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1 ABSTRACT 
 
The fibrillar organizations in cornea and tendon are vastly different although the 

tissues contain collagens I and V as their major collagenous components. Mature 

cornea consists of orthogonally stacked lamellae formed by uniformly thin collagen 

fibrils evenly spaced in parallel. Mature tendons contain fibrils with heterogeneous 

diameters arranged into parallel fibrous bundles. In both tissues, collagens must be 

cross-linked to exhibit the normal physical properties. However, they show distinctive 

patterns of cross-linking chemistry. In the extracellular matrix (ECM), cross-linking 

can result from the enzymatic activity of lysyl oxidase (LOX) and tissue 

transglutaminase (TG). In this present study, the relationship between tissue-specific 

fibril formation and cross-links in the ECM of chicken embryonic cornea and tendon 

has been investigated. 

 

Here, we have studied the suprastructural organization of matrices deposited by 

keratocytes and tenocytes cultures with or without cross-link formation by 

transmission electron microscopy. Fibril diameter distribution has also been 

analyzed. In addition, in-vitro fibrillogenesis with corneal collagen mixtures with and 

without activated TG were investigated by turbidity measurements and analysis of 

reconstitution products by electron microscopy. Furthermore, in cell culture 

experiments LOX-activity was measured by a tritium-release assay and TG-activity 

by addition of fluorescent-labeled cadaverine. Keratocyte cultures were metabolic 

labeled with 14C-proline for the characterization of cross-links. Some matrix-involved 

components were investigated with immunofluorescence labeling. 

 

We found that typical sheets of orthogonally arranged collagen fibrils were formed by 

keratocyte cell cultures. Such lamellae were not apparent when aldehyde-derived 

cross-link formation was inhibited. On the other hand, the organization of parallel-

arranged fibrils in tenocyte cell cultures also depends on the aldehyde-derived cross-

links. These observations suggested that the formation of cross-links is crucial for the 

tissue-specific matrix organization in chicken cornea and tendon. Further studies on 

keratocyte cultures showed that the orthogonal arrangement of fibrils was not 

strongly affected with the TG inhibitor. However, the collagen fibrils formed were 

thicker with a clearly visible banding pattern. Interestingly, the presence of both 
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cross-link leads to striking effects on matrix formation visible by loss of matrix 

organization and an irregular fibril diameter distribution. We also found in our in-vitro 

experiments that fibrils reconstituted from soluble corneal collagens were thinner and 

formed networks in the presence of activated TG and proteoglycan components. 

Such networks were absent in controls without TG. We presume that the stabilization 

of aggregates formed early is essential for the formation of the typical matrix 

organization of chicken cornea. Moreover, it has been shown that the deposition of 

decorin into matrix seemed to be delayed when cross-link formation was inhibited.  
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2 INTRODUCTIONS 
 
2.1 COLLAGEN 
Collagens are ECM-components and the most abundant proteins in mammals. 

Collagens play structural roles and contribute to the molecular architecture, shape, 

and mechanical properties of tissue such as the tensile strength in skin and the 

resistance to traction in ligaments (Kadler, 1995, Ricard-Blum et al., 2000). 

Furthermore, collagens interact with cells through several receptor families and 

regulate the cell growth, differentiation and migration. 

 

All members of the collagen family comprise three polypeptide α-chains and contain 

at least one domain composed of repeating Gly-X-Y sequences in each chain. In 

some collagens all three α-chains are identical (homotrimers) while in other 

collagens, there are two or three different chains (heterotrimers). Each of the three α-

chains within the molecule coiled into a left-handed helix with a pitch of 3 amino acids 

per turn (Hofmann et al., 1978), are then super coiled around a central axis in a right-

handed manner to form a triple helix (Fraser et al., 1979). The smallest amino acid, 

the glycine residue, in every third position of the polypeptide chains, is a structural 

prerequisite for the assembly into a triple helix. The X and Y position can be occupied 

by any amino acid, but often is proline and hydroxyproline, respectively (van der Rest 

and Garrone, 1991). In the triple-helix structure all glycine residue are positioned in 

the center while the more bulky side chains of other amino acids occupy the outer 

positions on the surface of the molecule. This allows a close packaging along the 

central axis of the molecule, polymerization of collagens per self-assembly into 

precisely structures. Therefore, the triple helix is rigid and this conformation is 

important for the biological properties of collagens.  

 

The collagen superfamily comprises 28 different collagen types in vertebrates (I-

XXVIII). There are also other proteins containing triple-helical domains such as the 

subcomponent C1q of complement, mannose-binding protein C, three macrophage 

receptors (MARCO), acetyl-choline esterase, and three ficolins. Based on their 

structure and supramolecular organization, collagens can be divided into several 

subfamilies: fibril-forming collagens, fibril-associated collagens with interrupted triple 
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helices (FACIT), network-forming collagens, membrane collagens, multiplexing, and 

others with unique functions.  

Collagens I-XXVIII have been reviewed according to α-chains and molecular species 

(Table. 2-1). The different collagen types are characterized by their structural 

diversity, variants of non-helical domains, assembly and functions. The domain 

composition and structural organization of different collagen types are listed in figure 

2-1. The fibril-forming collagens are rod-like collagens with a large triple helical 

domain (approximately 300 nm). These collagens co-assemble into banded fibrils in 

tissues including bone, dentin, tendons, cartilage, dermis, sclera, cornea, and the 

interstitial connective tissues in and around many organs (Birk and Bruckner, 2005). 

Collagen fibrils are made of collagens II, XI and IX in cartilage, of collagens I, III and 

V in skin (Keene et al., 1997), and of collagens I and V in cornea (Bruckner, 2010). 

Furthermore, collagen fibrils can be considered as macromolecular alloys of 

collagens and non-collagenous proteins or proteoglycans. Collagen XXIV is a novel 

collagen with structural features of invertebrate collagens (Koch et al., 2003). The α1-

chain of collagen XXIV contains an amino-terminal domain closely related to those of 

the types V and XI collagen subunits. Collagen XXVII forms thin nonstriated fibrils (10 

nm in diameter) that are distinct from the classical collagen fibrils (Plumb et al., 

2007).  

 

The FACITs do not form fibrils by themselves, but they are associated to the surface 

of collagen fibrils. Collagen IX is covalently linked to the surface of cartilage collagen 

fibrils mostly containing collagen II (Olsen et al., 1997), and collagens XII and XIV are 

associated to collagen I-containing fibrils. They can be integral parts and important 

organizers of the overall fibril structure rather than optional additions to preexisting 

aggregates (Birk and Bruckner, 2005). Collagen IV, with a more flexible triple helix, is 

the most important structural component of basement membranes integrating 

laminins, nidogens and other components into 2-dimensional supramolecular 

aggregate. The collagen VI microfibril is highly disulfide cross-linked and contributes 

to a network of beaded filaments interwoven with other collagen fibrils (von der Mark 

et al., 1984). Collagen X and VIII are both structurally related short-chain collagens 

and assemble to form hexagonal networks in tissues (Kühn, 1986; Sawada et al., 

1990; Yamaguchi et al., 1991). Types XIII, XVII, XXIII, and XXV collagens are 

transmembrane collagens which contain a single-pass hydrophobic transmembrane 
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domain (for review see Peltonen et al., 1999; Hashimoto et al., 2002; Banyard et al., 

2003; Franzke et al., 2003). 

Corresponding to the high diversity of the collagen superfamily, some genetic and 

acquired diseases of collagens have been discovered. Several autoimmune 

disorders involve autoantibodies directed against collagens, such as epidermolysis 

bullosa acquisita (Ishii et al., 2010), skin blistering disease bullous pemphigoid 

(Franzke et al., 2005), Goodpasture syndrome (Khoshnoodi et al., 2008) and 

Bronchiolitis obliterans syndrome (Burlingham et al., 2007). Otherwise, many 

disorders are caused by mutations in the genes coding for collagen α-chains, is listed 

in the human collagen mutation database (Dalgleish, 1998), COLdb database 

(Bodian and Klein, 2009) and osteogenesis imperfecte (Marini et al., 2007). The 

mutations affect the ECM by decreasing the amount of secreted collagen(s), 

impairing molecular and supramolecular assembly through the secretion of mutant 

collagens, or by inducing endoplasmic reticulum stress and the unfolded protein 

response (Bateman et al., 2009). 

 
Table 2-1.The collagen family (reviewed by Ricard-Blum, 2011). 
Collagen type Α Chains Molecular species 

Collagen I α1(I), α2(I) [α1(I)]2, α2(I) 

[α1(I)]3 

Collagen II α1(II) [α1(II)]3 

Collagen III α1(III) [α1(III)]3 

Collagen IV α1(IV), α2(IV), α3(IV), α4(IV), 

α5(IV), α6(IV) 

[α1(IV)]2, α2(IV) 

α3(IV)α4(IV)α5(IV) 

[α5(IV)]2, α6(IV) 

Collagen V α1(V), α2(V), α3(V), α4(V)a [α1(V)]2, α2(V) 

[α1(V)]3 

[α1(V)]2, α4(V) 

α1(XI)α1(V)α3(XI) 

Collagen VI α1(VI), α2(VI), α3(VI), α4(VI)b, 

α5(VI)c, α6(VI) 

 

Collagen VII α1(VII) [α1(VII)]3 

Collagen VIII α1(VIII) [α1(VIII)]2, α2(VIII) 

α1(VIII), [α2(VIII)]2 

[α1(VIII)]3 

[α2(VIII)]3 

Collagen IXe α1(IX), α2(IX), α3(IX) α1(IX), α2(IX), α3(IX) 

Collagen X α1(X) [α1(X)]3 

Collagen XI α1(XI), α2(XI), α3(XI)d α1(XI)α2(XI)α3(XI) 

α1(XI)α1(V)α3(XI) 
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Collagen XIIe α1(XII) [α1(XII)]3 

Collagen XIII α1(XIII) [α1(XIII)]3 

Collagen XIVe α1(XIV) [α1(XIV)]3 

Collagen XV α1(XV) [α1(XV)]3 

Collagen XVIe α1(XVI) [α1(XVI)]3 

Collagen XVII α1(XVII) [α1(XVII)]3 

Collagen XVIII α1(XVIII) [α1(XVIII)]3 

Collagen XIXe α1(XIX) [α1(XIX)]3 

Collagen XXe α1(XX) [α1(XX)]3 

Collagen XXIe α1(XXI) [α1(XXI)]3 

Collagen XXIIe α1(XXII) [α1(XXII)]3 

Collagen XXIII α1(XXIII) [α1(XXIII)]3 

Collagen XXIV α1(XXIV) [α1(XXIV)]3 

Collagen XXV α1(XXV) [α1(XXV)]3 

Collagen XXVI α1(XXVI) [α1(XXVI)]3 

Collagen XXVII α1(XXVII) [α1(XXVII)]3 

Collagen XXVIII α1(XXVIII) [α1(XXVIII)]3 

Individual α chains, molecular species, and supramolecular assemblies of collagen types. 
aThe α4(V) chain is solely synthesized by Schwann cells; bThe α4(VI) chain does not exist in humans; cThe α5(VI) has been 

designated as α1(XXIX); dThe α3(XI) chain has the same sequence as the α1(II) chain but differs in its posttranslational 

processing and cross-linking; eFACIT, Fibril-Associated Collagens with Interrupted Triple helices. 
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Figure 2-1.  Domain composition and supramolecular assemblies of collagens. COL: 
Collagenous, triple-helical, domains; NC: Non-collagenous, nontriple-helical, domains. They 
are numbered from the carboxy- to the amino-terminus, except for collagen VII (reviewed by 
Ricard-Blum, 2011). 
 
2.2 FIBRIL-FORMING COLLAGENS AND FIBRIL FORMATION  
The classical fibril-forming collagens include collagen types I, II, III, V, and XI. 

Procollagen chains are synthesized in the endoplasmic reticulum (ER), are brought 

together by interactions between the C-propeptides and fold to form a rod-like triple-

helical domain flanked by globular N- and C-propeptides. The C-propeptides play an 

important role in procollagen folding because they ensure association between 

monomeric procollagen chains and determine chain selectivity (Bulleid et al., 1997; 

Lees et al., 1997). Association between procollagen chains is preceeded by folding 

and disulphide bond formation within the individual C-propeptides (Doege and 

Fessler, 1986). A large number of post-translational modifications then occur in the 

ER, in which a number of enzymes and molecular chaperones assist the folding and 

trimerization of procollagen, such as the protein disulphide isomerase (PDI) (Bulleid 

et al., 1996), peptidylproline cis-trans isomerase (PPI) (Galat et al., 1995; Bachinger 

et al., 1987; Davis et al., 1989), prolyl-4-hydroxylase (P4H) (Kivirikko and Myllyharju, 

1998; Myllyharju, 2003), prolyl-3-hydroxylase (Vranka et al., 2004), a family of lysyl 

hydroxylases (Kellokumpu et al., 1994; Valtavaara et al., 1998; Wang et al., 2002) 

and the collagen-specific chaperone HSP47 (Nagata, 1998 and 2003). Removal of 
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the N- and C-propeptides from fully folded procollagen by the procollagen N- and C-

proteinases (Leung et al., 1979) occurs partly after transport of procollagen across 

the Golgi stacks in ECM and partly inside tendon fibroblasts (Canty et al., 2004). The 

resulting collagen molecules are then able to assemble into fibrils. Covalent 

crosslinks occur within and between triple-helical collagen molecules in fibrils. An 

overview of the fibril formation by fibroblasts was in figure 2-2 illustrated. 

 

 
Figure 2-2. Overview of the steps involved in the production of collagen fibrils by fibroblasts 
(Canty and Kadler, 2005). 
 

Collagen molecules are arranged in longitudinally staggered arrays resulting a tissue-

specific length of staggers between adjacent fibrillar collagen molecules. Therefore, a 

gap occurs sequentially between neighboring molecules giving rise to a gap-overlap 

structure in the collagen fibrils to represent a banding pattern with a periodicity (D-

period) of 64-67 nm (Birk and Bruckner, 2005; Bruckner, 2010). Collagen fibrils range 

in diameter from approximately 15 nm up to 500 nm or more depending on the tissue 

type (Kadler et al., 2007; Bruckner, 2010). The structure of a generic collagen fibril is 

illustrated in figure 2-3. 
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Figure 2-3. Structure of a generic collagen fibril. A D-periodic collagen fibril from tendon is 
presented at the top of the panel. The negative stained fibril has a characteristic alternating 
light/dark pattern representing the gap (dark) and overlap (light) regions of the fibril. The 
diagram represents the staggered pattern of collagen molecules giving rise to this D-periodic 
repeat. The collagen molecules (arrows) are staggered N to C. The fibrillar collagen molecule 
is approximately 300 nm (4.4 D) in length and 1.5 nm in diameter (Birk and Bruckner, 2005). 
 

2.3 MOLECULAR CONSTITUENTS OF CORNEA  
2.3.1 Collagens 
2.3.1.1 Type I collagen  
Type I collagen is the most abundant fibrillar collagen. It forms more than 90% of the 

organic mass of bone and is the major collagen of tendons, skin, ligaments, cornea, 

and many interstitial connective tissues with the exception of very few tissues such 

as hyaline cartilage, brain, and vitreous body. The collagen I triple helix is usually 

formed as a heterotrimer [α1(I)]2α2(I). In vivo the triple helix are mostly incorporated 

into composite fibres containing either type III collagen in skin and reticular fibres 

(Fleischmajer et al., 1990) or type V collagen in cornea, bone and tendon (Niyibizi et 

al., 1989). In most organs collagen I provides tensile stiffness and load bearing. 

However, the homotrimers consisting of three α1(I) chains, [α1(I)3] (Bornstein and 

Sage, 1980; Deak et al., 1983; Kadler et al., 2007; Kielty et al., 1993) have been 

shown to be present during embryogenesis (Jimenez et al., 1977), in tumors (Moro 

and Smith, 1977; Rupard et al., 1988; Makareeva et al., 2010), fibrotic tissues 

(Rojkind et al., 1979; Narayanan et al., 1980; Ehrlich et al., 1982; Philips et al., 2002) 

and in stressed mesangial cells (Haralson et al., 1987). Recent finding revealed that 

the type I collagen homotrimers are much more resistant to degradation by matrix 
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metalloproteinase (MMPs) than the heterotrimers (Makareeva et al., 2010; Han et al., 

2010). 

 

2.3.1.2 Type V collagen  
Type V collagen is a quantitatively minor fibrillar collagen present in tissues where 

type I collagen is expressed. There are several type V collagen isoforms that differ in 

chain composition. The most common isoform found in cornea is [α1(V)]2α2(V) (Birk 

et al., 1988; Birk and Linsenmayer, 1994). The native, completely-processed type V 

collagen molecule, as extracted from tissues, retains a large pepsin-sensitive, 

globular domain at the NH2-terminal end of its α1(V) chain (Bächinger et al., 1982; 

Broek et al., 1985; Fessler et al., 1985, 1987; Kumamoto et al; 1981). When co-

assembled along with type I collagen into heterotypic fibrils, collagen V serves to 

regulate fibril diameter via partially processed NH2-terminal globular sequences. 

Because of the high content (15-20% of the fibrillar collagens) of corneal collagen 

fibrils, collagen V is considered to be responsible for the thin, uniform diameter (Birk 

et al., 1990; Marchant et al., 1996). However, an [α1(V)]3 homotrimer as well as an 

[α1(V)α2(V)α3(V)] form have been reported in human placenta (Sage and Bornstein, 

1979; Madri et al., 1982; Niyibizi et al., 1984). Type V collagen α chains also form 

heterotypic molecules with type XI collagen α chains. The α1(V) and α2(V) has been 

detected additionally to α1(XI) in bovine bone (Niyibizi and Eyre, 1989), whereas, in 

the bovine vitreous, the α2(V) coexist with the α1(XI) chain (Mayne et al., 1993). The 

formation of heterotypic [α1(XI)]2α2(V) molecules were demonstrated to occur in the 

human rhabdomyosarcoma cell line A204 (Kleman et al., 1992). A novel α4(V) chain 

is solely synthesized by Schwann cells and the α4(V)-collagen exhibits particular high 

affinity for the heparan sulfate transmembrane proteoglycan syndecan-3 via a 

heparin binding site located in the variable region of the N-propeptide (Mechanic et 

al., 1987). 

 

2.3.1.3 Type VI collagen  
Type VI collagen is a nonfibrillar collagen present as a network throughout many 

tissues including the chick embryo secondary corneal stroma. It is initially defined as 

a large collagenous glycoprotein composed of three different α-chains, the α1(VI), 

α2(VI), and α3(VI) chains (Kielty et al., 2002; Chu et al., 1987). Collagen VI 

monomers have a relatively short triple helical domain flanked by N- and C-terminal 
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globular domains which contain varying numbers of “von Willebrand type A repeats” 

(VWA). The structural heterogeneity of collagen VI is introduced by alternative 

splicing of domains, primarily of the α3(VI) N-terminal domain containing a maximum 

of ten type A repeats. It is now known that three additional chains, 

α4(VI),α5(VI),α6(VI), exist in mouse. All three are similar to the α3(VI) chain. 

Orthologs of α5(VI) and α6(VI) have been found in human (Fitzgerald et al., 2008; 

Gara et al., 2008). The α4 chain forms trimers far more frequently than the α5 and α6 

chains in mouse whereas it does not exist in humans. In human the α5 is equivalent 

to the α4 in mouse (Gordon, 2010). 

 

Collagen VI has a ubiquitous distribution in connective tissues. The assembly of 

collagen VI monomers is initiated in the lumen of intracellular compartments. 

Tetramers are secreted and are the building blocks that assemble extracellularly into 

the tissue forms of type VI collagen. In the ECM, tetramers associate end-to-end 

forming beaded filaments, which laterally associate to form beaded microfibrils 

(Bruns et al., 1986; Furthmayr et al., 1983; Baldock et al., 2003).  

 

Collagen VI interacts with a large number of ECM molecules including collagen I, II, 

IV, XIV, microfibril-associated glycoprotein (MAGP-1), perlecan, decorin, biglycan, 

hyaluronan, heparin and fibronectin as well as integrins and the cell-surface 

proteoglycan NG2. Supramolecular aggregates of collagen VI are composite 

structures with other integrated molecules modulating the functional properties of the 

collagen VI-containing suprastructure (Birk and Bruckner, 2005). Studies on corneal 

fibroblasts showed that collagen VI is associated with cells and between striated 

fibrils forming a network around fibrils and close to corneal fibroblasts (Doane et al., 

1992). It was suggested that type VI collagen plays a role in cell-matrix interactions 

during corneal stroma development. 

 

2.3.2 Keratin 
Keratins are a group of water-insoluble proteins that form 10 nm intermediate 

filaments in all epithelial cells. Approximately 30 different keratin molecules have 

been identified (Moll et al., 1982; Cooper et al., 1996), with a range of molecular 

masses between 40 and 80 kDa (Franke et al., 1981). The keratins can be divided 

into two subfamilies: the acidic or type I and the basic or type II (Schiller et al., 1982). 
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Each acidic keratin is preferentially co-expressed with a particular basic keratin, 

forming a keratin pair. Different pairs are expressed in a tissue-specific, 

differentiation-related and developmentally regulated fashion (Kurpakus et al., 1992; 

Liu et al., 1993; Moll et al., 1982; Fuchs et al., 1978). Expression of the keratin 

3/keratin 12 pair has been found in human, bovine, guinea pig, rabbit, and chicken 

cornea and is regarded as a biochemical marker for an advanced stage of “corneal-

type” epithelial differentiation (Cooper et al., 1996; Chaloin-Dufau et al., 1990; 

Schermer et al., 1986; Sun et al., 1984). 

 

2.3.3 Fibronectin 
Fibronectin (FN) is a ubiquitous component of the ECM and has been well 

characterized as an ECM glycoprotein that can regulate many cellular functions such 

as proliferation, differentiation, migration, adhesion and apoptosis (Pankov and 

Yamada, 2002; Magnusson and Mosher, 1998; Wierzbicka-Patynowski and 

Schwarzbauer, 2003; Mosher, 1989; Hynes, 1990). FN is secreted as a large dimeric 

glycoprotein with subunits that range in size from 230-270 kDa depending primarily 

on alternative splicing (Hynes, 1990; Mosher, 1989). It was categorized as either 

soluble plasma FN (pFN) or insoluble cellular FN (cFN) (Pankow and Yamada, 2002; 

ffrench-Constant, 1995; Kosmehl et al., 1996). The cellular FN is the major form and 

abundant in the fibrillar matrices of most tissues. FN is composed of three different 

types of modules termed type I, II and III repeats (Petersen et al., 1983; Hynes, 

1990). The domain organization and isoforms of FN were reviewed in Figure 2-4. 

 

                
 
Figure 2-4. Fibronectin (FN) domain organization and isoforms. Each FN monomer has a 
modular structure consisting of 12 type I repeats (cylinders), 2 type II repeats (diamonds), 
and 15 constitutive type III repeats (hexagons). Two additional type III repeats (EIIIA and 
EIIIB, green) are included or omitted by alternative splicing. The third region of alternative 
splicing, the Vregion (green box), is included (V120), excluded (V0), or partially included 
(V95, V64, V89). Sets of modules comprise domains for binding to other extracellular 
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molecules as indicated. Domains that are required for fibrillogenesis in red: the assembly 
domain (repeats I1-5) binds FN, III9-10 contains the RGD and synergy sequences for integrin 
binding, and the carboxy-terminal cysteines for the disulfide bonded FN dimer ( ). The III1-2 
domain (light red) has two FN binding sites that are important for fibrillogenesis. The amino-
terminal 70 kDa fragment contains assembly and gelatin-binding domains and is routinely 
used in FN binding and matrix assembly studies (Schwarzbauer and DeSimone, 2011). 
 

FN accomplishes diverse functions through interactions with a large variety of 

proteins including collagens, fibrin, cell surface integrins, heparan sulfate 

proteoglycans, and tenascin-C. In tissues, activated FN is deposited and organized 

into a polymeric matrix which is associated with collagen fibers. FN matrix was 

proposed to act as a scaffold to regulate the deposition and assembly of type I and III 

collagens (Velling et al., 2002; Sottile et al., 2002). In the context of the findings of 

the most performed in this PhD-project, the following observations are of particular 

interest. It has been demonstrated previously that lysyl oxidase (LOX) has a high 

binding affinity for cellular FN. FN acts as a scaffold for enzymatically active 30-kDa 

LOX. The co-localization of LOX and FN in cultured fibroblasts and normal human 

tissues has been revealed. Additionally, the proteolytic activation of LOX is much 

reduced in cultures of FN-null mouse embryo fibroblasts (Fogelgren et al., 2005). A 

recent study showed that FN binds bone morphogenetic protein-1 like (BMP1-like) 

proteinases in vivo and it is an important determinant of the in vivo activity levels of 

BMP1-like proteinases (Huang et al., 2009). This conclusion implies a crucial regular 

function of FN on LOX activity because BMP1 is required for LOX activation. As fibrin 

polymerizes, factor XIII transglutaminase covalently cross-links glutamine residues 

near the amino terminus of FN to fibrin α chains (Corbett et al., 1997; Mosher, 1975). 

The gelatin/collagen-binding domain, which composed of type I and II modules, binds 

to tissue transglutaminase (Radek et al., 1993) and fibrillin-1 (Sabatier et al., 2009).  

 

2.3.4 Decorin 
Decorin, a member of a family of proteins with leucine-rich repeat (LRR) motifs, is a 

ubiquitous small ECM proteoglycan. It is composed of a ~40 kDa core protein 

containing 10 leucine-rich-repeats flanked by cysteine loops on both sides and 

contains N-linked glycosylation sites (Krusius and Ruoslahti, 1986) (Fig. 2-5). 

Furthermore, at the N-terminus decorin is covalently linked with a glycosaminoglycan 

(GAG) chain of chondroitin/dermatan sulfate type depending on the tissue in which it 

is expressed (Seidler and Dreier, 2008). 
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Figure 2-5. Domain structure of the decorin protein core. From N- to C-terminus: signal 
peptide (SP); propeptide (PP); the glycosaminoglycan attachment site at a serine residue in 
the N-terminal Cys-rich domain; central LRR repeats; C-terminal Cys-rich domain. There are 
3 N-linked oligosaccharide attachment sites in the LRR domains (Chen and Birk, 2011). 
 

Decorin is thought to be responsible for the structure, tissue organization and surface 

properties of fibrils. It was shown to associate with collagen fibrils in a number of 

connective tissues (Pringle et al., 1990; Fleischmajer et al., 1991; Scott et al., 1992). 

It was given the name decorin since it decorates the surface of fibrils at the “d” and 

“e” bands with its GAGs extending into the interfibrillar space (Pringle and Dodd, 

1990). Decorin binds to collagens I and II via its core protein and inhibits collagen 

fibril formation in vitro (Vogel et al., 1984; Hedbom et al., 1989). The influence of 

decorin on collagen I fibrillogenesis in vitro was assigned to a delayed initial 

assembly of collagen molecules and a decreased fibril diameter (Vogel and Trotter, 

1987). This interaction occurs mainly via the leucine-rich repeats 4-5 of the decorin 

core protein (Svensson el al., 1995). Furthermore, decorin bridges type VI collagen 

filaments to fibrils (Bidanset et al., 1992) and also acts as a bridging molecule 

between type I and type VI collagen, interacting with them via different binding sites 

(Nareyeck et al., 2004). In addition, decorin interacts with collagen types XII and XIV 

through its GAG chains and mediates the interaction of tenascin with collagen (Font 

et al., 1993, 1996). All of these interactions are possibly involved in the corneal 

stroma organization. In addition to the closely related class I small leucine-rich 

proteoglycan (SLRP), biglycan, data indicate that decorin is the dominant corneal 

class I SLRP and a major regulator of corneal fibrillogenesis (Zhang el al., 2009). 

 

Decorin has also multiple non-structural functions: it binds to growth factors such as 

TGF-ß and FGF-2, and sequesters them in the ECM or presents them to receptors. It 

also modulates the TGF-ß signal pathway through the LRP1 receptor, inhibiting cell 

growth and increasing ECM deposition (Winnemoller et al., 1992). Moreover, decorin 

binds fibronectin and thrombospondin modulating cell adhesion and migration 

(Hildebrand et al., 1994; Iozzo et al., 1999). Also, decorin can modulates cell 
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immunity via binding of the complement, factor C1q, scavenger receptor-A or 

surfactant-associated protein-D. These interactions are consistent with decorin´s 

involvement in diverse pathological processes (Schaefer and Iozzo, 2008). 

 

2.3.5 Hydroxyproline 
Hydroxyproline is a non-proteinogenic amino acid, which is produced by post-

translational hydroxylation of the amino acid proline. In contrast to other mammalian 

proteins, collagen contains a high concentration of hydroxyproline, which is thought 

to be confined exclusively to the connective tissue seleroproteins, collagen and 

elastin (Gross and Piez, 1960). Therefore, hydroxyproline has been widely used as 

an indicator of both the presence and the metabolism of collagen. 

 

2.4 COLLAGEN CROSS-LINKING 
Collagens must be cross-linked to exhibit the normal physical properties of tensile 

strength and different tissue types showed distinctive pattern of cross-linking 

chemistry. ECM cross-linking can result from the enzymatic activity of lysyl oxidase, 

tissue transglutaminase (Aeschlimann and Paulsson, 1991), or nonenzymatic 

glycation (Girton et al., 1999). 

 

2.4.1 Lysyl oxidase 
Lysyl oxidase (LOX) is a copper-dependent amine oxidase. It is responsible for the 

oxidative deamination of key lysine residues in collagen and elastin prior to cross-link 

formation, and plays a pivotal role in the formation of a stable, insoluble ECM. LOX 

catalyzes the formation of ε-aldehydes in collagen and elastin from certain lysyl and 

hydroxylysyl residues (Siegel and Martin, 1970; Rodriguez et al., 2008) (Figure 2-6). 

These aldehydes, allysine and hydroxyallysine, are intermediates in formation of 

intra- and intermolecular cross-links. The LOX-catalyzed crosslinks occur in various 

connective tissues within the body, including bone, cartilage, skin, lung etc., and are 

believed to be a major source of mechanical strength in tissues. LOX is secreted 

from fibrogenic cells as a 50 kDa, N-glycosylated pro-enzyme, and is processed in 

the extracellular environment to produce the active, mature 32-kDa enzyme and an 

18 kD propeptide (Trackman et al., 1992). The pathway of LOX synthesis and its 

intra- and extracellular functions are illustrated in figure 2-7. The sequence of the 

proteolytic processing site in pro-lysyl oxidase resembles that of the fibrillar 



INTRODUCTION 

	
   23	
  

procollagen C-terminal pro-peptide processing sites cleaved by procollagen C-

proteinase (PCP) (Cronshaw et. al., 1995), whose activity is provided by products of 

the bmp1 (Bone Morphogenetic Protein 1) gene (Kessler et al., 1996). Moreover, 

preparations highly enriched in PCP activity have been shown to process pro-lysyl 

oxidase at the correct physiological site (Panchenko et al., 1996). 

 

                      
 
Figure 2-6. Reaction catalysed by lysyl oxidase (LOX). LOX oxidizes primary amines on 
collagen and elastin substrates to reactive semialdehydes that condense to form covalent 
cross-linkages (Rodriguez et al., 2008). 
 
 

                    
 
 
Figure 2-7. Lysyl oxidase (LOX) synthesis and intra- and extracellular functions. LOX is 
synthesized as a pre-protein, and after signal peptide hydrolysis, enzyme glycosylation, 
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copper incorporation, and lysine tyrosylquinone (LTQ) generation, the enzyme is released 
into the extracellular space (1). Then, BMP-1 processes LOX yielding the mature LOX form 
and its pro-peptide. Whereas LOX participates in ECM stabilization, its propeptide induces 
phenotypic reversion of ras-transformed cells. Extracellular LOX could translocate from the 
extracellular environment to intracellular compartments (2). In tumour breast cells, cytosolic 
LOX controls cell adhesion and motility (3). Nuclear forms of lysyl oxidase control gene 
expression (4). Histones H1 and H2 could be nuclear substrates of this enzyme (Rodriguez 
et al., 2008). 
 

Transforming growth factor-ß (TGF-ß), platelet-derived growth factor, angiotensin II, 

retinoic acid, fibroblast growth factor, altered serum conditions, and shear stress is 

among the effectors or conditions that regulate LOX expression. Besides its role in 

connective tissues, LOX enzyme promotes growth, migration, invasion and 

metastasis of tumor cells, especially in response to hypoxia (Erler et al., 2006). 

Moreover, LOX has also been involved in non-tumoral processes, including the 

control of cell adhesion, gene regulation (Giampuzzi et al., 2003) and differentiation, 

within various cell types such as osteoblasts, adipocytes and keratinocytes (Huang et 

al., 2009). 

 

The lysyl oxidase gene family comprises five members acting as extracellular 

modulating enzymes: LOX, LOXL1, LOXL2, LOXL3 and LOXL4. The LOXL1-4 (lysyl 

oxidase like proteins) have significant sequence identity with mature LOX, but have 

no similarity to the propeptide region of LOX (Csiszar et al., 2001). The first identified 

isoform is LOX. LOX activity modulation induces multiple effects on the structure and 

major characteristics of the ECM. For example, LOX is essential in maintaining the 

characteristics of blood vessels and arteries (Rodriguez et al., 2002). The down-

regulation of LOX is correlated to many connective tissue disorders seen in Ehler-

Danlos syndrome (Kuivaniemi et al., 1985), cutis laxa (Khakoo et al., 1997), and 

Menke´s syndrome (Pinnel et al., 1982). In tumors, LOX up-regulation is found in the 

stromal reaction observed around tumor foci in ductal breast carcinomas and in 

bronchopulmonary carcinomas (Peyrol et al., 2000). LOX-null animals die late in 

gestation or soon after birth and exhibit a wide range of connective tissue 

abnormalities (Maki et al., 2002; Hornstra et al., 2003). 

 

LOX activity was originally detected by a tritium release assay in which chick aorta 

elastin labeled with [6-3H]lysine in organ culture was used as a substrate (Pinnell and 

Martin, 1968) (Fig. 2-8). Tritium was released as aldehydes formed under the 
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influence of LOX. This reaction was inhibited by micromolar concentrations of β-

aminopropionitrile (ßAPN). It has been mentioned that LOX activity with collagen 

substrates was significantly increased when collagen was precipitated from solution 

as reconstituted fibrils (Siegel et al., 1974). It also has been shown that the enzyme 

binds to the triple-helical portion of collagen melecules and binds predominantly to 

the fibrillar surface. Other data indicated that LOX initiates crosslink formation at an 

early stage in collagen fibrillogenesis (Cronlund et al., 1985). 

 

                       
 
Figure 2-8. Measurement of LOX activity: release of tritium during allysine formation (Pinnell 
and Martin, 1968). 
 

The β-aminopropionitrile (ßAPN) (Fig. 2-9) was initially found and identified in 

Lathyrus odoratus peas and it caused osteolathyrism in sheep (Geiger et al., 1933; 

McKay et al., 1954). In 1961 it was understood that ßAPN inhibited collagen and 

elastin cross-linking in some way (Martin et al., 1961); and Pinnell and Martin later 

reported that ßAPN inhibited an enzyme that catalyzed oxidative deamination of 

lysine residues in elastin, and named it lysyl oxidase (Pinnell and Martin, 1968). 

 

                                          
 
Figure 2-9. Chemical structure of β-aminopropionitrile. 
 
2.4.2 Tissue transglutaminase 
Tissue transglutaminase (TG), also known as TG2, belongs to a family of structurally 

and functionally related enzymes (Aeschlimann et al., 1994) which catalyze Ca2+-

dependent acyl-transfer reactions between the γ-carboxamide group of specific 

peptide-bound glutamine residues and primary amines, including the ε-amino group 

of peptide-bound lysine. These reactions lead to the formation of the γ-glutamyl-ε-

lysine cross-link which is stable and resistant to proteolysis, thereby increasing the 



INTRODUCTION 

	
   26	
  

resistance of tissue to chemical, enzymatic and mechanical disruption. TG catalyzed 

cross-linking is a physiological mechanism for the stabilization of basement 

membranes and cartilage matrix (Aeschlimann et al., 1994; 1995). Several collagen 

types (II, V/XI, VII, the N-propeptide of procollagen III) and a number of other 

extracellular proteins (fibronectin, nidogen, osteonectin, osteopontin, vitronectin and 

microfibril associated glycoprotein) are glutaminyl substrates of TG in vitro and/or in 

vivo (reviewed in Aeschlimann et al., 1994; Brown-Augsburger et al., 1994; Kleman 

et al., 1995; Raghunath et al., 1996). There are currently eight described 

transglutaminase enzymes in mammals, all of them require Ca2+ for activity, some 

also require proteolytic cleavage of propeptides, and three of them (TG2, TG3 and 

TG5) are inhibited by GTP (R.J. Collighan and M. Griffin, 2009). In vertebrates nine 

evolutionary related genes have evolved: encoding blood coagulation Factor XIII-a, 

TG1-7 and the inactive epb42 (Grenard et al., 2001). TG2 is predominantly a 

cytoplasmic protein, but it is also found in the nucleus and mitochondria, on the 

plasma membrane and the extracellular cell surface, and in the ECM (Park et al., 

2010). 

 

Due to low-GTP and high-calcium concentrations in the extracellular space, it is 

conceivable that extracellular TG2 is an active TGase. Data suggest that the TGase 

activity is involved in remodeling of the ECM under normal and pathological 

circumstances. Besides its classical protein cross-linking activity, TG2 possesses 

several other biochemical functions at various cellular locations (Fig. 2-10). It can 

function as a G protein (high-molecular weight GTP-binding protein) (Nakaoka et al., 

1994), also has protein disulfide isomerase (PDI) (Hasegawa et al., 2003), protein 

kinase (Mishra et al. 2007) and DNA nuclease activities (Takeuchi et al., 1998). This 

multifunctional protein is expressed ubiquitously and abundantly, and is implicated in 

a variety of cellular processes, such as differentiation, cell death, inflammation, cell 

migration, and wound healing (reviewed in Fesus and Piacentini, 2002; Lorand and 

Graham, 2003; Fesus and Szondy, 2005; Ientile et al., 2007; Collighan and Griffin, 

2009; Sarang et al., 2009). Beyond its functional diversity, TG2 has both pro-and 

anti-apoptotic functions (Fesus and Szondy, 2005). Although it has been initially 

studied as an intracellular enzyme, TG2 is secreted into the extracellular space or 

onto the cell surface (Verderio et al., 1998; Gaudry et al., 1999). Cell-surface TG2 is 

proposed to be an important tissue-stabilizing enzyme that is active during wound 
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healing (Haroon et al., 1999). Cell surface TG2 is also involved in cell adhesion via its 

tight interaction with fibronectin and the resultant intracellular signaling effects are 

reported to be mediated by various β1 and β3 integrins (Gaudry et al., 1999). Since 

the assembly of fibronectin is the initiator for a number of other ECM structures such 

as fibrillin1, TG2 has the potential to play a major role in initial assembly of the ECM, 

not just in modification of the existing ECM. TG2, once deposited into the matrix and 

in complex with fibronectin, can also bind to the heparan sulphate chains of 

syndecan 4 on the cell surface (Verderio et al., 2003). Therefore, TG2 may mediate 

cell-ECM interactions. 

 

             
 
Figure 2-10. Biochemical activities of TG2. TG2 catalyzes Ca2+-dependent acyl-transfer 
reaction between γ-carboxamide group of a specific protein-bound glutamine and either the 
ε-amino group of a distinct protein-bound lysine residue (covalent protein crosslinking; the 
principal in vivo activity) or primary amines such as polyamines and histamine. Water can 
replace amine donor substrates, leading to deamidation of the recognized glutamines. TG2, 
similar to factor XIIIa, has Ca2+-dependent isopeptidase activity and at least under test tube 
conditions, can hydrolyse γ:ε isopeptides. TG2 can be exposed on the external leaflet of the 
plasma membrane. The presence of TG2 outside the cell has been proposed to depend on 
its interaction with fibronectin and integrins. TG2 binds and thereby activates phospholipase 
C following stimulation of several kinds of cell surface receptors; its endogenous GTPase 
activity ensures proper regulation of transmembrane signalling through these receptors. 
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Functions of TG2 are performed in the cytosol (C), the nucleus (N), at the cell membrane (M) 
and in the extracellular space (E). Except for its isopeptidase activity, all other functions have 
been shown to occur in intact cells and/or tissues (Fesus and Piacentini, 2002). 
 

The Boc-DON-Gln-lle-Val-OMe, a synthetic modified polypeptide produced by 

ZEDIRA GmbH, is a potent, active site directed inhibitor of tissue transglutaminase 

(Fig. 2-11). The reaction results in an alkylation of active site cysteine which 

irreversibly inhibits the activity of TG2. It has been proven that this peptide showed a 

selective reaction with the cysteine residue in the active site of TG2. 

 

                                 
 
Figure 2-11. Chemical structure of Boc-DON-Gln-lle-Val-OMe. 

 
2.4.3 Factor XIII 
Factor XIII, also known as fibrin-stabilizing factor, is a plasma TGase, and circulates 

in blood as a pro-transglutaminase. It consists of two potentially active a- subunits 

and two inhibitor/carrier b-subunits. XIII-a is synthesized in cells of bone marrow 

origin, whereas XIII-b is produced in the liver by the hepatocytes. In normal 

conditions, all FXIII-a present in the plasma is in a complex, whereas FXIII-b is in 

excess, and about 50% of it circulates as a free, uncomplexed protein (Karimi et al., 

2009). The enzyme precursor factor XIII can be activated by thrombin and Ca2+ in the 

final phase of the clotting cascade. The activation that immediately follows fibrin 

formation is a process to unmask the active site of factor XIII-a, a ε-lysyl-γ-glutamyl 

aminoacyl transferase. It is capable of cross-linking a growing list of proteins, not only 

within plasma, but also proteins within the vascular matrix, platelets, endothelial cells 

and monocytes (Hsieh and Nugent, 2008). A number of other proteins are known to 

be substrates of factor XIII: plasminogen-activator inhibitor type-2, osteopontin, 

lipoprotein, platelet vinculin, factor V, thrombospondin, etc., are also reported to 

become substrates for activated XIII in vitro (Ichinose, 2005). 
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Accordingly, the main hemostatic functions of FXIII-A are to form fibrin γ-chain 

dimers, to cross-link its α-chains into high-molecular-weight polymers, and to attach 

α2 plasmin inhibitor to fibrin α-chains. In this process, FXIIIa mechanically stabilizes 

the fibrin clot and protects it from shear stresses and from the prompt degradation by 

the fibrinolytic system. A recent review provides further details on the key regulatory 

role of FXIII in fibrinolysis (Muszbek et al., 2008). In addition to the above functions, 

FXIII is also involved in wound healing (Duckert et al., 1960), angiogenesis (Dardik et 

al., 2006), and is essential for maintaining pregnancy (Koseki-Kuno et al., 2003). The 

enzyme promotes clot stability by forming covalent bonds between fibrin molecules 

and also by cross-linking fibrin with several proteins including α2-plasmin inhibitor, 

fibronectin, and collagen. These reactions lead to an increase in the mechanical 

strength, elasticity and resistance to degradation by plasmin of fibrin clots, and 

promotion of wound healing by providing a scaffold for fibroblasts to proliferate and 

spread. 

 

2.5 TISSUE-SPECIFIC FIBRIL ORGANIZATION  
The characteristics of different extracellular matrices are determined by the 

synthesis, assembly and deposition of collagen molecules and their organization into 

unique macromolecular structures. Fibrillar collagen molecules are organized into 

fibrils, which are organized into tissue-specific macroaggregates such as regular 

layers in cornea and bone, cables in tendon and ligaments, or irregular layers or 

wickerwork in dermis. At each level of this hierarchy the collagen fibrils have tissue 

specific characteristics, i.e. fibril diameter, packing and organization.  

 

2.5.1 Cornea 
The cornea is the transparent front part of the eye that comprises a highly structured, 

membrane bound, transparent collagenous tissue, which joins the more disorganized 

and opaque sclera at the limbus. The native cornea provides three fundamental 

functional attributes to the ocular optical system: protection, transmission and 

refraction of the incident light to the retina. It consists primarily of three layers: an 

outer layer containing an epithelium, a middle stromal layer consisting of a collagen-

rich ECM interspersed with keratocytes and an inner layer of endothelial cells (Fig. 2-

12). The Bowman’s membrane is a thin acellular matrix, which lies subjacent to the 

corneal epithelium and its basement membrane. It contains also fibrils thinner than 
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those of the stroma (Hay and Revel, 1969), and shows strong immunofluorescence 

for type V collagen without unmasking (Linsenmayer et al., 1983, 1984; Birk et al., 

1986). The Descemet’s membrane is a thin acellular layer that serves as the modified 

basement membrane of the corneal endothelium, is composed mainly of collagen 

type IV-containing networks. At the heart of the cornea is the stromal tissue that 

comprises 90% of the total thickness of cornea. As the major protein component of 

the stroma, collagens comprise 71% of the dry weight (Newsome et al., 1981). The 

corneal stroma is unique in having a homogeneous distribution of small diameter (25-

30 nm) fibrils that are regularly packed within orthogonal layers, called lamellae. This 

lattice-like structure produces minimal light scattering to provide transparency 

(Maurice, 1957; Benedek, 1971).  

 

                             
 
Figure 2-12. The left panel is a light micrograph of a developmentally mature cornea. The 
right panels are electron micrographs of portions of Bowman´s membrane (top), the stroma 
proper (middle), and Descemet´s membrane (bottom) (Linsenmayer et al., 1998). 
 

The ECM of the corneal stroma consists primarily of collagens with lesser amounts of 

proteoglycans. Type I collagen is the predominant collagen of the cornea, which 

assembles with collagen V (10-20% of the total collagen) to form heterotypic fibrils 
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(Birk et al., 1986). However, the heterotypic type I/V collagen fibrils of corneal stroma 

show different distribution of both collagen types within the fibrils. The triple helical 

domain of type I molecules occurs both within the fibril and at the fibril´s surface, 

whereas the triple helical domain of most type V collagen molecules is buried within 

the fibril´s interior. Moreover, type V molecules have a large NH2-terminal domain 

(globular domain derived from α1(V) chains) extending outwards through a gap zone 

to the fibril´s surface (Linsenmayer et al., 1993). These collagen I/V fibrils interact 

with FACIT collagens, type XII and/or XIV depending on developmental stage. In 

addition, the small leucine rich proteoglycans, decorin, lumican, biglycan, keratocan 

and osteoglycine interact with the fibril surface (Fig. 2-13) (Birk and Bruckner, 2005). 

 

                     
 
Figure 2-13. Corneal fibril: (A) corneal fibrils are heterotypic, co-assembled from collagens I 
and V. Collagen V is a quantitatively minor component of most collagen I-containing fibrils. It 
has a retained N-terminal, non-collagenous domain that must be in/on the gap region/fibril 
surface. The heterotypic interaction is involved in efficient initiation of fibril assembly; (B) the 
heterotypic alloy forms the core of a composite fibril with fibril-associated leucine-rich repeat 
proteoglycans and FACIT collagens bound to the surface. While the heterotypic composition 
is relatively constant, the fibril-associated macromolecules are more dynamic, changing 
temporally during development or repair and spatially in different tissues/tissue domains (Birk 
and Bruckner, 2005). 
 
2.5.2 Tendon  
Tendons are collagen-based fibrous tissues that connect and transmit forces from 

muscle to bone (Birk and Trelstad, 1986; Carvalho et al., 2000). They are composed 
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of closely packed parallel collagen fibre bundles, have high tensile strength and 

function to transmit forces and stabilize joint structures (Birk and Trelstad, 1986; 

Erksen et al., 2002; Edom-Vovard and Duprez, 2004). The fibril bundles together with 

the tendon fibroblasts are organized into fascicles, and the fascicles are bound 

together in a connective tissue sheath to form a tendon (Kastelic et al., 1978; Birk 

and Trelstad, 1986; Birk and Mayne, 1997; Birk et al., 1990) (Fig. 2-14). 

 

              
 
Figure 2-14. Structural hierarchy of tendon: collagen molecules aggregate to form fibrils; 
fibrils group together to form fibers; fibers bundle together to form fascicles; fascicles group 
together to form tertiary fiber bundles which act as the primary tendon unit. Connective tissue 
called endotenon surrounds the bundles and fascicles. Although the diagram does not show 
fibril subunits, collagen fibrils appear to be self-assembled from intermediates that may be 
integrated within the fibril (modified from Silver et al., 2003).  
 

Tendon consists predominantly of collagen type I, and to a lesser degree other 

fibrillar (type III and V) and non-fibrillar collagens (type XII and XIV), proteoglycans 

and glycoproteins. Both collagen V and III form heterotypic alloys with collagen I and 

have the retained/slowly processed N-terminal domains typical of the regulatory fibril-

forming collagens. During tendon development, there are at least three distinct steps 

in fibrillogenesis: molecular assembly of collagens, linear growth step; and lateral 

growth step (Fig. 2-15). Tissue-specific fibrillogenesis would involve the independent 

regulation of each step. During tendon development there are changing expression 

patterns for FACIT collagens and the leucine-rich proteoglycans (Ezura et al., 2000; 
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Young et al., 2000; Zhang et al., 2003). For example, the expression level of collagen 

XIV, biglycan and lumican changed drastic from early development to maturation of 

tendon. In the absence of any of the four proteoglycans the regulation of fibril growth 

in tendon is abnormal (Danielson et al., 1997; Jepsen et al., 2002; Young et al., 

2000). 

 
Figure 2-15. Tendon fibrillogenesis. (A) Molecular assembly 
of type I and III and/or V collagens generates the fibril 
intermediate. It can be hypothesized that heterotypic 
interactions are a mechanism regulating this assembly step. 
(B) In the linear growth step, the intermediates in (A) grow by 
end-to-end growth to generate longer fibrils. Alterations in 
molecular interactions, at the α and β ends of the 
intermediate, initiate and control this growth. (C) In the lateral 
growth step, there is a lateral association and growth of the 
developing fibrils. Alterations in interactions mediated by 
fibril-associated molecules (ovals) along the main fibril shaft 
regulate this step (Zhang etl al., 2005). 
 
 
 

 

In tendons, collagen fibrils are dense, well organized and aligned in parallel along the 

main axis of tension (Kastelic et al., 1978). In contrast to the cornea, the collagen 

fibrils in tendon have significant increases in diameter during development and 

growth, which supplying stability and tensility of tendon. Particularly, the parallelism 

of tendon fibril formation is determined by the late secretory pathway and interaction 

of adjacent membrane protrusions to form extracellular channels called fibripositors. 

There are two models described about fibripositor formation during collagen 

fibrillogenesis in tendon according to the Birk model and Kadler model (Birk and 

Trelstad, 1986; Canty et al., 2004; Richardson et al., 2007). Moreover, it has been 

shown that actin filaments are required for fibripositor-mediated collagen fibril 

alignment in tendon (Canty et al., 2006) 
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3. AIM OF THE PRESENT STUDY 
 
This present study has the aim to understand the relationship between cross-link 

formation and collagen fibril organization in chicken embryonic cornea and tendon. 

The fibrillar organizations in cornea and tendon are vastly different although both 

tissues contain collagens I and V as their major collagenous components. Collagens 

have to be cross-linked to exhibit the normal physical properties, in which all the fibril-

forming collagens (types I, II, III, V, and XI) and the fibril-associated type IX collagen 

rely on this mechanism of cross-linking to provide tissue structural integrity and 

material function (Eyre et al., 2005). Therefore, it is interesting to investigate the 

collagen fibril organization in embryonic chicken at the tissue level, employing a 3D 

cell culture system with and without cross-link formation using cross-link-specific 

enzyme inhibitors. The objectives of this study were the following: 

 

(i)     To prepare 3D cell cultures of fibroblasts isolated from chicken embryonic 

cornea or tendon with or without cross-link formation.  

 

(ii)     To obtain collagenous matrices from 3D culture. 

 

(iii)    To check the suprastructural organization and macromolecular components of 

matrices with or without cross-link formation by transmission- and immuno-gold 

electron microscopy. 

 

(iv)  To determine the existence of cross-link as well as the relevant enzyme activity 

during ECM formation. 

 

(v)   To supplement the data from cell-culture-system with in-vitro fibrillogenesis 

experiments. 
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4 MATERIALS AND METHODS 
4.1 CHEMICALS AND ANTIBODIES  
4.1.1 Chemicals 

Name Supplier 

L-proline, [14C(U)]- 0.1 mCi/ml Hartmann Analytic, Germany 

2-propanol Roth, Karlsruhe, Germany 

Acetic acid Merck, Darmstadt, Germany 

Alexa Fluor® 555 cadaverine, disodium salt Invitrogen 

Boc-DON-Gln-IIe-Val-OMe 

Tissue transglutaminase inhibitor 

ZEDIRA GmbH 

Bovine serum albumin (BSA) Sigma-Aldrich, Steinheim 

Calcium chloride Merck, Darmstadt, Germany 

CF626 radioactive molecular marker Amersham Biosciences, UK  

Coagulation factor XIII from human plasma 

Approximates 1,000 µg / 5,000 µg factor XIII 

ZEDIRA Gmbh 

Collagenase B 

0.191 U/mg lyo. from Clostridium histolyticum 

Roche Diagnostics GmbH, Germany 

Dimethylsulfoxide (DMSO) Merck, Darmstadt, Germany 

2,5-diphenyloxazol Sigma-Aldrich, Steinheim 

Dry skim milk Fluka Chemie GmbH, Switzerland 

Ethanol AppliChem, Darmstadt, Germany 

Ethylendiamine tetra acetic acid (EDTA) Fluka Chemie GmbH, Switzerland 

Fluoromount G Southern Biotech, USA 

Formaldehyde 8% Polysciences, Inc., Eppelheim, Germany 

Glutaradehyde 8% Polysciences, Inc., Eppelheim, Germany 

Glycerol Roth, Karlsruhe, Switzerland 

L-Cysteine Hydrochloride Monohydrate Sigma-Aldrich, Steinheim, Germany 

L-Lysine, [4,5-3H(N)]- 1.0 mCi/ml; 3.3 µg/ml Hartmann Analytic, Germany 

L(+)-Ascorbic acid Merck, Darmstadt, Germany 

LR-White Agar Scientific, Stansted, UK 

Lumasafe Plus LUMAC. LSC, Holland 

MEM Eagle w/Earle’s, L-Glutamine w/o 

Leucine, Lysine, Methionine (powder) 

USBiological 

Methanol AppliChem, Darmstadt, Germany 

Paraffin Roth, Karlsruhe, Germany 
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Penicillin / Streptomycin PAA Laboratories GmbH, Pasching 

Pepsin Serva, Heidelberg, Germany 

Polyacrylamide Roth, Karlsruhe, Germany 

Recombinant human tissue transglutaminase 

(His6-rhTG2), 250 µg / 1 mg dry substance 

ZEDIRA GmbH 

Roti-Histol Roth, Karlsruhe, Germany 

Sodium pyruvate Fluka Chemie GmbH, Switzerland 

Sodium chloride AppliChem, Darmstadt, Germany 

Sodium di-hydrogen phosphate dihydrate Merck, Darmstadt, Germany 

Sodium dodecyl sulphate (SDS) Serva, Heidelberg, Germany 

ß-Aminopropionitrile fumarate salt (BAPN) Sigma-Aldrich, Steinheim, Germany 

Thrombin, human plasma Calbiochem®, Germany 

Trichloro acetic acid (TCA) Merck, Darmstadt, Germany 

Tris (hydroxymethyl)-aminomethan MP Biomedicals, Eschwege, Germany 

Trypsin-EDTA PAA Laboratories GmbH, Pasching 

Uranyl acetate Merck, Darmstadt, Germany 

 
4.1.2 Antibodies 
4.1.2.1 Primary antibodies 

Protein 
Antibody 

Name/clone 

Immunofluorescence (IF), 

Western blot (WB),   

Immuno gold (EM), 

Immunohistochemistry 

(ICH) 

Donor 

aminal 

Reference/ 

Source 

Collagen I AB752P IF, WB, EM, ICH rb Chemicon 

Collagen VI 39 IF, WB, EM ms Developmental 

Studies 

Hybridoma Bank 

Fibronectin B3/D6 IF, WB, EM ms Developmental 

Studies 

Hybridoma Bank 

Cytokeratin AE1/AE3 IF, ICH ms Acris Antibodies 

Elastin MAB2503 IF, WB ms Chemicon 

Decorin CB-1-c IF, WB, EM ms Developmental 

Studies 

Hybridoma Bank 
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4.1.2.2 Secondary antibodies 
Name Reference/Source 

Alexa Fluor® 488, goat anti-rabbit IgG (H+L) Invitrogen 

CyTM3-conjugated AffiniPure Goat Anti-Mouse IgG (H+L) Jackson ImmunoResearch 

Colloidal Gold-AffiniPure Goat Anti-Rabbit IgG (H+L) (18nm) Jackson ImmunoResearch 

Colloidal Gold-AffiniPure Goat Anti-Mouse  IgG (H+L) (12nm) Jackson ImmunoResearch 

 
4.2 CELL CULTURE 
4.2.1 3D cell culture 
Fibroblasts were isolated from 17-day-old chicken cornea or tendon. After the 

dissection of the central parts of cornea, the tissues were washed 3 times in Krebs 

buffer (118 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 4.2 mM 

NaHCO3, 2 mM CaCl2, 10 mM glucose, 200 µM sodium pyruvate and 10 mM Hepes, 

pH 7.4). Subsequently, epithelial cells were removed from the tissue fragments by 

digestion in 0.25% (w/v) trypsin / 2mM EDTA solution in Krebs buffer for 15 min in 

Petri dishes. After 3 futher washing steps, the tissues were minced and matrix-free 

fibroblasts were obtained by incubation with 1mg/ml collagenase B (0.191 U/mg lyo. 

from Clostridium histolyticum, lyophilized, Roche, Germany) in DMEM supplemented 

with 10% FCS and 1% penicillin-streptomycin, added to avoid bacterial 

contamination. The dishes were kept overnight in a humidified-atmosphere incubator 

at 37°C and with 5% CO2. The cells then required 3 washing steps with DMEM and 

centrifugation (1000 rpm, 5 min, S4180, Beckman), and were resuspended in DMEM 

(10% FCS), counted in a Neubauer chamber, and distributed in a 24-well-plate 

(Nunc, Roskilde, Denmark) with a culture surface about 1.9 cm2 pro well. The cell 

density was about 2×105 pro well. Cells were cultured overnight and then 

supplemented with 0.14 mM L(+)-ascorbic acid, 1 mM sodium pyruvate and 1 mM L-

cysteine. The crosslink inhibitors were added to give final concentrations of 0.2 mM 

ßAPN and / or 5 µM TG-inhibitor (Boc-DON-Gln-Ile-Val-OMe, ZEDIRA GmbH). After 

14 days of cultivation the fibroblasts formed multilayer cell matrices which were 

removed from the wells with a spatula.   

 
4.2.2 Immunofluorescence of cell culture in µ-slides (ibidi) 
The ibidi µ-Slide VI0.4 is a 6-channel µ-slide, which is suitable for small-scale cell 

cultivation (30 µl channel volume) and multiple immunofluorescence staining (work 

principle see Fig. 4-1). Fibroblasts were taken up in 1 ml DMEM medium containing 
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10% FCS, 1% penicillin-streptomycin and counted using a Neubauer chamber. 30 µl 

cells were seeded into each channel at a density of 3×105 cells/ml and the slides 

were incubated at 37°C and with 5% CO2 for 2-3h. For each channel 90 µl cell-free 

medium (supplemented with 0.14 mM L(+)-ascorbic acid, 1 mM sodium pyruvate, 1 

mM L-cysteine, 0.2 mM ßAPN or / and 5 µM TG-inhibitor) was filled, for a further 

cultivation for 2-7 days until cells grew dense in each channel. 

 

                            
Figure 4-1. Work principle of ibidi-slide for immunofluorescence staining. 

 
4.3 PROTEIN CHEMISTRY 
4.3.1 Collagen purification 
An overview of the procedures used for collagen purification is shown in Figure 4-2. 

17-day-old embryonic chicken corneas were washed 3 times in PBS (20 mM sodium 

phosphate buffer, pH 7.4, containing 0.15 M NaCl). All of the following steps were 

performed at 4°C. Collagens were extracted in 15 volumes of 0.5 M acetic acid by 

stirring overnight. Supernatants (S1) were recovered by centrifugation (10,000 rpm, 

30 min, JLA10.500, Beckman). This step was repeated and the supernatants (S2) 

were combined. The whole supernatants (S1+S2) were again centrifugated (14,000 

rpm, 30 min, JA10.50, Beckman) and pellets were discarded. Subsequently, 25% 

[w/v] solid NaCl was dissolved in 0.5 M acetic acid (V = 25%(S1+S2)) and added into 

the crude mixture of collagens very slowly by stirring overnight. Total collagens (A) 

were obtained by centrifugation (10,000 rpm, 1.5 h, JLA10.500, Beckman) and 

dissolved in 0.05 M Tris-HCl, pH 7.4 containing 2 M urea, 0.2 M NaCl. Here, total 

collagens (A) were mixture of collagens and proteoglycans. 

 

For chromatographic separation, the crude collagen pellets were dissolved in 0.05 M 

Tris-HCl, pH 7.4, containing 2 M urea, 0.2 M NaCl. After dialysis against the same 

buffer the crude mixture was passed over a DEAE-cellulose column (3.5×21 cm, 200 
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ml, DE52; Whatman Ltd.), equilibrated with the same buffer. Total collagens (B) were 

recovered from the breakthrough fraction while other proteins containing 

proteoglycans (“rest”) were bound to the column. The column was eluted with buffer 

containing 1 M NaCl in order to discard the “rest” proteins from the column. The 

product was a mixture of total collagens (B) without proteoglycans. 

 

The total collagens (A) and (B) were dialyzed extensively against 100 mM Tris-HCl, 

pH 7.4, containing 1 M NaCl, and were precipitated by adding solid NaCl to a final 

concentration of 4.5 M. After centrifugation, pelleted precipitates were redissolved in 

storage buffer (0.1 M Tris-HCl, pH 7.4, containing 0.4 M NaCl) at appropriate 

concentrations and were clarified by centrifugation. The purified and concentrated 

collagen mixtures with or without proteoglycans were used for in-vitro fibrillogenesis. 

 

               
 

Figure 4-2. Flowchart representation of the protocol for purification of corneal collagen 
mixtures with or without proteoglycans from embryonic chicken cornea. 
 

4.3.2 SDS-PAGE 
Samples were pooled and prepared for electrophoresis by precipitation with three 

volumes of cold ethanol. The precipitates were resuspended in SDS sample buffer 

(10 mM Tris-HCl, pH 6.8, containing 10% [v/v] glycerol, 0.03% bromphenol blue, 2% 

sodium dodecyl sulphate, 0.5 M urea) and boiled at 95°C for 5 min, then loaded on 
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4.5-8% polyacrylamide gradient gels under non-reducing conditions. After 

electrophoretic separation, the gels were dehydrated for further analysis by 

fluorography (see 4.7). 

 

4.4 IN-VITRO FIBRILLOGENESIS   
An overview of the procedures used for in-vitro fibrillogenesis is shown in Figure 4-3. 

The crude mixture of corneal collagens from embryonic chicken (see 4.3.1) in storage 

buffer was degassed under vacuum. In-vitro fibrillogenesis was carried out in a 

microcuvette (Multicell, light path, 1 cm, Beckman, Palo Alto, CA) and was initiated 

by diluting the collagen mixtures with an equal volume of distilled water. Where 

appropriate, tissue transglutaminase, CaCl2, factor XIII, and thrombin were added to 

the mixtures directly after dilution. The kinetics of fibrillogenesis was monitored by 

measurement of the development of turbidity at 313 nm. The reconstitution products 

were examined by (immuno-) electron microscopy. 

 

 
Figure 4-3. Procedure of in-vitro fibrillogenesis with purified collagens. 

 

4.5 HISTOCHEMISTRY 
4.5.1 Preparation of paraffin-embedded matrices 
Matrices deposited during 14-days of 3D-culture by corneal fibroblasts were gently 

detached from cell culture wells and washed 3 times in PBS, and were fixed in 4% 

paraformaldehyde overnight at 4°C. The fixed cell cultures were washed in PBS 

again and folded carefully in OBI specimen paper. The packed cells were put in an 

embedding-cassette and washed in floating distilled water for at least 1h; then 

dehydrated in the following solvents under continuous stirring:  

1) 2h 50% ethanol at 4°C 

2) 2h 70% ethanol at 4°C 

3) overnight 96% ethanol (I) at 4°C 

4) 4h 96% ethanol (II) at 4°C 
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5) 2h 2-propanol (I) at 4°C 

6) 2h 2-propanol (II) at 4°C 

 

Afterwards cassettes were sequentially put into inter-medium containing 50% 2-

propanol and 50% paraffin mild for 24h at 60°C, in paraffin mild (I) for 12h at 60°C, in 

paraffin mild (II) overnight at 60°C, in paraffin hard for 12h at 60°C. Finally, the 

treated cells were cast in paraplast. Paraffin blocks were cut with a microtome 

(MICROM Cool-Cut HM 355), the sections were picked up on glass slides, and dried 

overnight at room temperature. 

 

4.5.2 Immunofluorescence staining of paraffin sections 

Sections were incubated in a drying oven for at least 30 min at 60°C. 

Deparaffinization and rehydration were performed with following procedures: 

1) 2 times washes of Roti-Histol for 5 min 

2) 50%, 70%, 90%, 100% ethanol for 5 min each 

3) sections rinsed in distilled water for 5 min 

 

All following steps were carried out in a wet and light-tight chamber to prevent drying 

and fluorochrome fading. Sections were washed in PBS for 5 min and encircled with 

DakoPen. Isolated sections were washed again in PBS for 3-4 times and blocked 

with 2% BSA (in PBS) for 45 min at room temperature. Subsequently they were 

incubated with primary antibody solution containing 1% BSA in PBS at 4°C overnight. 

Sections were rinsed 3 times in PBS for 5 min and incubated with secondary 

antibody solution containing 1% BSA and DAPI (1:10,000 in PBS) for 1h at 37°. 

Finally, sections were rinsed in PBS for 3 times again and covered with Fluoromount 

G (Southern Biotech). Slides were examined using a Zeiss Axio Imager microscopy 

equipped with fluorescent optics and documented using a Hamamatsu ORCA ER 

camera. Images were analyzed using Volocity 4.2 software (Improvision). 

 
4.5.3 Immunofluorescence staining of cells 
Immunofluorescence staining of cells was carried out directly in µ-slides (ibidi), which 

had a confluent cell density after 3-7 days growth. Cells were washed 3 times in PBS 

and then fixed with cold methanol for 10 min at -20°C. After another 3 washing steps, 

cells were permeabilized with 0.1% Triton X-100 in PBS for 10 min at room 
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temperature. Cells were washed in PBS, again, and blocked with 2% BSA in PBS for 

45 min at room temperature. Afterwards cells were incubated with primary antibody 

solution containing 1% BSA in PBS overnight at 4°C. Bound primary antibodies were 

visualized using Cy3- or Alexa 488 conjugated secondary antibodies (Jackson 

Laboratories & Molecular Probes) containing 1% BSA and DAPI (1:10,000 in PBS) by 

1h incubation at room temperature. Cells were washed again and covered with 

fluoromount G. Slides were examined using a Zeiss Axio Imager microscopy 

equipped with fluorescent optics and documented using a Hamamatsu ORCA ER 

camera and with a Zeiss confocal laser scanning system LSM 510 meta. Images 

were analyzed using Volocity 4.2 software (Improvision). 

 

4.6 IMMUNO-GOLD ELECTRON MICROSCOPY 
4.6.1 Preparation of ultrathin sections 
14-days-cultured cornea or tendon fibroblasts were gently detached from cell culture 

wells and then fixed in fix buffer overnight (0.1M cacodylate buffer in distilled water, 

pH 7.4, containing 2% [v/v] formaldehyde and 2.5% [v/v] glutaraldehyde). After 

washing 3 times in PBS over 1h, specimens were dehydrated with an ethanol series 

from 30% to 70%. Subsequently, the specimens were taken into LR White (Agar 

Scientific, Stansted, UK) / 70% ethanol (2:1) overnight at 4°C before embedding in 

pure LR-White. Pure LR-White was changed for 5 times within 2–5 days until the 

samples were ready for embedding. Samples were then embedded in LR-White 

using a plastic template (TED RELLA INC bedding CA) and were exposed to UV-light 

for 24-48h for complete polymerization. Blocks were cut on an Ultramicrotome 

(Reichert-Jung, Austria) using a diamond knife (ultra 35° MT7239, DiATOME, histo 

HI7900 or ultra 35° MT7239). Ultrathin sections were picked up on nickel grids (200 

square mesh), covered with formvar and coated with carbon, and dried at room 

temperature. 

 

4.6.2 Immuno-gold electron microscopy 
All following steps were carried out at room temperature. Grids with ultrathin sections 

were floated on drops of 100 mM glycerol in PBS for 30 seconds in order to reduce 

electrostatic charges. Alternatively, 20 µl reconstituted products from in-vitro collagen 

fibrillogenesis was spotted onto sheets of parafilm. Nickel grids were floated on the 

drops for 10 min to allow adsorption of fibril fragments. Thereafter, grids were dried 
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on filter paper, then washed once with PBS, and treated for 30 min with 2% [w/v] 

dried skim milk in PBS (2% blocking solution) which was centrifuged twice at 14,000 

rpm for 10 min. Primary antibodies were diluted to appropriate concentrations with 

0.2% blocking solution and the grids were allowed to react for 2h. After washing 4 

times with PBS, grids were incubated for 2h with 0.2% blocking solution containing 

secondary antibodies (12 or 18 nm colloidal gold particles coated with goat anti-rabbit 

or anti-mouse immunoglobulins, diluted 1:30). The grids were then washed 4 times 

with distilled water and negatively stained with 2% [w/v] uranyl acetate for 7-10 min. 

Finally, grids were washed again with distilled water and dried in a grid box. For 

double-labeling experiments, a mixture of gold particles of two different sizes was 

used. In negative controls, grids were treated with blocking buffer instead of primary 

antibody solutions. Electron micrographs were taken at 80 kV using a transmission 

electron microscope (Philips EM410). The imaging plates were scanned with a digital 

film scanner (Micron imaging plate scanner, Ditabis, Pforzheim, 6000 × 5000 pixel). 

 
4.7 FLUOROGRAPHY OF SDS-PAGE 
Collagens newly synthesized by corneal fibroblasts and separated by SDS-PAGE 

were visualized by fluorography. Cells were cultured for 24h or 6 days in the 

presence of 1 µCi/ml 14C-proline (Hartmann analytic, Braunschweig, Germany), L(+)-

Ascorbic acid, sodium pyruvate, L-cysteine, and crosslink inhibitors (TG-inhibitor / 

ßAPN: -/-, +/-, -/+ or +/+ respectively). Media were removed and cell layers were 

harvested in 1.5 ml HAc, containing 1 mg/ml pepsin. Proteins were digested under 

stirring by rotation for 2h at room temperature. Salt-precipitation was performed by 

adding 1.2 M NaCl and stirring overnight at 4°C. After centrifugation at 14,000 rpm 

for 30 min, cell pellets were resuspended in 100 mM Tris-HCl, 150 mM NaCl, pH 8.6, 

and were precipitated again by adding three volumes of cold ethanol for at least 2h. 

Cells were centrifuged again and resuspended in 100 µl of distilled water. Ethanol 

precipitation was repeated and pellets were dried. Cell lysates digested with pepsin 

were resuspended in 50 µl of 5-fold concentrated sample buffer (details described in 

4.3.2) without reducing agents and heated to 95°C for 5 min. 2 µl aliquots of the 

labeled proteins or 2 µl molecular marker solution (CF626, Amersham Biosciences / 

GE Healthcare, Chalfont St Giles, UK) were diluted in 2 ml “Lumasafe Plus” (Lumac 

LSC, Groningen, Netherlands), and were counted in a “scintillation counter” 

(Beckman, Fullerton, USA). Samples were loaded with same volume (luminescence 
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“counts” varies from approximately 8000 to 25000) on 4.5-8% polyacrylamide 

gradient gels. After electrophoretic separation, the gels were dehydrated 3 times in 

DMSO and incubated in 20% (w/v) diphenyloxazol in DMSO for at least 3h. After 45 

min of rehydration in distilled water, gels were dried on a gel dryer (Bio-Rad, 

Hercules, USA), exposed on a X-ray film (Thermo Fisher Scientific Inc, USA) for 7-14 

days at -80°C, resulting in visualization of band patterns of radioactively labeled 

proteins. The films were developed and were scanned with a HP scanjet 7400C. 

Band intensities were analyzed with ImageJ 1.44 software. 

 

4.8 TOTAL PROTEIN ASSAY  
The total protein assay is based on the detection of hydroxyproline which is a 

collagen-specific amino acid in mammals. The amount of hydroxyproline in 

hydrolysates of conditioned cell extracts can be used as a direct measure of total 

collagen in ECM. The measurement is started by complete hydrolysis of corneal 

fibroblast cell layers in 6M HCl at 110°C for 20h. In the hydrolysate, hydroxyproline 

residues were quantified using the QuickZyme total collagen assay kit (QuickZyme 

biosciences, work principle sees Fig. 4-4). Collagen I from chicken embryonic tendon 

or bovine serum albumin (BSA) was used as standards or as negative controls, 

respectively. 

 

                        
Figure 4-4.  Work principle of total protein assay  

 

4.9 MEASUREMENT OF LOX ACTIVITY: 3H-RELEASE  
4.9.1 Preparation of substrate 
18 aortas from 17-day-old embryonic chickens were incubated in a 50-ml Erlenmeyer 

flask with 10 ml Eagle´s MEM with Earle’s salts lacking free L-lysine (USBiological) 
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but containing 200 µCi L-[4,5-3H]lysine (Hartmann Analytic) and 20 µg/ml ßAPN. 

Flasks were incubated at 37°C and 5% CO2 for 24 h. After incubation, the aortas 

were rinsed with distilled water and dried in a SpeedVac® concentrator (Savant). Dry 

aortas were homogenized in phosphate-buffered saline (0.15 M NaCl, 0.1 M 

Na2HPO4, pH 7.8) and centrifuged (11,000 g, 30 min, S4180, Beckman). 

Supernatants were discarded; the pellets were rehomogenized in saline and 

recoverd twice more by centrifugation. Finally, the substrates were suspended in 

0.01M HCl, collected by centrifugation and dried again in SpeedVac® concentrator. In 

general, substrates equivalent to the pellet from two aortas containing approximately 

500,000 cpm3H were used per incubation. 

 

4.9.2 Assay of lysyl oxidase 

Cell layers from corneal fibroblasts cultured for 14 days were homogenized in PBS 

with Polytron® (KINEMATICA AG), then centrifuged at 4800 rpm for 3 min (S4180, 

Beckman). The supernatants were applied for activity assay. The enzymic reaction 

was carried out for 4h at 37°C in a volume of 1ml containing 300,000-500,000 cpm of 
3H-labeled substrate. Controls were done with radioactive substrates and buffer. 50 

µl of 2% BSA was added to each assay tube and precipitated by TCA together with 

the substrate proteins. 2 µl supernatants containing tritiated water formed by 

enzyme-catalyzed reaction were diluted in 2 ml “Lumasafe Plus” (Lumac LSC, 

Groningen, Netherlands), and were counted by liquid scintillation as described 

above. 

 

4.10 DEMONSTRATION OF TG ACTIVITY VIA FLUORESCENCE-LABELED 
CADAVERINE 
Corneal fibroblasts were cultured in µ-slides (ibidi) as described in 4.2.2. At day 2, 

0.1 mM Alexa Fluor® 555 (Invitrogen)-conjugated cadaverine was added to cell 

culture and slide was kept in incubator at 37°C and with 5% CO2 for further 12h in the 

presence or absence of TG-inhibitor (Boc-DON-Gln-IIe-Val-OMe, ZEDIRA). 

Afterwards, cells were washed 3 times in PBS and covered with fluoromount G. 

Slides were examined using a Zeiss AxioImager microscopy equipped with 

fluorescent optics and documented using a Hamamatsu ORCA ER camera and with 

a Zeiss confocal laser scanning system LSM 510 meta. Images were analyzed using 

Volocity 4.2 software (Improvision). 
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5 RESULTS 
 

5.1 The tissue-specific matrix organization in chicken cornea is crucially 
influenced by cross-link formation.  
In early studies, Ruberti and co-workers have shown that human corneal fibroblasts 

produced lamellae of fibrils with resemblance to those in the developing mammalian 

cornea (Guo et al., 2007). In his work, primary fibroblasts were allowed to emigrate 

from tissue fragments and were subsequently subjected to cell culture. In this thesis 

project, matrix-free keratocytes were isolated from 17-day-old chicken embryonic 

cornea by digestion with bacterial collagenase. The collagenous matrices with and 

without cross-links were obtained from keratocytes cultivated in 3D-cultures for 14 

days. The arrangement of the collagen fibrils and the fibril diameter distribution 

depended on cross-link formation and were analyzed on ultrathin sections of 3D 

matrices by electron microscopy. 

 

Electron micrographs revealed orthogonal arrays of fibrils deposited by the 

keratocytes under conditions allowing the formation of LOX- and TG-derived cross-

links, i.e. in the absence of enzyme inhibitors (Fig.5-1 A). Orthogonal stacks were 

formed of arrays of uniformly thin collagen fibrils. Equidistantly spaced in parallel to 

yield so-called “lamellae” construct. Although the arrangement of lamellae is compact, 

at least nine lamellae (red arrows) were found with a change in collagen orientation 

(cross section – longitudinal section). Panel B shows a high magnification section of 

the micrograph shown in panel A. The authentic corneal stroma is composed of 

collagen fibrils of a uniform diameter, embedded in a highly hydrated matrix made up 

mostly of proteoglycans (Quantock et al., 2001; Meek et al., 2003). The authentic 

corneal fibrils are remarkable in the uniformity of their diameters and the regularity of 

their spacing. We found that the lamellae composed of homogeneous fibrils in our 

cell cultures had an organization highly similar to that of authentic mature corneal 

fibrils. However, formation of these lamellae was abrogated in the presence of the 

LOX inhibitor ßAPN. The fibrils were disorganized and thin, network-like structures 

between normal collagen I containing fibrils (C, D) were apparent. Such thin fibrils 

were not labeled with antibodies to collagen I or collagen VI. By contrast, in the 

presence of a TG inhibitor, the collagen fibrils were thicker, but the organization into 

lamellae was less affected (E, F). At high magnification (inset in panel E), thicker 
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fibrils were revealed with clear banding pattern (D-period) which was not seen under 

other conditions of cross-link formation. The diameters of fibrils formed in the 

presence of TG-inhibitor were also very homogeneous. Interestingly, the presence of 

both cross-link inhibitors leads to striking effects on matrix formation: the organization 

of fibrils in lamellae is lost (G-J), and the fibrils themselves were abnormal in that they 

had a bimodal and broad diameter distribution (G, H). Fibrils were very thin (diameter 

15 nm - 30 nm) in one region and much thicker, but disrupted in structure in a 

neighboring region (diameter 45 nm – 150 nm). Such “abnormal” fibrils could be 

labeled with collagen I antibody gold conjugates (small gold particles indicated by red 

arrows in micrograph H), proving their collagenous nature. In some cases there are 

very few fibrils formed close to keratocytes (J) and exhibited weak or diffuse banding 

patterns (I).  
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Figure  5-1. Suprastructures of matrices deposited by keratocytes. Control condition allowing 
for LOX- and TG-derived cross-link formation (A, B); in the presence of LOX-inhibitor ßAPN 
(C, D); or in the presence of a TG-inhibitor (Boc-DON-Gln-IIe-Val-OMe) (E, F); or with both 
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inhibitors (G-J). Small gold particles (red arrows) indicate the localization of collagen I (H). 
Keratocyte cells were marked with “K”. Bars: 200 nm. 
 

5.2 Addition of cross-link inhibitors changed fibril diameter distribution in 
keratocytes. 
The analysis of fibril diameter distributions unraveled further morphological details of 

collagen fibrils formed in keratocytes. All diameters of collagen fibrils were measured 

on the basis of ultrathin sections, either of 17-day-old embryonic chicken cornea (Fig. 

5-2 A) or of 3D matrices from 14-days chicken cultures of keratocytes by electron 

microscopy (B, C, D, E). 

 

Fibrils formed by keratocytes under control conditions were only slightly thicker 

(diameter distribution B: 45.60 ± 12.16 nm, n = 758) than those in corneal tissue (A: 

35.48 ±10.81 nm, n = 714). In the presence of ßAPN, the fibrils had a broader 

distribution and larger diameters (C: 59.01 ± 25.36 nm, n = 918). Interestingly, fibrils 

formed in the presence of TG-inhibitor were obviously thicker. There was a large shift 

of diameter distributions towards higher values (D: 110.31 ± 15.75 nm, n = 593). This 

result is consistent with the electron microscopic observation that fibrils were 

generally thicker with clearly visible banding pattern. Under the culture conditions 

with both cross-link inhibitors, diameter distributions were bimodal (E: 59.97 ± 26.88 

nm, n = 1198): there was a population with small diameter (peak at about 20-25 nm), 

while the other at 50-55 nm of diameter. When the formation of both cross-links was 

prevented, a loss of matrix organization and heterogeneous fibril distribution was 

observed which clearly differed from the fibril populations when only one type of 

cross-link was inhibited. 
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Figure 5-2. Analysis of fibril diameter distribution: The diameter of collagen fibrils were 
measured on ultrathin sections of authentic tissue (A) or of 3D matrices from chick cultures of 
keratocytes from cornea by electron microscopy (B-E). 
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5.3 Cross-links derive from both lysyl oxidase and transglutaminase in chicken 
keratocytes.  
Collagen-fluorography of 14C-proline labeled keratocytes was analyzed with respect 

to cross-linked components under different inhibitor conditions and at different time 

points of culture. The 3D-cultured keratocytes were metabolically labeled with 14C-

proline for 6 days or 24 hours. The harvested cell matrices were pepsin-solubilized, 

collagens were salt-precipitated, and SDS-PAGE was run under non-reducing 

conditions. The result from cell layers labeled for 6 days is shown in figure 5-3 A. 

Four lanes indicated four different conditions of cross-link formation, specified at the 

bottom of each lane. The cross-link products were classified into five groups:  

i) dimer of α1- and/or α2-chains (β-components); 

ii) trimer of α1- and/or α2-chains (γ-components); 

iii) tetramer of α1- and/or α2-chains; 

iv) further oligomer; 

v) potential polymers containing non-collagenous proteins substituted by GAG 

 chains.  

 

Some products resulted from exclusive LOX-dependent cross-linking. These were 

the fastest migrating band of the β-components, all γ-components, as well as further 

oligomers which appeared only when LOX activity was intact (green arrows). These 

cross-links could be essential for the generation of lamellar structures, but less 

necessary for the regulation of the fibril diameter. In addition, there are products of 

both LOX- and TG-dependent cross-linking. The tetramers are dependent on both 

cross-links. Each of the enzymes produced about half of the tetramers (blue arrows), 

since inhibition of both enzymes leads to absence of tetramers (red arrows). The 

further oligomers, whose formation is LOX-dependent, display similar patterns as 

trimers and dimers. The polymers presented dependence of cross-link products on 

the enzyme inhibitors similar to that of tetramers with each of the enzymes 

contributing about half of them. Solely TG-dependent cross-link products were not 

formed in these experiments.  

 

Furthermore, in order to investigate the onset of cross-link formation, 24-hour 

metabolic labeling was done and the result is shown in figure 5-3 B. At the beginning 

of fibril formation and organization, LOX-dependent cross-links have partly formed 
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(green arrows near γ-components), but the fastest migrating band of β-components 

has not yet appeared (green arrows near ß-components). The LOX- and TG-

dependent cross-link products of tetramers represent no difference in form, which 

implies delayed functions of TG-derived cross-link formation. The further oligomers 

and polymers were not yet formed within 24 hours. 

 

To summarize all observations of collagen-fluorography, cross-links do derive from 

both LOX and TG in chicken keratocytes. LOX-derived cross-link formation is initiated 

at early stages of fibril formation and had a sustained influence at later stages of fibril 

organization, while TG-derived cross-links formed later. These observations suggest 

that LOX-derived cross-links are formed at the beginning of fibril organization and 

eventually led to the formation of lamellae. TG contributes to the adjustment of fibril 

diameters at later stages of fibril organization. 
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Figure 5-3. Cross-link analysis of cultured keratocytes labeled with 14C-proline for 6 days (A) 
or 24 hours (B). The cell matrices of 3D-cultures were pepsin-solubilized, collagens were 
salt-precipitated and SDS-PAGE was run under non-reducing conditions. Gel exposures on a 
X-ray film finally. Green arrows: LOX-dependent cross-links; blue arrows: both enzyme-
dependent cross-links; red arrow: absence of cross-link product. 
 

5.4 Keratocytes produced less collagen V in the presence of LOX inhibitors, 
and more collagen V in the presence of TG inhibitors 

Except for cross-link analysis, the relative amounts as well as proportion of collagen 

α-chains were studied. This densitometric analysis is based on the same gels of 

collagen-fluorography, which are described in section 5.3. The α-chains were derived 

from cultured keratocytes metabolically labeled with 14C-proline for 6 days or 24 

hours under different cross-linking conditions. 

 

Three α-bands are visualized by fluorography: α1 and α2 bands of type I collagen, 

and one band of type V collagen (Fig. 5-4, left diagrams in A, B). In column diagrams, 

blue columns represent the ratio of α2 and α1 bands of collagen I. Red and green 

columns represent the intensity of the collagen V band compared with α1 or α2 band 

of collagen I, respectively. Keratocytes produced less collagen V in the presence of 

LOX-inhibitors after 6-day cultivation (A: plot 1 vs. 3). In cultures with TG-inhibitor, 

more collagen V was produced (A: plot 1 vs. 2). Inhibition of both enzymes led to a 

slight reduction of collagen V (A: plot 1 vs. 4). This change of collagen I/V proportions 
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could affect the formation and organization of corneal fibrils because the corneal 

fibrils are heterotypic I/V fibrils. By contrast, the proportions of α1 and α2 bands of 

collagen I were not clearly affected by cross-link formation (A: blue columns), which 

means that the chain composition of collagen I didn´t depend on cross-links 

formation as expected. In comparison with cultures labeled for 6-days, the relative 

amounts of collagen α-bands extracted after 24h of labeling are comparable whether 

or not LOX- or/and TG-derived cross-link formation was allowed (B). After 24h of 

cultivation only a small amount of collagen V was obtained. However, under control 

conditions, a maximum of collagen V was produced (B: plot 1). A minimum of 

collagen V appeared under the condition of LOX inhibition (B: plot 3).  

 

 

 
 
Figure 5-4. Densitometric analysis of collagen α-bands in cultured keratocytes labeled 
with14C-proline for 6 days (A) or 24 hours (B). The cell matrices of 3D-cultures were pepsin-
solubilized, collagens were salt-precipitated and SDS-PAGE was run under non-reducing 
conditions. 
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5.5 Keratocytes predominate in preparations of corneal cells. 
5.5.1 Cell preparations virtually exclusively contain corneal fibroblasts at early 
stages of fibril organization. 
Since initial preparations of primary corneal cells not only contain keratocytes, but 

also epithelial cells, we were interested in the question of which cell type survived 

after prolonged culture. The cell types in our cultures were identified with a 

monoclonal antibody against cytokeratin (subtype CK3), which was described as a 

specific cell marker of corneal epithelial cells (Chaloin-Dufau et al., 1990; Cubitt et al., 

1993). Corneal fibroblasts were isolated from 17-day-old chicken embryonic cornea 

and allowed to proliferate on µ-slides for 2 days without cross-link inhibitors. 

Thereafter, cells were stained by immunofluorescence with an antibody against 

cytokeratin. Nuclear DNA was visualized by DAPI staining. 

 

In the cell slides, two types of areas with abundant cells can be found. Nevertheless, 

several cytokeratin-staining cells (red) can be found in area 1 but not 2 (Figure 5-5). 

However, area 2 corresponds to the majority of areas sampled from the slides, 

whereas area 1 appeared rarely. This experiment showed the coexistence of 

keratocytes and epithelial cells in corneal fibroblast at early stage of fibril organization, 

but the amount of keratocytes was much larger than that of epithelial cells. 

 

      
 
Figure 5-5. Immunofluorescence staining of cytokeratin in corneal fibroblast ECM at day 2 in 
µ-slides (ibidi). Ethanol-fixed cultures of corneal fibroblasts, permeabilized with Triton X-100, 
were immunostained with antibody against cytokeratin (red) and were stained with DAPI 
(blue) for localization of nuclear DNA. 
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5.5.2 Even less epithelial cells exist after 14-days in cultures of corneal 
fibroblasts.  
In order to demonstrate the cell distribution at later stages of fibril organization, 

matrices from 14-days corneal fibroblasts were embedded in paraffin and 

immunofluorescence stained with antibodies against cytokeratin and collagen I. 

 

Large amounts of collagen I (green) were seen in the newly formed ECM whereas 

only very few cells labeled for cytokeratin (red) were found (Figure 5-6). These data 

indicate that the proliferation and / or the survival of epithelial cells was suppressed 

under culture conditions employed. Epithelial cells were in our cultures and are 

unlikely to have a meaningful influence on the formation of lamellae and regulation of 

diameters of collagen fibrils. 

 

   
 
Figure 5-6. Immunofluorescence staining of cytokeratin and collagen I on paraffin section of 
embedded corneal fibroblast ECM after 14-days cultivation. Paraformaldehyde-fixed cultures 
of corneal fibroblasts were embedded in paraffin and cut into thin sections. After 
deparaffinization and rehydration the sections were immunostained with antibodies against 
cytokeratin (red) and collagen I (green), and co-stained with DAPI (blue) for localization of 
nuclear DNA. 
 

5.6 Matrix components of keratocyte cultures possibly involved in cross-link 
formation  
5.6.1 Fibronectin 
Fibronectin has been well characterized as an extracellular matrix glycoprotein that 

regulates many cellular functions. It has been reported that cellular fibronectin binds 

with high affinity to lysyl oxidase and is critical for proteolytic activation of LOX 

(Fogelgren et. al, 2005). Moreover, fibronectin binds to tissue transglutaminase and 

plays a role in the assembly of ECM (Gaudry et al., 1999). Therefore, the localization 

of fibronectin was checked in keratocyte cultures under different conditions of cross-
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link formation. Keratocytes were cultured in µ-slides (ibidi) as described in 4.2.2 and 

were allowed to proliferate for 2 or 7 days. Cell layers were doubly labeled by 

immunofluorescence for fibronectin (red) and type I collagen (green). Nuclei were 

visualized by DAPI staining (blue). 

 

Immunofluorescence micrographs (Fig. 5-7) show that the deposition of fibronectin in 

the ECM already occurred at the beginning of cell proliferation (A, red). At day 7 

fibronectin was densely distributed over the whole ECM (B, red). There is no obvious 

difference in the distribution of fibronectin at day 2 and day 7 (A, B, red). The 

production and deposition of collagen I also seems to be the same and was not 

detectably influenced by cross-link inhibitors (A.B, green). Fibronectin co-distributed 

with collagen I at early phases of matrix formation already (A, merge, yellow). These 

results suggest that the deposition of fibronectin in the ECM is not affected by either 

LOX- or TG-derived cross-link formation.  
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Figure 5-7. Immunofluorescence staining of keratocytes in µ-slides (ibidi). Cells were 
cultured under 4 conditions (control, -/-; in the presence of TG-inhibitor, +/-; in the presence 
of ßAPN, -/+; and with both inhibitors, +/+) for 2 (A) or 7 days (B). Ethanol-fixed cultures, 
permeabilized with Triton X-100, were immunostained with antibodies against fibronectin 
(red), collagen I (green) and with DAPI (blue, nuclei). 
 
5.6.2 Decorin  
Decorin is a proteoglycan widely distributed in the ECM and thought to be 

responsible for the structure, tissue organization, and surface properties of fibrils. 

Decorin has a primary role in regulating fibril assembly and show a coordinated 

regulation of collagen fibrillogenesis in the cornea together with biglycan. In decorin-

null stroma, occasional abnormal fibrils were observed (Zhang et. al, 2009). 

Therefore, we were interested whether the cross-link inhibitors influence the 

deposition of decorin in the ECM. Keratocytes were cultured in µ-slides as described 

in 4.2.2 and allowed to proliferate for 2 or 7 days under different conditions of cross-

link formation. Cell layers were doubly labeled by immunofluorescence for decorin 

(red) and type I collagen (green). Nuclei were visualized by DAPI staining (blue). 

 

Decorin was deposited into extracellular space under control condition at day 2 (Fig. 

5-8 A, -/-, red, extracellular staining indicated by white arrows) whereas it remained 

mostly intracellular in the presence of cross-link inhibitors (A, +/-, -/+ and +/+, red). 

After 7-day of cultivation, decorin was deposited into all of the extracellular space. 
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Moreover, micrographs suggest that ßAPN reduced the intensity of the decorin signal 

at day 7 (B, -/- -/+ versus -/+ +/+). But such differences of signal intensity may be 

caused by the mode of matrix deposition which can be demonstrated only at higher 

magnifications. The data suggest co-localization of collagen I and decorin at day 7 (B, 

merge, yellow).  

 

 
 

 
Figure 5-8. Immunofluorescence staining of keratocyte in µ-slides (ibidi). Cells were cultured 
under 4 conditions (control, -/-; in the presence of TG-inhibitor, +/-; in the presence of LOX-
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inhibitor ßAPN, -/+; and with both inhibitors, +/+) for (A) or 7 days (B). Ethanol-fixed cultures, 
permeabilized with Triton X-100, were immonostained with antibodies against decorin (red), 
collagen I (green) and with DAPI (blue, nuclei). 
 
5.6.3 Collagen type VI 
Type VI collagen is a ubiquitous matrix protein. It is a major component in human 

corneal stroma and exists also in chicken cornea. The collagen VI microfibril is highly 

disulfide cross-linked and contributes to a network of beaded fiaments interwoven 

with other collagen fibrils (von der Mark et. al, 1984). Because of the ubiquitous 

distribution of collagen VI and its relationship with cross-links, the localization of 

collagen VI was investigated in keratocytes cultures. Cells were cultured in µ-slides 

as described in 4.2.2 and were allowed to proliferate for 2 or 7 days under different 

conditions of cross-link formation. Cell layers were doubly labeled by 

immunofluorescence for collagen VI (red) and type I collagen (green). Nuclei were 

visualized by DAPI staining (blue). 

 

Immunofluorescence micrographs (Fig. 5-9) show that the deposition of collagen VI 

in ECM occurred at the beginning of cell proliferation and fibril organization (A, red). 

There is no apparent difference of the distribution of collagen VI at day 2 and day 7 

(A,B, red), and also was not affected by LOX-and TG-derived cross-link formation. 

These data suggest that collagen VI was co-distributed with collagen I at early phase 

of matrix formation already (A, merge, yellow).  
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Figure 5-9. Immunofluorescence staining of keratocytes in µ-slides. Cells were cultured 
under 4 conditions (control, -/-; in the presence of TG-inhibitor, +/-; in the presence of LOX-
inhibitor ßAPN, -/+; and with both inhibitors, +/+) for 2 (A) or 7 days (B). Ethanol-fixed 
cultures, permeabilized with Triton X-100, were immunostained with antibodies against 
collagen VI (red), collagen I (green) and with DAPI (blue, nuclei). 
 

5.7 Effect of crosslink inhibitors  
5.7.1 Tissue transglutaminase was effectively inhibited by TG-inhibitor in 
keratocytes 
The activity of transglutaminase in cell culture was measured by addition of 

fluorescence-labeled cadaverine, a primary amine donor for detecting the 

endogenous substrates for active TG (Lajemi et al., 1997). Keratocytes were cultured 

in the presence of Alexa Fluor® 555 (Invitrogen)-conjugated cadaverine and 

visualized by immunofluorescence microscopy, as described in 4.10.  

 

Under control conditions, strong signals of Alexa Fluor® 555 (red) documented the 

existence of TG activity in keratocyte cultures (A), while the matrix showed much 

weaker signals in the presence of 5 µM TG-inhibitor (B). These results validated the 

effective inhibition of TG activity in keratocytes by the addition of the TG-inhibitor. 
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Figure 5-10. The activity of tissue-transglutaminase was proved in the cell cultures by 
addition of fluorescent-labelled cadaverine as a potential substrate.  
 

5.7.2 Lysyl oxidase activity is detectable and varied during the process of 
keratocytes proliferation.  
The activity of LOX in keratocytes was monitored during the cell growth by a tritium-

release assay (see 4.9). The enzyme activity was tracked for 6 days. After 24h 

cultivation, LOX-activity was already detectable and was discontinuous over a 6-day 

culture period. At day 3 it reached a maximum, decreased subsequently to a 

minimum at day 4 and thereafter, increased at least until day 6 (Fig. 5-11). The 

changes of LOX-activity in keratocytes suggested that LOX had distinct effects on 

collagen fibril organization as time progressed in corneal fibroblast proliferation. 

 

                      
 
Figure 5-11. The activity of lysyl-oxidase in corneal fibroblast was measured per a tritium-
release assay using L-[4, 5-3H]lysine labeled chick aortas as elastin substrate. 
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5.8 Determination of absolute collagen amounts produced by keratocytes in 
culture 
Total collagen was assessed in order to determine the absolute collagen amounts 

deposited in matrices of keratocytes. This assay is based on the detection of 

hydroxyproline (see 4.8).   

 

The proteins were extracted from the 3D matrices deposited after 2-days or 14-days 

of culture under different conditions of cross-linking. At day 2, matrices under control 

conditions (-/-) represented highest collagen deposition whereas matrices in the 

presence of both cross-link inhibitors (+/+) had the lowest collagen amount. Matrices 

with TG- or LOX-inhibitor (+/-, -/+) contained intermediate amount of collagens in 

comparison to controls (Fig. 5-12, A). Similarly to the cultures at day 2, matrices at 

day 14 showed also a highest collagen level in controls (-/-) and lowest level when 

both inhibitors were applied (+/+). In comparison with ßAPN (-/+), the addition of TG-

inhibitor led to small collagen quantities deposited into the matrices (+/-) (Fig. 5-12, 

B). Inhibition of LOX- or/and TG-derived cross-link formation does not lead to a 

drastic reduction of collagen deposition in matrices at day 2 and day 14. Additionally, 

purified tendon collagen I isolated from 17-day-old chicken embryos and bovine 

albumin (SERVA) were measured in parallel as positive and negative controls 

proving the specificity of this “total collagen assay” (Fig. 5-12, C). 
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Figure 5-12. Total collagen assay, which based on hydroxyproline measurement, was 
performed of keratocytes at day 2 (A), day 14 (B). Tendon collagen I and bovine albumin 
were parallel measured as positive and negative controls (C). 
 

5.9 In-vitro experiments indicated that TG controls fibril diameter, whereas 
factor XIII does not. 
5.9.1 Turbidity curves of in-vitro fibrillogenesis with crude corneal collagen 
mixture in the presence of TG or factor XIII 
Factor XIII is a transglutaminase abundantly occurring in keratocyte cultures 

(component of FCS). The enzyme catalyzes cross-linking of proteins with the same 

isopeptide bond as tissue transglutaminases. Therefore, we investigated the effects 

of factor XIII on corneal collagen fibril organization. Crude collagen mixtures without 

proteoglycans were isolated from 17-days embryonic cornea. Fibrillogenesis was 

initiated by adjusting the solutions to appropriate conditions and was monitored by 
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turbidity measurements (4.3.1). Human recombinant human tissue transglutaminase 

(rhTG) and coagulation factor XIII from human plasma were added to the 

reconstitution mixtures direct after dilution with water. Both enzymes are 

commercially available from ZEDIRA and are Ca2+-dependent. In addition, factor XIII 

must be activated by thrombin.  

 

In the presence of activated rhTG (Fig. 5-13, A, red) the curve achieved higher 

plateau levels of turbidity than the controls (A, blue). It is noteworthy that a sudden 

increase of turbidity appeared at the onset of fibrillogenesis (A, red, black arrow). 

This phenomenon was not detectable in controls. The results may imply that small 

aggregates of collagens were formed at the initial phase of fibrillogenesis, which may 

be very important to subsequent fibril organization. On the other hand, in the 

presence of activated factor XIII (Fig. 5-13, B, red) we observed lower plateau levels 

of turbidity than in controls (B, blue). There are no obvious effects detectable at the 

onset phase of fibril formation. Additionally, a delayed lag phase in turbidity occurred 

with activated factor XIII (B, red) in comparison with the controls (B, blue). 
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Figure 5-13. In-vitro fibrillogenesis of mixtures of crude cornea collagen in the presence of 
rhTG (A) or factor XIII (B), monitored by development of turbidity at 313 nm. In both cases 
blue curve indicates control condition while red curve indicates the activated condition. rhTG 
or factor XIII were added at the beginning of fibrillogenesis. 
 

5.9.2 Diameter distribution of fibrils reconstituted in the presence of activated 
TG or factor XIII 
In-vitro fibrillogenesis was performed with different amounts of enzymes. Again, the 

crude corneal collagen mixtures without proteoglycans were used (see 4.3.1). 

Reconstituted products were directly adsorbed to nickel grids, negatively stained with 

uranyl acetate, and observed with a transmission electron microscope. Fibril 

diameters were analyzed in all cases (Fig. 5-14). Fibrils reconstituted under control 

conditions (collagen mixtures with CaCl2) represented a diameter distribution of 

545.60 ± 142.29 nm, n = 215 (A). In the presence of activated rhTG, the fibrils 

became thinner in a dose-dependent manner. Addition of 2 µg rhTG led to a diameter 

distribution of 398.20 ± 104.11 nm, n = 226 (B), and 4 µg rhTG led to a distribution of 

302.60 ± 101.72 nm, n = 115 (C). In the presence of activated factor XIII the diameter 

of reconstituted fibrils did not change in comparison with controls. They had a 

distribution of 553.74 ± 146.82 nm, n = 42 (25 µg factor XIII) or 610.51 ± 168.68 nm, 

n = 71 (50 ug factor XIII). 

 

These results illustrate that tissue transglutaminase controls fibril diameters in “in-

vitro systems”, even when collagen preparations already containing cross-links were 

used as starting material. Factor XIII has no effect on diameter control of corneal 

collagen fibrils.  
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Figure 5-14. Analysis of fibril diameter distribution: The diameter of collagen fibrils were 
measured of reconstituted products from 3h-fibrillogenesis of crude mixture alone (A), in the 
presence of a recombinant human tissue transglutaminase (His6-rhTG2) (B, C) or a 
coagulation factor XIII from human plasma (D, E) by electron microscopy. 
 

5.9.3 Morphologic changes of fibrils 
Although we have shown that the reconstituted fibrils became thinner in the presence 

of activated rhTG, the “thin fibrils” had a mean diameter around 300 nm. Not only the 

thickness, but also the morphology of fibrils was different from fibrils in authentic 

corneal stroma. Therefore, a corneal collagen mixture still containing proteoglycans 

was used as starting materials in further fibrillogenesis experiments (see 4.3.2). In-
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vitro experiments were done as described in 5.9.1 and the reconstituted products 

were investigated by transmission electron microscopy. 

 

Interestingly, network-like structures can be found only in the reconstituted products 

with activated rhTG (Fig. 5-15 B). High magnification showed that those network 

structures were labeled with antibodies to collagen I (gold particles highlighted with 

red arrows, Fig. 5-15 B inset). Such collagen fibril containing networks were not 

apparent under control condition (A). These results may imply that proteoglycan 

components (such as decorin, lumican, biglycan etc.), as well as activity of tissue 

transglutaminase contributes to formation of thin fibrils with diameters of about 45 nm, 

approaching the diameter of authentic corneal fibrils. 

 

 
 
Figure 5-15. Fibrils reconstituted in-vitro from crude corneal collagen mixture with 
proteoglycan: electron micrograph of fibrils from in-vitro fibrillogenesis in the presence of not 
activated rhTG (A) or of activated rhTG (B). Collagen type I is heavily labeled with antibody 
gold conjugates indicated by red arrows in the inset of B. Bars: 200 nm. 
 

5.10 The cross-link dependent collagen fibril formation in chicken embryonic 
tendon 
The fibrillar organization in cornea and tendon are vastly different although both 

tissues contain collagens I and V as their major collagenous components. Mature 

cornea consists of orthogonally stacked lamellae formed by uniformly thin collagen 

fibrils evenly spaced in parallel whereas mature tendons contain fibrils with 

heterogeneous diameters arranged into parallel fibrous bundles. From this point of 

view, I was interested at the beginning of my study in the suprastructures of matrices 
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deposited by keratocytes or tenocytes from cornea or metatarsal tendons with and 

without cross-link formation. During the development of studies, cornea exhibited 

more important aspects to a cross-link-dependent fibril organization. Therefore, I 

focused my study mostly on cornea. However, some principles of “cross-link 

dependent collagen fibril formation in chicken embryonic tendon” were investigated in 

the studies described below. 

 

5.10.1 Suprastructures of matrices deposited by tenocytes 
Collagenous matrices with and without ßAPN were obtained from 3D-cultures of 

tenocytes isolated from metatarsal tendons of 17-day-old chick embryos and 

cultivated for 14 days. The arrangement of the collagen fibrils and the fibril diameter 

distribution with and without cross-link formation were analyzed on ultrathin sections 

of 3D matrices by electron microscopy. 

 

In cultures of tenocytes, a small number of discrete bundles (Fig. 5-16 A) contained 

fibrils arranged in parallel arrays in the absence of ßAPN. Such structures of bundles 

were very similar to those of metatarsal tendons. Otherwise, irregular fibril 

arrangements and disorganized matrices were formed in the presence of ßAPN (D). 

This implies that LOX controls collagen organization also in embryonic tendon. 

 

 
 
Figure 5-16 Suprastructures of matrices deposited by tenocytes. Control condition allowing 
for LOX-derived cross-link formation (A-C) or in the presence of LOX-inhibitor ßAPN (D). 
Small gold particles in micrograph D indicate the localization of collagen I. Bars: 200 nm. 
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5.10.2 Addition of ßAPN changed the fibril diameter distribution in tenocytes. 
Analysis of fibril diameter distribution contributes further morphological details of the 

collagen fibrils formed by tenocytes in culture. The diameter of collagen fibrils was 

measured on images from ultrathin sections of 17-day-old embryonic chicken tendon 

(Fig. 5-17 A) or from cultures of tenocytes from 14-day-old chicken embryos (B, C). 

Fibrils formed by tenocytes under control conditions showed a similar diameter 

distribution (B: 54.60 ± 8.62 nm, n = 604) comparing with the fibrils in metatarsal 

tendon tissue (A: 56.35 ± 11.33 nm, n = 701). In the presence of ßAPN the fibrils 

became thinner and had a broader distribution (C: 45.78 ± 14.12 nm, n = 517).  

The results suggest that the arrangement of parallel fibrils and fibril bundles have a 

relationship to LOX-derived cross-links. Cross-links of collagens also contribute to 

fibril diameter control in tendon, for maintaining the thickness and arrangement of 

tendon fibrils. 

 

                              
Figure 5-17. Analysis of fibril diameter distribution: The diameter of collagen fibrils were 
measured on ultrathin sections of authentic tissue (A) or of 3D matrices from chick cultures of 
tenocytes from metatarsal tendons by electron microscopy (B, C). 
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5.10.3 Lysyl oxidase activity is detectable and varied during the process of 
tenocytes proliferation.  
The activity of lysyl oxidase in tendon fibroblast was also measured during the cell 

growth by a tritium-release assay (see 4.9). The measurement of activity was tracked 

for 6 days. After 24h cultivation, LOX-activity was detectable and was discontinuous 

over a 6-day period. Similarly to keratocytes, it reached a maximum at day 3. 

Thereafter, LOX activity decreased until cultures were discontinued at day 6  (Fig. 5-

18). The changes of LOX-activity in tenocytes suggested that LOX had distinct 

effects on collagen fibril organization as time progressed in tendon fibroblast 

proliferation. These effects are also different from those in corneal cultures. 

 

                     
 
Figure 5-18. The activity of lysyl-oxidase in tendon fibroblast was measured per a tritium-
release assay using L-[4, 5-3H]lysine labeled chicken aortas as elastin substrate. 
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6. DISCUSSION 
       
The size and organization of collagen fibrils within the ECM are crucial parameters 

for tissue structure and function. Corneal fibrils are heterotypic fibrils containing 

collagen I co-assembled with collagen V. Tendon fibrils contain predominantly of 

collagen type I, and to a lesser degree collagens III and V. Although both tissues 

contain similar collagenous components, the fibrillar organizations are vastly different. 

Mature cornea consists of orthogonally stacked lamellae formed by uniformly thin 

collagen fibrils evenly spaced in parallel. In contrast, tendons contain fibrils with 

heterogeneous diameters arranged into parallel fibrous bundles. 

 

The aim at the beginning of my work was to obtain further insight into the molecular 

control of fibril formation in in-vitro experiments by finding differentially expressed 

matrix proteins in tendon and corneal fibroblast cultures. The proteins produced in 

these cultures were to be analyzed by 2D-electrophoresis, followed by identification 

of differential protein spots by mass spectrometry. But I got no exciting results using 

these biochemical methods. Thereafter, a change of the culture conditions led to a 

delectable finding. In our lab the routine fibroblast cells are cultured with supplement 

of ßAPN, in order to reduce the collagen cross-linking. In my 3D cell cultures I was 

not satisfied with the dense of matrix deposition using the routine method. A remove 

of ßAPN may increase the matrix deposition in fibroblast cell cultures. Also, a 

fortuitous discovery came out when this new culture condition was employed.  

 

The essential role of covalent collagen cross-links in tissue-specific fibril formation 

became evident with the seminal observations that fibrils in primary cultures of 

chicken embryonic keratocytes had a typical lamellar organization that was disrupted 

in the presence of ßAPN. Furthermore, the introduction of γ-glutaminyl-ε-lysyl 

isopeptide bonds by tissue transglutaminase was required for the tight restriction of 

fibril diameters. This was lost in the presence of transglutaminase inhibitors. 

Therefore, in addition to lysyl oxidase, another important enzyme introducing 

collagen cross-links, i.e. tissue transglutaminase, has been identified in my work as 

an essential instrument of corneal matrix organization. 
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 The same culture conditions were applied in tendon fibroblasts. Although parallel 

organization of fibrils and few discrete bundles of fibrils were found in the absence of 

ßAPN, the importance of cross-links was less prominent. 

 

In this study, the original materials, collagens and cells, were from 17-day-old chicken 

embryos. Thus, all discussions and conclusions apply to this avian species and it 

remains to be investigated whether or not they can be extended to other organisms. 

The issue of corneal matrix organisation has been addressed predominantly by three 

complementary approaches: 

(i) suprastructural analysis of electron micrographs derived from ultrathin sections of 

authentic tissues and matrices deposited in cell cultures; 

(ii) immunofluorescence analysis of ECM components of interest on cell cultures; 

(iii) in-vitro fibrillogenesis of purified collagens or mixtures thereof and analysis of the 

reconstituted fibrils by electron microscopy. 

 

These strategies were implemented for cornea and metatarsal tendon tissues, for 

matrices deposited in 3D keratocytes and tenocytes, and for keratocytes proliferated 

directly on µ-slides. Small tissue pieces or cell matrices were embedded and cut into 

ultrathin sections for examination by electron microscopy or immuno-gold electron 

microscopy. After negative staining the fibril suprastructures were visualised in more 

details. In addition, compositional analysis is possible at early time points directly on 

the ECM deposited by the cells on µ-slides. In the 30 µl volume, keratocytes grow to 

confluence within two days. Moreover, collagen mixtures extracted and purified from 

authentic embryonic cornea were employed for in-vitro reconstitution. The in-vitro 

data complemented the results from cell culture system.  

 

6.1 Cross-link dependent tissue-specific fibril formation and matrix 
organization in chicken embryonic cornea and tendon 

The corneal stroma is unique in having a homogeneous distribution of small diameter 

fibrils that are regularly packed within lamellae and this arrangement minimises light 

scattering and permits transparency. The formation of small-diameter fibrils is 

commonly thought to be controlled by the globular domains of type V collagens (Birk 

et al., 1990; Marchant et al., 1996; Birk, 2001), or by co-assembly of the collagenous 

cores of the fibrils with decorin, biglycan (Zhang et al., 2009; Rada et al., 1993) or 
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lumican (Chakravarti et al., 1998, 2000; Rada et al., 1993).  However, the formation 

of these thin fibrils into orthogonal stacked lamellae has not been explained. Ruberti 

and co-workers have shown that human corneal fibroblasts in culture produced 

lamellae of fibrils with similarity to the developing mammalian cornea (Guo et al., 

2007). In this study, primary cultures of corneal fibroblasts were generated after their 

emigration from pieces of stromal tissue and the cells were passaged after 2-weeks 

of cultivation. Nevertheless, some questions have not been answered, e.g. how the 

lamellae of fibrils build in fibroblast cell cultures; it is still unknown that which factors 

or mechanism involve in this process. In the present work, fibroblast cells were 

isolated from chicken corneas digested with bacterial collagenase. In this way, matrix 

deposition and cross-linking occurred de novo after cell proliferation. Therefore, a 

study of the influence of cross-link formation on matrix organization in cell cultures 

could be achieved. A correlation between cross-link formation and suprastructural 

organization in cornea, especially with respect to diameter control of fibrils and their 

organization into lamellae has not been established before. 

 

A major observation of the present work was that the unique suprastructure of 

corneal fibrils indeed depended on cross-linking. Cross-link inhibitors were added at 

the beginning of collagen production in cell cultures and, therefore, could exert their 

influence already at very early stages of fibril formation. The total collagen amounts 

deposited in matrices of keratocytes were measured and it was shown that cross-link 

inhibitors did not appreciably reduce collagen production. The arrangement of 

collagen fibrils in 3D keratocyte cultures was very similar to that in the developing 

chicken corneal stroma. Typical stacks of orthogonal sheets of parallel collagen fibrils 

were formed by keratocyte cell cultures in the absence of the cross-link inhibitor 

ßAPN. Such lamellae were not apparent in cultures with ßAPN. Therefore, LOX-

derived cross-link formation is essential for fibril arrangement into lamellae in chicken 

cornea. By contrast, the diameter control in individual fibrils not only depended on 

collagen V (Birk et al., 1990, 2001) and SLRPs (Zhang et al., 2009; Chakravarti et al., 

1998, 2000; Rada et al., 1993) but also on cross-linking. However, the chemical 

nature of such cross-links was isopeptide bonds introduced by tissue 

transglutaminases, but not factor XIII. Thicker fibrils with clearly visible banding 

pattern were formed in the presence of TG-inhibitor whereas the orthogonal 

arrangement of fibrils remained intact. Thus, TG-derived isopeptide cross-linking 
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seems to be an additional important requirement for a stringent control of fibril 

diameters to generate homogeneously thin fibrils in chicken cornea. A loss of both 

lamellae organization and diameter control of fibrils appeared when the formation of 

both LOX- and TG-derived cross-links was prevented. Interestingly, many thin fibrils 

with diameters of 20-25 nm which are even thinner than the authentic corneal fibrils 

were observed. However, structurally disrupted and thick fibrils were also observed in 

addition to the typically thin corneal fibrils. These results imply some functional 

connections between the formations of both cross-links. The suprastructural 

regulation in corneal fibrils is a mechanism with complementarity of LOX- and TG-

derived cross-links. We presume that the stabilization of aggregates formed early 

during fibrillogenesis is essential for a tissue-specific outcome, i.e. the typical matrix 

organization in chicken embryonic cornea.  

 

Analogous experiments were performed with tenocytes which resulted in comparable 

phenomena. Tendon tissue-specific bundles of fibrils and fibrils arranged in parallel 

were found only in controls allowing LOX-derived cross-link formation, albeit in low 

numbers. Such bundles were not apparent in cultures with ßAPN. The distribution of 

fibril diameters also changed slightly in the presence of ßAPN towards thinner fibrils 

with a broader diameter distribution. Thus, we conclude that LOX-activity may control 

collagen organization into bundles and parallel fibrils also in embryonic tendon at the 

tissue-level. LOX may also contribute to fibril diameter control and the maintenance 

of the thickness and tensile strength of chicken tendon fibrils. 

 

Furthermore, amino acid analysis of cell layers deposited in 14-days corneal and 

tendon fibroblasts was carried out (in cooperation with Prof. Jürgen Brinckmann, 

Institute of Virology and Cell Biology, University of Lübeck). The raw data showed 

different contents of each amino acid in both cell cultures, especially with respect to 

hydroxyproline, proline, glycine and tyrosine. These data may contribute towards an 

explanation of different extents and the nature of cross-link formation in keratocytes 

and tenocytes. However, these data cannot be interpreted strictly because the 

matrices could not easily be separated from the cells. Hence, the values obtained 

correspond to crude mixtures of proteins derived from both the matrices and the cells. 

Distinct cell numbers in the respective cultures also could influence the measurement. 

Trypsin digestion of cell layers to separate the matrices from cells may be a partial 
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solution to this problem which, however, will leave intact collagenous but not non-

collagenous matrix components. 

  

 
Cornea Tendon 

Hyp 126,30 98,66 
Asp 41,41 48,38 
Thr 21,20 20,78 
Ser 27,60 27,11 
Glu 64,97 72,57 
Pro 141,46 124,25 
Gly 289,84 325,80 
Ala 84,22 99,62 
Val 21,77 17,33 
Met 8,43 7,68 
Ile 14,90 13,17 
Leu 31,66 26,74 
Tyr 8,00 4,80 
Phe 16,21 14,35 
His 11,42 7,18 
Hyl 18,91 16,93 
Lys 25,00 21,74 
Arg 46,71 52,91 
Hyp/Pro 0,893 0,794 
Hyp/(Hyp+Pro) 0,472 0,443 
Hyl/Lys 0,757 0,779 
Hyl/(Hyl+Lys) 0,431 0,438 
Hyl/Hyp 0,150 0,172 
µg Protein inj. 1,50 5,68 
µg  Protein/sample 300,96 1136,63 
µg Collagen 373,60 1130,12 

 
Figure 6-1.  Amino acid analysis of matrices deposited in 14-days corneal or tendon 
fibroblasts (residues per 1000, without cysteine) (In cooperation with Brinckmann, Uni. 
Lübeck). 
 

6.2 Analysis of LOX- and TG-derived cross-links in chicken keratocytes 

Different tissue types showed distinct patterns of cross-linking chemistry, though 

most of them were essentially based on the reactions of peptide-bound aldehydes 

created from specific lysine, hydroxylysine side chains during the assembly of 

collagen subunits into fibrils. Reports are found in the literature on the basic 

mechanisms, the principal pathways, and the interaction sites of collagen cross-

linking analyzed directly by several techniques. These techniques included labeling 

of reducible cross-links with tritiated borohydride, isolating them for structural analysis 

after proteolysis or acid hydrolysis as tritiated peptides or amino acids, and similarly 

by monitoring 3-hydroxypyridinium cross-linking residues by their inherent 



DISCUSSION 

	
   77	
  

fluorescence (Eyre et al., 1984, 1987, 2005). New methods were also developed in 

recent years, such as peptide isolation by HPLC followed by sequence analysis or 

protein mass spectrometry (Eyre et al., 2008). The TG-derived cross-links base on 

the reaction of γ-glutaminyl-ε-lysyl isopeptide bonds. The isopeptide can be 

hydrolyzed by both acid and alkali hence isolation and identification involves 

extensive enzyme digestion. Its presence can be detected by antibodies to the cross-

link and indirectly by amino acid analyses before and after fluorodinitrobenzaldehyde 

(FDNB) derivativization to distinguish free and bound ε-amino lysine residues (Fratzl 

ed., 2008).  

 

In the present work, collagen-fluorography using 14C-proline labeled keratocytes was 

carried out to indirectly visualize all the chains of collagens and collagen cross-linking 

products in cell culture. Detailed analysis of the chains visualized by collagen-

fluorography showed that separate LOX-dependent as well as LOX- and TG-

dependent cross-link products co-existed in keratocytes. However, formations of both 

cross-links in the ECM are not synchronous. Thus, their influences on fibril assembly 

are time-dependent. For further details of the structure of cross-links, e.g. of cross-

links between staggered or unstaggered collagen molecules within the fibrils, mass 

spectrometry of cross-linked peptides will be necessary. Cross-link products 

containing lysyl- or glutamine-modified peptides can also analyzed in this manner.  

 
6.3 Matrix components of keratocyte cultures possibly involved in cross-link 
formation 

Collagen V, which constitutes 15-20% of the fibrillar collagens in cornea, is 

considered as an important factor specifying the thin fibrils with uniform diameter in 

cornea tissue (Birk et al., 1990; Marchant et al., 1996). Collagen VI is present as a 

network throughout chicken secondary stroma (Doane et al., 1992). Decorin and 

fibronectin are both ubiquitous components of ECM that were shown to interact with 

collagen molecules. Decorin has been shown to associate with collagen fibrils in 

many connective tissues including corneal stroma (Fleischmajer et al., 1991). It 

associates with collagen I and leads to a delayed initial assembly of collagen 

molecules resulting a decreased fibril diameter (Vogel and Trotter, 1987). In addition, 

fibronectin can bind to tissue transglutaminase (Radek et al., 1993) and also acts as 

a scaffold for active LOX (Fogelgren et al., 2005). Furthermore, fibronectin binds and 
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enhances the activity of BMP-1, which is required for LOX activation. Based on these 

arguments the corresponding corneal components were investigated in keratocyte 

cultures. 

 

α-Chains of collagens were metabolically labeled with 14C-proline in keratocyte 

cultures, digested with pepsin, and analysed by PAGE and fluorography. In the 

present work, different behaviors were demonstrated of collagen V at early and later 

time points of fibrillogenesis in corneal matrices which was also influenced by cross-

link inhibitors. The results imply that the cross-link formation affects the proportion of 

collagen V in formed corneal fibrils in a time-dependent manner. In keratocytes, 

deposition of collagens changed during cell proliferation: the proportion of α2(I)- and 

α1(I)-chains changed slightly; LOX inhibitor decreased while TG-inhibitor increased 

the relative amount of collagen V; and simultaneous application of both inhibitors led 

to a slightly reduction of collagen V at day 6. Since collagen V is considered as an 

essential regulator in heterotypic collagen I/V fibrils, this change of collagen I/V 

proportions could change the pathway of fibrillogenesis and fibril organization 

because the corneal fibrils are heterotypic I/V fibrils. 

 

In the present work, immunofluorescence staining of fibronectin and collagen VI in 

the ECM were nearly the same under four different conditions of cross-link formation. 

These results suggested that the synthesis and deposition of neither fibronectin nor 

collagen VI were altered by suppression of LOX- or TG-derived cross-link formation. 

On the other hand, the results showed that the deposition of decorin into ECM was 

delayed by either LOX- or TG-inhibitors. Thus, deposition of decorin was affected by 

both LOX- and TG-derived cross-link formations during the initial phase of cell 

proliferation and fibril formation. The correlative functions of LOX-derived cross-link 

formation and deposition of decorin into ECM may explain LOX-dependent 

differences in suprastructural organization of corneal fibrils, especially concerning the 

formation of lamellae. 

 

6.4 In-vitro reconstitution of crude corneal collagens   

The assembly of collagen molecules into fibrils is an entropy-driven process, similar 

to that occurring in other protein self assembly systems, such as microtubules, actin 

filaments and flagella (Kadler et al., 1987). The fibril-forming collagens in embryonic 
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chicken are synthesized as soluble procollagens, and then are converted into 

collagens by specific enzymatic cleavage of terminal propeptides by the procollagen 

metalloproteinases. Without these proteinases the synthesis of collagen fibrils would 

not occur. Collagens extracted in acetic acid from authentic tissue are triple helical 

monomers without N- and C-propeptides. Therefore, they are capable to reconstitute 

into fibrils under suitable conditions, e.g. appropriate buffer salts, pH, and 

temperature. In-vitro reconstitution of collagens into fibrils is a well-established 

strategy for a time-dependent observation of collagen fibril formation (Birk and Silver, 

1984; McPherson et al., 1985; Birk et al., 1990; Hansen and Bruckner, 2003; Trelstad 

et al., 2006), sometimes modulated by the presence non-collagenous matrix 

components.  

 

In the present work, the structure and organization observed for fibrils reconstituted 

in-vitro in the presence of rhTG complemented and corroborated the results from the 

cell culture experiments in the presence of TG-inhibitor. In the presence of rhTG or 

factor XIII crude corneal collagens were differentially reconstituted into fibrils in-vitro. 

A sudden increase in turbidity at the initiation time of fibrillogenesis is consistent with 

the formation of specific early aggregates supported by TG activity at the beginning 

of fibril organization. Such small aggregates may serve as a nucleation site 

accelerating the formation of a large number of thin, tissue-specific corneal fibrils. 

Furthermore, analysis of diameter distribution showed that rhTG activity favored the 

formation of thin fibrils with crude corneal collagen mixtures. However, another 

transglutaminase, the factor XIII, does not have this capability. Interestingly, we also 

found that network-like structures composed of thin, banded, collagen I-containing 

fibrils only appeared in the reconstituted products in the presence of proteoglycans 

and TG activity. Here, fibrils reconstituted in-vitro from crude corneal collagens 

without proteoglycans exhibit obviously larger diameters in comparison to authentic 

corneal fibrils. In the presence of proteoglycans, fibrils became much thinner and 

similar to authentic 20-35 nm-fibrils. Therefore, we were able to show that two factors 

are essential for fibril diameter control in corneal stoma: co-polymerization of 

proteoglycans as well as the enzymatic activity of tissue transglutaminase (and not 

factor XIII).  
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In this experiment, the original materials of crude collagens should contain some 

cross-links, since initial cross-links were formed already in 17-day-old embryonic 

chicken cornea. We have tried to purify collagens from cell cultures of keratocytes in 

the presence of both LOX- and TG-inhibitors, in order to harvest more cross-link free 

material for reconstitution experiments. Because of the low yield of collagens in cell 

culture, as well as the loss during purification process, I failed to get enough 

materials for further experiments.  To enlarge the cell culture system, to concentrate 

the purified collagen mixture, and to reconstitute fibrils directly on EM-grids in very 

small volumes, may represent possible strategies to achieve fibril reconstitution 

unaffected by a contribution of pre-existing cross-links.  
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7. CONCLUSIONS AND FUTURE PERSPECTIVES 

	
  

The data accumulated in this thesis show that the formation of cross-links is essential 

for the tissue-specific fibrillogenesis and matrix organization in chicken embryonic 

cornea and tendon. In cornea, the organization into lamellae was strongly effected by 

lysyl oxidase-derived cross-links whereas transglutaminase-derived cross-links have 

special effects on fibril diameter control. The inhibition of both LOX- and TG-derived 

cross-links leads to a loss of matrix organization (e.g. lamellae) and broad fibril 

diameter distribution with abnormal fibril morphology. Further, the deposition of 

collagen V and decorin into extracellular matrix was affected by alterations of cross-

link formation. Parallel arrangement of fibrils and discrete bundles present in tendon 

fibroblast also depends LOX-derived cross-linking. 

 

These observations and conclusions lead to the following prospections: (i) what is the 

mechanism of LOX-derived cross-link formation leading to an organization of fibrils 

into lamellae; (ii) do the early formed cross-linked small aggregates affect the further 

fibrils organization; (iii) which other factors are required for such tissue-specific matrix 

organizations; (iv) are there some transport canals, projections of the plasma 

membrane or some other special structures which may contribute to the orientation of 

corneal collagen fibrils into orthogonal arrangements.  

 

Several methods are available helping to answer those questions, e.g. mass 

spectrometric analysis of cross-linked peptides which were deposited in fibroblast 

cultures; morphological studies of cross-linked small aggregates at early stage of 

fibrillogenesis on EM-level; employing purified LOX in in-vitro fibrillogenesis 

experiments; introduction of LOX siRNA into keratocyte cultures; analysis of 

differentially expressed matrix proteins under different cross-linking conditions using 

2D electrophoresis. In addition, other components of interest, which may also involve 

in fibril formation and matrix organization in chicken cornea, should be studied. 
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