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A B S T R A C T

In jawed vertebrates, the adaptive immune system (AIS) cooperates with the innate immune system

(IIS) to protect hosts from infections. Although targeting non-self-components, the AIS also generates

self-reactive antibodies which, when inadequately counter-selected, can give rise to autoimmune dis-

eases (ADs). ADs are on the rise in western countries. Why haven’t ADs been eliminated during the

evolution of a �500 million-year old system? And why have they become more frequent in recent

decades? Self-recognition is an attribute of the phylogenetically more ancient IIS and empirical data

compellingly show that some self-reactive antibodies, which are classifiable as elements of the IIS rather

then the AIS, may protect from (rather than cause) ADs. Here, we propose that the IIS’s self-recognition

system originally fathered the AIS and, as a consequence of this relationship, its activity is dampened in

hygienic environments. Rather than a mere breakdown or failure of the mechanisms of self-tolerance,

ADs might thus arise from architectural constraints.

K E Y W O R D S : adaptive immune system; innate immune system; natural autoantibodies; self-recog-

nition; pregnancy; immune tolerance

INTRODUCTION

Jawed vertebrates are protected from invading

pathogens or pathogenic compounds by two multi-

layered and synergistic mechanisms: the Innate

Immune System (IIS) and the Adaptive Immune

System (AIS) [1]. IIS and AIS provide incredibly high

levels of protection against external threats.

However, these systems may also bear

disadvantages that can be life threatening. Healthy

autologous or self-components such as DNA, cells

or secreted proteins may become targets of

antibodies (Abs) that are generated during an im-

mune response thus giving rise to autoimmune dis-

eases (ADs). Self-reactive Abs have long been

considered as an unfortunate byproduct of the pro-

cess of somatic recombination which must be coped

invited

commentary

2

� The Author(s) 2018. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/em

ph/article-abstract/2018/1/2/4802254 by U
niversitaets- u. Landesbibliothek user on 14 M

arch 2019

Deleted Text: (
Deleted Text: )
http://�creativecommons.�org/�licenses/�by/�4.�0/�


with in return for a sophisticated defense system [2]. It has been

proposed that mechanisms such as clonal deletion, receptor

editing, and anergy (i.e. functional unresponsiveness) [3–6] have

evolved to mitigate the negative impacts of self-reactive Abs. On

the other hand, self-reactivity can also be non-pathological and

crucial for the proper functioning of the AIS [7–10].

Herein we leverage and build on this knowledge to put forward a

hypothesis for the emergence of AIS, which proposes that self-rec-

ognition was (i) a major driving force in the evolution of a system that

would eventually give rise to the current AIS, and (ii) a significant

player in imposing constraints on the present-day AIS. It is main-

tained that the AIS emerged subsequent to the weakening of existing

immune defenses, a suboptimal condition that imposed selection

pressures favoring further immune defense mechanisms. The

proposed hypothesis is uniquely capable of concurrently integrating

empirical findings such as the homeostatic function of B-1-derived

natural self-reactive Abs and the immunological changes that occur

during normal pregnancy with prominent theoretical arguments

such as the ‘immunological homunculus’ [8], the ‘immune network

theory’ [11–13], the ‘hygiene hypothesis’ [14], and the ‘2R hypothesis’

[15]. Our hypothetical scenario delineates specific changes in the

population-genetic environment that occurred around the time

when vertebrate lineages diverged from a common ancestor. It also

makes testable predictions regarding the mechanistic relationships

between the expression/activity of B-1 and B-2-derived Abs.

INNATE AND ADAPTIVE IMMUNITY

The IIS is a collection of defense measures that provide immediate

protection against infections. Widespread across eukaryotes, the

IIS acts against conserved pathogen-associated patterns

(e.g. lipopolysaccharides of bacterial cell walls). It involves a di-

verse range of assets (e.g. macrophages, neutrophils, comple-

ment system etc.) and employs genetically encoded receptors

(e.g. Toll-like receptors) and secreted proteins [1].

The AIS with its classical immunoglobulins (Igs) and molecules

such as the major histocompatibility complex (MHC), on the

other hand, is currently restricted to the group of jawed verte-

brates. Dependent on IIS elements, the AIS is highly specific

and generates a diverse repertoire of receptors during the process

of germ-line-to-soma differentiation. When challenged by new

pathogens or pathogenic elements, matching receptors are se-

lectively amplified to target the threat and to mount an immune

response wherein components of the IIS are also involved. During

this process, some of the selected cells are stored as memory cells

enabling an accelerated immune response should the pathogen

be re-encountered [1].

The diversity of the acquired antibody repertoire is generated by

V(D)J recombination [16, 17]. During this developmental process,

immune cells known as B and T lymphocytes recombine one copy

each of multiple V, (D) and J gene sections in the genomic receptor

locus to form functional somatic genes, i.e. B-cell receptors (BCRs)

and T-cell receptors (TCRs). Two proteins (RAG1 and RAG2) are

required to activate V(D)J recombination [18, 19]. As multiple

copies of V, (D) and J segments are present in the germ-line gen-

ome,>106 antibody variants can be yielded theoretically for human

BCRs by combinatory possibilities, although some diversity restric-

tion may be imposed by the non-random use of individual amino

acids in the third complementarity region of the H chain or the

biased composition of the antibody repertoire in fetus and adult

[20]. This number may rise further as a consequence of the impre-

cise joining of the V, (D) and J segments [21, 22]. The considerable

diversity of receptor variants that result from this process of diver-

sification should provide adequate protection against any new

pathogen encountered. However, there is a risk that it may target

self-components and harm the host. Auto-reactive cells/receptors

may be repressed or selected against at various points during the

lymphocytes’ lifetime [23]. Elimination of self-reactive immune cells

may not always be complete however. Additionally, self-reactive

immune cells can normally be detected in physiological conditions

(see section ‘The healthy aspect of self-recognition’ below).

ADAPTIVE IMMUNITY AND ‘THE CHICKEN AND
THE EGG’ CONUNDRUM

Although the deletion of self-reactive BCRs and/or TCRs may

make sense from a system viewpoint, the modern AIS’s organ-

ization raises questions about the sequence of evolutionary

events that shaped it. The AIS requires finely tuned regulation

to prevent autoimmunity and to secure functional interactions

with the IIS. Although it is possible that the early AIS was un-

regulated and yet selected for its inherent fitness benefits (e.g.

pathogen resistance outweighed the costs of autoimmunity), it

seems unlikely that such a sophisticated system could have de-

veloped without regulatory mechanisms in place. But how can

regulatory elements evolve in the absence of the system? A pos-

sible answer to this conundrum is that regulatory mechanisms

were already present for a system that originally served (and may

continue to serve) different functions than those that the AIS

presently plays. In this hypothetical system, primordial lympho-

cyte cells produced germ-line encoded antibody-like proteins

that were at least partly reactive towards self-components.

Therefore, control mechanisms could evolve to prevent the

emergence of pathogenic self-reactivity. The ability to efficiently

recognize foreign antigens would have evolved later in the pres-

ence—if not owing to the existence—of this self-reactive cell-

producing system. While both T and B cells may have played an

equally central role in an evolutionary system where self-recog-

nition is a key step towards the modern AIS, in this article we only

focus on B cells and Abs/BCRs as possible key players in AIS

evolution. This choice is based mainly on the striking properties

of B cells, which are discussed further below.
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THE HEALTHY ASPECT OF SELF-RECOGNITION

A traditional paradigm in immunology is that self-reactive Abs are

negatively selected owing to the harm that they may cause the

organism. This paradigm has been repeatedly challenged how-

ever. For example, it has been found that self-reactivity is a com-

mon attribute of T cells [24, 25]. Furthermore, self-reactive BCRs

may be even necessary for B cells to develop properly and to form

the diverse repertoire of BCRs [26, 27]. Finally, the discovery of

naturally occurring autoantibodies or NAAbs challenges the no-

tion that self-recognition is merely deleterious [28]. NAAbs closely

resemble the primordial lymphocyte receptors that we envisage in

our hypothesis. They are naturally found in the sera of healthy,

non-immunized, humans and other vertebrates [29–34], and are

also detected in animals raised in germ-free conditions [35, 36]. As

opposed to somatically hypermutated Abs that result from active

immunization, NAAbs are encoded by rearranged germ-line V(D)J

gene segments that are unaltered or only minimally altered [37,

38]. They are typically polyreactive, have low binding affinity, and

may recognize a broad spectrum of antigens including non-self

and self-antigens (e.g. single-stranded DNA, carbohydrate epi-

topes) [39, 40]. NAAbs primarily belong to the IgM isotype—the

most ancient of the antibody classes, also found in sharks in trans-

membrane and secretory forms [41, 42]. It is worth noting that IgM

NAAbs from sharks, humans, and other vertebrates show consid-

erable levels of conservation in the overall 3D structure and in

some framework regions such as the variable domains VH3-30

and VH3-23 [43]. Abs that retain such conserved regions are often

expressed early in fetal development, when the ability to respond

to specific antigens is low, and are a part of the repertoire directed

against T-independent antigens [20, 44].

NAAbs are produced primarily by self-replenishing B-1a cells

(NAAbB-1a), a subgroup of B-cell lymphocytes that could be clas-

sified as part of the IIS [45, 46]. Although responding to probably

innate immune signals [47], B-1a cells do not appear to develop

into memory B cells [48, 49], which are crucial for the adaptive

immune response. Moreover, after being produced chiefly during

the fetal and neonatal period, they persist in the individual and,

with increasing age, may be complemented by bone marrow-

derived B-1 cells [50, 51]. On the other hand, the majority of B-cell

lymphocytes are made of follicular B-2 cells that develop later in

life and produce non-self-reactive Abs with high-binding affinities

[37, 52]. Interestingly, ‘early’ B-2 cells produce Abs that resemble

NAAbB-1a in being positively selected for their ability to bind to

self-antigens [26]. On the other hand, when the regulatory mech-

anisms underperform, developing B-2 cells which undergo nega-

tive selection for self-reactivity may also produce class switched

and affinity matured self-reactive Abs with pathogenic properties.

Hereinafter we will refer to B-2 cell-related self-reactive Abs as

SR-AbB-2, where SR stands for self-reactive. Unlike B-2 cells, which

undergo negative selection at a later stage of development [23] to

guarantee the proper production of non-self reactive Abs,

autoreactive B-1a cells persist [53–55]. Thus, not only may self-

reactive cells not be purged, they may also be deliberately

produced and, in the case of the B-1a cells, preserved.

It is unlikely, as argued in the immunological homunculus the-

ory [8, 56], that the presence of NAAbB-1a indicates a failure of the

mechanisms of self-tolerance or that they are a threat to the or-

ganisms. Rather, the production and conservation of NAAbB-1a is

presumably linked to their unique functions: they are major con-

tributors to tissue homeostasis. Among the functions that have

been ascribed to NAAbB-1a are: (i) acting as first line of defense

against bacteria, viruses and other pathogenic agents, (ii) partici-

pation in the clearance of apoptotic cells as well as tumor and

senescent cells, (iii) modulation of the inflammatory response

and (iv) reduction of the risk of tissue damage during an immune

response [32, 57–68]. B-1a cell-derived NAAbs may also be

involved in the maintenance and regulation of the commensal

microbiota [69] and contribute to the enhancement of antigene-

specific responses e.g. they can stimulate and regulate T-cell re-

sponses [51] as well as modulate specific T-cell functions like

cytokine secretion and chemotaxis in certain allograft contexts

[70].

NAAbB-1a can also protect from AD development [71–73]. For

example, the abundance of IgM-NAAbB-1a generally correlates

negatively with the severity of systemic lupus erythematosus,

whereas the deficiency of IgM-NAAbB-1a can help accelerate this

disease [69, 74]. In addition, IgM-NAAbB-1a treatment reduces

atherosclerosis [75, 76]. In contrast, IgM-NAAbB-1a deficiency

may lead to atherosclerosis [77]. Last, mice that are deficient in

serum IgM-NAAbB-1a display an increased and pathological re-

sponse to self-components [77, 78]. The protective properties of

IgM autoAbs against autoimmunity may lie principally in their

ability to inhibit inflammatory responses by recognizing and

removing apoptotic cells [60]. NAAbB-1a may also protect from

autoimmunity by functionally masking antigenic epitopes [79].

By reducing the amount of unengaged antigen, this operation

would lessen the need for the AIS to mount a response.

FROM NAABB-1A TO THE ORIGIN OF THE AIS

The findings that are outlined above suggest that in addition to

acting as the first line of defense against pathogens, NAAbB-1a may

also be instrumental for the deployment of Abs against foreign

antigens [27, 80, 81]. These observations align with the accepted

view that IIS and AIS act synergistically to mediate host responses

to infection and tissue injury. They also hint that a system that has

spawned self-reactive Abs in the ancestor of jawed vertebrates

may have predated the emergence of a system of non-self target-

ing Abs, in a similar vein to previously proposed hypotheses

[37, 82–87]. Below, we elaborate further on this idea and put for-

ward a three-step evolutionary scenario for the origin of the AIS. In

this scenario, the proliferation of distinct Ig-domain containing

receptors facilitated the birth (or the amplification) of a regulatory
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system that controlled the interactions between these Ab-like re-

ceptors and their ligand(s) in early vertebrates. Measures for guar-

anteeing or optimizing the clearance of antigen-bound Abs

evolved subsequently and linked the existing innate immunity

circuit to the emergent system of Ab-like proteins. Lastly, the

AIS emerged from the system producing non-self-reactive Abs.

Although targeting non-self-antigens, the AIS could (and con-

tinues to) target occasionally self-components, as testimony to

its evolutionary origins. Population-genetic environments where

the efficiency of natural selection is reduced may have facilitated

these evolutionary innovations by favoring the accumulation of

mildly deleterious mutations and the preservation of gene

duplicates [88].

THE BIRTH OF AN IMMUNE REGULATORY SYSTEM

Genes homologous to recombinases that are essential for adap-

tive immunity (RAG1 and RAG2) were present well before the

emergence of the AIS-bearing jawed vertebrates [89]. It is likely

then that RAG1 and RAG2were domesticated for BCR and/or TCR

assembly in primordial lymphocytes sometime after the split be-

tween Hyperoartia (e.g. lamprey) and Gnathostomata (jawed

vertebrates).

With the RAG genes in place, Ig genes that contained a set of

primordial V, (D) and J-like modules may have yielded distinct Ab-

like proteins. Some of these Ab-like proteins would have binding

affinity toward self-components (e.g. cytokines), as many modern

Ig domain-containing proteins do. This polyreactivity may have

facilitated the emergence of a powerful regulatory system. As is

exquisitely illustrated in immune network theory [11–13], Abs can

also function as antigens and as such they may stimulate the

production of second-class Abs—where ‘class’ refers to a set of

Abs with a certain idiotype—if some threshold concentration is

exceeded. Second-class Abs could in turn stimulate the produc-

tion of third-class Abs and so on. In this chain of reaction Ig do-

main-containing proteins reversibly bind and thereby block each

other. Thus, even if present, Ab-like proteins may operate at min-

imal levels or may lie dormant, leaving their ligands unbound. In

cases when e.g. third-class Abs are stimulated and block second-

class Abs, first class Abs could efficiently respond to their ligands

[11–13]. It is worth noting that if we consider how widespread Ig

domain-containing proteins are in nature, it is possible that a

similar regulatory system predated the evolution of jawed

vertebrates.

The Ab-like proteins that are described above would have fea-

tures found in existing NAAbB-1a. Moreover, the expression of a

diverse repertoire of Ab-like proteins may enable a broad range of

interactions between Abs and self-components and provokes the

emergence (or the amplification) of a system that regulates these

interactions.

LINKING ANTIBODY RESPONSE TO
INNATE IMMUNITY

The emergence (or the optimization) of a system for the clearance

of Abs-antigen complexes would bring us a step further toward the

modern AIS. In enabling the removal of Abs that are bound to e.g.

remnants of apoptotic or necrotic cells or conserved patterns of

commensal microbiota, this system would link the components of

the IIS to the low-affinity Abs-producing system. B-1 (but not B-2)

cells are able to phagocytose large particles and bacteria, though

not as extensively as macrophages [90–92]. Thus, a clearance sys-

tem might have already been in place. Alternatively, Fc receptors,

which interact with the constant region of Abs and appeared at the

base of the bony fishes [93], might have played a significant role in

this clearance system.

LINKING THE PRODUCTION OF NAABS TO THE
PRODUCTION OF ANTIGEN-SPECIFIC ABS

The interactions described thus far involve Ab-like proteins that

(i) are partly self-reactive, (ii) are encoded by germ-line,

unmutated or minimally mutated V(D)J gene sequences and

(iii) have low affinity for their antigens. We postulate that the

regulated production of non-self-reactive and high-affinity Abs

emerged from this immune environment, subsequent to the

whole genome duplication (WGD) that occurred before the radi-

ation of jawed vertebrates [15, 94–97] (Fig. 1). The process of

somatic hypermutation by the evolution of activation-induced

cytidine deaminase from RNA-editing enzymes, affinity matur-

ation and clonal selection would be paramount for achieving

higher levels of Ab affinity. Post-WGD neofunctionalization of

one or both copies of duplicated genes and/or events of

subfunctionalization (i.e. partition of functions between copies

of duplicated genes) could have facilitated the emergence of

these AIS components, even in the absence of adaptive benefits

[98–100]. This hypothetical scenario predicts that members of

duplicate-gene pairs might display distinct patterns of expression

in B-1a and B-2 cells. Although waiting for this prediction to be

formally tested, we note that several mouse genes with duplicated

copies [101] are expressed differentially between B-1 cells and B-2

cells [102].

A central idea of our hypothesis is that SR-AbB-2 and non-self-

recognizing Abs were evolutionarily generated not only from but

also ‘at the expense’ of NAAbB-1a. This implies that the production

of high-affinity non-self-recognizing Abs was (and might still be)

facilitated in an environment where the production/activity of

NAAbB-1a is reduced, i.e. an environment where the host suffers

from a lowered ability to avoid autoimmunity and where the first

line of defense against infections is weakened. This idea is con-

sistent with observed hyperactivity of the AIS in diseases with

autoimmune components [103] and with the observation that
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autoimmunity—a condition that can result from a low titer of

NAAbB-1a—has enhancing effects on the fine-tuning of the adap-

tive immune responses [104]. Furthermore, this idea predicts that

the enhanced production/activity of NAAbB-1a, e.g. in response to

relatively heavy pathogen loads, protects from autoimmunity and

inhibits or delays the production of SR-AbB-2 and antigen-specific

Abs (Fig. 2). These predictions align well with the hygiene hypoth-

esis, which posits that the lowered exposure to infectious agents

(particularly in early life) is the basis for increasing incidence of

both autoimmune and allergic diseases [14, 105–107].

Noteworthy, the mechanisms underlying the hygiene hypothesis

center on the antagonizing effects of T-helper cells (Th1/Th17 and

Th2) [108] The theoretical framework that we propose support and

further extend these mechanisms, given the role that B1-cells play

in stimulating and regulating T-cell responses [109].

Which factors might have determined the suggested reduction

in production/activity of early NAAbB-1a in the ancestor of jawed

vertebrates? One factor could be gene duplication, which may be

coupled with a substantial reduction in expression level of each

copy compared to the progenitor gene [110, 111]. Another factor

could be a population-genetic environment where the power of

random genetic drift exceeds the power of selection. In this envir-

onment mildly deleterious mutations, which can fix in small popu-

lations and might be selected secondarily [112], are expected to

accumulate and duplicated genes to be preserved more easily by

subfunctionalization [98, 99]. These accrued mutations could

have weakened the existing IIS—including the system that

produced natural autoantibody-like receptors —thereby imposing

selection pressures for novel defense mechanisms with fitness

benefits that outweigh the costs of inadequate immune re-

sponses. These fitness effects are compatible with empirical

studies in sheep, chicken, and human where autoantibody pro-

duction—whether physiological or reflecting antibody respon-

siveness is difficult to conclude firmly—has been found to scale

positively with survival [113–118]. In sum, it is conceivable that a

drift-dominated population-genetic environment in the ancestor

of jawed vertebrates could have facilitated (i) the preservation of

duplicated genes, (ii) the weakening of the mechanisms that con-

trol self-recognition and/or regulated the production/activity of

NAAb-like receptors and (iii) the emergence of the somatic hyper

mutation machinery.

SELF- AND NON-SELF-RECOGNITION, THROUGH
EVOLUTIONARY TIME

The arguments laid out until this point provide a reasonable and

expandable framework which explains how the AIS could have

gradually emerged in the ancestor of jawed vertebrates and may

continue to operate today. Arguments that support or challenge

aspects of our hypothesis may be established through an ex-

tended examination of existing accredited immunological

models. Natural Abs can recognize self, altered self, and foreign

antigens. This ability might be testimony to the proposed evolu-

tionary link between self-reactivity and adaptive immunity. Self-

antigens can be altered (e.g. due to oxidative stress [119]) and

become immunogenic. Additionally, many natural Abs that react

with altered self-antigen recognize epitopes expressed on patho-

gens. In this context, an examination of the altered-self antigen

Figure 1. Hypothesis for the origin of the AIS in jawed vertebrates.

Subsequent to the whole genome duplication that predated the radiation of

jawed vertebrates (blue arrow), the AIS—a non-self-recognition system—

gradually emerged from a regulated self-recognition system that is presently

part of the IIS and produces natural autoantibodies via B-1a cells (NAAbB-1a). A

population-genetic environment wherein the power of random genetic drift

exceeds the power of selection might have favored the emergence of the AIS.

NAAbB-1a are physiologically produced; they contribute to tissue homeostasis

and protect from pathological self-reactivity. SR-AbB-2 are the AIS’s counter-

part of NAAbB-1a. They can cause pathological self-reactivity and are normally

counter-selected during the production of B-2 cell-derived non-self-targeting

Abs (non-Self AbsB-2). It still remains unclear whether pathological self-

reacting Abs result from misregulated B-1a cells, B-2 cells or subgroups

thereof. Furthermore, the primary source of pathological self-reacting Abs

may vary depending upon the types of AD

Figure 2. We propose (i) that SR-AbB-2 alongside non-Self AbsB-2 were origin-

ally produced from NAAbB-1a-like receptors and (ii) that the present-day pro-

duction of B2-cell-derived Abs is enhanced in environments where NAAbB-1a’

production—chiefly taking place during fetal/neonatal period—and/or activ-

ity are reduced. Acting as first line of defense, the production of NAAbB-1a is

enhanced in environments with a high incidence of infection. This excess of

NAAbB-1a protects from ADs whereas the limited production of SR-AbB-2

reduces the risk for ADs. In environments with a low incidence of infection

the relative excess of SR-AbB-2 alongside the reduction of NAAbB-1a enhance

the risk of developing ADs
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model [120, 121] might provide valuable insight on the early evo-

lution of Abs and the regulation of self and non-self antigen

recognition.

Insights offered by appropriate systems may be leveraged to

further assess other aspects of our hypothesis. Pregnancy may be

one such system. Given that pregnancy evolved much later than

the AIS (probably <�250 My ago [122, 123]), it may provide min-

imal new knowledge about the early evolution of AIS. However,

because of the intimate relationship between pregnancy and im-

munity, pregnancy presents itself as a powerful system for

scrutinizing the hypothesis that the present-day production of

high-affinity non-self-recognizing Abs and the production/activity

of NAAbB-1a are interconnected. Because the genomes of the pla-

centa and fetus are partially of paternal origin, immune toler-

ance—which bears on the responses to self- and non-self

antigens [124]—is absolutely required for normal pregnancy to

unfold. When these peculiar immunological circumstances are

in place, pregnancy provides a natural laboratory for studying

the relationships between IIS and AIS as well as these systems’

plasticity. Given that the AIS response is weakened during preg-

nancy whereas the IIS response is boosted [125–130], our hypoth-

esis specifically predicts that the production/activity of NAAbB-1a

is enhanced during the course of a normal pregnancy, in line with

previous studies [128, 131]. We expect that this relative excess of

NAAbB-1a (i) mitigates autoimmunity and (ii) inhibits/delays the

production/activity of non-self-recognizing Abs and hence of po-

tentially harmful SR-AbB-2. Indeed, ADs may regress during nor-

mal pregnancy only to reappear in the post-partum phase [132].

For example, rheumatoid arthritis and multiple sclerosis often

attenuate during normal pregnancy, only to re-aggravate after

childbirth [133–136]. Pregnant women, on the other hand, seem

to be relatively more susceptible to some infectious diseases,

such as listeriosis and influenza [137–139]. We also expect that

in women with an abnormally strong adaptive immune response

against fetal and placental antigens (e.g. in egg-donation

pregnancies [140])—note that in these conditions our hypothesis

predicts an intensified production of SR-AbB-2 alongside a lower-

than-normal production/activity of NAAbB-1a—the likelihood of

pregnancy-related pathologies with autoimmune components,

such as recurrent pregnancy loss, preeclampsia and preterm de-

livery, should increase as is indeed observed [141–145]. Finally,

because physiological high levels of progesterone may inhibit the

antigen-presentation function of B cells, an aspect that should

facilitate implantation and pregnancy [146], we expect that artifi-

cially enhancing the levels of progesterone in the maternal body

could dually hinder the adaptive immune response [146] and help

treat high-risk pregnancies with autoimmune components, in line

with previous observations [147–150]. In sum, the maternal im-

mune system does not simply shut down to promote the tolerance

of the fetus. Rather, it adopts a peculiar state. In this new state, the

relationships between the self- and non-self-recognition systems

are largely consistent with the theoretical framework that we

propose.

A FRAMEWORK FOR TESTABLE PREDICTIONS

Our hypothesis provides other testable predictions, some of

which (listed below) may provide a mechanistic explanation of a

number of observations.

First, intravenous immunoglobulins (IVIg) are commercial sol-

uble preparations obtained from human sera pooled from a broad

number of healthy donors. B-1a cell-derived NAAbs constitute a

considerable part of Ig in humans and are part of these prepar-

ations [151]. Provided that NAAbB-1a truly down-regulate the pro-

duction of high-affinity antigen-specific Abs (and thus SR-AbB-2),

IVIg should help counter inflammation and autoimmune dis-

orders. In line with this idea, the therapeutic preparation of IVIg

often has positive effects on individuals who suffer from auto-

immunity [152]. With regard to semi alloimmunity (i.e. the condi-

tion of the fetus presenting only partially foreign (paternal)

antigens) and pregnancy, we may further expect that experimental

protocols based on IVIg application alleviate diseases with pos-

sible autoimmune components such as recurrent abortion, pre-

term delivery and preeclampsia [153].

Second, if B-1a cell-derived NAAbs have a homeostatic function

that predates the emergence of the AIS, homeostatic perturb-

ations might be detected in Ig-deficient jawed vertebrates such

as severe combined immunodeficiency (SCID) mice. The altered

expression of cytokines in the serum of SCID-mice compared with

wild-type mice, for example, may be one of these perturbations

[154]. In contrast, the loss of somatic hypermutation in an other-

wise functional AIS background should not exhibit such homeo-

static alterations. Additionally, specific alterations of the immune

repertoire in animals such as the axolotl, a salamander that has a

diverse antibody repertoire but fails to mount efficient adaptive

immune responses [155], could shed light on alternative functions

of NAAbB-1a.

Third and last, it has been found that dysbiosis may activate

the AIS [69]. Based on our hypothesis, this finding implies that

the production/activity of NAAbB-1a may decrease in hosts with

altered microbiota. Thus, dysbiosis might increase the risk for

developing ADs. Enhancing the production/activity of NAAbB-1a

in hosts with altered microbiota should offset the hyperactive

AIS and ward off or mitigate existing ADs. The administration of

probiotics, which are proposed to elevate the production of

NAAbB-1a [156], might be beneficial in this regard. Likewise the

exposure to sufficiently large pathogen loads should, in theory,

also be advantageous. This latter prediction is in line with the

rationale for and the proposed beneficial effects of the helminth

therapy [157].
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AN EXPANDABLE HYPOTHESIS

The conceptual framework summarized here makes fair assump-

tions about how current data and theories can be interpreted and

integrated coherently towards a better understanding of AIS evo-

lution. We believe that our propositions may be useful to further

expand current views on the origins and the evolution of the innate

and AISs. Further efforts are still required, however, to account for

the role of other immunological players such as TCRs and the

MHC, which is involved in antigen presentation and regulation

of B- and T-cell activity during immune responses, or Ig-isotypes

(IgM, IgG, IgA etc.), whose different roles at specific life stages

have not been extensively discussed here. Self-reactive Abs may be

beneficial, merely decorative or pathogenic and self-reactivity

needs to be considered through the prism of functional outcome.

In addition, ADs are often a compilation of symptoms with po-

tentially different ontologies, which makes it difficult to ascribe

effects of a particular molecular agent on a specific disease.

Finally, published observations largely stem from studies of mam-

mals, with little knowledge yielded on other clades of vertebrates.

All these knowledge gaps and limitations will be at least partly

overcome in the future and new developments would serve to

assess the validity of our hypothesis.

CONCLUSIONS

We have presented a hypothesis for the origins and the evolution

of the AIS in jawed vertebrates, where a self-recognition system

alongside mechanisms that prevent pathogenic self-reactivity and

do not elicit T-dependent responses predated and were instru-

mental for the emergence of a non-self-recognition system. Our

hypothesis leverages and extends previous arguments and experi-

mental observations concerning a number of evolutionary and

medical aspects that have been published in the past few decades.

In addition to making specific predictions, our hypothesis coher-

ently integrates propositions about the evolutionary origin of the

AIS with (i) current knowledge about NAAbs, (ii) concepts drawn

from the ‘immune network’ and the ‘immunological homunculus’

theories, (iii) the 2 R hypothesis, (iv) mechanisms of gene dupli-

cate preservation, (v) the ‘hygiene hypothesis’ and (vi) clinical

observations and characteristics of pregnancy at the same time.

Our simple hypothesis reconciles and bridges experimental and

theoretical arguments that for long time have lived apart. It pro-

vides a framework for interpreting recent and less recent

observations and offers potentially useful guidelines for future

experiments.
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