
Frank Steinicke

Multimodal Metaphors

for Generic Interaction Tasks

in Virtual Environments

Münster

- 2006 -

Fach Informatik

Multimodal Metaphors

for Generic Interaction Tasks

in Virtual Environments

Inaugural-Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften im Fachbereich

Mathematik und Informatik

der Mathematisch-Naturwissenschaftlichen Fakultät

der Westfälischen Wilhelms-Universität Münster

vorgelegt von

Frank Steinicke

aus Rheine

- 2006 -

Dekan: Prof. Dr. Klaus H. Hinrichs

Erster Gutachter: Prof. Dr. Klaus H. Hinrichs

Zweiter Gutachter: Prof. Dr. Antonio Krüger

Tag der mündlichen Prüfung:

Tag der Promotion:

Contents

Abstract xi

Acknowledgements xiii

1 Introduction 1

2 Concepts of Human-Computer Interaction 5

2.1 Human-Computer Interaction . 5

2.2 Human Factors . 7

2.2.1 Multimodality . 7

2.2.2 Visual Perception . 9

2.2.3 Auditory Perception . 10

2.2.4 Haptic Perception . 12

2.2.5 Cognitive Psychological Aspects . 13

2.3 Computer Systems . 13

2.3.1 Traditional 2D Interfaces . 13

2.3.2 3D Interaction with 2D Interfaces . 14

2.3.3 3D User Interfaces . 15

2.3.4 Virtual Reality . 17

2.4 Interaction Concepts . 20

2.4.1 Basic Terms of Interaction . 20

2.4.2 General Interaction Cycle . 21

2.4.3 Layered Interaction Concepts . 21

2.4.4 Interaction Metaphors . 23

2.4.5 Taxonomy of Interaction Tasks . 24

3 A Generic Virtual Reality Software System 27

3.1 VR Software Systems . 27

3.1.1 Model-View-Controller . 28

3.1.2 Generic Architecture of VR Systems . 28

3.1.3 The Rendering Pipeline . 29

3.2 Concepts of VR Software Systems . 33

i

Contents

3.2.1 Requirements on VR Software Systems 34

3.2.2 Overview of current VR Software Systems 34

3.3 Virtual Rendering System . 35

3.3.1 Scenegraphs and Behavior Graphs in VRS 36

3.3.2 Scene Evaluation in VRS . 38

3.3.3 Multipass-Rendering in VRS . 41

3.4 VR2S: Virtual Reality Rendering System . 43

3.4.1 Software Architecture Overview . 43

3.4.2 Stereographic Rendering . 44

3.4.3 Tracking Systems in VR2S . 48

3.4.4 VR User Interface . 53

3.4.5 Integration of Multisensory Feedback in VR2S 54

3.4.6 Hello, VR2S . 58

4 Selection and Manipulation of Virtual Objects 59

4.1 Direct Interaction Metaphors . 60

4.2 Improved Virtual Pointer Metaphor . 62

4.2.1 Selection Process . 62

4.2.2 Manipulation of Virtual Objects . 68

4.2.3 Multimodal Concepts . 69

4.2.4 Integration of the IVP Metaphor into VR2S 70

4.2.5 Usability Study . 72

4.3 Dual-Purpose Interaction Metaphor . 74

4.3.1 Desktop-based Interaction . 75

4.3.2 Integration of the Dual-Purpose Interaction Metaphor into VR2S 78

4.3.3 Evaluation . 79

4.4 Virtual Reality Widgets . 79

4.4.1 VR Menus . 79

4.4.2 Personal-Interaction-Panel . 80

5 Exploration of Virtual Environments 83

5.1 Co-located Exploration in Projection-based Virtual Reality Systems 83

5.1.1 Related Collaborative Interaction Concepts 85

5.1.2 Projection-Based Collaboration Concepts 87

5.1.3 Integration of Co-located Interaction Concepts into VR2S 93

5.1.4 Preliminary Usability Study . 94

5.2 Advanced Mixed Reality System Environments 95

5.2.1 Mixed Reality Environments . 95

5.2.2 Global Illumination Concepts for MR Environments 96

5.2.3 Mixed Reality Environment Setup . 97

- ii -

Contents

6 Case Studies: Applications for Semi-Immersive Virtual Reality Systems 105

6.1 The Responsive Workbench Environment . 106

6.2 The Passive Rear Projection System . 107

6.3 3D Residential City Planning Environment . 109

6.3.1 Main Components . 110

6.3.2 Software Architecture . 112

6.3.3 Interaction Concepts for Urban Planning 113

6.4 Focus and Context Visualization for Seismic Volume Datasets 115

6.4.1 Visualization of Volumetric Subsurface Data 118

6.4.2 Interaction Strategies for VR-based Exploration 123

7 Conclusions 127

Bibliography 129

- iii -

Contents

- iv -

List of Figures

1.1 Thesis Road Map . 3

2.1 Human Eye . 9

2.2 Human Ear . 10

2.3 Human Skin . 12

2.4 Six DoF Manipulation in 3D Space . 15

2.5 Taxonomy of VR . 18

2.6 General Interaction Cycle . 21

2.7 Layered Model of Interaction . 22

3.1 Generic VR System . 29

3.2 Graphics Rendering Pipeline . 30

3.3 Acoustic Rendering Pipeline . 31

3.4 Haptics Rendering Pipeline . 32

3.5 VRS Scenegraphs and Behavior Graphs . 37

3.6 UML Diagram of VRS Scene Evaluation . 39

3.7 UML Diagram of VRS Interactions . 41

3.8 VR2S System Architecture . 44

3.9 Stereographic Rendering Techniques . 45

3.10 Off-Axis Stereographic Approach . 46

3.11 Stereoscopic Visualization . 48

3.12 Rigid Body Arrangement . 50

3.13 Tracking System and Rigid Body Transformation 51

3.14 UML Diagram of Auditory Concepts . 56

3.15 Haptic Input Device . 56

3.16 UML Diagram of Haptic Concepts . 57

4.1 Direct Interaction Metaphors . 60

4.2 Illustration of the IVP Metaphor . 62

4.3 Distance Calculation . 63

4.4 Perspective Distortion during Selection Process 64

4.5 Image Space Selection . 65

v

List of Figures

4.6 Sticky-Ray Metaphor . 65

4.7 Region Examination . 66

4.8 Visualization of the IVP Metaphor . 67

4.9 Distant Object Translation . 68

4.10 UML Diagram of IVP Metaphor . 70

4.11 Usability Test Environment . 73

4.12 Results of Usability Study . 74

4.13 Laser-based Interaction . 76

4.14 Dual-Purpose Interaction Metaphor . 78

4.15 VR Widgets in VR-Based Applications . 81

5.1 View-Dependent Stereo Viewing . 84

5.2 Cooperation in RWB Environment . 89

5.3 Split-Screen Collaboration Mode . 90

5.4 Applications for CVEs . 91

5.5 CVE Scenegraph Arrangement . 93

5.6 Results of User Survey . 95

5.7 Reality-Virtuality Continuum . 96

5.8 MR System Setup . 98

5.9 Cubic MR Environment Map . 99

5.10 Mapping between Real and Virtual Input Devices 99

5.11 Scene with and without Reflections . 100

5.12 MR Result with Reflections and Shadows . 103

6.1 Conceptual View of the RWB . 106

6.2 Cameras with IR LED Clusters . 107

6.3 Conceptual View of a Rear Projection System . 108

6.4 Development Plan and 3D Block Model . 109

6.5 3D Residential City Planner . 111

6.6 UML Diagram of the 3D Residential City Planner 112

6.7 City Model of Münster . 113

6.8 IVP Metaphor and 3D Widgets . 114

6.9 Multiple-View Building Editor . 114

6.10 Seismic Dataset . 116

6.11 Ray-Cast Partition . 118

6.12 Occlusion and Clipping Lenses . 120

6.13 Slicing Lens . 121

6.14 Emphasizing Lens . 122

6.15 Level of Detail Lens . 123

6.16 VR-based Seismic Exploration . 124

- vi -

List of Tables

2.1 Exteroception Senses and Modalities . 8

3.1 Pass Names and Priorities . 42

4.1 Frame Rates for the IVP Metaphor . 72

vii

List of Tables

- viii -

Listings

3.1 Different Rendering Systems in VRS . 36

3.2 Stereographic Rendering in VR2S . 47

3.3 Rigid Body BVH-File . 50

3.4 Tracking Systems in VR2S . 52

3.5 Spatial Input Devices in VR2S . 54

3.6 Hello, VR2S . 58

4.1 Improved Virtual Pointer Metaphor in VR2S . 72

4.2 VR Menus in VR2S . 81

5.1 Virtual Reflection in VR2S . 101

5.2 Global Illumination in VR2S . 102

ix

Listings

- x -

Abstract

Virtual reality (VR) systems utilize additional input and output channels in order to make

interactions in virtual environments (VEs) more intuitive. Furthermore, by exploiting these

additional channels the user’s immersion into the virtual world is increased. VR technologies

have the potential to provide a better insight into complex datasets, although high demands on

the ability of the user to interact in the virtual space are made. When interacting in VR-based

applications the cognitive effort for accomplishing interaction tasks is higher compared to the

effort required when interacting via two-dimensional user interfaces. This is due to the fact that

the manifold interaction options provided by VR systems exceed the possibilities of the real world

such that users may be overstrained. For example, in VR-based applications users can control

additional degrees of freedom in order to accomplish complex interaction tasks such as virtual

flying, grabbing of distant objects or performing arbitrary manipulations of virtual objects. The

objective of interaction metaphors is to support users during an interaction process by reducing

the cognitive effort required for performing certain interaction tasks by depicting complex tasks

by commonly used techniques users are accustomed to. Furthermore, in order to increase the

user’s immersion into the virtual scene, these metaphors can address multiple sensorial channels,

e.g., to give the user additional feedback and information during the interaction.

The contributions of this thesis include the design and evaluation of novel multimodal inter-

action metaphors for generic interaction tasks in VEs. To enhance the design process of these

metaphors, the generic VR software system VR2S has been developed. The proposed interac-

tion metaphors provide users of VR-based applications with intuitive interaction concepts, which

improve efficiency when performing certain interaction tasks, e.g., selection and manipulation of

virtual objects. All developed metaphors are based on VR2S including the improved virtual

pointer metaphor that advances selection and manipulation of virtual objects, the dual-purpose

interaction metaphor, which allows to use desktop-based interaction paradigms in VR, and VR

widgets affording the usage of three-dimensional virtual menus in VR-based applications. More-

over, approaches for an advanced exploration of virtual worlds are presented. First, strategies

to facilitate collaborative interaction in projection-based VR systems are proposed. Second, con-

cepts for the simulation of global illumination phenomena in VEs are introduced in order to

enhance seamlessly merging of real-world and virtual objects. All introduced concepts have been

evaluated in different scenarios. These case studies have shown the usefulness of the proposed

interaction strategies in interactive geovisualization as well as seismic volume visualization envi-

ronments. The interaction concepts proposed in this thesis have been tested for both application

areas in two prototype VR system environments which are described in more detail.

xi

Acknowledgements

This dissertation is the result of my research work at the Department of Computer Science at

the Westfälische Wilhelms-Universität Münster.

I am very grateful to my adviser Prof. Dr. Klaus H. Hinrichs for giving me this opportunity

and his constant support. He introduced me to computer graphics and provided me with optimal

working conditions. With many helpful comments and his enthusiasm for research and writing,

he gave continuous stimuli for my own work.

My thanks go to Prof. Dr. Antonio Krüger for his readiness to be the co-referee of this thesis

and for his valuable comments and support during several projects in which I have been involved.

I am very grateful to Dr. Timo Ropinski and Jennis Meyer-Spradow, who came up with help-

ful comments after reading a preliminary version of this thesis. Moreover they deserve thanks

for many fruitful discussions and for the fun that we have.

And I am also very grateful to members and alumni of our working group who have al-

ways been good colleagues and maintained the excellent working atmosphere, Evelyn Egelkamp,

Dr. Ludger Becker, Henrik Blunck, Michael Jacob, Dr. Christian Kemmer, Jennis Meyer-

Spradow, Dr. Timo Ropinski and PD Dr. Jan Vahrenhold.

I thank the students and graduates of our department who have implemented parts of VR2S

and the applications described in this thesis, and who have participated in usability studies.

Next, I am very thankful to my parents Alwine and Johann Steinicke, and my brother Marc

for their support and encouragement. Furthermore Marc deserves thanks for preparing profes-

sional animations and video material for several presentations.

Last but certainly not least, I am extremely grateful to Bianca Grommel for encouraging me

to start my research work and for her loving support.

xiii

Chapter 1

Introduction

The evolution of novel user interface technologies further improves concepts and strategies for the

interaction between users and computer systems. Human-computer interaction (HCI) evolved

into a research discipline that addresses the design and evaluation of interactive user interface

systems in order to make interaction with computers more intuitive. Desktop-based interaction

is often insufficient in cases where intuitive and natural interfaces are desired, for example, when

interacting with complex three-dimensional datasets. For such purposes sophisticated virtual

reality (VR) technologies have been developed in order to provide advanced interfaces that offer

great potential for HCI.

The research field of VR has been initiated in the 1960s when Ivan Sutherland created the

first interactive system involving a tracked head-mounted display (HMD) and real-time three-

dimensional computer graphics ([Sut68]). In comparison to currently available technology the

system was crude in terms of computing and rendering power. However, all basic components

that make up today’s VR systems were present in this prototype.

From there on, there has been continual research in the area of real-time computer graphics

and interactive virtual environments (VEs). Hardware technology that facilitates to render

complex 3D scenes at interactive frame rates is permanently refined, e.g., thousands of different

textured objects can be displayed even on large screens sufficiently fast. Tracking technologies

provide the possibility to receive and process three-dimensional data for several tracked objects or

devices in real-time. Moreover, VR input and output devices can address multiple human sensory

modalities enabling users to interact with virtual worlds in an advanced manner. For example,

auditory feedback creates the illusion of audio sources propagating from certain locations in

the 3D world, and haptic devices allow users to touch and feel virtual objects; there are even

approaches using olfactory and gustatory input and output in virtual reality ([YNTT03]).

Besides improvements regarding hardware technology, also software enhancements have been

made; computer graphics algorithms allow rendering a virtual scene with sufficient visual quality

at interactive frame rates. Furthermore, software systems and toolkits have been introduced

to aid the rapid development of interactive applications. In particular, VR software systems

ease the development of VR-based applications by handling rendering issues and by providing

1

interfaces to tracking systems as well as input and output devices. Hence, developers can focus

on the design of the virtual environment and the interaction processes in the VE rather than

technical issues, e.g., implementing certain graphics effects.

VR technologies, in particular stereoscopic displays as well as sophisticated input and output

devices, have the potential to provide a better insight into complex datasets. However, interaction

in VR-based environments makes high demands on the ability of the user to interact in a three-

dimensional virtual space. This is due to the fact that in contrast to two-dimensional user

interfaces the user can specify position and orientation simultaneously via the pose of arbitrary

3D input devices. Moreover, the user can modify virtual objects without any restrictions in

terms of the manipulability of the objects. Thus, when accomplishing certain interaction tasks

in VR-based applications the cognitive effort for a user is higher compared to the effort required

to interact via two-dimensional user interfaces.

The goal of this thesis is to improve the interaction between the user and a VR system by

providing novel multimodal interaction metaphors. These metaphors aim to ease interaction

processes by depicting complex procedures with commonly used approaches and techniques, and

addressing multiple human sensorial channels. In this context it is important to understand how

humans interact with computers and, in particular, how humans perceive information with the

different sensorial modalities. Hence, in this thesis the main modalities, i.e., the visual, auditory

and haptic systems, are considered.

The development, implementation and evaluation of the proposed interaction metaphors are

based on a generic VR software system described in this thesis. Furthermore, case studies show-

ing the usefulness of the proposed interaction concepts in interactive geovisualization as well as

seismic visualization applications are discussed, and example VR system setups are described for

which the proposed concepts have been evaluated in usability studies.

The remainder of this thesis is structured as follows. In Chapter 2 fundamental concepts of

HCI are discussed. In particular, the main factors contributing to an interactive system are

analyzed in detail. To obtain a basic overview of the capabilities and limitations that affect the

user’s ability to interact with a computer system, human factors are considered. Furthermore,

different computer systems are described, with special consideration of the corresponding input

and output devices in terms of their influence on the interaction process. Afterwards, the dialog

between user and system is discussed in order to describe different models of interaction.

In Chapter 3 the generic VR software system VR2S is presented, which allows the rapid de-

velopment of multimodal interaction strategies for VR-based applications. The main components

of a VR system are identified, and pipeline concepts for rendering visual, auditory and haptic

effects are explained. Finally, the architecture and benefits of VR2S are described by means of

the integration and usage of basic components that constitute VR systems.

Chapter 4 discusses direct interaction metaphors for object selection and manipulation. The

improved virtual pointer metaphor is introduced and its integration into VR2S is described.

Furthermore, a dual-purpose metaphor for both VR- as well as desktop-based interaction is

proposed, and the integration of VR widgets into VR2S to support VR-based system control is

- 2 -

discussed. Usability studies evaluate the benefits and potentials of the proposed metaphors.

Chapter 5 presents two approaches, which further enhance VR-based exploration by focusing

on co-located interaction concepts for large screen displays with the objective to enable groups of

users to explore data in VR with confined resources. Furthermore, concepts for the simulation of

global illumination phenomena in VEs are discussed, which allow to seamlessly merge real-world

and virtual objects.

In Chapter 6 the technical characteristics of two example VR system setups, which provide

users with semi-immersive VR, are described in detail. Moreover, case studies using the pro-

posed interaction strategies for interactive geovisualization as well as seismic volume visualization

applications are discussed.

Finally, Chapter 7 concludes this thesis and gives an overview of future research directions.

1. Introduction

2. Concepts of Human-Computer
Interaction

5. Exploration of
Virtual Environments

3. A Generic Virtual Reality
Software System

4. Selection and Manipulation
of Virtual Objects

6. Case Studies: Applications for
Semi-Immersive VR Systems

7. Conclusions

Figure 1.1: Thesis road map and possible shortcuts.

When reading this thesis different approaches are possible. Figure 1.1 illustrates the ”road

map” to this thesis. Depending on the reader’s previous knowledge and special interests different

paths depicted in Figure 1.1 may be chosen while reading. For example, readers already having

fundamental knowledge of HCI may skip Chapter 2 and proceed with Chapter 3, which presents

VR2S, or with Chapter 4, which introduces VR-based interaction metaphors.

- 3 -

- 4 -

Chapter 2

Concepts of Human-Computer

Interaction

This chapter gives an introductory overview covering fundamental concepts of the interaction

process between human users and computer systems. Since one focus of this thesis is on the

development of interaction strategies for generic interaction tasks in virtual environments, re-

lated concepts regarding the interaction process between humans and computers are described

in Section 2.1. All important factors contributing to an interactive system - the human user, the

computer system and the interaction itself - are analyzed. To obtain a basic overview about the

capabilities and limitations that affect the user’s ability to interact with an arbitrary system, Sec-

tion 2.2 discusses human factors with respect to perceptual and cognitive psychological aspects.

Furthermore, different computer systems with special consideration of the corresponding input

and output devices and their influence on the interaction process are described in Section 2.3.

Finally, Section 2.4 focusses on the dialog between human users and computer systems in order

to describe different models of interaction.

More detailed descriptions of interactive systems involving human users and computer systems

can be found in [Dah06, Car01, DFAB98, HBC+92].

2.1 Human-Computer Interaction

The term human-computer interaction (HCI) was adopted in the beginning of the 1980s in order

to describe the field of user interface (UI) systems, but originally this research field had a much

broader scope than the design of user interfaces. Currently, there is no common agreement

or general theory of the range of topics that form the area of human-computer interaction.

Though, ACM’s Special Interest Group on Computer-Human Interaction describes HCI as follows

([HBC+92]):

“Human-computer interaction is a discipline concerned with the design, evaluation

and implementation of interactive computing systems for human use and with the

5

2.1. Human-Computer Interaction

study of major phenomena surrounding them.”

According to this definition, HCI considers all aspects that relate to the interaction between

users and computers, i.e., design, implementation and evaluation of interactive computer systems

in the context of certain tasks users want to accomplish. HCI is not restricted to a single user,

who interacts with a single desktop computer. User either refers to an individual user, or a

group of users working simultaneously or sequentially, co-located or distributed, while the term

computer represents technology ranging from a single desktop-computer to embedded systems

or ubiquitous computing approaches. Interaction denotes the communication between the user

and the computer system.

During the past two decades, HCI evolved as a field of research concerned with both computer

science research as well as applied social and behavioral science. In this context the study

and practice of usability becomes a topic of major relevance ([RBML04, Car01]). In order to

be established interactive computer systems and user interfaces have to be designed to meet

certain requirements. First of all, these systems have to be useful, i.e., the system supports

users to accomplish desired tasks. Moreover, interactive systems have to be usable, i.e., users

are supported in performing tasks easily and intuitively. Another important issue is about the

experience of using a new user interface; it should motivate users to make use of the user interface

and provide them with enjoyment and satisfaction when using it. Thus, the objective of HCI

is to improve the safety, utility, effectiveness, efficiency, and usability of interactive computer

systems and to ensure that these systems integrate appropriately in the settings in which they

are used.

In the 1970s, behavioral approaches to understand the usage of interactive computer systems

developed rapidly, focusing on what users experience and how they interact with computer

systems. These issues have initiated many industrial and research institutes to concentrate on

the study of human factors and usability of software as well as hardware. This so-called user-

centric development of interactive systems, in particular of user interfaces, involves different

fields of research with different backgrounds, i.e., knowledge and expertise. Sciences that make

a major contribution to HCI are

• computer science, which is engaged in engineering of user interfaces and appropriate soft-

ware solutions,

• cognitive psychology, which investigates the application of theories of cognitive processes

and analyzes user behavior,

• sociology and anthropology, which investigate interworking between technologies and users,

in particular how humans and technical systems mutually adapt to each other, and

• industrial design, which deals with the design and development of products for interactive

computer systems.

But also other disciplines such as artificial intelligence, linguistics, philosophy etc. are involved

([Car01, DFAB98]). Most of these disciplines include the development and empirical validation

- 6 -

2.2. Human Factors

of models and theories as well as laboratory and field studies about users learning and using

particular interactive computer systems. The combination of these different approaches became

known as usability engineering.

Both the computer with its associated input and output devices as well as the capabilities

and limitations of the human user using these technologies influence the nature of interaction and

the design of the interface. Hence, in order to understand how humans interact with computers,

both actors in such an interaction process are considered in the next sections.

2.2 Human Factors

For many domains the simulation of real-world behavior is an important prerequisite to enable

comprehension, although virtual environments (VE), i.e., synthetically generated scenes, are not

restricted to represent the real world. Hence, to enable innovative and advanced interaction

concepts VEs often extend real-world appearance and behavior. In order to provide usable in-

terfaces for the interaction between humans and computers, it is essential to understand human

capabilities and limitations. For this purpose, sufficient knowledge of both cognitive psychology

and in particular perceptional aspects are required ([BKLP01]). The latter includes knowledge

about the way humans perceive information, in particular how information is perceived with the

senses, whereas cognitive psychology focusses on mental aspects, how humans process informa-

tion, in particular how humans learn, reason, or remember. Both aspects are briefly discussed

in the following subsections

2.2.1 Multimodality

Humans process information by using different input and output channels simultaneously. Per-

ception is understood as the process of acquiring, interpreting and organizing sensory information.

Senses concern about the physiological methods for perception. In order to be accepted by the

user a virtual environment has to address senses by providing the most important stimuli at their

required qualities ([HL95]).

Therefore considering the amount of contribution of a particular sense gives valuable hints

about which modalities should be included in what quality when developing an interactive VE.

The senses can be distinguished into exteroception senses, which denote the humans’ sensitivity

to stimuli originating from the outside of the body, and proprioception senses that provide

feedback about the internal status of the body. The exteroception senses include special senses,

i.e., senses of vision, hearing, taste, and smell, as well as somatic senses, i.e., senses of pressure,

heat and pain, together referred to as senses of touch. Proprioception senses include the sense

of equilibrium, sometimes referred to as the sense of balance, and the sense of kinesthesia that

denotes the humans’ sensitivity to the position and orientation of parts of the human body and

limbs relative to other neighboring parts of the body.

A multimodal interactive system is a system that relies on the usage of multiple different

human communication channels, where each channel is referred to as a modality of the interac-

- 7 -

2.2. Human Factors

Sensory perception Sense organ Modality Relevance

Sense of vision Eyes Visual >70 %

Sense of hearing Ears Auditory <20 %

Sense of smell Nose Olfactory <5 %

Sense of touch Skin Haptic <4 %

Sense of taste Tongue Gustatory < 1 %

Table 2.1: Exteroception senses and modalities (table according to [Hei92] and [Sil79]).

tion. Moreover, Schomaker et al. distinguish the channels by their direction, i.e., whether

information is transferred from the computer system to the human or vice versa ([SNC+95]).

The former directed channels are referred to as output modalities, whereas the latter channels are

denoted as input modalities. Table 2.1 gives an overview of the exteroception senses, modalities

and their relevance in the human information system.

It shows clearly that the vision system is dominant when humans perceive information from

their surroundings. Hence, stimulation of the visual system plays an important role when de-

signing an interactive system or reproducing real-world phenomena in a VE, and thus this issue

has become a major focus of research. An interactive system, which only supports one human

communication channel, e.g., the visual channel, is referred to as unimodal ([SNC+95]).

The second most important sense is the sense of hearing, which is also often considered when

developing an interactive system. In this context, the term bimodal denotes the usage of exactly

two different modalities when interacting with a computer system ([Rai99]). Most interactive

systems are at least bimodal since the user views the information displayed on the monitor

while interacting with the hand via a mouse or keyboard. Schomaker et al. ([SNC+95])

consider an interaction between humans and computers as multimodal, if more than one input-

or output-modality, and more than one input device are used. According to Table 2.1, the sense

of touch in general does not play a major role for the human information system, but in the

real world and especially in HCI manipulation tasks are accomplished primarily by using the

hands. In most interactive systems, the senses of smell and taste are neglected, because of their

marginal role in the context of HCI and the difficulties in their implementation ([SNC+95]).

Proprioception senses, such as the sense of balance becomes more and more important with

respect to training system environments, e.g., flight simulators ([BC03]). In a multimodal system,

when addressing multiple senses simultaneously, the synchronization of all stimuli with users’

actions is essential since insufficient implementation contributes to confusion or to simulator

sickness at worst ([Rai99]).

As mentioned above, multimodal interactive systems allow to choose from different input

and output channels when transmitting information from the user to the computer system and

vice versa. However, the main goal of multimodal interaction is to increase support of the

user’s abilities by combining different input and output modalities in order to make the use of

human-computer interfaces easier and more efficient ([Rai99]). Even though most information is

transmitted to the user via the visual channel, the other modalities form an important supple-

- 8 -

2.2. Human Factors

ment and extend the interactivity ([BC03]). In the context of HCI Charwat and Schomaker

et al. evaluate the visual, auditory and haptic modalities as the most important modalities

([Lat01, SNC+95, Cha92]). Hence, this thesis is focussed on multimodal interaction with special

consideration of these three main modalities.

2.2.2 Visual Perception

As mentioned in the previous subsection humans perceive most information with their visual

sense, and hence the visual representation of a VE is the most important aspect in the context

of HCI. Vision essentially depends on light, since the eye receives light reflected by objects. The

objects are projected upside down on the retina at the back of the eye, where receptors transform

the incoming light into neuron signals. As illustrated in Figure 2.1 the cornea and lens at the

front of the eye focus the light to form a sharp image on the retina. The retina contains two

types of photoreceptors, i.e., highly light sensitive rods and less light sensitive cones. To allow

color vision, there are three kinds of cones, each sensitive to light of different wavelength. These

cones are mainly concentrated on the fovea, i.e., a small area of the retina on which the image is

focussed and from which it is passed to the brain via the optic nerve.

cornea

lens

retina

fovea

line of sight

optic nerve

Figure 2.1: Labeled cross section drawing of the human eye (adapted from [Hel95]).

Ideally, the quality of visual feedback generated within a computer system should be equal to

the representation in the real world. Unfortunately, todays technology is not capable to achieve

this challenge. Hence, when considering the implications on the quality of the visual experience,

many compromises have to be accepted.

The human eye has both a vertical and a horizontal field of view (FoV) of approximately 180o

by 180o. Indeed, the vertical range is limited by cheeks and eyebrows to about 150o, whereas the

horizontal FoV is also limited inwards by the nose, and equals 150o for each eye. When focussed

at infinity the total horizontal viewing equals 180o with a 120o binocular overlap, i.e., the region

seen by both eyes of the user ([Hei92]). In comparison, a 21” monitor viewed from the distance

of 50cm covers approximately 48o of FoV, whereas some displays and projection screens use wide

field optics that provide up to 140o of FoV.

Visual acuity is defined as the sharpness of viewing. It is measured as the fraction of a point

which spans one minute of arc (MoA), i.e., approximately 0.017o, horizontally ([CNSD+92]).

- 9 -

2.2. Human Factors

Acuity decreases with increasing distance to the line of sight. For instance, for a reasonably

lighted object that lies on the line of sight axis, the eye can resolve a separation of one MoA.

The area of highest acuity covers only a region of about two degrees around the line of sight,

whereas sharpness of viewing decreases rapidly beyond this central area ([Hel95]). Even the best

desktop visual displays do not achieve this quality. For instance, a 21′′ monitor with a resolution

of 1280× 1024 pixels viewed from the distance of 50cm supports a resolution of only 2.8 minutes

of arc, i.e., 0.047o.

Temporal resolution of the eye refers to the flickering phenomena perceived by humans, when

looking at a screen that is updated by repeated impulses as done, for instance, by cathode ray

tube (CRT)-based monitors. Low refresh rates, especially for large displays and high luminance,

cause the perception of flickering. To prevent this effect, a high refresh rate has to be provided,

i.e., at least 50Hz for small screens and low illumination up to 100Hz for large screens and high

illumination levels. Todays technology fulfills these requirements, since currently available CRT

monitors support at least 85Hz refresh rates and higher, whereas modern liquid crystal displays

(LCDs) are updated constantly and this problem does not occur in this case.

Since this thesis focusses on interaction in three-dimensional VEs, depth perception is essen-

tial. To generate depth information the brain extracts cues from the perceived scene. These

so-called depth cues can be classified into physiological, e.g., accommodation, convergence or

stereopsis, and psychological such as occlusion, object size, motion parallax, linear perspective,

or texture gradient ([Lip91]). All of them contribute to depth information as long as no con-

tradictory cues are provided to the user. Usually, three-dimensional virtual environments are

projected on two-dimensional displays or projection screens. In the last years, many computer

graphic algorithms have been proposed to reproduce these depth cues in synthetically generated

images. For this thesis relevant approaches are described in detail in Chapter 3.

2.2.3 Auditory Perception

According to Table 2.1 the sense of hearing has a relevance of about 20% in the human information

system, and thus the auditory modality plays an important role in the context of HCI. Sound

results from changes or vibrations in air pressure. The human ear receives these vibrations and

transmits them through various stages to the auditory nerves.

outer
ear

inner
ear

middle earpinna

auditory
canal tympanic

membrane

ossicles

cochlea

auditory
nerve

Figure 2.2: Labeled cross section drawing of the human ear (adapted from [Beg94]).

- 10 -

2.2. Human Factors

As depicted in Figure 2.2 the ear comprises the three sections, outer ear, middle ear and

inner ear. The outer ear consists of the pinna, i.e., the outer structure, and the auditory canal,

along which a sound is passed to the middle ear. The middle ear is a small cavity connected to

the outer ear by the tympanic membrane and to the inner ear by the cochlea. Sound waves are

passed through the auditory canal and vibrate the tympanic membrane, that in turn vibrates

the ossicles, i.e., small bones in the middle ear, which transmit the waves into the inner ear via

the cochlea. The waves are passed into the liquid-filled cochlea in the inner ear, which contains

delicate hairs that bend due to the vibrations and causes impulses in the auditory nerve ([Gol03]).

Individual sounds can be distinguished by pitch, loudness, timbre and by their location in

space ([Beg92]). The perceived pitch of a sound is the ear’s response to frequency. A low

frequency produces a low pitch, whereas high frequencies produce high pitches. The human ear

is able to hear frequencies from 16Hz to 20kHz , and it is capable to distinguish changes of less

than 1.5Hz , but for high frequencies the sense of hearing is less accurate ([Dah06]). Loudness is

the subjective term describing the strength of the ear’s perception of a sound, which is affected by

several parameters, including frequency, duration and bandwidth, i.e., measure of the frequency

range. Timbre relates to the type of sound and describes the characteristics that allow the ear

to distinguish sounds, which have the same pitch and loudness. These capabilities of the human

ear can be addressed sufficiently with nowadays sound systems ([KJM03, Beg94]).

The spatial location of a sound is what gives the sound its three-dimensional character. Sound

sources are categorized into mono-, stereo- or binaural-, and 3D sound, also termed as spatial

sound. The signals of mono sound are equal for both ears. When using stereo or binaural sound

two different channels are available to represent a sound source, whereas the distance when

recording binaural sound is determined by the distance between the human’s ears. To locate

spatial sound sources the human’s brain processes several different types of data to extract

directional and distance information. This data include the shape of the sound spectrum at the

eardrum and interaural intensity and time differences, i.e., divergences in sound intensity and

time-of-arrival between both ears as well as differences in time-of-arrival between reflections of

sound sources. Further cues to support localization of sound sources’ positions in space are based

on the proprioception sense. As mentioned before, this sense of body awareness indicates where

the various parts of the body are located in relation to each other. For example, knowledge

about the head shadowing or the shoulder reflecting a sound is exploited to localize spatial

sounds. Sounds can be located spatially with an error of about 12o in left/right azimuth angle

and 15o in up/down as well as in front/back elevation angle ([Dah06, ZTW+01]).

Usually, the auditory as well as haptic modalities are used as add-ons to the visual modality

in order to support the visual perception. Thus, stereo headphones or multiple audio channels,

such as 5.1 or 8.1 dolby surround arrangements, achieve a sufficient quality when generating

synthetically spatial sounds ([Dah06, KJM03, Beg94]).

- 11 -

2.2. Human Factors

2.2.4 Haptic Perception

The term haptic denotes the sense of touch with both tactile and proprioceptive feedback

([Cal05]). Tactile feedback, sometimes referred to as touch feedback, is provided by feeling surface

geometries, textures, vibrations, and temperature, whereas feeling contours, shapes, inertia and

weight of objects enables proprioceptive feedback. Humans are able to sense touch with receptors

embedded in the skin, muscles, tendons and joints.

thermoreceptors

hypodermis

nociceptors

epidermis

dermis

mechanoreceptors

Figure 2.3: Labeled cross section drawing of the human skin (adapted from [Cal05]).

As depicted in Figure 2.3 the human skin is composed of the epidermis and the dermis. Below

these layers lies the hypodermis, which is not usually classified as a layer of skin. Furthermore,

the skin contains three types of sensory receptors. Thermoreceptors respond to heat and cold,

nociceptors respond to intensive pressure and pain. Mechanoreceptors respond to mechanical

interaction between objects and skin, and convey spatial and temporal information as well as the

strength of the force to the appropriate organs. Rapidly adapting mechanoreceptors respond to

immediate pressure and stop to respond if continuous pressure is applied, in which case slowly

adapting mechanoreceptors respond ([Gol03]).

Although the entire skin contains such receptors, the spatial resolution varies depending on

the density and acuity of the receptors. The fingertips which provide the highest density of

receptors can distinguish two contacts that are at least 2.5mm apart, whereas the palm is not

capable to distinguish about 11mm ([Shi92]). Furthermore, fingertips can distinguish dots of

height 1mm to 3mm on smooth surfaces ([Cal05]). Moreover, the fingertips can distinguish two

successive tactile feedbacks of 1ms duration at a single location, if they are separated by at least

5.5ms ([Jon01]). The resolution of the proprioception sense is defined as the smallest change of

the angle of joint that can be detected by a human. It is smallest for the hip (0.2o) and shoulder

(0.8o) and largest for the finger (2.5o) and toe (6.1o) ([Kal93]).

At present, technologies try to exploit the haptic sense to support both tactile feedback as

well as force feedback ([Cal05]). As mentioned above, tactile feedback refers to information that

can be interpreted by the modality of touch. However, tactile feedback does not resist or stop

the user’s motion, whereas force feedback provides proprioceptive information about surface

compliance, weight, and inertia. In the context of haptic computing, tangible media refers to the

use of real-world objects in a computational setting providing both tactile and force feedback.

- 12 -

2.3. Computer Systems

2.2.5 Cognitive Psychological Aspects

In the previous sections, fundamentals of the field of perceptional psychology of the human’s

information system have been described briefly. Humans perceive information by combining

their different senses, and cognitive psychology analyzes how humans process and store these

information. But also the way humans acquire knowledge, in particular, how humans develop

certain skills, or how reasoning works in this context, is a major topic of cognitive psychology.

An important concept of cognitive psychology is the human model processor, which describes the

cognitive process humans go through from perception to action ([CMN83]). Cognitive processing

has a significant effect on interaction performance defined by ease of learn, ease of use, task

completion time and the number of trials required to accomplish a certain task. Thus, when

designing an interactive system, only a few cognitive resources should be used in order to allow

the user to focus on the actual task. For example, Miller ([Mil56]) describes the strategy of

limiting the working memory to increase performance. The working memory can hold only a

certain amount of information at a time. If more memory is required to accomplish the desired

task, it may result in interference with other parts of the working memory. Hence, interfaces

should be designed in such a way that the limited working memory can be used for domain-specific

information. An important issue in this context are affordances. An affordance is a property of a

virtual object, that indicates how to interact with that object. For example, a button indicates

to click it with a mouse. Norman ([Nor99]) points out that the usage of affordances supports

the user when interacting with virtual objects, since the affordances allow the user to recognize

how to interact also with new and unknown objects.

Perceptual and cognitive psychology also considers individual differences in the capability

between human beings. McGee ([McG79]) studied the differences of humans’ spatial abilities;

for example, the classical mental rotations experiment ([CS73]) has shown that humans vary

in their abilities to reason spatiality, especially in three dimensions. Thus, when developing

interactive systems, designers have to attempt to create interfaces that perform robustly for

users with a wide range of capabilities and limitations.

2.3 Computer Systems

In order to understand how humans interact with computers, both actors in the interaction have

to be analyzed. In this section, different computer systems are discussed, which provide support

to address multiple modalities. Starting with traditional two-dimensional interfaces and their

limitations regarding to HCI, more sophisticated approaches that address multiple senses and

which allow more advanced interaction concepts are described.

2.3.1 Traditional 2D Interfaces

The first graphical user interface (GUI) has been proposed by Sutherland in 1963 ([Sut63]).

His Sketchpad was a unique program developed for the TX-2 computer, which had a nine inch

CRT that could be interfaced with a light pen. Sketchpad enabled the user to draw and zoom

- 13 -

2.3. Computer Systems

in and out on the computer screen by using this light pen.

Based on this approach during the last decades a set of two-dimensional user interface

paradigms have been established using raster devices for 2D output and input devices simi-

lar to the light pen. Input devices determine the way a user communicates with the computer.

Nowadays, the most common human-computer interaction devices are the keyboard, the mouse

or other pointing devices in combination with a display. The keyboard and the mouse provide

elementary input events such as button down or button up, mouse motion or key-press events to

control virtual input devices, such as the mouse cursor, while a display provides visual feedback

as output event. This combination has proven to be a very powerful concept for two-dimensional

GUIs and has been the de facto standard interface for over 20 years, although even the first

prototype appeared already 40 years ago ([EEB67]).

Two-dimensional GUIs are also known as WIMP interfaces related to their comprising ele-

ments – windows, icons, menus and pointer (sometimes referred to as windows, icons, mice and

pull-down menus). WIMPs are the default interface for the majority of interactive computer sys-

tems in use today. When using a WIMP-based interface most actions require only fundamental

techniques, for instance, a single or double click with a mouse button when the mouse cursor

is located at a specific position on the screen. This point-and-click interface is not restricted to

the usage of buttons, but may also include other WIMP elements, e.g., sliders, text-boxes etc.

Usually, two-dimensional manipulations with 2D interfaces are performed by mapping the mouse

movements to the mouse cursor on the screen resp. to a selected object located under the mouse

cursor’s position. However, the point-and-click interface is not tied to mouse-based interactions,

and is also extensively used in touch screen systems, e.g., teller machines or tourist information

terminals.

2.3.2 3D Interaction with 2D Interfaces

The traditional 2D interface is often sufficient, but there is an increasing number of applications

in which there is demand for visualization and interaction in three dimensions. In these 3D

virtual environments the complexity increases since there is a further axis orthogonal to the

screen – the depth axis – which has to be considered when visualizing and interacting. In order

to control the interaction with respect to this additional axis, extensions of two-dimensional

interaction concepts are required. The two degrees of freedom (DoF), i.e., translation along the

x-axis and the y-axis on a projection screen of a display, supported by a standard 2D mouse,

may be combined with the keyboard or mouse buttons in appropriate ways. For example, two-

dimensional mouse movements could be mapped to planar movements of the virtual input device

on the screen, and if a mouse button is pressed in addition it could be mapped to a translation

along the depth axis. Alternatively, the scroll-wheel of the mouse (if available) can be used for

translations along the depth axis. However, since multiple input paradigms have to be controlled

by users, performing 3D interactions with 2D interfaces results in high effort for the user.

Two-dimensional displays also limit the 3D interaction, because in general the user should

be able to change the view position from time to time in order to understand three-dimensional

- 14 -

2.3. Computer Systems

structures or to see obscured objects in the virtual scene. For this purpose of changing the view

position in the VE, further combinations of mouse buttons, or keys with mouse movements are

required causing an extra cognitive effort for the user. Houde has shown in [Hou92], that it

could be sufficient for certain 3D interaction tasks to use a 2D input device. The choice of input

device heavily depends on the characteristics of the application for which it should be used,

whereas limiting the available DoF does not necessarily interfere the user. Often it supports

the user to reduce the number of simultaneously usable DoF. For instance, if the current task

is restricted to slide an object along one axis in space, translation along other axes should not

be possible and rotations should be disabled entirely. Such restrictions during an interaction

process are called constraints and often support a more intuitive way to interact with virtual

objects ([SSS01, BH95]).

Although sometimes it is advantageous to use only a subset of the DoF available for a partic-

ular input device, generally, the more DoF a device provides the more input options can be used.

Liang and Green ([LG94]) describe the problem of insufficient DoF by stating the traditional

mouse-based interaction as the bottleneck to 3D geometric design, because it forces the user to

decompose a 3D task into a series of one- or two-dimensional subtasks. However, the available

DoF have to be used with caution and extraneous DoF should be provided only if their usage

proofs a more intuitive facility for the interaction ([LG94]).

2.3.3 3D User Interfaces

To overcome the drawbacks evident in 2D interfaces, many technologies and techniques have

been proposed which are more suitable for 3D interaction. When interacting in three dimensions

the user has the potential to control more than two DoF. Three-dimensional manipulations of

virtual objects can be performed, for example, with six DoF, i.e., three DoF for translations and

three DoF for rotations. If a Cartesian coordinate system is used, translations can be performed

along the x-, y-, and z-axis giving a position, and rotations can be carried out with certain angles

around the aforementioned axes. These rotations are called yaw, pitch, and roll, can be used to

orientate virtual objects (see Figure 2.4).

y

x

z

yaw

pitch

roll

Figure 2.4: Six DoF manipulation in space.

Hence, the position and orientation of a virtual object can be described by a dataset containing

six values, which represent the six DoF. To enable an instantaneous and intuitive 3D interaction,

- 15 -

2.3. Computer Systems

this dataset of six values has to be measured rapidly. For this purpose, manufacturers have

developed 3D input devices to enable more straightforward interactions. Global position system

(GPS) transducers report three DoF position with an accuracy of 1m to 5m. But 3D interaction

has much more stringent accuracy requirements, for instance, when interacting in a desktop-based

arrangement, where accuracy in the range of submillimeters is desired. Special-purpose hardware

used to measure real-time changes in position and orientation with appropriate accuracy is called

tracker. Tracking can be performed with several different technologies, e.g., optical, ultrasonic,

magnetic or mechanical approaches. The space-mouse and space-ball are examples for such

ultrasonic resp. mechanical desktop-based six DoF input devices ([3DC]).

In general, trackers deliver absolute data, i.e., position resp. orientation values, or relative

data, i.e., change of data compared to the last state. According to [HL95], when evaluating

six DoF trackers the most important properties which have to be considered for choosing the

appropriate device for a given application are

• accuracy, i.e., the measure of error in the reported position and orientation,

• resolution, i.e., the smallest change in position and orientation detectable by the tracker,

• update rate, which defines the number of measurements per second,

• latency that determines the amount of time between the users real action and the beginning

of transmission of the report that represents this action, and

• range, i.e., the working volume within which the tracker can measure position and orien-

tation.

Beside these properties, also ergonomic aspects have to be considered, e.g., ease of use, size and

weight of the device.

Tracking hardware enables to feed spatial information to the system. Besides positioning

and orienting virtual objects with six DoF, tracking the user’s head enables a view-dependent

exploration of a VE. Hence, if the head position and orientation of the user is known, the virtual

environment can be displayed according to this information. Thus, the user can change the

view in the VE by changing his head position or orientation. However, when using monoscopic

visual feedback provided by a standard display, both eyes of the user perceive the same image,

and important depth information extracted from stereopsis gets lost. In the real world the

interpupillary distance (IPD) (about 6.5cm) is fundamental for stereopsis to enable human beings

to interpret distances to objects. The user perceives points of the real world shifted horizontally

with the right and the left eye, because of their different positions in both eyes. This shift is called

image parallax and has to be emulated in order to enable humans to interpret such binocular

depth cues in the virtual world. Stereoscopic display technologies allow the user to experience

the scene in stereo by providing a pair of images. Showing each eye a slightly different view

of the scene according to the eye distance makes the human’s perception system to extract the

disparity in the two views to create a stereoscopic image. When two displays are used, each

presents one image to the corresponding eye. When a single display is used, the two images can

- 16 -

2.3. Computer Systems

be time-sequenced, i.e., the image for the left eye is displayed first and the image for the right

eye is displayed afterwards, filtered, i.e., both images are displayed superimposed, or spatially

sequenced, i.e., the images are displayed entirely next to each or they can be displayed interlaced.

Depending on the stereoscopic technology the separation of both images can be performed, e.g.,

by using active shutter stereo glasses, passive stereo glasses, or by using autostereoscopic displays.

The usage of 3D input devices in combination with stereoscopic visualization enables an

improved 3D interaction in comparison to standard desktop-based environments. Besides 3D

interaction with objects, many more input paradigms are involved in real-world interactions

since manipulations humans perform in the real world are not restricted to six DoF. For example,

humans can use multiple finger combinations with different forces to grab and deform objects.

Furthermore, interactions can be initiated by means of articulation or gestures ([Lat01]). Hence,

it is desired to immerse the user more into the virtual environment by addressing these multiple

input options.

2.3.4 Virtual Reality

The term virtual reality (VR), sometimes referred to as artificial reality or simulated reality, has

been used to refer to the notion of an advanced computer generated experience. The virtual

environment responds to the input of the user and provides real-time interactivity. Real-time

interactivity requires that the computer is able to detect the user’s input and modify the VE

instantaneously, which corresponds to refresh rates of at least 15 frames per second (fps) with

which the scene is rendered ([AMH02]). Since in most VR systems auditory and haptic modalities

are used in conjunction with the visual modality it is important that all stimuli are synchronized

with the users’ actions and with each other.

Interactivity and the usage of impressive 3D computer graphics contribute to the feeling of

immersion, i.e., the feeling of being part of the VE. To further increase the immersion, VR

technologies support several human sensorial channels, i.e., interactions are not restricted to the

visual sense, but the user can also hear, touch and feel the VE.

Burdea and Coiffet ([BC03]) define VR as follows:

“Virtual reality is a high end user-computer interface that involves real-time simula-

tion and interactions through multiple sensorial channels. These sensorial modalities

are visual, auditory, tactile, smell, and taste.”

However, VR is not limited to advanced user interfaces. Moreover, VR applications help to

solve real-world problems since VR technologies and techniques provide more immersive interac-

tions with VEs and thus provide a better insight into complex datasets leading to an improved

comprehension of complicated structures.

A taxonomy proposed by Zeltzer classifies VR into the broad field of graphic simulation

systems ([Zel92]). This classification includes both VEs as well as more conventional computer

animation and graphic simulation systems. The taxonomy model is based on a coordinate system

involving three axes representing interaction, presence and autonomy (see Figure 2.5). In this

context interaction refers to the ability of the user to affect and modify the virtual scene. Presence

- 17 -

2.3. Computer Systems

is a synonym for immersion, i.e., the degree to which input and output channels of the system

and the user are matched, whereas autonomy measures the quality of the system to act and

react to generated events and stimuli. In this model applications that are mapped to the area

around the upper right front corner (1, 1, 1) are referred to as VR applications, whereas, for

example, interactive simulation environments are mapped in the region at the back plane (0, 0, 0)

to (1, 1, 0) of the cube. Hence, VR applications provide digital worlds that involve a high degree

of interaction and autonomous behavior of the VE in order to support the immersion into the

virtual world by addressing multiple senses.

(0,1,0)

(1,0,0)

(0,0,1)

autonomy

presence

interaction

(1,1,0)

(0,1,1)

(1,1,1)

(1,0,1)

(0,0,0)

virtual reality

Figure 2.5: Taxonomy of interactive graphics systems (adapted from [Zel92]).

Before giving an overview about current VR technologies, the next subsection summarizes

how VR devices and techniques have evolved during the last 45 years.

Brief History of VR

In 1962, Heilig issued the US Patent no. 3 050 870 for the Sensorama invention, which was the

first video arcade game, providing three-dimensional color video, stereo sound, motion, aromas,

wind effects and a vibrating seat. Three years later Sutherland proposed the ultimate approach

to a VR system as an artificial world construction concept that involves interactive graphics,

force-feedback, sound, smell and taste ([Sut65]). This work is a theoretical description of an

ultimate virtual reality scenario, in which the user is completely immersed with all senses into

the virtual world.

In 1968 Sutherland has constructed a device considered as the first head mounted display

(HMD) with appropriate head tracking ([Sut68]). This HMD technology used two rather large

displays, which provide a stereo view that was updated according to the user’s head position

and orientation. Further development has been primarily driven by the US military, which has

used VR technologies, in particular HMDs, to support education of pilots in conjunction with

- 18 -

2.3. Computer Systems

flight simulators. In the middle of the 1980s the VPL Research company manufactured the first

commercially available VR hardware devices, e.g., data gloves (1985) and HMDs (1988).

At the beginning of the 1990s the development in the field of VR accelerated and the term

virtual reality itself became extremely popular. In 1992 the CAVE (CAVE Automatic Virtual

Environment) has been presented as virtual reality and scientific visualization system. Instead

of using HMDs it projects stereoscopic images on the walls of a cubic room. Such projection-

based displays provide each eye an independent image either time-sequenced or time-parallel

using shutter resp. filter technologies. These projection-based display systems assure superior

quality and resolution of stereoscopic images, and a wider field of view in comparison to most

HMD-based systems. Hence, as denoted in [BKLP04] nowadays most VR systems are based on

projection-based hardware systems, such as the CAVE, single projection-walls or workbenches

(see Chapter 6), i.e., tabletop-based projection screens.

Levels of Immersion

VR systems generate sophisticated sensory impressions that are delivered to the human senses.

The type and the quality of these impressions determine the level of immersion. Ideally, in-

formation should be presented to all of the user’s senses with high-resolution, high-quality and

consistent over all the representations ([SSC01]). Moreover, the environment itself should react

realistically to the user’s actions.

In the literature VR systems are often grouped according to the level of immersion they

provide to the user ([BC03, MG96, IS94]):

• Desktop VR systems, sometimes referred to as Window on World (WoW) systems,

are the simplest type of a VR system. Generally, only conventional monitors are used to

display the VE either monoscopic or stereoscopically. These systems are often combined

with auditory feedback. Usually, in desktop VR systems only standard desktop devices,

e.g., mouse and keyboard, are used as input devices.

• Fish tank VR systems enhance desktop VR systems. These systems support head

tracking and view-dependent exploration. Usually, in fish tank VR systems a conventional

monitor in combination with LCD shutter glasses for stereoscopic viewing is used. As in

desktop VR systems these fish tank VR systems are often combined with auditory feedback.

These systems often enhance the input paradigms of standard desktop-based environments

by six DoF devices, such as a space-mouse or a trackball.

• Semi-immersive VR systems provide more immersive VR in terms of display technology

and multisensory output. Usually, semi-immersive systems exploit large projection displays

that support stereoscopic viewing of the scene according to the user’s head position. The

interaction is performed by the usage of VR input devices, e.g., data gloves, which enable

natural manipulation of virtual data. Usually, these systems are enhanced by audio and

haptic sensory interfaces.

• Immersive VR systems enable complete immersion in virtual environments by the usage

- 19 -

2.4. Interaction Concepts

of HMDs or CAVEs, head phones and data gloves. Hence, the audiovisual perception

exclusively takes place in the virtual world.

While desktop VR and fish tank VR systems are more related to 3D user interfaces, semi-

immersive and immersive VR systems are typical VR setups widely used in research and industrial

VR laboratories. This thesis concentrates on semi-immersive VR systems, although the presented

approaches are not restricted to them.

2.4 Interaction Concepts

In the previous two sections human factors and different computer systems have been described.

In this section, the way how users exploit computer systems to perform certain tasks is discussed.

Before the communication between both is analyzed, basic terms of interaction are introduced and

fundamental models, which describe the dialogue between the user and the system, are presented.

Finally, generic interaction tasks addressed within the scope of this thesis are sketched.

2.4.1 Basic Terms of Interaction

Traditionally, the purpose of an interactive system is to aid users in accomplishing goals or

objectives in specific application domains. Domains define areas of expertise in real-world activity,

e.g., medical diagnosis or urban planning. Tasks are operations used to manipulate the concepts

of a domain to achieve certain objectives. An intention is a specific action required to meet the

objective ([DFAB98]). Task analysis involves the identification of demands in terms of objectives,

tasks, and intentions for using an interactive system in a certain domain. The interaction between

the user and the system takes place by means of communication, for which different languages

are used. The system language describes computational attributes of the domain relevant to

the system’s state, whereas the user language describes attributes relevant to the user’s state

([DFAB98]).

Norman introduced a model of interaction – the execution-evaluation cycle – which distin-

guished two major phases: execution and evaluation; each can be divided into substages again

resulting in seven different stages ([Nor98]). First, the user establishes an objective (1) and

forms the intention (2). In the next step, the user has to specify (3) and execute (4) the action

sequence. Afterwards, the user perceives the system state (5) and has to interpret it (6). Fol-

lowing, the user evaluates (7) the system state with respect to the objectives and intentions in

order to decide about further actions.

As denoted above, user and system use different languages to communicate which may po-

tentially lead to confusion. Norman called the discrepancy between the user’s formulation of

the action sequence to achieve an objective and the actions allowed by the system the gulf of

execution. Moreover, he denoted the difference between the physical representation of the system

state and the expectation of the user as gulf of evaluation. Only if these differences are marginal,

an interaction can be performed effectively.

- 20 -

2.4. Interaction Concepts

2.4.2 General Interaction Cycle

Although the execution-evaluation cycle model helps to understand HCI, it considers only the

user’s view of the system. Abowd and Beatle address this problem and provide a more realistic

description of HCI by means of incorporating also the system’s communication with the interface

([AB91]). This so-called general interaction cycle is illustrated in Figure 2.6.

Action

Output

Input
Devices

Perception

Input

InterfaceUser

execution phase

evaluation phase

Output
Devices

System

Figure 2.6: General interaction cycle with transitions (adapted from ([AB91]).

It consists of four major components: the user, the system, the input devices and the output

devices. The user and the system communicate via the interface which is formed by the input and

output devices. In the execution phase the interaction cycle is initiated by the user formulating

an objective and a task to achieve that objective. In the next step, the user executes an action in

order to accomplish the task at the interface via the input devices. These actions are transferred

as input to the system. Hence, the system state changes with respect to these actions. When

the execution phase of this cycle is finished, the evaluation phase begins. After processing the

actions the system posts output to the interface via the output devices. Finally, the user observes

and interprets the output, and he reviews the results relative to the initial objective. Depending

on whether the goal has been achieved new interactions can be initiated, or the cycle has to be

traversed again.

2.4.3 Layered Interaction Concepts

To improve the dialogue between the user and the system many approaches have been proposed,

which support different levels of interaction within an application ([ABF+94, BH93, Nie86]).

Figure 2.7 shows a general reference model for the actions performed by the user in the execution

phase illustrated in Figure 2.6.

The bottom level is defined by the hardware layer, sometimes referred to as physical layer.

This layer incorporates input devices and corresponding input events. When performing two-

dimensional interactions these devices and events are given, for example, by mouse or keyboard

devices resp. button-press or key-press events. In the case of three-dimensional interactions these

- 21 -

2.4. Interaction Concepts

Applications

Input Devices

Input Events

Interaction Techniques

Interaction Tasks

Interaction Metaphors

User Interfaces

Hardware
Layer

Conceptual
Layer

Semantic
Layer

Figure 2.7: Layered model of interaction (adapted from [ABF+94, BH93, Nie86]).

devices may be a space-mouse or data glove devices, causing six DoF motion or gesture events.

The next level is given by the semantic layer, which incorporates the functionality of an

interactive system, i.e., interaction tasks which can be performed within the system by the

usage of certain interaction techniques. Typical interaction tasks are translation, rotation, or

navigation, which can be performed by using several interaction techniques, e.g., clicking or

dragging in 2D, and pointing or grabbing in three-dimensional environments. The communication

embodied in such interaction techniques can be divided into syntactic, lexical and alphabetic

levels, which define the grammatical structure of a sequence of tokens, the structure of the

tokens, and the primitive symbols used to articulate the semantic concepts ([Shn97a]). For

example, consider the selection of a desktop icon which is a semantic level task. The syntax to

perform such a task is, for example, given by the two lexical actions: move the mouse cursor to the

position of the icon and press the left mouse button. The corresponding alphabetic level actions

are to move the mouse cursor to pixel (x, y) overlapping the icon’s position on the desktop, and

to press the left mouse button at that location.

Interaction tasks can be realized with a variety of combinations of different interaction tech-

niques. Many of these basic interaction techniques are based on an object-action or action-object

paradigm in which a user identifies an object and an action to be applied to that object or vice

versa ([Shn97a]). Basic interaction tasks are indivisible, i.e., decomposing them into smaller units

would destroy their meaning in the context of the application. More complex interaction tasks

can be performed by composing basic interaction techniques to composed interaction techniques

([JvDFH92, FD82]).

The next layer of the model is the conceptual level, which incorporates the main concepts of

an interactive system as seen from a user’s point of view. Foley and Van Dam refer to this

model as user model or the mental model ([FD82]). Accomplishment of many interaction tasks

puts a high cognitive effort on the user, since the objects and their manipulations are virtual and

- 22 -

2.4. Interaction Concepts

often not related to real-world interactions. For this purpose, interaction metaphors support

understanding of abstract aspects in a complex correlation by representing these complicated

techniques and tasks by well-known procedures. Interaction metaphors as part of the user

interface have been well-established in two-dimensional GUIs, e.g., through the desktop metaphor

([Com87]). Since interaction metaphors for VR environments are in the main focus of this thesis

the next subsection discusses interaction metaphors in more detail.

2.4.4 Interaction Metaphors

According to Carroll, Mack, and Kellogg ([CMK88]), an interaction metaphor, sometimes

referred to as interface metaphor, is defined by interface concepts that exploit specific knowledge

that users have from other domains. Thus, developers can incorporate interaction metaphors to

control the complexity of an interface by using preexisting actions, procedures, and concepts. If a

metaphor is chosen properly, objects within the interface imply natural and intuitive interaction.

In that case, even novice users know how to interact with specific objects, and they are able to

predict the effects of their actions.

Barr, Biddle and Noble provide a taxonomy of interface metaphors ([BBN02]). This

taxonomy involves the following approaches.

• Orientational metaphors explain concepts in terms of space. They are not only used for

navigation, but also for quantification. For example, when using vertical sliders, moving

up generally means more and down means less.

• Ontological metaphors use experience with physical objects to provide a better understand-

ing. For instance, treating data files as objects enables to assign them size and location.

• Structural metaphors characterize the structure of one concept by comparing it to the

structure of another one. The desktop metaphor with the analogy between files and folders

and their real-world equivalents belongs to this class of metaphors.

When a metaphor explains one concept in terms of another, metonymy is the usage of one entity

to refer to another that is related to it. For instance, metonymy is used in GUIs if icons are used

to represent files.

The usage of metaphors may also have drawbacks. For instance, extensive usage of metaphors

forces the user to understand the system only in terms of the metaphors. Hence, when design-

ing new metaphors, it must be ensured that all metaphoric information the metaphor implies

about the application are clearly indicated. Otherwise metaphorical mismatches can occur when

using an interaction metaphor. For example, the metaphor may contain concepts that are not

supported by the computer system, or the computer system may support actions that are not

presented in the metaphor. Furthermore, the computer system may behave in a way which con-

flicts with the behavior predicted by the user. Since canonical mapping is subjective to users or

groups of users, the selection of an appropriate metaphor is a challenging task in the design of a

user interface.

- 23 -

2.4. Interaction Concepts

2.4.5 Taxonomy of Interaction Tasks

After fundamental concepts of the interaction process have been described in the previous sec-

tions, this subsection focusses on interaction tasks, which are generic in the sense that they are

not related to specific domains and that they are widely used in many interactive systems.

Early efforts in human-computer interaction sought to identify generic tasks that appear

repeatedly in human-computer dialogs. For example, most interactive systems but also sophis-

ticated VR systems require interaction tasks to solve problems including the navigation within

a virtual scene, e.g., to zoom in or out, identification of objects, movement of objects from one

place to another or modification of the appearance of an object. Foley, Wallace, and Chan

([FWC84]) discovered that user interface transactions are composed of the following generic

interaction tasks:

1. Selection: Choosing virtual objects or items from a set of alternatives.

2. Positioning: Specifying a position within the virtual space, e.g., to translate virtual

objects.

3. Orienting: Specifying an angle or three-dimensional orientation, e.g., to rotate virtual

objects.

4. Path: Specifying a series of positions and/or orientations over time.

5. Quantify: Specifying an exact numeric value.

6. Text: Entry of symbolic data.

One of the goals of VR research is to provide a taxonomy of interaction tasks and techniques

with special consideration to VR environments Researchers have created detailed and slightly

different taxonomies ([Bow99, BH97, SNC+95]). Bowman ([Bow99]) proposes one of the most

common taxonomies that divides interaction tasks into four main categories: Navigation, Selec-

tion, Manipulation, and System Control, which might be considered as a combination of selection

and manipulation. Navigation subdivides into the tasks of wayfinding and traveling. Wayfinding

denotes aspects of figuring out where to go and planning how to get there, traveling is the tech-

nique of actually getting there. In this thesis, instead of navigation the more abstract interaction

task of exploration is considered. Exploration involves viewing the scene from different view

positions or with different view characteristics. Selection is the specification of a target for the

interaction, e.g., one or more virtual objects, or menu entries. Manipulation of virtual objects

refers to the modification of a particular object’s attributes, e.g., color, position, orientation or

scale. Shneiderman introduces the term direct manipulation, which denotes manipulations by

the usage of continuous representations of objects and actions and rapid feedback, instead of

using menus or prompting numeric values before applying an action ([Shn97b, Shn97a]). System

control focusses on selection and manipulation of system properties to change the state of a VR

application.

Since the metaphors proposed in this thesis are universal, i.e., they are not restricted to

- 24 -

2.4. Interaction Concepts

specific objects or domains, they can be extended to ”Quantify” and ”Text” tasks, for instance

by selecting objects that represent alpha-numeric values.

The technologies and the potential VR provides for HCI open up new vistas for the interaction

between human and computer, but also pose challenges related to the handling of unfamiliar

interaction devices and concepts ([BH99]). Only few VR interaction metaphors such as direct

manipulation via the virtual hand metaphor (see Chapter 4) are known ([Ter05, BKLP04, BH97]),

further metaphors and paradigms for VR interaction are required. This thesis provides new ideas

to this research area and introduces new interaction concepts for VR-based interactions.

- 25 -

2.4. Interaction Concepts

- 26 -

Chapter 3

A Generic Virtual Reality

Software System

In Chapter 2, fundamental concepts for the interaction between a user and a system have been

discussed. In this section a framework is presented that allows the transfer and rapid deploy-

ment of interaction concepts into VR-based applications. As pointed out in the previous chapter,

VR systems may use several input and output channels in order to make interaction in virtual

environments more intuitive and to increase the user’s immersion into the virtual world. When

developing VR-based applications, developers should be able to focus on modeling advanced

interaction and system behavior instead of having to concentrate on hardware connections and

rendering issues. Many systems and tools for developing VR-based applications have been pro-

posed to achieve this goal. However, no de facto standard is available. In this chapter, an

approach for a generic virtual reality software system to handle such VR-related issues is dis-

cussed.

The next sections briefly explain a fundamental architecture used for interactive applications

and describe building blocks for a generic VR software system. Section 3.2 discusses the demands

on and related work about VR software systems. Section 3.3 describes the computer graphics

system VRS, the Virtual Rendering System, which has been extended by the VR software system

component Virtual Reality VRS (VR2S) within the scope of this thesis. The system architecture

and the integration of some essential VR-related components is described in detail in Section 3.4.

3.1 VR Software Systems

This section sketches the building blocks for a generic VR software system. An architecture that

is widely used for modeling interactive systems is discussed first.

27

3.1. VR Software Systems

3.1.1 Model-View-Controller

When implementing an interactive system, in particular a VR software system, it is important

to subdivide the system such that modifications to one component can be made with minimal

impact on the others. The model-view-controller (MVC) is an architecture that separates the data

model of an application, the user interface, and the control logic into three distinct components

([GHJV93]). Constructing an application using the MVC architecture involves three classes of

components.

• Model: This is the domain-specific representation of the information on which the appli-

cation operates.

• View: The view component displays the model in a form suitable for the interaction, e.g.,

a graphical user interface.

• Controller: The controller component responds to events, such as user actions, and in-

vokes changes on the model and possibly the view component.

When using a MVC architecture control flow generally works as follows. The user interacts

with the user interface in a particular way, e.g., the user presses a button as part of a GUI.

The controller component handles the input event obtained from the user interface, usually via a

registered handler or callback. Instead of waiting for certain commands, the system is in an event

loop, i.e., it looks repeatedly for information to process, e.g., keyboard or mouse events. When

an event occurs a default or user-defined trigger function processes the event. Event-driven

systems typically contain a number of event handlers that are called in response to external

events, and a dispatcher, which calls the event handlers. Such a handler or callback accesses the

model component and updates it according to the user’s actions. The view component uses the

model component to generate an appropriate user interface. The MVC paradigm introduces the

controller object in between the view and the model component to communicate between the

both. Further information about MVC concepts can be found in [GHJV93].

The MVC architecture is widely used as design pattern for interactive applications, and

important concepts presented in this thesis are based on this paradigm.

3.1.2 Generic Architecture of VR Systems

As discussed in Chapter 2, virtual reality refers to the notion of an advanced computer generated

experience. To realize such an experience the communication between several VR-related com-

ponents has to be organized. VR systems enable and coordinate the interaction between these

highly interactive components. Figure 3.1 shows the main classic components of a VR system

([BC03]).

This section concentrates on the realization of a generic VR engine and its relation to input

and output devices. While the VR engine represents the key component of a VR software

system, I/O devices define the VR hardware system, e.g., tracking systems, data gloves, HMDs

or CAVEs. The VR engine handles communication with the input and output devices and

- 28 -

3.1. VR Software Systems

VR Engine I/O Devices

Data User

Task

Figure 3.1: A generic VR system (adapted from [BC03] and [Vin95]).

performs the required real-time computations to update the state of the virtual world, i.e., to

receive the information from the I/O devices and to render the results to the used multimodal

output systems.

3.1.3 The Rendering Pipeline

The term rendering is generally associated with the process of converting 3D geometric models

populating a virtual world into a 2D image displayed to the user. In the context of VR systems,

the meaning of rendering is extended to include other sensorial modalities, such as auditory and

haptic. Hence, rendering in the context of VR systems describes the transformation process

from an arbitrary virtual entity defined by the application developer to the representation on

corresponding output displays. During rendering each object is handled separately to enhance

performance by enabling processing of further objects before the rendering of previous ones is

finished. This is realized in current rendering systems by using a rendering pipeline. Numerous

objects going through the pipeline sequentially are processed simultaneously by the different

stages of the pipeline. Because of the sequential pipeline processing of virtual objects, com-

putation of global effects depending on interactions between virtual objects, e.g., shadows or

(visual or acoustic) reflections requires additional passes of the corresponding objects through

the pipeline.

In the context of this thesis rendering pipelines are considered for the main three modalities,

i.e., visual, auditory and haptic modality. In contrast to graphics pipeline concepts, haptics and

acoustic rendering pipelines have no uniform standardized architecture, which reflects the rapidly

evolving state of today’s technology.

Graphics Rendering Pipeline

Since the OpenGL application programming interface (API) ([Shr04]) has evolved as de facto

standard, the pipeline concept for graphics systems is explained on base of OpenGL. The graphics

rendering pipeline consists of three conceptual stages: the application stage, the geometry stage

and the rasterizer stage ([AMH02]) (see Figure 3.2).

In the application stage those graphics objects are determined which are further processed

by the following stages of the rendering pipeline. Since this determination is not implemented

in graphics hardware but in software, the application developer has full control over this stage

- 29 -

3.1. VR Software Systems

Application
Stage

Geometry
Stage

Rasterizer
Stage

Model & View
Transformation Lighting Projection Clipping Screen

Mapping
Local Coordinate

System

Camera Coordinate
System

Canonical View
Volume

Screen Coordinate
System

Figure 3.2: Conceptual stages of a graphics rendering pipeline and functional substages of the

geometry stage ([AMH02]).

of the rendering pipeline and can define algorithms and techniques to influence the number and

type of objects further processed. For example by using culling techniques, the number of objects

passed through the pipeline can be reduced. View frustum culling discards objects outside the

region projected on the screen, occlusion culling removes objects invisible to the user since they

are occluded by other objects. After the user has defined in the application stage which objects

continue down the pipeline, geometric transformations are applied to these remaining objects in

the geometry stage.

Graphics objects are defined by vertices in a local coordinate system, sometimes referred to as

model coordinate system. These vertices are transformed via the world coordinate system into the

eye coordinate system, sometimes referred to as view or camera coordinate system, by applying

a composition of the model and the view transformation, called modelview transformation. In

the eye coordinate system an object is defined in relation to the camera which is at the origin

of the coordinate system. When the objects are given in eye coordinates, lighting is computed

to determine for each graphics object the color of its vertices. Afterwards, the scene content is

transformed such that the visible graphics objects lie in the canonical view volume. Two different

types of projections are used in current real-time rendering systems: perspective projections and

orthogonal projections. A perspective projection matches the perspective of the human visual

system by using a center of projection and a projection plane. Thus, objects farther away from the

camera appear smaller and parallel lines may not remain parallel when projected perspectively.

An orthogonal projection is determined by a direction of projection and a projection plane.

Parallelism is retained, and the sizes of objects do not vary with changing distance to the virtual

camera. The canonical view volume is given by a cuboid volume centered at the origin. After

transforming the objects in the canonical view volume, clipping against this volume can be

performed very efficiently. When clipping is finished the remaining objects are projected to the

screen area, where the final image is to be displayed. This screen mapping into the screen space

coordinate system is done by applying the viewport transformation. The viewport transformation

scales the scene that is given in the canonical view volume to fit the target screen area ([AMH02]).

Finally, when all graphics objects are given in screen space, they can be rasterized by assigning

correct colors to the corresponding pixels on the screen. In this rasterizer stage, this pixel

information is rendered into the frame buffer, which is a rectangular array containing pixel data

- 30 -

3.1. VR Software Systems

and has the same size as the target screen area. The frame buffer usually consists of several

layers, e.g., a color buffer, which stores colors in the RGB-mode, and a depth buffer, which

contains the pixels’ depth values. Rasterizing objects directly into the visible frame buffer has

the following drawback. When displaying a series of images, e.g., an animation or an interactive

scene, permanent clearing of the frame buffer and rasterization of the scene content is required.

This may create flickering phenomena and disturb the perception of smooth movements on

the screen. Thus, commodity hardware provides a second frame buffer, called back buffer and

supports rendering of the current frame in the background. After the rendering of the image into

the back buffer is finished, the back buffer’s content is swapped with the visible front buffer, and

then the next frame can be rendered into the back buffer. For time-sequential stereo rendering,

todays high-end graphics cards provide two additional buffers to enable eye dependent rendering,

i.e., a front left, front right, back left and back right buffer.

Acoustics Rendering Pipeline

Acoustic rendering, sometimes referred to as auditory or sound rendering, describes the process

of forming the composite soundtrack from different sound objects. In the context of VEs, sound

objects are treated as time dependent acoustic signals defined in the virtual world, which can

be perceived by the user via an auditory display system. In terms of time, sound objects can

be either bounded or semi-infinite, e.g., a repeated waveform. Furthermore, sound objects can

be defined as point sources somewhere in the VE, where they stay fix, or they can be associated

to virtual objects and change their position, when the associated object’s position is modified.

With these acoustic signals the auditory display produces the illusion of a sound source emitted

from a certain position in a particular acoustic environment perceived by a virtual listener, i.e.,

the analog to the virtual camera in the graphics pipeline.

By controlling the listener, the application developer controls the way the user experiences the

virtual world auditorily, since the virtual listener is defined by the sampling point and orientation,

and other parameters, e.g., velocity, that affect the output stream ([Hie05]).

To enhance the process of sound rendering a pipeline concept similar to the graphics pipeline

concept has been introduced in [TH92].

Audio-Modelling
Stage

Audio-Rendering
Stage

Audio
Data

Audio-Scene
Description

Reverberation

Positional
Audio

Sound
OutputPre-mixing Mix

Figure 3.3: Conceptual and functional stages of the acoustic rendering pipeline (adapted from

[Hug05] and [TH92]).

This pipeline is illustrated in Figure 3.3. This acoustic rendering pipeline consists of two con-

ceptual stages: the audio-modeling stage and the audio-rendering stage. In the audio-modeling

- 31 -

3.1. VR Software Systems

stage the application developer initializes audio sources and describes the audio scene by assign-

ing characteristics such as volume or direction to user-defined sound sources, which can be, for

instance, recorded or synthesized. These sound sources can be attached to virtual objects or

they can be assigned a fixed position somewhere in the VE.

If a sound object is to be displayed, i.e., played with a speaker, first the sound object is further

processed by the audio-rendering stage. In the first pre-mixing substage corresponding sound

operations are applied. These pre-mixing operations include variable delay lines, resampling

and filtering of sound objects, e.g., to support occlusions, directivity functions and distance

attenuation. The resulting sound objects can be transferred either to the positional audio stage

or to the reverberation stage. In the positional audio stage the acoustic signals are computed as

a function of the distance and orientation between the virtual listener and the sound source as

well as the radiation characteristics of the source and the properties of the acoustic environment

and then transferred to the auditory display. In the mix stage, sound sources from the positional

audio and reverberation stages are mixed to generate reverberation effects, if specified by the

application developer.

Finally, the resulting sound objects are passed to the sound output devices, e.g., headphones

or dolby surround speakers.

Haptics Rendering Pipeline

Haptic rendering denotes the representation of haptic feedback submitted by a haptic interface

([Cal05]). The computation of haptic feedback considers object-object collisions and collisions

between virtual input devices and virtual objects. Moreover, these algorithms ensure that a

certain haptic device correctly renders resulting forces. The pipeline concept is also applicable

for haptic rendering and can be implemented through a multistage haptic rendering pipeline

([SCB04, Pop01]) illustrated in Figure 3.4.

Collision-Detection
Stage

Tactile-Computation
Stage

Force-Computation
Stage Haptic InterfaceUser Input

Figure 3.4: Conceptual stages of the haptics rendering pipeline (adapted from [Pop01]).

Three main stages compose a typical haptic rendering pipeline. In the collision-detection

stage collisions between virtual objects and virtual input devices in the virtual environment are

detected. This yields information about the position and the time of a collision, and ideally

includes other information about the collision, such as penetration depth, indentations, contact

area etc. Usually, the application developer specifies collision-detection algorithms and the phys-

ical characteristics of the virtual objects. Such characteristics of virtual objects include surface

smoothness, weight, temperature etc. The potentially colliding structures are passed to the next

stage.

The force-computation stage defines the interaction force between virtual input devices and

- 32 -

3.2. Concepts of VR Software Systems

virtual objects in case a collision is detected. This force approximates as closely as possible the

contact forces that would usually occur during contact between real-world objects, and therefore

the computed collision forces are based on various physical simulation modes ([Pop01]). These

so-called force-response algorithms typically use the virtual input device’s position, the positions

of all objects in the virtual environment, and the collision state between input device and virtual

objects. Results of this evaluation process are force and torque vectors that are fed to the

interfaces of the corresponding output devices. This stage also involves force smoothing and

force mapping. Force smoothing adjusts the direction of the force vector in order to avoid sharp

transitions between polygonal surfaces, whereas force mapping projects the calculated force to

the characteristics of the particular haptic display system, e.g., the PHANToM device ([Cal05]).

Finally, in the tactile-computation stage, the resulting haptics are rendered for the simulation.

The computed effects, such as vibrations, temperature etc., are added to the force vector and

are sent to the haptic display system.

3.2 Concepts of VR Software Systems

In VR systems the main focus is on interaction. Interaction combines adequate representations

of the virtual environment with the manipulations available in the VE. Due to the availability

of special hardware, in particular intuitive VR input devices, applications in this context are

highly-interactive and enable miscellaneous interaction concepts.

Within dynamic and responsive computer generated VEs, multimodal interactions are typ-

ically realized by using special VR hardware. As denoted in Chapter 2, these devices such as

data gloves, wands and speech recognition systems enable users to navigate in and to interact

with the virtual world more immersively since multiple senses are addressed during the interac-

tion process. In addition, immersive display technologies, e.g., stereoscopic projection systems

and HMDs, in combination with various multisensory output paradigms for auditory and haptic

feedback improve immersion into the virtual world. Another important aspect of VR systems

is real-time performance. Response time and update rate of the system need to be sufficient to

avoid latencies.

When designing VR applications developers should focus less on rendering issues and im-

plementing interfaces to devices but rather on interaction and simulation in order to make VR

worlds become more interactive and responsive. For this purpose, VR software systems, some-

times referred to as VR software toolkits, facilitate an abstract view of the system and the input

as well as output devices by providing higher-level development libraries to reduce the effort

needed for creating and rendering VEs. Since low-level graphics APIs such as OpenGL and

DirectX address basic rendering issues, VR research can focus on more advanced topics, e.g., to

further extend multisensory interfaces and to advance basic interaction techniques by providing

intuitive metaphors.

- 33 -

3.2. Concepts of VR Software Systems

3.2.1 Requirements on VR Software Systems

In [BJ98] Bierbaum and Just discuss requirements on VR software systems and point out three

major demands in terms of performance, flexibility and ease of use.

1. Performance:

Effective immersive VR environments require high frame rates and low latency. Hence, VR

software systems should exploit all available resources of a system and should make use of

special graphics hardware to achieve interactive frame rates.

2. Flexibility:

The VR system should be adaptable to arbitrary hardware and software configurations.

Developers should not need to reimplement an application in order that it works well with

new configurations.

3. Ease of Use:

A VR software system should be easy to configure and to learn. Simple applications must

be easy to implement; moreover, the system’s underlying complexity should be hidden as

much as possible from the application developer.

However, often trade-offs must be made in meeting these demands in a VR software system.

For example, a flexible design of a VR software system may result in a loss of performance,

since hardware specific options may not be supported. Further demands on VR software systems

include especially hardware-oriented issues such as support for multisensory output, various input

paradigms as well as device independence. Also multi-user support for collaborative interaction

should be possible within a VR software system. Furthermore, VR software systems involve

additional technical requirements such as extensibility, modularity etc.

3.2.2 Overview of current VR Software Systems

Many VR software systems and VR toolkits have been proposed to support the development

of VR applications. For example, users of VPLs Body Electric ([AKO95]), which is a real-time

simulation system for VR, can specify relations between virtual objects and input or output

devices in a dataflow diagram editor. This dataflow approach can also be found in a variety of

similar systems such as SGIs Open Inventor ([Gro05]). However, a dataflow approach does not

support program modularity ([BJH+01]).

Alice ([PBC+95]) is a rapid prototyping system for creating interactive computer graphics

applications without requiring a strong technical background. Since Alice has not been designed

to allow complete control over geometry at the polygon and vertex level for large amounts of

data, the library is unsuitable for scientific and complex data visualization.

CAVElib ([CN95]), which is based on OpenGL Performer ([SGI04]), provides a low-level

API for creating VR applications, in particular for projection-based systems. Bierbaum and

Just ([BJ98]) mention that the CAVE library was not intended as a long-term solution for VR

development, and thus its API is often difficult to extend in backwards-compatible ways. In

- 34 -

3.3. Virtual Rendering System

addition, the library is inadequate for non projection-based VR systems, such as HMD-based

systems, which require different projection techniques.

AVANGO ([Tra99]) extends the concepts of OpenGL Performer in order to support the

development of multisensory VR-based applications. Since AVANGO is targeted at high-end

SGI platforms, it is not suitable for other platforms. The modular system Lightning ([BLRS98])

is an object-oriented system for creating and developing VR-based applications. Similar to

AVANGO Lightning is also restricted to SGI platforms.

VRJuggler ([BJH+01]) and DIVERSE ([KASK02]) are software systems for building large

high-end VR applications. Both systems have been designed to overcome the drawbacks of some

of the previous systems. VRJuggler establishes a modular architecture for different devices. To

maximize performance the only layer the application directly interfaces to is the graphics API.

Due to the complexity of VRJuggler the usage of its API incorporates much effort, whereas

DIVERSE lacks platform independence since it is available for Linux and IRIS systems only.

However, a Windows-based version is currently under development. Other approaches such as

the Studierstube project ([SFH+02]) and MRToolkit ([SGLS93]) have originally been developed

for immersive VR systems only, but extend to other VR systems. However, these approaches

provide insufficient support for projection-based VR environments.

A more detailed description of further VR software systems and toolkits can be found in

[BJ98]. Although many systems are available for creating and developing VR-based applications,

due to compatibility and customization issues universities and research institutions tend to use

their own visualization libraries and VR-based extensions to explore and interact with their

specific datasets. Thus there is no standardization of VR system architectures yet. In the next

sections an alternative approach for a VR software system is presented. Since the system is based

on a generic computer graphics system, this system is introduced first.

3.3 Virtual Rendering System

VRS, the Virtual Rendering System ([DH02]), is an object-oriented, scenegraph-based 3D com-

puter graphics system written in C++. It provides numerous building blocks for composing

3D scenes, animated 3D objects, and the integration of 3D interaction. VRS concentrates on

OpenGL for real-time rendering and supports advanced rendering techniques such as multipass

algorithms for the simulation of global illumination phenomena. In addition, VRS wraps vari-

ous other 3D rendering libraries, e.g., RenderMan, the global illumination system Radiance and

also ray-tracing renderers such as POVRay. Since VRS completely encapsulates low-level 3D

rendering systems through a uniform interface, applications are able to switch between different

rendering systems without any need for reimplementing the application. In interior design pro-

totyping, for instance, a modeled scene can be rendered for interactive exploration and sound

propagation using OpenGL and an arbitrary spatial sound library. Rendering the scene with Ra-

diance can simulate interior light dispersion, or a ray-traced image of this room can be generated

using the POVRay interface.

Listing 3.1 shows the usage of different renderers for the same scene. A VRS canvas, which

- 35 -

3.3. Virtual Rendering System

1 . . .

2 // roo t geometry node

3 SO<SceneThing> main = new SceneThing (view) ;

4 . . .

5

6 #i f d e f RADIANCE

7 SO<MExternCanvas> canvas = new MExternCanvas (”Radiance−Win” , 512 , 512) ;

8 #end i f

9 #i f d e f RENDERMAN

10 SO<RMCanvas> canvas = new RMCanvas(”RenderMan−Win” , 512 , 512) ;

11 #end i f

12 . . .

13 #i f d e f OPENGL

14 SO<GLCanvas> canvas = new GLCanvas(”OpenGL−Win” , 512 , 512) ;

15 #end i f

16

17 // connect canvas and scenegraph

18 canvas−>append (main) ;

19 . . .

Listing 3.1: Using different rendering system in VRS.

represents the main drawing area, is generated with respect to the chosen renderer via precompiler

directives. In contrast, applications based on other graphics systems require a reimplementation

to switch to another rendering system. In line 7 and line 10 the canvas is initialized for the

Radiance resp. the RenderMan port, while in line 14 the canvas is created for the OpenGL port.

VRS is available for most common platforms such as Windows, Linux, and Mac OS X. Major

user interface toolkits such as Qt, GTK+, GLUT, Tcl/Tk and wxWidgets are supported. VRS

serves as a framework and testbed for application-specific and experimental rendering and the

design of innovative interaction techniques ([DH02]). For run-time debugging, developers can use

the Tcl/Tk package interactive VRS (iVRS) ([KD02]), which is intended as a rapid prototyping

graphics environment. iVRS provides access to almost all features of VRS through the scripting

language Tcl/Tk without the need of compiling. Hence, applications can be debugged and

modified without the need of recompiling, and thus the development process is accelerated.

3.3.1 Scenegraphs and Behavior Graphs in VRS

A VRS application requires at least one canvas, which is typically integrated into the application’s

user interface. The scene displayed in a canvas is defined by one or more scenegraphs, while

interaction and animation is specified by behavior graphs. Thus the four essential components a

VRS developer has to deal with are:

• a canvas representing a drawing area for VEs,

- 36 -

3.3. Virtual Rendering System

• hierarchical scenegraphs describing geometry and appearance of virtual objects,

• behavior graphs describing event-dependent and time-dependent behavior of virtual

scenes, and

• graphics resp. non-graphics objects representing shapes, graphics and non-graphics

attributes, which are evaluated when they are included in scenegraphs.

A scenegraph is a hierarchical data structure that organizes shapes, groups of shapes, and groups

of groups that collectively define the content of a scene. Shapes and subtrees may be shared

among multiple nodes, creating a directed acyclic graph (DAG). Scenegraphs are widely used to

define complex 3D scenes consisting of a multiplicity of separate shapes. APIs, such as Open

Inventor ([Gro05]), OpenGL Performer, and Java3D ([SRD00]), all support the creation and

rendering of scenegraphs. Traditionally, scenegraphs contain shapes defined by surfaces, such as

sets of polygons, but they are not restricted to polygonal representations, for instance, volume

scenegraphs (VSG) containing voxel information are also possible ([Nad00]).

Modeling VEs with two types of graphs, scenegraphs and behavior graphs, is unique to VRS.

During scene evaluation both the scenegraph as well as the behavior graph are traversed by the

VRS engine as desribed in Section 3.3.2.

c1:Canvas

: VRS Run-Time Management

c2:Canvas

S1

B1

S2a
B2a

S2b

r1:RenderObj

Scenegraph Behavior Graph

B2b

r1:RenderObj

Figure 3.5: Concept diagram of a VRS application, containing scenegraphs and behavior graphs

(adapted from [Döl05b]).

The relationships between canvases, scenegraphs, behavior graphs, and graphics objects are

depicted in Figure 3.5. An application instantiates at least one canvas object, e.g., c1 or c2.

A canvas can have more than one scenegraph, e.g., S2a and S2b for canvas c2, and more than

one behavior graph such as B2a and B2b for canvas c2. Two or more canvas objects can share

scenegraphs or behavior graphs as, for example, c1 and c2 share the scenegraph S2a. All nodes

in a scenegraph, so-called scene nodes, all behavior nodes, i.e., nodes in a behavior graph, and

graphics objects are shareable objects, which can be referenced by clients multiple times. A

- 37 -

3.3. Virtual Rendering System

behavior graph can also affect graphics objects referenced in scenegraphs or behavior graphs of

other canvas objects such as B1.

The behavior graph, which is used to define interactions by specifying animation or handling

input events, consists of two types of nodes:

• time-dependent nodes can be used for the synchronization of animations, in particular time

intervals can be defined in which certain actions are initiated, and

• event-dependent nodes can be used by the developer to generate corresponding system

behavior as response to certain input events, e.g., a mouse click.

Using two types of graphs, scenegraphs and behavior graphs, is useful in the context of develop-

ing interactive applications. Because behavior is independent from geometry and most behavior

cannot be assigned to a single subgraph, both aspects of an application should be treated inde-

pendently. Canvas objects delegate events and requests, which are sent from the VRS run-time

management to the associated graphs, e.g., redraw events to scenegraphs, and mouse or keyboard

events to behavior graphs.

3.3.2 Scene Evaluation in VRS

In this section the evaluation of scenegraphs and behavior graphs in VRS is described.

Scenegraph Evaluation

The class Engine processes the graphics objects and attributes arranged in scenegraphs and

delegates their evaluation to associated handlers. VRS scene content is defined by instantiating

objects of the subclasses of RenderObj, which is inherited by all rendering objects of VRS. The

rendering objects are defined by the classes Attribute, Handler and Shape and their corre-

sponding subclasses (see Figure 3.6).

Objects of type Shape are representations of geometric shapes, e.g., Box, Sphere or Torus.

Objects of the class Attribute represent graphics attributes applied during the scene evaluation.

These graphics attributes are either of type MonoAttribute or of type PolyAttribute. During

rendering only one MonoAttribute is active at any time. All objects of this type are managed

using a stack, the top object is the active MonoAttribute. Examples of the type MonoAttribute

are the Camera or the Background classes, but also classes associated with objects, such as

textures or color attributes. In contrast, an arbitrary number of PolyAttributes, such as light

sources or shadow caster objects, can be incorporated during scene evaluation.

The abstract class Handler provides the required service functionality to the engine and serves

as the base class for all handlers used within VRS, it is inherited by several subclasses. The two

derived classes Simplifier and Painter provide services to the engine to evaluate graphics

objects as well as associated graphics attributes. Objects of the class Simplifier transfer VRS

graphics objects into a representation that can be processed by the underlying rendering system,

whereas objects of the class Painter are directly mapped to the underlying renderer.

- 38 -

3.3. Virtual Rendering System

Figure 3.6: Classes for scene evaluation using VRS.

The VRS engine acts as a status machine to manage graphics contexts. Each graphics

attribute can be changed independently without considering the entire context. The status of

a context is defined by the contents of the different stacks, for example texture stacks or color

stacks.

Although VRS enables the usage of different rendering systems, scene description is not

limited to those features, which are common to all underlying systems. Rather VRS can support

every feature of an arbitrary rendering system by introducing rendering system specific attributes

and corresponding painters. Low-level code specific to a rendering system can be integrated into

VRS source code; but this low-level code leads to a loss of flexibility of the rendering system.

Behavior Graph Evaluation

The behavior graph in VRS is of major importance, when specifying interaction for a virtual

environment, which has been defined by a corresponding scenegraph. A user can specify dynamic

behavior of a VE either manually, or it can be initiated synthetically. However, a system behavior

requires an event, which causes a corresponding behavior. To support certain events, VRS

provides the class Event and its two subclasses TimeEvent and CanvasEvent (see Figure 3.7).

The former enables the processing of certain time events, which are initiated by the VRS clock.

CanvasEvents are configure events, such as resize of a canvas, or several user input events,

which are specified in the class InputEvent. Subclasses are, for instance, the class ButtonEvent

to support processing of mouse button events, or the class MotionEvent to support handling of

- 39 -

3.3. Virtual Rendering System

mouse motion events.

To enable an interaction process initiated by an input event, VRS provides the class

Condition, which checks whether certain input events occur. For this purpose, the method

satisfied(Event* e) is available, which returns true if the event e satisfies a certain condi-

tion and otherwise false. Depending on the return value the event can be further processed or

ignored. A typical derived subclass is the ButtonCondition class, which checks whether specific

button conditions are satisfied, e.g., the first mouse button is pressed once in a certain time in-

terval without any keys pressed. An interaction process consists of three logical steps. It starts,

it executes for a certain time interval, and it either ends regularly or is canceled. For a given

event e and conditions startCond , processCond , endCond and cancelCond , the method

handle(Event* e) calls

1. start(e), if startCond is satisfied,

2. process(e), if processCond is satisfied,

3. end(e), if endCond is satisfied, or cancel(e) if cancelCond is satisfied.

Specific interaction tasks can be implemented in four methods start, process, end, and cancel

by overloading these methods (see Figure 3.7). The conditions startCond , processCond ,

endCond , and cancelCond , that have to be satisfied, determine the state of the interaction.

Each of these methods returns whether a redisplay of the canvas is necessary or not.

By using behavior graphs, leaves and subgraphs of a scenegraph can be modified with re-

spect to their properties, such as position, geometry, color etc. In VRS a behavior itself is

defined by instantiating objects of the class BehaviorNode, which represents all scene nodes con-

taining behavior information. For this purpose, two different nodes are availbale: leaf-behavior

nodes and non-leaf-behavior nodes (see Figure 3.7). Non-leaf behavior nodes coordinate dynamic

procedures hierarchically and enable the developer to create complex animations as well as inter-

action. Non-leaf-behavior is defined by the classes MonoBehavior and PolyBehavior. Objects of

the type MonoBehavior own exactly one child node, whereas objects of the type PolyBehavior

reference an ordered set of child nodes. MonoBehavior and PolyBehavior pass the method

handle(Event* e) to their child nodes, whereas LeafBehavior implements this method. The

return type BehaviorNode::InvalidationHint defines to what extent a redisplay of the can-

vas is requiered. Possible redisplay directives can be RedrawNothing, i.e., nothing is redrawn,

RedrawWindow which initiates a redraw of the content of the associated window, or RedrawWorld

which renders the entire virtual world.

All classes specifying user interactions are derived from the class LeafBehavior, such as

the PickingCallback or the Interaction classes. For example, with an instance of the type

PickingCallback a callback can be executed when a specified shape is hit by the mouse pointer

and given conditions are satisfied, i.e., mouse button, multiplicity, and additional modifier keys

comply with the requirements of the condition. The argument passed to the callback is an object

of type IntersectionInfo that is obtained by executing a ray query, which returns the shapes

hit by the mouse pointer resp. a null object if no shape is hit.

- 40 -

3.3. Virtual Rendering System

Figure 3.7: Classes used to realize interactions in VRS.

For the design of interaction strategies the class Interaction is essential. Examples of

subclasses of the Interaction class are control classes for input devices; for instance objects

of the class Manipulator receive and propagate mouse events. For six DoF manipulations the

interaction is started, when the user performs a predefined action indicating the selection of a

virtual object. During the six DoF manipulations the interaction executes until the user releases

the object or an error occurs. An instance of type Interaction can receive and propagate

canvas events, which belong to the interaction nodes appended to one of the behavior graphs

of the corresponding canvas; other events are ignored. Further examples of classes derived from

Interaction are discussed in Section 3.4.3.

3.3.3 Multipass-Rendering in VRS

As mentioned in Section 3.1.3, pipeline concepts enhance the performance when rendering vir-

tual scenes. However, some rendering techniques require to traverse the scenegraph multiple

times, because interactions between several objects have to be considered. For example, algo-

rithms to simulate global illumination phenomena such as shadows or reflections require these

additional scene traversals. For this purpose, VRS provides two different mechanisms: multi-

scene renderers and techniques. When using multi-scene renderers multiple evaluation passes are

supported, in which the entire scene description is processed. This is needed among others for

stereographic rendering, in which the scene is rendered twice, i.e., once for each eye. The class

StereoRenderingGL that handles these issues is described in Section 3.4.2.

Techniques are rendering strategies, which determine how the scenegraph has to be evalu-

ated. In contrast to multi-scene renderers, techniques are capable of evaluating only subsets of

the scenegraph. Since the scene needs not to be rendered entirely multiple times, techniques can

- 41 -

3.3. Virtual Rendering System

be exploited to optimize performance. Processing of these multi-pass rendering algorithms within

VRS is performed via the classes Technique and TechniqueProcessor. Certain techniques are

activated by appending an instance of the corresponding subclass of Technique to the scene-

graph; an instance of the class TechniqueProcessor attached to the scenegraph collects and

processes theses techniques. In order to combine several techniques, each pass of technique has

a priority that defines the sequence in which the techniques are processed. Table 3.1 illustrates

the priorities for different rendering passes.

Each technique provides the following methods to handle the actions required to perform

the corresponding technique. Initially, the start method of an active technique is executed to

announce the necessary passes to the TechniqueProcessor. The method activatePass is called

to submit the identifier of the next rendering pass, and the method preparePass is executed

before each traversal. The method finishPass is processed after each scene traversal. By using

this method settings of preparePass can be revoked. The rendering of each shape can be altered

by the method prepareEval. This method is evaluated immediately before a shape is rendered

or ignored. If this method returns false for only one technique, the shape is discarded in this

pass, otherwise it is rendered accordingly. The method finishEval is used analogously to the

method finishPass after the evaluation of shapes considered. Again, changes applied to the

low-level rendering system before rendering a shape can be revoked in this method. The boolean

return value of canBeUsed indicates whether requirements of a certain technique are fulfilled,

e.g., requirements referring to the features provided by the graphics board.

Pass Name Pass Priority

BOUNDINGBOX 5

ACTIVEOBJECTTECHNIQUE 10

...

MAIN 100

...

TRANSPARENCY 500

Table 3.1: Pass names and priorities for multiple-scene evaluation.

As mentioned before, passes are evaluated according to their priority. For example, the

BOUNDINGBOX path ensures that the bounding box for each shape is accessible. During the MAIN

pass each shape is rendered. After the scene evaluation is finished, all techniques are terminated

by the TechniqueProcessor calling the stop method. Several multi-pass rendering techniques

can be realized by these classes and methods, however, multiple rendering of shapes is not the

only purpose of techniques. In a preevaluation phase of the scenegraph a technique of type

ActiveObjectTechnique is used to calculate and store distances between virtual objects in the

VE. The usage of this class is described in detail in Chapter 4. Multi-pass rendering techniques

to generate virtual shadows and virtual reflections are considered in Chapter 5.

- 42 -

3.4. VR2S: Virtual Reality Rendering System

3.4 VR2S: Virtual Reality Rendering System

In this section the extension of the high-level rendering system VRS to the generic VR software

system Virtual Reality Rendering System (VR2S), sometimes referred to as Virtual Reality VRS

([SRH05a]), is discussed in detail. As described above, VRS provides flexibility in terms of

the rendering system and the user interface toolkit. Thus rendering can be performed with

several low-level rendering APIs such as OpenGL, RenderMan or ray-tracing systems, and the

interface can be implemented by arbitrary user interface toolkits to support both desktop- and

VR-based interaction. VR2S meets the demands of VR developers as well as users and has

demonstrated its potential in different planning and exploration applications. The distinction

between geometry and its associated appearance on one side and its behavior on the other side,

eases the development of interactive and immersive applications. Thus VR2S enables rapid

prototyping of interactive 3D applications.

In the following sections, the architecture of VR2S is presented and essential concepts, e.g.,

stereoscopic rendering, integration of tracking systems, and the VR user interface are discussed

in detail.

3.4.1 Software Architecture Overview

The main objective of VR2S is to provide VR software developers with a suite of APIs that

abstract and hence simplify all interface aspects of applications including the I/O interface and

typical VR system tasks such as tracking. Thus developers can focus on interaction and system

behavior. VR2S supports interplay of highly independent modules by a multi-layered application

programming interface. The platform independence as well as modularity of VR2S eases both

extensions as well as usability. The extensions of VRS by software components are based on

the same paradigms as the entire design of VRS. VR2S applications are independent of the

VR system, and hence applications run on different system in both VR- and desktop-based

environments.

As illustrated in Figure 3.8 VR2S extends VRS by a VR-based user interface to support

advanced multimodal HCI concepts. The VR-based user interface (see Section 3.4.4) provides

sophisticated concepts for the development of interaction metaphors and techniques.

Since there are many libraries that support different interaction concepts, for example to

interface multimodal input and output channels, these libraries can be used by mapping them

to VR2S. Besides libraries supporting multimodal interaction, e.g., auditory or haptic libraries,

other external libraries are not focussed to support multisensory input or output channels and

include further interaction concepts, such as physical simulation systems, e.g., Open Dynamics

Engine (ODE) ([Smi04]), or the augmented reality software system ARToolKit ([KB99]) (see

Chapter 5). In the graphics layer, some of the VR2S extensions refer to the VRS core of rendering

techniques, e.g., stereoscopic rendering, other components relate to the VR-based user interface

at the application layer, e.g., interaction via six DoF input devices. As mentioned in Section

3.3, rendering of the scene is performed in the rendering layer by the usage of adapters to

the corresponding rendering system. As illustrated in Figure 3.8 further systems contributing

- 43 -

3.4. VR2S: Virtual Reality Rendering System

Application

Operating System

Qt wxWidgetsGtk

Virtual Rendering System

...

RenderManOpenGL POVRay Radiance ...

OpenAL
VR2S

ODE

...

Canvas

Behavior Graphs

Graphics Objects

Scenegraphs
Interaction

OpenGL
Adapter

RenderMan
Adapter

POVRay
Adapter

Radiance
Adapter

A
pp

lic
at

io
n

La
ye

r
R

en
de

rin
g

La
ye

r
G

ra
ph

ic
s

La
ye

r

Network
Socket

SpaceMouse

...

TrackingSystem

PinchGlove

VR User
Interface

Input
Event

ARToolKit

HapticID

Tcl/Tk

Figure 3.8: The system architecture of VRS ([DH02]) and its VR-based extension VR2S consisting

of application, graphics and rendering layers.

to multimodal interaction concepts, e.g., tracking system, pinch data glove system etc., can be

connected to a VR2S application either locally or via network sockets. The next section describes

in detail a multi-scene renderer, which supports the rendering of stereoscopic images.

3.4.2 Stereographic Rendering

As pointed out in Chapter 2, stereoscopic viewing improves human’s depth perception in VR.

VR2S provides an easy to use API to generate stereoscopic images. Whatever display and

rendering system are used, for stereoscopic viewing two images, one for each eye, have to be be

rendered each with its own camera settings. These settings are defined by an orientation and a

projection matrix. The orientation matrix is obtained from an instance of the class LookAt, which

is determined by three parameters from, to and up. from defines the position of the camera, to

the focus point and up the camera’s up-vector. The normalized vector r is defined as r = dir×up
|dir×up| ,

where the normalized direction vector dir is given by dir = to−from
|to−from| (see Figure 3.10). Vector r

points from the camera’s position to the right orthogonally to the plane defined by the vector dir

and the vector up. VRS provides two kinds of predefined projections, orthogonal projections and

perspective projections. As described in Section 3.1.3 orthogonal projections preserve parallelism

and are not suitable for stereoscopic images, because parallel projections conflict with perspective

depth cues and therefore disturb depth perception. Hence perspective projections are used for

stereographic rendering in VR2S. An Instance of the class Perspective generates the projection

matrix, which is defined by the near - and far -clipping planes, the camera aperture in the up-

direction fovy (field of view in y-direction) and the ratio of the view plane; these parameters

together define the view frustum. In addition, for stereographic rendering the user also has to

define the previously mentioned interpupilar eye distance IPD , which determines the camera

- 44 -

3.4. VR2S: Virtual Reality Rendering System

left eye right eye

(a) On-axis

left eye right eye

(b) Toe-in

Figure 3.9: Stereographic rendering techniques illustrating the on-axis technique (a) and the toe-in

technique (b).

shift between both eyes.

There are different stereographic rendering techniques to produce stereoscopic images. All

stereographic rendering approaches have in common that two images have to be rendered, one

for each eye. This is achieved by translating the camera before rendering by the half of the

interpupiliary distance to the left resp. to the right along the aforementioned vector r, i.e.,

− IPD
2 for the left eye and + IPD

2 for the right eye. Although this so-called on-axis approach

([Bou99, HM85]) provides stereoscopic images without any further steps, it has the following

drawback. Because of the translation the image planes for both images diverge, and the binocular

region in which a stereo image is perceivable smaller than the original view frustum (see Figure 3.9

(a)). Other approaches address this shortcoming and support an enlarged stereoscopic region.

Most of these stereographic rendering approaches are incorrect since they introduce vertical

parallax, i.e., a vertical mismatch between points in both images. For example, the toe-in method

([Bou99, Sou92]) involves a rotation of the scene such that the image planes for both eyes

intersect. The camera is rotated inwards by the angle ± arctan(0.5·IPD
|to−from|) such that the view

planes cross in the focus point (see Figure 3.9 (b)). Similar methods are still often used although

they only approximate stereoscopic images, because the correct off-axis method ([Bou99]) requires

features that are not supported by all rendering packages. However, since VRS supports access

to the underlying low-level APIs, VR2S implements the correct off-axis approach for OpenGL.

Figure 3.10 illustrates this approach. The view frustums for both eyes are sheared in such a

way that their projection planes become identical. Therefore, the standard projection matrix P ,

specified by the application developer, is multiplied by a matrix M , such that P · M generates

an asymmetric view frustum when used in the rendering pipeline. The matrix M is defined as

follows:

M =


2·near

right−left 0 left+right
left−right 0

0 2·near
top−bottom

top+bottom
top−bottom 0

0 0 far+near
far−near − 2·far ·near

far−near

0 0 1 0

 .

- 45 -

3.4. VR2S: Virtual Reality Rendering System

near

left

right

far

focal

leftAngle

rightAngle

left eye

right eye

projection
plane

r

dirfrom
to

ratio fovy.
IPD
2

Figure 3.10: Illustration of the off-axis stereographic rendering technique (adapted from [Bou99]).

In the case for the left eye, the values of this frustum matrix are defined by

left = − tan (leftAngle) · near · ratio +
IPD · near

2 · focal
(3.1)

right = − tan (rightAngle) · near · ratio +
IPD · near

2 · focal
(3.2)

top = tan (topAngle) · near (3.3)

bottom = tan (bottomAngle) · near (3.4)

For the right eye equations (3.1) and (3.2) have to be replaced by

left = − tan (leftAngle) · near · ratio− IPD · near
2 · focal

(3.5)

right = − tan (rightAngle) · near · ratio− IPD · near
2 · focal

, (3.6)

equation (3.3) and (3.4) for top and bottom remain unchanged for the right eye. The values for the

parameters left , right , top, bottom, front , back , leftAngle, rightAngle, topAngle and bottomAngle

(see Figure 3.10) are derived from the camera settings stored in the CameraInfo class. The focal

length given by focal is defined as the orthogonal distance from the camera position from to

the focus point to on the projection plane (see Figure 3.10). Objects which are closer to the

camera than the focal length have a negative parallax, and objects which are farther away have

a positive parallax. When viewing stereoscopically, objects with a negative parallax appear to

be in front and those with a positive parallax behind the projection screen. Objects with zero

parallax appear to be located on the projection screen like two-dimensional flat images.

As mentioned before, not all graphics systems support the generation of asymmetric view

frustums. OpenGL provides a function call: glFrustum(left,right,near,far,top,bottom)

- 46 -

3.4. VR2S: Virtual Reality Rendering System

1 . . .

2 SO<GlutCanvas> canvas ;

3 canvas = new GlutCanvas (”GlutStereo ” , 400 , 300 ,

4 GLCanvas : :RGBDDS | | GLCanvas : : STEREOVIEWING) ;

5

6 SO<StereoRendererGL> stereoGL ;

7 i f (canvas−>hasProperty (GLCanvas : : STEREO VIEWING)) {// quad b u f f e r mode

8 stereoGL = new StereoRendererGL (StereoRendererGL : : PAGEGLIPPING, 0 . 3) ;

9 } else {// i n t e r l a c e d mode

10 stereoGL = new StereoRendererGL (StereoRendererGL : : INTERLACE, 0 . 3) ;

11 }
12 canvas−>setSceneRenderer (stereoGL) ;

13 . . .

Listing 3.2: Stereographic rendering in VR2S.

for this purpose. But the matrix generated by this function differs from the required matrix M

since OpenGL uses a right-handed coordinate system, whereas the coordinate system used by

VRS is left-handed.

To achieve stereographic rendering in VRS the canvas multi-scene renderer is set to stere-

ographic rendering, i.e., the canvas multi-scene renderer is assigned an instance of the class

StereoRendererGL. When using this multi-scene renderer, the scene is evaluated twice, with the

corresponding camera settings as described above. Listing 3.2 illustrates the usage of this class.

In lines 2 to 4 the frame buffer with the required properties is initialized, i.e., OpenGL specific

quad-buffer stereo providing four frame buffers for eye-dependent double buffering (see Section

3.1.3) and support for the stencil buffer. In line 7 an object of type StereoRendererGL is defined

for time-sequential stereo, if quad-buffer stereo is supported by the graphics card, whereas in line

10 stereographic rendering is defined for spatially sequenced stereo images for autostereoscopic

displays using the stencil buffer.

In Figure 3.11 a simple VRS scene containing a 3DS (3D Studio Max format) model of a

dinosaur is rendered using the StereoRendererGL class. In Figure 3.11 (a) the scene is rendered

in the REDBLUE anaglyph stereographic mode, i.e., the image for the left eye is rendered with a red

color mask, while the image for the right eye is rendered with a blue color mask. The stereoscopic

effect can be viewed with properly colored anaglyph glasses. Figure 3.11 (b) illustrates the

interlaced stereographic mode, i.e., the image for the left eye is rendered in the even columns,

while the image for the right eye is rendered in the odd columns. This mode is suitable for

autostereoscopic displays, which provide a corresponding lenticular or barrier mask in front of

the screen to separate the two images.

- 47 -

3.4. VR2S: Virtual Reality Rendering System

(a) Anaglyph stereoscopic image (b) Interlaced stereoscopic image

Figure 3.11: A simple VRS scene containing a 3DS model of a dinosaur rendered (a) in an anaglyph

stereographic mode and (b) in interlaced stereographic mode.

3.4.3 Tracking Systems in VR2S

As mentioned in Chapter 2, motion parallax is an important depth cue that denotes the fact that

when the objects or the viewer move, objects which are farther away from the viewer seem to

move slower than objects closer to the viewer. Although stereoscopic images provide an essential

depth cue, motion parallax cannot be support without any further effort. To reproduce this effect

in VR, head tracking and view-dependent rendering is required. For view-dependent rendering

the position and orientation of the user’s head need to be determined to map this pose to the

virtual camera defined in the VE. Tracking systems allow to track certain physical objects, e.g.,

the pose of a user’s head, by exploiting different magnetic, ultrasonic or optical technologies. The

tracked devices can be associated with the user’s head, but also with input devices for VR-based

interaction.

Since high accuracy and wireless interaction are essential for precise and comfortable VR-

based interaction, optical tracking systems appear to be most suitable to determine position

and orientation of arbitrary objects. In contrast to mechanical approaches no wires disturb

the interaction. Furthermore interferences that may occur when using magnetic or ultrasonic

technology are prevented by the usage of optical tracking systems. For stereo-based optical

tracking systems accuracy is in the range of submillimeters, and thus tracking errors are minor

and precise interactions with objects displayed in the VE are possible.

Since lighting in VR system environments usually has to be dimmed significantly because the

brightness of the projection screens, e.g., CAVEs, is limited, most often infrared (IR) light in

combination with infrared pass filters attached to the cameras’ lenses is used. IR optical tracking

systems measure positions of numerous markers in a certain range and return the results with a

- 48 -

3.4. VR2S: Virtual Reality Rendering System

time delay of 20 to 40ms, which is referred to as real-time tracking ([DU02]). A target, sometimes

denoted as rigid body, is a fixed geometrical arrangement of at least three markers. Because of

the many drawbacks of light-emitting diodes (LEDs), usually passive markers made of simple

objects, e.g., spheres, and wrapped into a retro-reflective material are used. The IR cameras

illuminate the working area with an IR flash invisible to the user, and only the markers reflect

the infrared light back to the cameras. Only this light reflected by the markers passes the infrared

pass filters which are attached to the lenses. Grabbed frames, i.e., two-dimensional images taken

by the cameras, consist of white pixels representing markers and black pixels elsewhere. When

a marker is detected by at least two cameras, the position in the 3D space can be calculated

by reprojection ([DU02]). The cameras have to be calibrated, i.e., their relative positions and

orientations have to be determined, and their absolute positions and orientations have to be

defined in terms of a user-defined tracking coordinate system. This is usually done by a room

calibration set, consisting of a wand, i.e., a stick with two markers, and an angle carrying four

markers to define the tracking coordinate system. The distance between the two markers of the

wand has to be registered by the tracking system. The wand is then used to take a sufficient

set of measurements from which the tracking system can calculate the correlation between the

cameras as described in [DU02]. Finally, in order to define the origin and orientation of the

tracking coordinate system, the L-shaped angle is positioned in the working area tracked by the

cameras. Usually this tracking coordinate system is adapted to the position and orientation of

the projection screen of the display device used in combination with the tracking system (see

Figure 3.13 (left)).

When targets are detected by the tracking system the pose data for each target consist of

Cartesian coordinates x, y, z defining the position of the target and three angles rx, ry, rz that

each describe the rotation of a target around the corresponding Cartesian coordinate axis giving

the orientation of the target. To enable determination of these values all targets have to be

registered by the tracking system. For this purpose, users have to define a reference target for

each trackable rigid body. The relation between the current pose of the tracked target and

its reference definition specifies the rigid body transformation of the target. This rigid body

transformation is applied to a virtual object which is associated with a corresponding target,

i.e., the determined transformation matrix representing the pose of the target is applied to the

associated scene object.

The reference target can be defined in the biovision human format (BVH) ([PHH+03]). The

BVH-file format is a joint-based format, which also supports motion tracking approaches to

grab and store user movements. A BVH-file has two parts, a header section that describes the

hierarchy and initial pose of the rigid body, and a data section, which contains the motion data.

For example, the header part of a BVH-file for the rigid body attached to the input device

illustrated in Figure 3.12 is given by Listing 3.3.

In line 1 the keyword ROOT followed by the name of the segment starts the hierarchy to be

defined. The vector after the keyword OFFSET specifies the offset of the current segment to its

parent; in this case the offset is a zero vector. The JOINT definition in Line 3 defines the position

of the first joint. The keyword EndSite indicates that the current joint ends at the given offset.

- 49 -

3.4. VR2S: Virtual Reality Rendering System

1 ROOT InputDevice {
2 OFFSET 0.0 0 .0 0 . 0 //m1

3 JOINT m2 {
4 OFFSET −9.0 0 . 0 −170.5 //m2

5 }
6 EndSite {
7 OFFSET −80.0 0 . 0 −184.0 //m3

8 }
9 }

Listing 3.3: Rigid body BVH-file.

m1 m2

m3

d1

d2d3

Figure 3.12: An example rigid body arrangement at the top of an input device.

Hence, the BVH-file defines a target illustrated in Figure 3.12 consisting of three points m1 :=

(0, 0, 0), associated with the marker at the top of the input device, point m2 := (−9.0, 0.0,−170.5)

associated with the marker in front of the handle, and m3 := (−80, 0.0,−184.0) associated with

the marker at the top of the stick branched to the left. When tracking such a target from a set

of predefined rigid bodies, the tracking algorithm scans the point cloud resulting from numerous

markers for the distances d1 between m1 and m2, d2 between m2 and m3, and d3 between m1

and m3 (see Figure 3.12). If these distances are detected the position and orientation of this

target with respect to its reference definition can be determined by a rigid body transformation

as follows.

Let P0, P1, P2 denote the tracked position of three markers of a target. We define the vectors

Rz :=
P1 − P0

|P1 − P0|

Rx :=
(P2 − P0)× (P1 − P0)
| (P2 − P0)× (P1 − P0) |

Ry := Rz ×Rx,

and the transformation matrix

T =


Rx[0] Rx[1] Rx[2] −P0[0]

Ry[0] Ry[1] Ry[2] −P0[1]

Rz[0] Rz[1] Rz[2] −P0[2]

0 0 0 1

 ,

where R[i] denotes the i-th component of the vector R. Applying this matrix T to the target

- 50 -

3.4. VR2S: Virtual Reality Rendering System

Figure 3.13: An optical tracking system and a corresponding rigid body transformation (left), and

head tracking for view-dependent rendering (right).

defined by three tracked points P0, P1 and P2 transforms P0 to the origin, P1 onto the positive

z-axis and P2 into the y-z-plane. Let O denote the matrix that transforms the reference target

to the target transformed by T . Hence, the matrix

TRB = T−1 ·O

determines the rigid body transformation that is applied to the virtual object associated with the

target. TRB transforms the virtual object associated with the reference definition of the target

with respect to the currently tracked pose of the target.

Figure 3.13 (left) illustrates such rigid body tracking and transformation. The user is

equipped with an input device that is attached with passive markers. IR diodes arranged on

a ring around the camera illuminate the scene. The target associated with the input devices

reflects the infrared light and the tracking system reconstructs the position and orientation in

the 3D space with respect to the coordinate system as described above.

When several trackable devices moves in the working area of an optical tracking system, the

tracking system calculates the position and orientation of each of these devices and generates a

data package, consisting of a unified identifier of the target as well as a (4× 4)-matrix representing

the rigid body transformation of the target. The application developer assigns a target to a

physical input device as well as to a virtual input device. When tracking the physical input

device, i.e., the associated target is detected, the resulting pose data is applied to the virtual

input device associated with the target.

Since the tracking process requires much effort in terms of processor resources and memory,

the tracking system usually runs on a different machine than the graphics system, and commu-

nication is performed via network connection as illustrated in Figure 3.8.

- 51 -

3.4. VR2S: Virtual Reality Rendering System

1 . . .

2 // i n i t i a l i z a t i o n o f the t r a c k i n g system

3 SO<TrackingSystem> t s = new TrackingSystem (camera) ;

4

5 // s e t ID o f the t racked g l a s s e s

6 ts−>setHeadID (0) ;

7

8 // append t r a c k i n g system to the canvas

9 canvas−>append (t s) ;

10 . . .

Listing 3.4: Integration of tracking systems in VR2S.

VR2S provides the class TrackingSystem derived from Interaction which processes a data

package generated by the tracking system. This class receives the data packages and generates

corresponding event objects of type TrackingEvent. These objects contain attributes such as

the rigid body transformation matrix and an identifier that associates the tracking event to a

certain device. Tracking conditions can be defined by objects of type TrackingCondition, e.g.,

to ignore particular targets. If a virtual input device is connected to a target, which is recognized

by the tracking system, the rigid body transformation is applied to the virtual input device and

the visual representation of this device, e.g., a virtual hand, is placed accordingly.

As discussed in the beginning of this section, besides the control of virtual input devices

tracking systems enable the simulation of motion parallax by using view-dependent rendering.

Therefore, a target has to be associated with the head position of the user, e.g., by attaching

it to the stereo glasses. When the tracking system is aware of this position and orientation of

the user’s head, the virtual camera is positioned and oriented in the virtual scene accordingly.

To enable realistic motion parallax it is important that the corresponding view frustum extends

to the corners of the projection screen at any time. In Figure 3.13 (right) this approach is

illustrated. A target is attached to the stereo glasses of the user, and the transformation from

the reference target to the current pose is used to define the view frustum with respect to the

initial reference definition of the virtual camera.

Listing 3.4 shows how such a viewpoint-dependent rendering is activated in VR2S. In line 3

an object of type TrackingSystem is created to determine the user’s head position. The con-

structor’s only parameter is the camera attribute, which is modified when viewpoint-dependent

rendering is active. Other optional parameters include, for instance, the dimensions and orienta-

tion of the projection screen or additional transformations applied to the tracking data. In line

6 the (default) ID is assigned for head tracking, i.e., the pose of a device attached with a target,

which is registered at the tracking system with the ID number 0, is used for the position and

orientation of the virtual camera. Finally, in line 9 the tracking system object is connected to

the canvas to evaluate all tracking events by this canvas.

- 52 -

3.4. VR2S: Virtual Reality Rendering System

3.4.4 VR User Interface

Besides for viewpoint-dependent stereographic rendering the passive IR-based optical tracking

system can be used for tracking arbitrary devices with six DoF and exploiting them, for example,

as input devices. Furthermore special VR hardware such as data gloves can be involved in a

VR interaction process. To use such devices in VR2S the class SpatialInputDevice provides

an uniform interface for accessing virtual input devices. A virtual input device can be controlled

via sampled data received from arbitrary hardware and abstracts from the particular used input

device. Special VR hardware devices are either connected to the same computer VR2S runs

on or they can communicate via network sockets with VR2S. Thus processing intensive and

also platform dependent processes such as the described tracking or gesture recognition can be

distributed to different systems. When an arbitrary VR input device is used, corresponding events

of type SpatialInputDeviceEvent are generated and processed by the interaction handling

mechanism. The events for a virtual input device are divided into four groups:

1. Motion events are generated and processed when an associated input device is tracked

while moving through the VR system environment.

2. Selection events occur when the user performs a predefined action associated with the

selection process, e.g., pressing a button or pinching fingers with a data glove.

3. After the user has initiated a selection process, manipulation events are generated per-

mitting six DoF manipulations of virtual objects.

4. Analogous to the selection subprocess, release events are generated by the user performing

predefined release actions, e.g., releasing a button.

The resulting events cause corresponding system behavior. A selection event causes grabbing, a

release event causes releasing of virtual objects, and if a manipulation or motion event occurs, the

virtual input device resp. selected objects are positioned in the scene according to the pose of the

physical input device. Such interaction processes can be implemented by a callback mechanism,

i.e., motion events, selection events, manipulation events and release events lead to execution of

user-definable callbacks in which all concepts are handled. Listing 3.5 describes how an arbitrary

scenegraph element can be used as a virtual input device.

In lines 2 to 4 a red-colored virtual sphere is appended to an object of type SceneThing,

which represents a collection of graphics objects. In line 7 the scene node containing the sphere

is appended as a virtual input device and can be controlled by arbitrary physical input devices,

such as tracked data gloves. Since no callbacks are passed to the constructor, the virtual sphere

can only be moved via an arbitrary physical input device and no selection or manipulation can be

performed in this case. Since the SpatialInputDevice class incorporates further information,

several interaction metaphors can be implemented by inheriting the callbacks (see Chapter 4).

VR input devices not already supported by VR2S can be integrated into VR2S to enable

control via the described VR user interface. Besides desktop devices such as mouse or keyboard

VR2S supports data gloves, space-mouse and arbitrary tracked input devices. Since any physical

- 53 -

3.4. VR2S: Virtual Reality Rendering System

1 . . .

2 SO<SceneThing> th ing = new SceneThing (view) ;

3 thing−>append (new ColorAttr ibute (Color (1 . 0 , 0 . 0 , 0 . 0 , 1 . 0))) ;

4 thing−>append (new Sphere ()) ;

5

6 // append s p a t i a l input dev i c e to the canvas

7 canvas−>append (new Spat ia l InputDev i ce (th ing)) ;

8 . . .

Listing 3.5: A spatial input device in VR2S.

object can be used as a VR input device by applying appropriate tracking technologies. Also

user-defined input devices such as wands, gloves or hands can be used for intuitive six DoF

interactions.

Since VR hardware devices are expensive, VR2S is designed in such a way that all devices can

be simulated. This allows the implementation and testing of VR interaction concepts outside a

VR system environment. For instance, head tracking events can be simulated using the arrow

keys on the keyboard.

3.4.5 Integration of Multisensory Feedback in VR2S

In this section the integration of multimodal interaction concepts, in particular auditory and

haptic feedback, in VR2S is described. Both feedback types are usable in desktop-based and

VR-based environments. In Chapters 4 and 5 multimodal interaction metaphors are presented

that use these implementations to generate multimodal feedback during an interaction. This

feedback can be used to give additional multisensory information, for example, about collisions

or snapping, sometimes referred to as docking, of virtual objects.

Integration of Auditory Feedback

The integration of auditory feedback has been realized by mapping the features provided by the

OpenAL API ([Hie05]). OpenAL is a cross-platform spatial audio library that models a collection

of audio sources moving in three-dimensional environments that are heard by a single listener

somewhere in the VE. The basic OpenAL objects are a listener, a source, and a buffer, which

contains audio data. Each buffer can be attached to one or more sound sources, which represent

points in the VE that emit audio. Besides by their 3D position sound sources can be characterized

by a sound level, distance gain, or a conic propagation direction. One listener object has to be

specified per audio context. This listener object represents the position where the sources are

heard and is therefore connected to the virtual camera. With respect to the properties of the

sound sources and the current virtual listener’s position and orientation, OpenAL synthesizes

the spatial sound. As described in Section 3.1.3, through fading when the distance between the

sound source and the virtual camera increases the user gets the impression of spatial sound.

In addition the environmental audio extensions (EAX) developed by Creative Labs enable the

- 54 -

3.4. VR2S: Virtual Reality Rendering System

simulation of sound effects caused by the surrounding. Thus special sound effects caused by

arbitrary environments can be reproduced, for example, sound effects caused by a hall or by a

cave.

To support this functionality provided by OpenAL in VR2S, sound sources, buffers and the

listener are wrapped by certain wrapper classes. Before spatial sounds can be played in a VR-

based application, the OpenAL sound renderer needs to be initialized to provide access to the

sound devices and a sound context. The sound context handles the state of OpenAL similar

to a graphics context, e.g., the graphics context of OpenGL. This initialization is performed by

instantiating an object of the class OpenALInitializer (see Figure 3.14). Sound sources and

listeners are represented by the classes SoundSourceAL and SoundListenerAL appended to scene

nodes in the scenegraph. Sources and the listener can be fix, or their positions and orientations

are implicitly given by their associated scene nodes. When associating a virtual listener with the

virtual camera, the listener’s position is updated according to the movement of the virtual camera.

Thus, the perception of the sound corresponds to the cognition of the visual representation of the

sound source. For example, the sound generated by a collision between objects propagates from

the position where the user has seen the collision. Since there is only one listener per context,

an object of type SoundListenerAL is derived from the class MonoAttribute. The different

attributes of sound sources as well as listeners are described in detail in [Hie05, Rol05]. The

constructor of the class SoundBufferAL provides access to a file containing the desired sound

source, which has to be available in the waveform audio format (WAV). Sound buffers can be

associated with a sound source by passing the buffer address returned by getBufferAddressAL

to the corresponding sound source.

Since the class SoundSourceAL is derived from the class Shape the evaluation of the sound

sources can be realized by an instance of type SoundSourcePainterAL using the painter mecha-

nism of VRS (see Section 3.3.2). An object of this type assures that playing of sounds is started

when required and that the properties are set correctly. Therefore, the painter ensures that a

sound source is only started, if it is not already playing. To set up the position correctly, the

initial position of the sound source is multiplied by the current model matrix of the scene node

that is associated with the sound source. If the listener is associated to a scene node the cal-

culation of the position and orientation of the listener is performed analogously. If the listener

is associated to the virtual camera, the initial state matrix of this listener is multiplied by the

current view matrix and thus transforms the position and orientation of the listener according

to the position and orientation of the virtual camera.

Integration of Haptic Feedback

In contrast to the integration of sound, haptic feedback is not based on a special haptic library.

The implementation is realized by using a callback mechanism which allows to generate haptic

feedback with respect to the features of the input device.

An example device supporting haptic feedback is illustrated in Figure 3.15. This wand-based

input device has been constructed in cooperation with the technical services of the Westfälische

Wilhelms-Universität Münster. It is equipped with a vibration unit and two input buttons. In

- 55 -

3.4. VR2S: Virtual Reality Rendering System

Figure 3.14: Classes used to integrate OpenAL functionality into VR2S.

input buttons

vibration unit

passive markers

Figure 3.15: The prototype of the haptic input device.

addition, three passive markers for six DoF tracking are attached to the device as described in

Section 3.4.3. To maintain the unconfined freedom of movement a wireless connection is used for

transmitting vibration level information and button events. The vibration unit is connected to

a bluetooth module that can be attached to the belt of the user. This module exchanges signals

wirelessly with a bluetooth adapter connected to the serial port of the host computer.

- 56 -

3.4. VR2S: Virtual Reality Rendering System

Figure 3.16: Classes used to integrate haptic feedback into VR2S.

Before using the haptic input device, it has to be registered in the VR application by ap-

pending an instance of the class HapticDevice to the scenegraph that specifies the applica-

tion. The class HapticDevice is derived from the class Interaction and opens the port to

which the device is connected (see Figure 3.16). Via this port the developer can send one of

several predefined vibration signals, e.g., smooth, medium and hard signals, with the method

sendHapticFeedbackSignal; the parameter of this method defines the vibration level. In addi-

tion, further signals can be defined by a sequence of signals and breaks with varying intervals.

The two buttons allow the user to generate input signals, which can be interpreted as input

events, for example, for selection tasks or contextual menus. Therefore, instances of the class

HapticDeviceEvent, which is derived from the class InputEvent, are generated when a button

is pressed. As described in Section 3.3.2 these events are further processed by the corresponding

behavior graph. Furthermore conditions with respect to input events of the haptic device can be

defined by objects of the class HapticDeviceCondition. This class can be used, for example, to

combine events caused by a haptic input device and a pinch data glove in order to support two-

handed interaction, sometimes referred to as both-handed interaction via different input devices

([BM86]).

- 57 -

3.4. VR2S: Virtual Reality Rendering System

1 #inc lude <vrs / vrs . h>

2 #inc lude <vr2s / vr2s . h>

3

4 int main (int argc , char∗∗ argv) {
5 g l u t I n i t (&argc , argv) ;

6

7 // i n i t i a l i z i n g a cou s t i c

8 SO<OpenALIni t ia l i ze r> initAL = new OpenALIn i t i a l i z e r () ;

9 SO<SoundBufferAL> bufferAL = new SoundBufferAL (”example . wav”) ;

10 SO<SoundListenerAL> l i s t ene rAL = new SoundListenerAL () ;

11

12 // roo t node

13 <SceneThing> myRoot= new SceneThing () ;

14 SO<Camera> camera ;

15 camera = new Camera (Vector (0 , 0 , 5) , Vector (0 , 0 , 0) , 60)

16 myRoot−>append (camera) ;

17

18 // v i r t u a l input dev i c e wi th sound

19 SO<SceneThing> s i d = new SceneThing (myRoot) ;

20 s id−>append (new Sphere ()) ;

21 s id−>append (new SoundSourceAL (bufferAL−>getBufferAddressAL ())) ;

22

23 // b u i l d i n g scene and behav ior graphs

24 SO<GlutCanvas> canvas = new GlutCanvas (”Glut−VR2S” , 1024 , 768) ;

25 canvas−>append (myRoot) ;

26 canvas−>append (new Spat ia l InputDev i ce (camera , s i d)) ;

27 canvas−>append (new TrackingSystem (camera)) ;

28 canvas−>append (new HapticDevice ())) ;

29

30 glutMainLoop () ;

31 return 0 ;

32 }

Listing 3.6: Example source code showing the application of VR-based multimodal interaction

concepts.

3.4.6 Hello, VR2S

In this section, a “Hello, VR2S” example illustrates the usage of multimodal interaction concepts

in VR2S applications. Listings 3.6 shows a minimal application involving a virtual input device,

represented by a sphere, which can be controlled with an arbitrary optical tracked device. At

the position of this virtual input device a sound occurs. Also head tracking is activated to

enable exploration of this minimal scene. Furthermore the haptic input device is appended to

the behavior graph.

- 58 -

Chapter 4

Selection and Manipulation of

Virtual Objects

Although virtual environments have shown considerable potential for providing intuitive inter-

faces for human-computer interaction, improving the acceptance of VR technology requires opti-

mization of the most basic interaction tasks to maximize user performance and provide efficient

HCI. Before interacting with virtual objects, the user needs to specify the target for the desired

interaction. This selection is generally considered as an interaction task itself. To perform an

object selection a set of selectable objects, a technique for identifying the object to be selected

and a mechanism to indicate the time of selection are required. Furthermore, as described in

Chapter 2, the user should get adequate multimodal feedback about a possible or an already

performed object selection, e.g., target feedback that indicates which object will be selected, for

instance by highlighting the object or displaying the object’s bounding box. When an object is

selected six DoF manipulation of the selected object can be performed to change the object’s

position and orientation until the object is released. Besides local selection, i.e., selection in the

immediate reach of the user, also distant objects can be manipulated when using VR interaction

techniques. As described in Chapter 2, such VR-based interactions put a high cognitive effort on

the user. Metaphors are introduced to abstract from the complexity of VR-based interactions.

This chapter discusses direct interaction metaphors for object selection and manipulation in VEs.

The chapter is structured as follows. Section 4.1 discusses related VR-based interaction

metaphors supporting the user, when performing object selection and six DoF manipulation in

a direct way. Section 4.2 describes an enhancement of these metaphors – the improved virtual

pointer metaphor – in detail and explains its integration into VR2S as well as the results of a

usability study comparing these metaphors. A dual-purpose metaphor for both VR-based as well

as desktop-based interaction is described in Section 4.3. Section 4.4 sketches the integration of

VR widgets into VR2S for indirect interaction.

59

4.1. Direct Interaction Metaphors

(a) Virtual hand metaphor (b) Go-go metaphor (c) Virtual pointer metaphor

(d) Sticky-finger metaphor (e) Spotlight metaphor (f) Aperture-based metaphor

Figure 4.1: Different direct interaction metaphors for VR-based interaction.

4.1 Direct Interaction Metaphors

With the increasing availability of VR technologies, many basic approaches for direct interaction

metaphors in VEs have been proposed. In [BH97] Bowman et al. have evaluated and compared

several selection and manipulation metaphors, among them the virtual hand and the virtual

pointer metaphor. Both metaphors use a virtual input device, which is controlled by a real input

device. They differ in the way selections and manipulations are performed.

When using the virtual hand metaphor, a selection is possible when the virtual input device

intersects the desired object (see Figure 4.1 (a)). If the desired object is selected manipulations

can be performed as in the real world by a one-to-one mapping between the movements of the

virtual input device and the virtual object. Thus interaction is performed as if the virtual object

were located in the user’s hand. Although this approach is straightforward and very natural it

limits the potential of VR interactions, since selection of distant objects outside the immediate

reach of the user is not supported and has to be realized by applying alternative strategies.

The go-go metaphor ([PBWI96]) supports selection of distant objects by using a nonlinear

mapping function that transfers the physically measured distance between the user’s head and

his hand to the controlled distance between the real and the virtual hand. Thus, with increasing

distance between the real hand and the head of the user, the movements of the virtual input device

are scaled with respect to the movements of the real hand. This relation between the movements

of the real and the virtual hand is called control/distance (C/D) ratio. When the user navigates

the virtual hand to the desired object, selection and manipulations can be performed by a one-

to-one mapping as in the classical virtual hand metaphor. The go-go metaphor is illustrated in

- 60 -

4.1. Direct Interaction Metaphors

Figure 4.1 (b).

In contrast to moving a virtual hand to the object, when using virtual pointer metaphors,

e.g., casting a ray through the VE ([PFC+97, JFH94, Fit54]), a selection is performed when the

virtual ray hits the desired object as illustrated in Figure 4.1 (c).

Image plane interaction techniques involve pointing at the 2D image plane as done in the

sticky-finger metaphor ([PFC+97]); here the object underneath the user’s finger is the one which

can be selected (see Figure 4.1 (d)). This intuitive form of selection is similar to using a mouse

cursor for two-dimensional interfaces, but it leads to problems when selecting distant and small

objects, since their projection is usually too small to be hit by the ray. Moreover, hand tremors

and accuracy errors of tracking systems complicate the interaction with distant objects.

Poupyrev et al. compared in [PWBI98] the go-go and a ray-casting technique, which

show comparable performance for local selection conditions, independent of the virtual object’s

size. With increasing distance, especially when higher selection accuracy is required, the go-go

metaphor has a significant performance advantage.

Accuracy errors occurring when using the virtual pointer metaphor can be reduced by using

a cone instead of a ray, as it is done in the spotlight metaphor ([LG94]) (see Figure 4.1 (e)). But

several objects may fall into the cone. In [FHZ96] a modification of the spotlight technique is

described, which reduces these ambiguities by providing aperture-based and resizable selection

cones as depicted in Figure 4.1 (f). To select fully or partially occluded objects Olwal and

Feiner ([OF03]) have described a flexible pointer visualized by a curve. This approach is based

on a two-handed control of the curve, it uses the vector formed by the hands to determine the

pointer’s direction and the orientation of each hand to control the amount of curvature.

In addition to the problems of accurate selection of distant or small objects, the most often

mentioned drawbacks of virtual pointer metaphors are the difficulties occurring during six DoF

manipulations of virtual objects. Such manipulations may change the orientation of the ray that

connects the virtual input device to the selected object. Thus the center of manipulation is not

located in the center of the object anymore, hence in particular rotations around a different axis

than the ray are difficult to perform.

For this reason, Bowman et al. [BH97] have proposed a hybrid approach, called HOMER

(hand orientated manipulation extending ray-casting), a technique combining virtual pointer and

virtual hand metaphors. For selection of both local as well as distant objects, the intuitive ray-

casting technique is used. After the selection is performed, the virtual input device moves to

the desired object, or vice versa. Now manipulations can be realized as when using the classical

virtual hand metaphor. After finishing the desired manipulations the virtual object is moved

back to its initial position. The HOMER approach has two disadvantages: when moving the

virtual input device to the selected object, the object is obscured, and when moving the object

to the virtual input device, the spatial relationships of the scene are changed.

- 61 -

4.2. Improved Virtual Pointer Metaphor

4.2 Improved Virtual Pointer Metaphor

Many VR-based applications have shown that virtual pointer metaphors are intuitive for both

local and distant direct object interaction. Besides their natural usage, however, virtual pointer

metaphors need to be improved with respect to the way of aiming at virtual objects and per-

forming six DoF manipulations.

In order to achieve these goals the improved virtual pointer (IVP) metaphor, which avoids

most of the aforementioned disadvantages of current direct interaction metaphors, has been in-

troduced ([SRH04]). This approach allows the user to select a desired object without requiring an

exact hit with the ray. A straight ray is used to indicate the direction of the virtual pointer, while

an additionally visualized bendable ray snaps to the closest selectable object (see Figure 4.2).

Figure 4.2: Illustration of the IVP metaphor.

The closest selectable object that will be chosen if the user performs a selection, e.g., by

pressing a button or by pinching a glove, is called active object. After selecting the active

object, successive manipulations can be accomplished by different mapping strategies between

the movements of the input device and the manipulated object.

The improved virtual pointer advances direct object interaction by combining the following

advantages:

• simple selection of local as well as distant objects,

• prevention of accuracy errors and ambiguities,

• sufficiency of two DoF for controlling the virtual input device in many application areas,

• possible selection of occluded objects, and

• intuitive six DoF manipulations of local as well as distant objects.

4.2.1 Selection Process

As mentioned above, ray-casting approaches require a simple way to aim at virtual objects. The

IVP metaphor combines the advantages of the metaphors described in Section 4.1 and extends

- 62 -

4.2. Improved Virtual Pointer Metaphor

them to provide an intuitive mechanism for direct object interaction. The metaphor enhances

the selection process of an object, i.e., with the IVP metaphor a user performs a direct object

selection by roughly pointing at the desired object. Thereupon the flexible ray bends to this

active object if it is the one closest to the straight ray. In the following subsections, different

approaches are described how to determine the active object.

Distance Calculation

Usually the desired object a user wants to select is the one closest to the ray. For an improved

object selection a straightforward approach is to choose the object with the minimal orthogonal

distance to the virtual ray. This minimal orthogonal distance may refer to different reference

points of a desired object, e.g., the center of the object’s bounding box, the nearest vertex, the

nearest edge etc. ([DFS01]). If more than one object have the same minimal distance to the ray,

different strategies may be considered, e.g., the object closest to the user becomes active.

To determine the closest object for all considered objects, their distances to the virtual ray

have to be calculated. The ActiveObjectList (AOL) is an ordered list that stores all selectable

objects in increasing order of their distances to the virtual ray. The first object with minimal

orthogonal distance is the active object: AOL={(obj1,d1),...,(objn,dn)} with 0 ≤ |d1| ≤ ... ≤ |dn|,
and obj1 is the active object. This list provides the possibility to switch between active objects,

e.g., to solve problems occurring during the selection of partially or fully occluded objects.

World Distance

The minimal orthogonal distance can be calculated by dropping a perpendicular from the refer-

ence points of all considered objects to the virtual ray.

obj2

d1

d2

obj1

αobj2

ray

αobj1

s2

s1

r1

r2

Figure 4.3: Calculation of the distances between virtual objects and the ray.

Figure 4.3 illustrates how the distance di from the virtual ray to a reference point of an

object obji is calculated using the ray direction, the vector si from the position of the virtual

input device to the reference point of obji, the vector ri from the position of the virtual input

device to the intersection point of the ray with the plane that is orthogonal to the ray and

- 63 -

4.2. Improved Virtual Pointer Metaphor

contains the reference point of the considered object, and the angle αobji between si and ri. The

angle αobji and the distance di can be calculated as follows:

αobji = arccos
(

si · ri

|si| · |ri|

)
(4.1)

di = sin (αobji) · |si|. (4.2)

Ordering the objects within the ActiveObjectList according to this world distance may cause

results not expected by the user, since the displayed distance may be distorted because of the

perspective projection transformation (see Chapter 3).

Figure 4.4: Perspective distortion when selecting distant virtual objects.

Figure 4.4 illustrates this problem. From the user’s point of view, tree number 2 (tree2) seems

to be closer to the ray. However, tree number 1 (tree1) attracts the curve and gets active since

the distance between tree1 and the ray is less than the distance between the ray and tree2, even

though d1 seems to be larger because of the perspective distortion. The image plane distance

approach and the conic extension approach which will be described in the following do not have

this drawback ([SRH05c]).

Image Plane Distance

This approach calculates the distances used for ordering the objects in the ActiveObjectList in

image space coordinates. The world space distance di is transformed into the corresponding

image space distance idi as illustrated in Figure 4.5.

The Figure shows that even a large world space distance may appear quite short after the

transformation. Although object obj2 is located farther from the ray than obj1, its projected

distance id2 is shorter than id1. Thus ordering the ActiveObjectList according to image space

distances may also lead to unsatisfying results.

Conic Extension

This alternative approach considers both the world distance between a particular object obji and

the ray, and the distance between the virtual input device and the object. The world distance is

- 64 -

4.2. Improved Virtual Pointer Metaphor

obj2

ray

image plane

camera

obj1 d1

d2

id2id1

Figure 4.5: Selection on the basis of distances in image space.

multiplied by a scale factor fi := 1
|ri| , and the resulting value is used to order the objects stored

in the ActiveObjectList. The scale factor fi is the inverse of the length of the vector ri introduced

before (see Figure 4.3). Hence fi decreases with increasing distance between the virtual input

device and a virtual object obji, and multiplying the world distance with this factor yields a

smaller value as basis for ordering the ActiveObjectList.

Although both approaches use different values for ordering the objects both provide access

to the world distances.

Sticky-Ray Metaphor

In a densely populated VE with large objects and small gaps between them distance calculations

may be unnecessary, because most times the virtual ray hits a virtual object. Only in the small

gaps between the objects, distance calculations would be necessary. Therefore the following

strategy may be advantageous. Like for the simple virtual pointer metaphor a ray is cast through

the VE and the first object to be hit becomes the active object. It remains active until the virtual

ray hits a different selectable object. This way selection is simplified because only a single hit of

a desired object with the selection ray is needed to ensure a selection. This strategy leads to the

sticky-ray metaphor ([SRH04]) that is illustrated in Figure 4.6.

Figure 4.6: Illustration of the sticky-ray metaphor during a translation of a virtual input device

from left to right.

The process depicted in Figure 4.6 shows a dynamic scene illustrating the movement of a

virtual input device from the left to the right. In the beginning the ray intersects the red box

- 65 -

4.2. Improved Virtual Pointer Metaphor

leading to a feasible selection (left). When moving to the right, the red box remains active

(indicated by the red curve) although the green sphere is closer to the virtual ray (middle).

Moving further to the right, the ray hits the green sphere, which then becomes the active object

(right). In contrast to the concepts described before the sticky-ray metaphor needs no distance

calculations at all, only a ray-cast is evaluated for the selectable objects.

Region Examination

When determining the active object from a set of objects, the number of considered objects

depends on the scene structure and the examined region. When the user moves the virtual

pointer through the VE, within an appropriate region the object hit by or closest to the virtual

ray has to be determined. The optimal choice for structure and size of this region depends on

the scene’s configuration, i.e., the number and arrangement of the selectable objects within the

VE. Two possible strategies can be distinguished:

1. Reducing the number of considered objects, e.g., depending on intersections with geometric

shapes, or

2. considering all selectable objects.

In the first case only objects intersected by a predefined geometric shape are considered. Possible

geometric shapes are cones, cylinders, spheres, boxes etc., which may be attached to the virtual

input device or located somewhere in the VE. Those shapes are not visualized, they are only used

for reducing the number of objects to be considered in calculations. If one or more selectable

objects intersect such a geometric shape, the object with the smallest distance to the ray becomes

the active object. If no such intersecting object exists, the geometric shape is enlarged and tested

again for intersecting objects. This enlargement process is repeated until either an intersection is

found or the complete scene has been examined without success, i.e., the scene does not contain

any selectable objects.

obj2

(i)

(ii)

(ii)

d1

(i)

d2

obj1

αobj2

ray

Figure 4.7: Example configuration with initial (i) and extended (ii) cone.

- 66 -

4.2. Improved Virtual Pointer Metaphor

Figure 4.7 illustrates an example. Since the virtual ray does not hit any object, an initial

cone-shaped region (i) is examined. Because this cone intersects no objects a larger cone is

analyzed. Now two objects intersect the cone (ii) and due to |d2| < |d1|, obj2 becomes the active

object. This strategy is favorable for extremely densely populated scenes, but the appropriate

size of the region to be examined depends on the topology of the scene.

Alternatively, the distances for all selectable objects can be calculated. This strategy may

be advantageous in VEs in which the initially examined region usually does not contain any

objects. Thus multiple examinations of regions can be avoided at the cost of calculating in one

scene traversal for all selectable objects their distances to the ray. However, since the described

distance metric is not very complex, this approach is sufficient for most VEs. These strategies

do not require properties of the data structures used by the VE, for instance, an octree, but they

are adaptable to such concepts.

Visualization of the Virtual Ray

An adequate visual feedback of a possible selection needs to take the ray direction vector as well

as the position of the active object into account. This is ensured by visualizing in addition to

the ray direction vector a Beziér curve graph

B(x) =
2∑

i=0

pi ·

(
2

i

)
xi(1− x)2−i, (4.3)

with x ∈ R3 and three points pi ∈ R3, i = 0, ..., 2, defining the curve. The anchor points p0 and

p2 are defined by the position of the virtual input device and the active object’s reference point,

e.g., the center of its bounding box. The control point p1 is located on the ray direction vector

and determines the bending of the Beziér curve.

p1

p0

p2

p2

p1

p0

Figure 4.8: Illustration of the bending of the curve with respect to the anchor points p0, p2 and

the control point p1.

Tests have indicated that 0 < |p0 − p1| < |p0 − p2| should be satisfied, otherwise the attrac-

tion is too small or appears to be unnatural. Figure 4.8 shows a virtual scene illustrating the

curve for two selectable objects with p1 chosen such that |p0 − p1| = 4
5 · |p0 − p2|. The red box is

active although it is not hit by the virtual ray (left). After a small rotation of the virtual hand

- 67 -

4.2. Improved Virtual Pointer Metaphor

the green sphere is located closer to the ray and becomes the active object (right).

4.2.2 Manipulation of Virtual Objects

This section describes how to overcome the aforementioned drawbacks of distant object manip-

ulation, in particular rotation around an arbitrary axis, when using virtual pointer metaphors.

The IVP metaphor extends the idea of the previously described HOMER technique to provide an

efficient tool for six DoF direct manipulations of both local as well as distant virtual objects. In

contrast to the HOMER technique, the virtual input device and the selected object both remain

at their initial position after a selection is performed. Nevertheless, all rotations are implemented

by a one-to-one mapping between the rotational movements of the virtual input device and the

virtual object. Thus rotations can be performed similar to real world rotations, except that the

manipulated object remains at its original position without being relocated towards the user’s

hand. By using this approach manipulations, in particular rotations, can be accomplished accu-

rately without occluding the desired object by the virtual input device, as it may happen when

using the HOMER technique.

For translational movements of the virtual input device the one-to-one mapping is maintained,

but in addition a linear mapping function between the movements of the virtual pointer and the

manipulated object is applied. This is done since in some cases perspective distortion may scale

the movements of the virtual input device depending on the position and distance between the

input device and the selected object.

a b

t
id1

image plane

camera
id2

objd2

d1

Figure 4.9: Distant object translation affected by perspective distortion.

Figure 4.9 clarifies this issue. Mapping a translation t of a virtual input device, which is

located close to the viewpoint, one-to-one to a remotely selected object obj results in a translation

d1 that appears to be foreshortened (compare d1 to d2). For this reason, translational movements

are scaled with the factor tf = b
a where a denotes the distance between the camera and the virtual

input device, and b the distance between the camera and the desired object (see Figure 4.9).

Small and accurate translation of distant objects is more complicated using this approach, but

existing VR applications have revealed that accurate and precise manipulations are accomplished

primarily by local interaction within the immediate reach of the user. In the case of local object

translation a ≈ b and therefore tf ≈ 1. Hence, translations of local objects are barely affected.

- 68 -

4.2. Improved Virtual Pointer Metaphor

Direct six DoF manipulations of distant objects are mostly used for moving these objects close

to the user for exploration or for performing larger translations. When the virtual input device is

farther away from the user than the manipulated object, the movements of the virtual object are

downscaled in relation to the movements of the virtual input device, and precise manipulations

can be performed. Hence, both aspects, precise and rapid interactions, are incorporated into this

approach.

4.2.3 Multimodal Concepts

In this section the adaptation of multimodal interaction concepts to fit the needs of object

selection and manipulation in VEs is described. In particular it is shown, how using multimodal

input as well as multimodal output can enhance the interaction process.

Multimodal Input

Two-handed interaction can be used to improve object interaction. In realizations of pointer

metaphors ideally wands or other pointing devices are used with the dominant hand, whereas

data gloves or other devices can be used with the non-dominant hand for system control. For

example, the haptic input device described in Chapter 3 can be used to control the virtual input

device according to the IVP metaphor by pointing at the desired object as described in the

previous subsections. A selection is indicated by pressing a button on this device. Other input

devices, such as a glove, can be used by the non-dominant hand to access menus or to support

object selection. In case the desired object is occluded, a data glove can be used for traversing

the ActiveObjectList in order to select a different virtual object.

Multimodal Output

Multimodal feedback can be used to inform the user about a possible selection. Furthermore,

multimodal feedback can encode data generated within the VE in a way that it is intuitively

comprehensible for users. For this reason, visual, auditory and haptic senses are addressed. As

described above, adequate visual feedback of a possible selection is ensured by visualizing, in

addition to the ray direction vector, the Beziér curve pointing to the active object.

To improve the user’s perception of the active object, acoustic information is submitted to

the user when the active object switches. When by moving the virtual input device a different

selectable object gets active, i.e., the Beziér curve bends to the new active object, the position

and orientation of both the active object and the user are used as parameters for the sonification

process. A switch of the active object can be emphasized by a gentle sound dispersing from the

position of the active object towards the user’s position. As a result, the active object can be

spatially located more easily.

In addition, haptic feedback is incorporated for further improvement of direct object interac-

tion techniques, i.e., in addition to the visual and acoustic cues, the user gets haptic information

regarding the active object. During a switch of the active object, the user receives a light and

- 69 -

4.2. Improved Virtual Pointer Metaphor

short vibration signal emitted by the haptic input device. The intensity of vibration can be al-

tered depending on the distance between the virtual input device and the active object. Starting

from an initial low intensity of vibration, a decreasing distance between input device and active

object results in a higher intensity of vibration. Thus the usage of haptic feedback has the po-

tential to enhance comprehension about the arrangement of the selectable objects, in particular

the active object.

4.2.4 Integration of the IVP Metaphor into VR2S

In this section the integration of the IVP metaphor into VR2S is described. Since the IVP

metaphor is a special metaphor to control virtual input devices, it is implemented in the class

ImprovedVirtualPointer, derived from the class SpatialInputDevice explained in Chapter 3

(see Figure 4.10). An instance of the type ImprovedVirtualPointer is associated to a scene

node, which corresponds to the visual representation of a virtual input device such as a virtual

hand. The IVP interaction concepts described in the previous subsections to select, translate,

rotate and release virtual objects are implemented in four corresponding callback methods, i.e.,

motionIVP, selectIVP, manipulateIVP and releaseIVP. The argument passed to these call-

backs is an object of type IntersectionInfo that is obtained by executing a ray query, which

returns the shapes hit by the virtual pointer resp. a null object if no shape is hit.

Figure 4.10: Classes used to integrate the IVP metaphor into VR2S.

Besides the different mapping and distance calculation strategies proposed in Sections 4.2.1

- 70 -

4.2. Improved Virtual Pointer Metaphor

and 4.2.2, the visual representation of the curve can be altered in terms of bending, color and size

by corresponding attributes of the method setCurveStyle. The method setFeedbackCallback

enables the application developer to specify multimodal feedback, which is submitted to the

user when the active object changes. The application developer defines which virtual objects

can be selected and arranges them in the VE by using corresponding scene nodes. The scene

node associated with the active object can be inquired with the method getActiveSceneThing.

Determination of the active object is a major task of the IVP metaphor and is achieved by

computing the distances of all selectable objects to the virtual ray as described in Section 4.2.1.

The scenegraph structure used in high-level graphic systems can be exploited to improve perfor-

mance by calculating all distances during a pre-evaluation phase of the scenegraph when using

the previously described multipass rendering concepts (see Chapter 3). For this purpose, the

pass ACTIVEOBJECTTECHNIQUE is used (see Table 3.1). After the bounding boxes of all selectable

objects have been determined in the pass BOUNDINGBOX, within this pass the distances between

these objects and the virtual ray are calculated and the ActiveObjectList is generated i.e., these

objects are stored in the ActiveObjectList according to their distances to the ray. When an

instance of type ActiveObjectTechnique is appended to the scenegraph, the calculation of the

distances as well as creation of the ActiveObjectList is initiated. The prepareEval method ob-

tains as parameters a shape and a VRS engine for evaluating the shape. prepareEval checks

the shape wether it contains a flag which indicates that this shape resp. the associated scene

node is selectable.

The application developer has to specify the shapes or scene nodes that can be selected. For

these selectable objects the distance calculations can be performed using Equations (4.1) and

(4.2).

The results of these simple distance calculations may be scaled according to the approaches

described in Section 4.2.1. The final results are stored in the ordered ActiveObjectList. This list

can be used, for example, to switch between selectable objects, e.g., to select an occluded object

by traversing the ordered list. If the active object changes, the callback mechanism initiates

auditory and haptic feedback as described in Chapter 3 by associating a sound source to the

active object and sending a vibration signal which depends on the distance between the user and

the reference point of the active object.

In Listing 4.1 the application of the IVP metaphor within a VR2S example application is

shown. In line 2 an instance of the class ActiveObjectTechnique is appended to the scenegraph

and an improved virtual pointer is set up in lines 4-8, i.e., the virtual hand model depicted in

Figure 4.8 is inserted into the scenegraph, and it is declared as an improved virtual pointer.

Hence a Beziér curve is appended to the visual representation of the virtual hand. The method

callback activeSceneThingCb returns the active scene node.

Frame Rate Comparison

When embedding all previously described distance calculations into a pre-evaluation traversal of

the scenegraph, interactive frame rates are maintained for reasonably populated virtual environ-

ments.

- 71 -

4.2. Improved Virtual Pointer Metaphor

1 . . .

2 main−>append (new ActiveObjectTechnique ()) ;

3

4 SO<SceneThing> virtualHand = new SceneThing () ;

5 virtualHand−>append (ThreeDSReader : : readScene (”hand . 3 ds”)) ;

6

7 SO<ImprovedVirtualPointer> ivp ;

8 ivp = new ImprovedVirtualPointer (camera , virtualHand , activeSceneThingCb) ;

9

10 canvas−>append (ivp) ;

11 . . .

Listing 4.1: Using the IVP metaphor in VR2S.

frames per second

|selectable objects| Ray-casting IVP

50 ≈ 47 ≈ 46

100 ≈ 26 ≈ 25

500 ≈ 6 ≈ 5

Table 4.1: Frame rates for the IVP metaphor in comparison to a simple ray-casting approach.

Table 4.1 shows that even for an increasing number of selectable objects, almost the same

frame rates can be maintained for the IVP metaphor as achieved when using a simple ray-

casting metaphor without any distance calculation. The example scene chosen for this frame

rate comparison consisted of different textured and colored randomly arranged spheres. For

sufficiently large frame rates the difference does not matter, but for small frame rates users may

perceive the slowdown. The frame rates have been measured on an Apple G4 dual processor

system equipped with two 1.25GHz processors, 1GB RAM and an nVIDIA GeForce 4Ti graphics

card.

4.2.5 Usability Study

To evaluate the concepts of the IVP metaphor, a usability study has been performed. During

these tests the subjects had to accomplish several selection and positioning tasks using the

different interaction metaphors explained in Section 4.1. The time required as well as the accuracy

for each subtask have been measured, and a user survey about the interaction concepts has been

analyzed.

Tasks

As basis for the evaluation of the IVP metaphor a residential city planning environment has

been chosen as illustrated in Figure 4.11. The tasks consisted of a combination of selections and

- 72 -

4.2. Improved Virtual Pointer Metaphor

pinch glove

haptic device

stereo glasses camera

target building

target location

Figure 4.11: Usability test environment: responsive workbench, optical tracking system, haptic

input device and pinch glove.

manipulations. Several randomly highlighted buildings had to be selected and repositioned to a

particular marked location. After a short introduction into the usage of the metaphors, during

the test phase the times needed for both selection and manipulation as well as the accuracy of

the positioning task were measured. The IVP and sticky-ray metaphor were compared to the

most common interaction metaphors supporting both local as well as distant object interaction,

i.e., simple ray-casting metaphor and sticky-finger metaphor (see Section 4.1). The effect of

multimodal interaction was measured in terms of performance and it has been considered af-

terwards in a survey. The 11 male and 4 female subjects chosen for these tests were familiar

with residential city planning environments. Most subjects were geoinformatic students (8), but

also computer scientists (3), mathematicians (2) and landscape ecologists (2) participated in the

tests.

Results

The results of the user study show that the IVP metaphor has significant advantages in compar-

ison to the other metaphors. Most striking is the improvement for the selection subtask when

using the IVP or sticky-ray metaphor. Figure 4.12 (a) shows the times needed for the selection

subtasks. Local and especially distant selection can be accomplished faster by using the IVP

metaphor as well as the sticky-ray metaphor. A statistical analysis has revealed that the hy-

pothesis which states that selection using the IVP metaphor reduces the required time can be

assumed as true with a level of significance of 95% ([Ebe94]).

A comparison between the world space distance calculation and the conic extension approach

(see Section 4.2.1) shows that the conic extension approach leads to a significant performance

gain when selecting objects. Using world space distance calculation an object selection took

on average 2.49 seconds, using the conic extension approach it took 2.00 seconds on average.

The proposed scaled distance manipulations have already been evaluated in [FK05] and showed

- 73 -

4.3. Dual-Purpose Interaction Metaphor

0

1

2

3

4

5

6

7

8

IVP Sticky-Ray Ray-Casting Sticky-Finger

tim
e

in
 se

co
nd

s

local distant

(a) Needed time for local and distant selection tasks. (b) Results of the user survey

Figure 4.12: Results of the usability study.

better performance in comparison to one-to-one mapping approaches.

Figure 4.12 (b) presents a part of the results of the user survey. The survey shows that the

users preferred interaction using the IVP metaphor. The users had to assess how intuitive and

easy to use the metaphors are, and they had to judge the learning effort. The evaluation has

been performed on a five-point Likert scale ([Lik32]), where grade 1 corresponds to not intuitive,

difficult to use and hard to learn, while grade 5 corresponds to the opposite. Although the

differences are not as significant as the results for the selection task, the users rate the IVP

metaphor as the most intuitive and easy to use metaphor. In the users’ view, the learning effort

for the IVP is minimal in comparison to the other metaphors. Furthermore, the survey has

shown that the participants consider the use of multimodal feedback as very helpful, especially

the haptic feedback emitted when a new object becomes active. Although the usage of both

auditory as well as haptic feedback has not increased the performance in this usability study,

the survey and comments of the participants have shown that multimodal feedback improves the

selection process in so far as the users feel safe and confirmed when they select an object. The

participants rate acoustic feedback on average with 3.5 on a five-point Likert scale, where grade

1 corresponds to not helpful, while grade 5 corresponds to very helpful. Haptic feedback has

been evaluated with 4.2 on average; especially female participants prefer the support by haptic

feedback (4.0 on average) in comparison to acoustic feedback (3.0 on average). Moreover, the

haptic input device described in Chapter 3 has been assessed as ergonomically designed in terms

of weight and handling comfort.

Currently, the concepts underlying the IVP metaphor are also used at the Scientific Visual-

ization research group at the Delft University of Technology ([dHKP05]).

4.3 Dual-Purpose Interaction Metaphor

As explained in the previous sections several approaches for six DoF manipulations to interact

with the VE are supported by today’s VR systems. Problems arise when the user wants to

- 74 -

4.3. Dual-Purpose Interaction Metaphor

perform actions not supported by the VR-based application. For example, to switch between

different applications requires the user to put away the currently used interaction devices and to

perform the task by using a desktop mouse. For the feeling of immersion it is very important

that the user does not have to leave the VR system for operations like reconfiguration of the

system, starting a new session etc., and then enter it again.

In this section an approach is described which enables users of VR systems to switch seam-

lessly between desktop-based and VR-based interactions. This dual-purpose interaction metaphor

([SRH05d]) is based on laser pen interaction ([ON01]) and enables the user to perform six DoF

interactions as well as controlling the 2D desktop within the VR system. In particular, relatively

small desktop widgets can be accessed using a non-2D input device. Thus it is possible to control

applications with graphical user interfaces that were not developed with the intention to be used

in an immersive VR environment.

4.3.1 Desktop-based Interaction

The adaptation of 3D desktop-based applications to VR systems often fails since no techniques

are available that allow the user to access the full functionality of the application; especially menu

interaction and system control is not implemented or must be completely redesigned for the usage

in VR environments. Furthermore, when working with a VR system direct access to the operating

system or another desktop-based application may be required, e.g., to use WIMP-based systems.

Since standard input devices such as the mouse or the keyboard are popular and their use is

familiar to most users, desktop-based interactions should rely on these intuitive mechanisms.

Using the dual-purpose metaphor six DoF motions and additional signals transmitted by a VR

input device are mapped to the corresponding system commands to emulate mouse input events.

To calculate the current mouse cursor position a virtual ray is cast from the position of the input

device towards the VR projection screen, its direction depends on the input device’s orientation.

The intersection point between ray and screen is transfered to the system as location for the

corresponding mouse event. Thus users can handle any six DoF tracked input device in almost

the same manner as a laser pen for desktop-based interaction ([ON01]).

Emulation of Mouse Motions

A user is placed in a VR system environment, e.g., in front of a projection wall, and interacts

with the image plane via a laser-based input device, e.g., the haptic input device, as shown in

Figure 4.13. A change of the coordinate system is necessary since the position and orientation of

the input device is given in tracking system coordinates. Let T denote the matrix defining the

transformation of the reference definition of the input device to its current pose calculated by

the tracking system as explained in Chapter 3. From the matrix T the position pos of the input

device in tracking system coordinates is derived by the three upper elements of the last column:

- 75 -

4.3. Dual-Purpose Interaction Metaphor

screen coordinate system

tracking coordinate system

P’

intersection point

x’

y’

x

y
P

Figure 4.13: Desktop-based interaction in front of a powerwall system.

pos =


T14

T24

T34

 . (4.4)

If dirinit denotes the initial direction of the input device, e.g., dirinit = (0, 0,−1, 1)T in homoge-

nous coordinates, which is usually derived from the reference definition of the trackable target

associated with the input device, then the current direction dircurr of the input device in tracking

system coordinates is given by

dircurr =


dircurrx

dircurry

dircurrz

1

 = T ·


1 0 0 −T14

0 1 0 −T24

0 0 1 −T34

0 0 0 1

 · dirinit. (4.5)

The tracking coordinate system and the screen coordinate system usually have the same orien-

tation and thus the intersection point P of the ray extending from the input device in direction

dircurr with the x-y plane of the tracking coordinate system (see Figure 4.13) is derived by

exploiting the intercept theorems as

P =


posx

posy

posz

+


posz · dircurrx

|dircurrz |

posz ·
dircurry

|dircurrz |

posz · dircurrz

|dircurrz |

 . (4.6)

In the case that the input device points to the projection screen, the last component of P

becomes approximately zero because P is closely located to the x-y plane of the tracking as

- 76 -

4.3. Dual-Purpose Interaction Metaphor

well as the screen coordinate system. Since the screen coordinate system is two-dimensional the

third component of P is ignored. A transformation to the screen coordinate system, which has

the dimensions of 1 to winsize in horizontal and vertical direction, with respect to the physical

screen size screenwidthmm×screenheightmm yields the intersection point P ′ = (x′, y′)T in screen

coordinates:

(
x′

y′

)
=

 ⌈
winsize

2 +
(

winsize

2 ·
(

x
screenwidth

)) ⌉⌈
winsize

2 −
(

winsize

2 ·
(

y
screenheight

)) ⌉
 (4.7)

This point is used to generate an operating system specific mouse event at that screen location,

and the mouse cursor is positioned accordingly.

Mouse Cursor Snapping

The usage of the described laser-based interaction with VR input devices involves various prob-

lems, such as hand tremor and difficulties when selecting small GUI-elements, e.g., icons and

widgets ([Wis01]), which usually are designed for mouse-based interaction. To solve these prob-

lems the concepts of the IVP metaphor can be exploited and adapted to the described desktop-

based interaction. Thus the IVP metaphor supports the user during the selection of small GUI-

elements, which are difficult to hit with the usual pointer-based metaphor. Instead of positioning

the mouse cursor at the intersection point, the cursor is placed at the position of the active wid-

get, i.e., the GUI-element closest to the intersection point in terms of the Euclidean distance, and

sticks there until another element gets closer to the intersection point. This snapping strategy

is optional and can be activated or deactivated by the user at runtime.

Emulation of Mouse Buttons

Mouse button events can be generated by using VR input devices, e.g., left and right mouse

button or double-click events are simulated by corresponding buttons of the input device or by

pinching special finger combinations with gloves. Thus, the user can control all GUI-elements

that can be accessed with a desktop mouse by utilizing the six DoF motions of arbitrary VR

input devices, and therefore any desktop-based application can be controlled with VR devices.

Furthermore special VR hardware, e.g., projection walls and space mice, can be used to perform

common desktop-based interaction tasks.

Switching Modes

To allow desktop-based and VR interaction the user can switch between the VR-based interaction

which uses the IVP metaphor to accomplish six DoF selection and manipulation of virtual objects

and the laser-based mode for desktop-based interaction. To switch between both modes the user

has to satisfy predefined conditions, e.g., pressing a special button. In addition, the modes

can be switched automatically depending on the system state. For example, the activation of

a two-dimensional menu can switch to the desktop-based interaction mode, while a subsequent

selection of a menu entry can switch back to the VR interaction mode.

- 77 -

4.3. Dual-Purpose Interaction Metaphor

Figure 4.14 illustrates the dual-purpose metaphor in a responsive workbench environment.

The user can select menu entries via the desktop-based interaction mode, and he can interact

with the VE by using VR-based interaction paradigms.

VR interaction

desktop-based interaction

haptic input device

pinch glove

camera

Figure 4.14: Dual-purpose interaction metaphor in front of a responsive workbench.

4.3.2 Integration of the Dual-Purpose Interaction Metaphor into VR2S

The class VirtualMousePointer is derived from the class SpatialInputDevice (see Figure 4.10).

It manages the steps described in Section 4.3.1 by implementing the corresponding events for

mouse motions and mouse buttons in the callback methods of SpatialInputDevice (see Chapter

3). The six DoF data for the position and orientation of the input device are mapped to the

screen position at which the mouse cursor will appear. Thus, the mouse cursor can be moved

along the screen surface using any VR input device. To generate a mouse button press or release

event corresponding callback methods are implemented in the class VirtualMousePointer.

The tracked data of a VR input device, e.g., a space mouse or the previously described haptic

input device, is received via device-dependent threads that process this data and generate corre-

sponding input events as described in Section 4.3.1. The emulated mouse events are generated by

operating system specific commands, which are currently implemented for Windows platforms

only and are based on the SendInput function of the Windows User Interface API ([Mic05]).

To exploit the advantages of the IVP metaphor for mouse cursor snapping, the position and

region of every accessible GUI-element is needed to determine the active element, i.e., the closest

GUI-element to the screen intersection point of the ray. Therefore, for each selectable GUI-

element the distance to the intersection point has to be determined. In the image plane the

Euclidian distance between the intersection point and the center of each GUI-element is used as

distance metric. The position and region of each active widget is inquired from the operating

- 78 -

4.4. Virtual Reality Widgets

system using appropriate APIs and libraries. For icons of the Windows operating system this can

be achieved by using the SendMessage and Readfrom functions in conjunction with appropriate

parameters (LVM GETITEM, LVM GETITEMPOSITION, LVM GETITEMRECT etc.) ([Mic05]).

Using these concepts the dual-purpose interaction can be integrated into arbitrary VR-based

applications, and thus support of both VR-based as well as desktop-based interaction within the

application is guaranteed. Alternatively, the laser-based mode of the metaphor is usable without

any reference to a VR-based application and can be utilized to control graphical operating

systems and WIMP-based desktop applications.

4.3.3 Evaluation

The IVP metaphor concepts of the dual-purpose interaction metaphor have been evaluated and

the results have been discussed in Section 4.2.5. The second part of the dual-purpose metaphor,

i.e., desktop-based interaction, has been analyzed in [PNMI05]. In this evaluation study for

target acquisition with pointing devices on tabletop displays a similar laser-based interaction

approach has been tested. This so-called snap-to-target selection has been compared with several

other laser-based strategies. These selection strategies are mainly based on enlarging the cursor

or enlarging the target to aid the selection of small objects displayed on a tabletop system.

The results of this test study underline that the desktop-based interaction concept described

in Section 4.3.1 is the most efficient approach. Overall, the snap-to-target selection was the

only selection aid to be perceived as significantly more comfortable and accurate than the other

approaches. In addition, it also required less movement time until the target had been acquired.

4.4 Virtual Reality Widgets

Although the described direct interaction metaphors provide advanced interaction within VR

systems, these metaphors lack immersive VR system control. VR system control is defined

as the task of changing the interaction mode or the state of the VR system by issuing com-

mands ([BKLP01]). The desktop-based interaction performed with the dual-purpose interaction

metaphor allows to control desktop-based menus, but the menus are displayed monoscopically,

and they may overlay stereoscopic scene content and hence disturb immersion. For this rea-

son VR widgets can be used. VR widgets, sometimes referred to as Virgets ([MP93]), are

three-dimensional analogons to two-dimensional menus. Instead of using two-dimensional menu

representations, different three-dimensional shapes, e.g., boxes, spheres etc., are presented to the

user associated with menus consisting, for instance, of VR buttons, VR checkboxes, or VR sliders

([MP93]).

4.4.1 VR Menus

VR2S provides two classes, i.e., VRWidget derived from SceneThing and VRMenuHandler derived

from Interaction, to realize such three-dimensional VR menus (see Figure 4.10). Objects

of type VRWidget represent virtual widgets which can be used in VR environments. These

- 79 -

4.4. Virtual Reality Widgets

objects contain three interchangeable scene nodes, which visually represent their possible states.

Moreover, this class has a pointer to a callback function that is processed when the widget is

activated. In general, two input events generated by arbitrary devices are processed, i.e., press

and release events. By using these user-defined events three different states, i.e., normal state,

pressed state and checked state, can be accessed.

1. Normal state is the initial state of a VR widget before a user selects this widget. In this

case the scene node associated with the normal state is used to display the widget.

2. Pressed state represents the state to which a VR widget changes when a user clicks on

the VR widget without generating a release event, e.g., releasing a button. In this state

the actions associated with the VR widget are not initiated, but the visual representation

of the normal state of the widget is exchanged with the representation associated with the

pressed state. Thereby the user gets a visual feedback according to the chosen widget.

3. If the widget is hit by a selection ray or intersected by a virtual input device, and the

user generates a release event after a select event, two alternative approaches are possible

depending on the intention of the VR widget. If the scene node representing the normal

state equals the scene node that represents the checked state, the associated callback

function is applied and the VR widget returns to the normal state. This approach can

be used, for instance, to provide VR buttons. In the case that the normal state and the

checked state differ, the status of the VR widget changes to the checked state when the

user has generated a release event. This state can be exploited, for example, to support

VR checkboxes. However, if the user generates a release event while the widget is hit by

a selection ray or intersected by a virtual input device, the actions associated with the

desired VR widget are applied.

The management and handling of objects of the type VRWidgets as part of the scenegraph is

ensured by an instance of the class VRMenuHandler derived from Interaction (see Chapter 3).

Objects of this class ensure state changes with respect to the user’s action and initiation of the

associated callback function.

In Listing 4.2 the usage of the VR widgets within VR2S is shown. In lines 2 to 7 the visual

representations of a button and its states are defined by the application developer. In lines 9 and

10, these states are combined to an object of type VRWidget, which is handled by an instance of

the class VRMenuHandler as part of the behavior graph (see line 11).

Figure 4.15 (a) shows an example of a VR menu generated within a prototype VR2S applica-

tion in front of a projection wall ([RSH05c]). The IVP metaphor enables an intuitive interaction

with VR widgets combined to a two-dimensional menu. The menu contains several buttons,

checkboxes and a slider to change the visualization properties of a volumetric PET dataset.

4.4.2 Personal-Interaction-Panel

A VR widget menu can also be projected onto a personal interaction panel (PIP), that can be

held by the non-dominant hand to enable tangible feedback during menu interaction ([SG97]).

- 80 -

4.4. Virtual Reality Widgets

1 . . .

2 SO<SceneThing> menu ;

3 SO<SceneThing> widgetNormal , widgetPressed , widgetChecked ;

4 . . .

5 widgetNormal−>append (. . .) ;

6 widgetPressed−>append (. . .) ;

7 widgetChecked−>append (. . .) ;

8

9 menu−>append (new VRWidget(widgetNormal , widgetPressed , widgetChecked ,

10 new Funct ionCal lback(& ex i t))) ;

11 canvas −>append (new VRMenuHandler ()) ;

12 . . .

Listing 4.2: Using VRWidgets in VR2S.

Hence, the user can grab the PIP and touch it with another input device, such as a pen or

wand. The PIP offers the possibility to manipulate all necessary controls in a desktop-based

manner or as a tool-palette that groups functions and makes them easily accessible. It supports

mixing the 2D desktop metaphor and a stereo display in such a way that 2D interaction and three-

dimensional direct manipulation are done in parallel. Unlike many other interfaces it implements

a two-dimensional interface in VR and enables 2D interaction on its surface ([SG97]).

(a) Interaction with a VR menu in front of a powerwall (b) Interaction with a PIP in front of a RWB

Figure 4.15: Menu-based interaction with VR widgets in VR-based applications.

The PIP is a transparent panel, which is tracked by an arbitrary tracking system. Since

the system is aware of the position and orientation of the PIP, this information can be used to

project a VR menu onto the projection screen in a stereoscopic way such that it appears as being

projected on the PIP. The interaction with the content on the PIP can be accomplished in the

same way as if the widgets are projected on the screen surface, e.g., widgets can be selected by

pointing at them with a virtual pointer metaphor or pushing them with a virtual hand metaphor.

- 81 -

4.4. Virtual Reality Widgets

Figure 4.15 (b) shows an example of a VR menu on a PIP in a responsive workbench envi-

ronment to support the user when navigating through a virtual city model ([RSH05a]).

- 82 -

Chapter 5

Exploration of Virtual

Environments

High quality stereoscopic display technologies in combination with appropriate tracking methods

allow more immersive insights and enable a better spatial comprehension when exploring virtual

environments. In contrast to navigation or path-finding approaches, exploration is not aimed to

find certain locations or paths in VEs. In fact, it denotes the more general process of investigating

data with different objectives corresponding to the underlying domain. However, during an

exploration process problems arise when several users want to view data in a view-dependent

way, because it has to be specified whose head is tracked in order to control the virtual camera

as described in Chapter 3. Furthermore, in contrast to fully-immersive VR system setups, in

semi-immersive VR setups stereoscopic, view-dependent visualized data appears to be part of

the real world. However, virtual objects are often independent of the properties given by the

real-world surrounding, e.g., light sources or objects located in the VR work space. For instance,

in current VR systems usually the light conditions have no influence on the visual representation

of the virtual data, which leads to artificial representations.

In this chapter two approaches are presented which further enhance exploration in VR. Section

5.1 focusses on co-located interaction concepts for large screen displays with the objective to

enable a group of users to explore virtual data with view-dependent stereoscopic visualization

strategies. In Section 5.2 concepts supporting the simulation of global illumination phenomena in

VR to enhance seamless merging of real-world and virtual objects are discussed. Both approaches

contribute to advanced exploration of virtual datasets in VR environments.

5.1 Co-located Exploration in Projection-based Virtual

Reality Systems

In real as well as virtual worlds many tasks require people to work together by sharing their

knowledge and abilities to solve certain problems. Thus techniques are needed to improve effi-

83

5.1. Co-located Exploration in Projection-based Virtual Reality Systems

(a) (b) (c)

Figure 5.1: Parallax problem: (a) a cube rendered from the viewpoint of a user standing on the

left side of a workbench; (b) same cube as seen by a user standing on the right side;

(c) cube model seen by a user from the left side of a workbench, but rendered with

the view frustum of a user standing at the right side (adapted from [ABF+97]).

ciency of such group activities. In contrast to individuals working alone teams communicate and

exchange information and may need to share data. For example, city planners use approximated

3D models of real-world buildings, so-called brick models, to accomplish planning tasks. In such

a setup city planners can communicate and modify the position of a brick representing a building

in a cooperative way. Such cooperations have been proven to be advantageous since in many

application areas the bundling of experts’ knowledge has the potential to increase productivity.

Consequently it is desirable to develop virtual environments simulating such shared spaces in

which teamwork can be performed as easily and naturally as in the real world. The vision for

such cooperative or collaborative virtual environments (CVE) is to provide distributed or locally

working teams with a virtual space where they can coexist, communicate and collaborate while

sharing and manipulating virtual data in an interactive way.

Nowadays implementations of co-located CVEs are based mostly on individual display sys-

tems, such as see-through or fully immersive HMDs ([Sch01, BMS00]). Large projection-based

display systems, for example, CAVEs, which provide fully immersive VR, or projection walls

and workbenches, which provide semi-immersive VR, have considerable potential to enhance

collaborative interaction. These VR system environments provide sufficient projection space

to enable groups of users to see and communicate with each other face-to-face. Furthermore

the excellent visual quality and wide stereoscopic field of view support working with different

datasets as well as on different tasks simultaneously in a shared space. Unfortunately, collabora-

tive interaction within these projection-based display systems is difficult, because usually these

displays are capable of projecting a single stereoscopic image only. When enabling head-tracking

and view-dependent rendering all cooperators but one perceive a perspectively distorted virtual

scene, leading to complications in the interaction process, e.g., to control a virtual input device.

Hence with respect to the interaction these projection-based environments are only single-user

systems ([SS05]). In these systems rendered images are continuously updated according to the

current view position and view direction of a single head-tracked user. Though non-head-tracked

users are able to observe a stereoscopic image by sharing the head-tracked user’s view frustum for

- 84 -

5.1. Co-located Exploration in Projection-based Virtual Reality Systems

them a comfortable interaction and exploration of the virtual scene is not possible. Since their

viewpoints may differ a lot from the viewpoint of the head-tracked user. This single common

viewpoint results in unexpected image motions and introduces a mismatch between the real and

the virtual environment perceived by the non-head-tracked viewers ([SS05]).

Figure 5.1 illustrates the parallax problem. A cube model is displayed on a responsive work-

bench. Figure 5.1 (a) resp. (b) shows the cube rendered from the viewpoint of a user standing

on the left resp. right side of the workbench. Figure 5.1 (c) shows that a user standing on the

left side of the workbench perceives the cube model rendered with the view frustum of the user

on the right side perspectively distorted. Shearing of the cube, which constricts an intuitive

exploration, is clearly visible.

These issues complicate the usage of direct interaction techniques for any other than the

single head-tracked user and prevent teamwork within projection-based VR systems. However,

also non-head-tracked users can explore the virtual scene as long as they are placed near to

the single head-tracked user, who is the only one able to interact with the VE. In the case

that another user wants to participate in the interaction process, the tracked glasses and input

devices must be handed over to this user, or the tracking system has to be reconfigured such that

the corresponding stereo glasses are tracked to enable the user to perceive perspective-correct

stereoscopic images. Now the user previously wearing the tracked glasses perceives perspectively

distorted images now.

5.1.1 Related Collaborative Interaction Concepts

Since teamwork has proved itself to be efficient for many tasks in the real world, the transfer

of these concepts to virtual worlds is an ongoing research issue. The objective is to enable

collaborative interaction in VR system environments.

In [BMS00] Boll distinguishes between cooperation and collaboration. Collaboration de-

scribes the work performed by two or more users in parallel at the same time, while cooperation

denotes the work performed by more than one user consecutively, but not in parallel. An exam-

ple for collaborative interaction is the jointly lifting of a desk by more than one person, while

with cooperative interaction the desk would be moved by different persons successively. Since the

realization of cooperation and collaboration in VR environments is an important and challenging

task, many different approaches have been proposed which try to extend existing VR systems

to CVEs to provide efficient interfaces for such teamwork in both local ([Kau03, FP01, BMS00])

and distributed VR system environments ([MVS+02, GLM97]). In local CVEs usually HMDs

are used and thus each collaborator has his own display system ([Sch01]). Using see-through dis-

play technologies collaborators can see and communicate with each other. In distributed CVE

communication and data exchange is ensured via network transfer. Avatars or video streams

as representatives of remote collaborators ensure a quasi face-to-face interaction between the

participants. The term tele-immersion denotes this kind of remote virtual face-to-face interac-

tion over high-speed networks ([MVS+02, LJB+99]). Since in distributed projection-based VR

systems every participant of an interaction process requires his own display system no distorted

- 85 -

5.1. Co-located Exploration in Projection-based Virtual Reality Systems

stereoscopic images occur. However, when additional users want to participate in the teamwork

process either new distributed VR systems have to be set up, or distorted stereoscopic images

emerge when users share projection screens with other users.

Multi-user autostereoscopic display systems enable a certain number of users to view stereo-

scopic images simultaneously ([Lip91]). However, the resolution and size of the displays is insuf-

ficient. Furthermore these system usually do not support head tracking.

In [ABF+97] a hardware setup for a two-user collaboration in a responsive workbench envi-

ronment with active stereo is introduced. Using this setup a projector displays one image for

each eye of both users; the images are rendered in user-interleaved or eye-interleaved mode. In

the user-interleaved mode both images, i.e., the images for both eyes, are rendered sequentially

first for one user, then the other, whereas using the eye-interleaved mode the images for one eye

of both users are rendered sequentially, before the images for the other eye of both users are

displayed. However, the main drawback of this approach is that the refresh rate is cut in half for

each user compared to the single viewer setup, resulting in a slight but noticeable flicker effect

([ABF+97]). In [FHH+05] this idea has been extended to a multi-viewer projection-based display

system, which enables a maximum number of four users to see perspective-correct stereoscopic

images in a comfortable way. These images are displayed in a similar way as in the two-user

setup, but using one or two projectors for each user. The number of projectors depends on

whether a passive or active setup is chosen. Hence this system is hard to scale to allow more

than four users to collaborate because for every new user at least one additional projector is

required.

Other workbench- and tabletop-based approaches are the Virtual Showcase ([BFSE01]), the

Lumisight table ([MIO+04]) and the IllusionHole ([KKYK01]), which enable also about four

users to perceive perspective-correct images. In all approaches different areas on a horizontally

mounted projection table can be observed via mirror-based setups ([BFSE01]) or physical view

barriers ([MIO+04, KKYK01]), which are attached to the projection screen. The drawback

of this approach is the necessary reconfiguration and calibration, when the mode is switched

between the multi-user and the regular mode.

A software-based approach of Naemeru ([NKH98]) presents a 3-wall CAVE setup to improve

the stereoscopic image for non-head-tracked users. Assuming that the head-tracked user focusses

on one side of the wall permanently, the remaining parts of the virtual scene projected on the other

walls are deskewed to provide an approximate perspective-correct image to the other users. The

drawback is that although the stereoscopic images for the non-head-tracked users are improved,

perspective distorted scene content still persists.

Another software-based approach ([SS05]) uses a shared stereoscopic image, where the user-

dependent content, e.g., virtual input devices, is rendered for each user separately but in one

shared view. Thus every participant of the collaboration notices the input devices of other

collaborators, but only the user’s individual virtual input device is rendered as seen from the

user’s viewpoint. The drawback using this approach is that it has to be determined which virtual

objects belong to whose individual’s view and which scene content is rendered for all users equally.

Furthermore perspective distorted scene content still persists.

- 86 -

5.1. Co-located Exploration in Projection-based Virtual Reality Systems

Thus there exist no approach providing several users view-dependent perspective-correct

stereoscopic images, which enables comfortable teamwork in a single projection-based VR sys-

tem environment and does not require auxiliary hardware or reconfiguration of already existing

setups.

5.1.2 Projection-Based Collaboration Concepts

In this section software-based approaches are described that enable several head-tracked users to

explore datasets together by providing perspective-correct stereoscopic images without the need

to switch glasses or to reconfigure the tracking system. Furthermore no construction of expensive

multi-user hardware setups is required.

After a registration process, e.g., indicated by a gesture, teamwork can be performed consec-

utively, or alternatively in parts of one shared projection screen simultaneously. The introduced

approaches incorporate the following benefits:

• enabling teamwork in projection-based VR system environments,

• fitting into already existing VR system setups without the need of additional hardware,

• easy up- and downscaling, i.e., software-based addition resp. removal of teamworkers, and

• enabling communication and face-to-face interaction between participants of the CVE.

Since the objective of this approach is to exploit already existing VR hardware to provide an

environment for VR-based teamwork, resources have to be shared. Usually in a projection-based

VR system environment there is only one projection screen available for several users. Thus

to fulfill the demands of projection-based CVEs, assignment of projection space to participants

has to be organized. Allowing several users to participate in the teamwork process requires that

their view positions and directions have to be tracked. Furthermore these users should have

appropriate, tracked input devices for six DoF interaction. Users who currently participate in

the collaboration are called active users, whereas users who only observe an interaction process

and who perceive distorted stereo images are called non-active users.

In this software-based approach for a CVE, there are two different interaction modes for

co-located interactions:

1. the cooperation mode and

2. the split-screen collaboration mode.

Interactive switching between these two modes is possible at runtime. Both the cooperation

mode and the split-screen collaboration mode as well as the aforementioned registration process

are explained in the next subsections.

- 87 -

5.1. Co-located Exploration in Projection-based Virtual Reality Systems

Cooperation Mode

In some CVEs it is sufficient to accomplish teamwork in a cooperative mode, i.e., several cooper-

ators interact one after another. When using this cooperation mode only one active cooperator

perceives a perspective-correctly rendered image and manipulates the VE, simultaneous collabo-

rations are not supported. Starting with this single-user mode the active cooperator can explore

the VE immersively and interact with it until a new user volunteers for cooperation. In a stan-

dard projection-based VR system environment, the active cooperator and the new user have to

switch their glasses as well as input devices. Afterwards the new active cooperator is able to

interact until another user wants to cooperate.

The approach presented in [SRH06, SHR06, SRH05b] enables the following alternative. A

new user, who wants to cooperate, can simply volunteer for the cooperation by communicating

or satisfying predefined conditions, e.g., posing a special gesture. When the registration is

confirmed, e.g., the new active cooperator agrees, the new user will change the status from a

non-active user who only observes the interaction to the active cooperator. Now, the position

and orientation of the new active cooperator’s head and input devices are evaluated to handle

the interaction, and the previously active cooperator shares the view frustum of the currently

active cooperator.

Indeed, using this approach only one cooperator is active at any time, but the seamless

switchover of active cooperators enables groups of participants to cooperate, because no switching

of glasses or input devices, or reconfigurations of the tracking system are required as it is necessary

in common co-located projection-based VR systems. This mode is favorable in VR systems in

which only one user needs to interact at any moment. The active user is aware of the full

viewport space. In comparison to both hardware-based solutions for two ([ABF+97]) resp. four

([FHH+05]) users, no flickering occurs since the frame rate is not affected by the number of

cooperators. However, every non-active user perceives perspectively distorted scenes. Thus this

mode is beneficial for virtual scenes in which the perspective distortion is minimal, i.e., stereo

images are projected with nearly zero parallax resulting in a smaller stereoscopic effect (see

Chapter 3).

Figure 5.2 shows two cooperators in front of a responsive workbench environment interacting

with a virtual city model. The displayed objects are projected stereoscopically such that they

appear in a small area above the screen surface. Thus the perspective distortion perceived by

non-active users is small, and a change of the active user can be performed with less jerky leaps,

which occur when a different user’s head position is used for the view-dependent rendering.

Split-Screen Collaboration Mode

Although the cooperation mode enhances cooperative interaction in projection-based VR system

environments it does not support simultaneously performed collaboration. For this purpose, an-

other approach proposed in this section exploits the usually large displays provided in projection-

based VR environments ([SRH05b]). When using the split-screen collaboration mode the screen

is split into appropriately sized viewports arranged side-by-side, in which each active collaborator

- 88 -

5.1. Co-located Exploration in Projection-based Virtual Reality Systems

tracked stereo glasses

pinch glove
active cooperator

Figure 5.2: Two users in a cooperative interaction mode in front of a responsive workbench.

perceives a perspective-correct image. When additional active collaborators are involved in the

collaboration process, the current viewports are split in smaller viewports again. In the general

case in which n active collaborators interact in front of a projection screen which is w inch wide

and h inch high, each active collaborator is assigned a vertical area of size w/n inch × h inch.

When another user registers for collaboration the new areas, which are reassigned to each user,

have a size of w/(n + 1) inch × h inch. In these vertical areas, each active collaborator per-

ceives a perspective-correct stereoscopic image. In the case of removing an active collaborator

the viewport areas are scaled accordingly.

Since users collaborate in different working areas and only one tracking system is used to

determine the position and orientation of the users’ heads and input devices transformation of

the tracking data is required. Figure 5.3 illustrates this issue. The tracking coordinate system

differs from the coordinate system of the individual viewports, and thus the received tracking data

has to be transformed from the tracking coordinate system to each active collaborator’s viewport

coordinate system. The coordinate system of the tracking system and the coordinate system of

each active collaborator’s viewport have the same orientation, and they can be transformed into

each other by applying an appropriate translation.

In the case of the vertical arrangement the transformation of the tracking data to the viewport

number i is done by applying a translation vector tTi = (−w
2 + (i− 1)w

n + 1
2

w
n , 0, 0) to the data

obtained from the tracking system, where again w is the width of the projection screen and n

denotes the number of collaborators.

Although active collaborators can see the viewports of other active collaborators, a perspective-

correct image cannot be observed within these, and thus interactions of each collaborator are

constrained to the corresponding individual viewport. However, manipulations of other collabo-

rators can be observed comfortably in the individual viewports while communication as well as

- 89 -

5.1. Co-located Exploration in Projection-based Virtual Reality Systems

Figure 5.3: Two users collaborate in the split-screen collaboration mode in front of a responsive

workbench.

face-to-face collaboration is ensured. Therefore no avatars are required as in distributed CVEs

(e.g., [LJB+99]).

Figure 5.3 shows two active collaborators interacting in front of a shared projection screen in

a responsive workbench environment. The scene is rendered twice; in the left resp. right viewport

it is displayed for the left resp. right collaborator with the corresponding camera settings. Each

collaborator interacts within his individual viewport. Position and orientation of the heads as

well as the input devices are tracked by an optical tracking system. The data received from the

tracking system is transformed to the corresponding coordinate system of each user as described

above. The individual asymmetric view frustum of each collaborator is calculated according to

the head position and the corresponding viewport on the projection screen. The view frustums

are down- resp. upscaled, when another active user participates in the interaction or an active

user quits the collaboration.

As described above the shared projection screen can be tiled vertically into viewports and

thus users can collaborate side-by-side. Alternatively the screen can be tiled horizontally or

in a quadratic manner. The drawback of using non vertical tiling is that conflicts in front of

the projection screen are possible, since users may collide because their working areas overlap

partially. Indeed using this approach the original size of the screen is downscaled; but since

large projection screens provide enough space the split-screen collaboration mode enables several

users to collaborate in projection-based VR systems, while each collaborator still has a sufficiently

large individual viewport at his disposal. The number of possible active collaborators in such

a setup depends on the size of the projection screen and the flexibility required for each user.

For example, with horizontally tiled viewports the maximum number of active collaborators

depends on the size of the projection screen and the interactivity required by the application.

In a responsive workbench system environment, best results have been experienced with up to

three collaborators working side-by-side.

Figure 5.4 shows two users in a responsive workbench setup collaborating side-by-side in (a) a

- 90 -

5.1. Co-located Exploration in Projection-based Virtual Reality Systems

(a) (b)

Figure 5.4: Two prototype applications for the split-screen interaction mode: (a) residential city

planner (see Chaper 6), (b) automobile viewer.

3D residential city planning environment and in (b) a virtual automobile exploration application

(right). The active user, standing on the left side of the responsive workbench, perceives a

perspective-correctly rendered stereoscopic image in the left viewport. The scene for the second

active user on the right side of the workbench is projected onto the right viewport and appears

perspectively distorted to the left user.

In addition, combinations of the cooperative interaction mode and the split-screen collabo-

ration mode are possible to prevent too small viewports. The split-screen collaboration mode

allows collaborators to interact simultaneously in an appropriate number of separated viewports

each with a certain number of cooperators who perform cooperative interaction in their view-

ports. Thus, more users can participate in the CVE without the need of scaling the viewports’

sizes.

Registration Process

Since in projection-based VR systems there are confined resources, e.g., tracked stereo glasses

or viewport space, these resources have to be shared appropriately. To organize the demands of

resource sharing teamwork should be administered by the VR software system depending on the

specific CVE and the application. As mentioned before, users have to register to participate in the

teamwork process. To organize the administration of many participants in a CVE a hierarchical

authorization structure similar to the structure used in operating systems should be implemented.

The types of access rights can be defined by an administrator according to profiles associated

with the different participants, e.g., higher privileged users can allow or deny teamwork with

lower privileged users. However, since usually in a projection-based CVE teamwork is performed

between a small number of users, sharing of the resources can be realized by assigning equal

rights to all users and a registration processes.

For the registration three different strategies are proposed in ([SRH05b]), called announce-

ment, invitation and time-dependent switch. These three approaches are explained in the follow-

ing.

- 91 -

5.1. Co-located Exploration in Projection-based Virtual Reality Systems

Announcement

To announce for teamwork a user can perform predefined actions, e.g., by using speech control

or posing a gesture, which indicates that the user wants to participate. If the user has ap-

propriate rights, teamwork can be initiated immediately or after a privileged user accepts the

announcement. This approach is favorable in CVEs with a small number of collaborators or

cooperators.

Invitation

Alternatively, a user, e.g., an active collaborator with sufficient rights, can invite another user

for teamwork. The invitation can be indicated, for example, by a gesture after communication

between the users. When the invited user accepts the invitation, e.g., again indicated by a

gesture, the user’s status is switched from a non-active user only observing the interaction to the

active cooperator or to an additional active collaborator.

Time-dependent Switch

In some CVEs another strategy might be favorable. When one or more users interact together

in a CVE, after a certain time period the active cooperators resp. active collaborators are auto-

matically switched. This time-dependent exchange of active users may be useful in presentation

scenarios where the exploration of virtual datasets by groups of users has to be ensured.

Multimodal Registration Process

To reduce the cognitive effort of involved users the number of required gestures used for the

registration process should be small. Besides the time-dependent switch, where a change of the

active users takes place automatically, the announcement and invitation registration process can

be performed, for example, by one of the following gestures. A notify-gesture, e.g., consisting of

a combination of a glove event (pinching thumb and index finger) and a corresponding tracking

event (hand is higher than the head), indicates an announcement for a participation in the

interaction process. Afterwards current active collaborators can accept this announcement with

the confirmation-gesture, e.g., posing a circle by pinching thumb and index finger.

After a successful announcement for teamwork the actions described above for exchange

of active cooperators resp. addition or removal of active collaborators are initiated; in the

cooperative interaction mode the active cooperators are exchanged. The new active cooperator

remains active until the system receives another registration announcement, which has to be

confirmed first.

Although the users can see each other, application of the gesture-based registration processes

has shown that users often do not observe each other when they perform gestures. This is due

to the fact that the active user usually concentrates on the interaction, and non-active users stay

beside or behind the active one. To draw the attention of the active user to a cooperator or a

collaborator, who wants to participate in the interaction, multimodal interaction concepts have

- 92 -

5.1. Co-located Exploration in Projection-based Virtual Reality Systems

c1:Canvas

view:SceneThing

r1:RenderObj

(a)

view:SceneThing

c1:Canvas

...collab1:SceneThing collabn:SceneThing

r1:RenderObj

(b)

Figure 5.5: Scenegraph (a) before and (b) during collaboration between n collaborators.

been integrated in the registration process. For example, when a user performs an announcement,

a spatial sound disperses from the position of this user. Thus, the position-dependent acoustic

dispersion gives a hint about which user wants to volunteer for interaction.

Also further multimodal concepts such as haptic feedback as a hint for the indication of a

registration process are possible, if the users’ input devices feature appropriate technology (see

Chapter 3). In addition, the registration process can be indicated by arbitrary multimodal events

caused, for example, by speech commands.

5.1.3 Integration of Co-located Interaction Concepts into VR2S

The class Collaboration enables teamwork in a CVE. An object of this class as part of the

behavior graph manages the registration process as well as the realizations of the CVE, i.e.,

predefined events are handled, which cause corresponding callbacks. The resulting callbacks

handle the teamwork interaction processes, e.g., they determine whose head is tracked for view

frustum calculation and which input devices are used for manipulation tasks as described in

Section 5.1.2. The combination of event and corresponding callback provides a flexible mechanism

is provided to change the method how the registration process is performed. An example setup

consists of the described gesture-based registration process. For this purpose pinch gloves and

an optical tracking system are used to generate the described events. Alternatively, active users

can be switched by key events allowing an administrator to control the CVE from outside the

VR system environment.

Every CVE encompasses data to be shared by all collaborators as well as individual scene

content which should be visible in the individual viewport of an active collaborator only, e.g.,

VR widgets supporting the collaborator during manipulation tasks. The distinction between

user-specific and shared data is ensured using the proposed approach, i.e., each scene node can

be specified as individual or shared data. The Collaboration class handles a corresponding

rearrangement of the scenegraph such that all collaborators are able to see the shared as well as

their user-specific data. Thus, in every viewport the shared content plus the user-specific data are

visible in a perspective-correct image. As long as collaborators manipulate shared scene content,

manipulations are visible in the viewport of every other collaborator, whereas manipulations of

scene content which is user-specific remain invisible to the other collaborators.

- 93 -

5.1. Co-located Exploration in Projection-based Virtual Reality Systems

Figure 5.5 shows an example of the scenegraph rearrangement during an initiated collabo-

ration. In Figure 5.5 (a) a simple scenegraph is appended to the canvas. The scene node view

contains basic scene information. Several instances of type RenderObj, which represent graph-

ics objects and attributes, are appended to this scene node, and therefore visible to all active

collaborators during collaboration. The rearranged scenegraph resulting from a collaboration

between n users is illustrated in Figure 5.5 (b). Each of the n nodes, collab1,...,collabn, con-

tains viewport and transformation information, which enables rendering of perspective-correct

graphics objects in the corresponding viewport. In addition these nodes can contain user-specific

data that is only visible in the individual viewport of each user.

5.1.4 Preliminary Usability Study

To evaluate the concepts described above a preliminary usability study has been performed in

which the proposed approaches for cooperative and collaborative as well as single-user interac-

tion have been evaluated. Since the results of this study should give a first impression of the

acceptance and applicability of the described concepts, 10 participants have been asked to as-

sess the approaches. The participants were VR-novices such as students of computer science

(3), mathematics (1) and geoinformatics (3) as well as research assistants (3), who were already

familar with VR technologies.

Tasks

For the evaluation of the concepts, the applications depicted in Figure 5.4 were used in a respon-

sive workbench environment. The virtual scenes have been presented to each pair of participants,

one of whom wore tracked stereo glasses, whereas the other wore non-tracked stereo glasses. To

change the active user, the participants had to switch the glasses. In the second phase, both

participants wore tracked glasses, and the cooperative interaction mode was tested with the

described registration processes, initiated by gestures. For each approach, i.e., announcement,

invitation and time-dependent switch, a short introduction into the functionality of the tech-

niques was given. In the last study phase the split-screen collaboration mode was used to find

out in how far the visualization on a tiled projection screen affects the subjective perception of

the participants. For the evaluation of the usability study, the participants were asked to review

the different interaction modes and approaches for the registration process. Most questions were

based on a five-point Likert scale (from 1 to 5 associated with corresponding ratings).

Results

The objective of this user study was to evaluate the usefulness of the described concepts and

to identify drawbacks and opportunities. Although the task was constrained to an exploration

exercise, the results show the potential of the described strategies.

The manual switching of tracked glasses and input devices took at least five seconds and as

expected participants felt inconvenient about it. They rather prefer to watch a virtual scene

without tracked glasses than to switch the glasses again and again.

- 94 -

5.2. Advanced Mixed Reality System Environments

Figure 5.6: Results of the user survey.

As depicted in Figure 5.6 the review of the quality and size of the visual representation in the

two-user split-screen collaboration mode shows that these qualities do not decrease significantly,

and distraction by perception of other users’ viewports was rated as minor (5 corresponds to

sufficient size and quality of projection screen (1), no disturbing perspective distortion (2) and

sufficient size of interaction area (3), whereas 1 corresponds to insufficient size and quality of

projection screen (1), very disturbing perspective distortion (2) and insufficient size of interaction

area (3)). The interaction space in front of the RWB was rated as sufficient, but a larger

interaction area would be preferable especially in the split-screen collaboration mode and for

more than three participants.

The complexity and usability of the proposed gesture-based registration process was rated

with 4.8 on average (1 corresponds to very complex and not intuitive, 5 corresponds to not

complex and very intuitive), and the support by multimodal feedback was considered as very

helpful (on average 4.1 where 1 corresponds to not helpful, 5 corresponds to very helpful).

5.2 Advanced Mixed Reality System Environments

This section introduces concepts for virtual global illumination ([SHR05]). To enhance immersion

in VE, virtual objects are augmented with real world information regarding the VR system

environment. Real-world objects such as input devices or light sources as well as the position

and pose of the user are used to simulate global illumination phenomena, e.g., users can see their

own reflections and shadows on virtual objects. Besides the concepts and the implementation of

this approach, the system setup and an example application are discussed.

5.2.1 Mixed Reality Environments

Seamlessly merging the real world with the virtual world created within a computer is a chal-

lenging topic in current VR research. Technology that superimposes the real world by computer-

generated images is called augmented reality (AR), whereas the enhancement of virtual worlds

using real-world data is called augmented virtuality (AV). The term mixed reality (MR) ([MK94]),

encompasses both augmented reality as well as augmented virtuality.

- 95 -

5.2. Advanced Mixed Reality System Environments

Mixed Reality

Virtual
Reality

Reality Augmented
Reality

Augmented
Virtuality

Figure 5.7: Reality-Virtuality Continuum (adapted by [MK94]).

Figure 5.7 depicts the transitions between the different kinds of immersion in the so-called

Reality-Virtuality Continuum. As mentioned in [MDG+95], the main issues of MR environments

are consistency of geometry, time, and illumination between real and virtual world. Of course,

one of the most important tasks is that superimposed objects have to be placed at the exact

position where they would exist in the real world. Likewise, reflections, light sources and shadows

must match in both worlds to obtain consistent global illumination; hence the real and virtual

world must be synchronized.

5.2.2 Global Illumination Concepts for MR Environments

In the context of MR environments, some work has been done to simulate global illumination

phenomena in order to merge real and virtual worlds. These reproductions of global illumination

phenomena focus on the generation of reflections and shadows.

Surfaces such as glass, metal or water reflect their environments. To reproduce this effect

in computer graphics, environment mapping has been introduced by Blinn and Newell in

1976 ([BN76]), which can be used to approximate reflections of arbitrary shaped objects. An

environment map is a texture containing information about the surrounding of a virtual object.

During the rendering process corresponding texture coordinates are applied to virtual objects,

which reflect the environment map. For this purpose Green ([Gre86]) has proposed spherical

environment maps and cubic environment maps.

In a spherical environment map a sphere with a single spherically distorted texture of the

surrounding encloses the virtual scene. In the case of a cubic environment map the virtual

environment is approximated by six faces of a cube having an appropriate texture map; the

cube is centered at the camera position. To simulate reflections rays are cast from the virtual

camera’s position to the objects and they are reflected through the environment map. The

filtered color at the point of intersection with the virtual sphere or one of the six texture images

is used for the reflection on the corresponding surface point of the object. Green ([Gre86])

preferred the usage of cubic environment maps because of the easier integration into 3D graphics

hardware. Cubic environment maps are created by rendering a virtual scene or capturing real-

world information with a 90-degree FoV camera resulting in left, right, front, back, top and bottom

textures. Nowadays environment mapping is accelerated by graphics hardware and is used in

computer games and interactive applications to simulate reflections while preserving high frame

rates.

In the area of simulating global illuminations, most work is based on the reproduction of

shadows in the virtual environment ([Wil78]). Most of the used shadow algorithms and methods

- 96 -

5.2. Advanced Mixed Reality System Environments

can be divided into two main categories – hard and soft shadows – depending on the type of

shadow that they produce. Hard shadow computation is very close to normal visibility testing;

basically it is just a visibility test with respect to a point light source. Soft shadow algorithms

generate more realistic looking shadows, however, they require more calculation effort because

areas of light sources are considered instead of a single point light source as done when using hard

shadow computation. In order to preserve high frame rates when reproducing global illumination

phenomena in VEs, this section concentrates on hard shadow algorithms ([Wil78]). Similar to

visible-surface algorithms, shadow algorithms determine which surfaces can be seen from the

light source; surfaces visible from the position of the light source are not in the shadow, whereas

surfaces that are not visible are in shadow. For multiple light sources, surfaces must be examined

with respect to each of the light sources.

In the context of global illumination in computer graphics, recent approaches blend both

synthetic as well as real objects to generate images of excellent quality. However, global illumi-

nation is applicable only under specific limitations, e.g., non real-time performance, or if certain

requirements are satisfied, e.g., a geometric computer model of the real scene is available or light

sources are static ([JL04]). The strategies proposed in [NNMH02], which improve the usage of

virtual lights and shadows in MR, use special hardware that is usually not accessible in most

MR system environments. The effect of virtual reflections with respect to immersion in AR envi-

ronments has been examined in [RWH04]. This approach approximates reflections of real-world

objects on virtual objects by extracting environment information from the background.

5.2.3 Mixed Reality Environment Setup

To blur the borders between the real and the virtual world visual information about the real

environment surrounding the user is added to the virtual objects, e.g., objects dynamically mirror

the environment, and thus users can see their own reflections and may also cast shadows in the

virtual world. The concepts support the realization of an MR environment that provides a novel

way of visual exploration.

Virtual Reflections

As described in Section 5.2.2, in real-time computer graphics usually an environment map is

constructed in order to generate reflections. Since the textures are static images that are not

affected when the environment changes, interaction may have unexpected and inconvenient effects

in a highly interactive MR environment. This is due to the fact that in contrast to the real world,

the movements of the user have no influence on the visualization of the virtual objects. To further

improve immersion in interactive MR applications changes of the real-world environment have to

be incorporated. Therefore a dynamic environment map representing the complete surrounding

of the MR system environment is desirable.

In the approach presented in [SHR05] this idea is simplified. A single USB camera records

the main working area of the user, e.g., the area in front of the screen in a workbench-based

MR system environment. The remaining areas are given by static images of the surrounding

- 97 -

5.2. Advanced Mixed Reality System Environments

(a) (b)

Figure 5.8: (a) MR system setup with responsive workbench, tracking system and USB camera.

(b) A grabbed frame from the USB camera.

generated by rendering a geometric model of the MR system environment or by taking photos

with a 90o FoV camera.

An example setup showing this approach is illustrated in Figure 5.8 (a). The camera is

attached to the top of a responsive workbench. Figure 5.8 (b) shows a user in the working area

captured as a stream.

This image replaces the front texture of the cubic environment map. Figure 5.9 (a) shows

such a cube map of the VR laboratory at the University of Münster consisting of left (1), right

(2), front (3), back (4), top (5) and back (6) textures. The front texture is exchanged with

a grabbed frame of a USB camera (see Figure 5.9 (b)), which is attached to the top of the

workbench as illustrated in Figure 5.8 (a).

Virtual Lights and Shadows

Besides virtual reflections the usage of virtual light sources and virtual shadows enhances the

realism of virtual objects ([Wil78]). In order to apply and modify direct lighting in MR envi-

ronments in an intuitive way, the following light interaction of real and virtual objects can be

used ([SHR05]). Passive markers are attached to a lamp for real-time tracking via an optical

tracking system (see Figure 5.8 (a)). Position and orientation of the tracked lamp are exploited

to place the virtual light source accordingly. If a user moves the lamp, the virtual light moves in

the virtual scene in the same way as the real-world light source and illuminates the scene.

In the real world a user moving between a light source and an illuminated object casts a

shadow on the object. Because the user is usually not defined as geometry in the visualization

system, it is difficult to calculate a corresponding shadow. In general, however, the user’s head

and at least one hand or input device are tracked to allow direct interaction. In the approach

described in [SHR05] the virtual scene is augmented with a geometric model approximating the

user’s pose used for shadow generation. For instance, a pinch glove and its approximated model

- 98 -

5.2. Advanced Mixed Reality System Environments

1 23 4

5

6

(a) (b)

Figure 5.9: (a) Cubic environment map of the synthetically generated model of a responsive work-

bench of the VR laboratory and (b) the image, grabbed with the USB camera on top

of the responsive workbench, to be exchanged with the front texture (3).

in the virtual world are shown in Figure 5.10 (a) resp. (b).

(a) (b)

Figure 5.10: Mapping between real and virtual input devices: (a) pinch glove and (b) virtual

model.

The depth information of the model’s geometry is rendered into a depth texture which is

applied later on during shadow mapping. Hence the user, in particular tracked parts of the

body, or input devices can drop shadows on virtual objects. Using this approach no further

hardware devices are necessary for shadow generation.

Integration of Virtual Global Illumination into VR2S

This section illustrates the integration of the described virtual global illumination concepts, i.e.,

virtual reflections and virtual shadows, into the VR software system VR2S.

To realize virtual reflections, the ARToolKit ([KB99]) in combination with an USB camera

is used. Since the images of the USB camera are grabbed via the ARToolKit interface of VR2S

each camera supported by ARToolKit is compatible. To reference ARToolKit and a connected

camera, an instance of the class ARToolKit has to be appended to the behavior graph. The

class ARToolKit is derived from the class Interaction. Within this class, the camera model

is referenced and grabbing is initialized. ARToolKit also provides real-time six DoF tracking

- 99 -

5.2. Advanced Mixed Reality System Environments

of simple predefined markers, which can be exploited for real-time tracking of input devices to

which such markers are attached. The method getVideoFrame of the ARToolKit class returns

an object of class Image, which can be used to replace an image of the cubic environment map,

e.g., the front texture as in Figure 5.9.

(a) (b)

Figure 5.11: A scene containing a virtual car model (a) without and (b) with virtual reflections.

The virtual automobile model in Figure 5.11 (a) shows no reflections, whereas Figure 5.11 (b)

shows virtual reflections resulting from application of an environment map containing real-world

information. By using this approach, virtual objects with a reflective surface mirror other virtual

objects and the static environment as well as the varying working area. Although the lighting

conditions of projection-based MR system environments are often insufficient, users experience

an adequate reflection because additional light is dispersed from the projection screen.

Listing 5.1 shows the integration of a dynamic cubic environment into VR2S. In line 6 the

ARToolKit interface is initialized. Lines 8-19 generate a cubic environment map consisting of the

corresponding textures front.ppm,...,back.ppm. Using the callback method exchangeTexture

shown in lines 23-25 an arbitrary texture of the cubic environment map is exchanged with a

grabbed image from the camera associated with the ARToolKit.

To generate virtual shadows approximations of input devices or certain parts of the user’s

body are associated with so-called shadow caster objects, which throw shadows on other objects.

A part of an example program (see Listing 5.2) shows how virtual light sources can be used

in VR2S to enable users to drop shadows into the virtual world. In lines 3-7 three light sources

consisting of a point, spot and distant light are generated. In lines 9-13 a SceneThing node is

defined as object that can drop shadows on other objects, and that can be shadowed by other

objects with respect to the distant light source distantLight. In lines 16-18 and 20-22 spatial

input devices are instantiated and associated with rigid bodies with the unique ID 1 resp. ID 2,

assigned to a pinch glove resp. a lamp. In lines 24-26 the tracking system, the input device and

the lamp are appended as nodes to the behavior graph.

- 100 -

5.2. Advanced Mixed Reality System Environments

1 // g l o b a l cub i c environment map

2 SO<Array<SO<Image> > > cubemapImages

3 . . .

4

5 // i n i t i a l i z i n g ARToolKit

6 SO<ARToolKit> a r = new ARToolKit (. . .) ;

7

8 cubemapImages = new Array<SO<Image> >(6);

9 SO<Image> f r on t = VRS GuardedLoadObject (Image , ” f r on t .ppm”) ;

10 . . .

11 SO<Image> bottom = VRS GuardedLoadObject (Image , ”bottom .ppm”) ;

12 (∗ cubemapImages) [ImageCubeMapTextureGL : : Front] = f r on t ;

13 . . .

14 (∗ cubemapImages) [ImageCubeMapTextureGL : : Bottom] = bottom ;

15

16 SO<ImageCubeMapTextureGL> t e x tu r e ;

17 t e x tu r e = new ImageCubeMapTextureGL(cubemapImages −>newIte rator ()) ;

18 th ing −>append (t e x tu r e) ;

19 th ing −>append (new TexGenGL(TexGenGL : : Ref lect ionMap)) ;

20 . . .

21 }
22 . . .

23 void exchangeTexture (Image∗ image) {
24 cubemapImages −>setTexture (image , ar −>getVideoFrame ()) ;

25 }

Listing 5.1: Virtual reflection within VR2S.

Both virtual reflections and virtual shadows have been combined in a prototype application

that allows VR-based exploration of car models. A virtual car can be illuminated intuitively by

positioning a tracked lamp.

Figure 5.12 (a) shows visible reflections on the auto body, rims and windows as seen from

the user’s point of view. The reflections from the car surface show the surrounding of the VR

laboratory. Figure 5.12 (b) visualizes reflections and shadows on the engine hood.

- 101 -

5.2. Advanced Mixed Reality System Environments

1 . . .

2 // l i g h t geometry node

3 SO<SceneThing> l i g h t = new SceneThing (main) ;

4 SO<DistantLight> d i s t an tL i gh t = new DistantLight ()) ;

5 l i g h t−>append (new PointLight (Vector (0 , 0 , 0))) ;

6 l i g h t−>append (new SpotLight (Vector (0 , 0 , 0) , Vector (1 , 0 , 0))) ;

7 l i g h t−>append (d i s t an tL i gh t) ;

8 . . .

9 // input dev i c e geometry node

10 SO<SceneThing> hand = new SceneThing (main) ;

11 SO<ShadowCaster> ca s t = new ShadowCaster (d i s t an tL i gh t) ;

12 hand−>append (ca s t) ;

13 hand−>append (new Shadowed (d i s t a n t l i g h t)) ;

14 . . .

15

16 // t racked pinch g l o v e wi th ID 1

17 SO<Spat ia l InputDev ice> s i d = new Spat ia l InputDev i ce (hand)

18 s id−>setRigidBodyID (1) ;

19

20 // t racked t a c t i l e input dev i c e wi th ID 2 to con t r o l lamp

21 SO<Spat ia l InputDev ice> lamp = new Spat ia l InputDev i ce (l i g h t) ;

22 lamp−>setRigidBodyID (2) ;

23

24 canvas−>append (new TrackingSystem (camera)) ;

25 canvas−>append (lamp) ;

26 canvas−>append (s i d) ;

27 . . .

Listing 5.2: Virtual lights and virtual shadows controlled with a lamp and with an object of type

SpatialInputDevice within VR2S.

- 102 -

5.2. Advanced Mixed Reality System Environments

(a)

(b)

Figure 5.12: MR system results (a) with virtual reflections and (b) with virtual reflections and

virtual shadows.

- 103 -

5.2. Advanced Mixed Reality System Environments

- 104 -

Chapter 6

Case Studies: Applications for

Semi-Immersive Virtual Reality

Systems

This chapter presents two example application domains, which benefit from the concepts for

generic interaction tasks in virtual reality environments proposed within this thesis. Technical

details about two prototype semi-immersive VR system setups are explained in detail.

In recent years virtual reality based geographic information systems (VRGIS) have been em-

ployed successfully to accomplish GIS-specific tasks ([RHS05, KLR+95, Fau95]). Tracking tech-

nologies and stereoscopic visualization of three-dimensional structures support the user to gain

a better insight into complex datasets. Moreover, large projection-based displays have shown

considerable potential to enable collaboration in co-located VRGIS setups. However, due to the

lack of intuitive interaction concepts, they are used mainly as advanced visualization tools. In

order to enhance the interaction process in VRGIS-based environments the metaphors proposed

in Chapters 4 and 5 as well as their extensions are applied to two example applications from the

GIS domain.

This chapter is structured as follows. Section 6.1 describes the semi-immersive responsive

workbench, in particular its technical characteristics. Section 6.2 discusses technical details

about a semi-immersive passive rear projection system that has been installed within the scope

of this thesis. Section 6.3 describes the 3D residential city planner application, which enables

city planners to design and evaluate virtual 3D city models within both VR system setups such as

the responsive workbench as well as desktop-based environments. Section 6.4 gives an overview

about strategies for the interactive control of focus and context concepts when visualizing seismic

volume datasets within VR-based environments. These strategies allow to emphasize certain

regions of interest in these datasets. In particular it is discussed how the presented visualization

strategies benefit from the usage of the proposed semi-immersive VR systems.

105

6.1. The Responsive Workbench Environment

1020mm

left camera right camera
1000mm

600mm

1360mm

Figure 6.1: Conceptual view of the semi-immersive RWB from the top view. Two cameras track

the area in front of the RWB, where four users collaborate (adapted from [DU02]).

6.1 The Responsive Workbench Environment

For many domains using table-top setups is beneficial because the interaction with data or objects

arranged on a table is considered a common task. Objects can be moved across and be aligned

with the surface of the table. The responsive workbench is a VR-based projection system, which

realizes such a table-top setup.

Responsive workbenches, for example the Barco BARON responsive workbench ([KBF+95]),

can be used to project virtual environments stereoscopically to enable users to work in an envi-

ronment they are accustomed to. A CRT projector contained in the case of the RWB displays

images via a mirror onto the back of the transparent projection screen. The projection screen

of the workbench can be mounted horizontally or tilted similar to a desk (see Figure 6.1). The

virtual scene can be projected onto the display in a way that users perceive virtual objects as

being attached to the projection surface, when rendering the VE stereoscopically with zero and

negative parallax (see Chapter 3). The BARON is an active stereo rear projection system, i.e.,

the images are displayed in sequence, first the image for the left and then the image for the right

eye. Therefore, the displayed images have to be synchronized with active shutter glasses worn by

the users. An emitter sends the corresponding signals to the shutter glasses in sufficiently small

intervals. When wearing stereo shutter glasses real-world objects such as the RWB and input

devices can be seen and hence users are semi-immersed into the virtual world (see Chapter 2).

The workbench is about 2m×2m large and 1.2m high. The display screen measures 1.36m×
1.02m with a maximum pixel resolution of 1280 × 1024. The maximum refresh rate of 120Hz

is ensured with a resolution of 1024 × 768 pixels, which allows comfortable working without

annoying flickering effects.

As illustrated in Figure 6.1 the size and resolution of the workbench allows several users to

view virtual objects in a stereoscopic projection (see Chapter 5). Users can walk around the

RWB and view the virtual 3D data from different perspectives. To enable such an exploration

from different view positions, the user’s current position needs to be tracked in order to determine

- 106 -

6.2. The Passive Rear Projection System

(a) Side view (b) Front view

Figure 6.2: Cameras attached with IR LED clusters from (a) the side view and (b) from the front

view (by courtesy of Dorfmuller-Ulhaas).

the settings of the virtual camera as described in Chapter 3.

A stereo-based optical tracking system consists of two cameras which are arranged as depicted

in Figure 6.1. IR LED clusters attached to the cameras (see Figure 6.2) enable tracking of passive

markers as discussed in Chapter 3. With such an arrangement an area of about 3m×3m×2.5m

can be monitored with an accuracy in the range of millimeters. The tracking system runs

on a separate computer and therefore does not affect the graphics performance of VR-based

applications. The tracking data is sent via network to the computer running the VR-based

application. This network communication is based on the user datagram protocol (UDP) which

is available for most platforms.

In comparison to front-projection systems the RWB as a back-projection system has the

advantage that interferences caused by users standing between the projector and the projection

screen are prevented. However, active stereo requires the use of expensive active shutter glasses,

which are inconvenient to wear because of their weight. Furthermore, shutter glasses absorb

a high amount of light, and synchronization with the sequentially displayed stereo images can

cause flickering effects.

6.2 The Passive Rear Projection System

The main drawback of the responsive workbench is the usage of active stereo. In contrast to the

responsive workbench, passive projection systems do not require active shutter glasses. Since the

users wear low-cost passive stereo glasses, these systems are suitable for presentations involving

several users. Moreover, the light weight of these passive glasses makes them comfortable to wear

even for a longer period of time.

Most passive stereoscopic projection systems use two projectors, which are mounted on top

of each other or side-by-side. One projector displays the image for the user’s left the other

the image for the right eye. For this purpose, different projector technologies are available.

While CRT projectors are often hard to calibrate and cause flickering effects and LCD projectors

- 107 -

6.2. The Passive Rear Projection System

polarizers

projectors

polarized light

projection
screen

projection
screen

4500mm 2700mm

2030mm
3547mm

Figure 6.3: Conceptual view of a semi-immersive rear projection system from the side view (left)

and the semi-transparent projection screen from the front view (right).

are problematic because their light is often partially polarized, DLP projectors are suitable for

stereographics projection since they produce non-polarized and bright light. Non-polarized light

is needed since both images displayed by the projectors have to be polarized by linear or circular

filters attached to the front of the projectors. If the projection screen preserves the polarization,

matching filters in passive stereo glasses can separate the two images for the left and the right

eye such that the user perceives a stereoscopic image. The main benefit of circular polarizers

is that the user can rotate his head without losing the stereoscopic effect, whereas when using

linear filters the separation of the images may be disturbed when the filters are not aligned

correspondingly.

The stereo images can be projected onto the screen from the back. As mentioned before

problems arise when using front projection setups since users interacting in front of the projection

screen may drop shadows onto the screen. Hence, VR systems usually use rear projection which

needs additional space behind the projection screen.

In the following subsection the prototype passive rear projection system in the VR laboratory

of the Department of Computer Science at the University of Münster is described. This semi-

immersive VR system has been built to overcome the drawbacks of the previously described

RWB environment.

As illustrated in Figure 6.3 the system consists of two DLP projectors in combination with

linear polarizers. The distance between the projectors and the semi-transparent projection screen

is about 4.5m. The frame of the projection screen is 2.73m × 2.06m large, the display screen

itself measures 2.700m× 2.030m× 0.005m with a native pixel resolution of 1024× 768 resulting

in an aspect ration of 4 : 3.

Size and resolution of the projection screen enable several users to view VEs stereoscopically.

Because of the rear projection technology users can walk freely in front of the projection screen

without dropping any shadows onto the screen surface. Similar to the RWB system setup, an

optical tracking system enables view-dependent stereographic rendering (see Chapter 3).

- 108 -

6.3. 3D Residential City Planning Environment

Figure 6.4: Example section of an urban development plan embedded into cadastral information

(left) and a corresponding physical block model made of wood downscaled to 1:1000

(right).

6.3 3D Residential City Planning Environment

Urban planning tasks are of major importance for civil works since both the environment and

the inhabitants of a city are affected. The cityscape as well as the quality of life of the residents

depend on the appearance of buildings, road networks, planting, green spaces, and recreation

areas such as parks and playgrounds. To facilitate a realistic impression of how a building

area would visually integrate into the environment and to enable communication about different

development proposals, it is important that intermediate results of the planning process are

presented in a comprehensible way.

By using two-dimensional CAD concepts urban planners design development plans for a

certain area based on existing cadastral data available for every town in Germany. As depicted

in Figure 6.4 (left) cadastral data usually specify building footprints, number of floors and floor’s

height for each building, parcel boundaries, and other information. Development plans define

several geospecific entities, e.g., building and recreation areas, associated with a set of constraints,

which specify what types of geoobjects are allowed and what constraints have to be considered.

When a development plan exists urban planners can propose and design building developments

for the area of the plan. The resulting design plan illustrates, for instance, potential home buyers

how the residential area will look like. After urban planners have agreed to a certain design plan,

two different procedures are commonly used.

One approach is to deliver the design plan to an architectural office. On the basis of this plan

architects generate virtual 3D models and return exemplary 3D visualizations of planned areas

to the urban planners. This procedure has the following two major disadvantages. The returned

visualizations are static, therefore urban planners cannot explore the 3D models interactively.

Furthermore, modifications to the 3D models proposed after reviewing the 3D visualization

cannot be performed by urban planners. Instead, the architects have to be involved again to

modify the 3D model. During a planning task, this usually takes several iterations resulting in

inefficiency as well as unnecessary expense.

The second common alternative to communicate urban development proposals is to build

a physical block model usually made of wood, plastic or paper. Figure 6.4 (right) illustrates

- 109 -

6.3. 3D Residential City Planning Environment

such a physical block model for the design plan depicted in Figure 6.4 (left). After a physical

block model has been finished, performing modifications is often awkward, since most elements

are inflexible and fixated to the model. Furthermore, the creation of these models is a time

consuming costly process, which requires a lot of manpower. Thus simpler solutions to visualize

planned development areas are desirable.

In cooperation with the urban development, city planning and transport planning office as

well as the land surveying and land registry office of the city of Münster in Germany, solutions to

these problems have been proposed ([SRHM06]). An objective of this cooperation is to develop

computer-aided concepts, which serve the needs of professional urban planners and provide a

convenient alternative to current planning tasks. Urban planners demand that the developed

concepts should be based on their current processes which result in physical block models as well

as computer generated 3D visualizations. However, the planners wish to have more independent

and sophisticated control over both approaches; they want to be able to generate virtual 3D

block models and 3D visualizations autonomously. Furthermore the intuitive comprehension

when viewing a physical block model should be preserved.

The so-called 3D residential city planning application ([SHR06, SRHM06]) enables urban

planners to create proposals for design plans that can be modified and explored in both desktop-

based as well as VR-based environments. This application has been used to perform parts of the

usability studies described in Chapter 4 and 5. In the following sections the architecture and

main components of this system are introduced.

6.3.1 Main Components

Since professional urban planners desire to obtain an intuitive comprehension as perceived when

viewing a physical block model, the semi-immersive VR systems in combination with optical

tracking systems as described in Sections 6.1 and 6.2 have been chosen to visualize virtual

3D city models. In contrast to physical block models, the usage of such VR systems enables

interactive modifications of potential building plans, e.g., changing building parameters such as

position or height.

During the development phase of the application, city planners expressed their desire for flex-

ibility when visualizing virtual 3D city models. Although photorealistic rendering is important,

non-photorealistic rendering (NPR) supports the comprehension of structures and relations simi-

lar to view physical block models. During exploration interactive frame rates are more important

than photorealistic appearance. However, also realistic visualizations similar to the renderings

provided by architectural offices are desired. The 3D residential city planner is based on the VR

software system VR2S which supports photorealistic renderers as well as real-time renderers.

The 3D residential city planner and its GUI (see Figure 6.5) consist of four conceptual compo-

nents:

1. Converter tool: The converter tool parses and converts the cadastral data into the un-

derlying geoobject model, which is used to represent the corresponding geodata. Usually,

- 110 -

6.3. 3D Residential City Planning Environment

Figure 6.5: GUI of the 3D residential city planner.

cadastral data in Germany can be converted into the drawing interchange format, some-

times referred to as drawing exchange format (DXF), or into the shape-file format.

2. Geoobject model: The geoobject model stores the collection of geoobjects and their

properties. This model is generated during the parsing process of the converter tool.

Components of this model are buildings, building and traffic areas, trees etc. For instance,

a building object is composed of a building footprint as well as textured walls, doors,

windows, and a textured roof of a certain type.

3. Visualization component: This component constructs and evaluates the scene nodes

representing the topological structure of the city model as well as information about the

environment of the considered city or district. Each scene node in the VRS geometry graph,

which represents a collection of geoobjects, is associated with a visual appearance, e.g., by

assigning colors or textures.

4. Interaction component: This component manages interaction with the entities of virtual

3D city models. The GUI based on wxWidgets supports certain desktop-based interactions

(see Figure 6.5) as well as direct interaction concepts such as six DoF manipulations of

virtual buildings.

Virtual 3D city models can be generated semi-automatically from the geo-referenced cadastral

data. Because there is no overall accepted standard for storing cadastral information, an interface

provides the required generality and flexibility to enable import of cadastral data from different

sources. For instance, for the city of Münster the cadastral data contains several layers storing

building footprints and parcel boundaries in Gauß-Krüger coordinates, number of floors, and

other information, which are converted during the reconstruction process. The interface allows

the user to associate semantic descriptions to corresponding layers of the cadastral data.

- 111 -

6.3. 3D Residential City Planning Environment

Figure 6.6: UML diagram showing most relevant classes of the 3D residential city planning appli-

cation.

Based on this information the system generates a geo-referenced virtual 3D city model of the

surrounding area, which is superimposed with aerial photographs to provide more realism and

higher recognition.

6.3.2 Software Architecture

Within the geoobject model all geoobjects are specified by the class GeoObject. This class

is aggregated in the class CityModel, which administrates all required information for a geo-

referenced city model (see Figure 6.6). The class GeoObject provides the base from which all

geoobject classes, for example the classes Building, Plant or UsageArea, inherit. An instance

of the class Building consists of one or more BuildingPart objects to handle different types of

storys and roofs. The other geoobjects are organized analogously.

The visualization component is separated from the geoobject model of the virtual city. All

required information to visualize the objects of an instance of the class GeoObject is handled via

the class AppearanceMapper. The visual appearance of each geoobject can be assigned randomly,

or the city planner can define the appearance, for example by assigning specific textures to each

geoobject.

As mentioned above VRS uses a scenegraph to represent virtual environments. Since virtual

3D city models may consist of over 50,000 complex, textured geoobjects, storing each of these

geoobjects in a corresponding scenegraph node would inflate memory requirements for storing

the scenegraph and decrease performance when evaluating it. Due to the wrapping mechanism of

VRS it is possible to store these amounts of data using renderer specific optimization strategies.

- 112 -

6.3. 3D Residential City Planning Environment

(a) Virtual 3D city (b) NPR city

Figure 6.7: (a) virtual 3D model of the city of Münster and (b) a non-photorealsitic representation

with overlaid building plan.

For example, the information about the geometry of all buildings is collected in an OpenGL vertex

buffer, which is stored and evaluated on the graphics board. Thus it is possible to visualize even

large virtual 3D city models at interactive frame rates, e.g., the city of Münster consisting of

over 20,000 virtual buildings, trees and further geoobjects is shown in Figure 6.7 (a).

To assist city planners during the design process the graphical representation of both the

cadastral plan as well as the building plan can be projected onto the virtual 3D city model (see

Figure 6.7 (b)). Performance can be further increased by the optional use of view-dependent

level-of-detail algorithms and view frustum culling based on a quadtree representation of the

virtual 3D city model. Hence city planners can switch between different levels of realism inter-

actively. Furthermore it is possible to switch between photorealistic (see Figure 6.7 (a)) and

non-photorealistic rendering (see Figure 6.7 (b)).

6.3.3 Interaction Concepts for Urban Planning

Besides the visualization of virtual city models, the main task of the 3D residential city planning

application is to provide city planners with interaction concepts, which ease the three-dimensional

design of development plans. When working in desktop-based environments, professional city

planners have to handle 3D interactions with 2D input devices, e.g., the standard mouse or

keyboard. To reduce the cognitive effort for such 3D interactions, 3D widgets ([DH98]) can be

used during the manipulation process. 3D widgets provide an easy way to manipulate objects

with six DoF by reducing the simultaneously manipulated DoF to one degree. 3D widgets provide

handles for translation, rotation and scaling of virtual geoobjects. Thus these manipulation

tasks can be performed as easily as in two-dimensions. In addition to 3D widgets which can

also be exploited in VR the concepts for VR-based interaction proposed in Chapter 4, e.g., the

IVP metaphor, are usable within the 3D residential city planner application as illustrated in

- 113 -

6.3. 3D Residential City Planning Environment

Figure 6.8: Virtual 3D city model and IVP metaphor for interaction with 3D widgets.

Figure 6.8.

Although 3D widgets support the city planner when performing six DoF manipulation tasks,

there are many parameters of geoobjects, in particular buildings, which cannot be modified via

a 3D widget. For this purpose the 3D residential city planner provides a building editor. Using

the editor new buildings can be created and relevant properties of existing ones can be modified.

Figure 6.9: The building editor is composed of six views: contextual 3D preview (upper-left), 2D

vector-based topview (lower-left), lateral view (upper-middle), orthogonal wall view

(lower-middle), hierarchical structure view (upper-right), and property view (lower-

right).

Figure 6.9 shows the graphical user interface of the building editor. The editor is a multi-view

system ([SRHB06, NS97]) composed of six views. In the upper-left a contextual 3D preview of

the virtual building shows its integration into the environment that can be visualized in a semi-

transparent way. The lower-left vector-based topview shows a two-dimensional presentation of

the building footprint. By modifying the footprint the city planner can change the ground plans

- 114 -

6.4. Focus and Context Visualization for Seismic Volume Datasets

of all floors of the building. An arbitrary wall can be selected and put into the focus of the upper-

middle lateral view, i.e., the virtual camera is directed to that wall. The lower-middle orthogonal

wall view focusses on the current wall, which has been selected in one of the aforementioned

views. Using that view the city planner can add resp. remove or manipulate windows or doors.

The upper-right hierarchical structure view allows a visualization of the storys in a hierarchical

representation ordered by storys. The lower-right property view shows further information about

particular parts of the building such as windows or walls. After finishing a virtual building, it

can be stored and imported into a virtual 3D city. Moreover, a once generated virtual building

can be stored in a virtual building library.

Besides the standard menu-based interaction concepts, such as creation, arrangement or

deletion of virtual buildings, different navigation and traveling metaphors are supported. These

navigation techniques include flying, gliding, walking metaphors and an ufo-viewing metaphor,

i.e., an exploration with orthogonal top-view onto the city model. The proposed rear projection

system, in particular the large projection screen, is beneficial for the walking metaphor via which

users can explore the virtual city like a pedestrian with a large field of view. Moreover, when

exploring a city model, arbitrary 3D locations can be stored as spatial visual bookmarks (see

Section 6.4.2) to be accessed later on, for example to generate smooth camera motions along a

path that can be defined by streets ([RSH05a]).

6.4 Focus and Context Visualization for Seismic Volume

Datasets

Volume visualization has become a powerful tool for modern seismic interpretation to determine

stratigraphic and structural features hidden in the dataset. Most current 3D seismic visualization

techniques employ the same rendering approaches used in traditional medical imaging. This

section presents extensions of the IVP metaphor proposed in Chapter 4 and its application to

VR-based exploration of seismic datasets. The interpretation of seismic dataset is supported by

focus and context visualization techniques in combination with intuitive and efficient VR-based

interaction metaphors ([RSH06]).

The demand for seismic data interpretation is rising due to decreasing availability of fos-

sil fuels such as oil and gas. Hence efficient techniques to locate the remaining reservoirs are

needed. Drilling for these resources is a very cost intensive process, e.g., according to the Joint

Association Survey on Drilling Costs drilling one well can cost up to several million US dollars.

The oil and gas industry tries to reduce drilling costs by using extensive computer-aided analysis

and exploration to improve predictions about the location of subsurface reservoirs. Also more

precise predictions of natural disasters such as earthquakes can be obtained by computer-aided

subsurface analysis. The most common approach to perform subsurface analysis is interactive

3D exploration of subsurface structures extracted from the seismic datasets.

The seismic data acquisition process is based on seismic reflection phenomena. Detonating

explosives emit sound waves which are propagated through the subsurface. At interfaces between

- 115 -

6.4. Focus and Context Visualization for Seismic Volume Datasets

geological layers, part of the energy is refracted, another part is reflected and measured along

time at surface receivers ([SMG03]). This process is repeated until the survey area is covered,

and all the data is grouped and processed. The reflections of the sound waves are measured

with special receivers located on the surface. Thus geological layers that reflect the sound waves

can be identified based on the time elapsed before a signal is received as well as the signals

attenuation. The resulting information is encoded in a 3D volume composed of discrete samples,

each representing the amplitude I(x, y, t) at the time t at a position (x, y) reflected beneath

the surface. In some seismic processing methods the time axis is converted into depth. The

value at each sample is called the seismic amplitude. For a fixed spatial position (x0, y0), the

one-dimensional time-dependent function I(x0, y0, t) is called a seismic trace ([SMG03, CGH86]).

This usually very large 3D volume is often stored in the SEG-Y data exchange format

([Com02]), and the acquired amplitudes can be visualized using direct volume rendering (DVR)

in combination with different transfer functions to represent the geological structure. DVR deals

with volume elements called voxels, the 3D analogon of the two-dimensional pixel. A variety

of DVR methods exist, which all are based on the idea that voxels are assigned a color and a

transparency mask with respect to certain transfer functions to determine its visual appearance

([KKH02]). Therefore even obscured voxels may contribute to the final image, and DVR allows

to display an entire 3D dataset including its internals. Figure 6.10 shows a simple seismic dataset

consisting of 256×256×256 voxels. A grayscale transfer function is used to visualize the different

geological layers.

Figure 6.10: Example seismic 2563 voxel dataset consisting of several geological layers.

Most current 3D GISs that have been proposed ([CZ05, WD04, KLR+95]) adapt the con-

cepts of polygonal representations for visualizing geographic information, but do not support

volumetric seismic datasets. For this reason highly specialized applications have been developed

to explore seismic datasets by volumetric methods ([Par, 3D04]).

The applications benefit from VR systems since immersive visualization and interaction tech-

nologies allow multidisciplinary teams to explore subsurface data in a more intuitive and efficient

manner and help to increase the value of such enormous amounts of volumetric datasets. As

- 116 -

6.4. Focus and Context Visualization for Seismic Volume Datasets

described in Chapter 2 and Chapter 3 stereoscopic projection techniques improve spatial percep-

tion and thus aid visual comprehension. Furthermore by using appropriate tracking technologies,

the user can perform intuitive 3D interactions. A wide range of visualization systems and input

devices, which were originally developed for applications outside of the geo-scientific industry,

have been adapted to support users when exploring seismic datasets. Among others, these sys-

tems include immersive projection-based VR system environments such as the CAVE, curved

and flat-wall displays, desktop or workbench-type systems as well as head-mounted devices. Es-

pecially the semi-immersive responsive workbench ([SSU99, KBF+95]) has proven its potential

as table-top metaphor for the exploration of geo-spatial data ([FBZ+99]). The possibility to

mount the workbench in a horizontal position allows visualizing geo-spatial data in an intuitive

way.

Although the visualization within immersive VR systems enables an advanced exploration of

seismic datasets and improves the information retrieval, interaction with the data within current

systems is usually limited to mouse, keyboard and/or joystick-type devices and often requires

an experienced navigation expert to pilot other viewers through the visualization. To benefit

from the capabilities provided by VR systems, application developers have to consider VR-based

design issues, e.g., the interactions that can be performed have to be adapted to VR-based

interaction devices (see Chapter 4). Since semi-immersive and immersive VR systems allow

to explore and process a huge amount of data, recent research approaches review innovative

interaction technologies to enable an intuitive exploration and manipulation of geo-spatial data

([MEH+99]).

For an efficient exploration of seismic datasets interactive frame rates within the application

are needed in order to give immediate visual feedback when the user has performed an interaction.

However, the visualization of seismic volume datasets poses three major challenges which all have

a negative impact on the frame rate:

1. seismic datasets are usually very large,

2. current VR-based displays, e.g., projection screens, provide high screen resolutions, and

3. stereographic rendering used in VR systems requires to render the scene twice.

Hence it is important to use state-of-the-art volume rendering techniques, which exploit the

features provided by current graphics hardware to achieve interactive frame rates.

By using the focus and context visualization metaphors presented in the next subsections the

user can emphasize certain regions of interest (RoIs) inside the dataset interactively. RoIs can be

specified by lens volumes, which have an arbitrary convex 3D shape. Inside the RoI a different

visual representation is used for visualization and thus aids comprehension of the dataset without

loosing the contextual information outside the region of interest. The user can switch between

different lens types as well as visual representations inside the lens. Furthermore, it is possible to

set spatial visual bookmarks at certain points of interest, which can be accessed later on using a

guided VR-based exploration metaphor. For visualizing the datasets as well as the different lens

types hardware-accelerated concepts ([RGW+03, KW03]) have been adapted in order to enable

- 117 -

6.4. Focus and Context Visualization for Seismic Volume Datasets

Figure 6.11: Scheme showing partition of a cast ray and additional entry and exit points at the

lens volume.

interactive frame rates while rendering the scene stereoscopically and with a high resolution.

6.4.1 Visualization of Volumetric Subsurface Data

Visualization techniques for representing volumetric phenomena have advanced in the past years.

While most of the proposed techniques have been developed for medical applications, Ma and

Rokne ([MR04]) have presented a detailed overview of visualization techniques used to visu-

alize seismic volume datasets. Furthermore, various software applications, e.g., Fledermaus1,

VoxelGeo2, and GeoProbe3, which use seismic data to compile and process subsurface visualiza-

tions, are available. With these applications, geo-scientists are able to visualize and interpret

seismic data on commodity hardware. However, even with these highly evolved applications and

the incorporated visualization techniques the information contained in volumetric data can be

overwhelming during exploration. In this section an extension to the GPU-based ray-casting tech-

nique ([KW03, RGW+03]) to support different visual representations of a RoI within a volume

dataset is briefly discussed. For more detailed information regarding the algorithm the reader

may consider ([RSH05c]).

Extended GPU-based Ray-Casting

GPU-based ray-casting supports very efficient volume rendering on commodity graphics hardware

by casting rays through the volume dataset represented by a 3D texture ([KW03]). To apply a

different visual appearance inside the lens volume, the voxels contributing to a pixel in image

space need to be distinguished whether they are inside or outside the lens volume. The voxels’

locations are determined before rendering the dataset, since it results in better performance

because less per-fragment operations are needed during rendering compared to an approach

where the regions are distinguished during rendering.

A ray cast through a volume dataset, which is intersected by a convex lens volume, is split

into three different sections, i.e., one section in front of the lens, one inside the lens and one
1http://www.ivs3d.com/products/fledermaus/
2http://www.paradigmgeo.com/products/voxelgeo.php
3http://www.magic-earth.com/geo.asp

- 118 -

6.4. Focus and Context Visualization for Seismic Volume Datasets

behind the lens (see Figure 6.11). Therefore, three view-dependent regions are distinguished:

• region0: voxels in front of the lens volume,

• region1: voxels inside the lens volume, and

• region2: voxels behind and next to the lens volume.

The algorithm renders these view-dependent regions in three subsequent rendering passes starting

with region0 (see Chapter 3). Since the number of samples used for each ray depends on its

length, the number of per-fragment operations required for the three sections together is equal to

the number of per-fragment operations when a single ray with equal length is processed. Because

the view-dependent regions of the volume dataset are determined before accessing the dataset

itself, rendering can be performed very fast, since only the usually simple shaped lens geometry

and the bounding box of the volume dataset are considered during this computation.

To determine the three different regions, intersection points of each ray with the lens surface

are computed in volume texture coordinates ([KW03]). For a convex lens volume at most two

additional intersection points per ray are required, which can be stored in two RGB textures.

Since the lens volume can be defined by an arbitrary convex shape, more complex surfaces have

to be handled in comparison to GPU-based ray-casting, where the entry and exit points are

determined by rendering the front resp. back faces of the volume’s bounding box.

As described in [RSH05b] the extended algorithm uses image-based CSG rendering techniques

and similar image-based rendering techniques to determine these entry and exit points. In

contrast to regular CSG rendering techniques, color channels are exploited to encode the volume

texture coordinates needed during volume traversal. Because the view-dependent regions of the

volume dataset are determined before accessing the dataset itself, rendering can be performed

very fast, since only the usually simple shaped lens geometry and the bounding box of the volume

dataset are considered during this computation.

Fröhlich et al. ([FBZ+99]) have shown how the exploration of seismic datasets can benefit

from the usage of volumetric lenses. However, their approach supports only lenses having cuboid

geometries. Because the surfaces of a cube are given by orthogonal planes, the visualization is

similar to the common slicing approach where multiple clipping planes are used to reveal inside

structures ([CGH86]). Therefore, the technique introduced in [FBZ+99] can be considered as

a generalization of this slicing approach. In the next subsections concrete lenses are discussed,

which are useful for 3D exploration of seismic datasets. Section 6.4.2 discusses strategies how to

use these concepts in VR-based system setups.

Occlusion Lens

One problem occurring in the visualization of information associated with volumetric data is that

usually no insight view can be provided. Especially when navigating through a dense volume

dataset the view of the camera will always be occluded. To avoid this problem an occlusion lens

can be used that renders those parts of the volume dataset transparently that occlude the region

of interest (see Figure 6.12 (a)). Therefore when rendering region0 the degree of transparency is

- 119 -

6.4. Focus and Context Visualization for Seismic Volume Datasets

(a) Occlusion lens (b) Clipping lens

Figure 6.12: (a) occlusion and (b) clipping lenses supporting the interpretation of volumetric seim-

sic datasets.

set proportional to the amount of volume data occluding the region of interest, i.e., the number of

voxels encountered by the ray. This effect does not result in any performance penalty compared

to DVR, because during ray traversal instead of setting the voxel’s alpha value based on the

corresponding scalar value simply the number of samples already processed is used to determine

the alpha value.

Another lens type, which is also classified as occlusion lens is the clipping lens, since it assists

the user in exploring the information on the surface of the lens volume, which would be occluded

otherwise. Such a lens is shown in Figure 6.12 (b) where a spherical clipping lens is used to

reveal information hidden inside the dataset.

Slicing Lens

As shown in Figure 6.13 (a) when applying slice rendering to the entire dataset it is difficult to

comprehend spatial relationships, the structure of the dataset and thus the location of the slices

because parts of the dataset are invisible to the user. A slicing lens uses clipping-based rendering

of slices as visual representation (see Figure 6.13 (b)). The spatial relationships can be detected

more easily because contextual information is maintained outside the lens. Furthermore, the

cross-section displayed on the surface of the lens gives an important cue to localize the visualized

slices in relation to the rest of the dataset. When applying slice rendering surfaces sliced through

the volume dataset are displayed. The number of slices as well as the distances between the

slices can be chosen interactively and the visualization provides immediate visual feedback.

Object Emphasizing Lens

Interactive exploration of seismic volume datasets is improved by emphasizing lenses which

emphasize RoIs by applying image-based silhouette highlighting in combination with a different

- 120 -

6.4. Focus and Context Visualization for Seismic Volume Datasets

(a) Sliced seismic dataset (b) Slicing lens

Figure 6.13: Slicing lenses applied to a seismic dataset.

transfer function. Although in most volume visualization applications the same transfer function

is used for the entire dataset, it may be desirable to use different transfer functions in different

parts of the dataset ([MHB+01]). Thus it is possible to reveal structures within the data without

changing the context, since in the parts outside the lens volume the original transfer function is

retained.

In Figure 6.14 (a) and 6.14 (b) two examples are shown where in order to highlight certain

objects the parts of the dataset lying outside the lens are rendered with a different threshold

value as well as a different transfer function in comparison to the parts inside the lens. In the

shown examples a 1D transfer function is used inside and outside the focus region ([KKH02]).

In Figure 6.14 (b) the edges between the cuboid lens shape and the surface of the dataset are

enhanced. The color used for edge-enhancement, the threshold value as well as the transfer

function used inside the lens volume can be exchanged interactively. Hence, geo-scientists can

either start with a preset threshold and explore the highlighted structures, or they can alter the

threshold interactively to find an adequate value for identifying certain structures. By combining

the edge-enhancement technique with altered transfer functions objects of interest and their

structure can be identified more easily (see Figure 6.14 (c)). It can be seen in Figure 6.14 (d)

that using the technique for the entire dataset results in more difficult spatial comprehension

since contextual information gets lost.

Level of Detail Lens

In addition to applying the visual representations as described above, the introduced algorithm

allows to further enhance rendering performance. To improve performance, a different level of

detail is used inside the RoI compared to the LoD outside the region. This is achieved by using

a different sampling rate. Figure 6.15 shows the application of a lens with a different transfer

function used for the visualization inside the lens. In Figure 6.15 (a) the same LoD is used

- 121 -

6.4. Focus and Context Visualization for Seismic Volume Datasets

(a) Emphasizing lens (b) Edge enhancement lens

(c) Enhancement lens (d) Entire dataset enhancement

Figure 6.14: Different emphasizing lenses using image-based edge-enhancement approaches and

different transfer functions.

inside and outside the lens, i.e., 250 steps, whereas in Figure 6.15 (b) the LoD outside the lens is

coarsened by using half the sampling rate compared to the visualization inside the lens. Figure

6.15 (c) illustrates the outside of the seismic dataset by using a fifth of the sampling rate for

the outside of the lens compared to the visualization inside the lens. Usually, geo-scientists are

interested in details within the RoI; the parts outside the region of interest are not in focus and

may therefore be rendered using a lower sampling rate. Furthermore, the LoD outside the lens

can be increased adaptively over time when rendering is idle.

In addition to the lenses described in this section several other lenses and even combinations of

different visual representations inside the lens are possible, e.g., isosurface rendering of translu-

cent surfaces can be combined with regular volume rendering techniques. However, the lenses

presented in this section provide a good understanding of the possibilities when applying focus-

- 122 -

6.4. Focus and Context Visualization for Seismic Volume Datasets

(a) 250 samples (b) 125 samples (c) 50 samples

Figure 6.15: Level of detail lens with different sampling rates outside the lens when casting rays

through the dataset.

based visualization techniques to seismic volume datasets. In the next section VR-based inter-

action concepts based on the approaches presented in this thesis are described in order to allow

an advanced exploration of seismic datasets by using the proposed lens metaphors.

6.4.2 Interaction Strategies for VR-based Exploration

The described lens metaphor offers a comfortable way to explore seismic datasets by visually

intruding into the volume. Especially in combination with a stereoscopic projection the user

experiences an immersive visualization of complex structures, which improves the cognition of

the spatial geodata. When using seismic exploration software interaction is often restricted

to standard desktop-based interaction concepts which leads to a loss of immersion, since geo-

scientists have to accomplish 3D interaction using 2D devices.

Controlling the Lens

To increase the immersion, a VR-based control of the lens is presented which uses the concepts

proposed in this thesis. The position and orientation of any tracked input devices are used to

move an arbitrary lens accordingly. Hence the lens seems to stick at the top of the input device

which ensures a very intuitive and natural mechanism for controlling the lens. However, the

usage of this interaction metaphor has its limitations. In regions where the seismic data are

displayed with positive stereo parallax, i.e., behind the projection screen, interaction with data

positioned outside the immediate reach of the user must be guaranteed.

To enable moving the lens into the aforementioned regions, which are not accessible to the

user, the C/D ratio can be changed as described in Chapter 3 to adjust the ratio determining the

relationship between input device movements and the motion of the controlled virtual object,

i.e., the lens volume. This adjustment is defined by the input device’s position relative to the

projection plane, i.e., the closer the input device is to the projection plane the higher this ratio

is set. Thus it is possible to make the movements of the lens less sensitive compared to the input

- 123 -

6.4. Focus and Context Visualization for Seismic Volume Datasets

(a) Responsive workbench environment (b) Rear projection system environment

Figure 6.16: VR-based seismic exploration in (a) responsive workbench environment and (b) pas-

sive rear projection system.

device’s movement or to scale the movements of the lens. In this case, a translation is applied

as offset between the pose of the real input device and the virtual lens volume depending on the

depth of the seismic volume dataset displayed behind the projection screen.

Spatial Visual Bookmarking

Since usually the amount of seismic data acquired for an arbitrary area is very large, relocaliza-

tion of RoIs can be a difficult task. Once found regions may get lost since no VR techniques

support the geo-scientist when accessing such already explored regions. Concepts for storing

regions as well as positions in virtual environments have been introduced for guided navigation

tasks ([Döl05a, SGLM03]). These approaches allow the user to store certain positions and to

define camera paths leading through these spatial visual bookmarks placed in the VE. These

concepts have been adapted to VR-based seismic exploration ([RSH06]). The following mecha-

nism supports the user by guiding him during the exploration, i.e., the geo-scientist is assisted

in relocating RoIs. Once such a region is identified, the geo-scientist can mark this region and

make it accessible later on. RoIs can be stored by bookmarking them with a visual hint. In

order to support an easy identification by the user textual information about the RoIs can be

attached to the bookmarks (see Figure 6.16).

Individual bookmarks are markers positioned within the seismic dataset, which are easily

accessible. When the lens, which is moved by the user through the dataset, emphasizes a special

region of interest, an individual bookmark can be defined, e.g., by pressing a button of the input

device, and the user gets a visual hint about the marker’s position. This approach ensures the

management of bookmarks, e.g., bookmarks can be created, deleted or repositioned.

- 124 -

6.4. Focus and Context Visualization for Seismic Volume Datasets

Accessing the Bookmarks

Once the bookmarks are defined the IVP metaphor concepts discussed in Chapter 4 can be used

to select a bookmark to position the lens at the appropriate location. When attempting to

access a spatial visual bookmark geo-scientists benefit from the usage of the IVP metaphor since

it provides a very efficient mechanism to aim at small as well as distant objects, such as spatial

visual bookmarks. The user roughly points the input device to a visual bookmark, and the IVP

metaphor determines the bookmark closest to the ray. Following the chosen lens is moved to this

active bookmark. When using the IVP metaphor distant objects are easy to select and access

to bookmarks deep inside the seismic dataset is ensured. Moreover, multimodal feedback can be

given when the lens snaps to another spatial visual bookmark similar to the concepts described

in Chapter 4.

In Figure 6.16 (left) a user exploits the explained interaction concepts in a responsive work-

bench environment. The seismic dataset is projected onto the projection screen of the workbench,

and the user defines and accesses several individual bookmarks within the dataset. Figure 6.16

(right) shows two user in the passive rear projection system exploring the same seismic dataset.

- 125 -

6.4. Focus and Context Visualization for Seismic Volume Datasets

- 126 -

Chapter 7

Conclusions

Although VR technologies provide great potential, human-computer interaction in VR-based

environments makes high demands on the ability of the user to interact in a three-dimensional

virtual space. Even generic interaction tasks are more difficult to accomplish in VR systems in

comparison to desktop-based environments. This thesis has discussed and evaluated novel mul-

timodal interaction metaphors for improving generic interaction tasks in virtual environments.

The generic VR software system VR2S developed within the scope of this thesis eases the

rapid prototyping, implementation and evaluation of intuitive interaction concepts. The system

has proved its advantages in several interactive VR- and desktop-based applications. New In-

tuitive interaction metaphors which support the user during object selection, manipulation and

exploration in VR have been developed and integrated into VR2S. Case and usability studies

have revealed the benefits of these metaphors for VR-based environments. In particular, the IVP

metaphor concepts improve object interaction and have shown great potential to increase the

acceptance of VR technologies.

This thesis has discussed the importance of multimodal interaction concepts and their inte-

gration into VR software systems demonstrated with VR2S. A significant performance gain such

that users could accomplish certain tasks with higher accuracy or in less time when using mul-

timodal interaction concepts could not be observed. However, user surveys have indicated that

users prefer the support via multimodal input and output. Moreover the usage of multimodal

feedback has been evaluated as very helpful.

Although the proposed concepts contribute to the advancement of generic interaction tasks,

there are still challenging issues concerning the interaction processes in VR-based environments.

In the future further interaction concepts will be integrated into VR2S. These strategies will

incorporate constraint-based interaction approaches and focus on domain-specific interactions,

e.g., medical exploration tasks. In addition, further multimodal input devices that are optimized

for the demands of domain-specific users will be developed and evaluated in different application

domains.

Future research may aim to develop virtual reality hardware that will open up new vistas

127

for HCI. In order to increase the acceptance of these sophisticated technologies the user will be

less bothered with special devices. For instance, tracking technologies should enable users to

interact without the requirement for equipping them with markers or input devices. Tracking

systems should interpret arbitrary gestures of users in order to allow them to accomplish desired

tasks. Output devices that address all human sensorial channels will be pervasive, and thus

the user will not be restricted to specific VR system environments. For example, enhancements

of autostereoscopic display technologies may enable several users to view high-quality view-

dependent stereoscopic images without the need of wearing glasses or HMDs. Sophisticated

computer systems supporting multimodal interaction may become ubiquitous. The metaphors

proposed within this thesis are not restricted to special VR hardware such as the described setups.

For instance, pointer metaphors can also be performed by natural gestures, e.g., pointing with the

index finger. Thus the concepts and strategies developed within this thesis will still be relevant

if future achievements evolve completely different and more advanced technology.

- 128 -

Bibliography

[3D04] IVS 3D. Fledermaus Reference Manual, 2004.

[3DC] 3DConnexion. Products (http://www.3dconnexion.de/products/3a.php).

[AB91] G. Abowd and R. Beale. Users, Systems and Interfaces: A Unifying Framework for

Interaction. In D. Diaper and N. Hammond, editors, Proceedings of HCI ’91 People

and Computers VI, pages 73–87, 1991.

[ABF+94] P. Astheimer, K. Böhm, W. Felger, M. Göbel, and S. Müller. Die Virtuelle Umge-

bung - Eine neue Epoche in der Mensch-Maschine-Kommunikation. Informatik-

Spektrum, 17(6), 1994.

[ABF+97] M. Agrawala, A. Beers, B. Fröhlich, F. Klimetzek, and M. Bolas. The Two-User Re-

sponsive Workbench: Support for Collaboration through Individual Views of Shared

Space. In ACM Proceedings of Computer Graphics and Interactive Techniques, pages

327 – 332, 1997.

[AKO95] Y. Adachi, T. Kumano, and K. Ogino. Intermediate Representation for Stiff Virtual

Objects. In Proceedings of IEEE VRAIS, pages 195–203, 1995.

[AMH02] T. Akenine-Möller and E. Haines. Real-Time Rendering. A. K. Peters Ltd., 2002.

[BBN02] P. Barr, R. Biddle, and J. Noble. A Taxonomy of User-Interface Metaphors. Techni-

cal Report CS-TR-02-1, School of Mathematical and Computing Sciences, Victoria

University, 2002.

[BC03] G. Burdea and P. Coiffet. Virtual Reality Technology. Wiley-IEEE Press, 2003.

[Beg92] D. Begault. An Introduction to 3-D Sound for Virtual Reality. Technical report,

NASA-Ames Research Center, 1992.

[Beg94] D. Begault. 3-D Sound for Virtual Reality and Multimedia. Morgan Kaufmann Pub,

1994.

[BFSE01] O. Bimber, B. Fröhlich, D. Schmalstieg, and M. Encarnação. The Virtual Showcase.

IEEE Computer Graphics and Applications, 21(6):48–55, 2001.

129

Bibliography

[BH93] K. Böhm and W. Hübner. Virtual Reality: A New User Interface Paradigm for

Industrial Applications. In Proceedings of Imagina 93, pages 69–84, 1993.

[BH95] D. Bowman and L. Hodges. User Interface Constraints for Immersive Virtual Envi-

ronment Applications. Technical Report GIT-GVU-95-26, Graphics, Visualization,

and Usability Center, 1995.

[BH97] D. Bowman and L. Hodges. An Evaluation of Techniques for Grabbing and Manip-

ulating Remote Objects in Immersive Virtual Environments. In ACM Symposium

on Interactive 3D Graphics, pages 35–38, 1997.

[BH99] D. Bowman and L. Hodges. Formalizing the Design, Evaluation, and Application

of Interaction Techniques for Immersive Virtual Environments. Journal of Visual

Languages and Computing, 10, 1999.

[BJ98] A. Bierbaum and C. Just. Software Tools for Virtual Reality Application Devel-

opment. In Course Notes for SIGGRAPH 98 Course 14, Applied Virtual Reality,

1998.

[BJH+01] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-Neira. VR

Juggler: A Virtual Platform for Virtual Reality Application Development. In IEEE

Proceedings of VR2001, pages 89–96, 2001.

[BKLP01] D. Bowman, E. Kruijff, J. LaViola, and I. Poupyrev. An Introduction to 3-D User

Interface Design. Presence: Teleoperators and Virtual Environments, 10(1):96–108,

2001.

[BKLP04] D. Bowman, E. Kruijff, J. LaViola, and I. Poupyrev. 3D User Interfaces: Theory

and Practice. Addison-Wesley, 2004.

[BLRS98] R. Blach, J. Landauer, A. Roesch, and A. Simon. A Flexible Prototyping Tool

for 3D Real-Time User Interaction. ACM Proceedings of Eurographics Workshop of

Virtual Environments (VE’98), pages 195–203, 1998.

[BM86] W. Buxton and B. Myers. A Study in Two-Handed Input. In Human Factors in

Computing Systems, pages 321–326, 1986.

[BMS00] W. Broll, E. Meier, and T. Schardt. The Virtual Round Table - A Collaborative

Augmented Multi-User Environment. ACM Proceedings of Collaborative Virtual

Environments (CVE2000), pages 39–45, 2000.

[BN76] J. Blinn and M. Newell. Texture and Reflection in Computer Generated Images.

Communications of the ACM, 19:542–546, 1976.

[Bou99] P. Bourke. Calculating Stereo Pairs (http://astronomy.swin.edu.au/ pbourke/stere-

ographics/stereorender/), 1999.

- 130 -

Bibliography

[Bow99] D. Bowman. Interaction Techniques for Common Tasks in Immersive Virtual En-

vironments: Design, Evaluation, and Application. PhD thesis, Georgia Institute of

Technology, 1999.

[Cal05] M. Calis. Haptics. Technical report, Heriot-Watt University Internal Report, 2005.

[Car01] J. Carroll. Human-Computer Interaction in the New Millenium. Addison-Wesley

Professional, 2001.

[CGH86] M. Curtis, A. Gerhardstein, and R. Howard. Interpretation of Large 3-D Data

Volumes. In Expanded Abstracts of the Society of Exploration Geophysicists 56th

Annual Meeting, pages 497–499, 1986.

[Cha92] H. J. Charwat. Lexikon der Mensch-Maschine-Kommunikation. Oldenbourg, 1992.

[CMK88] J. Carroll, R. Mack, and W. Kellogg. Handbook of Human-Computer Interaction,

chapter Interface Metaphors and User Interface Design, pages 67–85. Elsevier Sci-

ence Publishers, 1988.

[CMN83] S. Card, T. Moran, and A. Newell. The Psychology of Human-Computer Interaction.

Lawrence Erlbaum Associates, 1983.

[CN95] C. Cruz-Neira. Virtual Reality based on Multiple Projection Screens: The CAVE and

Its Applications to Computational Science and Engineering. PhD thesis, University

of Illinois at Chicago, 1995.

[CNSD+92] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. Kenyon, and J. C. Hart. The CAVE,

Audio Visual Experience Automatic Virtual Environment. Communications of the

ACM, pages 64–72, June 1992.

[Com87] Apple Computer. Human Interface Guidelines: The Apple Desktop Metaphor. Ad-

dison Wesley, 1987.

[Com02] SEG Technical Standards Committee. SEG Y rev 1 Data Exchange Format, 2002.

[CS73] L. Cooper and R. Shepard. Chronometric Studies of the Rotation of Mental Images.

Visual information processing, pages 75–176, 1973.

[CZ05] V. Coors and A. Zipf, editors. 3D-Geoinformationssysteme - Grundlagen und An-

wendungen. Wichmann Verlag, 2005.

[Dah06] M. Dahm. Grundlagen der Mensch-Computer-Interaktion. Pearson Studium, 2006.

[DFAB98] A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-Computer Interaction. Prentice

Hall, 1998.

[DFS01] R. De Amicis, M. Fiorentino, and A. Stork. Parametric Interaction for CAD Appli-

cation in Virtual Reality Environment. In XII ADM INTERNATIONAL CONFER-

ENCE on Design Tools and Methods in Industrial Engineering, pages D3/43–D3/52,

2001.

- 131 -

Bibliography

[DH98] J. Döllner and K. Hinrichs. Interactive, Animated 3D Widgets. In Computer Graph-

ics International 1998, pages 278–286, 1998.

[DH02] J. Döllner and K. Hinrichs. A Generic Rendering System. IEEE Transaction on

Visualization and Computer Graphics, 8(2):99–118, 2002.

[dHKP05] G. de Haan, M. Koutek, and F. Post. IntenSelect: Using Dynamic Object Rating

for Assisting 3D Object Selection. In E. Kjems and R. Blach, editors, Proceedings

of the 9th IPT and 11th Eurographics VE Workshop (EGVE) ’05, pages 201–209,

2005.

[Döl05a] J. Döllner. Constraints as Means of Controlling Usage of Geovirtual Environments.

Journal of Cartography and Geographic Information Science, 32(2):69–80, 2005.

[Döl05b] J. Döllner. VRS Documentation (http://www.vrs3d.org/), 2005.

[DU02] K. Dorfmüller-Ulhaas. Optical Tracking - From User Motion to 3D Interaction.

PhD thesis, Technische Universität Wien, 2002.

[Ebe94] R. Eberts. User Interface Design, chapter Experimental Designs and Analysis, pages

82–125. Prentice Hall, 1994.

[EEB67] W. English, D. Engelbart, and M. Berma. Display-Selection Techniques for Text

Manipulation. IEEE Transactions on Human Factors in Electronics, HFE-8(1):5–

15, 1967.

[Fau95] N. Faust. The Virtual Reality of GIS. Environment and Planning B: Planning and

Design, 22:257–268, 1995.

[FBZ+99] B. Fröhlich, S. Barrass, B. Zehner, J. Plate, and M. Göbel. Exploring Geo-Scientific

Data in Virtual Environments. In IEEE Visualization, pages 169–173, 1999.

[FD82] J. Foley and A. Van Dam. Fundamentals of Interactive Computer Graphics.

Addison-Wesley, 1982.

[FHH+05] B. Fröhlich, J. Hochstrate, J. Hoffmann, K. Krüger, R. Blach, M. Bues, and O. Ste-

fani. Implementing Multi-User Stereo Displays. 13th International Conference in

Central Europe on Computer Graphics, Visualization and Computer Vision, pages

139–146, 2005.

[FHZ96] A. Forsberg, K. Herndorn, and R. Zeleznik. Aperture based Selection for Immer-

sive Virtual Environments. In ACM Symposium on User Interface Software and

Technology, pages 95–96, 1996.

[Fit54] P. Fitts. The Information Capacity of the Human Motor System in Controlling the

Amplitude of Movement. Journal of Experimental Psychology, 47(6):381–391, 1954.

- 132 -

Bibliography

[FK05] S. Frees and G. Kessler. Precise and Rapid Interaction through Scaled Manipulation

in Immersive Virtual Environments. In IEEE Virtual Reality 2005, pages 99–106,

2005.

[FP01] A. Fuhrmann and W. Purgathofer. Studierstube: An Application Environment for

Multi-User Games in Virtual Reality. GI-Jahrestagung, 2:1185–1190, 2001.

[FWC84] J. Foley, V. Wallace, and P. Chan. The Human Factors of Computer Graphics

Interactive Techniques. In Computer Graphics and Applications. IEEE, 1984.

[GHJV93] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Abstraction

and Reuse of Object-Oriented Design. Lecture Notes in Computer Science, 707:406–

431, 1993.

[GLM97] G. Goebbels, V. Lalioti, and T. Mack. Guided Design and Evaluation of Distributed,

Collaborative 3D Interaction in Projection based Virtual Environments. ACM Sig-

graph Proceedings, 15(5):745–770, 1997.

[Gol03] E. Goldstein. Sensation and Perception. Wadsworth, 2003.

[Gre86] N. Greene. Applications of World Projections. In Proceedings Graphics Interface

Proceedings Graphics Interface, pages 108–114, 1986.

[Gro05] Open Inventor Architecture Group. Open Inventor C++ Reference Manual.

Addison-Wesley, 2005.

[HBC+92] T. Hewett, R. Baecker, S. Card, T. Carey, J. Gasen, M. Mantei G. Perlman,

G. Strong, and W. Verplank. ACM SIGCHI Curricula for Human-Computer In-

teraction. Technical report, ACM Order Number: 608920, 1992.

[Hei92] M. Heilig. El Cine del Futuro: The Cinema of the Future. Presence, 1(3):279–294,

1992.

[Hel95] J. Helman. Performance Requirements and Human Factors, 1995.

[Hie05] G. Hiebert. OpenAL 1.1 Specification and Reference, 2005.

[HL95] R. Holloway and A. Lastra. Virtual Environments: A Survey of the Technology,

1995.

[HM85] L. Hodges and D. McAllister. Stereo and Alternating Pair Techniques for Display of

Computer Generated Images. IEEE Computer Graphics and Applications, 5(9):38–

45, 1985.

[Hou92] S. Houde. Iterative Design of an Interface for Easy 3-D Direct Manipulation. In

Conference on Human Factors in Computing Systems (CHI’92), pages 135–142,

1992.

- 133 -

Bibliography

[Hug05] D. Hughes. Defining an Audio Pipeline for Mixed Reality. In Proceedings of Human

Computer Interfaces International, 2005.

[IS94] M. Ishii and M. Sato. A 3D Space Interface Device Using Tensed Strings. Presence,

3(81-86), 1994.

[JFH94] R. Jacoby, M. Ferneau, and J. Humphries. Gestural Interaction in a Virtual Envi-

ronment. In Stereoscopic Displays and Virtual Reality Systems: The Engineering of

Virtual Reality, pages 355–364. SPIE, 1994.

[JL04] K. Jacobs and C. Loscos. Classification of Illumination Methods for Mixed Reality.

Technical report, Eurographics 2004, 2004.

[Jon01] L. Jones. Human Factors and Haptic Interfaces. IMA Talks Haptics, Virtual Reality,

and Human Computer Interaction, 2001.

[JvDFH92] J.Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles and

Practice. Addison-Wesley, 1992.

[Kal93] R. Kalawsky. The Science of Virtual Reality and Virtual Environments. Addison-

Wesley Publishing Company, 1993.

[KASK02] J. Kelso, L. Arsenault, S. Satterfield, and R. Kriz. DIVERSE: A Framework for

Building Extensible and Reconfigurable Device Independent Virtual Environments.

In Proceedings of Virtual Reality 2002 Conference, pages 183–190. IEEE, 2002.

[Kau03] H. Kaufmann. Collaborative Augmented Reality in Education. Technical Report

188-2-2003-1, Technische Universität Wien, 2003.

[KB99] H. Kato and M. Billinghurst. Marker Tracking and HMD Calibration for a Video-

based Augmented Reality Conferencing System. In In Proceedings of the 2nd Inter-

national Workshop on Augmented Reality (IWAR), 1999.

[KBF+95] W. Krüger, C. Bohn, B. Fröhlich, H. Schuth, W. Strauss, and G. Wesche. The

Responsive Workbench: A Virtual Work Environment. IEEE Computer, 28(8):42–

48, 1995.

[KD02] O. Kersting and J. Döllner. Interactively Developing 3D graphics Applications in

Tcl. In USENIX Annual Technical Conference, pages 99–118, 2002.

[KJM03] B. Kapralos, M. Jenkin, and E. Milios. Auditory Perception and Spatial 3D Auditory

Systems. Technical Report CS-2003-07, York University, 2003.

[KKH02] J. Kniss, G. Kindlmann, and C. Hansen. Multi-Dimensional Transfer Functions for

Interactive Volume Rendering. IEEE Transactions on Visualization and Computer

Graphics, 8(4):270–285, 2002.

[KKYK01] Y. Kitamura, T. Konishi, S. Yamamoto, and F. Kishino. Interactive Stereoscopic

Display for Three or More Users. In SIGGRAPH, pages 231–239. ACM, 2001.

- 134 -

Bibliography

[KLR+95] D. Koller, P. Lindstrom, W. Ribarsky, L. Hodges, N. Faust, and G. Turner. Virtual

GIS: A Real-time 3D Geographic Information System. In Visualization, pages 94–

100. IEEE, 1995.

[KW03] J. Krüger and R. Westermann. Acceleration Techniques for GPU-based Volume

Rendering. In Proceedings of IEEE Visualization, pages 287–292, 2003.

[Lat01] M. Latoschik. Multimodale Interaktion in Virtueller Realität am Beispiel der

Virtuellen Konstruktion. PhD thesis, Universität Bielfeld, 2001.

[LG94] J. Liang and M. Green. JDCAD: A Highly Interactive 3D Modeling System. Com-

puters & Graphics, 18(4):499–506, 1994.

[Lik32] R. Likert. A Technique for the Measurement of Attitude. Archives of Psychology,

140:1–55, 1932.

[Lip91] L. Lipton. The CrystalEyes Handbook. Stereographics Corportation, 1991.

[LJB+99] J. Leigh, A. Johnson, M. Brown, D. Sandin, and T. DeFanti. Visualization in

Teleimmersive Environments. IEEE Computer, 32(12):66–73, 1999.

[McG79] M. McGee. Human Spatial Abilities: Psychometric Studies and Environmental,

Genetic, Hormonal and Neurological Influences. Psychological Bulletin, 5:889–918,

1979.

[MDG+95] P. Milgram, D. Drascic, J. Grodski, A. Restogi, S. Zhai, and C. Zhou. Merging Real

and Virtual Worlds. In Proceedings of IMAGINA’95, 1995.

[MEH+99] A. MacEachren, R. Edsall, D. Haug, R. Baxter G. Otto, R. Masters, S. Fuhrmann,

and L. Qian. Virtual Environments for Geographic Visualization: Potential and

Challenges. Proceedings of the ACM Workshop on New Paradigms for Invormation

Visualization and Manipulation, pages 35–40, 1999.

[MG96] T. Mazuryk and M. Gervautz. Virtual Reality History, Applications, Technology

and Future. Technical Report TR-186-2-96-06, TU Wien, 1996.

[MHB+01] D. Meyer, E. Harvey, T. Bulloch, J. Voncannon, and T. Sheffield. Use of Seismic

Attributes in 3-D Geovolume Interpretation. The Leading Edge, 20(12):1377–1381,

2001.

[Mic05] Microsoft. MSDN Library, 2005.

[Mil56] G. Miller. The Magical Number Seven, Plus or Minus Two: Some Limits on Our

Capacity for Processing Information. Psychological Review, 63(2):81 – 97, 1956.

[MIO+04] M. Matsushita, M. Iida, T. Ohguro, Y. Shirai, Y. Kakehi, and T. Naemura. Lu-

misight Table: Interactive View-dependent Display-Table Surrounded by Multiple

Users. In SIGGRAPH. ACM, 2004.

- 135 -

Bibliography

[MK94] P. Milgram and F. Kishino. A Taxonomy of Mixed Reality Visual Displays. In IEICE

Transactions on Information and Systems, Special issue on Networked Reality, 1994.

[MP93] S. Musil and G. Pigel. Virgets: Elements for Building 3D User Interfaces. In VR

1993. IEEE, 1993.

[MR04] C. Ma and J. Rokne. 3D Seismic Volume Visualization. Kluwer Academic, 2004.

[MVS+02] J. Mortensen, V. Vinayagamoorthy, M. Slater, A. Steed, B. Lok, and M. C. Whitton.

Collaboration in Tele-Immersive Environments. ACM Proceedings of Workshop on

Virtual Environments, pages 93–101, 2002.

[Nad00] D. Nadeau. Volume Scene Graphs. In Volume Visualization, pages 49–56, 2000.

[Nie86] J. Nielsen. A Virtual Protocol Model for Computer-Human Interaction. Interna-

tional Journal of Man-Machine Studies archive, 24(3):301–312, 1986.

[NKH98] T. Naemura, M. Kaneko, and H. Harashima. Multi-User Immersive Stereo in

Projection-based Virtual Reality System. Conference Proceedings of The Virtual

Reality Society of Japan, 3(8):57–60, 1998.

[NNMH02] T. Naemura, T. Nitta, A. Mimura, and H. Harashima. Virtual Shadows in Mixed

Reality Environment Using Flashlight-Like Devices. Transaction of Virtual Reality

Society of Japan, 7(2):227–237, 2002.

[Nor98] D. Norman. The Design of Every-Day Things. PhD thesis, MIT, 1998.

[Nor99] D. Norman. Affordance, Conventions, and Design. Interactions, 6(3):38–42, 1999.

[NS97] C. North and B. Shneiderman. A Taxonomy of Multiple Window Coordinations.

Technical Report CS-TR-3854, University of Maryland Computer, 1997.

[OF03] A. Olwal and S. Feiner. The Flexible Pointer: An Interaction Technique for Selection

in Augmented and Virtual Reality. In ACM Symposium on User Interface Software

and Technology (Conference Supplement), pages 81–82, 2003.

[ON01] D. Olsen and S. Nielsen. Laser Pointer Interaction. In Proceedings of CHI, pages

17–22, 2001.

[Par] ParadigmGeo. VoxelGeo: Volume-based Seismic Interpretation

(http://www.paradigmgeo.com/objects/pdf/voxelgeo.pdf).

[PBC+95] R. Pausch, T. Burnette, A. C. Capehar, M. Conway, D. Cosgrove, R. DeLine,

J. Durbin, R. Gossweiler, S. Koga, and J. White. A Brief Architectural Overview of

Alice, a Rapid Prototyping System for Virtual Reality. In IEEE Computer Graphics

and Applications, pages 195–203, 1995.

- 136 -

Bibliography

[PBWI96] I. Poupyrev, M. Billinghurst, S. Weghorst, and T. Ichikawa. The Go-Go Interaction

Technique: Non-Linear Mapping for Direct Manipulation in VR. In ACM Sympo-

sium on User Interface Software and Technology, pages 79–80, 1996.

[PFC+97] J. Pierce, A. Forsberg, M. Conway, S. Hong, R. Zeleznik, and M. Mine. Image

Plane Interaction Techniques in 3D Immersive Environments. In ACM Symposium

on Interactive 3D Graphics, pages 39–44, 1997.

[PHH+03] J. Piesk, R. Heeg, R. Hönscheid, N. Krämer, and G. Bente. Echtzeit-Visualisierungs-

Editor für Deskriptive Verhaltensprotokolle. In Mensch & Computer, 2003.

[PNMI05] J. Parker, M. Nunes, R. Mandryk, and K. Inkpen. TractorBeam Selection Aids: Im-

proving Target Acquisition for Pointing Input on Tabletop Displays. In Proceedings

of INTERACT 2005, pages 80–93, 2005.

[Pop01] V. Popescu. Design and Performance Analysis of a Virtual Reality-based Telereha-

bilitation System. PhD thesis, Rutgers University, 2001.

[PWBI98] I. Poupyrev, S. Weghorst, M. Billinghurst, and T. Ichikawa. Egocentric Object

Manipulation in Virtual Environments: Empirical Evaluation of Interaction Tech-

niques. Computer Graphics Forum, 17(3):41–52, 1998.

[Rai99] R. Raisamo. Multimodal Human-Computer Interaction: A Constructive and Em-

pirical Study. PhD thesis, University of Tampere, 1999.

[RBML04] I. Rebelo, R. Barcia, E. Merino, and R. Luz. Evaluation of VR Systems: More

Usable Interactions. In VRIC, pages 241–249. IEEE, 2004.

[RGW+03] S. Röttger, S. Guthe, D. Weiskopf, T. Ertl, and W. Straßer. Smart Hardware-

Accelerated Volume Rendering. In Proceedings of the Symposium on Visualization,

pages 231–238. IEEE Press, 2003.

[RHS05] T. Ropinski, K. Hinrichs, and F. Steinicke:. A Solution for the Focus and Context

Problem in Virtual Geo-Environments. In Proceedings of the 4th ISPRS Workshop

on Dynamic and Multi-dimensional GIS (DMGIS05), 2005.

[Rol05] S. Rolfes. Integration Indirekter und Multimodaler Interaktionskonzepte in das

Objekt-orientierte Grafiksystem VRS. Master’s thesis, WWU Münster, 2005.

[RSH05a] T. Ropinski, F. Steinicke, and K. Hinrichs. A Constrained Road-based VR Naviga-

tion Technique for Travelling in 3D City Models. In Proceedings of the 15th Interna-

tional Conference on Artificial Reality and Telexistence (ICAT05), pages 228–235,

2005.

[RSH05b] T. Ropinski, F. Steinicke, and K. Hinrichs. Interactive Importance-Driven Visualiza-

tion Techniques for Medical Volume Data. In Proceedings of the 10th International

Fall Workshop on Vision, Modeling, and Visualization (VMV05), pages 273–280,

2005.

- 137 -

Bibliography

[RSH05c] T. Ropinski, F. Steinicke, and K. Hinrichs. Tentative Results in Focus-based Medical

Volume Visualization. In Proceedings of 5th International Smart Graphics Sympo-

sium, Lecture Notes in Computer Science 3638, pages 218–221, 2005.

[RSH06] T. Ropinski, F. Steinicke, and K. Hinrichs. Visual Exploration of Seismic Volume

Datasets. Journal of the 14th International Conference in Central Europe on Com-

puter Graphics Visualization and Computer Vision (WSCG06), pages 73–80, 2006.

[RWH04] T. Ropinski, S. Wachenfeld, and K. Hinrichs. Virtual Reflections for Augmented

Reality Environments. In Proceedings of the 14th International Conference on Ar-

tificial Reality and Telexistence (ICAT04), pages 311–318, 2004.

[SCB04] K. Salisbury, F. Conti, and F. Barbagli. Haptic Rendering: Introductory Concepts.

IEEE Computer Graphics and Applications, 24(2):24–32, 2004.

[Sch01] D. Schmalstieg. Collaborative Augmented Reality. PhD thesis, Technische Univer-

sität Wien, Habilitation thesis, 2001.

[SFH+02] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavari, M. Encarnaçǎo, M. Gervautz,

and W. Purgathofer. The Studierstube Augmented Reality Project. In PRESENCE

- Teleoperators and Virtual Environments 11(1), pages 32–45, 2002.

[SG97] Z. Szalavári and M. Gervautz. Using the Personal Interaction Panel for 3D Interac-

tion. In Proceedings of the Conference on Latest Results in Information Technology,

page 36, 1997.

[SGI04] SGI. A Technical Overview of OpenGL Performer 3.1. SGI White Paper, 2004.

[SGLM03] B. Salomon, M. Garber, M. Lin, and D. Manocha. Interactive Navigation in Complex

Environments Using Path Planning. In Symposium on Interactive 3D Graphics,

pages 41–50, 2003.

[SGLS93] C. Shaw, M. Green, J. Liang, and Y. Sun. Decoupled Simulation in Virtual Reality

with the MR Toolkit. ACM Transactions on Information Systems, 11(3):287–317,

1993.

[Shi92] K. Shimoga. Finger Force and Touch Feedback Issues in Dexterous Telemanipula-

tion: A Survey. In Proceedings of the NASA-CIRSSE International Conference on

Intelligent Robotic Systems for Space Exploration, pages 159–178, 1992.

[Shn97a] B. Shneiderman. Designing the User Interface: Strategies for Effective Human-

Computer Interaction. Addison-Wesley, 1997.

[Shn97b] B. Shneiderman. Direct Manipulation for Comprehensible, Predictable and Con-

trollable User Interfaces. In Intelligent User Interfaces, pages 33–39, 1997.

[Shr04] D. Shreiner. OpenGL Reference Manual: The Official Reference Document to

OpenGL, Version 1.4, 4/E. Addison Wesley, 2004.

- 138 -

Bibliography

[SHR05] F. Steinicke, K. Hinrichs, and T. Ropinski. Virtual Reflections and Virtual Shad-

ows in Mixed Reality Environments. In 10th International Conference on Human-

Computer Interaction (INTERACT2005), pages 1018–1021, 2005.

[SHR06] F. Steinicke, K. Hinrichs, and T. Ropinski. A Hybrid Decision Support System for

3D City Planning. In ISPRS Commission II Symposium on Spatio-temporal Data

Handling and Information, page (in print), 2006.

[Sil79] D. Silbernagel. Taschenatlas der Physiologie. Thieme, 1979.

[SMG03] R. Silva, M. Machado, and M. Gattass. 3D Seismic Volume Rendering. In Pro-

ceedings of the Eight International Congress of the Brazilian Geophysical Society

(CSBGS), 2003.

[Smi04] R. Smith. Open Dynamics Engine v0.039 User Guide, 2004.

[SNC+95] L. Schomaker, J. Nijtmans, A. Camurri, F. Lavagetto, P. Morasso, C. Benoit,

T. GuiardMarigny, B. Le Goff, J. Robert-Ribes, A. Adjoudani, I. Defee, S. Münch,

K. Hartung, and J. Blauert. A Taxonomy of Multimodal Interaction in the Human

Information Processing System. Technical Report Basic Research Project 8579,

Miami ESPRIT III, 1995.

[Sou92] D. Southard. Transformations for Stereoscopic Visual Simulation. Computer &

Graphics, 16(4):401–410, 1992.

[SRD00] H. Sowizral, K. Rushforth, and M. Deering. The Java 3D API Specification.

Addison-Wesley, 2000.

[SRH04] F. Steinicke, T. Ropinski, and K. Hinrichs. Object Selection in Virtual Environ-

ments with an Improved Virtual Pointer Metaphor. In Proceedings of International

Conference on Computer Vision and Graphics (ICCVG), pages 320–326, 2004.

[SRH05a] F. Steinicke, T. Ropinski, and K. Hinrichs. A Generic Virtual Reality Software

System’s Architecture and Application. In Proceedings of the 15th International

Conference on Artificial Reality and Telexistence (ICAT05), pages 220–227, 2005.

[SRH05b] F. Steinicke, T. Ropinski, and K. Hinrichs. Co-located Interaction Concepts for

Large Screen Displays. Technical Report 06/05 - I, WWU Münster, 2005.

[SRH05c] F. Steinicke, T. Ropinski, and K. Hinrichs. Multimodal Interaction Metaphors for

Manipulation of Distant Objects in Immersive Virtual Environments. In 13th In-

ternational Conference in Central Europe on Computer Graphics, Visualization and

Computer Vision, pages 45–48, 2005.

[SRH05d] F. Steinicke, T. Ropinski, and K. Hinrichs. VR and Laser-based Interaction in Vir-

tual Environments using a Dual-Purpose Interaction Metaphor. In VR2005 Work-

shop Proceedings on New Directions in 3D User Interfaces, pages 61–64. IEEE,

2005.

- 139 -

Bibliography

[SRH06] F. Steinicke, T. Ropinski, and K. Hinrichs. Collaborative Interation Concepts for

City Planning Tasks in Projection-based Virtual Reality Systems. In 8th Interna-

tional Conference on Virtual Reality, pages 113–122. IEEE, 2006.

[SRHB06] F. Steinicke, T. Ropinski, K. Hinrichs, and G. Bruder. A Multiple View System

for Modeling Building Entities. In Proceedings of 4th International Conference on

Coordinated & Multiple Views in Exploratory Visualization, page (in print). IEEE,

2006.

[SRHM06] F. Steinicke, T. Ropinski, K. Hinrichs, and J. Mensmann. Urban City Planning

in Semi-immersive Virtual Reality. In Proceedings of the International Conference

on Computer Graphics Theory and Applications (GRAPP2006), pages 192–199. IN-

STICC Press, 2006.

[SS05] A. Simon and S. Scholz. Multi-Viewpoint Images for Multiple-User Interaction. In

IEEE Proceedings of VR2005, pages 107–113, 2005.

[SSC01] M. Slater, A. Steed, and Y. Chrysanthou. Computer Graphics and Virtual Environ-

ments: From Realism to Real-Time. Addison-Wesley, 2001.

[SSS01] G. Smith, T. Salzman, and W. Stürzlinger. 3D Scene Manipulation with Constraints.

In B. Fisher, K. Dawson-Howe, and C. O’Sullivan, editors, Virtual and Augmented

Architecture, pages 35–46, 2001.

[SSU99] B. Schmidt, U. Streit, and C. Uhlenküken. Zur Einsetzbarkeit von Workbench-

Umgebungen für Geowissenschaftliche und Planerische Fragestellungen. In Sympo-

sium für Angewandte Geographische Informationsverarbeitung, pages 482–489, 1999.

[Sut63] I. Sutherland. Sketchpad: A Man-Machine Graphical Communications System. PhD

thesis, M.I.T., 1963.

[Sut65] I. Sutherland. The Ultimate Display. In Proceedings of IFIP Congress 2, pages

506–509, 1965.

[Sut68] I. Sutherland. A Head-Mounted Three-Dimensional Display. In Proceeding of the

Fall Joint Computer Conference, volume 33, pages 757–764. AFIPS, 1968.

[Ter05] L. Terrenghi. Design of Affordances for Direct Manipulation of Digital Information in

Ubiquitous Computing Scenarios. In Proceedings of 5th International Smart Graph-

ics Symposium, Lecture Notes in Computer Science 3638, pages 198–205, 2005.

[TH92] T. Takala and J. Hahn. Sound Rendering. In 19th International Conference on

Computer Graphics and Interactive Techniques, pages 211–220, 1992.

[Tra99] H. Tramberend. AVANGO: A distributed virtual reality framework. In Proceedings

of the IEEE Virtual Reality ’99, 1999.

[Vin95] J. Vince. Virtual Reality Systems. Addision-Wesley, 1995.

- 140 -

Bibliography

[WD04] M. Worboys and M. Duckham. GIS: A Computing Perspective. CRC Press, 2004.

[Wil78] L. Williams. Casting Curved Shadows on Curved Surfaces. In Proceedings of SIG-

GRAPH 78, volume 12, pages 270–274, 1978.

[Wis01] M. Wissen. Implementation of a Laser-based Interaction Technique for Projection

Screens. ERCIM News, 46:31–32, 2001.

[YNTT03] Y. Yanagida, H. Noma, N. Tetsutani, and A. Tomono. Computers Everywhere: An

Unencumbering, Localized Olfactory Display. In CHI - Interactive posters, 2003.

[Zel92] D. Zeltzer. Autonomy, Interaction, and Presence. Presence, 1(1):127–132, 1992.

[ZTW+01] P. Zahorik, C. Tam, K. Wang, P. Bangayan, and V. Sundareswaran. Localization

Accuracy in 3D Sound Displays: The Role of Visual-Feedback Training, 2001.

- 141 -

Bibliography

- 142 -

Lebenslauf

Persönliche Daten

Name : Frank Steinicke

Geburt : 16. Mai 1977 in Rheine

Familienstand : ledig

Eltern : Johann Otto Steinicke

: Alwine Johanne Frida Steinicke, geb. Schulte Siering

Schulausbildung

07/1983 - 06/1987 : Grundschule auf dem Süsteresch, Schüttorf

07/1987 - 06/1996 : Städtisches Gymnasium, Ochtrup

21. Mai 1996 : Hochschulreife (Abitur)

Zivildienst

09/1996 - 10/1997 : Gemeinschaftsgrundschule Paul-Gerhard, Emsdetten

Studium

10/1997-12/2002 : Studium Diplom-Mathematik mit Nebenfach Informatik,

Westfälische Wilhelms-Unversität, Münster

2. Dezember 2002 : Diplom in Mathematik,

Westfälische Wilhelms-Unversität, Münster

seit 01/2003 : Beginn der Dissertation bei Prof. Dr. Klaus H. Hinrichs,

Institut für Informatik, Westfälische Wilhelms-Unversität, Münster

Berufliche Tätigkeiten

07/1994 - 06/1999 : Handballspieler, TV Emsdetten GmbH & Co KG, Emsdetten

seit 07/1999 : Handballspieler, TuS Spenge e.V., Spenge

11/2004 - 03/2005 : wissenschaftliche Hilfskraft,

Arbeitsgruppe Grafische und Geometrische Datenverarbeitung,

Institut für Informatik, Westfälische Wilhelms-Unversität, Münster

seit 04/2005 : wissenschaftlicher Mitarbeiter,

Arbeitsgruppe Grafische und Geometrische Datenverarbeitung,

Institut für Informatik, Westfälische Wilhelms-Unversität, Münster

	Abstract
	Acknowledgements
	Introduction
	Concepts of Human-Computer Interaction
	Human-Computer Interaction
	Human Factors
	Multimodality
	Visual Perception
	Auditory Perception
	Haptic Perception
	Cognitive Psychological Aspects

	Computer Systems
	Traditional 2D Interfaces
	3D Interaction with 2D Interfaces
	3D User Interfaces
	Virtual Reality

	Interaction Concepts
	Basic Terms of Interaction
	General Interaction Cycle
	Layered Interaction Concepts
	Interaction Metaphors
	Taxonomy of Interaction Tasks

	A Generic Virtual Reality Software System
	VR Software Systems
	Model-View-Controller
	Generic Architecture of VR Systems
	The Rendering Pipeline

	Concepts of VR Software Systems
	Requirements on VR Software Systems
	Overview of current VR Software Systems

	Virtual Rendering System
	Scenegraphs and Behavior Graphs in VRS
	Scene Evaluation in VRS
	Multipass-Rendering in VRS

	VR2S: Virtual Reality Rendering System
	Software Architecture Overview
	Stereographic Rendering
	Tracking Systems in VR2S
	VR User Interface
	Integration of Multisensory Feedback in VR2S
	Hello, VR2S

	Selection and Manipulation of Virtual Objects
	Direct Interaction Metaphors
	Improved Virtual Pointer Metaphor
	Selection Process
	Manipulation of Virtual Objects
	Multimodal Concepts
	Integration of the IVP Metaphor into VR2S
	Usability Study

	Dual-Purpose Interaction Metaphor
	Desktop-based Interaction
	Integration of the Dual-Purpose Interaction Metaphor into VR2S
	Evaluation

	Virtual Reality Widgets
	VR Menus
	Personal-Interaction-Panel

	Exploration of Virtual Environments
	Co-located Exploration in Projection-based Virtual Reality Systems
	Related Collaborative Interaction Concepts
	Projection-Based Collaboration Concepts
	Integration of Co-located Interaction Concepts into VR2S
	Preliminary Usability Study

	Advanced Mixed Reality System Environments
	Mixed Reality Environments
	Global Illumination Concepts for MR Environments
	Mixed Reality Environment Setup

	Case Studies: Applications for Semi-Immersive Virtual Reality Systems
	The Responsive Workbench Environment
	The Passive Rear Projection System
	3D Residential City Planning Environment
	Main Components
	Software Architecture
	Interaction Concepts for Urban Planning

	Focus and Context Visualization for Seismic Volume Datasets
	Visualization of Volumetric Subsurface Data
	Interaction Strategies for VR-based Exploration

	Conclusions
	Bibliography

	Text2: 29.06.2006

