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Abstract

Simulations of dynamical processes in planetary systems represent an important tool for
studying their orbital evolution [7][82][48]. Using modern numerical integration methods,
it is possible to model systems containing many thousands of objects over time scales
of several hundred million years. However, in general supercomputers are needed to get
reasonable simulation results in acceptable execution times [48]. To exploit the ever growing
computation power of Graphics Processing Units (GPUs) in modern desktop computers I
implemented cuSwift, a library of numerical integration methods for studying long-term
dynamical processes in planetary systems. cuSwift can be seen as a re-implementation
of the famous SWIFT integrator package written by Levison and Duncan. cuSwift is
written in C/CUDA and contains different integration methods for various purposes. So
far, I have implemented three algorithms: a 15th order Radau integrator [40], the Wisdom-
Holman Mapping (WHM) integrator [115] and the Regularized Mixed Variable Symplectic
(RMVS) Method [65]. These algorithms treat only the planets as mutually gravitationally
interacting bodies whereas asteroids and comets (or other minor bodies of interest) are
treated as massless test particles which are gravitationally influenced by the massive bodies
but do not affect each other or the massive bodies. The main focus of this work is on
the symplectic methods (WHM and RMVS) which use a larger time step and thus are
capable of integrating many particles over very large time spans. As an additional feature,
I implemented the non-gravitational Yarkovsky effect as described by Brož [13].

With cuSwift I show that the use of GPUs makes it possible to speed up these methods
up to two orders of magnitude compared to the single-core CPU implementation, thereby
enabling modest workstation computers to perform long-term dynamical simulations. I
compare the newly implemented algorithms with the original algorithms of SWIFT in
order to assess the numerical precision and to demonstrate the speedup achieved with the
GPU. As a first application, I use these methods to study the influence of the Yarkovsky
effect on Jupiter Trojan asteroids and show that the effect indeed affects the long-term
orbital evolution of these bodies.
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CHAPTER 1
Introduction

1.1 Minor planets in the solar system
1.1.1 Asteroids
Around 1600 Johannes Kepler postulated a small planet that may circle around the Sun
between the orbits of Mars and Jupiter. Since then astronomers were searching for such an
object. They got encouraged by the discovery of the Titus-Bode law in 1715, which, despite
of being a curious coincidence only, also predicts an object at that location. After not
being successful for almost 200 years of searching, during the 2nd European astronomical
Congress in 1800, an organization called Himmelspolizey was founded in order to coordinate
search for the planet among the available observatories. By the beginning of the following
year, Guiseppe Piazzi, although not being member of the organization, indeed found a
celestial body located within the predicted region. Bad weather conditions and illness
forced Piazzi to stop observations in February 1801. Fortunately, combined efforts of
Carl Friedrich Gauss, who developed a method of orbit determination based on three
observations only and coordinated search around the predicted position by Himmelspolizey
lead to rediscovering the object in late 1801. After the discovery was confirmed and the
orbit constrained the body was categorized as a planet and named Ceres (Â). However, it
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Figure 1.1: Left panel: Asteroid discoveries per year since 1800 and total number of known
asteroids. Right panel: Size distribution of known asteroids in the main asteroid belt (see
Figure 1.2) and predicted number of objects. (MPC data as on August 2017, numbered and
multi-opposition objects only)
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2 Chapter 1 Introduction

was soon realized that Ceres was not the only object located between Mars and Jupiter.
During the following 50 years the number of discovered objects dramatically increased.
Thus, it was decided to introduce a new class of solar system objects named asteroids or
minor planets rather than continuously increasing the number of planets. It was further
decided to assign numbers to asteroids instead of symbols, as for the planets. So Ceres
(Â) became (1) Ceres, the first asteroid to be discovered. Less than a century after the
discovery of Ceres, in 1890, about 300 asteroids had been found. Due to growing numbers
of telescopes available and ever improving observation equipment the trend of growing
number of discoveries has been continuing until today (see left panel of Figure 1.1).

Since 1947 the observational data is processed and published by the Minor Planet Center
(MPC) located in the United States and as of August 2017, there are 602.013 asteroids
which have been observed over multiple apparitions (multi-opposition objects). Looking at
the number of asteroid discoveries per year it seems like the rate of discoveries is currently
dropping which would imply that now almost all existing asteroids have been found. The
reason for this is that the plot contains only those asteroids for which a robust orbit
is known, which are the ones observed over more than one apparition. Since obtaining
observations from multiple apparitions may take several years, not all objects actually
discovered are included in the graph. Another interesting feature can be seen in the right
panel of Figure 1.1. The smaller the asteroids, the larger they are in numbers. Naturally,
the biggest ones are the first to be found, as they are the easiest to spot. Indeed (1) Ceres,
measuring 950 km in diameter, is the largest asteroid between Mars and Jupiter. The
smaller, darker or more distant the objects are, the harder it is to detect them. Even

Figure 1.2: Snapshot of the inner solar system (left hand panel: top view; right hand panel:
edge on view). Sun and Planet positions from Mercury to Jupiter as well as their orbits are
shown in black. Each colored dot represents the position of an asteroid. As of August 2017
there are 602.013 numbered and multi-opposition asteroids in the inner solar system.



1.1 Minor planets in the solar system 3

though not discovered yet, estimations on the number of small asteroids can be made, for
example by estimating the performance of asteroid surveys [62] (dashed line in the right
panel of Figure 1.1). Comparing the total number of known asteroids to the number of
objects predicted, it can be seen that for the main asteroid belt (see Figure 1.2) most
objects larger than about 3 km in diameter are known so far but many more smaller ones
are to be discovered. It will take continuous observations and ever improving observing
equipment in order to fill up the rear end of the graphs in Figure 1.1.

While more and more asteroids were discovered, it turned out not all of them are
residing between Mars and Jupiter. Figure 1.2 shows the positions of all numbered and
multi-opposition asteroids as of August 2017 in the inner solar system in a heliocentric
reference frame. The densely populated region close to the ecliptic between Mars and
Jupiter is called the main asteroid belt (green). However, there are other clusters of objects
close to the orbit of Jupiter (blue) and in the very inner solar system (orange). When
representing the asteroids in terms of their orbital elements rather than their current
location the different groups are even easier to distinguish. Figure 1.3 again shows all
numbered and multi-opposition asteroids in the solar system, but this time in terms of
their orbital parameters semi-major axis, eccentricity and inclination.

According to their orbital parameters different dynamical families of asteroids can be
identified: Asteroids of the Atira family move on orbits entirely inside the orbit of Earth.
The family is named after (163693) Atira, the first asteroid discovered in this region in
2004. As of August 2017, there are only 18 multi-opposition Atira-asteroids known. Being
always closer to Sun than Earth makes them very hard to detect. From Earth they can be
observed only right after sunset and just before sunrise. Moving a bit further out there is
the Aten family named after (2062) Aten discovered in 1976. Aten family asteroids have
aphelion distances greater than 0.983 Astronomical Units (au), Earth’s perihelion distance
and semi-major axes greater than 1.0 au which means they are crossing the orbit of Earth.
Another group of Earth-crossing asteroids is the Apollo family, named after (1862) Apollo
discovered in 1932. Apollo type asteroids move on orbits having a semi-major axis greater
than 1.0 au and a perihelion distance smaller than 1.017 au, the aphelion distance of Earth.
The Amor family, named after (1221) Amor, discovered just before (1862) Apollo in March
1932, is a group of asteroids located close to but not crossing Earth’s orbit. Amor family
asteroids have semi-major axes greater than 1.0 and perihelion distances between 1.017
and 1.3 au. Being so close to Earth, Atiras, Atens, Amors and Apollos together make up
the group of Near Earth Asteroids (NEAs). Most of the NEAs are orbiting the sun on
chaotic orbits which means that their orbital elements are constantly changing and thus
are scattered over a large volume in phase space.

The region between the orbits of Mars and Jupiter shows the highest density of asteroids
in the inner solar system. The main asteroid belt fills up the largest part of that region.
Next to the main belt there are two highly inclined groups, the Hungaria and Phocaea
family. A bit further out there is the Hilda Family populating a narrow region in semi-major
axis. Hilda family Asteroids are in a 3:2 mean motion resonance with Jupiter which means
that while they do three revolutions around Sun, Jupiter revolves twice. As can be seen
in Figure 1.2 their positions form a triangle just inside the orbit of Jupiter. Jupiter itself
shares its orbit with another family of asteroids called the Jupiter Trojans. Jupiter Trojans
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Figure 1.3: Orbital distribution of numbered and multi-opposition asteroids as of August
2017 colored by family. To concentrate on the most populated regions only, 2 objects having a
semi-major axis greater than 1000 and 36 orbits with inclinations greater than 70° are omitted.
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have about the same orbital period as Jupiter and form two distinct clouds on the orbit of
Jupiter about 60° ahead and behind the position of the planet. A detailed description of
this family can be found in chapter 6.

Beyond the orbit of Jupiter, in the outer solar system, the number of known objects
dramatically decreases. Only a few asteroids on orbits between the gas and ice giants
are known, but more have been found beyond the orbit of Neptune, Pluto being one of
them. Discovered in 1930, Pluto was listed as the 9th planet of the solar system until very
recently. Since its discovery more and more objects have been found on similar orbits as
Pluto. As some of them are comparable in size and one, Eris, is even greater in mass,
Pluto recently suffered from a similar fate as Ceres. In 2006, again a new category of solar
system objects named dwarf planets was defined and Pluto got assigned to it. However, in
the same turn Pluto lost its status as a planet, Ceres was promoted a dwarf planet. More
about the orbit of Pluto can be found in Section 5.1. Objects located in the region ranging
from the orbit of Neptune up to abut 1000 au are also referred to as Kuiper belt objects
(KBOs) or transneptunian objects (TNOs). Although not many objects in this region are
known so far, many more are expected to be discovered in the future [93].

The X axis in figure 1.3 ends at the outer edge of the Kuiper belt. However, even more
objects are expected to orbit Sun even beyond the TNOs. This theoretical population is
called the Oort cloud and may reach as far as Sun’s gravitational dominance. Kuiper belt
and Oort cloud are believed to be the reservoir for the comets we observe in the inner solar
system [81].

1.1.2 Comets
Comets are known to exist much longer than asteroids. Once they reach the inner solar
system they become active and develop their characteristic tail (or coma), they can become
very easy to spot. For the brightest objects no telescope is needed to observe them and
some of them become visible even during daytime. Their appearance is documented in
history over thousands of years. However, the awareness of them being minor planets of
the solar system came much later. One of the first thinking of an explanation for the
appearance of comets was Aristotle in 350 B.C.E. In his treatise Meteorology he concluded
that comets and shooting stars consist of gas, leaving the surface of Earth igniting itself
below Moon. While in the case of shooting stars the gas is escaping fast, comets are made
of gas leaving Earth more slowly. Later, in the medieval times, comets where seen as a
precursor for all kinds of natural or civil disasters like starvation, epidemics or war. A
very important step towards understanding the appearance of comets was made by Tycho
Brahe in 1577. He concluded that if comets would be located between Earth and moon, it
should be possible to measure a parallax effect when observing them from different places
on Earth. As he was not able to measure the effect within the accuracy of the instruments
he used, he postulated that comets must be at least four times further away from Earth
than the moon. Then, there was Isaac Newton, who proved in his Principia Mathematica
that comets follow the inverse square law of universal gravitation thus must move on orbits
shaped like one of the conic sections. He demonstrated this by fitting the orbit of the
comet of 1680 to a parabola. 25 Years later, in 1705, Edmond Halley compared the orbits
of 23 cometary apparitions computed by the method of Newton and found that three of
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them had very similar orbital elements. Being able to explain the small differences in their
orbital elements by gravitational perturbations of Jupiter and Saturn, Halley concluded
that it is very likely the three apparitions belong to the same comet and predicted the
comet would return in 1758, which it indeed did. Since then the comet was known as
Halley’s comet.

After being identified as minor bodies orbiting Sun just like planets or asteroids, the
next question raised: Why do comets look so much different than asteroids? In 1835,
Friedrich Wilhem Bessel observed Halley’s comet as it returned to the inner solar system.
Monitoring the change in appearance, Bessel concluded that the coma must come from
volatile material which is vaporized by the heat of sun as the comet comes closer. Later
during the 19th century, first comet spectra were observed by Giovanni Battista Donati
and William Huggins [103]. While Donati took the first spectrum of a comet, Huggins
was able to identify the emission lines with C2, CH, CN and C3, substantiating Bessels
assumptions. Since then more than two dozen different molecules have been identified
among cometary volatiles [6].

As of August 2017, the Minor Planet Center lists 347 numbered periodic comets,
1P/Halley being the first. Compared to the number of known asteroids this may look like
there exist only a few comets in our solar system. Also the total number of comets ever
observed, 3841, supports this assumption. While asteroids move on rather circular orbits
in the inner solar system, comets show more eccentric orbits which means they spend most
of the time far away from Sun making them harder to spot. However, studies suggest there
may be many more comets residing in the outer solar system.

1.2 Dynamical evolution of minor planets
Looking to the orbital distribution of minor planets in the solar system (Figure 1.3)
it appears that rather than being randomly distributed, there are voids and clumps of
objects. Even though most of the minor bodies orbit Sun on regular orbits having modest
eccentricity and inclination, the solar system is far from being dynamically stable. The
NEAs for example have dynamical lifetimes of a few Myr only [7], which is very short
compared to the age of the solar system of about 4.5 Gyr. As they are on planet crossing
orbits, it is only a matter of time until they encounter one of the inner planets which can
cause a dramatic change in their orbit and eventually leads to them getting thrown into
Sun, being ejected from the solar system or even impacting a planet. Also the comets in
the inner solar system are very short lived objects. As they constantly lose material they
become smaller and smaller. Some of them eventually break apart during a perihelion
passage while others suffer the same fate as NEAs as they are on planet crossing orbits too.

One might think that 4.5 Gyr should be enough time to rule out all the unstable orbits
decreasing the amount of chaos in the solar system. However, asteroids and comets are
not governed by gravity alone. Their orbits are also altered by collisions and other non-
gravitational forces. Thus, the unstable regions are constantly resupplied with material
which is then scattered across the whole solar system.
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1.3 Motivation for this work
Understanding the dynamical processes in our solar system plays an important rule in
understanding its evolution. Did the planets orbits change since they have formed? Why
is the asteroid belt shaped like we observe it today? Where do the asteroids go once their
orbits reach one of the unstable regions? What causes comets to leave the outer solar
system and migrate inwards and how often does it happen? How many NEAs should we
expect and how probable are impacts of comets and asteroids on Earth?

All these questions can not be answered by observations alone as the time scales for
these dynamical processes are ranging from a few thousand to up to several billion years.
Simulations which describe the formation and orbital evolution of planetary systems are
needed to understand our solar system as we observe it today. These simulations must
be capable to cover enormous time scales. Further, to statistically classify relatively
rare phenomena like comets coming from the outer system or the production of Atira
asteroid orbits, very large numbers of bodies have to be considered in the simulations. The
computational hardware used to perform the simulations puts limits to the size of the
experiments. To obtain results in reasonable computation time, the simulations have to be
carried out on large-scaled computers like clusters or supercomputers or work has to be
distributed over many desktop or workstation PCs.

In this work the growing computational power of Graphics Processing Units (GPUs)
which recently became available in modern desktop PCs is exploited to significantly speed
up the simulation methods on these computers. This allows comparatively cheap hardware
performing experiments to simulate the orbital evolution of planets and minor planets
involving up to 105 bodies and covering simulation time spans of up to 109 years —
experiments which would need to be carried out on large-scale computers when using
traditional hardware.

The work is organized as follows: In the following chapter the n-Body problem, which is
the underlying problem when simulating gravitational interacting bodies, is introduced.
Then, some basic methods for numerically solving the n-Body problem using computers are
presented in order to introduce all aspects necessary to understand how these algorithms
are working and what their benefits and limitations are. In chapter 3 the GPU as a
device for general purpose computation is introduced and a brief review on the history of
general purpose computing on GPUs is given. Chapter 4 is intended to describe the newly
developed CPU and GPU implementation of the Wisdom and Holman Method (WHM)
and the Regularized Mixed Variable Symplectic Method (RMVS) in cuSwift. Extensive
tests of the integrators and the advantages over their original implementation are presented
in chapter 5. Then, chapter 6 demonstrates a first application of cuSwift. It is studied
if and how the non-gravitational Yarkovsky force influences the Jupiter Trojan asteroids.
Finally, in chapter 7 some outlook on open points which may be worth tackling in the
future is given.





CHAPTER 2
Solving the 𝑛-body problem

2.1 The 𝑛-body problem
The 𝑛-body problem is one of the fundamental problems in modern astronomy. It was
first pointed out by Isaac Newton in his Philosophiæ Naturalis Principia Mathematica,
published in 1687. The formulation of the problem is as follows: Considering a set of 𝑛
gravitationally interacting bodies with their masses, positions and velocities known for a
certain time, how does the system develop with time? Although the formulation sounds so
trivial it took much effort from numerous scientists before a suitable solution was found.
The case for n=2 was formulated by Newton who wrote down the equations describing
the force (𝐹 ) between two gravitationally interacting bodies depending on their masses
(𝑚1, 𝑚2) and positions (x1, x2) in space:

𝐹 = 𝐺
𝑚1𝑚2

𝑟2
12

(2.1)

𝐺 denotes the gravitational constant and 𝑟12 = ||x1 − x2||, the distance between the two
masses. In a system of 𝑛 bodies, the gravitational force exerted on a single body i by all
other bodies is

F𝑖 = −𝐺
𝑛−1∑︁

𝑗=0;𝑗 ̸=𝑖

𝑚𝑖𝑚𝑗(x𝑖 − x𝑗)
𝑟3

𝑖𝑗

(2.2)

Having in mind that F = 𝑚 · a and a = x′′, the equation of motion for a single body can
be written as:

x′′
𝑖 (𝑡) = −𝐺

𝑛−1∑︁
𝑗=0;𝑗 ̸=𝑖

𝑚𝑗(x𝑖 − x𝑗)
𝑟3

𝑖𝑗

(2.3)

Now, the complexity of the problem becomes visible. In order to determine the position of
a single body at a certain time one has to solve its equation of motion. As this equation
depends on the positions of all other bodies in the system and as x ∈ 𝑅3, there is a system
of 3𝑛 2nd order differential equations to be solved.

Since the problem was formulated by Newton, much effort was put into finding an
analytic solution. In 1885, there even was a prize established by King Oscar II of Sweden
and Norway for anyone who finds an analytic solution to the problem. The prize should be

9
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awarded on King Oscars 60th birthday in January 1889. Unfortunately, no such solution
to the problem has been found until that date. However, it was decided that Henri
Poincaré should receive the prize for his remarkable contribution to the understanding of
the equations of dynamics. It took another century until the problem was finally solved by
Wang in 1991 [96]. Unfortunately, his solution has no practical value, as convergence is
very slow and millions of terms would be need to be summed up to determine the bodies
motion for insignificantly short time intervals and the propagation of round-off errors would
make the solution useless [33].

Being unable to exactly solve the 𝑛-body problem did not prevent scientists working on
the field of celestial mechanics for the last two centuries. Since it was formulated, many
methods of solving the problem numerically have been developed and many interesting
discoveries were made by applying them. And even nowadays, as the analytic solution has
proven not to be useful, numerical methods are still the tool of choice when dealing with
the 𝑛-body problem.

2.2 Numerical integration
In astrophysics, the 𝑛-body problem is a fundamental part of numerous fields of research.
It is not only important for understanding the motion of planets around the Sun but also
for explaining the gravitational interactions between stars or the gravitational behavior of
bigger structures like galaxies or even groups of galaxies. There are many different methods
to numerically solve the 𝑛-body problem, each having its benefits in the particular field it
is used in. The methods applied in this work are highly specialized to model the long-term
orbital evolution of planets and minor planets orbiting a dominant central mass like the
Sun. In the following sections, these methods are derived step-by-step, starting from some
very basic numerical integration methods.

The equation to be solved in order to follow the path of a single body in a system of n
bodies is its equation of motion (See equation 2.3). It can be written as

x′′
𝑖 (𝑡) = a𝑖(𝑡) (2.4)

Further, the problem can be reduced to a system of 6 first-order ordinary differential
equations for each body:

x′
𝑖(𝑡) = v𝑖(𝑡)

v′
𝑖(𝑡) = a(x(𝑡))

or dy
d𝑡

=
(︂

v
a(x)

)︂
where y =

(︂
x
v

)︂
(2.5)

More generally, the system in 2.5 can be expressed as a Hamiltonian 𝐻(q, p) which is a
function of some generalized coordinates q and momentum p. The Hamiltonian equations
describe how the system develops with time

dq
d𝑡

= 𝜕𝐻

𝜕p
dp
d𝑡

= −𝜕𝐻

𝜕q

or dy
d𝑡

=
(︃

𝜕𝐻
𝜕p

−𝜕𝐻
𝜕q

)︃
where y =

(︂
q
p

)︂
(2.6)
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The Hamiltonian for the 𝑛-body problem is

𝐻(q, p) =
𝑛−1∑︁
𝑖=0

𝑝𝑖
2

2𝑚𝑖
−
∑︁
𝑖<𝑗

𝐺𝑚𝑖𝑚𝑗

𝑞𝑖𝑗
(2.7)

where 𝑝𝑖 = ||p𝑖||, 𝑞𝑖𝑗 = ||q𝑖 − q𝑗 || and p and q are expressed in a barycentric referential
frame.

2.2.1 Explicit methods

The most basic way of numerically solving ordinary differential equations is the explicit
Euler method, developed by Leonhard Euler in 1768. Starting from a first-order differential
equation and an initial condition

𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡)),
𝑥(𝑡0) = 𝑥0,

(2.8)

the Euler method makes use of the Taylor Series expansion to numerically approximate
the derivative. The Taylor Series expansion states that if 𝑥 : R → R is a function of one
variable (t) having 𝑘 continuous derivatives, the value for 𝑥 at a certain point 𝑡 + ℎ can be
expressed as

𝑥(𝑡 + ℎ) = 𝑥(𝑡) + ℎ𝑥′(𝑡) + 1
2ℎ2𝑥′′(𝑡) + 1

3!ℎ
3𝑥′′′(𝑡) + · · · + 1

𝑘!ℎ
𝑘𝑥(𝑘)(𝜏) (2.9)

where 𝑡 < 𝜏 < 𝑡 + ℎ. The Euler method truncates the Taylor Series after the first term
and ignores the quadratic and higher order terms which yields the finite difference formula
for the derivative

𝑥′(𝑡) ≈ 𝑥(𝑡 + ℎ) − 𝑥(𝑡)
ℎ

. (2.10)

Starting from the initial condition 𝑥(𝑡0) = 𝑥0, the integral is then iteratively developed as

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑡𝑛, 𝑥𝑛). (2.11)

Because the derivative is approximated by truncating the Taylor Series, at each single step
developing the equation from 𝑥𝑛 to 𝑥𝑛+1 an error is made. This error is called the local
truncation error (LTE) and is defined as the difference between the true value 𝑥(𝑡𝑛) and
the approximated value 𝑥𝑛. For the Euler method, this error is

𝐿𝑇𝐸𝑛+1 = 𝑥(𝑡𝑛+1 + ℎ) − 𝑥𝑛 = 1
2ℎ2𝑥′′(𝜏) ∝ O(ℎ2). (2.12)

The absolute value for the LTE may not be known as the derivatives of 𝑥(𝑡) may not be
known. However, it is still useful as it is related to order 𝑝 of the numerical integration
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method via the maximum value of the LTE over the integration interval 𝐼 = [𝑡0,...,𝑡𝑘] by

𝑘max
𝑛=1

|𝐿𝑇𝐸𝑛| = O(ℎ𝑝+1). (2.13)

For the Euler method, the LTE is proportional to ℎ2 which means that it is of first order.
To demonstrate how the Euler method works, a very simple case of a 2-body problem

is considered. A system of physical units is chosen in which the gravitational constant
and total mass of the system are both unity. Further, instead of the positions of the two
bodies, their distance in space is considered. Applying this definition, equation 2.3 simply
becomes

r′′(𝑡) = − r
𝑟3 (2.14)

where r is the vector connecting the two bodies and 𝑟 = ||r|| the distance between them.
Solving the system of two first-order differential equations of the 𝑛-body problem (equation
2.5) yields

r𝑛+1 = r𝑛 + ℎv𝑛

v𝑛+1 = v𝑛 + ℎa(r𝑛)
(2.15)

Finally the initial conditions for r and v are chosen as

r0 =

⎛⎝1
0
0

⎞⎠ 𝑎𝑛𝑑 v0 =

⎛⎝ 0
0.75

0

⎞⎠ (2.16)

Choosing ||v0|| < 1, lower than the circular orbit velocity 𝑣𝑐𝑖𝑟𝑐 =
√︁

𝐺(𝑀1+𝑀2)
𝑟 = 1, the two

bodies should move on an elliptical orbit around each other. Further, the choice of r0 and
v0 results in the two bodies being at apocenter (the point in orbit with the largest distance
between the bodies) by the start of integration. Figure 2.1 shows the exact solution of
the system and how it develops under the Euler method for three orbital periods using
different values for the time step. As can be seen, for all different time steps, in the case of
the Euler method, the bodies do not move on closed elliptic orbits as they are supposed
to according to the initial conditions. Choosing a time step of 10−2 orbital Periods 𝑃
leads to the bodies spiraling away from each other such that they break orbit after just
half a revolution. Reducing the time step by a factor of ten increases the accuracy but
still the two bodies spiral away from each other. After reducing the time step by another
magnitude, even though hardly visible in the plot, the bodies still do not move exactly as
expected. This clearly demonstrates the disadvantage of the Euler method. In order to
get reliable results the time step has to be chosen very small which increases computation
time as more steps have to be performed to cover the same period of time.

In contrast to the 2-body problem used here for demonstration, in general, the 𝑛-body
problem can not be solved analytically. Thus, there is no way to determine the exact value
for the error of the body’s position and velocity because their true values for 𝑡 ̸= 𝑡0 are
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h = 10-2P h = 10-3P h = 10-4P

Figure 2.1: Relative positions of the bodies in a 2-body system integrated with the explicit
Euler method using different values for the time step (red) compared to the exact solution
(gray). Decreasing the time step increases accuracy at the expenses of the number of steps
that have to be computed.

unknown. However, there is another quantity which can be examined: the total energy
of the system. It must remain constant over time no matter in which direction or how
fast the bodies move. This means that the change of total energy can be used as a metric
for the error of the integration method which is used. The total energy of the 𝑛-body
system is the sum of potential and kinetic energy of all bodies. For the 2-body problem,
the potential and kinetic energies are

𝐸𝑝𝑜𝑡 = − 𝑀1𝑀2
𝑟

𝐸𝑘𝑖𝑛 =1
2

𝑀1𝑀2
𝑀1 + 𝑀2

𝑣2
(2.17)

By introducing the reduced mass 𝜇 as

𝜇 = 𝑀1𝑀2
𝑀1 + 𝑀2

(2.18)

the potential and kinetic energies become

𝐸𝑝𝑜𝑡 = − 𝜇(𝑀1 + 𝑀2)
𝑟

𝐸𝑘𝑖𝑛 =1
2𝜇||v||2

(2.19)

Finally, as for the 2-body system which is used for demonstration, the sum of masses is
defined as unity, both equations have the same dependence on mass and can be further
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simplified to

𝐸𝑝𝑜𝑡 = − 1
𝑟

𝐸𝑘𝑖𝑛 =1
2 ||v||2

(2.20)

Figure 2.2 shows how the relative error in total energy for the 2-body system develops for
100 steps using different values for the time step. The rapid nonlinear increase of the error
in the left panel can be explained by Kepler’s 2nd law: At pericenter (𝑡 = 0.5), the body’s
velocities and the curvature of their orbital ellipse are at maximum. As the body’s positions
are advanced in a linear manner and thus do not follow the curvature of the ellipse the
truncation error made at each time step grows as the bodies are approaching each other
and reaches its maximum at pericenter. For large time steps these nonlinear effects at
pericenter are dominating. The middle and left panel do not show this behavior because
no pericenter passage is captured as the time span covered with 100 steps decreases when
decreasing the time step. When comparing the middle with the left panel of Figure 2.2 the
first order character of Euler’s method becomes visible. The error in energy decreases by
about a factor of 100 when reducing the time step by a factor of 10.

As can be seen in Figures 2.1 and 2.2, reducing the time step results in a better
approximation of the real orbit and in the energy error to decrease. However, as will be
shown in section 2.3.4, setting the step to arbitrarily small values does not necessarily
increase accuracy. More advanced, higher order integration methods like Runge-Kutta
would yield better results even for relatively large time steps. But no matter how small
the local truncation error is, the global error will grow with time making these integration
methods unsuitable for long-term integration.
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Figure 2.2: Relative energy error of the 2-body system integrated with the explicit Euler
method using different values for the time step. The rapid incerase of the error in the left
panel can be explained by nonlinear effects around pericenter (see text). For smaller time steps
the first-order character of the Euler method becomes visible.
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2.2.2 Symplectic methods
Symplectic integration methods are the tool of choice for modeling the evolution of orbits
over large time scales [120], [90]. The striking advantage over traditional methods like
the explicit Euler method or Runge-Kutta is that symplectic methods conserve certain
geometric quantities of the system. To exactly explain how this works is far beyond the
scope of this thesis. A detailed mathematical derivation of symplectic integration methods
can be found in [49] and [50]. However, in this section the basic ideas behind these methods
will be introduced and again, the 𝑛-body problem will be used for generic application.

A numerical integration method for solving first-order differential equations like the
𝑛-body is symplectic if it exactly solves the Hamiltonian equations and conserves volume
in phase space. Mathematically, this means that for the vector y =

(︀q
p
)︀

in phase space
the time-dependent flow y(𝑡, y0) governed by the Hamiltonian must conserve phase space
volume. This is also known as Liouville’s theorem. As a result of the theorem, the Jacobian
𝐽(y, y0) =

⃒⃒⃒
𝜕y
𝜕y0

⃒⃒⃒
must be unity [90]. This condition can be adduced as a simple test

to prove symplecticity for the 𝑛-body problem. Applied to the explicit Euler method
(equations 2.15) it can be shown that

𝐽(y, y0) = 𝜕(x𝑛+1, v𝑛+1)
𝜕(x𝑛, v𝑛) =

⃒⃒⃒⃒
1 ℎ

ℎa′(x𝑛) 1

⃒⃒⃒⃒
= 1 − ℎ2a′(x𝑛) ̸= 1 (2.21)

and thus, the method is not symplectic. This results in the error in total energy increases
while integrating, as can be seen in figure 2.2.

Surprisingly, with a small modification only, symplecticity can be achieved for Euler’s
method [99]. The integration scheme for the symplectic Euler method is:

x𝑛+1 = x𝑛 + ℎv𝑛

v𝑛+1 = v𝑛 + ℎa(x𝑛+1)
(2.22)

Note that the only difference to the original Euler method is that for integrating the
velocity (v𝑛+1), the new positions (x𝑛+1) which were just calculated are used rather than
the positions from the beginning of the current integration step (x𝑛). Working out the
Jacobian 𝐽(y, y0) yields

𝐽(y, y0) = 𝜕(x𝑛+1, v𝑛+1)
𝜕(x𝑛, v𝑛) =

⃒⃒⃒⃒
1 ℎ

ℎa′(x𝑛+1) 1 + ℎ2a′(x𝑛+1)

⃒⃒⃒⃒
= 1 (2.23)

which proves the method conserves phase space volume and thus is indeed symplectic.
Figure 2.3 shows how the 2-body system described in Section 2.2.1 develops with time
when integrated with the symplectic Euler method. Even when choosing a large time step
of 10−2𝑃 , which leads to the bodies breaking orbit after half a revolution under the explicit
Euler method, the bodies are now moving on closed elliptic orbits. Nevertheless, an error
in total energy is still present. But, in contrast to the explicit method it does not increase
with time. This is because symplectic methods exactly solve the underlying Hamiltonian
but are using an approximation for the integrals (i.e. assuming constant velocity over a full
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time step) which still produce local truncation errors. However, phase space conservation
introduces constraints to the bodies positions and velocities resulting in a bounded total
energy error.
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Figure 2.3: Relative energy error and relative positions of the 2-body system integrated with
the symplectic Euler method for three orbits with a time step ℎ = 10−2𝑃 . The energy error is
bounded due to phase space conservation.

2.2.3 A higher order integration scheme
As already mentioned, being the most basic numerical integration method, Euler’s method
is not suitable to be used for long-term orbital integration. The improved symplectic
version of Euler’s method leads to the bodies in the 2-body example moving on closed
orbits but still the local truncation error is relatively large. Starting from the symplectic
Euler method, a much better method with only very little additional computational costs
can be constructed. Considering the scheme for the symplectic Euler method

x𝑛+1 = x𝑛 + ℎv𝑛

v𝑛+1 = v𝑛 + ℎa(x𝑛+1)
(2.24)

and the equivalent scheme

v𝑛+1 = v𝑛 + ℎa(x𝑛)
x𝑛+1 = x𝑛 + ℎv𝑛+1

(2.25)

a 2nd order method can be constructed by composing half a time step of scheme 2.24
followed by half a step of scheme 2.25 which gives

x𝑛+ 1
2

= x𝑛 + ℎ

2 v𝑛

v𝑛+1 = v𝑛 + ℎa(x𝑛+ 1
2
)

x𝑛+1 = x𝑛+ 1
2

+ ℎ

2 v𝑛+1

(2.26)

This scheme is referred to as the leapfrog integrator and is one of (if not the most) popular
integration methods used in various fields. It was independently discovered by different
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scientists and thus is also called Newton-Störmer-Verlet method. A detailed historical
overview about the method as well as a comprehensive discussion of their geometric
properties is given in [49]. The first and last line in the integration scheme 2.26 are also
referred to as kick steps while the step in the middle is often called drift step. Note that
scheme 2.24 ends with a drift step while scheme 2.25 begins with a drift step so that when
combining the two schemes, these two steps can be summarized as a single drift step over a
full time step ℎ. As both schemes for the Euler method are symplectic, their composition
also is symplectic. Further, as can easily be seen for the new integration scheme, advancing
the system by one time step ℎ, and then applying another step for −ℎ immediately leads to
the starting conditions again. That is, in contrast to the standard Euler method, the new
integrator being time reversible, another very favorable property for integration methods.

Once again, the 2-body example will be used to demonstrate the advantage of the leapfrog
method, especially in terms of long-term integration, over Euler’s method or Runge-Kutta.
This time, the bodies are followed over a time span as long as thousand orbital periods.
Because the evaluation of the accelerations is computationally the most expensive part for
the 𝑛-body problem (recall the (𝑛2) complexity in equation 2.3), for better comparison, the
time step for each method is chosen such that the number of acceleration calculations per
orbit is the same rather than using equal time steps for each method. For the Runge-Kutta
method the accelerations must be evaluated four times per time step. Thus, the step size
for Runge-Kutta is set four times larger than for the other methods resulting in a similar
computational cost for each run. The step sizes used for this example are 0.01 orbital
periods for the leapfrog and the Euler methods and 0.04 orbital periods for Runge-Kutta.

Figure 2.4 shows how the error in total energy develops over the integration time. As
expected, the explicit Euler method performs rather poorly. For the two symplectic methods
the difference in order is clearly visible: Leapfrog beats the symplectic Euler method by
about an order of magnitude. Runge-Kutta performs much better than any of the other
methods for about hundred orbits but then gets beaten by leapfrog. This comparison
clearly demonstrates the advantage of symplectic integration methods when used for long-
term integration. For this example only thousand orbital periods are considered. Typical
integration times for studying dynamical processes in the solar system are ranging from a
few hundred thousand up to several billion orbital periods, making this comparison even
more important.

There is however a major drawback of symplectic integrators one should be aware of. All
the very favorable properties of symplectic integration methods like phase space volume
conservation and being time reversible are only true assuming a fixed value for time step ℎ.
Changing the time step size is a powerful and and a common technique to reduce the error
made during integration. For example the error occurring at pericenter can be reduced by
reducing the time step whenever two bodies are approaching each other. For symplectic
integrators however, it is in general not possible to change the size for the time step while
integrating. The easiest way to see this is by imagining the time step being a function of
the bodies’ current positions and velocities ℎ(vn, vn) and than realizing the condition for
being symplectic 𝐽(y, y0) = 1 is violated. There are methods to overcome this limitation
(e.g. [76]) which are not discussed here.
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Figure 2.4: Comparison of the relative error in total energy for different integration methods.
The Explicit Euler method performs worst. For the symplectic methods the relative error in
energy is bounded and the difference in order of the Symplectic Euler and leapfrog is clearly
visible. Runge-Kutta shows good results for about hundred orbits but then is beaten by
leapfrog as, in contrast to the symplectic methods, the error for Runge-Kutta increases with
time.

2.3 Tuning the method for solar system like 𝑛-body problems

Planetary systems like the solar system can be seen as a special case of the 𝑛-body problem.
They consist of a star, a dominant central mass and the less massive planets which move
on rather circular orbits around the star. This property can be exploited by numerical
methods in order to increase accuracy. For planetary systems it is common to split the
Hamiltonian into a part corresponding to the bodies’ Keplerian motion around the center
of mass and a part which describes the direct and indirect perturbation terms due to
interactions with the other bodies [115].

𝐻 = 𝐻𝐾𝑒𝑝𝑙𝑒𝑟 + 𝐻𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (2.27)

The advantage of this splitting is that the two resulting Hamiltonians can then be individu-
ally solved in an appropriate manner. Under the Keplerian Hamiltonian, the positions and
velocities of the bodies are advanced on their Keplerian orbits around the center of mass
as described by their orbital elements rather than assuming linear motion like the methods
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introduced before. This is accomplished by using Gauss’ famous 𝑓 and 𝑔 functions [95]

x𝑡+ℎ = 𝑓(𝑡 + ℎ)x𝑡 + 𝑔(𝑡 + ℎ)v𝑡

v𝑡+ℎ = 𝑓 ′(𝑡 + ℎ)x𝑡 + 𝑔′(𝑡 + ℎ)v𝑡
(2.28)

which provide an efficient way to propagate Keplerian orbits without having to calcu-
late all of the actual orbital elements. Highly effective methods for solving the 𝑓 and 𝑔
functions analytically are given by Danby [27] and Prussing & Conway [95]. The inter-
action Hamiltonian is a function of the bodies’ positions only and can also be integrated
analytically.

2.3.1 Mixed Variable Symplectic method

Expressing the 𝑛-body Hamiltonian as a sum of a Keplerian and an interaction Hamiltonian
introduces some additional complexity to the problem. As described by Wisdom & Holman
[115], the motion of the bodies can be cast into Jacobi coordinates in order to derive a
Keplerian Hamiltonian for the 𝑛-body problem. The first Jacobi coordinate x̂0 is the center
of mass of the system. The Jacobi coordinates for the other bodies are then the difference
vectors between their barycentric positions x𝑖 and the center of mass up to body 𝑖

x̂𝑖 =

⎧⎪⎪⎨⎪⎪⎩
1

𝑀𝑡𝑜𝑡

𝑛−1∑︀
𝑖=0

𝑚𝑖x𝑖 for 𝑖=0

x𝑖 − 1
𝜂𝑖−1

𝑖−1∑︀
𝑗=0

𝑚𝑗x𝑗 for 0<𝑖<n
(2.29)

where 𝜂𝑖 =
∑︀𝑖

𝑗=0 𝑚𝑗 , the sum of masses up to body 𝑖 and 𝑀𝑡𝑜𝑡 = 𝜂𝑛−1 the total mass of
the system. Accordingly, the Jacobi momenta are given by

p̂𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑛−1∑︀
𝑗=0

p𝑗 for 𝑖=0

𝜂𝑖−1
𝜂𝑖

p𝑖 − 𝑚𝑖
𝜂𝑖

𝑖−1∑︀
𝑗=0

p𝑗 for 0<𝑖<n
(2.30)

They can be calculated by p̂𝑖 = �̂�𝑖x̂′
𝑖 where

�̂�𝑖 =
{︂

𝑀𝑡𝑜𝑡 for 𝑖=0
𝜂𝑖−1𝑚𝑖

𝜂𝑖
for 0<𝑖<n (2.31)

As the Jacobi coordinates describe the location of each body with respect to the center of
mass of the bodies below it, they rely on the bodies to be ordered by increasing distance
from the central mass.

Using Jacobi coordinates, the 𝑛-body Hamiltonian can be expressed in the desired form
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(equation 2.27) with the Keplerian Hamiltonian

𝐻𝐾𝑒𝑝𝑙𝑒𝑟 =
𝑛−1∑︁
𝑖=1

(︂
𝑝2

𝑖

2�̂�𝑖
− 𝐺𝑚𝑖𝑚0

𝑟𝑖

)︂
(2.32)

and the interaction Hamiltonian

𝐻𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑛−1∑︁
𝑖=1

𝐺𝑚𝑖𝑚0

(︂
1
𝑟𝑖

− 1
𝑟𝑖0

)︂
−
∑︁

0<𝑖<𝑗

𝐺𝑚𝑖𝑚𝑗

𝑟𝑖𝑗
(2.33)

where 𝑟𝑖 = ||x̂𝑖|| and 𝑝𝑖 = ||p̂𝑖||. This transformation called a symplectic map is also known
as Wisdom-Holman map.

The whole system is then advanced by applying the leapfrog integration scheme. For
each time step ℎ, the positions and velocities are advanced under 𝐻𝐾𝑒𝑝𝑙𝑒𝑟 for ℎ/2, then the
perturbations are evaluated under 𝐻𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 for ℎ followed by another step of 𝐻𝐾𝑒𝑝𝑙𝑒𝑟

for ℎ/2. Since different types of coordinates are used under the two Hamiltonians, this
algorithm is called Mixed Variable Symplectic method (MVS). Although still being a 2nd
order integrator, MVS performs much better than the ordinary leapfrog scheme (Equations
2.26) making it to a standard tool which is widely applied for integrating planetary systems
[19].

However, this symplectic map also introduces some unfavorable behavior. The method
performs very well as long as the perturbations described by 𝐻𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 are much smaller
than 𝐻𝐾𝑒𝑝𝑙𝑒𝑟, which is true if the planets move on low eccentricity orbits that are well
separated from each other. When choosing orbits causing close encounters between the
planets, the assumption 𝐻𝐾𝑒𝑝𝑙𝑒𝑟 >> 𝐻𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is violated during the encounter causing
the error to increase. Further, using Jacobi coordinates, the method also does not allow
the planets’ orbits to cross each other (since these coordinates require distance-sorted
planet indices). There are several methods to overcome these problems. Duncan et al. [35]
described a variant of MVS which is able to resolve close encounters by a multiple time step
method called Symplectic Massive Body Algorithm (SyMBA). Another method, suggested
by Chambers [18], uses canonical heliocentric coordinates instead of Jacobi coordinates to
allow planet crossing orbits and permits close encounters by using a conventional integrator
to resolve the encounters. The integrators implemented in this work however, are meant to
be applied on systems like our solar system where no close encounters between the planets
occur and thus are based on the MVS method.

2.3.2 Integrating minor bodies of infinitesimal mass
The methods described in the last sections are suitable to treat the heavier objects in
planetary systems. There is, however, another class of bodies which is of particular interest
for this work which have been left out so far: all the asteroids and comets. As outlined in
Section 1.1 these objects are very large in numbers, but on the other hand very small in
mass. In fact, the combined mass of all asteroids in the main belt is only about 4% the mass
of Earth’s moon [60]. Being so small in mass compared to the Sun and the planets, the
gravitational influence of the minor bodies on the planets as well as the particles’ mutual
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interaction can be neglected. However, the particles feel the gravitational influence caused
by the planets. For the 𝑛-body problem, this is a huge simplification as there are only the
Sun and a few planets to be evaluated in the O(𝑛2) part and not the enormous number
of asteroids and comets. When assigning those objects, further called test particles, a
Jacobi index below those of the massive planets, the interaction Hamiltonian for a particle
becomes [115]

𝐻𝑇 𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = −
𝑛−1∑︁
𝑖>1

(︂
𝐺𝑚𝑖

𝑟𝑡𝑝 𝑖
− 𝐺𝑚𝑖x̂𝑡𝑝 · x𝑖0

𝑟3
𝑖0

)︂
(2.34)

where x̂𝑡𝑝 is the particle’s Jacobi coordinate, 𝑟𝑡𝑝 𝑖 = ||x𝑡𝑝 − x𝑖||, the distance between test
particle and body 𝑖 and x𝑖0 = x𝑖 − x0, the vector from the central mass to body 𝑖. Note
that 𝑛 in equation 2.34 corresponds to the number of planets in the system. Assigning the
test particles a Jacobi index below the planets causes them to be advanced on an orbit
around the central mass under the Keplerian Hamiltonian.

2.3.3 Encounters between minor bodies and planets
Asteroids and comets may not behave as modestly as the planets: many of them move on
highly eccentric, parabolic or even hyperbolic orbits, which means that close encounters
between particles and planets are very likely to occur. As already described, the error for
the MVS method grows when two massive bodies approach each other. This is also true
for the case when a mass-less particle approaches one of the massive planets because the
force by the encountered planet on the particle becomes comparable to the force by the
central body. So the assumption that the particle circles around the central mass on a
Keplerian orbit does not hold anymore. Further, the minor bodies are very sensible to
close encounters. Depending on the encounter distance and relative velocity, a particle’s
orbit may dramatically change during an encounter. In this situation, the advantage of
the fairly large time step which can be used for symplectic integration methods leads to
the disadvantage that the close encounters between particles and planets are very poorly
resolved.

To overcome this problem, Levison & Duncan [65] introduced a technique of integrating
the test particles permitting close encounters between them and the massive bodies called
Regularized Mixed Variable Symplectic (RMVS) Method which has became very popular.
The first step to resolve close encounters is to detect their occurrence. A good measure for
that is the region around a planet where its gravitational influence exceeds the influence
by the Sun. This region is also called the Hill sphere and its radius is defined as [65]

𝑟ℎ𝑖𝑙𝑙 = 𝑎𝑝

(︂
1
3

𝑚𝑝𝑙

𝑚𝑠𝑢𝑛 + 𝑚𝑝𝑙

)︂1/3
(2.35)

where 𝑎𝑝 denotes the semi-major axis of the planet and 𝑚𝑠𝑢𝑛 and 𝑚𝑝𝑙 the masses of the
Sun and the planet. In RMVS, once a test particle penetrates a planet’s Hill radius,
the coordinate system for this particle is switched to a reference frame centered on the
encountered planet. That is, the test particle is advanced on a Kepler orbit around the
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planet rather than around the Sun under the Keplerian Hamiltonian. As during the close
encounter, the trajectory of the particles can be better described by a conic section around
the planet rather than around the Sun, advancing the particle on a Kepler orbit around
the planet causes the orbit of the test particle to be much better resolved. Further, to
follow the trajectory of the particles more accurately, the time step for the encountering
particle is reduced. In order to not loose the symplectic property for integrating the planets
(see Section 2.2.3), the planets intermediate positions, which are needed to refine the time
step for the encountering particle, are interpolated on their Kepler orbits between their
positions at the beginning and at the end of the current time step. Furthermore, the region
just outside the Hill radius of a planet, where the forces by the planet and the Sun are
comparable in magnitude, also has to be considered. In RMVS, this is achieved by defining
an intermediate encounter region around each planet which is 3.5 times the planets Hill
radius. If a particle enters the intermediate encounter region, the time step for this particle
is reduced by the method just explained. Taken all together, a close encounter in RMVS
is resolved as follows: When, at the beginning of a time step, a test particle lies or is
predicted to be at the end of the time step within the extended encounter region, the step
size for the particle is reduced by a factor of ten and the planet positions required for each
sub step are interpolated. If the particle further penetrates the planets Hill radius, the
coordinate system is switched to a planetocentric reference frame and the time step is
reduced by another factor of three.

It is important to note that close encounter handling has implications on the size of
the time step. To make sure no encounter is missed, the step size must be chosen such
that a particle can not completely move over a distance larger than 3.5 times a planet’s
Hill sphere within one time step. For simulations of the outer solar system, where usually
only the heavy outer planets are included in the simulation, this is not a problem as the
Hill radii of those planets are large and the relative velocities between the planets and
the particles are small. Step sizes of about 40 days are sufficient for such simulations [65].
However, when including the inner planets of the solar system, high speed encounters are
very likely to occur as for eccentric orbits the relative velocities in the inner solar system
can be considerably high [47]. The fact that the inner planets are rather small in mass and
thus have only small Hill radii makes things even more complicated. In order not to miss
close encounters with the inner planets time step has to be set to values as small as several
hours only [48].

2.3.4 Limitations due to machine precision
Using computers for numerical integration always limits the accuracy to be achieved. To
understand the limitations of numerical methods introduced by precision limits of computers
it is necessary to understand the floating-point arithmetic model. Most microprocessors
comply with the IEEE Standard for Floating-Point Arithmetic (IEEE 754). According to
this standard a floating point number is represented as 𝑥 = 𝑠 · 𝑚 · 𝑏𝑒, where 𝑠 is the sign,
consisting of one bit, 𝑚 is the mantissa, 𝑏 is the base and 𝑒 the exponent. The number of
significant places of 𝑚 and 𝑒 are depending on the floating point format (see Table 2.1).
Note that total number of bits appears to exceed the format width as there is one more
bit for the sign which is not listed in the table. This is because in the IEEE 754 standard
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floating-point numbers are normalized which means the first bit of the mantissa is always
one and thus does not have to be explicitly stored.

There are two important factors affecting the accuracy of numerical methods: the step
size and the order of the method. The Euler method can be used to construct a simple
example demonstrating the limitation of the time step size. Integrating the 2-body system
introduced in the previous section with a step size of ℎ = 0.01, at 𝑡 = 0.4 the state vectors
r and v are

r(0.4) =

⎛⎝0.921807
0.292436

0

⎞⎠ 𝑎𝑛𝑑 v(0.4) =

⎛⎝−0.402286
0.689362

0

⎞⎠ (2.36)

The integration scheme of the Euler method (Equations 2.15) consists of a multiplication
and an addition each. Considering a floating-point model where 𝑏 = 10, 𝑚 has 5 and 𝑒 has
1 decimal places, 𝑟𝑥(𝑡 + 𝛥𝑡) for 𝑡 = 0.4 becomes

𝑟𝑥 = 9.2181 · 10−1 + (−4.0229) · 10−1 · 1.0000 · 10−2 (2.37)

As one of the addends is multiplied by the time step, the two addends are differing in
absolute value by 2 orders of magnitude (depending on the value of 𝛥𝑡). This difference
will reflect in the sum:

𝑟𝑥 = 9.2181 · 10−1 + (−4.0229) · 10−3

= 0.92181

−0.0040229

= 0.9177871

= 9.1779 · 10−1

As can be seen in the example, the last two digits of the second addend are lost during
addition and the result is rounded accordingly. Thus, the relative error of the sum grows
as the time step shrinks. At some point, the round-off error dominates and finally, using a
time step of ℎ ≤ 10−6 there would be no change in position at all. Figure 2.5 shows how
the relative error for the total energy develops when decreasing the time step employing
single-precision floating-point numbers. Choosing too small values for the time step causes

Table 2.1: IEEE 754 Floating-Point Format

Format Width [bits] Mantissa [bits] Exponent [bits]
Single 32 24 8
Single-Extended 43 32 11
Double 64 53 11
Double-Extended 79 64 15
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the total error to grow due to limited machine precision.
The issue of accuracy limits due to machine precision must be considered when selecting

or implementing an integrator. A higher-order method increases accuracy and allows larger
step sizes. However, for small step sizes the magnitudes in the higher-order terms of the
Taylor series (see Equation 2.9) are rapidly decreasing so that the last terms may not
influence the result at all and thus are only causing unnecessary computations. Consider,
for example a 4th order integration method used on a computer having a word length of 32
bit in single-precision. Equation 2.39 shows the Taylor expansion for such an integration
method.

𝑥(𝑡 + ℎ) = 𝑥(𝑡) + 𝑓(𝑡)(ℎ) + 𝑓 ′(𝑡)
2 (ℎ)2 + 𝑓 ′′(𝑡)

3! (ℎ)3 + 𝑓 ′′′(𝑡)
4! (ℎ)4 + O(𝑡)(ℎ)5 (2.38)

As 24 out of the 32 bits are available for the mantissa (see Table 2.1), the round-off error
is in the order of 10−6. Assuming the values for 𝑥(𝑡) are in the order of 101 and a time
step in the order of 10−2, the magnitudes of the addends in Equation 2.38 become

||𝑥(𝑡 + ℎ)|| ≈ 10 + 0.1 + 10−4 + 10−6 + 10−8 (2.39)

Each term contributes fewer significant digits to the result. For the 2nd term, already two
digits are lost due to round-off and the addends from the 4th term on do not contribute
anything to the result at all, which means that they only introduce unnecessary compu-
tational cost. Thus, in this particular case a lower order integration scheme or, if high
accuracy is required, a double-precision representation would be much more appropriate.
Another important criterion for choosing the order of the integration method is the quality
of the initial conditions. It would be a waste of computational resources to use a high
order integrator on low quality data.
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Figure 2.5: Relative energy error of the 2-body system integrated with the explicit Euler
method using different values for the time step. Due to limited machine precision the error
increases when choosing too small time steps.
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2.4 The Yarkovsky Effect
The integration methods introduced in the previous sections are describing very well the
motion of planets and minor planets in solar system like 𝑛-body problems caused by their
mutual gravitational interaction. However, gravity is not the only force acting on these
bodies in such systems. Around 1900, the Russian engineer Ivan Osipovich Yarkovsky
proposed a tiny force, caused by diurnal heating and asymmetric re-radiation of energy
received from the Sun which acts on rotating objects in the solar system. The discovery
made by Yarkovsky was almost forgotten and the original publication is apparently lost.
Luckily, Ernst Öpik who read the publication around 1909, later recalled the effect and
was able to re-derive it in 1951 [91]. Since then, it was realized that the Yarkovsky effect
plays an important role in the long-term evolution of asteroid orbits. Despite the force is
very small, it can change the bodies’ orbit over long time-scales. A good review about the
history of the Yarkovsky effect is given by Hartman et al. [53]. In 2003, the first direct
measurement of the Yarkovsky effect was made by Chesley et al. [21]. They used the
Arecibo radar to observe near earth asteroid (6489) Golevka and found the object was
displaced due to the Yarkovsky force by about 15 km over twelve years.

The strength of the Yarkovsky force depends on the physical characteristics of the body’s
surface, its rotational and orbital properties as well as its density and detailed shape [9].
However, as shapes are known for only very few asteroids [37] and because for irregular
shapes calculating the Yarkovsky force becomes computationally very expensive [86], most
methods for modelling the Yarkovsky effect for many bodies assume the objects to have a
spherical shape.

Rather than giving a detailed mathematical description how the effect is modeled, this
section is intended to give a brief overview on the basic principles of how the Yarkovsky
effect works, what the driving parameters are and how they influence the effect. A very
detailed physical description of the Yarkovsky effect can be found in the dissertation of
Brož [13]. The Yarkovsky effect is a combination of two distinct components which are
described in the following.

Diurnal Component
On the body’s day side, some of the sunlight is absorbed and warms up the surface.
Depending on the thermal properties of the asteroid surface layer, the stored energy is
then released later during the afternoon as the object continues spinning. The momentum
carried away by the radiated energy causes a force pointing away from the asteroid’s
warmer side. Despite being very weak, the force causes the object’s semi-major axis to
systematically decrease or increase as it has a component pointing alongside the asteroid’s
orbit. To a lower degree the effect also affects orbital eccentricity.

The strength of the diurnal component and the direction of the semi-major axis drift
are depending on several parameters. If the asteroid’s rotational axis is perpendicular to
the orbital plane, the effect is most efficient, while if the rotational axis lies in the orbital
plane or the rotation period is the same as the orbital period, the effect vanishes as the
force pointing alongside the asteroid’s orbit disappears. Also for very fast rotating objects,
the diurnal effect vanishes, as the amplitude of the diurnal temperature curve would be
close to zero. The magnitude of the force further depends on the albedo of the object’s



26 Chapter 2 Solving the 𝑛-body problem

Figure 2.6: Diurnal component of the Yarkovsky effect on an asteroid with its spin axis
normal to the orbital plane. Due to the thermal properties of the surface material most energy
is radiated at the asteroid’s afternoon side, causing a force acting alongside the orbit leading
to a secular increase of the semi-major axis. (Image taken from Figure 1 in Bottke et al.[10])

surface which defines how much of the energy received from the Sun is absorbed by the
asteroid. Another important parameter for the diurnal component of the Yarkovsky effect
is the sensitivity to changes in the received energy of the material on the body’s surface.
This property is called thermal inertia and is defined as

𝛤 =
√︀

𝑘𝜌𝐶 (2.40)

where 𝑘 is the thermal conductivity, 𝜌 the density and 𝐶 the specific heat capacity. The
parameter 𝛩𝜔, an adimensional quantity, which describes the time lag 𝑡𝑑 between maximum
absorption and maximum emission is defined as [107]

𝛩𝜔 = 𝑡𝑑

𝑃𝑟
= 𝛤

√
𝜔

𝜎𝜀𝑇 3
⋆

(2.41)

where 𝑃𝑟 is the rotational period, 𝜔 the angular rotation velocity, 𝜎 the Stefan-Boltzmann
constant, 𝜀 the thermal emissivity and 𝑇⋆ denotes the effective subsolar temperature of
an object at a distance from the Sun corresponding to the semi-major axis of its orbit. If
the surface material would have zero thermal inertia, the energy would be immediately
re-radiated and the diurnal effect would vanish as 𝛩𝜔 = 0. However, because the material
in general does have thermal inertia, re-radiation occurs with a certain delay 𝑡𝑑, which
results in most of the energy being emitted after noon, causing the component of the force
pointing alongside the body’s orbit.

The direction of the semi-major axis drift depends on the object’s sense of rotation.
On a prograde rotator, which means the sense of rotation is the same as the objects
orbital direction, the direction of the Yarkovsky force is orientated such that the asteroid
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is accelerated and leads to a secular increase of the semi-major (see Figure 2.6). For a
retrograde rotator, the semi-major axis would decrease as the alongside component of the
force points against the body’s orbital motion and thus acts like a constant brake. The
strength of the diurnal Yarkovsky effect is also influenced by the body’s size. On bigger
objects like very large asteroids or planets, which have a small area-to-mass ratio, the force
is so weak that it can be neglected. Also for very small objects the strength of the effect
is very small as the diurnal thermal wave completely penetrates the body, which results
in the heat being more evenly distributed through the whole asteroid, causing smaller
temperature differences across the body’s surface.

Seasonal Component
The second component of the Yarkovsky effect is caused by seasonal heating of the
asteroid’s different hemispheres during a revolution around the Sun; hence it is called
seasonal component. The mechanism is illustrated in Figure 2.7 for a body on a circular
orbit around the Sun with its rotational axis lying in the orbital plane. At point A, the
northern hemisphere receives the greatest amount of sunlight, but due to the asteroid’s
thermal inertia, the northern hemisphere re-radiates most energy at point B. This process
repeats for the southern hemisphere at points C and D. In contrast to the diurnal component,
the thermal parameter 𝛩𝑛 for the seasonal component of the Yarkovsky effect depends on
the orbital period 𝑃𝑜 rather than the rotational period. It is defined as [109]:

𝛩𝑛 = 𝑡𝑠

𝑃𝑜
= 𝛤

√
𝑛

𝜎𝜀𝑇 3
⋆

(2.42)

where 𝑡𝑠 is the time lag between maximum absorption and maximum emission for the
seasonal component and 𝑛 the mean orbital motion.

Independent from the body’s sense of rotation, the seasonal component always acts like
a drag and leads to orbital decay. It also tends to circularize the orbit for small orbital
eccentricities [9]. In contrast to the diurnal component, the seasonal effect vanishes if the
rotational axis is perpendicular to the orbital plane and is at maximum if the rotational
axis lies in the orbital plane.

While the diurnal component of the Yarkovsky effect dominates the semi-major axis
drift for regolith-covered, stone-like objects, the seasonal component is more important for
metal-rich objects [9]. This is mainly because of the different thermal conductivity of these
types of asteroids which influences the penetration depth 𝑙𝑠 of the seasonal thermal wave
[109]:

𝑙𝑠 =≃

√︃
𝑘

𝜌𝜔𝐶
(2.43)

where 𝜔 corresponds to the frequency of seasonal heating. Regolith-covered bodies have a
low thermal conductivity which results in the penetration depth of the seasonal thermal
wave being small, while for metal-rich objects, due to the much higher thermal conductivity,
the seasonal thermal wave reaches much deeper, which results in more energy being stored
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Figure 2.7: Seasonal component of the Yarkovsky effect on an asteroid with its spin axis
lying in the orbital plane. The Northern and southern hemispheres are receiving most energy
from the sun at points A and C, respectively. Due to the thermal properties of the asteroid,
the hemispheres re-radiate most energy at points B and D. The seasonal component always
acts like a drag and leads to orbital decay (Image taken from Figure 1 in Bottke et al.[10])

over the period of seasonal heating. Thermal conductivity can vary over several orders of
magnitudes for the different types of objects [41].

The direction of semi-major axis drift depends on which component is dominant. Aster-
oids dominated by the diurnal effect would undergo a random walk in semi-major axis due
to collisions which may change spin rate and direction from time to time, while a dominant
seasonal effect would always lead to orbital decay. The strength of the effect also depends
on the body’s proximity to the Sun. More distant asteroids receive fewer sunlight and are
thus much less influenced by the Yarkovsky effect.

The Yarkovsky effect provides an explanation for several phenomena observed in the
solar system. It is the dominant mechanism which drives asteroids from stable regions in
the main belt into chaotic resonance regions where they can get excited and eventually
ejected from the main belt [41]. Due to this process, the population of NEOs and Mars-
crossing asteroids remains in a steady state [7]. Also the dynamical spreading of asteroid
families originating from a catastrophic disruption event in the distant past [8] or the slow
displacement of artificial satellites can be explained by the Yarkovsky effect.

Besides the Yarkovsky effect, there are also other non-gravitational forces acting on
small bodies in the solar system. These effects are not further considered in this work
but should nevertheless be mentioned. The Yarkovsky-O’Keefe-Radzievskii-Paddack, or
YORP effect [98], which is also caused by the Yarkovsky force, can alter spin rate and
spin axis orientation over long time-scales. Also collisions play an important role in the



2.4 The Yarkovsky Effect 29

long-term evolution of asteroids. They were long time thought to be the main driving
mechanism for orbital migration of small bodies [20]. However, it was realized that the
Yarkovsky effect is much more efficient in changing the orbits of asteroids [41]. On the
other hand, the Yarkovsky and YORP effects are influenced by collisions as well, as the
latter can change spin axis orientation and spin rate, too. For dust particles or very small
bodies with radii of much less than 0.1 m, the Poynting-Robertson drag [15], a force due
to radiation pressure which causes the particles to spiral inward, becomes more important.
When studying the orbital evolution of active comets, rocket-like accelerations caused by
outgassing near perihelion have to be taken into account [117].





CHAPTER 3
General-Purpose Computation on Graphics Processing Units

This Chapter is intended to give an introduction of what Graphics Processing Units (GPUs)
are and how they can be used for general purpose computing. Although there are currently
two different programming models in use (CUDA and OpenCL) the main focus of this
work is on CUDA.

3.1 The History of Graphics Processing Units (GPUs)
A graphics processing unit is a dedicated device optimized for performing graphical
computations in order to take load off the central processing unit (CPU). The term GPU
was introduced by Nvidia in 1999 [26]. However, devices specialized for image processing
and display have been existing since the 1980s. One of the first of these devices for personal
computers (PCs) was the IBM Professional Graphics Controller (PGC), a video card
consisting of an Intel 8088 microprocessor and 320kB of display RAM, introduced in 1984
[56]. The advantage of the IBM PGC was the dedicated microprocessor on board, which
made it possible to directly perform primitive operations like rotating, translating or scaling
on the image data. Most of the other devices available at that time were not much more
than a simple frame buffer and thus needed the CPU to perform all computations on the
image data and then write the resulting images to the frame buffer through the slow system
bus. In the late 1980s the concept of moving computational capabilities to the GPU was
improved and more data processing capabilities such as shaded solids and vertex lightning
were implemented to the GPU, further relieving the CPU.

However, due to the lack of graphics hard- and software standards, early GPUs often
showed compatibility problems making them cumbersome to use on the different computing
platforms available at that time. These problems were not solved until the OpenGL appli-
cation programming interface (API) was introduced in 1991. With OpenGL, new features
to be implemented to the graphics pipeline, proposed by the hardware vendors, operating
system designers and technology companies are standardized and then implemented to the
API. Thus, more and more functionality has been added to the GPU. During the 1990s,
several graphics APIs besides OpenGL like Glide API and Direct3D competed each other.
While Direct3D became the dominant API to be used by the video game industry, OpenGL
is now widely applied in professional computer-aided design (CAD) applications and for
scientific visualization.

With increasing functionality and growing amount of graphics data to be processed,
the demands on computation capabilities also increased. To challenge these demands
individual units of the graphics pipelines were duplicated. For example the GeForce256
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Figure 3.1: Graphics Processing Unit and the Graphics Pipeline

series, introduced by Nvidia in 1999 as the worlds first GPU, included 4 pixel shaders,
texture mapping units and render output units each. This trend of implementing more
and more parallel processing units on GPUs is still continuing. Modern GPUs contain
thousands of processing units in order to meet the ever-growing requirements of latest
video games, CAD and visualization software.

3.2 General-Purpose Computation on Graphics Processing Units
General-purpose computation on graphics processing Units (GPGPU) has become more
and more popular in the recent years. It benefits from the enormous parallel computation
power of modern GPUs. As described in the last section, the number of parallel computing
units implemented on a single GPU has been increased and also more functionality has
been added to these units. The most important processing units in terms of GPGPU
are the shading units, which were intentionally build to perform primitive operations on
graphics data like pixels, vertices or textures. With growing functionality programming
(shading) languages were introduced which made it possible to implement more complex
algorithms to the shading units. One of the first, who used this flexibility for a more
general purpose than processing pixels and triangles were Fung et al. in 2002 [44]. They
introduced OpenVIDIA, a library and API providing graphics hardware accelerated image
processing and computer vision. With OpenVIDIA they exploited the parallel computation
capabilities of GPUs and demonstrated how to set up a power-full parallel processing
architecture with cheap standard desktop PC hardware. A comprehensive survey on early
GPGPU work is given by Owens et al. [92].

However, GPGPU programming during its early phase was much more difficult than it
is today. The programmer needed to have very specific understanding of the hardware and
knowledge how to use the shading programming languages for general purpose computation.
There also were many limitations such as a lack of 64-bit double precision and integer
arithmetic support of early GPUs. This dramatically changed with the introduction of
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the Unified Shader Model in OpenGL and Shader Model 4.0 in Direct3D, respectively, in
2006. In these models the different shader types where replaced by universal floating point
processing units — called unified shader. Unifying the different processing units has the
advantage that the same instruction set is used for all shaders which makes it a lot easier
to develop GPGPU software. The unified shading units are organized as stream processors
in a single instruction, multiple data (SIMD) design. This way, the fixed function graphics
pipeline evolved to a more flexible, highly parallel computing device. The first GPUs
implementing the new architecture were Nvidia’s GeForce8 series and ATI Radeon R600.

With the unified shaders the hardware vendors also introduced programming frameworks
(Close to Metal by ATI which later became OpenCL and CUDA by Nvidia) dedicated to
GPGPU programming. These tools provide higher level programming languages and an
easy to use interface to the GPU. While CUDA is only supported on Nvidia hardware
OpenCL can also be used on AMD GPUs and CPUs. Both frameworks follow a similar
programming principle: First, the data is copied from the system memory (RAM) to the
GPU memory. Then, a C-like program — called kernel, which utilizes the GPU’s streaming
processors, is executed. When the kernel has finished the result data can be copied back
to the CPU memory or other kernels for further processing can be launched. Although
both frameworks are commonly used, this work focuses on CUDA, which seems to be more
popular in scientific applications.

Since 2006 the hardware and the programming frameworks have evolved. Many features
vital for scientific computations have been introduced. In fact, GPGPU became so
popular that in 2007 Nvidia started the Tesla series, GPUs specialized for general purpose
computation. As of November 2015, there are two GPU powered supercomputers in the
top ten of the TOP5001 list of the worlds fastest computers. In this work however, no
GPU super computer is used. The aim is to demonstrate how comparatively cheap GPUs
can enable ordinary workstation PCs to perform scientific tasks which earlier required
super computers.

3.3 CUDA Computing architecture on Nvidia GPUs
In the following sections the devices used for this work as well as their fundamental
differences are introduced. Further, the techniques for developing GPGPU programs for
NVIDIA GPUs are described, focusing mainly on the aspects essential for this work. A
more comprehensive overview on these topics can be found in the “CUDA C best practice
Guide” [24] and the “CUDA C Programming Guide” [25], both available online on the
Nvidia website, as well as in several guidebooks for GPGPU development [59] [100].

3.3.1 Fundamental differences between GPU and CPU
As already mentioned in the last section, calculations performed on a GPU utilize many
computing cores, the unified shaders. The main difference between a CPU core and a
GPU core is that the latter is much more lightweight. This is due to the different tasks
each device is designed for. CPUs are optimized for high execution speed on complex

1 http://www.top500.org/lists/2015/11/ (accessed: 2015-12-10)

http://www.top500.org/lists/2015/11/


34 Chapter 3 General-Purpose Computation on Graphics Processing Units

sequential code which is basically achieved by high clock speed and complex on-chip logic
like out-of-order execution or branch prediction. Due to limitations on the maximum clock
speed it became common to implement multiple cores on a single CPU. Each CPU core
is an out-of-order, multiple-instruction processor implementing the full x86 instruction
set, having its own caches and register files. This means that on a multi-core CPU single
threaded tasks can not be executed faster than on a single core CPU but more than one
task can independently be executed at the same time. A task can also spawn multiple
threads which run on more than one core in order to speed up computations. A GPU core
is designed to perform simple operations and can utilize much less resources than a CPU
core. However, as the number of cores on a GPU is very large, it is capable of executing
many thousands of simple tasks at the same time and thus is very fast in processing large
amounts of primitive graphics data in parallel. Table 3.1 lists the detailed specifications
for the CPU and GPU used for this work.

Table 3.1: Comparison of some key-specifications of CPU and GPU used for this work

Intel Core i7-4930K Nvidia GeForce GTX Titan Black
Number of cores 6 2880
Number of threads 12 30720
Clock speed 3.4 GHz / 3.9 GHz (Turbo) 889 MHz / 980 MHz (Boost)
L1 Cache 32 KB per core 48 KB per SMX
L2 Cache 265 KB per core 1536 KB
Last level cache 12 MB shared -
Memory size up to 64 GB DDR3 6 GB GDDR5
Memory clock speed up to 1866 MHz 3500 MHz
Memory bandwidth 59.7 GB/s 384 GB/s
Launch date Q3 2013 Q1 2014
Release Price $594 $999

Figure 3.2 shows the configuration of CUDA cores on a Nvidia GeForce GTX Titan
Black’s Kepler GK110 GPU. Each of the green rectangles represents a single core. The
cores are organized as 15 multiprocessors (SMX) each consisting of 192 single-precision
cores, 64 double-precision cores and 32 special function units each. An SMX also contains
65 KB of shared memory and a 65536 × 32-bit register file, both shared among all cores
within the SMX. The shared memory can be configured as 16 KB of L1 cache and 48 KB
shared memory or 48 KB L1 cache and 16 KB shared memory. Finally, there is 1536 KB
of L2 cache which is shared among all SMX.

The Titan Black graphics card was originally intended to be used for gaming. However, it
employs the same graphics chip as the Nvidia Tesla K20, K20X and K40 computing modules
and thus is often applied in GPGPU. In fact, as the Titan Black uses an overclocked GK110
chip, it outperforms the Tesla K40 by about 20% in processing power. The Tesla cards on
the other hand are using ECC memory and are available with up to 12 GB GDDR5 RAM.
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Figure 3.2: Nvidia GK110 GPU block diagram. Nvidia GK110 GPU block diagram. Cores
are organized in 15 streaming processors (SMX). L1 cache is shared among all cores within a
SMX, L2 cache is shared among all SMX.

In contrast to a CPU core, resources for a GPU core are very limited. Whereas on a
CPU a thread can utilize many registers and large caches dedicated to every single core,
on a GPU the number of registers and amount of cache for each thread is very limited as
registers and caches are shared between many cores residing on the same multiprocessor.
Fortunately, as the GPU threads are also more lightweight, switching between the threads
is much less expensive and faster than on the CPU. While on the CPU, creating and
scheduling threads typically requires several thousand clock cycles, the GPU can easily
create and schedule groups of threads within only a few cycles [59]. This means that if
threads are blocked, e.g. because they are waiting for data to be loaded, the GPU can
easily continue working on other threads in the meantime. To achieve good throughput it
is necessary to have a fast memory interface in order to keep the cores busy by quickly
providing them with new data. Thus, the Titan Black is equipped with a memory interface
allowing RAM bandwidths up to 384 GB/s, six times higher than memory transfers can
be performed on the i7-4930K.

3.3.2 Programming model
In terms of GPGPU, the CPU is often referred to as the host while the GPU is called
device. There are two different ways to perform general purpose calculations on the device:
employing GPU-optimized libraries like cuBLAS, cuFFT or Thrust which automatically
utilize the GPU, or using a C/C++ like programming language to write specialized device
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routines, called kernels, which have to be called manually. While for the first method,
memory transfers between host and device are automatically performed, for the second
method, which was used for implementing the algorithms for this work, the device memory
must be allocated and initialized manually and after the kernel has finished the results
must be transferred back to the host memory.

When calling a kernel, the GPU automatically creates, schedules and executes the
number of threads required for processing. The threads are hierarchically structured in
warps, which is a group of 32 threads each, blocks containing several warps and the grid,
which represents all threads needed for executing a kernel. Within a warp, the threads
start together at the same program address and one common instruction is executed at
a time for all threads. Each thread however has its own instruction address counter and
register state which means threads can branch the common execution at any time and run
independently. A block represents multiple warps which are altogether executed on one
of the GPUs multiprocessors. There may be several active blocks on one multiprocessor.
The number of threads in a block can be defined when launching the kernel and should
preferably be a multiple of 32 to not create warps containing inactive threads. Further, as
all threads within a block share registers and cache, setting the block size has implications
on the number of registers and amount of cache available for each thread.

3.3.3 Performance guidelines
There are several important design guidelines for developing GPU code. Those essential
for this work are briefly reviewed in the following paragraphs.

Launch as many threads as possible
First of all, the programmer should identify portions of the program that are suited to be
executed on the device. These are those parts showing a large degree of data parallelism.
Applying some arithmetical operations to each element of an array of some tens to hundreds
elements would run much faster on the CPU while the GPU would be faster for array sizes
of thousands or more elements. To achieve adequate device utilization it is important to
launch as many threads as possible. Modern GPUs are able to use several compute streams,
allowing asynchronous kernel execution. This means that by calling several concurrent
kernels even more threads can be launched.

Economize memory transfers between host and device
Another important rule is to keep the number of memory transfers between host and
device memory as low as possible. Since these transfers employ the PCI interface, they
can be very time consuming. Data should be kept on the device as long as possible and
intermediate results should directly be used for further processing on the GPU rather than
being downloaded and uploaded again later. Further, memory transfers can be hidden
behind calculations: By working with different compute streams, memory operations can
be performed while another kernel is currently active.

Maximize device memory bandwidth
The memory access pattern of the parallel threads also plays an important role. The
programmer should make sure an advantageous pattern is used when accessing data residing
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in the device RAM (global memory) from the parallel threads. The memory interfaces
are optimized for sequential access patterns which means that neighboring threads should
access neighboring memory, e.g. thread 𝑖 works on 𝑖th data element. To achieve high
memory throughput and low latency, the data structures to be transferred should map to
the memory transaction sizes of 32, 64, or 128 bytes. If a thread requires data residing in
global memory, the access for the whole warp is coalesced and one or more transactions are
executed. For example, if each of the 32 threads within a wrap accesses one element of an
array in a random access pattern and each element is 8 bytes in size, 32 32-byte transfers
are executed. As the transfers can not be coalesced each transfer carries one element of the
array while the remaining space is filled up with padding elements. This results in 1024
bytes are transferred to load only 256 bytes and thus, memory throughput is divided by 4.
If the threads accessed the data in an ascending order, the data transfer could be coalesced
and 4 8-byte elements are transferred within one 32-byte transaction. This results in only
8 transactions and the memory bandwidth being fully utilized.

Also unnecessary memory access should be prevented. If the same data is needed by all
threads it would be inefficient to load the data by every single thread. Instead, one thread
can be used to load the data into shared memory where every other thread in the same
block can access it without latency. Loading the data into shared memory can even be
done in parallel employing several threads within the current block.

Avoid divergence within a single warp
Divergent execution paths within the same kernel are also significantly affecting performance.
As already mentioned, the threads within a warp can break common execution at any time
and continue on separate execution paths. However, while the threads follow their own
execution path, their instructions must be serialized, which increases the total number of
instructions used to process the warp and results in reduced performance.

Table 3.2: GK110 specifications

Total amount of shared memory per block 49152 bytes
Total number of registers available per block 65536
Maximum number of threads per multiprocessor 2048
Maximum number of threads per block 1024
Warp size 32

Find the right ratio between block size and register count
The number of warps on a certain multiprocessor depends on the number of registers each
thread needs. For example, a kernel using 32 registers and requiring only a small amount of
shared memory launched with a block size of 1024 threads on a GK110 chip, it is possible
to execute two blocks of 32 warps each per multiprocessor, achieving 100 % occupancy
(see table 3.2). If the first block is waiting for data to be loaded into shared memory from
the device RAM, the warp scheduler can continue working on warps of the 2nd block. If
each thread used just one more register, only one block could reside on each multiprocessor
which means that it would be idle when the block is waiting for data as no other block
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would be active on the same multiprocessor and thus, occupancy would be reduced to 50%.
To control occupancy, the maximum number of registers for each thread can be set when
compiling the program. However, reducing the register count results in more data needed
to be swapped to the cache, as now threads might not be able to allocate as many registers
as they need. This introduces latency every time the data is loaded from and stored to the
cache. A trade-off between the number of available registers per thread and the number of
active blocks per multiprocessor must be found. Reducing the maximum register count to
a value allowing the maximum occupancy of 2048 active threads per multiprocessor might
be useless if a kernel required a large number of registers because it would spend most of
the time waiting for data to be loaded from or stored to the cache. Setting no limit to the
register count on the other hand may reduce the number of warps which can be executed
in parallel. If the number of registers needed by each thread is large, only a few warps
quickly consume the available space in the register file. The best values for block size and
the maximum number of registers to be used per thread varies from device to device and
is best determined with an occupancy calculator1 and carrying out experiments.

1 http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls (accessed:
2015-04-08)

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls


CHAPTER 4
cuSwift - a library of GPU based n-Body Integrators

The purpose of this chapter is to describe how the individual integration methods were
implemented and optimized. There are three integration methods included in cuSwift so
far: Wisdom Holman Mapping (WHM) [115] also known as Mixed Variable Symplectic
method (MVS, see Section 2.3.1), the Regularized Mixed Variable Symplectic Integrator
(RMVS, see section 2.3.3) [65] and a 15th order Radau integrator [40]. For each method, a
parallel CPU as well as a GPU version is available which makes cuSwift suitable to be also
used on multi-core computers without power-full GPUs. As most effort was put into the
widely used symplectic integrators WHM and RMVS, only these two methods are described
and evaluated. The original SWIFT package by Levison and Duncan as well as swifter1,
a translation of SWIFT to Fortran90, were taken as a reference for implementation and
testing. In order to make it possible to study the orbital evolution under the Yarkovsky
force, a model for the Yarkovsky effect, as described by Brož [12], was added to WHM.

4.1 Included Integration Methods
4.1.1 Wisdom-Holman-Mapping (WHM)
cuSwift is intended to be used for modelling the long-term evolution of minor bodies (test
particles) in the solar system (or similar configurations). As already explained, this means
that there are many more test particles than planets in the simulation, which results
in most of the computation time spent for stepping the test particles. Thus, only the
integration of the test particles has been parallelized. Implementing a parallel version of
WHM (cuWHM) is straight forward. As the particles do not interact with each other they
can be easily processed independently from each other in parallel.

CPU implementation
The focus for re-implementing the integration methods in SWIFT and swifter lay on
optimizing the algorithms such that they can better utilize the computational capacities
of modern workstation PCs. Not only the GPU but also the CPU version had to be
parallelized such that all available CPU cores can be utilized. This was achieved by
employing the OpenMP API for processing the test particles in parallel. With OpenMP,
parallelization is achieved by adding preprocessor directives to certain sections of the
code which should be executed in parallel. When running the program, these sections
will be processed employing a predefined number of separate threads. After each of the

1 http://www.boulder.swri.edu/swifter/ (accessed: 2015-05-10)
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parallel threads has finished, they join back to the master thread which continues sequential
execution. Thread creation, distribution of workload among the threads as well as launch
and synchronization are done automatically.

Figure 4.1: Comparison of advancing the particles for one time step (h) as implemented in
the parallel version of SWIFT by Brož [12] and cuSwift (CPU version). In the implementation
by Brož, not the whole process is parallelized but two successive parallel for-loops are used. In
cuSwift, the whole time step is processed in a single parallel for-loop

This method of parallelization has already been applied to WHM in SWIFT by Brož
[12] but no significant speedup was achieved, which can be explained by the approach used
by Brož and the design of the implementation of the algorithms in SWIFT. In SWIFT,
each integration sub-step is done using a separate subroutine containing a for-loop over
all particles each. This means that when parallelizing these subroutines with OpenMP,
the overhead for thread management occurs several times during a single time step. As
calculating the particles’ velocities is computationally much cheaper than calculating the
accellerations and advancing the positions, Brož paralellized the latter routines only (see
Figure 4.1, left panel). In cuWHM, stepping the particles is done in a single routine
containing one OpenMP parallel loop over all particles (see Figure 4.1, right panel). This
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reduces the amount of overhead resulting from thread management to a minimum. Further,
as advancing the velocities is also included in the parallel loop, the whole process of stepping
the particles is executed in parallel.

GPU Implementation
The main difference between the CPU and the GPU version of cuWHM is that in the GPU
version all the routines for processing the test particles were implemented in device code to
be executed on the GPU. The initial positions and velocities are copied to device memory
before starting the simulation. To keep time consuming memory transfers between host
and device at a minimum, only the data absolutely necessary are transferred while the
simulations are running.

Fortunately, for WHM, almost no communication between CPU and GPU is needed.
The only data to be uploaded to the GPU during a single time step are the planet positions
and velocities which are integrated on the CPU before the particles are stepped. The
only data downloaded from the GPU each time step is a status flag indicating possibly
discarded particles and, if particles were discarded, the position and velocity of only those
particles. The whole arrays of particle positions and velocities are only copied back to the
CPU when they are to be written to the output file.

In the following paragraphs, the main aspects of optimizing the algorithm for the GPU
are described in detail.

Data layout
As already explained in Section 3.3.3, the data layout plays an important role for achieving
high device memory bandwidth utilization. Maximum bandwidth can only be achieved if
the data to be accessed from global memory from each thread aligns with the transaction
size and follows a regular access pattern. Employing such a pattern allows multiple elements
to be loaded within a single memory transaction without using padding elements, which
do not transfer any data. This has implications on the design of the data structures to
be used [74]. A common approach of storing the data of a single particle would be a
structure containing all information necessary. An array of structures (AoS) would then
be used to represent the whole set of particles (see Figure 4.2, left panel). There are two
reasons why this approach is not suitable for a GPU. First, a kernel which works on the
particles position only (e.g. to calculate the acceleration) would have to load the data for
the whole particle instead of the position only, resulting in unnecessary memory transfers.
The second reason is that the structure contains nine 64-bit values and thus does not align
with the transaction sizes of 32, 64, or 128 bytes. A more favourable design employed in
cuSwift can be seen in the right panel of Figure 4.2. Here, the structure contains three
arrays of aligned structures (AoaS) for the particles’ positions, velocities and accelerations.
Choosing this approach, a kernel working on the positions would load a single double4
value only. Further, the built-in double4 structure is 16-byte aligned and thus matches the
memory transaction size. Although the coordinates are only 3-dimensional, double4 is used
to store positions, velocities and accelerations as for double3 an 8-byte padding element
would be added anyway in order to fulfill alignment. To save memory, the additional
value is used to store further data. For planets which have similar data structures than
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particles, radius and mass are stored in the fourth double4 value for position and velocity,
respectively. When incorporating the Yarkovsky effect, the particle radius is stored in the
fourth double4 value of the particles velocity and the 3-dimensional spin vector is stored in
a double4 variable with the spin rate stored in the fourth value.

1 typedef struct _Particle
2 double3 x;
3 double3 v;
4 double3 a;
5 ...
6 }Particle ;
7

8 Particle ∗tp;
9 int ntp=100;

10

11 tp=(Particle∗)malloc(ntp∗sizeof(Particle));

1 typedef struct _Particles
2 double4 ∗x;
3 double4 ∗v;
4 double4 ∗a;
5 ...
6 }Particles ;
7

8 Particles tp;
9 int ntp=100;

10

11 tp.x=(double4∗)malloc(ntp∗sizeof(double4));
12 tp.v=(double4∗)malloc(ntp∗sizeof(double4));
13 tp.a=(double4∗)malloc(ntp∗sizeof(double4));

Figure 4.2: Code example for two different data layouts containing cartesian positions,
velocities and accelerations of a particle and their declaration. Left panel: Array of Structures
(AoS). Right panel Structure of aligned Arrays (SoaA).

Note that loading a double4 value is split into two 128-bit loads, as the maximum
transaction size for a single thread is 16 bytes. This splitting results in imperfect coalescing
because of the inherent gaps when loading the lower and higher 16 byte part of double4.
To test whether this influences overall performance a simple kernel adding four double
values was implemented in a plain double version and a double4 version. For the plain
double version, loading 4 double values from global memory results in 4 64-bit loads which
are perfectly coalesced. The execution time for adding 50,000×4 double values increased by
less than 10 percent when using double4. This shows that the imperfect coalesced memory
access in the double4 version is almost compensated by the fewer number of load/store
operations. Since the actual kernels used in cuSwift do much more computational work
than a single addition only, the ratio between calculations and load/store operations is
much higher and thus, the overhead for using double4 can be neglected.

Memory management
Another important aspect for achieving good performance is device memory management.
As described in Section 3.3.1, there are different types of memory available on the GPU.
Particle positions and velocities are initially located in global memory. When executing
the kernel which steps the particles, as many threads are launched as there are particles in
the simulation and each thread has to fetch the data of the particle it is working on from
global memory. The planets’ positions and velocities however, are the same for all threads.
Thus, it would be inefficient if each thread loads them from global memory. To reduce the
number of global memory accesses, shared memory is employed which can be accessed by
all threads within the same block. This means that the planets’ positions and velocities
would have to be loaded only once for every block of parallel threads. To achieve maximal
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memory throughput, the planets’ positions and velocities are loaded in parallel by the first
𝑛 threads of each block, where 𝑛 is the number of planets involved in the simulations. Note
that this also implies that the number of threads per block must always be greater than
or equal to the number of planets. However, as commonly block sizes of several hundred
threads are used, this should not be an issue.

Thread divergence
Divergent execution paths for different threads are another performance bottleneck. If
threads within the same wrap diverge, they must be serialized which increases the number of
total instructions required to process the wrap and thus significantly slows down execution.
In order to maximize instruction throughput, the number of divergent execution paths
should be minimized.

The drift step where a particle is advanced on its orbit is performed once every time
step. This involves solving Kepler’s equation

𝑀 = 𝐸 − 𝑒 𝑠𝑖𝑛 𝐸 (4.1)

for the eccentric anomaly E (M denotes the mean anomaly and e is the eccentricity) for
each particle. As Kepler’s equation is a transcendental equation, it can not be solved
algebraically. Numerical methods are needed to evaluate E which makes the drift step to
the computationally most demanding part of the integrator. There are various algorithms
for efficiently solving Kepler’s equation. In SWIFT and swifter, a recipe by Danby [27] is
applied (further called Danby drift). The advantage of this method is that it completely
avoids computationally expensive trigonometric functions. On the other hand, its execution
path is highly divergent. Depending on the eccentricity, different algorithms are used to
solve Kepler’s equation. Thus, the drift step, as implemented in SWIFT and swifter, can
not be efficiently executed on the GPU. In QYMSYM [80], a GPU accelerated n-Body
integrator by More and Quillen, another approach for solving Kepler’s equation is used.
Their method employs universal variables, as described by Prussing and Conway, [95] to
iteratively solve Kepler’s equation (further called prussing drift). The advantage of this
method is that it applies the same procedure, independent of the orbit’s eccentricity. This
results in almost no divergence in the execution path, making the prussing drift much
more efficient when executed on the GPU. On the other hand, the prussing drift uses
trigonometric functions such as sine, cosine, hyperbolic sine and hyperbolic cosine which,
besides being computationally expensive, may produce slightly different results, depending
on whether they are computed on the CPU or the GPU [25]. cuSwift contains both drift
methods and it can be decided which method should be used on CPU and GPU before
compiling. A detailed comparison between both drift methods on both devices is given in
Sections 5.1.3 and 5.2.3.

Dynamic memory reallocation
Since particles may be discarded during the simulation, the number of active particles may
decrease with time. In SWIFT data for the particles is stored in arrays having a static size
which can only be changed in the source code. This means that the whole package has to
be re-compiled when changing the maximum number of particles. During the integration
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the number of particles remains constant and discarded or unused particles are skipped.
This approach would be inefficient for a GPU implementation. As there would be always
as many threads as particles, there might be many threads which do no work at all. The
number of unused threads increases during the simulation when more and more particles
get discarded. To avoid launching too many threads for discarded or unused particles in
cuSwift, the size of the memory for the particles is dynamically reduced in a block-wise
manner. If the number of inactive particles reaches the number of threads in a block, the
memory for the particles is reorganized and the whole block is deallocated.

Table 4.1: Kernel functions for cuWHM

Kernel Description
whm_get_acch_tp_gpu called once to initialize accelerations
whm_step_tp_gpu performs a kick-drift-kick step for particles
discard_tp_gpu checks for particles to be discarded

4.1.2 RMVS
The RMVS integrator can be seen as an extension to MVS, which introduces close encounter
handling for test particles. All optimization aspects mentioned in the last section were also
applied for RMVS.

CPU Implementation
The CPU version of RMVS in cuSwift is implemented basically in the same way as cuWHM.
The routines for close encounter detection and handling are directly translated from their
Fortran versions and optimized for parallel processing using OpenMP while the planets are
sequentially stepped.

GPU Implementation
Optimizing RMVS to efficiently be executed on the GPU requires some more effort.
Resolving the encounters on the GPU is difficult because each time step only a few
particles, if any at all, are involved in encounters. When performing encounter handling
on the GPU, this means that a few threads would cause serious additional computational
cost (see Section 2.3.3). The threads for the particles involved in encounters would break
common execution and thus slow down the whole warp of parallel threads. A solution
would be to separate the encountering particles on the device and launch another kernel for
processing them on the GPU. By using concurrent threads, this could be done in parallel
to stepping the particles which are not involved in encouters. However, even for scenarios
which cause many encounters (see Section 5.4.1), the number of close encounters per time
step would be so small that this approach would not be efficient at all. Thus, in cuRMVS
close encounter processing is done on the CPU (see Figure 4.3). Before each time step it is
checked which particles currently are or might be during the next time step located in a
planet’s encounter region. These particles are then downloaded to the host RAM to be
processed by the CPU. After close encounter handling is finished, the new positions and
velocities of the encountering particles are uploaded back to the GPU.
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As explained in Section 3.3.3, it is possible to overlap kernel execution with memory
transfers and CPU processing by employing different compute streams. In cuRMVS this
feature is utilized for efficient close encounter handling. The whole process of downloading,
processing and uploading the particles involved in close encounters is performed in parallel
to stepping all other particles on the GPU. Thus, encounter handling does not significantly
increases calculation time. For hiding close encounter processing completely behind GPU
calculations the timing is very important. Memory transfers have to be optimized and
CPU processing must be done using multiple threads in order to not slow down GPU
calculations. Figure 4.3 shows a detailed flow chart of CPU and GPU operations and
memory transfers for one cuRMVS time step.

Memory management for close encounter processing

For each particle which is involved in a close encounter, its position, velocity and acceleration
has to be downloaded to the CPU. If there are 𝑛 encountering particles, 3 × 𝑛 double4
values have to be fetched. The locations of the encountering particles in memory are
randomly distributed. Thus, it is not possible to download them with a single memory
transaction. Since performing 3 × 𝑛 individual double4 transfers would not be efficient, a
more advanced method is applied to download and upload the data for the encountering
particles in cuRMVS. The kernel checking for close encounters does not only mark the
affected particles but also copies their positions, velocities and accelerations from the main
data arrays to an auxiliary array in device memory. After encounter detection is finished,
the data for the particles which has to be processed on the CPU can be downloaded from
the auxiliary with a single transaction only. Doing so, it is important to ensure that
concurrent threads which detect a close encounter at the same time do not access the same
address in the auxiliary array. A counter variable which is accessible from all threads is
employed to monitor the current number of close encounters and to mark the current index
in the auxiliary array. This variable is incremented using the atomicAdd operation which
ensures save reading, increment and writing of the counter by only one thread at a time.
This ensures that different threads do not access the same index in the auxiliary array.

Close encounter handling

Resolving the close encounters on the CPU is done in parallel using OpenMP. However,
employing the maximum number of available CPU threads would not always be efficient.
If there are for example only four particles involved in close encounters, the overhead for
thread management on the CPU would dominate the whole procedure of close encounter
processing when four CPU threads are used. Depending on the speed of the GPU, the
total number of particles in the simulation and the number of particles involved in close
encounters, the overhead for CPU thread management may even cause close encounter
handling to take longer than stepping the particles which are not encountering a planet on
the GPU. Thus, in cuRMVS, the number of threads which will be used to resolve the close
encounters is variable and dynamically determined for each time step as

𝑛𝑇 = 𝑚𝑖𝑛( 𝑛𝑇𝑚𝑎𝑥 , (𝑖𝑛𝑡)(𝑛𝑇 𝑃𝑒𝑛𝑐 / 𝑛𝑇 𝑃𝑚𝑖𝑛)) (4.2)
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Figure 4.3: Flowchart for one cuRMVS time step. Memory transfers are optimized and close
encounter handling on the CPU is overlapped with stepping all other particles on the GPU.

where nT is the number of threads to be used, nTmax the maximum number of CPU threads,
nT Penc the number of particles involved in close encounters and nT Pmin the minimum
number of particles per CPU thread. The best values for nTmax and nT Pmin are depending
on the computer which is used and thus can be set by the user. For the machine used
in this work (i7-4930K + GeForce GTX Titan Black) nTmax = 6 and nT Pmin = 15 have
proven to be a good choice.

After close encounter handling is finished, the new positions, velocities and accelerations
of the encountering particles are uploaded back to the auxiliary array on the device and a
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kernel which copies the data back to the main data arrays is executed. Since this kernel
alters only the particles marked as having a close encounter, it can be launched while the
kernel stepping the particles which are not involved in close encounters is still active.

The advantage of this procedure is that close encounter handling is performed completely
independently. Further, as close encounters are stepped in parallel, GPU and CPU are
efficiently utilized. This results in close encounter handling does not significantly slow down
the simulation as will be shown in Section 5.4.2, where the performance of all available
implementations of the integrators are compared.

Table 4.2: Kernel functions for cuRMVS

Kernel Description
whm_get_acch_tp_gpu called once to initialize accelerations
rmvs_check_gpu checks for close encounters and copies data for encountering particles

to auxiliary array
whm_step_tp_gpu performs a kick-drift-kick step for particles not involved in close en-

counters
rmvs_update_tp_enc_gpu copies data of the encountering particles from the auxiliary array to

the main arrays
discard_tp_gpu checks for particles to be discarded

4.2 Yarkovsky effect
For the implementation of the Yarkovsky effect, the modified version of SWIFT by Brǒz
(swift_mvs2_fp_ye) [12] was used as a reference. In swift_mvs2_fp_ye, Brǒz applied
theories developed by Vokrouhlický and Farinella [107][109] who introduced models for the
diurnal and seasonal Yarkovsky effect for spherical bodies. A very detailed description of
the implementation of the Yarkovsky force in swift_mvs2_fp_ye can be found in Brǒz’
dissertation [13]. So far, in cuSwift, the Yarkovsky effect can be considered with the WHM
integrator only.

Calculating the acceleration caused by the diurnal component of the Yarkovsky effect
involves the evaluation of transcendental functions. On the GPU, these functions are
available in different versions. The fastest way of evaluating transcendental functions
is to use their intrinsic versions, which are implemented to the GPU’s special function
units. Unfortunately, the intrinsic versions are available in single-precision only. Further,
the algorithms for evaluating transcendental functions on the GPU differ from those
implemented to the CPU. This means that the GPU may produce approximations which
do not comply to the IEEE standard for single-floating point arithmetic. In cuSWIFT,
double-precision is used for transcendental functions. There are double-precision versions
for those functions available on the GPU, but these functions are not implemented to the
special function units and thus must be evaluated utilizing the single and double-precision
cores, slowing down computations. For the case both, sine and cosine of an argument are
needed, the sincos function, which simultaneously calculates sine and cosine, is employed.
Note that even the double-precision versions for the transcendental functions on the GPU
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do not fully comply to the IEEE standard for floating point arithmetic. The maximum
errors to be expected are listed in the CUDA Programming Guide [25]. For the functions
used in cuSwift, the errors are also listed in table 5.1 in the next section.

The routines for calculating the Yarkovsky force are not an exact translation from their
Fortran version in swift_mvs2_fp_ye because accuracy and performance issues have been
identified when studying the original code. These issues will be described in detail in
section 5.3.1 where the implementation of the Yarkovsky effect in cuSwift is evaluated.

Table 4.3: Kernel functions for the Yarkovsky effect

Kernel Description
whm_get_acch_tp_gpu_yarko calculates the accelerations due to gravitation and the seasonal

and diurnal component of the Yarkovsky force (called once to
initialize accelerations)

yarko_update_seasonal_coeff_gpu calculates auxiliary coefficients needed to evaluate the seasonal
component of the Yarkovsky force (not called at each time
step)

whm_step_tp_gpu_yarko performs a WHM kick-drift-kick step and considers the ac-
celeration due to the seasonal and diurnal component of the
Yarkovsky force when evaluating the acceleration



CHAPTER 5
Validation and Benchmarking

The first steps to validate cuSwift have been already performed during implementa-
tion. Results for each function have been compared with the corresponding routines in
SWIFT/swifter. To test the entire algorithm runs with identical starting conditions were
carried out with swifter and cuSwift and the binary output files were compared. These
tests were done using only those optimization flags which are available for both, the Fortran
(gfortran) and C/C++/CUDA (gcc, nvcc) compilers used to compile SWIFT, swifter and
cuSwift. For the nvcc compiler, the options -prec-div and -prec-sqrt, which control the
precision of division and square root on the GPU, were set to use the IEEE round-to-nearest
mode ensuring identical results for these operations on both devices. With these settings
the CPU implementation of cuSwift exactly reproduces the results obtained with swifter.
The binary output files for runs using the same initial conditions are identical for swifter
and cuSwift. However, results obtained with the GPU may differ from those obtained with
the CPU even if the compiler optimization flags were the same. As already mentioned, this
is due to the results of some transcendental functions on the GPU may differ from those on
the CPU. A list of these functions which are used in cuSwift as well as their maximum ULP
(unit in the last place) error on the GPU is given in table 5.1. The maximum ULP error
corresponds to the absolute value of the difference in ULPs between a correctly rounded
double-precision result and the result obtained on the GPU [25].

The CUDA compiler also introduces some optimizations which are not available for the
C/C++ compiler. Most of these optimizations such as forcing the use of intrinsic routines
for transcendental functions or relaxing the accuracy in division or square root are not
applicable for cuSwift because they would introduce a serious loss of precision. But there
is also an optimization for the nvcc compiler which might even result in higher accuracy
on the GPU than on the CPU. Using this optimization called fused multiply-add (FMA),
terms of the form 𝑥 = 𝑎 * 𝑏 + 𝑥 will be evaluated with a single instruction using a single
rounding operations only [111]. This leads to results possibly not complying to the IEEE
floating point standard but, as the same term on the CPU is evaluated with two rounding
operations, the result computed on the GPU should be more accurate.

Another aspect to investigate is how the two different methods for the drift-step which
may also produce slightly different results influence accuracy. Especially during close
encounters and for chaotic orbits the tiniest differences may lead to completely diverging
results. To understand how the individual implementations and optimizations affect the
accuracy of the integrators, test cases were set up and experiments were carried out. In
the following sections these experiments and their results are described in detail.

49
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Table 5.1: Mathematical standard library functions and their maximum ULP (unit in the
last place) error used in cuSwift

Function max ULP error Usage in cuSwift
cbrt(x) 1 Danby drift
exp(x) 1 Yarkovsky effect
log(x) 1 Yarkovsky effect
sin(x) 1 Prussing drift; Yarkovsky effect
cos(x) 1 Prussing drift; Yarkovsky effect
tan(x) 2 Yarkovsky effect
sincos(x,sptr,cptr) 1 Prussing drift; Yarkovsky effect
acos(x) 1 Yarkovsky effect
atan2(y,x) 2 Yarkovsky effect
sinh(x) 1 Prussing drift; Yarkovsky effect
cosh(x) 1 Prussing drift; Yarkovsky effect
pow(x,y) 2 Prussing drift; Yarkovsky effect

5.1 Test setup for WHM
5.1.1 The dynamics of Pluto
For validating cuWHM, the dynamical properties of Pluto are providing a good test case.
The orbit of Pluto is one of the most peculiar orbits in the solar system. It is highly inclined
(i ≈ 17°) and very eccentric (e ≈ 0.25). In fact, the eccentricity is so large that when Pluto
reaches its perihelion it is closer to the Sun than Neptune. A planet-crossing orbit might
lead to the assumption that Pluto might not be stable over very long time scales and will
eventually be removed from its orbit by close encounters with Neptune. However, as will
be explained in the next section, the orbit of Pluto is stable over millions of years. Being
such an oddity in the solar system, the dynamics of Pluto have been studied in great detail
since its discovery of Pluto in 1930.

Why Pluto?
The orbits of Neptune and Pluto are in a 3:2 mean-motion resonance. While Neptune
revolves three-times three revolutions around the Sun, Pluto revolves twice. In 1965, Cohen
and Hubbard [22] integrated the orbits of the five outer planets for 120 kyr and found
that Pluto and Neptune are locked in that resonance in a way that the distance between
Neptune and Pluto never gets less than 18 au — a first indicator for the long-term stability
of Pluto. Later, in 1971, Williams and Benson [112] reported Pluto’s argument of perihelion
librates such that Pluto is about 8 au above the orbital plane of Neptune whenever it is
closer to the Sun, another mechanism preventing close encounters between the two bodies.

During the 1980’s more power-full computers became available for studying the long-term
orbital evolution, allowing much longer simulation times. In 1986, Applegate et al. [3]
performed integrations of the outer solar system ranging more than 100 Myr in the past
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and 100 Myr into future on a special purpose computer called Digital Orrery, which was
exclusively designed for studying planetary motion [2]. They were looking for chaotic
behavior in the motion of the planets, which is given if two initially very close trajectories
exponentially diverge with time. They found no evidence for chaotic motion of Pluto but
reported that orbits very similar to that of Pluto clearly show chaotic behavior.

The famous LONGSTOP integrations [17], performed in the late 1980’s, revealed some
very important insights in the long-term orbital evolution of the outer solar system. The
two experiments LONGSTOP 1A and 1B were carried out on a CRAY-1S supercomputer
and simulated the orbital evolution of Jupiter, Saturn, Uranus, Neptune and Pluto over
time spans of 9.3 Myr and 100 Myr. Examining the output of these simulations, in 1989,
Milani et al. [78] concluded that the orbit of Pluto is indeed chaotic. It was also found that
due to the locking in various orbital resonances, Pluto seems to be trapped in a chaotic
region and thus its orbit is likely to be stable over very long time scales. In 1988, Sussman
and Wisdom [102] used the Digital Orrery to perform integrations of the outer solar system,
covering up to 845 Myr. They confirmed that the orbit of Pluto is chaotic and reported
a Lyapunov time of 20 Myr. The Lyapunov time is as a characteristic value describing
the chaotic nature of a dynamical system. Calculations beyond the Lyapunov time are
speculative.

The chaotic nature of Pluto’s orbit makes it very sensitive to small errors and variations
of numerical methods. The fact that Pluto’s orbit is chaotic but nevertheless stable over
very long time scales and that it is studied in such a great detail with many different
integration methods makes Pluto a good example for validating the various optimizations
introduced with cuWHM as well as the numerical differences arising from the different
computing platforms.

5.1.2 A fictitious population of Plutos

In order to perform reliable experiments with conclusive statistics, a single orbit would not
be sufficient. Hence, a sufficiently large number of fictitious Plutos was generated. These
fictitious bodies have similar orbital properties like Pluto but are distributed over a larger
volume in phase space. In fact, several such objects have been recently discovered in the
Kuiper belt. They are making up a sub-population in the trans-Neptunian region called
Plutinos. To generate an adequately large population of these objects, a similar approach as
in the work of Tiscareno and Malhotra [104], who studied the chaotic diffusion of resonant
Kuiper belt objects, was taken. First, 1,000 particles were generated which have the same
semi-major axis as Pluto but randomly differ by up to ± 0.05 and ± 1° in eccentricity
and inclination, respectively, with the introduced deviations being uniformly distributed.
Longitude of ascending node (𝛺), argument of perihelion (𝜔) and mean anomaly 𝑀 for
each object were chosen such that the critical argument for the 3:2 mean-motion resonance
between the real Pluto and Neptune is violated by less than 1°. The critical argument is
given as

𝛷3:2 = 3𝜆𝑟𝑒𝑠 − 2𝜆𝑁 − 𝜛𝑟𝑒𝑠 (5.1)
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where 𝜆 = 𝑀 + 𝛺 + 𝜔, the mean longitudes of the resonant object and Neptune and
𝜛𝑟𝑒𝑠 = 𝛺𝑟𝑒𝑠 +𝜔𝑟𝑒𝑠 the longitude of perihelion of the resonant object. The fictitious Plutinos
were then integrated with cuWHM in a system containing the Sun and the four outer
planets for 10 Myr using a time step of 0.5 yr. Particles leaving the resonance region were
discarded from the simulation. A lower and upper limit of 38.77 and 40.17 au [104] for the
particles semi-major axis was applied to determine when a particle has left the resonant
region. After 10 Myr, 301 particles remained. Figure 5.1 shows snapshots of the planets
and the remaining particles in a heliocentric reference frame at different time steps. The
fictitious Plutinos populate two distinct regions but are leaving a gap each. Whenever
Neptune approaches either of the regions, it will be located in these gaps and thus does
not encounter any of the particles. These 301 particles are trapped in the protecting
mechanisms in a similar way like Pluto and are proven to be stable for at least 10 Myr.
Together with the real Pluto, they are taken as a population of test particles for validating
cuWHM.

5.1.3 Validating cuWHM
To validate cuWHM, a similar approach as the one by Sussman and Wisdom for the
Digital Orrery [102] was chosen. They integrated Pluto as a mass-less particle in a system
containing the Sun and the outer planets 3 Myr into the future and, afterwards, 3 Myr
backward in time to see how well the Digital Orrery reproduces the initial conditions. The
same test, but with the 301 fictitious Plutinos instead of only Pluto was used for cuWHM.
As the WHM integrator is time reversible, the position of the bodies after the integration
should theoretically be exactly the same as before. Truncation errors made during rounding
however will cause the reproduced initial positions to differ from the initial positions. And
due to the fact that the orbit of Pluto is chaotic, these differences can become very large
even for very small numerical deviations.

To measure the accuracy of the WHM integrator, the distances between the particles’
initial and reproduced initial positions (hereafter position errors) were examined. Several
test runs were preformed in order to quantify the effects of the different optimizations
and computing platforms and histograms of the position errors for each run were created.
However, when looking at the Histograms alone, the results of the individual runs are
almost indistinguishable, making it hard to see which run was more accurate. To better
evaluate the differences between individual runs, the median of the position errors for each
run was considered as well.

The position errors for most of the fictitious Plutinos were in the order of 10−6 au but
some of them also showed very large errors of up to several tens of au, indicating a very
high degree of chaos for those orbits. For better readability, only position errors up to
1 · 10−5 are shown in the histograms and the number of particles which exceeded this limit
is mentioned for each run.

The cubic root function (cbrt(x)), used by the Danby drift method, which has 1 ULP
error on the GPU is only used for non-elliptic or very eccentric orbits. This means that
because the orbits of the fictitious Plutinos have moderate eccentricities, the results should
be the same for CPU and GPU when using the Danby drift on both devices. Indeed, the
output files produced by GPU and CPU are identical. Hence, no detailed comparison
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Population of fictitious Plutinos at different time steps

Figure 5.1: Snapshots of Jupiter, Saturn, Uranus, Neptune, the real Pluto (black dots) and
the population of fictitious Plutinos (orange dots) which are on orbits stable over at least 10
Myr. The Plutinos populate two distinct regions and are forming a gap. When Neptune enters
either of the two regions it will be inside the gap and thus no close encounters will occur.

between CPU and GPU is needed for this case. The influence of the error caused by the
cbrt(x) function is evaluated when validating cuRMVS in Section 5.2.

Fused multiply-add
As already mentioned, using the FMA nvcc compiler flag ((fmad)), the GPU should produce
more accurate results because a multiplication and an addition can be performed using a
single rounding step only. To test this hypothesis, a run without FMA was compared with
a run with FMA enabled. Both runs were using the Danby drift method. Figure 5.2 shows
the histograms of the position errors for both runs plotted over each other. It can be seen
that the median position error after 6 Myr of integration is almost the same, regardless
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if FMA is enabled or not. Without FMA, the median error is 2.40 · 10−6 au while when
enabling FMA, the value slightly decreases to 2.37 · 10−6 au. The number of particles with
errors larger than 1 · 10−5 au is almost the same for both runs. Without FMA, 60 particles
produced errors larger than 1 · 10−5 au while 63 particles exceeded the limit when FMA
was enabled.

According to this test, FMA does not significantly influence accuracy. Thus, it can be
considered safe to use the FMA option when compiling cuSwift.
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Figure 5.2: Histograms of errors of the reproduced initial conditions after integrating 3 Myr
into the future and back with and without the FMA optimization. The vertical lines represent
the median values of the position errors for each run.

Drift methods
cuSwift contains two methods for advancing the bodies on their Kepler orbit. It can indi-
vidually be chosen which method should be applied on CPU and GPU during compilation.
For this particular test case, the Danby drift method reproduces exactly the same results,
regardless which computing device is used. The Prussing drift method however makes use
of sin(x), cos(x), sinh(x), cosh(x) and sincos(x, sptr, cptr) which have an error
of 1 ULP each and the pow(x,y) function, which has a maximum error of 2 ULP. Thus,
two runs using the Prussing drift method are very likely to produce different results on
the different devices. Several combinations must be compared in order to evaluate the
different drift methods: First, the Danby drift and Prussing drift must be compared on
the CPU in order to ensure they produce comparable results at all. Second, to examine
the effect of the errors of the mathematical functions on the GPU, the CPU Prussing drift
run must be compared to a GPU run also using the Prussing drift but leaving the FMA



5.1 Test setup for WHM 55

optimization disabled. Then, the CPU run using the Danby drift must be compared to a
GPU run using the Prussing method in order to evaluate the differences of both methods
and devices. Finally, a GPU run using all optimizations (FMA and Prussing drift) must
be compared to the CPU run using the Danby drift to evaluate the fully optimized GPU
implementation by comparing it to the reference implementation.
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Figure 5.3: Same as Figure 5.2 but for evaluating how the different drift methods and FMA
affect the position errors.

Figure 5.3 shows the histograms of the position errors for all cases to be discussed. In
the upper left panel, the different drift methods are compared on the CPU. Using the
Danby drift, 60 particles have position errors larger than 1 · 10−5 au while when using the
Prussing drift, the error for 61 particles exceeded the maximum. The median value of the
position errors for both runs is 2.37 · 10−6 au. This means that the different drift methods
are producing almost identical results on the CPU — at least for elliptical orbits with
moderate eccentricities. The upper right panel of figure 5.3 shows the differences for the
Prussing drift on CPU and GPU. For the GPU run, the position errors of 56 particles were
larger than 1 · 10−5 au and the median value is 2.35 · 10−6 au. Producing almost identical
results as the CPU version, the errors of the mathematical functions on the GPU can be
neglected. This implies that the two different drift methods are comparable in accuracy on
both devices, as can be seen in the lower left panel of Figure 5.3. Finally, in the last panel
of that figure the reference implementation is compared with the fully optimized GPU
implementation. With FMA enabled, the median value for the position error is 2.34 · 10−6
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au and 61 particles exceeded the 1 · 10−5 au limit.
In general, none of the different combinations shows significant deviations, which is

very good, as it shows that the results produced with the different drift methods and
optimizations are almost identical for both computing platforms. According to this test, it
can be considered as safe to use either of the two drift methods in cuWHM. As the Danby
drift method implemented in SWIFT/swifter is optimized to be used on the CPU, this
method is the default setting for the CPU while the Prussing drift is the default setting for
advancing the particles on their Kepler orbit on the GPU.

Conclusions
This test does not only evaluate the changes to the original version of WHM, but also
demonstrates how remarkably well the method works in general. The position errors for
most of the particles after 6 Myr of simulation are at about 2 · 10−6 au, a distance as far
as only 300 km. The errors in the reproduced positions for the real Pluto were less than
2.06 · 10−6 au. Sussman and Wisdom [102] reported in their test an error in the position
of Pluto after 6 Myr of integration of about 1.17 · 10−6 au for a 12th order integration
method on the Digital Orrery using a time step of 32.7 days. WHM, a symplectic 2nd
order integration method, reaches comparable results when using a time step 5 times longer
than the 12th order method employed by the Digital Orrery.

5.2 Test setup for RMVS
The procedure of testing the accuracy of numerical integration methods for orbital motion
described in the last section is working very well as long as the particles do not have
their orbits significantly changed due to close encounters with Planets. During close
encounters, the smallest deviation in positions and velocities result in tremendously
deviating trajectories. Thus, comparing the initial position with the reproduced initial
position of a particle integrated forth and back in time would not be meaningful. For
evaluating the newly implemented version of the RMVS integrator, a different approach is
needed.

5.2.1 Monitoring the Jacobi constant in the restricted three body problem
The circular restricted three body problem which consists of two massive bodies on circular,
non-inclined orbits around the center of mass and a third mass-less body may seem a huge
simplification. However, the advantage of this simplified depiction is that, in contrast to
the non restricted problem, there exists an analytic integral of motion: the Jacobi constant
𝐶𝐽 , which, in a barycentric, co-rotating reference frame, is defined as

𝐶𝐽 = 𝑛2(𝑥2
𝑡𝑝 + 𝑦2

𝑡𝑝) + 2
(︂

𝐺𝑚1
𝑟1

+ 𝐺𝑚2
𝑟2

)︂
−
(︁

𝑣2
𝑥𝑡𝑝

+ 𝑣2
𝑦𝑡𝑝

+ 𝑣2
𝑧𝑡𝑝

)︁
(5.2)

where 𝑛 is the mean orbital motion, 𝑥𝑡𝑝 and 𝑦𝑡𝑝 the x- and y-coordinate of the mass-less
particle, 𝑟1 and 𝑟2 the distances between massive bodies and the particle and 𝑣𝑥𝑡𝑝 , 𝑣𝑦𝑡𝑝 and
𝑣𝑧𝑡𝑝 the particles’ velocity.

To evaluate cuRMVS, a similar test as used by Levison and Duncan [65] was performed.
In order to determine the accuracy of RMVS, they examined the change in the Jacobi
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constant of planet-crossing test particles in a three body system consisting of the particle,
the Sun and a planet with the mass of Jupiter on a circular, non-inclined orbit at 5.2 au.

5.2.2 Creating a set of particles frequently involved in close encounters
For the test, a set of test particles which undergo many close encounters is required. In order
to create this test set, 500 particles were generated where semi-major axis and eccentricity
of the particles were chosen such that their orbits crossing the orbit of Jupiter. Inclination
was set to values of less than 30° and the other elements were uniformly distributed over
the phase space. These particles were then integrated for 1 kyr in a system containing
Jupiter on a circular orbit around the Sun using cuRMVS. The time step was set to 1/10
yr and the Danby drift method was used for advancing the bodies on their orbits. During
the integration, the number of close encounters for each particle was monitored. The 10
particles having the highest number of close approaches within the Hill sphere of Jupiter
were selected for evaluating cuRMVS. Figure 5.4 shows the initial positions and orbits
of the particles chosen for testing. During 1 kyr of integration the particles penetrate
Jupiter’s Hill sphere between 7 and 22 times.
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Figure 5.4: Initial conditions for the test in heliocentric reference frame: 10 mass-less test
particles (orange) and the massive bodies Sun and Jupiter (black) in a circular restricted
three body problem. The particles are on Jupiter-crossing orbits and undergo 7 to 22 close
encounters during the 1 kyr integration.

5.2.3 Validating cuRMVS
To evaluate cuRMVS, runs of the original version of RMVS in SWIFT (swift_rmvs4) and
swifter (swifter_rmvs) and the newly implemented version in cuSwift were performed and
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compared. Further, cuRMVS runs with the different drift methods on the CPU and a
GPU run employing the Prussing drift method and FMA were tested as well. In order to
compare the different runs, the relative change in the Jacobi constant for each particle was
plotted and compared. Each plot contains the results of two runs, plotted on top of each
other so that it is easy to see where the value of 𝐶𝐽 starts to diverge. There are rather
large excursions of the Jacobi constant during close encounters which are not shown in the
plots. However, after the encounter, the Jacobi constant always reaches similar values as
before [65].

When using the Danby drift method, the CPU version of cuRMVS exactly reproduces
the results of swifter_rmvs. Hence, comparison for this case is obsolete. To evaluate the
differences between cuRMVS and swift_rmvs4, a run of swift_rmvs4 was compared with
a run of the CPU version of cuRMVS using the Danby drift method, which also serves
as a reference run for the remaining tests. Then, in order to validate the different drift
methods, a CPU run employing the Prussing drift was compared with the reference run.
Finally, to evaluate the fully optimized GPU implementation, a run on the GPU using the
Prussing drift and FMA was compared with the reference run.

Conclusions
Figure 5.5 shows the fractional error in the Jacobi constant for the particles using the
original implementation of RMVS in SWIFT and the CPU version of cuSwift. Due to
slight differences in the way the terms for computing the accelerations of the encountering
particles are evaluated in both implementations, the results of cuRMVS (and swifter_rmvs)
are not exactly the same as the results obtained with swift_rmvs4. However, according to
the plot, the two implementations produce very similar results. For the first ≈ 400 years,
there is no noticeable difference between the two runs. Then, the Jacobi constant for some
of the particles starts to diverge but no significant deviations can be observed. For some
Particles, the Jacobi constant is the same for both versions over the whole run. This shows
that both implementations do not produce identical but very similar results. Thus, the
different implementations can be considered equivalent.

Figure 5.6 shows the fractional error in the Jacobi constant for the 10 test particles when
employing the different drift methods on the CPU. The particles taken for testing are on
very eccentric orbits. Further, when a particle penetrates a planets Hill region, it is stepped
on an orbit around the encountered planet rather than an orbit around the Sun, which
results in an hyperbolic orbit. This means that in contrast to the test evaluating cuWHM,
this test also compares the different subroutines for highly eccentric and hyperbolic orbits
in the Danby drift method with the Prussing drift, which uses the same procedure for all
forms of Kepler orbits. Again, both runs are indistinguishable for the first ≈ 400 years and
then start to diverge. However, no significant outliers can be seen which implies that the
Jacobi constant is conserved to a similar degree for the different drift methods and thus,
both methods are equivalent, even for highly eccentric and hyperbolic orbits.

Finally, a run on the GPU using the Prussing drift and FMA was compared to the
reference run. As can be seen in Figure 5.7, this run produced very similar results as
well. This shows that the errors arising form the numerical differences of the mathematical
functions on the GPU do not lead to less accurate results.



5.2 Test setup for RMVS 59

(C
J-

C
J 0

)/C
J 0

Time [yr]

swift_rmvs4
swifter_rmvs, cuRMVS

-1.0e-3

-8.0e-4

-6.0e-4

-4.0e-4

-2.0e-4

0.0e+0

2.0e-4

4.0e-4

6.0e-4

8.0e-4

1.0e-3

 0  200  400  600  800  1000

Figure 5.5: Fractional error in the Jacobi constant for each particle during 1 kyr of integration
using cuRMVS with the Danby drift method and swift_rmvs4.

These tests show that even though it is not possible to exactly reproduce results achieved
with swift_rmvs4, there are only minor differences between the tested implementations.
For all runs, the fractional error in the Jacobi constant is nearly the same.
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Figure 5.6: Same as Figure 5.5 but comparing the different drift methods on the CPU.
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Figure 5.7: Same as Figure 5.5 but comparing the different computing platforms and
optimizations.
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5.3 Test setup for the Yarkovsky effect
For testing the implementation of the Yarkovsky effect, the following test setup was
considered: Bodies of different sizes, thermal and rotational properties on circular orbits
around the Sun with a semi-major axis of 2.25 au were integrated over 1 Myr using WHM
plus the Yarkovsky effect with a time step of 1/100 yr. The change in semi-major axis
was monitored and compared to the implementation of the Yarkovsky effect in SWIFT by
Brož [12]. To exclude secular perturbation effects from the other planets which would alter
the orbits of the particles and superimpose the Yarkovsky effect, no planets were included
in the integrations.

The physical properties of the particles were chosen by analogy with those in Farinella
and Vokrouhlický [41] who studied the influence of the Yarkovsky effect on asteroidal
fragments. The results presented here however, differ from the those by Farinella and
Vokrouhlický because they also included the effect of random reorientation of the bodys’
spin axes due to collisions and integrated the particles over longer time scales. The spin
axis was varied from 0° to 90° obliquity (𝛾) in 22.5° steps and the spin period (in seconds)
was set to 5 times the bodys’ radius (in meters). Thermal emissivity (𝜀) and Bond albedo
were set to 0.9 and 0.05, respectively. For the material on the object’s surface, a density
of 1.3 g/cm3 was assumed. The thermal properties were chosen such that they resemble
4 different types of objects: 3 stone-like asteroids differing in thermal conductivity only
and a metal-rich class of higher density objects. The stone-like asteroids were given a
bulk density (𝜌𝑏𝑢𝑙𝑘) of 2.5 g/cm3 . The specific heat capacity (𝐶) of the surface material
was set to 680 J/(kg K) and the thermal conductivity (𝑘) was varied from 0.0015 to 0.015
W/(m K) . For the metal-rich objects, 𝜌𝑏𝑢𝑙𝑘 = 8.0 g/cm3 , 𝐶 = 500 J/(kg K) and 𝑘 = 40
W/(m K) was assumed.

5.3.1 Validating the Yarkovsky effect
As the Yarkovsky effect in cuSwift is implemented in the same way as in
swift_mvs2_fp_ye_yorp by Brož, accuracy can be verified by comparing runs of the
different integrators using the same initial conditions and parameters for the Yarkovsky
effect. However, because Brož improved the WHM integration scheme in order to allow
larger time steps and because several calculations in Brož’ Yarkovsky force routines use
single-precision by default, the results of swift_mvs2_fp_ye_yorp and cuSwift differ.
In order to have a reference implementation against cuSwift can be tested, the code by
Brož was modified such that the integrator uses the default WHM integration scheme.
Further, variables declared as single-precision were changed to double-precision and the
(-fdefault-real-8) gfortran option was set in the makefile. This ensures that constant
expressions which are not explicitly marked as double-precision values and would thus be
evaluated in single-precision are promoted to double-precision by default.

Conclusions
Figure 5.8 shows how the Yarkovsky effect changes the semi-major axis of the particles
according to the reference implementation. Except for the metal-rich objects, smaller
objects are more affected. The diurnal component of the effect dominates the low 𝑘 cases
while the seasonal component is more important for mid-sized metal-rich objects. For
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Figure 5.8: Change in semi-major axis caused by the Yarkovsky effect after 1 Myr of
integration for different physical properties and obliquities using the modified version of swift
by Miroslav Brož. The metal and high 𝑘 types are more affected by the seasonal component
while for the low 𝑘 stony objects the diurnal component is dominant.

prograde rotators, the diurnal component leads to an increased semi-major axis while it
causes retrograde rotators to spiral inwards. For the small metal-rich bodies, the seasonal
effect vanishes as the seasonal thermal wave completely penetrates the objects, which leads
to the heat being more evenly distributed over the whole surface and thus, temperature
differences are vanishing. As expected, objects with large obliquities are also dominated
by the seasonal component. In general, the metal-rich asteroids are, due to their high
bulk density, affected to a smaller degree. For objects having a radius larger than 10 km,
the effect is not measurable over the integration interval. Overall, the results are in good
agreement with the approximations by Brož [13] and Bottke et al. [9].

The same experiment carried out with the CPU version of cuWHM plus the Yarkovsky
force yields almost exactly the same results. For particles having a radius of 10 m or more,
there is no difference between cuWHM and the reference implementation. For smaller
particles, the relative error does not exceed 1%. This means that the changes to the
Yarkovsky routines introduced with cuSwift do not significantly affect the results.

Compared to the method used for orbital integration, the routines for evaluating the
Yarkovsky force make rather heavy use of mathematical functions whose GPU implementa-
tions do not fully comply to their CPU versions (see table 5.1). This causes the results
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obtained with CPU and GPU implementation to differ from each other. However, when
comparing the GPU version to the reference implementation, it turned out that only
high obliquity particles of 1 m radius or smaller are affected. The relative error for those
particles is less than 2%.
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Figure 5.9: Same as Figure 5.8 but using the original implementation by Brož. Due to
precision issues (see text) the seasonal component of the effect seems to be overestimated for
smaller objects causing these bodies to drift inwards.

When comparing cuWHM with the original version by Brož (figure 5.9), some differences
are visible: In the original implementation, the seasonal component seems to have a greater
influence on the smaller objects. The differences can even better be perceived in Figure 5.10,
where the relative error compared to the reference implementation is plotted. Especially
for small objects, the seasonal component of the Yarkovsky effect should vanish, as the
seasonal thermal wave fully penetrates the body. Depending on the thermal conductivity
𝑘, at 2.25 au, the seasonal thermal wave would penetrate 4 m into a high 𝑘 basaltic (bare
rock) object and 0.6 m into a low 𝑘 regolith covered body [13]. For metal-rich objects which
have 𝑘 values orders of magnitudes higher than the penetration depth would be even larger.
This results in objects smaller than 1 m in radius should not be affected by the seasonal
component as the seasonal wave heats up the whole body. The modified implementation by
Brož and cuSwift comply with this assumption while the original implementation (figure
5.9) does not. The largest discrepancies between the two implementations occur for the
90° obliquity metal-like objects whose results differ from the reference implementation
by up a factor of 30. For the stone-like objects, the relative error is about 2 for the high
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obliquity small particles. To examine the reason for these rather large differences between
swift_mvs2_fp_ye_yorp and the reference implementation, additional tests have been
performed.
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Figure 5.10: Relative error of the change in semi-mayor axis of the original implementation.
In general, smaller objects are more affected. For the stone-like objects, the error grows up
to a factor of two for objects smaller than 10 m in radius. For the 90° obliquity metal-like
objects the relative error becomes as large as 30.

In the integration scheme used in swift_mvs2_fp_ye_yorp, the acceleration due to the
Yarkovsky force is evaluated three times per time step while for WHM the acceleration is
evaluated only once each time step. In order to determine if the error of swift_mvs2_fp_-
ye_yorp is caused by round-off errors due to more calls of the Yarkovsky subroutines, the
step size for MVS2 was increased by a factor of three. When switching off the Yarkovsky
effect and using only the orbital integrators, the results are exactly the same for WHM
and MVS2, even though the step size for MVS2 was tree times larger than for WHM.
The increased step size for the MVS2 integrator results in the number of Yarkovsky force
calculations over the integration interval is the same as for WHM. When enabling the
Yarkovsky force, the error of swift_mvs2_fp_ye_yorp was still the same as when using
the smaller time step, which means that the difference between swift_mvs2_fp_ye_yorp
and cuWHM must be caused by something else.

As already explained, the Yarkovsky routines in swift_mvs2_fp_ye_yorp are partially
employing single-precision arithmetic. This is caused by constant expressions in the code
which are not explicitly marked as double-precision and thus are by default evaluated
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in single-precision only when compiling with the gfortran compiler. Additionally, there
are variables for complex numbers which are explicitly declared in single-precision. After
changing the makefile to promote constant expression to double-precision by default and
changing the declaration of the complex numbers to double-precision, the results produced
swift_mvs2_fp_ye_yorp and the reference implementation are identical. According to this
test, in swift_mvs2_fp_ye_yorp, the seasonal component is rather heavily overestimated.
When using the original version, it is recommended to change the code such that all
calculations are performed in double precision.

5.4 Performance
The main goal of this work was to exploit the computing power of modern GPUs to
significantly decrease the calculation times needed for modelling the long-term orbital
evolution for minor bodies in the solar system. This section is intended to determine how
much faster the newly implemented versions are, compared to the original. Therefore,
runs using the same initial conditions and covering the same integration time interval with
SWIFT and cuSwift have been carried out. The computer which was used for the test was
equipped with an Intel Core i7-4930K CPU and a Nvidia GeForce GTX Titan Black GPU
(see Section 3.3.1). The ratio between the execution time needed to cover a certain interval
of integration time by the integration methods in SWIFT and cuSwift, also called speedup,
is used as a measure to compare the different implementations and computing platforms.
It is important to note that this is somewhat unfair, as pointed out by Lee et al. [63].
They studied several numerical methods which have been ported to the GPU and found
that while the authors of the GPU implementation claimed a speedup of several orders of
magnitudes over the CPU, after applying optimizations needed to fully utilize the compute
capabilities of modern CPUs, the actual speedup decreases to an average value of only 2.5.
SWIFT was developed during the 90s and thus is not optimized for modern CPUs which
means that comparing the execution time needed for certain experiment by SWIFT on an
up to date CPU with the execution time for the same experiment needed by cuSwift on
the GPU does not tell much about the difference in computing power of CPU and GPU.
However, the comparison is still relevant as the original implementation is actually used on
modern CPUs. To better understand how much faster the GPU performs over the CPU,
the parallel CPU version of cuSwift was also compared with the GPU implementation.

5.4.1 Test setup
A typical application for the integrators in cuSwift is to study the orbital evolution of minor
bodies located close to or inside orbital resonances which are destabilizing their orbits. The
results of these dynamical processes can easily be seen when looking at the distribution
of asteroids in the main asteroid belt. Figure 5.11 shows the number of asteroids as a
function of semi-major axis per 5 · 10−4 au bin. Rather than being uniformly distributed,
the main belt shows dips which are also known as Kirkwood gaps and which are related
to mean motion resonances with Jupiter [114]. The strongest resonances are highlighted
in the plot. Jupiter causes the eccentricity of asteroids, located in one of the resonances,
to increase such that their orbits are crossing those of the planets which leads to close
encounters and eventually to the ejection of the asteroids from the resonance region [79].
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Figure 5.11: Number of asteroids in the main asteroid belt as a function of semi-major axis
in 5 · 10−4 au bins. The gaps can be related to mean motion resonances with Jupiter of which
the strongest resonances are highlighted in the plot.

While the 4 Asteroid : 1 Jupiter (4A:1J) and 2A:1J mean motion resonances are marking
the inner and outer boundary of the main asteroid belt, the 3A:1J resonance is the most
effective resonance in destabilizing asteroids within the belt. The eccentricities for asteroids
in or close to the 3A:1J resonance can suddenly increase to values up to 0.8 within only a
few Myr [113] [121] which means that they do not only cross the orbit of Mars but also the
orbits of Earth and Venus. Encounters within the RMVS extended Hill sphere of Jupiter
can also occur.

To get a set of initial conditions for determining the speedup of cuSwift, the following
scenario was considered: Semi-major axis (2.502 au), eccentricity (0.1366) and inclination
(2.501°) of asteroid (27405) Danielfeeny, which is located inside the 3A:1J resonance,
were chosen to create 32768 clones by setting the remaining orbital elements randomly
distributed between 0 and 360°. The clones were then integrated with cuRMVS in a system
of all planets form Earth to Neptune for 20 Myr using a step size of 1/100 yr. Because the
particles were started right in the center of the resonance and their orbits were already
slightly eccentric, they should encounter the inner planets very quickly. Figure 5.12 shows
how semi-major axis and eccentricity of one of the particles develops with time. After
about 200 kyr, the eccentricity reaches values large enough to cross the orbit of Mars and
after 500 kyr encounters with Earth are possible. Due to a series of encounters with Earth
and Mars, the semi-major axis for the particle is decreased. Eventually, it impacted Mars
after 747 kyr.

While the WHM integrator, which does not resolve close encounters, will need more or
less the same computation time for each time step, the RMVS method will slow down the
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Figure 5.12: Semi-major axis and eccentricity for one of the particles used for this test. The
eccentricity increases with time causing encounters with the inner planets. After 757 kyr the
particle impacted on Mars.

more encounters are occurring per time step as close encounter resolution introduces extra
work. To determine the performance of cuWHM and cuRMVS, 1 kyr of the computationally
most demanding part (for the RMVS integrator) out of the 20 Myr run was selected, that is
where the most encounters occur. In order to identify this part, a histogram of the number
of encounters during the first 5 Myr (figure 5.13) was created. Positions and velocities
from the bin with the most encounters (between 757 and 758 kyr) were extracted and used
as initial conditions for the shorter 1 kyr run, which is then used to compare the execution
times of cuSwift and SWIFT. The histogram only shows encounters occurring within the
planets Hill spheres, as, due to memory and performance issues, cuRMVS only saves deep
encounters and not those occurring in the extended Hill region. The total number of close
encounters between 757 and 758 kyr, including the ones within the extended encounter
region, was 4,676,460 which corresponds to an average number of 47 encounters per time
step. Recording every encounter from the entire 20 Myr run would need several TB of disk
space. Also, computations would dramatically slow down due to many disc accesses, which
would be needed to write the data for each encounter.

Figure 5.13 also shows the CPU utilization during the integration. Note that 12 logical
cores are available on the i7-4930K which means that a usage of 1200% corresponds to the
CPU is fully utilized. The parameters for close encounter handling were set such that at
least 15 encounters are stepped per CPU core (see Section 4.1.2). This means that during
the time where the most encounters are occurring, 3 cores are used in average, resulting in
a maximum CPU usage of ≈ 270%. As one core is used to integrate the planet positions,
perform memory transfers between host and device and kernel execution, the CPU usage



68 Chapter 5 Validation and Benchmarking

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

0 1 2 3 4 5
 0

 50

 100

 150

 200

 250

 300

N
um

be
r o

f e
nc

ou
nt

er
s

C
P

U
 u

til
iz

at
ui

on
 [%

]

Time [Myr]

Number of close encounters per 1 kyr bin
CPU utilization

Figure 5.13: Number of close encounters during the first 5 Myr of integration in 1 kyr bins.
The maximum number of close encounters occurred between 757 and 758 kyr. At this point
the CPU usage was about 270% which means that 3 CPU cores were utilized.

never drops below 100%.
Already during the first 757 kyr of integration, several thousand particles were discarded.

To create larger numbers of particles which are needed for the test, particles were randomly
selected from those leftover after 757 kyr until a sufficient number was reached. For the
integrations performed to determine the speedup between SWIFT and cuSwift, a time step
of 1/100 yr was used. This results in 105 time steps to cover 1 kyr of integration time.

5.4.2 Speedup
WHM
The left panel of Figure 5.14 shows the calculation time needed for 1 kyr of integration as a
function of the number of particles in the simulation for WHM in SWIFT (swift_mvs) and
for different runs of cuWHM. The CPU runs show almost perfect linear behavior. If the
number of particles is doubled, the execution time increases by a factor of two. The graph
of the GPU run differs from the others. Execution time almost does not increase up to
4096 particles. For the first three data points, the relative growth in execution time is less
than 10%, although the number of particles increases by a factor of 4. When more particles
are included in the simulations, the slope of the curve gets steeper but does not reach a
value of 2. The ratio of execution times needed for integrating 131072 and 65536 particles
is 1.83. This can be explained by the GPU is not fully utilized when small numbers of
particles are integrated. The GK110 chip has 2880 cores and can simultaneously run 30720
threads and as memory latency can be hidden more effectively using even more threads,
the slope slowly converges to the value of 2 the more particles are involved.
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Figure 5.14: Left panel: Execution times for 1 kyr of integration with swift_mvs and cuWHM
as a function of the number of particles integrated. The CPU runs show almost perfect linear
behavior except the multi-core run. Execution time on the GPU almost does not change
for small nubers of particles due to poor utilization. Right panel: Speedup of cuWHM over
swift_mvs. Using one CPU core, cuWHM is slightly faster than swift_mvs. A speedup up to
9.5 is achieved using all cores. The GPU version performs up to 8 times better than the multi
core version and up to 56 times better than swift_mvs for large numbers of particles.

An interesting feature can be seen for the multi-core CPU run of cuWHM: for 131072
particles, the slope gets steeper. A reason for this might be that the amount of data for the
particles becomes so large that it can not be kept in the CPU cache while integrating and
thus must be swapped to the RAM, introducing latency. The data needed for integrating a
single particle is 185 bytes. Some of the data needs to be processed several times each time
step. The run for 65336 particles consumes 11.6 MB and thus almost completely fills the
12 MB of last-level cache (LLC) available on the i7-4930K. For larger number of particles,
memory must be swapped between CPU and RAM. To verify this hypothesis, the number
of LLC loads and load-misses for a 100 yr run using the same initial conditions as for the
speedup integrations has been monitored. A LLC-load-miss corresponds to an unsuccessful
LLC access due to the requested data was swapped to the RAM. This means that each
LLC-load-miss causes a memory transaction between RAM and CPU. Figure 5.15 shows
the number of LLC-loads and LLC-load-misses as well as the ratio of misses per loads as a
function of the number of particles for the single-core and multi-core version of cuWHM.
Even small numbers of particles cause LCC-load-misses. This can be explained by although
the computer was not used for any other task while performing the test, the CPU also
needs to serve other processes while the integrator is running. This means that cuWHM
can not consume the whole cache and thus, data needs to be swapped to the RAM even for
runs using 65336 or fewer particles. When comparing the single-core with the multi-core
runs it can be seen that for both versions the ratio of LLC-load-misses and the number
total LLC-loads is similar. However, as the multi-core version runs about 10 times faster,
it also demands higher memory bandwidth. This means means that the reason why the
execution time for the multi-core version does not grow linear for runs including 65536 or
more particles is that the memory bandwidth between CPU and RAM is insufficient to
provide all cores with as fast as they would need it. The computer used for this work was
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equipped with RAM supporting only 1600 MHz front side bus (FSB) clock speed. As the
i7-4930K supports up to 1866 MHz FSB clock speed, the number of load-misses might have
a weaker impact when using faster memory. Processors equipped with larger LCC would
be capable to integrate more particles without suffering from limited memory bandwidth.
However, the problem will still be present for runs using even larger numbers of particles.
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Figure 5.15: Number of LLC-loads and LLC-load-misses as well as the ratio between load-
misses and loads after 100 yr of integration for the single-core (left panel) and multi-core
(right panel) version of cuWHM. Growing numbers of load-misses cause non linear growth of
execution time for large large number of particles.

When looking at the speedup of cuWHM over swift_mvs (figure 5.14, right panel) it can
be seen that the newly implemented method using only a single CPU core beats the original
implementation but is still comparable in speed. Using all available CPU cores, a speedup
of almost a factor of 10 is achieved. For large numbers of particles the speedup decreases
due to the previously described memory latency issues. The GPU version performs worse
than the multi-core CPU version when using small numbers of particles but is 8 times faster
when using 131072 particles. When comparing the GPU version of cuWHM to swift_mvs,
a speedup of more than 50 is reached for large numbers of particles.

RMVS
When performing the same experiment with RMVS (figure 5.16), it can be seen how close
encounter handling slows down the simulation. For the same interval of integration time,
the execution time of swift_rmvs4 increases of about a factor of 3, compared to swift_mvs.
However, the execution times of cuRMVS on the CPU are less affected by close encounter
handling. The relative growth in execution time of the single-core run and the multi-core
run of cuRMVS and cuWHM is about 1.4 and 1.7, respectively. This suggests that the
routines for processing the close encounters in cuRMVS are better implemented than in
swift_rmvs4. The GPU version of cuRMVS is almost as fast as cuWHM on the GPU.
For numbers of particles larger than 16384, the execution time is only 1.2 times longer
for cuRMVS than for cuWHM. That is because close encounter processing in cuRMVS is
performed in parallel on the CPU while the particles not involved in close encounters are
stepped on the GPU (see section 4.1.2) and results in almost no extra time is needed for
close encounter handling.
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Figure 5.16: Left panel: Execution times of swift_rmvs4 and different runs of cuRMVS
as a function of the number of particles integrated. Right panel: Speedup of cuRMVS over
swift_rmvs4. Using one CPU core cuRMVS is up to 3 times faster than swift_rmvs4. A
speedup of up to 20 is achieved using all cores. The GPU version performs up to 10 times
better than the multi core version and 150 times better than swift_rmvs4 for large numbers of
particles.

Figure 5.17 shows the CPU and GPU calculation as well as the memory transfer time-line
for one time step out of the 65536 particles cuRMVS run. During this particular time step,
100 particles were involved in close encounters. Downloading the encountering particles
to the CPU, close encounter handling and uploading the new positions, velocities and
accelerations of the particles to the GPU is done in parallel while the particles not involved
in close encounters are stepped on the GPU. The encounters were processed using 6 out of
12 available CPU threads which means that there are still reserves for processing more
encounters on the CPU. Further, as, close encounter handling takes only about half the
time the GPU needs for stepping the other particles, the execution time would not increase
even when more encounters than in this test need to be resolved.

Figure 5.17: CPU and GPU time line for a single time step integrating 65536 particles. Close
encounter handling is performed on the CPU in parallel to stepping the other particles on the
GPU.

Due to parallel processing of encountering and non-encountering particles the speedup of
the GPU version of cuRMVS over swift_rmvs4 is significantly higher than that of cuWHM
over swift_mvs. Between the multi-core version and the GPU version almost a factor of
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10 is reached. Compared to swift_rmvs4, the GPU version of cuRMVS runs up to 150
times faster.

The test setup was chosen such that many encounters per time step occurred and thus
marks an upper limit for the speedup which can be achieved with cuRMVS. The speedup
over swift_rmvs4 will drop if fewer encounters are occurring. Depending on the application,
the actual speedup of cuRMVS over swift_rmvs4 will be at least as high as the speedup of
cuWHM over swift_mvs.

Conclusions
The test performed in this section clearly demonstrates that the newly implemented versions
of WHM and RMVS in cuSwift are significantly faster than the reference implementation
in SWIFT. To integrate the same number of particles with SWIFT in the same amount of
time needed by the GPU version of cuSwift, the particles would need to be split into 50
to 150 chunks and integrations would need to be executed as separate tasks on a single
processor core each. For large numbers of particles, up to 25 i7-4930K CPUs would be
needed in order to achieve calculation times for SWIFT similar to those obtained with
cuSwift on the GeForce GTX Titan Black. However, the disadvantage of splitting the
integrations in several sub-processes is that integrating the planets is performed by each
process. As during the integrations many particles may be discarded, the ratio of active
particles and planets for each individual task decreases with time, which means that the
computational overhead, arising from each process needs to integrate the planets, increases,
making the over-all process less efficient.

When comparing the CPU version of cuSwift with the GPU version, the advantage of
the GPU is considerably less. But still, the Titan Black outperforms the i7-4930K by up
to a factor of 10. This factor may reduce when further optimizations like using the Intel
Advanced Vector Extensions (AVX), which utilize special SIMD registers located on each
CPU core, are applied. However, only runs using up to 65536 particles would benefit from
these optimizations as for large numbers of particles, the memory bandwidth available on
the CPU places constraints to the upper limit of the speedup which can be achieved. On
the other hand, the CPU implementation runs faster for smaller numbers of particles as
the GPU can only be fully utilized when large numbers of particles are considered. For
the hardware used in this work, the GPU surpasses the CPU when more than about 3k
particles are integrated. This number varies, depending on the hardware which is used. To
determine which device should be used to perform a certain experiment, tests should be
carried out in advance in order to find the faster device for the particular experiment and
hardware.

The results from this test can also be used to estimate the time needed for longer
integrations: For example, a 1 Gyr cuWHM run of 65336 particles using a time step of
1/10 yr would need abut 55 days on a GeForce GTX Titan Black. Also comparisons with
science experiments actually performed can be made: To model the orbital distribution of
Near-Earth Objects, Greenstreet et al. [48] performed integrations of about 62000 particles,
initially located in unstable regions in the inner solar system. They used swift_rmvs4
with a time step of only 4 h to follow the particles until more than 99% of those having a
perihelion distance of smaller than 1.3 au were discarded. The total integration time was
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200 Myr which corresponded to as much as 300 core years of computation time using the
fastest core available in 2009 [48]. As the 20 Myr run, used for setting up the benchmark for
cuSwift, is very similar to the integrations performed by Greenstreet et al., it can be used
to estimate the calculation time cuRMVS would need for performing the same experiment.
Integrating 32768 particles for 20 Myr with cuRMVS took about 3.5 days. During the
simulation, 97% of the particles were discarded. Compared to this run, Greenstreet et al.
used 2 times as many particles and integrated them over an interval 10 times longer with a
time step about 20 times shorter. This means that performing the same experiment with
cuRMVS would take about 3.8 years on a single GeForce GTX Titan Black — certainly
to long to use a single GPU only but still almost 80 times shorter than the fastest core
available in 2009.





CHAPTER 6
Impact of the Yarkovsky effect on the Jupiter Trojan Asteroids

This chapter describes the first scientific experiment carried out with cuSwift. It is designed
to study the effect of the Yarkovsky force on the Jupiter Trojan asteroids. The purpose of
the experiment is to find out if and how the Yarkovsky effect influences long-term stability
of the Jupiter Trojan asteroids. First, an introduction to the subjects of interest is given.
Then the setup for the experiments is explained and finally the results are presented and
discussed.

6.1 Jupiter’s Trojan asteroids
Jupiter shares its orbit with a large number of asteroids which populate the regions around
the L4 and L5 Lagrangian points in the Sun-Jupiter system (see Figure 6.1). These asteroids
are in a 1:1 mean motion resonance with Jupiter and have similar orbital elements as the
gas giant. The first of them, (588) Achilles, was discovered by Max Wolf in 1906. During
the following years, more objects in the vicinity of the L4 and L5 Lagrangian points were
found and Johann Palisa, who carried out many observations of these asteroids to better
constrain their orbits, suggested to name those around L4 after Greek heroes while those
around L5 should be named after heroes of Troy [89]. More recently, asteroids were also
detected on the Lagrangian points of Mars [43], Earth [23] Uranus [1] and Neptune [101]
which led to the term Trojan asteroid became a more general synonym for minor bodies in
the 1:1 mean motion resonance with a planet. Even though five Lagrangian points exist
the three-body problem, only L4 and L5 provide long-term stability. Up until now, Jupiter
is the planet with the largest known population of Trojan asteroids. As of October 2017,
the Minor Planet Center lists 6704 Trojans for Jupiter, 17 for Neptune, nine for Mars and
one for Earth and Uranus, respectively. No Trojan asteroids have been discovered on the
orbit of Saturn so far. While studies suggest that there are approximately as many Jupiter
Trojans as main belt asteroids [119], it is not expected for the terrestrial planets to possess
a large number of Trojans because the extent of the region around around their L4 and L5
Lagrangian points providing orbital stability is rather small. Also for Saturn and Uranus,
only a few Trojans are expected as their L4 and L5 Lagrangian points are perturbed by
secular resonances with the other giant planets and thus do not provide long-term stability
[55][4]. Neptune, on the other hand, although not many have been detected so far, may
host a very large population of Trojans [87] which might even outnumber the Jupiter
Trojans.

It is still unclear how these objects were emplaced into their current orbits. Because
planets clear their neighborhood during formation, it was not expected to find such large
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Figure 6.1: Positions of all known numbered and multi-opposition Jupiter Trojans in the
heliocentric reference frame at epoch 2460816.5 JD. The leading swarm (around L4) contains
about twice as many objects than the trailing swarm (around L5).

numbers of asteroids sharing a 1:1 mean motion resonance with Jupiter. It is also excluded
that asteroids migrate to the Lagrangian points for example by the help of gas drag or
collisions and get trapped in the resonance, producing a distribution of Trojans which
matches the one currently observed [83]. Another peculiarity of the Jupiter Trojans is that
both swarms differ in numbers. As of October 2017, the Minor Planet Center lists 4271
objects in the leading (around L4) but only 2433 in the trailing cloud (around L5). It is
confirmed that this asymmetry is not only due to an observational bias. The ratio between
L4 and L5 Trojans should lie between 1.2 and 1.8 [88].

Many analytic and numerical studies were carried out to shed light on the mysteries of the
Jupiter Trojans. It was found that a large part of the currently known population is indeed
stable over the age of the solar system [39] and detailed maps describing the stable regions
around the Lagrangian points have been created [66] [106]. Although gravitational stability
should be similar for both Lagrangian points [71], it was recently found in long-term
integrations of the known Trojan population that the escape rate after 4.5 Gyr for L4
Trojans is about 23% while it is about 28.3% for the L5 swarm[32]. However, the difference
in escape rate alone can not explain the asymmetry in the Trojan clouds which is observed
today. A currently widely accepted explanation for the origin of Jupiter Trojans is that
they were already present in their current orbits by the time the gas giants formed and were
captured in resonance with Jupiter as it migrated to its current orbit [88]. This scenario is
consistent with the famous Nice model [105] which describes the orbital evolution of the
planets at the time of the early solar system. According to the Nice model, the migration
of Jupiter took place rather quickly. The process of capturing the Jupiter Trojans is
therefore also referred to as jump capture. The scenario describes the asymmetry between
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L4 and L5 by an additional ice giant which, due to several close encounters with Jupiter,
was eventually ejected from the solar system. During this phase of orbital chaos, the
hypothetical ice giant may also have moved through one of the Trojan clouds wiping out a
large number of objects.

Only very little is known about the physical properties of the Jupiter Trojans. Using
infrared observations carried out with the Wide-field Infrared Survey Explorer (WISE)
space telescope, a low mean geometric albedo of 0.07±0.03 was determined for a sample
of about 3000 objects [45]. Densities are known for two Jupiter Trojans only, namely for
(624) Hektor and (617) Patroclus. Both objects are binaries, which allows a determination
of mass and density by studying their mutual orbital configuration and size which can be
derived for example from adaptive optics or radar observations. For (617) Patroclus, several
studies report low bulk densities of values ranging from 0.8 g/cm3 [69] to 1.3 g/cm3 [75]
with 0.88 g/cm3 [14] being the most recent result. Densities found for (624) Hektor vary
from 1.0 g/cm3 [68] to 2.48 g/cm3 [61]. Thermal properties are known for a few objects
only. In general, it is expected that Jupiter Trojans have very low thermal inertia of about
5 J/(K m2 s1/2) [34]. Using thermophysical modelling from infrared observation data, a
thermal inertia of 6 J/(K m2 s1/2) has been determined for (624) Hektor [51] while for
(1173) Anchises a higher value in the range of 25 to 100 J/(K m2 s1/2) was reported [54]. By
examining temperature changes on the surface of (617) Patroclus during shadowing events
caused by its moon Menoetius, a thermal inertia of about 25 J/(K m2 s1/2) was determined
[85].

The stability regions around the L4 and L5 Lagrangian points of the Sun-Jupiter system
are well known. The main properties for determining the orbital stability of Jupiter Trojans
are their libration amplitude 𝐷 which defines the maximum excursion in mean longitude 𝜆

Figure 6.2: Residence time map for fictitious Jupiter Trojans having 0° inclination (modified
from Tsiganis et al. [106]) Each color level corresponds to an order of magnitude of residence
time in years. Open dots correspond to stable, closed dots to chaotic orbits of real Trojans.
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with respect to Jupiter [39]

𝜆 − 𝜆𝐽 = ±𝜋/3 + 𝐷 cos 𝜃 + O(𝐷2) (6.1)

as well as their eccentricity and inclination. In 6.1, 𝜃 is related to the phase of libration. For
L4 Trojans, the difference in mean longitude is positive while it is negative for L5 Trojans.
The most recent study characterizing the residence time of objects around the Lagrangian
points of Jupiter was done by Tsiganis et al. [106] in 2005. They used swift_mvs to
integrate a synthetic population of Jupiter Trojans for 1 Gyr and monitored the escape
time from the Lagrangian points as a function of libration amplitude, eccentricity and
inclination. Figure 6.2 shows the expected residence times for fictitious Jupiter Trojans
with 0° inclination computed by Tsiganis et al. In general, the residence time increases with
decreasing libration amplitude and eccentricity. Inclination affects the long-term behavior
to a lesser degree (see Figures 2-5 in Tsiganis et al. [106]).

6.2 Does the Yarkovsky force affect Jupiter Trojans?
As explained in the last section, many studies have been carried out to answer the questions
about the origin and dynamical evolution of Jupiter Trojans. However, none of those studies
incorporated the Yarkovsky effect. Some authors argue that due to the large heliocentric
distance of Jupiter Trojans, the Yarkovsky force is too small to remove them from the
stable region inside the resonance [119] [32]. Others concluded that at least for the smaller
bodies, the Yarkovsky force becomes important for their long-term orbital evolution [106]
[58]. This study is intended to answer the question as to whether the Yarkovsky force
affects Jupiter Trojans and whether it is able to significantly influence their orbits on time
scales of hundreds of Myr.

The first step to answer this question is to verify that the Yarkovsky force is strong

10-6

10-5

10-4

10-3

10-2

10-1

 0.01  0.1  1  10

Δ
a 

[a
u/

M
yr

]

Radius [km]

Diurnal component

ρbulk = 0.8 g/cm3, Γ = 10 J/(K m2 s1/2)
ρbulk = 0.8 g/cm3, Γ = 100 J/(K m2 s1/2)
ρbulk = 2.4 g/cm3, Γ = 10 J/(K m2 s1/2)
ρbulk = 2.4 g/cm3, Γ = 100 J/(K m2 s1/2)

10-7

10-6

10-5

10-4

10-3

10-2

 0.01  0.1  1  10

Δ
a 

[a
u/

M
yr

]

Radius [km]

Seasonal component

Figure 6.3: Upper bounds for semi-major axis drift rates dependent on the object radius for
bodies in the Trojan region caused by the two components of the Yarkovsky force.
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enough to produce a measurable effect on the Trojans at all. Using the physical properties
derived for Trojans, an estimation of the drift rate in semi-major axis due to the two
components of the Yarkovsky effect as a function of their size can be made [10]:(︂

d𝑎

d𝑡

)︂
𝑑𝑖𝑢𝑟𝑛𝑎𝑙

= −8𝛼

9
𝛷

𝑛
𝐹𝜔(𝑅′, 𝛩) cos 𝛾 + O(𝑒) (6.2)

and (︂
d𝑎

d𝑡

)︂
𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙

= 4𝛼

9
𝛷

𝑛
𝐹𝑛(𝑅′, 𝛩) sin2 𝛾 + O(𝑒). (6.3)

𝛼 is related to the body’s albedo as 𝛼 = 1 − 𝐴 with 𝐴 being a higher degree albedo,
which for a rough approximation can be set to the Bond albedo [108], 𝛾 is the obliquity
of the body’s spin axis and 𝛷 represents the radiation pressure coefficient for spherical
objects. The function 𝐹 (𝑅′,𝛩) is the same for both components of the Yarkovsky effect.
The subscripts 𝜔 and 𝑛 are corresponding to the diurnal and orbital frequency, respectively.
𝐹 depends on 𝑅′, the Radius, scaled by the penetration depth of the thermal wave and the
thermal parameter 𝛩 and both are further depending on the corresponding frequency of
the thermal wave (see Section 2.4). Orbital eccentricity (e) is neglected for this estimation.

Figure 6.3 shows how much the Yarkovsky force changes the semi-major axis of objects on
a circular orbit at a distance of 5.2 au from the sun over 1 Myr for different thermal inertia
and densities of the object. In order to get the largest possible drift rate, the obliquity for
the diurnal and seasonal component were set to 0° and 90°, respectively. Physical properties
of the objects were set to values expected for Jupiter Trojans. Because Trojans are assumed
to have low densities and low thermal inertia, the drift rates are comparable to those of
main belt objects. Assuming random obliquity, Bottke et al. [10] reported drift rates for
asteroids in the main belt of about 1 · 10−3 to 3 · 10−3 au/Myr. For Trojans, changes in
the semi-major axis have a strong influence on the libration amplitude. To quantify this
influence, the libration amplitude in mean longitude (𝐷, Equation 6.1) can be converted
to the libration in semi-major axis (𝑑)

𝑎 − 𝑎𝐽 = 𝑑 sin 𝜃 + O(𝑑2) (6.4)

using the approximation [39]

𝑑 =
√︀

3𝜇 𝑎𝑗𝐷 ≈ 0.2783𝐷 (6.5)

where 𝜇 is the ratio of Jupiter’s mass to the total mass of the system. According to
the estimation of the drift rates due to the diurnal Yarkovsky effect (Figure 6.3), after
100 Myr, the maximum displacement in semi-major axis of a 100 m, low density Trojan
is about 0.2 au. This would result in a change of libration amplitude of about 40° and
therefore would significantly influence the dynamical lifetime of that object. However,
gravitational interactions with Jupiter and the other planets also lead to secular changes
in the orbital elements which might counteract the Yarkovsky effect. Consequently, it is
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necessary to perform long-term orbit integrations in order to evaluate both, gravitationally
and Yarkovsky driven orbital evolution of the Trojans.

6.2.1 A Fictitious, long-lived population of Jupiter Trojans
In order to obtain a sufficiently large set of Jupiter Trojans with precisely known long-term
survivability, a synthetic population of 16384 Trojans was created for each Trojan cloud.
The limits for libration amplitude and eccentricity were chosen such that only orbits within
the region which ensures a residence time of at least 100 Myr were generated, that is, below
the red line in Figure 6.2. Inclination with respect to Jupiter was uniformly distributed
between 0 and 30°.

This fictitious population was then used for a first test run to determine whether the
Yarkovsky force does have an impact on the long-term orbital evolution of the Jupiter
Trojans at all. The objects were integrated for 100 Myr with and without considering the
Yarkovsky effect, with the rate of particles escaping the Trojan region being monitored for
each run. The integrations were performed with cuWHM using a time step of 1/10 yr with
all giant planets accounted for. Particles were considered as leaving the Trojan region and
discarded if their heliocentric distances became less than 3 au, exceeded 8 au or if they
approached Jupiter closer than twice the planet’s Hill radius.

Without considering the Yarkovsky effect

Even though according to the way in which the population was constructed all particles
should stay on Trojan orbits over the entire integration time span, during the 100 Myr of
integration, 2% (674) of the 32768 particles left the Trojan region. Several explanations
exist for this phenomenon. First of all, the residence time maps computed by Tsiganis et al.
are based on statistical experiments which are inherently underlying fluctuations. Moreover,
the libration amplitudes of the fictitious population were approximated by neglecting the
higher order terms of Equation 6.1 and an approximation (Equation 6.5) was used to
convert the libration in longitude (𝐷) to the libration in semi-major axis (𝑑) for creating
the fictitious population. Finally, the condition used here for a particle escaping the Trojan
region was a bit more restrictive than the one used by Tsiganis et al. They considered a
particle leaving the Trojan region only if its distance to Jupiter becomes less than two
Hill radii but did not use limits in heliocentric distance in order to examine also the high
eccentricity regime. However, as highly eccentric Trojan orbits are not long-lived and
would leave the Trojan cloud after a short period of time anyway, those particles can be
discarded for this experiment.

Figure 6.4 shows the initial values for eccentricity and inclination over libration amplitude
of all particles. The colored dots refer to particles which escaped from the Trojan region
during the 100 Myr of integration. As expected, orbits with a higher eccentricity are more
likely to be removed. Further, because the size of the region providing orbital stability tends
to decrease with growing inclination, most of the ejected particles have high inclinations.
The rate of escaping particles is about the same for both Lagrangian points (see left panel
of Figure 6.5).
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Figure 6.4: Initial conditions for the synthetic population of Jupiter Trojans. The gray dots
refer to particles which remain inside the Trojan region for 100 Myr of integration (without
considering the Yarkovsky effect) while the colored dots indicate ejected particles. Orbits
having higher eccentricities and inclinations are more likely to escape the Trojan clouds.

When considering the Yarkovsky effect

To see how the Yarkovsky force affects the long-term evolution of the fictitious population,
the objects were given thermal properties leading to a strong Yarkovsky effect but were still
within the range expected for Jupiter Trojans. The bulk density was set to 0.8 g/cm3 and
a low thermal inertia of 10 J/(K m2 s1/2) was chosen for the surface material. All objects
were 10 m in radius and, in order to have a strong diurnal component of the Yarkovsky
effect, their rotation periods were set to 150 s, about three times as long as can be assumed
for objects of this size [41]. The particle’s spin axis orientation was uniformly distributed
over the celestial sphere, resulting in an equal ratio of prograde and retrograde rotators.
Bolometric Bond albedo and infrared emissivity were set to 0.027 and 0.9, respectively [45].
Using these settings for the Yarkovsky effect, the orbits of the same fictitious population
as used for the non-Yarkovsky run were integrated for 100 Myr.

Compared to the non-Yarkovsky run, the number of escaping particles increased by a
factor of 1.7 (see left panel of Figure 6.5). The initial conditions of the escaped particles
in D-e-i space (right panel of Figure 6.5) reveal that, in contrast to the non-Yarkovsky
run, objects initially located deeper inside the region providing long lifetimes were also
affected. This means that the Yarkovsky effect acts as a transport mechanism driving
the particles to regions providing shorter residence times. Another interesting fact is that
inclination seems to be more affected than eccentricity. While the average eccentricity
of the ejected particles in both runs was 0.130, the average inclination decreased from
23.29° to 20.73° when incorporating the Yarkovsky effect.

This comparison clearly shows that the Yarkovsky effect can destabilize small Jupiter
Trojans and causes more of them to leave the Trojan region. However, size, rotational and
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Figure 6.5: Left panel: Cumulative number of particles escaping the Trojan region around
L4 and L5 over 100 Myr of integration with and without considering the Yarkovsky effect.
Right panel: Same as Figure 6.4 for the Yarkovsky run. Compared to the non-Yarkovsky run,
particles initially located deeper inside the resonance region were also affected.

physical properties of the particles in this first run were intentionally chosen such that they
resulted in a very strong Yarkovsky force. To see how the effect acts on the real Trojans, a
more realistic setup needed to be considered.

6.2.2 A more realistic population
After it was verified that the Yarkovsky effect can indeed influence Trojan orbits, the real
population of Jupiter Trojans was studied. However, the population of currently known
objects would be an insufficient sample for this experiment. Also, for some objects only very
few observations from a single opposition are available, which means that their orbits may
not be known with sufficient accuracy. Therefore, when investigating long-term evolution,
only the orbital elements of the numbered and unnumbered multi-opposition Trojans
should be used, which makes the set of available orbits even smaller. In order to create
a sufficiently large sample of objects for each cloud, the orbits of the currently observed
Trojans were cloned by varying the orbital elements. Because especially for Trojans, the
niches in orbital elements space which provide long-term stability are very narrow, it has
to be ensured that cloning does not change the orbits long-term dynamical behavior. On
that account, the variations in orbital elements for each clone were computed based on the
accuracy of the astrometric positions from which the orbit of the real object is calculated.
Each individual observation contains an error which then propagates into uncertainties in
the resulting orbit. These uncertainties are published in form of a covariance matrix for
each asteroid on the AstDyS website1. Using that covariance matrix, the uncertainty Δq
in the orbital elements vector q can be expressed as

Δq =
6∑

i=1
ξi

√
λiXi, (6.6)

1 http://hamilton.dm.unipi.it/astdys2/index.php?pc=4

http://hamilton.dm.unipi.it/astdys2/index.php?pc=4
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where 𝜉𝑖 are Gaussian distributed random numbers with a standard deviation of unity
and zero mean, 𝜆𝑖 are the eigenvalues of the covariance matrix and X𝑖 are the normalized
eigenvectors. This cloning technique was used to generate a total number of 32768 Trojans.
Because only precisely determined orbits are chosen for cloning and each clone is a realization
of its parent orbit within the 1𝜎 range of the observational data, the long-term orbital
evolution of the cloned population should be the same as for the real one.

The clones were generated from the known numbered and multi-opposition Trojan orbits
as of August 2017, consisting of 3642 L4 and 1925 L5 objects. The cloned population then
contains the real orbits plus four to five clones for L4 Trojans and seven to eight clones for
L5 Trojans, respectively. The sub-populations of the two clouds were further divided into
16 groups of particles having different physical properties and sizes each. The radii were set
to 10 m, 100 m, 1 km and 10 km and four different categories of physical properties which
are the parameters for the Yarkovsky force were introduced. The upper and lower limits of
the values which have actually been reported for the physical properties of Trojans (see
Table 6.1) where chosen to define the categories. This subdivision resulted in 1024 particles
for each category, size and cloud. The spin axis orientation was uniformly distributed over
the celestial sphere and the spin period (in seconds) was set to 5 times the body’s radius
(in meters) [41]. Bolometric Bond albedo and infrared emissivity for all objects were 0.027
and 0.9, respectively.

In order to determine whether the Yarkovsky effect influences the long-term orbital
behavior of this population, again a run without and a run with considering the Yarkovsky
effect was performed.

Estimating the libration amplitude
As already explained, the libration amplitude is an important indicator for the lifetime
of Trojans. Hence, it would be interesting to see how the Yarkovsky effect influences the
libration amplitudes of the cloned orbits. However, in contrast to the fictitious population
where the libration amplitude was a parameter for creating the orbital elements, it is
unknown for the objects of the cloned population used for this experiment. In order to
analyze the results, the libration amplitude for each object needs to be determined. A
convenient way for doing this is to apply Frequency map analysis (FMA) on the output
of the numerical integration to identify periodic variations in the orbital elements and
the resonant argument [73]. For numbered and multi-opposition Jupiter Trojans this is
frequently done and the latest set of proper elements and libration amplitudes, computed by

Table 6.1: Combinations of physical properties used for the Yarkovsky effect.

Category 𝜌 [g/cm3 ] 𝛤 [J/(K m2 s1/2) ] 𝐴𝑏𝑜𝑛𝑑 𝜀

1 0.8 10
2 0.8 100
3 2.5 10
4 2.5 100

0.027 0.9
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Knezevic and Milani in June 2017, is available at the AstDyS website1. For the population
of cloned Jupiter Trojans used for this work however, the libration amplitudes are unknown.
The procedure of computing high precision proper elements which are needed to compute
libration frequencies and amplitudes is rather complicated and time-consuming [77]. In
order to get a good estimation of the libration amplitude for the cloned objects used in
this work, a less sophisticated but much faster approach, similar to the one introduced by
Marzari et al. [73], was employed. The libration amplitudes were calculated from a shorter
200 kyr integration. To remove the short-periodic variations from the orbital elements
which would superimpose the libration, a digital low-pass filter was used. The left panel
of Figure 6.6 shows the parameters and the response of the filter. The parameters were
chosen such that periods shorter than the libration period lie in the stop band while the
libration period (around 145 years or longer) lies in the pass band and is very little affected
by the filter. Using the filtered elements, the libration in semi-major axis is computed as
the mean of the maximum excursion in semi-major axis (d) in 2 kyr intervals over the 200
kyr of integration. Finally, the libration amplitude D is calculated using Equation 6.5.
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Figure 6.6: Left panel: Response of the filter used to eliminate short periodic perturbations
from the orbital elements. Right panel: Libration amplitudes for numbered and multi-opposition
Jupiter Trojans published by Knezevic and Milani (orange dots) and computed with the method
used in this work (red dots). The results are in good agreement, except for a few objects
having a large libration amplitude or period. The gray dots represent the libration amplitudes
for the population of clones.

In order to test this procedure, the libration amplitudes of the numbered and multi-
opposition Trojans were calculated and compared with the values available on the AstDyS
website. The right panel of Figure 6.6 shows the libration amplitudes for the objects
published at the AstDyS website and those calculated using the method described above.
The estimated amplitudes are in good agreement with the ones calculated by Knezevic
and Milani. The standard deviation is 0.6°and only a few objects with very large libration
amplitudes or very long libration periods show larger errors. The gray dots in Figure
6.6 are representing the libration amplitudes for the cloned population created for this

1 http://hamilton.dm.unipi.it/~astdys2/propsynth/tro.syn

http://hamilton.dm.unipi.it/~astdys2/propsynth/tro.syn 
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work. Most of them cluster around the real objects (red dots) as the differences in orbital
elements between the parent body and clones are very small. However, there are also clones
who appear to have no corresponding parent body. This is because the same population
of objects as the one used by Knezevic and Milani was used to verify the procedure of
calculating the libration amplitude but a more recent population was used to generate the
clones. Because there are more numbered and multi-opposition objects in August 2017 then
there were in June 2017, not all parent bodies for the cloned population are represented in
the plot. It can be seen that in general the distribution of clones in e-D space matches the
known orbits very well and thus the cloned population should have very similar long-term
orbital behavior.

Finding an appropriate integration interval

On the one hand, under the gravitational influence alone, the orbits of a large number of
Jupiter Trojan asteroids can survive the age of the solar system (about 4.5 Gyr). This
means that for studying the real population, an integration interval larger than that of
100 Myr used for the fictitious population should be considered. On the other hand, the
lifetime of asteroids is also limited by mutual collisions which are not resolved in cuSwift.
Thus, when choosing an integration interval it has to be ensured the objects can sustain
the total simulation time and won’t be destroyed by mutual collisions. In order to find a
reasonable value for the integration interval, the collisional lifetime of the Jupiter Trojans
has to be estimated.

The collisional lifetime of a minor body is defined as the mean time until the object is
destroyed by a catastrophic disruption, defined as a collision with the size of the largest
remnant being less or equal to half the size of the original body [46]. The important
parameters for the collisional lifetime are size and density of the colliding bodies as well
as the intrinsic collision probability 𝑃𝑖, impact velocity 𝑣𝑖 and size distribution of the
collisional interacting population. While the bodies’ physical parameters and impact
velocity are needed to determine 𝑄*

𝐷, the energy per unit mass causing a catastrophic
disruption of the target body, the intrinsic collision probability which defines the flux of
impactors per area and time can be combined with the objects size distribution to estimate
how frequently catastrophic disruption events occur.

The average impact velocities and the intrinsic collision probability for Jupiter Trojans
have been determined in several studies [72][31]. However, providing a good estimation for
𝑄*

𝐷 is not easy. By simulating collisions using hydrocodes and performing high velocity
impact experiments, several methods for modelling 𝑄*

𝐷 were introduced. The most recent
study for finding an appropriate value of 𝑄*

𝐷 for Jupiter Trojans was carried out by Wong
et al. [116]. They simulated the collisional evolution of the Jupiter Trojans by adjusting
the size dependent scaling law for 𝑄*

𝐷 of main belt asteroids proposed by Durda et al.
[36] in order to fit it to the low diameter end of the debiased size-frequency distribution
of Trojans down to about 10 km. As in this work much smaller objects are studied, this
approach is not applicable. Instead, a scaling law introduced by Benz and Asphaug [5]
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which is valid down to cm sized objects is used to determine 𝑄*
𝐷:

𝑄*
𝐷 = 𝑄0

(︂
𝑅𝑡𝑎𝑟

1 cm

)︂𝑎

+ 𝐵𝜌

(︂
𝑅𝑡𝑎𝑟

1 cm

)︂𝑏

, (6.7)

where 𝑅𝑡𝑎𝑟 and 𝜌 denote radius and density of the target body, respectively. The advantage
of this model is that it is capable of describing 𝑄*

𝐷 in the strength regime (small objects)
where fragmentation of the target body is the dominant factor as well as in the gravity
dominated regime (large objects) where the target body has to be fragmented and the
fragments must also be dispersed in order to cause a catastrophic disruption. Benz and
Asphaug used smooth particle hydrodynamics (SPH) to simulate collisions of different
materials and impact velocities and provided 𝑄*

𝐷 fits for each parameter set. For icy
material and an impact velocity of 𝑣𝑖 = 3 km/s, the conditions closest to those in this
work, the remaining parameters in Equation 6.7 are 𝑄0 = 1.6 J/g, B = 1.2 ·10-7 J cm3/g2,
a = -0.39 and b = 1.26. To obtain a lower limit for the collisional lifetime, the density
of the weakest bodies (0.8 g/cm3) was used to evaluate 𝑄*

𝐷. Knowing 𝑄*
𝐷, the radius

for an impactor 𝑅𝑑𝑖𝑠, capable of disrupting a target body of a certain radius 𝑅𝑡𝑎𝑟 can be
calculated as [11]

𝑅𝑑𝑖𝑠 =
(︂

2𝑄*
𝐷

𝑣2
𝑖

)︂1/3
𝑅𝑡𝑎𝑟. (6.8)

Finally, given the size distribution of the collisionally interacting bodies, the collisional
lifetime (𝜏𝑑𝑖𝑠) of an object with radius 𝑅𝑡𝑎𝑟 is [42]

𝜏𝑑𝑖𝑠 = 1
𝑃𝑖𝑅2

𝑡𝑎𝑟𝑁(> 𝑅𝑑𝑖𝑠)
, (6.9)

where 𝑁(> 𝑅𝑑𝑖𝑠) is the number of objects with radii 𝑅 > 𝑅𝑑𝑖𝑠. Pi was set to the highest
value reported, which is 7.79 10-18 yr-1km-2 for L4 vs L4 Trojans [28]. Other populations
like short period comets or Hildas also collisionally interact with Jupiter Trojans [30].
However, the intrinsic impact probability between these populations and the Trojans is
orders of magnitudes lower than the Trojan’s mutual impact probability and thus their
influence on the collisional lifetime of Trojans is negligible for this experiment.

Unfortunately, there is only very little knowledge about the size distribution of 𝑅 < 10km
Jupiter Trojans which is needed to calculate 𝑁(≥ 𝑅𝑑𝑖𝑠). Usually, the size distribution of
asteroids can be expressed in form of a power-law distribution:

𝑁(> 𝑅) = 𝐶 · 𝑅𝑏, (6.10)

where 𝑁(> 𝑅) is the cumulative number of asteroids with radii > 𝑅, 𝐶 is constant and
𝑏 denotes the slope of the cumulative size distribution. By observing and debiasing L4
Trojans using the 2.2 m telescope at the University of Hawaii, Jewitt et al. [57] found
the size distribution of objects larger than 2.2 km in radius follows a broken power law.



6.2 Does the Yarkovsky force affect Jupiter Trojans? 87

100

101

102

103

104

105

106

107

108

109

 0.1  1  10  100

 6 8 10 12 14 16 18 20 22

C
um

ul
at

iv
e 

nu
m

be
r

Radius [km]

Absolute magnitude

 L4 Trojans

101

102

103

104

 0.01  0.1  1  10

C
ol

lis
io

na
l l

ife
tim

e 
[M

yr
]

Radius [km]

L4 Trojans
Main Belt Objects ≈ 16.8  × (R/1 m)1/2

Figure 6.7: Left panel: Cumulative size distribution of L4 Trojans according to Jewitt et al.
[57]. Right panel: Collisional lifetime of L4 as well as main belt objects.

According to their work, the cumulative size distribution of L4 Trojans is

𝑁(> 𝑅) = 1.6 · 105
(︂

1 km
𝑅

)︂2.0±0.3
(6.11)

for 2.2 km ≤ 𝑅 ≤ 20 km and

𝑁(> 𝑅) = 7.8 · 108
(︂

1 km
𝑅

)︂4.5±0.9
(6.12)

for 𝑅 ≥ 42 km objects. For smaller Trojans, very large telescopes are required for detection.
The latest approach to estimate the size distribution of small Trojans was done by Yoshida
and Nakamura [119][118]. They used Trojan asteroids serendipitously detected within the
Subaru main belt asteroid survey, performed with an 8.2 m telescope to determine their
size distribution down to 𝑅 ≈ 1 km. For 1.0 km ≤ 𝑅 ≤ 2.5 km L4 Trojans they found a
shallower power-law slope of 1.3 ± 0.1 while objects with 2.5 km ≤ 𝑅 ≤ 5.0 km showed a
slope of 2.4 ± 0.1, a value similar to the one reported by Jewitt et al. It is well known
that collisional cascades can introduce variations in the power-law slopes [38] which means
that it is not clear the slope found by Yoshida and Nakamura is representative down to
𝑅 < 1 m objects which are considered in this experiment (see Table 6.2). For this reason,
the size distribution found by Jewitt et al. is used to calculate 𝑁(> 𝑅𝑡𝑎𝑟) and 𝑁(> 𝑅𝑑𝑖𝑠),
although it is based on observations of much larger objects.

Putting it all together, an estimation of the collisional lifetime of Jupiter Trojans can
be made. For the size ranges considered in this experiment, the collisional lifetimes are
given in Table 6.2. Figure 6.7 shows the cumulative size distribution used to estimate
the number of targets and impactors as well as the resulting estimation for the collisional
lifetime of Trojans and main belt objects [41] for comparison. Although this estimation is
calculated based on the size distribution of L4 Trojans, it represents a lower limit for the
collisional lifetime of Jupiter Trojans in general, as the L5 Trojans are expected to be fewer
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in numbers and thus should have even longer collisional lifetimes than L4 Trojans. As can
be seen in Figure 6.7, the collisional lifetime for Trojans considered in this experiment
ranges from several 100 Myr up to several Gyr. On that account, the integration interval
for investigating the influence of the Yarkovsky effect was set to 500 Myr.

Table 6.2: Radii of Target and Projectile capable of causing a catastrophic disruption of
the target body as well as the number projectiles in the L4 cloud and the resulting collisional
lifetime for the target body.

𝑅𝑡𝑎𝑟 [m] 𝑅𝑑𝑖𝑠L4 [m] 𝑁(𝑅𝑑𝑖𝑠)L4 𝜏L4 [Myr]
10 0.22 3.44·1012 3.72·102

100 1.71 5.45·1010 2.75·102

1000 26.8 2.22·108 5.77·102

10000 685 3.41·105 4.39·103

It is important to note that the collisional lifetime of small Trojans calculated by de
Elía and Brunini [38] is significantly shorter than the estimation presented here. Their
results however correspond to a primordial population of Trojans which they assumed
to be orders of magnitudes larger than the current one. Their aim was to reproduce the
population which is observable today and to find out down to which size the Trojans
were not significantly altered by collisions since the formation of the solar system. They
also placed their initial population inside the dynamically stable regions of the resonance.
Assuming the jump capture scenario for the origin of Jupiter Trojans, there is no reason to
assume that the primordial population occupied the stable regions only. This means that
the dynamical lifetime of many objects of the primordial population may be significantly
shorter, resulting in the collisional lifetime of the remaining long-time stable part of the
population is increased.

Run time of the integrations

The main integrations of 32768 orbits over 500 Myr without and with considering the
Yarkovsky effect for this work were performed with cuWHM on a PC equipped with two
Nvidia GeForce GTX Titan Black GPUs. The simulation took about 20 days in total. The
shorter 200 kyr integrations for estimating the libration amplitudes took as few as 1.5 hours
on a Laptop equipped with a quad core 2.7 GHz Intel i7-6820HQ CPU. For comparison, in
the numerical experiment for computing the libration amplitudes of Trojans, performed
by Marzari et al. in 2003, 1000 fictitious Trojans were integrated with swift_mvs for 2.5
Myr [73]. They reported the integrations took about four days on a computer equipped
with a 2 GHz Intel Pentium 4 processor. Taking these values to estimate the run time for
simulating ≈65k particles over 500 Myr in 2003 yields about 140 yr, 2600 times longer
than the computation time for the simulations performed in this work. This means that
the hardware improvements achieved within a decade led to the computation time for the
same algorithm to be decreased by more than three orders of magnitude.
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6.3 Results and discussion
Figure 6.8 shows the ratio of particles escaping from the Trojan clouds during the simulation.
The transparent areas represent the 1 σ confidence region, assuming the number of ejected
particles is following a Poisson distribution. During the Yarkovsky run significantly more
particles escaped from the Trojan region as during the non-Yarkovsky run. However, the
effect is not as big as for the fictitious population. The dashed vertical line in Figure 6.8
represents the end of the integration interval which was originally defined. However, due to
some findings made while analyzing the results after 500 Myr, it was decided to extend the
integration interval by another 500 Myr The next paragraphs give more detailed analysis
on how the Yarkovsky effect influences the different dynamical properties of the Trojan
population.

Figure 6.8: Ratio of ejected particles with and without considering the Yarkovsky effect
during the 500 Myr plus another 500 Myr of extended integration. The impact of the Yarkovsky
effect is not as big as for the fictitious population. Still there were significantly more particles
ejected during the Yarkovsky run.

Influence of the physical properties
The escape rate for each category and size was separately monitored to determine the
impact of the Yarkovsky effect on the different physical properties of the objects. As can
be seen in Figure 6.9, smaller objects are more likely to be ejected from the Trojan region.
The colored transparent areas in the plots represent the 1 σ confidence region for each
category. The gray area in each plot is the confidence region for the non-Yarkovsky run.
Because the number of particles for each category and size in the Yarkovsky run was 2048
while the number of particles in the non-Yarkovsky run was 32768, the 1 σ confidence
region for the non-Yarkovsky run is accordingly narrower than those corresponding to the
sub-populations of the Yarkovsky run.

While the escape rates of the objects of R = 1 and R = 10 km seem not to be affected
by the Yarkovsky force, for the 10 m radius, low thermal inertia and low density objects,
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Figure 6.9: Ratio of ejected particles for the different sizes and physical properties of the
particles. The transparent areas represent the 1 σ confidence region, assuming the number of
ejected particles is following a Poisson distribution. The gray area represents the 1 σ confidence
region for the ratio without considering the Yarkovsky effect. In general, smaller particles are
more likely to be ejected. Objects of 1 and 10 km radius are practically not affected.

during the first 500 Myr of the Yarkovsky run more than 5 times as many particles as
during the non-Yarkovsky run were ejected. Also the ratio of escaped particles with low
thermal inertia and high density as well as the one for the high thermal inertia and low
density are clearly above the confidence region of the non-Yarkovsky run. This result
matches very well the expected behavior discussed in the preliminary considerations in
the beginning of Section 6.2. An interesting feature for the R = 10 m low density, low
thermal inertia particles is that the rate of ejected particles per unit time increases after
about 250 Myr. If the initial orbital distribution were in a steady state, which can be
assumed for an evolved population like the Jupiter Trojans, one would expect the escape
rates to be constant over time for each size and category of physical properties. A possible
explanation for the rate change is that the initial orbital distribution of the test particles
for this experiment reflects the distribution of the currently known Jupiter Trojans. This
distribution is based on objects much larger than 1 km in radius which are less influenced
by the Yarkovsky effect. As most of them have very long dynamical lifetimes (as few as 5%
of all particles were ejected during the non-Yarkovsky run), they are on very stable orbits.
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The reason for the suddenly increasing escape rate would be that it takes some time until
the Yarkovsky force moves the much smaller particles considered in this experiment from
their stable initial orbits to less stable regions where they are eventually ejected. For small
particles this should happen faster than for larger ones because they are more strongly
affected by the Yarkovsky force. To test this hypothesis, the simulations were continued
for another 500 Myr. Indeed the same effect is visible for the 𝑅 = 100 m objects. Except
for the high thermal inertia and high density objects, the escape rate increases after about
500 Myr of integration. This implies that the initial conditions for this experiment may
not represent the actual orbital distribution for Trojans smaller than 1 km in radius and
suggests that the actual number of escaped particles would be higher. Therefore, all further
analysis was done considering the extended integration interval of 1 Gyr.

Ratio of escaped L4 and L5 Trojans

The observed asymmetry of the Trojan clouds is based on the known population, which
consists of objects having radii of tens to hundreds km. Because these bodies are not
influenced by the Yarkovsky effect, the latter can not explain the observed asymmetry.
However, it is still meaningful to examine whether the effect may influence the ratio of
escaping particles between L5 and L4 for smaller objects. In Figure 6.8 the escape ratios
are separately monitored for the two clouds. For the non-Yarkovsky run, the ratio between
escaped particles from L5 and L4 after 1 Gyr was 1.07±0.04, again assuming the number
of ejected particles is Poisson distributed. This ratio is lower than the value of 1.22±0.08
reported by Di Sisto et al. [32] for the numbered Jupiter Trojans after 4.5 Gyr of integration.
Di Sisto et al. concluded that the ratio of escapes between L5 and L4 is very sensitive to the
orbital distribution. They also could not find any difference in escape rate from either of
the Trojan clouds for a fictitious population containing 18200 particles. For this reason Di
Sisto et al. decided to consider only numbered objects when studying the real population
because of the superior precision of their orbits. When considering only clones coming
from numbered Trojans, during the non-Yarkovsky run performed in this work, the ratio
between escaped L5 and L4 increases to 1.12±0.04 which is higher but not significantly
different from the ratio including the multi-opposition objects. This suggests that the less
accurate orbits of the multi-opposition objects do not significantly influence the results.

When enabling the Yarkovsky effect, the escape rates from L4 and L5 seem to be more
or less the same. No trend of more particles escaping from any of the two clouds is visible.
Looking at the escape rates for each size (see Table 6.3) suggests that the ratio of escape
rate between L4 and L4 decreases with size, however the error on the ratios is too large to
allow a significant conclusion. Still, this further supports the hypothesis that the Yarkovsky
effect changes the orbital distribution of small Trojans and that the difference in escape
rate is very sensitive to the initial orbital distribution.

Table 6.3: Ratio between escaped L5 and L4 particles for each size during the Yarkovsky run.

10 m 100 m 1 km 10km
0.91±0.08 0.97±0.10 1.08±0.11 1.09±0.11
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Implications on the libration amplitude

To better understand how the Yarkovsky effect changes the Trojans’ long-term orbital
evolution, the initial libration amplitudes and eccentricities of the particles ejected during
both runs were compared. In general, orbits having a low libration amplitude, eccentricity
and inclination tend to be more stable. As can be seen in Figure 6.10, objects having high
eccentricity or libration amplitude were ejected early during the simulation while those
having lower eccentricity or libration amplitude stayed for a longer time span. The figure
also shows that more particles were ejected which were initially located in the low libration
amplitude regime during the Yarkovsky run as during the non-Yarkovsky run. The average
initial libration amplitude for the particles ejected during the non-Yarkovsky run was
21.8° for L4 and 20.9° for L5 Trojans. For the Yarkovsky run, these values slightly decreased
to 20.1 and 19.5° for L4 and L5 Trojans, respectively. Although the difference does not
seem to be very significant, this indicates that the Yarkovsky effect causes objects which
initially were on stable orbits to leave the Trojan region. If this is indeed true, it should
also reflect in the distribution of the libration amplitudes at the end of the integration.
If the low amplitude particles which escaped during the Yarkovsky run were removed
because their libration amplitudes became too large, one would expect more objects with
higher amplitudes at the end of the integration time span than there were in the beginning.
Thus, the libration amplitudes of the surviving particles at the end of the integration were
computed and compared with their initial values. Indeed, as can be seen in the histograms
in Figure 6.11, there were more particles with large libration amplitude after 1 Gyr. The
smallest bodies show the largest abundancy of high amplitude objects. For larger particles,
the difference becomes much smaller but is still visible. This means that even objects of 1
km or larger in radius are affected by the Yarkovsky force and that even more of them
would leave the Trojan region if the integration time span would be further increased.

Surprisingly, the Yarkovsky effect did not increase the libration amplitudes for all objects:
The upper left panel of Figure 6.11 clearly shows that for the smallest bodies, there also
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Figure 6.10: Initial amplitude and escape time for the escaped particles during the non-
Yarkovsky run (left panel) and the Yarkovsky run (right panel). In general, particles having
high e and D are ejected earlier. During the Yarkovsky run, more particles in the lower D
regime are affected.
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Figure 6.11: Comparison of the distributions of libration amplitudes of particles which
remained in the Trojan region over the complete integration time-span in the Yarkovsky-run
at t=0 and t=1 Gyr. There seems to be an excess of large amplitude orbits for objects of all
sizes. For the smallest objects, there are also more low amplitude orbits after 1 Gyr than at
the beginning which means that the Yarkovsky effect increases the dynamical lifetime of these
objects.

seems to be an abundancy of low amplitude objects after 1 Gyr of integration which
means that the Yarkovsky effect tends to increase the dynamical lifetime for some of the
small objects. The same trend was also present when separately looking at either of the
Trojan clouds suggesting that both clouds are affected in the same way. As mentioned in
Section 2.4, the drift in semi-major axis caused by the diurnal component of the Yarkovsky
force depends on the sense of the object’s rotation. The Yarkovsky effect leads to an
increase of the semi-major axis of prograde rotators while it decreases the semi-major
axis of retrograde rotators. To see if the sense of rotation causes the feature observed in
Figure 6.11, the change in libration amplitude was analyzed separately for prograde and
retrograde rotators. Figure 6.12 shows the distribution of libration amplitudes for prograde
vs retrograde rotators after 1 Gyr of integration. For particles with R<1 km, it can clearly
be seen that there are more low amplitude objects rotating in prograde direction while
there are more high amplitude objects rotating in retrograde direction. Comparing the two
distributions for each radius with the Kolmogorov-Smirnoff non-parametric test revealed
that the libration amplitudes of the 10 and 100 m radius objects are clearly not following
the same distribution with a confidence level of more than 99% while the test could not
distinguish between prograde and retrograde rotating objects of 1 and 10 km radius. The
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trend was also visible among the ejected particles. In total, there were 16492 prograde and
16276 retrograde objects of which 1556 (9.4%) and 2166 (13.3%) were ejected, respectively.

If the Yarkovsky effect indeed causes the retrograde rotators to be ejected while prograde
rotators are stabilized, this should reflect in the obliquity distribution of the small Jupiter
Trojans. Unfortunately, as of August 2017, according to the Asteroid Lightcurve Database
[110], available at the minorplanet.info website1, the spin axis orientations of only four
rather large Jupiter Trojans are known. Therefore, the influence of the Yarkovsky effect on
the obliquity distribution of Jupiter Trojans effect remains to be confirmed by observations
in the future.
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Figure 6.12: Libration amplitudes of retrograde vs prograde rotating objects which survived
the 1 Gyr of integration incorporating the Yarkovsky effect. For the 10 and 100 m radius
objects, there are more prograde objects with small libration amplitudes while there are more
retrograde objects with large libration amplitudes.

Conclusions
Although the integrations only covered a fraction of the estimated age of the Jupiter
Trojans, about 4.5 Gyr, some important results were obtained. It was proven that at
least the small objects of less than 1 km in radius are indeed influenced by the Yarkovsky
effect and that prograde rotators migrate to regions around the Lagrangian points which
provide longer residence times while retrograde rotators are more likely to be ejected from
the Trojan clouds. The experiment also revealed that the difference in particles escaping

1 http://www.minorplanet.info/lightcurvedatabase.html

http://www.minorplanet.info/lightcurvedatabase.html
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from L4 and L5 is caused by the different orbital distributions of each group. Due to the
influence of the Yarkovsky effect, objects smaller than 1 km in radius should exhibit a
distinct orbital distribution from the one currently observed. For small Trojans, this leads
to the escape rates from both clouds being equalized. The fact that, due to the Yarkovsky
effect, the residence time in Trojan orbits decreases with decreasing object radius leads to
further implications on the size-frequency distribution of these objects: there should exist
less Trojans with 𝑅 < 1 km than predicted by purely dynamical and collisional models.
However, exact statements can only be made after the physical properties of the Trojans
are better constrained.

Caveats
Some things should be mentioned to assess the significance of the results of this work. First
of all, the thermal properties were set to values obtained from rather large objects and
might be different for smaller bodies considered in this experiment. Secondly, the particles
were assumed to be perfect spheres, as for most studies modelling the dynamical evolution
of a huge amount of bodies under the Yarkovsky effect. This simplification might have
an influence on the magnitude of the Yarkovsky effect, especially for small bodies which
can have very irregular shapes. Also the YORP effect, which can change the rotational
properties over long time scales, was not considered within this study. Last but not least,
the smaller the objects are, the more they rise in numbers and consequently, the more
frequent are collisions which, when not being disruptive, change the objects spin axis
orientation and spin rate resulting in a random Yarkovsky-drift direction over very long
time scales.





CHAPTER 7
Future work

The aim of this work was to implement a software package with tools for studying long-term
orbital evolution of thousands of objects in the solar system which can efficiently utilize
modern computer hardware and to conduct a scientific experiment to demonstrate its
possibilities and benefits. So far, this package contains three integration methods and is
also capable of taking into account the non-gravitational Yarkovsky force. Still, there are a
lot more things to do in order to extend and improve cuSwift.

7.1 Improve and Implement more non-gravitational effects
7.1.1 Improve the Yarkovsky effect and include YORP Effect
In the current version of cuSwift, two different densities can be assigned to each body
in order to account for different properties of the material on the asteroid’s surface and
interior. However, it is known that besides density also thermal inertia of the surface
regolith changes with depth [94] [52] and temperature [29]. Changing the routines for
calculating the Yarkovsky force in order to take into account these changes would result in
more a more realistic implementation of the effect.

7.1.2 Include YORP Effect
The Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect is, like the Yarkovsky effect, a
non-gravitational force acting on small bodies in the solar system. It can alter, on long time
scales the objects spin rates and axis which has implications on the magnitude and direction
of the semi-major axis drift caused by the Yarkovsky effect [16]. The implementation of
MVS by Brož [13] also considers the YORP effect. These routines could easily be added in
cuSwift as well.

7.1.3 Acceleration due to cometary activity
It is well known that the acceleration caused by cometary activity can lead to secular
changes of the orbits of comets [70]. Compared to the age of the solar system, the active
short-period comets entered the inner system very recently. For example studies of the
dynamical evolution of comet 67P/Churyumov-Gerasimenko, target of the ongoing Rosetta
mission, suggest that its semi-major axis decreased from 10 AU to 4.5 AU in the last 10
kyr [67]. Close encounters with Jupiter, especially those in 1923 and 1959, eventually
caused the perihelion distance of 67P to decrease to 1.3 AU. Living on planet crossing
orbits, one might think the orbital evolution of the short period comets is dominated
solely by close encounters. However, in contrast to the Yarkovsky and YORP effects,

97



98 Chapter 7 Future work

which alter the orbital and rotational properties of asteroids within time-scales of millions
of years, cometary activity has a much greater impact. The rotational period of comet
67P/Churyumov-Gerasimenko, decreased as much as almost 3% over a single orbit around
the sun [84]. For modelling the dynamical evolution of active comets, the non-gravitational
forces caused by cometary activity might paly an important role. Adding a method which
models these effects to cuSwift would enable it to be used for studying dynamical evolution
of active comets too.

7.1.4 Collisions and Fragmentation
Another important feature to be included in cuSwift is the treatment of collisions among
the test particles. In general, there are two ways of doing this.

One way would be to track the distances between all particles during the integration. A
collision occurs when the distance between two particles becomes smaller than the sum of
their radii. Depending on direction and speed of the impact as well as the compositions
of the colliding bodies, it can be determined how the trajectory of the surviving bodies
changes (if they do not get completely destroyed) and how many new objects should be
included due to fragmentation [64]. The advantage of this method would be that each
individual collision would be properly resolved. On the other hand, the enormous advantage
of the test particles not belonging to the 𝑛2 part of the 𝑛-body problem is lost because
the mutual distances of all particles must be evaluated at each time step. Further, as the
distances the particles travel each time step is much larger than their radii, it needs to
be ensured no collisions occurring between two time steps are missed. This means that
computation time would significantly increase and results in the number of particles which
can be considered in order to get reasonable execution times dramatically decreases.

Another method would be not to resolve each single collision but to use a stochastic
method. The collision probabilities for bodies of different sizes as well as the average
directions and velocities are well known for the different regions in the solar system [28].
This knowledge can be used to introduce random collisions for each object. Like for
the first method, the outcome is determined by the impact geometry and the physical
properties of the colliding body. However, The parameters describing the collision are
randomly generated according to their probabilities. This method does not resolve the
actual collisions among the particles but is computationally much less expensive, as it does
not introduce the n2 complexity for the test particles.

7.2 Implement additional Integration Methods
Until now, cuSwift contains three integration methods. There are however, many more
algorithms which could be implemented to the package to study different phenomena such
as planetary accretion [35], the behavior of rubble pile asteroids [97] or for performing
highly accurate experiments for simulating spacecraft trajectories or making impact and
occultation predictions.

So far, cuSwift can utilize only a single GPU. Adding support simultaneous usage of sev-
eral GPUs would make it possible to efficiently run cuSwift on large-scaled supercomputers
which can contain many GPUs. This would result in a much larger number of particles
can be included in the simulation.
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