(L¥8/L) — Autg, (V). The ring By is
an Lg-algebra provided with additional structure such as a Frobenius-morphism and an
action of the Galois group Gp. It is a subring of Bggr which has a natural filtration
and we have (Buis)“% = Lo and (Bqr)“t = L. Thus Dy (V) is an F-isocrystal and
Deis(V) ®r, L = (V ®q, Bar)“* = Dgr(V) is provided with a filtration. If moreover
V' is crystalline we have a comparison isomorphism V ®q, Beis = Deis(V) @1, Beis-
Fontaine conjectured |[Fonl| and Faltings [Fal| proved that Hi (X x4 L8 Q,) is crystalline

and Deis(HL (X x4, L8 Q,)) = H.,.(X/Ly) thus obtaining the comparison isomorphism
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Introduction

~

HL (X x4, SpecL¥¢,Z,) @7, Bens — Hi(X/ W(k)) ®w(s) Beis- In view of the various
cohomology modules of X and their comparison isomorphisms Grothendieck had the idea
of a universal cohomology theory which he called “motives”. The above cohomology theories
then are called the realizations of the motive associated to X. Unfortunately, so far this
category of motives could not be constructed. The filtered isocrystals coming from crys-
talline Galois representations are called admissible. Filtered isocrystals satisfying a certain
numerical criterion are called weakly admissible. It is easy to see that every admissible
filtered isocrystal is also weakly admissible. The criterion is also sufficient which was shown
by Colmez and Fontaine [CF|.

We will work in the analogous case of function fields. Note that there are no varieties
like X that yield cohomology theories. On the other hand in the function field setup we
have a category playing the role of Grothendieck’s motives. These are called Anderson A-
motives [And]. We fix a field F, with ¢ elements. Let A = F,|[z], let S be a complete discrete
valuation ring and let v: A < S be a ring homomorphism. We denote the maximal ideal of
S by mg and its residue field by k. We suppose that ¢ := v(z) € mg—{0} and in this case we
see that the kernel of the induced homomorphism A — k is equal to (z) the ideal generated
by z. We let o be the endomorphism of the polynomial ring S[z] with >~ b;2% — > b?2¢ for
b; € S. An A-motive over S is a pair M = (M, F) consisting of a locally free S[z]-module
M and an injective S[z]-homomorphism Fi: 0*M = M ®gp.) - S[2] < M whose cokernel is
a finite free S-module and annihilated by a power of the ideal (z — () = ker(y®idg: S[z] =
A®g, S = S) C S[z]. Now we consider the z-adic completion S[z] of S[z]. A local
shtuka over S is a pair M = (M, Fy,) consisting of a locally free S[z]-module M and an
isomorphism F,,: oM [i] S M [ﬁ] To our A-motive we have an associated local shtuka
M, (M) =M ®sp,) S[2] = (M ®sp, S[2], Fim ® id). Note that in this case Fy, (c*M) € M

and we call this type of local shtuka effective.

Like in the number field case, where we associate a filtered isocrystal to a crystalline p-adic
Galois representation, we can do something similar in the function field case. We assume
that there is a section k < S and fix one. There is a functor H: M — H(M) = (D, Fp, q),
called the “mysterious functor”, from the category of local shtukas to the category of z-
isocrystals with Hodge-Pink lattice (for the definition of the second category see below
and Definition 2.2.1). The z-isocrystal is given by (D, Fp) = M ®sp:1 k(2). It is a finite
dimensional k((z))-vector space D together with an isomorphism Fp: o*D = D. For the
construction of the Hodge-Pink lattice ¢ we need the section k£ < S in order to get a
morphism k((z)) < L[z—(], z — (+ (2—(), where L is the fraction field of S. Then q is
an L[z —(]-lattice of full rank in 0*D ®j .y L(z—()), where L((z—()) is the fraction field

of the complete discrete valuation ring L[z—(] in the “variable” z—(. This construction is

vi



described in [GL| and [Har|. Like in the number field case there is a numerical condition that
a z-isocrystal with Hodge-Pink lattice can satisfy and we call these weakly admissible. All
the H(M ) are weakly admissible and since we are in the situation that our ring is discretely
valued we have that (D, Fp, qp) is weakly admissible if and only if (D, Fp, qp) = H(M) for
some M, i.e. weakly admissible is equivalent to admissible [Har|. Because of this we have
to work with local shtukas and cannot restrict to effective local shtukas such as the ones

coming from A-motives.

Now we change our point of view. So far we have fixed a ring S with £ = S/mg and
to one M we have associated a z-isocrystal with Hodge-Pink lattice. Now we start with
the fixed field & which is a field extension of [F;, and we also fix a z-isocrystal over k. We
consider varying Hodge-Pink lattices q over various (field) extensions R of K = k((¢)). For
example we consider R = L a valued field whose valuation extends the (-adic valuation of
K. Thus its valuation ring 0, contains k[C]] and & /mg, O k. Since we want to define
a moduli space for the varying ¢ we do not restrict ourselves to these cases but work with

arbitrary K-algebras R.

In order to state the main results, we now give a summary of the ideas used to formulate
these results. We use the notations summarized in Section 1.1. In the first chapter we
discuss z-isocrystals over k. We are especially interested in z-isocrystals that are of the
form D = @VEQ D, where each D, is isoclinic of slope v (c.f. Definition 1.2.3). A very
important object is the algebraic group of automorphism Jp of the z-isocrystal which is
an algebraic group over F,((z)) and has Aut(D) as its F,((z))-valued points. If we have
a decomposition D = @ye@ D, of the z-isocrystal the algebraic group of automorphisms

. For every v € Q we define a character x,: Jp, — Gy,.

=v

decomposes as Jp = [],q Jp
These characters will play an important role. If the z-isocrystal is of a certain type, that is
called split semi-simple, this is automatic for example if the field & is algebraically closed,
we link these characters to the general concept of the reduced norm on End(D). This is
possible since in this case the z-isocrystal is a direct sum of standard simple objects E*
(c.f. Definition 1.2.6) and their endomorphism rings are central F,((z))-division algebras.
For these algebras there exists a kind of norm map called the reduced norm and we show
that this intrinsic concept, that does not use the fact that the division algebra comes from

a z-isocrystal, coincides with our character .

In the second chapter we deal with Hodge-Pink lattices and construct a moduli space
for them. As described above we work with a fixed field k and a fixed z-isocrystal over k
and let the Hodge-Pink lattices vary. Therefore we define K = k((()) as the field of formal
Laurent series over k in the variable ¢ and consider Hodge-Pink lattices defined over any

K-algebra R. We further need the ring R[z—(] of formal power series in the “variable” z—(
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Introduction

and the ring R((z—()) = R[[Z—C]][ﬁ] of formal Laurent series in z—(. With this setup we
get a morphism k((z)) — R[z—(] sending z to ( + z — . A Hodge-Pink lattice over R of
a z-isocrystal (D, Fp) is a finitely generated R[z—(]-submodule q of 0*D ®j.) R(2—())
with R(2—())q = 0*D ®p(») R((2—¢)) which is a direct summand as an R-module. One
example is the special Hodge-Pink lattice pp = 0*D ®p() R[2—(]. In the study of Hodge-
Pink lattices the following result plays an important role: Zariski locally on Spec R the
R[z—(]-module q is free of the same rank as pr. We prove this in Proposition 2.2.5.
One should view Hodge-Pink lattices over a ring as a family parameterizing Hodge-Pink
lattices over a field. In the case of a Hodge-Pink lattice q being defined over a field we
can associate to q a tuple of ordered integers w; > ... > w, which is called the Hodge-
Pink weights of ¢ such that (2—¢)"" are the elementary divisors of q with respect to p
(Definition 2.2.1.(vi)). The set of such tuples can be equipped with the Bruhat order defined
by (v > ... >v,) 2 (wy > ... >w,) if and only if vy + ... +v; < wy + ...+ w; for all
1 <@ < r with equality for ¢ = r. In order to define a moduli space we define a boundedness
condition for Hodge-Pink lattices using these ordered tuples of integers. This condition
is studied in Section 2.3. It turns out that a Hodge-Pink lattice q defined over a ring R
and being bounded by a tuple w parameterizes Hodge-Pink lattices over fields that have
Hodge-Pink weights smaller or equal to w for the Bruhat order. Hence it makes sense to
consider the space ()p <, of Hodge-Pink lattices bounded by w. In Section 2.4 we show that
this space is representable by a projective scheme by embedding it into a Grassmannian.
This is also desirable in view of Geometric Invariant Theory. In the number field case this
situation is different. There we consider Hodge-filtrations instead of Hodge-Pink lattices.
A good family of filtrations has constant Hodge-Tate weights. These families have a partial
flag variety as moduli space. Note that this space is projective. This is not the case in the
function field setup where one could study a space like p —,, having constant Hodge-Pink
weights. This subspace of Q)p <,, is not projective but open and dense in )p <,, hence only
quasi-projective. It is thoroughly studied in [Har|. In the last part of Chapter 2 we define
the Newton slope tx(D, Fpp) for a z-isocrystal (D, Fp) as ord,(det Mg, ), where Mp, 5 is
the matrix corresponding to Fp with respect to a k((2))-basis of D. For a z-isocrystal with
Hodge-Pink lattice (D, Fp,qp) over a field the Hodge slope ty(D, Fp, D) is defined as the
negative of the sum of the Hodge-Pink weights. With these two numbers it is possible to
state the numerical condition of weak admissibility, i.e. (D, Fp,qp) is weakly admissible if
tu(D', Fpr,qp) < tn(D', Fpr) for any sub-z-isocrystal with Hodge-Pink lattice (D', Fpr, qp/)
of (D, Fp,qp) with equality for (D', Fp/,qp/) = (D, Fp,qp). This is exactly the numerical
condition that all admissible Hodge-Pink lattices, i.e. the ones coming from local shtukas,

satisfy. Our aim is to find a connection of this condition to Geometric Invariant Theory.
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In the number field case such a connection was established by Totaro [Tot|, answering a

question of Rapoport and Zink [RZ] (see also [DOR]).

In order to describe this connection in the function field case, we start in Chapter 3
with a summary of the concepts of Geometric Invariant Theory that we will need later.
Most importantly we define the GIT-slope p? (z,\) for a 1-parameter subgroup (1-PS) A
of an algebraic group G acting algebraically on a proper scheme X over a field F' and an
F-valued point x. Here .Z is a G-linearized invertible sheaf on X, i.e. a line bundle on
X equipped with a G-action on . which is compatible with the G-action on X. This
GIT-slope is helpful in Geometric Invariant Theory in order to describe semi-stable points
which are used to construct quotients on open subsets of X by the group G. In fact the
point x is semi-stable if and only if uZ(z,\) > 0 for all 1-PS’s X of G. Next we make
a thorough discussion of how one should equip the Grassmannian which contains Q)p <.
with a G-linearized invertible sheaf by embedding it into projective space. We present
two closed embeddings into P¥~! which are isomorphic, but it turns out that we get two
different GLy-linearizations on the line bundle @pn-1(1) on P¥~1. They correspond to
the two interpretations of PV~! as a moduli space parameterizing 1-dimensional subspaces,
respectively quotients of FV. The two GLy-linearizations differ by multiplying with the
determinant. In order to apply Geometric Invariant Theory in our case, we first look at
1-PS’s of the algebraic group J = Jp. After a base change from F,((2)) to k((z)) the
group Jy(z) acts naturally on D and ¢*D and every 1-PS leads to a decomposition on D,
respectively on ¢*D, into eigenspaces. We show that, on D, this is a decomposition into
sub-z-isocrystals and how it is related to the decomposition on o*D. The next thing we need
is an action of the algebraic group Jp on the scheme Q)p <,,. Note that Jp is defined over
F,((z)) whereas Qp <., is an object over K. In order to fix this problem, we set |w| = wy —w,
and consider the induced action of J™ = Resyp. o/ owix(J X5, (2) K[z—¢]/(z—=O)™)
on (z—)""pr/(z—C)"'px. In Section 3.3.1 we see that this induces an action of J~* on
Qp <w- If A1 G,, — J is a morphism of algebraic groups, the morphism \~*: G,,,”" — J~"
is not a 1-PS. Therefore we consider \g: G,, x — J~" which is defined as the composition
A~ o 49, where 7y is the canonical section ag +— @o(z—C)O to the projection morphism
(_)o: G~ — Gk Z‘ggl a;(z—C)" — aq. If we have a decomposition D = Do Ly
into isoclinic components of slope v, we get a decomposition J™* = [] g (Jp,)™™. We
let x,0: (Jp,)™" — Gk be the composition (_)o o (x,)™", where x, was defined above.
The last thing we need in order to apply GIT is a J~*-linearized invertible sheaf on Q)p <.
We have already seen that we have two embeddings ¢: Qp <, — PN'. Before we pull
back Opn-1(1) to Qp <w, we modify its linearization by a product of certain powers of the

characters x, 0. This is on the one hand responsible for handling the Newton slope and on
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Introduction

the other hand a kind of normalization which is due to the fact that the linearization of
Opn-1(1) on PN~ is not canonical. In this way both J~“-linearizations obtained via the
two embeddings of Qp <,, into PY~! become equal. We denote this modified J~*-linearized

invertible sheaf by .Z,,. Now we are ready to state our main result:

Theorem 3.3.1. Let L be a field extension of K and let ¢ € Qp -,,(L) be a Hodge-Pink
lattice over L of D. Then q is weakly admissible if and only if

HTE (A, 20) 2 0
for all 1-PS X of J defined over Fy((z)).

In the proof we use all the preparation we have done so far. It is mainly a matter of
carefully calculating p*"%*(q, \o) and describing it in such a way that we can handle the
difference between the Newton slope and the Hodge slope of the sub-z-isocrystals induced
by the 1-PS A. In the last section we look at the case of two different Hodge-Pink weights
v and w with v < w for the Bruhat order. In this case ()p <, is a subset of ()p <,, and we
extend this inclusion to a morphism F2: PM~1 — PNe=1 of the projective spaces in which
we embed ()p <, and Qp <, We further analyze how this morphism is compatible with the
J~"-linearized invertible sheaves on these spaces. The precise statement is our second main

result:

Theorem 3.4.1. Let v = (vy,...,v,) € Z" and w = (wy,...,w,) € Z" with vy > ... > v,
and wy > ... > w, such that v 2 w for the Bruhat-order. Let F): PNe=1 — PNe=l pe the
above morphism and let £, on PNo71 and £, on PNe~1 be the invertible sheaves together

with their linearization from above. In this case we have
2, = (F,)"(Z)
as J~"-linearized line bundles.

This result especially tells us that it does not matter whether we view a Hodge-Pink
lattice as an element of ()p <, or of p <, in order to calculate the GIT-slope. This is in
accordance to the fact that weak admissibility is of course independent of the chosen bound.
Moreover the proof of this Theorem helps us to better understand the part of the change of
the linearization that is not responsible for handling the Newton slope. This understanding
comes from the fact that in the definition of the morphism F}) we need to consider both

embeddings into projective space that induce different linearizations of the invertible sheaf.
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Chapter 1

z-isocrystals and the reduced norm

1.1 Notations

Let ¢ € N be a power of a prime number. We fix the following notations:
Fq
k a field extension of F,

is a finite field with ¢ elements,

k[z]  the ring of formal power series over k in the variable z,

k((z)) the field of fractions of k[z].
The endomorphism

o: k((2) = k(2)
Zaizi — Zagzi

is called the Frobenius lift. If M is a k((2))-vector space we write 0*M = M Ry ()0 k(2))

and similar for morphisms of &((2))-vector spaces. We have a canonical morphism

oy M — " M.

m—mel

For t € N and m € M we abbreviate (0*)'M = g*...0" M and (0},)'(m) = 0(,.yi-13,0...0
t-times

oo (m) e (o) M.

1.2 z-isocrystals

Definition 1.2.1.

i) A z-isocrystal over k is a pair D = (D, Fp) consisting of a finite dimensional k((z))-
vector space D and an isomorphism Fp: o*D — D.

ii) For a z-isocrystal D = (D, Fp) over k, tk D = dimy.) D is called the rank of D.

iii) A morphism between z-isocrystals D = (D, Fp), E = (E, Fg) over k is a k((z))-linear
homomorphism f: D — E with Fgoo*f = fo Fp.



Chapter 1 z-isocrystals and the reduced norm

iv) A sub-z-isocrystal of a z-isocrystal D = (D, Fp) over k is a z-isocrystal D' = (D', Fip/)
over k such that D’ C D and the inclusion is a morphism of z-isocrystals, i.e. Fp|o*D’

factors as in the commutative diagram

Fplo*D’
o*D) —— D

Fp ]Z
D’
(¢ the inclusion morphism). We say that a subset D’ C D is Fp-invariant if Fp(o*D') C D'.
Thus a k((z))-subspace of D gives rise to a unique sub-z-isocrystal of D if and only it is
Fp-invariant.
v) A quotient-z-isocrystal of a z-isocrystal D = (D, Fp) over k is a z-isocrystal D' =
(D', Fp/) over k such that D" is a quotient m: D — D’ of the k((2))-vector space D with 7

a morphism of z-isocrystals.

Let k'|k be a field extension. There is a base change functor from the category of z-

isocrystals over k to the category of z-isocrystals over k/. Namely it is given by
(1.2.1) D = (D, FD) = Dy = (D k((2) k’((z)), FD/)

where Fpy is the morphism Fp ® idy(.): 0*D Qg2 k' (2)) = D Q) k' (2)) = D' with the
canonical identification 0*D’ = 0D ®y ) k'((2)).
Notation 1.2.2.

i) Let r € N. Let D be an r-dimensional k((z))-vector space and let A € GL,.(k((2))). If
B = (by,...,b,) is a basis of D we denote the induced basis (by ® 1,...,b, ® 1) on ¢*D by
o*B. Let Fp: 0*D — D be the k((z))-linear morphism given by the matrix A with respect
to the bases o*B and B. (D, Fp) is a z-isocrystal over k which we denote by (D, Ag). If
D = k((2)® and B is the canonical basis we just write (k((2))®", A) for (D, Ag).

ii) On the other hand let (D, Fpp) be a z-isocrystal over k. If B is a basis of D we denote
the matrix corresponding to Fp with respect to ¢*B and B by Mg, 5.

iii) Let r,7" € N. Let D (resp. D’) be a k((z))-vector space of dimension r (resp. r’)
and let B (resp. B’) be a basis of D (resp. D’). Moreover let A € GL,(k(2)) and
let A € GL.(k(2))). For a matrix B € M,/.(k((z))) we denote by o(B) the matrix
(0(Bij))ij € Mpyr(k(2)). If f is the morphism given by B with respect to B and B’ then
o(B) is the matrix corresponding to o*f with respect to o*B and o*B’. Moreover f is a
morphism between the z-isocrystals (D, Ag) and (D', Aj,) if and only if A'c(B) = BA.

iv) Let D = (D, Fp) be a z-isocrystal over k. For ¢t € N we abbreviate

(Fp)':=Fpoo*Fpo...o(c") ' Fp

which is a morphism from (¢*)'M to M.
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1.2.1 Dieudonné-Manin decomposition and split semi-simple z-isocrystals

Definition 1.2.3. Let D = (D, Fp) be a z-isocrystal over k and let A € Q. D is called
isoclinic of slope A if there exist integers s,t € Z with t > 0, (s,t) = 1, A = s/t and a
k[z]-lattice M C D such that
(Fp)'((6*)'M) = 2°M.
Remark 1.2.4. Let D (resp. D' ) be a z-isocrystal over k which is isoclinic of slope A € Q
(resp. N € Q). If X # X then Hom(D, D') = 0 (c.f. [Zin, 6.20 Korollar]).
The next Lemma can be proved in the same way as |Zin, Satz 6.22].

Lemma 1.2.5. Let D = (D, Fp) be a z-isocrystal over k. If k is a perfect field we have a
unique decomposition,
D=D,
AeQ
of D into isoclinic sub-z-isocrystals D, of slope A € Q.

For each A = s/t € Q with ¢ > 0 and (s,t) = 1 let EX be the z-isocrystal (k((2)®, Ay)
with

0--- 0 2°
10 0

Ay = S € M (k((2))
0010

E’; is a simple object in the category of z-isocrystals over k and it is isoclinic of slope .

Definition 1.2.6. Let D = (D, Fp) be a z-isocrystal over k. We call D split semi-simple

if D can be written as a direct sum

D= (5™ (n1 € No)
AEQ

with F,« C k whenever ny # 0 with A = s/t, t >0, (s,t) = 1.

Remark. Definition 1.2.6 can be found in [DOR, Definition 8.1.2] but note that in general

it is not true that D is split semi-simple if the base change map
End(Q) — End(Qk/)

is an isomorphism for an algebraically closed field extension k'|k. In order to see this,

consider the z-isocrystal D = (F,((z)), (1 — z)) over F,. For any field extension !|F, we have

End(D)) = {a € l(2)) | (1 = 2)a(a) = a(l = 2)} = {a € I((2)) | 0(a) = a} = F,((2)).
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Assume that there is a morphism f: D = Ef* = (F,(2)),2") (n € Z). Since f is a

morphism of z-isocrystals over F, and since f(1) € F,((z)) we have
(1 =2)f(1) = fF()(L = 2) = 2" (f(1)) = 2"f(1).

Therefore (2" — (1 — 2)) f(1) = 0 which implies f(1) = 0.
—_———
#0
Let D = @/\EQ (E’f\)m be a split semi-simple z-isocrystal over & such that Fp C &
whenever ny # 0 with A = s/t, t > 0, (s,t) = 1. Let t be the lowest common multiple for

all these t. In this case we have a canonical model of D over the field F ;. It is given by
~ F ; Dny
D-@ (")
AEQ

and is a quasi-inverse to the base change functor (1.2.1) (c.f. [DOR, p. 191]). Thus, when
considering split semi-simple z-isocrystals, we can often restrict to the case where k = [

is a finite extension of [F,.

1.3 The algebraic group of automorphisms of a z-isocrystal

Let D = (D, Fp) be a z-isocrystal over k. We define J(F,((2)) = Aut(D) to be the
automorphism group of the z-isocrystal. Let A be an F,((z))-algebra. We denote by o4
the morphism o ® ids: k((2)) ®r,:) A = k((2) ®r, ) A If M is a (k(2)) ®r, ) A)-
module we abbreviate oM = M ®j») (k((2)) ®F,(=) A). Note that, in the case
M = N ®g, () A for a k((z))-module N, 0% M is canonically isomorphic to o*N ®g,(.) A via

®r,(2)A:0A

TA(N @r,(2) A) = N r,(2) A Oh()@r, oy A)oa K(2) Bry(z) A
(1.3.1) =N @n(z) (F(2) @F,(2) A) Ru()or, (o Aoa F(2) Ory(2) A
=N Qu(z)0 k(2) ®F,(z) A= 0"N @F,(2) A.

With these notations it makes sense to define more generally for an F,((2))-algebra A

JD(A) = J(A) = {g € GLIC((Z))@JJFQ((Z))A (D ®Fq((z)) A) ‘ (FD X idA) o O'Zg =go (FD X idA)} .

The functor J is representable by an algebraic group [Har, Proposition 3.1.12].

We will now summarize some canonical identifications which we will use over and over
again. First we remark that for a finite dimensional k((z))-vector space M (e.g. D or o*D)
and for every F,((z))-algebra A the canonical morphism
Endp(z) (M) ®p,(2) A = Endyz)es, ) a(M @F,(2) A)

(1.3.2)
gRar— (d®br g(d) @ ab)
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is an isomorphism. In order to make the diagram

Endy(.) (D) ®r, () A ——— Endy() (0" D) O, (=) A

oY

~

Ende(z)ep, ) a(0"D @F,(2) A)

1%

o

v ~

Endy2)ee, ()4 (D ®r,(2) A) — Endi)ey, () a (04 (D O, (=) A))

commutative, the morphism in the top row must be given by ¢ ® a — c*g ® a. Let A be
an F,((2))-algebra and for g € GLi(z)ay, (.)a(D ®r,(z) A) consider (Fp ®ida) o 07g (resp.
go(Fp®idya)) € Homk((z))%q«z»A(U*D ®r, () A, D @, (z) A). The element g corresponds to
g =">9®a; € (Endy.)(D)®r,(:)A)* where we can choose the a; to be linearly independent
over F,((z)). With these notations (Fp ®id4) o 0% g (resp. go (Fp ®idy)) can be viewed as
the element ) (Fp o 0*g;) ® a; (resp. Y (g; © Fp) ® a;) in Homy.y (0D, D) Qp,(2) A. We
claim that g € J(A) if and only if g; € End(D) for each i. By the above g € J(A) if and
only if > (Fpoo*g) ®a; =Y (g;0 Fp) ® a; and therefore Fp o 0*g; = g; o F)p for all ¢ since
we have chosen the a; to be linearly independent. Thus it follows that g; € End(D) for all

. Using these identifications we can describe J as
J(A) = (End(D) ® A)*.

Now let D = (D, Fp) be a z-isocrystal over k such that we have a decomposition D =
@Dico Ly, where D = (Dy, Fp,) are isoclinic sub-z-isocrystals of slope A € Q, and let A
be an F,((z))-algebra. Using the second description of J and Remark 1.2.4 we see that also

Jp =[] Jn,.

Since every g € Jp,(A) lies in Endk((z))@,Fq«z» A(Dy ®r,(z) A) it makes sense to define a

J decomposes as

morphism
Xa(A): Jp, (A) = k((2)) ®r, (=) A

as

(det: Endyz)ep, () A(Dr ®r,(2) 4) = k(2) ®r,(2) A) Jp, (4).

Lemma 1.3.1. With the above notation we have

xa(4)(g) € A,

for every g € Jp, (A).
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Proof. Let ry = dim D, and let B be a basis of Dy. It induces a basis of the (k((2)) ®r,(.) A)-
module D) ®p,(») A which we denote by B4. Moreover B, induces a basis 07 (B4) of the
(k(2))®r, (2) A)-module space 0 (D\®p, (- A). We denote by My € M, «r, (k((2)) ®r, () 4)
the matrix corresponding to g with respect to B4 and by Movg € My, xry (k(( ) ®Fq((z)) A)
the matrix corresponding to g with respect to 07 (B4). The matrix M, , is actually the
matrix o7 (M,) which is obtained from M, by applying o4 to every entry of the matrix.
This shows that

det(07g) = det(My,) = oa(det(My)) = oa(det(g)).
Since g € Jp, (A) we know that 0% g = (Fp ® ids)~"' o g o (Fp ®id,) and therefore
det(c%g) = det(g).

Combining these equalities we get that o4(det(g)) = det(g) and if we write det(g) =
> fi®a; with a; linearly independent over F,((2)) we see that > o(fi)®a; = f; ®a; and
hence o(f;) = f; which means that f; € F,((2)). Therefore det(g) lies in A. O

This lemma shows that for every A € Q we get a character
X J D, — G-

In the case of D = @P,q (E];)@m being a split semi-simple z-isocrystal over k and D, =
(Elf\) ®™ e are able to give an intrinsic definition of the morphisms y, which does not use
that Jp, is a subset of the endomorphisms of a module. The reason for this lies in the
fact that the endomorphism rings of the z-isocrystals El; are of the right kind to apply the

general concept of the reduced norm which we will discuss in the next section.

1.4 The reduced norm

In this section we analyze the endomorphism rings of the standard simple z-isocrystals Elf\
in the case when Fy((2)) C k, where A = s/t with ¢ > 0 and (s,¢) = 1. This enables us to
link the morphisms x, defined in Section 1.3 to the reduced norm in the case when we are
working with split semi-simple z-isocrystals. First we give a brief review of the construction
of the reduced norm.

Let K be a field. A division ring is a (not necessarily commutative) ring R such that every
nonzero element is invertible. A K-algebra R is called a division ring over K if it is a division
ring with K contained in its center R° and we say that R is a central K-division algebra
if R* = K and (R : K) < oo. Moreover a central simple K-algebra is a (not necessarily
commutative) simple K-algebra A such that A°= K and (A : K) < co. By Wedderburn’s
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Theorem, a central simple K-algebra A is of the form M,,,(R) for some division ring R
over K. We see that R° = K and (A: K) = n?*(R: K). Now let F|K be a field extension.
We say that E is a splitting field for A, or that E splits A, if E®g A = M,«,(E). It is clear
that E splits A if and only if F splits R. As a first result we know that R contains splitting
fields:

Proposition 1.4.1 ( |Rei, (7.15) Theorem| ). Let R be a central K-division algebra. Every
mazximal subfield E of R contains K and is a splitting field for R. If m = (E : K) then
(R: K)=m? and E @k R = M,,xm(E). There exists a maximal subfield of R which is

separable over K.

Example 1.4.2. Suppose that K is a complete discretely valued field such that the residue
class field is finite with ¢ elements. By [Rei, p. 145] there exists an unramified splitting
field for R. More precisely, if (R : K) = n? then every subfield W = K(w), where w € R is
a primitive (¢" — 1)-th root of unity, is a maximal subfield and hence a splitting field for R.

Now we turn to reduced norms. Let A be a central simple K-algebra. Take a field
extension E of K which splits A, i.e. there is an isomorphism v: £ @x A = M, xn(E)
(n? = (A: K)). For a € A we define

Nred(a) = Nred sk (a) = det(y(1 ® a)).

In [Rei, §9] it is shown that this definition is independent of the chosen isomorphism ~y
and the splitting field F (also see Section 1.4.1 where we summarize these arguments in a

relative situation). Using Proposition 1.4.1 one can show

Lemma & Definition 1.4.3. Let A and K be as above. For every a € A, Nred(a) lies in

K and is called the reduced norm of a.

Proposition 1.4.4. Let A = s/t € Q witht > 0 and (s,t) = 1. Suppose that Fp C k. In

this case End(EY) is the central F((2))-division algebra with Hasse invariant —\ mod Z.

Remark. For the notion of Hasse invariant see [Rei, (31.7) p. 266].
We follow the argumentation given in [Dem, Chapter IV] and Proposition 1.4.4 will follow

from Lemma 1.4.5. In order to state this Lemma, we need a few more notations. Write
at +bs = 1 with a,b € Z. Let G* be the associative F ((2))-algebra G* = F((2))[u]/(u’ — 2)
with uz = o®(z)u for all z € Fu((2)). In [Rei, §30] G* is denoted by (F((2))/F,(2)), 0% 2)
and [Rei, (30.7) Corollary| shows that this is a central F,((2))-division algebra (c.f. [Dem,
p.77]). Now let F: C k and consider G§ = k((2)) ®F 1 (=) G* which is a k((2))-vector space
with basis 1 @ u’ (i =0,...,¢t —1). We equip it with a z-isocrystal structure by setting

Fer: 0" (k((2)) ®r(2) G*) = k(=) QF 1 (=) G

o (1® u') = 1@u'ts



Chapter 1 z-isocrystals and the reduced norm

Lemma 1.4.5.

i) The z-isocrystals G5 = (G% = k((2)) ®F,+ (2) G*, Fer) and E% are isomorphic.

i) Let H = (H, Fy) be a z-isocrystal over k and let ey € k(2)®" be the first canonical
basis vector. The map

Hom(E%, H) — {x € H | (Fy)!((})!(2)) = =°)
[ f(eo)

s an isomorphism.

iti) The set of all x € G% such that (FG’i)t«J*G’;)t(x)) = z°z agrees with {1®y |y € G*}.

iv) The endomorphisms of Qlf\ are exactly the right multiplications by elements of G* on
GY = k((2)) ®r (=) G
Proof.

i) For i € {0,...,t — 1} let ¢; be the (i + 1)-th basis vector of k((2))* and for i € Z let
e; = 2%eq, where i = ct +d with d € {0,...,t—1}. With these notations FE§ (0pn€i) = ein

A
and it is easy to check that
GY = k(=)™
1@ u — 2%,

is an isomorphism of z-isocrystals.

ii) An inverse for this morphism is given by

{x € H|(Fy) (o) (z)) = zsx} — Hom(E%, H).
v (fo: BN = H,ei = (Fa)'((0})"x))
iii) Let 2 = Y270 a; ® u' with oy € k((2)). Since (Fer)' ((074)' (z)) = S 2ot (o) @ Ul
A
the assumption (Fgx)'((0)" (7)) = 2°z implies that o(a;) = a; and hence o; € Fy((2)).
A

Therefore we can write z =1® Zf;é au’.

iv) Note that the right multiplications by elements of G* on G% are morphisms of 2-

isocrystals: For every a € F,((2)) we calculate
FG’; (02,;;((1 ® u@) L)) = FG’}\(U*G’;(l ® abi<a)ui))
= For (0" a)ogr (1@uh) = o Ha) (1@ u'™)

and

Fo(og(leu)) o= (1@u™) a=c""(a)(1eu™)
which is the same since for a € Fu((2)) we have o"*l(a) = obitbstal(q) = gbiths(q).
Moreover we have

Far(oge(1@u') - u) = For(og (1@ u™)) = T@u e

(18U u = P (o (18 0)) -u
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which shows that right multiplication with u is a morphism of z-isocrystals. Therefore the
mapping
®: G* — End(G%)
LT Y=y T
is well defined. We will now give an inverse ¥ to this map. Let f € End(G¥) and let f €
Hom(E%, G%) be the composition of f with the inverse of the isomorphism described in the
proof of (i). By (ii) this morphism corresponds to f(eg) € {x € G%| (FGz;)t((agk)(x)) = 2%z}
A
and by (iii) this is an element y; € G*. Let
¥: End(G5) — G
f=ys

If fleg) = f(l@u°) = Zz by @, with a; € Fye((2)), we calculate:

fAeu') = f(z%ey) = 2" feyn) = Z‘”(Fcl;)bi((aér;)bi(f(eo)))
i—1
= (P (03P (11 @) = 23 oy 0 w7+
=0
On the other hand we also have:

t—1
(1®u') Za]@)u] => a;@ut
=0

Now w/ Tt = qtilat+bs) — g ait . j+bis — ,aiyj+bis 51 d hence f(l ® uz) — Tf(eo)(l ® uz) This
shows that ® o U = idp, gty and ¥ o @ = idgx is also true since (1 ® u) -z =1®x for
every = € G*.

[

Remark 1.4.6. By Lemma 1.4.5, in the case when Fy C k, End(E%Y) = (G*)°PP since the
order of multiplication is reversed if we concatenate right multiplications. As in [Rei, §31]

and with the same notation we get that

G* = (Fy (=) /Fq((2), 0", 2) 2 (Fyr (2))/Fq( @F

with ua = o(a)u (o € Fp((2) and u' = 2°. Therefore we can write (G*)°PP =
P Fue(2)v' with au = uo(a) and u = 2°. We can rephrase this to (G})PP =
@t IF (2)(u _1)i with v~ la = ‘7(04)“_1 and (U_l)t = z7%. This shows that (G’\)Opp has

Hasse invariant —A mod Z.
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Now we know that in the split semi-simple case End(E}) is a central F,((2))-division
algebra and by Example 1.4.2 we are also able to provide a splitting field for it. Therefore

we can write down an explicit isomorphism to a matrix algebra. This is done in the following

Ezample 1.4.7. Let Fx C k. In this example we identify End(E%) with a subset of
M, (k((2))) via the canonical basis on k((2))®". From the above it is clear that we can
identify F:((2)[u]/(u — 2°), where au = uc(a) for all a € Fu((2)), with End(E%) via

a O .......... 0
0 o(a) :
o — o
.0
Q----- - 0 O't_l(a)
and
- 0 2%
10 0
= S
00 10

This especially shows that End(E%) is actually a subset of My (F,((2))). By Example 1.4.2,

F,((2)) is a splitting field for Fu ((2))[u]/(u’ — z*). We have a canonical identification

Fyt(2) @) For (Dul/ (' = 2*) 2 | ] Fel2) | /(' = 2°).

i€Z /L.
a® Zﬁjuj — Z (a-0'(B))), v

With the help of this identification we write down a morphism from Fgu((2)) ®r, ()

F((2)[u]/(u" — 2°) to the matrix algebra over F((2)):

i For(2)) ®r, () For () [ul/ (u = 27) = Mot (Fyr (2))

by sending (i, ..., ) € [];cz/i7 Fqr(2)) to the matrix

aq 0 """ 0
0' 062‘
Q--vveee 0 Qi

10
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and v to the matrix

0--- 0 2°
10 0
0010

Since both algebras are simple F((2))-algebras it is clear that this morphism is an isomor-
phism. Thus if we view End(E%) € My (F((2))) the map
End(E) = Myxi(Fye (2))
f=a(1ef)
is induced by the identity. Hence if we take determinants we arrive at the following result:
(1.4.1) Nred(f) = det(f)

for every f € End(EY) C Endy) (k(2)®"). By Lemma 1.4.3 this determinant lies in

Fq((2)-

1.4.1 The reduced norm for a split semi-simple z-isocrystal

In the case of a split semi-simple z-isocrystal we want to define the reduced norm in a
relative situation in order to get a morphism of algebraic groups. As a first step we do this
for the standard simple z-isocrystals E5. Hence let £, = End(E%) with F((2)) C k where
A=s/t € Qwith ¢t >0 and (s,t) = 1. We let F' be a splitting field for &, i.e. there is an
isomorphism

v: F ®p, () Ex — My (F).

and for each F,((2))-algebra A we define
Ya: F @) Ex Or,y() A = Mixe(F) @r, () A = Mot (F @) A)
as Y ®idy. For g € &\ ®p,(.) A we set

Nreda(g) = det(va(1 ® g)).

In order to see that Nred, is well defined, we have to check that it does not depend on the
chosen isomorphism ~ and the splitting field . Therefore let §: F ®p, (2) Ex — My (F) be
another isomorphism. By the Skolem-Noether Theorem the automorphism 1 = v o § ! is
inner ( [Rei, (7.23) Corollary|) and therefore there exists an invertible matrix T = (t;;); ; €
M« (F') such that

Y(u) =T 6(u) - T~

11
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for every u € F Qg z) Ex From this it follows that the automorphism
1;: Mtxt(F ®F,(2) A) — Mtxt(F ®F, (=) A) with 1; = 7y 0 521 is also inner and we get
that

Ya(u) =T - ba(u) - T
with T = (tij ®1);; € Mtxt(F Q®F, (=) A) and hence the definition of Nred, is independent
of the chosen isomorphism . Now with the same idea as in [Rei, (9.3) Theorem| one can
show that the definition of Nred, does not depend on the splitting field F'.

Lemma 1.4.8. For every g € £ ®r,(2) A, Nreds(g) lies in A and
Nreda(g) = det(g)

where we view g as an element in End.)e, S A A(EY ®p () A) via Ex Qp, ) A C
Endy2) (EXY) ®r, (=) 4 = Endy)o, ) a(E5 O, (=) 4)-

Proof. By Proposition 1.4.1 we can assume that the splitting field F' is a Galois extension
of Fy((2)) with Galois group G. Every £ € G acts on F' ®p, () A via the first factor. Using
the fact that the definition of Nred, is independent of v one can show in the same way as
in [Rei, (9.3) Theorem| that Nred4(g) is stable under the action of § on F ®p, (.) A. We
write Nred4(g) = Y ¢; ® a; such that the a; are linearly independent over F,((z)). We get
that > g; ®a; = > &(g:) ® a; and therefore g; = £(g;) for every i. This being true for every
¢ € G we see that g; lies in Fy((z)) and hence Nred(g) lies in A. For the second claim we
take F' = F,:((z)) and note that in Example 1.4.2 we have seen that the morphism

Ex = Myt (Fge (2))
[l f)

is induced by the identity if we view an element f € £, as a matrix with entries in F((2)).

Tensoring this morphism with A over [F,((2)) we get that
Ex ®r,(2) A = Mixe(For (2)) @,y (2) A = My (Fgt (2) @y (2 A)
g~ 74(1®g)

is induced by the identity if we consider g € Endk((z))%q ) A(E% ®r, (=) A) as a matrix with
entries in Fy ((2)) ®p,(z) A via the canonical basis. Taking the determinant on both sides

proves the second claim of the Lemma. O

Now let D be a split semi-simple z-isocrystal over k, i.e. we have

D = P(E)*™ = P D,

A€Q A€Q

12
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with D, = (E§)®™. Its automorphism group is given by

J(F,(2)) = [ ] GLus(En)

A€Q

where £, = End(£?%) is the central division algebra over F,((z)) with Hasse invariant —\
mod Z. If furthermore A is an F,((z))-algebra we have seen in Section 1.3 that we can
identify JEI;\(A) with (Ex ®r, () A)* = Gn(Er ®r, (=) A) and hence for the split semi-simple
z-isocrystal D = P, q (E];)EBM we see that

J(A) = H GLn/\ (5)\ QF,(2) A).
A€Q

Therefore the group J decomposes as
J=Jp=1] o,

where Jp, (A) = GLy, (&) ®F, () A)- For every A € Q we define a morphism
)Z)\i JQ/\ — Gm

in the following way: Let F' be a splitting field for £,. As we have remarked, this is also a
splitting field for End(D,). We have an isomorphism

na: F @p,(z) End(D)) ®p,(2) A = M, 1)yt (F) @ry(z) A = M, 0y (nat) (F O, () A)

and if g € Jp, (A) € End(D,) ®r,(z) A we set XA(A)(g) = det(na(l ® g)). Everything that
we have said about Nred, is also true for y,(A) with the same argumentation. Therefore

its definition is well defined and summarizing our other results we arrive at the following

Proposition 1.4.9. Let A be an F,((2))-algebra. With the above notations for g € Jp, (A)

we have

XA(A)(g9) = xa(A)(g).-
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Chapter 2

Hodge-Pink lattices

2.1 Notations

From here on we denote by K = k((¢)) the field of formal Laurent series over k in the
variable (. By K[z—(] we mean the ring of formal power series in the “variable” z—( and
by K((z—()) its field of fractions. Note that there is a homomorphism

(2.1.1) k(z) — K[z—(]

sending z to z = (- (2—()°+1-(2—¢). If R is a K-algebra we also denote by R[z—(] the ring
of formal power series in z—( but here R((z—()) should mean the ring of formal Laurent
series in z—( with finite principle part. Note that R[z—(] and R(z—()) are K[z—(]-

algebras and therefore also algebras over k((2)) via (2.1.1). For later use we mention:

Lemma 2.1.1. If R — R’ is a morphism of K-algebras and M is an R[z—(]/(z—()°-
module (c € N) then

Tory =V (M, R'[z—(]) = Torf= V& (M, Rz~ ] /(2—¢)°) = Torf(M, R).

Proof. The  functor M ®pg[.—) _  equals the composition of the func-
tors  (R[z—(]/(2—C)°) @p¢) _ followed by M Qgp—cj/(=c)° _- Therefore
Torf[[z_d](M ,R'[z—(]) can be computed from a change of rings spectral sequence

and its associated sequence of low degrees

oo = Tor N R[2— (] /(2= ), Rz —C]) ®npcy-00 M
— Tor?[[z_d](M, R'[z—(]) — Tor?[[z_cﬂ/(z_oc(M, R'[z—C]/(2—¢)°) — 0.

The left term is zero since (z—(¢) is a nonzero-divisor in both R[z—(] and R'[z—(] which

gives the first isomorphism. The second is [Rot, Theorem 11.64]. O

2.2 Definition and general properties

Definition 2.2.1. Let R be a K-algebra.

15



Chapter 2 Hodge-Pink lattices

i) Let (D, Fp) be a z-isocrystal over k. A Hodge-Pink lattice over R of (D, Fp) is a
finitely generated R[z—(]-submodule q C 0*D ®y.) R(2—()) with R(2—())q = 0*D ®x(»)
R((z—()) which is a direct summand as an R-module. We always have the special Hodge-
Pink lattice pr 1= pp,r := 0*D ®y(.) R[2z—(] over R of (D, Fp).

ii) A triple (D, Fp,qp) consisting of a z-isocrystal (D, Fp) over k and a Hodge-Pink
lattice qp over R of (D, Fp) is called a z-isocrystal with Hodge-Pink lattice over R.

iii) Let (D, Fp,qp) and (D', Fpr, qpr) be z-isocrystals with Hodge-Pink lattice over R. A
morphism from (D, Fp,qp) to (D', Fpr,qp/) is a morphism of z-isocrystals f: D — D’ such
that (0" f)r(z): 0D @r(z) B(2—C) = 0" D' Qp(z) B(2—()) satisfies (0" f)r(=c)(ap) S
qp. The morphism f is called strict if

(0" F)r@-c)(ap) = ap N (0" f) (0" D) @) R(2—C)).

iv) Let (D, Fp,qp) be a z-isocrystal with Hodge-Pink lattice over R. A sub-z-isocrystal
with Hodge-Pink lattice of (D, Fp,qp) is a z-isocrystal with Hodge-Pink lattice (D', Fpr, qpr)
over R such that the inclusion is a morphism of z-isocrystals with Hodge-Pink lattice, i.e.
(D', Fp) is a sub-z-isocrystal of the z-isocrystal (D, Fp) with

(2.2.1) dp € qp N o™ D' @) R(2—()).

We call a sub-z-isocrystal with Hodge-Pink lattice (D', Fp/, qp/) of (D, Fp,qp) strict if the
inclusion morphism D’ < D is a strict morphism of z-isocrystals with Hodge-Pink lattice,
i.e. if there is equality in (2.2.1).

v) Let (D, Fp,qp) be a z-isocrystal with Hodge-Pink lattice over R. A quotient-z-
isocrystal with Hodge-Pink lattice of (D, Fp,qp) is a z-isocrystal with Hodge-Pink lattice
(D', Fpr,qp) over R such that (D', Fp/) is a quotient-z-isocrystal of the z-isocrystal (D, Fp)
with the projection morphism 7: D — D’ being a morphism of z-isocrystals with Hodge-
Pink lattice. The quotient-z-isocrystal with Hodge-Pink lattice (D', Fppr, qp/) is called strict
if the morphism 7 is a strict morphism of z-isocrystals with Hodge-Pink lattice.

vi) Let (D, Fp) be a z-isocrystal over k of rank r (r € N) and let R = L be a field
extension of K. If q is a Hodge-Pink lattice over L of (D, Fp) there exists (since L[z—(]
is a principal ideal domain) a L[z—(]-basis (x1,...,z,) of p; such that the lattice q has
an L[z—(]-basis ((z—¢)""x1,...,(2—¢)""z,) for some integers wy,...,w, € Z which we
can assume to be ordered wy; > ... > w,. In this case we call (wy,...,w,) the Hodge-Pink

weights of q.

Remark 2.2.2. Let L be a field extension of K. If (D, Fp) is a z-isocrystal over k of rank r
and q is a Hodge-Pink lattice over L of (D, Fp) with Hodge-Pink weights (wy, ..., w,) then

16



2.2 Definition and general properties

for every integer ¢ such that q C (2—¢)“pz, (resp. (z—¢)“pr C q) we have

(2—C)pr/q =~ @L[[z_d]/(z_owrwi

(resp. a/(z=)pr = P LIz=)/ (= O™,

For any K-algebra R we denote 0*D ®y ) R(z—()) by V.

Lemma 2.2.3. Let (D, Fp) be a z-isocrystal over k. Let R be a K-algebra and let q be an
R[z—(]-submodule of 0*D ®y.y R(2—C()). q is a Hodge-Pink lattice over R of (D, Fp) if
and only if there exists integers d,e € 7 (d < e) such that (z—C)dpR 2q2 (2—()°pr and
(Z—C)dpR/q, q/(z—C)pr are finite locally free R-modules (i.e. finitely generated projective).

Proof. “=": Let (x1,...,%n)r[=] = 9- As z; € Vi we can find d € Z such that (z—C)fdx,- €

pr for all i = 1,...,n. Therefore z; € (z—¢)%pr and hence q C (z—¢)%pg. On the other
hand, if we have pp = (y1,...,Ym)r[-] then we get y; € Vg = R(2—())g. Therefore we
find for all 7 a common e € Z such that (2—¢)“y; € q which means that (z—()pr C q. Let

5: Vr/(z=C)pr = q/(2—() pr

be a morphism such that so¢ = idg/.—¢)p, Where ¢ is the inclusion

q/(z=¢)pr € Vr/(2—()pr.

Then ¢ factors as

-/

a/(z=C)Pr > (z=C)"pr/ (2=0)pr 2 Vi/ (=) P
Let
§=s0j: (2=0)"pr/(z—)Pr = 0/(z— () Pa-
Then s’ 0i' = so0jot =s0i=idg¢)ep,. This realizes q/(z—()“pr and (z—C)"pr/q as
direct summands of the finite free R-module (z—¢)%pgr/(z—C) px.

“" We have Vi = R((z=)(z=()pr 2 R(z=)a 2 R(z=)(:—)pr = Vi which
implies R((2—())q = Vg = 0" D ®Qp(>) R(2—()) and q is a finitely generated R[z—(]-module
since (z—()pr and q/(z—()pg are finitely generated R[z—(]-modules. The projectivity
of (z—¢)"pr/q yields the following decomposition

(2= g/ (=) Pr = /(=) Pr ® (2—{)"pr/a.

Combining this with the decomposition

Ve =(z=Q%r® (2= %r/(z=C)Pr ® Vr/(2—()"pr

we can realize q as a direct summand of 0*D ®y ) R(2—()). O

17



Chapter 2 Hodge-Pink lattices

Proposition 2.2.4. Let (D, Fp) be a z-isocrystal over k and let R, R’ be K-algebras such
that R' is an R-algebra. If q is a Hodge-Pink lattice over R of (D, Fp) then q® g R'[2—(]
is a Hodge-Pink lattice over R of (D, Fp).

Proof. We will show that ' = q ®g.) R'[¢—(] is an R'[z—(]-submodule of Vz which
satisfies the conditions of Lemma 2.2.3. First note that Vi ®pp. R'[2—(] = Vr and
(2—CQ)pr @R R'[2—C] = (2—)pr for all ¢ € Z. Let d,e € Z be as in Lemma 2.2.3.

From the inclusions (z—¢)“pr € q C (2—()*pr we get the following commutative diagram

(=) pr
q/ /
(z—¢ .
In order to show that ¢ — (2—( )dp R is also injective, we tensor the exact sequence
0—q— (2=()"pr = (2=()"pr/q — 0
=M

over R[z—(] with R'[z—(] and get the following exact sequence
Tory WM R 2—¢]) = ¢ = (2—O)%r — M @ppq R[2—¢] = 0

where Tor?uZ{H(M ,R'[2—(]) = Torf(M, R") by Lemma 2.1.1 which is zero because M is a
projective R-module by Lemma 2.2.3. Therefore

(z=0)pr/ (0 Drpe—q) R[z—CD) = (=) "pr/q) @rp=—q R'[2—(]
and

(a @rp—) R'[z2—C])/(2=C)pr = (a/(2—C)Pr) @rp—) R'[2—C]-
If M = (2=()"pr/q or M = q/(2—()’pr then

M @rpq R [2—C1 = M gy, oot RIe—C1/ (z=¢) "
=M @ pp /-0y R[z—(]/(—¢)" "®@r R 2 M ®r R'.

This shows that (z—g)dpR,/(q®RHZ_CH R'[z—(]) and (q®gp—) R'[2—(])/(2—¢) pr are finite
locally free R'-modules. O

Let (D, Fp) be a z-isocrystal over k and let d,e € Z with d < e. For each K-algebra R
we denote by Qp(R) the set of all Hodge-Pink lattices q over R of (D, Fp) and by Qp 4.(R)
the subset of q € Qp(R) such that (z—¢)%pr 2 q 2 (2—¢)“pr. By Proposition 2.2.4 and its
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2.2 Definition and general properties

proof Qp(_) and Qp 4( ) define functors from the category of K-algebras to the category
of sets and actually both are sheaves on the category of K-algebras. In order to see this,

we look at the functor
QD,d,e: (K -algebras) — (sets)

R QD,d,e(R)
(R—-R)— (G— q®or R

where, for a K-algebra R, Qp.q4.(R) is the set of R[z—(]/(z—¢) “-submodules § of PI(%d’e) =
(z—CO)"r/(2—C) pg such that § and P}(%d’e)/ﬁ are finite locally free as R-modules. The
projection Vi — Vi/(2—¢)“pr induces a bijection q — § between Qp 4.(R) and Qp qc(R).
If R — R’ is a K-morphism the proof of Proposition 2.2.4 shows that ¢ ®r R’ is the
R'[z—(]/(z—¢)¢ "-submodule of PI({,I’G) associated to q ®gp. ¢ R'[2—(]. Clearly Qp 4. and
hence @)p 4. is a sheaf. In order to test that (p is a sheaf, we can also work with QD%E
since every Spec(R) is quasi-compact. Qp (resp. Qp.d., resp. Q D.d.e) extends to a sheaf on
the category of K-schemes which we again denote by Qp (resp. Qp.ge, resp. QD7d7e). In
the case of Q p,d,e we will give an explicit description of this functor. Let S be a K-scheme.

We have the following sheaves on S:

e For ¢ > 0 the sheaf U — Os(U)[z—(]/(2—¢)° is denoted by Ogs[z—(]/(2—¢)° and
e for d,e € Z with d < e the sheaf U +— Pgi’(e)U) is denoted by t@((g’)e).
Now for every K-scheme S, we define QD%@(S) to be the set of all ﬁs[[Z—C]]/(Z_C)E_d‘

submodules 2 of f@((g’)e) such that 2 and 32((;’)6) /2 are finite locally free &g-modules.

Proposition 2.2.5. Let (D, Fp) be a z-isocrystal over k. If R is a K-algebra and if q is a
Hodge-Pink lattice over R of (D, Fp) then Zariski locally on Spec R the R[z—C(]-module q

15 free of the same rank as pg.

Proof. Let d,e € Z be as in Lemma 2.2.3. The finitely generated K-subalgebras of R
form a filtered inductive system having R as its inductive limit. Hence by [EGA IV,
Théoréme (8.5.2), Proposition (8.5.5) and Corollaire (8.5.7)] there exists a finitely generated

K-subalgebra R of R and an exact sequence of R-modules

(2.2.2) P—M-=0

such that P, M are finite locally free and (2.2.2) tensored over R with R is isomorphic to
(223) (2= "/ (=) pr = (=) pr/a = 0.

In the following we will change the K-subalgebra R (which will remain finitely gener-

ated) without mentioning it. Since multiplication with (z—() induces endomorphisms of
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(z—C)'r/(z—C)pr and (2—¢)%pr/q such that (z—¢)°™% is zero we can view (2.2.2) as an

exact sequence of R[z—(]/(z—¢) “-modules. Furthermore since

(=) "a/(z=QO)Pr®r R (2=() Pr/(:=)Pr~ POy R
by [EGA IV, Corollaire (8.5.2.5)] we can assume that we have an isomorphism
(2= %/ (2=C0)ps = P. Let § be the kernel of the composition

(2=C) P = (==C)"pa/(z=C) ps — M.

Since R[z—(] is noetherian § is a finitely generated R[z—(]-module. Let m C R[z—(]
be a maximal ideal. It satisfies (2—() € m because otherwise 1 + a(z—() € m for some
a € R[z—(] which is impossible since 1 4+ a(z—() is invertible. Therefore n := R Nm is
maximal in R.

Claim: §p is a flat R[z—¢] -module.

In order to prove the claim, we note that q is a direct summand of (z—g)dpé as an R-
module since M is a locally free R-module. Thus § is flat over R. Moreover we have
R[z—(]®zR/n = R/n[z—(]. Clearly the natural morphism R[z—(]®zR/n — R/n[z—(]
is surjective. It is also injective; for this we can write 3. f; ® @; € R[z—(] ®z R/n as
(Xven, v(2—0)") ® 1 with r, € nif it is mapped to zero in R/n[z—(]. Since n is finitely
n with n € N and we write r, = >

n

j=1 bujej. Combining this, we

generated, n = (e;);=1

.....

get

Y fi®a= (Z m(z—()“) ®1= (Z(Z bu,j(z—O”)ej) ©1

j=1 veNy

As nis a maximal ideal §® 5 R/n = El@R[[z—cﬂR/”[[Z_CH as a submodule of (z—()p @ s R/n =2
(z—C)% 5 ® Rloe] R/nz—(] is a free module of rank r over the principal ideal domain
R/n]z—(]. Now the claim follows from [EGA IV, Théoréme (11.3.10)].

This being true for all maximal ideals of R[z—(], we see that § is a finitely generated
flat hence projective module over the noetherian ring R[[z—( J. By [EGA Inew, Proposition
(10.10.8.6)] it is locally on Spec R free over R[z—(].

It remains to show that q ®pp, . R[z—(] ~ q. Consider the following diagram (A =

R[z—(], B = R[z—(]):

Tori(M,B) — §®4 B — (2—)"p ®4 B — M @4 B — 0
0 4 (z=0)pr — (=) "pr/a — 0.
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2.3 Bounded Hodge-Pink lattices

The top row is obtained from the exact sequence 0 — q — (2 C) Pp— M — 0 by tensoring
over R[z—(] with R[z—(]. By Lemma 2.1.1 we have TorR[[Z_d](M, R[z—(]) = Torf(M, R)

which is zero since M is flat over R. O]

2.3 Bounded Hodge-Pink lattices

Letr € Nandi € {1,...,r}. Let (D, Fp) be a z-isocrystal over k of rank r, R be a K-algebra
and let q be a Hodge-Pink lattice over R of (D, Fpp) such that (z—¢)%g 2 q 2 (2—¢)“px.
By the above Proposition 2.2.5, q is a projective R[z—(]-module. Thus the natural maps

A E=O%r—= N\ a—= N\ (=0%=

R[z~] R[=~] R[=<]

are injective ( [BouAlg, I11.7.9 Corollary to Proposition 12| ). We remark that we can view
/\;Hz 9 and /\z%ﬂz 1 Pr as submodules of /\;[[Z qVr = /\3%((2 ¢y Vr. In order to see this,
notice that Agp, Ve = (Arpq (z—C)dpR)[ﬁ] @nd since A\pp. (z—()%pp is free over
R[z—(] also the morphism into the localization /\3%[[2 Y Vg is injective. Together with the
injection /\R[[ T R /\R[[z—c]] (z—C)pg we get the injectivity of /\EIIZ_C}] q— /\iR”:Z_C]] Vgr. The
inclusion App, (g Pr © Agp Vg is clear. Also note that in the R((2—¢))-module A Rl-<] VR
we have /\R[[z—q] (2=¢)"pr = (z=0)" /\R[[z—g]] PR

Now we want to define a boundedness condition for Hodge-Pink lattices. Let » € N. We
fix a z-isocrystal (D, Fp) over k of rank r and integers wy, ..., w, € Z with wy > ... > w,.
Set w = (wy, ..., w,) and |w| = w; — w,. For each K-algebra R let Qp <, (R) be the set of
Hodge-Pink lattices q over R of (D, Fp) which satisfy the following conditions:

(2.3.1) /\ q=(z=¢) /\ PR

R[z~] R[]

(2.3.2) N a2GE=Q"™ N pr i=1...r
R[] R[]

(2.3.3) /\ q C (z= )ittt /\ PR i=1,...,r
R[z~] R[=<]

Remark 2.3.1.  Since (Ai%ﬂz{]] q) ®rpeo Rz—C] = /\32'[[,2{]] (9 ®rpae) R'[2—(]) for each
R-algebra R, Qp <u(_) defines a subfunctor of the functor Qp , ., which we denote by

QD,Sw‘

Lemma 2.3.2. Conditions (2.3.1) and (2.3.2) are equivalent to conditions (2.3.1) and
(2.3.3).
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Proof. Set I = {1,...,r}. By Proposition 2.2.5 we can assume that q is a free R[z—(]-
module. Let (e;)1<j<, (resp. (fj)i<j<r) be a basis of pg (resp. q) as an R[z—(]-module.
Let A be the matrix corresponding to the identity morphism with respect to the bases (e;)
and (f;), where we consider id: Vg — Vi as an R((z—())-linear map. Now A’(A) is the
matrix corresponding to the morphism A‘(id): A’'Viz — A’ Vi with respect to the bases
(eq)aes. ) and (fa)aeg. ) where §i(1) = {G C I |1G = i} and eq = ey, A ... A ey, with
{g1,...,9;} =G and g1 <...< g;. With these notations we can reformulate (2.3.1), (2.3.2)
and (2.3.3) in the following way:

(2.34) det(A) =c(z—¢)""" ", ce R[z—(]"
(2.3.5) A\ €My oy (=)™ R[==(])
(2.3.6) (/\(A)) € M(Z) “ (7;) ((Z—C)w’r+1—i+...+wrR[[Z_C]])

If we define B; = (pu,a'pa.cr det(Acr 1)) (@, H)es.(1) x5 (1) (notation from [BouAlg, I11.7.8 (19)
p.519]) we get

(2.3.7) det(A) - E(T) ='B; - /\(A).

Proof of equation (2.3.7):

<TBi-/\(A)> = Y ("Bler - NAru= Y pocpprpr det(Ap c)det(App)
G,H

PES»;(I) :(Bi)P,G PE%’Z'(I)

det(4) ifG=H,
0 if G#H.
The last “=" is exactly [BouAlg, II1.8.6 (21) and (22)]. By the definition of B; we see that

B My oy (=0 R q])

(2.3.8) r—i
& \(4) eM (" )x(7) ((z=¢)™™ " R[2—(])

r—i

The claim follows from (2.3.7) and (2.3.8). O

Remark 2.3.3. With the notation of Lemma 2.3.2 and in the situation that R = L is a field
we can take the bases (e;)1<j<, and (f;)1<j<, to be the bases from Definition 2.2.1.(vi). If
(vi,...,v,) are the Hodge-Pink weights of q then A = diag((z—¢)~"",...,(2—¢()"""). From
(2.3.4) and (2.3.5) we see that q € Qp <, (L) if and only if

(2.3.9) vty <w+ ..o+ w i=1,...,r with “=” for i = r.
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2.3 Bounded Hodge-Pink lattices

Thus Qp<w(L) is the set of all Hodge-Pink lattices over L of (D, Fp) with Hodge-Pink
weights v = (vq,...,v,) such that v < w in the Bruhat order, i.e.

vw & w—v:Zniai with n; € Ny

Where o = ((ai>j)j€{1 ..... r} — ZT Wlth
L j=yq
(i)j =91 j=i+1,
0 else

fori=1,...,r—1.
Also this especially shows that in the situation when R is an arbitrary K-algebra and
q € Qp.<w(R) the locally free R-module (z—¢)*"pr/q has rank —rw, + 3., w;. Namely,
by the proof of Proposition 2.2.4, for an R-field L, ((z—¢)"“"pr/q) ®r L is the quotient
(z—¢)pr/q in Remark 2.2.2 with ¢ = w, and q = q @g[.—¢] L[z —(].

Let R be a K-algebra. The next Lemma shows how one can interpret conditions (2.3.1)

- (2.3.3), that g has to satisfy to be an element of Qp <, (R) as closed conditions.
Lemma 2.3.4. Let j € {1,...,7}. Let @ € Qpa, uy (R) be a Hodge-Pink lattice over R. We

denote by ozgj,)ﬂ the natural morphism (see the proof)

A o/ A =0 A 0" [ =g A b

Rl=<] ' R[] R[] R[=]
and by Bq.w the morphism

=0 Awn) A am A\ =0m ) A

R[] R[] R[] R[[Z—C]]

Then aqu 1s zero if and only if the Hodge-Pink lattice q satisfies (2.3.3) for i = j and q
satisfies (2.3.1) if and only zfa w and g, are both zero.

Proof.
J J
N\ aC =TT A pa
R[] R[]
J J J J
sl Na= N\ G=0"pr—> N\ (=0"pr / (z=¢) st N pr | =0
R[] R[] R[] R[]
J
/ O A (: / (=gt A ] =0
R[=<] R[[z{ﬂ R[=~<] R[=<]
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Hence our claim about condition (2.3.3). In order to show the second claim, first note that,

since (z—¢)""pr C q, we get (2—C)""pr C (2—¢)"" “*q. Therefore we have the inclusions

r

(Z_C)w1+...+wr /\ pRE /\ wrp C/\ wr wl

R[] R[]

and hence it follows analogously that (z—¢)"* " /\;%[[z—c]] pr C /\’;%[[Z 9 if and only if

(z=¢)" Nrpe pr/ Nrp=c 9 = Nrpq (z=¢Q)"""q/ Nrp=c 9 18 zero. O

Remark 2.3.5. The modules

A =6 [ =0 A and A 0"\

R[] R[] R[] R[[Z—Cﬂ

are finite locally free as R-modules. This is due to the fact that pg is a free R[z—(]-module
and, by Proposition 2.2.5, q is locally on Spec R a free R[z—(]-module. By working locally

on Spec R, we can assume that both pp and q are free R[z—(]-modules and hence pg

¢]®". Therefore /\;%[[z g Pr (resp. Az%ﬂz 7 9) is isomorphic to

and q are isomorphic to R[z—

R[[z—C]]@(;) (resp. R[z—C(]). We get that (locally on Spec R)

/\ (Z—OprR/(Z_Qerj+-..+wr /\ PR’XR () (Wrg1—j+-twr_1)

R[]

and
IS

/\ (Z_C)wrwlq/ /\ q ZRGBwI_wT.

R[] R[]
Now, with the help of the morphisms of Lemma 2.3.4, we want to extend the functor
(@ p,<w to the category of schemes. Let M be one of the sources or targets of the morphisms

agjl)u or 34w, i.e. M is one of the following modules:

/ “'Pr,

R[=~] R[[z{}]
J J
A G=0"pr [ = A
R[>~] R[=~]
i r
(Z_C)wl—s—.“—{-wr /\ pR/ /\ q’
R[=~] R[[z%]]
/T\ wr w1 /
R[] R[[z%]]
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2.4 Qp <w as a projective scheme

In any case M is actually an R[z—(]/(z—¢)“module for some ¢ € N. Therefore we get
that

M @r R = M ®pp-q)/—c) R[z—C]/(2=() ®@r R
= M QgL B[2—C1/(z =) = M ®pp— R'[—(].

Moreover we have already seen that /\Jﬂz PR agd /\1;%[[2 7 9 are finite locally free and hence,
for example in the case when M = Az 4 q/ Napeq (=0 " pr,

J
M ® g Rz—(] = /\ (9 @R[ R'[z—(]) / /\ g

R/[+<] R[]

and similar in the other cases. This shows that we can identify aqw ®p idp with
(4)

U ENa)RY ?

with the following subfunctor of Qp ., w,:

and (., Qg idp with /3(q®RgH]]R’[[z—C]]),w- Hence we can identify Q)p <y

QD,gwi (K-algebras) — (sets),
R~ QD,SU;(R)

where Qp.<w(R) = {4 € Qpw,u (R) | agfw =0, ¢=1,...,r and B4, = 0}. The functor
Q p.<w is a sheaf on the category of K-algebras. We also denote the extension of Q)p <4

(resp. QD,gw) to the category of K-schemes by Qp <., (resp. QD,Sw)' If FF e QD,wr7w1(S)’
where S is a K —scheme and if S =,

el
cach j € {17 }) F|SpecR w (resp BF\SPECR w) to be (Oéf(i])w)NSPECRi (resp‘ (BCIi,w)NSPECRi)
with q; = F(Spec R;, F|Spec R;) € Qp.a,.w (Ri). We have just seen that these morphisms
glue to morphisms Ag)w (resp. Bp,,) of Os-modules. With these notations we get

Spec R; is an open affine covering of S we define (for

Qp,<w(S) = {F € Qpoupwi (S) | AV, =0, B, = 0}.

Furthermore if T is an S-scheme and F € Qp.y, v, (S) we have (Ag)w) = AFTw and
(BF,TU) ngzw

2.4 ()p<w as a projective scheme

Let de € Z, d < e, ® € Zn]. Set Wy, = SpecK[z—(]/(z—¢)*"*, Po
(z—0)%k /(2= px and Pe) = (Plde))"Wae — plde) g Ow,, . If there is no matter of
confusion we write W (resp. &) instead of Wy, (resp. 2@9) and if w = (wy, ..., w,) € Z"
with w; > ... > w, we also denote W, ., (resp. 2wV by W,, (resp. £™). For each
K-scheme S, let Quot?, ywyic(S) be the set of finitely presented S-flat quotients of &5 on
Ws with Hilbert polynomial ® on each fiber.
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Chapter 2 Hodge-Pink lattices

Remark. This defines a variant of Grothendieck’s Quot-functor. In [FGA, no. 221] it is
shown that this functor is representable in the category of locally noetherian K-schemes.
Altman and Kleiman have shown [AK, (2.6) Theorem| that one can even drop the noetherian
hypothesis under mild finiteness conditions. These are fulfilled in our situation. Namely:

e The finiteness of W = Spec K[z—(]/(2—¢)*™* over K implies that W is strongly
projective in the sense of [AK]| and that for each K-scheme S the support of an element of
Quot?, /wyx (S) is proper and finitely presented over S.

e Z is isomorphic to f*O3" if f: W — Spec K is the structure morphism.

Thus we see that both functors coincide and all extra conditions of [AK, (2.6) Theorem| are
satisfied.

Let n > 1, S a scheme and & a quasi-coherent &s-module. Recall that, if we define
Grass, (&) = {8/ N = .F | .Z finite locally free of rank n}
then for each S-scheme T' the assignment
T — Grass,(&)(T) := Grass, (&)

defines a functor from the category of S-schemes to the category of sets which is repre-
sentable by a projective S-scheme that is also denoted by Grass, (&) (c.f. [EGA Inew, §9.7]).
We want to describe an inclusion of functors Quot%, wyi(S) = Grass, (&) for suitable n
and & and show that this morphism of functors is representable by a closed immersion.

Thus we have an explicit proof of the representability of Quot?, ywyk 10 our situation.

2.4.1 Representability of Quot%}/W/K

Let f: W — SpecK denote the structure morphism and let g: S — Spec K be
a K-scheme. fg: Wg — S is affine with Wg = Spec ﬁs[[z—C]]/(z—C)e_d because
g (K[z=C1/(z=Q)* )y see) = g*(Ospec s [2= 1/ (2= Q) ") = Os[2=C]/ (2= ).
Lemma 2.4.1. Let #,9,7 be Ow,-modules.

i) 0= F -9 — H — 0 is exact if and only if 0 = (fs)«Z — (fs)«4 — (fs)7 — 0
1S exact.

i) If (fs)«Z = (f5)«Y as (fs)«Owg-modules then F = 4.

i) If a: T — S is a morphism of schemes and if we denote the projections Wy — Wg
(resp. Wy — T) by b (resp. fr) we have a canonical isomorphism a*(fs)«% = (fr)«b*F.

Even more precisely we have:
quasi-coherent quasi-coherent
%
Oy 4-modules Oslz—]/(z—¢)° “modules

F = (fs)F
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2.4 Qp <w as a projective scheme

is an exact functor which is an equivalence of categories such that it is compatible with
base change [EGA Inew, Théoréeme (9.2.1), Corollaire (9.2.5), Corollaire (9.3.3)]. .# is an
Owg-module of finite presentation if and only if (fs)..# is an (fs).O0w-module of finite
presentation [EGA Inew, Corollaire (9.2.6)].

Remark 2.4.2.

i) Note that in our situation @s[z—(]/(z—¢)*  is a finite free @g-module. Therefore, if
M is an Os[z—(]/(z—(¢ )67d—module of finite presentation then . is of finite presentation
as an Og-module.

ii) In the situation of Lemma 2.4.1.(iii) let ¢4 be an element of Quot%}/W/K(S) such that
we have the exact sequence 0 — A — H5 — 4 — 0 and therefore the exact sequence
0= (fs)e = ([5)ePs = (f5)+4 — 0. By (i) (f5)«¥ is finite locally free and therefore
0 = a*(fs)sA — a*(fs)ePs — a*(fs)«4 — 0 is exact [GW, Proposition 8.10 (Remark

N PN AN ,

%(fTIb*A/ %(fT;;)*@S %(fT)*b*(g
8.11)]. This implies the exactness of 0 — A7 — Pr — 9p — 0 and hence G = P/ N7

We will also need the following converse to Remark 2.4.2.(i).

Lemma 2.4.3. Let A be a ring and B a finitely generated A-algebra. Suppose that M is
a B-module such that M is of finite presentation as an A-module. Then M 1is of finite

presentation as a B-module.

Proof. We can assume that B = A[T] is generated by one element and even that it is a
polynomial ring over A. Let f: A — M (n € N) be a surjective homomorphism with
ker(f) = (z1,...,xm)a (m € N, ; € A™). f induces by tensoring up with B a morphism
(A[T])* = B® - M ®4 B. Let f: (A[T])" — M be the composition of this morphism
with the canonical morphism M ®, B — M. For ¢ = 1,...,n let e, € A™ be the i-
th standard basis vector and choose y; € A" such that f(y;) = f(Te;). Then clearly

f(Te; —y;) = f(Te;) — f(y;) = 0. We claim that

Proof of the claim: We have already seen “C”.

“2" Let P = (Py,...,P,) € (A[T])" with f(P) = 0. We can write P = (Piy +
TP|,...,P,o+TP)) with P,y € A and deg(FP/) < deg(P;) if P, ¢ Aand P/ =0if P, € A.
Thus

P = (P, ..., Poo) + Z P/Te; = (Pro,. .., Poo) + Z Ply; + Z P/(Tei —yi) -
i=1 i=1 i=1

J/

-~

eEN
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Chapter 2 Hodge-Pink lattices

As long as one of the P; ¢ A write @ = (Q1,...,Q,) where Q := (P1g,..., Poo)+> oy Plyi
and then we get

max deg(Q;) < max deg(F) < max deg(F;).

i=l,...,n 7 d=l,..mn 77 =1, n
Thus by replacing P with ) and continuing this way, we can achieve after finitely many
steps that all P; € A. But then we have P € (z1,...,x,,). Thus we have proved the claim.

By the claim ker(f) is finitely generated and therefore M is of finite presentation as a
B-module. O

Lemma 2.4.4. Let S be a K-scheme, s € S and 9 € Quot%}/W/K(S). Then (fs).¥ is
finite locally free and x(¥:)(n) = cs where cs is the rank of (fs).¥ (at s).

Proof. By Remark 2.4.2.(1) (fs)«¥ is of finite presentation as an Os-module and it is flat

by definition hence finite locally free. Since f and therefore fg is affine we have

X(F)(n) =Y (1) dimyq H (W, a(n)) = dimyy T(W,, %)
=0 :%'
S
=0 Vi>0

= dimy ) F(f;(i)(Spec k(s)), %) = dimy s [ (Spec k(s), (fu(s))«Ys)
= dim,s) I'(Spec k(s), ((f5)«¥) @35 K(s)).
The last “=" is Lemma 2.4.1.(iii). O

With the notation of Lemma 2.4.4, since ¥s — ¢ — 0 is exact also
(fs)«Ps = (fs)«G — 0 is exact and (fs).Ps = (fuP)s (Lemma 2.4.1 (i) and (iii)). This
defines by Lemma 2.4.4 a morphism Quot‘f}/W/K(S) — Grasse ([ Z2)(5) (P constant) which
is injective by Lemma 2.4.1.(ii). If further 7' — S is a morphism of schemes Lemma 2.4.1.(iii)

shows that the diagram

QuOt%/W/K(S> I QUOt?}/W/K(T)

| |

Grasse (f.Z2)(S) — Grasse(f.22)(T)

commutes (where the vertical morphisms are 4 — (fs).¥ resp. 4 — (fr).¥). Hence we

get a morphism of functors
Quot%/W/K — Grasse ([ ).
Proposition 2.4.5. The morphism of functors
Quot?}/W/K — Grasse (f.?)

s representable by a closed immersion.
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2.4 Qp <w as a projective scheme

Proof. Quotg—g WK Grasss (f«Z?) being representable by a closed immersion means that
for all K-schemes S and all morphisms of functors Homg(_,S) — Grasse(f.Z?) the functor

T Quot%/W/K(T) X Grasse (f+2)(T) HOIHK<T, S)

is representable by a closed subscheme of S. By the Yoneda Lemma a morphism of
functors Homg( ,S5) — Grasse(f.%?) corresponds to an element u: (f,#)s — 4 €
Grasse(f.Z)(S) and we have to show that there exists a closed subscheme Sy of S such
that a morphism 7" — S factors through S; if and only if ¥ comes from an element of
Quot‘;/w/K(T) which is the case if % is an Op[z—(]/(z—¢)° “module of finite presen-
tation since it is already flat as a finite locally free &r-module. By Lemma 2.4.3 we just
have to check whether % is an Orp[z—(]/(z—¢)* “module. Let t: (f.2)s — (f.2)s be
multiplication with (z—¢) + (z—¢)* %@s(S)[z—(] € (S, Os[z—C]/(z—¢)* %) and let ¢
be the composition uot: (f,.#)s — 4. If now T is an S-scheme we have ¢r = up o tp
and t7 is multiplication with (z—¢) + (z—¢) *@p(T)[z—(] in (f.2)r. This shows that
¢ comes from an element of Quot%, swyi (T) if and only if pr factors through ¢7. Now let

A = ker(u). We have an exact sequence

and therefore

is exact. With these notations ¢r factors through ¢4 if and only if provy = (pov)r: N7 —
r is zero. We are now in the situation to apply [EGA Inew, Lemma (9.7.9.1)] from which
the Proposition follows. [

2.4.2 Representability of ()p <,

We want to identify Q p <,, with a subfunctor of Quot?, JwyK- Since Qp.<w is a sheaf it suffices
to identify Qp <, (R) with a subset of Quot?, ywyi(Spec R) for every K-algebra R and show
that every induced morphism Quot%, ywyi (Spec R) — Quot?, ywyi(Spec ), coming from a
K-algebra morphism R — R', coincides with Qp <u(R) = Qp <w(R') on Qp <w(R). Let R
be a K-algebra. For q € Qp <,(R) we write § for the corresponding element in Qp <, (R).

Such a q corresponds to a quotient
ug: P — P /4

Since P / q = (2—¢)""pr/q is finite locally free as an R-module u, gives rise to an element
of Grassg, (f.2™)(R) where f: W — Spec K is the structure morphism and ®,, = —rw, +
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Chapter 2 Hodge-Pink lattices

Y iy w, is the rank of (2—¢)""pr/q by Remark 2.3.3. As we have seen in the proof of
Proposition 2.4.5 the fact that (z—¢)""pr/q is also an R[z—(]/(z—¢)""-module shows that

(1)~ spee RI==1/01"! Ties in Quoti},,“{m W /K Remark 2.4.2.(ii) shows the compatibility of this

inclusion with morphisms R — R’. This identification is compatible with the following

identification of Quot(;{w) W K A5 2 subfunctor of QD,wmwl' For each K-scheme S and

u: PV 54 Quot?;“(w)/ww/K(S) we set Q(u) = ker(u) which is an object of Qp ., w, (S).

In order to see this, first note that (fs).Q(u) = ker((fs).u: (fs)*g@éw) — (fs)+¥) and we
have already seen that (fs).¥ is finite locally free. Since ( fg)*,@éw) is finite free we also get

that (fs).Q(u) is finite locally free. The compatibility of this identification with morphisms
T — S follows from Remark 2.4.2.(ii) and Lemma 2.4.1.(iii).

Proposition 2.4.6. The inclusion Qp <, Quoti;gw)/w K 1s representable by a closed

TMMErsion.

Proof. Let S be a K-scheme and let u: ﬁéw) -9 € Quot;“gw)/ww/K(S). We have to show
that there exists a closed subscheme Sy of S such that a morphism 7" — S factors through
Sp if and only if up: c@éw) — Yp lies in Qp <w(T).

We associate to u: @éw) — 4 the object Q(u) € Qpa, ., (S) and consider the morphisms

Ag?u) L forj=1,...,rand By, In this case ur lies in Qp,<,(T') if and only if

(4) ~ A0) ~ (4)
AQ(uT»w - AQ(u)w - (Aé(u),w)T

and

12

Bowrw = Bowyrw = (Boww)r

are all zero (j = 1,...,7). In order to apply [EGA Inew, Lemma (9.7.9.1)], we have to check

that the targets of Ag()u) y and By are finite locally free 0s-modules. This follows by

their local description in Lemma 2.3.4 and by Remark 2.3.5. [

2.5 Weak admissibility

2.5.1 Filtered vector spaces

Definition 2.5.1. Let L be a field.
i) Let V be a finite-dimensional L-vector space. A family F = (F');cg of L-subspaces of
V' with index set R is called an R-filtration of V if

a) F' C FJ fori> j,
b) there exist i, j € R such that 7' =V and F? = 0 and
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2.5 Weak admissibility

c) for every i € R F' =, _; F.
In this case, for every i € R, we denote F*/(3_,.; F7) by gr'iz(V). The finite set J where
gri-(V) # 0 for j € J and gr’-(V') = 0 for 5 ¢ J is called the jumps of F. If I is a subset of
R and gr'-(V) = 0 for every z € R — I we say that F is an I-filtration.

ii) A filtered vector space over L is a tuple (V,Fil®* V') where V' is a finite-dimensional L-
vector space and Fil*V = (Fil' V);cg is an R-filtration of V. The sub-quotients griy. (V)
are denoted by gr' (V).

Let V be a finite-dimensional vector space over a field L and let F* = (F");cg be an
R-filtration of V. If U C V is a subspace we get an induced filtration on U denoted by
F*|U = (F'|U);er which is given by

FIU =UNF.

The subquotients grif.w(U ) of U coming from the filtration F*|U are also denoted by
gri. (V)|U.

Definition 2.5.2. Let (V,Fil* V) be a filtered vector space over a field L. We call
deg(V,Fil' V) = > i - dimgr'(V)
ieR

the degree of (V,Fil*V).

2.5.2 Newton slope

Definition 2.5.3. Let (D, Fpp) be a z-isocrystal over k and let B be a basis of D. If Mp, 5
is the matrix corresponding to Fp with respect to B as defined in Remark 1.2.2.(ii), we
denote ord,(det Mp, 5) by tn(D, Fp) and call it the Newton slope of (D, Fp). Note that

this definition does not depend on the chosen basis.

Remark 2.5.4. Let D = (D, Fp) be a z-isocrystal over k where either k is a perfect field or
the z-isocrystal is split semi-simple. In both cases we have a decomposition D = € req D
of D into isoclinic sub-z-isocrystals D, = (D), Fp,) of slope A (Lemma 1.2.5 and Definition
1.2.6). This decomposition gives rise to a Q-filtration of D
F'D =P D
—j=i

and we get that

tn(D, Fp) = deg(D, F*D).
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Chapter 2 Hodge-Pink lattices

2.5.3 Hodge slope

Definition 2.5.5. Let L|K be a field extension and let (D, Fp,qp) be a z-isocrystal with
Hodge-Pink lattice over L. If (wy,...,w,) € Z" are the Hodge-Pink weights of qp we set

tH(DvFDan) = _sz
=1

and call this the Hodge slope of (D, Fp,qp). It is also the integer n € Z such that A" py =
(z—¢)" A" qp which follows from (2.3.9) in Remark 2.3.3 where n is exactly ord(,¢)(det(A)).

Lemma 2.5.6. Let L be a field extension of K and let (D, Fp,qp) be a z-isocrystal with
Hodge-Pink lattice over L. If ¢ € Z with (2—C)pr. C qp and (2—C)pr. C py) then

tu(D, Fip,qp) = dimg qp/(2—¢)pr — dimg pr/(2—C)pr
and if (wq,...,w,) € Z are the Hodge-Pink weights of qp then
dimy(qp/(2—¢)""p1) = tu(D, Fp,qp) + wy - dimyy D.

Proof. Both formulas follow from the description of qp/(z—()“p. given in Remark 2.2.2.

For example:

.,
dimg(ap/(z—C)"p) = rowy  — Y w;
=w;-di p =1
1Al ((2)) ——
=ty (D,Fp,dp)

Hodge filtration

Let L|K be a field extension. If (D, Fp,qp) is a z-isocrystal with Hodge-Pink lattice over
L we denote the L-vector space 0*D ®y .y L[z—C]/(2—C¢) = pr/(z=)pr by Dr. The
Hodge-Pink lattice qp gives rise to a Z-filtration on Dy by setting

Fil' Dy = ((2—=0)'ap N p)/((2=O)'ap 0 (2= C)py).

This filtration is called the Hodge filtration of (D, Fp,qp). Now let (wy, ..., w,) € Z" be the
Hodge-Pink weights of qp. By choosing an L]z —(]-basis (x1,...,z,) of p, as in Definition
2.2.1.(vi) such that ((z—¢)“'z1,...,(z—()""z,) is an L[z—(]-basis for qp we see that

(Z_C)qu N pL _ <<2_C)max{0,i+w1}$l’ e (Z_C)max{o,i+wT}>

and
(2=0)'ap N (z=Qpr = ((z=Q)™ Wy, (=T )
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for every ¢ € Z. Hence we get that
dimy (Fil' Dp) = #{j | i < —w;}

and therefore

dimy (griye (D)) = #{J | i = —w;}.
This shows that the jumps of the Hodge filtration are the negative of the Hodge-Pink
weights. Altogether we have seen that

tH(D, FD7 qD) = deg(DL, Fil® DL)

2.5.4 Weakly admissible z-isocrystals with Hodge-Pink lattice

Definition 2.5.7. Let L|K be a field extension. A z-isocrystal with Hodge-Pink lattice
(D, Fp,qp) over L is called weakly admissible if ty(D, Fp,qp) = tn(D, Fp) and the following

equivalent conditions hold:

a) tu(D', Fp,qp) < tnx(D', Fp) for any sub-z-isocrystal with Hodge-Pink lattice
(D/7FD’;qD’) Of (DaFD7qD)7

b) tu(D', Fpr,qp) < tn(D', Fpr) for any strict sub-z-isocrystal with Hodge-Pink lattice
(D/7 FD’a qD’) Of (Da FD7 qD)7

¢) tu(D', Fpr,qp) > tn(D’', Fpr) for any quotient-z-isocrystal with Hodge-Pink lattice
(D,7 FD’a qD') Of (D7 FD7 CID)7

d) tu(D’, Fpr,qp) > tn(D’, Fpr) for any strict quotient-z-isocrystal with Hodge-Pink lattice
(D/7FD’7qD’) of (DuFD7qD)'

If (D, Fp) is a z-isocrystal over k and q is a Hodge-Pink lattice over L of (D, Fp) we say
that q is weakly admissible if the z-isocrystal with Hodge-Pink lattice (D, Fp,q) is weakly

admissible.

For the proof of the equivalence of these conditions see [Pin, Proposition 4.4]. Our defi-

nition of weakly admissible is a modification of what is called semistable in [Pin].

Remark 2.5.8. Since it is enough to test weak admissibility for strict sub-objects (resp.
quotient-objects) we only have to look at sub- (resp. quotient-) z-isocrystals of (D, Fp)
because every such object induces a strict sub- (resp. quotient) z-isocrystal with Hodge-
Pink lattice and every strict sub- (resp. quotient) z-isocrystal with Hodge-Pink lattice arises

in this way.
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Chapter 3

The relation of weak admissibility to GIT

3.1 Reminder on Geometric Invariant Theory

In this section we summarize some concepts and results from Geometric Invariant Theory
which we will need later. The main reference for this is [GIT|. We consider schemes over
a fixed field denoted by F' and products and morphism are always defined over F' if not

otherwise stated.

3.1.1 Actions of an algebraic group
Definition 3.1.1. Let G be a group scheme over F'. An action of G on a scheme X is a
morphism of schemes o: G x X — X over F such that the diagram

idg Xo

GxGx X —"—SGxX

l,u, Xidx lcr

Gx X —2 X

commutes (4 denotes the multiplication morphism of G).

Definition 3.1.2. Let G be a linear algebraic group, let A = I'(G, O¢), and let a: A —
A®p A (resp. f: A — F) be the homomorphism defining the multiplication (resp. the
identity). Let V' be a vector space over F.

i) A dual action of G on V is a homomorphism of vector spaces
oc:V—=>AQrV

such that the diagram

V—" s ArV

la— la@idv

AQpV 8% Ao AV

commutes and

VS Agy v 22y
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is the identity.

ii) Let ¢ be a dual action of G on V. We say that v € V' is invariant under the action of
Gifo(v) =1®wv.

3.1.2 Linearization of an invertible sheaf

We denote the projection morphism G x X — X (resp. G x G x X — G x X) by pr, (resp.
Pry3)-

Definition 3.1.3. Let G be a linear algebraic group, X a scheme, 0: G x X — X an action
of G on X and .Z an invertible sheaf on X. A G-linearization of £ is an isomorphism
of sheaves ¢: 0*.¥ = pr;.# on G x X which satisfies the cocycle condition, i.e. the

commutativity of the following diagram of morphisms of sheaves on G x G x X.

(00 (idg x0))" L (pr, ofidg x0))".Z (0 0prys)"Z
(3.1.1) ‘ lprw
(0o (pxidy)) .iwmdx (pryo(p x idx))*Z === (pryoprys)*.Z

The following relation between G-linearizations of invertible sheaves and G-actions on
their corresponding geometric line bundles which are compatible with the action of G on X
is taken from |GIT, Chapter 1 §3 p. 31|. With the notation of Definition 3.1.3 let 7: L — X
be the geometric line bundle corresponding to .Z. The isomorphism ¢ corresponds to an

isomorphism & of line bundles over G' x X:
(G x X) ><[,,XL<3 (G x X) Xpryx L =G x L.

By composing ® with the projection morphism (G x X)X, x L — L we see that ¢ corresponds
to a morphism of line bundles ¥: G x L — L such that

GxL—251T
lingﬂ' lﬂ'

Gx X 25X

commutes. The translation of the cocycle condition to this setup is given by the commuta-
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tivity of the following cube:

GxGxL pxidy Gx L
\Gx)z K
GxL = l L
Gx G x X —dx y G x X
\GX)J \‘
GxX < y X

Thus it is equivalent to consider G-linearizations of invertible sheaves on X or actions of G
on their corresponding geometric line bundles which are compatible with the action of G
on X.

Given an algebraic group G acting on a scheme X we denote by PicG(X ) the group of
isomorphism classes of invertible sheaves on X together with a G-linearization. If f: X — Y

is a G-linear morphism of schemes on which GG acts we get a morphism
f*: Pic®(Y) — Pic%(X).

Ezample 3.1.4 ( |GIT, Chapter 1 §3 p. 32| ). Let E denote a field and let X = Spec E,
¥ = Ox and hence L = A'. Note that the group of automorphisms of A! as a line bundle
over X is G, and therefore in this case G-linearizations are just characters y: G — G,,.
The action ¥ of G on A! corresponding to x is given by X(a, z) = x(a)z. Furthermore, if
x € (G, 0}) is the global section representing y, we get an isomorphism ¢: g @p E =
Oq @p E, g+~ Y g which is the corresponding G-linearization.

For a scheme X equipped with an action of an algebraic group G we also get that every

G-linearization ¢ of an invertible sheaf .2 on X induces a dual action on I'(X,.Z). It is

given by the following morphism:
(X, %) 5 T(Gx X, 07 L) ST(G x X, pr &) 2T(G, 6) 9 (X, ZL).

The last isomorphism follows from the Kiinneth formula and the commutativity conditions
for a dual action follow from the cocycle condition. By invariant sections of ¢ we mean
sections s € I'(X,.Z) which are invariant under this induced dual action of ¢, i.e. s is
mapped to 1 ® s.

Concerning the uniqueness of G-linearizations we have the following

Proposition 3.1.5 ( |GIT, Proposition 1.4] ). Let a connected algebraic group G act on a

scheme X . Assume that there is no homomorphism of G x Q onto G,, x Q (Q an algebraic
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closure of F') and that X is geometrically reduced. Then each invertible sheaf £ on X has

at most one G-linearization.

Later we will exploit the fact that in our case the assumption of this Proposition is not

fulfilled. Thus for us it is possible to change the G-linearization to our needs.

3.1.3 Semi-stability

Definition 3.1.6. Let GG be an algebraic group acting on a scheme X, .Z an invertible sheaf
on X and ¢ a G-linearization of .. Moreover let x be a geometric point of X. In this case
x is called semi-stable if there exists a section s € I'(X, Z") for some n, such that s(x) # 0,
Xs ={z € X |s(z) # 0} is affine and s is an invariant section of ¢,,: ¢* (L") — pry(L")
induced by ¢, i.e. ¢,(0*(s)) = pri(s).

A numerical criterion

Definition 3.1.7. Let G be an algebraic group. A 1-PS (1-parameter subgroup) of G is a
homomorphism G,, — G.

Now suppose we are given an action o of an algebraic group G on a scheme X which is
proper over F. Let A\: G,, — G be a 1-PS and let x € X(F') be an F-rational point. We

consider the morphism

Gm — X,a— A a) - .

By identifying G,,, with Spec F|a, a™!] we can embed it into Al = Spec Fla]:

The dashed arrow is the unique morphism ) making the diagram commutative. Its existence
and uniqueness follows from the fact that the scheme X is proper over F' and that the local
ring of A! at the origin (0) is a valuation ring. The point 1(0) is a fixed point under the
action of G, on X induced by A. It is called the specialization of o(A(«),x) when a — 0.
Next suppose we are given an invertible sheaf .2 on X together with a G-linearization. As
we have seen in Example 3.1.4 the restriction of £ to the fixed point 1(0) together with
the induced G,,-linearization is given by a character t € Z of G,, ( [GIT, Chapter 2 §1 p.
49] ).
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Definition 3.1.8. Let GG be an algebraic group acting on a scheme X which is proper over
F. Furthermore let .Z be an invertible sheaf on X together with a G-linearization. If
x € X(F) and A is a 1-PS of G we set (with the notation above)

and call it the GIT-slope of X in x.

Remark 3.1.9. We have the following functorial properties of u? (x, A) ( |GIT, Chapter 2 §1
p. 49], [DOR, p. 37| ):

o uZ(o(a,z),\) = p?(x,a=\a) for a € G(F).
e For fixed z and A, uZ(z,\) defines a homomorphism from Pic®(X) to Z.

o If f: X — Y is a G-linear morphism of schemes on which G acts, .Z € Pic®(Y) and
x € X(F) then
W (0, \) = i (F(), A).

o If o(\(a),7) = y as a — 0 then u? (2, \) = u?(y, \).

The connection of this concept to semi-stability is established by the Hilbert-Mumford

criterion:

Theorem 3.1.10 ( [GIT, Theorem 2.1] ). Let G be a reductive group acting on a scheme
X which is proper over F and let £ € Pic®(X) such that £ is ample. If F is algebraically
closed and x € X (F) then

x is semi-stable < p? (x,\) >0 for all 1-PS’s \.

Remark 3.1.11. In accordance to [GIT| we have defined u? (x, \) for F-valued points of X.
We actually want to calculate the GIT-slope also for L-valued points, where L is a field
extension of F'. As one can check, there is no need to restrict this definition to F-valued
points but one can also do this for L-valued points. By going through the examples below
one sees that Proposition 3.1.13 and 3.1.16 stay valid in this extended context. Another
way to handle L-valued points is to do base change to L and work with the given definition

by considering rational points on X7j,.

3.1.4 Example: The Grassmannian

Let n € N and let V' be an n-dimensional vector space over I'. We are interested in

the question of how we can define a GIT-slope for the Grassmannian. Since we have an
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action of GL(V') on the Grassmannian (induced by the action of GL(V') on V') our first
task is to provide it with an invertible sheaf which is GL(V)-linearized. We can embed
the Grassmannian into projective space and therefore it is natural to search there for an
obvious candidate and take the pullback. It turns out that there is no canonical choice for
this construction.

We will proceed as follows: First we look at the case of projective space P"~! and calculate
the GIT-slope there. Then we describe two embeddings of the Grassmannian into projective
space and their relation. We fix one of these embeddings but since there is no canonical

choice we have to take care of this in our later applications.

A linearization of Opn-1(1)

On A™ we have an action of the algebraic group GL,. If z is an R-valued point of A" (R
an F-algebra), a matrix M acts on z as M - z, where we view x as a column vector in
M,x1(R). There is also a natural action of the algebraic group PGL,, on P"~! and we have
a canonical morphism GL,, — PGL,. Thus we get an action of GL,, on P*~!. One way to
view this action is as follows: The operation of GL, on the affine cone A" of P"~! leaves
the zero-section (0) C A" invariant. Thus GL,, acts on A" — (0) and the action of GL,, on

P! is the same as the one induced by the projection
7o A" — (0) — P L

Let L be the geometric line bundle corresponding to @pn-1(1). By [EGA II, Remarque
(8.7.8)] L can be viewed as the blowing up of A" in (0). As we have just mentioned GL,, acts
on A" and therefore we get a GL,-action on L. It is compatible with the action of GL,, on
P"! since the canonical morphism L — P"~! is obtained from 7 by [EGA II, Proposition
(8.6.2)]. Altogether this shows that we have a GL,-action on projective space P"~! together
with a GL,-linearization of the invertible sheaf Opn-1(1).

Remark 3.1.12. We can change the GL,-linearization by characters y: GL, — G,, without
changing the action of the algebraic group GL, on P"~! by letting a matrix M operate as
X(M) - M. This is due to the fact that the action of GL, on P! factors through PGL,
and is thus not affected, but on the other hand this modified action on A™ is different from

the original one (c.f. Proposition 3.1.5).

The GIT-slope in the case of P"!

Now let \: G,, — GL,, be a 1-PS. This induces a linear action of G,, on P*! plus a G,,-

linearization of @pn-1(1). We can choose coordinates such that we can assume that we have
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a linear action of G,, on the affine cone A" of P*~! that is given by

> (a0 1<i,j<n

with t1,...,t, € Z. With these notations we can formulate the following

Proposition 3.1.13 ( |GIT, Proposition 2.3] ). Let z € P""(F) and let T be a represen-
tative in A"(F) of x. Assume moreover that we have fized coordinates such that the action

of A is diagonalized as above and & = (Z1,...,%,). In this situation we get that

Mﬁﬂm—ﬂl)(x, )\) = max{—ti | T # 0}-

An action of GL(V) on the Grassmannian

Let e € N and let 7 = V"™Spee? =V @ Ogpec p. If we denote f*7 by #7 for an F-scheme
f: T — Spec F, recall that the T-valued points of Grass,_.(?") are given by

Grass, (Y )(T) ={Vr — V1 /% | # finite locally free of rank n — e}.
——
S
Therefore, if R is an F-algebra and Vg = V ® R, we can view Grass,_.(?)(R) as the set
of surjective morphisms Vz — M such that M is Zariski locally isomorphic to R?"~¢. On
this set the group GLg(V ® R) operates in the following way: An element g € GLg(V ® R)

is mapped to the morphism

Grass,,—(?)(R) — Grass,—.(?)(R).
(m: VR = M) (rog™t: Vg — M)
There is also another way to describe this action. If M = Vi /U, the element g maps 7 to
the quotient Vg — Vz/g(U). Indeed both theses actions coincide since ker(mo g=t) = g(U).
Thus we see that we have an action of the algebraic group GL(V') on Grass,_.(¥).
Now consider the space Grass.(?"). Applying what we have just said to the case V = V"V,

we see that there is an action of the algebraic group GL(V'") on Grass.(#"). Since we have

a morphism of algebraic groups, given on R-valued points (R an F-algebra) by
(3.12) GL(V)(R) = GLz(V ® R) = GLz((V @ R)") 2 GL(V)(R),
- g (9")7"

we also have an action of GL(V') on Grass.(?") and for g € GL(V)(R) it is explicitly given
by the morphism
Grass.(?7")(R) — Grass.(7")(R).

(3.1.3)
(¢: Vi — M)+ (¢pog”’: Vi — M)
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We will see that there is an isomorphism between Grass, _.(7") and Grass.(?") that is
compatible with the GL(V')-actions on these schemes. Let 7' be an F-scheme. An element

of Grass,,_.(¥?") gives rise to an exact sequence
0= % — Vr — V7/% — 0.
Taking the dual provides us with the exact sequence
0— (Vp/%) — V5 — U’ — 0.

Since % and hence %V are locally free of rank e this exact sequence corresponds to an

element of Grass.(?"")(T) and hence we get a morphism
§: Grass, (7)) — Grass.(7").

We claim that this morphism is equivariant for the actions of the algebraic group GL(V)
described above. In order to see this, we look at an F-algebra R, an element g € GL(V)(R)
and an exact sequence

05U S Ve — Va/U—=0

of R-modules corresponding to an element x € Grass,_.(?")(R). By the second description

of the GL(V')-action on Grass,_.(7'), we know that §(g-z) corresponds to the exact sequence
0— (Ve/g(U))" = Vi = g(U)" =0

and on the other hand we know that ¢ - (z) corresponds to the exact sequence
0 — ker(i¥ o g") — Vy et v,

These two sequences correspond to the same element in Grass.(?") since ker(:¥ o g¥) =
ker((go)¥) = (coker(g o)) = (Vr/g(U))".

Linearizations on P(V') and P(V)

We recall that P(VY) is defined as Grass;(#") with the action of GL(V') given by (3.1.3).
On the other hand P(V") can also be described as Proj(Sym V). Its affine cone V(VV) =
Spec(Sym V') is also the scheme representing the functor 7'+ Hom(¥, Or) = T(T, ¥7) =
¥V @p (T, Or) and therefore its R-valued points, for an F-algebra R, correspond to V ® R
on which the R-valued points of GL(V') operate. This action of GL(V') leaves invariant the
zero section Z of V(VV). Therefore the projection morphism V(VV)—Z — P(VV) induces a

second GL(V)-action on P(V). Both actions are in fact equal as can be seen from (3.1.3).
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By choosing a basis for V' we identify GL(V') with GL,,. Moreover the dual basis induces
isomorphisms VV 2 F®" and Sym VV = F[T,...,T,]. Thus we have chosen coordinates for
P(VY) (resp. V(VV)) and can identify it with projective space P"~! = Proj(F[T},...,T,])
(resp. affine space A" = Spec(F[T,...,T,]). The actions of GL(V) on V(VV) and P(V'")
described above correspond exactly to the actions of GL, on A" and P""!. The diag-

onalization of a morphism \: G,, — GL, corresponds under these isomorphisms to the

V=V

1EL

decomposition

of V' into weight spaces induced by the action of G,, on V.

Thus providing a representation of GL(V') on V' gives rise to an action of GL(V') on
P(VY) plus a GL(V)-linearization of @pvy(1); see the description before Remark 3.1.12.
Conversely we have seen that a GL(V)-linearization of Op(yv)(1) gives rise to a dual action

F(P(V\/), ﬁP(VV)(l)) — F(GL(V), ﬁGL(V)) & F(]P)(Vv), ﬁP(VV)(l)) .

(& J/

TV Vv
=VV =VVv

Actually this defines on V'V a left co-module structure which corresponds to a right co-

module structure on V" with respect to I'(GL(V'"), O¢r,vvy) and this gives a representation
of GL(VY) on V" and its transpose gives back the action of GL(V) on V.

Similarly we can consider the projective space P(V) and its affine cone V(V'). In this
case we have V(V)(R) = VY ® R and hence we see that we have an action of GL(VY)
on P(V) plus a GL(V")-linearization of @pq/)(1). It is also possible to define an action of
GL(V) on P(V) and a GL(V)-linearization of Op()(1) via the isomorphism (3.1.2). This
GL(V)-linearization is induced by the action of GL(V') on V(V') that is given by

V(V)(R) = V(V)(R)
=(V®R)Y =(V®R)Y
v (0) ()
for every g € GL(V)(R). In the following we will always mean this linearization when we
speak of a GL(V)-linearization of Op(y)(1).

Embeddings of the Grassmannian into projective space
Let e € N. We have the following morphisms of algebraic groups
GL(V) — GL(VY)
described in (3.1.2) and
GL(V) — GL(/E\ V)
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which sends ¢ € GL(V)(R) to A°g. Hence we get actions of GL(V) on V¥ and A“V.
Combining these we can, for example, define an action of GL(V) on A°VY asz — g -z =
(A“(g¥)")(@) or on (A"V)Y as z = gz = ((A°9)") ' (2).

Before we look at embeddings of the Grassmannian into projective space we summarize
some canonical identifications about exterior products of vector spaces and their duals. We
make sure that these identifications respect the corresponding GL(V')-actions. We have a

canonical pairing

v AVYx AV F

()\1 VANPIRIAN /\n—ea v AL Un—e) — det()\i(vj))m
which gives rise to an isomorphism
n—e n—e v

v AVV S ( A v) .
Since V(g - x,g - y) = ¥(x,y) the morphism ¥ becomes GL(V')-equivariant with respect
to the induced GL(V')-actions described above. In the following we will therefore identify

A" VY and (A" °V)Y together with their actions of GL(V).

Moreover we also have a pairing
o: AVx AV AV
(z,y) >z Ay

and this leads to an isomorphism

(3.1.4) ¢: /c\v - (71/_\1/) ®/n\v.
A"V

With the GL(V')-actions described above we have ®(g-x,g-y) = g- ®(z,y) = det(g)P(z,v).
Therefore the morphism ¢ becomes GL(V')-equivariant if we let an element g of GL(V') act
on N VVoAN'Vasry—g-r0g-y=A"%g")" ) ®det(g)y.

The embedding :;: Grass,_.(¥) — P(A°VY): We define 1; as the composition of
the isomorphism Grass, .(¥#) — Grass.(?") with the Pliicker-morphism Grass.(¥") —
P(A°VV) as it is described in [EGA Inew, §9.8]. Hence for an F-scheme T', an element in

Grass,_.(?)(T), corresponding to an exact sequence

(3.1.5) 0=« — VY — V7/% — 0
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is mapped to the quotient

e

Nz = N2

The embedding ty: Grass, .(¥) — P(AN" °V): The second embedding of Grass,_.(¥)
into projective space is just the usual Pliicker-morphism. Hence with the same notation as

above the element (3.1.5) is mapped to the quotient

/\/VT—) /\/VT/%

Comparison of (; and 15: Let & be a basis of A" V. This choice of a basis for A"V
induces, for every F-algebra R, an isomorphism A" “VVo@ A"V R = A" “VY® R and
hence we get, by composing with ¢®idg: A V@R — A" “VVa A" V®R, an isomorphism

n—e

ag: ;\V®R = AVVeR.

VATV YA V()
If we choose a different basis &’ of A"V we get an isomorphism o/, that differs from ap

by multiplication with a unit in /. The morphisms oy induce an isomorphism

(3.1.6) a: V(;\ VY) 1>V(n/_\€V).

~

On the other hand, consider the dual ¢¥: A"V @ A" VY = A°V"Y of the morphism ¢.
We compose it with the isomorphism A" “V = A" “V ® A" V¥ which is again induced by
the basis 7. Tensoring with an F-algebra R we obtain isomorphisms 8z: A"V ® R =
A°VY ® R. We define an isomorphism 3: P(A°VVY) = P(A" V) on R-valued points (R
an F-algebra) as

(3.1.7) B(]j): P(AVY)(R) = B(/\ V)(R).

n—e

(m: A\VY®@R— M) (mopp: A\V@R— M)

As above, a different choice of a basis &’ of A"V would induce isomorphisms fj: A" “V®
R — A°VVY ® R that differ from r by multiplication with a unit in F. Therefore ker(w o
Br) = ker(m o %) and hence 7 o g and 7 o B are the same in P(A"“V)(R). This shows
that the isomorphism 3: P(A“VVY) = P(A" °V) is independent of the chosen basis 7.
The morphisms « and [ are related in the following way: If we denote the zero section
of VIAN°VY) (resp. V(A" °V)) by Z (resp. Z) the morphism o maps V(A°VY) — Z
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isomorphically onto V(A" ~°V)—Z and, by the definition of the projection maps V(A® V") —
Z = P(A\°VY) and V(N") — Z — P(N\"°), the diagram

VINVY)—Z 25 V(N V)-Z

(3.1.8) l l

PN VY) — 2 PN V)

commutes. Moreover we claim that 1o = 0 ¢q, i.e. that the diagram

PN\ VY
BT
(3.1.9) Grass,_.(?) lﬁ
o

P(A"V)

commutes. In order to show this, let 7" be an F-scheme and let © = ¥ — Y7 /% €
Grass,_.(?)(T). We have seen that

ul) =N\ - \#")
and . .
()= (N 1% — N\ %/%).

The element (3(:1(z)) can also be constructed in the following way: The isomorphism ¢V
induces a map P(A“VY) S P(A" Ve A" V) and the element ¢;(x) is send to A" ¥ ®
N VY = N eP(N" Ve AN VY)T). This element corresponds under the canonical
isomorphism P(A" V@ A" VVY) S P(A" V) to

(/\ Vo= \N” @ \ 1) = B(u(x)).

In order to show that the diagram (3.1.9) commutes, we have to find an isomorphism
NI )U S N U @ N Yr such that B(ui(z)) = € o 1p(x). By tensoring everything
with the invertible module A\°% it remains to show the following statement: There is an
isomorphism &: AN°% @ N" ™ ¥/% = N\ ¥r making the diagram

/\6 % ® /\n—e 7/T pP1 /\n /VT
(3.1.10) le /
Nw NI/
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commutative, where p; and ps are induced by 5(¢1(z)) and t3(x). In order to show this
statement, we use the following Lemma 3.1.14:
Let R be a ring and let L (resp. M, resp. N) be a finitely generated projective R-module

of rank e (resp. n, resp. n — e) such that we have an exact sequence
0—=L—MZ>3N-=0.

Let
ri: NLo AN\M— \M
TRQY—TNY
and let (ro: A"LOAN" "M = N°LON"°N) =idpe , @ A" “c. Every section s: N — M
of £ induces a morphism r,: A°L® A" °N — A" M making the diagram

/\eL ® /\nfeM T1 /\nM

[

/\6 L ® /\n—e N
commutative.

Lemma 3.1.14. With the above notations the morphism rs: AL @ N °N — A" M is

independent of the section s and it is an isomorphism.

Proof. The morphism r: AL ® A" °N — A" M is defined as 1 o (idpe , @ A" 5). If
s': N — M is a second section of ¢, we know that im(s—s") C L and hence im(A"~¢(s—s')) C
A" °L. Since tk L = e we see that ry — ry = r,_y = 0, by the definition of ;. We define
an inverse of the morphism r,. Let x; A ... Az, € A" M. Note that each x; € M can be
written uniquely as z; = y; + s(z;), with y; € L and z; € N. Furthermore, since tk L = e
and rk N = n — e we get that
TN AT, = Z(—l)”myil Ao NYic Ns(zi) A A S(25, ),
I

where I = {iy,...,i.} with ¢y < ... < 4. runs over all subsets of {1,...,n} such that
fl =eand J = {J1,...,Jn-e} With j; < ... < jn_e such that TUJ = {1,...,n}. Moreover
v(I) € {0,1} is defined such that (—1)"Dy; AL Ay As(z,) A As(zj, ) = wi A .. Aw,
with w; = y; if i € [ and w; = s(z;) if i € J. With these notations it is now easy to see that

there exists a map

s - /\M—>/\L®/_\N

xl/\.../\xnr—>Z(—l)”(”yil/\.../\yie@)zﬁ/\.../\zjnﬂ
I
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satisfying r, o ¢, = idp» 3y and gqs 071y = id/\e LoA™¢ N- O]

We return to the problem of defining an isomorphism £: A\°% @ \"~° ¥ /% = N 7.
Working locally, we see that the morphisms p; and ps correspond to r; and ro of the above
Lemma 3.1.14. Hence this Lemma shows that the isomorphism exists locally and since
it is independent of the chosen section these morphisms glue to the desired isomorphism
ENU QN V)% = \* ¥ making the diagram (3.1.10) commutative.

Now we compare the two induced GL(V')-linearized invertible sheaves, obtained from the
embeddings ¢; and ¢y on Grass,—.(?). We denote these sheaves by .21 = 1]Oppcyvy(1)
and %5 = 150ppn—c (1) From the isomorphisms a and § and the commutativity of the
diagrams (3.1.8) and (3.1.9) it follows that .} and %, are isomorphic as sheaves. More-
over the isomorphism B: P(A“VY) = P(A" “V) is GL(V)-equivariant, but the GL(V)-
linearizations of % and % are different. This can be seen by comparing the GL(V')-actions
on the affine cones V(A“VV) and V(A" “V). First note that the action on V(A“V") in-
duces, via a: V(A°VY) = V(A" V), an action on V(A" “V). This induced action is
independent of the chosen basis for A"V since a and o differ by multiplication with a unit
in F' and this unit multiplication commutes with the GL(V')-action. The induced action is

explicitly given, for an F-algebra R and g € GL(V)(R), by the morphisms

.

V(/_\ V)(R) = V(/_\ V)(R).

v~

=\""“(VaR)" =\""“(VaR)"
z = det(g) - A"(g") " (x)
This follows from the definition of the morphism « given before (3.1.6) and by the description

of GL(V)-equivariant morphism ¢: A°V = A" “VV @ A"V after (3.1.4). This action

differs from the canonical action which is given by

V(/_\ V)(R) — V(/_\ V)(R).

v AT (gY) ()

Thus we see that the isomorphism a: V(A“VY) = V(A" V) is not GL(V)-equivariant
and hence the induced invertible sheaves %} and %, are not isomorphic as GL(V')-linearized

invertible sheaves.

Convention 3.1.15. We have just seen that there is no canonical invertible sheaf together
with a GL(V)-linearization on Grass,,_.(%). Therefore we will make the following choice: In
the following we will work with the embedding ¢1: Grass,_.(¥) — P(A° V") together with
the GL(V)-linearization of &p(pcyvy(1) induced by the canonical GL(V')-action on the affine
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cone V(A VV). Since in our applications we will also use the embedding t5: Grass,_.(¥) —
P(A\" V) and hence the affine cone V(A" V), we will make these objects compatible with
the above choice by changing the GL(V)-action on V(A" “V) to the one induced by the
isomorphism a: V(A°VY) = V(A" “V) and similarly changing the GL(V')-linearization of
Oppn—<vy(1). In other words, we can say that this change of linearization makes £ and

%5 isomorphic as GL(V')-linearized invertible sheaves on Grass,,_.(%).

The GIT-slope for linear subspaces

By choosing a basis for V' we get coordinates such that P(A°VV) ~ PV~ and V(A\°VV) ~
AN where N = (’Z) Using Convention 3.1.15, we see that we have an embedding
v: Grass, (7)) — PV! and a GL(V)-linearized invertible sheaf .¥ = (*@pn-1(1). More-
over with these coordinates, if g € GL(V)(F') acts on V' via a matrix A, then the action of
g on the affine cone AV of PN~! is given by the matrix A“(A). We write

.....

where i1, ...,7. € {1,...,n} with i; < ... <i.. Now let U € Grass,_.(?)(F) be a linear

subspace of V' of dimension e and let us denote by T, ;. (U) its homogeneous coordinates.

-----

Suppose that we are given a 1-PS subgroup of GL(V') which is given by the matrices
a > (a - dij)i<izn:
With these notations it follows from Proposition 3.1.13 that

MX(U7 /\) = max{_th - tie | Til Ze(U) 7é 0}

-----

A further analysis, which is done in [GIT, Chapter 4 §4 p.87| for SL, but is also true for
GL, with the same arguments, leads to the following description of u? (U, \): Let

V=V
i€z
be the decomposition induced by A into weight spaces. This grading gives rise to a filtration

of V', which we denote by Fil} V| in the following way:
Fil, V=D V().
Jj=i
We denote gr%ﬂ;(V) by gri (V).
Proposition 3.1.16. Let £, U and X be as above. With the same notation we have

(3.1.11) i Z(U.N) =Y i - dim(gry(V)|U) = deg(U, Fily (V) [U).

i=1
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Chapter 3 The relation of weak admissibility to GIT

Remark 3.1.17. In |GIT| the above Proposition 3.1.16 is proved by first considering only
1-PS A which induce decompositions of V' into 1-dimensional weight spaces. That is A is

given by matrices
Aa) = (" - 65j)1<i j<n
with ¢; > ... > ¢,. After obtaining the result for such \ it is remarked ( [GIT, p. 88]) that

the same result is also true for general A\ as one could also see by modifying the proof.

3.2 Actions of the algebraic group J

Let r € N. We fix a z-isocrystal D = (D, Fpp) of rank r. Consider the linear algebraic
group J over F,((2)) whose group of F((z))-valued points is the automorphism group of the

z-isocrystal D. It was defined in Section 1.3 where we already discussed it.

3.2.1 A representation of Jj.) on D

There is a natural action p of Jy.) = J Xg, () k((2)) on the k((z))-vector space D, namely:
Let B be a k((z))-algebra. We have a natural morphism

p(B): i) (B) € GLi(z)ee, )8 (D ®r,(2) B)

(3.2.1)
— GLp (D ®p(2) B) = GL(D)(B)

which is induced by the multiplication map

E((2)) ®r, (=) B = B.
f®b— fb

This morphism Jy.) — GL(D) of algebraic groups is injective. We will give a direct
argument in the case that the z-isocrystal is defined over some finite field extension of F,
which we can assume if the z-isocrystal is a split semi-simple z-isocrystal since in this case
we can find ¢ € N such that there exists a canonical model over F . For the general case
see |Kot, Appendix A]. So let us assume that the z-isocrystal D is defined over k = F, in

our argumentation. The isomorphism

Fyu((2) ®ry2) Foe(2) = [ Fee(2)

1ELJL
f®g—(a'(f)g)

gives rise to an isomorphism

D QF, (2) th ((Z)) = D;
=N
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3.2 Actions of the algebraic group J

where D; = D with F((2))-module structure Fu((2)) x D; = D;, (f,d) — o7*(f)d. Even
more generally for every Fu:((2))-algebra B we get

Fot (2) ®r, () B = For(2) @, () For (2) ®r.(2) B
IT Fel2) ®F () B = II B.
I€Z/LT i€L /T

where each B; = B is and F((2))-algebra via Fy((2)) x B; = By, (f,b) — o'(f)b and

D @, (=) B = H (Dz‘ ®F . () B> = H (Di)g = H Dg,.

i€L/Z i€L/L I€Z/TL

I

Also note that we have canonical isomorphisms
Endr , (2)er, (. »B(D ®F, () B) = Endr , () (D) ®F,,(2) (Fgt(2)) @, () B)
i End]}rqt )(D) ®F 4t H B; = H <End1F ()(D) ®r . () Bl)

zEZ/tZ iE€T /T,

H EndB D QF 4 4t H EndB

i€L/IZ I€Z/L

With these notations the map p(B) is
JJth((z ( ) - GLF ot (2)®r, () B (D ®]Fq(( ) B)
= JI GLs ((D)s) = GLg ((Do)s)

i€TLT.

where pr, is the projection on the 0-th component. In the commutative diagram

a®b o(a)®b

Fo(2) ®r,(2) B =2 Fye((2)) @, (=) B

| Lo
(' (a)b); [] B -mmmemmems 1 B (o ()b);

Z/tZ 7T

the dashed arrow is given by (b;); — (b;+1);. Hence the morphism op = 0 ®idg corresponds
to a right shift under the above identification and therefore for every F,:((2))-algebra B we
get that

o5(D @r,(2) B) = D ®r,(2) B O 1 (2)5, ) B)ros Fer(2) ®r,(2) B)

- H (DZ)B ®(Hiez/tzB)7UB H B = H (Di—1>B-

iC€T /T, I€Z/Z i€Z /.
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Chapter 3 The relation of weak admissibility to GIT

We can rephrase this by saying that

(05(D @r,(2) B)), = (Di-1)5.
Now the isomorphism

Fp ®idp: 0*D ®p,(:) B = D ®p,(:) B
—

=05 (D®r,(2)B)

induces isomorphisms

(Fp ®idg)i: (05(D @p,(2) B)), = (D ®r,(2) B), -

)
(. S (. J

v~

=(D;—1)B :(E)B

In order to see that the morphism (3.2.1) is injective, we start with an element g € Jr , (2) (B)
(B an Fy((2))-algebra) and consider its image (g;)icz/iz under the above identification. Note
that (059); = ¢gi—1. Since (Fp ®idg) oo)g = go (Fp ® idp) we get that

(Fp®idg); o (0p9)i = gi o (Fp ®idp);.
——

=gi—-1

Therefore we can reconstruct all components of (g;)icz/iz from go since the (Fp ® idg); are

isomorphisms. So gy = 0 implies g; = 0 for all 2 and hence g = 0. This proves the injectivity.

3.2.2 A representation of Jj(;) on o*D

There is also a second action of Jy(.); this time it acts on the k((2))-vector space o*D. For

every IF,((z))-algebra A we have the morphism

(3.2.2) GLk(2)@r, (pa (D ®F, () A) = GLi)er, (2)a (07D @, () A)
g o9

via the identification (1.3.1). This leads to an action, denoted by ?p, of Ji(.) on the k((2))-
vector space o*D. Namely if B is a k((z))-algebra it is given on B-valued points by the

morphism

“p(B): Jiz)(B) € GLi)es, )8 (D @5, (=) B)
— GLk()@g, (2B (07D ®F,(2) B)
— GLB (O'*D ®k((z)) B) = GL(U*D)(B)

which is also induced by the multiplication map k((2)) ®r,(.) B — B.
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3.2 Actions of the algebraic group J

3.2.3 1-parameter subgroups and decompositions into sub-z-isocrystals

There is a correspondence between direct sum decompositions of D into sub-z-isocrystals
(indexed by Z) and morphisms G,, — J. First we describe how to associate a decomposition
to a morphism; so let A: G,, — J be a morphism of algebraic groups. Base change to
k((2)) leads to a morphism Ak(.): Gur(z) — Jr(=) which we can compose with p to get a

representation of G, k() over k((2)):
p o Ak((z)) : Gm,k((z)) — GL(D)

This representation provides us with a decomposition of D into weight spaces
D =P D(i)
1€EZL

where d € D lies in D(i) if for every k((2))-algebra B and every b € B we have p(Ag(.) (b)) (d®
1) =b(d®1) =d®b. We claim that these k((z))-sub-vector spaces are actually sub-z-

isocrystals. More precisely we will show that

D(i) = {d € D | plhuey(@))(d) = a'd for all & € Fy((=) C k()} =: Do)

and that the D(7) are sub-z-isocrystals of D. In order to see this, note that, for x € F ((z)) C
k((2)), the element p(Ax(.)(z)) lies in J(F,((2))) € GL(D)(k((2))) since the following diagram

Gn(Fy((2))) — GLiepos, yzal=) (D ©k,() Fol(2) = GLiy(D)

| |

G (k(2)) — GLie)er, k(=) (D @ry() k(2) = GLiz)(D)

commutes (m is induced by the multiplication map). In other words we see that

P(Aezy(®)) = A(x) commutes with Fp and hence the D(i) are sub-z-isocrystals. Now
it is clear that D(i) C D(i) for every i € Z, but moreover the D(i) are k((z))-sub-vector
spaces with
D(#)NY D(j) =0
J#
since 2° # 27 for i # j. Therefore we get D = @, D(i) = @,., D(i) and D(i) = D(s).
On the other hand let D = €p,_, D; be a decomposition of D into sub-z-isocrystals and

let A be an F,((z))-algebra. We define a morphism

AA): G (A) = GLi(z)ey, ()4 (D OF, (=) A)
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Chapter 3 The relation of weak admissibility to GIT

by letting a € G,,(A) act on an element of D; ®p,(.) A as multiplication by (1 ® a)’. We
claim that A(A)(a) actually lies in J(A) C GLi(z)gg, ()4 (D ®r,(z) A). Since D = P, D;
is a decomposition into sub-z-isocrystals, i.e. every D; is Fp-stable, it is enough to check
the condition (Fp ®ida) o 0 (A(A)(a)) = A(A)(a) o (Fp ®id4) on each D; ®p, () A. This

is clear since 0% (A(A)(a)) = o ((1 ®a)"idp,) = (1®a)'idp, is multiplication with a scalar.

A comparison of two decompositions into weight spaces

Now let A\: G,, — J be a morphism. Beside the representation p o Ay(.) of Gy, k() on
D described above, we get in the same way the representation “p o Ay() of Gy, k() on
o*D. We denote the decomposition of p o Ay(.) into weight spaces by D = @ D(i) and
the decomposition of 7p o Ayx) by 0*D = @(0*D)(i). We want to see how these two

decompositions are related.
Lemma 3.2.1. With the above notations we have
(0" D) (i) = o™ (D(i))-

Proof. Let d € D(i) and let b € B where B is a k((z))-algebra. We denote the multiplication
morphism k((2)) ®r,(.) B — B by m. We use the canonical identifications to describe
Me(z)(0) = >, fu ® b, as an element in Endy(.)(D) ®r,(-) B. As we have seen in Section
1.3 we have more precisely f, € End(D) and we know that Fp o o*f, = f, o Fp. Since
Fp:o0*D = D is an isomorphism we see that o* f, = FD_1 o f, o Fp. Therefore we get that

oM@ (D) =Y 0" f®b, =) Fp'of, 0 Fp®b,.

We claim that F},'(d) € o*D lies in (¢*D)(i). In order to show this, consider the element

op( A=) () @ 1 € Endyzyan, ) B(0B(D ®F,(2) B)) @k(=)es, () B)m B
=~ EndB(U*D Ok ((2) B)

With the above notations we can describe it as

Y FplofioFp®b,®1

which is an element in

Endi(z) (07 D) @, (=) B Ok(=)@x, () B)m B-
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3.2 Actions of the algebraic group J

We calculate

S FplofyoFo®b,® )(Fp'(d) @ 1)

- ((Z F5'o f,0 Fp@b,)(F5'(d) ® 1>) ®1

:((FL;l@l)-Zf,,(d)@b,,) ®1=F'(d)@b el

=d®b?

and this proves the claim. By the claim we see that Fj,*(D(i)) C (0*D)(i) and since

Do D)(i) = oD = P F,' (D(D))

1EL 1€EZ

it follows that F,'(D(i)) = (0*D)(i). We have already seen that the D(i) are sub-z-

isocrystals and therefore we know that Fp induces isomorphisms Fp|o*(D(7)): o*(D(i)) —
D(i) and hence
(0" D)(i) = Fp' (D(i)) = o*(D(i)).

]

Another way to look at Lemma 3.2.1 is the following: Let again \: G,, — J be a 1-PS.

We can choose a basis B of D such that the composition

po)‘k z
(=)

Gm,k((z)) GL(D) — GLT ,

where the second morphism is induced by the basis B, is given by

ti, )
o (0% -05) g ey

with ¢1,...,t, € Z. Since B induces a basis ¢*B on ¢*D we also get a second morphism

from Gy, () to GL, as the composition

7 poAk(2)
— 5

Gm,k((z)) GL(U*D) — GLT ,

with the second morphism being induced by o*B. Now Lemma 3.2.1 says that again this
morphism is given by
t;
o = (Oé . 5ij)l§i,j§r .
This is not clear a priori since, for a k((z))-Algebra B, in the following diagram, where the

horizontal arrows are induced by the multiplication map k((2)) ®,(.) B — B, there is no
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Chapter 3 The relation of weak admissibility to GIT

obvious morphism from GLg(D ®y.) B) to GLp(0*D ®j) B) making it commutative.

GLk()@r, (o) B(D ®r,(2) B) —— GLp(D Qp(2) B)

|

o9 GLi(2)®s, (o) B(0* D ®r,(2) B) — GLp(0* D @x(2) B)

¥ <———Q

3.2.4 The functor ™~V

We fix integers wy, ..., w, € Z with wy > ... > w,. We set w = (wy,...,w,) and |w| =

wi — w,. Since we have a morphism

Fo((2) = K[z—(]
2+ (2=()

we can make the following

Definition 3.2.2. For a linear algebraic group G over F,((2)) we set
G™ = Respr )0 (G XF,(2) K[z—C]/(z=)™).
This is a linear algebraic group over K and for any K-algebra R we get that
G™"(R) = G(R[z—(]/(z=)")).

We are especially interested in G~ when G is J or G,,. Since we have seen that we have
a representation “p of J on o*D we get that J(R[[z—(]]/(z—()lw|) operates on 0*D ®y.)
R[z—¢]/(z—¢)™!. Thus we have a morphism

JNw(R) — GLR[[z—C]]/(Z—C)‘wl (U*D Qk((2) R[[Z_C]]/(z_g)‘w‘>

€ GLg ((U*D D) K[z—=C1/(z=O") @ R) :

=GL((0* D@y (2 K[~/ (=) k7 ) (R)

In other words, there is a representation of J™* on the K-vector space (0*D ®p(z)
K[[Z—C]]/(Z—C)‘w‘)[;q denoted by

Py 7 = GL (<0*D Bk (=) KHZ—C]]/(Z—C)'w‘)[Kl) :
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3.2 Actions of the algebraic group J

The zero-component of G,,”"

In order to apply the general concepts of Geometric Invariant Theory (more precisely we
want to calculate GIT-slopes), we need 1-parameter subgroups. We will start with a mor-
phism A: G,, — J over F,((2)) and apply the functor _~* which leads to a morphism
A Gy — J. Of course this is not a 1-PS of J™ anymore but we are able to fix
this problem by only considering the constant part of G,,~. We let (_)o: G, — G i

be the morphism
|w|—1

a= Z a;(z—C)" = (a)y = ag.

Moreover let
lw]—1

UR) = {1+ ai(z—¢)'| a; € R} C G,, " (R).
i=1
This defines a subgroup of G,,” on which G,, x acts. We have an exact sequence
0= U — G~ =2 G — 0

and the morphism () has a canonical section i, given by

a v a(z—¢)°.
Altogether this shows that
Gmww = Gm,K x U.

In the following we will denote the composition \™" o7y by Ag which is a morphism from
Gm7 K to J™Y.

1-parameter-subgroups of J~"

Let A: G,, = J be a 1-PS over F,((2)). As we have seen, it gives rise to a representation of
G k(2) on the k((2))-vector space D. We can choose a basis B = (by,...,b,) of D such that
the morphism

M)t Gz) = Jie) = GL(D) = GL,

is of the form
o= (O‘ti ) 5i')1gi,jgr
with ¢1,...,t, € Z. For every K-algebra R the induced basis o*B gives rise to a morphism
Gn™(R)—  J™(R) = GL(o"D)(R[z—(]/(z—=)") = GL.(R[z—¢]/ (== "))

N——
=J(R[=<]/ (="
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Chapter 3 The relation of weak admissibility to GIT

which again is a +— (o' - 0ij)1<; j<r Dy Lemma 3.2.1. Now we let (0"B)x] be the following
K-basis on ("D @y K[z—C]/(z—O)")x:

(0" B)ix) = (6*b1 ® 1,6"0; @ (2—(),..., 0" ® (z—C)I,

O-*br ® 1’U*bT ® (Z_C)v <o »O-*b'r ® (Z_C)‘w‘_l)

If an element in GLyp /. (0" D® K[z—¢]/(z—)"™!) corresponds via the basis 0*B to
a matrix (a; - 0;j)1<ij<r, With a; = zyﬂo_l aij(z—g)j the corresponding element via the basis

(0"B) i in GLk((0*D @2y K[2—C1/(2—C)"N k) is the block matrix

ai,0 O O
a1 aro -
: N R (] 0
0
allw-1 A1 |w|-2 -- @1,0
|w]
ar,O 0 o 0
Qr 1 Qr0
0 |w| : A
. * ()
Ay |w|-1 Qw|-2 -+ Ar0

|w]
Hence we see that the morphism
Gonic > Gn™ = GL ((0"D @y K[z—=C1/ (=" iz ) = Gl

where the last arrow is induced by the basis (0*B)xj, is given by

ath 0 0
(N
R |w] 0
0---- 0 o
a— |w| ,
atr 0 0
0 .
0 jwl| - 0
00 a
|w|

where each a'i occurs |w| times on the diagonal. We can summarize this result in terms of

weight spaces and this is done in the following
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3.2 Actions of the algebraic group J

Proposition 3.2.3. Let A\ be a 1-PS of J which provides us with a decomposition into

sub-z-isocrystals
D =P D(t:),
i=1

with ty,...,t, € Z. This decomposition induces a decomposition of the K-vector space

(0*D ®u(2) K[[z—C]]/(z—C)'w|)[K] which coincides with the one associated to the morphism

7w © Mot G g = GL ((O'*D Rk ((2) K[[Z—C]]/(Z—C)|w|)[f<}> :

In other words we have

(o (D) @0y KI=CU/ =0 2 (0D ®xey Kle=CV/(=O™) (1)

(K]
A quasi-character for J~%

In this section we assume that the fixed z-isocrystal D is of the form
D=pD,
veQ

with D, isoclinic of slope v. Therefore the group J decomposes as

For example this is the case if the ground field k is perfect or if the z-isocrystal is split

semi-simple. We get a decomposition of the group J~" as
7 =T o)™
re@Q
For every v € Q we have a morphism x,: Jp — G, defined in Section 1.3 before Lemma

1.3.1 and hence we get a morphism (x,)"": (Jp,)™" — G,,~". We denote the composition

_J)o

(JQV)N’LU (XV)N Gme ( Gm7K

by XI/,O'
If g € J™ we write g = (gy)veq with g, € (Jp )™". With these notations we define a
quasi-character 1, of J~" as

1/)w2 JTY — GmJ(.

g H XV,O(gu)_wl_V
re@Q
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Chapter 3 The relation of weak admissibility to GIT

Here a quasi-character is an element of X (J~")®zQ. It is not a morphism from J~" to G,, x
but we should think of the elements of X (J™~")®zQ as objects that become characters after
being multiplied by a suitable integer. Since in our application there is no difference between
working with quasi-characters instead of characters we also do not make a difference in our
notations and write them down as if they were morphisms from J~* to G,, k. In the next
Lemma we will analyze what this quasi-character looks like, if we compose it with a 1-PS
Ao of J™, coming from a 1-PS A of J. Hence let A: G,, — J be such a 1-PS. It induces a
decomposition of D = @;_, D(s;) with s1,...,5, € Z and s; > ... > s,. Moreover we have
seen that the D(s;) are sub-z-isocrystals. Let d; = dimg.) D(s;). Denote the corresponding

filtration Filj,, D by Fil} D and the sub-quotients grzo)\k«zn(D) by gri (D).

Lemma 3.2.4. With the above notations the quasi-character
Gx 2% J™ 2% Gy i

of Gy, i 15 given by

n

$; (—wi - dimy(e) gy (D) — tn(gry (D)) € Q.

i=1
Proof. By abuse of notation we formally calculate this quasi-character as if it were a charac-
ter of G,, k. Let R be a K-algebra and let a € G,,, x(R). By the definition of y,,, if we view
Xo(a) € J~Y(R) as an element of GLk((z))@wq((Z))R[[Z—C]]/(z—o‘“"(D Q®F, (=) R[z—]/(z—O)™D, in
order to calculate y,(Ao(a),), we have to take the determinant. Moreover note that the
diagram (with B = R[z—(]/(z—¢)™))

de
GLik(2)os, oy B(Dv ®r,y(2) B) == k(2)) @r () B

: ;

GLB(DV Rk ((2) B) det B

commutes, where m: k((2)) @r, () Rlz—C¢]/(z=O)"™ = R[z—¢]/(z—¢)"™! is the multipli-
cation map and m is induced by m. But as we have seen in Section 1.3, det(Ag(a),)
lies in Fy((2)) ®r, (=) R[z—¢]/(z—O)™ = R[z—¢]/(z—)"" and therefore det(Ao(a),) =
det(m(Ao(a),)) = det(p(Ao(a),)). Thus we can choose a basis of D, such that A\g(a), is a

diagonal matrix (a - &;;);; with ¢; € {s1,...,s,}. Now if we calculate 1),, we see that each
Xvo0(Ao(a),) ™" is given by

H ati(—wl—y).
We take the product over all of these and look at the exponent of a. This exponent can be

written in the form Z:.L:l s; - x; where x; is a sum of —w; and different —r. Counting them
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3.3 The relation to Geometric Invariant Theory

we see that —w; occurs dimy.) gry (D) times and the different —» sum up to the Newton
slope of gr{ (D). Namely, we can write gry(D) = €, q(ery (D)), with each (gr} (D)),
isoclinic of slope v. Then the summand s; - (—v) occurs with multiplicity dimg.)(gry (D)),

and we compute

> (=) - dimye) (g3 (D ZtN gry (D))y) = tn(gry (D).

v

3.3 The relation to Geometric Invariant Theory

Let » € N. In the following we suppose that D = (D, Fp) is a z-isocrystal over k of rank

7 such that we have a decomposition D = P, D, where D, = (D,, Fp,) are isoclinic
sub-z-isocrystals of slope v € Q. We fix integers wq,...,w, € Z with w; > ... > w, and
set w = (wy,...,w,). We use the notations of Section 2.4 and in addition we denote the K-

vector space (P™) g = ((z—)""pr /(2= )" pi ) ry by V™ and its dimension dimy V) =
- |w| by ne. If f: W, — Spec K denotes the structure morphism we get that f, 2™ =
(V@))~spee & wwhich we denote by # (). Moreover let e,, = r-w; —>:_, w, and hence we have
®,, = ny —ey. As seen in Section 2.4, there is a closed embedding Qp <, — Grassg, (7))
and in accordance with Convention 3.1.15 we embed this Grassmannian into (A" V(w)v)
and consider also its affine cone V(A" V(“’)v). As a first step we define actions of J~" on

all these spaces.

3.3.1 J~"-actions
The action on Qp <,

For every K-algebra R we have a canonical isomorphism ¢*D ®y(.) R[z—(]/(z— =
Pz(:a . Since we have a morphism J™"(R) < GLyp, /(. ¢y (07D ®k ) Rlz—C]/(z— O)h
this isomorphism induces an action of J~"(R) on P}({"). We define a J~"-action on Qp <
in the following way: Let R be a K-algebra and let g € J~"(R) which we view as an

automorphism of Péw) .

Furthermore let q € @Qp <,(R) which we can identify with an
clement § of Qp<y(R). We claim that g¢(g) lies in Qp <,(R) and therefore we have
to check that the element ¢ € Qp.p,.w, (R) corresponding to g(§) € Qpu, . (R) sat-
isfies the boundedness conditions (2.3.1) - (2.3.3). In order to do so, we will give an-
other description of q'. Via a k((2))-basis of D we can identify GLpr g/, oyl (07D ®g(z)
R[z—]/(z— O™ with GL,(R[z—¢]/(z—¢)"™"). Note that the morphism GL, (R[z—(]) —

GLr(R[[Z—C]]/(z—C)|w|), induced by the homomorphism R[z—(] — R[z—(]/(z— )|“’| is
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surjective. Actually there is a section of this morphism that is given by

GL(R[z—¢]/(z—)"™) = GL,(R[z—(]).

|w]—1 Jw|—1
D Ai(z-Q = ) A
1=0 =0

Every h € GL,.(R[z—(]) induces an automorphism of pr and hence an automorphism of
(z—()""pr which leaves (z—()"'pg invariant. Now choose h € GL,(R[z—(]) mapping to
g € GL(R[z—(]/(z—O)"). We claim that the morphism

J™Y % QD,wr,wl (R) — QD,wr,UH (R)
(9.9) — h(a)

is well-defined. Let b’ € GL,(R[z—(]) be another element mapping to g. We have h’/h~! =
1+u with u € (z—O)" M, (R[z—(]) and we get that 1'(q) = K'h'h(q) = h(q) + uh(q).

Since uh(q) € (z—¢)"'h((z—¢)""pr) € h((z—¢)"'pr) € h(q) we sce that 1'(q) = h(q).
Moreover this shows that ' = h(q). For every j € {1,...,r} we consider the morphism

o A af Ao A o0 /o0 A

R[] R[[Z—C]] R[] R[]

from Lemma 2.3.4 and the following commutative diagram defines a morphism h(agjz)u)

J J a<j,)l, J w Wyg1— 4. 4w J
A q/ A =" — A (2=0) rpR/ G L W

R[] R[] R[] R[]

F F

A h() / A (e=0)"pp M A <z—¢>%/ GG T W

R[] R[] R[] R[]

Here the vertical morphisms are induced by h. Now h(aq w) is zero if and only if ah (@)
is zero. This is the case by the commutativity of the diagram since q € Qp <, (R) and

(J)

therefore oy is zero by Lemma 2.3.4. In the same way we see that the morphism

EAORE (Z_C)wﬁmwr /\ pR/ /\ (z=Q™ " hla /

R[] R[] R[] R[]

is zero. By Lemma 2.3.4 the element h(q) € Qpuw, w (R) lies in Qp <w(R). Therefore it
makes sense to define g - q as q' = h(q) € Qp <w(R).
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The action on the Grassmannian and projective space

The isomorphism of K-vector spaces (0*D ®pz) K[[z—{]]/(z—()lwbm >~ V) induces an
action of J~* on V™) by composing “p,: J~ — GL((¢*D ®j(x) K[[Z—C]]/(Z—C)Iw|)[[q>
(defined in Section 3.2.4) with GL((0*D @y K[z—C]/(z—O"Nw) = GL(V®). By
abuse of notation, we also denote this representation by “p, . As described in Section 3.1.4,
this representation gives rise to an action of J™~* on Grasse, (¥ ™)) and on P(A™ V@)

The inclusion Qp <, — Grassg, (¥ ™)) is compatible with respect to these J~*-actions.

Modification of the linearization

The representation “p,: J~* — GL(V®)) also induces an action of J~* on V(A V(“’)v)
and this action gives rise to a J~"-linearization of ﬁp( Acw V(w)v)(l)- Actually the resulting
sheaf together with its linearization is not the one we need. Before we pull it back to
Grasse, (¥ ™) and later to Qp <., we need to modify the linearization of Op(pew vy (1)
We have already remarked that we can do this by changing the linearization by characters of
the group GL(V ™). Actually what we really need is a modification by the quasi-character
1. The resulting object is no longer an element of Pic’ ™" (P(A®” V(w)v)) but an element
in Pic”™" (P(A*” V®")) @, Q. From the properties of the morphism u*(z, A) one observes
that it makes sense to define 1 (x, \) also for elements £ of Pic’ ™ (P(A® V®")) @, Q. It
is possible to avoid this by multiplying the modified element of Pic”™ (P(A® V®")) @, Q
with a suitable integer m to obtain an element of Pic” ™" (P(A V(w)v)). Here multiplication
of Z with an integer equals taking the tensor product, i.e. £ - (0 @ m) = £“™. Since we
can apply the result of the calculation of u?(x, \) for & = Op(pew viwvy(1) from [GIT] it is
more convenient to work with Pic’™" (P(A\® V(“’)v)) ®z Q as it is done in [Tot| and [DOR].
Therefore, if we denote the induced representation of “p, on A V@) by p, we get an
clement called %, € Pic’™" (P(A™ V™)) 07 Q as Op(pew v ¥y (1) together with the J™~-
quasi-linearization provided by the quasi-action of J~* on V(A V(“’)v) that is induced by
the modification of the representation p by ,,:

g = Yu(g) - p(g)

3.3.2 The Main Theorem

Now we can formulate and prove our main result. It relates the concept of weak admissibility
to Geometric Invariant Theory. More precisely we give a criterion in terms of GIT-slopes
whether a point in @p <, is weakly admissible. Note that we work with L-valued points of

@ p,<w, Where L is a field extension of K. This can be done although we actually defined
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the GIT-slope only for K-rational points of Qp <, (see Remark 3.1.11). We denote the
inclusion Qp <u, — P(A™ V@) by ..

Theorem 3.3.1. Let L be a field extension of K and let ¢ € Qp -,,(L) be a Hodge-Pink
lattice over L of D. Then q is weakly admissible if and only if

' gw(qa )‘0) 0
for all 1-PS X of J defined over Fy((z)).

Proof. With all the preparation we have done so far, it is only a matter of calculating
p % (g, \o). Let B be a k((z2))-basis of D such that the representation po A on D is given
by matrices:

a (of 5ij)1§i,j§r’

with ¢,...,t, € Z and t; > ... > t,. Let n € N and s1,...,s, € {t1,...,t.} with

$1 > ...> S, such that
D =P D(s:)
i=1

is the decomposition of D associated to A into weight spaces. The D(s;) are Fp-stable
and therefore are actually sub-z-isocrystal of D. In order to calculate the GIT-slope, we
view q as the element V) — V) /g of the Grassmannian Grassg,, (¥ ™)(L), where q =
q/(z—¢)""pr, and use Proposition 3.1.16. Since the change of the linearization by the quasi-
character v, is not affecting the calculation done in Proposition 3.1.16 we can simply use

Proposition 3.1.13 to observe the effect of the change of the linearization. Therefore we get

Zu (g, M) = ZSZ dimy, <gr Tpuoral V") ‘q>

+ Z s; - (wy - dimyey gry (D) + ta(grs (D))
with the second line coming from Lemma 3.2.4. This is equal to

‘ZSz dimg (Rl _y, Vi®[6) — dim (FILZ5 o, Vi [3)

7 0,,0N0
(3.3.1) —i—Zsz - (dimyey (FII5 D) — dimyuy (Fi D))
+in(Fily D, Fyysi p) — tn(Fily ™" D, Fyyeios ),

with sp = s; + 1. Under the isomorphism V) 2 (0*D ®j, K[[z—(]]/(z—()‘w‘)[;(]
the subspace V) (s;) corresponds to (0*D ®y(y K[z—(]/(2— )|w|)[K](si) which is, by
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Proposition 3.2.3, isomorphic to (6*(D(s;)) ®k(2) K[[Z—C]]/(Z—C)lwl)[]q. Hence we see

that Filiipwvo V) = (Z_C>wrpFilf\i D,K/(Z_C)wlpFilji D,K" If we denote eaiip = 9 N
o*(Fily D) ®g(2) L(2—()) we get that

Filiipwo)\o VL(w) ’El = El N Filiipwo)\o VL(w) - quli\i D/(Z_C)wlpFﬂ;i D,L
and its dimension is, by Lemma 2.5.6, equal to
tH(Fﬂif D, FFilii D> qulii D) + wy - dimk((z)) Fﬂii D.

Therefore (3.3.1) is equal to

i=1
+ ) si- (tn(FI D, Fyyss p) — tn(FIly ™ D, Fyeio ).
i=1
Since Fil}’ D = 0 and Fil{* D = D this is equal to

n—1

(8i = Sit1) - (tN(Fﬂii D, FFilji p) — tu(Fily D, FFilii D> Upits D))
=1 >0

+8n - (tn(D, Fp) — tu(D, Fp,q)) .

Now if q is weakly admissible tx(D, Fp) — tu(D, Fp,q) = 0 and tn(Fily' D, Fyysi p) —
ta(Fily' D, Fyy p, dpysi p) = 0 for @ € {1,...,n — 1}. Hence we get that p e (q, Ao) > 0.
On the other hand let q be a Hodge-Pink lattice over L of D which is not weakly admissible;
say for example tnx(D’, Fp/) — tu(D’, Fpr,qpr) < 0 for a sub-z-isocrystal D' = (D', Fp/) of
D. As we have seen in Section 3.2.3 we can find a 1-PS X of J such that the associated
filtration Fil} D = D, Fil} D = D', Fil; D = 0 has two jumps s; = 1 and sy = 0. With this
choice for A we get that 1t % (q, A\g) < 0 and this proves the Theorem. [

3.4 Functorial behavior

In the last section we have seen that we have to modify the linearization of O pcw w)vy(1)
by the quasi-character v, which was defined before Lemma 3.2.4 as
ww: Y ij(.
g H Xvo(gn) "

rveQ

The component —v in the exponent is needed since we have to compare the Hodge slope

with the Newton slope in order to test weak admissibility, but the component —w; may
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seem somewhat artificial. It turns out that this part of the exponent of the quasi-character
is due to our Convention 3.1.15. In this section we will analyze what happens in the case
of two different Hodge-Pink weights, with one of them being smaller than the other one.
The observation of this case also gives a good explanation of the question why we have to
modify the linearization in this way:.

Let D = (D, Fp) be a z-isocrystal over k with rank of D being equal to r € N such
that we have a decomposition D = P, .o D,, where D, = (D,, Fp,) are isoclinic sub-2-
isocrystals of slope v € Q. Let vy,...,v, € Z (resp. wy,...,w, € Z) with vy > ... > v,
(resp. wy > ... > w,). Set v = (vq,...,v,) and w = (wy, ..., w,) and assume that v < w
for the Bruhat-order, i.e.

vl—l——f—vlgwl—l——f—wz

for alli e {1,...,7} and
Vi+...+0 =W + ...+ Wp.

We set u = v1+...4v, = wi+...4w,. Since v < w we especially get that w; > v, > v, > w,
and |w| > |v]. Moreover we define n, = r - |v| and e, = r - v; — v and similar n,, and e,, for
w. With these notations we have &, = n, — ¢, and ®,, = n,, — e,,. Let R be a K-algebra.
The morphism R[z—(]/(z—O)"' = R[z—¢]/(z—¢)""! induces a morphism

J(R[z=C]/(:=O)"") = J(R[z=(]/(=Q)")

-~ -~

J~w (R) J~v (R)

and hence a morphism J~* — J~" which gives rise to an action of J~* on ()p <,. Since
every q € Qp <,(R) also satisfies the boundedness conditions (2.3.1) - (2.3.3) for w we get
a map (p <, — @p <y that is induced by the identity. It is clear that this morphism is
equivariant for the action of the group J~* by the description of the action on both spaces
that we gave in Section 3.3.1 by choosing a lift in GLgp.¢j(0* D ®p () R[z—(]). Moreover we
have seen in Section 3.3.1 that Qp <, (resp. @p <) may be embedded into projective space
and that the affine cone induces an invertible sheaf together with a J~"-linearization (resp.
J~"-linearization). Our aim is to extend the morphism Qp <, = Qp <. to these spaces. In
the case of projective space the resulting morphism will be equivariant for the J~"-action
but on the affine cone we have to change the actions in order to get an equivariant morphism.

Recall that for ¢,d € Z with ¢ < d we have defined P9 = (z—()pg/(z2—C)px. If we
consider P> as a K-vector space we denote it by V(>4 and hence, with the notation of
Section 3.3.2, we have V() = V(1) gnd V(@) = V(wrw1) For every K-algebra R the group
GLR[) (0" D ®p(z) R[2—(]) operates on V]éc’d). By choosing a basis we can describe the
part of the operation that is trivial by

{B+ M| M eV (=" RI:—(]) }
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It follows that the group GLpgp, /¢, ¢)0(0"D @p(2) R[z—(]/(2—¢)") operates on V}%C’d) for
every b > d—c and this operation factors through GLR[[Z{B/(Z{V_C(0*D®R[[2—C]]/(z—g)d’c)
that acts on Vf;’d) since it is a subgroup of GL((0"D ®x») Kﬂz—(]]/(z—g)d_c)[K])(R). The

canonical morphisms

(=0)"pr/(z=0)"pr ~ (z=0)"pr/(z—)"pr

(vr,w1) _p®
=pyrvt =P

and

(=Q)"pr/ (= Q)" pr = (2= Q)" P/ (=)' P

~~ ~"~
(vpr,wy) _ plw)
=Py ! =Py

give rise to morphisms

Vév) (PR V}gvr,wl) (i) R V,g“’).

Since w; — v, > [v] the group GLgp, o/ cyui—r (0D @k R[z—C]/(2—=()""™") acts
on V}(%v) and this action factors through GLpp /. e (07D Qpz) R[z—¢]/(z—¢)™).
Therefore the morphism (pl)r: V](%v"’wl) — VISJ) is equivariant for the action of
GL gL/ (ecyor—or (07D @2y R[z—C]/(2—=¢)*" ™). In the same way we see that the mor-
phism (i%)g: Vb(z”“wl) — ngw) is equivariant for the action of GLR[[z—d]/(z—c)'“"(J*D k(=)
R[z—¢]/(z—)™! since |w| > wy — v,. The morphism pu: Vrwn) 5 V() and hence the
morphism A" ~vpt : AT YV Enw) o AT () g surjective.  Therefore we get mor-

phisms

Ny —ey Ny —€y

ap: P( N\ V)= PB(J\ Vo)

and

Ny —E€Ey Ny —€y

ay: V( \ V)= v( N\ Vi),

On the other hand the morphism 77, : V1) — V() ig injective and hence the morphisms
Ve @Yy’ gng pewir Ve A @Yy Ay @nw)Y gre surjective. Therefore

we get morphisms
bp: P(A\ VD) - P\ V)

and

by : V(K ylrwnYy V(K vy,

Since the morphisms p!, and i! are equivariant also these four morphisms are equivariant

with respect to the natural actions induced by the actions described above. We define a
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morphism F?: P(A“ V®") = P(A® V®") as the composition

]P)(/\nv_ev V(v)) ap P(Anv_ev V(v7-,w1)>

{ f

€y )V Cw vwlv b Cw w)V
P(A™ V) P\ VEreDT) —— P\ V),

where the vertical isomorphisms are described in (3.1.7) in Section 3.1.4. For the second

vertical isomorphism note that

r(wy — o) — (Ny — €y) = 1w — U = €.
—_———
@,

Since every single morphism is equivariant on R-valued points, where R is a K-algebra, the
morphism F: P(A® V(”)v) — P(A™ V(w)v) is equivariant on R-valued points with respect
to the action of the group GLyr /(. 1wl (07D ®x(z) R[z—¢]/(z—¢)"™). Moreover, since
we have a commutative diagram (recall that the horizontal morphisms are induced by the
multiplication map k((2)) @r, () Rlz—C]/(z=)™ = R[z—¢]/(z—O)"")

T (R) = J(R[z—C]/ (= O™) —— GLyp. ¢gecywi (0°D ke RIz—=C1/(z=O)™)

| |

J(R) = J(RIz— /(2= Q)") —— GLyy,_ ey (07D ey RIz=C1/ (=),

the morphism F}) is also J~"-equivariant. The morphism F}, is compatible with our inclusion

Qp.<v = Qp <w, 1.e. the diagram

(&20) U\/ FtYJ Ew w\/
P(A™ V) —= P\ VD7)

QD,gv ? QD,Sw

commutes. On the other hand we define the morphism G%: V(A® V®") = V(A V®@)Y)

as the composition

V(/\nv_ev V('u)) v V(/\nv_ev V(vr,uu))

(3.4.1) 4 l:

VA“ V) V(A™ Vi) 2 VA V),
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where we use (3.1.6). As opposed to the case of the morphism F, the answer to the ques-
tion whether the morphism is equivariant is different. The morphism ay: V(A" V®)) —
V(A" Vrw1)) is equivariant on R-valued points only with respect to the natural ac-
tion induced by the action of GLgp, ) ocyui—r (0% D @p(z) R[z—C]/(2—=¢)""""), but in
order to make the vertical isomorphisms equivariant, we need to change the actions on
V(A" V®) and V(A" V1)) as described in Convention 3.1.15. Therefore we are
in the following situation: Let g € J™*(R) = J(R[z—¢]/(z—¢)"™") which we can view
as an element in GLy 0/ w1 (07D Qpz) R[z—¢]/(z—¢)"™") and suppose it maps under
the natural morphisms to § € GLgp, /. cyui-r (%D @p(zy R[z—C(]/(2—¢)"""") and to
gc GLR[[z—(]]/(z—c)‘”|(U*D ®k((2) R[[z—{]]/(z—()lv‘). With these notations the action of ¢ on
R-valued points of (3.4.1), where R is a K-algebra, is given in the following diagram.

/\nv—ev(g )—1 . /\nvﬁ_,\N\NV\N\N_> /\nv—ev(g\/)—l . /\nq,g

| é

/\evﬁ /\ewg . (/\r(wlfvr)g)fl . /\nuﬁ /\ewg . (/\T(IUl—’Ur)—)—l . /\nvﬁ

=(detrg)~'-detryg

This shows that the morphism G2 : V(A® V®") = V(A V(®") is not equivariant for the
action of the group J~* since we have the extra factor (detzg)~! - detzg. In order to fix
this issue, we will now calculate what this factor looks like. Let ¢,d € Z with ¢ < d. If
B = (by,...,b.) is a basis of D we get an induced basis ¢*B = (0*by,...,0%b.) on o*D.
For every K-algebra R the basis o*B gives rise to an R[z—(]/ (z—C)diC—basis of Pled),

Furthermore we denote the K-basis

(cr*b1 ® (z2—C), ..., 00, ® (2—()",

b @ (2=, oth, @ (Z—C)dfl).

of V& by (0*B)©D. Let h € GL 1. (1) (o)t (07D ®i(z) R[z—(]/(z—¢)""°) and suppose
that h corresponds, with respect to the R[z—(]/ (z—C)diC—baSis induced by ¢*B, to the
matrix h = (hij)1<ij<r with hy; = z;toc_l hijl(z—C)l (hiji € R). If we consider h as an
element of GLp(0*D ®p(2) R[z—(]/(2—¢)""°) the matrix corresponding to h with respect
to the basis induced by (0*B)©% is the block matrix

H, IREERRRTE 0
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with H; = (hiji)1<i j<r. Hence we see that detg h = (detr Hp)?°. The morphism

(U)ot R[z—=C]/(z—Q)"* = R

d—c—1 '
Z a;i(z—()" = ao
=0
induces a morphism GLgp, ¢/, ¢)a-(0"D ®x(z) R[z—(]/(z—¢)*") = GLg(c*D Qk(z) R)
which we again denote by (_ )y and we get that

detR HO = detR(h)o = (det )d—c h)o

R[]/ (<

Therefore we see that

(detpg)™" - detr g = (detpp. /gy 95" - (detpp, gy g 90

= (detpp, ot 9o

This observation makes it possible to change the action of J~*, in order to get an equivariant

morphism G : V(A V®") = V(A™ V®"). For every Hodge-Pink weight w we change
* w : Cw w N

the GLpr /.oyl (07D ®pz) R[z—¢]/(z— )™ action on V(A®™ V®)*)(R) to

g Avg-(det

—wq
0 .

RI=)/(=)1! 9)

This extra factor (detyp, /. v g)g" " takes care of the choice of the embedding of the
Grassmannian into projective space we have done in Convention 3.1.15. We need this
normalization since the definition of the morphism G¥: V(A® V®") = V(A®™ V®)") uses
both embeddings we have discussed there and hence is not independent of this choice.
This also explains the change of the linearization done in Section 3.3.1. We de-
fine x: J — G,, on A-valued points (A an F,((z)-algebra) as the restriction of
det: Endk((z))®Fq((z))A(D ®r,(z) 4) — k(2)) ®r,z) A to J(A), which has values in A by
the same argument as in Lemma 1.3.1. Again by the argumentation in the proof of Lemma
1.3.1, we know that this restriction of the determinant is invariant under o. Therefore it
coincides with the restriction of det: Endk((z))&FQ ) A(0*D @, () A) — k(=) ®r, (=) A and
moreover we have seen in the proof of Lemma 3.2.4 that this is equal to detp g if we con-
sider g € J(B) as an element of GLg(0*D ®y() B) via the the morphism induced by the

multiplication map for every k((z))-algebra B. We denote the composition

JNw wa> Gme (_)0> Gm,K

by Xo. Thus for a K-algebra R and g € J™" we get that xo(g) = (detR[[z—c]]/(z—g

these notations we can rewrite the quasi-character ¢,,: J~" — G, x as

g xo(9) ™ [ xvole)™.
reQ

el g)o- With
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The factor xo(g)~"*" is responsible for the normalization described above and the factor
[1,cq Xv0(g) " handles the Newton slope and is independent of the fixed Hodge-Pink weight.

Summarizing this we have shown

Theorem 3.4.1. Let v = (vy,...,v,) € Z" and w = (wy,...,w,) € Z" with vy > ... > v,
and wy > ... > w, such that v < w for the Bruhat-order. Let F': P(A\® veYy o
P(A™ V@YY be the morphism defined above and let £, € Pic” (P(A“ V®")) @z Q
and £, € Pic” ™ (P(AN“ V) @z Q be the invertible sheaves together with their quasi-

linearization as being defined at the end of Section 3.3.1. In this case we have
Z, = (F)" (L)
as elements of Pic”™" (P(A® V™)) @, Q.

Corollary 3.4.2. If we denote the embedding of Qp <, (resp. Qp.<w) into P(A™ VY

(resp. P(A\ V(“’)v)) by, (resp. i) and if we have q € Qp <,(L) C Qp <w(L) for a field
extension L of K, we get pv%v(q, \g) = pv?w(q, Ng) for every 1-PS X of J.

This Corollary tells us that it does not matter whether we view a Hodge-Pink lattice as
an element of p <, or of p <, in order to calculate the GIT-slope. This makes perfect
sense since the property of being weakly admissible is of course independent of the chosen
bound.
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