

Informatik

Rapid Development of Applications

for the Interactive Visual Analysis

of Multimodal Medical Data

Inaugural-Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften
im Fachbereich Mathematik und Informatik

der Mathematisch-Naturwissenschaftlichen Fakultät
der Westfälischen Wilhelms-Universität Münster

vorgelegt von

Stefan Diepenbrock
aus Münster

2013

Dekan: Prof. Dr. Martin Stein

Erster Gutacher: Prof. Dr. Klaus Hinrichs

Zweiter Gutacher: Prof. Dr. Klaus Schäfers

Tag der mündlichen Prüfung: 5.7.2013

Tag der Promotion: 5.7.2013

Abstract

With multimodal volumetric medical data sets becoming more
common due to the increasing availability of scanning hard-
ware, software for the visualization and analysis of such data
sets needs to become more efficient as well in order to prevent
overloading the user with data. This dissertation presents sev-
eral interactive techniques for the visual analysis of medical
volume data. All applications are based on extensions to the
Voreen volume rendering framework, which we will discuss
first. Since visual analysis applications are interactive by def-
inition, we propose a general-purpose navigation technique
for volume data. Next, we discuss our concepts for the inter-
active planning of brain tumor resections. The implemented
applications support a wide range of modalities and exploit
novel projection techniques. Finally, we present two systems
designed to work with images of vasculature. First, we discuss
an interactive vessel segmentation system giving the user full
control over the result while enabling an efficient, visually
supported workflow. Second, we propose an application for
the visual analysis of PET tracer uptake along vessels. Novel
visualization techniques are placed in a side-by-side layout
with standard views to allow for an efficient comparison of
two vessel segments.

i

Contents

Preface vii

1 Introduction 1

2 Volume Visualization Techniques 5

2.1 Indirect Volume Rendering . 5
2.2 Direct Volume Rendering . 6

2.2.1 Theoretical Background . 6
2.2.2 The Volume Rendering Pipeline 8
2.2.3 Slicing . 9
2.2.4 Ray Casting . 11
2.2.5 Multi-Volume Ray Casting . 12

3 The Voreen Framework 15

3.1 Graphical User Interface . 16
3.2 VoreenVE . 17
3.3 Volume Ray Casting in Voreen . 17
3.4 Developing Applications in Voreen . 18

4 Extensions to the Voreen Framework 21

4.1 Changes to the Property Concept . 21
4.1.1 Implicit Caching . 21
4.1.2 Linking . 22
4.1.3 Animation . 23

4.2 Handling of Generic Data . 23
4.2.1 Caching . 27
4.2.2 GenericPort . 28
4.2.3 CoprocessorPort . 28
4.2.4 Handling of DTI Data . 29

iii

Contents

4.3 Multi-View Support . 31
4.3.1 Resizing and Events . 32
4.3.2 Cameras . 34

4.4 Redesign of Volume Data Structure . 34
4.4.1 Metadata Handling . 36
4.4.2 Derived Data . 37
4.4.3 Coordinate Systems . 37
4.4.4 Values . 38

4.5 Multimodal Volume Rendering . 39
4.5.1 Multimodal Volume Ray Casting 39
4.5.2 Multimodal Slice Rendering . 40
4.5.3 Coregistration . 42

4.6 Region of Interest Rendering and Analysis 44
4.6.1 Data Structures . 44
4.6.2 Integration into Dataflow-Network 47

4.7 Plotting . 50
4.7.1 Data Structures . 50
4.7.2 Plotting Processors . 50
4.7.3 Linking and Brushing . 50

4.8 Reformation Techniques . 53
4.9 Volume Processing . 54

5 Case Study: Analysis of DTI Data using Voreen 59

5.1 Background and Data Acquisition . 59
5.2 Requirements . 60
5.3 Implementation . 60
5.4 Conclusion . 62

6 Context-Aware Volume Navigation 67

6.1 Introduction . 67
6.2 Related Work . 70
6.3 Design Considerations . 72
6.4 Navigation Algorithm . 74

6.4.1 Image-Based Volume Navigation 77
6.4.2 Supporting Location Awareness 79
6.4.3 Integrated Camera Control . 82

6.5 Evaluation . 83
6.5.1 Usability . 83

iv

Contents

6.5.2 Performance . 86
6.6 Integration in Voreen . 87

6.6.1 Limitations . 87
6.7 Conclusions . 88

7 Interactive Planning for Brain Tumor Resections 91

7.1 Introduction . 91
7.2 IEEE Visualization Contest 2010 . 92

7.2.1 Data Sets . 92
7.2.2 Clinical Questions . 92

7.3 Related Work . 93
7.4 Planning Workflow . 94

7.4.1 Workflow Step 1 . 94
7.4.2 Workflow Step 2 . 95

7.5 Preprocessing . 95
7.5.1 Segmentation & Registration . 95
7.5.2 DTI Fiber Tracking . 95
7.5.3 DTI Uncertainty Extraction . 96

7.6 Visualization . 96
7.6.1 2D and 3D Views . 96
7.6.2 Projection Techniques . 98
7.6.3 Uncertainty Visualization . 100
7.6.4 Brain Rendering . 101

7.7 Interaction Techniques . 101
7.8 Evaluation . 101
7.9 Future Work . 101
7.10 Implementation in Voreen . 102
7.11 Conclusion . 102

8 Interactive Vessel Segmentation 105

8.1 Introduction . 105
8.2 Related Work . 107
8.3 Design Considerations . 108

8.3.1 Workflow . 111
8.4 Visualization Techniques . 112
8.5 Interaction Metaphors . 115
8.6 Evaluation . 118
8.7 Limitations . 122

v

Contents

8.8 Implementation . 122
8.9 Conclusion . 123

9 Comparative Visualization of Tracer Uptake in PET/CT Imaging 125

9.1 Introduction . 126
9.2 Related Work . 128
9.3 Medical Background . 131
9.4 Design Considerations . 132
9.5 Application Overview . 133
9.6 Visualization Techniques . 135

9.6.1 Color Mapping . 135
9.6.2 Normalized Circular Projection 135
9.6.3 Vessel Wall Analysis . 138
9.6.4 Interaction . 139

9.7 Results . 140
9.7.1 Comparison . 141
9.7.2 Learning Curve . 143
9.7.3 Implementation and Performance 144
9.7.4 Limitations . 144

9.8 Conclusion and Future Work . 145

10 Conclusions 149

Acronyms 165

vi

Preface

This dissertation represents the results of research that has been carried out from
July 2009 till March 2013 at the Department of Computer Science at the University
of Münster. I would like to thank my supervisor, Prof. Dr. Klaus Hinrichs, for
his guidance and for giving me this interesting research opportunity in his group.
Furthermore, I would like to thank Prof. Dr. Timo Ropinski for support regarding the
publications which form the basis of Chapters 6, 7 and 8.

I would also like to express my thanks to my past and present colleagues from
the Visualization and Computer Graphics Research Group for a very nice working
environment, especially the members of the Voreen development team, including
Florian Lindemann, Dr. Jörg Mensmann, Dr. Jörg-Stefan Praßni and Tobias Brix,
which worked hard to make Voreen the powerful and flexible framework it is today.

Implementations of the extensions to the Voreen framework described in Chapter 4
have been partially carried out by students working on the Voreen project: Linking,
animation, plotting and ITK integration have been topics of seminars by the VisCG
research group. The original implementation of DTI visualization and processing
techniques for the brain tumor resection planning application described in Chapter 7
have been substantially extended by Christian Schulte zu Berge in his diploma thesis.

This work was partly supported by grants from the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG) through the Collaborative Research Centre
656 Molecular Cardiovascular Imaging (project Z1). I would like to thank all my
collaborators from the biomedical domain, including Prof. Dr. Cornelius Faber, Prof.
Dr. Hans-Werner Bothe, Prof. Dr. Klaus Schäfers, Dr. Lydia Wachsmuth, Prof. Dr.
Michael Schäfers and Dr. Sven Hermann, for insights into interesting problems that
motivated the work carried out in this thesis.

I would also like to express my gratitude to my family who has supported me
throughout my life and during my education leading up to this thesis. Finally, I would
like to thank my wife Katharina-Maria who has always encouraged and supported
me.

Münster, March 2013 Stefan Diepenbrock

vii

Chapter 1

Introduction

A number of volumetric imaging modalities have emerged in the last decades and
have become increasingly widespread in the medical field. Each of the modalities has
its strengths and weaknesses: While computed tomography scans (CT) provide high
resolution images of the anatomy, no functional data is gathered. In contrast, positron
emission tomography (PET) can be used to capture the metabolic activity of tissue
but lacks the high resolution. Therefore, a physician has to select the modality that is
best suited to answer a medical question. Alternatively, a combination of modalities
may provide even more insight: A PET-CT scan can be used to detect tumors in the
PET image and localize them precisely in the CT image.

Volume visualization techniques have been a very active research topic for the last
decade. Due to the increase of processing power in consumer graphics hardware
during this time period it is now possible to render medical volume data on standard
PCs instead of specialized workstations. Larger data sets which, due to improved
scanning technology are more and more common, represent not so much a perfor-
mance but an information overload problem. Keim et al. [KAF+08] define this problem
as "the danger of getting lost in data which may be

• irrelevant to the current task at hand

• processed in an inappropriate way

• presented in an inappropriate way".

The suggested solution to the information overload problem is visual analytics:

Visual analytics combines automated analysis techniques with interactive
visualizations for an effective understanding, reasoning and decision
making on the basis of very large and complex data sets. [KAF+08]

In this dissertation, we discuss multiple applications for the visual analysis of
medical volume data as well as modifications to the Voreen framework that enabled
their development.

1

Chapter 1 – Introduction

As expressed by the definitions above, we need to know what is relevant in a given
data set and how to process and present it appropriately. Visualization is a discipline
that studies the efficient presentation of data, but general-purpose solutions (e.g.,
standard medical workstation software) may not be sufficient for all tasks. Similar to
Meyer-Spradow et al. [MS09] we recognize the need for close cooperation between
computer scientists and domain experts to generate meaningful visualizations. Since
time for such cooperations will usually be restricted it is desirable to use rapid
prototyping tools in order to make trial and error with different alternatives during
meetings as efficient as possible. We have therefore extended the Voreen framework
in a number of ways:

Multi-View applications can now be developed in the VoreenVE rapid prototyping
environment. Since one visualization technique is almost never sufficient this has
been an important prerequisite for the development of all applications discussed
here.

Rendering of multimodal data has been implemented in a number of processors, and
Voreen has been redesigned for the handling of generic data. Developers can therefore
resort to a selection of well-tested techniques or quickly develop techniques for new
types of data.

A large number of volume processing algorithms have been integrated into Voreen to
allow on the fly changes to the visualization pipeline.

Techniques for the quantitative analysis of data have been added in the form of a
flexible and easily extensible region of interest (ROI) framework. Accordingly, several
processors for the display of non-spatial data have been developed.

Aside from these extensions, we propose a number of novel approaches for the
interactive visual analysis of medical volume data: First, we discuss a context-aware
navigation technique for volume data, which is flexible enough to be integrated
into most volume visualization pipelines. Second, we describe our concepts for the
interactive planning of brain tumor resections. In this application we utilize a two-step
workflow to allow the surgeon to efficiently analyze a multitude of modalities. Using
different projection techniques and plots, we streamline the planning process for the
user. Third, we propose a sketch-based vessel segmentation system which guides
the user through the segmentation process using specific techniques for visualizing
uncertainty. Finally, we developed an application for the comparative visualization of
PET tracer uptake in the vicinity of vessels. The side-by-side view of an artificially
modified vessel and a healthy control vessel allows the user to quickly compare the
PET signal of both. We propose novel visualization techniques to quickly guide the
user to areas of interest.

This thesis is structured as follows: We first introduce basic volume visualization

2

concepts and techniques in Chapter 2. After giving an initial overview of the Voreen
framework in Chapter 3 we will discuss the aforementioned extensions in Chapter 4.
Before discussing our novel approaches, we will shortly discuss in Chapter 5 an
application for the visual analysis of diffusion tensor imaging (DTI) data as an
example for the rapid-prototyping capabilities provided by the Voreen framework. In
Chapter 6 we will introduce our proposed volume navigation technique, followed by
a presentation of our brain tumor resection planning-tool (Chapter 7). In Chapter 8
our novel vessel segmentation system will be described, which can also be used
as a pre-processing step of an application for the visual analysis of tracer uptake
discussed in Chapter 9. Chapter 10 concludes this thesis and provides a summary of
our work as well as a discussion of future research directions.

The contributions in this thesis are based on the following publications: The ap-
plication for the visual analysis of DTI data sets described in Chapter 5 has been
presented as a poster at the congress of the European Society for Magnetic Reso-
nance in Medicine and Biology (ESMRMB) [DSzBH+11]. The navigation technique
described in Chapter 6 has been presented at the IEEE Pacific Visualization Sympo-
sium (PacificVis) [DRH11]. The application for the pre-operative planning of brain
tumor resections discussed in Chapter 7 is based on the winning entry for the IEEE
Visualization Contest 2010 [DPL+10] and the subsequent publication in the IEEE
Computer Graphics and Applications journal [DPL+11]. The interactive vessel seg-
mentation system discussed in Chapter 8 has been presented at the Eurographics
Workshop on Visual Computing for Biology and Medicine [DR12]. The application
for the comparative visualization of tracer uptake in PET/CT imaging described
in Chapter 9 has been accepted at the Eurographics Conference on Visualization
[DHS+13].

Additional research on volume visualization has been conducted by contributing
to the work on dynamic ambient occlusion for volume rendering [RMSD+08] and
texturing for volume rendering [RDB+12].

3

Chapter 2

Volume Visualization Techniques

This chapter introduces basic concepts of volume rendering and discusses

commonly used volume visualization techniques, focussing on GPU-based

approaches. Furthermore, intermixing techniques for multi-volume render-

ing algorithms are discussed.

Volume visualization is the process of generating an image from volumetric data. A
volume is a stack of two-dimensional images, storing a scalar value at each element.
The elements of a volume are called voxels (volume elements) instead of pixels
and the distance (typically specified in millimeters) between voxels is called spacing.
In contrast to the classic examination of individual slices, volume visualization
techniques display the volume in its entirety [PB07].

2.1 Indirect Volume Rendering

Preim and Bartz [PB07] categorize indirect volume rendering techniques into plane-
based and surface-based approaches:
Plane-based approaches display an arbitrary plane intersecting the volume. While
data set-aligned planes are the most commonly used technique, planes aligned to
anatomical structures can provide additional insight. For curved structures like
vessels the curved planar reformation (CPR) has been proposed [KFW+02]. The CPR
renders a curved slice along the centerline of a vessel. Section 4.8 describes the
implementation of the CPR in Voreen.

Surface-based approaches extract surfaces from the volume and then render the
resulting geometry. Typically isosurfaces are extracted from the volume. The most
well known technique to generate a geometric representation of an isosurface is
the marching cubes algorithm by Lorensen and Cline [LC87]. Since surface-based
rendering is not used in this thesis we will not go into further detail here.

5

Chapter 2 – Volume Visualization Techniques

2.2 Direct Volume Rendering

Direct volume rendering (DVR) techniques visualize the data without first generating
an intermediate (polygonal) representation. We will first review the theoretical back-
ground of DVR before discussing slicing and ray casting as solutions to the volume
rendering integral.

2.2.1 Theoretical Background

In this section, we will discuss the theoretical foundation of volume rendering [Eng06].
To render a volume, it is modelled as gaseous material interacting with light. The
material can actively emit light, absorb light or scatter incoming light. Since no global
illumination techniques are discussed in this thesis, we will not discuss models
simulating scattering or shadowing. This model is called the emission-absorption model.
Each scalar value in the volume needs to be mapped to optical properties using
a classification method (see Secion 2.2.1). κ and q are the absorption and emission
coefficients.

If we consider only a single ray, the light transport is modelled by the volume-
rendering equation in its differential form:

dI(s)
ds

= −κ(s)I(s) + q(s) (2.1)

where s is the position along the ray. Through integration of the volume rendering
equation along the ray from startpoint s0 to endpoint D we get the volume-rendering
integral:

I(D) = I0e−
∫ D

s0
κ(t)dt

+
∫ D

s0

q(s)e−
∫ D

s κ(t)dtds (2.2)

I0 is the background intensity, which is attenuated by the volume between s0 and D.
The second term describes the contribution of each point along the ray, attenuated by
the volume between a point and s0. With the transparency T between s1 and s2

T(s1, s2) = e−
∫ s2

s1
κ(t)dt (2.3)

we can rewrite the volume-rendering integral as follows:

I(D) = I0T(s0, D) +
∫ D

s0

q(s)T(s, D)ds (2.4)

To solve this integral it is split into n intervals [si−1, si] (with 0 < i ≤ n and sn = D).

6

2.2 Direct Volume Rendering

The radiance at si is therefore:

I(si) = I(si−1) T(si−1, si)︸ ︷︷ ︸
Ti

+
∫ si

si−1

q(s)T(s, si)ds
︸ ︷︷ ︸

ci

(2.5)

Ti and ci are the transparency and color of segment i, they are commonly approxi-
mated by

Ti ≈ e−κ(si)Δx, ci ≈ q(si)Δx. (2.6)

where Δx is the lenght of the segment. We can now write I(D) as

I(D) =
n

∑
i=0

ci

n

∏
j=i+1

Tj , with c0 = I(s0) (2.7)

Compositing To solve equation 2.7 efficiently it is computed iteratively. The func-
tion that combines the current result with the next segment is called compositing.
In the following equations, c is an RBG color and α is an alpha value (α = 1 − T).
cacc and αacc are the accumulated values which are updated. Compositing can be
performed from front-to-back:

cacc = cacc + (1 − αacc)αici

αacc = αacc + (1 − αacc)αi
(2.8)

or back-to-front:
cacc = (1 − αi)cacc + αici (2.9)

Front-to-back compositing allows for early ray termination, an optimization technique
that stops the calculation as soon as the accumulated alpha value is close to 1.
Alternative compositing modes, which do not necessarily implement the emission-
absorption model, include the commonly used maximum intensity projection (MIP).
The MIP simply displays the maximum intensity along each ray.

Local Illumination Illumination models have been shown to improve depth per-
ception in images generated by direct volume rendering techniques [LR11]. Global
illumination models need to simulate the interaction of all voxels in the volume and
are therefore computationally expensive. As a trade-off, local illumination models
are frequently used to render volumes. The Blinn-Phong shading model [Bli77] is

7

Chapter 2 – Volume Visualization Techniques

frequently employed in computer graphics:

I = kaia︸︷︷︸
ambient term

+ kdid(�L · �N)︸ ︷︷ ︸
diffuse term

+ ksis(�H · �V)α︸ ︷︷ ︸
specular term

(2.10)

where ka, kd and ks are the material coefficients, α is the shininess of the material,
and ia, id and is are properties of the light source. �L is vector in direction of the light
source, �N is the surface normal, �V is a vector in direction of the viewer and �H is the
halfway vector, determined by �V and �L. The normal, usually given when rendering
polygonal objects, is replaced by the gradient of the volume at the sampling position.
Computation of the gradient is commonly performed using a gradient filter such as
forward differences, central differences or the 3D Sobel filter. These filters require 3,
6, and 26 extra memory fetches and therefore have a different impact on performance
as well as image quality.

Classification using Transfer Functions The assignment of optical properties to
the volume is a critical problem in volume rendering. Apart from cryosection imaging
(e.g., The Visible Human Project ∗), no optical properties can be directly derived from
the volume data. A function assigning optical properties based on the data is called a
transfer function. The standard approach is to assign a color and opacity based on the
intensity at the current sampling position. In the graphical user interface, editing is
commonly performed by editing a piecewise linear function. Figure 2.1 shows the
transfer function editor implemented in Voreen and the images resulting from editing
the transfer function. A number of higher-dimensional transfer functions have been
proposed, the most commonly implemented one being 2D-transfer functions based
on intensity and gradient magnitude [Lev88].

2.2.2 The Volume Rendering Pipeline

The volume rendering pipeline describes the typical steps found in a direct volume
rendering algorithm (see Figure 2.2):

• Traversal: The current sampling position is updated.

• Sampling & Interpolation: The intensity at the sampling position is determined
using an interpolation technique (usually trilinear interpolation).

∗ http://www.nlm.nih.gov/research/visible/visible_human.html

8

2.2 Direct Volume Rendering

Figure 2.1: Effect of Transfer Functions on Rendering: For the right image,
samples with medium intensity have been set to transparent.

• Classification: From the intensity the optical properties (typically an RGB-color
and opacity) of the volume at the sampling position are determined, usually by
application of a transfer function.

• Illumination: An illumination model modifies the color to simulate light inter-
action.

• Accumulation: The color is composited with the accumulated result, usually
with front-to-back compositing.

The resulting pixel is then displayed on the screen.

2.2.3 Slicing

Slicing has originally been implemented for volume rendering on GPUs which did
not support 3D texturing. The volume had to be converted into three stacks of 2D
textures (one for each major axis). Depending on the position of the camera a slice
stack is chosen and a set of data set-aligned quads are rendered in depth order
(see Figure 2.3) using an appropriate blending function. Data set-aligned slices will
produce artifacts for camera positions betweeen the major axes.

Therefore, view-aligned slicing has been implemented: Polygons aligned to the
view plane are generated and clipped by the bounding box of the volume (see
Figure 2.4). 3D texture coordinates are assigned to the vertices, and the polygons
are rendered in depth order. Due to its limited flexibility, slicing has mostly been
superseded by ray casting techniques.

9

Chapter 2 – Volume Visualization Techniques

Figure 2.2: Volume Rendering Pipeline.

Figure 2.3: Data set-aligned slicing.

Figure 2.4: Screen-aligned slicing.

10

2.2 Direct Volume Rendering

Figure 2.5: Volume raycasting.

2.2.4 Ray Casting

Ray casting is a commonly used direct volume rendering technique that allows for
efficient implementation on modern GPUs. Ray casting is a simpler version of ray
tracing that does not implement refractions and reflections. Rays are cast for every
pixel of the screen and intersections with objects in the scene are computed in depth
order. Volume ray casting has to compute the intersection of each ray with the volume
and then sample it along the path (see Figure 2.5) as described in Section 2.2.2. The
volume in the scene is commonly represented by a proxy-geometry and intersections
are computed with this geometry. The trivial proxy-geometry is a cube matching the
extent of the volume. Clipping of the proxy-geometry results in a clipped volume
rendering. The use of a proxy-geometry also allows empty-space skipping: Empty
parts of the volume (with respect to the transfer-function) are not included in the
proxy-geometry and therefore optimize the distance to be sampled inside the volume.
For GPU-based ray casting, an optimization technique proposed by Krüger and
Westermann [KW03] is used to compute the ray entry and exit points: The proxy-
geometry is rasterized by the GPU, which is highly optimized for this operation. First,
all front-facing polygons are rendered, discarding all but the front-most fragments.
Then, all back-facing polygons are rendered to compute the most distant fragments.
The result is saved in two RGBA textures: The entry-point and exit-point textures.
Coordinates in texture space are encoded in the RGB values of each pixel. In the
actual raytracing step, two texture lookups are all that is needed to retrieve the ray
parameters. Figure 3.3 illustrates these steps as implemented in Voreen.

11

Chapter 2 – Volume Visualization Techniques

2.2.5 Multi-Volume Ray Casting

To render multiple volumes at once, the data has to be combined at some point in the
rendering pipeline. Cai and Sakas [CS99] propose three data intermixing approaches:
Image level intermixing, accumulation level intermixing and illumination model level
intermixing. Schubert and Scholl [SS11] add classification level intermixing to this
list.

Image Level Intermixing takes the resulting images of multiple single-volume
ray castings and combines them into one image (see Figure 2.6 a). Several composing
operators have been implemented, including depth-based blending. Rendering us-
ing image level intermixing generates unintuitive results, structures from different
modalities do not occlude each other properly. Depth perception is therefore limited.

Accumulation Level Intermixing combines shaded colors from all volumes at
each sampling point (see Figure 2.6 b). Structures from different volumes can therefore
occlude each other in a manner consistent with the emission-absorption model.

Illumination Level Intermixing mixes the absorption coefficent (κ) of different
volumes instead of blending the transparency values (T) and the color.

Classification Level Intermixing mixes the intensities of multiple volumes (see
Figure 2.6 c). A meaningful result can only be achieved for volumes of the same
modality.

12

2.2 Direct Volume Rendering

a) Image Level Intermixing (b) Accumulation Level Intermixing

(c) Classification Level Intermixing

Figure 2.6: Intermixing at different stages of the multi-volume rendering pipeline.

13

Chapter 3

The Voreen Framework

In this chapter we will describe the basic concepts of Voreen, the Volume

rendering engine. A discussion of processors, ports and properties as

well as their combination into rendering networks will form the basis for

the extension of the platform towards a rapid application development

framework described in the next chapter.

The general idea behind the Voreen project is to split up the steps necessary to render
a volumetric data set into small building blocks in order to facilitate implementation
of new visualization techniques. A Processor is the most important of these blocks, it
encapsulates an algorithm with its inputs, outputs and parameters into a class with a
well-defined interface. Input and output of data (e.g., volumes, images) are specified
by Ports. Additional parameters (e.g., the size of a kernel for an image/volume
filter) are specified as Properties. Execution of the algorithm encapsulated in the
processor is triggered by a call of the process() method. A suitable combination of
multiple processors with connections between in- and outports of the same type into
a pipeline thus creates a desired visualization. Due to the common interface, parts of
this rendering pipeline can easily be added or exchanged to experiment with new
approaches. Examples for such modifications are pre-processing of volume data, the
addition of image filters as post-processing or performance enhancements using an
optimized proxy-geometry processor.
In early versions of Voreen the pipeline had to be constructed by program code,
which turned out to be quite cumbersome and prone to errors and which did not
facilitate on-the-fly experimentation by modifying the pipeline. The solution to this
problem, as described by Meyer-Spradow et al. [MSRMH09], is to introduce visual
programming concepts to construct rendering pipelines. Processors are arranged
into data-flow networks (class ProcessorNetwork) which are sorted topologically by
the NetworkEvaluator. The NetworkEvaluator evaluates a network by calling the
process() method of each processor in the network.

15

Chapter 3 – The Voreen Framework

Figure 3.1 shows an example network consisting of typical stages in a volume ren-
dering pipeline: Input (VolumeSource), pre-processing (VolumeResample), rendering
(SliceViewer), post-processing (Background) and output (Canvas).

Figure 3.1: Processor network: A typical volume visualization pipeline, consisting
of input, pre-processing, rendering, post-processing and output (top to bottom).

3.1 Graphical User Interface

Voreen has been designed to be independent of the utilized GUI-toolkit and can
therefore be easily integrated into other applications. This is achieved by a strict
separation into multiple layers: The voreen_core library handles all functionality
described so far, GUI-toolkit libraries like the voreen_qt library provide commonly
used widgets for specific toolkits, and applications utilize both libraries to integrate
them into their GUI ∗. GUI-related functionality (e.g., events) in the core library is
abstracted using the tgt (Tiny Graphics Toolbox) library.

∗ Pure console applications utilizing only the core library are also possible.

16

3.2 VoreenVE

Developers can add a GUI to a processor by adding properties or by implementing
a ProcessorWidget. Widgets for properties are automatically generated by the GUI-
toolkit library and require no additional effort by the developer. Since a wide range
of property-types (boolean, integer, float, vector and matrix types, transfer functions,
shaders, file dialogs, etc.) is supported, this auto-generated GUI is sufficient for the
vast majority of processors. To implement a customized user interface it is possible
to implement a ProcessorWidget in a specific GUI-toolkit. The most prominent
example for this is the output window displayed by the CanvasRenderer.

3.2 VoreenVE

The VoreenVE (Voreen Visualization Environment) provides the user with a graph-
ical user interface (GUI) to build processor networks at runtime. Figure 3.2 shows
the VoreenVE user interface with the example network discussed earlier. The user
can drag processors from the processor-list (left) into the network-editor (center),
properties of the currently selected processor are displayed on the right side of the
screen. The resulting image is displayed on the canvas.
Networks built by the user are saved in an XML-based format using a serialization
framework implemented for Voreen. Serialization captures the entire state of the
network, including all properties (e.g., loaded data sets, transfer functions, etc.).
Although these networks are constructed in VoreenVE, they can be loaded while
retaining full functionality in other applications using the voreen core library.

VoreenVE can be switched into an application mode in which only a configurable
subset of properties is shown to the user and the network editor is hidden.

3.3 Volume Ray Casting in Voreen

The standard renderer in Voreen (SingleVolumeRaycaster) implements Krüger-
Westermann [KW03] ray casting using entry- and exit-point textures. The processors
and rendering network have changed slightly from the ones described by Meyer-
Spradow et al. [MSRMH09]. Instead of using a coprocessor port to connect proxy-
geometry and entry-exit-point processors the proxy-geometry is now passed on using
a GeometryPort. The rendering network is shown in Figure 3.3: A volume is loaded
into the VolumeSource processor, which is used by the CubeProxyGeometry processor
to create a proxy-geometry to be rendered by the MeshEntryExitPoints processor.
The resulting entry- and exit-point textures in combination with the volume are used
to perform the ray casting using GLSL in the SingleVolumeRaycaster.

17

Chapter 3 – The Voreen Framework

Figure 3.2: VoreenVE Application: The interface consists of the processor list (left),
the network editor (center), the property list (right) and processor widgets, in this case
a canvas (floating on top).

3.4 Developing Applications in Voreen

Development of novel visualization applications will usually require implementation
of new components that work with the rest of the framework. This could include
readers for new formats, new port types, processors, properties etc. Components
designed for one application or for one purpose (e.g., DTI processing) are grouped
into a module. Modules to be included in Voreen can be configured at compile time
using the CMake build system ∗.

∗ http://www.cmake.org

18

3.4 Developing Applications in Voreen

Figure 3.3: Standard Ray Casting Network consisting of VolumeSource,
CubeProxyGeometry, MeshEntryExitPoints and SingleVolumeRaycaster.

19

Chapter 4

Extensions to the Voreen
Framework

The focus of Voreen development has shifted from volume ray casting

towards building a more fully featured and extendible framework for the

visual analysis of volume data. This chapter will discuss the changes to the

architecture that enabled the development of the applications discussed

in the following chapters.

4.1 Changes to the Property Concept

While the types of properties used in Voreen have not changed much from the
ones described by Meyer-Spradow [MS09, pp. 40-42], their usage throughout the
framework has grown. A base-class PropertyOwner has been introduced to allow
classes other than processors to have properties. Furthermore, singletons ∗ are no
longer used to store settings, a linking concept has been introduced to control
synchronization between properties, and a property-based animation framework
has been implemented. In combination with the network-based support for multi-
view development this has made coding of new applications based on the Voreen
libraries mostly obsolete, since most functionality can now be realized in VoreenVE
by network-construction.

4.1.1 Implicit Caching

Explicit caching using special processors has been removed from Voreen in favor of an
automatic mechanism to only call process() for processors that do not have a valid
result. Other processors, however, might need to do more than what is normally done

∗ A design-pattern that restricts the number of instances of a class to one. [GHJV95, pp. 127-134]

21

Chapter 4 – Extensions to the Voreen Framework

in the process() method. One common example is the recompilation of shaders: Per-
frame recompilation should be avoided for performance reasons, but some properties
(e.g., shading model) require the processor to rebuild the shader after their value has
changed. For this purpose the PropertyOwner class, from which Processor derives,
has an invalidation level. The level is stored as integer, with a set of constants defined
using the enumeration Processor::InvalidationLevel. A VALID(=0) processor does
not need to be re-evaluated, a processor with the level INVALID_RESULT or greater
will be evaluated by the NetworkEvaluator. Additional levels indicate a changed
number of ports or the need to recompile shaders. A processor with the invalidation
level INVALID_PROGRAM will first recompile its GLSL shader or OpenCL kernel before
calling the usual rendering code. Properties and ports are assigned an invalidation
level using their constructor and call the invalidate(level) method of the processor
they belong to. The processor will set its invalidation level to the maximum of its
current level and the level of the property or port. After the network evaluator has
called process() on a processor its level is reset to VALID.

4.1.2 Linking

The messaging concept used to synchronize values of properties [MS09, p. 21] has
been removed in favor of property linking. Messaging did not allow the user to control
which properties to synchronize and also did not support linking of different types
using conversion (e.g., integer to float). Synchronization between two properties
now has to be established using a unidirectional PropertyLink. Each link has a link
evaluator which reacts to changes of the source property. Evaluators implement the
LinkEvaluatorBase interface:

class LinkEvaluatorBase : public VoreenSerializableObject {
/// Called by PropertyLink to execute the link.
virtual void eval(Property* src, Property* dst) throw (VoreenException) = 0;

5 // Returns true if the LinkEvaluator can link the two properties.
virtual bool arePropertiesLinkable(const Property* src, const Property* dst) const = 0;

};

Listing 4.1: LinkEvaluatorBase interface (abbreviated)

If there is a property link from property A to property B and the value of A changes,
eval(A, B) of the corresponding linkevaluator will be called, which will cause a
change of property B. Bidirectional links are created as two unidirectional links.

Evaluators performing an id-mapping between two properties of the same type
can be implemented by deriving from the LinkEvaluatorIdGeneric template. For
types that can be casted into each other (e.g., integer to float) the LinkEvaluatorId-

22

4.2 Handling of Generic Data

GenericConversion template has to be used. Custom evaluators derived from the
base class allow the developer to create conversions between arbitrary types.

Figure 4.1 shows an example for property linking: Two VolumeMorphology proces-
sors which can compute a dilation or erosion on a volume are combined to perform
a closing. By linking the kernel size properties of both processors we can make sure
that they are always identical.

4.1.3 Animation

Early versions of Voreen supported animations only using scripting or camera rota-
tions around the origin. Using properties a flexible animation framework has been
implemented. All properties for which interpolation functions have been imple-
mented can be animated using keyframes on parallel timelines. The animation dialog
is shown in Figure 4.2.

4.2 Handling of Generic Data

While early versions of Voreen were restricted to volume-, image- and geometry-
ports, this limitation has been removed and arbitrary data can be exchanged via ports.
Instead of specifying the type using a string (e.g., "image.entrypoints"), the different
port types are now actual classes derived from the Port base class. Figure 4.3 shows
a diagram of classes deriving from Port.

The following code is an excerpt of the definition of the Port class:

class Port : public PropertyOwner {
enum PortDirection {

OUTPORT,
INPORT

5 };

Port(PortDirection direction, string& id, string& guiName,
InvalidationLevel invalidationLevel = INVALID_RESULT);

10 // Connection:
virtual bool connect(Port* inport);
virtual void disconnect(Port* other);
virtual void disconnectAll();
virtual bool testConnectivity(const Port* inport) const;

15 const std::vector<const Port*> getConnected() const;
virtual size_t getNumConnections() const;
bool isConnected() const;
bool isConnectedTo(const Port* port) const;

23

Chapter 4 – Extensions to the Voreen Framework

Figure 4.1: Property Linking: To link the kernel size property of both
VolumeMorphology processors the user switches the network editor to linking mode
(1) and drags a line from one processor to the other (2). A dialog showing properties of
both processors opens (3). Properties can be linked by dragging arrows between them.
The lower part of the dialog box provides widgets to modify direction and evaluator
of the selected link (green box). Links between processors are indicated by a line
between the circle in their upper left corners (4), which can be clicked to unfold a list
of linked properties.

24

4.2 Handling of Generic Data

Figure 4.2: Property Animation: The animation dialog shows timelines of all an-
imated properties. In this example, the right clipping plane of the proxy-geometry
has been animated using three keyframes. Between the first two keyframes a spline
animation has been selected while a linear interpolation function is used between
keyframe two and three. To animate additional properties, the user can add click on
the plus icon (left).

20 // Data:
virtual bool hasData() const;
virtual void clear();

virtual void invalidatePort();
25

// Conditions:
void addCondition(PortCondition* condition);
virtual bool checkConditions() const;

30 virtual bool isReady() const;

// Caching:
virtual bool supportsCaching() const;
virtual std::string getHash() const;

35 virtual void saveData(const std::string& path) const;
virtual void loadData(const std::string& path);

};

Listing 4.2: The Port class (excerpt).

The constructor takes the direction, an id which has to be unique per processor, a
name to be displayed in the GUI and an invalidation level which is used by inports to
invalidate the processor when the data in the port changes. An inport can therefore

25

Chapter 4 – Extensions to the Voreen Framework

Figure 4.3: Inheritance Diagram of the class Port.

26

4.2 Handling of Generic Data

be configured to not invalidate the processor at all or to trigger a rebuild of a shader.
A number of methods allow connecting to and disconnecting from other ports.

testConnectivity() only returns true if the type of both ports matches
(i.e., typeid(*portA) == typeid(*portB)).
PortConditions can be added to an inport to restrict the type of data that is

accepted on this inport. To only allow volumes with a floating-point voxel-type a
PortConditionVolumeTypeReal can be added to a port.

The isReady() method returns true if a port is connected, has data and all condi-
tions are fulfilled.

Adding ports to processors is straightforward:

class MyProcessor : public Processor {
[...]
VolumePort inport_;
VolumePort outport_;

5 }

// Constructor:
MyProcessor::MyProcessor() : Processor(),

inport_(Port::INPORT, "inport", "Volume Inport"),
10 outport_(Port::OUTPORT, "outport", "Volume Outport")

{
// register port at processor:
addPort(inport_);
addPort(outport_);

15 }

4.2.1 Caching

A port can support caching by implementing a hashing function (e.g., the MD5
message-digest algorithm) for its data-type and methods for saving/loading to a
file. Processors that only use ports supporting caching can then cache results of
their computations on disk. An entry in the cache is a path on disk that consists of
the classname of the processor, the hashes of all inports and a hash of the current
property-state:

data/cache/︸ ︷︷ ︸
Cache-directory

VolumeFilter︸ ︷︷ ︸
Processor-classname

/ 091d...e2︸ ︷︷ ︸
hash(inport 1)

/ b4d f ...d1︸ ︷︷ ︸
hash(inport 2)

/ 3 f a f ...90︸ ︷︷ ︸
hash(property-state)

/

Each outport writes its current content to this directory after a call to process()

has finished and restores the result in case a matching cache entry for the current
configuration is found.

27

Chapter 4 – Extensions to the Voreen Framework

4.2.2 GenericPort

The template class GenericPort<T> implements a port handling pointers of the class
T and simplifies creation of new port types:
template<typename T>
class GenericPort : public Port {
public:

GenericPort(PortDirection direction, string& id, const string& guiName = "",
5 Processor::InvalidationLevel invalidationLevel = Processor::INVALID_RESULT);

virtual void setData(const T* data, bool takeOwnership = true);
virtual const T* getData() const;
virtual T* getWritableData();

10

virtual bool hasData() const;
virtual bool isReady() const;
virtual void clear();

protected:
15 const T* portData_;

bool ownsData_;
};

Listing 4.3: The GenericPort template class (abbreviated).

Data is stored only in outports and is set using setData(). In case the takeOwnership
parameter is true, the port will delete the data in the destructor or when new data is
set. getData() returns a const pointer to prevent processors from changing incoming
data. getWritableData() only works on outports and allows the processor that
computed the data to obtain a non-const pointer to the data.
The container/portmapping concept found in early versions of Voreen [MS09, p. 37]
has been abandoned for all data types, data is now accessed directly:
void MyProcessor::process() {

// Get input:
const VolumeBase* inputVolume = inport_.getData();
[...] // Perform calculations

5 // Set output data:
outport_.setData(result);

}

4.2.3 CoprocessorPort

Whereas processors normally do not communicate with other processors directly,
coprocessor ports allow processors to utilize algorithms implemented in other
processors. The coprocessor concept has been redesigned into the template class
CoprocessorPort<T>. The template parameter T specifies an interface that is imple-
mented by all processors adding a coprocessor-outport of this type.

28

4.2 Handling of Generic Data

Rendering of geometries in Voreen is bundled by the GeometryProcessor to re-
duce the number of used render targets. Therefore a number of processors im-
plementing the GeometryRendererBase interface can be connected using copro-
cessor ports of type CoprocessorPort<GeometryRendererBase>. As shown in Fig-
ure 4.4, the GeometryProcessor has a CoprocessorPort<GeometryRendererBase>-
inport whereas the processors performing the rendering have a
CoprocessorPort<GeometryRendererBase>-outport. In the process() method of
the GeometryProcessor connected coprocessors can easily be queried, and all meth-
ods implemented in the GeometryRendererBase class can be called:
void GeometryProcessor::process() {

[...]
vector<GeometryRendererBase*> portData = cpPort_.getConnectedProcessors();
for (size_t i=0; i<portData.size(); i++) {

5 GeometryRendererBase* geomRenderer = portData.at(i);
if(geomRenderer->isReady()) {

geomRenderer->setCamera(camera_.get());
geomRenderer->setViewport(outport_.getSize());
geomRenderer->render();

10 }
[...]

}

4.2.4 Handling of DTI Data

This section describes how DTI is handled in Voreen and also serves as an example
on how to integrate new types of data into the Voreen architecture. For a detailed
description of algorithms implemented in the processors discussed here we refer the
reader to [SzB11]. An application utilizing the building blocks described here will be
discussed in Chapter 5.
The following types of data occur in DTI workflows and are handled in Voreen:

• Diffusion Weighed Images (DWI) are the reconstructed images. They are read
using a VolumeReader that is aware of the relevant metadata entries, and are
represented by a VolumeCollection in Voreen. Each volume has metadata
entries storing the gradient and b-value.

• Diffusion Tensor Images (DTI), generated from a number of DWIs by tensor-
estimation or read using a compatible VolumeReader are represented by a
volume storing a second degree tensor at each voxel (with a representation of
type VolumeRAM_Tensor2Float) in Voreen.

• Fibers, generated from DT-volumes using fiber-tracking algorithms are repre-
sented by the class Fibers (an array of FiberLines) in Voreen.

29

Chapter 4 – Extensions to the Voreen Framework

Figure 4.4: Coprocessor ports are used to call methods on other proces-
sors, in this case the render() method of three processors implementing the
GeometryRendererBase class.

• Data derived from DTIs (e.g., eigenvectors, anisotropy, diffusivity etc.) are stored
in scalar or vector volumes and can be processed or visualized by standard
Voreen functionality.

While standard VolumePorts and VolumeCollectionPorts are used to transfer DWI
and DTI data, we need to define a new FiberPort for the fibers. New ports are
implemented by deriving a class from Port or, for most cases, from the template
GenericPort<T>:

class FiberPort : public GenericPort<Fibers> {
public:

FiberPort(PortDirection direction, string id, string guiName = "",
InvalidationLevel invalidationLevel = INVALID_RESULT);

5

30

4.3 Multi-View Support

virtual string getClassName() const {
return "FiberPort";

}

10 [...] // optional methods to implement caching functionality
};

DTI Processors

After loading the DWIs in a VolumeCollectionSource processor the resulting Volume-

Collection will usually be the input of a processor performing tensor estimation.
This can either be handled by the DiffusionTensorEstimator which implements
the algorithm by Westin et al. [WMM+02] or using the ModelFitCamino processor,
which wraps the Camino toolkit ∗ and thus supports a wide range of advanced
algorithms. In most applications the DT-volume will be further processed by the
TensorAnalyzer, which derives eigenvalues and eigenvectors as well as different
anisotropy and diffusivity measures. The resulting scalar or vector volumes can be
directly visualized or analyzed by existing Voreen processors (e.g., SliceViewer, ROI
analysis). Alternatively, the TensorGlyphRenderer implements glyph visualization
techniques. Finally, the FiberTrackerFACT and FiberTrackTensorline processors
provide second order Runge-Kutta and tensorline [WKL99] based fiber tracking
algorithms. Aside from the DTI data these processors also have a ROI inport to
specify a seeding region. The resulting fibers are rendered by the FiberRenderer

which implements rendering using illuminated streamlines [ZSH96], triangle strips
[MSE+06] and streamtubes. Using compositing, fibers can be integrated with other
rendering techniques. Figure 4.5 shows an example DTI rendering network containing
the described processors.

4.3 Multi-View Support

Voreen supports creation of multi-view applications by rendering to multiple can-
vases and by subdividing canvases (see Figure 4.6). Each CanvasRenderer processor
displays the image obtained on its inport in its ProcessorWidget (e.g., a QGLWidget

for Qt-based applications). Additional processors to arrange multiple images in one
canvas have been implemented. The QuadView and TripleView processors provide
two commonly used multi-view configurations, dividing the view into four and three
sub-views, respectively. For a more flexible layout, the Splitter processor divides the

∗ http://web4.cs.ucl.ac.uk/research/medic/camino/pmwiki/pmwiki.php?n=Main.HomePage

31

Chapter 4 – Extensions to the Voreen Framework

Figure 4.5: Example DTI Network containing the most important processors in a
typical configuration.

view vertically or horizontally at a user-specified position. Several of these processors
can be combined to create custom screen configurations.

4.3.1 Resizing and Events

While combining multiple input images into one is trivial, events (e.g., mouse events)
and resizing of the output window need to be handled as well. Events on the
ProcessorWidget of the CanvasRenderer are first converted from their native toolkit
type to a corresponding tgt::Event subtype to keep the Voreen core library GUI
toolkit independent. Next, the events are propagated through the network from
the canvas upward. Since rendering processors in the network are not aware of the
currently used multi-view configuration, the multi-view processors discussed in the
previous section need to transform mouse events and forward them only to the

32

4.3 Multi-View Support

Figure 4.6: Multiple views: Voreen can handle multiple canvases and subdivision
into sub-canvases using multi-view processors like the Splitter used in this network.

relevant inports (see Figure 4.7).

Images generated by rendering processors in the network obviously need to be
computed in the size in which they are displayed on one of the canvases. A size-
propagation similar to the event handling we just described proved to be problematic
because images of constant size (e.g., slices) are also distributed through the network.
Therefore, the linking mechanism of Voreen has been exploited to implement a render-
size request system. Outports of processors that generate images have properties
that allow to configure the size of the generated image, whereas the inport of the
CanvasRenderer has a property that provides the current canvas size. Linking both
properties results in matching image dimensions. Multi-view processors have size-
properties on both inports and outports and compute the size to request on each
inport based on the requested outport size. Size-links can be configured in a special
mode (layer) inside the network-editor (see Figure 4.8), an automatic linking algorithm
handles most cases for novice users.

33

Chapter 4 – Extensions to the Voreen Framework

Figure 4.7: Event handling in a multi-view network: The mouse movement
event is propagated form the Canvas processor through the network (green/yellow).
The TripleView processor determines which of the inports to forward the event to and
transforms the mouse position accordingly. The AxialSlice processor receives the event
and updates the intensity under the mouse cursor. Therefore, it does not need to be
aware of the multi-view configuration.

4.3.2 Cameras

In contrast to earlier versions of Voreen with only one rendering where one camera
was stored in a singleton, it now makes sense to allow multiple cameras for multi-
view networks. Cameras were therefore also made properties (CameraProperty) and
are linkable between processors. This allows the user to construct networks that show
the same data set from multiple perspectives or compare multiple data sets from the
same perspective. Since most single-view networks require linked cameras to function
properly and novice users might not be aware of this, an automatic camera-linking
functionality has been added.

4.4 Redesign of Volume Data Structure

With the strong focus on its rendering capabilites, Voreen has been missing function-
ality to read and handle most metadata items commonly used. Therefore, the classes

34

4.4 Redesign of Volume Data Structure

Figure 4.8: Size-linking: The current size of the output canvas is linked to the
outport of the Splitter processor, which in turn requests images at half the size on
its inports. This size is then linked to the SliceViewers which create the image.

handling volume data in Voreen have been redesigned to handle generic metadata,
intensity values and transformations. Volumes in Voreen contain metadata (Spacing,
Transformation, Patient ID, ...) and image data. The Volume class holds the metadata
and manages one or more representations of the image. Representations store the
raw image data and its dimensions. VolumeRepresentation is the base class, current
subclasses are:

• VolumeRAM: The volume data in RAM.

• VolumeGL: The volume data as OpenGL texture.

• VolumeDisk: The volume on disk as filename, offset (in the file) and voxel data
type. The VolumeDisk can be used to delay loading until the raw image data is
needed in RAM (lazy loading).

35

Chapter 4 – Extensions to the Voreen Framework

The representation system is designed to be flexible with regard to new types
which could be required by new APIs. Volume::getRepresentation<T>() returns
the desired representation:

const Volume* vol = inport_.getData();
const VolumeRAM* vr = vol->getRepresentation<VolumeRAM>();
vr->getVoxelNormalized(10, 10, 10); // Read voxel at position (10, 10, 10)

Conversions between representations are handled transparently (i.e., if the data is
currently only in the RAM and vol->getRepresentation<VolumeGL>() is called a
VolumeGL will be created). These conversions are handled by representation converters
(e.g., RepresentationConverterUploadGL, RepresentationConverterDownloadGL,

RepresentationConverterLoadFromDisk). A new representation therefore also needs
to implement at least one converter. If no converter can perform a direct conver-
sion the representation is first converted to a VolumeRAM and then to the desired
representation. getRepresentation<T>() returns a const-pointer to make sure the
data is not modified (which would make other representations inconsistent). To get
a non-const-pointer getWritableRepresentation<T>() has to be called. This will
automatically delete all other representations because they are in an inconsistent state.
Deleted representations are automatically re-created on demand:

Volume* vol = <Get the volume from somewhere>;
VolumeRAM* vr = vol->getWritableRepresentation<VolumeRAM>();
// All other rep. (e.g., VolumeGL) are deleted
vr->setVoxelNormalized(0.5, 10, 10, 10); // Set voxel at position (10, 10, 10) to 0.5

5 ...
const VolumeGL* vgl = vol->getRepresentation<VolumeGL>();
// VolumeGL is re-created from changed image data

4.4.1 Metadata Handling

Metadata are stored as key-value pairs in the volume:

vol->setMetaDataValue<StringMetaData>("PatientName", "John Doe");

There are a number of shortcut-methods for frequently used metadata items:
getSpacing(), getOffset(), ...

Decorating Volumes

In order to modify the metadata of a volume in a processor without copying the
image data, Voreen exploits the decorator design pattern ∗. VolumePorts therefore

∗ A design pattern that allows the extension of objects at run-time. A decorator wraps the original class.
[GHJV95, pp. 175-184]

36

4.4 Redesign of Volume Data Structure

return objects of type VolumeBase instead of Volume. This could either be an actual
Volume or a decorated one. The following code replaces the transformation matrix
for a volume and could be used in a co-registration processor:

const VolumeBase* vol = inport_.getData();
mat4 transformationMatrix = <compute registration>;
VolumeBase* outVol = new VolumeDecoratorReplaceTransformation(vol, transformationMatrix);
outport_.setData(outVol);

4.4.2 Derived Data

Data like the histogram of a volume could be used repeatedly in the processors
of the Voreen network. One example for this case would be multiple slice viewers
displaying different orientations of one volume. All of these utilize the histogram for
the transfer function editor. We call data that is calculated from the volume derived
data and also store it in the volume, allowing for transparent caching:

float min = vol->getDerivedData<VolumeMinMax>()->getMin();

If the min/max values inside the volume have been computed before, the stored
VolumeMinMax object is returned, otherwise it is created. All derived data objects are
deleted upon calling getWritableRepresentation<T>().

4.4.3 Coordinate Systems

There are three similar, unit-less coordinate systems for a volume in Voreen (see
Figure 4.9):

• Voxel Indices are used to access voxels using getVoxel();

• Voxel Coordinates come into play when filtering is involved (e.g., getVox-
elLinear(1.5, 2.0, 3.1))

• Texture Coordinates are mainly used on the GPU (OpenGL/GLSL)

To give a volume a real, physical extent we introduce two additional coordinate
systems (see Figure 4.10):

• To convert from Voxel Coordinates to Physical Coordinates we multiply by the
spacing and add the offset (both in mm).

• The World Coordinates are defined by applying a 4x4 transformation matrix
to the Physical Coordinates.

37

Chapter 4 – Extensions to the Voreen Framework

Figure 4.9: Voxel coordinate systems in Voreen.

Figure 4.10: Transformation from voxel to physical and world space.

The offset is not strictly necessary since it could be integrated into the transfor-
mation matrix, but allows for easy cropping and gives us a definition of Physical
Coordinates which is very similar to the one ITK uses. The following example
calculates the world-space position of a voxel-center:

ivec3 pVoxel = ivec3(5, 4, 3);
vec3 pWorld = vol->getVoxelToWorldMatrix() * (vec3(pVoxel) + vec3(0.5));

Transformation of a point from physical coordinates of one volume to physical
coordinates of another volume:

vec3 pPhys1 = vec3(10.0, 20.0, 10.0);
vec3 pPhys2 = vol2->getWorldToPhysicalMatrix() * vol1->getPhysicalToWorldMatrix() * pPhys1;

4.4.4 Values

The image data in commonly used formats like DICOM is mostly stored in integer for-
mat (e.g., 16 bit unsigned), whereas the actual values could be floating point numbers

38

4.5 Multimodal Volume Rendering

or lie outside of the type range. These formats therefore store a transformation inside
the metadata to map voxel intensities to physical units. To implement this feature
in Voreen we store a metadata item of type RealWorldMapping in each volume. This
linear mapping also stores a string specifying the unit of the values (e.g., HU, ◦C, ...).
Similar to the coordinate systems we just defined there are transformations for voxel
values.

• Unnormalized Values are the values in the format of the volume. For a volume
stored as unsigned int using 8 bits per voxel these are in the range [0, 255],
for signed integers using 16 bits the range is [−32.768, 32.767]. Floats are not
limited (aside from the obvious technical limitations).

• Normalized Values map integer types to the range [0, 1] for unsigned types
and [−1, 1] for signed types. Floats are not modified. getVoxelNormalized()
returns normalized values.

• Real-World Values are Normalized Values after application of a
RealWorldMapping.

The following code reads a value from a volume using linear interpolation and
displays the result on the console:

const Volume* vol = <get the volume>;
const VolumeRam* volRam = vol->getRepresentation<VolumeRAM>();
RealWorldMapping rwm = vol->getRealWorldMapping();
float valNorm = volRam->getVoxelNormalizedLinear(3.141, 42.0, 666.0);

5 float valRW = rwm.normalizedToRealWorld(valNorm);
cout << "Value at (3.141, 42.0, 666.0): " << valRW << " " << rwm.getUnit();

The output could look like this:

Value at (3.141, 42.0, 666.0): 12.3 ◦C

4.5 Multimodal Volume Rendering

4.5.1 Multimodal Volume Ray Casting

Multimodal ray casting in Voreen has been implemented as extension of the technique
proposed by Krüger and Westermann [KW03] which is also utilized for ray casting of
single volumes in Voreen. As discussed in Chapter 3, Voreen uses a combination of the
CubeProxyGeometry, MeshEntryExitPoints and SingleVolumeRaycaster to per-
form ray casting of single volumes. To render multiple volumes using accumulation

39

Chapter 4 – Extensions to the Voreen Framework

level intermixing the MultiVolumeProxyGeometry and MultiVolumeRaycaster pro-
cessors have been implemented. The MultiVolumeProxyGeometry accepts multiple
volumes on the inport and generates a MeshListGeometry containing bounding boxes
for all volumes. For ray casting of single volumes, the CubeProxyGeometry proces-
sor assigns each vertex of the proxy geometry a color corresponding to its texture
coordinates. Multi-volume rendering in Voreen utilizes world-space entry/exit-point
textures and performs the transformation to texture space in the raycaster, the ver-
tices are therefore assigned their position in world space as color. The generated
geometry is rendered using the existing MeshEntryExitPoints processor, which has
been modified to output textures in GL_RGBA16F_ARB format to prevent clamping of
colors to the [0, 1]4 range.

The MultiVolumeRaycaster performs the actual ray casting based on the generated
ray parameters. It has one inport and a set of rendering parameter properties (transfer
function, shading mode, filtering) for each volume. Up to four volumes are currently
supported, which we believe is a reasonable limitation for the vast majority of
application cases. Since all volumes are sampled using the same step size, the
sampling rate is calculated based on the smallest spacing (smallest voxel edge lenght)
of all volumes. In the ray casting shader the ray entry point and ray direction are
transformed from world to texture space for each volume. During ray traversal
each sampling position is advanced in texture space and the position is tested
against the extents of the volume in texture space ([0, 1]3). If the sample is inside
a volume, gradient calculation and classification as well as shading is performed
and the resulting color is composited using standard DVR compositing. Similar to
the SingleVolumeRaycaster, the MultiVolumeRaycaster can write first hit points
to a secondary outport. These can be used for picking and are stored in world
space coordinates. Figure 4.11 shows a network performing a fused rendering of two
volumes.

4.5.2 Multimodal Slice Rendering

The multimodal slice rendering functionality in Voreen has been implemented similar
to volume ray casting in that it uses a texture storing sampling positions. Networks
performing multimodal slice rendering are therefore constructed using the same type
of components: A proxy-geometry processor, a MeshEntryExitPoints processor and
the actual renderer (see Figure 4.12). The AlignedSliceProxyGeometry processor
generates a quad representing one axis-aligned slice in a volume. For rendering
of arbitrarily oriented planes, the SliceProxyGeometry processor has been imple-
mented. Rendering of the proxy-geometry can be performed using the existing

40

4.5 Multimodal Volume Rendering

Figure 4.11: Simple multi-volume rendering network.

41

Chapter 4 – Extensions to the Voreen Framework

MeshEntryExitPoints processor. The resulting entry-points are then used by the
MultiSliceRenderer which just fetches the sampling position for each voxel, trans-
forms it from world to texture space and samples the volume at the position. Each
volume has a set of properties (transfer function, compositing mode, filtering) to con-
figure the rendering. The most commonly used compositing modes are user defined
(using a slider in the GUI) mixing between two volumes and the over operator.
To create a standard slice rendering, the camera used by the MeshEntryExitPoints

processor needs to be positioned orthogonally to the slice geometry with up and strafe
vector aligned to the other main axes of the volume. The projection is configured
to be orthogonal to prevent a zooming effect when the slice number is changed. To
provide a suitable interaction we use the CameraSliceInteractionHandler instead
of the trackball navigation. Dragging of the mouse is mapped to camera movement
in direction of the up/strafe vectors, while zooming is mapped to a modification of
the frustum instead of movement in view direction.
Because the slice is rendered in world space using a camera that is accessible as
property, a combination with other renderings is especially easy. Example use cases
are a combined rendering with glyphs or ROIs.

The MultiSliceViewer processor combines the three processors described above
into one. In addition, it allows the use of 2D textures instead of the VolumeGL repre-
sentation and can therefore display slices from volumes which would exceed the GPU
memory when using 3D texturing. 2D slices are copied from the volume or resampled
depending on the alignment with the selected main volume. A cache of slices is
managed to improve performance while cycling through the volume. Figure 4.13
demonstrates how three MultiSliceViewers can be combined into a multimodal
slice viewing tool. This does, however, not make the MultiSliceRenderer obsolete.
Due to its greater flexibility it can be used for reformation techniques.

4.5.3 Coregistration

Coregistration of volumes in Voreen is performed in workspaces designed for this pur-
pose, combining a standard rendering setup with specialized registration processors.
One of the volumes is the static volume, to which the other volume, the moving volume,
is registered by modifying its transformation matrix. Figure 4.14 shows a network
performing interactive rigid-body coregistration of two data sets with support for
automatic coregistration using the ITK library. Overall, the network is very similar
to the multimodal slice rendering network discussed in the previous section. The
following registration-specific processors have been added (highlighted in red):

42

4.5 Multimodal Volume Rendering

Figure 4.12: Multimodal slice rendering using the MultiSliceRenderer in com-
bination with AlignedSliceProxyGeometry.

Figure 4.13: Multimodal slice viewer: This network renders a CT and a PET volume
using multiple MultiSliceViewer processors. The main properties of one viewer are
shown on the left.

43

Chapter 4 – Extensions to the Voreen Framework

• The VolumeTransformation processor modifies the 4x4 transformation ma-
trix of the volume on its inport using the decorator concept discussed in
Section 4.4.1.

• The InteractiveRegistrationWidget processor renders circular overlays that
allow the user to manually coregister the data sets: Grabbing and dragging the
circle rotates the moving volume around the center, dragging the center moves
the widget (and therefore the center of rotation) and dragging the crossed-arrow
symbol translates the moving volume accordingly.

• The RegistrationInitializer roughly aligns both volumes based on their
bounding-boxes (triggered by a ButtonProperty).

• The MutualInformationRegistration processor uses the ITK library to per-
form an automatic mutual-information based coregistration of both data sets
using the current matrix as starting point. The user can choose from a number
of metrics.

The transformation matrix is stored in a FloatMat4Property which is linked between
all of these processors. Saving the result can either be performed by using the property-
widget to save just the matrix or by saving the transformed moving volume using the
VolumeSave processor.

4.6 Region of Interest Rendering and Analysis

Analyzing the volume or intensity-distribution in a region of interest (ROI) is an
essential tool for many medical applications [PB07]. Examples include the volume of
a tumor, the distance of pathological structures to risk structures or a comparison of
the PET activity in different organs. In this section, the design and implementation of
a framework to edit and analyze 2D and 3D ROIs ∗ in Voreen will be discussed.

4.6.1 Data Structures

The base class of all ROI objects is ROIBase, which defines the basic functionality of a
ROI:

class ROIBase : public PropertyOwner {
public:

ROIBase(Grid grid);

∗ 3D Regions of interest are sometimes called Volumes of Interest (VOI). We use ROI for both 2D and
3D since it is more commonly used.

44

4.6 Region of Interest Rendering and Analysis

Figure 4.14: Interactive coregistration network: A combination of multimodal
slice viewers with some specific registration processors (red) results in an in-
teractive coregistration tool. The widget (bottom left), which is rendered by the
InteractiveRegistrationWidget processors, allows the user to translate and ro-
tate the moving data set in each view.

45

Chapter 4 – Extensions to the Voreen Framework

5 // Get bounding box (in physical coordinates)
Bounds getBoundingBox() const;

// get sub-ROIs
vector<const ROIBase*> getChildren() const;

10

/// Test if p (in physical coordinates of the ROI) is inside this ROI.
bool inROI(vec3 p) const;

// Methods for 3D rendering:
15 MeshListGeometry* getMesh() const;

MeshListGeometry* getRasterMesh() const;

// Methods for 2D rendering:
MeshListGeometry* getMesh(plane pl) const;

20 MeshListGeometry* getRasterMesh(plane pl) const;

// Methods for user interaction through control points:
vector<const ControlPoint*> getControlPoints() const; // for 3D rendering
vector<const ControlPoint*> getControlPoints(plane pl) const; // for 2D rendering

25 bool moveControlPoint(const ControlPoint* cp, vec3 offset);
private:

StringProperty name_;
StringProperty comment_;
BoolProperty isVisible_;

30 FloatVec4Property color_;

Grid grid_;
};

Listing 4.4: ROIBase Interface (abbreviated)

Rendering of ROIs is performed by calling getMesh() and rendering the resulting
MeshListGeometry. To visualize the extent of the ROI in its grid the getRasterMesh()
method can be used. Generated meshes are cached internally for improved perfor-
mance.

Figure 4.15 shows a hierarchy of ROI classes: Classes that combine several sub-ROIs
are derived from the ROIAggregation class, whereas simple types are derived from
ROISingle. These are ROIRaster (for rasterized ROIs generated by painting or seg-
mentation), ROIGraph (for graphs like centerlines of vessel trees) and geometric ROIs
ROISphere, ROICube, ROICylinder. ROINormalizedGeomtry is the super class for
all geometric ROIs and simplifies the implementation because only methods for a
geometry with unit size have to be implemented.
To store a number of ROIs the class ROICollection has been implemented.

46

4.6 Region of Interest Rendering and Analysis

Figure 4.15: ROI classes derived from ROIBase.

4.6.2 Integration into Dataflow-Network

Integrating ROIs into Voreen is not as straightforward as adding a new port type. This
is because multiple processors (e.g., three 2D renderers and one 3D renderer) need
read and write access to a set of ROIs, but inports can only return const pointers.
We therefore introduced the concept of a storage processor, which is a processor that
stores data that needs to be modified by multiple processors but is too large to be
handled as a property. A storage processor can be accessed by other processors using
a coprocessor port and also serializes the data it stores.

The ROIStorage processor stores a ROICollection which can be accessed by
processors connected to its coprocessor outport (type GenericCoProcessorPort-

<ROIStorage>) using its getROIs() method. All modifications to the collection must
use the ROIStorage interface because getROIs() returns a const pointer to the
stored collection. This allows centralized undo-functionality and correct invalidation
of connected processors.

Rendering Processors

Rendering of ROIs is performed using the ROIRenderer2D and ROIRenderer3D pro-
cessors which combine a DVR or slice rendering with the currently visible ROIs. For
3D rendering, getMesh() is called and the mesh is rendered, followed by a composit-
ing with the incoming rendering. The 2D renderer instead calls getMesh(plane pl),
where the plane is given by a property which is usually linked to a slice renderer
connected to the inport. For each ROI the returned mesh is first rendered to a tempo-
rary buffer, followed by an enhancement of the outer edges and compositing with
the input image.
In addition both renderers display a set of control points for each ROI, given by
getControlPoints(). The user can then modify the ROIs by moving these points.
To create new ROIs a set of ROITools has been implemented:

47

Chapter 4 – Extensions to the Voreen Framework

• The ROIToolGeometry creates geometric objects in 2D and 3D.

• The ROIToolGraph allows the user to manually create ROIGraph objects by
tracing a path.

• Using the ROIToolPainter the user can create ROIRaster objects. Different 2D
and 3D brushes are supported and can be scaled in millimeter or voxel. The
user can also modify existing ROIs using the paint or erase mode by selecting
a ROI in the widget and then using the tool. In case the selected ROI is not a
ROIRaster, a new ROIUnion or ROISubtract is automatically created, and the
original ROI as well as a modifying ROIRaster are registered as sub-ROIs.

The active tool can be selected and configured (using properties) in the ROIStorage

processor widget.

Statistics Processors

One important application of the framework is to compute statistics on ROIs. The
most obvious application is the computation of basic statistics on a scalar volume
inside a ROI, but the framework is designed to be extensible. We therefore sepa-
rated the statistics algorithms from the storage processor using a coprocessor port
(type GenericCoProcessorPort<ROIStatistics>). All attached processors therefore
implement the ROIStatistics interface:
class ROIStatistics : public Processor {
public:

ROIStatistics();

5 // Statistics provided by this processor:
vector<string> getAvailableStatistics() const;
// Calculate statistics for a given ROI:
void calculateStatistics(const ROIBase* roi) const;

protected:
10 GenericCoProcessorPort<ROIStatistics> outport_;

};

Listing 4.5: The ROIStatistics interface.

Computed statistics are stored in the ROI object and are automatically invalidated
when the ROI changes. The data on which to compute the statistics is determined by
the inports of the statistics processor. The ROIStatisticsBasic processor implements
the most common statistics on the scalar volumes connected to its inport:

• Minimum, maximum, sum

• First quartile, median, third quartile, inter-quartile range

48

4.6 Region of Interest Rendering and Analysis

• Mean, standard deviation, variance

• Number of voxels, volume

An extension to other types of data (geometry, fibers) requires a new statistics proces-
sor with a matching inport.

Segmentation Processors

All processors that perform computations on a selection of ROIs implement the
ROISegmenter interface and are connected to the ROIStorage processor similar to
statistics processors.

class ROISegmenter : public Processor {
public:

ROISegmenter();

5 // Is this segmenter compatible with the currently selected ROIs?
virtual bool isCompatible(set<ROIBase*> rois);
// Set input data:
virtual void setInput(set<ROIBase*> rois, ROIStorage* storage);
// Perform the segmentation:

10 virtual void segment();

// Methods to display segmentation preview:
virtual const MeshListGeometry* getMesh() const;
virtual MeshListGeometry* getMesh(plane pl) const;

15 virtual MeshListGeometry* getRasterMesh(plane pl) const;

// Segmenter is considered active when its property dialog is shown:
virtual void activate();
virtual void deactivate();

20 bool isActive() const;

protected:
GenericCoProcessorPort<ROISegmenter> outport_;

};

Listing 4.6: The ROISegmenter interface

Segmentation processors implemented so far are:

• ROIThresholder: Adds a ROIRaster containing all voxels above or below a
given threshold (absolute or relative to the maximum) in a connected volume
(with an optional container ROI).

• ROIRegionGrowing: Performs a region growing from a seed ROI, which can be
limited to a container ROI. Connectivity and strictness are configurable.

49

Chapter 4 – Extensions to the Voreen Framework

• ROIFindExtrema: Find the minimum or maximum in a volume (with optional
container ROI). Places a sphere of configurable size (in millimeter or voxel) at
this position.

• ROIMorphology: Applies erosion/dilation/open/close with a configurable
structuring element to a ROI. The result is added as new ROIRaster.

Figure 4.16 shows an example workflow for region growing, while Figure 4.17 shows
a network using a combination of all described ROI processor types with a 2D/3D
rendering network.

4.7 Plotting

Voreen has been extended to display non-spatial data using the plotting module.

4.7.1 Data Structures

The base class underlying the data transferred via PlotPorts is PlotBase, which is
sub-classed by PlotFunction and PlotData. PlotData is a table of scalars or strings,
while PlotFunction stores functions to be plotted. Columns in both data structures
can be assigned labels and a color hint so that display is consistent (e.g., a plot of a
histogram matches the color of the ROI it was calculated for, see Figure 4.18).

4.7.2 Plotting Processors

Processors in the plotting module can be categorized into three groups:

• Input/Output: PlotDataSource and PlotDataExport allow loading/saving
from/to comma separated value (.csv) files.

• Processing: Several processors to process PlotData objects (select, merge,
function-fitting, etc.) have been implemented.

• Rendering: LinePlot, BarPlot, ScatterPlot and SurfacePlot render plots
of the respective type and allow exporting to SVG files.

4.7.3 Linking and Brushing

The concept of linking and brushing is to combine multiple visualization techniques
using interaction. Selected items in one view are highlighted in other views and

50

4.7 Plotting

Figure 4.16: Segmentation workflow using the ROI framework: The user se-
lects a seed and container ROI and activates the context menu (1). Connected segmen-
tation processors that are compatible with the current selection are displayed. Upon
activation of a segmentation processor a window showing its properties is displayed
and a preview of the result is overlayed (white) in the rendering(2). The resulting
segmentation can be discarded or added to the current set of ROIs (3).

51

Chapter 4 – Extensions to the Voreen Framework

Figure 4.17: Basic ROI network consisting of standard 2D/3D rendering processors
in combination with ROI rendering processors (red) and ROI storage/segmentation/s-
tatistics processors (blue). The processor-widget of the ROIStorage processor provides
the user with a selection of tools, a list of properties with their statistics and properties
of the currently active tool (top to bottom).

52

4.8 Reformation Techniques

Figure 4.18: Plotting in combination with ROIs: The ROIHistogram processor
calculates histograms on ROIs and generates a PlotData table which is rendered by
the LinePlot processor.

enable the user to detect dependencies and correlations [K+02].

In the implemented plotting framework, selections of data through user interaction
are saved in a PlotSelectionProperty. Linking and brushing functionality can be
created by using property-linking as follows: The selection property of a LinePlot

processor displaying a histogram could be linked to modify the domain of a transfer-
function property elsewhere in the network.

4.8 Reformation Techniques

In this section we will discuss the implementation of the straigthened curved planar
reformation (CPR, see Section 2.1); other variants of this technique and multiplanar
reconstructions (MPR) can be implemented in a very similar way. The CPR needs
a centerline of a vessel, which is specified by creating a ROIGraph object. This can
be achieved by manually tracing the vessel using the ROIToolGraph or using the
ROISkeletonize processor, which implements the ROISegmenter interface and per-
forms a skeletonization of a ROI. To select the centerline to be used for the CPR
we connect a ROIGraphSelector to the ROIStorage. The CPRProcessor uses the re-
sulting point list to create a proxy-geometry with correct texture coordinates. The

53

Chapter 4 – Extensions to the Voreen Framework

Figure 4.19: CPR in Voreen: A ROIGraph object is selected from the avail-
able ROIs using the ROIGraphSelector processor. The resulting point-list is used
by the CPRProcessor to generate a proxy-geometry which is rendered by the
MeshEntryExitPoints renderer. To create the final rendering, a MultiSliceRenderer
is used.

type of CPR and the vector of interest can be specified using properties. Similar
to multimodal slice rendering, the MeshEntryExitPoints and MultiSliceRenderer

processors are used to perform the color mapping. A network performing CPR
rendering is shown in Figure 4.19.

4.9 Volume Processing

Filtering and segmentation are parts of a typical volume visualization pipeline [PB07],
but for a long time Voreen development has focussed mostly on the rendering
part. Therefore, recently the Insight Segmentation and Registration Toolkit (ITK)
has been integrated into Voreen. ITK is an open-source, cross-platform library that
provides developers with an extensive suite of algorithms for image analysis ∗.
Similar to Voreen’s dataflow network consisting of processors, ITK uses pipelines
of filters. Although no property-mechanism is implemented in ITK, the getters and
setters for parameters of filters are named consistently (i.e., GetLowerThreshold()
and SetLowerThreshold()). Algorithms and data structures in ITK are generally

∗ http://www.itk.org

54

4.9 Volume Processing

templated to support all data types and dimensions [ISN+03]. Unlike the Volume or
Processor classes in Voreen, there are no non-templated base classes, which means
the type of data has to be known at compile-time. The following code reads a float
volume from disk and applies a thresholding filter to it:
// Input and output are floating point volumes:
typedef itk::Image<float, 3> InputImageType;
typedef itk::Image<float, 3> OutputImageType;

5 // Configure the reader:
typedef itk::ImageFileReader<InputImageType> ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

10 // Configure and execute the filter:
typedef itk::BinaryThresholdImageFilter<InputImageType, OutputImageType> FilterType;
FilterType::Pointer filter = FilterType::New();
filter->SetInput(reader->GetOutput());
filter->SetLowerThreshold(atof(argv[3]));

15 filter->SetUpperThreshold(atof(argv[4]));
filter->Update();

Listing 4.7: Simplified excerpt from ITK source code (Examples/Filtering/BinaryThresh-

oldImageFilter.cxx)

To wrap this functionality in Voreen we need a processor with a volume inport and
outport as well as two properties for the thresholds. Since ports and processors in
Voreen are not typed, the voxel-type of the input volume has to be determined, and
the correct template is instantiated. This is the resulting processor:
class BinaryThresholdImageFilterITK : public ITKProcessor {
public:

BinaryThresholdImageFilterITK();

5 std::string getCategory() const { return "Volume Processing/Filtering/Thresholding"; }
std::string getClassName() const { return "BinaryThresholdImageFilterITK"; }

protected:
void process();

10 // Templated function using ITK code to perform the thresholding:
template<class T>
void binaryThresholdImageFilterITK();

private:
VolumePort inport1_;

15 VolumePort outport1_;

// Property adapting to the volume type (float, uint8, ...):
VoxelTypeProperty lowerThreshold_;
VoxelTypeProperty upperThreshold_;

20 };

BinaryThresholdImageFilterITK::BinaryThresholdImageFilterITK()

55

Chapter 4 – Extensions to the Voreen Framework

: ITKProcessor(),
inport1_(Port::INPORT, "InputImage"),

25 outport1_(Port::OUTPORT, "OutputImage"),
lowerThreshold_("lowerThreshold", "LowerThreshold"),
upperThreshold_("upperThreshold", "UpperThreshold"),

{
addPort(inport1_);

30 // Allow only scalar volumes:
PortConditionLogicalOr* orCondition1 = new PortConditionLogicalOr();
orCondition1->addLinkedCondition(new PortConditionVolumeTypeUInt8());
orCondition1->addLinkedCondition(new PortConditionVolumeTypeUInt16());
[...]

35 inport1_.addCondition(orCondition1);
addPort(outport1_);

addProperty(lowerThreshold_);
addProperty(upperThreshold_);

40 }

void BinaryThresholdImageFilterITK::process() {
const VolumeRAM* inputVolume1 = inport1_.getData()->getRepresentation<VolumeRAM>();

45 // Type switch:
if (dynamic_cast<const VolumeRAM_UInt8*>(inputVolume1))

binaryThresholdImageFilterITK<uint8_t>();
else if (dynamic_cast<const VolumeRAM_UInt16*>(inputVolume1))

binaryThresholdImageFilterITK<uint16_t>();
50 [...]

else
LERROR("Inputformat of Volume 1 is not supported!");

}

55 template<class T>
void BinaryThresholdImageFilterITK::binaryThresholdImageFilterITK() {

typedef itk::Image<T, 3> InputImageType1;
typedef itk::Image<T, 3> OutputImageType1;

60 // Create image in ITK:
typename InputImageType1::Pointer p1 = voreenToITK<T>(inport1_.getData());

// Perform the filtering:
typedef itk::BinaryThresholdImageFilter<InputImageType1, OutputImageType1> FilterType;

65 typename FilterType::Pointer filter = FilterType::New();

filter->SetInput(p1);
filter->SetLowerThreshold(lowerThreshold_.getValue<T>());
filter->SetUpperThreshold(upperThreshold_.getValue<T>());

70 filter->Update();

// Set result in Voreen:
outport1_.setData(ITKToVoreenCopy<T>(filter->GetOutput()));

}

Listing 4.8: ITK’s BinaryThresholdImageFilter wrapped in a Voreen processor.

56

4.9 Volume Processing

Although this code is quite similar to the example discussed earlier it is certainly
not desirable to write and maintain a large (and still growing) number of wrapper-
processors for each filter in ITK. Therefore a semi-automatic wrapping process has
been developed. To wrap a filter, only a few lines of XML-code which set the name,
ports and properties have to be written. The itkwrapper application will generate the
discussed wrapper-processor from the following XML code:

<filter name="BinaryThresholdImageFilter">
<arguments>

<argument name="LowerThreshold" argumenttype="PixelType"/>
<argument name="UpperThreshold" argumenttype="PixelType"/>

5 </arguments>
</filter>

Listing 4.9: XML-code needed to generate a Voreen processor wrapping ITK’s Binary-

ThresholdImageFilter.

Ports do not have to be configured in this case because the wrapper assumes one
volume inport and one volume outport as default. itkwrapper generates a new module
itk_generated which contains all auto-wrapped processors. Currently around 150
filtering and segmentation processors can be generated. For those filters for which
the automatic process fails the resulting code can often be slightly modified to work.
Since the coregistration framework in ITK is very different from the filters it has been
manually wrapped in the MutualInformationRegistration processor. Manually
developed processors are located in the itk module.

57

Chapter 5

Case Study: Analysis of DTI Data
using Voreen

In this chapter we are going to discuss an application for the analysis of

DTI data. The application features no new visualization techniques but

illustrates how the rapid development capabilities provided by Voreen can

be used to create a streamlined workflow for specific tasks.

5.1 Background and Data Acquisition

Fractional anisotropy, axial and radial diffusivity, and fiber reconstructions allow for
better differentiation of several aspects of neuropathology: inflammation, demyelina-
tion, and axonal loss in small animal models, e.g. of Multiple Sclerosis. Images are
usually acquired with scan times ranging from 2 - 3 h (in vivo) up to 28 h (ex vivo),
precluding studies with severely impacted animals or large cohorts of animals. Here,
we exploited the gain in signal-to-noise ratio (SNR) by using a cryogen-cooled, low-
noise transmit/receive surface coil at 9.4 T to implement a high-resolution DTI-EPI
protocol with scan times reasonable for in vivo imaging. A scan protocol of less than
one hour is more likely to be tolerated by very sick animals and would be feasible for
longitudinal imaging studies.

Two groups of mice, at 4 weeks of 0.2% Cuprizone diet (n=5) and age-matched
controls (n=3) were scanned at 9.4 T (Bruker Biospec) with the Bruker MRI CryoProbe.
Mice were anesthetized with 1-1.5% Isoflurane. A four-shot DTI-EPI sequence with
respiratory gating was used: matrix = 256*256; field of view = 2x2cm2; slice thickness
= 300μm; 12 slices; TR/TE = 3500/58 ms; 2 averages. 5 B0 and 60 diffusion-weighted
images (b=1000s/mm2) in 30 directions were obtained over approximately 30 min
[WOS+11].

59

Chapter 5 – Case Study: Analysis of DTI Data using Voreen

5.2 Requirements

The application should read diffusion weighed images as generated by the scanner,
perform a tensor estimation followed by an analysis of the diffusivity in a user-
specified ROI. Standard slice views and fiber tracking should be used to visualize the
results. A special requirement for this application is the capability to exclude selected
DWI volumes from the tensor estimation. Due to a problem with the scanner these
volumes contain unusable slices which would decrease the quality of the DTI volume.

5.3 Implementation

Data Import

The BrukerVolumeReader is used to import the DWIs stored in Bruker ParaVision
format, it supports reading of the necessary metadata for further processing.

Filtering of DWI Volumes

To filter corrupt DWI volumes the VolumeCollectionFilterDTI has been imple-
mented (see Figure 5.1). The user can cycle through all DWI volumes using the mouse
wheel, which modifies the "Selected Volume" property. The selected volume is for-
warded on one of the outports and displayed using a standard sliceviewer, configured
to display all slices at once. A vector of boolean properties controls which of the
volumes in the collection should be forwarded. The state of the current volume can
be toggled using a keyboard shortcut which activates a button property. The filtered
volume collection is forwarded on an outport, which will usually be connected to a
tensor estimation processor. One text outport contains information about the current
volume and another about the number of selected volumes. Using property links
between the VolumeCollectionFilterDTI and the slice viewer the color of the slice
grid is modified to indicate the state of the current gradient volume: A green grid
indicates that all volumes with this gradient are forwarded. An orange grid (see
Figure 5.1) is displayed when the current volume is filtered but other volumes with
this gradient are forwarded. If all volumes using one gradient are filtered the grid
becomes red.

Tensor Estimation

Tensor estimation is performed using the DiffusionTensorEstimator or ModelFitCamino
processors.

60

5.3 Implementation

Figure 5.1: Filtering of DWI Volumes using the VolumeCollectionFilterDTI.

61

Chapter 5 – Case Study: Analysis of DTI Data using Voreen

Masking of DTI Volume

The tensor volume is masked based on a threshold applied to a b0 volume. A closing
operation can be applied to the mask, and a preview of the mask is displayed as
outline on the b0 image.

ROI Analysis

Statistics for a user-specified ROI are computed for a set of scalar values (default:
mean/axial/radial diffusivity). For further analysis the computed statistics are ex-
ported to a CSV file using the PlotDataExport processor.

Fibertracking

Fibertracking is seeded in the specified ROI and rendered using a FiberRenderer in
combination with a slice to provide context.

Workflow

The analysis-workflow is performed in two steps/networks: The DWI-filtering, ten-
sor estimation and masking is performed in the first step (see Figure 5.3). ROI
specification and analysis as well as exporting of results form the second step (see
Figure 5.4).

Between both steps the masked DTI volumes have to be transfered, and analysis
results have to be saved after step two. In order to achieve these objectives with
minimal user interaction we utilize a set of processors from the workflow module. A
sub-network showing the functionality is displayed in Figure 5.2: The user selects a
directory containing one scan using the TextSourceDirectory processor. The direc-
tory is set in the text-outport and the following TextCombine processors concatenate
filenames for input (the "2dseq" file contains the reconstructed scan in ParaVision
format) and output files ("v_tensors.vvd"). Using a similar construction in step two,
the tensor volume will be loaded, creating a connection between the tensor estimation
in step one and the tensor analyzer in step two. Results of the analysis are saved to
the same directory in the same way.

5.4 Conclusion

We have shown how to create a custom application performing a streamlined work-
flow by using the VoreenVE application. Due to the high degree of modularity, the

62

5.4 Conclusion

Figure 5.2: Data Transport across networks using processor from the workflow
module.

63

Chapter 5 – Case Study: Analysis of DTI Data using Voreen

Figure 5.3: First Workflow Step: DWI-filtering (top left), results of tensor estimation
(fractional anisotropy (FA), top right), masking preview (bottom left), masked tensors
(FA, bottom right).

Figure 5.4: Second Workflow Step: ROI specification on FA volume (top left), main
eigenvector direction combined with FA (top right), plots showing the distribution
of diffusivity values in the ROI (bottom left), fiber rendering combined with 3D-slice
(bottom right).

64

5.4 Conclusion

only code specific to this application is the VolumeCollectionFilterDTI processor,
which is easy to implement.
In agreement with published studies, increased radial diffusivity could be found in
the corpus callosum of Cuprizone-fed mice, indicating demyelination [WOS+11].

65

Chapter 6

Context-Aware Volume
Navigation

The trackball metaphor is exploited in many applications where volumetric

data needs to be explored. Although it provides an intuitive way to inspect

the overall structure of objects of interest, an in-detail inspection can be

tedious - or when cavities occur even impossible. Therefore we propose a

context-aware navigation technique for the exploration of volumetric data.

While navigation techniques for polygonal data require information about

the rendered geometry, this strategy is not sufficient in the area of volume

rendering. Since rendering parameters, e.g., the transfer function, have a

strong influence on the visualized structures, they also affect the features

to be explored. To compensate for this effect we propose a novel image-

based navigation approach for volumetric data. While being intuitive to

use, the proposed technique allows the user to perform complex navigation

tasks, in particular to get an overview as well as to perform an in-detail

inspection without any navigation mode switches. The technique can be

easily integrated into ray casting based volume renderers like Voreen,

needs no extra data structures and is independent of the data set as well

as the rendering parameters. We will discuss the underlying concepts,

explain how to enable the navigation at interactive frame rates using

OpenCL, and evaluate its usability as well as its performance.

6.1 Introduction

In recent years several algorithms have been proposed which accelerate volume
rendering and thus allow interactive frame rates. As a consequence, the user can-
not only change rendering parameters interactively, but is also able to navigate
within volumetric data. Although navigation is essential in order to get a deeper

67

Chapter 6 – Context-Aware Volume Navigation

Figure 6.1: Three subsequent screenshots as made during the usage of our image-
based volume navigation metaphor. Without changing the navigation mode, the user
is able to inspect the data set in a behavior similar to a trackball and can also fly
through internal structures when a collision detection is present. To support the spatial-
awareness, appropriate thumbnails are displayed.

understanding of the visualized data sets and the need for navigation metaphors
has been expressed [CON08], only little research has been dedicated to support
this process within volume visualizations. In fact, in most general-purpose volume
visualization systems the trackball metaphor is exploited [Sho92], since it is easy to
use and allows predictable navigation [BRP05]. However, the trackball metaphor has
several drawbacks. First, navigation is based on the assumption that the shape of
the object to be explored is (approximately) spherical, which for instance makes it
hard to explore longitudinal structures. Second, in-detail inspections are difficult,
since the trackball is fixed to a given center. To deal with this shortcoming, it is often
possible to reposition the trackball center, which, however, is tedious and in many
cases counterintuitive. Third, the trackball metaphor is not location-aware and does
not take visibility into account. This is especially problematic when diving into the
volume, where it is hard to orient oneself, in particular in the absence of collision
detection. Therefore specialized navigation techniques have been developed for ap-
plication cases where these drawbacks are limiting factors, e.g., when navigating in
virtual colonoscopy [HMK+97]. This chapter proposes a general purpose volume
navigation metaphor, which can be integrated into existing volume visualization
systems. Besides being intuitive to use, we believe that our navigation metaphor
brings forward visualization-based research, since it does not have to be adapted for
specific tasks and thus is also applicable to emerging application scenarios.

A navigation task can be understood as a combination of explorative navigation
and directed navigation [CON08]. While explorative navigation is a rather undirected
task, where the user interactively inspects the data to gather knowledge, directed

68

6.1 Introduction

navigation supports the user when intentionally visiting structures of interest. In
most application scenarios, both navigation types are desirable, and they should
therefore be integrated seamlessly. An often recurring pattern, where a seamless
integration is required, could be as follows. The user first inspects the whole data set
in an explorative manner in order to get an overview and identify potential structures
of interest, to which s/he could navigate subsequently. This scenario is also in line
with the often cited overview, zoom, filter out, details-on-demand concept, which has been
introduced by Shneiderman to describe a general visual analysis process [Shn96].
By keeping these considerations in mind and avoiding the mentioned drawbacks
of the trackball metaphor, we have developed an intuitive navigation metaphor for
volumetric data, which supports explorative as well as directed navigation and is
context-aware, thus allowing us to avoid manual navigation mode switches and
to provide contextual information to the user (see Figure 6.1). Several challenges
occur when developing such a context-aware navigation metaphor for volumetric
data. Unlike in scenes consisting of polygonal data, structures are not clearly defined
in volumetric data. The set of visible features can be changed easily by adjusting
rendering parameters such as the transfer function, clipping planes or when switching
between different rendering modes. Therefore existing navigation algorithms, which
are based on the assumption that scenes consist of a set of separable features, e.g.,
McCrae et al. [MMGK09], cannot be applied when navigating volumetric data. As a
consequence, precomputed data structures would be needed for each possible set of
rendering parameters which affect the visualized features. Obviously, this is not a
feasible option because of the vast number of possibilities for rendering a data set. An
alternative would be to recompute the data structures for each frame by considering
the current set of rendering parameters. However, this would require a thorough
data analysis and thus result in a significant performance drop, especially for large
volume data sets. Therefore many of the specialized volume navigation techniques
discussed in Section 6.2 assume a preset of rendering parameters and analyze the
data set to be explored during a preprocessing step. Hence navigating arbitrary data
sets with arbitrary rendering parameters is not supported.

This chapter proposes a novel image-based navigation metaphor which meets all
of the requirements discussed above. By exploiting the processing power of current
GPUs, we are able to analyze the environment surrounding the camera in real-time
and thus to extract knowledge to support context-aware navigation, which does not
require any manual navigation mode switches. To achieve this goal, we make the
following contributions:

• An interactive image analysis technique based on spherical volume ray-casting,

69

Chapter 6 – Context-Aware Volume Navigation

which allows our navigation metaphor to adapt to any visible structure and
virtually arbitrary rendering techniques.

• A seamless integration of strafing, panning, rotating and flying, which allows
convenient proximal as well as distal object inspection.

• Context-aware overlays which support orientation of the user by providing an
overview of the surrounding region.

6.2 Related Work

Since our navigation technique is of interactive nature, we do not cover automatic tech-
niques in this section, and refer to the camera survey by Christie and Olivier [CON08].

Volumetric navigation. Most navigation techniques for volumetric data are spe-
cialized for navigation in tubular structures to support various virtual endoscopy
applications: Virtual angioscopy [HBA+04], virtual colonoscopy [HMK+97], virtual
sinus endoscopy [KKPS08] and virtual bronchoscopy [BMF+03]. Most of these tech-
niques attach the virtual endoscope (i.e., the camera) to a precomputed or manually
determined centerline [SLC+02]. Hence these techniques cannot provide an ad-
hoc general-purpose navigation for arbitrary volumetric data. Nevertheless, these
applications and algorithms have to be considered when designing a flexible navi-
gation system. Especially relevant for our approach is the active virtual angioscopy
navigation technique proposed by Haigron et al. [HBA+04]. The authors avoid
precomputation by using techniques from the field of mobile robot navigation to
automatically steer the camera through vascular structures. They analyze the depth
buffer of the current view and direct the camera towards the location of the maximal
depth value. In contrast to our technique the authors constrain their analysis to the
current field of view, which is sufficient for path planning in tubular structures but
cannot provide enough information for a more general navigation metaphor. As a
consequence, for instance no collision detection can be performed when moving
sideways. Serlie et al. [SVVG+01] describe a virtual colonoscopy application that
uses a cube map to provide a full 360-degree view and speed up rendering. To
inspect volumetric data various approaches for optimal viewpoint selection have
been proposed. Kohlmann et al. [KBK07] describe a technique called LiveSync to link
2D slices with volume renderings. In contrast to our approach, LiveSync relies on 2D
slice representations and does not support individual camera flights. Additionally,
several more automatic and thus less relevant view point determination approaches
exist [VFSH01, BS05, TFTN05, VMN08]. These techniques can be used as starting

70

6.2 Related Work

point for interaction exploration. Viola et al. [VFSG06] show how to determine ex-
pressive views on predefined features, which can be selected by the user during
runtime.

Polygonal navigation. Besides these camera control techniques specifically de-
veloped for volumetric data, several relevant techniques for navigating polygonal
data exist. Zeleznik and Forsberg [ZF99] describe a technique called UniCam, which
allows the user to perform navigation by using a gesture alphabet. While this is a
promising concept, the authors report that users initially required several hours of
training to get used to the technique. Our technique is inspired by the HoverCam
technique proposed by Khan et al. [KKS+05]. To support proximal object inspection,
a mouse drag is translated into a translation of the camera position, followed by an
adjustment of the focus to the point closest to the camera. However, there are several
differences between our technique and the HoverCam. First, HoverCam requires an
indexing structure called sphere-tree which has to be extracted from the mesh the
user wants to inspect. Even the improved HoverCam metaphor [MMGK09], which
exploits rasterization in order to find the closest point to the camera still requires the
scene geometry to be accessible, in order to avoid sudden switching of the camera
focus between the objects of the scene. In volume rendering this information is not
accessible, since the visualized structures change frequently, based on the chosen
transfer function or set clipping planes. Second, the improved HoverCam metaphor
requires the use of Proxy Objects of different LoDs in order to speed up render-
ing, and it utilizes the surface normal at the cursor position. The latter may not be
provided by all volume renderers or may not even be clearly defined for arbitrary
volumetric data. Third, the HoverCam metaphor does not allow adaptation of the up
vector, since the application programmer has to define its behavior for each object.
This would be obviously not feasible in volume rendering, where a data set contains a
multitude of different objects. Another technique developed for polygonal data is the
user designed navigation assistance as proposed by Burtnyk et al. [BKF+02, BKFK06].
However, since it depends on predefined camera positions and/or paths, it is not
suitable for the initial exploration of a volumetric data set, which we consider an
important subtask of scientific visualization. Additionally, the predefined camera
positions and paths may convey only little information after the transfer function has
been changed, which is a common operation when exploring volume data. In general,
3D camera control as realized in computer games has only limited potential in the
area of volume rendering. This is due to the assumption made by these techniques
that the camera is linked to a character which is controlled by gravity and has a
certain size. Hence we do not further consider these techniques and refer to the survey
by Christie and Olivier [CON08]. Rendering additional camera control widgets like

71

Chapter 6 – Context-Aware Volume Navigation

the Navidget developed by Hachet et al. [HDKG08] may not always be desirable
since the widgets can block line of sight to the data and integration of geometry with
volume rendering is not trivial.

6.3 Design Considerations

To realize an intuitive volume navigation metaphor, several design decisions have to
be made. Since seven degrees of freedom come into play, camera control in general is
a highly complex task. To allow full flexibility, the user must be able to change the
three Cartesian coordinates describing the camera’s position, the three Euler angles
describing its orientation, and its focal distance [CON08]. Obviously, setting all these
parameters manually would result in a cognitive overload. In contrast, since in many
visualization scenarios exploration plays an important role, navigation constraints
are only acceptable up to a certain degree. In particular, a fully automatic navigation
system designed for a specific approach would not be able to adapt to the user’s
intentions. This is a very important prerequisite, since the user might change her
intentions during a visual analysis process frequently [BRS00]. Therefore we have
combined the strengths of an interactive approach with those of a reactive approach
leading to a semi-automatic navigation metaphor. Especially, when a navigation mode
change is required this semi-automatic proceeding is beneficial, since such a change
should not be performed by using modifier keys or a graphical user interface [Ras00].
Accordingly, we have limited ourselves to use only a standard wheel-mouse, which
also eases porting the technique to touch displays. To further improve the usability,
we have integrated well-established concepts from existing navigation metaphors
where applicable. We have included the three main metaphors described by Ware and
Osborne [WO90]: Camera-in-hand, world-in-hand, and flying vehicle. While with the
camera-in-hand metaphor the camera is manipulated as if held in the user’s hand,
the input mapping is inverted when using the world-in-hand metaphor, and thus the
camera rotates around a location fixed in the world. When using the flying vehicle
metaphor, the camera can be steered as when sitting in an airplane. By combining
these metaphors in a seamless manner, we are able to support proximal object
inspection and moving through cavities simultaneously, which we have identified as
central tasks in scientific and medical volume visualization.

At this point we would like to emphasize the importance of the flexibility achieved
by the semi-automatic nature of our metaphor, which makes it a general-purpose
navigation metaphor. This flexibility does not only allow to support distal and
proximal object inspection in a seamless manner, but it also supports the navigation of
arbitrary data sets, which can be visualized with arbitrary rendering techniques. This

72

6.3 Design Considerations

decoupling of the data and the renderer is achieved by performing all computations in
image space, and it allows to apply the presented metaphor also within yet unknown
application scenarios. The benefit of this property becomes clear when considering
other visualization systems. For instance, the virtual endoscopy system proposed by
Krüger et al. [KKPS08] is a good example. To incorporate collision detection within
their GPU-based rendering technique, an extra copy of the data set and knowledge
about the renderer and its parameters are required on the CPU. Thus an additional
development effort became necessary for navigation purposes only. By having a
general purpose navigation metaphor, this interdependency during the development
of visualization and navigation algorithms can be dissolved.

The example of the visualization system presented by Krüger et al. [KKPS08]
highlights also another requirement for navigation algorithms: The need for collision
detection and avoidance. This is in line with the work by Wojciechowski, who also
emphasizes the importance of collision detection when dealing with navigation
metaphors [Woj06]. We believe that collision detection is of even greater importance
in the area of volume visualization, since the volumetric nature of the data to be
visualized affords the user to dive into it. Allowing this behavior without providing
collision avoidance results in a high degree of occlusion, and thus the reduced
visibility quickly leads to disorientation. Integrating an occlusion avoidance algorithm
improves the situation, but might still lead to orientation problems, for instance when
traveling through complex vessel trees. Hence a general-purpose volume navigation
metaphor should also provide some contextual information when diving into the
data and thus support location-awareness.

The image-based volume navigation metaphor proposed in this chapter meets the
following design criteria, which we have developed by having typical visualization
scenarios in mind. It should:

• support semi-automatic camera control to allow flexible and adaptive navigation
(e.g., when the user’s intention, the data or the rendering style change),

• be intuitive and easy to learn, i.e., avoid navigation mode switches and integrate
well-known concepts,

• allow distant and proximal object inspection, which are essential for most
scientific visualization applications,

• integrate collision avoidance algorithms, and

• support location awareness.

73

Chapter 6 – Context-Aware Volume Navigation

Since most of these design criteria require some knowledge about the current
visualization, we refer to the presented navigation metaphor as context-aware. To
simplify the required knowledge extraction process, we assume that the navigation
intended by the user depends on the visualized structures. For instance, if the user
excludes structures from the rendering, e.g., by adapting the transfer function, s/he
likely does not want to inspect these structures. To comply with this assumption, we
have to extract knowledge regarding the visualized structures. This can be done by
considering the opacity of each voxel or sampling point in the same way the renderer
does it when rendering the data. However, a multitude of parameters can affect the
opacity at each sampling point: Transfer functions, segmentation data, clipping, other
modalities, derived data. Additionally, transfer functions have to be differentiated
further since multiple types exist (e.g., 1D intensity, 2D intensity-gradient, 2D LH
[SBSG06], 3D [KKH02]) and different segments may also have different transfer
functions assigned to them. Incorporating all these parameters within the navigation
algorithm would not be a trivial task, and if possible at all it would likely lead to
code duplications, which would need to be updated to incorporate additional data
sets or formats, new transfer function types, additional rendering parameters, etc.
Even if the correct classification could be calculated in the navigation system, the
calculated information needs to be stored (possibly at sub-voxel accuracy), processed
and regenerated upon changes of rendering parameters. We therefore believe that
choosing an image-based approach is not only an option to increase performance but
imperative when implementing a flexible volume navigation technique.

6.4 Navigation Algorithm

In order to satisfy the design considerations introduced above, we have realized
the image-based navigation metaphor, which follows the workflow depicted in
Figure 6.2. To be able to achieve interactive frame rates, the workflow has been
designed to work with a GPU-based volume raycaster [KW03], although with slight
modifications arbitrary renderers could be used. Based on the data set and the
current camera parameters, we generate two pairs of color-coded entry- and exit-
points: a conventional one, which is used for the actual rendering, and a spherical
one, which is used for the image-based analysis. After the spherical entry- and
exit-points have been generated, the subsequent renderer passes its output to the
image analyzer. This image analyzer receives incoming mouse events and extracts
the required information from the spherical rendering. Based on this information,
the current camera is modified, and when necessary, image overlays are generated
in order to support spatial awareness. These images are then overlayed over the

74

6.4 Navigation Algorithm

Figure 6.2: The workflow of our navigation system, integrated into a volume render-
ing system. The same raycaster is executed twice, one rendering is displayed on the
canvas while the other is analyzed to map the user’s input to camera movement.

standard rendering which is displayed on the screen.

By extracting knowledge about the regions surrounding the current camera posi-
tion, we are able to flexibly react to mouse input to support the desired navigation
tasks. In order to get a representation of these regions, we render a 360◦ fisheye
view from the current camera position. All calculations necessary for the navigation
are performed based on this image and the corresponding depth values of the first
hit points. By exploiting a spherical mapping, we are able to get the information
for all directions in only one rendering pass instead of six passes required for an
alternative cube map approach. This is achieved by mapping each texel position of
the entry- and exit-textures to θ ∈ [−π, π] and φ ∈ [−π

2 , π
2], which are translated to

cartesian coordinates. The resulting positions, which are shown as color coded images
in Figure 6.3 (left), are used to set up the rays for which an intersection test with the
proxy geometry is performed. To simplify this process, we assume a convex proxy
geometry, which should be no real limitation for most renderers and applications. We
have to consider two different cases, based on the position of the camera (inside or
outside the volume). In the first case when the camera is located inside the volume,
the entry points are simply given by the camera position, and the exit points are the
intersection points with the proxy geometry (see Figure 6.3 (right)). In the second

75

Chapter 6 – Context-Aware Volume Navigation

Figure 6.3: Spherical entry-exit points outside and inside the proxy geometry. The
entry points for ray casting from inside the proxy geometry are constant because the
rays start at the camera position.

Figure 6.4: We distinguish between three basic camera movements when drag-
ging the mouse: Rotating, Strafing and Panning. By analyzing the depth image we
dynamically decide which movement the user wants to perform.

case when the camera is located outside the volume, the entry and exit points are set
to the first and second intersection points, respectively, while the volume is visible.

This proceeding has the advantage that we can use a standard volume raycaster in
order to process these entry- and exit-points. Hence, our technique does not depend
on the volume ray-caster as long as it uses Krüger and Westermann style entry-
and exit-points and writes first hit point depth values. Our approach also does not
depend on the rendering parameters and the data sets. For the actual navigation we
analyze the output, i.e., the color and depth image, of a ray casting performed by
processing these entry- and exit-points. The depth image will be used to modulate
flight speed and perform collision detection while the color image is used to generate
image overlays providing contextual information.

76

6.4 Navigation Algorithm

6.4.1 Image-Based Volume Navigation

Since one of our design goals was to exploit well-established navigation concepts,
we have initially used the generated image data to implement the original Hov-
erCam algorithm [KKS+05]. However, preliminary results have indicated that this
approach suffers from the fact that the HoverCam metaphor always focuses onto
the closest point in a certain search window. This often moves the focus in a direc-
tion not exactly matching the mouse movement, which is a known problem of the
HoverCam metaphor that results in decreased productivity [BLP78]. Hence we have
developed our own concepts, which mimic the behavior of the trackball metaphor,
when rotations are desired.

When inspecting an object the camera either rotates around the object (rotating,
world-in-hand), moves along the object (strafing) or it rotates around its current
position (panning, camera-in-hand) (see Figure 6.4), while maintaining a constant
distance to the object in all cases. While a common solution to enable the user to
perform all these three camera movements is the use of modifier keys, our technique
instead solves this problem by being context-aware.

We illustrate our approach by explaining two simple cases where the mapping
between mouse input and camera reaction is straightforward: The first case is that
of a camera positioned in front of a sphere, with the look-at vector pointing directly
towards the sphere’s center. In this case, the expected camera movement resulting
from a mouse drag should be a rotation in the corresponding direction around the
center of the sphere (see Figure 6.5 (a)). In the second considered case a camera is
located at the center of a hollow sphere. When performing the same mouse interaction,
the user would expect a rotation around the camera position (see Figure 6.5 (b)).
Thus, in the first case the user perceives the camera rotating around the sphere,
i.e., the world-in-hand metaphor, whereas in the second case s/he perceives the

(a) (b)

Figure 6.5: Expected camera movement for two simple cases: Rotating (a) and
Panning (b).

77

Chapter 6 – Context-Aware Volume Navigation

Figure 6.6: Strafing as combination of rotating and panning, with (a) and without (b)
distance adjustment.

sphere rotating around the camera or the camera panning inside the sphere, i.e., the
camera-in-hand metaphor.

To distinguish between these two basic cases, it is essential to have knowledge
about the scene. Since the goal was to realize an image-based technique, the spherical
depth image is our only information regarding the scene. Thus, we need to analyze it
based on the current mouse input. We compare the depth value at the current screen
center and at the current screen center plus the mouse offset. If the depth value in
the center is smaller than the other one, we assume that the user intends a rotation,
and otherwise a panning camera movement (recall Figure 6.5).

While panning requires no additional knowledge, for the rotating camera move-
ment a center of rotation is required. Since we do not have such high level information
in the depth image, we define the first hit point along the view vector as the center of
rotation. While this proceeding does not explicitly integrate strafing, this behavior is
inherently given. When for instance applying the presented approach in front of a
plain wall, strafing behavior is achieved. In this case constant mouse drags along one
direction would be mapped to rapid switches between small rotations and panning.
The overall movement is a shaky strafing along the wall (see Figure 6.6 (a)). The fact
that the combination of rotating and panning (roughly) results in strafing can be
integrated into the algorithm to smooth the camera movement: Depending on the
depth value difference, we interpolate rotating (movement of the camera position)
with panning (movement of the focus), resulting in movement of camera position as
well as focus, i.e., strafing. To correctly interpolate these two alternatives independent
of the distance to the object, we calculate the surface angle α from the difference of
depth values in relation to the depth. Based on this angle α the new camera position
and focus are determined, α is depicted by the green arcs in Figure 6.4. If α is large

78

6.4 Navigation Algorithm

(> 100◦) the camera is rotated around the focus point. If α, on the other hand, is small
(< 80◦) the camera rotates around its current position, which results in a panning
operation. For intermediate values both positions are interpolated, resulting in a
translation along the surface, i.e., a strafing operation. However, this approximation
of strafing will not maintain the initial distance between the camera and the object,
as illustrated in Figure 6.6 (b). This can be fixed easily by setting the distance to the
initial value.

In order to account for noise and to be able to move across smaller gaps, instead of
just reading the depth values at two distinct locations, we analyze all depth values
lying in-between these locations. By applying a Gaussian filter during this process,
we are able to achieve smooth camera transitions. Further smoothing is obtained by
the fact that the spherical depth image used for analysis has a limited resolution. This
allows to integrate a LoD navigation approach, where object clusters are inherently
detected. This works, since due to the fixed image resolution the camera distance
directly influences the clustering. Objects further away are projected onto fewer
pixels and thus small distances between them may dissolve. Thus it becomes possible
to rotate around the whole cluster, when further away, while rotating around the
individual objects when nearby.

Because rotations may result in an altered up vector, in contrast to the HoverCam
metaphor [MMGK09] our technique allows to adapt the up vector interactively. This
can be done by dragging with the mouse at the corners of the screen in order to
initiate an appropriate rotation.

Since the used collision detection is based on well-known potential field approaches,
we do not describe it within this Section, and provide a brief overview in Subsec-
tion 6.4.3.

6.4.2 Supporting Location Awareness

To support the user during the navigation, especially when diving into the volume,
we augment the rendering by adding appropriate overlays.

Contextual Preview Images

To avoid disorientation, we add small preview windows that show parts of the
surroundings currently not in the field of view (see Figure 6.7). These previews are
generated by reprojecting the corresponding parts from the spherical rendering. We
select the parts positioned on the left, the right, above, below and behind the camera.
The latter case can be used for instance to realize a rear mirror metaphor. To render
the previews, a view frustum is constructed, and rays are cast through all pixels into

79

Chapter 6 – Context-Aware Volume Navigation

Figure 6.7: Based on saliency and the overall occlusion our technique overlays a rear
preview and an overview map, respectively.

the spherical image surrounding the camera. The ray direction is then converted to
spherical coordinates and used to look up the texels in the spherical image. Although
one might suspect to see distortions in the top and bottom previews this is not the
case as shown in Figure 6.8. Because this is essentially just an image processing and
not a new volume rendering pass, the previews can be generated very efficiently.

Figure 6.8: The previews are generated from the spherical image (left) without
performing additional ray casting passes. The bottom preview (right) is reconstructed
from the lower part of the spherical image without distortions.

Overview Map

While the contextual preview images help to get information regarding the surround-
ing, they provide only little support for estimating the own location. Thus, we also
provide a map overlay, which shows the current position from a bird’s-eye perspective
when diving into the volume. This metaphor is often used in map applications to
support spatial awareness. The map is rendered in an additional pass, where we can
use the existing volume raycaster again but with a clipped proxy geometry and a

80

6.4 Navigation Algorithm

different perspective. To define the parts of the volume visible in this overview map,
we exploit the plane defined by the camera position and the up vector to clip the
proxy geometry and render it from the bird’s-eye perspective, i.e., located above and
behind the main camera. An example of this overview map is shown in Figure 6.7.
As it can be seen, we have also added the position and the field of view of the camera
to support the orientation.

Context-aware Overlays

Both the preview images and the overview map may be helpful to the user in certain
situations, but may be useless and just consume valuable screen space in other
situations. We therefore propose to make these overlays context-aware and use the
information stored in the spherical image to dynamically decide which navigation
overlays to display.

Saliency-based previews. Besides taking up screen space the content of the pre-
views is not always necessarily helpful to the user - they might not even contain
parts of the data set. The first heuristic we implemented just determined to what per-
centage each preview is filled. Although this correctly disabled most previews when
exploring a data set from the outside, all five previews were active when flying for
instance through a vessel. Most of the previews were not improving the exploration
but simply showing a vessel wall of uniform color. Therefore we employ the notion
of visual saliency for color images [IKN98] and depth images [OH00] to decide the
relevance of each preview at the current position in the data set. This heuristic of
course assumes that the user has configured the renderer in a way to discriminate
features of interest. The more heterogeneous a preview is, the more interesting it
is assumed to be. In a similar way, the depth image is considered interesting if the
values are non-uniform. Hence previews appear for instance when the user flies by a
branch when inside a vessel. If the overall saliency of a preview image exceeds the
specified importance threshold, the preview is considered helpful to the user and
therefore worth the screen space. Because the rear preview is particularly useful and
can be used to reverse the camera direction with a double click, it has a lowered
threshold and is therefore visible more often.

Occlusion-based overview. While it makes sense to overlay the map when ex-
ploring cavities, it is not very helpful when inspecting an object from the outside.
We have therefore implemented a heuristic to decide when the camera is inside a
cavity and only then display the map. We consider all preview images except the one
representing the front view. If more than 20% of these preview images are occupied
with data lying within a closeness threshold, the camera is considered to be within a

81

Chapter 6 – Context-Aware Volume Navigation

cavity and thus the overview map is displayed. In our tests we found this heuristic to
be sufficiently robust.

6.4.3 Integrated Camera Control

To unleash the full potential of our context-aware navigation technique, we have
integrated it with other camera control metaphors. To combine our approach with a
convenient traveling metaphor, we have implemented the flying vehicle metaphor.
Thus, by pressing and holding the left mouse button for a short amount of time
without moving it the user can start flying through the data set. During this flight,
the direction is continuously modified by the offset between the mouse cursor and
the center of the screen. The traveling speed is calculated based on the distance
to the closest point in a region around the center of the screen. This proceeding is
sufficient, since a user evaluation conducted by Ware and Fleet [WF97] has shown
that averaging the depth values had no advantage over just using the closest depth
value, when modulating flight velocity based on depth values. To prevent occlusions,
we use a force field technique. In particular, we have implemented the force field
approach proposed by Xiao and Hubbold [XH98] to prevent collisions while still
allowing smooth flying. To allow mostly unrestricted movement, in our realization
the camera is not constantly moved towards the center of the cavity, as it is done
when applying navigation in virtual colonoscopy [HMK+97].

To support zooming, the user can move the camera forward and backward by
using the mousewheel. The speed is again determined by the closest point, but no
force field is used to provide a real zoom instead of an additional method to fly,
which is consistent with the standard trackball. When moving backwards the closest
point on the backside is used to check for collisions.

By double clicking the camera rotates to focus the point at the cursor position,
which can be used to switch between separate objects. It should be pointed out
that while it is of course possible to integrate this operation into a normal trackball
navigation it would not be very helpful to the user. In contrast to our technique,
which constantly updates the center of rotation, the trackball focus would stay fixed
at the clicked point on the surface of the object, and thus the object would rotate
around this point.

Finally, we have added a history function, which allows the user to fly back on the
previous navigation path. Instead of adding an option to fly backwards or automati-
cally push the camera out of an object, as proposed by McCrae et al. [MMGK09], we
allow the user to rewind to previous positions by pressing the right mouse button.
We believe that this solution, which has some similarity to forward and backward

82

6.5 Evaluation

movement on a path generated for virtual endoscopy applications [HHCL01], is more
robust and less confusing for the user.

6.5 Evaluation

6.5.1 Usability

Our usability evaluation is based on the results of a user study we performed.
Additionally, we present our findings from an interview with a medical expert.

Theoretical Evaluation

Due to the integration of well-known concepts and the thus resulting similarities with
the trackball metaphor, we can apply quality criteria developed for this metaphor.
Bade et al. have developed such a measure [BRP05]. They have identified four general
principles to which rotation techniques should adhere. In the following we briefly
describe how our navigation metaphor complies with these criteria:

1. Similar actions should provoke similar reactions. Since the modification of the
camera depends on the viewed object this principle cannot be generally fulfilled
by our technique. However, when looking at the same or very similar objects
the camera movement is comparable and predictable.

2. Direction of rotation should match the direction of 2D pointing device movement. This
is guaranteed by our technique since the movement of camera position and
focus are always in the plane defined by the mouse movement.

3. 3D rotation should be transitive. This principle cannot be fulfilled because our
technique jumps to different parts when the user rotates them directly into
the focus. Bade et al. note that this principle is crucial to return to the initial
viewing position, and we can substitute this functionality by allowing the user
to rewind to previous camera positions.

4. The control-to-display ratio should be customizable. The ratio can be configured in
the GUI.

To put this evaluation into perspective, it should be noted that none of the rotation
techniques reviewed by Bade et al. [BRP05] fulfilled all four criteria, although the
authors consider them as the state-of-the-art. Furthermore, the improved Hover-
Cam [MMGK09], which is the technique most similar to ours, does not fulfill the
second and the third criterion.

83

Chapter 6 – Context-Aware Volume Navigation

Figure 6.9: The results of the questionnaire of the conducted user study, which we
have evaluated on a seven point Likert scale (0=strongly disagree, 7=strongly agree).
Questions 6-12 (red) are about specific aspects of our technique and the participants
were asked if they perceived these as useful or good solutions to the problem.

User Study

With a lot of mainstream applications like Google Earth using the trackball metaphor
we assume that the vast majority of users, especially those that might be interested in
navigating volumetric data, are familiar with this navigation approach. We therefore
designed our study to investigate how users perceive the implemented navigation
system and if they would be interested in using it - as an alternative to the trackball or
even more ambitious as the default navigation technique. Another important aspect
of our study was to find out how difficult it is for the average user to learn our
technique and whether the user thought the time spent to learn the technique was
well spent.

11 male and 2 female subjects participated in the study. Most subjects were students
or members of the departments of computer science or medicine. All subjects were
first-time users of our navigation technique. The total time per subject including
instructions, training, experiment, breaks and debriefing took approximately five
to ten minutes. The study itself consisted of a timed navigation task in which we
compared our technique with the trackball (two-axis valuator) and a learning task in
which the users had to navigate using our technique (roughly) as shown in a tutorial
video. The second task was designed to include all aspects of our navigation system.
A questionnaire based on a seven point Likert scale has been used to evaluate the
user’s experience.

The users were split up into two groups: The trackball group first performed the
navigation task, was then instructed in our technique and performed the learning
task. The other group was instructed how to use our technique, then performed the
task to learn it, and performed the navigation task using our technique. Since the

84

6.5 Evaluation

trackball is not designed to navigate through cavities, we compared only the ability
to navigate around objects from the outside in the timed navigation task. The users
had to read three letters placed on a sphere in a synthetic data set consisting of a set
of objects. All users started at the same position, had to zoom in on the sphere and
then navigate around it to read the letters.

The learning task was performed using the Baby data set (a CT scan of a head). The
users were shown the following navigation subtasks in a video and had to replicate
them:

1. Navigate around the head.

2. Use the transfer function to make skin and brain transparent and navigate
inside the skull.

3. Use the rewind functionality to get back to the starting position.

4. Focus the tube, inspect it from the outside (rotate around it) and fly through it.

5. Use the rear preview to focus on the data set after leaving the tube at the neck.

Figure 6.9 shows the results of the questionnaire. For the users it was generally easy
to learn the technique in a few minutes, and they perceived the navigation metaphor
as easy to use. Many even fully agreed that they would like to use the metaphor
for special data sets. However, the rather ambitious question, if the users would in
general switch to the metaphor received only little positive resonance. We believe that
this partially results from the fact that the users had some previous experience with
the trackball metaphor. As seen in Figure 6.9, all additional navigation techniques
were received very well. Besides these results, we found that users with the most
experience using the trackball had greater difficulties learning the new technique.
While the users were in general faster, when using our metaphor, this fact has to
be evaluated carefully. However, since we only performed one test and just have
evaluated 13 users, this may not be statistically significant.

Evaluation with Domain Experts

To get an expert opinion we interviewed a medical doctor and two medical PhD
students, all specialized in cardiovascular medicine. During the interviews, we have
demonstrated our technique by loading several different data sets and handed
over control to the medical experts. The participating medical experts had less
experience with the trackball metaphor and 3D graphics in general than the lay users

85

Chapter 6 – Context-Aware Volume Navigation

participating in our study, because they almost exclusively work with slice viewers.
Thus, they had more problems performing 3D navigation tasks, also when using
the standard trackball metaphor. When using our technique, they appreciated the
possibilty to move along surfaces and travel through the data set without experiencing
collisions. While they also liked the option to strafe along a surface, the subjects
expressed the desire to be also able to look ahead in the direction of movement
instead of just towards the surface. Furthermore, they stated that medical doctors
seldom need to inspect structures from the outside, and therefore the demand for
trackball-like behavior was rather limited. As exceptions to this rule the inspection
of bones, especially the pelvis with rather large and flat bone structures and the
shoulder joint, were mentioned.

Furthermore, the non-transitive rotation (as already discussed) was found to be
a bit non-intuitive. While the overview map was a favorite of the laymen users, the
medical experts were irritated by the slab like view rotating with the camera. They
explained that recognizing anatomical structures was difficult since they learned to
recognize these structures on axis-aligned slices.

6.5.2 Performance

The proposed system has been implemented in C++, OpenGL, GLSL and OpenCL. To
minimize downloads from the GPU and speed up computation we exploited OpenCLs
ability to interoperate with OpenGL and perform calculations on the spherical
image directly on the GPU. Thus, we were able to interweave the visualization
and navigation technique in a manner that everything is done in-situ. This allows
interactive frame rates, which would not have been possible with CPU realizations.
In our implementation, we have parallelized the force field approach, and only a few
floats need to be read back from the GPU. Finding the closest point in a direction
and reading a line from the depth image is accelerated in a similar fashion. Reading
only some scalar results or parts of a texture back from the GPU would have been
more complicated using OpenGL exclusively.

The most expensive operations are obviously the additional rendering passes for
the spherical view and the map. The spherical view is rendered at a relatively low
resolution (we found 256 × 256 to be sufficient for all tested data sets) while the
size of the map is a (configurable) fraction of the main canvas size. For a typical
canvas resolution of 1024 × 1024 the rendering time for one frame increased by 5-10
% for each of these renderings. We found the impact of the actual calculations for
the navigation to be negligible. Therefore, if an existing rendering system is able
to deliver interactive performance this would very likely not be changed by the

86

6.6 Integration in Voreen

integration of our technique.

6.6 Integration in Voreen

The navigation technique discussed in this chapter has been implemented in a
single Voreen processor handling the interaction as well as the overlay functionality.
Figure 6.10 shows a minimal network integrating the navigation processor. The
processors in the network correspond to the components in Figure 6.2, with an
additional raycaster to render the overview map. We therefore have three ray casting
pipelines in the network (from left to right) which all connect to the navigation
processor:

• The spherical ray casting is performed using a standard raycaster in combination
with a spherical entry-exit-point renderer, which performs an OpenCL based
spherical ray casting of the incoming proxy-geometry.

• The overview map is rendered using a different camera position with a clipped
proxy-geometry.

• The main 3D-view is generated using standard components (see Chapter 3).

The navigation processor controls the properties (camera, clipping plane) using
linking and combines the incoming images.

6.6.1 Limitations

Although we developed our technique as general as possible we are aware that it
will probably not be ideal for all data sets. Large semi-transparent regions (e.g., in
data sets resulting from physics simulations) cannot be explored from the inside
because the spherical image provides no usable depth values in this case. If these
regions contain less transparent inner parts along which the user wants to navigate,
the transfer function could automatically be adapted to make almost transparent
voxels completely transparent. This transfer function would then be used to render
the spherical image. Data sets where the objects of interest cannot be separated
from the background visually (e.g., due to a low signal to noise ratio) can also be
problematic. New rendering techniques that generate clearer images for these data
sets can, however, be integrated easily and thus improve the navigation.

A general problem with semi-automatic navigation methods is the possible conflict
with the user’s intention. This can be overcome by adding possibilities (e.g., modifier

87

Chapter 6 – Context-Aware Volume Navigation

keys) to force the navigation technique into a specific mode. Keeping in mind
touchscreens as possible application we did not integrate these.

The continous switching between different navigation metaphors can produce
occasional jittering. We have tested different approaches to eliminate this jittering.
Using a hysteresis to limit switching between the different interaction metaphors
resulted in increased jittering. For instance, when rotating the camera around a
spherical object, the object would be moved out of focus which would then be
corrected by rotating the camera. This results in an unsteady movement of the sphere
on screen, which is perceived as irritating. Approximating the center of the object
in focus from the depth image and rotating around it resulted in a smoother, more
indirect movement around simpler objects (spheres, cubes), but turned out to be too
unreliable for complex objects. If the centerline or medial surface for an object of
interest is static and available it should obviously be used for navigation.

So far, we did not integrate support for time-varying data, because in the current
form the navigation does not derive any knowledge from the data. When navigating
with our technique while the current time step is changed, may lead to unintuitive
behavior.

Besides these rather conceptual criticisms, we see also potential for providing
technical improvements. We currently use a rather simple method to approximate
the saliency of each preview. Although this heuristic provided reasonable results in
all tested cases, it could certainly be extended to reposition the focus of the previews
on features of maximal saliency, adjust the field of view to isolate interesting features
or perform a sophisticated feature detection.

6.7 Conclusions

In this chapter we have introduced a general-purpose volume navigation metaphor.
By exploiting image analysis of a spherical projection of the camera’s environment,
we are able to simulate different concepts known from well-established navigation
metaphors without requiring navigation mode switches. We have shown how to
support rotating, strafing and panning of the camera by exploiting an image-based
analysis of its environment. Thus, we enable proximal as well as distal object inspec-
tion, which is an important combination in many scientific visualization applications.
Furthermore, we have shown how to exploit the knowledge about the camera’s
context in order to generate preview images as well as overview maps. The latter
are of particular importance in the area of volume visualization, since the volumet-
ric nature of the data affords to dive into it, which easily leads to disorientation.
Thus, our technique is able to support location-awareness. Since all required analy-

88

6.7 Conclusions

sis tasks are performed based on the rendered image, the presented metaphor can
be considered as a general-purpose metaphor, such that it can be used with most
visualization techniques and data sets. To our knowledge the presented approach
is the first general-purpose volume navigation metaphor. To evaluate the quality
of the presented navigation approach, we have performed a usability evaluation
and have conducted interviews with medical experts. Since we obtained positive
feedback from these tests, we believe that the presented navigation metaphor can
fill the gap between general purpose volume visualization systems using classic
navigation metaphors and systems developed for specific application cases that ex-
ploit specialized navigation techniques. It therefore also represents a useful building
block in rapid prototyping tools such as Voreen. In the future it would be worth to
investigate how to address the limitations discussed in Section 6.6.1.

89

Chapter 6 – Context-Aware Volume Navigation

Figure 6.10: Integration of the navigation processor into a Voreen network.

90

Chapter 7

Interactive Planning for Brain
Tumor Resections

This chapter presents concepts for pre-operative planning of brain tumor

resections. The proposed system uses a combination of traditional and

novel visualization techniques in order to support the neurosurgeon during

the planning process. A set of multimodal 2D and 3D views conveys the

relation between the lesion and the various structures at risk and also

depicts data uncertainty. To facilitate efficient interactions while providing

a comprehensible visualization, all views are linked. Furthermore, the

system allows the surgeon to interactively define access paths by clicking

in the 3D views as well as to perform distance measurements in 2D and

3D.

7.1 Introduction

We propose a planning system for neurosurgical procedures, using a variety of visu-
alization techniques. In cooperation with our medical partners, we have developed a
workflow during which the surgeon first inspects the tumor and surrounding tissue
and then specifies and analyzes access paths. Our application prototype utilizes novel
as well as best practice visualization techniques and integrates all the modalities pro-
vided for the Visualization Contest (see Section 7.2.1). We will discuss the workflow
in our application, our preprocessing steps and visualization techniques as well as
the feedback received from domain experts.

91

Chapter 7 – Interactive Planning for Brain Tumor Resections

7.2 IEEE Visualization Contest 2010

7.2.1 Data Sets

Two state of the art data sets have been acquired on a Siemens 3T Verio scanner. They
were provided courtesy of Prof. B. Terwey, Klinikum Mitte, Bremen, Germany. Each
data set consisted of anatomical images (T1, T1 +contrast agent, T2, FLAIR, SWI) and
functional/structural images (fMRI of a finger tapping task and DTI). Additionally,
postprocessed data such as brain- and tumor masks, and a statistical parametric map
of the fMRI data have been provided. For one of the data sets, high-resolution CT
data was also provided.

7.2.2 Clinical Questions

The following questions were posed as problems to be addressed in the proposed
visualization solutions for the contest.

• What is the relation between the lesion, functional areas and white matter
tracts?

• How can the lesion be accessed most safely?

• How close is the tumor located to vital functional areas, such as the visual-,
language- or motor-system?

• What is the distance between the tumor and important fiber bundles related to
motor-, language- and vision tasks?

• Does the tumor infiltrate or displace any of these tracts?

• To what extent (how radical) may a resection be performed?

• Which arteries or veins lie on the chosen access path?

• Finally, being aware of the technical limitations of the underlying MR measures,
an important aspect deals with the certainty with which algorithmically derived
measures may be regarded. This is especially important for DTI and fMRI. How
can the remaining uncertainty be visualized effectively?

92

7.3 Related Work

Figure 7.1: Workflow Step 1: Exploring the data and planning an initial access path
can be done by exploiting multimodal 3D and 2D views (a). Furthermore, the tumor
view allows a close-up inspection of the vicinity of the resection region (b).

7.3 Related Work

Neurosurgical planning software has been an active research topic for several years.
Our discussion of the previous work in this area is focused on more recently proposed
systems that utilize multi-volume 3D visualizations. Beyer et al. [BHWB07] propose
an application that employs multi-volume ray casting and skull peeling, a technique
to selectively remove structures obscuring the brain without segmentation. Rieder et
al. [RRRP08] propose a neurosurgical planning tool that uses distance based transfer
functions and visualizes the access path as a cylinder.
Multi-volume ray casting is an important part of a modern neurosurgical planning
software. Examples for more recent implementations on modern GPUs are a BSP
tree based technique proposed by Lindholm et al. [LLHY09] and a depth peeling
based approach by Brecheisen et al. [BiBPtHR08]. Kainz et al. [KGB+09] propose
a CUDA-based renderer which can handle multiple volumes in combination with
complex polyhedral objects.
Visualization of DTI uncertainty was an important question in the contest, but to the
best of our knowledge the only solution to visualize fiber tracking uncertainty has
been proposed by Brecheisen et al. [BVPtHR09].

93

Chapter 7 – Interactive Planning for Brain Tumor Resections

Figure 7.2: Workflow Step 2: In-detail inspection as well as modification of the access
path and operation preparation by exploiting a probe view, a cylindrical access path
projection, a surgeon microscope slice view and an access path distance plot.

7.4 Planning Workflow

We have identified a two step workflow used by our medical partner and developed
our application prototype to support this workflow:

1. Initial investigation of the data in combination with an interactive access path
specification

2. Deeper analysis of the chosen access path and the actual preparation for the
surgery

Figures 7.1 and 7.2 show the views in workflow step 1 and workflow step 2. The
surgeon can always switch back and forth between the steps to choose a new access
path and analyze it.

7.4.1 Workflow Step 1

In step 1 we combine 2D slice views enhanced with lift charts with a 3D context view
that integrates relevant information from the available modalities (see Figure 7.1 (a)).
The slice views provide insight into structures and allow the neurosurgeon to identify
structures inside the tumor and to diagnose its type. The location of the tumor as well

94

7.5 Preprocessing

as its relation to risk structures is depicted in the 3D view, which is further overlaid
with a tumor map (see Section 7.6.2) showing a projection of relevant structures
as seen from the tumor. To get a better view of the tumor and relevant adjacent
structures we provide an additional close-up view (see Figure 7.1 (b)). Here, the
surgeon is able to identify vessels and fibers that may be infiltrated or displaced by
the tumor. Using these views the neurosurgeon can place one or more access paths
before analyzing and comparing them in step 2.

7.4.2 Workflow Step 2

In step 2 we combine a classical probe view with a projected map of the access path,
a plot showing minimum distances along the path and a slice view orthogonal to
the path to allow a compehensive analysis of the chosen access path (see Figure 7.2).
The probe view (top left) shows all structures inside the access path and provides a
preview of how the access path would look during the operation. It also enables the
surgeon to fine-tune the previously chosen access path. To locate structures close to
the access path the top right view displays a projection of the structures surrounding
the access path onto the surface of the access path cylinder (see Section 7.6.2). A
plot showing the minimum distances of relevant structures along the access path is
located at the bottom right to allow an easy comparison of several possible paths.
Finally, in the bottom left the system offers a slice view that is centered around the
access path and oriented perpendicular to it, thereby providing a view corresponding
to the operation microscope focusing at a certain depth.

7.5 Preprocessing

7.5.1 Segmentation & Registration

We have segmented the vessels from the T1 data set by using a random walker based
segmentation system presented by Praßni et al. [PRH10]. Brain and tumor mask were
provided with the contest data sets, and all data sets provided by the contest were
coregistered.

7.5.2 DTI Fiber Tracking

The DTK software [WBSW07] has been used to perform fiber tracking before import-
ing the resulting fiberlines into our application. Tracking can be performed using
either the FACT algorithm, second-order Runge-Kutta, interpolated streamlines (used
for the images in this chapter) or tensorlines. To allow the extraction of relevant fiber

95

Chapter 7 – Interactive Planning for Brain Tumor Resections

Figure 7.3: Contextual DTI uncertainty is based on the distance d to bones, masked
from a CT scan.

tracts, e.g., the pyramidal tract and the arcuate fasciculus, we support an interactive
ROI definition. Furthermore, the fibers can be filtered based on anisotropy, length
and direction.

7.5.3 DTI Uncertainty Extraction

To deal with the uncertainty introduced through DTI, we incorporate the fiber context
as well as the fiber anisotropy. Since DTI is less certain in regions near bone or air
[Cha05], we have applied a volume analysis that first applies a threshold to extract
bone and air structures. Based on the thresholded volume we perform a distance
transformation that computes the distance d (see Figure 7.3) to these structures for
each fiber segment. A user-defined security margin can then be defined around air
and bone structures. We normalize the computed distance to obtain a structural
uncertainty US. To get the final uncertainty for a fiber segment, we combine US with
the anisotropy uncertainty UA to obtain the overall uncertainty U = max(US, UA).

7.6 Visualization

In this section we discuss all visualizations we utilize in the application prototype,
focusing on novel techniques like our proposed uncertainty visualizations and projec-
tion techniques.

7.6.1 2D and 3D Views

The 2D slice views integrated into our system are standard multimodal slice views,
which have been extended by using enhanced lift charts, inspired by those proposed
by Tietjen et al. [TMS+06]. Within the lift charts (see Figure 7.4), we depict the extent

96

7.6 Visualization

Figure 7.4: Enhanced lift charts indicate the current position in the slice stack and
display the amount of malignant tissue (red) as well as fMRI signal (yellow).

of malignant tissue (red curve) as well as the fMRI signal (yellow curve) for each slice.
The current slice in the stack is also indicated to help the user to navigate through
the slices. We overlay the shown modality with the most important structures at risk,
namely the tumor segmentation mask, the fMRI signal and the vessels.

There are three different 3D views provided by our system. The 3D context view,
shown during the first step of the workflow, integrates all relevant modalities into a
comprehensible rendering. It can be used to identify the various structures at risk and
to understand how they relate and interact with each other. To generate high-quality
3D views, we exploit GPU-based volume ray-casting [KW03], which has been shown
[SHC+09] to generate images superior to other volume rendering techniques. In order
to integrate the fiber geometry into the 3D views, we have modified the exit points
used by our GPU-based ray-caster, as proposed by Scharsach [Sch05].

To prevent cluttering, all modalities can be easily deactivated through on-screen
buttons (see Figure 7.1 (top right)). Additionally, the user can activate a region of
interest for the vessels based on the distance to the tumor surface.

The 3D context view also allows the surgeon to efficiently define the access path by
using the mouse. When the user clicks on the rendering the intersection point with
the skull (which can be transparent) is set as new starting point for the access path.

The second 3D view in workflow step 1 is the tumor view, which focuses on the
spatial relation between the tumor and nearby structures at risk (see Figure 7.1 (b)).
As the context view, it also integrates all relevant modalities, but displays a close-up
showing only the tumor and structures in the proximity of the tumor. Thus, the
tumor view can be used to support the surgeon when analyzing how close the tumor
is to vital functional areas. The surgeon can especially analyze which fibers infiltrate
the tumor to what extent, or which fibers are displaced.

97

Chapter 7 – Interactive Planning for Brain Tumor Resections

After the access path has been defined, a 3D probe view is exploited during the
second step of the workflow in order to identify all related risk-structures lying along
the chosen path. This probe view allows the physician to see the access path in a
similar way as during the resection. The orientation of the patient’s head during the
operation depends on the type and location of the tumor. The surgeon may use the
ring widget (see Figure 7.2 (top left)) to rotate the head around the fixed access path
axis in order to match the actual orientation. The bigger ring marker can be used as
rotation widget, while the smaller one indicates the direction pointing to the patient’s
nose.

7.6.2 Projection Techniques

We utilize two projection techniques to provide the surgeon with a quick overview of
the most important structures at risk: The tumor map shows the structures close to the
tumor, while the access path projection shows the structures close to the access path.
We employ an intuitive red-blue color mapping for both views, where structures at
risk nearby are displayed in red. The distance images needed to calculate these views
are generated using a standard volume raycaster, parameterized by entry-exit-point
textures. We pass spherical/cylindrical EEPs (see Figure 7.5(a)) to the raycaster and
use the first hit points (see Figure 7.5(b)) to calculate the distance map (see Figure
7.5(c)). We raytrace the Proxy-Geometry with an OpenCL kernel to allow these types
of projections.

Tumor Map

The tumor map, which is overlaid on the 3D context view in workflow step 1, is
inspired by the projection type presented by Rieder et al. [RWS+10]. However, we
calculate the distance to nearby structures at risk and color the results using the
aforementioned continous red-blue color mapping. The use of the tumor map is
twofold: First, the surgeon can quickly identify directions with few critical structures
by looking for large blue areas and directly set an access path in this direction by
clicking on the map. Secondly, the map can be used to measure distances to structures,
such as vital functional areas or the pyramidal tract. Measuring is performed by
simply moving the mouse over the tumor map. The measured distances are also
displayed in 3D in the context view (see Figure 7.2 (top left)). We generate the tumor
map by performing two spherical ray castings from the center of the tumor. First,
we render the tumor mask using an inverted transfer function (i.e., the inside of the
tumor is transparent, the rest is opaque). We then use the first-hit points as entry
points for a second ray casting of all risk structures. By calculating the distance

98

7.6 Visualization

Figure 7.5: Cylindrical entry- and exit points (a), result of the cylindrical ray casting
(first hit points) (b), resulting distances color coded and mapped to a disc (c).

between entry- and first-hit points for this ray casting we get a distance map to which
we apply the red-blue color mapping.

Access Path Projection

Besides their distance to the tumor, the distance of structures at risk to the access
path is also important. Therefore, the access path projection used in step 2 of the
workflow shows the distance to all relevant structures as seen from the access path
(see Figure 7.6 (right)). The result of this cylindrical projection is mapped to a disc,
with the center of the projection representing the deeper end of the access path. As
with the tumor map, moving the mouse cursor over a red region of the map will
automatically measure the distance to the structure at risk and display it in the probe
view (see Figure 7.6 (left)). For the access path projection we also display the distance
along the access path, which is important to the surgeon.

Distance Plots

To further facilitate the assessment of the access path, we exploit an access path cache
together with a plot depicting the minimal distance to structures at risk along the
access path (see Figure 7.2 (bottom right)). The access path cache can be used like
a bookmarking functionality, where the surgeon can cache access paths of interest.
By selecting different access paths from the access path cache, they can be compared
and modified easily.

99

Chapter 7 – Interactive Planning for Brain Tumor Resections

Figure 7.6: Access Path Projection: The measured distances are displayed in the
probe view using linking.

7.6.3 Uncertainty Visualization

DTI Uncertainty

When visualizing the DTI fiber tracts, we incorporate the derived uncertainty informa-
tion introduced in Subsection 7.5.3. We encode the uncertainty in the saturation and
value of the displayed fiber color in the HSV color space. The hue is determined by
the standardized directional fiber color-mapping physicians are used to. We lower the
saturation and value in regions of high uncertainty (see Figure 7.7). Thus, uncertain
fibers become less emphasized and their orientation, which can also be considered as
less certain, is less prominent.

fMRI Uncertainty

Because of the low resolution of the fMRI scans and the possibility of partial high-
lighting of motor regions due to finger tapping we render rather larger regions of
uncertainty around core fMRI regions. We have applied an approach inspired by
the work of Nguyen et al. [NYE+10]. We display the core of each fMRI region by
exploiting a diffusely emitting light signal. Additionally, in order to express the uncer-
tainty regarding the size of theses regions, we add an uncertainty margin, depicted
by orange borders (see Figure 7.7). To generate this visualization we render the fMRI
signal twice: In the first pass we render the core regions using a higher threshold,
while in the second pass we use a lower threshold and apply an edge detection filter.
We then composite this border-image with the result of the first pass.

100

7.7 Interaction Techniques

7.6.4 Brain Rendering

Because gradients in MRI scans are unreliable due to noise, we use a distance based
darkening (dark means deep) and depth darkening [LCD06] to render the brain and
simulate the effects of a global illumination model with a minimal performance
impact. We render the brain without shading (see Figure 7.8 (b)) and then apply the
depth darkening to the image. The resulting image depicts the structures of the brain
in a more comprehensible manner (compare Figure 7.8 (a) and (c)). We then integrate
the rendering of the brain into our multi-volume ray casting by modifying the EEPs
as proposed by Scharsach [Sch05].

7.7 Interaction Techniques

We have integrated several interaction techniques which support the mental linking
of the different views as well as a deeper understanding of the data. The surgeon can
intuitively measure distances between structures of the same or different modality in
the image and specify or alter the access path. Interactive navigation in all 3D views
is possible at interactive frame rates due to GPU acceleration.

7.8 Evaluation

The clinical value of our application prototype was rated as high (7 and 9 out of
9) by the two neurosurgeons who reviewed our entry in the contest. We have also
demonstrated our application to our medical partners and received positive feedback.
The enhanced lift charts were appreciated for providing a simple indication of the
current position in the slice stack as well as indicating the amount of fMRI activity,
while the 3D visualization was well received due to the intuitive integration of a wide
range of modalities.

7.9 Future Work

The current evaluation by neurosurgeons is based on a video, a more practical hands-
on session would certainly be desirable. Uncertainty visualizations for modalities
other than DTI and fMRI should be investigated. The current DTI uncertainty vi-
sualization cannot be combined with shading techniques because the user cannot
distinguish between low light and high uncertainty. Other sources of DTI uncertainty
(e.g., by the fiber tracking algorithms) need to be integrated.

101

Chapter 7 – Interactive Planning for Brain Tumor Resections

7.10 Implementation in Voreen

Multi-volume ray casting and slice rendering as well as DTI techniques for Voreen
have been developed in the context of this application, they have already been
discussed in Chapter 4. Slightly modified versions of the MultiVolumeRaycaster

have been used to perform the visualization of the access path. Integration of opaque
geometry has been realized by modifying the entry-exit-points (see Figure 7.9) using
the EEPGeometryIntegrator processor.

The tumor map and access path projection are created using special entry-exit-
point processors in combination with standard proxy-geometry and ray casting (see
Figure 7.10).

7.11 Conclusion

We have presented an interactive system for brain tumor resection planning. By
combining traditional with novel visualization and interaction techniques through
linking, the system supports an intuitive analysis of multimodal brain data sets for
pre-operative planning.

102

7.11 Conclusion

Figure 7.7: Uncertainty visualization. fMRI (green inset): Core regions are ren-
dered using a diffusely emitting light signal, uncertainty borders are rendered in
orange. DTI (red inset): Fibers close to bone and air are rendered with less satura-
tion and brightness to mark them as uncertain.

(a) (b) (c)

Figure 7.8: Comparing different techniques to shade the brain (using the same
transfer-function): Gradient based shading (a), no shading (b), depth darkening and
dark means deep (c).

Figure 7.9: Integration of geometry (fiber) and single volume ray casting results
(brain surface) into the EEPs of our multi volume raycaster.

103

Chapter 7 – Interactive Planning for Brain Tumor Resections

Figure 7.10: Computation of the tumor-map in Voreen: The center of the tumor
is computed using the VolumeCenter processor and spherical projection is performed
using the SphereEEP processor. Using an inverted transfer-function, the first-hit points
with the tumor surface are computed (red box). In the second step (green box) the
volumes containing critical structures (vessels, fibers, high fMRI activity) are raycasted
from the surface onward. Finally, the distance of critical structures to the tumor is
computed as the distance of first-hit-points from both ray casting passes and color-
coded (blue box).

104

Chapter 8

Interactive Vessel Segmentation

Vessel segmentation is an important prerequisite for many medical appli-

cations. While automatic vessel segmentation is an active field of research,

interaction and visualization techniques for semi-automatic solutions have

gotten far less attention. Nevertheless, since automatic techniques do

not generally achieve perfect results, interaction is necessary. Especially

for tasks that require an in-detail inspection or analysis of the shape of

vascular structures precise segmentations are essential. However, in many

cases these can only be generated by incorporating expert knowledge.

This chapter proposes a visual vessel segmentation system that allows the

user to interactively generate vessel segmentations. Multiple linked views

allow the user to assess different aspects of the segmentation and depict

different quality metrics. Based on these quality metrics, the user is guided,

can assess the segmentation quality in detail and modify the segmentation

accordingly. One common modification is the editing of branches, for which

we propose a semi-automatic sketch-based interaction metaphor. Addition-

ally, the user can also control the shape of the vessel wall or the centerline

through sketching. To assess the value of our system we discuss feedback

from medical experts and report the results of a thorough evaluation we

have performed.

8.1 Introduction

Vessel segmentation is an important preprocessing step in many medical applications,
such as surgery planning or medical diagnosis [CCA+05]. A crisp 3D visualization
of vasculature can only be achieved when using high doses of contrast agent or long
scanning procedures, which is often not possible or desirable. While line detection
filters [SNS+98] have been used to improve the visualization of vessel structures,
they fail to detect deformed vessels which are often the parts most relevant for

105

Chapter 8 – Interactive Vessel Segmentation

the user. Therefore, segmentation can still be considered as the gold standard for
extracting vasculature prior to visualization as well as for performing a quantitative
vessel analysis. The automatic segmentation of vascular structures has been an active
field of research for over a decade. However, since a variety of factors make it
such a challenging task, no fully automatic solutions exist. Lessage et al. [LABFL09]
even state that aiming for a generic, flawless segmentation framework is probably
illusory. They argue that a wide variability in shape, possibly caused by aneurysms,
stenoses, calcifications or stents, together with the typical challenges in medical
image segmentation, i. e., low resolution, noise, artifacts and contrast, make vessel
segmentation such a tough problem. Nevertheless, segmentations for these difficult
cases are still needed. While there are semi-automatic solutions (see Section 8.2) that
aim to integrate the strengths of interaction and automation, we feel these do not
fully utilize the power of visualization, which could make them potentially more
intuitive and thus usable. Furthermore, some of these systems approximate the
cross section using circles or ellipsoids (therefore not giving full control to the user)
or require specialized hardware (see Section 8.2). This chapter proposes a visual
vessel segmentation system that allows the user to edit a vessel’s centerline and its
surface in several linked views. These interactions are part of a two step workflow,
where the user first focusses on the centerline, which is the basis for the subsequent
segmentation. After an initial centerline has been defined through sketching, it can be
modified and its quality can be assessed before an initial segmentation is computed.
The system has been designed to generate surface segmentations of high precision,
which are required in many application cases, such as vessel quantification as well
as blood flow simulation based on real-world data [CCA+05]. Our system allows
the user to improve the surface segmentation by sketching. To limit user interaction
and promote efficiency we employ uncertainty visualization as a tool to convey the
reliability of the intermediate results to the user and intuitively guide the input to
introduce certainty in the system.
To the best of our knowledge this is the first semi-automatic vessel segmentation
tool that gives the user full control over the centerline and the vessel surface. We
propose new methods for visualization, interaction and segmentation to facilitate
high efficiency and precision:

• To maximize relevant information for the user in one view without requiring
further configuration of the rendering, we developed a new type of Curved
Planar Reformation (CPR), the Importance Driven CPR.

• To add new centerline segments, we propose a novel sketch-based interaction
technique, which resolves ambiguities and inaccuracies in the user input.

106

8.2 Related Work

• We propose a seed volume generation technique to reduce computation and
user interaction time required to perform the actual vessel segmentation.

• To segment the vessel surface we use a probabilistic random walker segmen-
tation [Gra06], which would normally require a large number of user-placed
seeds to segment vessels. Instead, we exploit the previously sketched centerline
to automatically generate seed volumes.

8.2 Related Work

Since the literature on vessel segmentation is too extensive to discuss in its entirety
we are focussing on interactive techniques and discuss the main classes of algorithms
to motivate the choices we made while designing our system. We refer the reader
to the survey by Kirbas and Quek [KQ04] for an overview of additionally existing
techniques. Olabarriaga and Smeulders [OS01] point out in their survey on interaction
in medical image segmentation that fully automatic methods sometimes fail and
require intervention by the user. They also emphasize that interaction is usually
only marginally discussed in segmentation papers, which is a tendency still valid
today. However, there are exceptions which describe the most relevant techniques
for our approach. Direct drag-and-drop modifications of the segmentation have been
proposed by Timinger et al. [TPvB+03], which have also been incorporated into our
system. Kang et al. [KEK04] discuss editing tools for medical image segmentation in
general. Their approach allows to modify segmentation masks, but does not allow
an iterative processing such that the modifications are fed back to the segmentation
algorithm. We therefore consider this approach a post-processing of the segmentation
instead of a true integration of interaction. Saad et al. [SMH10] propose a system
in which the user can manually post-process probabilistic segmentations. Poon et
al. [PHA07] extend the livewire technique [FUS+98] for vessel segmentation. However,
their technique does not extend to 3D due to the too high computational cost.
Several approaches are focused on or build around the centerline specification of
a vessel: Serra et al. [SHCP97] discuss a system in which the user can specify the
centerline by manually tracing it with a 3D input device. The extent of the vessel
can then be modelled as a tube by manually adjusting the diameter for each node of
the centerline. Owada et al. [ONI+08] present several approaches for sketch-based
interactive segmentation. Similar to our vessel sketching approach, their techniques
make use of the sweep surface, an extrusion of the user sketch into the view frustum.
From the sketched line two adjacent strokes are automatically generated, which are
used to compute the segmentation of the desired structures. However, their axis-

107

Chapter 8 – Interactive Vessel Segmentation

tracing tool requires a clear view of the structure to segment and follows an indirect
approach to fit into the Volume Catcher pipeline [ONI05]. Abeysinghe and Ju [AJ09]
discuss a tool to interactively determine skeletons of intensity volumes by clicking
and painting on a 3D isosurface rendering. The proposed technique first precomputes
a skeleton of an intensity volume and then uses the user input to correct topology
errors. However, the resulting skeletons shown in the paper do not look smooth,
and an isosurface rendering could be problematic for data sets with a low signal
to noise ratio. Kohlmann et al. [KBKG09] propose a contextual picking approach
based on ray profiles which is able to select structures after the user has clicked
on a 3D rendering. The authors also propose interactive calculation of centerlines
as application case, but the resulting line is not centered in the vessel and spatial
coherency along the sketched line is not exploited. Jeong et al. [JBH+09] present a
system called NeuroTrace, which allows the segmentation and visualization of neural
processes in large data sets. To make the system scalable the segmentation result
is approximated by a set of elliptical cross sections. It should be further noted that
branching is not supported by this technique. Helmstaedter et al. [HBD11] propose a
system for neurite reconstruction that relies on the skeleton of a neurite to compare
and merge reconstructions by different users. Wang and Smedby [WS10] discuss
integration of automatic and interactive methods for coronary artery segmentation.
Their system allows specification of additional seeds for the virtual contrast injection
algorithm and modification of centerline end points. For analysis purposes the vessel
is segmented using a level set approach in 2D in a CPR and a cross-sectional view.
This segmentation can also be post-processed by the user with a tool called repulsor.
Aside from the discussed shortcomings we feel that the mentioned systems only
utilize visualization as far as necessary but do not explore how visualization can be
exploited to actually improve segmentation results.
La Cruz [Cru03] evaluates the accuracy of centerline calculation techniques on cross-
sectional slices. Based on these findings we chose a ray casting-based approach
utilizing user specified thresholds.

8.3 Design Considerations

We have decided to come up with a semi-automatic, visually guided approach as a
solution to the vessel segmentation problem. The goal was to exploit intuitive interac-
tion metaphors in order to generate new or improve existing vessel segmentations
and thus combine the strengths of humans and computers. This has been achieved
by building a segmentation system that allows the user to intuitively and efficiently
segment vessels. Although the system is built up on top of automatic segmentation

108

8.3 Design Considerations

Figure 8.1: System Overview: Main 3D view (upper left), orthogonal slice view
(upper right), CPR (lower left), 3D result view (lower right).

algorithms, we are still able to provide full flexibility to the user.
Since a vessel’s centerline is often used in the vessel segmentation process [LABFL09],
we have decided to center our system around this compact vessel representation.
Additionally, centerlines are commonly used in vessel analysis software and for visu-
alization purposes [PO08]. We therefore consider centerlines as a part of a complete
segmentation and want the user to be able to modify them. In order to generate a
centerline from segmentation results a skeletonization algorithm has to be applied.
Besides introducing additional computations, these algorithms can introduce other
problems [BFC04] like jagged lines or spurious branches, which may require addi-
tional smoothing or pruning. Furthermore, user modifications would be lost after
recomputation of the centerline, e. g., when the segmentation has been modified
through user input. As we will discuss in this chapter and as also postulated by
Lesage et al. [LABFL09], going from centerline to segmentation is less problematic,
and hence the centerline can be used as a starting point for an efficient and accurate
segmentation. When segmenting the surface of a vessel, the user should have the
ability to modify the result in an efficient and intuitive manner, without having
to navigate through each slice intersecting the vessel. Furthermore, since we aim
at high precision, we do not want to explicitly enforce smoothness constraints on
the surface segmentation. The random walker algorithm [Gra06] is widely used for

109

Chapter 8 – Interactive Vessel Segmentation

image segmentation since it nicely complies with these criteria. It is a probabilistic
segmentation algorithm that has been successfully utilized before in an interactive
segmentation system by Praßni et al. [PRH10]. Top et al. [THA11] propose a very
similar system. However, Praßni et al. point out that no thin structures, potentially
intersecting multiple slices, could be segmented with their approach, since that would
require the user to set an unmanageable number of seed points along the whole
extent of the target structure. Because this would hamper the application of the
random walker approach for vessel segmentation in general, we have overcome this
limitation by exploiting a semi-automatic seed placement strategy. This has not only
the benefit that it reduces user input but it also minimizes the computation time
itself.
While the concepts introduced above allow the user to influence a segmentation
by first defining the centerline and then modifying the segmentation result itself,
they do not provide any clues about areas requiring interaction. Only by providing
appropriate visual feedback, the user will be able to judge the current segmentation
result and thus be able to assess the accuracy of the segmentation to be generated.
By definition, a centerline should run through the center of a vessel having poten-
tially a circular cross section. However, in abnormal cases where the vessel shape
is deformed, the situation might be less clear and further inspection by an expert
user may be required. Therefore, we use the shape of the vessel cross section for
each point along the centerline as an indicator for the centerline reliability. We define
the centerline uncertainty clu = 1 − rmin

rmax
to be 0 for circular shapes and to increase

with irregularity. In order to convey this information intuitively, we exploit a green
(=certain) to red (=uncertain) color mapping. To depict the surface uncertainty suc, we
exploit the probability field of the random walker algorithm, and display uncertain
regions also in red. Thus, we are able to guide the user during the process when
generating a precise segmentation (see Section 8.4).
Because an intuitive use of the system was one of the most important design goals,
we decided to base the user input mostly on sketch-based interaction metaphors. The
user can quickly sketch the vessel tree on a 3D rendering in order to extract an initial
centerline. In our expert evaluation we were able to show that this is beneficial when
compared to alternative techniques (see Section 8.6). As discussed in Section 8.2,
sketching has been used before in the context of vessel segmentation. However, our
approach is different in the sense that we directly transform the drawn strokes into a
centerline. Furthermore, we support a semi-automatic linking of adjacent centerlines.
When modifying the segmentation itself later on in our workflow, sketching can also
be used, as it is a commonly used technique in segmentation tools. By initiating the
surface segmentation technique based on these seeds and sketched centerlines, we

110

8.3 Design Considerations

inherently achieve a coherent segmentation modification, since the algorithm propa-
gates the seeds in three dimensions. Furthermore, it allows persistent segmentation
editing, since the user modifications are still valid after changing the centerline or
seeds and rerunning the segmentation process which is not the case for all interaction
techniques for segmentation manipulation [KEK04].
We have selected four views (see Section 8.4) with the goal to provide all information
which is necessary to perform a vessel segmentation efficiently and effectively. Dur-
ing the design of our system we have also considered the data structures used for
representing the segmentation results. Since we want to achieve a precise segmenta-
tion, approximation approaches such as truncated cones, fitted ellipses [JBH+09] or
convolution surfaces are not appropriate. Instead we have decided to directly store
and visualize a segmentation volume.

8.3.1 Workflow

The first step in the workflow (see Figure 8.2) is the optional usage of an automatic
vessel segmentation algorithm, which generates a centerline that could be used as
a starting point for our system. Additionally, the user has to provide an intensity
window for vessels, which is done interactively in a slice view of the volume. This
intensity window can be rather broad, as it is only used to eliminate voxels clearly
belonging to the background. We found that this window needs only little adjustment
when using the same scanning protocol. The user can now use the sketching func-
tionality to insert own centerline segments. To further modify the centerline, points
of the centerline can be dragged in 3D. This dragging functionality is also available
in the orthogonal slice view as well as the CPR. The induced movement is smoothly
propagated to neighboring points on the centerline. Pruning of erroneously detected
segments can also be performed easily in these views. When the user sketches new
centerline segments these are automatically connected to the existing tree by consid-
ering their distance to the existing centerline segments.
When the user is satisfied with the centerline skeleton, which identifies the part of the
volume to be segmented, the surface segmentation can be started. The user can then
inspect the result and modify it by placing additional seeds in one of the 2D views.
To guide this seed placement, segmentation parts with a high degree of uncertainty
are highlighted. Finally, after the centerline and the surface have been confirmed by
the user, the resulting segmentation mask can be passed on to other applications for
further analysis.

111

Chapter 8 – Interactive Vessel Segmentation

Uncertainty
Visualization

Centerline

Confirm

Correct

Surface
Uncertainty
Visualization Clarify

Seed
Generation

Automatic
Centerline
Extraction

•Add (Sketch)
•Move
•Delete
•Inspect

•Sketch Fg/Bg
Seeds
•Inspect

Figure 8.2: Workflow: The user can modify centerline and vessel surface. Editing of
both aspects of the vessel segmentation is sketch-based and driven by uncertainty
visualization. The centerline determines which parts of the vasculature are to be
segmented. Because modification of the surface is not done in a post-processing step
but by sketching seeds, the user can keep editing the centerline without losing any
work done on the surface.

8.4 Visualization Techniques

Main 3D View The main 3D view (see Figure 8.1 (upper left)) shows a direct vol-
ume rendering of the data set, since standard 2D views are not sufficient in many
cases, i. e., when vessels cannot be completely captured with a single slice. In addition
to the centerline of the segmentation, the 3D view contains cues to support mental
linking of the other views. The centerline geometry is considered as the main commu-
nication and interaction element in the main 3D view, and is thus overlayed over the
vessel. Although the resulting depth ordering is not correct, we found it to be visually
more expressive using a geometry integration approach like the one presented by
Scharsach [Sch05]. We have tested this technique, and it seemed to result in a rather
occluded geometry, which hampered the perception of the uncertainty encoding.
Therefore we decided to render the geometry over the volume, ensuring compatibility
with all data sets, and lessening the requirements on the transfer function while
clearly displaying all color cues. As further discussed in Section 8.5, we consider
centerline positions of irregular cross sections as potentially uncertain and color
them red. A user certainty value based on the distance to the next user confirmed or
corrected point along the centerline is added to this shape uncertainty.
Orthogonal Slice View While the 3D view provides a good overview of a vessel, it
does not allow the inspection of the vessel’s interior. Therefore, a cross section view is
crucial. It further supports an in-detail inspection of the shape at a certain centerline
point and provides an important basis for the interaction techniques allowing to

112

8.4 Visualization Techniques

modify the centerline as well as the segmentation results (see Section 8.5).
After the segmentation has been calculated, we derive and visualize the uncertainty
by using a simplified version of the approach proposed by Praßni et al. [PRH10]
to guide the user interaction. Similarily to their approach, we exploit isolines for
the depiction, but we limit the display of these lines to two, because the area of
uncertainty turned out to be quite small in practice. We believe that this rather small
uncertainty region is due to the large number of seeds that we generate automatically.
CPR The curved planar reformation [KFW+02] is another well established visual-
ization technique that allows to inspect a vessel’s interior and therefore also has
been integrated into our system. Another important purpose of the CPR view is the
navigation through the orthogonal slices by hovering the mouse over the centerline
and thus causing change in the orthogonal slice view. As suggested by our medical
partners during the expert evaluation of the system (see Section 8.6), we use colored
spheres at the start and end positions for the currently active segment.
While for the other CPR techniques, their implementation is rather straightforward,
rendering additional geometry (centerline, seeds) in the straightened CPR requires
some extra effort. This is because the straightened CPR is not rendered in a regular
cartesian coordinate system. We therefore render the proxy geometry for the CPR
first and then use the resulting image containing texture coordinates to render seeds
and centerline in an OpenCL kernel.
Importance Driven CPR The implemented classic CPR variants rely on a static vector
of interest, which may not necessarily point to the parts of the vessel needing further
attention. While the vector of interest can be rotated to point in a direction that
allows the user to inspect and correct problematic parts, this requires user interaction;
furthermore, there may be multiple directions of interest. There are variants of the
CPR that display more than one slice of a vessel, like helical CPR [KWFG03] or
thick-CPR [KFW+02]. However, we wanted the user to immediately see problematic
sections and be able to react by centerline dragging or sketching of additional seed
points, which would not be possible with these CPR variants because one pixel on
the screen cannot be uniquely associated with one point in the data set. We therefore
propose a new type of CPR in which the vector of interest is guided dynamically by
importance. Importance is determined by the medialness of the centerline as well as
the uncertainty of the surface segmentation. For each point on the centerline we cast
rays in multiple directions in the cross-sectional plane (we found that 150 rays gave
good results), these are possible vectors of interest. Tracing of a ray stops at the point
where the segmentation probability is 0.5 and sets the surface uncertainty suc as the
distance to the next certain voxel, normalized with the maximum distance for all
points of the centerline. The centerline uncertainty for each ray is defined as described

113

Chapter 8 – Interactive Vessel Segmentation

Figure 8.3: Importance Driven CPR:We maximize relevant information in the CPR
rendering by making the vector of interest (green) importance driven. The vector of
interest is static for a straightended CPR view (1). Based on the shape of the vessel
(red) and the certainty of segmentation we dynamically rotate the vector of interest
(2). This results in immediate visibility of possibly problematic centerline positions as
well as surface segmentation uncertainties (yellow).

in Section 8.3. We then define the cost for each ray as cray = max(cluc, suc), compute
a smooth sequence of vectors of interest that maximizes the overall importance to
the user, and generate the CPR from these vectors instead from a static one (see Fig-
ure 8.3). The user can therefore immediately spot problems with both elements of the
vessel segmentation without having to configure the vector of interest. Furthermore,
a more efficient representation for providing correction through strokes is obtained
since the importance driven CPR will rotate to display lengthy uncertain parts (e.g.,
other vessels running along the vessel to be segmented). After the uncertainty is
removed the CPR will be re-evaluated to display the next most important parts.
3D Result View Inspired by the approach presented by Viola et al. [VKG04] and

Straka et al. [SCLC+04], we use a cutaway technique to show context while preserv-
ing an unobstructed view on the segmentation result. This is especially important
because we visualize the segmentation uncertainty on the surface (see Section 8.5).
To generate this rendering we first calculate a dilation on the binary segmentation
result and render this volume, writing out the last hit points. We then render the
context, replacing entry points with these last hit points where available. This gives
us a configurable (through the threshold of the distance volume rendering) cutaway
around the segmentation result (see Figure 8.4).
The main purpose of this view besides inspecting the shape of the resulting seg-

mentation is to visualize the uncertainty information derived from the probabilistic
segmentation. By masking the uncertain voxels (i.e., [0.05, 0.95]) from the probability

114

8.5 Interaction Metaphors

Figure 8.4: Cutaway Rendering: To render the segmentation result (1) with the
context but without occlusion we calculate a distance transform (2) and render a last
hit point image. This image is used to modify the entry points for the context ray
casting (3), resulting in a cutaway (4). Image 5 shows the end result with compositing.

volume and applying a distance transform we generate an uncertainty volume. A
large distance to regions of certainty is therefore considered uncertain (see Figure 8.8).

8.5 Interaction Metaphors

Centerline Interaction In order to add new centerline segments, the user draws
a stroke in the main 3D view on top of the vessel to be segmented. To transform a
user sketch into a centerline, we need to compute the correct depth value for the line
drawn by the user (see Figure 8.5 (1)). In order to exploit the spatial coherence we
use a technique related to the one proposed by Owada et al. [ONI05]. We generate an
image from the line extruded into the view direction by reading entry and exit point
for each point of the line. We can therefore also correctly handle clipping planes used
in the 3D view. The intensities are based on the user provided vessel windowing
(see Section 8.3.1). To find the correct depth we calculate the path with the lowest
cost using dynamic programming (see Figure 8.5 (2)). As can be seen in Figure 8.5
(1), the stroke does not have to be precise, the minimal path algorithm corrects
even deviations from the vessel (see Figure 8.5 (2)). To further increase the certainty
that the computed centerline matches the user’s intent, we incorporate the visibility
based on the used transfer function. This is done by accumulating the alpha value in
extrusion direction and modulating the cost with this visibility factor. Ambiguities
where there is a second structure at the same position on the screen at a different

115

Chapter 8 – Interactive Vessel Segmentation

Figure 8.5: Adding new segments: 1) The user has sketched a part of the vessel
tree to be segmented. The sketch does not have to be centered or even on the vessel
all the time (see inlet) 2) The sketch is projected into the screen and the path with
minimal cost is determined on the resulting image. Note how the gap introduced
through the inaccuracy in the sketch is handled. 3) The line is centered inside the
vessel using an active contour approach. This step also draws all points outside the
vessel inside (see inlet).

depth are therefore resolved. Since vascular structures are usually a connected system
we search for segments close to the ends of the depth-corrected line and attach them
to the centerline-tree. To correct for imprecise user input and estimation of user’s
intended depth we center the line in the vessel using an active contour technique. In
order to pull the line towards the center of the vessel we calculate the center for the
current position and tangent using circular ray casting [Cru03] and pull the point
in this direction (external force). The magnitude of this force is modulated by the
centerline uncertainty cluc. For circular profiles the force is the strongest, while it is
lower for irregular shapes. This external force is ignored for points that are outside
the vessel, i. e., points with an intensity outside the user specified vessel window.
Therefore, parts of the line where the user has not hit the vessel are pulled inside the
vessel (see Figure 8.5 (3)).

116

8.5 Interaction Metaphors

Figure 8.6: Centerline Uncertainty: Guided by red highlights on the centerline the
user inspects parts of the centerline where the position is considered uncertain. 1)
The user moves the mouse to the red section of the centerline to find it displaced
due to the branch. By dragging the centerline on the orthogonal slice the position
is corrected. This section of the centerline is therefore marked as user-corrected.
2) The user inspects another section of the centerline marked as uncertain, but is
satisfied with the current position. By pressing a hotkey the position is accepted and
marked as user-confirmed. 3) The centerline is now completely green, which means
that it is either user-corrected, user-confirmed or has a regular shape and is therefore
considered certain.

User Correction As we have just discussed we consider the position of the centerline
where the circular ray casting results in circular shapes as certain. If the shape is
irregular the user should confirm the position of the centerline or correct it in one of
the views (see Figure 8.6).

Segmentation Modification The surface segmentation algorithm needs seed
points to be set in order to segment the vessel structures. One major part of the
random walker algorithm deals with solving a system of linear equations. The size of
this system depends on the number of unseeded voxels. When segmenting volumes,
this system becomes so large that GPU-based solvers need to be employed in order
to integrate the algorithm in interactive applications. While this takes care of the
computational cost, the memory requirements become the main problem. By auto-

117

Chapter 8 – Interactive Vessel Segmentation

matically generating a large number of seed points, we are able to reduce the size
of the linear equation system and thus also allow the application of the technique
to larger data sets. We generate foreground and background seed volumes based
on conservative estimates of the inner and outer radius of the vessel. A voxel is
considered as background voxel if it is not within the outer radius of any centerline
segment. If a voxel is inside the inner radius of a centerline segment the voxel is
marked as foreground voxel. Only the remaining voxels, usually a small fraction of
the volume, need to be segmented by the random walker algorithm. This process
is shown in Figure 8.7. From each point of the user confirmed centerline we cast
circular rays. The inner radius is the minimum distance a ray can travel while hitting
no background voxels. The outer radius is the minimum distance beyond which a ray
will surely hit only background voxels. We use a safety margin in both calculations to
account for a limited number of rays. This approach can degenerate in two ways: The
inner radius could become zero and only the centerline itself would get rasterized
into the foreground seed volume at this position. This is similar to the approach
proposed by van Bemmel et al. [vBVN04] who initialize a level set segmentation
on the centerline. Alternatively, the outer radius can become large for noisy or low
contrast data sets, which may happen especially at branches. However, this only
increases computational cost and does not lead to an unstable processing. Based on
the calculated radii we now build the foreground and background seed volume (see
Figure 8.7 (2)), and the random walker algorithm segments the layer between both.
The resulting segmentation is displayed in Figure 8.7 (3). Because of the large number
of seeds, the number of unseeded voxels is comparatively low and thus larger data
sets (up to 440x300x1100) can be handled. Furthermore, times of user-inactivity are
reduced compared to using only a small number of hand drawn seeds.
Guided by the highlighted areas shown on the segmentation, the user can move the
mouse on these sections to inspect them in the linked views (see Figure 8.8).

8.6 Evaluation

In their survey on interaction in medical image segmentation Olabarriaga and Smeul-
ders [OS01] list accuracy, repeatability and efficiency as the main criteria, which
influence the quality as well as the usability of a segmentation system:

• Accuracy is the most common criterion and indicates the degree to which the
delineation of the object corresponds to the truth.

• Repeatability evaluates to which extent the same result would be produced over
different segmentation sessions.

118

8.6 Evaluation

Figure 8.7: Seed Volume Generation: 1) Based on the centerline the algorithm
calculates conservative estimates of the inner and outer radius (gray circles in slice
view). 2) From these estimates seed volumes for foreground (upper) and background
(lower, inverted) are generated. 3) The resulting segmentation, which is also visible as
red line between the inner and outer circle in the slice view.

Figure 8.8: Surface Segmentation Uncertainty: 1) Regions where the segmen-
tation of the surface is uncertain are highlighted in red. When hovering the mouse
over the surface the orthogonal slice view and CPR are linked accordingly. 2) The user
corrects the uncertainty by sketching additional seeds in the CPR. 3) The uncertainty
is fixed.

• Efficiency of the computational (automatic) part of the application is measured
in terms of the time need by the computer to generate the result. Efficiency of
the interactive is determined by the amount (e.g., number of clicks) and nature
(i.e., complexity) of the user interventions [OS01].

Accuracy can be more directly exploited as a quality criterion when dealing with au-
tomatic segmentation techniques. When using interactive approaches an expert user
can modify the result until it best reflects his or her expert knowledge, which is called
potential accuracy [OS01]. In our system, this can be done by sketching additional seed
points, which given in a dense layout directly define borders. To investigate the degree
of accuracy that can be achieved when using our system we evaluated the outcome of

119

Chapter 8 – Interactive Vessel Segmentation

our system using the carotid bifurcation algorithm evaluation framework [HZF+11].
This framework is a good fit to evaluate our system because it focusses on a small
part of the vasculature and provides a standardized evaluation system, comparing
the submitted segmentation to averaged ground truth, provided by three experts. The
data set consists of 56 computed tomography angiography (CTA) images (acquired on
different scanners) of the carotid arteries, some with stenosis. We did not utilize the
starting points provided with the data sets to perform our segmentation but instead
sketched the centerline. We segmented all data sets, and our results were compared to
the ground-truth using three metrics: Dice similarity measure [Dic45], mean surface
distance (MSD) and maximum surface distance. Table 1 shows minimum, maximum,
and average values for each metric. The average Dice measure was 90.0% — in only
three cases the Dice similarity measure between our results and ground-truth was less
than 85.0%. Table 2 shows the average grades of our system and of the three experts.
Our average results are within a few percent of the inter-observer variability, which
we achieved with one data set. We attribute this difference mostly to the approach
used to generate the ground truth data: a manual, probably very time consuming
process in which the cross-sectional contours were modeled using splines. Resulting
segmentations are therefore smoother than the output of our system, which is more
closely coupled to the data. This is most notable at secondary branches which were
not to be included in the segmentation and account for the relatively large maximum
surface distance. We argue that a more circular cross-section at these branching
points is not more true to reality than the protrusion which remains when removing
the branch with a few sketched background seeds and therefore did not spend too
much time modeling these sections to match the ground truth. Overall, we conclude
that our technique enables users with no medical training to create precise vessel
segmentations.
Repeatability is mainly influenced by difference in user input or judgment which
may lead to a high variability of the results [OS01]. To test for the influence of differ-
ences in sketching, we used a ground truth segmentation of a vessel segment in a
contrast enhanced CT scan, and asked three users to perform a segmentation with
our system. We instructed the three novice users having no medical background
in the use of our system, and explained the task to be performed. The result was
compared to the ground truth segmentation using the dice metric. The obtained dice
scores (93.7%, 94.4%, 94.2%) confirm a good repeatability of segmentation results.
Efficiency of semi-automatic systems can be estimated by considering two key com-
ponents: usability of the interactive parts and performance of the automatic parts.
When judging the amount of user input one should keep in mind that it is not the aim
to construct large vessel trees manually but to successively add or correct a reasonable

120

8.6 Evaluation

amount of specific vessels. Like other authors working on sketching techniques, we
believe that the sketching directly communicates that no precise interaction (i.e., exact
tracing of contours) is required. We argue that sketching vessels on a 3D rendering is
as intuitive and predictable as possible, which our domain experts confirmed. The
placement of additional seeds for the surface segmentation and movement of the
centerline are only necessary where the automatic approach fails and have not to be
performed for each slice. Regarding the performance of the automatic parts, we have
implemented the surface segmentation and sketch-extrusion on the GPU to facilitate
a smooth interaction.

Expert Evaluation To evaluate the practical value of our approach we have or-
ganized a feedback session with our medical partners. The group consisted of four
researchers interested in the vascular system and working with scans from different
modalities on a daily basis. One possible application case of our system is the quick
segmentation of parts of the vasculature in which the user is interested. The need
for this type of segmentation was confirmed for research as well as clinical use. Due
to the intuitive and quick sketching of vessels the approach was seen as a viable
alternative to selection of parts of a full segmentation. A significant number of the
scans our partners use are small animal CT scans, which make vessel segmentation
even more challenging due to the small size of the species under observation. In
addition, abnormalities of the shape of vessels are common in these scans. Therefore
automatic approaches which rely on strong contrast or shape-based approaches fail
and manual segmentation needs to be performed. They appreciated the segmentation
directly on the basis of a 3D rendering, especially for cases where one vessel cannot
be cut by a single slice. Exact, user-controlled placement of the vessel wall as well as
the centerline was also confirmed as an important criterion for a vessel segmentation
system by our medical partners. Considering parts of the vessel with irregular shape
as uncertain was perceived as a sensible approach. The red-green color scheme was
intuitively understood and our technique of user-confirmed and modified points used
to guide the user towards confidence about the segmentation was appreciated. We
also discussed the visualization techniques used in our system and the applicability
of all views was confirmed. However, the direction of the CPR was unclear and the
inclusion of start/end markers in the 3D view was suggested. The incorporation of a
multiple label segmentations approach was also suggested to handle plaques and
similar structures.

121

Chapter 8 – Interactive Vessel Segmentation

Table 8.1: Summary lumen (generated using [HZF+11])

Measure % / mm rank

min. max. avg. min. max. avg.

L_dice 81.3% 95.5% 90.0% 3 4 3.98
L_msd 0.21mm 1.31mm 0.54mm 4 4 4.00
L_max 0.78mm 8.04mm 5.96mm 3 4 3.98

Total (lumen) 3 4 3.98

Table 8.2: Averages lumen (generated using [HZF+11])

Team Total dice msd max Total

name success % rank mm rank mm rank rank

Our technique 41 90.0 4.0 0.54 4.0 5.96 4.0 4.0
ObserverA 41 95.1 1.6 0.10 1.7 0.54 1.8 1.7
ObserverB 41 94.6 2.2 0.11 2.2 0.62 1.8 2.1
ObserverC 41 94.4 2.2 0.12 2.1 0.72 2.4 2.3

8.7 Limitations

Although the most important algorithms we utilize in our system are well established,
no singular algorithm can guarantee success in all cases. While we integrate semi-
automatic techniques to allow for easy corrections one can certainly imagine worst
case scenarios (e.g., leaking contrast agent) where the segmentation process would
degrade into something quite like slice by slice painting. Although adding new vessel
segments proved to be robust using relatively simple methods the algortithm can fail
to detect the correct vessel if the viewing angle is bad.

8.8 Implementation

The implementations of most views used in this system (DVR, CPR, slice rendering)
have already been discussed in Chapter 3. For a discussion of the random walker
implementation in Voreen we refer the reader to the work by Praßni [Pra11]. Figure 8.9
shows the integration of sketching into a minimal Voreen network.

122

8.9 Conclusion

8.9 Conclusion

In this chapter, we discussed the design, implementation and evaluation of an inter-
active, visually guided vessel segmentation system. The system has been designed
for two usage scenarios: the correction of the results of automatic segmentation
algorithms and the fast, user guided segmentation of parts of the vasculature that
the user wants to inspect or analyze. To provide intuitive solutions for these sce-
narios, we have exploited a semi-automatic approach. On the interaction side, the
key concept of the system is a sketch-based user interface, which allows to generate
precise vessel segmentations from rough strokes quickly drawn on a 3D view. While
the actual segmentation is performed using the random walker algorithm, it can
be also modified through the proposed sketch-based interface. In combination with
these interaction techniques, we exploit visualization techniques arranged in linked
views, which help the user to assess the quality of the current segmentation and thus
support its modification. In this context, a key concept is the uncertainty visualization,
which conveys the reliability of the intermediate results in a concise way. We have
thoroughly evaluated our system using the carotid bifurcation lumen segmentation
framework and discussed opinions by a group of expert users from the medical
domain. Their feedback has shown that there is a high demand for such a system
in the medical/biological community. In the future it is planned to improve the
system based on the suggestions by these experts, e. g., by integrating the multi-label
segmentation approach. However, beyond these extensions we see also directions for
future research. When extracting whole vessel trees, our system is currently limited
to a sequential processing of the branches. One reason for this is the CPR technique,
which allows to display only one branch. In the future we would like to investigate
how multipath CPR techniques could be exploited in order to investigate multiple
branches in parallel. On top of that, a formal evaluation with a larger user group
should be performed, to prove the practicability of our system when dealing with
everyday tasks.

123

Chapter 8 – Interactive Vessel Segmentation

Figure 8.9: Implementation of vessel-sketching in Voreen (simplified): The
VesselSelection processor uses the entry-exit-points textures to generate a texture
containing sampling positions on the sweep-surface (top right). Next, the intensities
are mapped to a cost determined by the user-specified intensity window using the
MultiSliceRenderer. Finally, the MinPath processor computes a minimal-cost path
across the sweep-surface and adds the centerline to the storage processor.

124

125

Chapter 9 – Comparative Visualization of Tracer Uptake in PET/CT Imaging

Comparative Visualization of
Tracer Uptake in In Vivo Small
Animal PET/CT Imaging of the
Carotid Arteries

Cardiovascular diseases are the main cause of death in the western world.

Medical research on atherosclerosis is therefore of great interest and a very

active research topic. This chapter presents a visualization system that

supports scientists in exploring plaque development and evaluating the

applicability of PET tracers for early diagnosis of cardiovascular diseases.

In our application case a cone shaped cuff has been implanted around

the carotid artery of ApoE knockout mice, fed with a high cholesterol

western type diet. As a result, vascular lesions develop upstream and

downstream from the cuff. Tracer uptake induced by these lesions needs to

be analyzed in order to evaluate the effectiveness of different PET tracers.

We discuss the approach previously utilized to perform this kind of analysis,

the problems arising from in vivo image acquisition (in contrast to ex vivo)

and the design process of our application. In close cooperation with domain

experts we have developed new visualization techniques that display PET

activity in the vessel wall and surrounding tissue in a single image. We

use the vessel wall detected in the CT image to perform a normalized

circular projection which allows the user to judge PET signal distribution

in relation to the deformed vessel. Based on this projection a quantitative

analysis of a defined region adjacent to the vessel wall can be performed

and compared to the artery without the cuff.

9.1 Introduction

The majority of both vascular pathologies and cardiovascular events result from
atherosclerosis. A hallmark of atherosclerosis is accumulation of cholesterol in the
arterial vessel wall in conjunction with infiltration by inflammatory cells forming a
vascular inflammatory lesion (atherosclerotic plaque). While the thickening of the
vascular wall due to the inflammatory lesion primarily leads to the constriction of

126

9.1 Introduction

the vessel (stenosis) and impaired perfusion, the individual prognosis (myocardial in-
farction or stroke) is rather dependent on the morphology and inflammatory activity
of the plaque [SSH10]. Therefore, an integrated approach combining morphological,
functional and molecular imaging modalities to multiparametrically characterize
atherosclerotic lesions seems needed to predict and prevent future cardiovascular
events. This challenge is multi-facetted: it involves new imaging probes and devices,
animal models and such. Even with successfully established approaches new explo-
rative and interactive analysis strategies are needed for visualization of the resulting
complex multiparametric images. This chapter describes a new visualization applica-
tion to explore imaging findings in a mouse model of atherosclerosis.
This model is specifically designed to produce an atherosclerotic plaque in one carotid
artery by a constrictive cuff whereas the opposite untreated carotid artery serves as a
control. Here, both carotid arteries are studied simultaneously by positron emission to-
mography (PET) for imaging of inflammatory plaque activity and contrast-enhanced
computed tomography (CT) highlighting the carotid vessel lumen and the cuff. This
approach uniquely enables evaluation of the vessel lumen and inflammatory activity
in different sections of operated arteries as well as in comparison to the untreated
contralateral artery at all times.

In the current analysis protocol (see Section 9.3) for this type of study standard
medical workstations are used. One of the more trivial shortcomings of this approach
is the missing ability to view both the left and right carotid artery of a subject at
a sufficient zoom level simultaneously. Standard software also does not provide a
standardized visualization for tracer uptake in the vicinity of the vessel and therefore
requires the user to form a mental picture of the data. Analysis needs to be performed
by manually placing regions of interest and exporting results to external plotting
software. Similar to other authors [RHR+09, KBH+10] we acknowledge the need for
specialized visual analysis software to support researchers in forming or proving their
hypothesis. Designing such applications can obviously only be done in collaboration
with potential users. The application presented in this chapter is therefore the result
of an iterative design process between computer scientists and medical researchers.

Our contributions are as follows:

• We describe the design of an application (see Figure 9.1) to compare the PET
tracer uptake between two vessel segments for in-vivo PET/CT scans.

• We propose the normalized circular projection (NCP), a novel visualization
technique that gives the user a standardized overview of the data surrounding
a tubular structure, in our case a maximum intensity projection (MIP) of the
PET signal. According to the needs of PET analysis, the NCP preserves distance

127

Chapter 9 – Comparative Visualization of Tracer Uptake in PET/CT Imaging

Figure 9.1: Overview: Our Application consists of a number of linked views, arranged
in a symmetric layout (right screen half is control). The top half of the screen is
dedicated to display the unprocessed data using orthogonal slices (outside) and
CPR (inside) while the bottom half shows our proposed visualization techniques, the
normalized circular projection (outside) and vessel wall analysis (inside).

to the lumen and maximum intensity.

• Based on the NCP we sample the PET data in a user-defined neighborhood of
the vessel wall and generate side by side plots to facilitate an efficient visual
comparison and quantitative analysis.

Our application case is the analysis of tracer uptake in the left and right carotid artery
of mice. However, the system could be used for other vessel segments as well as for
human subjects.

We will first discuss related work and motivate the need for our proposed tech-
niques. Then we describe the needed medical background and our resulting design
considerations, before we give an overview of the application followed by an in detail
discussion of the proposed visualization techniques and interaction concepts. Before
concluding the chapter we present resulting images, their interpretations by domain
experts and a comparison of our techniques to previous work.

9.2 Related Work

Visualization of vessels can broadly be categorized in 3D techniques, flattening
approaches and reformation techniques. 2D slice views are not well suited for vessel
visualization because of the longitudinal structure that is generally not aligned with

128

9.2 Related Work

the slice directions. We will give an overview of the most relevant techniques from
these categories and discuss applicability in our application case. Techniques that
focus on the layout of an entire vessel tree are not included in this discussion, since we
are dealing with linear segments exclusively. We will also not compare segmentation
and centerline detection techniques, since both are not the focus of our work. For a
survey of such techniques see Lesage et al. [LABFL09] and Kirbas and Quek [KQ03].

3D Vessel Visualization can be sub-categorized into approaches that extract ge-
ometry [BFC04, OP05, SOB+07] and direct rendering approaches [JQD+08, KGNP12].
Alternatively, approaches can be divided into model-based and model-free. Wink et
al. [WNV00] segment a vessel segment after the user specifies start and end point. We
evaluated a similar gradient magnitue based approach to detect the vessel wall. Yang
et al. [YZH+05] discuss a 3D visualization technique to analyze stenosis based on
harmonic skeletons. In our case, the vessel itself is not the main object of interest, it
rather provides a context for the PET visualization. While it would be easily possible
to generate a 3D rendering of the vessel extracted from the CT image and combine it
with the PET signal in a volume rendering [LLHY09, KGB+09], we refrained from do-
ing so. The reasons for this are threefold: (1) With 3D visualizations there is always an
occlusion problem (e.g., it would be hard to visualize the PET signal inside the vessel),
(2) correctly assessing the spatial relationship between the diffuse and unstructured
PET signal and the vessel would be difficult, and (3) evaluation of intensities is not
possible because of the necessary compositing. While a MIP could remedy the third
shortcoming, spatial understanding would become even worse.
Recently van Pelt et al. [vPBB+10] have proposed techniques for stylized visualization
of blood flow in the carotid arteries. Unfortunately, PET data is quite unstructured
and of low frequency and therefore not a good basis for stylized techniques.
Gasteiger et al. [GNBP11] discuss the FlowLens, a focus and context technique to
visualize blood flow in cerebral aneurysms. Their approach is, similar to most vessel
visualization approaches, concerned with data in or on the vessel.

Flattening Approaches allow the user to inspect the wall of curvilinear structures
(vessels, colon) in its entirety, and a wide range of techniques have been published
[ZHT+02, ZHT05, LLS05, Mar11]. Borkin et al. [BGP+11] recently evaluated 2D
(flattened) versus 3D artery representations for the visualization of endothelial sheer
stress (ESS). They found the 2D representation to be superior with regards to accuracy
and efficiency.
Flattening is an efficient approach to visualize scalar data like ESS, wall thickness or
diameter. In our application case however, the PET signal is not only present on the

129

Chapter 9 – Comparative Visualization of Tracer Uptake in PET/CT Imaging

vessel wall but inside and outside of the vessel as well.

Reformation Techniques A commonly used 2D visualization technique is the
Curved Planar Reformation (CPR) [KFW+02], which slices a vessel along its centerline.
The main drawback of CPR techniques is that not the entire vessel can be visualized at
once. Kanitsar et al. [KWFG03] have extended the CPR technique to support multiple
branches and introduced the helical CPR, which displays the interior of a vessel in a
single image. While this unconvential representation seems to have its uses in finding
calcifications, the authors unfortunately do not present feedback from potential users.
Our medical partners understood what the technique did, but found the resulting
images to be confusing.
Straka et al. [SCLC+04] introduce the VesselGlyph, a combination of Direct Volume
Rendering (DVR) for the context and CPR for the vessels. Williams et al. [WGC+08]
propose a technique that does the opposite, their application case is colonoscopy. Daae
Lampe et al. [LCMH09] introduce the Curve-Centric Volume Reformation, which
deforms a volume with regards to a curve. They also propose an inside-out projection
based on this data. The images rendered using this technique are somewhat similar
to flattening but preserve distance instead of shapes and angles. Angelelli and Hauser
[AH11] extend this approach for flow data sets and incorporate a side-by-side view
to give an overview of different timesteps. Aortic flow visualization is one of their
application cases.

Applications Gerhards et al. [GRH+04] discuss the VascuVision system, which
provides multiple linked views (MIP, orthogonal slice, CPR, lumen diameter plot) to
assess stenosis.
Kok et al. [KBH+10] propose the Articulated Planar Reformation to visualize change
in small animals. The reformation registers all bones to a segmented mouse atlas
and allows the user to inspect different timesteps for each bone using comparative
visualization techniques. According to the authors, their system is currently not
capable to register soft tissue. They employ side by side visualizations, comparison
by switching, overlays and a checkerboard pattern in their focus view.
Ropinski et al. [RHR+09] discuss a visualization system for mouse aorta PET/CT
scans, integrating flattening and CPR techniques. While their system might seem
quite similar to ours there is one crucial difference: The described system can only
handle data sets of ex-vivo mouse aortic arches embedded in parafin. This has several
implications, with the most obvious being that users cannot monitor a subject over
time. Scanning a parafin block also allows the usage of much higher radiation doses
during the CT scan, resulting in higher quality images. In addition, the vessel wall

130

9.3 Medical Background

increasing laminar
shear stress

low & laminar
shear stress

low & oscillatory
shear stress

regular
shear stress

Left carotid artery
(control)

Right carotid artery

cu
ff

Figure 9.2: Carotid Cuff: The surgically implanted cuff modifies the shear stress
along the right carotid artery. The left side is used for control. (Image courtesy of
Michael Kuhlmann)

has a unique density in the CT scan, whereas in in-vivo scans the vessel wall cannot
be distinguished from the surrounding tissue. With the vessel removed from the body
and filled with contrast agent, the PET signal is guaranteed to originate from the
vessel wall. This makes flattening a viable approach. In in-vivo scans the use of a
maximum intensity projection (MIP) would display hot spots farther away from the
vessel, with no way for the user to determine the distance.

9.3 Medical Background

Carotid Cuff Modifications in shear stress are known to alter the expression of
inflammatory genes in endothelial cells and by this means induce atherosclerosis.
Therefore, surgical models where the shear-stress is modified are of interest for both
basic research as well as for evaluating new imaging approaches. A well-established
model in mice is based on the implantation of a cone-shaped cuff around the carotid
artery creating defined regions of low, high and oscillatory shear stress within the
common carotid artery (see Figure 9.2). Applying this model in ApoE knockout
mice, which are fed a high-cholesterol diet, two atherosclerotic plaques are forming
with a more stable phenotype downstream of the cuff and highly inflamed unstable
phenotypes upstream of the cuff [KCH+12].

131

Chapter 9 – Comparative Visualization of Tracer Uptake in PET/CT Imaging

Data Acquisition PET experiments were carried out using the high resolution (0.7
mm full width at half maximum) quadHIDAC small animal PET-scanner (Oxford
Positron Systems, Weston-on-the-Green, U.K.). ApoE−/− mice (25-30 g) were anes-
thetized with isoflurane (1.5%/0.3 L min−1) and placed on a heating pad to maintain
body temperature for insertion of tail vein catheters. One hour after intravenous
injection of 10 MBq F-18-FDG in 100 μl 0.9% saline list-mode data was acquired for
15 minutes. Subsequently, the scanning bed was transferred to the computed tomo-
graphy (CT) scanner (Inveon, Siemens Medical Solutions, U.S.) and a CT acquisition
with a spatial resolution of 80 μm was performed for each mouse. Data acquisition
changes slightly when using different tracers, F-18-FDG was used for all images
shown in this chapter.

Current Analysis Protocol The current analysis protocol for this study is per-
formed using standard medical workstation software in combination with spread-
sheets. After co-registration the data set is aligned and resampled so that the right
carotid artery (with cuff) corresponds to one of the primary axes of the volume.
Following this resampling, nine cylindrical regions of interest (ROIs) of identical di-
mensions are manually placed along the arteries (three upstream from the cuff, three
over the cuff and three downstream from the cuff), corresponding to the different
ways shear stress is modified by the cuff (see Figure 9.2). Statistics computed for
the regions are then transferred to a spreadsheet application, which is also used for
visualization purposes (line plots).

Aside from requiring a reorientation and resampling of the data and the manual
placement of ROIs we felt the main drawback of this protocol is the missing explo-
rative aspect. The user has to define the ROIs for analysis, transfer the results to
a separate application, look at the plots and then has to come back to the original
application to look for sources of anomalities in the results. Changing parameters
(e.g., the extent of the ROIs) is also tedious due to the amount of work required.
Comparing both arteries side by side is not easily possible at sufficient zoom lev-
els, and to find the source of increased PET activity in one of the regions requires
scrolling through the slices. Furthermore, the modelling of the vessel wall using a
stack of (solid) cylinders leaves room for improvement, which is hardly possible with
standard medical workstation software.

9.4 Design Considerations

The protocol described in the previous section led to the design of the current
application, with the following aims:

132

9.5 Application Overview

• Provide the user with linked views for an easy in detail inspection and compar-
ison of the co-registered PET/CT data set.

• Support a quick location of spots of high activity in the PET data, with immedi-
ate display of the most relevant information (intensity value, distance to vessel
wall).

• Generate analysis results comparable to the previous protocol, but include more
a priori information about the vessel shape in the process.

• Support easy comparative visualization of the analysis results by standardized
renderings.

• Facilitate experimentation and allow calibration with histology results by easy
configuration of analysis parameters.

• Support calculation and display of the vessel diameter.

When looking at the categories of comparative visualization by Verma and Pang
[VP04], feature level comparison certainly seems to be the most desirable approach.
Unfortunately, feature detection in PET data is extremely challenging due to the
low spatial resolution and low frequency data. Data level comparison (e.g., by
calculating the difference between volumes) is also not meaningful in our case
because of the biological variance and resulting spill-in from other vessels in the
region to be analyzed. This leaves us with image level comparison, which can be
sub-categorized in side by side views and image differences. Image differences are
unsuitable for the same reasons we cannot exploit data level comparison. Since PET
data is low frequency and we are looking at a relatively small region we found
techniques like switching or checkerboards [KBH+10] unneccesary. Fortunately, side
by side views can be enhanced by suitable reformation and/or projection of the data
[LCMH09, AH11, KBH+10]. As discussed in Section 9.2, the techniques currently
available to display a vessel in one image are not well suited for our purpose, which
led us to the development of our proposed techniques.

9.5 Application Overview

This section gives a general overview of the application, the utilized visualization
techniques will be discussed in detail in section 9.6.

133

Chapter 9 – Comparative Visualization of Tracer Uptake in PET/CT Imaging

Preprocessing Reconstructed image data sets are co-registered based on extrinsic
markers attached to the multimodal scanning bed using a rigid body registration.
For best results our application requires a segmentation of the vessels to be analyzed
(see Section 9.6.2). Depending on the data set, this can be accomplished by threshold-
ing, manual segmentation, using a standard semi-automatic medical segmentation
approach or the application described in Chapter 8. Centerlines can be generated
from the segmentation using a potential field based technique [CSYB05]. Because
of the small vessel diameter inside the cuff the algorithm can fail and we therefore
provide capabilites to correct the automatic detection or specify a centerline manually.
We utilize Catmull-Rom splines to smooth the centerline, which is important for the
CPR as well as our visualization techniques since both depend on smoothly changing
tangents.

Screen Layout and Views Our application consists of a number of linked views
(see Figure 9.1), which can be conceptually organized in two ways: Left-Right and
Top-Down. The left half of the screen displays the right carotid artery and vice versa,
as a radiologist would expect from a standard 2D slice view. The original (albeit
reformated) data is displayed in the upper half and the advanced visualizations and
analysis results in the lower half. By mirroring the views vertically we generate a
layout that facilitates an easy comparison between the corresponding visualization
on cuff and control side.

Curved Planar Reformations together with an orthogonal slice view is a combina-
tion that is frequently used in vessel visualization tools since vessels are usually not
aligned with the slice directions. These techniques are also accepted by our medical
partners and were therefore the first to be integrated in our tool. The position of the
orthogonal slices is linked between both sides and we indicate the current position in
the CPR views. In these views we provide a set of standard tools to perform intensity
and distance measuring. To display the entire PET data within the vicinity of the
vessel in one image we integrated our novel Normalized Circular Projection, described
in the next section. In addition, we automatically perform an analysis of the PET
activity, integrating knowledge about the vessel shape. The activity plots are rotated
by 90 degrees to enable side by side display with the other visualizations.

134

9.6 Visualization Techniques

9.6 Visualization Techniques

9.6.1 Color Mapping

In search for a color mapping that is accepted by our potential users and perceptually
advantageous we consulted the literature. For CT data a grayscale mapping is the
de-facto standard and is able to reproduce the high frequencies found in these images
[RT98]. For the PET image, the heated body color map and the rainbow color map
were favored by our partners because they can be scaled in such a way that the
regions of maximum PET intensity can be recognized easily. We chose the heated
body color map because of its perceptual ordering [BTI07]. The combination of both
modalities is quite similar to color mapping on a surface, since luminance needs to be
combined with color. Borland et al. [BTI07] suggest using an isoluminant color map
in this case. We found that the PET signal would disappear in a substantial portion
of the data set (i.e., in regions of low CT intensity), which was unacceptable for us.
Instead a simple blending was implemented, which slightly reduces CT perception
in favour of visibility of the PET signal (see Figure 9.3). With the PET data being
the focus of this analysis we found this tradeoff to be justified. The user can blend
between PET and CT in case the combination of both obstructs the clarity of the
rendering.

For our medical partners to rely on the findings of our analysis it was of great
importance to see where the data came from that generated the images. We therefore
clearly indicate the inner vessel wall (red), analysis region (blue) and centerline
(green) in a consistent color scheme over all views.

9.6.2 Normalized Circular Projection

To judge whether an area of high PET activity indicates a plaque in the vessel wall or
just a spill-in from another structure close by, the position of maximum intensity as
well as overall spread are important. We therefore introduce the Normalized Circular
Projection (NCP). Each pixel in the resulting image represents a ring around the vessel,
orthogonal to the tangent of the centerline. Because of the substantially varying
diameter of the vessel we normalize the radius to the inner vessel wall. This is
equivalent to a straightened reformation of the vessel, followed by an outward shift
of the vessel wall to form a cylinder (see Figure 9.4). We then project in concentric
circles around this cylinder.

Figure 9.5 illustrates the technique: For each row of the resulting image (step on the
centerline) a radial ray casting is performed to first find the inner vessel wall in the

135

Chapter 9 – Comparative Visualization of Tracer Uptake in PET/CT Imaging

(a) Hue Modification (b) Blending

Figure 9.3: Compositing of PET and CT: While a modification of hue by the PET
transfer function renders the CT data clearer (a), the PET signal vanishes inside the cuff.
Since the PET data is more important in our case we use a simple blending between
PET and CT (b), which can be configured by the user in case one modality should be
inspected on its own.

CT data set. After hitting the vessel wall we then sample the PET data set from that
point onward. All n-th PET samples have therefore the same distance to the inner
vessel wall. In contrast to other reformation techniques [AH11, LCMH09] we do not
need to concern ourselves with a consistent computation of normal and binormal.
This is because the following MIP makes our technique rotationally invariant.

For the detection of the inner vessel wall we have evaluated several approaches:
Setting a global threshold produces unacceptable results because the intensity of the
vessel inside the cuff is lower due to spillout and/or partial volume effect. Using
an adaptive threshold relative to the intensity at the centerline did not significantly
improve the results. We therefore implemented a maximum gradient based approach,
which has been succesfully employed to detect the vessel wall in order to compute
the centerline position [La 04]. In combination with anisotropic diffusion filtering this
did improve results but still produced occasional misclassifications. While an active
contour could have helped to make the detection more robust by including more than
just local information on the current ray, we have decided to use a pre-segmentation
of the vessels (see Section 9.5). Segmenting the two vessel takes only a short time and
in return gives the expert user the possibility to correct errors. Results are coherent
over all angles in the sampling and slices along the centerline, which would not be
achieved by active contours. This coherence is important to prevent unwanted effects
in the projection. We are, however, optimistic that one of the simpler techniques
might work when using (small-animal) MRI scans or human subjects (which would
not contain a cuff).

From the inner vessel wall outward we continue sampling along the ray, but read

136

9.6 Visualization Techniques

2 3 4111111

Figure 9.4: Normalization: In comparison to other reformation techniques (see
Section 9.2) our approach does not only straighten the vessel (1-2) but also extrudes
the vessel wall to a cylinder (3). We then switch modalities from CT to PET and sample
in concentric circles (4).

values from the PET data set for the projection and analysis (see Figure 9.5(3)).

To render the final image, we project all n-th PET samples in one slice to one pixel
(see Figure 9.5(4)). For compositing we utilize a MIP, which is commonly used for 3D
renderings of PET data sets and corresponds with the need to locate the center of
high activity spots. For the visualization we link the transfer function from the CPR
and orthogonal slice views to give a consistent and comparable result.

Because we are sampling in radial direction we need to make sure that we do not
undersample our data set. The number of rays needed to generate an accurate image
is calculated as follows:

numrays ≥ 2 ∗ π ∗ dmax

0.5 ∗ min(SPPET)

with dmax = rmax + dmaxProj where min(SPPET) is the minimal voxel side length in the
PET data set, rmax the maximal lumen radius and dmaxProj the extent to which the
data should be sampled from there. One should keep in mind that min(SPPET) is
significantly larger than CT spacing and dmax will be quite limited since distant PET
activities would only distract the user. We do not factor in the CT sampling rate here
because rays are a lot more dense inside the lumen (the CT is sampled only there).
Accordingly, to make sure the number of (equidistant) slices along the centerline is
sufficient to satisfy the sampling theorem, the following relations need to be satisfied:

dslices + 2 ∗ dmax sin
αmax

2
≤ 0.5 ∗ min(SPPET)

137

Chapter 9 – Comparative Visualization of Tracer Uptake in PET/CT Imaging

Figure 9.5: Normalized Circular Projection: We visualize the tracer uptake (red
highlights) near a vessel segment (1) in a standardized fashion: From the centerline
(green) we cast rays in an orthogonal plane (2) to detect the inner vessel wall (red).
We then sample the PET signal further along each ray (3). Samples of the same color
have the same distance to the vessel wall, regardless of the vessel diameter and
shape (compare top-bottom of 2,3). Applying a maximum intensity projection (MIP)
of all equidistant PET samples to one pixel (4) we generate the final image, which
facilitates comparison to control.

and
dslices +

2 ∗ sin αmax

rmax
≤ 0.5 ∗ min(SPCT)

where dslices is the distance between orthogonal slices and αmax is the maximum angle
between two slice planes. In this case we also make sure the CT image is sampled at
a sufficient rate to get an accurate calculation of the vessel diameter at all positions.
Since the carotid arteries are fairly straight, αmax will be small.

9.6.3 Vessel Wall Analysis

To support the domain experts in testing their hypotheses we perform an analysis of
the PET signal in the vessel wall and plot the results. While the maximum activity
can theoretically be read from the NCP in the form of color mapping, this plotting
provides a more quantitative visualization by reducing perceptual impact.

Since the actual vessel wall is not detectable in our microCT scan we analyze a
user-defined area surrounding the inner vessel wall (contrast border). This layer of

138

9.6 Visualization Techniques

1 2

Figure 9.6: Extent of PET analysis: Plaques can remodel the vessel wall (light
red, not visible in actual CT scan) inward (1) or outward (2). By analyzing a region of
about four times the width of the vessel wall, starting at the lumen (light gray), our
application can handle both types.

width Δoutside is defined in the NCP view (see Figure 9.8, blue line). In our application
case we set Δoutside = 120μm, determined by histology. This value corresponds to
about four times the typical wall thickness for the carotid arteries in mice to include
potential plaques. Because our analysis region starts at the inner vessel wall we are
able to include internal as well as external plaques (see Figure 9.6).

The generated plot is illustrated in Figure 9.7: From the layer of width Δoutside

around the vessel lumen (blue) we compute minimal and maximal activity. Maximal
activity is the most important value for each slice and is therefore highlighted in solid
yellow. To provide information about the range of values we render a light yellow
band extending to the minimal value. For comparison, the value at the centerline is
plotted to give the user the activity in the bloodstream. To provide context for the
activity plot we render the average radius along the length of the vessel next to it. We
chose a colorscheme matching a typical grayscale CT slice rendering, highlighting
the inner vessel wall in red to provide a visual link to the other views. Since our
screenlayout is mirrored, the plots are next to the control side, clearly separated by a
thick line. This enables a convenient comparison and highlights differences through
asymmetry.

9.6.4 Interaction

Our system extensively uses linked cursors to support the visualizations. Clicking
and dragging one of the views will also synchronize the others accordingly to give
the user different perspectives on the data. In the NCP, intensity as well as distance

139

Chapter 9 – Comparative Visualization of Tracer Uptake in PET/CT Imaging

Figure 9.7: Vessel Wall Analysis: The maximal and minimal PET activity inside a
user-defined area (blue) around the inner vessel wall is plotted for each orthogonal
slice along the centerline. Maximum activity is highlighted in solid yellow, while the
area between maximum and minimum is rendered semi-transparent. For comparison,
the activity along the centerline is also displayed (green). The average radius provides
a context for the user.

to the vessel is automatically displayed on mouse movement. We mirror the cursor to
the opposing side and also display the position along the vessel in the plot views.
To restore the spatial relation that is lost in the maximum intensity projection, we
also display the location of the maximum at the distance to the vessel the mouse
cursor is over. The mouse-over behavior in the plots is very similar, highlighting the
corresponding section of the analysis region.

9.7 Results

In this section we are discussing images generated using our application and their
interpretation by domain experts.
As discussed before, one of the aspects making analysis of PET images difficult is
judging from where the signal originates. We therefore show how our proposed
techniques visualize different situations, starting with a center of activity inside the
vessel wall (see Figure 9.8). Our NCP technique (left) clearly shows how the PET
signal is distributed in relation to the vessel, with distance to the vessel along the
x-Axis and position along the centerline on the y-Axis. The center of activity is inside
the defined analysis region (blue line) and is therefore very likely coming from the
vessel wall, which can be verified in the orthogonal slice view (right). Since a MIP
is used the color mapping is identical to the slice view and mental linking is easily
possible. To be able to rely on the results of our analysis it was of major importance

140

9.7 Results

for the domain experts to also visualize the detected inner vessel wall (red) as well as
the region analyzed for the plots (blue) in the original data.

Figure 9.9 illustrates how a signal spill-in is handled by the different views. In the
intensity plot we can see that the spread of values is quite wide at the current position.
The NCP nicely demonstrates the reason for this effect: A region of high activity is
well outside our analysis region but still affects intensities through spill-in and can
potentially be misinterpreted as vessel wall related tracer uptake if just looking at
spreadsheet analysis. Since the vector of interest used for the CPR is configured so
that a rendering comparable to a standard coronal slice view is obtained (as requested
by our medical partners) the center of activity is not visible. Since rotation of CPR
views has been proposed [KWFG03] we suggested an integration in our tool, but our
domain experts found that this would make interpretation too difficult.

Figure 9.10 shows the effect of the cuff on lumen diameter and PET signal in
comparison with control. As expected the uptake in the cuff region is increased over
control. From the vessel-shape plot we can see that the lumen diameter does not
abruptly change with start and end of the implanted cuff. Instead, the lumen diameter
decreases continously towards the cuff and also increases gradually downstream from
the cuff. This corresponds to the plaque formation expected due to low and laminar
shear stress upstream and low and oscillatory shear stress immediately downstream
from the cuff (see Figure 9.2). Histology of different cross sections along the vessel of
this mouse have confirmed our findings.

In summary, the application enables the user to analyze atherosclerotic lesions
much faster than conventional analysis, with direct visual comparison to the control
side, and immediate visual feedback of potentially false positive results in the vessel
wall. Since the carotid cuff model is well established we expect our application to see
continued use in building or testing hypotheses about new PET tracers over the next
years.

9.7.1 Comparison

We have created a software phantom to compare our proposed visualizations to
existing techniques. The phantom consists of two volumes: A CT-volume with vessel,
cuff and background, and a PET-volume with a number of PET activities modeled
using gaussians. Since the carotid arteries are relatively straight at the section where
the cuff is implanted we modeled the vessel in the CT volume as a cylinder with
varying diameter. This also simplified the implementation of existing techniques as
well as the phantom. The activities in the PET volume represent the most relevant

141

Chapter 9 – Comparative Visualization of Tracer Uptake in PET/CT Imaging

Figure 9.8: PET Activity inside the vessel wall is indicated by maxima inside the
analysis region (blue line). By clicking on a position to be examined in any of the views
the orthogonal slice view (right) is set and shows the analysis region between red
(inner vessel wall) and blue line, the centerline position (green dot) and the position of
the maximum (yellow dot).

configurations (see Figure 9.11, from top to bottom):

• Activity inside the vessel wall.

• Activity outside (spill-in).

• Activity inside the vessel wall plus spill-in on the opposite side.

• Same as above but spill-in is closer to the vessel.

• Activity inside the vessel wall plus overlapping spill-in on the same side.

We chose the CPR (due to the straight phantom equivalent to a slice rendering),
helical CPR and flattening (cylindrical MIP) as comparison to our proposed NCP plus
activity plot. We believe these techniques represent the previous work (see Section 9.2)
quite well since most systems utilize some of these visualization techniques. The
CPR/slice rendering in combination with the orthogonal view also represents what
the user is seeing in the current analysis protocol. The usefulness of the CPR (top left)
heavily depends on the vector of interest. In the best case it generates an intuitive
visualization of the vessel and PET activity, in the worst case the user misses important
features. Our proposed visualizations (top right) allow the user to locate PET activity
close to the vessel wall immediately by looking at the right side of the NCP. Distance
to other activities can easily be judged and the source of features in the plot can be
traced back using the NCP. Secondary activities at each pixel are not represented but
we would like to emphasize that we do not see these visualizations as a standalone

142

9.7 Results

Figure 9.9: Spill-In on the control side: The wide spread of intensites in the activ-
ity plot (left) hints at a possible spill-in. The NCP (center-left) confirms this indication by
visualizing position of the intensity distribution in one image. Note how the situation is
not visualized by the CPR (center-right) due to an unsuitable vector of interest and
would therefore require rotation by the user.

solution but rather as an overview/navigation tool. A high activity close to the vessel
in the NCP will (in our application case) result in inspection of the orthogonal slice
by the user. Activities of lesser magnitude will therefore still be detected. The linking,
especially to the orthogonal slice, is crucial to get a complete mental image of the data.
The helical CPR (middle row) looks like a (stretched) CPR rendering and provides
good context but interpretation of the PET data is extremely difficult. Maxima are
hard to locate, and it is very difficult to determine the spatial relation to the vessel,
especially with constant arc-length sampling. The results of the flattening (bottom
row) are dependent on the extent of the sampling outside the vessel. A narrow layer
around the vessel can generate an overview of the activity, but the distance to the
vessel, which is critical in our case, cannot be determined.

9.7.2 Learning Curve

We realize that our proposed NCP technique is not quite as easy to understand and
interpret as a normal slice view or a CPR, and therefore we performed an informal
evaluation of the learning curve associated with our application. Since the current
analysis is done by a medical laboratory scientist this also represents our most likely
user group. It took us just a few minutes to explain the concepts (using the figures in
this chapter) and the actual usage of our application, during which we encountered
no problems. Given that a large number of mice need to be analyzed we argue that
the time needed to learn our application is insignificant.

143

Chapter 9 – Comparative Visualization of Tracer Uptake in PET/CT Imaging

C
u

ff

Figure 9.10: Activity increase along the cuff: Confirming the hypothesis of med-
ical researchers, the PET uptake has increased along the cuff. The plot of the lumen
shape shows that diameter shrinks steadily upstream and does not immediately in-
crease downstream from the cuff. This finding fits well with the way shear stress is
modified by the cuff (compare with Figure 9.2) and was confirmed by histology.

9.7.3 Implementation and Performance

The application has been implemented as a set of processors in Voreen, using OpenGL
and GLSL. Preprocessing (i.e., segmentation and centerline computation) can be
performed using the ROI framework in combination with the segmentation system
discussed by Praßni et al [PRH10] or with the application described in Chapter 8. A
somewhat simplified (excluding text overlays etc.) rendering network is shown in
Figure 9.12: The topmost part of the network (cyan) handles the loading of CT, PET,
segmentation and centerline. Rendering is performed for the cuff- and control-side
separately and split up into slice- (red), CPR- (blue) and NCP-rendering (green). The
lower part of the network (orange) composes the images and displays them on the
screen.

The only operation which is not real-time is the calculation of the NCP. Taking only
a few seconds on an Intel i7 930 (2.80 GHz), we do not see this as limiting usability.
Other authors have implemented similar techniques on the GPU [LCMH09], and we
believe an implementation in OpenCL would be straightforward.

9.7.4 Limitations

Our application currently analyzes only one timestep from a PET data set, the user
can, however, easily switch between the different steps triggering an automatic NCP
update. As with most reformation techniques our approach requires a fairly accurate
placement of the centerline and approximately convex vessel cross sections. For the
current application case we do not see this as problematic.

144

9.8 Conclusion and Future Work

9.8 Conclusion and Future Work

In this chapter we have presented a visualization application which enables the
medical expert to explore and analyze in-vivo PET activity around vessels. We have
proposed a novel projection technique that renders data around tubular structures
in one image. This allows the user to quickly locate activity maxima and accurately
judge intensity as well as spread. Activity inside the vessel wall is analyzed by looking
at a defined layer surrounding the lumen. For an easy quantitative visualization we
plot activity along the vessel and provide the vessel shape as context. We discuss
how we combine well known vessel visualization approaches with our proposed
techniques in one linked multi-view application. Our screen layout is symmetric to
facilitate comparison of the right carotid artery (implanted cuff) with control.
We present resulting images, discuss interpretation of our visualizations and compare
our techniques to previous work.

We see several directions in which this work could be extended. An extension
to multiple branches using one of the many published layout techniques while
preserving clarity of display and comparative capabilites needs to be explored. We
are investigating possible interaction techniques to exclude spill-in detected by the
user from the analysis. Furthermore, a series of MRI scans is planned and we will test
our system using this data. Preliminary tests with MRI scans indicate that an on-the-
fly detection of the vessel wall might be possible using this modality. Application to
human subjects should just require a modification of Δoutside. Preliminary comparisons
with histology have found our approximation of Δoutside to be fairly accurate, but
we are still looking to improve our approach by incorporating a specialized lumen
segmentation technique to compensate for partial volume effect and spill-out.
Finally, other application cases for the proposed visualization techniques should be
explored.

145

Chapter 9 – Comparative Visualization of Tracer Uptake in PET/CT Imaging

Figure 9.11: Comparison Using a Software Phantom First Row: CPR plus orthog-
onal slices (left) and our proposed techniques (right). Second Row: Helical CPR using
constant angle (left) and constant arc-length (right). Third Row: Flattening using a
cylindrical MIP with shorter (left) and longer (right) rays.

146

9.8 Conclusion and Future Work

Figure 9.12: Rendering network: The processors in the (simplified) rendering net-
work can be grouped into five categories: Input of volumes (CT, PET and segmentation)
and centerlines (cyan), rendering of orthogonal slices (red), NCP and plots (green)
and CPR (blue), followed by a composting of all rendering using Splitter processors
(orange).

147

Chapter 10

Conclusions

In this dissertation we have discussed several applications for the visual analysis
of volumetric medical data. All of these applications have in common that they are
designed for a specific task and provide an optimized workflow to the user. Through
the use of specialized visualization techniques, like reformations or projections, the
data sets are processed to present important aspects at a glance. Standard medical
workstation software cannot provide techniques for each application case but usu-
ally provides a set of standard views and interaction techniques. These standard
techniques are part of all applications discussed in this dissertation for several rea-
sons: Medical users are often trained to view volumes in 2D slice views and new
visualization techniques oftentimes impede the ability to navigate the data set and
locate anatomical structures. Viewing (relatively) unprocessed data can also provide
details that are lost in advanced rendering techniques. Finally, standard measuring
techniques for distances, volumes or intensities often can not be used in these views.

A combination of both standard and novel techniques can, however, only reach its
full potential when linking between views is implemented. A recurring pattern in the
applications discussed here is the linking of a projection technique, which is used to
highlight areas needing attention by the viewer, with slice views to allow in-detail
inspection. This approach is also in line with the visual information seeking mantra
[Shn96]:

Overview first, zoom and filter, then details-on-demand.

Having specialized applications for each task obviously requires a high develop-
ment effort, which may be prohibitive in some cases like medical research. We have
shown how the Voreen framework has been extended to minimize the amount of
code that has to be written in order to develop a new application. One key aspect is
the fine granularity of components: Instead of providing 2D and 3D viewer modules,
the implementation is broken down into multiple processors to enable a very flexible
development environment and high reusability of code. The number of processors

149

Chapter 10 – Conclusions

providing standard functionality has increased over the last years to a point where
the development of novel techniques will usually only require the implementation of
a few processors. Using the editor provided by the VoreenVE application, a set of
processors can now easily be connected into a linked multi-view application. With
the implementation of analysis and plotting frameworks Voreen has developed from
a pure volume rendering engine to a rapid application development framework for
the visual analysis of multimodal volumetric data sets.

Of the opportunities for future research already discussed in this dissertation we
believe the following ones are the most promising: As stated in the discussion of
our context-aware navigation technique, the trackball metaphor is still the standard
interaction technique for 3D navigation and we believe a multitude of applications
could benefit from work on advanced approaches. An extension of our approach for
the analysis of PET tracer uptake along vessels to multiple branching vessels should
be investigated. As for the future development of Voreen, an improved support
for workflows is currently being implemented and the application mode will be
redesigned to improve usability for larger networks.

150

Bibliography

[AH11] P. Angelelli and H. Hauser, Straightening Tubular Flow for Side-by-Side
Visualization, IEEE TVCG 17 (2011), no. 12, 2063–2070.

[AJ09] S.S. Abeysinghe and T. Ju, Interactive skeletonization of intensity volumes,
The Visual Computer 25 (2009), 627–635.

[BFC04] Katja Bühler, Petr Felkel, and Alexandra La Cruz, Geometric methods for
vessel visualization and quantification- a survey, Geometric Modelling for
Scientific Visualization, Springer, 2004, pp. 399–419.

[BGP+11] M. Borkin, K. Gajos, A. Peters, D. Mitsouras, S. Melchionna, F. Rybicki,
C. Feldman, and H. Pfister, Evaluation of artery visualizations for heart
disease diagnosis, IEEE TVCG 17 (2011), no. 12, 2479–2488.

[BHWB07] J. Beyer, M. Hadwiger, S. Wolfsberger, and K. Buhler, High-quality multi-
modal volume rendering for preoperative planning of neurosurgical interven-
tions, IEEE Vis 13 (2007), no. 6, 1696–1703.

[BiBPtHR08] R. Brecheisen, A.V. i Bartroli, B. Platel, and B. ter Haar Romeny, Flexible
GPU-based multi-volume ray-casting, Vision, modeling, and visualization
(2008), 303–312.

[BKF+02] N. Burtnyk, A. Khan, G. Fitzmaurice, R. Balakrishnan, and G. Kurten-
bach, StyleCam: interactive stylized 3D navigation using integrated spatial &
temporal controls, ACM UIST, 2002, pp. 101–110.

[BKFK06] Nicolas Burtnyk, Azam Khan, George Fitzmaurice, and Gordon Kurten-
bach, ShowMotion: camera motion based 3D design review, ACM I3D, 2006,
pp. 167–174.

[Bli77] James F. Blinn, Models of light reflection for computer synthesized pictures,
SIGGRAPH Comput. Graph. 11 (1977), no. 2, 192–198.

151

Bibliography

[BLP78] Edward G. Britton, James S. Lipscomb, and Michael E. Pique, Making
nested rotations convenient for the user, SIGGRAPH 12 (1978), no. 3, 222–
227.

[BMF+03] Dirk Bartz, Dirk Mayer, Jan Fischer, Sebastian Ley, Anxo del Rio,
Steffi Thust, Claus Peter Heussel, Hans-Ulrich Kauczor, and Wolfgang
Strasser, Hybrid Segmentation and Exploration of the Human Lungs, IEEE
Visualization, 2003, pp. 177–184.

[BRP05] R. Bade, F. Ritter, and B. Preim, Usability comparison of mouse-based
interaction techniques for predictable 3d rotation, Smart Graphics, 2005,
pp. 138–150.

[BRS00] Steffi Beckhaus, Felix Ritter, and Thomas Strothotte, CubicalPath - Dy-
namic Potential Fields for Guided Exploration in Virtual Environments, Pa-
cific Graphics, 2000, pp. 387–459.

[BS05] Udeepta D. Bordoloi and Han-Wei Shen, View Selection for Volume
Rendering, Visualization, IEEE, 2005, pp. 487–494.

[BTI07] D. Borland and R.M. Taylor II, Rainbow color map (still) considered harmful,
IEEE CG & A (2007), 14–17.

[BVPtHR09] R. Brecheisen, A. Vilanova, B. Platel, and B. ter Haar Romeny, Parameter
sensitivity visualization for dti fiber tracking, Visualization and Computer
Graphics, IEEE Transactions on 15 (2009), no. 6, 1441–1448.

[CCA+05] J.R. Cebral, M.A. Castro, S. Appanaboyina, C.M. Putman, D. Millan,
and A.F. Frangi, Efficient pipeline for image-based patient-specific analy-
sis of cerebral aneurysm hemodynamics: technique and sensitivity, Medical
Imaging 24 (2005), no. 4, 457–467.

[Cha05] Soonmee Cha, Update on brain tumor imaging, Current Neurology and
Neuroscience Reports 5 (2005), 169–177.

[CON08] M. Christie, P. Olivier, and J.M. Normand, Camera control in computer
graphics, Computer Graphics Forum, vol. 27, 2008, pp. 2197–2218.

[Cru03] A. La Cruz, Accuracy Evaluation of Different Centerline Approximations of
Blood Vessels, Tech. report, Institute of Computer Graphics and Algo-
rithms, Vienna University of Technology, 2003.

152

Bibliography

[CS99] Wenli Cai and Georgios Sakas, Data intermixing and multi-volume render-
ing, Computer Graphics Forum 18 (1999), no. 3, 359–368.

[CSYB05] N.D. Cornea, D. Silver, X. Yuan, and R. Balasubramanian, Computing
hierarchical curve-skeletons of 3d objects, The Visual Computer 21 (2005),
no. 11, 945–955.

[DHS+13] Stefan Diepenbrock, Sven Hermann, Michael Schäfers, Michael
Kuhlmann, and Klaus Hinrichs, Comparative Visualization of Tracer Up-
take in In Vivo Small Animal PET/CT Imaging of the Carotid Arteries, EG
EuroVis, 2013, accepted.

[Dic45] L.R. Dice, Measures of the amount of ecologic association between species,
Ecology 26 (1945), no. 3, 297–302.

[DPL+10] Stefan Diepenbrock, Jörg-Stefan Praßni, Florian Lindemann, Hans-
Werner Bothe, and Timo Ropinski, Pre-Operative Planning of Brain Tumor
Resections, IEEE VisWeek Electronic Proceedings, 2010.

[DPL+11] S. Diepenbrock, J.S. Praßni, F. Lindemann, H.W. Bothe, and T. Ropinski,
2010 IEEE Visualization Contest Winner: Interactive Planning for Brain
Tumor Resections, Computer Graphics and Applications, IEEE 31 (2011),
no. 5, 6–13.

[DR12] Stefan Diepenbrock and Timo Ropinski, From Imprecise User Input to
Precise Vessel Segmentations, EG Visual Computing for Biology and
Medicine, 2012, pp. 65–72.

[DRH11] Stefan Diepenbrock, Timo Ropinski, and Klaus H. Hinrichs, Context-
Aware Volume Navigation, IEEE Pacific Visualization Symposium (Paci-
ficVis 2011), 2011, pp. 11–18.

[DSzBH+11] Stefan Diepenbrock, Christian Schulte zu Berge, Klaus H. Hinrichs,
Lydia Wachsmuth, and Cornelius Faber, DTI Visualization using the
Voreen framework, ESMRMB Congress, 2011, Poster.

[Eng06] K. Engel, Real-time volume graphics, Ak Peters Series, A K Peters, Limited,
2006.

[FUS+98] A.X. Falcão, J.K. Udupa, S. Samarasekera, S. Sharma, B.E. Hirsch, and
R.A. Lotufo, User-Steered Image Segmentation Paradigms: Live Wire and
Live Lane, Graphical Models and Image Processing 60 (1998), no. 4,
233–260.

153

Bibliography

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: Ele-
ments of reusable object-oriented software, Reading: Addison-Wesley, 1995.

[GNBP11] R. Gasteiger, M. Neugebauer, O. Beuing, and B. Preim, The FLOWLENS:
A Focus-and-Context Visualization Approach for Exploration of Blood Flow
in Cerebral Aneurysms, IEEE TVCG 17 (2011), no. 12, 2183–2192.

[Gra06] L. Grady, Random walks for image segmentation, IEEE Pattern Analysis
and Machine Intelligence (2006), 1768–1783.

[GRH+04] A. Gerhards, P. Raab, S. Herber, K. F. Kreitner, T. Boskamp, and
P. Mildenberger, Software-assisted CT-postprocessing of the carotid arteries,
Rofo 176 (2004), no. 6, 870–874.

[HBA+04] P. Haigron, M.E. Bellemare, O. Acosta, C. Göksu, C. Kulik, K. Rioual,
and A. Lucas, Depth-map-based scene analysis for active navigation in
virtual angioscopy, IEEE Transactions on Medical Imaging 23 (2004),
no. 11, 1380–1390.

[HBD11] M. Helmstaedter, K.L. Briggman, and W. Denk, High-accuracy neurite
reconstruction for high-throughput neuroanatomy, Nature neuroscience 14

(2011), no. 8, 1081–1088.

[HDKG08] M. Hachet, F. Decle, S. Kn
"odel, and P. Guitton, Navidget for easy 3D camera positioning from 2d
inputs, IEEE 3DUI, 2008, pp. 83–89.

[HHCL01] T. He, L. Hong, D. Chen, and Z. Liang, Reliable path for virtual endoscopy:
ensuring complete examination of human organs, IEEE TVCG (2001), 333–
342.

[HMK+97] Lichan Hong, Shigeru Muraki, Arie Kaufman, Dirk Bartz, and Taosong
He, Virtual voyage: interactive navigation in the human colon, SIGGRAPH,
1997, pp. 27–34.

[HZF+11] K. Hameeteman, M.A. Zuluaga, M. Freiman, L. Joskowicz, O Cuisenaire,
L. Florez Valencia, M.A. Gulsun, K. Krissian, J. Mille, W.C.K. Wong,
M. Orkisz, H. Tek, M. Hernandez Hoyos, F. Benmansour, A.C.S. Chung,
S. Rozie, M.J. van Gils, L. van den Borne, J. Sosna, P. Berman, N. Cohen,
P. Douek, I. Sánchez, M. Aissat, M. Schaap, C.T. Metz, G. P. Krestin,
A van der Lugt, W.J. Niessen, and T. van Walsum, Evaluation framework

154

Bibliography

for carotid bifurcation lumen segmentation and stenosis grading, Medical
Image Analysis 15 (2011), no. 4, 477–488.

[IKN98] L. Itti, C. Koch, and E. Niebur, A model of saliency-based visual attention
for rapid scene analysis, IEEE TPAMI 20 (1998), no. 11, 1254–1259.

[ISN+03] L. Ibanez, W. Schroeder, L. Ng, J. Cates, et al., The ITK software guide,
vol. 8, Kitware, 2003.

[JBH+09] W.K. Jeong, J. Beyer, M. Hadwiger, A. Vazquez, H. Pfister, and R.T.
Whitaker, Scalable and interactive segmentation and visualization of neural
processes in EM datasets, Vis 09 (2009), 1505–1514.

[JQD+08] Alark Joshi, Xiaoning Qian, Donald Dione, Ketan Bulsara, Christopher
Breuer, Albert Sinusas, and Xenophon Papademetris, Effective visualiza-
tion of complex vascular structures using a non-parametric vessel detection
method, IEEE TVCG 14 (2008), no. 6, 1603–1610.

[K+02] D.A. Keim et al., Information visualization and visual data mining, IEEE
transactions on Visualization and Computer Graphics 8 (2002), no. 1,
1–8.

[KAF+08] D. Keim, G. Andrienko, J.D. Fekete, C. Görg, J. Kohlhammer, and
G. Melançon, Visual analytics: Definition, process, and challenges, Informa-
tion Visualization (2008), 154–175.

[KBH+10] P. Kok, M. Baiker, E.A. Hendriks, F.H. Post, J. Dijkstra, C.W.G.M. Lowik,
B.P.F. Lelieveldt, and C.P. Botha, Articulated planar reformation for change
visualization in small animal imaging, IEEE TVCG 16 (2010), no. 6, 1396–
1404.

[KBK07] P. Kohlmann, S. Bruckner, and A. Kanitsar, LiveSync: Deformed viewing
spheres for knowledge-based navigation, IEEE TVCG 13 (2007), no. 6, 1544–
1551.

[KBKG09] Peter Kohlmann, Stefan Bruckner, Armin Kanitsar, and Meister Eduard
Gröller, Contextual Picking of Volumetric Structures, Pacific Vis (2009),
185–192.

[KCH+12] MT Kuhlmann, S. Cuhlmann, I. Hoppe, R. Krams, PC Evans, GJ Strijk-
ers, K. Nicolay, S. Hermann, and M. Schäfers, Implantation of a Carotid
Cuff for Triggering Shear-stress Induced Atherosclerosis in Mice, Journal of
Visualized Experiments (2012), no. 59, Video Publication.

155

Bibliography

[KEK04] Y. Kang, K. Engelke, and W.A. Kalender, Interactive 3D editing tools for
image segmentation, Medical Image Analysis 8 (2004), no. 1, 35–46.

[KFW+02] A. Kanitsar, D. Fleischmann, R. Wegenkittl, P. Felkel, and M.E. Gröller,
CPR: curved planar reformation, Vis 02, 2002, pp. 37–44.

[KGB+09] B. Kainz, M. Grabner, A. Bornik, S. Hauswiesner, J. Muehl, and
D. Schmalstieg, Ray casting of multiple volumetric datasets with polyhedral
boundaries on manycore GPUs, ACM Trans. on Graphics (TOG) 28 (2009),
no. 5, 152:1–152:9.

[KGNP12] Christoph Kubisch, Sylvia Glaßer, Mathias Neugebauer, and Bern-
hard Preim, Vessel Visualization with Volume Rendering, Visualization in
Medicine and Life Sciences II, Mathematics and Visualization, Springer
Berlin Heidelberg, 2012, pp. 109–134.

[KKH02] J. Kniss, G. Kindlmann, and C. Hansen, Multidimensional transfer func-
tions for interactive volume rendering, IEEE TVCG (2002), 270–285.

[KKPS08] Arno Krueger, Christoph Kubisch, Bernhard Preim, and Gero Strauss,
Sinus Endoscopy - Application of Advanced GPU Volume Rendering for
Virtual Endoscopy, IEEE TVCG 14 (2008), 1491–1498.

[KKS+05] A. Khan, B. Komalo, J. Stam, G. Fitzmaurice, and G. Kurtenbach, Hov-
erCam: interactive 3D navigation for proximal object inspection, ACM I3D,
2005, pp. 73–80.

[KQ03] C. Kirbas and F.K.H. Quek, Vessel extraction techniques and algorithms: A
survey, IEEE Bioinformatics and Bioengineering, IEEE, 2003, pp. 238–
245.

[KQ04] C. Kirbas and F. Quek, A review of vessel extraction techniques and algo-
rithms, ACM Surveys 36 (2004), no. 2, 81–121.

[KW03] J. Krüger and R. Westermann, Acceleration techniques for GPU-based
volume rendering, IEEE Visualization (2003), 287–292.

[KWFG03] A. Kanitsar, R. Wegenkittl, D. Fleischmann, and M.E. Gröller, Advanced
curved planar reformation: Flattening of vascular structures, IEEE VisWeek,
2003, pp. 43–50.

[La 04] A. La Cruz, Accuracy Evaluation of Different Centerline Approximations of
Blood Vessels, EG/IEEE Visualization Symposium, 2004, pp. 115–120.

156

Bibliography

[LABFL09] David Lesage, Elsa D Angelini, Isabelle Bloch, and Gareth Funka-Lea,
A review of 3D vessel lumen segmentation techniques: models, features and
extraction schemes., Medical image analysis 13 (2009), no. 6, 819–45.

[LC87] W.E. Lorensen and H.E. Cline, Marching cubes: A high resolution 3d surface
construction algorithm, ACM Siggraph Computer Graphics, vol. 21, ACM,
1987, pp. 163–169.

[LCD06] Thomas Luft, Carsten Colditz, and Oliver Deussen, Image enhancement
by unsharp masking the depth buffer, ACM Transactions on Graphics 25

(2006), no. 3, 1206–1213.

[LCMH09] O.D. Lampe, C. Correa, K.L. Ma, and H. Hauser, Curve-centric volume
reformation for comparative visualization, IEEE TVCG 15 (2009), no. 6,
1235–1242.

[Lev88] M. Levoy, Display of surfaces from volume data, Computer Graphics and
Applications, IEEE 8 (1988), no. 3, 29–37.

[LLHY09] S. Lindholm, P. Ljung, M. Hadwiger, and A. Ynnerman, Fused Multi-
Volume DVR using Binary Space Partitioning, Computer Graphics Forum,
vol. 28, John Wiley & Sons, 2009, pp. 847–854.

[LLS05] Hye-Jin Lee, Sukhyun Lim, and Byeong-Seok Shin, Unfolding of Virtual
Endoscopy Using Ray-Template, Bio. and Medical Data Analysis, 2005,
pp. 69–77.

[LR11] Florian Lindemann and Timo Ropinski, About the influence of illumination
models on image comprehension in direct volume rendering, IEEE TVCG (Vis
Proceedings) 17 (2011), no. 12, 1922–1931.

[Mar11] J. Marino, Context Preserving Maps of Tubular Structures, IEEE TVCG 17

(2011), no. 12, 1997–2004.

[MMGK09] J. McCrae, I. Mordatch, M. Glueck, and A. Khan, Multiscale 3D naviga-
tion, ACM I3D, 2009, pp. 7–14.

[MS09] Jennis Meyer-Spradow, Interaktive Entwicklung Raycasting-basierter
Visualisierungs-Techniken für medizinische Volumen-Daten mit Hilfe von
Datenflussnetzwerken, Ph.D. thesis, Westfälische Wilhelms-Universität
Münster, 2009.

157

Bibliography

[MSE+06] D. Merhof, M. Sonntag, F. Enders, C. Nimsky, P. Hastreiter, and
G. Greiner, Hybrid visualization for white matter tracts using triangle strips
and point sprites, Visualization and Computer Graphics, IEEE Transac-
tions on 12 (2006), no. 5, 1181–1188.

[MSRMH09] Jennis Meyer-Spradow, Timo Ropinski, Jörg Mensmann, and Klaus
Hinrichs, Voreen: A Rapid-Prototyping Environment for Ray-Casting-Based
Volume Visualizations, IEEE Computer Graphics and Applications 29

(2009), no. 6, 6–13.

[NYE+10] Tan Khoa Nguyen, Anders Ynnerman, Anders Eklund, Patric Ljung,
Frida Hernell, Henrik Ohlsson, Mats Andersson, Hans Knutsson,
and Camilla Forsell, Concurrent Volume Visualization of Real-Time fMRI,
IEEE/EG Volume Graphics, 2010, pp. 53–60.

[OH00] Nabil Ouerhani and Heinz Hügli, Computing visual attention from scene
depth, Pattern Recognition 1 (2000), 375–378.

[ONI05] Shigeru Owada, Frank Nielsen, and Takeo Igarashi, Volume catcher, SI3D
C (2005), 111–116.

[ONI+08] S. Owada, F. Nielsen, T. Igarashi, R. Haraguchi, and K. Nakazawa,
Projection plane processing for sketch-based volume segmentation, Biomedical
Imaging (2008), 117–120.

[OP05] Steffen Oeltze and Bernhard Preim, Visualization of vasculature with
convolution surfaces: method, validation and evaluation, IEEE Med. Imaging
24 (2005), no. 4, 540–548.

[OS01] S.D. Olabarriaga and AWM Smeulders, Interaction in the segmentation of
medical images: A survey, Medical image analysis 5 (2001), no. 2, 127–142.

[PB07] B. Preim and D. Bartz, Visualization in Medicine, Morgan Kaufmann,
2007.

[PHA07] K. Poon, G. Hamarneh, and R. Abugharbieh, Live-vessel: Extending
livewire for simultaneous extraction of optimal medial and boundary paths in
vascular images, MICCAI (2007), 444–451.

[PO08] B. Preim and S. Oeltze, 3D visualization of vasculature: an overview, Visu-
alization in Medicine and Life Sciences (2008), 39–59.

158

Bibliography

[Pra11] Jörg-Stefan Praßni, Interactive Feature Detection in Volumetric Data, Ph.D.
thesis, Westfälische Wilhelms-Universität Münster, 2011.

[PRH10] Jörg-Stefan Praßni, Timo Ropinski, and Klaus H. Hinrichs, Uncertainty-
Aware Guided Volume Segmentation, Vis 10 16 (2010), no. 6, 1358–1365.

[Ras00] Jef Raskin, The humane interface: new directions for designing interactive
systems, ACM Press/Addison-Wesley, 2000.

[RDB+12] Timo Ropinski, Stefan Diepenbrock, Stefan Bruckner, Klaus H. Hinrichs,
and Eduard Gröller, Unified Boundary-Aware Texturing for Interactive Vol-
ume Rendering, Visualization and Computer Graphics, IEEE Transactions
on 18 (2012), no. 11, 1942–1955.

[RHR+09] Timo Ropinski, Sven Hermann, Rainer Reich, Michael Schäfers, and
Klaus H. Hinrichs, Multimodal Vessel Visualization of Mouse Aorta PET/CT
Scans, IEEE Vis 09 (2009), 1515–1522.

[RMSD+08] Timo Ropinski, Jennis Meyer-Spradow, Stefan Diepenbrock, Jörg
Mensmann, and Klaus H. Hinrichs, Interactive Volume Rendering with Dy-
namic Ambient Occlusion and Color Bleeding, Computer Graphics Forum
(Eurographics 2008) 27 (2008), no. 2, 567–576.

[RRRP08] C. Rieder, F. Ritter, M. Raspe, and H.O. Peitgen, Interactive visualization
of multimodal volume data for neurosurgical tumor treatment, Computer
Graphics Forum, vol. 27, John Wiley & Sons, 2008, pp. 1055–1062.

[RT98] B.E. Rogowitz and L.A. Treinish, Data visualization: the end of the rainbow,
Spectrum, IEEE 35 (1998), no. 12, 52–59.

[RWS+10] Christian Rieder, Andreas Weihusen, Christian Schumann, Stephan
Zidowitz, and Heinz-Otto Peitgen, Visual Support for Interactive Post-
Interventional Assessment of Radiofrequency Ablation Therapy, Computer
graphics forum, vol. 29, Wiley Online Library, 2010, pp. 1093–1102.

[SBSG06] P. Sereda, AV Bartroli, IWO Serlie, and FA Gerritsen, Visualization of
boundaries in volumetric data sets using LH histograms, IEEE TVCG 12

(2006), no. 2, 208–218.

[Sch05] H. Scharsach, Advanced GPU raycasting, Proceedings of CESCG 5 (2005),
67–76.

159

Bibliography

[SCLC+04] M. Straka, M. Cervenansky, A. La Cruz, A. Kochl, M. Sramek, E. Groller,
and D. Fleischmann, The VesselGlyph: Focus & Context Visualization in
CT-Angiography, IEEE Vis 04, 2004, pp. 385–392.

[SHC+09] M. Smelyanskiy, D. Holmes, J. Chhugani, A. Larson, D.M. Carmean,
D. Hanson, P. Dubey, K. Augustine, D. Kim, A. Kyker, et al., Mapping
high-fidelity volume rendering for medical imaging to cpu, gpu and many-core
architectures, IEEE Vis (2009), 1563–1570.

[SHCP97] L. Serra, N. Hern, C.B. Choon, and T. Poston, Interactive vessel tracing
in volume data, Proceedings of the 1997 symposium on Interactive 3D
graphics, 1997, pp. 131–ff.

[Shn96] B. Shneiderman, The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations, IEEE Symposium on Visual Languages, 1996,
pp. 336–343.

[Sho92] Ken Shoemake, ARCBALL: a user interface for specifying three-dimensional
orientation using a mouse, Graphics Interface, 1992, pp. 151–156.

[SLC+02] T. Schlathoelter, C. Lorenz, I.C. Carlsen, S. Renisch, and T. Deschamps,
Simultaneous segmentation and tree reconstruction of the airways for virtual
bronchoscopy, SPIE, vol. 4684, 2002, pp. 103–113.

[SMH10] A. Saad, T. Möller, and G. Hamarneh, ProbExplorer: Uncertainty-guided
Exploration and Editing of Probabilistic Medical Image Segmentation, EuroVis
2010, 2010, pp. 1113–1122.

[SNS+98] Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller,
G. Gerig, and R. Kikinis, Three-dimensional multi-scale line filter for segmen-
tation and visualization of curvilinear structures in medical images, Medical
Image Analysis 2 (1998), no. 2, 143–168.

[SOB+07] Christian Schumann, Steffen Oeltze, Ragnar Bade, Bernhard Preim,
and Heinz-Otto Peitgen, Model-free Surface Visualization of Vascular Trees,
IEEE/EG EuroVis, 2007, pp. 283–290.

[SS11] N. Schubert and I. Scholl, Comparing gpu-based multi-volume ray casting
techniques, Computer Science-Research and Development 26 (2011),
no. 1, 39–50.

160

Bibliography

[SSH10] Michael Schäfers, Otmar Schober, and Sven Hermann, Matrix-
Metalloproteinases as Imaging Targets for Inflammatory Activity in Atheroscle-
rotic Plaques, Journal of Nuclear Medicine 51 (May 2010), no. 5, 663–666.

[SVVG+01] IWO Serlie, F. Vos, R. Van Gelder, J. Stoker, R. Truyen, F. Gerritsen,
Y. Nio, and F. Post, Improved visualization in virtual colonoscopy using
image-based rendering, IEEE/EG Eurovis, Springer Verlag Wien, 2001,
pp. 137–146.

[SzB11] Christian Schulte zu Berge, Visualization Techniques for Diffusion Tensor
Data, Diploma thesis, Westfälische Wilhelms-Universität Münster, 2011.

[TFTN05] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita, A feature-driven
approach to locating optimal viewpoints for volume visualization, IEEE Visu-
alization (2005), 495–502.

[THA11] A. Top, G. Hamarneh, and R. Abugharbieh, Active learning for interactive
3d image segmentation, MICCAI (2011), 603–610.

[TMS+06] Christian Tietjen, Björn Meyer, Stefan Schlechtweg, Bernhard Preim, Ilka
Hertel, and Gero Strauss, Enhancing Slice-based Visuaizations of Medical
Volume Data, EuroVis, 2006, pp. 123–130.

[TPvB+03] H. Timinger, V. Pekar, J. von Berg, K. Dietmayer, and M. Kaus, Inte-
gration of interactive corrections to model-based segmentation algorithms,
Bildverarbeitung für die Medizin (2003), 171–175.

[vBVN04] C.M. van Bemmel, M.A. Viergever, and W.J. Niessen, Semiautomatic
segmentation and stenosis quantification of 3D contrast-enhanced MR an-
giograms of the internal carotid artery, Magnetic resonance in medicine 51

(2004), no. 4, 753–760.

[VFSG06] Ivan Viola, Miquel Feixas, Mateu Sbert, and Meister Eduard Groller,
Importance-Driven Focus of Attention, IEEE TVCG 12 (2006), no. 5, 933–
940.

[VFSH01] P.P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich, Viewpoint selec-
tion using viewpoint entropy, Vision Modeling and Visualization, 2001,
pp. 273–280.

[VKG04] Ivan Viola, Armin Kanitsar, and Meister Eduard Groller, Importance-
Driven Volume Rendering, IEEE Vis ’04, 2004, pp. 139–146.

161

Bibliography

[VMN08] P.P. Vázquez, E. Monclús, and I. Navazo, Representative views and paths
for volume models, Smart Graphics, 2008, pp. 106–117.

[VP04] Vivek Verma and A. Pang, Comparative flow visualization, IEEE TVCG 10

(2004), no. 6, 609 – 624.

[vPBB+10] R. van Pelt, J.O. Bescós, M. Breeuwer, R.E. Clough, M.E. Groller, B. ter
Haar Romenij, and A. Vilanova, Exploration of 4D MRI blood flow using
stylistic visualization, IEEE TVCG 16 (2010), no. 6, 1339–1347.

[WBSW07] R. Wang, T. Benner, AG Sorensen, and VJ Wedeen, Diffusion Toolkit: A
Software Package for Diffusion Imaging Data Processing and Tractography,
Proc. Intl. Soc. Mag. Reson. Med, vol. 15, 2007, p. 3720.

[WF97] C. Ware and D. Fleet, Context sensitive flying interface, ACM I3D, 1997,
pp. 127–ff.

[WGC+08] David Williams, Soren Grimm, Ernesto Coto, Abdul Roudsari, and
Haralambos Hatzakis, Volumetric Curved Planar Reformation for Virtual
Endoscopy, IEEE TVCG 14 (2008), no. 1, 109–119.

[WKL99] D. Weinstein, G. Kindlmann, and E. Lundberg, Tensorlines: Advection-
diffusion based propagation through diffusion tensor fields, Proceedings of the
conference on Visualization’99: celebrating ten years, IEEE Computer
Society Press, 1999, pp. 249–253.

[WMM+02] C.F. Westin, SE Maier, H. Mamata, A. Nabavi, FA Jolesz, R. Kikinis,
et al., Processing and visualization for diffusion tensor MRI, Medical image
analysis 6 (2002), no. 2, 93–108.

[WNV00] O. Wink, W.J. Niessen, and M. A. Viergever, Fast Delineation and Vi-
sualization of Vessels in 3D Angiographic Images, IEEE Med. Imaging 19

(2000), no. 4, 337–346.

[WO90] Colin Ware and Steven Osborne, Exploration and virtual camera control in
virtual three dimensional environments, ACM I3D, 1990, pp. 175–183.

[Woj06] Adam Wojciechowski, Potential field based camera collisions detection in a
static 3D environment, MG&V 15 (2006), no. 3, 665–672.

[WOS+11] L. Wachsmuth, K Obrusnik, F. Schmid, S. Diepenbrock, C. Schulte zu
Berge, S. Albrecht, T. Kuhlmann, and C. Faber, High-resolution separation

162

Bibliography

of adjacent fiber bundles by fast in vivo DTI-EPI of the mouse brain, ESMRMB
Congress, oct 2011, Poster.

[WS10] C. Wang and Ö. Smedby, Integrating automatic and interactive methods
for coronary artery segmentation: let the PACS workstation think ahead,
International journal of computer assisted radiology and surgery 5

(2010), no. 3, 275–285.

[XH98] D. Xiao and R. Hubbold, Navigation guided by artificial force fields, ACM
CHI, 1998, pp. 179–186.

[YZH+05] Y. Yang, L. Zhu, S. Haker, A. Tannenbaum, and D. Giddens, Harmonic
skeleton guided evaluation of stenoses in human coronary arteries, Med.
Image Comput. Comput. Assist. Interv., 2005, pp. 490–497.

[ZF99] R. Zeleznik and A. Forsberg, UniCam-2D gestural camera controls for 3D
environments, ACM I3D, 1999, pp. 169–173.

[ZHT+02] Lei Zhu, S. Haker, A. Tannenbaum, S. Bouix, and K. Siddiqi, Angle-
preserving mappings for the visualization of multi-branched vessels, Image
Processing 2002, vol. 2, 2002, pp. 945–948.

[ZHT05] Lei Zhu, S. Haker, and A. Tannenbaum, Flattening maps for the visu-
alization of multibranched vessels, IEEE Med. Imaging 24 (2005), no. 2,
191–198.

[ZSH96] M. Zockler, D. Stalling, and H.C. Hege, Interactive visualization of 3D-
vector fields using illuminated stream lines, Visualization’96. Proceedings.,
IEEE, 1996, pp. 107–113.

163

Acronyms

CPU central processing unit

CT computed tomography

DTI diffusion tensor imaging

DVR direct volume rendering

EEP entry-exit points (ray parameters)

FPS frames per second

GLSL OpenGL shading language

GPU graphics processing unit

GUI graphical user interface

MIP maximum intensity projection

MRI magnetic resonance imaging

OpenCL open computing language

OpenGL open graphics library

PET positron emission tomography

ROI region of interest

TF transfer function

165

