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Chapter 1

Introduction

Financial time series exhibit certain characteristic empirical properties. These sty-

lized facts include volatility clustering, serial dependance and heavy tails. An exten-

sive literature on possible approaches to modeling these properties has emerged over

the past three decades. Two model classes have predominated, the Generalized Con-

ditional Autoregressive Heteroscedasticity (GARCH) and the Stochastic Volatility

(SV) - type models, both being subject to multivariate extensions. Such extensions

enable exploring the dependence structure of international financial markets by ana-

lyzing the volatility co-movements and by identifying the channels through which

volatility transmission occur.

However, more recently, in addition to the advanced econometric techniques,

an important role has been played by the increasing availability of computational

power. Those developments have made the Bayesian statistical methods generally

applicable to complex financial problems, such as volatility modeling and density

forecasting under (parameter-) estimation uncertainty.

When it comes to financial market forecasting, the distributional assumptions

are of a considerable significance to prediction accuracy. In order to deal with the
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non-Gaussian behavior found in financial returns, many alternative distributional

assumptions, such as the Student’s t-distribution, the generalized hyperbolic skew t-

distribution, and the finite mixture of normals, have been proposed. Yet, all of these

distribution choices remain parametric and therefore restricted by the respective

parameters and properties. In this regard, a new class of semiparametric models

have been introduced by combining the existing literature on time-varying volatility

models with the advantages provided by Bayesian nonparametric modeling. The

resulting modeling framework features a GARCH- or an SV-type specification for

the dynamic volatility process and a flexible nonparametric distribution for the error

term. The latter is an infinite mixture of Gaussian distributions with weights and

component parameters constructed by means of a Dirichlet process mixture (DPM).

The Dirichlet process mixture (DPM) prior is a nonparametric Bayesian prior put

on an infinite dimensional parameter space, which allows the model to adapt to the

complexity of the data, therefore constituting an “infinite capacity model” (Kalli

et al. (2013)).

This thesis explores both the methodological and the empirical aspect of certain

Bayesian nonparametric methods applied to time-varying financial volatility mo-

deling in the univariate and the multivariate cases. The related issues involve not

only designing an appropriate model structure, which provides the desired modeling

flexibility, but also accordingly constructing an efficient sampling algorithm. The

DPM-based approach allows flexible in-sample estimation and also provides density

forecasts for univariate and high-dimensional problems. The flexible framework can

be applied to many high-dimensional financial market modeling aspects, such as

analyzing volatility co-movements and patterns of volatility transmission.
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The thesis comprises three main contributions, in which the complexity of the

econometric problem increases gradually, by extending the univariate model to a

multivariate one with respect to the volatility framework, as well as to the dimension

of the Dirichlet process mixture adopted for modeling the innovation distribution.

The thesis is organized as follows. In Chapter 2, we propose a new and highly

flexible Bayesian sampling algorithm for non-linear state-space models under non-

parametric distributions. The estimation framework combines a particle filtering

and smoothing algorithm for the latent volatility process with a Dirichlet process

mixture model for the error term of the observable variables. In particular, we

overcome the problem of constraining the models by transformations or the need

for conjugate distributions. We use the Chinese restaurant representation of the

Dirichlet process mixture, which allows for a parsimonious and generally applicable

sampling algorithm. Thus, our estimation algorithm combines a pseudo-marginal

Metropolis-Hastings scheme with a marginalized hierarchical semiparametric model.

We test our approach for several nested model specifications using simulated data

and provide density forecasts. Furthermore, we carry out a real data example using

S&P 500 returns.

In Chapter 3, we establish a Cholesky-type multivariate stochastic volatility es-

timation framework, in which we let the innovation vector follow a Dirichlet process

mixture, thus enabling us to model highly flexible return distributions. The Cholesky

decomposition allows parallel univariate process modeling and creates potential for

estimating highly dimensional specifications. We use Markov Chain Monte Carlo

methods for posterior simulation and predictive density computation. We apply

our framework to a five-dimensional stock-return data set and analyze international

volatility co-movements among the largest stock markets.
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In the Chapter 4, we investigate the volatility transmission in bond, foreign

exchange and equity markets, by constructing a global trading day divided into three

trading zones and revising the concepts of heat wave and meteor shower effects. In

particular, we investigate whether volatility is determined by previous-day volatility

in the same region, or rather by volatility in the geographically preceding region. The

empirical analysis involves examining the volatility spillovers among trading zones

and includes different measures of realized volatility as an explanatory variable. The

resulting multivariate GARCH framework is estimated by means of a sophisticated,

nonparametric Bayesian approach, designed to deal with the forms of asymmetry

and heavy tails found in financial time series. For this purpose, we adopt a Dirichlet

process mixture model for the return innovations and parametrically estimate the

dynamics of the multivariate volatility.

Chapter 5 summarizes the overall contributions and results of the thesis and

outlines ideas for future research. Finally, the Appendix provides details on several

methodological aspects discussed in Chapters 2-3.
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Chapter 2

Semiparametric Bayesian

forecasting with an application to

stochastic volatility

2.1 Introduction

Time-varying volatility is a well known stylized fact of financial returns and thus not

only its modeling, but especially its estimation and prediction, are of main interest

for practitioners and researchers. In particular, Stochastic Volatility (SV) models

are widely popular, even though direct estimation by classical Maximum-Likelihood

is often infeasible. Nevertheless, Markov Chain Monte Carlo (MCMC) methods,

in combination with a sampling algorithm for the latent volatility, as proposed by

Jacquier et al. (2004) or Kim et al. (1998), provide a straightforward solution.1 More

recently, Jensen and Maheu (2010) added a further degree of freedom to SV models

by augmenting the models with nonparametric distributions based on infinite mix-

tures. Thus, in addition to the stochastic latent volatility, the error term distribution

is highly flexible, which allows, in combination with a Bayesian estimation approach,

1See Broto and Ruiz (2004) for a survey.
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to learn about the type of distribution from the data. Quite naturally, this enor-

mous flexibility comes at the cost of high complexity as the resulting distributions

are possibly non-standard.

The main literature in the field, such as Jensen and Maheu (2010), Delatola and

Griffin (2011), Jensen and Maheu (2014), Delatola and Griffin (2013) or Virbick-

aitė et al. (2014), circumvents this challenge by restricting the model to conjugate

distributions and/or transformations of the model equations, but does not offer

a generalized solution. Thus, the intended flexibility of a nonparametric model

with non-linear effects of stochastic volatility is constrained by analytical feasibility.

We argue that this strongly contradicts the motivation of nonparametric/non-linear

models. We suggest a new, more general estimation algorithm without artificially

pruning the model’s dynamics and flexibility.

The point of departure for the present paper is the state-space representation

of the (nonparametric) SV model. As such, an SV model is comparable, for exam-

ple, to a non-linear dynamic stochastic general equilibrium (DSGE) model.2 For

the latter, non-conjugacy and non-standard distributions are widely accepted, and

estimation is usually conducted by means of the Metropolis-Hastings (MH) algo-

rithm and particle filter approximations of the likelihood (Fernández-Villaverde and

Rubio-Ramı́rez, 2005). We adopt the same approach and develop our sampling al-

gorithm on an abstract level, using generic distributions without requiring specific

distributional assumptions. This allows us to present a modular sampling algo-

rithm which nests nonparametric SV, DSGE, classical SV or even simpler models.

Moreover, our presentation is straightforward and strips off the aura of mystery

which sometimes surrounds Bayesian nonparametric models. In particular, we use

2See Flury and Shephard (2011) for an estimation approach to both model types.
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the Chinese restaurant process (CRP) representation of the DPM, which enables an

attractive visual representation of the sampling steps.

In our simulation exercises, we show that the new algorithm is highly flexible,

reliable and straightforward to apply for several nested model specifications. We

also provide a real data example using the semiparametric stochastic volatility of

Jensen and Maheu (2010) for S&P 500 data. Furthermore, we demonstrate that our

algorithm provides an intuitive way of constructing density forecasts, based on the

posterior distributions.

The remainder of the chapter is as follows. Section 2.2 introduces the general

setting and preliminary concepts, Section 2.3 presents the sampling algorithm and

Section 2.4, an application to the semiparametric stochastic volatility model using

simulated and real data. Section 2.5 concludes.

2.2 General setting

2.2.1 Non-linear state-space model

In what follows, we consider an observable variable

yt = g(st,θ, εt), εt
iid∼ G, (2.1)

where the latent state variable st follows the transition equation

st = f(st−1,θ, ηt), ηt
iid∼ F . (2.2)

Furthermore, g(·) and f(·) are potentially non-linear functions, θ is a parameter

vector and G and F are continuous random distributions. For parsimony, we work

on one-dimensional yt and st, but the above representation applies to multivariate
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variables as well. Note that a parametric assumption on G and F yields the DSGE

model case, and a nonparametric assumption on G yields the semiparametric SV

model case, on which we focus.

2.2.2 Dirichlet process mixture

The Dirichlet process mixture (DPM) represents the distribution of a random vari-

able xt as an infinite mixture of continuous distributions, for which the mixture

component parameters come from a discrete distribution G. In turn, G is con-

structed from the Dirichlet process prior DP(α,G0) (Ferguson (1973)), where α is

the concentration parameter and G0 the base distribution of the mixture compo-

nent parameters μ̃t and σ̃t, which we parameterize as a Normal N (·) and Gamma

distribution Γ(·), respectively. Throughout Chapter 2, we use mixtures of normals,

such that the component parameters are the expected value μ̃t and the standard

deviation σ̃t. Following the literature, the hierarchical representation is

xt|(μ̃t, σ̃2
t ) ∼ N (μ̃t, σ̃

2
t ), (2.3)

(μ̃t, σ̃
2
t )|G iid∼ G, (2.4)

G|G0, α ∼ DP(G0, α), (2.5)

G0(μ̃t, σ̃
2
t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N (m0, v

2
0)

Γ(a0, b0)

, (2.6)

where a0, b0, m0 and v0 are hyperparameters.
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2.2.3 Chinese Restaurant Process (CRP)

Our estimation algorithm is based on the CRP representation of the DPM, which

represents the mixture components as tables in a restaurant, the component pa-

rameters as the location inside the restaurant and observations yt (t = 1, . . . , T ) as

customers entering the restaurant.3 Before introducing the CRP in more detail, we

clarify the notation in order to avoid ambiguity.

Let zt be a label denoting which of the k ∈ {1, 2, . . . ,∞} tables (components)

a customer (observation) yt is assigned to and zt = k if customer yt sits at table k.

Furthermore, let ck be the number of customers sitting at table k in the restaurant

and define the nonparametric set φk = {μk, σk}, which contains the parameters of

component k. Thus, we have μ̃t = μzt and σ̃t = σzt . Given this notation, the CRP

can be summarized in two simple steps:

1. For t = 1:

The first customer y1 sits at the first table with probability 1. Thus we have

z1 = 1. The parameters of the first component, indexed by k = 1, are sampled

from the base distribution, i.e. φ1 ∼ G0.

2. For t = 2, . . . , T :

The t-th customer sits at any of the occupied tables k ∈ {1, . . . , n} with

probability ∝ ck or at a non-occupied table with probability ∝ α. Whenever

a new table is chosen, indexed by n + 1, sample φn+1 ∼ G0. In particular, it

holds that

P (zt+1 = k|z1:t, α) = ck
t+ α

,

3Alternative representations are the stick-breaking representation (Sethuraman, 1994) or the closely
related Pólya urn scheme (Blackwell and MacQueen, 1973). An overview is available in Teh (2011).
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P (zt+1 = n+ 1|z1:t, α) = α

t+ α
, (2.7)

where z1:t = {z1, . . . , zt}.

Note that the number of possible tables is unrestricted and the corresponding density

is

p(zt+1|z1:t, α) = ck
t+ a

δ(zt+1 = k) +
α

t+ a
δ(zt+1 = n+ 1),

where δ(·) is the Dirac delta function 4. Therefore, the model capacity in terms

of the parameter space is infinite. Nevertheless, the number of occupied tables

is constrained by n ≤ T . We refer to n as the number of active tables or non-

neglectable components. Note that the process outlined above exhibits the typical

rich-gets-richer property, i.e. clustering of the customers. Furthermore, as the

probability of creating a new table is proportional to α, a small (large) value of α

leads to fewer (more) non-empty components. Thus, the value of the concentration

parameter α is of major importance. For that reason, our estimation approach

additionally imposes a hyperprior on α, in order to achieve higher flexibility. The

likelihood of the indicators P (z1:T |α) can be decomposed as

P (z1:T |α) = P (zT |z1:T−1, α)P (zT−1|z1:T−2, α) . . . P (z2|z1, α)

=
T−1∏
i=1

P (zT+1−i|z1:T−i, α). (2.8)

4Here, the Dirac delta function is used as an indicator function, i.e. given the statement A, we

define δ(A) ≡
{
1 if A is true,

0 else.



11

Essentially, using the CRP, we study the marginalized hierarchical semiparametric

model

xt|(μ̃t, σ̃2
t ) ∼ N (μ̃t, σ̃

2
t ),

({μ̃1, σ̃
2
1}, . . . , {μ̃T , σ̃2

T})|(G0, α) ∼ p({μ̃1, σ̃
2
1}, . . . , {μ̃T , σ̃2

T}|G0, α),

G0(μ̃t, σ̃
2
t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N (m0, v

2
0)

Γ(a0, b0)

,

where p({μ̃1, σ̃
2
1}, . . . , {μ̃T , σ̃2

T}|G0, α) is the joint density of the component para-

meters constructed by the CRP. Therefore, recall that the CRP with indicators z1:T

and component parameters φ1:n straightforwardly implies the conditional density

p({μ̃T , σ̃2
T}|{μ̃1, σ̃

2
1}, . . . , {μ̃T−1, σ̃T−1}, G0, α) in closed form. Due to the exchange-

ability of {μ̃t, σ̃2
t } 5, this enables us to calculate conditional distributions for all other

t as well, and is thus the impetus for the Gibbs sampling approach, which we apply

in Section 2.3.1.1.

2.3 Bayesian inference

Let z−t denote the set of table assignments z1:T = {z1, z2, ..., zT} without assignment

zt, i.e. z−t = {z1, . . . , zt−1, zt+1, . . . , zT}, analogously φ1:n,−k the set of component

parameters φ1:n except for φk, i.e. φ1:n,−k = {φ1, . . . , φk−1, φk+1, . . . , φn}. Then,

{φk,φ1:n,−k,φn+1:∞} equals the full (infinite) parameter set φ1:∞. The objective is

to sample from the joint posterior density

p(z1:T ,φ1:∞,θ, α|y1:T ).

5For the main properties of the DPM, see e.g. Teh (2011).
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Our sampling approach extends Algorithm 5 of Neal (2000) to latent variables. In

contrast to Jensen and Maheu (2010) or Delatola and Griffin (2011), for example,

this imposes no restrictions on the distributions with regard to conjugacy. In par-

ticular, we break the sampling algorithm down into four major steps:

(A) DPM,

(B) latent variables,

(C) parameters,

(D) hyperparameter,

where each step deals with several conditional posteriors in the tradition of Gibbs

blocking. We discuss each step in detail in the following sections.

2.3.1 Sampling algorithm

We initialize the algorithm by drawing from the priors of θ and α, simulating the

CRP, conditional on α, and subsequently running the particle smoothing algorithm

to obtain initial values for the latent variables.

2.3.1.1 Step (A): DPM

In order to obtain a posterior sample from the DPM, we require draws from the pos-

teriors of the table indicators z1:T and the infinite parameter set φ1:∞. In particular,

we use two Gibbs blocks, i.e. sampling from

A.1. p(z1:T |y1:T , s1:T ,φ1:∞,θ, α),

A.2. p(φ1:∞|y1:T , s1:T , z1:T ,θ, α).
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To sample the table indicators (Block A.1.) we use a version of Algorithm 5 from

Neal (2000). Given the states, we iteratively draw from

p(zt|z−t,y1:T , s1:T ,φ1:∞,θ, α)

∝ p(y1:T |zt, z−t, s1:T ,φ1:∞,θ, α)p(zt|z−t, s1:T ,φ1:∞,θ, α)

for all zt with t = 1, . . . , T using an MH algorithm with a proposal equal to the

prior. Thus, the acceptance probability reduces to

min

{
1,

p(y1:T |z̃t, z−t, s1:T ,φ1:∞,θ, α)

p(y1:T |zt, z−t, s1:T ,φ1:∞,θ, α)

}
, (2.9)

where z̃t denotes a candidate table indicator. Conditioned on φ1:∞, states s1:T

and table assignments z1:T , the required likelihood p(y1:T |zt, z−t, s1:T ,φ1:∞,θ, α) is

straightforward to calculate from Eq. (2.3).

The acceptance probability in (2.9) is valid, if the proposal z̃t is drawn from

the conditional p(zt|z−t, s1:T ,φ1:∞,θ, α). Noting that the latter distribution is by

construction independent of φ1:∞, s1:T and θ, this is equivalent to sampling from

P (zt|z−t, α). Via the CRP definition, we know that the distribution of the cluster

pattern is exchangeable, i.e. the current zt can be regarded as the last customer

entering the restaurant. Thus, a candidate table can be drawn from a multinomial

distribution, constructed from the probabilities given in Eq. (2.7). Hence, the

current customer re-enters the restaurant filled with the remaining T − 1 customers

and gets assigned either to a new or to an existing table. Denoting table counts,

excluding the current customer by ck,−t, the probabilities for sitting at one of the

occupied tables k = 1, . . . , n and opening a new table are given by

P (z̃t = k|z−t, α) = ck,−t
T − 1 + α

,
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P (z̃t = n+ 1|z−t, α) = α

T − 1 + α
,

respectively.

Block A.2. is designed to sample the infinite parameter set φ1:∞ from

p(φ1:∞|y1:T , s1:T , z1:T ,θ, α).

Any empty (non-active) tables can be neglected, since

p(y1:T |φ−k,1:n, φ̃k, s1:T , z1:T , α) = p(y1:T |φ−k,1:n,φn+1:∞, φ̃k, s1:T , z1:T , α),

i.e. a sample from the posterior of an empty table is obtained by simply drawing

from the base distribution G0. Thus, Block A.2. iterates through all active tables

k = 1, . . . , n and samples from

p(φk|y1:T , z1:T ,φ−k,θ, α) ∝ p(y1:T |φ1:n,−k, φk, s1:T , z1:T ,θ, α)G0(φk)

using a random walk MH step with acceptance probability

min

{
1,

p(y1:T |φ1:n,−k, φ̃k, s1:T , z1:T ,θ, α)G0(φ̃k)

p(y1:T |φ1:n,−k, φk, s1:T , z1:T ,θ, α)G0(φk)

}
.

In the Chinese Restaurant interpretation, this step can be regarded as moving

around the occupied tables within the restaurant.

2.3.1.2 Step (B): Latent variables

Step (B) samples from

p(s1:T |y1:T , z1:T ,φ1:∞,θ, α).
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In particular, we use a particle smoother approximation and draw from a multino-

mial distribution using the weights and particles from the particle smoother.

The particle filter proceeds in the spirit of Flury and Shephard (2011), see Herbst

and Schorfheide (2015) for details. The idea is to approximate all required densities

by a particle swarm defined as the set {st,wt}, in which st ∈ RNp , wt ∈ RNp and Np

is the number of particles. Iterating on forecasting and updating steps, the weights

wt enable us to track the evolution of the swarm over time. That is, we start with

a randomly drawn swarm with weights equal to unity. Subsequently, according to

Bayes’ Theorem, the weights are updated conditional on the observation yt. Thus,

the particle filter approximates the integral

p(yt|y1:t−1, z1:T ,φ1:∞,θ, α)

=

∫
p(yt|st,y1:t−1, z1:T ,φ1:∞,θ, α)p(st|y1:t−1, z1:T ,φ1:∞,θ, α)dst,

by taking the mean over the appropriate set of particle weights. Given these incre-

mental likelihoods, we are able to calculate an unbiased particle filter approximation

of the log-likelihood

log p(y1:T |z1:T ,φ1:∞,θ, α) =
T∑
t=1

log p(yt|z1:T ,φ1:∞,θ,y1:t−1, α).

Appendix A.3 provides details on the particle filter.

We use the reweighting particle smoother (Doucet et al. (2000)) to obtain draws

st|y1:T for all t. The idea behind the smoothing algorithm is to reweight the particles

by Bayes’ rule, in order to obtain an approximation of the smoothed distribution of

st, which is given by

p(st|y1:T ) = p(st+1|y1:t)

∫
p(st+1|st)p(st+1|y1:T )

p(st+1|y1:t)
dst+1.
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We refer to Särkkä (2013) for a textbook treatment.

2.3.1.3 Step (C): Parameters

The third block is a canonical random walk MH algorithm, which samples from

p(θ|y1:T , z1:T ,φ1:∞, α) ∝ p(y1:T |z1:T ,φ1:∞,θ, α)p(θ).

For brevity, we refer to Greenberg (2008) for details. Note that we integrate out

the latent states and use the incremental likelihoods generated by the particle filter

in order to obtain an unbiased approximation to the likelihood. That is, Step C

is equivalent to the pseudo-marginal method discussed for example, by Pitt et al.

(2012) or Doucet et al. (2015).

2.3.1.4 Step (D): Hyperparameter

The last step samples the concentration parameter α. Conditional on the indicators

z1:T , the posterior of α is independent of y1:T , φ1:∞ and θ, i.e.

p(α|y1:T , z1:T ,φ1:∞,θ) = p(α|z1:T ) ∝ p(z1:T |α)p(α),

implying that the concentration parameter depends exclusively on the clusters. Fur-

thermore, the CRP yields a straightforward rule for calculating the conditional den-

sity of the cluster pattern (likelihood of z1:T given α) from eq. (2.7), which we use

to calculate the acceptance probability

min

{
1,

p(z1:T |α̃)p(α̃)
p(z1:T |α)p(α)

}

for a random walk MH algorithm. Note that the indicators z1:T are labels, and

are exchangeable (label switching), as only the cluster pattern matters for the pro-
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bability p(z1:T |α). The issue of label switching in the context of Dirichlet process

mixtures is addressed in more detail by Jensen and Maheu (2010).

2.3.2 Savage-Dickey Density Ratio

Even though our approach deviates from the conjugate priors used in the literature,

we are able to calculate the Bayes factors in favor of nested models using the Savage-

Dickey density ratio (Dickey (1971)), as in Jensen and Maheu (2010). Nevertheless,

a slightly more general definition is required to preserve interpretability.

Consider the nested model specification,M2 : α = α0, for which the limiting cases

α0 = {0,∞} correspond to a normally distributed error term and a t-distributed

error term, respectively. Denoting the unrestricted model by M1, the Bayes factor

is

BF(α = α0) =
p(y1:T |M2)

p(y1:T |M1)

=
p(α = α0|y1:T ,M1)

p(α = α0)
,

i.e. the ratio of the posterior density of α to its prior, both evaluated at α0. As the

hypothesis of α0 → ∞ is not operational, we follow Jensen and Maheu (2010) and

define the transformed variable

u =
α

α + 1
,

and thus u → 1 (u → 0) as α → ∞ (α → 0). Note that u is the probability of a

second component. Using the transformation, it holds that

BF(u = u0) =
p(u = u0|y1:T ,M1)

p(u = u0)
.
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In contrast to Jensen and Maheu (2010), we do not impose the restriction p(u) =

U(0, 1), such that the approximation of the Savage-Dickey ratio by the posterior

draws of u has to be corrected using the prior density of u, which is calculated from

the prior of α using the transformation rule

p(u) =
p(α = u

1−u)

(1− u)2
.

Thereupon, plots of the rescaled posterior of u carry the same information as in

Jensen and Maheu (2010) and can be interpreted equivalently. In particular, the

value of the Savage-Dickey ratio can be interpreted as the Bayes factor in favor of

the nested models defined by the value on the abscissa.

2.3.3 Density forecast

In line with Jensen and Maheu (2010), we construct the posterior density forecast

p(yT+1|y1:T ) =

∫
p(yT+1|y1:T ,φ1:∞,θ, z1:T , sT+1, α)p(φ1:∞,θ, z1:T , α|y1:T ) dφ1:∞ dθ dsT+1 dz1:T ,

by means of the MCMC output

p̂(yT+1|y1:T ) =
1

N

N∑
i=1

pN (yT+1|y1:T ,φ
(i)
1:∞,θ(i), s

(i)
T+1, z

(i)
1:T+1, α

(i)).

Given draw i = 1, . . . , N from the posterior of φ1:∞, θ and z1:T , we run the particle

smoother and draw a latent state sT . Given sT , we can generate a draw sT+1 with

the transition Eq. (2.2). Subsequently, we iterate the CRP forward conditional on

z1:T , which either yields zT+1 ∈ z1:T or a new component with probability ∝ α. In

the latter case, we sample μ̃T+1 and σ̃2
T+1 from the base distribution G0. In either

case, given the drawn component parameters μ̃T+1 and σ̃2
T+1, it is straightforward

to draw yT+1 using the observation Eq. (2.1).
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2.3.4 Nested models

Besides the full semiparametric model, which we study in detail in Section 2.4, our

sampling algorithm nests several model specifications and is easily adapted.

If G is nonparametric, and st a constant, we can use Steps A, C and D without

the filtering step. This case corresponds to a standard DPM model, where, for

example, a density estimate is required (Walker (2007)). Appendix A.1 provides an

example.

If we assume a parametric distribution G and latent st, we only require the

particle filter in combination with Step C. This is, for example, the case in DSGE

models, see e.g. Fernández-Villaverde et al. (2016) and Herbst and Schorfheide

(2015), or standard SV models as shown in Appendix A.2.

2.4 Semiparametric stochastic volatility model

The semiparametric stochastic volatility model of Jensen and Maheu (2010) is a

suitable application of the sampling algorithm, as it incorporates the flexibility of

the nonparametric error term into a non-linear state-space representation of the

time-varying volatility model. In particular, the model is defined by

yt = exp(ht/2)εt, εt ∼ G, (2.10)

ht = ρht−1 + ηt, ηt ∼ N (0, σ2
η), (2.11)

where the log volatility ht is the latent state variable, G an unknown distribution and

θ = {ρ, ση}. Note that we set the unconditional expectation of the latent volatility

equal to zero, such that the level of the volatility is captured by the nonparametric

G, ensuring identification of the SV model.
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2.4.1 Simulated data

Prior to adopting our sampling algorithm to real-world data, we implement the

approach using simulated data. We simulate 1500 data points according to Eqs.

(2.10) and (2.11) with parameter values ρ = 0.95 and σ2
η = 0.04 and a mixture

distribution for the simulated error term given by

εt
iid∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N (0.2825, 0.3) with prob. 0.8,

N (−1.3000, 1.3) with prob. 0.2,

which scales the distribution of the observation to have zero mean, unit variance,

negative skewness (≈ −1.3) and high kurtosis (≈ 8). Figure 2.1 plots the simulated

data set.

Figure 2.1 about here

We run the algorithm for 15000 iterations after a burn-in phase of 5000 ite-

rations, using flat priors on the θ-parameters and parameterizing G0 as N (0, 3) ×

Gamma(1, 1) and p(α) = Gamma(1, 1).

Table 2.1 about here

Table 2.1 gives the posterior means and 90% Bayesian intervals. The posterior

mean of the persistence parameter ρ is quite close to the true value, while the

volatility ση of the log-volatility is slightly underestimated.

Figure 2.2 about here
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Figure 2.2 presents the graphical posterior summary. The trace plots in panels

(a) and (b) and the marginal posteriors in (c) and (d) indicate that the sampling

algorithm has converged to the posterior distribution. The Bayes factor (panel (e))

has the highest support at u = 0.8, which is in line with the underlying mixture

model. The log-predictive density (blue line) in panel (i) exhibits the desired proper-

ties, i.e. asymmetry and fat tails. Furthermore, the log-predictive density resembles

the true predictive density (dashed black line) with a slightly more pronounced right

tail, which we attribute to the smaller information set. Note that the true number

of mixture components is two, while the average number of components n is around

ten. However, most of these components are negligibly small, as can be seen in panel

(f).

2.4.2 Real-world data application

Given the encouraging results from the simulation exercise, we turn to a real data

application. We use daily S&P 500 percentage returns from 03.08.2009 to 01.05.2015

(depicted in Figure 2.3). The objective is to obtain a posterior sample of the para-

metric part of the model and to construct a one-step-ahead density forecast.

Figure 2.3 about here

Note that the returns exhibit the typical patterns, such as heteroscedasticity

and volatility clustering. Additionally, the descriptive statistics displayed in Table

2.2 provide further evidence of non-Gaussian behavior, in particular the negative

skewness and high kurtosis. Therefore, applying the highly flexible semiparametric

SV model is a natural choice.

Table 2.2 about here
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We run the algorithm for 15000 iterations with a burn-in phase of 5000 and

adopt the same priors as in Section 2.4.1.

The posterior means and the 90% CI are reported in Table 2.3 and the complete

posterior summary is shown in Figure 2.4. Panel (a) shows the trace plots of the θ-

parameters, ρ and ση, indicating the convergence of the chain. Subplots (c) and (d)

give the corresponding marginal posteriors, where the horizontal blue line indicates

the prior. The trajectory of the concentration parameter α can be seen in panel (b),

and the Bayes factor is depicted in panel (e). Note that the Bayes factors for u0 > 0.8

are zero, which supports the hypothesis of a mixture. Panel (f) plots the mixture

weights, and (g) and (h), the trajectories of the mixture parameters μk and σk.

Those plots do not have a direct interpretation related to the model and enable us

only to observe the characteristics of the DPM, such as the mixing pattern. Lastly,

panel (i) shows the posterior log-predictive density, which captures the high kurtosis

and the slight asymmetry observed from the raw data. In a sensitivity analysis (not

reported here) we ran the algorithm in eight parallel chains with random starting

values drawn from the priors, and confirmed that each chain produced comparable

results.

Table 2.3 about here

Figure 2.4 about here

2.5 Conclusion

We presented a new, flexible and general sampling algorithm for non-linear, non-

parametric state-space models. In particular, our framework integrates complex



23

methods, such as the DPM, into a simple and intuitive estimation algorithm. As

we do not rely on specific distributional assumptions or conjugacy of the priors, our

approach is the first to allow for a comparison of the influence of prior distributions

on nonparametric SV models. Furthermore, possible extensions include mixtures

of more complex distributions, such as Skew-Slash distributions and/or leverage

effects. We leave both extensions for future research.



Tables and Figures
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True Post. Mean CI (90%)

ρ 0.95 0.9546 (0.9000, 0.9821 )

σ2
η 0.04 0.0333 (0.0128, 0.0837 )

α - 1.2751 (0.4495, 2.4261 )

n - 9.9943 (5, 17 )

Table 2.1: Simulated data: Posterior medians and 90% CI in the parentheses.

Mean Median St. Dev. Skewness Kurtosis

0.0524 0.0736 0.9987 -0.4630 7.2468

Table 2.2: Descriptive statistics of the S&P 500 percentage returns

Post. Mean CI (90%)

ρ 0.9505 (0.9168, 0.9770 )

σ2
η 0.0849 (0.0404, 0.1564 )

α 1.1781 (0.3575, 2.3076 )

n 9.1611 (4, 16 )

Table 2.3: S&P Data: Posterior means and 90% CI
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Figure 2.1: Simulated return data plot (a) and histogram (b)
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Figure 2.2: Simulated semiparametric stochastic volatility model (Section 2.4.1): (a)

trace plots of ρ (in blue) and ση (in red), (b) trace plots of α, (c), (d) and (e) priors

(in blue) and marginal posteriors of ρ, ση and Bayes factors, (f) mixture weights, (g)

and (h) trajectories of the mixture parameters μk and σk, (i) posterior log-predictive

density (blue line) and true log-predictive density (dashed black line)
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Figure 2.3: S&P 500 price (a) and return data (b) and (c)



29

Figure 2.4: Real S&P 500 data application of the semiparametric stochastic volatility

model of Section 2.4: (a) trace plots of ρ (in blue) and ση (in red), (b) trace plots

of α, (c), (d) and (e) priors (in blue) and marginal posteriors of ρ, ση and Bayes

factors, (f) mixture weights, (g) and (h) trajectories of the mixture parameters μk

and σk, (i) posterior log-predictive density.
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Chapter 3

Bayesian semiparametric

multivariate stochastic volatility

with an application to

international volatility

co-movements

3.1 Introduction

Owing to increasingly integrated financial markets, both domestically and

internationally, volatility modeling and the analysis of volatility co-movements and

spillovers among multiple asset returns have become central topics for the last few

decades (inter alia Ehrmann et al., 2011; Clements et al., 2015). The two by far

the most popular volatility model classes discussed in the literature are the

generalized autoregressive conditional heteroscedasticity (GARCH-type) models

(Engle 1982; Bollerslev 1986) and the stochastic volatility (SV) models (Taylor,

1982; 1986), both in univariate and multivariate variants. Several in-depth

overview articles on multivariate GARCH (Bauwens et al., 2006) and SV models
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(Chib et al., 2009) document the enormous professional interest in the field. While

both model classes have distinct advantages on their own, a major characteristic of

SV specifications is that they model the unobserved volatility directly as a

separate stochastic process. This converts many SV specifications into

discrete-time versions of continuous-time models that are well-established in

finance theory, which constitutes the general attraction of SV models (Harvey

et al., 1994; Kim et al., 1998, Asai et al., 2006).

Irrespective of model selection issues, various stylized empirical properties of

asset returns have been discovered in real-world data, the most prominent being the

fat-tail (kurtotic) nature of the return distribution. Cont (2001) reports that ”... the

(unconditional) distribution of returns seems to display a power-law or Pareto-like

tail, with a tail index which is finite, higher than two and less than five for most

data sets studied. In particular, this excludes stable laws with infinite variance

and the normal distribution.”. Interestingly, the fat-tail property even persists af-

ter correcting the financial returns for volatility clustering (e.g. via GARCH-type

models), although to a less pronounced degree. Numerous attempts have been made

to account for the fat-tail property by replacing the Gaussianity assumption with

alternative parametric distributions for the return innovation in distinct volatility

models. Recently, however, several authors have proposed the nonparametric mode-

ling of return innovation as a Dirichlet process mixture (DPM) and emphasize the

flexibility increase associated with this approach, compared to using parametric

distributions. In particular, to date, the nonparametric DPM approach has been

applied successfully (i) to univariate SV modeling by Jensen and Maheu (2010,

2014) and Delatola and Griffin (2011, 2013), (ii) to univariate GARCH modeling
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by Ausin et al. (2014), and (iii) to multivariate GARCH modeling by Jensen and

Maheu (2013) and Virbickaitė et al. (2016).

In this chapter, we complete the above-described list by integrating the nonpara-

metric DPM approach into a specific class of multivariate SV models with time-

varying covariance components, based on the Cholesky decomposition of volatility

matrices (see e.g. Nakajima, 2017). We establish a Bayesian estimation procedure

for this semiparametric overall framework and study its predictive abilities by means

of predictive density evaluation. In the empirical part, we apply our econometric

setup to a five-country data set, in order to analyze volatility co-movements among

the most important stock markets worldwide.

The chapter is organized as follows. Section 3.2 reviews (i) the multivariate

SV model based on Cholesky decomposition, and (ii) the Dirichlet process mixture.

In Section 3.3, we present the Markov Chain Monte Carlo (MCMC) algorithm for

Bayesian inference. Section 3.4 presents essential probabilistic features of our econo-

metric framework. Section 3.5 contains the empirical application to daily returns

from the five largest international stock markets. Section 3.6 concludes.

3.2 Model development

3.2.1 Cholesky Multivariate Stochastic Volatility (MSV)

In order to introduce Cholesky MSV modeling, we follow the approach of Primiceri

(2005) and Nakajima (2017) and consider them×1 vector yt = (y1t, . . . , ymt)
′ of time

series observations at date t, which we assume to follow an m-dimensional multivari-

ate normal distribution with zero-expectation vector, E(yt) = 0, and time-varying



33

covariance matrix Cov(yt) = Ht, i.e. yt ∼ N(0,Ht). The Cholesky decomposition

of Ht is given by the factorization

AtHtA
′
t = ΣtΣt, (3.1)

where At is the lower triangular matrix of covariance components with 1s along

the principal diagonal and Σt is the diagonal matrix of the time-varying standard

deviations:

At =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

α21,t
. . . . . .

...

...
. . . . . . 0

αm1,t · · · αmm−1,t 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Σt = Σ′

t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1,t 0 · · · 0

0
. . . . . .

...

...
. . . . . . 0

0 · · · 0 σm,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.2)

Via the Eqs. (3.1) and (3.2), the standard Cholesky MSV model is then defined as

yt = A−1
t Σtεt, (3.3)

Ht = A−1
t ΣtΣt(A

−1
t )′, (3.4)

where the innovation vector εt is assumed to follow the m-dimensional multivariate

standard normal distribution N(0, I). Based on Eqs. (3.2) and (3.3), several alter-

native Cholesky MSV models have been proposed in the literature, by letting the

innovation vector εt follow distributions other than the multivariate standard nor-

mal, for example, the multivariate t (originally Harvey et al., 1994, in a non-Cholesky

MSV framework), and the multivariate generalized hyperbolic skew t distribution

(Nakajima, 2017). These specifications retain the essential Cholesky structure, but

make more realistic distributional assumptions, with the aim of more effectively

capturing some stylized facts of financial return data (like leverage effects and skew-
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ness). In the next section, we define a new class of Cholesky MSV models by letting

εt follow a Dirichlet process mixture, in order to account for excess kurtosis in the

data.

When it comes to Bayesian estimation of Cholesky MSV models with the time-

varying parameters from Eq. (3.2), we adopt the common methodology of reducing

the multivariate dynamics to univariate volatility processes that form a state-space

representation (Lopes et al., 2012; Nakajima, 2017). Specifically, we collect the

parameters from the matrix At in the [m(m − 1)/2] × 1 vector αt and define the

stochastic volatility from Σt in the m× 1 vector ht as follows:

αt = (α21,t, α31,t, α32,t, . . . , αm1,t, . . . , αmm−1,t)
′, (3.5)

ht = (log(σ2
1,t), . . . , log(σ

2
m,t))

′. (3.6)

(The parameters in αt are collected row by row from matrix At.) We then specify

the dynamics of the Cholesky parameters as the (stationary) AR(1) processes

αt = μα +Φα(αt−1 − μα) + et, (3.7)

ht = Φhht−1 + ηt, (3.8)⎛⎜⎝et

ηt

⎞⎟⎠ ∼ N

⎛⎜⎝0,

⎡⎢⎣Σe 0

0 Ση

⎤⎥⎦
⎞⎟⎠ , (3.9)

where we assume (i) that the matrices Φα,Φh,Σe,Ση are all diagonal, and (ii) that

the p = m(m− 1)/2 diagonal entries φα1, . . . , φαp of Φα and the m diagonal entries

φh1, . . . , φhm of Φh are all less than 1 in absolute value (stationarity conditions).1

1Note that we specify the AR(1) process for ht in Eq. (3.8) without an intercept term. This is due
to an identification problem that would arise in the case of a non-zero intercept; see Jensen and
Maheu (2010).
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3.2.2 Bayesian semiparametric Cholesky MSV

Finally, it remains to specify the distribution of the innovation vector εt from

Eq. (3.3), which we model as a nonparametric Dirichlet process mixture (DPM).

The DPM represents an infinite mixture model and constitutes an extremely flexi-

ble extension of finite mixture models (Jensen and Maheu, 2010, 2013; Kalli et al.,

2013; Maheu and Yang, 2016; Virbickaitė et al., 2016). In introducing the DPM,

we need to consider the Dirichlet process DP(c, G0), defined in terms of the base

distribution G0 and the concentration parameter c (Ferguson, 1973). In a Bayesian

context, the base distribution G0 represents the prior distribution of the component

parameters in the infinite mixture, while the parameter c, roughly speaking, con-

trols for the number of clusters in the mixture. A small value of c can be thought

of as a priori indicating a small number of components with relatively large weights

in the infinite mixture, whereas large values of c a priori assume many mixture

components, all with relatively small weights.

Overall, our semiparametric Cholesky MSV specification, in which we model the

m×m matrix Ht from Eq. (3.4) parametrically, while we let the distribution of the

innovation vector εt follow the nonparametric DPM as given in Eq. (3.17) below,

has the following hierarchical representation:

yt|Λt,At,Σt ∼ N(0,A−1
t ΣtΛ

−1
t Σt(A

−1
t )′), (3.10)

Ht = A−1
t ΣtΣt(A

′
t)

−1, (3.11)

Λt = diag(λ1,t, . . . , λm,t), (3.12)

λi,t
i.i.d.∼ Gi, (i = 1, . . . ,m) (3.13)

Gi|G0, ci ∼ DP(ci, G0), (3.14)

G0
d
= Gamma(ν0/2, s0/2), (3.15)
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ci ∼ Gamma(a0, b0), (3.16)

and where the elements of At and Σt collected in the vectors αt and ht follow the

AR(1) processes from Eqs. (3.7) and (3.8), respectively.2 In Eqs. (3.10) and (3.12),

them×mmatrixΛt is the precision matrix, which we assume to be diagonal, in order

to ensure identification of the model.3 We model the diagonal entries λ1,t, . . . , λm,t

as i.i.d. (with respect to t) and place a nonparametric Dirichlet process prior on the

distribution of λi,t; see Eqs. (3.13) and (3.14). As in Ausin et al. (2014), we specify

the base distribution G0 for the diagonal elements of Λt as the gamma distribution

in Eq. (3.15).

Following the line of argument in Jensen and Maheu (2013), we emphasize that

our hierarchical model (3.10) to (3.16) can be expressed in the Sethuraman (1994)

stick-breaking representation of the DPM mixture model. This allows us to write

the density function of each component of the innovation vector εt = (ε1t, . . . , εmt)
′

as an infinite scale-mixture of Gaussian distributions. That is, for i = 1, . . . ,m we

have

f(εit|ωi1, ωi2, . . . , li1, li2, . . .) =
∞∑
j=1

ωijfN
(
εit| 0, l−1

ij

)
, (3.17)

where fN
(·| 0, l−1

ij

)
denotes the density function of the univariate normal distribution

with zero mean and variance l−1
ij . The mixture parameters lij prior is given in

Eq. (3.15). It follows from the stick-breaking representation that the mixture weights

are distributed as ωi1 = υi1, ωij = (1 − υi1) · · · (1 − υij−1) · υij for j > 1, where

υi1, υi2, . . . are i.i.d. Beta(1, ci) (beta distribution with parameters 1 and ci). As

described above, the choice of the concentration parameter ci is crucial. In line

2In the hierarchical representation,
d
= means ’has the distribution’. The operator diag(λ1, . . . , λm)

creates the diagonal m×m matrix, say M, with Mii = λi and Mij = 0 for i 
= j (i, j = 1, . . . ,m).
3Prima facie, the diagonal structure of Λt might appear restrictive. However, as will become
evident below, it does not impose any severe restriction on model flexibility.
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with Escobar and West (1995), we assume a gamma hyper-prior distribution ci ∼

Gamma(a0, b0); see Eq. (3.16). We remark that each of the m mixtures in Eq. (3.17)

is related to its own specific concentration parameter ci.

For notational convenience, we collect the parameters from the parametric part

of our Cholesky MSV model in the vector Φ (i.e. Φ contains all parameters from

μα,Φα,Φh,Ση,Σe), and all parameters from the nonparametric specification in the

infinite dimensional entity Ω = {ωij, lij}i=1,...,m;j=1,2,...,∞. In cases where we need to

address all model parameters, we merge the partial parameter entities Φ and Ω into

the full-parameter vector Θ.

3.3 Bayesian inference

In this section, we present the samplers for the single parameter-components of the

Cholesky-Dirichlet-Process-Mixture-Multivariate-Stochastic-Volatility

(Cholesky-DPM-MSV) established in Section 3.2. In Section 3.3.1, we apply

Forward-Filtering-Backward-Sampling (FFBS) to the elements of the matrix At

(Carter and Kohn, 1994). In Section 3.3.2, we use the volatility sampler suggested

by Jacquier et al. (2002) for the volatility processes in the matrix Σt. For the

nonparametric DPM part of the Cholesky-MSV model, we apply the efficient

slice-sampler according to Walker (2007) and Kalli et al. (2011) in Section 3.3.3.
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3.3.1 Sampling the At-elements

In order to apply FFBS sampling to the elements of the At-matrix, we need to

embed the At-parameters in an appropriate state-space model. To this end, we first

rewrite Eq. (3.3) of our Cholesky-MSV-DPM model as

Atyt = Σtεt, (3.18)

where yt is observable, and At has the lower triangular form given in Eq. (3.2). As

in Primiceri (2005), we next define the m×m(m− 1)/2 matrix

Zt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · 0

−y1t 0 · · · 0

0 −y[1:2]t
. . . 0

...
. . . . . . 0

0 · · · 0 −y[1:m−1]t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.19)

in which y[1:i]t denotes the row vector (y1t, y2t, . . . , yit), so that Eq. (3.18) can be

written as

yt = Ztαt +Σtεt, (3.20)

where αt, defined in Eq. (3.5), follows the AR(1) process specified in Eq. (3.7).

Finally, we replace εt in Eq. (3.20) with Λ
−1/2
t ut, where ut is assumed to follow the

m dimensional multivariate standard normal distribution N(0, I), and obtain the

desired state-space model via Eqs. (3.20) and (3.7) with observation and transition

equations given by

yt = Ztαt +ΣtΛ
−1/2
t ut ≡ Ztαt + ξt, (3.21)

αt = μα +Φα(αt−1 − μα) + et, (3.22)
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with ξt ∼ N(0,Σξt), Σξt = ΣtΛ
−1
t Σt and⎛⎜⎝ξt

et

⎞⎟⎠ i.i.d.∼ N

⎛⎜⎝0,

⎡⎢⎣Σξt 0

0 Σe

⎤⎥⎦
⎞⎟⎠ . (3.23)

In order to apply FFBS based on Kalman filter recursion, we denote

the entire history of the vector yt and the matrices Zt,Σξt to date s

by y(s) ≡ {y0, . . . ,ys−1,ys}, Z(s) ≡ {Z0, . . . ,Zs−1,Zs} and

Σ
(s)
ξ ≡ {Σξ0 , . . . ,Σξs−1

,Σξs}, respectively, and let

αt|s = E(αt|y(s),Z(s),Σ
(s)
ξ ,Σe) (3.24)

Vt|s = Cov(αt|y(s),Z(s),Σ
(s)
ξ ,Σe). (3.25)

Furthermore, we define the p× 1 vector

cα ≡ (μα1(1− φα1), . . . , μαp(1− φαp))
′, (3.26)

where μα1, . . . , μαp are the elements of the vector μα and φα1, . . . , φαp the diagonal

entries of the matrix Φα as defined above. Then, given the starting values α0|0 and

V0|0, the standard Kalman filter can be summarized as follows:

αt|t−1 = cα +Φααt−1|t−1, (3.27)

Vt|t−1 = ΦαVt−1|t−1Φ
′
α +Σe, (3.28)

Kt = Vt|t−1Z
′
t(ZtVt|t−1Z

′
t +Σξt)

−1, (3.29)

αt|t = αt|t−1 +Kt(yt − Ztαt|t−1), (3.30)

Vt|t = Vt|t−1 −KtZtVt|t−1. (3.31)
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The final entities αT |T and VT |T contain the mean and variances of the normal

distribution, from which we draw αT . We use this value in the first step of the

backward recursion that yields αT−1|T and VT−1|T , which we then use to draw

αT−1. The backward recursion iterates from T − 1 to 0, and at date t, the update

step is given by

αt|t+1 = αt|t +Vt|tΦ′
αV

−1
t+1|t(αt+1 − cα −Φααt|t), (3.32)

Vt|t+1 = Vt|t −Vt|tΦ′
αV

−1
t+1|tΦαVt|t. (3.33)

As the prior distribution of the initial state α0|0 we use a multivariate normal dis-

tribution (see Section 3.5) and, as mentioned above, assume the covariance matrix

Σe to be diagonal with entries σ2
e1, . . . , σ

2
ep. Note that for each i = 1, . . . , p the

unconditional expectation of the αit-process is E(αit) = μαi =
cαi

1−φαi
, so that the

3p = 3m(m− 1)/2 parameters to be sampled are

cα1, . . . , cαp, φα1, . . . , φαp, σ
2
e1, . . . , σ

2
ep.

The sampling strategy for these parameters is readily obtained from standard

Bayesian estimation of the linear regression model. The prior distributions for the

cαi- (or μαi-) and φαi-parameters are normal distributions (where the prior for the

φαi-parameters have to be restricted to ensure the p stationarity conditions

|φαi| < 1), while the prior distribution for σ2
ei is chosen as the inverse Gamma

distribution. We sample the cαi- and φαi-parameters by the Metropolis-Hastings

(MH) algorithm, while the σ2
ei-parameters are sampled directly (given the

conjugate prior). More details are provided in Appendix B.
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3.3.2 Sampling the Σt-elements

Defining ỹt = Atyt, we note that ỹt has a diagonal covariance matrix, what enables

us to independently estimate the m univariate stochastic volatility models. The ith

univariate stochastic volatility model is given by

ỹit = σi,tλ
−1/2
i,t uit, (i = 1, . . . ,m) (3.34)

with uit ∼ N(0, 1). At this stage, we consider the matrix At as given and since yt is

observable, the values of ỹit can be computed. We note that the associated dynamic

model is nonlinear:

ỹit = exp {hit/2}λ−1/2
i,t uit, (i = 1, . . . ,m) (3.35)

hit = φhihit−1 + ηit, (3.36)

with ηit ∼ N(0, σ2
ηi) and σ2

ηi being the ith diagonal entry of the matrix Ση.

The m univariate SV models from Eqs. (3.35) and (3.36) can be estimated se-

parately by consecutively sampling from the following conditionals, in the represen-

tation of which we use the m row vectors ϑi = (σ2
ηi, φhi):

1. π(ϑi|hit), yielding the AR parameters.

2. π(hit|ỹit,ϑi, lij, ωij), yielding the parametric volatility component.

3. π(lij, ωij|ỹit, hit), yielding the nonparametric volatility component.

Sampling from the first conditional is straightforward and analogous to sampling

the αt-parameters in the previous section. Assuming a normal prior for the φhi-

and an inverse Gamma prior for the σ2
ηi-parameters, we sample the σ2

ηi-parameters
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directly (given the conjugate prior), while we apply an MH step in order to sample

the φhi-parameters from their posterior distribution, where we restrict these latter

parameters to meet the stationarity conditions |φhi| < 1 (see Appendix B). The

third conditional from above involves sampling the infinite mixture parameters, for

which we introduce a complete sampling algorithm in Section 3.3.3.

In order to sample from π(hit|ỹit,ϑi, lij, ωij), we follow Jensen and Maheu (2010)

and apply our log volatility sampler to the transformation y∗it ≡ ỹit
√
λi,t yielding

the m simplified univariate models

y∗it = exp {hit/2}uit, (i = 1, . . . ,m) (3.37)

hit = φhihit−1 + ηit, (3.38)

so that our task reduces to sampling from π(hit|y∗it,ϑi). We accomplish this by

using a procedure from Jacquier et al. (2002), who propose a Bayesian approach,

in which they construct a Markov chain for drawing directly from the joint

posterior distribution of the latent volatility components. Specifically, let

h
(i)
−t ≡ (hi0, . . . , hit−1, hit+1, . . . , hiT )

′ and y∗
i ≡ (y∗i1, . . . , y

∗
iT )

′, which are used to

decompose the distribution π(hit|y∗it,ϑi) into a set of conditionals of the form

π(hit|h(i)
−t,y

∗
i ,ϑi). The authors suggest a (hybrid) cyclic random walk Metropolis

chain which uses a series of independent Metropolis acceptance/rejection chains,

which do not directly sample from the univariate conditionals, but still ensure that

the posterior is a stationary distribution.
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Thus, in order to sample from the target distribution π(hit|y∗it,ϑi), we follow the

lines of argument in Jacquier et al. (2002) and sample from the auxiliary density

π(hit|hit−1, hit+1, y
∗
it,ϑi), which can be factorized for t = 2, . . . , T − 1 as follows:

π(hit|hit−1, hit+1, y
∗
it,ϑi) ∝ π(y∗it|hit)π(hit|hit−1)π(hit+1|hit)

∝ 1

exp{hit/2} exp

{
−1

2

(y∗it)
2

exp{hit/2}
}

(3.39)

× exp

{−(hit − φhihit−1)
2 − (hit+1 − φhihit)

2

2σ2
ηi

}
.

The density (3.39) does not have a standard form and we apply a Metropolis-

Hastings algorithm for each of the latent volatility components hi2, . . . , hiT−1. We

sample the first and last latent volatility components from

π(hi1|hi2, y∗it,ϑi) ∝ 1

exp{hi1/2} exp

{
−1

2

(y∗i1)
2

exp{hi1/2}
}

× exp

{−(hi2 − φhihi1)
2

2σ2
ηi

}
, (3.40)

π(hiT |hiT−1, y
∗
it,ϑi) ∝ 1

exp{hiT/2} exp

{
−1

2

(y∗iT )
2

exp{hiT/2}
}

× exp

{−(hiT − φhihiT−1)
2

2σ2
ηi

}
. (3.41)

As the proposal, used at each step of the random walk Metropolis Hastings algo-

rithm, we use N(0, σ2
ηi).

3.3.3 Slice sampling the εt-DPM-elements

The slice-sampler proposed by Walker (2007) and its more efficient version presented

in Kalli et al. (2011) tackle the general issue of sampling the infinite number of DPM

parameters. The idea behind the slice- sampler is to introduce appropriate latent
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variables, with the objective of finding a finite set of DPM parameters, the sampling

of which produces a valid Markov chain with a correct stationary distribution.

The first step of the slice-sampling procedure consists of introducing a latent

variable ρit (with positive support), such that for i = 1, . . . ,m the joint density of

the innovation εit and the latent variable ρit is given by

f(εit, ρit|Θ) =
∞∑
j=1

1(ρit < ωij) · fN(εit| 0, l−1
ij )

=
∑

j∈A(ρit)

fN(εit| 0, l−1
ij ), (3.42)

where (i) 1(·) is the indicator function, which is equal to 1 when its argument is true

and 0 otherwise, and (ii) A(ρit) ≡ {j : ωij > ρit}, which becomes a finite set for any

given ρit > 0. We note that the conditional distribution of εit given ρit is a finite

normal mixture with equal weights. Based on this result, the slice-sampling proce-

dure then introduces a second latent variable ζit indicating the mixture component

from which εit is observed to yield the joint density

f(εit, ζit = j, ρit|Θ) = fN(εit| 0, l−1
ij )1(j ∈ A(ρit)). (3.43)

Specifically, after initializing the starting values c
(0)
i , ζ

(0)
i1 , . . . , ζ

(0)
iT , the

slice-sampler proposed by Kalli et al. (2011) and Walker (2007) proceeds as follows

in iteration r of the MCMC algoritm (r = 1, . . . , R):

1. Sampling ci:

We use the sampling strategy proposed in Escobar and West (1995) and start
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by sampling the auxiliary variable ψi ∼ Beta(c
(r−1)
i +1, T ) and then sample ci

from the Gamma mixture

πψi
· fΓ(ci|a0 + ζ∗i , b0 − log(ψi)) + (1− πψi

) · fΓ(ci|a0 + ζ∗i − 1, b0 − log(ψi)),

where fΓ(·|α, β) denotes the density function of the Gamma(α, β) distribution,

ζ∗i = max
{
ζ
(r−1)
i1 , . . . , ζ

(r−1)
iT

}
and πψi

= (a0 + ζ∗i − 1)/(a0 + ζ∗i − 1 + T (b0 −

log(ψi))).

2. Sampling υij:

For j = 1, 2, . . . , ζ∗i we sample the υij values from the conditional distribution

υij| ζ(r−1)
i1 , . . . , ζ

(r−1)
iT ∼ Beta (nij + 1, T − ni· + ci) ,

where nij =
∑T

t=1 1(ζ
(r−1)
it = j) is the number of observations belonging to

the jth component of the ith variable, and ni· =
∑j

k=1 nik is the cumulative

sum of components in the groups. We compute the associated mixture weights

according to the stick-breaking procedure, ωi1 = υi1, and ωij = (1−υij) . . . (1−

υij−1)υj for j = 2, . . . , ζ∗i .

3. Sampling ρit:

We sample the latent variables ρit from the uniform distribution U(0, ω
iζ

(r−1)
it

)

and set ρ∗i = min {ρi1, . . . , ρiT}, which we use to truncate the sequence of

mixture weights in the next step.

4. Updating the weights ωij:

We determine the smallest integer j∗i such that
∑j∗i

j=1 ωij > (1 − ρ∗i ). For

those ωij with j > ζ∗i , we draw υij from the prior Beta(ci, 1) distribution and

compute the associated weights ωij according to the stick-breaking procedure
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for j = ζ∗i +1, . . . , j∗i . Thus, the latent variable ρit indicates how many weights

need to be sampled.

5. Sampling the mixture parameters lij:

The mixture parameters are sampled from the conditional posterior, which

given the conjugate priors, has the following Gamma distribution:

lij ∼ Gamma(ν̄ij/2, s̄ij/2), (3.44)

ν̄ij = ν0 + nij, (3.45)

s̄ij = s0 +
T∑
t=1

ε2it · 1(ζ(r−1)
it = j). (3.46)

We note that, according to Eq. (3.35), εit = ỹit exp {−hit/2} is treated as

observable at this stage of the algorithm. As in Step 4, if a new component

has been formed, the mixture parameters are sampled from the prior.

6. Updating the indicator variables ζit:

According to the weight truncation induced by the variable ρit, we update the

indicator variables ζit by sampling from

Pr(ζit = j| {εit}Tt=1 , {lij}j
∗
i
j=1 , {ωij}j

∗
i
j=1 , {ρit}Tt=1) ∝ fN(εit|0, l−1

ij ) · 1(j ∈ A(ρit)).

The updated variables ζit indicate the component to which each observation

belongs. Given ζit, we set λi,t = liζit .
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3.4 Features of the Cholesky DPM-MSV model

3.4.1 Predictive density

A key issue in Bayesian nonparametric inference is the predictive density (Escobar

and West, 1995). Denoting the sequence of all observations obtained through date

T by y1:T = {y1, . . . ,yT}, we write the one-step ahead predictive density as

f(yT+1|y1:T ) =

∫
f(yT+1|Θ,y1:T )π(Θ|y1:T )dΘ, (3.47)

where (i) the density f(yT+1|Θ,y1:T ) constitutes an infinite scale mixture, given the

representation of the innovation term in Eq. (3.17), and (ii) the posterior π(Θ|y1:T )

is defined on the infinitely dimensional parameter space Θ. Since the integral in

Eq. (3.47) is analytically untractable, we approximate the predictive density via the

MCMC output,

f(yT+1|y1:T ) ≈
1

R

R∑
r=1

f(yT+1|Θ(r),y1:T ), (3.48)

where R is the length of the Markov chain and Θ(r) denotes the parameter set in

iteration r. We cope with the infinitely dimensional parameter space by introducing

the latent variables according to Eq. (3.42) in each iteration r (which we denote

by ρ
(r)
it ) and thus for i = 1, . . . ,m obtain the following (finite number of) DPM

parameters in iteration r:

{
ω
(r)
i1 , ω

(r)
i2 , . . . , ω

(r)

ij
∗(r)
i

}
and

{
l
(r)
i1 , l

(r)
i2 , . . . , l

(r)

ij
∗(r)
i

}
.

Next, we implement the 3-step algorithm proposed by Jensen and Maheu (2013),

in order to sample a single precision (mixture) parameter l
(r)
i in iteration r for

i = 1, . . . ,m:
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1. We sample the random variable ai from the uniform distribution U(0, 1).

2. We compute the sum
∑j

∗(r)
i
j=1 ω

(r)
ij .

3. If
∑j

∗(r)
i
j=1 ω

(r)
ij > ai, we find the index di such that

di−1∑
j=1

ω
(r)
ij < ai <

di∑
j=1

ω
(r)
ij

and set the precision parameter l
(r)
i = l

(r)
idi
; else we draw l

(r)
i from the prior

distribution G0 given in Eq. (3.15).

After having run the three steps for each i = 1, . . . ,m, we compose the predictive

error term covariance matrix at iteration r as (Λ(r))−1 ≡ diag(1/l
(r)
i ).

We now repeat the complete algorithm (i.e the 3 steps for each i = 1, . . . ,m) a

number of times (say Bmax times) and record at each iteration r, the Bmax covariance

matrices (Λ
(r)
1 )−1, . . . , (Λ

(r)
Bmax)−1. Denoting the density function of the m dimen-

sional multivariate normal distribution by fN(·|·, ·) and given sampled parameters,

we approximate the one-step-ahead predictive density according to Eq. (3.48) as

f(yT+1|y1:T ) ≈
1

R

R∑
r=1

f (r)(yT+1|y1:T ) (3.49)

with

f (r)(yT+1|y1:T ) =
1

Bmax

Bmax∑
k=1

fN

(
yT+1|0, (A(r)

T+1)
−1Σ

(r)
T+1(Λ

(r)
k )−1Σ

(r)
T+1[(A

(r)
T+1)

−1]′
)
,

(3.50)

where, for the computation of A
(r)
T+1 and Σ

(r)
T+1, we draw each α

(r)
iT+1 from N(μ

(r)
αi +

φ
(r)
αiα

(r)
iT , σ

2(r)
e ) for i = 1, . . . , p, and each h

(r)
iT+1 from N(φ

(r)
hi h

(r)
iT , σ

2(r)
η ) for i = 1, . . . ,m.

In our empirical application below, we choose Bmax = 3.
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3.4.2 Conditional moments

According to the hierarchical representation of our Cholesky DPM-MSV model from

the Eqs. (3.10) to (3.17), the conditional mean of yt is assumed to equal the zero

vector, while the conditional covariance matrix is given by

H∗
t = Cov(yt|Θ,y1:t−1) = A−1

t ΣtCov(εt|Ω)Σt(A
−1
t )′, (3.51)

where

Cov(εt|Ω) = diag

( ∞∑
j=1

ωijl
−1
ij

)
.

Using our predictive density from the Eqs. (3.49) and (3.50), we may approximate

conditional second-moment forecasts of the Cholesky DPM-MSV model by

E(H∗
T+1) ≈

1

R

R∑
r=1

H
∗(r)
T+1, (3.52)

where

H
∗(r)
T+1 = (A

(r)
T+1)

−1Σ
(r)
T+1

1

Bmax

Bmax∑
k=1

(Λ
(r)
k )−1Σ

(r)
T+1[(A

(r)
T+1)

−1]′. (3.53)

3.4.3 Ordering of variables

Owing to the lower triangular structure of the At matrix, the ordering of the vari-

ables in the vector yt of the Cholesky DPM-MSV model is crucial (Primiceri, 2005).

In the context of time-varying VAR models, Nakajima and Watanabe (2011) address

the problem by analyzing the structure of the Japanese economy and monetary poli-

cy. When analyzing multiple financial time series data, it might sometimes appear

problematic or arbitrary to use a specific ordering of variables prima facie. However,

in our empirical application below, an obvious criterion for variable ordering is the

chronological sequence, in which the various stock markets start their trading day.
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3.5 Empirical application

3.5.1 Data

In this section, we apply the Cholesky DPM-MSV model to stock index data for

the five most important international stock markets, with the objective of analyzing

volatility co-movements. In particular, our data set includes daily stock index values

between 17 February 2012 and 19 February 2016 (1046 observations for each time

series) for (i) the US Dow Jones Industrial, (ii) the German DAX 30 Performance,

(iii) the European EuroStoxx50 index, (iv) the Japanese Nikkei 225, and (v) the

Chinese Shanghai Shenzen CSI 300. All data were collected from Datastream (daily

closing prices).

Figure 3.1 about here

Figure (3.1) displays the five indices along with their daily returns (computed

as the daily first differences in logs × 100). The sampling period does not cover the

global financial crisis, but includes two country-specific stock market turbulences,

namely the European sovereign debt crisis in early 2012 and the Chinese stock

market turmoil between June 2015 and February 2016. Both events are accompanied

by phases of high return volatility, as is evident from the right panels in Figure (3.1).

Table 3.1 about here

Table (3.1) contains summary statistics and the sample correlation coefficients

among the five return series. All return series exhibit negative skewness and excess

kurtosis, indicating non-Gaussian behavior. Although all five sample means are

close to zero, we use demeaned data in our estimation procedure. The sample
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correlation coefficients are all positive and lead us to expect particularly pronounced

co-movements among the European and US markets.

As described in Section 3.4.3, the ordering of the 5 return series within the

Cholesky DPM-MSV model matters. As the natural ordering, we choose the chrono-

logical sequence, in which the respective stock markets start their trading day,

i.e. y1t, . . . , y5t are the return series for (1) the Nikkei, (2) the Shanghai Shenzen, (3)

the EuroStoxx50, (4) the Dax, and (5) the Dow Jones.

Table 3.2 about here

3.5.2 Estimation results

According to Eqs. (3.5) to (3.9) and the exhibition in Section 3.3.3, the estimation

of our five-dimensional Cholesky-DPM-MSV model involves the sampling of (i) 5

stochastic volatility processes (ht-processes), (ii) 10 αt-processes, (iii) 40

AR-parameters (stemming from the ht- and αt-processes), and (iv) 5 DPM sets

{ωij, lij}∞j=1 . We ran a total of 50000 + 50000 iterations, and deleted the first

50000 results as burn-in phase. As prior distributions, we chose

cαi ∼ N(0, 1),

φαi ∼ N(0.95, 25)1(|φαi| < 1),

σ2
ei ∼ InverseGamma(10/2, 0.5/2),

φhi ∼ N(0.95, 25)1(|φhi| < 1),

σ2
ηi ∼ InverseGamma(10/2, 0.5/2),

ci ∼ Gamma(4, 4),
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and the base distribution G0 as Gamma(10/2, 10/2). Table (3.2) displays the pos-

terior means and standard deviations of the 40 AR parameters.

Figure 3.2 about here

We assess the volatility co-movements between the five markets via the pair-

wise in-sample time-varying correlation coefficients (denoted by CorrINDEX1, INDEX2;t),

which we obtain from the overall time-varying covariance matrix H∗
t from Eq. (3.51)

computed in each MCMC iteration and at every date t. Figure (3.2) displays the

time-varying correlation coefficients for the 10 market pairs. In each panel, the solid

line represents the correlation coefficients computed as an average of 333 posterior

thinned draws (out of 50000), while the darkly and brightly shaded areas represent

50% and 90% Bayesian intervals, respectively.

Figure (3.2) provides the following major findings: (i) The time-varying

in-sample correlation coefficients appear surprisingly volatile. (ii) Except for

CorrDJ, EU;t (US/European markets), CorrDJ, DAX;t (US/German markets) and

CorrDAX, EU;t (German/European markets), the time-varying correlation

coefficients take on negative values strikingly often. (iii) The coefficients

CorrEU, SHA;t,CorrDAX, SHA;t, CorrDJ, NIK;t,CorrDJ, SHA;t appear to fluctuate around

mean levels close to zero, indicating rather weak correlation among the

corresponding markets. (iv) During the Chinese stock-market downturn between

2015 and 2016, the coefficients CorrSHA, NIK;t take on substantially smaller values

(close to zero) than during all other phases of the sampling period. (v) The most

stable, positive correlation coefficients are found between the German and the

European stock markets (CorrDAX, EU;t), the US and the European markets

(CorrDJ, EU;t), and the US and the German markets (CorrDJ, DAX;t).
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Figure 3.3 about here

As a robustness check, Figure (3.3) depicts the sample correlations, obtained from

a rolling window with a size of 50 and centered around the current observation.

Figure 3.4 about here

Figure 3.5 about here

Table 3.3 about here

Finally, we investigate the predictive ability of our Cholesky DPM-MSV model

in terms of predictive density estimation. Figure (3.4) displays the nonparamet-

ric predictive densities of the elements of the covariance matrix H∗
t , approximated

according to Eqs. (3.52) and (3.53), while Figure (3.5) shows the pairwise density

contour plots. The covariances from the one-step-ahead prediction closely follow the

patterns obtained from the in-sample estimation. For example, the contour plots

for the European and the Chinsese markets (Panel EU, SHA), the German and the

Chinese Markets (Panel DAX, SHA), the US and the Japanese markets (Panel DJ,

NIK), and the US and the Chinese markets (Panel DJ, SHA) all reflect the lack

of linear dependence, as mentioned in the above discussion on Figure (3.2). Table

(3.3) summarizes the posterior information of the one-step-ahead predictive density.

Our model predicts the highest variance for the Japanese market (with the broadest

90% credibility interval), and the lowest variance for the US market.

3.6 Conclusion

In this chapter, we establish a Cholesky multivariate stochastic volatility model

with a highly flexible nonparametric distribution for the innovation vector—based
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on the Dirichlet process mixture (DPM)—and implement a Bayesian semiparametric

estimation procedure. A striking advantage of our modeling framework is that it

allows us to estimate DPM-based volatility models of higher dimensions (m > 3),

without imposing unnecessarily restrictive assumptions. More concretely, this is due

to the Cholesky structure, under which the common assumption of uncorrelated

DPM error terms does not entail a flexibility loss, insofar as our overall covariance

matrix A−1
t ΣtΛ

−1
t Σt(A

−1
t )′ contains DPM elements in its non-diagonal entries.

In the empirical section, we apply our estimation framework to five daily stock-

index return series, with the aim of analyzing volatility co-movements among inter-

national stock markets. As two major empirical results, we find (i) a reduction in

the co-movement between the Chinese and the Japanese markets during the recent

Chinese stock-market downturn, and (ii) distinctively stable, positive co-movements

among the European (including the German) and the US stock markets.

Two conceivable extensions of our modeling framework to be tackled in future re-

search are worth mentioning. First, frequently observed volatility asymmetries could

be modeled by integrating leverage effects into our Cholesky DPM-MSV framework.

Second, our estimation framework could be applied to high-frequency data sets con-

taining realized (co)variances along the lines of Shirota et al. (2016), who suggest

estimating Cholesky realized stochastic volatility models.



Tables and Figures
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Table 3.1: Descriptive statistics

NIK SHA EU DAX DJ

Mean 0.0509 0.0177 0.0125 0.0302 0.0226

Median 0.0086 0.0000 0.0111 0.0614 0.0066

Variance 1.9457 2.7957 1.5524 1.4216 0.6229

Skewness −0.2386 −0.8491 −0.1151 −0.2329 −0.1961

Kurtosis 6.3634 8.1768 4.4545 4.2553 4.7188

Sample correlation:

NIK 1.0000

SHA 0.2160 1.0000

EU 0.2158 0.1349 1.0000

DAX 0.2194 0.1390 0.9526 1.0000

DJ 0.1224 0.1418 0.5929 0.5743 1.0000

Note: The indices are abbreviated as NIK (Nikkei 225), SHA (Shanghai Shenzen CSI
300), EU (EuroStoxx), DAX (DAX 30 Performance), DJ (Dow Jones Industrial).



57

Table 3.2: Posterior means and standard deviations (in parantheses)

i cαi φαi σ2
ei φhi σ2

ηi

1 -0.1455 0.0649 0.0474 0.9610 0.0510

(0.0582) (0.3532) (0.0144) (0.0158) (0.0176)

2 -0.1614 0.0601 0.0657 0.9799 0.0364

(0.0548) (0.2965) (0.0180) (0.0087) (0.0103)

3 -0.0662 -0.1444 0.0945 0.9323 0.0724

(0.0338) (0.1953) (0.0234) (0.0372) (0.0499)

4 -0.0159 -0.0370 0.0261 0.9980 0.0330

(0.0120) (0.1403) (0.0054) (0.0013) (0.0135)

5 0.0025 -0.0509 0.0310 0.9938 0.0674

(0.0124) (0.1679) (0.0091) (0.0039) (0.0245)

6 -0.4111 0.5478 0.0254

(0.1070) (0.1182) (0.0069)

7 0.0008 0.4161 0.0466

(0.0127) (0.1831) (0.0121)

8 -0.0018 -0.4898 0.0277

(0.0218) (0.1796) (0.0107)

9 -0.1832 0.2271 0.0498

(0.0986) (0.3241) (0.0159)

10 -0.1745 -0.1649 0.0488

(0.0922) (0.2732) (0.0136)
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Table 3.3: Posterior summary of the elements of the one-step-ahead covariance

matrix

H∗
T+1 mean median 90% CI

H∗NIK

T+1 7.2337 6.1811 (2.9575, 12.7184)

H∗SHA

T+1 3.2385 2.6356 (1.0457, 6.1222)

H∗EU

T+1 3.7878 3.1497 (1.4192, 6.8541)

H∗DAX

T+1 3.6246 2.9022 (1.2207, 6.7965)

H∗DJ

T+1 1.6232 1.1733 (0.3730, 3.3584)

H∗SHA, NIK

T+1 0.9987 0.7307 (−0.8603, 3.2080)

H∗EU, NIK

T+1 1.5025 1.1124 (−0.8145, 4.2972)

H∗EU, SHA

T+1 0.4096 0.2605 (−0.9820, 1.9723)

H∗DAX, NIK

T+1 1.5457 1.1560 (−0.8077, 4.3994)

H∗DAX, SHA

T+1 0.4052 0.2579 (−1.0745, 2.0624)

H∗DAX, EU

T+1 3.5458 2.9134 (1.2484, 6.5298)

H∗DJ, NIK

T+1 0.1496 0.0923 (−1.8593, 2.2114)

H∗DJ, SHA

T+1 0.0052 −0.0103 (−1.0902, 1.1261)

H∗DJ, EU

T+1 1.2784 0.9443 (−0.1758, 3.1538)

H∗DJ, DAX

T+1 1.2232 0.8752 (−0.1981, 3.1004)

Note: The indices are abbreviated as NIK (Nikkei 225), SHA (Shanghai Shenzen CSI 300), EU (Eu-
roStoxx), DAX (DAX 30 Performance), DJ (Dow Jones Industrial).
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Figure 3.1: Index values and daily returns
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Figure 3.2: In-sample correlations: posterior mean plus 50% and 90% Bayesian

intervals
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Figure 3.3: Sample correlations obtained from a rolling window of size 50 centered

around t (blue). The horizontal line (red) corresponds to the sample-correlation.
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Figure 3.4: One-step-ahead density forecasts (of the elements of H∗
T+1)
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64

Chapter 4

Volatility transmission in global

financial markets: A Bayesian

nonparametric approach

4.1 Introduction

It is well known that stock markets in different countries can be correlated. However,

the investigation of the channels through which this dependence takes place is a

rather recent area of interest in the financial market research literature.

Two volatility transmission patterns proposed by Engle et al. (1990), are the

heat wave and the meteor shower. The meteorological analogies are motivated by

the statement that “... a hot day in New York is likely to be followed by another

hot day in New York but not typically by a hot day in Tokyo” (Engle et al. (1990)).

Therefore, volatility in one region is only determined by previous-day volatility in

the same region and evolves like a heat wave. The meteor shower, on the other hand,

rains down as the Earth turns and therefore, the alternative suggestion is that the

volatility in one region is explained by that in another, which precedes in terms of

calendar time. The hypothesis testing procedures conducted by Engle et al. (1990)
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based on a Multivariate Generalized Conditional Autoregressive Heteroscedasticity

(MGARCH) framework and intra-day exchange rate data support the meteor shower

hypothesis.

In the context of volatility spillover effects, several lines of empirical research

have also emerged in the past few years. Chang et al. (2015), among others, exam-

ine volatility spillovers in agricultural commodities and energy markets, and Ham-

moudeh et al. (2013) on the other hand investigate credit and market risk trans-

mission using four oil-related Credit Default Swaps (CDS) indexes. Furthermore,

with respect to international financial markets, Ehrmann et al. (2011) investigate

the directions of volatility transmission between the the money, bond and equity

market of the USA and Europe. Yet, not many studies have focused on advanced

estimation methodology as most of them rest on Maximum Likelihood estimation

techniques (see e.g. Corradi et al., 2012).

A very comprehensive study on volatility transmission in global financial markets

is conducted by Clements et al. (2015), in which the findings of Engle et al. (1990)

are re-investigated and additional volatility modeling strategies involving realized

volatility measures are proposed. However, questions such as model fit diagnostics,

model specification and a general discussion on the methodological issues related

to the estimation procedure, are not the subject of this chapter. The multivariate

GARCH framework relies on the assumption of a normal distribution, which has

been widely rejected in favor, for example, of the Student-t, among other more

flexible distributions. Misspecifying the unconditional distribution often leads to

biased estimation of the volatility dynamics, as, for example, the lack of flexibility

in the unconditional distribution can be overcompensated by additional volatility

through the conditional.
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In this chapter, the volatility transmission patterns examined by Clements et al.

(2015) are revisited in a Bayesian framework. The estimation procedure applied here

is the semiparametric MGARCH model proposed by Jensen and Maheu (2013). Ac-

cordingly, the assumption of a multivariate normal distribution for the return inno-

vation vector is replaced by simply imposing a nonparametric prior over all possible

distributions. The Markov Chain Monte Carlo (MCMC) estimation is conducted

jointly for all parameters of the conditional variances and the unknown innovation

distribution, where a parametric model is assumed for the dynamics of the con-

ditional covariance matrix and a nonparametric Dirichlet process mixture (DPM)

prior for the error term. The proposed modeling framework has the advantage of

capturing the heavy tails and the asymmetries in the return distribution.

The nonparametric approach makes use of the stick-breaking representation of

the Dirichlet process (DP) prior, and the estimation procedure follows the efficient

slice-sampler of Walker (2007).

A similar procedure applied to a univariate GARCHmodel is found in Ausin et al.

(2014) and a portfolio decision based on Bayesian nonparametric Asymmetric Dy-

namic Conditional Correlation MGARCH (ADCC-MGARCH) model is conducted

by Virbickaitė et al. (2014). For a complete overview of Bayesian MGARCH models,

including the semiparametric MGARCH, see Virbickaitė et al. (2015).

The remainder of the following chapter is organized as follows. Section 4.2 pro-

vides five model set-ups for volatility transmission, based on multivariate GARCH

frameworks. In addition to the general framework, realized volatility estimates as

explanatory variables are introduced. Section 4.3 provides details on the MCMC

algorithm used for the estimation of the semiparametric model. Section 4.4 includes
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a description of the data used for the estimation and a discussion of the estimation

results. Finally, some concluding remarks are presented in Section 4.5.

4.2 Volatility transmission modeling

4.2.1 Heat waves and meteor showers

Engle et al. (1990) propose testing the null hypothesis of heat waves against the

alternative of meteor showers. The heat wave hypothesis suggests that volatility

has only country-specific autocorrelation and alternatively, the meteor shower is a

phenomenon of intra-day volatility spillovers from one market to another. The null

hypothesis is tested using the following multivariate GARCH model specification:

Rit =
√

hitεit, εit ∼ F (4.1)

hit = ki + αiihit−1 +
i−1∑
j=1

βijR
2
jt +

n∑
j=i

γijR
2
jt−1. (4.2)

Here, Rit is the return in zone i at date t, hit is the conditional variance in zone i

(i = 1, . . . , n) at time t (t = 1, . . . , T ) and F is some unknown distribution, which

is subsequently modeled nonparametrically. This model specification is different

from the classical GARCH, by virtue of allowing for news from preceding zones to

influence volatility on the same day in the current zone. Moreover, when trading

in zone i = 1 ends, trading zone i = 2 starts and so on. Hence, the modeling is

restricted to non-overlapping trading zones. The intra-day return of each zone, Rit

is calculated as the difference between the log closing and opening prices (regarding

the observed trading period), normalized by the length of the trading period, i.e.

Rit = (lnPCit − ln POit)/
√
(Tit), (4.3)
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where PCit and POit are the closing and opening price in zone i on day t and Tit is

the duration of trading in the given zone.

Introducing matrix notation to the model reveals the calendar structure, which

allows us to examine the dynamic market reaction to news:

ht = K+Aht−1 +BR2
t +GR2

t−1, (4.4)

where ht is the n × 1 vector ht = (h1t, . . . , hnt)
′, Rt - the n × 1 vector

Rt = (R1t, . . . , Rnt)
′ of observed returns at time t, R2

t - the n × 1 vector

R2
t = (R2

1t, . . . , R
2
nt)

′ of the squared returns and K is a vector of constants

(k1, . . . , kn)
′. The parameter matrices A, B and G are defined as

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11 0 . . . 0

0 α22 . . . 0

...
...

0 0 . . . αnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0

β21 0 . . . 0

...
...

βn1 βn2 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ11 γ12 . . . γ1n

0 γ22 . . . γ2n

...
...

0 . . . . . . γnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(4.5)

Owing to the lower triangular structure of the matrix B, it is apparent that news

from zone i can be transmitted to zone i+ 1, and that the effect is captured by the

coefficient βi+1,i. However, news from zone i+1 can be transmitted to zone i only on

the next day. These effects are captured by the off-diagonal elements of the matrix

G. The heat wave null hypothesis implies βij = 0 and γij = 0 for i 
= j. The meteor

shower hypothesis is the alternative, implying that at least one of the βij = 0 and

γij = 0 for i 
= j coefficients is significantly different from zero.
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4.2.2 Volatility spillovers

The intra-day volatility effect hit from the preceding zone on the current zone volati-

lity, referred to as a volatility spillover effect, can be captured by modifying the

model in the following way:

Ãht = K+Aht−1 +BR2
t +GR2

t−1, with

Ã =

⎛⎜⎜⎜⎜⎜⎝
1 0 0

−α̃21 1 0

0 −α̃32 1

⎞⎟⎟⎟⎟⎟⎠ , A =

⎛⎜⎜⎜⎜⎜⎝
α11 0 α13

0 α22 0

0 0 α33

⎞⎟⎟⎟⎟⎟⎠ .

(4.6)

The modeling framework above is an example of three trading zones, as in Clements

et al. (2015). The two matrices jointly ensure the circularity of the volatility trans-

mission through the system. The matrix Ã captures the effect of the conditional

variance in preceding zones on the current zone on the same trading day, and the

upper right element of the A matrix closes the circle by introducing the effect of the

previous day’s conditional variance of zone n = 3 on the variance of zone 1 today.

For the estimation, two restrictions are imposed: B = 0 and G is modeled as a

diagonal matrix, given by

G =

⎛⎜⎜⎜⎜⎜⎝
γ11 0 0

0 γ22 0

0 0 γ33

⎞⎟⎟⎟⎟⎟⎠ . (4.7)

Therefore, there are no intra-day effects from the news of the preceding zones, which

isolates the spillover effect and at the same time reduces the number of parameters.



70

4.2.3 Realized volatility, jumps and asymmetry

4.2.3.1 Volatility measures

By using high-frequency data, a realized variance estimator (RV) can easily be

computed. According to Liu et al. (2015), the simple 5-minute realized volatility

estimator (RV) appears to be superior in comparison to other volatility measures

and will therefore be the estimator used here. First, the returns at frequency Δ for

each day t, in which trading occurs are computed as

rij,t(Δ) = ln(pij,t)− ln(pij−1,t),

where pij,t is the price at day t in zone i and in the time interval j. The realized

volatility is computed by summing the squared returns defined above:

RVi
t(Δ) ≡

Δ∑
j=1

(rij,t)
2.

Next, the jump component can be extracted from the realized volatility. For this

purpose, following Andersen et al. (2012), the minimum realized volatility estimator

(MinRV) and the minimum realized quarticity (MinRQ) are computed as

MinRVi
t(Δ) ≡ π

π − 2

(
1

1−Δ

) Δ∑
j=2

min(|rij,t|, |rij−1,t|)2,

MinRQi
t(Δ) ≡ π

Δ(3π − 8)

(
1

1−Δ

) Δ∑
j=2

min(|rij,t|, |rij−1,t|)4.

Statistically significant jumps J it (at significance level ᾱ = 0.999) are identified

according to

J it (Δ) ≡ 1(Zi
t(Δ) > Φᾱ)× (RVi

t(Δ)−MinRVi
t(Δ)),
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which is based on asymptotic results from Andersen et al. (2012), providing

Zi
t(Δ) =

(RVi
t(Δ)−MinRVi

t(Δ))/RVi
t(Δ)√

1.81Δmax(1,MinRQi
t(Δ)/MinRVi

t(Δ)2)
∼ N(0, 1).

Here 1(·) is the indicator function and Φᾱ is the ᾱ-quantile of the standard normal

distribution.

The continuous component is defined as the difference between the realized

volatility and the jump component:

CCi
t(Δ) = RVi

t(Δ)− J it (Δ). (4.8)

In order to capture the asymmetry of volatility transmission, the realized volati-

lity can be decomposed into realized volatility related to positive news (RV+
t ), and

related to negative news (RV−
t ) such as

RVi+
t =

∑
(rii,j)

21(rii,j ≥ 0), (4.9)

RVi−
t =

∑
(rii,j)

21(rii,j < 0), (4.10)

where the zero returns are treated as positive news.

4.2.3.2 Three models

Finally, using realized volatility estimates from the different regions, the volatility

model can be rewritten in the following three alternative specifications:

ht = K+Aht−1 +B RVt +G R2
t−1, (4.11)

ht = K+Aht−1 +B CCt + B̃ Jt +G R2
t−1, (4.12)

ht = K+Aht−1 +B RS+
t + B̃ RS+

t +G R2
t−1, (4.13)



72

where K, A are defined as in Eqs. (4.4) and (4.5). G is restricted to be diagonal

(see Eq. (4.7)) and for the three-dimensional case the matrices B and B̃ are defined

as

B =

⎛⎜⎜⎜⎜⎜⎝
0 0 β13

β21 0 0

0 β32 0

⎞⎟⎟⎟⎟⎟⎠ , B̃ =

⎛⎜⎜⎜⎜⎜⎝
0 0 β̃13

β̃21 0 0

0 β̃32 0

⎞⎟⎟⎟⎟⎟⎠ . (4.14)

In this case the realized volatility measures are the following 1× 3 vectors:

RVt = (RV1,t,RV2,t,RV3,t−1)
′,

CCt = (CC1,t,CC2,t,CC3,t−1)
′,

Jt = (J1,t, J2,t, J3,t−1)
′,

RS+
t = (RS+

1,t,RS
+
2,t,RS

+
3,t−1)

′,

RS−
t = (RS−

1,t,RS
−
2,t,RS

−
3,t−1)

′

Equation (4.11) introduces a realized volatility estimate (RVt), while the models

presented in Eqs. (4.12) and (4.13) consider two alternative decompositions of the

realized volatility. In Eq. (4.12) the realized volatility is decomposed into a jump

component and a continuous component, and in Eq. (4.13), the effects due to upside

and downside realized semivariance are incorporated into the model.

4.3 Bayesian semiparametric MGARCH model

The Bayesian model framework for each of the described specifications is a mul-

tivariate GARCH model, which follows the general semiparametric MGARCH of

Jensen and Maheu (2013). Specifically, a parametric model is introduced for the dy-
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namics of the conditional covariance matrix, while a nonparametric prior is placed

on the distribution of the error term, in particular, a Dirichlet process prior. The

hierarchical structure of the model labeled as DPM-MGARCH is given by

Rt |τ t,Dt,Ht ∼ N(H
1/2
t τ t, H

1/2
t D−1

t (H
1/2
t )′), (4.15)

Ht = diag(ht), (4.16)

τ t,Dt|G iid∼ G (4.17)

G|G0, c ∼ DP (c,G0) (4.18)

G0(τ t,Dt) ≡ NW(m0, s0,W0, d0) (4.19)

c ∼ Gamma(a0, b0). (4.20)

Eq. (4.15) defines a multivariate normal kernel for each mixture component,

where Ht is the parametric time-varying conditional covariance with a Cholesky

decomposition given by H
1/2
t , which is diagonal (4.16) and has a structure defined

according the models in Eqs. (4.5), (4.6), (4.11), (4.12) and (4.13).

Equations (4.17)-(4.19) place a nonparametric prior on the distribution of the

innovations. The Bayesian nonparametric prior used here produces an infinite mix-

ture of multivariate normals with mixing over both expectation parameter vector

and covariance matrix. Both unknown parameters vectors τ t and Dt are distributed

according to some unknown nonparametric distribution G, on which a Dirichlet pro-

cess (DP) prior (Ferguson, 1973) with base measure G0 and precision parameter c

(positive scaling parameter) is placed. Therefore, the unconditional distribution is

an infinite mixture of normals with unique mixture expectation vector and covari-
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ance matrix of component j being μj and Λj respectively. The base distribution in

Eq. (4.19) is the Normal-Wishart denoted by NW(m0, s0,W0, d0) with

μj|Λj ∼ N(m0, (s0Λj)
−1) (4.21)

Λj ∼ W(W0, d0) (4.22)

whereN is the multivariate normal distribution, W denotes the Wishart distribution

and j = 1, 2, . . . ,∞.

The resulting model for the return vector Rt is a DPM mixture with an infinite

mixture representation (Sethuraman, 1994) given by

f(Rt|Ht, {μ,Λ,ω}) =
∞∑
j=1

ωjfN(Rt|H1/2
t μj, H

1/2
t Λ−1

j (H
1/2
t )′), (4.23)

where ω1 = υ1 and ωj = υj
∏j−1

s=1(1 − υs) with υj ∼ Beta(1, c) for j > 1 are

the mixture weights computed by the stick-breaking rule, fN denotes the multi-

variate Gaussian density with expectation vector H
1/2
t μj and covariance matrix

H
1/2
t Λ−1

j (H
1/2
t )′, and μj,Λj are the unique component parameters.

Note that the general semiparametric MGARCH framework can be applied to

any model specification provided the transformation

εt = H
−1/2
t Rt, (4.24)

εt| τ t,Bt ∼ N(τ t,B
−1
t ). (4.25)

is possible. Therefore, the distribution of the standardized returns in (4.24) is di-

rectly the distribution of the error term, which is modeled as a flexible DPM. As

noted by Jensen and Maheu (2013), and by Virbickaitė et al. (2014), the mixture

model for εt does not impose a unit covariance matrix for the DPM. However, in
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the application a prior is used, which will essentially center the error term around a

unit covariance matrix.

4.4 Bayesian inference

4.4.1 Slice-sampler for multivariate DPM models

Kalli et al. (2011) and Walker (2007) propose a DPM sampler, which deals with the

problem of sampling infinite number of parameters by introducing latent variables

and truncating the weights of the random Dirichlet distribution. Note that an

alternative to the slice-sampler is the retrospective sampler of Papaspiliopoulos and

Roberts (2008), and a combination of both is presented by Papaspiliopoulos (2008).

The following section presents a multivariate extension of the slice-sampler de-

scribed in Chapter 3 (Section 3.3.3). Analogously to the univariate case, a latent

variable ρt has been introduced, such as

f(εt, ut|Θ) =
∞∑
j=1

1(ρt < ωj) · fN(εt|μj,Λ
−1
j )

=
∑

j∈Aω(ρt)
fN(εt|μj,Λ

−1
j ), (4.26)

where the set Aω(ρt) ≡ {j : ωj > ρt} is finite for all ρt > 0, Θ is the full set of

parameters and εt is standardized according (4.24). Obviously, integrating over

the latent variable yields the correct infinite mixture. Therefore, the infinite sum

becomes finite and sampling is now replicable.
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Again, analogously to the univariate case, a second latent variable is introduced,

the indicator variable ζt, which indicates from which mixture component each εt is

taken. The joint conditional density is defined as

f(εt, ζt = j, ρt|Θ) = fN(εt|μj,Λ
−1
j )1(j ∈ Aω(ρt)). (4.27)

Finally, the likelihood can be computed, conditional on all latent variables ρt and

ζt.

4.4.2 The sampling algorithm for the DPM-MGARCH

model

This section presents the Markov Chain Monte Carlo (MCMC) algorithm for the

estimation of the semiparametric multivariate GARCH model described in Section

4.3. The Bayesian inference is based on the estimation procedure developed by

Jensen and Maheu (2013) and Virbickaitė et al. (2016). The DPM part of the

algorithm employs the stick-breaking representation, the sampling strategy of which

is discussed in Section 4.4.1. For the parametric part of the model, a multivariate

Random Walk Metropolis Hastings (RWMH) algorithm is applied.

By initializing the starting values c(0), ζ
(0)
1 , . . . , ζ

(0)
T , for each iteration step r =

1, . . . , R̄, the complete sampling algorithm can be summarized in the following steps:

1. Sampling c:

As in Escobar and West (1995), given the auxiliary variable ψ ∼ Beta(c(r−1)+

1, T ), the precision parameter c is sampled from the Gamma mixture

πψ · fΓ(c|a0 + ζ∗, b0 − log(ψ)) + (1− πψ) · fΓ(c|a0 + ζ∗ − 1, b0 − log(ψ)),
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where fΓ(·|α, β) denotes the density function of the Gamma(α, β) distribution,

ζ∗ = max
{
ζ
(r−1)
1 , . . . , ζ

(r−1)
T

}
and πψ = (a0 + ζ∗ − 1)/(a0 + ζ∗ − 1 + T (b0 −

log(ψ))).

2. Sampling υj:

For j = 1, 2, . . . , ζ∗ the parameter υj is sampled from

υj| ζ(r−1)
1 , . . . , ζ

(r−1)
T ∼ Beta (nj + 1, T − n̄+ c) ,

where nj =
∑T

t=1 1(ζ
(r−1)
t = j) and n̄ =

∑j
k=1 nk. The associated mixture

weights are computed according to the stick-breaking procedure, ω1 = υ1, and

ωj = (1− υj) . . . (1− υj−1)υj for j = 2, . . . , ζ∗.

3. Sampling ρt:

We sample from ρt ∼ U(0, ω
ζ
(r−1)
t

) and set ρ∗ = min {ρ1, . . . , ρT}.

4. Updating the weights ωj:

We find the smallest integer j∗ such that
∑j∗

j=1 ωj > (1 − ρ∗). For all j > ζ∗,

we draw υj ∼ Beta(c, 1) and compute the associated weights ωj according to

the stick-breaking procedure for j = ζ∗ + 1, . . . , j∗.

5. Sampling the mixture parameters μj and Λj:

The mixture parameters are sampled from the conditional posterior, which

is a Normal-Wishart distribution (see Virbickaitė et al., 2016). Alternatively,

the mean and the covariance matrix can be drawn by a Gibbs sampler, if

independent priors are assumed (as in Jensen and Maheu, 2013). Here, for

j = 1, . . . , j∗, the conditional posterior is (μj,Λj) ∼ NW(mj, sj,Wj, dj) with

mj =
s0m0 + nj ε̄j

s0 + nj
, ε̄j =

1

nj

T∑
t:ζt=j

εt
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sj = s0 + nj,

Wj = W−1
0 + Sj +

s0nj
s0 + nj

(m0 − ε̄j)(m0 − ε̄j)
′,

Sj =
1

nj

T∑
t:ζt=j

(εt − ε̄j)(εt − ε̄j)
′,

dj = d0 + nj.

Again, if a new component has been formed, the mixture parameters are sam-

pled from the prior.

6. Updating the indicator variables ζt:

According to the weight truncation induced by the variable ρt, the indicator

variables ζt are updated by sampling from

Pr(ζt = j| {εt}Tt=1 ,
{
μj,Λj

}j∗
j=1

, {ωj}j
∗
j=1 , {ρt}Tt=1) ∝ fN(εt|μj,Λ

−1
j )·1(j ∈ Aω(ρt)).

The updated variables ζt indicate the component to which each observation

belongs. Given ζt, we set τ t = μζt and Bt = Λζt .

7. Computing the (parametric) time-varying conditional covariance matrix Ht =

diag {ht}.

The non-zero elements of the matrices A, B G, Ã and B̃ (depending on the

model specification) are collected in the parameter vector Φ. The parameters

in Φ are sampled jointly by applying the RWMH algorithm, which can be

presented in two sub-steps:



79

(a.) We generate a candidate vector Φ̃ from an multivariate fat-tailed mixture

of normals centered around Φ (the current value):

Φ̃ ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N(Φ,V) with prob. p

N(Φ, 100V) with prob. 1− p

(b.) We accept the candidate with probability

min
{
1, p(Φ̃,R)/p(Φ,R)

}
.

The covariance V is obtained by running several initial iterations (≈ burn-in)

and then adjusting the sample covariance by some factor in order to achieve

an acceptance rate between 0.2 and 0.5. The second normal in the mixture

proposal allows for large moves in the parameter space with probability 1− p.

In the empirical application, p is set to 0.9.

In sub-step (b), the acceptance probability depends on the posterior ratio,

which is a function of the complete information set R = {Rit}i=1,...,n
t=1,...,T

. The

prior is uniform and restricted to the stationary region of the

parameter space. Therefore, the acceptance probability reduces to

min
{
1,
∏T

t=1 fN(Φ̃|Rt)/
∏T

t=1 fN(Φ|Rt)
}
, where the log-likelihood l(Φ|R)

obtains as

l(Φ|R) = −1

2

T∑
t=1

(n · log(2π) + log |H∗
t |+ (Rt − μ∗

t )H
∗−1
t (Rt − μ∗

t )
′), (4.28)

where μ∗
t = H

1/2
t τ t and H∗

t = H
1/2
t D−1

t (H
1/2
t )′ are the overall expectation and

covariance matrix from (4.15).

8. Recalculating the error term εt = H
−1/2
t Rt and returning to the first step.
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4.5 Empirical application

4.5.1 Data

The data set used in Clements et al. (2015) contains high-frequency data gathered

from Thompson Reuters Tick History for the period 3 January 2005 to 28 February

2013 at a 10-minute frequency rate. The data is available for three markets:

1. Foreign exchange market (FX): e/� US future contracts, traded on the

Chicago Mercantile Exchange

2. Bond market (Bond): US 10 year Treasury bond future contracts

3. Equity market (EQ): S&P 500 future contracts

The described data relate to U.S.-based assets and will be used for the empirical

application.1

The global trading day is constructed by merging three trading zones. First is

the Japanese trading zone, which starts at 12am and ends at 7am Greenwich Mean

Time (GMT). Next, 7am to 12:30 pm GMT is the European trading zone and finally,

12:30pm to 9pm GMT is the United States zone. The 21-hour global trading day

can be depicted as follows:

There is an obvious overlap of approximately 4 hours between the European and

the US market, as the London Stock Exchange is open until 16:25(GMT). Clements

et al. (2015) propose subsuming the overlap into the US market. Even though

there is not much evidence in the literature to support that assumption, Clements

1All data is available at http://www.ncer.edu.au/resources/data-and-code.php, where also addi-
tional data sets containing Japanese and German data can be downloaded.
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GMT

12 am

7 am

12:30 pm

9 pm

Japan

Europe

USA

7h

5h 30 min

8h 30min

et al. (2015) motivate their choice by analyzing the average trading volume of S&P

500, US 10 year Treasury bond and e/� futures contracts in that period. After

a period of low trading activity in the Japanese trading hours, a large increase in

volume is observed between 12:00-14:30(GMT), the pre-trading period in Chicago.

Therefore, one could argue that the increased trading volume is due to US news (see

e.g. Dungey et al., 2009).

Detailed discussion on the institutional background of the above-listed futures

contracts can be found in Volkov (2015).

Table 4.1 about here

Figure 4.1 about here

Figure 4.2 about here

Figure 4.3 about here

Descriptive statistics of the intra-day returns calculated according to Eq.(4.3) are

provided in Table 4.1. The corresponding time series plots are provided in Figures
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4.1, 4.2 and 4.3 for the bond, foreign exchange and equity markets respectively. The

realized volatility and the jump estimates for the three markets are presented in

Figures 4.4, 4.5 and 4.6 as in Clements et al. (2015).

Figure 4.4 about here

Figure 4.5 about here

Figure 4.6 about here

The realized volatility exhibits similar patterns in all three zones with a peak

around the middle of the sample, which corresponds to the Global financial crisis

period. In the equity and foreign exchange markets the the Japanese bond market

features lower volatility and jump activity. However, Fig. 4.4 shows that during

recorded trading hours the Japanese bond market displays a volatility and jump

structure deviating from the one in the other zones. Note that the realized volatility

subplots of Fig. 4.6 are scaled higher then the bond and foreign exchange markets,

indicating considerably higher realized volatility and jump estimates.

4.5.2 Estimation results

The Bayesian estimation procedure presented in Section 4.4.2, combined with each

of the model specifications (4.5), (4.6), (4.11), (4.12) and (4.13), is applied to the

bond, foreign exchange and equity market data multiplied by 1000. The initial

values of the RWMH algorithm are chosen close to the ML-estimates2, and the

2Note that the ML-estimates provided by Clements et al. (2015) are solely used as a “prior”-
kind of information and do not restrict the estimation procedure in any way. In comparison to
non-informative starting values the latter speeds up the convergence of the chain.
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MCMC algorithm is run for 50K burn-in and a further 50K iterations. The DPM

priors are set to m0 = 0, s0 = 0.1, d0 = 5, W0 = diag(1/d0), a0 = 4, b0 = 4.

Table 4.2 about here

Table 4.2 reports the coefficient posterior means and their corresponding 95%

Bayesian credibility intervals for Model (4.5). The impact of the previous-day volatil-

ity (αii), is in a market-wise comparison, highest in the foreign exchange market and

in total, highest in the US bond market. Observing the meteor shower and heat wave

effects, the domination of the heat wave becomes apparent. The results for the bond

and foreign exchange market are similar to those of Clements et al. (2015). However,

in the US equity market, the effect of intra-day news originating from both Japan

and Europe appear rather lower, compared to those of the previous day and also

much lower then the coefficient estimates found in Clements et al. (2015). Observing

the news from the previous day, European news evidently has a larger effect than

US news on volatility in Japan.

Table 4.3 about here

The estimation results of the model in Eq. (4.6) subject to the restrictions

B = 0 and G diagonal (see Eq. (4.7)) are reported in Table 4.3. The intra-day

effects are excluded from the model in order to isolate the spillover effect. In the

foreign exchange and equity markets, a reduction of the heat wave effect in the sense

of lower αii coefficients can be observed in comparison with the previous estimates,

which may be a consequence of the inclusion of the conditional variance from the

preceding zone (see coefficients α̃21 and α̃32). Once again, the heat wave effect

appears to be the predominant one on the bond market. Contrary, on the foreign
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exchange and equity market, a shift of the coefficients towards a meteor shower can

be observed. In comparison to the estimates of Clements et al. (2015), a stronger

effect is found of the US conditional variance of the previous day on the Japanese

variance on the current day.

Table 4.4 about here

Furthermore, Table 4.4 summarizes the posterior information of model (4.11), in

which the realized variance estimates are included in the volatility equation and their

effects collected in the reparametrized matrix B. The new matrix B (as in (4.14))

incorporates the effects coming from preceding regions: the news effect and the

conditional variance effect. The new semiparametric model specification provides

results that do not deviate substantially from those in Clements et al. (2015). Similar

to the original study, the heat wave hypothesis prevails strongly over the alternative,

as all βij coefficients are close to zero. However, a striking difference occurs in

the realized variance effect from the US on the European equity market with a

posterior mean of 0.0372, with the Bayesian interval (0.0164, 0.0587) compared to

the Maximum-Likelihood estimate 0.2228 provided by Clements et al. (2015).3 The

second interesting finding is the strong evidence of a heat wave taking place in the

bond and foreign exchange markets, as all the individual lagged conditional variance

coefficients are higher in absolute terms in comparison to those in Table 4.3.

Table 4.5 about here

The model specification in Eq. (4.12) suggests using a decomposition of the

realized volatility in a continuous and a jump component as explanatory variables

3Note that the usual non-negativity restrictions on the GARCH parameters are imposed and
therefore, the confidence intervals cannot contain the 0. As usual, the numbers are rounded to
the nearest 4 decimal digits.
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in the volatility equation. Table 4.5 reports the posterior summary. The results on

the bond and foreign exchange markets are fairly in line with those of Clements et al.

(2015). That is, the jumps are not a major factor for intra-day volatility transitions.

However, while Clements et al. (2015) do find conclusive results supporting the

relevance of both the jump and the continuous component for the volatility transition

from Europe to the US in the equity market, the posterior means of the β32- and

β̃32 coefficients in Table 4.5 have very small values with tight intervals.

Table 4.6 about here

Finally, in Table 4.6 are presented the coefficient posterior means and credible

intervals of the volatility model set-up defined in Eq. (4.13). An interesting asym-

metry in the response to news from preceding zones can be observed. While the

bond and the foreign exchange markets react more strongly to positive news, the

equity market exhibits distinctly higher sensitivity towards negative semivariance.

In particular, bad news from Japan has a greater effect on the volatility in Europe,

and bad news from Europe substantially affects the variance in the US. By compar-

ing these results with the previous study presented in Table 4.3, one could argue

that the estimated intra-day effects of the conditional variance in the equity market

are mostly due to bad news.

4.5.3 DP precision

The precision parameter of the DP c controls the number of mixture components.

It can be seen that its value directly affects the mixture weights through the Beta

prior used in the stick-breaking scheme (νj ∼ Beta(c, 1)). The precision parameter

specifies two important limiting cases. First, if c → 0, the mixture model collapses
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to a one-component model, where, in the case of the stick-breaking representation

presented in Section 4.3, the mixture weights become ω1 = 1, ωj,j �=1 = 0 and the

unconditional distribution of Rt is multivariate Gaussian. Second, as c → ∞, the

number of components also becomes infinite, which results in a multivariate Student-

t distribution for Rt. Note that c represents the concentration of the DP on the

base G0, but not the concentration on just one component.

In order to examine the behavior of the precision parameter, the transformed

precision variable is introduced:

u ≡ c

c+ 1
. (4.29)

By imposing a uniform prior for the transformation u, one can restrict the two

special cases for c in a [0, 1] interval. Here, the value of u = 0 corresponds to the

case where c → 0 (the multivariate Gaussian case) and the case u = 1 corresponds

to c → ∞ (multivariate Student-t).4

Figure 4.7 about here

Figure 4.8 about here

Figure 4.9 about here

The histograms of the transformed precision u for all models in the bond, foreign

exchange and equity markets are provided in Figures 4.7-4.9. The histogram plots

the after-burn-in sample of the transformed variable, which is normalized as shown

in Chapter 2.3.2. All histograms show consistently average values above 0, below

4For a derivation of the transformation u, using the Savage-Dickey Density Ratio, see Chapter 2,
Section 2.3.2
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1 and around 0.4, which generally supports the DPM specification with several

distinct mixture components. Observing both the average transformed precisions

and the average nonempty components, it can be concluded that, similar to the

daily return data, the equity market intra-day returns deviate most significantly

from Gaussianity. By contrast, the transformed precision u in foreign exchange

market exhibits the lowest levels, usually below 0.4 on average.

4.6 Conclusion

The chapter provides an empirical investigation of the volatility transmission in

global financial markets. The adopted semiparametric Bayesian estimation frame-

work is a relatively new topic in the volatility literature and a flexible tool which

outperforms the established parametric models in terms of model fit (see Jensen

and Maheu, 2013). Moreover, the Bayesian approach integrates out parameter-

estimation uncertainty, and the nonparametric portion of the model allows for a

very flexible estimation of the density with respect to asymmetry and thick tails.

Furthermore, a model specification test confirms the hypothesis of the infinite mix-

ture model and allows for unbiased volatility dynamics.

The posterior results partially support the findings of Clements et al. (2015), but

overall, call into question the evidence that volatility in all three markets should be

modeled as a function of both the previous day local volatility and the volatility

of neighboring regions on the same day. While stronger evidence for both effects

is found for the equity market, the bond and foreign exchange markets are more

severely affected by the heat wave.
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Possible extensions of the study include computing the predictive distribution

and performing density forecast evaluation. In addition, the study could be applied

to more recent data, in order to involve more current financial market turbulence

after the Global Financial Crisis, such as the European Sovereign Debt Crisis.



Tables and Figures
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Table 4.1: Descriptive statistics multiplied by 100 for the bond, foreign exchange

and equity markets in Japan, Europe and USA.

Mean Median Variance Skewness Kurtosis Sample correlation

Bond market

Japan -0.0005 0.0000 0.0044 -0.5978 14.0123 1.0000

Europe 0.0018 0.0000 0.0063 -0.1087 5.2929 0.0244 1.0000

USA 0.0035 0.0049 0.0121 -0.1329 4.8356 0.0244 0.0123 1.0000

Foreign exchange market

Japan 0.0032 0.0032 0.0102 -0.0142 5.6396 1.0000

Europe -0.0072 -0.0077 0.0244 -0.2930 5.8742 -0.0502 1.0000

USA 0.0047 0.0072 0.0244 0.0490 5.3783 -0.0118 0.0371 1.0000

Equity market

Japan 0.0065 0.0070 0.0251 -0.0953 37.6800 1.0000

Europe 0.0061 0.0084 0.0434 0.0556 10.2371 -0.1121 1.0000

USA -0.0066 0.0149 0.1554 -0.6466 12.7935 0.1149 0.0575 1.0000
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Table 4.2: Posterior means and 95% credibility intervals (CI) of the parameters,

estimated according the model defined in Eq. (4.5).

BD FX EQ

Mean CI Mean CI Mean CI

κ1 0.0016 ( 0.0001 , 0.0045 ) 0.0031 ( 0.0001 , 0.0103 ) 0.0048 ( 0.0002 , 0.0166 )

κ2 0.0072 ( 0.0004 , 0.0202 ) 0.0261 ( 0.0055 , 0.0638 ) 0.0046 ( 0.0002 , 0.0133 )

κ3 0.0065 ( 0.0007 , 0.0178 ) 0.0193 ( 0.0022 , 0.0834 ) 0.1984 ( 0.0875 , 0.3235 )

α11 0.6240 ( 0.5529 , 0.6859 ) 0.9111 ( 0.8667 , 0.9401 ) 0.8115 ( 0.7675 , 0.8559 )

α22 0.8825 ( 0.8360 , 0.9199 ) 0.9277 ( 0.8946 , 0.9564 ) 0.8677 ( 0.8292 , 0.9128 )

α33 0.9428 ( 0.9123 , 0.9609 ) 0.8904 ( 0.8291 , 0.9274 ) 0.7775 ( 0.7166 , 0.8264 )

β21 0.0081 ( 0.0004 , 0.0208 ) 0.0365 ( 0.0085 , 0.0858 ) 0.0701 ( 0.0143 , 0.1379 )

β31 0.0109 ( 0.0008 , 0.0320 ) 0.0589 ( 0.0191 , 0.1338 ) 0.0916 ( 0.0392 , 0.1785 )

β32 0.0149 ( 0.0009 , 0.0522 ) 0.0130 ( 0.0008 , 0.0472 ) 0.0722 ( 0.0206 , 0.1705 )

γ11 0.1089 ( 0.0709 , 0.1537 ) 0.0544 ( 0.0228 , 0.0843 ) 0.0873 ( 0.0495 , 0.1271 )

γ12 0.0438 ( 0.0245 , 0.0642 ) 0.0075 ( 0.0009 , 0.0188 ) 0.0580 ( 0.0279 , 0.0924 )

γ13 0.0202 ( 0.0116 , 0.0306 ) 0.0172 ( 0.0061 , 0.0423 ) 0.0079 ( 0.0033 , 0.0133 )

γ22 0.0995 ( 0.0698 , 0.1438 ) 0.0241 ( 0.0061 , 0.0573 ) 0.1038 ( 0.0582 , 0.1548 )

γ23 0.0174 ( 0.0049 , 0.0304 ) 0.0230 ( 0.0047 , 0.0538 ) 0.0106 ( 0.0041 , 0.0175 )

γ33 0.0466 ( 0.0295 , 0.0759 ) 0.0200 ( 0.0055 , 0.0529 ) 0.0535 ( 0.0265 , 0.0992 )

c 0.6419 ( 0.2151 , 1.2840 ) 0.5601 ( 0.1930 , 1.1175 ) 0.7278 ( 0.2478 , 1.5109 )

k∗ 4.2637 3.3168 4.7235

Note: c is the DP precision parameter and k∗ is the average number of nonempty
mixture components.
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Table 4.3: Posterior means and 95% credibility intervals (CI) of the parameters

estimated according the model defined in Eq. (4.6).

BD FX EQ

Mean CI Mean CI Mean CI

κ1 0.0021 ( 0.0001 , 0.0075 ) 0.0062 ( 0.0001 , 0.0236 ) 0.0024 ( 0.0001 , 0.0085 )

κ2 0.0040 ( 0.0004 , 0.0098 ) 0.0152 ( 0.0005 , 0.0436 ) 0.0059 ( 0.0003 , 0.0169 )

κ3 0.0041 ( 0.0002 , 0.0139 ) 0.0050 ( 0.0001 , 0.0186 ) 0.2040 ( 0.1059 , 0.3162 )

α11 0.5395 ( 0.4055 , 0.6437 ) 0.4872 ( 0.3460 , 0.6486 ) 0.5142 ( 0.3654 , 0.6784 )

α13 0.0458 ( 0.0221 , 0.0931 ) 0.3257 ( 0.1131 , 0.5919 ) 0.0912 ( 0.0368 , 0.1806 )

α22 0.9054 ( 0.8650 , 0.9331 ) 0.7418 ( 0.5466 , 0.8653 ) 0.7730 ( 0.6292 , 0.8600 )

α33 0.9345 ( 0.8990 , 0.9589 ) 0.6817 ( 0.5064 , 0.8417 ) 0.6683 ( 0.5874 , 0.7644 )

α̃21 0.0343 ( 0.0025 , 0.0729 ) 0.5571 ( 0.1546 , 0.9217 ) 0.2582 ( 0.0984 , 0.4979 )

α̃32 0.0308 ( 0.0078 , 0.0611 ) 0.1571 ( 0.0495 , 0.3172 ) 0.2681 ( 0.1362 , 0.4296 )

γ11 0.1365 ( 0.0736 , 0.2290 ) 0.0967 ( 0.0424 , 0.1925 ) 0.1951 ( 0.0996 , 0.3131 )

γ22 0.0832 ( 0.0569 , 0.1214 ) 0.0267 ( 0.0076 , 0.0590 ) 0.1436 ( 0.0766 , 0.2155 )

γ33 0.0455 ( 0.0244 , 0.0704 ) 0.0298 ( 0.0125 , 0.0517 ) 0.0693 ( 0.0381 , 0.1099 )

c 0.6264 ( 0.2202 , 1.2538 ) 0.5951 ( 0.2064 , 1.2012 ) 0.7682 ( 0.2667 , 1.5604 )

k∗ 4.2929 3.6426 5.8154

Note: c is the DP precision parameter and k∗ is the average number of nonempty
mixture components.
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Table 4.4: Posterior means and 95% credibility intervals (CI) of the parameters

estimated according the model defined in Eq. (4.11).

BD FX EQ

Mean CI Mean CI Mean CI

κ1 0.0034 ( 0.0002 , 0.0085 ) 0.0052 ( 0.0001 , 0.0143 ) 0.0074 ( 0.0003 , 0.0170 )

κ2 0.0041 ( 0.0005 , 0.0095 ) 0.0238 ( 0.0050 , 0.0648 ) 0.0185 ( 0.0007 , 0.0553 )

κ3 0.0068 ( 0.0014 , 0.0148 ) 0.0315 ( 0.0027 , 0.0722 ) 0.1981 ( 0.1151 , 0.2720 )

α11 0.5687 ( 0.5481 , 0.5906 ) 0.8453 ( 0.8155 , 0.8794 ) 0.5515 ( 0.4533 , 0.7314 )

α22 0.9076 ( 0.8983 , 0.9175 ) 0.9451 ( 0.9197 , 0.9621 ) 0.5902 ( 0.4818 , 0.7136 )

α33 0.9384 ( 0.9238 , 0.9604 ) 0.7991 ( 0.7034 , 0.8719 ) 0.7161 ( 0.6589 , 0.7861 )

β13 0.0039 ( 0.0025 , 0.0056 ) 0.0058 ( 0.0026 , 0.0095 ) 0.0048 ( 0.0025 , 0.0080 )

β21 0.0014 ( 0.0001 , 0.0034 ) 0.0103 ( 0.0037 , 0.0231 ) 0.0899 ( 0.0493 , 0.1459 )

β32 0.0037 ( 0.0008 , 0.0079 ) 0.0221 ( 0.0102 , 0.0393 ) 0.0372 ( 0.0164 , 0.0587 )

γ11 0.0801 ( 0.0693 , 0.0939 ) 0.0677 ( 0.0370 , 0.0961 ) 0.1266 ( 0.0757 , 0.1857 )

γ22 0.0826 ( 0.0711 , 0.0914 ) 0.0156 ( 0.0026 , 0.0403 ) 0.0664 ( 0.0266 , 0.1203 )

γ33 0.0523 ( 0.0340 , 0.0664 ) 0.0125 ( 0.0005 , 0.0380 ) 0.0194 ( 0.0051 , 0.0367 )

c 0.6248 ( 0.2225 , 1.2342 ) 0.5276 ( 0.1743 , 1.0711 ) 0.7566 ( 0.2712 , 1.4963 )

k∗ 4.1751 2.9843 5.1271

Note: c is the DP precision parameter and k∗ is the average number of nonempty
mixture components.
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Table 4.5: Posterior means and 95% credibility intervals (CI) of the parameters

estimated according the model defined in Eq. (4.12).

BD FX EQ

Mean CI Mean CI Mean CI

κ1 0.0034 ( 0.0001 , 0.0091 ) 0.0031 ( 0.0001 , 0.0102 ) 0.0046 ( 0.0001 , 0.0194 )

κ2 0.0053 ( 0.0009 , 0.0120 ) 0.0172 ( 0.0058 , 0.0342 ) 0.0270 ( 0.0018 , 0.0639 )

κ3 0.0069 ( 0.0006 , 0.0185 ) 0.0194 ( 0.0025 , 0.0400 ) 0.2847 ( 0.1133 , 0.4708 )

α11 0.6236 ( 0.6078 , 0.6405 ) 0.8740 ( 0.8347 , 0.9053 ) 0.5879 ( 0.5170 , 0.6564 )

α22 0.9012 ( 0.8759 , 0.9233 ) 0.9408 ( 0.9131 , 0.9621 ) 0.5548 ( 0.4011 , 0.7492 )

α33 0.9348 ( 0.9134 , 0.9511 ) 0.7903 ( 0.7326 , 0.8898 ) 0.6571 ( 0.5382 , 0.7568 )

β13 0.0067 ( 0.0042 , 0.0098 ) 0.0042 ( 0.0021 , 0.0069 ) 0.0054 ( 0.0032 , 0.0084 )

β21 0.0025 ( 0.0003 , 0.0061 ) 0.0069 ( 0.0035 , 0.0125 ) 0.1172 ( 0.0761 , 0.1738 )

β32 0.0071 ( 0.0022 , 0.0137 ) 0.0172 ( 0.0083 , 0.0281 ) 0.0610 ( 0.0230 , 0.1045 )

β̃13 0.0025 ( 0.0001 , 0.0080 ) 0.0051 ( 0.0003 , 0.0135 ) 0.0027 ( 0.0001 , 0.0078 )

β̃21 0.0012 ( 0.0001 , 0.0040 ) 0.0188 ( 0.0052 , 0.0369 ) 0.0993 ( 0.0419 , 0.1841 )

β̃32 0.0024 ( 0.0001 , 0.0113 ) 0.0143 ( 0.0010 , 0.0356 ) 0.0223 ( 0.0008 , 0.0681 )

γ11 0.1366 ( 0.0997 , 0.2047 ) 0.0427 ( 0.0237 , 0.0661 ) 0.1574 ( 0.0888 , 0.2586 )

γ22 0.0907 ( 0.0664 , 0.1172 ) 0.0123 ( 0.0036 , 0.0249 ) 0.0763 ( 0.0247 , 0.1485 )

γ33 0.0463 ( 0.0253 , 0.0784 ) 0.0067 ( 0.0003 , 0.0170 ) 0.0214 ( 0.0024 , 0.0572 )

c 0.6115 ( 0.2193 , 1.2178 ) 0.5224 ( 0.1517 , 1.0947 ) 0.7777 ( 0.2774 , 1.5342 )

k∗ 3.8925 3.4448 5.3499

Note: c is the DP precision parameter and k∗ is the average number of nonempty
mixture components.
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Table 4.6: Posterior means and 95% credibility intervals (CI) of the parameters

estimated according the model defined in Eq. (4.13).

BD FX EQ

Mean CI Mean CI Mean CI

κ1 0.0069 ( 0.0004 , 0.0140 ) 0.0058 ( 0.0002 , 0.0200 ) 0.0072 ( 0.0001 , 0.0315 )

κ2 0.0030 ( 0.0004 , 0.0068 ) 0.0193 ( 0.0050 , 0.0397 ) 0.0338 ( 0.0019 , 0.0864 )

κ3 0.0072 ( 0.0008 , 0.0175 ) 0.0299 ( 0.0012 , 0.0956 ) 0.6846 ( 0.2541 , 0.9480 )

α11 0.5952 ( 0.5535 , 0.6413 ) 0.8656 ( 0.8206 , 0.9071 ) 0.5570 ( 0.4440 , 0.6623 )

α22 0.9153 ( 0.8845 , 0.9345 ) 0.9375 ( 0.8924 , 0.9608 ) 0.5890 ( 0.4393 , 0.7194 )

α33 0.9384 ( 0.9101 , 0.9586 ) 0.8171 ( 0.7260 , 0.8906 ) 0.4908 ( 0.2047 , 0.6748 )

β13 0.0129 ( 0.0066 , 0.0198 ) 0.0085 ( 0.0022 , 0.0172 ) 0.0007 ( 0.0000 , 0.0021 )

β21 0.0017 ( 0.0001 , 0.0046 ) 0.0126 ( 0.0019 , 0.0287 ) 0.0392 ( 0.0017 , 0.1217 )

β32 0.0055 ( 0.0004 , 0.0158 ) 0.0214 ( 0.0047 , 0.0455 ) 0.0599 ( 0.0052 , 0.1344 )

β̃13 0.0069 ( 0.0019 , 0.0122 ) 0.0047 ( 0.0004 , 0.0116 ) 0.0119 ( 0.0066 , 0.0205 )

β̃21 0.0016 ( 0.0001 , 0.0046 ) 0.0083 ( 0.0006 , 0.0255 ) 0.2224 ( 0.1066 , 0.3473 )

β̃32 0.0031 ( 0.0001 , 0.0098 ) 0.0297 ( 0.0085 , 0.0725 ) 0.2357 ( 0.0761 , 0.3772 )

γ11 0.2527 ( 0.1928 , 0.3032 ) 0.0830 ( 0.0425 , 0.1273 ) 0.1711 ( 0.0783 , 0.3062 )

γ22 0.0761 ( 0.0569 , 0.1074 ) 0.0176 ( 0.0034 , 0.0371 ) 0.0794 ( 0.0243 , 0.1549 )

γ33 0.0496 ( 0.0282 , 0.0768 ) 0.0147 ( 0.0009 , 0.0383 ) 0.0375 ( 0.0033 , 0.0837 )

c 0.6280 ( 0.2165 , 1.2620 ) 0.5435 ( 0.1891 , 1.0911 ) 0.7527 ( 0.2564 , 1.5120 )

k∗ 3.8727 3.1701 5.0640

Note: c is the DP precision parameter and k∗ is the average number of nonempty
mixture components.
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Figure 4.1: Intra-day returns on the bond market multiplied by 100.
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Figure 4.2: Intra-day returns on the foreign exchange market multiplied by 100.
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Figure 4.3: Intra-day returns on the equity market multiplied by 100.
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Figure 4.4: Realized volatility and jump estimates (multiplied by 1000) for the bond

market for the Japan, Europe and USA trading zones.
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Figure 4.5: Realized volatility and jump estimates (multiplied by 1000) for the

foreign exchange market for the Japan, Europe and USA trading zones.
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Figure 4.6: Realized volatility and jump estimates (multiplied by 1000) for the

equity market for the Japan, Europe and USA trading zones.
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Figure 4.7: Posterior density of the transformed and normalized variable u in the

bond market, conditional on models (4.5), (4.6), (4.11), (4.12), (4.13) in panels

(a)-(e) respectively.
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Figure 4.8: Posterior density of the transformed and normalized variable u in the

foreign exchange market, conditional on models (4.5), (4.6), (4.11), (4.12), (4.13) in

panels (a)-(e) respectively.
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Figure 4.9: Posterior density of the transformed and normalized variable u in the

equity market, conditional on models (4.5), (4.6), (4.11), (4.12), (4.13) in panels

(a)-(e) respectively.
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Chapter 5

Summary and outlook

This thesis provides several computational and modeling extensions to the grow-

ing literature on Bayesian nonparametric methods applied to financial econometric

models. The thesis is comprised of three distinct essays. First, we present a solution

to the challenging task of finding an efficient and adaptive sampling strategy, when

dealing with non-linear and/or nonparametric model set-ups. Second, we investigate

international financial volatility co-movements by means of a multivariate stochastic

volatility framework combined with a highly flexible nonparametric error term. And

finally, we study the global volatility transmission by applying a Bayesian nonpara-

metric MGARCH model, proven by a number of studies to be a more suitable tool in

comparison to the usual benchmark alternatives. Accordingly, the thesis contributes

to the field in various ways, by (i) solving an algorithmic issue, (ii) designing a new

model structure, and (iii) conducting an empirical study for the global bond, foreign

exchange and equity markets. With respect to aspect (ii), the new nonparametric

model structure is accompanied with an appropriate sampling strategy and provides

direct implications on international financial market behavior.

In Chapter 2, we propose a new generic and flexible algorithm for estimating

non-linear nonparametric state-space models and provide multiple examples, mostly
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emphasizing applicability in the context of stochastic volatility estimation in finance.

We demonstrate the advantages of the new sampling scheme by means of two ex-

amples and by focusing further on the semiparametric stochastic volatility model

of Jensen and Maheu (2014). Evidently, the new approach is applicable to mo-

dels capable of capturing the properties of financial time series and is also readily

extendable to more complex econometric models due to its flexibility and generality.

Chapter 3 proposes a new semiparametric Cholesky multivariate stochastic

volatility model, in which the dynamics of the multivariate conditional volatility

are modeled parametrically, while the error term is modeled as an infinite mixture

of normal distributions based on the nonparametric Dirichlet process mixture

prior. We establish a fully-fledged Bayesian estimation algorithm and investigate

volatility co-movements among five international stock market indices. The

empirical analysis has two major findings. (1) Although expecting the markets to

move together during turbulent periods, we do not find evidence of this, especially

when observing the Asian markets. (2) We find positive co-movements between

the US and European markets, but nearly uncorrelated US and Japanese markets.

Our multivariate model has a number of advantages compared to those in the

existing literature. First, the combination of the flexible stochastic volatility model

with the highly flexible nonparametric prior for the unconditional distribution pro-

vides an attractive tool for risk management. Second, the Cholesky structure of the

covariance matrix facilitates high-dimensional model estimation without restricting

model flexibility. As a result, our Cholesky DPM-MSV framework could also be

useful for dealing with high-dimensional portfolio-decision problems.

In Chapter 4, we address GARCH-type specifications, another important class of

volatility models. In particular, we are interested in different multivariate GARCH
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parameterizations, in order to study the volatility transmission in global bond, for-

eign exchange and equity markets. In order to establish a suitable modeling frame-

work, which considers the non-Gaussianity in financial returns, we adopt a Bayesian

nonparametric MGARCH model based on a DPM prior. This allows us to reexamine

the heat wave and meteor shower volatility transmission patterns without depending

on a particular distributional assumption. We find that a suitable transformation of

the DPM precision parameter, based on the Savage-Dickey density ratio, supports

the hypothesis of an infinite mixture model for all three markets.

The empirical results suggest that the pattern of volatility interaction is a com-

bination of effects related to both, (1) volatility in the same region, and (2) volatility

in the timely preceding region. In contrast to the benchmark study by Clements

et al. (2015), we do not find strong evidence in favor of meteor shower in the equity

market. Overall, our results indicate a rather weak meteor shower effect, combined

with a distinct heat wave pattern.

Two directions for future research can be identified from these results and

implications. First, when dealing with (univariate and multivariate) stochastic

volatility models, a natural extension of the framework could be the inclusion of

leverage effects, which supports modeling negative skewness in the return

distribution. Second, an interesting aspect in the SV literature could be the

inclusion of realized volatility measures in an additional state-space equation, in

order to improve estimation accuracy.

Finally, extensions to the empirical study from Chapter 4 are conceivable. Recall

that the observed trading period in Europe ends at 12:30 pm (GMT) due to the

overlap with the US stock market trading. For example, a comparison of the results

when subsuming the trading overlap into the European market instead of the US
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market (see the structure of the global trading day) could be worth investigating.

Here, one could argue that the afternoon-events occurring in Europe might be more

relevant to volatility transmission than the US pre-trading period. Including density

forecasts to the study is another possible avenue for future research.
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Virbickaitė, A., H. F. Lopes, M. C. Auśın, and P. Galeano (2014). Particle learn-

ing for Bayesian non-parametric Markov switching stochastic volatility model.

Discussion papers .

Volkov, V. V. (2015). Volatility Transmission in Global Finanial Markets. Ph. D.

thesis, Shool of Eonomis and Finane, Queensland University of Tehnology.

Walker, S. G. (2007). Sampling the Dirichlet mixture model with slices. Communi-

cations in Statistics - Simulation and Computation 36 (1), 45–54.



115

Appendix A

A.1 Observable state & nonparametric distribu-

tion

Consider the model

yt = εt, εt ∼ G,

where G is a unknown distribution. In this case, we have no latent states and

a nonparametric model, and use the present model to illustrate the nonparametric

part of the sampler. We simulate a sample of T = 50 observations from the following

mixture of normals

yt
iid∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N (−20, 1) with prob. 0.2

N (0, 5) with prob. 0.5

N (5, 1) with prob. 0.3

.

We use Steps A and D, as no filter/smoother is required. Furthermore, the likelihood

(conditional on the table assignments) is given in closed form. We scale the random

walk proposals to achieve an acceptance ratio of roughly 0.33. We choose non-

informative priors, i.e. the base distribution G0(·) is N (0, 3) - Γ(1, 1), while the

concentration parameter for the CRP α has the Gamma prior Γ(1, 1). We run

the algorithm for 20000 iterations and drop the first 5000 from the calculations.

Figure A.1 shows the posterior of the concentration parameter α and the resulting

predictive density. The first two panels show the trace plot of α (a), and the Bayes
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factors (panel (b)). Lastly, panel (c) compares the data histogram to the posterior

predictive density obtained from the DPM. It is evident that the infinite mixture

succeeds in identifying the distinct components and provides a flexible forecast, even

given the small sample size.
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Figure A.1: Density estimation based on Chinese restaurant process (Section 2.2.3):

(a) trace plot of α, (b) Bayes factors and (c) data histogram and posterior predictive

density (blue line).
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A.2 Latent state & parametric distribution

The second example is the stochastic volatility model with parametric error terms.

yt = exp(st/2)εt, εt ∼ N (0, σ2
y),

st = ρst−1 + ηt, ηt ∼ N (0, σ2
η).

Our sampling algorithm proceeds as in Flury and Shephard (2011). We use Step

C and the particle-filter approximation of the likelihood to sample the parameter

set θ = {ρ, ση, σy}. We view this second example as a test of the particle filter’s

capability to deal with the latent state variable. We set the parameters to ρ = 0.95,

ση = 0.2 and σy = 1.2, simulate 1000 data points from the model and report the

marginal posterior densities in Figure A.2. Panel (a) shows the full chain trajectories

of ρ (in blue), ση (in red) and σy (in yellow) followed by the corresponding marginal

posterior distributions (panels (b),(c) and (d)), where the blue line indicates the flat

prior and the red circles the true values. The last panel (e) shows the posterior pre-

dictive density obtained from our estimation. Once more, we used 20000 iterations,

where only the last 15000 are used as posterior sample. The posterior means and

the 90% Bayesian intervals of the model parameters are reported in Table (A.1).

True Post. Mean CI (90%)

ρ 0.95 0.9334 (0.8758, 0.9747 )

σ2
η 0.04 0.0561 (0.0238, 0.1171 )

σ2
y 1.44 1.4509 (1.1121, 1.9055 )

Table A.1: Simulated data: Posterior medians and 90% CI in the parentheses.
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Figure A.2: Classical stochastic volatility model (Section A.2): (a) trace plots of

ρ (in blue), ση (in red) and σy (in yellow), (b), (c) and (d) Marginal posterior of

distributions of ρ, ση and σy (with priors in blue and true values indicated with

red circles); (e) posterior log-predictive density (blue line) and true log-predictive

density (dashed black line).
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A.3 Particle filter

For parsimony, we omit the parameter set from the conditioning set, i.e. we write

p(st|yt) ≡ p(st|yt, θ). Except for minor changes, our notation follows Herbst and

Schorfheide (2015).

1. Initialization

Generate a particle swarm {s0,W0} by means of Np i.i.d. draws from a prior

distribution p(s0) and set the initial weights W0 = 1Np , where 1Np is a Np× 1

vector of ones.

2. Recursion. For t = 1, . . . , T :

a. Forecast st

Iterate st−1 forward using the state-transition equation

st = f(st−1,θ, εs).

The swarm {st,Wt−1} approximates the forecast density p(st|y1:t−1).

b. Forecast yt

The forecast density of yt is

p(yt|y1:t−1) =

∫
p(yt|st,y1:t−1)p(st|y1:t−1) dst

with each incremental weight p(yt|st,y1:t−1) =: wt computed from the

observation equation f(·) and the distribution F . Consequently

p̂(yt|y1:t−1) =
1

Np

w′
tWt−1

is the approximate predictive density.

c. Updating

Bayes’ theorem yields the updated density

p(st|y1:t) = p(st|y1:t−1, yt) =
p(yt|st,y1:t−1)p(st|y1:t−1)

p(yt|y1:t−1)
,
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which is approximated by the swarm {st,W̃t :=
wt·Wt−1

p̂(yt|y1:t−1)
}.

d. Resampling

If the variation of the particles approaches a lower limit defined by the

effective sample size

ÊSSt = Np/

(
W̃′

tW̃t

Np

)
,

all particles st are resampled from a multinomial distribution using

weights W̃t. In the case of resampling, set Wt = 1, and Wt = W̃t

otherwise.



122

Appendix B

B.1 Sampling the AR parameters in Cholesky-

DPM-MSV

In summary, the priors on the autoregressive parameters are given as

cαj ∼ N(αc0 , βc0), (B.1)

φαj ∼ N(αα0 , βα0)1(|φαj| < 1), (B.2)

σ2
ej ∼ IG(νe0/2, se0/2), (B.3)

φhi ∼ N(αh0 , βh0)1(|φhi| < 1), (B.4)

σ2
ηi ∼ IG(νη0

/2, sη0
/2), (B.5)

for j = 1, . . . , p and i = 1, . . . ,m, and where IG denotes the inverse Gamma distri-

bution.

The full conditional posteriors of the parameters cαj and φαj are given by

π(cαj|φαj, σ
2
ej,αj) ∝ π(cαj)×

√
1− φ2

αj

× exp

{−(1− φ2
αj)(αj1 − cαj

1−φαj
)2 + 2cαjQ2j − Tc2αj − 2cαjφαjQ1j

2σ2
ej

}
,

π(φαj|cαj, σ2
ej,αj) ∝ π(φαj)×

√
1− φ2

αj

× exp

{−(1− φ2
αj)(αj1 − cαj

1−φαj
)2 + 2φαjQ4j − 2cαjφαjQ1j − φ2

αjQ3j

2σ2
ej

}
,
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where αj = (αj1, . . . , αjT ), π(cαj) and π(φαj) are the prior densities (according Eqs.

(B.1) and (B.2)), T is the sample length, and

Q1j =
T∑
t=2

αjt−1, (B.6)

Q2j =
T∑
t=2

αjt, (B.7)

Q3j =
T∑
t=2

α2
jt−1, (B.8)

Q4j =
T∑
t=2

αjt−1αjt. (B.9)

The conditional posteriors are of non-standard form and can not be sampled

directly. In this case, a Random Walk Metropolis Hastings (RWMH) algorithm

with appropriately scaled normal proposals is used.

The AR-parameter σ2
ej can be sampled directly due to the conjugacy of the prior:

σ2
ej|cαj, φαj,αj ∼ IG(ν̄e, s̄ej), (B.10)

where ν̄e = (T − 1 + νe0)/2 and s̄ej = (se0 + (1− φ2
αj)(αj1 − cαj

1−φαj
)2 +

∑T
t=2(αjt −

cαj − φαjαjt−1)
2)/2.

We sample the log-volatility parameters in an analogous way. The full conditional

posterior of φhi can be written as

π(φhi|σ2
ηi,hi) ∝ π(φhi)×

√
1− φ2

hi exp

{−(1− φ2
hi)h

2
i1 + 2φhiQ4i − φ2

hiQ3i
2σ2

ηi

}
,

where hi = (hi1, . . . , hiT )
′, π(φhi) is the prior density from Eq. (B.4), Q3i =∑T

t=2 h
2
it−1, Q4i =

∑T
t=2 hit−1hit, and sampling is done again by RWMH.

Drawing from the posterior σ2
ηi|φhi,hi ∼ IG(ν̄η/2, s̄ηi/2) can be executed by

directly sampling from the IG with the updated parameters ν̄η = (T − 1 + νη0
)/2

and s̄ηi = (sη0
+ (1− φ2

hi)h
2
i1 +

∑T
t=2(hit − φhihit−1)

2)/2.




