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Zusammenfassung [Summary]

Die Fähigkeit schlussfolgernd zu denken ist eine zentrale Voraussetzung für Lernen und Problem-
lösen. Sie wird als wichtige Kompenente menschlicher Intelligenz aufgefasst. Seit Beginn des 20.
Jahrhundert wurde eine Vielzahl von Messinstrumenten entwickelt, mit denen Ausprägungen der bei-
den Komponenten schlussfolgernden Denkens (Induktion und Deduktion) erfasst werden können.

Während in der psychologischen Grundlagenforschung große Fortschritte bei der Beschreibung und
Erklärung von menschlicher Wahrnehmung und Informationsverarbeitung gemacht wurden, sind diese
Erkenntnisse bisher nur kaum in die Konstruktion von diagnostischen Tests zur Erfassung der Intel-
ligenz im Allgemeinen und des schlussfolgernden Denkens im Speziellen eingeflossen. Häufig werden
in Anwendungskontexten veraltete Messinstrumente eingesetzt, die nur unzureichend die Prozesse
menschlicher Intelligenz abbilden, und über deren Konstruktvalidität – abgesehen davon, dass sich in
der Regel recht gut externe Erfolgsgrößen wie Studien- oder Berufserfolg vorhersagen lassen – wenig
bekannt ist.

Methoden der regelgeleiteten automatischen Aufgabengenerierung (AIG) ermöglichen die Berück-
sichtigung von kognitiven Theorien und Modellen bereits während der Neukonstruktion von Testver-
fahren. Ziel dieser Methoden ist es, Schwierigkeiten von Testaufgaben aufgrund der Teilschwierigkeiten
der kognitiven Prozesse vorherzusagen, die für die Aufgabenlösung erforderlich sind. Mithilfe von so-
genannten erklärenden Item Response Modellen können Schwierigkeitsparameter geschätzt werden
und die Übereinstimmung von verhergesagten und tatsächlichen Schwierigkeiten, und somit die Eig-
nung des jeweiligen kognitiven Modells zur Beschreibung der Testleistungen – oder umgekehrt: die
Konstruktvalidität des Testverfahrens –überprüft werden. Erklärende IRT Modelle können somit einen
Beitrag zu der Frage “was eigentlich gemessen wird” wenn ein Intelligenztest bearbeitet wird, leisten
und Rückschlüsse auf die Gültigkeit von Theorien kognitiver Verarbeitung ermöglichen. Item-Cloning
Ansätze beziehen sich auf die Frage, wie parallele Testversionen entwickelt werden können, deren Auf-
gaben strukturell und psychometrisch den Aufgaben einer Ausgangsversion entsprechen. Beim com-
putergestützten adaptiven Testen werden beispielsweise große Mengen strukturgleiche Items benötigt,
deren Konstruktion und Kalibrierung durch Item Cloning Techniken stark vereinfacht werden kann.

Die vorliegende Arbeit beschäftigt sich mit drei Anwendungen von AIG im Kontext der Erfassung
schlussfolgernden Denkens.

Die erste Studie, “The Figural Analogy Test (FAT): Item Generation and Contruct Validation”,
beschreibt die Konstruktion und erste Validierung eines neuen figuralen Analogietests. Im Rahmen
einer Studie mit N=308 Studierenden wird der Einfluss verschiedener Konstruktionsparameter auf die
Aufgabenschwierigkeit geprüft. Ziel der Testentwicklung war es, einen rein figuralen, also vollkom-
men sprach- und numerikfreien, Analogietest zu konstruieren, dessen Schwierigkeiten sich auf Basis
eines kognitiven Modells vorhersagen lassen. Bei der Bearbeitung des FAT müssen die Testpersonen
unterschiedlich komplexe räumliche Relationen zwischen abstrakten Figuren erkennen und analog auf
andere Figuren übertragen. Die Arbeit baut auf einer Arbeit von Beckmann (2008) auf, die einen
figuralen Analogietest basierend auf alphanumerischen Symbolen vorgestellt hat. Zwei Forschungs-
fragen sind Gegenstand der empirischen Studie. Erstens wird überprüft, ob sich Itemschwierigkeiten
des neuen Tests auf Basis eines Sets von vorher spezifizierten strukturellen Parametern erklären und
vorhersagen lassen. Zweitens wird getestet, ob die geschätzten Modellparameter im Einklang mit
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kognitiven Theorien des figural-räumlichen Denkens und analogen Schlussfolgerns stehen. Eine Reihe
von spezifischen Hypothesen wird getetest. Verschiedene erklärende IRT Modelle werden verglichen,
unter anderem Modelle mit Personen-mal-Item Interaktionen zur Prüfung von facetten-spezifischen
Geschlechtseffekten. Alle Parameterwerte fallen im Einklang mit den Hypothesen aus. Außerdem wird
gezeigt, dass Geschlechtsunterschiede, wie auf Basis von Theorien räumlicher Fähigkeiten erwartet,
nur für bestimmte Itemmerkmale auftreten.

Die zweite Studie, “Development of the Number Series Test (NST): Item-generation and Investiga-
tion of Parallel Test Forms”, beschreibt die Entwicklung eines Konstruktionsansatzes zur Generierung
von Zahlenreihenaufgaben. Basierend auf Theorien des numerischen Schlussfolgerns und früherer
Arbeiten zu Zahlenreihen, wird ein neuer Ansatz vorgeschlagen, auf Basis dessen sich neue Zahlen-
reihenaufgaben generieren lassen. Der Generierungsansatz wird anhand von Daten einer Studenten-
stichprobe (N=406) überprüft, die jeweils zwei strukturgleiche Testformen plus einen Aufwärmdurch-
lauf des neuen Aufgabentyps bearbeiteten. Dabei wird die Äquivalenz der Aufgaben geprüft, sowie
der Einfluss von Oberlfächenmerkmalen auf Lösungsprozesse und die Attraktivität von bestimmten
Falschlösungen betrachtet. Erklärende IRT Modelle verschiedener Komplexitätsstufen werden ver-
glichen. Die Ergebnisse der Studie zeigen, dass parallele Testformen auf Basis des neuen Regelsets
konstruiert werden können wenn Quellen für unerwünschte Schwierigkeitsvariation kontrolliert wer-
den. Itemschwierigkeiten können zu großen Teilen durch die relationale Komplexität von jeweils zwei
aufeinanderfolgenden Zahlen erklärt werden. Zudem deuten die Ergebnisse auf hinreichende Robus-
theit bezüglich von Itemoberflächenmerkmalen hin. Korrelationen mit schlussfolgerndem Denken und
Schulnoten bestätigen die Validität des NST.

Die dritte Studie, “A cross-cultural Investigation of the Latin Square Task”, beschreibt die Über-
prüfung der interkulturellen Validität eines figuralen Tests vom Typ Lateinische Quadrate zur Erfas-
sung des schlussfolgernden Denkens anhand Stichproben russischer (N=201) und deutscher (N=452)
Studierender. Zum Aufgabentyp Lateinische Quadrate, welcher Ähnlichkeiten mit den beliebten
SUDOKU-Rätseln aufweist, existieren bereits eine Vielzahl von Befunden, unter anderem zur automa-
tischen Aufgabengenerierung und zu Retest-Effekten. Die vorliegende Studie ergänzt diese Anwendun-
gen um eine kulturvergleichende Perspektive. Dabei wir überprüft, inwieweit die der Aufgabenlösung
zugrunde liegenden Prozesse unabhängig von der Kulturzugehörigkeit der Testperson sind, oder ob
– wie bei vielen kognitiven Tests der Fall – Verzerrungen im Sinne von Differential Item Functioning
(DIF) zugunsten einer kulturellen Gruppierung auftreten. Ergänzend werden Ergebnisse von Differen-
tial Facet Functioning (DFF) Analysen berichtet um zu überprüfen, ob DIF Effekte auf Facettenebene
abgebildet und vorhergesagt werden können. Während die Ergebnisse der Studie keine Anzeichen auf
bedeutende Unterschiede hinsichtlich der Konstruktvalidität der Testaufgaben zeigen, gibt es deutliche
Hinweise auf Differential Item Functioning für die beiden Studentengruppen. Qualitative Analysen der
Testitems deuten darauf hin, dass DIF möglicherweise eher durch bestimmte Oberflächenmerkmale,
und nicht nur das Auftreten bestimmter, kognitiv komplexer strukureller Parameter zustande kommt.

Insgesamt liefert diese Arbeit aus inhaltlicher Sicht einen Beitrag zu einem besseren Verständnis
der Konstruktvalidität von Testverfahren des schlussfolgernden Denkens. Mit engem Bezug zu spez-
ifischen Theorien kognitiver Verarbeitung werden neue Konstruktionsansätze für zwei Testverfahren
vorgestellt, die für Anwendungen im Bereich des computergestützten adaptiven Testens Verwendung
finden könnten. Die hier beschriebenen Studien haben den Charakter von Pilotstudien für die Entwick-
lung vollends automatischer Itemkonstruktionsprogramme. Eine Computersoftware zur automatischen
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Generierung und Vorgabe von Testaufgaben auf Basis der Ergebnisse dieser Dissertation ist momentan
in Entwicklung. Aus methodischer Sicht illustriert diese Arbeit die Anwendung von erklärenden IRT
Modellen zur Vorhersage von Itemschwierigkeiten und Erstellung von Paralleltests, sowie mögliche
Anwendungen zur Prüfung der Robustheit von Itemgenerierungsansätzen psychometrischer Testver-
fahren.

vi



Contents

1. General introduction 1
1.1. Research goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Theoretical background 8
2.1. Reasoning ability as a construct . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. Cross-cultural validity of reasoning tests . . . . . . . . . . . . . . . . . . . 12

2.2.1. The term “culture” in cross-cultural studies . . . . . . . . . . . . . . 12
2.2.2. The challenge of “culture-fair” testing . . . . . . . . . . . . . . . . . 14
2.2.3. Cognitive and cultural complexity as possible factors for bias . . . . 18

2.3. Item difficulty modeling and rule-based automatic item generation . . . . . 20
2.4. Explanatory item response modeling . . . . . . . . . . . . . . . . . . . . . 27

2.4.1. Models with item predictors . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2. Models with person predictors . . . . . . . . . . . . . . . . . . . . . 37

2.5. Differential item and facet functioning . . . . . . . . . . . . . . . . . . . . 38

3. The Figural Analogy Test (FAT): Item generation and construct validation 46
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1. Figural-spatial analogies as indicators of fluid intelligence . . . . . . 47
3.1.2. Rule-based generation of figural analogy items . . . . . . . . . . . . 50
3.1.3. Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.1. Development of the new item-generative framework . . . . . . . . . 56
3.2.2. Specific hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.3. Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.4. Instruments and procedure . . . . . . . . . . . . . . . . . . . . . . . 69

3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1. Prediction of item difficulty parameters . . . . . . . . . . . . . . . . 72
3.3.2. Construct validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.1. Conclusions regarding the research questions . . . . . . . . . . . . . 81
3.4.2. Limitations and future prospects . . . . . . . . . . . . . . . . . . . 86

vii



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

4. The Number Series Test (NST): Item generation of parallel forms 90
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.1. Number series items as indicators of reasoning ability . . . . . . . . 91
4.1.2. An information processing model for number series . . . . . . . . . 95
4.1.3. Item difficulty modeling of number series items: Previous attempts

and problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.4. Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2.1. Development of the new item-generative framework . . . . . . . . . 106
4.2.2. Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2.3. Instruments and procedure . . . . . . . . . . . . . . . . . . . . . . . 115

4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.1. Equivalence of parallel test forms . . . . . . . . . . . . . . . . . . . 120
4.3.2. Item difficulty modeling . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3.3. Predictive power of the model . . . . . . . . . . . . . . . . . . . . . 133

4.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.4.1. Conclusions regarding the research questions . . . . . . . . . . . . . 135
4.4.2. Limitations and future prospects . . . . . . . . . . . . . . . . . . . 139

5. A cross-cultural investigation of the Latin Square Task 142
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.1.1. The Latin Square Task . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.1.2. Similarities to the popular number placement game SUDOKU . . . 146
5.1.3. Cross-cultural validity of the LST . . . . . . . . . . . . . . . . . . . 148
5.1.4. Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2.1. Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2.2. Instruments and procedure . . . . . . . . . . . . . . . . . . . . . . . 152

5.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.3.1. Psychometric properties of the LST for the two samples . . . . . . . 155
5.3.2. Item difficulty modeling for the two samples . . . . . . . . . . . . . 158
5.3.3. Differential item functioning analyses . . . . . . . . . . . . . . . . . 161
5.3.4. Differential facet functioning analyses . . . . . . . . . . . . . . . . . 166
5.3.5. Qualitative analyses of DIF in LSTs . . . . . . . . . . . . . . . . . . 172

5.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.4.1. Conclusions regarding the research questions . . . . . . . . . . . . . 179
5.4.2. Limitations and future prospects . . . . . . . . . . . . . . . . . . . 181

6. Epilogue 186
6.1. Prediction of item difficulties by means of explanatory IRT models . . . . . 187
6.2. Understanding and enhancing construct validity . . . . . . . . . . . . . . . 189

viii



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

6.3. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

References 193

A. Study 1 – Additional Materials 212

B. Study 2 – Additional Materials 230

C. Study 3 – Additional Materials 235

ix



List of Tables

1.1. List of abbreviations frequently used in this thesis . . . . . . . . . . . . . . 7

2.1. Reasoning in prominent structural models of human intelligence . . . . . . 10
2.2. Prominent content areas for rule-based automatic item generation . . . . . 21
2.3. Explanatory and descriptive IRT models . . . . . . . . . . . . . . . . . . . 28
2.4. Differences in model foci between explanatory IRT models with different

types of design matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5. Overview of methods for detecting differential item functioning for two groups 41
2.6. Structure of a contingency table for non-IRT DIF methods . . . . . . . . . 41

3.1. Spatial rules and cognitive processes in figural-spatial tasks (Study 1) . . . 49
3.2. Item-generative framework behind Beckmann’s analogy test: Radicals . . . 53
3.3. Possible rule-combinations in the FAT (Study1) . . . . . . . . . . . . . . . 64
3.4. Descriptives for the FAT and other measures used (Study 1) . . . . . . . . 71
3.5. Classical item statistics, Rasch parameters, and item fit statistics (Study 1) 73
3.6. Standardized absolute errors for the alignment of rescaled LLTM and Rasch

parameters (Study 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.7. Explanatory IRT modeling for the FAT: item difficulty modeling (Study 1) 77
3.8. Explanatory IRT modeling for the FAT: gender effects (Study 1) . . . . . . 78
3.9. Correlations between FAT scores and other variables (Study 1) . . . . . . . 79
3.10. Prediction of FAT performance by other tests and gender (Study 1) . . . . 80
3.11. Prediction of math grades by FAT scores and other tests (Study 1) . . . . 81

4.1. Examples of typical number series tasks . . . . . . . . . . . . . . . . . . . . 91
4.2. LLTM parameter estimates for item facets manipulated in Porsch’s study . 98
4.3. Design matrix for item types of the NST (Study 2) . . . . . . . . . . . . . 116
4.4. Detailed description of all item types of the NST (Study 2) . . . . . . . . . 117
4.5. Summary statistics for all instruments (Study 2) . . . . . . . . . . . . . . . 120
4.6. Correlations of the three parallel item sets with math grade and g (Study 2)120
4.7. Three parallel NST sets, answer frequencies and item statistics . . . . . . . 122
4.8. “Virtual item model” results, comparison of set A and set B (Study 2) . . . 124

x



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

4.9. “Virtual item model” results, comparison of warm-up items and set A
(Study 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.10. LR model comparison tests for the the three different explanatory IRT
models (Study 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.11. Rescaled item difficulty parameters for two different LLTM models for the
NST (Study 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.12. LLTM modeling for theNST (Study 2) . . . . . . . . . . . . . . . . . . . . 131
4.13. Frequent wrong answers for the NST and possible explanations (Study 2) . 133
4.14. Predictive power and sparseness of different explanatory IRT models for

the NST (Study 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1. Means and standard deviations for the German and Russian sample (Study
3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.2. Rasch parameters and item fit statistics for the LST in both samples (Study
3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.3. Correlations between the LST and other variables (Study 3) . . . . . . . . 157
5.4. LLTM with basic design matrix for each sample (Study 3) . . . . . . . . . 159
5.5. LLTM with extended design matrix for each sample (Study 3) . . . . . . . 160
5.6. Results for country-dependent DIF in the LST (Study 3) . . . . . . . . . . 162
5.7. Results for pre-knowledge dependent DIF in the LST (Study 3) . . . . . . 163
5.8. Surface characteristics and applicability of two simple solution heuristics

for LST items flagged as DIF . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.9. LLTM & DFF modeling for the total sample (Study 3) . . . . . . . . . . . 184
5.10. Model fit indices for the different DFF-models (Study 3) . . . . . . . . . . 185

A.1. Design matrix for the 40-item FAT investigated in this study . . . . . . . . 227

B.1. Correlations of responses on WT items with responses of non-WT items,
general cognitive ability, and scholastic performance (Study 2) . . . . . . . 233

B.2. Results for separate LLTM models for Russian and German test takers
(Study 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

C.1. Sum-normed RM item difficulty parameters for full Russian sample and
two subsamples (Study 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

C.2. Frequencies of A, B, C DIF for items that (not) allow for a reduction of
considerable response alternatives (Study 3) . . . . . . . . . . . . . . . . . 251

C.3. Frequencies of A, B, C DIF for items that (not) allow for the application
of an easy falsification strategy (Study 3) . . . . . . . . . . . . . . . . . . . 251

xi



List of Figures

2.1. Process model of reasoning based on stages distinguished by Wilhelm (2005) 11
2.2. Four essential steps of the automatic item generation process . . . . . . . . 23
2.3. Illustration of different possible design matrices on the continuum of ex-

planatory IRT models: Number of radicals . . . . . . . . . . . . . . . . . . 35
2.4. Illustration of different possible design matrices on the continuum of ex-

planatory IRT models: RM, LLTM, and Item Cloning . . . . . . . . . . . . 36
2.5. Uniform and nonuniform-DIF in terms of the ICC of an item . . . . . . . . 39

3.1. Process model of analogical reasoning (Study 1) . . . . . . . . . . . . . . . 48
3.2. Example Item with two rules from Beckmann’s analogy test (Study 1) . . . 52
3.3. Sample FAT item with 9 response alternatives (Study 1) . . . . . . . . . . 57
3.4. Combination of main shapes and features into figural objects in the FAT

(Study 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5. Exemplary illustration of all rules that apply to the main shape in the FAT

(Study 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6. Exemplary illustration of all rules that apply to the features in the FAT

(Study 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7. Illustration of the complexity parameter “Type of Form” in the FAT (Study

1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.8. Exemplary illustration of the complexity parameter “Type of Form” in two

FAT items (Study 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.9. Illustration of the complexity parameter “Additional Feature” in the FAT

(Study 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.10. Exemplary illustration of the complexity parameter “Random Change of

Feature Characteristics” in two FAT items (Study 1) . . . . . . . . . . . . 63
3.11. Examples for incidentals in the FAT (Study 1) . . . . . . . . . . . . . . . . 65
3.12. Overview of all possible main shapes in the current AIG framework for the

FAT (Study 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.13. RM and rescaled LLTM parameters for the FAT (Study 1) . . . . . . . . . 72
3.14. Distribution of standardized absolute errors for LLTM 1 and LLTM 2

(Study 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xii



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

4.1. Overview of different possible attributes of number series tasks (Study 2) . 93
4.2. Process model for number series (Study 2) . . . . . . . . . . . . . . . . . . 96
4.3. Four example NST items generated based on the new AIG framework

(Study 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4. Illustration of surface differences in structurally identical items caused by

variation of item incidentals in the NST (Study 2) . . . . . . . . . . . . . . 112
4.5. Test design and testing time for the NST (Study 2) . . . . . . . . . . . . . 118
4.6. Item parameters across parallel sets (Study 2) . . . . . . . . . . . . . . . . 123
4.7. Alignment of RM item difficulties and rescaled LLTM difficulties for the

two LLTM models for the NST (Study 2) . . . . . . . . . . . . . . . . . . . 128
4.8. Relationship of RM and rescaled item parameters for the two LLTMmodels

for the NST (Study 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.9. Parameter Differences in logits between RM and rescaled LLTM item dif-

ficulties (Study 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.10. Possible alternative future versions of the NST (Study 2) . . . . . . . . . . 138

5.1. Cognitive complexity determinants in the LST: Binary, ternary and quar-
ternary processing (Study 3) . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2. Example SUDOKU puzzle (Study 3) . . . . . . . . . . . . . . . . . . . . . 147
5.3. Incidental item surface characteristics in the LST: example of two items

based on the same item radicals (Study 3) . . . . . . . . . . . . . . . . . . 149
5.4. Overview of country-dependent DIF in the LST . . . . . . . . . . . . . . . 164
5.5. Overview of pre-knowledge dependent DIF in the LST . . . . . . . . . . . 165
5.6. Number of items flagged as cDIF and sDIF by the five methods used (Study

3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.7. Cross-cultural DFF in the LST (Study 3) . . . . . . . . . . . . . . . . . . . 171
5.8. LST items that allow or not allow for the application of a quick exclusion

of response alternatives strategy (Study 3) . . . . . . . . . . . . . . . . . . 174
5.9. LST items that allow for application of a quick falsification heuristic (Study

3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.10. LST items that allow both for a quick reduction of response alternatives

and for application of a falsification heuristic (Study 3) . . . . . . . . . . . 176
5.11. LST items that allow neither for a quick reduction of response alternatives

nor for application of a falsification heuristic . . . . . . . . . . . . . . . . . 178

A.1. Figural Analogy Test: Items 1-3 . . . . . . . . . . . . . . . . . . . . . . . . 213
A.2. Figural Analogy Test: Items 4-6 . . . . . . . . . . . . . . . . . . . . . . . . 214
A.3. Figural Analogy Test: Items 7-9 . . . . . . . . . . . . . . . . . . . . . . . . 215
A.4. Figural Analogy Test: Items 10-12 . . . . . . . . . . . . . . . . . . . . . . . 216
A.5. Figural Analogy Test: Items 13-15 . . . . . . . . . . . . . . . . . . . . . . . 217
A.6. Figural Analogy Test: Items 16-18 . . . . . . . . . . . . . . . . . . . . . . . 218
A.7. Figural Analogy Test: Items 19-21 . . . . . . . . . . . . . . . . . . . . . . . 219

xiii



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

A.8. Figural Analogy Test: Items 22-24 . . . . . . . . . . . . . . . . . . . . . . . 220
A.9. Figural Analogy Test: Items 25-27 . . . . . . . . . . . . . . . . . . . . . . . 221
A.10.Figural Analogy Test: Items 28-30 . . . . . . . . . . . . . . . . . . . . . . . 222
A.11.Figural Analogy Test: Items 31-33 . . . . . . . . . . . . . . . . . . . . . . . 223
A.12.Figural Analogy Test: Items 34-36 . . . . . . . . . . . . . . . . . . . . . . . 224
A.13.Figural Analogy Test: Items 37-39 . . . . . . . . . . . . . . . . . . . . . . . 225
A.14.Figural Analogy Test: Item 40 . . . . . . . . . . . . . . . . . . . . . . . . . 226
A.15.Optimal design SAS input file (Syntax) . . . . . . . . . . . . . . . . . . . 226
A.16.Optimal design SAS output file . . . . . . . . . . . . . . . . . . . . . . . . 228
A.17.Item characteristic curves for all 40 FAT items (Study 1) . . . . . . . . . . 229

B.1. Item characteristic curves for all 33 NST items (Study 2) . . . . . . . . . . 231
B.2. “Wrong-track” items (Study 2) . . . . . . . . . . . . . . . . . . . . . . . . . 232

C.1. LST: Items 1-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
C.2. LST: Items 7-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
C.3. LST: Items 13-18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
C.4. LST: Items 19-24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
C.5. LST: Items 25-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
C.6. Category frequencies for all LST: Items, comparison of Russian and Ger-

man samples (Study 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
C.7. Category frequencies for all LST: Items, comparison of Russian and Ger-

man samples (cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
C.8. Frequencies for “not solvable” choices among Russian and German test-

takers (Study 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
C.9. Item characteristic curves for uniform country-DIF based on the logistic

regression model (Study 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
C.10.Item characteristic curves for non-uniform country-DIF based on the logis-

tic regression model (Study 3) . . . . . . . . . . . . . . . . . . . . . . . . . 245
C.11.Item characteristic curves for uniform country-DIF based on Lord’s ap-

proach (Study 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
C.12.Item characteristic curves for uniform pre-knowledge-DIF based on the

logistic regression model (Study 3) . . . . . . . . . . . . . . . . . . . . . . 247
C.13.Item characteristic curves for non-uniform pre-knowledge-DIF based on the

logistic regression model (Study 3) . . . . . . . . . . . . . . . . . . . . . . 248
C.14.Item characteristic curves for uniform pre-knowledge-DIF based on Lord’s

approach (Study 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
C.15.Alignment of sum-normed RM item difficulty parameters for full Russian

sample and two subsamples (Study 3) . . . . . . . . . . . . . . . . . . . . . 251

xiv



1
General introduction

Reasoning ability is an important requirement for learning and problems solving and at
the core of what is typically labelled “Intelligence” or g (Spearman, 1923). Since the
beginning of the 20th century, numerous psychological tests have been developed that
measure reasoning ability, and practical applications have demonstrated the importance
of reasoning for the prediction of important outcome variables (see e.g., Ones, Viswes-
varan, & Dilchert, 2005; Schmidt & Hunter, 1998). While the practical importance of
assessments has grown rapidly during the last decades, the question of construct validity,
that is whether and how test results actually represent the intended underlying psycho-
logical abilities and skills, is widely ignored in testing practice. Test development has not
kept pace with recent developments in cognitive psychology as well as neuroscience and
related disciplines. While general cognitive ability can be measured with some precision,
the “construct of g is poorly understood” (Carlstedt, Gustafsson, & Ullstadius, 2000, p.
145). Moreover, as Gierl and Lai (2012) stated, “there are currently no published studies
describing either the principles or practices required to develop item models" (p. 27).
Methods of rule-based Automatic Item Generation (AIG; Irvine & Kyllonen, 2002) term

the typically computer-based generation of test items based on a-priori defined algorithms.
Item generation attempts are driven by (at least) two forces. On the one hand, research in
cognitive sciences and the investigation of reasoning processes and resources is an impor-
tant theoretical basis for AIG. As Wilhelm (2005) pointed out, generative item production
can be “a side product of such efforts [efforts in the theoretically driven investigation of
reasoning processes]” (p.388). On the other hand, the need for large calibrated item pools
in international testing settings and enhanced test-efficiency through AIG generates new
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insights into cognitive processing as well. From that perspective, improved construct va-
lidity and a better knowledge of cognitive processes and resources underlying reasoning
performance can be seen as a side product as well. These two “faces” of AIG are reflected
in Drasgow, Luecht, and Bennett’s (2006) distinction of “strong” theory and “weak” theory
approaches. An example of a weak theory approach is given in Gierl and Lai (2012): the
authors mention item cloning where item clones are created based on features of a parent
or family item and “the determinants of item difficulty for the manipulated elements in
the model must be discerned through the guidelines, judgments, and experiences of the
content specialist” (p. 36). While weak models might be sufficient to model items based
on characteristics of such parent items, a core drawback is, according to the authors,
that “relatively few elements can be manipulated in the model because their effect on
the psychometric characteristics or the generated items is poorly anticipated” (Gierl &
Lai, 2012; p. 26). Further, “clones are believed to be easy to detect by coaching and
test preparation companies and, therefore, of limited use in operational testing programs”
(p. 27). Drasgow et al. (2006) recommended adopting weak theory approaches only
when little theoretical knowledge or limited theoretical models on the cognitive processes
underlying item responses are available. On the other hand, item generation based on
“strong” theory is given when a cognitive model is used to define so-called radicals and
incidentals of the item model for predicting the psychometric characteristics of the gen-
erated items (Drasgow et al., 2006; Gierl & Lai, 2012). Speaking with Embretson and
Gorin (2001), “the most important potential for cognitive theory is test design.” (p. 364).
Rule-based item generation approaches allow the integration of psychometric test models
with psychological theories and test-development principles.
It is important to note that, regardless of whether strong or weak item models are used,

there is no guarantee that item models capture the true cognitive processes underlying
test performance. As Box and Draper (1987) stated, “all models are wrong, but some are
useful” (p. 424). This is the case here as well. Item generation models address the concern
that “since Spearman (...) the development of good reasoning tests has been almost an
art form, owing more to empirical trial-and-error than to systematic delineation of the
requirements such tests must satisfy” (Kyllonen & Christal, 1990, p. 426) by providing an
empirical base for evaluating construct validity on the item level. However, despite their
potential usefulness in explaining variation in item difficulties the use of item models per
se does not guarantee high validities or capture of true underlying cognitive processes.
Still, if explanatory models can be considered already during the development of new rea-
soning measures (instead of applying such models post-hoc to tests that were developed
in a non-systematic idiosyncratic way), this provides an important basis for practical and
high-stakes applications of generating items automatically and predicting item difficulties
“on-the-fly” as part of computer-adaptive test systems. The investigation of construct
validity can then be extended to the item and item-facet level. As Bejar (2012) stated,
“there is a symbiotic relationship between theory and test development based on item gen-
eration (...) when items in a test become a psychological experiment, which in turn may
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lead to the improvement of both theories and tests” ’ (p. 45). If the intend is not only pre-
dicting item difficulties based on models that are consistent with theoretical assumptions,
but capturing actual underlying cognitive processes, other methods in addition to mod-
elling item difficulties based on explanatory rules, such as think-aloud studies, response
time analysis, eye-tracking or neurophysiological methods should be applied. Establishing
and validating strong theory item models for cognitive tests used in testing practice is
only a first, but important, step towards a full understanding of the cognitive processes
underlying response processes for reasoning tests.

1.1. Research goals

The focus of this thesis is on modeling the cognitive task structure of reasoning items and
developing rule-based item generation models that link item generation with underlying
theories of reasoning ability, that is, a “strong” theory approach (Drasgow et al., 2006)
is taken where cognitive models are used to define item generation models. Two new
rule-based item generation frameworks for a figural-spatial and a numerical reasoning
test are presented and tested empirically. In addition, the validity of an existing figural
reasoning measure in a cross-cultural context and the generalizability of the underlying
item-difficulty model across heterogeneous test-taker populations are tested. Two general
research goals link the three studies:

1. First, the usefulness of item-generation models in predicting item difficulties is in-
vestigated. An accurate prediction of item difficulties by the set of underlying
pre-specified task parameters is a necessary condition for most applications of AIG
in practical testing contexts, especially when AIG is combined with computerized-
adaptive testing technology. The goal here is investigating the usefulness of existing
psychometric item difficulty models for item difficulties for different types of reason-
ing items under realistic conditions. For instance, how robust are item generation
frameworks against variation of item surface characteristics? Are item-difficulty
models generalizable for test-takers from different cultural backgrounds? Are struc-
turally parallel test forms also parallel in a psychometric sense?

2. Second, the value of item-generation models for a deeper understanding and im-
provement of construct validity of reasoning measures is investigated. For instance,
to what extent can item-generation models improve the understanding of what a test
measures and how test scores relate to underlying abilities and skills? How can item
facets be defined and item features be designed to guarantee definite solutions? Are
parameter estimates for item facets truly in line with theoretical assumptions? Can
facet-level analyses contribute to an identification of drivers for group performance
differences?
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From a theoretical point of view, the three studies presented here contribute to the
clarification of what reasoning tests measure and how tests can be designed to be consistent
with cognitive theories about information processing. From an applied point of view,
the studies are pilot studies for the development of fully computerized automatic item
generators that are suitable to design large numbers of new test items with sufficiently well
predicted item difficulties “on-the-fly” during testing in high-stakes large-scale settings.

1.2. Outline

This thesis is structured as follows. First, a general theoretical background is given, then
three studies are presented that address the two general research goals. Study 1 focuses
on the construct validation of a strong-theory item-generation framework, study 2 focuses
on the question whether structurally parallel test forms are also psychometrically parallel,
and study 3 focuses on the cross-cultural validity of an established AIG framework. The
thesis closes with an Epilogue that discusses the contribution of the three studies to the
two general research goals. Findings of all three studies are discussed with respect to the
overall objectives. This includes a discussion of the limitations of the studies presented
here and possible future directions.

Study 1 Chapter 3 describes the development of a new reasoning measure, the Figural
Analogy Test (FAT) that extends earlier research by Beckmann (2008) who developed an
analogy measure based on alphanumerical symbols and figural-spatial rules. The current
study aims at the development and validation of a purely figural measure that requires
no mathematical or verbal abilities. The generative framework is exclusively based on
theories of analogical reasoning, specifically research on geometric analogies and spatial
ability. The validity of the new item-generative framework is tested in an empirical study
with N = 308 university students. Two main research questions are addressed, first, the
appropriateness of the set of pre-specified item radicals to model item difficulties in terms
of a reliable prediction of difficulty parameters. Second, it is tested whether the parameter
estimates of the item-difficulty model are in line with assumptions about figural-spatial
processing and analogical reasoning. A set of specific hypotheses related to the impact
of each of the item radicals manipulated are tested. Several explanatory IRT models
are compared, including models with item-predictors only and models with person-by-
item interactions. Results show that item difficulties can be predicted based on the new
AIG framework. Absolute parameter differences between true and predicted difficulty
parameters are, however, considerable and constitute a threat to potential operational
application of on-the-fly item generation and estimation. All parameters are in line with
theories of figural-spatial reasoning. Gender differences are driven by specific item fea-
tures. Furthermore, scores on the new test correlate with other established measures of
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fluid reasoning and spatial ability and demonstrate incremental validity for the prediction
of school grades. Future studies should investigate the generalizability of these results to
fully automatically generated FAT items and the feasibility of the item difficulty modeling
approach in computerized adaptive testings scenarios.

Study 2 Chapter 4 describes the development of a new item-generative framework for
generating number series items. The focus of this study is on the question whether item-
generation models can facilitate the construction of structurally and psychometrically
parallel test forms. Two main research questions are addressed. First, the appropriate-
ness of the new item-generative framework for the construction of parallel tests; second,
whether estimates of the item-difficulty model are in line with findings from cognitive
psychology on mathematical processing and numerical reasoning. The validity of the
framework, especially for the generation of parallel test forms, is investigated in a study
with N = 406 university students. Virtual item models are applied to test the stability
of item parameters across parallel item sets. Warm-up effects are distinguished from true
parallel-test effects. Results demonstrate that parallel forms can be constructed based on
a generative framework if sources for heterogeneity in item difficulties are carefully con-
trolled. Item difficulty is predominantly determined by the relational complexity of two
consecutive numbers. Complexity levels could be manipulated considerably by combining
a set of relatively simple arithmetic rules requiring only addition and subtraction. LLTM
modeling results show that item difficulties could be well explained by underlying radicals
when both arithmetic rules and their combination principles were included as item predic-
tor variables. The item-generative framework was shown to be relatively robust against
irrelevant surface patterns in the number of a series caused by random incidentals. After a
warm-up run, item difficulties could be predicted very reliably for two parallel test forms.
Correlations with a general reasoning measure and maths grades further confirmed the
criterion-related validity of the new instrument.

Study 3 Chapter 5 investigates the cross-cultural validity of the Latin Square Task
(LST), a figural reasoning measure that can be generated based on a set of item-generative
rules. Performance differences on reasoning measures in cross-cultural settings are a well
documented finding, but still only little is known about the bias-generating processes
on the item-level. Two research questions are addressed. First, it is asked whether rela-
tional complexity theory is a cross-culturally valid framework to generate figural reasoning
items. Second, it is investigated whether item difficulties are comparable across countries
or whether bias on the item level (i.e., Differential Item Functioning) and on the facet level
(i.e., Differential Facet Functioning; see chapter 2.5 for a definition of DIF) is present.
Qualitative analyses of DIF versus non-DIF items were conducted to achieve a better
understanding of the generating processes for DIF in the LST. Cultural background was
investigated in a broad sense by comparing students from two countries representing tra-
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ditionally individualistic (Germany, N = 452) versus collectivistic (Russia, N = 201)
cultures. Countries of medium cultural distance and moderate differences in school sys-
tems and educational expenditures per child were chosen. Additionally, performance on
the LST dependent on the (non-)existence of test-specific pre-knowledge was investigated.
Knowledge of the number-placement game SUDOKU was assessed as a proxy of relevant
pre-knowledge that might facilitate LST performance. Results confirm the cross-cultural
validity of the LST in a broad sense but also point to problems with the functioning of
individual items in a cross-cultural context. Item surface characteristics could be identi-
fied that contribute to the emergence of DIF and should be controlled in future studies
or applications of the LST.

Common themes and differences between the three studies presented While stud-
ies 1 and 2 present the development of new rule-based item generation frameworks, study
3 represents an application of a previously developed and validated item type to a cross-
cultural context. The three studies all address the two overall research goals, but their
focus is different. Study one is designed to develop and validate an item generation model
for figural reasoning items, study two investigates the feasibility of generating parallel test
forms of number series items based on a newly proposed generation model. Study three
investigates differential item functioning and possible factors for the emergence of DIF
in a cross-cultural setting for an established figural reasoning measure with an existing
underlying cognitive item model.
The common theme of the three studies is the use of explanatory IRT models to in-

vestigate students’ performance on non-verbal reasoning tests. In all three studies, the
population of interest is university students. Test-takers received comprehensive instruc-
tions of all item-generative rules at the beginning of the testing session and a set of
warm-up items was administered prior to actual test items. Explanations of rules and
warm-up items were included based on positive impact on test validity reported in the
literature. For instance, Anastasi (1981) recommended to implement short orientation
and warm-up sessions to establish comparable testing conditions for all subjects. Warm-
up items allow subjects to learn the correct solution strategies and then utilize them on
subsequent problems (Verguts & De Boeck, 2002). Beckmann (2008) demonstrated that
an explanation of all rules to the test-takers can actually increase the validity of abstract
reasoning items. While all studies involve warm-up runs their length differs across studies
with study 2 containing a much longer warm-up run than studies one and three. The fact
that only few warm-up items were used in studies 1 and 3 constitutes a major limitation
for these studies.
DIF across culturally heterogeneous populations is only investigated in study 3. The

first two studies aim at the development of two new item types and a first validation
of the internal cognitive structure of these items. Integrating psychometric test models
with psychological theories and item-generation frameworks is a necessary step towards a
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Table 1.1.
List of abbreviations frequently used in this thesis

Abbreviation Spelled-out form

AIC Akaike Information Criterion
AIG Automatic item generation
BD Beslow-Day
BIC Bayesian Information Criterion
CFT Culture Fair Test
DFF Differential Facet Functioning
DIF Differential Item Functioning
FAT Figural Analogy Test
ICC Item Characteristic Curve
ICM Item Cloning Model
IDM Item Difficulty Modeling
IRT Item Response Theory
LLTM Linear Logistic Test Model
LR-LLTM Latent Regression LLTM
LST Latin Square Task
MH Mantel-Haenszel
NST Number Series Test
RCT Relational Complexity Theory
RM Rasch Model
3DW Three-dimensional cube test

better understanding of the construct validity of the new item types. While it is necessary
to test the cross-cultural fairness of both the FAT and the NST before items could be
administered operationally in cross-national settings, this goes beyond the goals of this
thesis. Study 3, though, illustrates based on an established reasoning measure how facet
level analyses might benefit the detection and explanation of item-by-country effects (i.e.,
DIF). Future studies are needed to cross-validate these findings and to investigate the
cross-cultural validity of the two new items types described in studies one and two.
Table 1.1 provides a list of abbreviations frequently used throughout the following chap-

ters.
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2
Theoretical background

This chapter provides the reader with the general background that constitutes the the-
oretical basis necessary for understanding the three studies that are presented in the
consecutive chapters.

2.1. Reasoning ability as a construct

The ability to make inferences based on the processes of inductive and deductive reasoning
constitutes a core part of thinking. It has been a main theme of philosophical inquiry
ever since the beginning of scientific endeavor. Thinking and underlying processes have
been studied by philosophers, by cognitive and experimental psychologists as well as
biologists and neuroscientists yielding complex theories of human information processing.
Carroll (1993) has defined cognitive abilities very broadly as abilities “that concern some
class of cognitive tasks” (p. 10). Gottfredson (1997) defined intelligence as “the very
general mental capacity that, among other things, involves the ability to reason, plan,
solve problems, think abstractly, comprehend complex ideas, learn quickly, and learn
from experience.” (p. 13). Guilford (1985) defined intelligence as “a systematic collection
of abilities or functions for processing information of different kinds in various form” (p.
231). The identification and application of rules through induction and deduction is
viewed as a central component of almost all models of human intelligence. Reasoning is
emphasized as a prerequisite for learning and problem solving (see e.g., Sternberg, 1984;
Snow, Federico, & Montague, 1980). Since Binet’s (1903) first introduction of the concept
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of intelligence mainly as an ability to adopt to novel situations, reasoning ability has a
central place in all prominent theories of the structure of intelligence (see e.g., Wilhelm,
2005, for an overview).
Different models and different researchers have used slightly different labels to refer to a

largely equivalent ability construct. For instance, Carpenter, Just, and Shell (1990) used
the term analytic intelligence to refer to the “ability to reason and solve problems involving
new information,without relying extensively on an explicit base of declarative knowledge
derived from either schooling or previous experience” (p. 404). This definition is almost
completely equivalent to what others have labelled fluid intelligence or gf (Cattell, 1971).
Fluid intelligence has been shown to be the best predictor of general intelligence g, which
has been defined as the ability of the “eduction of relations and correlates" (Spearman,
1927, p. 165). Also, the term relational reasoning (see e.g., Crone et al., 2009) has been
used extensively, especially cognitive and neurophysiological researchers have used this
label for “the ability to consider relationships between multiple mental representations”
(Crone et al., 2009, p. 55) instead of referring to fluid intelligence. Relational reasoning is
thought to be instrumental in the learning of tasks requiring complex spatial, numerical,
or conceptual relations.
Table 2.1 gives an overview of the most prominent structural models of human intelli-

gence and the role of reasoning in these models. A state-of-the-art overview of intelligence
research can be found in Wilhelm and Engle (2005). The models in Table 2.1 can be cat-
egorized into two groups, that is into single factor (g) theories and variants of multiple-
factor theories. The latter account for the fact that, as Stankov (2005) termed it, human
minds are “far too complex, and individual differences cannot be adequately accounted
for by an overly parsimonious construct” (p. 290). At the same time, most of them do
not deny the existence of an overarching general ability component. For instance, the
Gf-Gc theory distinguishes components of intelligence while at the same time assuming a
higher-order factor g of general reasoning.
Carpenter et al. (1990) stated regarding their analyses of the cognitive processes during

working on complex reasoning tasks that “the processes that distinguish among individuals
are primarily the ability to induce abstract relations and the ability to dynamically manage
a large set of problem-solving goals in working memory.” (p. 404). Working memory as “a
system for the temporary holding and manipulation of information during the performance
of a range of cognitive tasks” (Baddely, 1986, p. 34) was shown to be very closely related
(although not identical) to Reasoning (e.g., Gustafsson & Undheim, 1996; Kyllonen &
Christal, 1990).
The reasoning process can be divided into four stages, out of which three stages involve

the same processes for inductive and deductive reasoning (Wilhelm, 2005). This process
is illustrated in Figure 2.1.
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Table 2.1.
Reasoning in prominent structural models of human intelligence

Author(s) Intelligence
Model

Reasoning in this model

SF Spearman (1927) Theory of general
intelligence (g)

Reasoning as the best single indicator of g; mea-
sures are highly g-loaded and demonstrate low
proportions of specific variance

MF Thurstone (1938);
Thurstone and
Thurstone (1941)

Primary Mental
Abilities

Reasoning as one of 7 primary factors, no dis-
tinction between deductive and inductive rea-
soning

MF Cattell (1971);
Horn and Cattell
(1967)

Gf-Gc Theory Distinction of reasoning along two dimensions
(inductive and deductive, verbal and figural-
spatial)

MF Carroll (1993) Three-stratum
theory

Reasoning constitutes the fluid intelligence (gf )
second-stratum factor; distinction of three com-
ponents (Sequential/deductive reasoning, Induc-
tion, Quantitative Reasoning)

MF Guilford (1967) Structure of Intel-
lect (SOI) model

distinction of four reasoning factors (General
Reasoning, Thurstone’s Induction, Commonal-
ities, Deduction)

MF Jäger (1982) Berlin Intelli-
gence Structure
Model (BIS)

Reasoning as one of four operation facets; dis-
tinction between verbal, quantitative, and spa-
tial reasoning

Note. SF: single-factor model; MF: multiple-factor model

Since the last century, reasoning measures are routinely administered in both educa-
tional and employment settings. Reasoning is one of the most relevant psychological
construct in the prediction of professional work performance (e.g., Ones et al., 2005;
Schmidt & Hunter, 1998).Typical reasoning tasks are figural matrices (e.g., Freund, Hofer,
& Holling, 2008), analogies (e.g., Whitely & Schneider, 1981), latin squares (e.g., Birney,
Halford, & Andrews, 2006) or number series (e.g., LeFevre & Bisanz, 1986; Quereshi
& Seitz, 1993). Test scores can be used to predict important, real-world criteria at a
relatively low test administration cost (Domino & Domino, 2006; Jensen, 1998; Kuncel,
Hezlett, & Ones, 2001; Schmidt & Hunter, 1998).
Cognitive scientists and neuroscientists have gained a sound description and under-

standing of rather isolated cognitive processes underlying human perception and action
(e.g., Goldman-Rakic, 1995; Gray, Chabris, & Braver, 2003; Kane & Engle, 2002). In
contrast, most intelligence tests used in applied settings rely on rather old principles and
task types. Many reasoning tests were developed in a very idiosyncratic way. It is hard
to tell, if not impossible, what they truly measure. Carpenter et al. (1990), for instance,
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Figure 2.1.
Process model of reasoning based on stages distinguished by Wilhelm (2005)

analyzed Raven’s Advanced Progressive Matrices (APM; Raven, 1962), up to now one
of the most used instruments to assess abstract cognitive abilities. They critically in-
vestigated the item generation principles applied by Raven, concluding that Raven “used
his intuition and clinical experience to rank order the difficulty of the six problem types
(...) and the descriptions of the abilities that Raven intended to measure are primarily
characteristics of the problems, not specifications of the requisite cognitive processes.”
(p.408). Kyllonen and Christal (1990) came a a similar conclusion that, “since Spearman
(...) the development of good reasoning tests has been almost an art form, owing more
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to empirical trial-and-error than to systematic delineation of the requirements such tests
much satisfy” (p. 426). Wilhelm (2005) elaborated further on the distinction between rea-
soning tasks applied in cognitive experiments and reasoning tasks typically used a parts
of assessment batteries, concluding that “there is an enormous gap between theoretically
established models of intelligence research and widely used tests of cognitive abilities” (p.
ix). Clearly, more research on the underlying cognitive processes of reasoning instruments
and test-takers’ performance is needed.

2.2. Cross-cultural validity of reasoning tests

While the practical importance of assessment has grown rapidly during the last decades,
the question of construct validity, that is whether and how test results actually represent
the intended underlying psychological abilities and skills, is widely ignored in testing
practice. This refers especially also to the understanding of the cross-cultural validity or
reasoning measures.
Psychological studies that collect data from different countries are often referred to as

“cross-cultural” studies. The number of such studies investigating data from culturally
different populations has grown rapidly during the last decades and cross-cultural studies
have become an integral part of psychological and educational research (e.g., Matsumoto
& Yoo, 2006; Organisation for Economic Co-Operation and Development, 2004).
Paralleling the economic processes of globalization and the increasing blurring of na-

tional boarders in business and educational settings, researches have taken more and more
interest in cross-cultural phenomena, including cultural effects in psychological assessment
settings. One of the most important questions in the field of testing has been whether
test scores obtained in different cultural populations are invariant across cultural board-
ers. That is, whether test scores can be interpreted in the same way for test-takers with
different cultural backgrounds.

2.2.1. The term “culture” in cross-cultural studies

For many years, tests developed in Western societies have been applied in developing
and emerging countries assuming that the measurement properties of the instruments are
identical across the countries or cultures (see Misra, Sahoo, & Puhan, 1997). Different
terms have been introduced for abstract, language-free tests that suppose to be equally
valid for different cultural goups, with the three most common ones,“culture-free” (Cattell,
1940) “culture-reduced” (Jensen, 1980), and “culture-fair” (Cattell, 1949).
Many of these studies give no explicit definitions of what they conceptualize as culture.

It is implicitly assumed that participants from different countries differ also in terms
of their “cultural backgrounds”. When samples from different countries are compared,
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culture is confounded with society. True experiments are impossible because individuals
simply cannot be assigned randomly to different societies and different cultural groups.
Still, culture and society are not equivalent (Berry, Poortinga, Segall, & Dasen, 2002a).
A contemporary definition of society is that society describes “people who interact in a
defined space and share culture” (Macionis & Plummer, 1998, p. 66).
An important difference between culture and society is that culture can be defined in

a psychological way, for instance., in terms of attitudes or values. Society is primarily a
description of a group of people living close to each other and interacting in their daily
lives. Culture emerges from adaptive interactions between humans and environments
(Leung & Van de Vijver, 2008).
The first scientific definition of the term culture was given in the 19th century by an-

thropologist Tylor who defined culture as “that complex whole which includes knowledge,
belief, art, morals, laws, customs, and any other capabilities and habits acquired by man
as a member of society” (Tylor, 1871, p. 1) Since then, definitions of culture have not
changed substantially, though researchers have focused on different aspects of culture and
further extended Tylor’s definition. While some definitions focused mostly on behav-
ioral, objective manifestations of culture (e.g., Herkovits, 1948; Kroeber & Kluckhohn,
1952), others have stressed more its psychological, subjective aspects (e.g., Rohner, 1984;
Triandis, Bontempo, Villareal, Asai, & Lucca, 1988). In general, definitions can be based
on physical(objective) culture (in terms of the human-made part of the environment,
e.g. streets, houses, infrastructure, etc.) or psychological (subjective) culture (in terms
of shared experiences, social norms, roles, beliefs, and values). Kroeber and Kluckhohn
(1952) defined that, “culture consists of patterns, explicit and implicit, of and for be-
havior acquired and transmitted by symbols, constituting the distinctive achievements
of human groups, including their embodiment in artifacts” (p. 181). Triandis (1972)
distinguished between physical elements of culture, such as buildings and transportation
networks, and subjective elements, such as values and norms. Smith and Bond (1998)
gave a broad definition of culture as “a relatively organized system of shared meanings”
(p. 39). Fiske (2002) defined culture as “a socially transmitted or socially constructed
constellation consisting of such things as practices, competencies, ideas, schemas, sym-
bols, values, norms, institutions, goals, constitutive rules, artifacts, and modifications of
the physical environment” (p. 85).
A difference that has been the focus of many cross-cultural studies is the distinction

between individualistic and collectivistic cultures. Individualism–Collectivism has been
used a a predictor for group differences on many psychological constructs (e.g. Triandis,
1972). Individualistic cultures, traditionally represented by Western European and North-
American societies, foster a unique sense of self and autonomy. Clear boundaries between
an individual and others are drawn, encouraging the individual to value one’s needs,
wishes, and desires over collective concerns. On the contrary, collectivistic cultures, tra-
ditionally represented by Eastern societies, teach individuals to value needs, wishes, and
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desires of the collective over personal interests and motives. Harmony, cooperation, group
cohesion, and conformity are values that play an important role in collectivistic cultures.
The process of globalization has made societies increasingly multicultural. Two examples
are Asian people living in the U.S. or people from eastern Europe living in Germany.
While there is no doubt that these individuals are part of the American, respective Ger-
man, society, it is also clear that their ways of life still represent in many ways the culture
of their home countries. Culture and society are not independent as cultural habits and
beliefs change with changes in society (e.g., Leung & Van de Vijver, 2008). For instance,
the second or third generation of immigrants in Germany have adopted some of the cul-
tural beliefs and attitudes of their German neighbors, while still holding on to many other
parts of their “own” culture. Acculturation research (e.g., Van de Vijver, Helms-Lorenz,
& Feltzer, 1999) investigates this process.
Different samples from different countries reflect different cultures and different societies

to varying degrees as the cultural heterogeneity and the strength of cultural specifics
varies. It is therefore important to be aware of the specific frame of reference of each
study when referring to culture. It has also been suggested to replace the global, abstract
concept of “culture” with more specific “context variables” (e.g., Matsumoto, 2001). The
replacement of the term culture by specific variables can lead to a better specification of
measurement approaches and allow to actually test the degree to which cultural differences
are related to such context variables. Study 3 incorporates this thinking into the selection
of grouping variables. It includes country as a proxy of broad culture and a few further
background variables on the individual level to relate cognitive performance to specific
context factors.

2.2.2. The challenge of “culture-fair” testing

“Culture-fair” intelligence tests were received very positively, but unfortunately, they
evoked similar problems in multi-country assessment settings as other tests not specif-
ically designed for culture-fair assessment. Empirical studies often showed, for instance,
that migrant pupils score consistently lower on these tests than native pupils (e.g., Van
de Vijver, 1997). In general, meta-analytic findings demonstrate that the largest perfor-
mance differences appear for tasks that were developed in Western societies based on the
values, beliefs and shared knowledge of cultural groups represented by these countries
(Van de Vijver, 1997). Whenever multi-cultural samples are investigated, researchers and
practitioners have to deal with bias. That is, they have to face the situation that individ-
uals with the same latent ability might be evaluated differently based on the instruments
used because the latter favor one or several specific cultural groups over others. On the
one hand the factorial structure of human abilities, not just the g factor, is known to be
relatively invariant across cultures (Irvine & Berry, 1988); on the other hand, there is
multiple evidence that tests that are expected to be culture-fair demonstrate bias in favor
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of certain culture-specific groups. Despite its abstract and largely language-free character,
the largest cross-cultural differences have been reported in fluid reasoning measures (e.g.,
Brouwers, Van de Vijver, & van Hemert, 2009; Carroll, 1993; see also Jensen, 1998 or
Hartmann, Kruuse, & Nyborg, 2007; Lynn & Owen, 1994; Te Nijenhuis & van der Flier,
2001).
Berry et al. (2002a) distingished three overarching approaches concerning the relation-

ship between cognitive performance and cultural variables. The three approaches offer
different explanations for the observed cross-cultural differences and the interpretation of
the manifest score differences.

1. Absolutistic approaches assume that test scores can be directly compared between
people from different cultures because they capture cognitive processes in an abso-
lute way that is not dependent on the cultural background. Any manifest differences
in test scores between different cultural groups reflect true differences in the under-
lying latent abilities under this approach.

2. Universalistic approaches assume that cognitive processes are universal, but that
their manifestation is shaped by context-factors. That is, performance on cognitive
tests can be seen as a culturally shaped behavior as well (e.g., Lonner, 1980; Segall,
Lonner, & Berry, 1998). From this perspective, the distinction between cognitive
abilities and cognitive performance (or between intelligence and intelligence scores;
cf. Vernon, 1979) is important. Debilitating or facilitating context-factors might
cause disparities between true abilities and measured test scores. Some evolutionary
psychologists have argued that many cultural practices are environmentally evoked
and context-dependent (e.g., Kenrick et al., 2002; Schmitt, 2006; Tooby & Cosmides,
1995). Any manifest differences in test scores between different cultural groups
reflect the way cultures shape these universal properties in their own way, and not
necessarily true differences in the underlying latent abilities. Cultural variables
have, therefore, to be taken into account when cognitive abilities should be assessed
in cross-cultural settings. Most modern cross-cultural researchers have adopted
the assumptions of the universalistic model (e.g., Hakstian & Vandenberg, 1979;
Hennessy & Merrifield, 1976; Irvine, 1969; Irvine & Berry, 1988; Naglieri & Jensen,
1987; Ree & Carretta, 1995; Sung & Dawis, 1981).

3. Relativistic models conceptualize all psychological findings as linked to a specific
cultural context. Direct comparisons of manifest test scores between cultures are
therefore, under this approach, not possible. For instance, Frijda and Jahoda (1966)
argued that both the definition of intelligence itself as well as its expression are cul-
tural. Therefore, all cross-cultural comparisons would, by definition, be confounded
with cultural influences.

Under the assumption of universal cognitive processes, observed differences in intelligence
scores are due to other factors than actual cognitive processing. Proponents of so-called
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Bias Models have argued that it is not reasonable to interpret country-related score dif-
ferences (only) as a manifestation of differences in the values of the underlying construct
(see Van de Vijver, 1997). That is, performance differences are not necessarily indicators
for differences in basic cognitive processes, but more often shortcomings of the measure-
ment instruments. Differences of country scores on reasoning tasks can be (partly) due
to construct-irrelevant factors.
Bias can be defined as the effect of a multitude of factors that can threaten the validity

of comparisons between groups with different cultural backgrounds (Van de Vijver &
Hambleton, 1996). As such, it is a manifestation of a test’s cultural loading in terms of
the extent to which the test implicitly or explicitly refers to a particular cultural context.
Bias is a sign for country or group differences on variables that influence test performance
but are not related to the latent trait that is supposed to be measured. It has been
argued that the magnitude of cross-cultural differences is dependent on the nature of the
task, specifically on the complexity of the item. Three major types of bias have been
distinguished in the literature (see e.g., Van Hemert, Van de Vijver, & Poortinga, 2004;
Van de Vijver & Tanzer, 2004).

1. Construct bias: An instrument does not measure the same psychological construct
in culturally different samples. One example is that the factor structure of a measure
is not the same across samples. While a measure might allow for the differentiation
of several sub-factors or facets of a construct in one culture, this might be not true
for another culture. Also, based on the educational background, a test measuring
cognitive abilities in one sample might be merely a reflection of practice and educa-
tional training in another sample. Cross-cultural comparisons are seriously limited
when construct bias is present. That is why the non-existence of construct bias is
a fundamental requirement for any quantitative cross-cultural comparison. It has
been shown that many cognitive test batteries fulfill this requirement at least to a
sufficient degree (see Berry, Poortinga, Segall, & Dasen, 2002b).

2. Method bias: The methodology of a study produces performance differences that
do not reflect differences in the underlying latent abilities (Van de Vijver & Leung,
1997). There are two types of method bias, bias related to the instrument and bias
related to the test administration procedure. The latter is not directly related to
test development and item generation; carefully planned test administration proce-
dures can largely rule out method bias due to test administration. Bias due to the
instrument is a more severe problem. For instance, stimulus familiarity can differ
across cultural backgrounds (representing the cultural complexity of the tasks; cf.
previous section).

3. Item bias: Item-specific problems cause performance differences between culturally
diverse groups. Typical examples of item bias in verbal items are effects due to
inadequate translations or the use of words that are not equally well know in the
two cultures. That is, the cultural complexity of the item is high. For figural items,
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item-bias can be caused by the usage of specific shapes and forms that represent a
certain cultural background. However, the bias-generating processes are less clear
for figural than for verbal or numerical items. Item bias directly corresponds to what
has been called “Differential Item Functioning” (DIF; see e.g., Holland & Thayer,
1985). Items are said to demonstrate DIF when subjects from different groups but
with the same ability level have different probabilities of answering an item correctly.
The statistical models that can be used to test DIF were summarized in detail in
Chapter 2.5 of this thesis.

Method bias is related to the whole instrument whereas item bias is related to specific
test items part of an instrument. The two are related to each other in that method bias
is the specific case of item bias where functioning of all items is affected (uniformly) by
cultural variables. For instance, test-takers from a specific cultural group could be more
familiar with a multiple choice (MC)test format than other test-takers. The MC format
is the same for all items and the response format will therefore influence performance on
all items. Here, method bias manifests itself on the item level; the major difference is
that item bias is related to specific features of individual items. Explanatory models of
cross-cultural bias form two categories, correlational studies that relate bias findings to
context variables on the group or country level (post-hoc approaches; Van de Vijver &
Leung, 2000), and models that include context-variables on the individual level to explain
cross-cultural performance differences.
Many researchers have investigated the relation between country characteristics and

bias on individual test scores (e.g., Blaira, Gamsonb, Thornec, & Baker, 2005; Brouwers
et al., 2009; Ceci, 1991; Flynn, 1987; Luria, 1976; Lynn & Vanhanen, 2002; Rindermann,
2007; see Van de Vijver & Tanzer, 2004, for an overview). Indicators tied to the educa-
tional systems in different countries have been shown to play an important role for the
emergence of cross-cultural differences: several educational variables (e.g., expenditure
per capita, teacher qualifications, enrollment into primary, secondary, and tertiary educa-
tion) were identified as robust predictors of country-level scores on cognitive instruments
(e.g., Georgas, Van de Vijver, & Berry, 2004; Van de Vijver, 1997). These indicators
quantify the degree to which formal education has shaped society in a given country. For
instance, years of schooling and educational expenditure are positively related to perfor-
mance differences (Ceci, 1999; Gustafsson, 2001; Herrnstein, Nickerson, de Sanchez, &
Swets, 1986; Van de Vijver, 1997; Winship & Korenman, 1997). Even for simple mental
tasks, national affluence is a successful predictor of cross-cultural performance differences
(Van de Vijver, 1997). Schooling broadens the domains in which cognitive skills can be
successfully applied. Consequentially, it facilitates cognitive tasks because of training and
by exposure to psychological and educational tests. Similar effects were reported for gen-
eral wealth indicators, such as GDP, the availability of certain technologies and products,
or socio-economic status (e.g., Turkheimer, Haley, Waldron, D‘Onofrio, & Gottesman,

17



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

2003). Cross-cultural performance differences increase with age (cf. cumulative differ-
ences model, Jensen, 1977) and years of schooling (Van de Vijver, 1997).

2.2.3. Cognitive and cultural complexity as possible factors for
bias

The cognitive complexity model is based on Spearman’s (1923) work. He hypothesized
that tasks with a higher cognitive complexity reveal larger cross-cultural score differ-
ences. Cognitive complexity refers to the complexity of stimulus transformations that are
required to arrive at a solution. Scientific support for the cognitive complexity model
comes from several studies. For instance, tests that require simple information process-
ing steps typically show smaller cross-cultural differences than tests addressing complex
information processing (Vock & Holling, 2008). Despite the idea of culture-fair testing
especially of the fluid component of intelligence, the largest cross-cultural differences have
been reported in fluid reasoning measures (e.g., Brouwers et al., 2009; Carroll, 1993; see
also Jensen, 1998 or Hartmann et al., 2007; Lynn & Owen, 1994; Te Nijenhuis & van der
Flier, 2001). Cumulative research findings from studies published between the years 1973
and 1994 support that cross-cultural differences are related to the cognitive complexity
of the tasks (Van de Vijver, 1997). Cross-cultural performance differences were positively
related to stimulus complexity but not to response complexity in this meta-analysis.
Several theories of cognitive complexity of reasoning items have been suggested. Some

approaches are purely empirical and define complexity in a post-hoc way based on empir-
ical data. Other approaches are more closely linked to cognitive theories.

• Purely empirical approaches: Cognitive complexity of a given task can be defined
by correlating performance on the task with general intelligence g. The larger the
correlation between these two variables, the higher the cognitive complexity of the
task. This approach requires no prior theory about complexity generating factors.
Examples for studies using this strategy to define bias are the works by Marshalek,
Lohman, and Snow (1983), or Spilsbury, Stankov, and Roberts (1990). Others (e.g.,
Vernon & Jensen, 1984) defined complexity based on the response time required to
solve a task. From this perspective, tasks that pose higher demands in terms of
response time are more complex. Both approaches are purely empirical in that they
establish complexity in a post-hoc fashion without a prior cognitive theory.

• Approaches based on cognitive theories: Two directions of approaches can be distin-
guished, approaches that focus purely on the memory load of a task and approaches
that focus on the relational complexity of a task. Both approaches are related to
working memory theories and assume that reasoning ability is limited by working
memory (WM, e.g., Just & Carpenter, 1992); their focus, though, is different. The
former focuses on the sheer number of distinct elements or element relations in a
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task (Carpenter et al., 1990; Holzman, Pellegrino, & Glaser, 1983; Primi, 2001):
more difficult items in a psychometric test require more WM capacity because more
elements have to be stored and manipulated simultaneously. A drawback of this
definition is that the sheer number of elements might be not sufficient to deter-
mine cognitive complexity. Elements and element relations themselves can vary in
their complexity. Chunking and other processing strategies can further influence
the complexity of distinct elements of a task. The depth of processing required to
solve a task is not considered. Simply increasing storage demands of an otherwise
simple task will produce higher task difficulty, but not necessarily higher cognitive
complexity. Halford, Wilson, and Phillips (1998) argued that it is not the amount
of information per se, but the complexity between the pieces of information that
have to be processed which is subject to capacity limitations. This complexity is
called relational complexity. Halford et al.’s approach is known as Relational Com-
plexity Theory (RC). It defines cognitive complexity in cognitive tasks independent
of the domain of the task. The validity of the RC approach could be demonstrated
in multiple studies, for instance, for the prediction of the difficulty of deductive
reasoning tasks (Birney et al., 2006; Lee, Goodwin, & Johnson-Laird, 2008). RC
plays a role in cognitive development (Andrews & Halford, 2002), logical reasoning
in adults (Birney & Halford, 2002), and applied areas such as mathematics literacy
(English & Halford, 1995). The RC-Theory approach is especially valuable for the
investigation of cross-cultural bias because is provides a basis for an empirical test
of the Cognitive Complexity assumption for rule-based generated cognitive items.

More complex tasks are more prone to cultural influences because they rely more
strongly on (culturally) acquired knowledge and skills (e.g., Jensen, 1998). Cultural
knowledge that is required to master a test can be declarative as well as procedural. Tests
are highly culturally complex if the variation in familiarity with the type and content of
the test between different cultural groups is high (e.g., if specific item types are used as
training material in schools in one culture, or if a specific cognitive games are popular
especially in one cultural group). An example was given by Demetriou et al. (2005) who
report large differences in complex visuo-spatial tasks between Greek and Chinese chil-
dren. In their study, Chinese children clearly outperformed Greek children. The finding
can be related to the massive visuo-spatial practice Chinese children receive when they
learn to write Chinese. Meta-analytic results support the importance of cultural task
complexity for performance in international studies: Tasks characteristics (e.g. cognitive
complexity) were the most powerful predictor for performance in national studies (i.e.,
studies with samples from only one country). On the contrary, performance differences
in international studies could be better predicted by individual and group characteristics
(Van de Vijver, 1997). Helms-Lorenz, Van de Vijver, and Poortinga (2003) showed that
performance differences between majority-group members and migrant students and stu-
dents without migration background were better predicted by cultural complexity (c) of
a test than by the cognitive complexity (g) of the measure. This would mean that the
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relational complexity of the cognitive operations required to solve a reasoning item should
be a good predictor for item difficulties in culturally homogeneous, but not in culturally
diverse samples.

2.3. Item difficulty modeling and rule-based
automatic item generation

Towards the end of the 20th century researchers have begun to try to relate psycho-
metric intelligence factors to ability constructs identified by tasks from experimental
cognitive psychology (e.g., Engle, Tuholski, Laughlin, & Conway, 1999; Freund et al.,
2008; Hambrick & Engle, 2002; Süß, Oberauer, Wittmann, Wilhelm, & Schulze, 2002). In
some areas, these approaches have yielded very useful results, demonstrating, for instance,
strong associations between working memory and fluid intelligence (e.g., Ackerman, Beier,
& Boyle, 2005; Kyllonen & Christal, 1990; Süß et al., 2002). But these models are only
rarely used in assessment practice. One reason for this might be that these models are
confirmatory in the sense that they require strong theory in item generation and model
specification (cf. Embretson & Schmidt-McCollam, 2000). Many tests at use lack strong
theories that enable an empirical test of the functioning of underlying item properties.
Speaking with Deary (2001), “linking mental test scores to cognitive variables is only really
productive when the cognitive variables are themselves theoretically traceable. Otherwise
one has merely linked an unknown to another unknown.” (p. 167). If test construction
is not strictly theory-driven based on a cognitive model of thought processes, the number
of mental models needed to solve a specific test item can hardly be determined (Yang
& Johnson-Laird, 2001; see also Wilhelm, 2005). Likewise, it is quite possible to find
two reasoning tests that suppose to measure the same construct but differ considerably in
their features, attributes, and requirements (cf. Wilhelm, 2005). In the same way, reason-
ing tests that share comparable features, attributes and requirements are not necessarily
equivalent in a psychometric sense (see e.g., Porsch, 2007); on the contrary, attempts to
construct truly parallel tests have been rather inconclusive. In most testing batteries that
are used in practice, parallel test forms are simply identical test forms with a changed
item order (e.g., Amthauer, Brocke, Liepmann, & Beauducel, 2001; Weiß, 2007).
Cronbach (1957)’s claim that more research is needed that combines the experimental

and differential traditions to explore the relation between basic cognitive mechanisms
and intelligence is, unfortunately, still valid today. More theoretically driven work in
the development and validation of reasoning measures is one essential stepping stone on
the “fruitful avenue to future research on measuring and understanding reasoning ability”
(Wilhelm, 2005, p. 388). So far, the literature is still lacking studies describing clear
guidelines for generating and criteria for evaluating item models (Gierl & Lai, 2012).
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Table 2.2.
Prominent content areas for rule-based automatic item generation

Content Area Item type Applications (examples)

General cognitive
abilities

Mental rotation Bejar, 1990

Spatial sense Gittler, 1990
Abstract reasoning Embretson, 1999
Numerical flexibility Arendasy, Sommer, & Hergovich, 2007
Figural matrices Freund et al., 2008; Arendasy, 2005
Figural analogies Beckmann, 2008
Object Assembly Embretson & Gorin, 2001

Quantitative
Skills

Mathematical word problems Enright, Morley, & Sheehan, 2002;
Holling, Bertling, & Zeuch, 2009;
Zeuch, Geerlings, Holling, Van der Lin-
den, & Bertling, 2010

Quantitative comparison
problems

Bejar et al., 2002

Mathematics tasks Singley & Bennett, 2002

Verbal Skills Reading comprehension Sonnleitner, 2008
Paragraph Comprehension Embretson & Gorin, 2001

Other innovative
constructs

Traffic risk behavior Arendasy, Hergovich, Sommer, &
Bogner, 2005

Integrating psychometric test models with psychological theories is a first important
step towards a better understanding of from where item responses to the various kind of
reasoning items truly originate. As such, it is an important step to approach Hunt (1976)’s
claim that “the psychology of intelligence must be a part of the psychology of cognition” (p.
257). In other words, knowing which item properties trigger specific cognitive processes
as specified in an underlying theory can contribute significantly to the establishment of
construct validity.
Besides (and probably more important from a practical point of view), a better un-

derstanding of important thought processes underlying specific types of reasoning tasks
opens the avenue for a more efficient generation of test items of anticipated difficulties. Ap-
proaches of Rule-based Automatic Item Generation (AIG; see Irvine and Kyllonen (2002)
for an early and Gierl and Haladyna (2012) for a recent overview of the field) in combi-
nation with the use of explanatory Item Response Theory (explanatory IRT, De Boeck &
Wilson, 2004a) put cognitive theories on a testable fundament. Actual performance on
reasoning measures can be related to specific underlying cognitive processes.
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AIG terms the typically computer based generation of test items based on a-priori
defined algorithms. There is a rapidly growing research tradition that created numerous
applications with regard to the measurement of cognitive (e.g., Arendasy et al., 2007;
Embretson, 1999; Freund et al., 2008) as well as non-cognitive and educational (e.g.,
Arendasy et al., 2005; Holling et al., 2009) constructs (see Table 2.2 for an overview).
Further, AIG becomes more important as computerized and web-based item delivery
create new challenges for exposure control (Bejar, 2012).
Figure 2.2 illustrates the four main steps of the general AIG process. Defining a new

item-generative framework starts with the definition of the latent construct to be mea-
sured: the cognitive processes, solution strategies and knowledge structures that char-
acterize the latent construct have to be identified. Based on knowledge of cognitive
psychology principles, a cognitive model has to be developed. Components of items
that influence item complexity and difficulty are analyzed. Then, these features can be
combined to generate items. Components which are crucial for the solution process pre-
dominantly influence item difficulty. They should be well-defined for item design, item
generation and item application. These item features are called “radicals” (Irvine & Kyl-
lonen, 2002). Radicals systematically affect the difficulty of an item; they determine the
cognitive processes needed to solve the items. “Incidentals” (Irvine & Kyllonen, 2002)
do not influence the difficulty of a task. Incidentals are item characteristics that cause
only surface differences in the appearance of the items. They make psychometrically
equivalent items look different. Once items have been assembled into tests, hypotheses
with regard to the pre-specified item facets can be tested empirically. Embretson and
Gorin (2001) described principles of evaluating cognitive models for rule-based generated
item sets by predicting item performance. Item difficulties or other response variables
such as response times can be regressed on the item structures and stimulus features that
were chosen to operationalize the relevant cognitive processes. A detailed summary of
the statistical models that can be used here will be given in chapter 2.4 of this thesis. If
the empirical test of the underlying generation model has been successful, new items of
pre-specified complexity levels can be generated by the combination of item facets. Note,
the internal procedure of testing the construct-validity of tests through the modeling of
cognitive item structures does not render the validation of new measures by investigating
external correlates of test scores unnecessary (Embretson & Gorin, 2001).
With regard to a theory-driven development of new reasoning measures in specific,

Wilhelm (2005) has described four key aspects that need to be considered during the
construction and evaluation of new instruments. These are also important aspects for the
development of new item-generation models.

1. Operation: First, the operational requirements of the new tests need to be defined.
It has to be answered what the cognitive operations that must be mastered in
order to solve items of the new test are. For reasoning tests, possible requirements
mentioned by Wilhelm (2005) are the inductive creation of semantic information,
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Step 1 Step 2 Step 3 Step 4

Construct Defini-
tion

−→ Identification of
underlying cogni-
tive processes

−→ Empirical test
of hypotheses
with regard to
the pre-specified
item facets

−→ Combination of
item facets in
new items

Figure 2.2.
Four essential steps of the automatic item generation process

deductive maintenance of semantic information, derivation of inferences, judgment,
decision making, and planning.

2. Content : Second, the actual item content needs to be specified. This involves a
decision about the inclusion of figural, numeric and/or verbal material. Depending
on the type of material chosen, a new test will focus on different aspects of the
reasoning construct. Experimental manipulations of the item content can also add
to the understanding of the structure of reasoning ability.

3. Instantiation and non-reasoning requirements : Third, a decision has to be made
about how the formal reasoning process should be initiated for the test-taker.
Wilhelm (2005) described this decision as going “through a decision tree” (p. 380). A
first decision is whether to use concrete or abstract material. For example, a figural
reasoning test can make use of concrete shapes relating to numeric and/or alpha-
betical knowledge as in the analogy test presented by Beckmann (2008) or apply
abstract shapes and forms without that semantic component as, for instance, in the
Culture-Fair Test (CFT-20R; Weiß, 2007). When abstract material is used, “non-
sense” and “variable” instantiations can be distinguished. Nonsense instantiations
present a logical connection between abstract (“nonsense”) stimuli (e.g., phantasy
words in a verbal task or abstract shapes in a figural task) whereas variable in-
stantiations induce the formal reasoning process by referring to variables (e.g., “X”
and “Y”). When concrete material is used, instantiations of reasoning problems can
be in accordance with prior knowledge (e.g., factual or possible instantiations; see
Wilhelm, 2005, for examples) or in contradiction to it (e.g., counterfactual or im-
possible instantiations; see Wilhelm, 2005, for examples). The explicit specification
of the instantiation of the reasoning process is of high importance for the develop-
ment of new AIG frameworks. Structurally identical reasoning items can differ in
their cognitive demand and consequentially in their psychometric properties when
different forms of instantiations are applied (e.g., Beckmann, 2008; Gilinsky & Judd,
1993; Klauer, Musch, & Naumer, 2000). In the terminology of Irvine and Kyllo-
nen (2002) the form of instantiation would take the role of an item radical here.
This means that instantiations should either be held constant across a set of items
(in order to minimize the amount of variance in item difficulties not explained by
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the underlying task parameters) or included explicitly in the rule-based generation
framework. In the latter case, the cognitive model would explicitly predict differ-
ences in item difficulties for different types of instantiations. The same is true for
the use of abstract versus concrete material.

4. Vulnerability to reasoning strategies : Forth, the degree to which reasoning items
are vulnerable to the use of reasoning strategies can diminish the equivalence of
structurally identical items. The use of most existing reasoning measures is based
on the assumption that all individuals approach the problems in the same way. If
this is not the case, the diagnostic value of the test can be diminished. It might
be the case that some test-takers are more successful not because their reasoning
ability exceeds that of other test-takers, but because they are more familiar with
the test material or had more extensive practice to prepare for the testing situation.
Also, test-takers with different cultural backgrounds might approach identical rea-
soning problems using different, and possibly differentially effective, strategies. The
consequence would be that the test is measuring different abilities for different sub-
groups which is equivalent to “Differential item functioning” (DIF; see e.g., Holland
& Thayer, 1985). If such interactions of person and item or test characteristics are
not modeled explicitly, resulting biases can seriously diminish the construct and
predictive validity of a test.

The situations where AIG is beneficial for test developers and administrators are man-
ifold. Mostly, these are situations where several comparable test forms are needed. For
instance, when tests are administered in high stakes settings or test-takers are allowed to
take tests multiple times, parallel forms are needed to assure test security. One common
strategy to deal with the problem of item exposure (i.e., the familiarity of subjects with
item content) is to use item subsets from a large pool of calibrated items. Each test
taker then gets a different subset of items. It is assumed that the pool of items is large
enough to control for item exposure effects. However, the creation of such an item pool
is both costly and time intensive. The processes involved, such as the writing, reviewing,
pretesting and calibration of individual items are practical constraints that can interfere
with the development of large item pools. After all, there is no guarantee that large item
pools prevent item exposure problems; they just make it harder, but not impossible, for
test takers to get to know item content from a test. Three important arguments why AIG
procedures should be used for the generation of new measures can be outlined.

AIG can makes item-generation processes more efficient. By its necessity to formu-
late item design principles in an algorithmic way, AIG builds the basis for the construction
of items of equal structure and quality. Computers can generate new items within millisec-
onds. Furthermore algorithms can control for possible alternative solutions and guarantee
that every item has only one single right solution. The results of such algorithms exceed
the power of manual inspection and control by human item developers. Freund et al.
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(2008) demonstrated for the classical type of matrix items that even experienced item
writers cannot overcome their idiosyncratic styles during the process of item design. For
instance the selection of figural elements and their arrangement is traditionally based on
an item developer’s personal taste to make items look smooth and aesthetic. Independent
item developers with the same level of expertise might be able to construct similar looking
items without too much effort. Yet, it is possible that these items have completely differ-
ent statistical properties if the underlying cognitive processes needed to solve an item are
not identical (Freund et al., 2008).
Proponents of manual item construction might argue that AIG makes test items look

technical and boring for the individuals taking the test. Yet, this can be true for any
instrument; the difference between traditional item generation and AIG is that the creative
process of item development is moved to another phase during the development of new
instruments. Traditional item generation involves creative input on the item level. AIG
builds upon an item generation framework that relies on human item writers and subject
matter experts. Expertise and creative ideas are needed to develop such frameworks to
the same extent as during the development of individual test items. Algorithms and
automatization come in only once the framework is established. AIG makes the process
of item generation more effective. New items can be generated faster, sparser, and with
fewer construction errors. This can improve both objectivity and reliability.
This reasoning represents a technical perspective on rule-based item generation that

has been taken by many researchers and test-developers. For instance, Lai, Alves, and
Gierl (2009) described cost benefits, enhanced test security and decreased item exposure,
and a more accurate estimation of examinee ability as the three main reasons why AIG
should be implemented. This perspective focuses primarily on enhanced efficiency and
increased security of the test design and assessment process, not on questions related to
the construct validity of the generated items.

AIG can help establishing construct validity. Traditional item descriptions are mostly
related to item content or overall characteristics. However, they contribute only marginally
to an understanding of what test performance says about the underlying cognitive pro-
cesses and the problem solving capabilities and knowledge of the test-taker.
Rule-based item generation makes it possible to carry over classical experimental ap-

proaches to the generation of diagnostic instruments. These instruments cannot only be
used in applied settings for the measurement of specific traits. They can also build up a
basis for the test of cognitive theories. Embretson (1983, 1998) has described this per-
spective in her “Cognitive Design Systems” (CDS) approach. She describes the sequence
of steps that are necessary to link cognitive theories with adequate test and measurement
models. Her framework constitutes the basis for item design and is related primarily
to construct validity. Both classical procedures (i.e., a-posteriori estimated, correlative
relationships between one instrument and others or external criteria; labelled “Construct
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representation”, cf. also Cronbach & Meehl, 1955) as well as Item Response Theory (IRT)
approaches to test construct validity based on item characteristics underlying test perfor-
mance (labelled “Nomothetic span”; Embretson, 1983) are part of Embretson’s framework.
Item characteristics and components identified based on findings from cognitive science
can be integrated into a theory-driven rule-based item-generative framework. Test results
can be used to test hypotheses with regard to the construction rationale and the underly-
ing cognitive model. Rule-based AIG might then serve “to build construct representation
directly into the item construction process by combining research in cognitive psychology,
individual differences and applied psychometrics.” (Arendasy et al., 2007, p. 567). If such
a model is lacking, rule-based item generation can, at most, be of heuristic value. This
is because item explanatory models remain, ultimately, arbitrary in the way they define
item difficulty as a combination of underlying component difficulties. Different variants
of item explanatory models might explain difficulties equally well with no proof of which
model is the “true” model. That said, AIG models can provide a useful basis for evaluating
the plausibility of competing cognitive models for a given test or item type. AIG models
provide a basis for testing whether empirical data for a given test is compatible with
a certain hypothesized model of underlying cognitive processes. They cannot, however,
provide unambiguous information on what the “true” cognitive processes that underlie
test performance are. As Bejar (2012) notes in a recent chapter on the implications of
AIG for test validity, “merely referring to a theory is not sufficient to establish construct
representation. We can choose a theory and claim that we have developed a test based on
that theory, and further assert that the scores from such a test have specific theoretical
attributes as a result. However, it is also necessary to demonstrate that the theoretically
expected results are actually observed.” (p. 45).
While acknowledging the practical benefits of such item-generation principles, core of

this reasoning is the goal to improve the construct validity of cognitive tests, not primarily
the enhanced efficiency and increased security of the test design and assessment process.
A sufficient set of theoretical principles to generate items can provide strong support for
construct validity of an ability test. As such, “AIG offers a framework for item writing
that draws it closer to the scientific approach of experimental stimulus design than does
an artistic process” (Gorin & Embretson, 2012; p. 136).

AIG can increase transparency and test-fairness. While the first two reasons pre-
sented here have been described in the item-generation literature in large detail, the
chances to increase test-fairness through enhanced test transparency have not been dis-
cussed as intensively. While the lack of test-security and item exposure are severe threats
to traditional tests, exposure to test items takes a less critical role when rule-based item
generation principles are used. Item construction based on generative rules provides the
opportunity to explain all relevant solution principles to the test-taker before the as-
sessment without making the right solutions to an item item obvious. Individuals can
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make themselves familiar with the rules and practice on the kind of items applied before
taking the test. The knowledge of all relevant rules (i.e., the distinctive definition of a
solution space) guarantees that all solutions are truly unique (cf. Freund et al., 2008;
Preckel, 2003). Especially when it comes to assessment of giftedness, explaining the rules
beforehand can be of great advantage. Gifted students occasionally tend to produce cre-
ative solutions to existing problems that differ from the solutions intended by the test
developer. This might lead to coding answers as wrong, and consequentially to errors
in the estimation of true abilities. One might argue that explaining rules changes the
test from a purely inductive reasoning measure to a measure of more specific and more
narrow processes. But Beckmann (2008) demonstrated that an explanation of all rules
beforehand actually enhanced also criterion-related validities. More studies should focus
on the influence of prior item exposure and practice on the internal cognitive structure of
automatically generated test items in order to evaluate the true potential of rule-based
item generation for applied settings.
Taken together, AIG can help understand item response processes better by forcing the

test developer to explicitly identify item radicals. Compared to manual item construction
based on idiosyncratic principles and ideas of the test developer, AIG can speed-up the
item generation process and establish a basis for mass-generation of structurally equivalent
items. Yet, important questions remain that have to be answered by future research,
including questions such as: Do structurally equivalent items actually have the same
statistical properties? To what degree can item difficulties be, ultimately, predicted by
knowledge of the most important underlying radicals? How many radicals are needed? To
what degree are item difficulties influenced by “irrelevant” item features that are supposed
to be incidental? Do empirical facet difficulty estimates align with theoretically expected
patterns of facet difficulties? Are item generation frameworks valid for cross-cultural
assessment as well, or does the cognitive structure of a test vary between culturally diverse
populations?
Two classes of statistical models will be described in the following. First, explanatory

item response models that will be used in all three studies to predict item difficulties
based on the underlying item structures, will be summarized. Second, Differential Item
Functioning (DIF) and Differential Facet Functioning (DFF) models that will be used
in study three to test the equivalence of item characteristics across samples defined by
cultural background or other criteria, will be described.

2.4. Explanatory item response modeling

Traditionally, cognitive psychology did not play a prominent role in construct valida-
tion as the meaning of a construct could only be established after a test was developed
(Embretson & Gorin, 2001). This situation has changed with the development of rule-
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Table 2.3.
Explanatory and descriptive IRT models

“Person-side”

“Item-side” Absence of predictors Inclusion of person variables
(descriptive) (explanatory)

Absence of predictors RM LR-RM
(descriptive)
Inclusion of item facets LLTM LR-LLTM
(explanatory)

Note. This classification is based on De Boeck and Wilson (2004a).

based item generation models and related item response models. The term Explanatory
Item Response Modeling was introduced by De Boeck and Wilson (2004a) to describe how
“the domain of item response models (...) can be broadened to emphasize their explana-
tory uses beyond their standard descriptive uses” (p. vii). De Boeck and Wilson (2004a)
use the attribute “explanatory” because their models allow modeling item responses as a
function of predictors of various kinds. Responses to individual items can be explained by
characteristics of the items, of persons, or of combinations of persons and items. Predic-
tors can be either observed or latent, and can be continuous or categorical. Explanatory
IRT models are therefore ideally suited to explain difficulties of automatically generated
items based on known item radicals: item difficulties can be predicted based on a set of
predefined task parameters.
Table 2.3 shows the four types of possible descriptive and explanatory models. Item

response models can be exclusively descriptive (”double descriptive”) when neither item-
nor person-predictors are included. An example is the Rasch model (RM; Rasch, 1860).
The opposite case is that models can be “double explanatory” when both item- and person-
predictors are included. That is, variables that explain why different items have different
solution probabilities (“item-predictors”) and variables that explain why persons differ in
terms of their ability to solve items correctly (“person-predictors”) are included. Models
are half explanatory and half descriptive when either item- or person-predictors only are
included.

2.4.1. Models with item predictors

The Linear Logistic Test Model (LLTM; Fischer, 1973) is descriptive on the person side
and explanatory on the item-side. It can be used to predict item difficulties of the Rasch
Model (Rasch, 1860) as a linear-combination of a vector of basic task parameters:
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ηpi = θp − σi = θp −
K∑
k=0

βkXik. (2.1)

ηpi is the so-called linear predictor (De Boeck & Wilson, 2004b) of the binary random
variable Ypi representing the item response of person p on item i. The Rasch model uses
a logistic link function, i.e. ηpi = flogit(πpi) = log(πpi/(1 − πpi)). θ and σ denote person
abilities and item difficulties, respectively. Xik is a k × i design matrix that indicates
the cognitive task parameters/radicals for every item, plus a constant to make the model
identifiable. β denotes the vector of weights for each of these parameters. Item difficulties
are determined by is the number and the nature of the cognitive demands involved. In
this regard, the LLTM can be “viewed as formalizations of structural hypotheses regarding
the psychological complexity of test items” (Fischer & Formann, 1982, p.397).
Equation 2.1 implies the strong assumption that item difficulties can be predicted per-

fectly by the underlying item facets. This constraint may be relaxed by including item-
related random effects. Adding random effects also to the item side of the model leads
to a crossed random-effects model with both person and item random effects (RE-LLTM;
R. Janssen, Schepers, & Peres, 2004; Van den Noortgate, De Boeck, & Meulders, 2003):

ηpi = θp −
K∑
k=0

βkXik + εi, (2.2)

with εi ∼ N(0, σ2
ε). Here, ηpi is conditional on θp and εi. That is, items with an identical

configuration have an expected value of σi, but random variation is possible, and captured
by the variance σ2

ε . σ2
ε represents the residual variance when regressing item difficulties in

the Rasch model on the linear predictors specified in Xik. Variability in item difficulties
can be ascribed to surface characteristics of the items, with effects being random across
items belonging to the same item group (Rijmen & De Boeck, 2002). The RE-LLTM
is especially helpful in assessing the explanatory power of the cognitive model under
investigation (De Boeck, 2008). By modeling random effects on the item side of the
model that account for the variance in item difficulties not explained by the set of basic
parameters, different explanatory models can be compared. The amount of random item
variation that can be accounted for by the predictor variables included in the model
indicates the explanatory power of the model. In the simple Rasch model, this random
effect variance equals zero because one parameter for every item is estimated.
In most tests, the processes needed to solve reasoning items are not compensatory. Items

cannot be solved if a test-taker does not possess minimum values of all abilities needed.
Strictly speaking, this violates the additivity assumption of the LLTM. However, LLTM
models have brought forward many applications, especially in the assessment of cognitive
constructs (e.g., Arendasy et al., 2007; Embretson, 1999; Enright et al., 2002; Freund
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et al., 2008;Holling et al., 2009). LLTMs have been considered theoretical useful to link
test development with cognitive theories and models of human information processing (cf.
Embretson, 1998). Yet, accuracies of item parameter prediction have so far mostly not
met the demands of high-stakes assessment settings. Typical values of proportional error
reduction in the prediction of item difficulties based on explanatory IRT models reported
in previous studies lie in a range from R2 = .50 to R2 = .80 (e.g., Freund et al., 2008;
Preckel, 2003). Arendasy (2005) suggested that sufficient construct representation is only
given, when the underlying item facets explain at least R2 = .80 of the variation in Rasch
item difficulties. Zeuch (2011) demonstrated that even such high values of proportional
error reduction should only with great caution be interpreted as sufficient construct rep-
resentation. She analyzed standardized absolute differences between rescaled LLTM and
Rasch parameters for the Latin Square Task, a rule-based generated figural instrument.
Even though roughly 87 percent of the whole variance in item difficulties were explained
by the basic design parameters in a sample of N = 850 examinees, the average stan-
dardized absolute difference denoted to 3.12 standard error units (Zeuch, 2011, p. 51).
Bejar’ s (1993) idea of fully functional item generators that can generate item isomorphs
of predicted difficulties “on-the-fly” during test administration is still a vision. On the
other hand, it is without doubt that applications of the LLTM to cognitive instruments
can contribute to a better understanding of the construct validity of these instruments.
It is important to distinguish between the different purposes of statistical item difficulty
modeling: one purpose is a better understanding of item response processes and a clar-
ification of the questions of construct validity. This has been the focus of most of the
aforementioned LLTM applications. A second purpose is an enhanced efficiency of test-
ing by using item-generative models and predicting item difficulties instead of calibrating
individual items. The limitations of the LLTM described in this paragraph relate mostly
to the second purpose. As shown by Zeuch (2011) most applications so far have not been
successful in predicting item difficulties sufficiently well. On the other hand, others (e.g.
Freund et al., 2008) have shown that deviations in the prediction of true item difficulties
do not influence the estimation of person parameters dramatically.
Item cloning (e.g., Bejar, 1993; Glas & Van der Linden, 2003) terms the idea that

certain item types are duplicated to produce a theoretically unlimited number of equally
difficult item clones. Item “families” are defined by particular demands on information
processing. Item “clones” (also denoted as item “siblings”, see e.g., Sinharay, Johnson,
& Williamson, 2003) result from changing surface characteristics for items belonging to
one particular family. If the demands on information processing are captured well by
the item-generative framework (i.e., by the specified radicals) all items from one family
should have the same psychometric characteristics. A test taker’s reaction should not
depend on the incidentals of items with the same cognitive demands. Instead of modeling
item difficulties as a linear combination of item radicals (Irvine & Kyllonen, 2002), item
cloning models estimate means and variances for item families each consisting of a number
of item clones all sharing the same characteristics. Within-family variances indicate the
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variation among items that should, theoretically, be interchangable exemplars of the same
item type (“The more efficient the item-cloning techniques are, the smaller the amount of
within-family item variability is and the better the test adapts to the examinee’s ability
level.”; Glas & Van der Linden, 2003, p. 260).
The term item cloning is strongly connected to statistical item cloning models (ICMs)

that were developed by Wim Van der Linden and his group (e.g., Glas & Van der Linden,
2003). However, first item cloning approaches were already presented a few decades ago.
Overviews of item cloning techniques can be found in Roid and Haladyna (1981) and Bejar
(1993). Sinharay and colleagues (e.g., Sinharay et al., 2003; M. S. Johnson & Sinharay,
2003) distinguished three different item cloning models.

1. In the Unrelated Siblings Model (USM) a separate, unrelated item response function
for all items is assumed. Family membership is not accounted for statistically.
M. S. Johnson and Sinharay (2003) introduced this model as the “gold standard
approach for modeling item response functions” (p. 3). Each item is assumed to
be independent of all other items, regardless of whether they stem from the same
family or not. A notable disadvantage of this model is, however, that each item has
to be individually calibrated. The relationship between clones (i.e., the inherent
multilevel structure of the data) is ignored. This can enlarge standard errors of item
parameters and require large sample sizes to reach sufficient calibration precision
(M. S. Johnson & Sinharay, 2003).

2. In the Identical Siblings Model (ISM) the same item response function is assumed
for all items that belong to the same family. Here, the statistical model incorpo-
rates the family structure of shared radicals between items while ignoring possible
within-family variation. If this variation is larger than zero, the ISM provides biased
estimates of the item parameters, the amount of item information is usually over-
estimated (M. S. Johnson & Sinharay, 2003). The assumptions of the ISM are very
similar to the classical LLTM without random effects: in the LLTM, it is assumed
that the configuration of item radicals as specified in the design matrix fully deter-
mines an item’s difficulty. Variation in item difficulties across items that share the
same vector of item radicals is not accounted for in the model. Only when random
effects are defined on the item-level is this assumption relaxed (R. Janssen et al.,
2004; see also Equation 2.2 in this thesis).

3. The Related Siblings Model (RSM) is a hierarchical model that assumes both sepa-
rate response functions for each item or item clone and, on a higher level, a hierar-
chical component for each family. The Family Expected Response Function (FERF,
Sinharay et al., 2003) for an item family describes the probability of correct response
for a randomly selected item from this family for an individual with an ability pa-
rameter of θ = 0. In this model, both variation within item families and variation
between item families is accounted for. Item families can be calibrated without the
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unrealistic assumption that difficulties for all items from one family are the same.
The USM and ISM and restricted cases of the RSM.

Glas and Van der Linden (2003) and Geerlings, Glas, and Van der Linden (2011) pre-
sented item cloning models that are able to capture the special features of the RSM
approach. The two-level item cloning model (ICM) presented by Glas and Van der Lin-
den (2003) is the most general model. On level 1, parameters are defined based on a
three-parameter logistic (3PL) model. On level 2, variation within item families is cap-
tured by a distribution. Both persons and items are random with the common assumption
that person parameters stem from a standard normal distribution, and the vector of the
item parameters being drawn from a multivariate normal distribution. As pointed out
by Zeuch (2011), cognitive demands on information processing can, in a special case, also
be represented by basic parameters or radicals and make “the validation process more
straightforward as item difficulties within item families can then be ascribed to certain
basic parameters and their combinations” (p. 11). Rule-based generated items with the
same combination of basic parameters can be considered item clones belonging to the
same family (Zeuch, 2011). Geerlings et al. (2011) presented an extended item cloning
model, the item cloning linear model (ICLM). The ICLM includes a design matrix with
item radicals. The entries of this design matrix determine the cognitive complexity of
each item based on an additive function of stimulus features. That is, the ICLM com-
bines the LLTM and the ICM by conceptualizing not only item families but by referring
to the underlying rules (i.e., item radicals specified in a design matrix) that define these
families.
Glas and Van der Linden illustrated the accuracy of a Bayesian ICM procedure by

means of a large simulation study using real item difficulties from a large item pool. Un-
fortunately, comprehensive software packages to apply ICMs and ICLMs are still missing.
Zeuch (2011) showed that also the LLTM and RM are restricted cases of a general ICM.

LLTMs model item difficulties as a linear combination of indicator variables specified in
a design matrix. Typically, each column in the design matrix represents one item radical.
Items sharing identical configurations of basic parameters differ only with regard to the
values of their incidentals and can be considered item clones (Zeuch, 2011). In line with
this a number of LLTM models will be applied to investigate item-generation and item-
cloning principles for two new and one existing instrument. The classical LLTM estimates
parameters on the level of item-facets. If the interest is not in predicting item difficulties
based on radicals (i.e., item facets) but based on the difficulties of certain item types (i.e.,
item families), the design matrix can be changed to include one column for each item
family or item type. As long as there are more item types than radicals (which should be
the case in most, if not all, applications), such a model will contain a larger number of
parameters. The additivity of basic parameters assumption of the classical LLTM is not
needed here. Explanatory IRT models of that type estimate parameters on the level of
item families, respectively item types:
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ηpi = θp −
F∑

f=1

βfXif . (2.3)

Equation 2.3 is identical to Equation 2.1 besides the index f that replaced the index k.
Here, f refers to the item family underlying the respective item.
Changes in item difficulties across two or more sets of (structurally) identical items can

easily be modeled by adding specific fixed effects to the model. If k items are presented
at at least two different times, Fischer (1995) suggested to specify all item × time point
combinations as k × t “virtual items” (p. 158), that is as interaction effects in in Xik.
With only two measurement points (s = 1, 2), item difficulties for one “pair” of virtual
items will be σ1i and σ2i. For the first measurement point σ1i = σi, whereas for the second
σ2i = σi + τs. In this linear combination the σsi-parameters are composed additively by
means of an initial item parameter σi and fixed temporal effects τs. In Fischer’s virtual
item model, only one temporal effect is modeled for all items. Modeling such an effect
would mean that all item difficulties from a second item set differ in the same way from
the first item set. As Mair and Hatzinger (2007) illustrate, this concept extends to an
arbitrary number of time points or testing occasions. Instead of modeling one general
temporal effect, item specific effects can be estimated when temporal effects are modeled.
These effects can be easily defined on the item-level (τsi), or on the facet-level ( τsk).
The additional index i (or k) indicates that each item (or each item facet) has its own
temporal effect. These model extensions are shown for two types of LLTM-type models
by the following equations:

ηpi = θp −
K∑
k=0

βkXiK + τsk. (2.4)

ηpi = θp −
F∑

f=1

βfXif + τsf . (2.5)

Model 2.4 is an LLTM with fixed temporal effects on the facet level, model 2.5 is an
explanatory model with fixed temporal effects on the level of item families. If several items
sharing the same construction principles are administered to the same person, models
including a parameter for each item type and models including a parameter for each basic
item only can be compared. The application of such model extensions is not limited to
the investigation of generation procedures for structurally parallel tests. Zeuch (2011)
demonstrated how the modeling of fixed temporal effects on the facet level can be applied
to investigate practice or training effects for cognitive items as well. Similar approaches
have been presented by Fischer (1989), Formann and Spiel (1989), Glück and Spiel (2007),
or Hohensinn et al. (2008).
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Table 2.4.
Differences in model foci between explanatory IRT models with different types of design
matrices

Columns of Design Matrix indicate Describe Generate Understand Predict

Items (diagonal matrix, RM) X − − −
Item basic parameters / facets (LLTM) − X X (X)
Item types / families (Parallel tests, Cloning) − X − X

Differences between explanatory IRT models with different types of design matrices are
illustrated in Table 2.4.

• The RM is useful to describe the difficulty of a given item. It cannot facilitate the
generation of new items and provides no information for a better understanding of
item difficulties. It cannot be used to predict difficulties or new test items. It is a
purely (“double”) descriptive model.

• The LLTM cannot describe individual item difficulties as accurately as the RM, but
can be used to predict item difficulties of uncalibrated new items that were designed
based on the same principles as an existing instrument. The power of the prediction
depends on how well item difficulties can be explained by an additive combination
of facet difficulty parameters (i.e., on the strength of the explanatory model). The
LLTM helps to generate new items and can, if the explanatory model is valid, lead
to a better understanding of item response processes. Classical LLTM models are
explanatory on the item-side, but descriptive on the person-side of the model.

• Explanatory IRT models with design matrices containing item type or item family
indicator variables are less useful for the understanding of item response processes
than models based on item basic parameters because their focus is not on the un-
derlying cognitive processes. When family indicator variables are specified as item
explanatory variables, the existence of certain item types is taken as a given, regard-
less of how these item types are defined. With models of this type, the psychometric
equivalence of structurally identical items can be investigated. As the LLTM, such
models are explanatory on the item-side, but descriptive on the person-side of the
model as well.

At first glance, this distinction and the depiction of models in Table 2.3 and Table
2.4 suggests that the described models are discrete classes of models. However, this is
not the case. Conceptually, the only difference between the doubly descriptive RM and
explanatory models with a focus on item facets or item types is a different layout of
the design matrix X. The most precise model is the Rasch Model with one difficulty
parameter for each item. It provides a perfect description of item difficulties. When the
design matrix is reduced to contain less column variables than items, a trade-off between
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Figure 2.3.
Illustration of different possible design matrices on the continuum of explanatory IRT
models: Number of radicals

predictive power and sparseness of the model is made. In the most extreme case, an
empty model with an intercept only can be modeled (cf. De Boeck, 2008). This means
that models can be more or less explanatory without constituting a discrete alternative
class of models. Moreover, the labels “descriptive” and “explanatory” highlight the main
focus of the model, rather than terming a different class of models. This is illustrated in
Figures 2.3 and 2.4. Here, the columns of the design matrices represent item explanatory
variables, i.e. variables that are applied to predict difficulty parameters of the items of a
test. The two design matrices in Figure 2.3 represent two different complex LLTM models,
one containing two item radicals and the other one containing 3 radicals. That is, the
right model is more explanatory because it includes more item predictors; the amount of
unexplained variation in item difficulties is at minimum as large as for the sparser model.
Figure 2.4 depicts four different design matrices, the leftmost representing a model with-

out any item predictor; here the same item difficulties are predicted for each of the five
items. Clearly this model has no explanatory value. The second model is equivalent to the
first model in the previous illustration, it represents a LLTM with two item-explanatory
variables, i.e. two item radicals. Applying the terminology of De Boeck and Wilson
(2004a) this model is explanatory because it attempts to explain item difficulties by un-
derlying task parameters instead of merely describing item difficulties. The third model
is a model with three item explanatory variables representing three different item radical
combinations, i.e. three item families. The rightmost model, then, is a model with five
item explanatory variables, exactly one indicator for one item. This model is equivalent to
a Rasch model, which is, following De Boeck and Wilson’s classification less explanatory
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Figure 2.4.
Illustration of different possible design matrices on the continuum of explanatory IRT
models: RM, LLTM, and Item Cloning

than the LLTM. This illustration shows the conceptual differences in the distinction be-
tween descriptive and explanatory IRT models proposed by De Boeck and Wilson (2004a)
and the distinction of models according to their explanatory power in terms of predicting
item difficulties. The term “explanatory” in De Boeck and Wilson (2004a) is not related
to the explanatory power of the model in a statistical sense; moreover whether a model is
defined as explanatory or descriptive depends on the meaning of the indicator variables
used. If these variables are indicators of cognitive processes underlying item performance
in the sense of radicals, the model is labelled explanatory; if the variables are indicators
of specific types of items or individual items, the model is labeled descriptive. Due to this
inconsistency in the definition of explanatory and descriptive models, I will not use the
terms to distinguish between models in this thesis. Rather in the following chapters I will
refer to explanatory IRT models as the broad class of models that allow to model item
responses as a function of predictor variables of various kinds.
Also, it should be noted that the term “explanatory” cannot be interpreted literally in

the way that models from the LLTM family truly explain item difficulties in a psycho-
logical, information-processing sense. Moreover, explanation of item difficulties in this
context refers to the prediction of item difficulties based on a set of underlying variables
as specified in the design matrix X (also referred to as “Q” in the literature). As noted
above, only in case that these variables characterize information processing steps derived
from cognitive theory (i.e, if a strong theory approach is chosen) can resulting parameter
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estimates be interpreted in a meaningful way. On the contrary if no theoretical model of
item difficulties is available, parameters for the variables in a design matrix have, at most,
heuristic value. Any design matrix is only unique up to allowed linear transformations
that maintain full column rank. Ultimately, any design matrix that is derived as a linear
transformation of the original matrix maintaining full rank will allow for an equally good
prediction of item difficulties as the original design matrix (see e.g., Bechger, Verstralen,
& Verhelst, 2002). That said, it is important not to mistake basic parameter estimates
for LLTM components as true difficulty generating parameters. Item explanatory models
from the LLTM family can provide a useful basis for evaluating the plausibility of com-
peting cognitive models for a given test or item type. They provide a basis for testing
whether empirical data for a given test is compatible with a certain hypothesized model of
underlying cognitive processes. They cannot, however, provide unambiguous information
on what the “true” cognitive processes that underlie test performance are. Further, de-
sign matrix mis-specifications can lead to biases during item-parameter estimation, such
as over- or underestimation if too few or too many attributes are specified and the propor-
tion of no-zero elements in the matrix is low (e.g., Rupp & Templin, 2008; Baker, 1993;
Kunina-Habenicht, Rupp, & Wilhelm, 2012).

2.4.2. Models with person predictors

Doubly explanatory models include predictors for items difficulties as well as predictors
for person abilities. Extending the LLTM by including additional predictors on the person
side yields the so-called latent regression LLTM (LR-LLTM; e.g., Wilson & De Boeck,
2004). It takes person-level covariates into account in order to explain differences at the
level of the individual:

ηpi =
J∑

j=0

ϑjZpj + εp −
K∑
k=0

βkXik, (2.6)

Here, Zpj is the value of person p on person property j(j = 1, . . . , J), ϑj is the fixed
regression weight of person property j, and εp is a person random effect representing
the remaining person effect after the effect of the person properties is accounted for.
One can think of the latent person variable θp as being regressed on external person
variables (Adams, Wilson, & Wu, 1997). The “virtual item” models described above can
be conceptualized as latent-regression LLTMs as well: the fixed item-set effects can be
interpreted as person covariates indicating that the probability of correct response for
a given item changes for a second item set based on experiences with a first item set.
Alternatively, these effects can as well be interpreted as item covariates, indicating that
item difficulties change over time. Within the metric of the RM and the LLTM, any
change in solution probabilities between testing occasions can be described without loss
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of generality as either a change in terms of the person parameter or as a change of the
item parameters (Mair & Hatzinger, 2007).
The LR-LLTM allows to move the investigation of construct validity one step further.

The internal structure of the respective task can be analyses both with regard to the
constituting task parameters and the contribution of broader ability constructs to solution
probabilities. That is, instead of correlating test scores with scores from other (related or
non-related) scores, scores on other tests or other person variables (e.g., gender, ethnicity)
can be incorporated directly into the explanatory model.
Meulders and Xie (2004) have described a third class of models, that is models that

include additional interaction effects between item- and person-predictor variables. This
class of so-called “Differential Facet Functioning” (DFF) models will be described as part
of the following section.

2.5. Differential item and facet functioning

Items are said to demonstrate “Differential Item Functioning” (DIF; see e.g., Holland &
Thayer, 1985) or “Bias” (see e.g. Jensen, 1980) when subjects from different groups but
with the same ability level have different probabilities of answering the item correctly.
While DIF is the term usually used in psychometrics to characterize the phenomenon of
group-specific item response functions, Bias is a widely used term in the field of cross-
cultural Psychology or other more applied, test-fairness related fields of study. DIF re-
search is especially important for all applications of AIG. Only if difficulty parameters for
automatically generated items are truly identical for all groups of potential test-takers,
or if differences in item parameters between different groups of potential test-takers can
be accounted for by inclusion of appropriate interaction terms in the model can the true
potential of AIG be used in practical testing situations.
DIF-research has a long tradition and there are many different models, non-IRT and IRT

based approaches to determine whether items of a test are subject to DIF. Mathematically,
DIF-effects are quantifiable differences in measurement properties of an item for two or
more groups. When responses of two groups of test-takers are compared, one group
is called the reference group, the other the focal group. According to an IRT model,
an item displays DIF if the shape of the Item Characteristic Curve (ICC) varies across
studied groups, given equivalent levels of the underlying construct. Equation 2.7 gives a
mathematical definition:

P (Ypi = ypi|σi, θp, zp) 6= P (Ypi = ypi|σi, θp), (2.7)

with zp indicating membership of person p to the focal or reference group, respectively.
Here, the probability of a specific response is not only dependent on the ability param-
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Figure 2.5.
Uniform and nonuniform-DIF in terms of the ICC of an item; top = no DIF, middle =
uniform DIF, bottom = non-uniform DIF

eter and the item difficulty parameter, but also on group membership. The conditional
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probability of a response ypi given the item difficulty parameter σi, the person ability
parameter θj, and the group membership indicator zp differs from the conditional prob-
ability of a response ypi given the item difficulty parameter σi, and the person ability
parameter θj only. This diminishes the validity of a test because cultural background or
group characteristics are measured unintentionally instead of a pure measurement of the
latent ability. On the contrary, if items are not subject to DIF, the location of items along
the measurement scale is the same across all different subgroups. Given a certain level on
the latent ability, only the difficulty of the item, and not group membership is predictive
for the solution probability:

P (Ypi = ypi|σi, θp, zp) = P (Ypi = ypi|σi, θp). (2.8)

DIF methods enable the test developer to judge whether a test functions the same man-
ner in various groups of examinees or across several testing occasions. In broad terms,
this is a matter of measurement invariance (cf. Zumbo, 2007). In a globalized world
with multicultural societies, DIF constitutes a severe threat to test-fairness and standard-
ized assessments in educational and selection settings. Especially when test results are
used to justify selection decisions, the equivalence of item characteristics and the related
statistics across different cultural groups is a key variable to test fairness. The Standards
for Educational and Psychological Testing (American Educational Research Association,
American Psychological Association, & National Council on Measurement in Education,
1999) indicate that DIF in a test also diminishes the practical value of the assessment.
In selection contexts, DIF research can reveal the degree to which a test administrator
has been successful in establishing fair “starting conditions” for all test-takers or whether
specific group-characteristics are influential for the cognitive processing on certain items.
Magis, Beland, Tuerlinckx, and De Boeck (2010) recently presented a “General Frame-

work for DIF Analysis” that allows for modeling most of the existing classical DIF ap-
proaches for dichotomously scored items. They divide DIF methods in (a.) methods based
on Item Response Theory (IRT) vs. methods not based on IRT (i.e. the methodological
approach), (b.) uniform vs. nonuniform DIF (i.e. the type of DIF effect), (c.) methods
involving single vs. multiple focal groups, and (d.) iterative vs. non-iterative elimination
of DIF items (i.e., methods with or without item purification). Table 2.5 lists these ap-
proaches. The differences between uniform and nonuniform DIF is depicted in Figure 2.5.
ICCs for items showing uniform DIF are only different in terms of their location on the
horizontal axis. ICCs for items showing non-uniform DIF differ also with regard to their
discrimination parameter.
In the following selected methods for each of framework/DIF-effect constellations will

be described in more detail. DIF methods that do not rely on item response theory usually
detect DIF based on statistical methods for categorical data. Here, the total test score
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Table 2.5.
Overview of methods for detecting differential item functioning for two groups

Method Reference Framework DIF effect

Mantel-Haenszel (MH) Mantel and Haenszel (1959) Non-IRT U
Standardization (Stand) Dorans and Kulick (1986) Non-IRT U
Breslow-Day (BD) Breslow and Day (1980) Non-IRT NU
Logistic Regression (Log)* Swaminathan and Rogers (1990) Non-IRT U, NU
LRT Thissen, Steinberg, and Wainer (1988) IRT U, NU
Lord Lord (1980) IRT U, NU
Raju Raju (1988) IRT U, NU

Note. U: uniform, NU: non-uniform; *Logistic regression methods do not require the estimation
of a specific IRT model. However, they share some similarities with IRT methods. Therefore,
they represent a “bridging method” between IRT and non-IRT methods (cf. Camilli & Shepard,
1994).

Table 2.6.
Structure of a contingency table for non-IRT DIF methods

Ypi = 1 Ypi = 0

Reference Group As Bs

Focal Group Cs Ds

Note. Ypi = 1 denotes a correct and Ypi = 0 an incorrect response; s denotes the total score.

is used as a matching criterion. In DIF methods that rely on item response theory, the
estimation of an IRT model is required for DIF testing.

Contingency-table based methods

The Mantel-Haenszel (MH) method and the Breslow-Day (BD) method are both based
on contingency tables. The difference between the two methods is that MH allows to
detect uniform DIF whereas BD allows for the detection of nonuniform DIF. For any
tested item i, all examinees with a given total test score are cross-classified into a 2 × 2
(group × correctness of response) contingency table (see Table 2.6 for an example).
Ai and Bi refer to the frequencies of correct and incorrect responses among all test-

takers with total score s (s = 1, · · · , k) in the reference group, Cs and Ds denote these
frequencies for the focal group. One contingency table for every possible total score s is
investigated. The MH method conditions on the sum score and tests whether there is a
relationship between group membership and item responses. The MH statistic is given
as:
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MH =
(|
∑

iAi −
∑

i E(Ai)| − 0.5)2∑
i Var(Ai)

. (2.9)

with E(Ai) and Var(Ai) denoting the expected value (under the assumption of no DIF)
and variance of Ai (see e.g., Magis et al., 2010 for the formulas for the derivation of
these statistics). Under the null hypothesis of no DIF, the MH statistic is asymptotically
χ2(1)-distributed. Items are classified as DIF when a critical value of this distribution is
exceeded. An alternative test statistic for the MH approach is λMH, which is derived as
the logarithm of the odds ratio for the frequencies in Table 2.6:

λMH = log

(∑
iAiDi/ni∑
iBiCi/ni

)
. (2.10)

Here, ni gives the number of test-takers with test score i in the total sample. λMH

is used as a common effect size for DIF, with the ETS Delta scale (Holland & Thayer,
1985) providing a widely accepted classification for this effect size. Three categories of
DIF effects are proposed, i.e. negligible effects (ETS Delta = A), moderate effects (ETS
Delta = B) and large effects (ETS Delta = C).
The BD method (Breslow & Day, 1980) is a widely used non-IRT method to detect

non-uniform DIF. As the MH statistic, the BD statistic is also based on a contingency
table of correct and incorrect item responses. The BD test tests whether the association
between item response and group membership is homogeneous across different values of
total test scores. The BD statistic is given as:

BD =
∑
i

(
[Ai − E(Ai)]

2

Var(Ai)

)
, (2.11)

with E(Ai) and Var(Ai) denoting the expected value (under the assumption of no DIF)
and variance of Ai (see e.g., Magis et al., 2010 for the formulas for the derivation of these
statistics). Under the null hypothesis of no DIF, the BD is asymptotically χ2 distributed
with the number of degrees of freedom matching the number of different total test scores
investigated (Aguerri, Galibert, Attorresi, & Maranon, 2009).

Logistic Regression based DIF detection

The Logistic Regression method (Swaminathan & Rogers, 1990) is based on a logistic
model for the probability of correct response. Uniform DIF effects are tested by investi-
gation of main effects, interaction effects can be investigated to test nonuniform DIF. The
Logistic Regression method does not strictly fall into the category of IRT-based methods
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but was called a “bridging method” between non-IRT and IRT approaches (Camilli &
Shepard, 1994). The logistic regression model can be written as:

logit(πpi) = β0 + β1sp + β2zp + β3szi, (2.12)

with spi the total test score for person p, zp the group membership for this person, and
szp the interaction of the two factors. Both uniform and nonuniform DIF effects can be
tested using this model and the usual statistical test procedures (e.g., Wald or LR test),
depending on whether interaction effects are specified or not. A model-fit statistic ∆R2

(Zumbo & Thomas, 1997) can be calculated based on Nagelkerke’s R2 (Nagelkerke, 1991)
for nested models. Two different categorizations for the ∆R2 effect size were proposed
(Zumbo & Thomas, 1997; Jodoin & Gierl, 2001). The categorization proposed by Jodoin
and Gierl (2001) (JG) is less conservative than the earlier classification by Zumbo and
Thomas (1997) (ZT).

DIF frameworks based on specific IRT models

In DIF methods that rely on IRT, the estimation of a specific IRT model is required for
DIF testing. For dichotomously scored items, IRT-methods can, for instance, rely on the
1PL, 2PL or 3PL model. 2PL and 1PL can be derived from the most general formula of
the 3PL when item guessing parameters and (in the 1PL also) item thresholds are fixed.
The 3PL model is defined as1:

P (Ypi = 1|θp, ai, bi, ci) = ci + (1− ci)
exp [ai(θp − bi)]

1 + exp [ai(θp − bi)]
. (2.13)

As in the models defined in the previous sections, Ypi is the binary response of person p
to item i. θp is the position of person p on the latent trait. ai is the item discrimination
parameter. bi is the item difficulty parameter. ci is the guessing parameter of item i.
Besides the Likelihood-Ratio-Test method and the methods by Raju, Lord’s approach is
one of the most important IRT-based DIF methods. Lord’s method (Lord, 1980) tests
the equality of item parameters in focal and reference group based on a χ2-Statistic Qi.
It is based on the assumption that the maximum likelihood item parameter estimates
are asymptotically normally distributed. The method is very flexible and allows to test
both uniform and nonuniform DIF based on any type of fitted IRT model. Under the
assumption that the item difficulties of a test can be accurately described by a 1PL
(Rasch) model, Lord’s test statistic is given as:

1Here, the typical 3PL notation with ai, bi, ci as the three item parameters is used. This deviates from
the Rasch-model notation used generally in this thesis where the item difficulty parameter is denoted
σi and not bi
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Qi =
(biR − biF )2

SE(biR)2 + SE(biR)2
. (2.14)

Whether uniform or nonuniform DIF is investigated depends on the choice of the specific
IRT model. The Rasch model provided a framework for uniform DIF (all item discrimina-
tion parameters are set to one), whereas the 2PL model allows to investigate non-uniform
DIF (here, the item discrimination parameters are freely estimated).
These “classical” approaches to DIF are useful to determine which items are prone to bias

in cross-cultural applications. However, these methods do not allow to identify sources of
bias in characteristics of the respective items. In terms of Zumbo (2007)’s (2007) general
framework of DIF methods, these approaches represent the “first and second generation
of DIF”. They remain largely technical and show how DIF in individual items affects the
distribution of the test scores in different groups. In contrast, approaches of the “third
generation of DIF” are suitable for the analyses of construct bias on the level of facets
underlying each item, and therefore the identification of factors for DIF (Zumbo, 2007).

Person-by-Facet Interactions: Differential Facet Functioning (DFF)

Meulders and Xie (2004) have described a third class of explanatory IRT models, that
is models that include additional interaction effects between item- and person-predictor
variables. By the inclusion of such predictor variables models can be build that account
for person- or group-specific differences in item parameters. Differential Facet Functioning
(DFF; Engelhard, 1992; Meulders & Xie, 2004) falls in the category of “third-generation
approaches” (Zumbo, 2007; p. 229) to DIF. In a similar way like the LLTM attempts
to explain item difficulties based on a set of underlying item facets, DFF attempts to
explain differences in item difficulties between groups by the inclusion of interaction ef-
fects, specifically person*facet interactions. Engelhard suggested that “studies of differen-
tial facet functioning can be conducted by a variety of procedures that are conceptually
similar to current approaches for studying differential item functioning” (p. 175). In com-
parison with DIF, in DFF a more explanatory investigation of component difficulties due
to specific person properties (e.g., WM capacity) is feasible. As shown by Meulders and
Xie (2004) a DFF model can be conceptualized as an extension of the models described
in 2.1 and 2.6 as

ηpi = θp −

(
K∑
k=0

βkXik +
K∑
k=0

γkXikZp

)
(2.15)

where γk denote the weights for the interactions of item facet difficulties with qual-
itative person predictors indicating group membership (i.e. XikZp), respectively. This
model, then, allows to assess whether difficulties of item components (“facets”) vary with
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person properties, indicating possible differences in cognitive processing while working
on the items. Significant interaction effects γk imply that the effect of item facets on
item difficulty depends on the group. As Meulders and Xie (2004) point out, modeling
DFF can be used to investigate both main and interaction effects. Whereas main effects
represent mean differences in item difficulties between groups that are not indications for
LLTM parameter invariance, interaction effects capture facet bias. Facet bias diminishes
the construct validity of an item because the item measures the set of abilities needed to
solve an item to different degrees in the two groups. That is, if the relative contributions
of the item facets to global difficulties are not the same across groups, the constructs
measured in each of the groups are, at least to some degree, not the same. DFF has been
proposed as an addition to classical DIF methods to add an explanatory component to
the pure detection and quantification of DIF: “The LLTM is useful in testing how the re-
sponse data conform to the structure of the test design. The DFF model helps to explain
the DIF effects more substantively.” (Xie & Wilson, 2008, p. 414).
The DIF and DFF methods described in the previous sections will be applied in Study 3

of this thesis to investigate the cross-cultural comparability of test-scores on a rule-based
generated figural reasoning measure.
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3
The Figural Analogy Test (FAT):

Item generation and construct
validation

This study describes the development of a new reasoning measure, the Figural Analogy Test (FAT), that
extends earlier works by Beckmann (2008) who developed an analogy measure based on alphanumerical
symbols and figural-spatial rules. The current study aims at the development and validation of a purely
figural measure that requires no mathematical or verbal abilities. The generative framework is exclusively
based on theories of analogical reasoning, specifically focusing on geometric analogies and spatial ability.
The validity of the new item-generative framework is tested in an empirical study with N = 308 university
students. Two main research questions are addressed, first, the appropriateness of the set of pre-specified
item radicals to model item difficulties in terms of a reliable prediction of difficulty parameters. Second, it
is tested whether the parameter estimates of the item-difficulty model are in line with assumptions about
figural-spatial processing and analogical reasoning. A set of specific hypotheses related to the impact
of the item radicals manipulated are tested. Several explanatory IRT models are compared, including
models with item-predictors only and models with person-by-item interactions. Results show that item
difficulties can be predicted based on the new AIG framework. Absolute Parameter differences are,
however, considerable and constitute a threat to potential operational applications. All parameters are
in line with theories of figural-spatial reasoning. Gender differences are driven by specific item features.
Furthermore, scores on the new test correlate with other established measures of fluid reasoning and
spatial ability and demonstrate incremental validity for the prediction of school grades. Future studies
should investigate the generalizability of these results to fully automatically generated FAT items and
the feasibility of the item difficulty modeling approach for computerized adaptive testings scenarios.

Keywords. Figural-spatial reasoning, Analogical reasoning, g, Automatic Item Generation, Explana-
tory IRT, LLTM
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3.1. Introduction

This introduction is structured into three parts. First, figural-spatial analogies and their
value as indicators of fluid intelligence will be described. Second, previous attempts to
construct figural analogies based on item-generative rules and predict item difficulties will
be reviewed. Third, the research questions of the current study will be derived.

3.1.1. Figural-spatial analogies as indicators of fluid intelligence

The ability to make inferences based on the processes of inductive and deductive reasoning
has been a main theme of philosophical enquiry ever since the beginning of scientific
endeavor. It is is a prerequisite for learning and problem solving (e.g., Glaser, 1982; Snow
et al., 1980; Sternberg, 1984) and a a vital part of most important theories on human
intelligence (e.g., Carroll, 1993; Cattell, 1971; Jäger, 1982; Spearman, 1904; Thurstone,
1938). Abstract Analogical reasoning items of the form

A : B :: C :?

combine the two core processes induction and deduction. Analogical reasoning technically
terms the process of extrapolating a function from a pair of source objects (A : B) and
the application of the function to a pair of target objects (C :?). The target pair is
incomplete (i.e., D is replaced by a question mark) and has to be completed using the
function induced from the pair of source objects.
A number of different information processing theories have been proposed, describ-

ing the component processes of analogical reasoning (Spearman, 1923; Sternberg, 1977b;
Sternberg, 1977a; see Beckmann, 2008 for a comprehensive review of these theories). Ana-
logical mapping has been considered the core process of analogical reasoning. Analogical
mapping is the process of establishing a structural alignment between and projecting in-
ferences based on two represented situations. The problem solving process entails the
establishment of an explicit set of rules that describe the correspondences between the
elements of the two situations. It can be divided into two main stages (see also Figure
3.1):

1. The first phase is called preparation period. The relation between the A term and the
B term has to be educed by induction. The sequence of processes during this period
is: (1.) inspecting the A : B-relation, (2.) investigating the relational similarity,
and (3.) inducing of formal logical rules (i.e., the function that has to be applied to
create the missing target object).
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Figure 3.1.
Process model of analogical reasoning (Study 1)

2. Deduction is executed when the inferred relation is applied onto the C term to gen-
erate the D term (deduction period). Here, the rules induced during the preparation
phase are applied to the first target object, C.

According to D. M. Johnson (1962), item difficulty can be led back to either induction
or deduction, depending on the degree of familiarity with the stimuli. The solution of
analogy items requires, therefore, exactly the two processes that build the core of ana-
logical thinking, i.e. the abilities to perceive and use relational similarity. This process is
very general and applies to a multitude of possible analogy problems. Analogy problems
can be verbal, asking the test-taker to detect semantic similarities between words. Analo-
gies can be complex realistic problem solving tasks, asking respondents to induce general
rules or principles from complex text or simulations, and apply them in new situations.
For the current study, only abstract figural analogies are investigated. This is due to the
goal to generate test items of logical reasoning that are as free as possible from language,
mathematical rules, and references to cultural-specific knowledge.
The solution of figural-geometric analogy items requires the usage of spatial abilities.

Spatial abilities and reasoning are closely related, though they are still two distinct dimen-
sions (Gittler, 1999). The importance of image rotation in human intellectual function
has been repeatedly highlighted (e.g., W. Johnson & Bouchard, 2005). At the same time
spatial abilities are often assessed only poorly in cognitive test batteries. As shown in
Table 3.1, spatial tasks can be classified according to the type of spatial rules as well as
according to the types of cognitive processes associated with them.
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Table 3.1.
Spatial rules and cognitive processes in figural-spatial tasks (Study 1)

Visualization Orientation

Spatial distortion rules X −
Spatial displacement rules X X

Factor analytic studies of spatial ability tasks have provided strong support for the
existence of two distinct spatial abilities, usually termed visualization and orientation
(e.g., Hegarty & Waller, 2004): Visualization refers to the ability to mentally rotate,
manipulate, and twist two- and three-dimensional objects in tasks. Orientation refers to
comprehension of the arrangement of elements within a visual pattern and the ability to
retain spatial orientation in changing conditions.
During the solution process of figural-geometric analogies, two types of mental transfor-

mations have to be applied (cf. Linn & Petersen, 1985; Shepard & Metzler, 1971; Whitely
& Schneider, 1981): Transformations referring to disorientation of elements from A to B
such as rotation, reflection and exchanges are labelled spatial displacements. Transforma-
tions that refer to the size, shade, shape, and number of geometric elements are labelled
spatial distortions. Only spatial displacements truly require the two spatial abilities of
visualization and orientation. Spatial distortions refer to changes in geometric elements
as well, but these changes are not directly linked to their orientation and relation in space.
While the large majority of research findings indicate that there are no gender differences

in general intelligence (e.g., Colom, Juan-Espinosa, Abad, & Garcia, 2000; see Halpern &
La May, 2000 for a review), gender differences on specific cognitive abilities have been re-
ported consistently (e.g., Birenbaum, Kelly, & Levi-Keren, 1994; Dykiert, Gale, & Deary,
2009; Irwing & Lynn, 2005; Irwing & Lynn, 2006; W. Johnson & Bouchard, 2007). Specif-
ically, gender differences on tasks involving spatial abilities are well-documented (Cooke-
Simpson & Voyer, 2007; Jordan, Wüstenberg, Heinze, Peters, & Jäncke, 2002; Linn &
Petersen, 1985; Masters & Sanders, 1993; Terlecki, Newcombe, & Little, 2008; Voyer,
Voyer, & Bryden, 1995). Meta-analyses show an average standardized mean difference of
d = 0.73 for mental rotation tasks (Birenbaum et al., 1994; Linn & Petersen, 1985) and
faster mental rotation for males (e.g., Heil & Jansen-Osmann, 2008). The largest effect
sizes are reported for the Mental Rotation Test (MRT; Linn & Petersen, 1985; Voyer
et al., 1995). Effects increase with the complexity of the stimuli to be rotated (Heil &
Jansen-Osmann, 2008). Scores in the MRT increase with age but this increase is stronger
for males (Geiser, Lehmann, & Eid, 2008). Males invest more time in activities that
require spatial cognition and therefore train their spatial ability over lifespan more than
women do (Baenninger & Newcombe, 1989; (1995)).
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Mental rotation can be performed analytically or holistically. Many studies have shown
that females tend to focus more strongly on analytic strategies while solving spatial tasks
whereas man favor holistic strategies (Heil & Jansen-Osmann, 2008; Hugdahl, Thomsen,
& Ersland, 2006; A. B. Janssen & Geiser, 2010; A. B. Janssen & Geiser, in press; Moe,
Meneghetti, & Cadinu, 2009).

• Analytic Processing: When analytic strategies are used to perform mental rotation,
stimuli are rotated in a piecemeal fashion, i.e., every part of the stimulus is processed
individually. In this case, the speed of mental rotation is a function of stimulus
complexity. That is, the more complex a stimulus is, the longer it takes to mentally
rotate it. For instance, polygons with higher degrees of angular disparity, more
corners or less distinct shapes will be more complex than simpler polygons. All
individual features of the stimulus are represented and rotated separately when this
strategy is followed.

• Holistic Processing: Test-takers using holistic strategies to perform mental rotation
represent the stimulus as a whole. In this case, mental rotation performance is
expected to be less affected by stimulus complexity. Only one operation is needed
no matter whether the stimuli has many or only few features.

In line with these general assumptions, longer reaction times for mental rotation have been
reported for men vs. women (e.g., Geiser, Lehmann, & Eid, 2006; Heil & Jansen-Osmann,
2008). Large proportions of the robust gender-effect in mental rotation performance
can, indeed, be explained by the use of different strategies and the extent of previous
experiences with spatial problems. Feng, Spence, and Pratt (2007) trained men and
women with an action video game. They report substantial gains in spatial attention
in general and mental rotation in specific. Most notably, gain effects were significantly
larger for women. The gender effect could be considerably reduced by the intervention.
Gender differences on spatial tasks can be, at least to some degree, explained by prior
task experiences and preferences for different processing strategies. It is important to
consider these findings when new measures based on figural-spatial rules are constructed
and validated.

3.1.2. Rule-based generation of figural analogy items

The impact of the components of figural-geometric analogy items on item difficulties
has been investigated in several studies. When the contributions of pre-specified task
parameters to item difficulty are investigated, a cognitive theory of the item solving process
can be tested. Statements on the construct validity of the items can be made. The
existence of a sound cognitive model describing task performance is one prerequisite for the
application of rule-based AIG in practical assessment settings: knowing the contribution
of item radical difficulties to item difficulty allows to create items of designated difficulties
(see Chapter 2.3 of this thesis for a discussion of rule-based AIG).
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Whitely and Schneider (1981) explored the information structure for geometric analo-
gies, using three spatial displacement transformations (rotation, reflection, and spatial
exchanges) and six transformations from the category of spatial distortions (adding, re-
moving or dividing elements, shade, size, shape). Only spatial displacements led to an
increase in item difficulty whereas spatial distortion rules caused, in fact, an opposite
effect (the “number of spatial displacement transformations was positively related to item
difficulty, while number of spatial distortions was negatively related”, p. 395). In a similar
experiment, Novick and Tversky (1987) analyzed the impact of eight different types of
transformations on item difficulties. Their conclusions were almost identical with the re-
sults reported by Whitely and Schneider (1981). Novick and Tversky’s findings confirmed
increased item difficulties for tasks containing spatial displacement in contrast to distor-
tion tasks. In order to construct tests of higher difficulty level, tasks should, therefore,
obtain more spatial displacements.
Murray (1997) reported shorter reaction times for flipping of objects (i.e., mirroring)

versus spinning of objects (i.e. rotation). It is assumed that flipping is performed without
formation of intermediate representations and is therefore more efficient (Kanamori &
Yagi, 2002).
Mulholland, Pellegrino, and Glaser (1980) analyzed the factors contributing to the dif-

ficulty of geometric analogy items and concluded that the number of transformations
yielded a significant effect on error rates in true analogy tasks. Further, the number
of transformations and the number of elements interacted and significantly affected the
amount of errors made. Mulholland et al. (1980) concluded that “the largest single source
of errors was multiple transformations of single elements” (p. 282). The number and
complexity of the transformation to be performed represents the relational complexity
of the tasks (cf. RC theory; Halford et al., 1998 or Chapter 5 in this thesis). Working
memory load is assumed to account for an increase in error rate due to an increase in
the complexity of the spatial relations between elements and thus an increased amount of
information needs to be stored and processed in working memory.
While geometric analogies have been studied intensively since the early 1980s, these

studies did not link the investigation of key factors of item difficulty with the rule-based
generation of new instruments. Beckmann (2008) closed this gap between intensive re-
search on analogical processing on the one hand and the lack of sound psychometric
instruments making use of the principles of rule-based AIG on the other. She proposed a
new item-generative framework and tested the applicability of this framework empirically
in a sequence of three pre-studies and one larger main study. The results from her studies
can be summarized with regard to two main research goals, (1.) the identification of key
drivers of item difficulty for figural analogy items and their usefulness in modeling item
difficulties by explanatory IRT models, and (2.) validity findings for her new measure with
regard to general cognitive ability as well as scholastic performance, and the impact of a
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Figure 3.2.
Example Item with two rules from Beckmann’s analogy test; Two rules are applied here,
i.e., rotation by 180 degrees, and sequence plus; figure from Beckmann (2008)

comprehensive instruction materials on test validity. In the following, I will summarize
her findings and describe why an extension of Beckmann’s study was necessary.
Beckmann (2008) identified important factors of item difficulties for the type of figural

analogies by applying a number of explanatory IRT models. The item facets constitut-
ing her item-generative framework are summarized in Table 3.2, together with the facet
difficulty parameters estimated by means of LLTMs. An example item of Beckmann’s
instrument is shown in Figure 3.2. She combined two spatial distortion with 5 spatial
displacement rules and two additional alphanumerical rules in a set of k = 44 items. An
individual item contained between 1 and 3 rules with a maximum of 1 rule from each type.
Subjects worked on the test in four blocks with time limits given for each block. Item
solution probabilities ranged from p = .11 to p = .93 with a mean difficulty of p = .47.
Out of 44 items, 32 items showed good fit to the Rasch model. Confirmatory factor
analyses showed misfit for a one-factor model for all items, but acceptable fit statistics
for the reduced set of Rasch-homogenous items. The amount of heterogeneity among the
test items was reflected also in the internal consistency of the test: With α = .76, the 44
item-version shortly missed the desired value of α > .80 (Anastasi, 1981).
Regarding Beckmann’s item difficulty modeling approach, all item facets expected to

function as item radicals reached statistical significance in the LLTM. 71% of variation in
item difficulties could be explained by the linear combination of LLTM item facet param-
eters. Signs and relative heights of all facet parameters were mostly in line with previous
research (see e.g., Whitely & Schneider, 1981): While changes in the printed size of letters
and numbers showed facilitating effect on item difficulties, presence of all other facets led
to increased item difficulty. Item difficulties did not differ significantly depending on the
direction of rotation (clockwise vs. counter clockwise); a reduced model with only two
rotation parameters (instead of 3) did not fit considerably worse. It turned out sufficient
to model rotation by 90 degrees when predicting item difficulties without distinguishing
between clockwise and counter-clockwise rotation. Contrary to earlier studies, rotation
by 180 degrees had lower impact on item difficulty than rotations by only 90 degrees.
This finding is inconsistent with research on mental rotation. One of the most robust
findings in mental rotation research is that difficulties of mental rotation tasks increase
with increasing rotation angles (Shepard & Metzler, 1971).
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Table 3.2.
Item-generative framework behind Beckmann’s analogy test: Radicals

Type of cognitive rule Item Facet LLTM weight

Spatial Distortion Increase in Size 0.29∗∗

Decrease in Size 0.29∗∗

Spatial Displacement Rotation by 90 degrees clockwise −1.19∗∗

Rotation by 90 degrees counter-clockwise −1.16∗∗

Rotation by 180 degrees −0.54∗∗

Mirroring at the horizontal axis −1.91∗∗

Mirroring at the vertical axis −1.42∗∗

Numerical/alphabetical Sequence plus −0.96∗∗

Sequence minus −0.60∗∗

Note. LLTM weights are values on logit scale, smaller values represent higher difficulties; table
displays results from Beckmann (2008)

Beckmann’s findings with regard to the two new “sequence” rules were only partly sat-
isfactory. Application of these rules did not require any figural or spatial abilities, but
their application relies only on numerical and alphabetical knowledge (“The rules sequence
plus and sequence minus required the participant to go forward or backward in the al-
phabet when letters were presented and to add or subtract when digits were presented”,
Beckmann, 2008, p. 90). Both letters and digits cannot be considered abstract figural
elements. They represent objects with a semantic meaning which is more or less easy to
detect depending on their orientation in space. This is reflected in Beckmann’s results:
considerable influences of surface characteristics related to these rules were found: for
instance, the orientation of the A elements played a significant role for the difficulty of
preparation period processing. Item difficulties differed considerably dependent on the
initial position of the letter or digit in the A-element: an item containing exactly the
same cognitive rules was considerably more difficult when the letter was presented 90
degrees clockwise rotated instead of in the upright “normal” position. The same was true
for the orientations of letters and digits in the C-element. While initially conceptualized
as incidentals to be chosen randomly, stimuli positions and orientations turned out to
function as item radicals here, albeit with inconsistent magnitudes. This finding compli-
cates reliable prediction of item difficulties of uncalibrated items based on the underlying
item facets. It is an open question whether the unexpected result regarding 180 degree
rotations is also connected to the special types of geometric forms used.
Mixed results were found as well when item solution probabilities were regressed on the

type of combination of letters and digits in a given item: Items with digit-digit combi-
nations (i.e. item where were A : B elements and C : D elements were both digits) were
significantly easier than items with letter-digit, letter-letter or digit-digit combinations.
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Here, empirical findings on the drivers of item difficulties are not in line with the previ-
ously assumed pattern of item radicals and incidentals as well. Research could analyze the
impact of specific digits or numbers on the ease of spatial displacements. However, such
analyses could not solve the problem that the alphanumerical rules do “not correspond
to the characteristic of pure culture-fair tests, since participants of different backgrounds
might not meet these requirements or do not provide such knowledge” (Beckmann, 2008,
p. 170). An alternative way to deal with these problems could be to avoid letters and
digits and to build an analogy test that is purely based on abstract figural elements. This
procedure is followed by the current study.
In addition to the investigation of the goodness of fit of the new item-generative frame-

work, Beckmann (2008) investigated the effects of two different types of instruction.
Specifically, Anastasi’s claim was tested, that short orientation and practice sessions pre-
ceeding the actual assessment can establish comparable testing conditions for all subjects.
The so-called Test Sophistication Hypothesis (Anastasi, 1981) suggests that brief practice
increases the construct validity of ability tests by reducing confusion and test anxiety.
The measurement of the construct becomes less contaminated with other factors and the
error variance is reduced, thereby enhancing its measurement properties. Two randomly
assigned groups were compared in a between subject design. While one group received a
comprehensive instruction comprising all rules and example items before the assessment,
another group of test-takers received no instruction. Mean scores of the instruction vs.
non-instruction groups differed significantly with members of the instruction group solving
on average 2 items more, representing an effects size of d = 0.36.
Scores on Beckmann’s instrument correlated substantially with the revised German

version of Cattel’s Culture Fair Test (German adaption CFT 20r; Weiß, 2007) only in the
instruction-group (r = .54 vs. r = .24 in the no-instruction group). Test performance in
the total sample correlated significantly with GPA (r = .18), with a higher correlation for
a math & science composite score compared to an arts & music composite (r = .22 vs.
r = .16).
Beckmann’s (2008) work builds a strong starting point for automatic rule-based gener-

ation of new test items. Beckmann identified core drivers of item difficulty. By specifying
what item facets contribute to item difficulty and what facets are negligible when item
difficulties should be modeled, her results provide a good basis for further developments
of rule-based analogy items. However, parameter estimates reported by Beckmann are
not completely in line with theoretical assumptions about the underlying construct. That
is, while the items developed based on her framework showed, overall, good psychometric
properties, the construct validity of the new measure could only be partly established.
While spatial displacement and distortion rules functioned mostly as expected, the usage
of letters and digits and the two new “sequence” rules produced inconsistent results. Sur-
face characteristics related to specific digits and numbers and their orientation in space
turned out to function as item radicals rather than as incidentals. Also, the usage of

54



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

letters and digits conflicted with the goal to develop a culture-fair reasoning measure that
is valid across cultural boarders and independent of language or mathematical knowledge.
Unwanted multidimensionality due to the heterogeneity of cognitive rules might be one
reason for the large amount of 25% of Rasch-misfitting items and the rather low inter-
nal consistencies and criterion-related validities. Carlstedt et al. (2000) showed that an
intelligence test made up of homogenous items loaded higher on a general intelligence
factor than did a similar test made up of heterogeneous items. Furthermore, Bethell-Fox,
Lohman, and Snow (1984) showed that analogy items containing spatial displacements
evoked other cognitive processes compared to items without such spatial rules. Due to
constraints with regard to the combination of rules, at maximum only one spatial dis-
placement rule could be used in one item, yielding items of mostly medium difficulty
level. Beckmann (2008) suggests that, in order to construct tests of higher difficulty level,
tasks should obtain more spatial displacement rules.

3.1.3. Research questions

The overarching goal of the current study is to extend Beckmann’s work in order to
develop an item-generative framework that is suitable for computer-based AIG. It will be
investigated how a rule-set for the generation of a new, purely figural, analogy measure
can be developed based on cognitive theories of analogical reasoning and figural-spatial
processing. Items of the instrument should be purely figural, highly g-loaded and focus
more strongly on spatial displacement rules. The set of item-generative rules should allow
to construct items suitable for assessment of the whole range of the ability continuum.
Two main research questions are investigated:

1. First, the appropriateness of the set of pre-specified item radicals to model item
difficulties in terms of a reliable prediction of difficulty parameters will be critically
investigated. This refers to the mostly technical benefits of rule-based item gener-
ation, i.e. an accurate prediction of item difficulties based on pre-calibrated item
facet parameters instead of individual item calibrations. How well can item difficul-
ties be predicted by the set of underlying item facets? How large is the deviation of
true and predicted item difficulties?

2. Second, it is tested whether the parameter estimates of the item-difficulty model
are in line with findings from cognitive psychology on figural-spatial processing and
analogical reasoning. That is, are items generated based on the new framework
construct valid both in terms of their construct representation and in terms of
nomothetic span? Do item facet parameters go in line with their theoretically
assumed direction and magnitude? Can the pattern of gender effects found for
figural-spatial tasks be replicated regarding the set of new item radicals? Is the
new test capturing the intended construct based on its relationships with other
measures? Specific hypotheses tested regarding the item radicals and incidentals
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of the new measure will be lined out after the description of the item-generative
framework in the next section.

Regarding the AIG process illustrated in Figure 2.2 the research questions of this study
focus on the first three steps, i.e. construct definition, identification of underlying cognitive
processes and item radicals, and the empirical test of hypotheses regarding the item
radicals. Step 4, the combination of item facets in new items, goes beyond the scope of
this study. It is only indirectly addressed here. As a result of the first three steps, a
set of item radicals is established that provides a basis for the generation and empirical
investigation of new items. The development of a computer-software for the generation
of new items, calculation of difficulty parameters and estimation of person abilities is
currently under development.

3.2. Method

There are two parts to the method section. First, the derivation of radicals and incidentals
for the new item-generation framework is described. Second, the design of the empirical
study is described that addresses the research questions outlined above. Specific hypothe-
ses tested regarding the construct representation of the new measure will be described at
the end of the description of the framework.

3.2.1. Development of the new item-generative framework

Based on the findings summarized above, a number of changes to and extensions of
Beckmann’s item generative framework were made. These changes are summarized in the
following:

1. Item facets that did not have considerable impact or inconsistent effects on item
difficulties were removed from Beckmann’s item-generative framework.

2. Instead, a more homogeneous set of rules was applied to enhance the validity of
the item generative framework and the explanatory value of the item facets (cf.
Carlstedt et al., 2000). All rules were chosen to be spatial displacements. In contrast
to the previous item facets, no verbal or mathematical rules were used.

3. In total, six displacement rules were applied, with up to 3 rules used simultane-
ously in one item. Others have shown that “the largest single source of errors was
multiple transformations of single elements” (Mulholland et al., 1980, p. 282). The
combination of more than one spatial displacement rule in a given item should al-
low especially for the generation of difficult items suited for discrimination in high
ability ranges.
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Figure 3.3.
Sample Figural Analogy Test item with 9 response alternatives

4. Purely abstract geometric figures were used instead of letters and digits. All refer-
ences to specific cultural and educational variables were excluded. Previous findings
indicate that reasoning measures with figural content are the best measures of fluid
intelligence (e.g, Undheim & Gustafsson, 1987). An increased coverage of spatial
abilities was one consequence of the explicit focus on language- and knowledge-free
cognitive rules. This was expected turn out beneficial from a practical point of
view as well as performance on spatial tasks, particularly those involving mental
rotation, predicts success in many professional settings (e.g. aviation, engineering,
visual arts) better than general intelligence or verbal abilities.

Figural stimuli Instead of the letters and digits used in Beckmann’s test, each element
of an analogy item (i.e., A, B, C, and D) is composed of one grey pentagonal main shape
and a number of additional figural features (see Figure 3.3 for an example). In order
to prevent problems with initial stimuli positions as described above, 8 exchangeable
pentagonal main shapes were designed sharing a set of general characteristics while still
being visually distinguishable (see section about item incidentals in the following).
Each main shape could be combined with up to four additional features that show

a specific spatial relation to the main form. The idea to lay the focus on the spatial
relation of figural objects to each other was successfully applied by other tests before. For
instance, the subtest “Topologies” from the CFT (Weiß, 2007) uses a similar principle. In
the Topologies test respondents have to detect the spatial relations of geometrical figures,
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DOT CIRCLE RECTANGLE BEAM

Figure 3.4.
Combination of main shapes and features into figural objects in the new item-generative
framework of the FAT

lines and dots to each other in one configuration, and then pick another configuration
that pertains the same relations of elements by building an analogy between the two sets.
In case of the new item-generative framework presented here, four distinct features where
chosen that can be positioned clearly either on the edges or corners of each pentagonal
shape. The introduction of these features allowed for the generation of more complex
stimuli that comprise a higher number of spatial displacements in one item. Figure 3.4
exemplarily shows how main shapes and features could be combined to build figural
objects. Circle and rectangle were always positioned at the corners of the main shape;
the point was always positioned in one corner of the main shape, and the beam parallel to
an edge of the respective main shape. All possible positions of each feature were thereby
unequivocally defined.

Item Radicals The choice of item radicals was guided by Beckmann’s findings as well
as the objective to allow for more spatial displacement rules and a combination of 2 or

A.)

Mirroring

90°clockwise 90°counter-clockwise 180°

Y axisX axis

Rotation

B.)

Mirroring

90°clockwise 90°counter-clockwise 180°

Y axisX axis

Rotation

Figure 3.5.
Exemplary illustration of all rules that apply to the main shape, (A.) rotation rules, (B.)
mirroring rules
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1 corner/edge

counter-clockwiseclockwise

2 corners/edges

Figure 3.6.
Exemplary illustration of all rules in the FAT that apply to the features

more displacement rules in one item. The spatial displacement rules used here can be
divided into two groups, rules that apply to the main form (1-4, see Figure 3.5), and rules
that apply to the figural features (5-6, see Figure 3.6); in the new framework all logical
connections between the elements A and B as well as C and D are exclusively defined by
this set of spatial displacement rules:
R1: Mirroring at the X-axis (M-X): When this rule is applied the main form is reflected

at the horizontal axis. This rule separately is illustrated in Figure 3.5. Figure
3.9 demonstrates this rule for an actual item: Here the pentagonal main shape is
reflected at the horizontal axis from its orientation in A to its orientation in B.

R2: Mirroring at the Y-axis (M-Y): When this rule is applied the main form is reflected
at the vertical axis. This rule separately is illustrated in Figure 3.5. The two variants
of mirroring were modeled as separate item facets because vertical and horizontal
mirroring requires not the same cognitive processes. Due to the item direction from
left to right mirroring at the vertical axis could be facilitated by use of a simple
flipping strategy (Murray, 1997) whereas this strategy is not applicable as easily for
mirroring at the horizontal axis.

R3: Rotation of the main shape ±90o (R90): When this rule is applied a rotation by
90 degrees is applied to the main shape. Rotation could be either clockwise or
counterclockwise. This rule separately is illustrated in Figure 3.5. Figure 3.8 (upper
part) demonstrates this rule for an actual item: Here the pentagonal main shape is
rotated by 90 degrees counter-clockwise from its orientation in A to its orientation
in B.

R4: Rotation of the main shape by 180o (R180): When this rule is applied the main
shape is rotated by 180 degrees. This rule separately is illustrated in Figure 3.5 as
well. Figure 3.8 (lower part) demonstrates this rule for an actual item: Here the
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Figure 3.7.
Illustration of the additional complexity parameter “Type of Form” in the FAT; Left: con-
vex shape, without landmark; right: concave shape with landmark; both shapes are identical
besides for the position of one corner; the lower left angle is rectangular in both shapes

pentagonal main shape is rotated by 180 degrees from its orientation in A to its
orientation in B.

R5: Change of feature-position ±1 corner/edge (Cp1): When this rule is applied, one of
the features in the arrangement changes its relative position in space to the main
form. The feature affected by this rule is moved one position (i.e., one corner or
one edge) clockwise or counterclockwise. This rule separately is illustrated in Figure
3.6. Figure 3.9 demonstrates this rule for an actual item: Here the dot is moved
one corner clockwise from its position in A to its position in B.

R6: Change of feature-position ±2 corners/edges (Cp2): This rule is similar to the pre-
vious rule: One of the features in the arrangement changes its relative position in
space to the main form. The feature affected by this rule is moved two positions
(i.e., two corners or two edges) clockwise or counterclockwise. This rule separately
is illustrated in Figure 3.6. Figure 3.9 demonstrates this rule for an actual item:
Here the beam is moved two edges counter-clockwise from its position in A to its
position in B.

The logical structure of the items is only based on the first category of radicals, spatial
displacements. However, three further complexity factors were introduced as radicals in
the new item-generation framework. These complexity factors are related to the actual
appearance of item features and the number of stimuli used in each figural-spatial configu-
ration. They do not represent item radicals in a narrower sense as they are not associated
with the cognitive rules defining the analogy. They rather define the general complexity
level of an item independent of the complexity of the analogy (or nuisance factors that
make it harder for the individual to detect, recognize and apply the analogy-defining
rules).
R7: Type of Form (ToF): The shape of the pentagonal main shapes used was either

convex or concave. Concave main forms were identical with the convex main forms
except for one corner that was “moved inwards” (see Figure 3.7 for an illustration).
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FAT-30-38

Concave 
S ?: :::Main Shape

Convex Main

?: :::

Convex Main 
Shape : ::: ?

Figure 3.8.
Exemplary illustration of the complexity parameter “Type of Form” of the FAT in two
items

Figure 3.7 depicts an item example. In the example shown, two spatial displacement
rules are present in both items. Main shapes in the upper example are concave, main
shapes in the lower example are convex.
Concave shapes are more distinct and therefore might serve as a “landmark” and
thus help to rotate or to mirror the main form. Hochberg and Gellman (1977)
showed that “landmarks” in polygons can facilitate mental rotation. Landmarks
allow especially for the application of holistic processing strategies, i.e. strategies
that are based on a holistic perception of the complete object instead of strategies
focusing on a decomposition of the objects into its constituting elements. A higher
amount of analytic processing is needed to detect changes in polygons without a
distinctive landmark. Figure 3.8 demonstrates this rule for two items: The item in
the upper part of the figure was generated based on concave main shapes, the item
in the lower part was generated from convex main shapes. In order to reduce the
amount of item difficulties not explained by the set of rules, the type of the main
shape can only differ between items, not within items here. That is, all shapes in
A, B, C, and D must fall into the same category of either a concave or a convex
shape.

R8: Additional Feature (AF): Every figural-spatial arrangement had one or two figural
features. Items comprising the “additional feature”-rule contained one extra feature,
i.e. in total three figural features. That is, these items comprised a more com-
plex spatial configuration than the remaining items. This is illustrated in Figure
3.9. The analogy is defined by exactly the same spatial displacement rules in the
two examples. However, a third feature (here: rectangle) is added to the second
item. This feature does not change its position or relative orientation to the main
shape but makes the whole figural configuration visually more complex. Note that,
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FAT-30-38

?No Additional : ::: ?

?

Feature

Additional

: :::

?Additional 
Feature : :::

Figure 3.9.
Illustration of the additional complexity parameter “Additional Feature” in the FAT

the item-generative framework allows, in principle, to add as many features to the
configuration as perceptually distinguishable. The current parameter value of a
maximum of three features in one item was based on a number of smaller pilot
studies with university students. A result of these studies was that students tended
to be confused and used considerably more time for their answers if more features
were combined in one item. It was decided to rather allow for an increase of the
number of items that can be presented in a given amount of time than for an in-
crease of item complexity to a maximum. Future studies could, however, investigate
this issue further by systematically analyzing items with larger numbers of features.

R9: Random Change of Features Characteristics (RCF): If this rule was used in an item
the surface characteristics of every feature were allowed to vary between A and B
as well as C and D: The circle always had the same size, but the thickness of the
line was allowed to vary. The dot could vary in its diameter. While the length of
the beam was always determined by the length of the respective edge of the main
shape, its wideness could vary from A to B or C to D. For the rectangle, random
change was implemented by allowing its relative orientation in space to the main
shape to vary.
The complexity parameter RCF was introduced to make sure that individuals work-
ing on the test were truly “forced” to represent the spatial relations of the elements
to each other instead of trying to solve the items based on surface characteristics.
The detection of Random Change of Features required test-takers to follow an an-
alytic processing strategy. An example for the application of this rule is shown in
Figure 3.10. Two item examples are shown along with two sets of response alter-
natives. The spatial displacement rules applied in both items are exactly the same.
The main shape is rotated by 90 degrees clockwise, the beam changes its relative
position by two edges counter-clockwise, and the circle changes its position by one
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Item Response Alternatives

No Random 
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Figure 3.10.
Exemplary illustration of the complexity parameter “Random Change of Feature Charac-
teristics” in two items (Study 1)

corner counter-clockwise. The difference between the two examples is that surface
characteristics of the item features are constant in the upper example and allowed
to vary in the lower example. This makes especially the distractor set much more
heterogeneous. Test-takers need to abstract from these irrelevant changes and fo-
cus on the deep structure of the spatial displacements in order to find the correct
response alternative. This rule separately is illustrated in Figure 3.6. Figure 3.10
demonstrates this rule for an actual item: Here an item with exactly the same logi-
cal structure and the same values on all other parameters is displayed once without
RCF (top) and with RCF (bottom).

One problem that can arise in LLTM applications is that not all rules can be freely
combined. Table 3.3 shows the possible rule-combinations for the FAT. Three different
cases can be distinguished:

1. “X” indicates that a rule-combination is possible and can be clearly interpreted. This
is the case for instance for the combination of a change in a feature position and
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Table 3.3.
Possible rule-combinations in the Figural Analogy Test

Rule MX MY R90 R180 Cp1 Cp2 ToF AF RCF

MX = R180 (X) = MY X X X X X
MY = R180 (X) = MX X X X X X
R90 (X) (X) = R90 X X X X X
R180 = MY = MX = R90 X X X X X
Cp1 X X X X X X X X
Cp2 X X X X X X X X
ToF X X X X X X X X
AF X X X X X X X X
RCF X X X X X X X X X

Note. X: possible combination, (X): possible but ambiguent combination, “=” indicates
that a rule-combination leads to another rule in the set of radicals

rotation of the main shape by 180 degrees. In general, all feature-rules can be freely
combined with all main shape-rules. All combinations that fall into this category
are reasonable rule-combinations in a new item-generative framework. Here, the
order of rule-application does not play a role and the resulting figural configuration
can unequivocally be tracked back to the underlying logical processes.

2. “(X)” indicates that a rule-combination is possible but leads to ambiguous results.
For instance, when the main shape is reflected at the horizontal axis (MX) and then
rotated by 90 degrees clockwise, the resulting main shape orientation is the same as
when the main shape is reflected at the vertical axis (MX) and then rotated by 90
degrees counter-clockwise. A correct response of the test-taker can, in this case be
not unequivocally tracked back to certain cognitive processes. Especially when it is
assumed that the cognitive processes while mirroring an object at the horizontal axis
are not identical with those needed to reflect an object at the vertical axis (because
of the (non-)availability of simple flipping strategies (cf. Kanamori & Yagi, 2002 or
Murray, 1997) such rule-combinations should be avoided when designing new test
items.

3. The third case arises when the combination of two rules yields a result that is
identical to the result from the application of just one rule. That is, one rule is
superfluous because the figural transformation can be explained in a simpler way.
In the item-generative framework of the FAT this is the case for a combination of
two mirroring or two rotation rules. For instance, when the main shape is first
rotated by 180 degrees and after that rotated by 90 degrees, the result is, again, a
90 degree rotation. If the main shape is rotated by 180 degrees and then reflected
at the horizontal axis, the resulting orientation is identical to a reflection at the
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FAT-29-34

: :(a) (c) :(e) (g) :

: :(b) (d) : :(f) (h)

Figure 3.11.
Examples for Incidentals in Study 1; (a) - (h) are all based on the same radicals

vertical axis. In the design matrix for the FAT, it was decided to code always the
most simple explanation for a given stimulus transformation.

Item incidentals Figure 3.11 shows eight sets of stimulus combinations A : B that are
constructed from exactly the same item radicals, R90, CP1, and CP2. The different “look”
of the stimulus pairs is due to variation of incidentals. Given that the radicals capture the
main sources of variation in item difficulty there should not be any systematic differences
in difficulties for all eight items. In the extreme case of a within-family variance of zero (i.e.
a perfect explanation of item-difficulties by the set of radicals) the difficulty parameters
for the eight items should be exactly the same. In the following, all item incidentals are
described in detail. In total, 7 incidentals can be distinguished.

i1 Individual main shape: First, the exact variant of the main shape was defined as
incidental. 4 figural shapes were designed in each main shape category (see Figure
3.12). That is, four concave main shapes and four convex main shapes were designed.
All shapes share a set of characteristics. They are all pentagons and all shapes have
exactly one right angle corner. Also, the sizes of the shapes are very similar. All
shapes are abstract and purely figural. There is no semantic meaning in any of the
shapes and it was taken care that none of them resembles symbols that are used in
language or mathematics. Several pretests with university students did not indicate
any considerable differences in terms of the distinctiveness of these stimuli. In the
current item-generative framework, each main shape had a chance of 1

4
to be chosen.

Extensions to a larger number of shapes is possible.
i2 Starting orientation of the main shape: Second, the starting orientation of the main

shape chosen was set as incidental as well. Beckmann (2008) showed that the start-
ing orientation of alphanumerical stimuli actually influenced the difficulty of an
analogy. This is because letters and numbers might be recognized more easily when
they are presented in their “canonical” orientation. The speed of object recognition
varies as a function of the depiction of an object in its normal, upright, “canon-
ical” orientation or in a deviating orientation (see e.g., Jolicoeur, 1985; Lawson,
Humphreys, & Jolicoeur, 2000). For such abstract stimuli as the pentagons used as
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Figure 3.12.
Overview of all possible main shapes in the current AIG framework for the FAT; Each of
the 8 main shapes is depicted in all four possible orientations; upper half: concave; lower
half: convex

main shapes, there is no such one canonical orientation. However, due to the one
right angle corner it is a reasonable assumption that recognition and manipulation
of a shape is facilitated when the right angle corner corresponds to the axes of a
coordination system. To account for this the random choice of a starting orientation
was constrained to be a choice of only a limited number of possible orientations. The
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different orientations differed from each other exactly by 90 degree rotations. That
is, whatever orientation was chosen, the right angle corner corresponded exactly to
the horizontal and vertical axes. In addition, all shapes were allowed to be reflected
on the vertical axis, resulting in twice the number of possible stimuli. Figure 3.12
depicts all possible shapes and possible starting orientations. In total, 8 × 8 = 64
different main shapes can be distinguished, 32 variants if ToF = 0 and 32 variants
if ToF = 1. In the current item-generative framework, each specific combination of
main shape and starting orientation had a chance of 1

32
to be chosen after having

chosen the category of shape in the first step. The choice of a shape for C was
constrained by the rules that (a.) the same category of shape had to be chosen and
(b.) the actual form of the shape in A and C were not allowed to be the same. That
is, after having determined a specific shape for A for each item there were 3 × 8
possible shapes (3 shapes in 8 different orientations each) to be chosen for C.
Figure 3.11 provides examples for the manipulation of these incidentals. For in-
stance, the initial orientation of the main shape differs between (a) and (b). In (a)
the right angle corner is in the upper left while in (b) this corner is in the lower left.

i3 Figural features : Third, the specific features used in an item are chosen randomly
with the constraint that each feature can appear only once in an item. For instance,
for an item with two features, there are 6 possible combinations: {beam, point},
{beam, circle}, {beam, rectangle}, {circle, point}, {circle, rectangle}, {rectangle,
point}. This is demonstrated in Figure 3.11 as well. (a) and (b), for instance, use
rectangle and point, (c) and (d) use circle and point.

i4 Surface characteristics of figural features : As with the main shapes, the actual
features was chosen randomly. To allow for considerable variation in design across
items and in order to allow for the variation of surface characteristics (see radical
9), the specific layout of each feature could vary across different items. The circle
always had the same size, but the thickness of the line was allowed to vary between
1/4 and 2 pt. The diameter of the dot varied between 1 and 3 pt. While the length
of the line/beam was always determined by the length of the respective edge of the
main shape, its wideness could vary between 2 and 6 pt. The orientation of the
rectangle varied freely in 30 degree steps. These ranges of parameter values were
chosen based on a few pretests with university students. It was attempted to choose
values that were clearly distinguishable but not too extreme to draw attention away
from the underlying structural differences in the analogies.

i5 Starting position of figural features : The starting position for all features relatively
to the main shape was chosen randomly. For example, in Figure 3.11, a different
main shape was chosen in (d) compared to (a).

i6 Direction of rotation: When radical 3 (rotation by 90 degrees) was applied to an
item, the direction of the rotation was set as incidental. That is, it was randomly
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determined whether a main shape was rotated clock- or counterclockwise. The de-
cision for defining the direction of rotation as incidental was made based on findings
reported by Beckmann (2008). She demonstrated that difficulties did not differ
between clockwise and counterclockwise rotations.

i7 Direction of change of feature positions : Again, it is not distinguished between
the direction of change of feature positions. That is, based on Beckmann’s (2008)
findings change of a feature position by one corner clockwise is assumed to be as
difficult as a change in position one corner counterclockwise. This is depicted in
Figure 3.11.

The same item facet parameters can be used during the generation of distractor stimuli
among the multiple choice answer alternatives. A detailed description of the technical
steps of item generation is given by Bertling and Holling (2009).

3.2.2. Specific hypotheses

Based on the item-generative rules described in the previous section, a number of specific
hypotheses regarding the construct representation of the new item type were tested in
addition to the investigation of the research questions lined out in section 3.1.3. These
hypotheses are related to the third research question, that is the question whether the
parameter estimates of the item-difficulty model are in line with theories of figural-spatial
processing and analogical reasoning.
The first four hypotheses refer to the general item radical functioning and their consis-

tency with the cognitive model.
• Hypothesis 1 : All spatial displacement rules increase item difficulty.
• Hypothesis 2 : Usage of convex (i.e., less complex) polygons instead of concave (i.e.,

more complex) polygons decreases item difficulty.
• Hypothesis 3 : Not the number of elements but the number of relations between the

elements of each configuration determines the complexity of an item. The addition
of a third additional feature to the figural configuration therefore does not influence
item difficulty.

• Hypothesis 4 : Random change of features will make encoding of the relation between
the “A” and “C” term, i.e. the preparation period of analogical reasoning harder and
therefore increase item difficulty.

Hypotheses 5 to 7 address the typical gender differences in figural-spatial processing
that were described in the introduction. As not all item radicals are directly related
to processes of mental rotation and spatial reasoning, differential effects for some item
radicals are hypothesized for female and male test-takers. It is hypothesized that the
impact on item difficulty of the following item radicals will be moderated by gender:
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• Hypothesis 5 : Rules requiring mental rotation skills are easier for men.
• Hypothesis 6 : Rules that require the application of analytic processing strategies

are easier for women.
• Hypothesis 7 : Use of convex (i.e., less complex) polygons instead of concave (i.e.,

more complex) polygons decreases item difficulty for men more strongly than for
women. Convex polygons can be processed easier following a holistic processing
strategy that is based on the landmarks in such shapes.

3.2.3. Sample

Participants were recruited at a large German university and received feedback of their
results as an incentive. The total sample consists of N = 308 individuals (76.3 % female).
The mean age was 22.51 years (SD = 4.19). 113 participants (36.8%) reported prior
experience with IQ tests. This percentage of prior experience is representative (cf. meta-
analytic findings by Hausknecht, Halpert, Di Paolo, & Gerrard, 2007). All participants
gave consent that their data be used for scientific purposes.

3.2.4. Instruments and procedure

Figural Analogy Test (FAT) A new 40-item version of the FAT was constructed man-
ually by the author. All items were checked by several student assistants. All 40 items
are given in the Appendix of this thesis. The principles of rule-based AIG were used to
generate items as well as wrong answer options. Wrong answers were generated as partly
correct stimuli showing different degrees of discrepancy to the right answer alternative.
Thereby typical problems with regard to distractors that have been reported previously
(e.g., Mittring & Rost, 2008) were prevented in the new instrument. In order to meet
the demands of Mittring and Rost (2008) that—across all items of a test version—the
test-taker should be unable to make inferences regarding the right answer by looking only
at the set of response alternatives, frequencies of features and main forms were combined
in a way that did not allow for counting strategies. In each distractor set one false feature
position or main form orientation appeared more often than the correct one. This way it
was guaranteed that a counting strategy would not lead to the correct solution.
For the version of the FAT administered here, four items (i.e. 10 percent) without a

correct solution among the distractor set were administered. Here, the option “No correct
answer” had to be checked to answer the item correctly. Consistent with Gittler (1990)
this answer option was added to ensure that participants could not rely on a falsification
strategy by excluding distractors (see also Preckel, 2003). With this option being possible
for every item the correct solution could only be identified by means of a verification
strategy. Participants could also choose the answer option “I don’t know the answer”,
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which was added to minimize guessing effects (cf. Gittler, 1990). In total, each item had
15 response alternatives. A large number of response alternatives was chosen for the first
empirical evaluation of the test to minimize the possibility of guessing effects.
The individual items featured between 2 and 6 item facets. Items were grouped in four

blocks of 10 items each. The design matrix was constructed based on optimal design
analyses using the OPTEX procedure in SAS. D-, A-, and G-efficiency criteria were
calculated. The design matrix for all 40 items is given in the Appendix along with the
input and output files for the optimal design derivation.
Based on several smaller pilot studies, a time-limit of 45 seconds per item was chosen.

Five additional seconds were given to mark responses on an answering sheet, yielding a
total maximum response time per item of 50 seconds. Compared to average response
times allowed for widely used reasoning tests, timing was allocated rather amply here (e.
g., in the CFT-20R (Weiß, 2007), 56 items have to be completed in a total time of 14
min, yielding an average response time per item of 15 seconds). After each block of items
there was a short break to give the participants some relief. Including the time for the
instruction the total test time for the FAT added up to a maximum of 50 minutes per
test-taker.
Preceding the actual assessment, a detailed description of the item type was provided.

All rules were explained in detail including examples for each rule. Participants were
informed that several rules could be combined in one item. The multiple possible com-
binations of rules were not instructed. After this instruction, all participants were asked
whether they had understood the rules. Only data from participants who had understood
all rules (which was, actually, true for all individuals in the sample) was used for consecu-
tive analyses. Test-takers worked on 4 warm-up items before starting to work on the the
actual 40 test items. Anastasi (1981) recommended to implement such short orientation
and warm-up sessions to establish comparable testing conditions for all subjects. In this
case, subjects can learn the correct solution strategies and then utilize them on subsequent
problems (Verguts & De Boeck, 2002). It is the ability to learn and implement strategies
across problems that is, according to this view, important for reasoning performance.
Beckmann (2008) demonstrated that an explanation of all rules beforehand can actually
amplify the validity of a reasoning test.

General intelligence As a measure of general cognitive ability g, the four subtests
from the revised german version of the Culture-Fair Test (CFT 20-R; Weiß, 2007), were
utilized. The CFT 20-R is a paper-and-pencil test which provides high loadings on fluid
intelligence and has good psychometric properties. It consists of four different subtests:
Series completion, Classifications, Matrices and Topologies. The Topology subtest shows
the largest similarity with the FAT. It requires to represent the spatial relations between
several figural elements and map stimulus configurations to each other according to the
structure of these spatial relations.
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Table 3.4.
Descriptives for the FAT and other measures used (Study 1)

Instrument k M SD Min Max Skewness Kurtosis

Figural Analogy Test (FAT) 40 14.93 6.29 3.00 36.00 0.60 0.13
CFT 20-R Test 1 15 13.14 1.61 7.00 15.00 −0.89 0.47
CFT 20-R Test 2 15 11.57 2.00 4.00 15.00 −0.64 0.14
CFT 20-R Test 3 15 12.21 1.88 3.00 15.00 −1.12 2.93
CFT 20-R Test 4 11 7.68 1.64 2.00 11.00 −0.50 0.54
CFT 20-R Total 56 44.60 4.91 28.00 56.00 −0.57 0.42
3DW 15 7.05 3.74 1.00 15.00 0.05 −0.73
Grade compound (GPA) 1 11.73 1.78 6.80 14.67 −0.86 −0.01
Math Grade 1 11.61 3.01 1.00 15.00 −1.24 1.17

Spatial ability As a measure capturing spatial abilities, Gittler’s (1990) threedimensional
cube test (“Dreidimensionaler Würfeltest”, 3DW) was administered. The 3DW is a Rasch-
scaled paper-and-pencil test that measures spatial ability as one of the primary factors of
human intelligence. Every item contains one drawing of a three-dimensional cube with
different symbols on each side. The test-taker has to make the decision which out of
6 possible cubes is the same cube in a different spatial orientation. The specific use-
fulness of three-dimensional cube items in the diagnostics of mental rotation ability has
been demonstrated as well as its strong relationship with general cognitive ability g (e.g.,
Gittler, 1999). Subjects worked on 15 items under power-conditions in accordance with
the guidelines provided by Gittler.

High school grades Participants were asked to report their most recent grades in math,
science, languages (German, English), and arts. A compound score similar to GPA was
computed as the arithmetic average of these grades.

3.3. Results

Table 3.4 shows the most important descriptive statistics for all instruments adminis-
tered. On average, subjects were able to solve 14.93 items (SD = 6.285) correctly,
with considerable variation among test scores. The minimum score achieved was 3 items
whereas the best test-taker was able to solve 36 items correctly. Probabilities for a cor-
rect response cover the whole range from 6% (Item 40) to 94% (Item 9) with a mean
probability of correct response of 37.3%. No difference between female and male sub-
jects with regard to general cognitive ability as measured by the CFT-20r was found
(t(284) = −0.834; p = .405), whereas test performance differed significantly both on the
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3DW (t(306) = −3.697; p < .001) and the FAT (t(306) = −3.051; p = .002), in both cases
favoring men. Effect sizes for these gender differences were d3DW = 0.49 and dFAT = 0.39,
respectively. Internal consistencies (Cronbach’s α) for the three cognitive measures were
α3DW = .811, αCFT = .732, and αFAT = .827.

3.3.1. Prediction of item difficulty parameters

Rasch model parameters and fit statistics for all 40 items are summarized in Table 3.5,
along with classical item statistics. For the assessment of item fit, z-transformed Q-
indices (Rost & Davier, 1994) as well as Infit and Outfit statistics (see Linacre, 2010)
were computed. The estimated item difficulty parameters σi range from −2.47 to 3.72.
The combination of spatial displacement rules yields items that cover a wide range of the
ability continuum and are well-suited to assess reasoning ability across the whole scale with
a slight focus on the upper half of the ability scale (total information I = 33.26, 34.53%
in (−5, 0) and 58.68% in (0, 5), respectively). None of the 40 items shows considerable
misfit to the RM. 3 items (items 23, 24, and 35) show slight misfit based on the Q
index. However, these items fit well on both the outfit and the Infit statistic. The item
characteristic curves (ICCs) for all items are given in the Appendix.
Two LLTM models of different complexity were estimated to test the appropriateness

of the set of pre-specified item radicals to model item difficulties. The first Model is a
LLTM model that includes only spatial displacement rules (in the following called LLTM
1). Model 2 includes the three additional complexity parameters as well (in the following

Figure 3.13.
RM and rescaled LLTM parameters; left side: LLTM 1; right side: LLTM 2
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Table 3.5.
Classical item statistics, Rasch parameters, and item fit statistics (Study 1)

Classic. Stat. Descriptive IRT Explanatory IRT

i p rit RM σi SE(σi) p(Q) Outfit Infit LLTM 1 LLTM 2

01 .734 .253 1.85 0.14 .45 1.00 0.99 1.68 2.18
02 .468 .284 0.55 0.12 .28 1.06 1.03 −0.16 0.20
03 .237 .282 −0.64 0.14 .32 1.04 1.01 −0.68 −0.26
04 .279 .418 −0.39 0.13 .94 0.86 0.91 0.42 0.29
05 .373 .220 0.10 0.13 .06 1.11 1.09 −0.14 −0.43
06 .461 .220 0.52 0.12 .07 1.13 1.09 −0.16 0.20
07 .162 .332 −1.17 0.16 .79 0.85 0.94 −0.68 −1.37
08 .110 .248 −1.66 0.19 .50 1.00 0.95 −0.14 −0.91
09 .942 .126 3.72 0.24 .47 1.03 0.93 1.68 2.66
10 .682 .273 1.57 0.13 .42 1.04 1.00 1.13 1.46
11 .568 .300 1.01 0.12 .41 1.00 1.01 0.59 1.00
12 .104 .254 −1.74 0.19 .56 1.02 0.93 −0.71 −1.41
13 .351 .323 −0.01 0.13 .48 1.00 1.00 −0.17 0.18
14 .370 .340 0.09 0.13 .57 0.99 0.98 −0.71 −0.77
15 .367 .427 0.07 0.13 .93 0.86 0.91 0.39 −0.38
16 .357 .332 0.02 0.13 .53 0.99 0.99 −0.19 0.17
17 .500 .370 0.70 0.12 .73 0.94 0.96 0.00 0.77
18 .545 .342 0.91 0.12 .66 0.95 0.97 1.13 1.44
19 .211 .344 −0.81 0.15 .72 0.92 0.96 0.42 −0.35
20 .753 .204 1.96 0.14 .27 1.15 1.02 1.68 1.36
21 .718 .377 1.76 0.13 .89 0.86 0.88 1.13 0.98
22 .487 .315 0.64 0.12 .48 1.00 1.00 1.11 0.97
23 .331 .478 −0.11 0.13 .99 0.78 0.86 0.39 0.10
24 .133 .094 −1.43 0.17 .01 1.27 1.12 −0.19 −0.95
25 .458 .295 0.51 0.12 .33 1.07 1.02 0.42 0.79
26 .682 .200 1.57 0.13 .18 1.17 1.04 1.11 0.96
27 .500 .396 0.70 0.12 .86 0.89 0.93 0.59 0.50
28 .331 .367 −0.11 0.13 .72 0.96 0.95 0.59 0.34
29 .338 .399 −0.08 0.13 .87 0.89 0.93 −0.17 0.35
30 .273 .394 −0.43 0.14 .87 0.91 0.92 −0.16 −0.28
31 .208 .326 −0.83 0.15 .67 0.94 0.96 −1.97 −0.87
32 .107 .147 −1.70 0.19 .05 1.12 1.09 −1.45 −1.53
33 .269 .370 −0.45 0.14 .82 0.88 0.95 −0.88 −0.32
34 .224 .251 −0.72 0.14 .16 1.17 1.02 −1.45 −1.05
35 .432 .176 0.38 0.12 .01 1.23 1.13 0.39 0.73
36 .192 .281 −0.95 0.15 .44 0.95 1.00 −0.19 −0.47
37 .344 .295 −0.04 0.13 .33 1.03 1.02 0.00 −1.01
38 .097 .248 −1.82 0.20 .50 1.28 0.93 −1.43 −1.70
39 .175 .236 −1.07 0.16 .23 0.98 1.03 −1.43 −1.54
40 .055 .268 −2.47 0.25 .86 0.87 0.89 −1.97 −2.16

Note. p = average proportion of correct solution across all test-takers; rit = Item-total correlation;
p(Q) = significance of Q index; LLTM 1= rescaled item difficulty parameters based on LLTM with
spatial displacement parameters only; LLTM 2= rescaled item difficulty parameters based on LLTM
with extended design matrix including both spatial displacement and additional complexity parameters.
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Basic LLTM 
 
 Frequency    Stem &  Leaf 
 
     6.00        0 .  023678 
    10.00        1 .  1226788999 
     3.00        2 .  249 
     6.00        3 .  134477 
     3.00        4 .  689 
     6.00        5 .  224668 
     2.00        6 .  29 
     2.00        7 .  59 
     2.00        8 .  12 
 
 Stem width:      1.00 
 Each leaf:       1 case(s) 
 
 

Page 1

Extended LLTM 
 
 Frequency    Stem &  Leaf 
 
     7.00        0 .  1255789 
     8.00        1 .  01224566 
    10.00        2 .  1245677789 
     6.00        3 .  002459 
     6.00        4 .  122269 
     1.00        5 .  6 
     1.00        6 .  6 
     1.00        7 .  3 
 
 Stem width:      1.00 
 Each leaf:       1 case(s) 
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Figure 3.14.
Distribution of standardized absolute errors for LLTM 1 and LLTM 2 (Study 1)

called LLTM 2). The two rightmost columns in Table 3.5 show rescaled item difficulty
parameters based on the basic and extended LLTM. Altogether, the 6 spatial displacement
rules in LLTM 1 explain R2 = 69% of variation in item difficulties. Item random effect
variance is reduced from s2 = 1.456 in a model without any item predictor to 0.456 in
a model with the 6 item covariates. When the three additional complexity parameters
are included as item predictors in LLTM 2, R2 for the explanation of variation in item
difficulties is increased to R2

Model B = .86 (∆χ2(3) = 18.59, p < .001). Item random effect
variance is reduced from s2e(I) = 0.46 in LLTM 1 by nearly 40 percent to s2e(I) = 0.21 in
LLTM 2.
Figure 3.13 displays the accuracy of Rasch difficulty parameters by the combination

of item facets in LLTM 1 and LLTM 2. Rasch item difficulties are plotted on the hor-
izontal axis against reconstructed LLTM item difficulties on the vertical axis. In both
models no systematic bias is visible, i.e. some rescaled item parameters overestimate dif-
ficulty and others underestimate the difficulty of an item. As can be seen in Figure 3.13,
rescaled item difficulties lie closer to actual item difficulties in LLTM 2 compared to LLTM
1. This is also reflected by the model fit indices, both favoring the model with the ex-
tended design matrix that does not only comprise spatial displacement rules but also takes
other complexity factors into account (AICbasic = 13179.668 versus AICext = 13156.468;
BICLLTM1 = 13213.239 versus BICLLTM2 = 13201.229). The change in model fit is signif-
icant (LR χ2 for a comparison of the LLTM with the basic and extended design matrix:
χ2(3) = 29.201, p < .001.
In addition to these classical model comparisons of the LLTM and Rasch Model, stan-

dardized absolute errors were analyzed as proposed by Zeuch, 2011: Absolute differences
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between Rasch and rescaled LLTM item difficulty parameters were computed and stan-
dardized by dividing them by the standard errors of the Rasch parameters. Table 3.6
summarizes the results for the two alternative LLTM models. Figure 3.14 shows the dis-
tribution of standardized absolute differences. On average, standardized absolute errors
denote to MLLTM1 = 3.521 (SD = 2.390) in LLTM 1 and MLLTM2 = 2.688 (SD = 1.720)
in LLTM 2. Unstandardized absolute differences between Rasch and predicted difficulty
parameters denote to MLLTM1(us) = 0.54 logits in LLTM 1 and MLLTM2(us) = 0.39 logits
in LLTM 2. In the model with the basic design matrix, 21 differences are larger than 3
standard error units and 15 exceed 4 standard error units. The number of such extreme
differences is reduced to 15 and 9 in the model with an extended design matrix. The ab-
solute errors are reduced by 23.05% from LLTM 1 to LLTM 2. These values are in about
the range as values reported by Zeuch (2011) for another figural reasoning measure. The
implications of such extreme errors in the prediction of true item parameters by means of
the LLTM will be discussed in section 3.4.2.

3.3.2. Construct validity

Hypotheses 1 to 4 were tested by investigating the LLTM facet parameters for both the
LLTM with spatial displacement parameters only and the LLTM with an extended design
matrix. Results for both models are shown in Table 3.7. All item facets representing spa-
tial displacement rules contribute significantly to item difficulties, confirming Hypothesis
1. Rotation by 180 degrees is the most difficult item facet, while mirroring at the vertical
axis is the easiest rule. When the main form is rotated by 180 degrees, the logit for a
correct response to the respective item is decreased by nearly 2 points on the logit scale
(β = −1.973, 95% CI [−2.905,−1.041]) compared to an item where no rotation has to be
performed. Mirroring at the vertical axis is associated with considerably less increase in
difficulty, i.e. the logit is changed by −0.876 (95% CI [−1.806, 0.054]).
All three additional complexity parameters are statistically significant:
1. Changes in the type of shape of the main form (convex vs. concave) lead to changes

in the logit by −0.64 (95% CI [−0.948,−0.332]). This change is statistically signif-
icant, confirming Hypothesis 2.

2. When an additional feature is added to the figural configurations in “A”, “B”, “C”,
and “D”, the logit increases by 0.66 (95% CI [0.324, 0.996]). This result is not in line
with the expectations formulated by Hypothesis 3.

3. When the appearance of item features is allowed to vary (i.e., random variation
of surface characteristics is allowed), difficulty is significantly increased, confirming
also Hypothesis 4 (β = 0.48, 95% CI [−0.787,−0.171]).

Hypotheses 5 to 7 were tested based on explanatory IRT models including additional
facet*gender interactions. Estimation results for these two models are given in Table
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Table 3.6.
Standardized absolute errors for the alignment of rescaled LLTM and Rasch parameters
(Study 1)

Standardized Absolute Error

i LLTM 2 LLTM 1

FAT01 2.415 1.167
FAT02 2.810 5.678
FAT03 2.653 0.253
FAT04 4.921 5.885
FAT05 4.160 1.877
FAT06 2.567 5.432
FAT07 1.224 2.996
FAT08 3.938 7.956
FAT09 4.287 8.207
FAT10 0.783 3.318
FAT11 0.130 3.404
FAT12 1.690 5.230
FAT13 1.423 1.228
FAT14 6.662 6.203
FAT15 3.531 2.458
FAT16 1.112 1.644
FAT17 0.551 5.632
FAT18 4.290 1.765
FAT19 3.060 8.189
FAT20 4.223 1.941
FAT21 5.683 4.620
FAT22 2.701 3.765
FAT23 1.556 3.776
FAT24 2.700 6.967
FAT25 2.257 0.677
FAT26 4.627 3.474
FAT27 1.614 0.899
FAT28 3.405 5.290
FAT29 3.281 0.714
FAT30 1.065 1.943
FAT31 0.226 7.561
FAT32 0.901 1.271
FAT33 0.890 3.102
FAT34 2.197 4.960
FAT35 2.793 0.037
FAT36 3.065 4.875
FAT37 7.394 0.319
FAT38 0.596 1.896
FAT39 2.925 2.278
FAT40 1.215 1.941

Note. LLTM 1: standardized absolute difference between rescaled item difficulty parameters based on
model with spatial displacement parameters only and original Rasch parameters; LLTM 2: standardized
absolute difference between rescaled item difficulty parameters based on extended LLTM with spatial
displacement and additional complexity parameters and original Rasch parameters.
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Table 3.7.
Explanatory IRT modeling for the FAT: comparison of a LLTM including spatial dis-
placement rules only (LLTM 1) and an extended LLTM with three additional complexity
parameters (LLTM 2).

Empty Model LLTM 1 LLTM 2

Fixed Effects Est SE Est SE Est SE

Constant −0.687∗∗ 0.198 1.8542∗∗ 0.4522 1.9084∗∗ 0.3585

(Spatial Displacements)
mx −1.4324∗∗ 0.4648 −1.1680∗∗ 0.3326
my −0.8756∗ 0.4643 −0.6100∗ 0.3325
r90 −1.4529∗∗ 0.4565 −1.1764∗∗ 0.3263
r180 −1.9726∗∗ 0.4655 −1.6330∗∗ 0.3372
cp1 −1.2642∗∗ 0.2209 −1.2338∗∗ 0.1544
cp2 −1.2961∗∗ 0.2208 −1.2662∗∗ 0.1543

(Additional Complexity Parameters)
tof −0.6375∗∗ 0.1540
fp 0.6573∗∗ 0.1678
rcf −0.4785∗∗ 0.1539

Random Effects VAR SE VAR SE VAR SE

s2e(Item) 1.456 0.334 0.4562 0.1089 0.2108127 0.0524
∆s2e(Item) 0.00% −68.66% −85.52%

s2e(Person) 0.685 0.071 0.6854 0.0705 0.6851032 0.0704
∆s2e(Person) 0.00% 0.00% −0.04%

Model Fit

ll −6603.22 −6580.8342 −6566.2339
df 3 9 12
AIC 13212.44 13179.6684 13156.4678
BIC 13223.63 13213.2393 13201.229

Note. Delta parameters ∆s2e(Item) and ∆s2e(Person) quantify the reduction in random effect
variance in comparison to the empty model (RE-RM; cf. De Boeck, 2008) containing only
a constant and neither person nor item predictors; information criteria for best model fit in
boldface.
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Table 3.8.
Explanatory IRT modeling for the FAT: gender-effects

LR-LLTM gender LR-LLTM Gender*Facet

Fixed Effects Est SE Est SE

Constant 1.8234∗∗ 0.3594 1.8982∗∗ 0.3650
mx −1.1681∗∗ 0.3326 −1.1297∗∗ 0.3375
my −0.6100∗∗ 0.3325 −0.6602∗∗ 0.3374
r90 −1.1764∗∗ 0.3262 −1.2763∗∗ 0.3314
r180 −1.6330∗∗ 0.3371 −1.7455∗∗ 0.3427
cp1 −1.2338∗∗ 0.1544 −1.2481∗∗ 0.1572
cp2 −1.2661∗∗ 0.1543 −1.2719∗∗ 0.1571
tof −0.6377∗∗ 0.1540 −0.6843∗∗ 0.1567
fp 0.6572∗∗ 0.1678 0.6183∗∗ 0.1706
rcf −0.4785∗∗ 0.1539 −0.4360∗∗ 0.1565

gender 0.3604∗∗ 0.1206 0.0745 0.2615

gender*mx −0.1619 0.2209
gender*my 0.2140 0.2173
gender*r90 0.3933∗ 0.2136
gender*r180 0.4369∗ 0.2232
gender*cp1 0.0460 0.1070
gender*cp2 −0.0021 0.1067
gender*tof 0.1826∗ 0.1049
gender*fp 0.1536 0.1139
gender*rcf −0.1746∗ 0.1040

Random Effects VAR SE VAR SE

s2e(Item) 0.2108 0.0524 0.2121 0.0527
∆s2e(Item) −85.52% −85.43%

s2e(Person) 0.6613 0.0684 0.6644 0.0687
∆s2e(Person) −3.52% −3.06%

Model Fit

ll −6561.8321 −6548.3568
df 13 22
AIC 13149.6642 13140.7136
BIC 13198.1555 13222.7758

Note. ∆s2e(Item) and ∆s2e(Person) quantify the reduction in random effect variance in compar-
ison to the empty model (RE-RM; cf. De Boeck, 2008) containing only a constant and neither
person nor item predictors; information criteria for best model fit in boldface; ∗ p < .05 and ∗∗

p < .01 (one-sided)
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Table 3.9.
Correlations between FAT scores and other variables (Study 1)

FAT CFT1 CFT2 CFT3 CFT4 CFT total 3DW GPA Math

FAT 1 .371∗∗ .367∗∗ .410∗∗ .423∗∗ .569∗∗ .597∗∗ .199∗∗ .299∗∗

CFT1 .371∗∗ 1 .307∗∗ .249∗∗ .227∗∗ .624∗∗ .313∗∗ .085 .095
CFT2 .367∗∗ .307∗∗ 1 .321∗∗ .308∗∗ .734∗∗ .345∗∗ .215∗∗ .218∗∗

CFT3 .410∗∗ .249∗∗ .321∗∗ 1 .355∗∗ .713∗∗ .319∗∗ .183 .197
CFT4 .423∗∗ .227∗∗ .308∗∗ .355∗∗ 1 .670∗∗ .338∗∗ .114 .126 ∗

CFT .569∗∗ .624∗∗ .734∗∗ .713∗∗ .670∗∗ 1 .478∗∗ .224∗∗ .238∗∗

3DW .597∗∗ .313∗∗ .345∗∗ .319∗∗ .338∗∗ .478∗∗ 1 .224∗∗ .303∗∗

GPA .199∗∗ .085 .215∗∗ .183∗∗ .114 .224∗∗ .224∗∗ 1 .758∗∗

Math .299∗∗ .095 .218∗∗ .197∗∗ .126∗ .238∗∗ .303∗∗ .758∗∗ 1

Note. ∗p < .05. ∗ ∗ p < .01. GPA: grade compound score, similar to grade-point-average

3.8. 2 models are compared. Model A includes gender as a person predictor without
additional gender*facet-interactions. This model estimates the global change in the logit
of the probability of a correct response across all items between males and females. This
represents the general gender effect that is also captured by the effects size d. Model
B includes additional gender*facet-interactions, i.e., one gender effect per facet. This
model allows to make specific conclusions on gender effects on the level of item facets. It
can be analyzed whether the gender difference is truly global across all items or whether
the performance differences are driven, as hypothesized, by very specific differences of
subprocesses needed to solve an item. If there is no interaction, all facets are affected
by gender in the same way. Significant interaction effects show that some facets produce
larger gender effects than others.
When gender is included as a predictor variable on the person-side of the model (Model

A), random person variance is reduced by 3.52%.The model fits significantly better then
a respective model without the person parameter (∆χ2(1) = 8.80, p = .003). The differ-
ence in the logit between female and male participants is 0.36. Results are in line with
Hypotheses 5, 6, and 7.
The inclusion of gender*facet-interaction parameters shows that rotation rules are fa-

cilitated in men (p < .05, Hypothesis 5). The facet difficulty for rotations by 90 degrees
is 0.393 lower for males (95% CI: [0.042,+∞)); for rotations by 180 degrees the logit
increases by 0.437 (95% CI: [0.071,+∞]) when male instead of female test-takers are
examined.
Dealing with random feature changes is more difficult for male test-takers than for

female participants (p < .05, Hypothesis 6). When feature surface characteristics are
allowed to vary within items, the logit of a correct response increases by 0.175 (95% CI:
[0.004,+∞]) for female test-takers relative to male test-takers.
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Table 3.10.
Prediction of FAT performance by other tests and gender (Study 1)

Unstand. Coeff. Correlations

Predictor b SE β zero-order partial

Intercept −10.666 2.595
CFT 0.463 0.063 .362∗∗ .569 .402
3DW 0.708 0.083 .425∗∗ .610 .452
Gender 0.916 0.652 .062 .172 .083

Note. R2 for all predictors is .475; ∆R2 for Model including gender vs. a model including CFT
and 3DW only is ∆R2 = .004 (p = .161, n.s.).

Changing the shape of the main form to include a more clear “landmark”, again, facili-
tated performance for men (p < .05, Hypothesis 7). When main shapes are concave and
do not pertain clear landmark features, item difficulties increase by 0.183 more (95% CI:
[0.011,+∞]) for men relative to the increase in item difficulty for women.
In line with the expectations, all other gender*facet interaction effects did not reach

statistical significance, and the effect sizes for these interaction effects are low. Model fit
statistics did not clearly favor one of these models. AIC indicated superior fit for Model
B, BIC indicates better fit for Model A.
Correlations between the FAT and all other instruments are summarized in Table 3.9.

Performance on the new measure was substantially related to performance on both other
cognitive tests, the 3DW (r = .597, p < .001) and the CFT20 (r = .569, p < .001). Both
measures together explain almost 50% of variation (R2 = .472) in FAT scores in a multiple
regression analysis. The partial correlations displayed in Table 3.10 shows that the two
measures explain almost mutually exclusive parts of variation in FAT scores. Among
the four subtests of the CFT, the highest correlation was found for subtest 4, Topologies
(r = .423, p < .001). The FAT also correlates significantly with the grade compound
score (r = .199, p < .001). Among the individual school grades, the highest correlation
was found for maths (r = .299, p < .001). The stepwise regression results summarized in
Table 3.11 reveal that performance on the FAT can explain additional variation in maths
grades beyond the other two cognitive measures (∆R2 = .016; p = .025).

3.4. Discussion

Ever since the development of intelligence tests, establishing construct validity has been
a central goal of all test developers. There have been numerous suggestions how to link
psychological theories of information processing with the design of new instruments. The

80



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

Table 3.11.
Prediction of math grades by FAT scores and other tests (Study 1)

Unstand. Coeff. Correlations

Predictor b SE β zero-order partial

Intercept 7.819 1.672
CFT 0.035 0.043 .056 .238 .048
3DW 0.138 0.058 .173∗ .306 .142
FAT 0.083 0.037 .174∗ .312 .134

Note. R2 for all predictors is .121; ∆R2 for Model including FAT vs. a model including CFT
and 3DW only is ∆R2 = .016 (p = .025).

use of explanatory IRT models in combination with approaches of rule-based AIG is a
promising way to put cognitive theories on a testable fundament. With the current study,
a new item-generative framework was presented that is purely figural, thereby providing
a basis for truly language-free and culture-fair testing. Thereby, this study addresses
Gierl and Lai’s (2012) claim that “the theory and practices that underlie item model
development must be studied” (p. 37). The validity of the new framework was tested
based on data from n = 308 university students. Results of this study will be discussed
along the research questions and specific hypotheses.

3.4.1. Conclusions regarding the research questions

Two main research questions were tested. First, can a thorough item design based on
psychological and cognitive theories provide a basis for reliable prediction of item diffi-
culties? Second, are item facet difficulties in line with theoretical assumptions? Here,
a set of more specific hypotheses was tested. Correlations with other instruments were
investigated to test the “nomothetic span” of the new item generation framework.
Based on the investigation of existing tests and theories of figural-spatial reasoning

and analogical processing, a set of item generative rules was developed that allows the
generation of a large range of analogy items of almost all difficulty levels. The generation
of a new measure with good psychometric properties based on exclusively figural material
without any reference to verbal or numerical content, was successful: Items of the new
FAT are Rasch-scalable, and the test is informative along the whole person parameter
continuum. As expected, items with only 2 rules were most informative in the lower ability
range, pertaining solution probabilities higher than 90% while items with a maximum
combination of 6 item facets were most informative in the upper ability range. Solution
probabilities for these items were lower than 10%. In comparison with the analogy test
described in Beckmann (2008), test information decreased less with extreme ability levels
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making the test also applicable for the assessment of giftedness. They alone could reduce
random item variation by nearly 70 percent. Compared to other item-generation studies
(e.g., Freund et al., 2008), this is already a very satisfying explanatory power of the
underlying LLTM model. The inclusion of the three additional complexity rules could
contribute an additional 15 percent to the explantation of item difficulties, resulting in a
total explanatory power of more than 85 percent.
However, analyses of absolute errors in the prediction of true item difficulties showed

that even such high values of explained variation bear large prediction errors. Based on
the height of prediction errors, the application of the LLTM for the prediction of item
difficulties based on estimates of facet parameters cannot be regarded successful. While
LLTM parameters allow insights into the structure of item difficulties and the contribution
of certain task parameters to item difficulties, a reliable prediction of item difficulties was
not successful. If wrongly predicted item difficulties would be used in operational testing
settings, potentially involving computer-adaptive testing, the error in person parameter
estimates might be tremendous. This is a severe threat to the validity of automatically
generated items that are not calibrated individually. The concrete extent of error in
person parameter estimates should be investigated by means of systematic simulation
studies. Cloning approaches along with more complex psychometric modeling strategies
might be more helpful as well when a stronger alignment of predicted and true item
parameters is required, for instance during computerized-adaptive testing.
From a construct-validity standpoint, all changes to the item-generative framework

presented by Beckmann proved successful. Non of the spatial displacement and stimulus
complexity parameters has effects that are inconsistent with theoretical models of figural-
spatial reasoning. The increased homogeneity of the rules applied proved appropriate to
model item difficulties across a wide range on the ability-difficulty continuum. Compared
to Beckmann’s findings, the data fits the RM better with less items showing misfit to the
model. The internal consistency of the test is higher as well.
The internal cognitive structure of the FAT was investigated to test the construct valid-

ity in terms of what cognitive processes are needed for successful completion of the test.
Four hypotheses were formulated. Three of these four hypotheses (H1, H2, and H4) could
be confirmed based on the data from the empirical study. One hypothesis (H3) could be
only partly confirmed.
First, it was hypothesized that all spatial displacement rules increased item difficulty.

The FAT was developed with a strong focus on theories of mental rotation and figural-
spatial reasoning. That is, the intended construct of the test should be represented in the
empirical results from explanatory IRT modeling. All spatial displacement rules have facet
parameters that are significantly larger than zero. Rotation by 180 degrees was the most
difficult operation while mirroring at the vertical axis was be the easiest operation. This
finding makes sense as a simple flipping strategy can be applied for these items. The two
displacement rules that apply to the four possible features contribute to item difficulties in
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the hypothesized way as well; in the student sample investigated changes in the positions
of a feature by 2 edges contribute slightly more to item difficulty than changes by only one
edge. However, this difference was not statistically significant. In general, all parameter
estimates were consistent with findings reported by other researchers in earlier studies.
Second, it was hypothesized that the type of figural shape used influenced the ease of

cognitive processing. In line with theories of spatial processing, convex shapes with clear
landmark features were assumed to facilitate analogical reasoning in the FAT relative
to concave shapes that do not have such distinct landmarks. The variation of the type
of shape was included in the new item-generative framework to allow for a generation
of items that cover the whole range of difficulties. Therefore, hypothesis 2 reflects not
only an important theoretical assumption from cognitive theory, but also an important
technical question for the development of a new measure. As predicted did landmarks
in convex polygons facilitate representation in working memory and mental rotation of
the respective form. This findings emphasizes the need to control for as many generation
principles as possible when items are generated automatically. It cannot be assumed that
item features that are not primarily linked to cognitive rules needed for correct solution
of the task necessarily take the role of incidentals. While there are multiple sources for
complexity (and difficulty) changes when letters and digits are used (as in Beckmann’s
instrument), stimulus complexity could be controlled sufficiently well in the new FAT.
Whether a shape is concave or convex can be manipulated easily here, and changes in
stimulus complexity are in line with theories of spatial reasoning.
Third, it was hypothesized that not the number of elements but the number of relations

between the elements of each configuration determined the complexity of an item. This
hypothesis was developed from RC theory that assumes that the relational complexity
between stimuli is more influential for the difficulty of cognitive processing than the sheer
number of elements that have to be held active in working memory. According to this
hypothesis, the addition of a third additional feature to the figural configuration without
the simultaneous addition of a third rule associated with this feature should not influence
item difficulty. Opposed to this hypothesis did the addition of a third feature to the figural
configuration of an item actually lead to a decrease in item difficulties. Items comprising
three features were, on average, easier than items containing only 2 features. This finding
cannot be explained by the assumptions of RC theory and seems, at first sight, rather
contra-intuitive: an additional feature makes the figural configuration more complex and
does not reduce complexity. However, a viable explanation for this finding might be that
the figural configuration was more distinct when a third feature was added. The additional
feature might have served as a “landmark” with regard to the main form. This explanation
is especially reasonable with regard to the specific constraints posed by the FAT items
used in this study: even when a third feature was included, at maximum two features
changed their position in order to make test items not too hard for the participants.
That means that the third feature stayed constant across the whole analogy. In order to
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clarify on the effects of overall stimulus complexity future studies are needed. A satisfying
answer to this research question can be found if the number of features and the number of
feature-rules applied are manipulated independently in an experimental design. Again, the
findings here show that supposedly irrelevant item features might influence item difficulty
in unforeseen ways. Only a careful control and empirical investigation of facet difficulties
for all item facets (as done in the current study) can guarantee that a sufficient degree of
construct representation is reached.
Forth, it was hypothesized that random change of the surface characteristics of the

features used in the FAT items would turn out another viable means to manipulate item
difficulties. This hypothesis was based on findings that test-takers use either analytic or
holistic processing strategies, that is, strategies that focus on an analysis of each figural
element separately versus that try to process the complete stimulus with all its features
as a whole. Holistic strategies facilitate cognitive processing in a similar way as chunking
techniques because they reduce the complexity of the cognitive process. When surface
characteristics vary in a random way, test-takers are encouraged to apply analytic strate-
gies in order not to run into mistakes due to distracting surface similarities or differences
between the stimuli. Specifically, random variation should make the encoding of the re-
lation between the “A” and “C” term, i.e. the preparation period of analogical reasoning
harder and thusly increase item difficulty. The prediction that random change of the sur-
face characteristics of main form features would place more cognitive demands during the
encoding of the relation between the “A” and “C” was supported by the empirical data.
The character of the rcf rule is similar to that of the tof rule. Both rules are not from the
class of spatial displacement rules. Both rules do not determine the internal structure of
the tasks. But both rules must be considered item radicals when item difficulties should be
predicted based on task characteristics. It is important that these rules are incorporated
into an automatic item generator and any subsequent estimation procedures.
Image rotation abilities have repeatedly shown the most robust sex differences among

cognitive abilities (see Voyer et al., 1995). At the same time, most tests of fluid intelligence
are based on figural item types that often include mental rotation principles. That is, score
differences between female and male test-takers on such instruments might be partly due
to differences in spatial abilities. The explanatory IRT models applied in the current
study allowed for a deeper analysis of the factors for gender effects on the level of task
characteristics. I formulated three gender-related hypotheses that were tested by including
gender*facet interaction as well as gender-main effects in the LLTM model.
The first gender-related hypothesis, Hypothesis 5, stated that rules requiring mental

rotation skills would be easier for men. This hypothesis was based on existing research
showing robust gender effects for mental rotation tasks. The expected direction of gender
effects was found on the manifest level on both FAT and 3DW scores, favoring men. The
effect size for this gender effect was in the lower range of gender differences reported for
other measures that involve mental rotation abilities. Exploratory IRT modeling results
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demonstrated that these manifest gender effects on the FAT were driven, as hypothesized,
by very specific differences of subprocesses needed to solve an item. Not all cognitive
operations were easier for men, but it’s specifically the mental rotation part in the items
that were processed easier for men. All other spatial displacement rules that did not
directly involve mental rotation functioned the same for male and female test-takers.
The two other gender-related hypotheses, Hypotheses 6 and 7, emanated from findings

that males and females prefer different types of processing strategies when solving abstract
cognitive tasks. Women tend to use analytic processing strategies, i.e., strategies that
decompose a stimulus into its constituting parts and then focus on each of these parts
separately. Men tend to use holistic processing strategies, i.e., strategies that treat a
stimulus as one entity, regardless of how many features a stimulus has or how complex
it is. In the FAT, two item facets were designed to trigger specific processing strategies.
The facet “Type of Form” (tof) and the facet “Random change of feature characteristics”
(rcf). As hypothesized rules that required the application of analytic processing strategies
were easier for women compared to men. For women, solution probabilities differed less
when the complexity of the main shapes was reduced and, thereby, holistic processing
was encouraged. Women also dealt more easily with random variations in the surface
characteristics of item features. That is, women were less distracted by random variations
in the feature appearance that make holistic processing strategies less applicable. These
findings add an important facet to research on gender differences on cognitive tests. They
demonstrate that gender differences can have multiple complex factors and that, even on
spatial tasks, males do not outperform women in all regards but depending on the nature
of the item facets, it can be female test takers as well who outperform the other gender.
These results are also consistent with previously reported findings on spatial visualizers
versus object visualizers that showed that the latter tend to encode images holistically as
a single perceptual unit while the former encode and process images part by part in an
analytical, sequential way (Kozhevnikov, Kosslyn, & Shephard, 2005). A shortcoming of
the current study is the relatively small sample size especially for the male subsample.
Consequentially, standard errors for the gender effects reported here are relatively large.
However, the effects reach statistical significance — a result that is promising for more
extensive future research on gender effects.
All gender effects are in line with theories on gender differences on cognitive tasks and

provide strong prove for the construct validity of the FAT. Construct representation is
given not only in terms of an accurate prediction of item difficulties by facet parameters,
but also in terms of a theory-consistent patterning of gender differences. Item facet
parameters did actually cover the cognitive processes that they were intended to cover.
The results from additional multiple regression analyses were in line with these findings
as well. Gender did not predict performance on the FAT when controlled for general
cognitive ability and spatial abilities. That is, given a certain level of general intelligence
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and spatial abilities, the FAT turned out to be gender fair: males and females with the
same ability level did not perform differently on the FAT.
Criterion-related validities were also promising. The FAT correlated both with g as

well as mental rotation capabilities. Most notably, multiple regression analysis showed
that the FAT predicted school grades better than a combination of CFT and 3DW scores.
The high correlation with math is in line with typical correlations of intelligence and
scholastic performance. The substantial correlation with the Topologies subtest from the
CFT further supports the construct-validity of the FAT. The Topology subtest in the CFT
also requires the representation of spatial relations of figural elements to one another and
shows the highest similarity with the items of the FAT. The increased coverage of spatial
abilities proved useful in terms of the criterion-related validity of the new measure. The
FAT added incremental validity to the prediction of math grades above an already good
prediction based on a reasoning and a mental rotation test.
(Gierl & Lai, 2012) suggested that item models should be evaluated not only in terms of

their statistical properties but also in terms of two additional principles, their generative
capacity and their generative veracity. The item model presented in this study has high
generative capacity, that is, a large number of items can be generated based on the manip-
ulation of radicals and incidentals. Further, the item model has high generative veracity,
that is, items can be clearly interpreted regarding the underlying cognitive processes and,
as the illustrative facet-by-gender interaction analyses showed, allow for investigation of
additional hypotheses regarding the cognitive processing applied by the test-takers.

3.4.2. Limitations and future prospects

While the development of a new item-generative framework was successful, and first empir-
ical results demonstrated a strong relationship between true and rescaled item difficulties,
many challenges remain for future research, especially the question of how a better align-
ment in absolute parameters between true and predicted item difficulties can be achieved
to enable implementation of the FAT in a fully computerized adaptive testing module.
Many of the in the following outlined future prospects are actually being followed at this
moment. The results of this study provided the basis for the development of a computer-
ized generative and adaptive test system. The FAT will be one component among other
item types that will be implemented in this system.
The test items applied in the current study were generated manually based on the new

item-generative framework. A comparison of manually and automatically generated test
items is still pending. The same is true for a comparison of paper-pencil and computer-
ized test administrations. It should be tested how robust the computational algorithms
to generate items are and if items generated based on the same set of radicals are truly
parallel. The modeling of explanatory IRT with random effects is a first step to pre-
dicted item parameters. Item-Cloning models could be applied to test the suitability of
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FAT items for computer-based mass-generation in computerized adaptive testing settings.
When multiple item clones should be generated during testing without a calibration of
each item clone, an accurate prediction of item difficulty is one core requirement. More
extensive studies with several item clones for a specific radical-combination could further
clarify on the robustness of the item generative framework. Item Cloning models could
help to provide accurate estimates for the within-family variance of item difficulties for
specific item clones. As mentioned above, the magnitude of absolute errors in parameter
estimates between sum-normalized Rasch and sum-normalized rescaled LLTM parameters
was not satisfactory. Future studies need to investigate how the alignment of parameters
can be improved. Such attempts should include both further studies of the cognitive
task structure and the systematic experimental or quasi-experimental investigation of
item radicals and incidentals, as well as the use of more advanced statistical item cloning
models (e.g., Geerlings et al., 2011). For instance, future studies should systematically
investigate structurally parallel item sets to achieve a better understanding of the factors
for within-family variation in item difficulties.
An alternative, though closely connected, angle on the same problem could be to further

investigate the effects of item mis-calibrations on person parameter estimates. Under the
assumption that even modified item-generation models will always leave certain propor-
tions of variation in item difficulty unexplained, an important question is what degree of
uncertainty in item parameters constitutes an acceptable level to still be able to estimate
person abilities with the necessary accuracy. The current work mainly contributes to the
clarification of difficulty generating processes and the establishment of construct validity
by analyzing contributions of different task parameters to global item difficulties. When
item-generative frameworks are used in operational high-stakes assessment settings, it
must be known whether person parameters estimated based on rescaled LLTM item diffi-
culty parameters are accurate or whether ability estimates are systematically biased when
rescaled LLTM parameters are used instead of “original” Rasch parameters. Future stud-
ies should systematically investigate possible biases in person parameter estimation due
to imprecisely calibrated item parameters. Simulation studies (cf. e.g., Bertling, 2007)
could be one viable strategy here. Also, item misfit should be further investigated in
future studies. Although overall the items in this study fitted the RM well when multiple
fit indices where considered, individual items showed misfit as measured by specific fit
indices. For instance, items 23, 24, and 35 showed misfit on the Q-statistic. Inspection of
these items did not reveal any specific item features that have caused model misfit. For
future applications it is important to further investigate whether certain item attributes
might cause misfit. Demonstrating that no systematic bias is introduced by lack of fit
for certain items is an important requirement for the operational use of the AIG model
presented here.
Future applications should also use the potential of AIG to a more fully degree than the

current test development pilot study. For instance, a more thorough analysis of distractor
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stimuli and respondents’ distractor choice behavior might be promising research areas. In
the current study, distractor stimuli were generated based on the same rule-based frame-
work as regular test items. However, no specific analyses were performed with regard to
these distractor stimuli. Future studies could, for instance, analyze the process of distrac-
tor choice by the test-taker more thoroughly. In principle the application of polytomous
IRT models to FAT data should be possible as well. Partly-correct answers could be
identified based on the knowledge of what distractors share what features with the cor-
rect solution. This could also comprise an analysis of Differential Distractor Functioning
(Green, Crone, & Folk, 1989) for different groups of test-takers.
Replications with larger samples and more diverse samples are necessary to cross-

validate the findings with regard to the functioning of each of the item facets and the
results on gender effects. Gender effects on the FAT and the underlying item facets
should be investigated in larger and more equally sized samples. In the current study, the
proportions of male and female test-takers are not optimal. Gender-effects were analyzed,
but they were not the focus of the empirical study. Due to the small samples, standard
errors for the gender-effects estimated were rather large. Future studies should investi-
gate gender differences on the FAT in more detail. This could also include qualitative
approaches such as cognitive labs and think-aloud studies. Furthermore, differences in
test-performance do not only depend on the underlying ability but also on motivational
and pre-knowledge based factors. It would be interesting to use specific methods (e.g.
think-aloud protocols) to take a deeper look into the strategies, that test-takers use ex-
plicitly during test completion in order to further validate the item-generative framework
and test the underlying psychological theories. Lee et al. (2008) showed that performance
on complex Sudoku items strongly depends on the familiarity with the relevant strategies
how to solve that type of item. Sudoku puzzles are one of the most popular, yet not the
only available cognitive puzzle. Numerous cognitive games and “brain training” tools have
gained worldwide popularity during the last years. Training effects can be a threat to the
validity of cognitive instruments (see e.g. Freund and Holling (2011)). That is, investi-
gating links between performance on cognitive ability tests in general, the engagement in
cognitive puzzles, as well as specifically designed training or coaching programs should
be one field of future research. The automatic design of tests with sufficient robustness
against context effects and training will be one major challenge for test development in
the twenty-first century. This should also comprise the investigation of the cross-cultural
fairness of the item-generative framework.
Finally, the current study provided first prove for the criterion-related validity of the

FAT by investigating correlations with other cognitive measures and with school grades.
Future studies should focus on a more comprehensive validation of the FAT using internal
as well as external validity criteria. Especially the validity of the FAT in high-stakes
settings, for instance as part of workforce readiness or personnel selection assessments,
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needs to be investigated to come to conclusions about the feasibility of the FAT for such
applications.
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4
The Number Series Test (NST):

Item-generation and investigation of
parallel test forms

This study describes the development of a new item-generative framework to generate number series
items. The focus of this study is on the question whether item-generation models can facilitate the
construction of truly (i.e., structurally and psychometrically) parallel test forms. Two main research
questions are addressed. First, the appropriateness of the new item-generative framework for the con-
struction of parallel tests is investigated. Second, it is asked whether estimates of the item-difficulty model
are in line with findings from cognitive psychology on mathematical processing and numerical reasoning.
The validity of the framework, especially for the generation of parallel test forms, is investigated in an
study with N = 406 university students. Virtual item models were applied to test the stability of item
parameters across parallel item sets. Warm-up effects are distinguished from true parallel-test effects.
Results demonstrate that parallel forms can be constructed based on a generative framework if sources for
heterogeneity in item difficulties are carefully controlled. Item difficulty is predominantly determined by
the relational complexity of two consecutive numbers. Complexity levels could be manipulated consider-
ably by combination of a set of relatively simple arithmetic rules requiring only addition and subtraction.
LLTM modeling results showed that item difficulties could be well explained by underlying radicals when
both arithmetic rules and their combination principles were included as item predictor variables. The
item-generative framework was shown to be relatively robust against irrelevant surface patterns in the
number of a series caused by random incidentals. After a warm-up run, item difficulties could be pre-
dicted very reliably for two parallel test forms. Correlations with a general reasoning measure and maths
grades further confirmed the criterion-related validity of the new instrument.

Keywords. Series completion tasks, Numerical Reasoning, g, Automatic Item Generation, Explanatory
IRT, LLTM, Virtual Item Model, Parallel Tests
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4.1. Introduction

This introduction consists of three parts. First, characteristics of number series completion
tasks as one of the most common indicators for numerical reasoning are described. Second,
information processing theories and previous attempts to model item difficulties will be
reviewed. Findings regarding cognitive task parameters as well as strategy-related factors
will be summarized. Third, the research questions and hypotheses of the current study
will be derived.

4.1.1. Number series items as indicators of reasoning ability

Number series are one of the most frequently used numerical item types in psychome-
tric tests of intelligence. Almost all aptitude test batteries include this task type (e.g.,
Amthauer et al., 2001, Jäger et al., 2006, Weiß, 2007). Number series are indicators of
general reasoning ability and popular instruments in personnel selection settings. Number
series are part of school books in mathematics, and the internet offers numerous online
number series tests and training tools. Number series are not only used in psychometric
tests, but frequently applied as cognitive measures in experimental psychology as well
(e.g., Hackett, Betz, O‘Halloran, & Romac, 1990; Verguts & De Boeck, 2002).
Table 4.1 gives examples of typical number series items. In a typical number series test, a

sequence of about 4 to 10 natural numbers is presented and the test-taker has to induce the
arithmetic rules that define the number sequence. Most number series must be solved by
continuing the series by one or two correct subsequent elements. The problem solver either
has to write down the answer in a constructed response (CR) format, or he has to choose
the correct solution among a selection of multiple choice (MC) alternatives. Alternative

Table 4.1.
Examples of typical number series tasks

Authors Example Item Solution

1.) Amthauer et al., 2001 13 15 18 14 19 25 18 ? 26
2.) Amthauer et al., 2001 9 6 18 21 7 4 12 ? 15
3.) Heller et al., 1976 2 2 3 3 5 5 8 ? 8
4.) Holzman et al., 1983 22 22 21 21 20 20 ? 19
5.) Holzman et al., 1983 45 36 44 36 43 36 ? 42
6.) Holzman et al., 1983 64 36 24 32 12 24 16 4 ? 24
7.) Verguts & De Boeck, 2002 2 4 6 10 16 26 ? ? 42
8.) Porsch, 2007 20 9 20 32 15 32 56 27 ? 56
9.) Porsch, 2007 −216 −102 −56 −24 −6 −8 0 ? 6
10.) Weiß, 2007 8 11 10 15 12 19 ? ? 14
11.) Weiß, 2007 2 3 5 9 17 33 ? ? 65
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types of number series must be solved by identifying a rule-discrepant element or by
simply naming the rules (e.g., Verguts & De Boeck, 2002). In any case, solving number
series items requires the ability to discover one or several general rules or relations among
numeric elements and to apply these rules to new elements. Apart from the differences
in the specific abilities required, number series items require similar general cognitive
processes as the analogical reasoning items presented in Chapter 3 of this thesis: in a first
step, the rules have to be identified by means of inductive reasoning. The second step
involves application of the rule to a new element (i.e. a new “situation”).
Number series have a number of special characteristics that seem beneficial from a test

development point of view. Only knowledge about natural numbers and some elementary
arithmetic operations is required, making number series also adequate task types for
language-free assessments as well. Number series items can be administered using a CR
format. This helps to avoid problems concerning distractor generation and a reduction of
guessing parameters. Number series are easy to understand given test-takers are already
familiar with numbers. Compared to other task types, such as matrices or analogies,
people usually deal with numbers in everyday life. Number series have a high face validity
because numeracy and an understanding of mathematical concepts and operations is
considered a key competence necessary for all kinds of activities in education and in the
workforce (e.g., Organisation for Economic Co-Operation and Development, 2010; Mullis,
Martin, Ruddock, O’Sullivan, & Preuschoff, 2009; Lemke & Gonzales, 2006). This might
also be a reason why number series are judged as more interesting than other cognitive
tasks by adult test takers (Quereshi & Smith, 1998).
Probably the most important advantage of number series items for rule-based AIG

is that the algorithmic nature makes it easy to formalize their structure and create a
universe of items (e.g., Quereshi & Smith, 1998; Korossy, 1998). Number series can be
constructed much easier than other reasoning tasks. Compared to figural matrices or
analogy items, as far as a set of item-generative rules is given, the actual construction
of a number series item is possible even using simply paper and a pencil or by means
of basic software, such as Microsoft Excel. Computerized test administrations can also
be realized easily because items comprise no complex graphical configurations and could,
for instance, be administered even on small handheld devices without high demands to
graphical processing, storage capacity, or display size. However, there is no consensus on
how number series items should be generated to make sure that they truly represent the
intended cognitive processes.
Number series tasks can be classified with regard to a number of properties. Figure 4.1

gives an overview of different possible attributes of number series tasks. With regard to
surface characteristics visible at first glance when inspecting the number series in Table
4.1, number series can differ with regard to their length (i.e. the number of elements
assigned in a row), and the magnitude of the numbers applied and the rank ordering of
elements. While some series include only small positive two-digit numbers, others include
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Figure 4.1.
Overview of different possible attributes of number series tasks; Grey ovals mark attributes
of the number series test in this study.

larger numbers and negative numbers as well. Some series are monotone increasing or
decreasing; others are alternating with no clear monotone rank order in the elements
in the series). With regard to the arithmetic rules applied in each series, items can be
distinguished according to (a.) the nature of rules, (b.) the number of rules combined in
one series, (c.) the way of combination of rules in one series.
The most frequently rules are simple counting rules and the basic arithmetic operations

of addition, subtraction, multiplication and division. Some items also make use of more
advanced rules such as computation of the logarithm. A rule that is also found in many
series is a simple identity rule, i.e. an element of the series remains unchanged from
one position to another. Rules can require a combination of two or more elements of
the series by basic arithmetics and the combination of one element with a constant not
part of the series. For instance, the Fibonacci-rule in series 7 given in Table 4.1 requires
the test-taker to calculate a new element of the series recursively as the sum of the two
previous numbers. In contrast, series 1 requires the test-taker to calculate a new element

93



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

of the series by adding a constant to the current element. Both series include only one
arithmetic operation (i.e. addition), but the nature of this rule is different.
Number series comprising only one rule (see example 1 in Table 4.1) are very easy and,

therefore, in most cases of limited diagnostic value. In example 1, the next number can
be found by simply counting in steps of two without the need to represent several rules or
intermediate results in working memory. Still, number series with one rule are often used
as instruction or warm-up items in cognitive test batteries. In order to measure inductive
reasoning and not only the knowledge of basic arithmetic operations, typically items with
at least two rules are used. Test batteries such as the Intelligence Structure Test (IST-
2000; Amthauer et al., 2001) include items with up to four rules combined in one series.
For example, item 11 in Table 4.1 combines 2 rules (multiplication and subtraction) that
have to be applied simultaneously to each element. Item 2 is build from 4 arithmetic
rules (subtraction, multiplication, addition, division) that have to be applied sequentially.
After execution of all three rules, the series starts again with the first rule again, and so
forth. In general, three principles of rule-combination can be distinguished.

1. The first principle is a combination of rules in one step. That is, multiple rules
determine the difference between two consecutive numbers. This is the case in
series 8 or 9.

2. An alternative principle is the sequencing of rules one after another. This is the
case in series 2. Here, period length is defined as the number of rules applied one
after another to continue a given number series.

3. A third method to combine rules is hierarchical overlap of rules, also termed hierar-
chy (Porsch, 2007) or interpolation (Verguts & De Boeck, 2002). In this case, there
is no mathematical connection of two directly neighboring elements of the series.
When two rules overlap, the first rule can, for instance, apply to all odd elements
and the second rule to all even elements: in series 10 the third element is computed
by applying the rule +2 to the first element, while the forth element is computed
by applying the rule −2 to the second element. The two rules carry on alternately
across the whole series.

When rules are combined one after another, the number of rules applied defines the
so-called period length of the series (Holzman et al., 1983). Depending on the nature of
the rules that are combined, eye-catching breaking points might appear in a given series.
Breaking points can make changes in rules visible by abrupt changes in the magnitude
of the numbers or systematic patterns across a series of numbers. This is the case in
items 4 and 8. In the IST 2000 (Amthauer et al., 2001) or in Porsch’s instrument, items
comprise sequences of up to three operations. A drawback of this technique to create
relational complexity is that more complex number series always contain more elements.
One period has to be repeated at least once in order to allow for a unique solution. Only
if the rules contains “breaking points”, i.e. points where the rules start to repeat, a test-
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taker can induce the period length unequivocally. In order to construct items of sufficient
complexity, some tests use two or more combination principles together in one item. For
instance, in series 8 in Table 4.1, 2 arithmetic rules are combined in one step and there is
a sequence of rules. In the example, the three 2-rule-combinations that have to be applied
are /2 − 1, ×2 + 2, and ×2 − 8. After the application of the third rule, the series starts
again with the application of the first rule-combination. One problem, however, is that a
way must be found to guarantee for the uniqueness of solutions.
It has been shown that the sequence of rules is an important factor for differences in

item difficulties of number series (Ebert & Tack, 1974; Porsch, 2007). While other task
types (matrices, analogies) allow, in most cases, for a sequential processing of all rules
present in one item, number series are different. Figural matrices and analogies usually
consist of a configuration of several figural elements, and each rule is applied to some
of these elements. That is, while solving a complex matrix item, the test taker has to
induce from the complete figural configuration the rule that applies to element A, hold
the rule in mind, then induce the rule applied to element B, hold it in mind, and so forth.
Numbers do not have this composite character. As soon as two operations are applied
to one number in order to calculate the next number, it is not possible to induce one
rule first by inspecting the number sequence, hold it in mind and then induce the next
rule. As a consequence, the test-taker has to hold active in mind several possible rule-
combinations while storing intermediate result(s) in working memory as well. This does
not only make the solution of such a number series very hard; it also allows for different
strategic approaches to reduce complexity. This can cause large differences in solution
probabilities Porsch (2007). Key findings regarding this problem and other difficulties
regarding the prediction of item difficulties will be reviewed after a summary of a widely
used information processing model of number series.

4.1.2. An information processing model for number series

Kotovsky and Simon (1973) investigated the information processing steps individuals
engaged in while solving letter series items. Based on their results, Holzman et al. (1983)
identified the cognitive processes involved in series-completion problems and specified a
framework for solving number series. Even though their model is almost 30 years old,
it is still considered an important theoretical starting point for more recent applications
(e.g., Verguts & De Boeck, 2002; Porsch, 2007). Their theoretical framework makes use
of four key factors (see Figure 4.2 for an illustration):

1. Relations detection: In a first step, the individual has to detect relations between
elements. This requires the test-taker to scan the series and to formulate hypotheses
on how one element of the series is related to another. (LeFevre & Bisanz, 1986).
Relations between elements can be distinguished based on the mathematical rules
and their combination as described in the previous section. Furthermore, arithmetic
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RULE INDUCTION → RULE APPLICATION

Step 1 Step 2 Step 3 Step 4

Relations detection → Discovery of period-
icity

→ Completion of pat-
tern description

→ Extrapolation

(a) Recognition
(b) Calculation
(c) Checking

Figure 4.2.
Process model for number series (based on Holzmann et al., 1983, and LeFevre & Bisanz,
1986)

operations pose different cognitive demands based on the number of cognitive steps
and their working memory load: solving calculations requires more working memory
resources than counting tasks; complex arithmetic tasks require more working mem-
ory resources than simple tasks. In general, the relational complexity of a cognitive
problem can be defined by the number of relationships between elements that de-
fine the right solution (cf. RC-Theory, e.g., Halford et al., 1998). Three important
factors that determine the difficulty of this processing step, are type of operation,
magnitude of numbers, and memory load.
In the context of relations detection, the Problem-size Effect (e.g., Ashcraft, 1992;
LeFevre, Sadesky, & Bisanz, 1996) is one of the most robust findings in research on
mental arithmetic. It describes that mental calculations become slower and more
error prone with larger numbers (e.g., 7 + 8 = 15 versus 2 + 3 = 5). Discrim-
inations between small numbers can also be processed systematically faster than
discriminations between larger numbers. For smaller problems, answers are more
frequently retrieved from long-term memory, whereas larger problems require the
use of procedural strategies (Imbo & Vandierendonck, 2008). Holzman et al. (1983)
and Kotovsky and Simon (1973) made no distinction between sequences that are
already stored as units in semantic memory, e.g. sequences such as (2, 4, 6, 8, ...),
(3, 6, 9, 12, ...), or (25, 50, 100, 200, 400, ...), and sequences that are not yet repre-
sented, for instance (24, 48, 96, 192, 384). LeFevre and Bisanz (1986) proposed to
extend the process model by defining three core processes of relations detection:
recognition of memorized sequences, calculation, and checking. This is shown in
Figure 4.2. Only when retrieval strategies fail are test-takers assumed to engage in
actual calculations.

2. Discovery of periodicity: The periodicity of a given series can be determined by
investigating systematic “breaking points” between single elements or rows of ele-
ments. Periodicity equals one if the same rule is applied to determine the relations
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between all numbers. Series 4 in Table 4.1 has a periodicity of 2, i. e., the rule −1
is repeated only every two elements.
According to Holzman et al. (1983), a test-taker has to search for a new relation
whenever a breaking point in a previously induced rule is observed. Together with
complexity, period length determines the amount of working memory place-keepers
required to come to a solution (Holzman et al., 1983). WM place-keepers (WMPK)
can be defined as the rules and intermediate results that have to be held in working
memory in order to solve a number series item. For instance, if three simple rules
are combined sequentially (i.e. the period length equals 3), the item will require
to hold at least 3 intermediate results (i.e., 3 WMPKs) in working memory. The
number of place-keepers was found to be one of the best predictors of item difficulty
with correlations between the number of place-keepers and item difficulty exceeding
r = .70 (Holzman et al., 1983).

3. Completion of pattern description: In the third step, according to Holzman et al.,
rules which integrate the remaining elements of the series into already discovered
relations and period lengths have to be identified. This involves also the detection of
higher hierarchy principles, for instance the combination of two or three overlaying
rules. Knowing the correct rules and the period length is a prerequisite for this step.

4. Extrapolation: The final step is to apply the arithmetic rules identified to continue
the series or fill out a missing element. Extrapolation describes the application of
the induced rule(s) to identify the position of the period occupied by the missing
element of the series. This includes the processes of isolating the part of the rule
governing that position, as well as the subsequent application of that part of the
rule (Holzman et al., 1983).

Taken together, the first three steps comprise the process of rule-induction while the
last step involves the application of the induced rules to a new number. The benefit of
Holzman et al.’s model is its clear structure and the explicit description of the cognitive
processes involved. However, the serial structure of the model with rather separated steps
following each other is very restricted. Especially the assumption that a complete pattern
description is necessary to solve an item is a very strict assumption for many number
series items. When items involve periodicity, and clear breaking points are visible for the
test-taker, the correct solution can sometimes be found by inspecting the general pattern
of numbers without inducing and representing every single rule in working memory.

4.1.3. Item difficulty modeling of number series items: Previous
attempts and problems

Porsch (2007) constructed a new number series test using the rules proposed by Holzman
et al. (1983). He generated number series by means of rule-based item generation. Porsch’s

97



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

Table 4.2.
LLTM parameter estimates for item facets manipulated in Porsch’s study

Item facet Set A Set B Consistent across parallel versions?

Addition 0.43∗∗ −0.31∗∗ no
Subtraction 0.17∗ −0.07∗∗ no
Multiplication −0.34∗∗ 0.85∗∗ no
Division −0.52∗∗ −0.03∗∗ no
Hierarchy 2.55∗∗ 3.29∗∗ yes
Periodicity 0.65∗∗ 0.87∗∗ yes

Note. Parameters are logits; the model intercept is not displayed; ∗ < .05, ∗∗ < .01; parameters
in this table are reprinted from Porsch

work builds one starting point for the current study. It was the first study aiming at sys-
tematic construction of number series items ready for mass-construction and item cloning.
The rules used by Porsch were: Addition, subtraction, multiplication, division, hierarchy,
and periodicity. In line with Holzman et al.’s information processing theory, the two rules
hierarchy and periodicity were chosen to manipulate the cognitive complexity of the se-
ries completion items. Two complexity levels and two levels of periodicity (2 vs. 3) were
investigated. In low hierarchy items, one mathematical operation explained the difference
between two successive elements, whereas in high hierarchy items, two mathematical op-
erations were combined simultaneously. This is illustrated in the following example item
(item 8, see also Table 4.1):

20 9 20 32 15 32 56 27 ? (56).

Here, hierarchy is 2, i.e. two mathematical operations are combined. Periodicity equals
2, i.e. the rules repeat only after 3 elements of the series. The first relation is defined by
/2− 1, the second by ×2 + 2, and the third by ×2− 8 respectively. Here, Porsch defined
the actual numerical realizations of each rule as incidentals, assuming no influence on
item difficulties due to variation in numerical values within a specified range and changes
in the order of the operations. Operators were allowed to vary freely between −9 and 9.
No limitations were specified for the number range of the whole series. The lengths of the
series varied between 5 and 9 elements.
Porsch generated 26 items based on 13 different design vectors. Two clones were gener-

ated for each design vector. The two item sets were administered to two student samples
(n1 = 235, n2 = 233). Porsch tested the contribution of each of the six rules to item
difficulty by means of both LLTM models and regression analyses. While both tests
were received positively by the test takers and showed good psychometric characteristics
in terms of internal consistencies, split half reliabilities, and correlations with a figural
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reasoning measure, the results with regard to the underlying cognitive model and the
procedure of parallel test generation were not satisfactory. The goal to generate items
covering the whole ability continuum by the combination of the 6 item-generative rules
was not reached. Table 4.2 shows the facet parameter estimates from Porsch (2007).
The only two item radicals showing consistent functioning across the two samples were
hierarchy and periodicity. Results for the contributions of the four different arithmetic
rules to item difficulties were inconsistent. Addition and subtraction had positive weights
for the first test version and negative weights for the parallel version. Multiplication had
negative impact on item logits in the first version, and facilitating effect in the parallel
version. Division was not significant in the second version. At least two different explana-
tions for these findings seem reasonable: First, a viable explanation for these findings is
that almost all variation in item difficulties was captured by the rule hierarchy. A closer
inspection of solution probabilities for low hierarchy and high hierarchy items shows that
there is almost no overlap between these items. Low hierarchy items were, on average,
solved by p = .79 (set 2: p = .88) of the test-takers (SD = .08, set 2 .SD = .10), while
the average solution probability for high hierarchy is only p = .35 (set 2: p = .41) with
a standard deviation of SD = .16 (set 2: SD = ..22). Variation of hierarchy produced
items that were either very easy or very difficult. Only 4 out of 26 items in each set had
solution probabilities between p = .4 and p = .6. In Porsch’s study, the correlation of
item difficulties with item complexity manipulated through the usage of either only one
rule at each point of time or two rules simultaneously was r > .80. Second, an alternative
explanation for the low agreement in item parameters for the parallel test versions could
be that test-takers didn’t use the cognitive processes expected based on the theoretical
assumptions, but made use of other strategies that caused unexpected differences in solu-
tion probabilities between the two sets. This might not be the case for all items, but could
be a factor for parameter invariance across several number series. For instance, item type
8 has a solution probability of p = .31 in the first set, and p = .91 in the second set. In
theory, both items should have the same difficulty parameters. If item difficulties should
be predicted based on a set of item facets, it is necessary to know the contribution of each
facet parameter to global item difficulties. Also, the contribution of each facet parameter
must be (at least to some degree) the same across the set of all possible items generated
by means of the item-generative framework. A closer inspection of the two parallel items
generated based on item type 8 shows why the solution probabilities might be so different:

Set A : 9, 16, 12, 18, 34, 21, 36, 70, ? Set B : 20, 9, 20, 32, 15, 32, 56, 27, ?

Due to the variation of incidentals, it is possible to detect a specific pattern of numbers in
clone B (see underlined numbers) but not in clone A: in the given series, the same number
always appears twice , with a — from the perspective of the test-taker — possibly random
number in between. That is, instead of trying to induce a rule how several mathematic
operations are to be combined, many test-takers might have just chosen 56 as an answer to
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this item. This in, in fact, the correct solution, explaining the huge difference in solution
probabilities between the two sets. Whereas solving clone A truly requires processing of
all rules, clone B can be solved following a simple heuristic. When item generation models
should be used to generate large numbers of items with sufficiently known parameters, it
must be assured that incidentals (in this case the specific operators chosen in the item)
do not cause such solution-facilitating “patterns” in some items, but not in others.
The finding that number series often allow for multiple solution strategies and some-

times for multiple possible solutions as well is known as the non-uniqueness problem of
number series. The problem is that “aside from the implemented rule of the sequence
and the keyed answer considered correct, many differing answers basing on other unin-
tended (say accidental) regularities of the number sequence seem possible and might be
judged to be correct” (Korossy, 1998, p. 44). However, this problem was widely ignored
in testing practice. Criticism with regard to the uniqueness of number series problems
has been rejected as “utterly trivial (...) because he other correct solutions are usually
possible only for a mathematician” (Jensen, 1980, p. 153) or as practically irrelevant: For
instance, Verguts and De Boeck (2002) constructed number series consisting of 6 numbers
each based on a framework comprising 4 item-generative rules: addition, fibonacci, inter-
polation, and multiplication. The way that they combine these rules led to non-unique
solutions and most of their items could be solved also by applying completely different
strategies. However, they report that “it turned out that none of [the] participants ever
used a valid rule other than the ones mentioned.” (Verguts & De Boeck, 2002, p.47).
The non-uniqueness problem of number series (i.e. the problem that many number series
often can be explained (and solved) by different sets of rules) might be negligible when
items are used as indicators of cognitive variables in experimental settings and only easy
items with rather obvious rule-combinations are administered (cf. Verguts & De Boeck,
2002). Yet, the prediction of item difficulties for automatically generated items will be
less accurate when items, themselves, already contain ambiguity.
One effective means of reducing the universe of possible “correct” answers to a number

series problem is a more precise explanation of rules to the test-takers in advance of the
assessment. Wilhelm (2005) gave an example of the extent of rule-explanation necessary
to guarantee unequivocal solutions for a series item:

“If the premises of such a number-series task are explicitly stated — for exam-
ple in ‘Continue the number series 1, 3, 5, 7, 9, 11 by one more number, the
operations you can use are +, -, / and * and all results are positive integers,
rules are indicating regularities in proceeding through the number series, and
these regularities can include rule-based changes to the rule’ there might be
just one option that meaningfully continues the sequence: 13.” (p. 376)

Many existing tests do not explain rules in a test to that extent in order not to diminish
the test’s validity by making solution principles obvious (and therefore, easy) for the test-
taker. On the other hand, it has been shown that — when tests are constructed based
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on a set of pre-specified item radicals — a comprehensive explanation of the abstract
principles underlying items of a test did not diminish the validity of test scores, but
could even improve criterion-related validities (e.g., Freund et al., 2008; Beckmann, 2008).
Also, if test-takers have a chance to get familiar with the rules of a test while working
on homogeneous item sets rather than test batteries with many different item types,
higher g-loads have been reported (Carlstedt et al., 2000). Findings that criterion-related
validities are reduced in retesting mainly rely on studies, where individuals worked on
identical, or at most pseudo-parallel versions of a test (i.e. parallel test versions with the
same items administered in a different order; cf. e.g., Amthauer et al., 2001), and can be
largely attributed to memory effects (e.g., Lievens, Reeve, & Heggestad, 2007; Amthauer
et al., 2001). Comprehensive retest-studies with truly parallel tests generated based on
cognitive item difficulty models are still missing.
Irle focused less on specific item-generative rules and the cognitive processes during

number series completion. Instead, the main emphasis of his work was on strategies
used by test-takers when confronted with number series items. Irle (1969) hypothesized
that knowledge of specific solution strategies might be relevant for the ease of solution of
number series items. This is also a possible explanation for the theory-divergent findings
reported by Porsch. The two analytic strategies identified by Irle are calculating differences
and calculating ratios.

1. Calculating Differences:The first strategy is to calculate differences between each
pair of successive elements in the series. An operation which transforms a number
series [x1, x2, x3, x4] into [x2− x1, x3− x2, x4− x3] is used.
If a series contains two alternating rules, −1 and +3, for instance, the successive
element of the series can be found easily. Suppose a series

(12, 14, 13, 16, 15, ?).

Here, the calculated differences are:

(−1,+3,−1,+3,−1).

Simple inspection of the pattern of differences shows that the rule +3 must be
applied to find the next element. The result of the second rule, −1, does not have
to be represented in working memory to find this solution. Only if the series should
be continued by two elements would the second rule have to be processed. The same
principle applies to series 2 from Table 4.1:

(9, 6, 18, 21, 7, 4, 12, ?).
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Here, four rules are used, but the solution can be found by simply inspecting the
general pattern of differences as well:

(−3,+12,+3,−14,−3,+8).

By inspecting this pattern, it can be induced that every second difference de-
notes to 3, alternating with positive and negative signs. If the other differences
(+12,−14,+8) are totally ignored, a test-taker can still find the correct successive
element, 15. Only one arithmetic operation (+3) has to be applied. The problem in
these cases is not that the number series can be solved by looking at the pattern of
differences. The problem is that the number series can be solved as well by looking
at the pattern of differences as by inducing all four rules. If a test-taker solves
this item correctly, no conclusion about the cognitive steps the individual followed
during the solution process can be made. If item difficulties should be predicted
as a linear combination of item radical difficulties, this ambiguity causes a severe
problem.

2. Calculating Ratios: The second strategy identified by Irle is the calculation of ratios.
A given series (x1, x2, x3, x4) is transformed into (x2/x1, x3/x2, x4/x3). That is,
a ratio between all consecutive elements is calculated. Irle hypothesized that this
strategy is used if the first strategy (i.e., calculating differences) does not lead to to
detect a complete pattern detection. If the series is

(10, 5, 25, 20, 100, 95, ?),

the vector of differences is

(−5,+20,−5,+80,−5).

Inspecting this vector shows that every second difference denotes to −5, but this
knowledge cannot be used to find the successive number in this case. An additional
inspection of the vector of ratios

(0.5, 5, 0.8, 5, .95)

shows that a subtraction rule (−5) and a multiplication rule (×5) are applied al-
ternately. A “bibliography series” (Irle, 1969) can be formed, which makes the
systematic structure of the number series problem visible.

Irle (1969) postulated that the differences strategy is usually applied before the ratio
strategy. Only when the increase in numbers of the series is very fast, like for instance
in the example series with a progression of +20 from the second to the third element
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and +80 from the forth to the fifth element, individuals will carry out a ratio-strategy
first. The availability of these solution strategies is not a threat to the validity of number
series tasks per se. The problem is that multiple processing strategies come to the same
solution and item response processes cannot be linked to specific cognitive processes of
the test-taker.
Ebert and Tack (1974) investigated a set of number series items differing with regards

to the combination and sequence of difference and ratio rules. Subjects needed more time
for calculating ratios than differences, and the second operation in the items had a larger
impact on processing speed. Number series with a difference-ratio (DR) structure were
more difficult and more time-consuming than number series with ratio-difference (RD)
structures. That is, a cognitive model defining item difficulties based on the two item-
generative rules (here: addition and multiplication) would make wrong predictions about
item difficulties when the ordering of operations is not parameterized in the statistical
model.
Findings from Verguts and De Boeck (2002) also support the hypothesis that strategy

knowledge is an important factor for solution probabilities in number series. They could
show that strategies can be induced simply by means of a comprehensive instruction in
the beginning of test administration. Strategy explanations as part of the instruction had
significant impact on the effectivity of solution strategies. In each of two experimental
groups, only one of 4 rules in a number series test was instructed to the participants.
Results showed that individuals yielded higher scores on those items requiring the strategy
learned in the instruction phase compared to the remaining items. That is, item difficulties
depended not only on item characteristics manipulated but also on the activation of
specific memory contents relevant or not relevant for rule-induction.
Klahr and Wallace (1970) investigated letter series and described further variables that

highlight the importance of test-taker behavior and strategies for the processing of series
completion tasks. In their model test-takers are assumed to apply a matching procedure
to complete the processing step of pattern description. Here, the directionality of the
series, and the presence of specific patterns in the beginning or end of the series come into
play. According to Klahr and Wallace (1970), the first item in the series is tested against
the second in order to identify a legitimate relation. If a relation is found, the test-taker
will try to apply the model to the entire series. That is, the elements in the beginning of
a series play an important role in cognitive processing. However, the process models by
Holzman et al. (1983) and Kotovsky and Simon (1973) do not account for differences in
item difficulties caused by specific patterns of elements in the beginning of a series. As
illustrated by Hersh (1974), irrelevant relations in the beginning of a series can influence
the cognitive process of the test-taker considerably:

“For example, Simon and Kotovsky’s model would judge the two series MMMNM0
and AMANA0 to be of equal difficulty, since each can be generated by the
same pattern description (a repeated letter alternating with a progression of
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the alphabet). However, even to the casual observer, the second series appears
much easier to continue than the first.” (Hersh, 1974, p. 771)

Hersh’s analyses of series completion tasks showed that test-takers tend to make more
errors when irrelevant relations occur at the beginning or at the end of a series (Hersh,
1974). Besides, irrelevant relations at the beginning or end of a sequence increase solution
times. Increases of solution times because of the retesting of false hypotheses have been
reported for mathematical tasks as well (e.g., Huesmann & Cheng, 1973). Hersh (1974)
argued that irrelevant relations affected only the induction phase and not the extrapo-
lation or production phase of the information processing process. Therefore, given that
a test-taker has induced the correct pattern of rules present in a given series, errors oc-
curring during the production phase should be independent of the existence of irrelevant
relations in the series. Since Hersh’s findings, the influence of irrelevant relations on the
difficulty and the cognitive structure of series completion tasks has not been investigated
systematically.
Number series have a special character because of their reliance on purely numerical

elements. They allow, on the one hand, for a multitude of operations to manipulate
relational complexity. On the other hand, they are more affected by test-takers’ strategies
towards arithmetic manipulations and the detection of patterns from numerical stimuli.
Despite the huge amount of number series tests and the enormous popularity of this item

type, attempts to generate truly parallel items based on a set of item-generative rules have
not been successful so far. One conclusion from findings covering the last 30 years is that
difficulties of number series seem, notwithstanding their high suitability for algorithmic
generation, harder to predict than one would expect based on promising findings on other
reasoning measures (cf. e.g., Freund et al., 2008; Embretson, 1999; Holling, Bertling,
Zeuch, & Kuhn, 2010). It has been shown, for instance, that the sequence of the rules is an
important factor for differences in item difficulties of number series (Ebert & Tack, 1974;
Porsch, 2007), that item incidentals (i.e. features of an item that are theoretically expected
not to influence item difficulty) can determine item difficulties to enormous extents (e.g.,
Porsch, 2007), and that the complexity parameters introduced by Holzman et al. (1983)
are not sufficient to determine item difficulty and generate truly parallel test forms. If
the cognitive complexity of a number series item could be manipulated in a way that
several cognitive operations have to be processed simultaneously and that these operations
stay the same across a whole number series, this would be a great benefit for rule-based
generation of number series. Also, the prediction of item difficulties for automatically
generated items will be less accurate when items, themselves, already contain ambiguity.
That is, findings solutions for the non-uniqueness problem of number series is an important
necessary condition for establishing item difficulty models that can explain substantial
amounts of variation in item difficulties.
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4.1.4. Research questions

The goal of the current study is to derive a new set of item-generative rules that allows
for the generation of structurally and psychometrically parallel number series tests, and
to test this new rule-set in a first empirical study. Based on previously reported problems
regarding the prediction of item difficulties based on explanatory IRT models, and the
psychometric equivalence of “parallel” forms, a revised set of rules and their combination
into new items is proposed. The new framework addresses typical problems of previous
number series tests, specifically the item difficulty modeling by explanatory IRT models,
and the parallelism of structurally identical form. Two main research questions related to
the validity of the new AIG framework are addressed:

1. Are structurally identical items also psychometrically equivalent? Previous studies
have demonstrated the difficulties to generate parallel test forms. It has been shown
that items designed based on the same structural principles are not necessarily
equally difficult (e.g., Porsch, 2007). It is hypothesized that structurally equal items
generated based on the revised rule-set are also equally difficult, i.e., it is expected
that the new item-generative framework can model item difficulties across parallel
forms. This question corresponds to the first major research goal outlined in the
general introduction of this thesis, the investigation of the technical feasibility of
item generation approaches.

2. Can item difficulties be predicted by the hypothesized underlying cognitive processes?
It is tested whether the parameter estimates of the item-difficulty model are in
line with the cognitive model that guided the item construction process. Solution
probabilities should be determined by the complexity of a series as defined by the
item radicals, and not by the variation of surface characteristics. That is, can item
difficulties be modeled based on the set of pre-specified item radicals? This re-
search question extends the first research question. If parallelism of structurally
identical test forms is given, this demonstrates the technical feasibility of an item
generation framework based on cloning structurally identical items. However, the
construct validity of the generated items is dependent on the functioning of item
radicals and incidentals in line with theoretical expectations about the measured
construct. It is hypothesized that the numerical reasoning construct is represented
by the pre-specified item radicals representing hypothesized underlying cognitive
processes, and not by item incidentals defining surface differences between items.
Two drivers for relational complexity are distinguished, the complexity of each indi-
vidual mathematical rule, and the principles of combining rules in one item. Both
rule complexity itself, and the combination of rules are expected to increase the
relational complexity, and thereby the difficulty, of a given number series. This
corresponds to the second major research question outlined in the general introduc-
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tion, the investigation whether item generation approaches can enhance construct
validity.

In addition to these two research questions, the constructed response format of the new
item type will be investigated in more detail. Because of the constructed-response format
of the new measure, patterns of wrong answers need to be checked for plausibility as
well in addition to the computation of the typical item statistics. It is expected that the
new generation approach produces items with clear solutions. Frequent wrong solutions
should represent partly correct solutions in the sense that test-takers will apply only some
of the necessary rules or make mistakes while applying more complex rules. For validation
purposes, relationships of performance on the new measure with other ability constructs
will be also investigated.

4.2. Method

There are two parts to the method section. First, the derivation of radicals and incidentals
for the new item-generation framework is described. Second, the design of an empirical
study is described that addresses the research questions and hypotheses summarized in
the previous paragraph.

4.2.1. Development of the new item-generative framework

Analogous to other item types for which item difficulty models have been successfully
implemented (cf. e.g., Figural Analogy items in study 1 of this thesis), a guiding principle
for the new AIG framework is the premise that the difficulty of a number series can only
be clearly defined if exactly the same cognitive operations are needed to find any missing
element of the series. That is, difficulty should not depend on whether element 5 or 6, or 8
or 9 is missing, but on the set of rules and their combination accounting for the complete
pattern of the number sequence. That said, all rules that were applied to generate a
given number series should also be needed to solve that series, i.e., if 3 rules were used
to generate an item, cognitive processing of all 3 rules should be necessary to solve this
item). Several changes to previously presented generative rules for number-series were
made in the item-generative framework applied here.

1. The arithmetic rules needed to continue a number series are exactly the same in
each part of the series instead of combining several rules serially.

2. Based on Oberauer, Süss, Wilhelm, and Wittmann’s (2008) research on cognitive
complexity in reasoning items, item difficulties of the number series used here were
defined with regard to the cognitive complexity of the relational representations be-
tween two consecutive elements. Rules were limited to simple arithmetic operations.
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Figure 4.3.
Four example NST items generated based on the new AIG framework; under each item,
the generating rules and combination principles are given; intermediate results are printed
in red.

Difficulties are not defined by the mathematical complexity but by relational com-
plexity (cf. also Halford et al., 1998) and working memory load of the items. This

107



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

decision was made because the goal of test development was to develop reasoning
items, and not items assessing mathematics proficiency.

3. Holzman et al.’s factors Periodicity and Hierarchy were held constant across all
number series: All items have a periodicity of 1. This ensures that the transitions
between all elements of the series can be explained exactly by the same sets of
mathematical operations (i.e., the rules that determine the transition from element
three to element four are the same as from element four to element five. Application
of the Rasch model and thereupon based explanatory models require that all items
measure the same latent ability, and the existence of clear solution principles with
unequivocal solutions.

4. No higher hierarchy rules are used.
5. The complexity of the numbers used was held at a minimum. All number series of

the current test comprise only numbers from 0 to 99. Also only constants in the
range of 1 to 3 are used when rules introduce values that are not derived from the
current or previous elements of the series. These constraints were introduced to
minimize unwanted effects on item difficulty such as an attenuation by the problem-
size effect (e.g., Ashcraft, 1992).

6. By means of a comprehensive instruction prior to testing, ambiguity in solutions
and processing strategies should be minimized.

Item Structure Each item of the new NST consists of a series of five numbers with the
sixths number missing. All series have exactly the same length. In order to minimize
problem size effects, the range of numbers used was constrained. All number series only
contain positive whole numbers the range from 0 to 99. As mentioned above, the rules
determining the relation between consecutive elements in the series are based only on
simple arithmetic operations. The operations multiplication and division are not needed
for any of the items generated based on the NST framework. In order to assure that the
cognitive operations needed to fill in any element for the number series were exactly the
same, no higher hierarchy rules were used and the periodicity was set to 1 for all items.
Figure 4.3 shows four example items generated based on the new AIG framework along
with the underlying cognitive rules. Items (a) and (b) are generated from one rule each,
items (c) and (d) comprise two rules. In order to solve a NST item, in a first step, test-
takers have to identify the relational representations between two consecutive elements,
i.e. identify the rules used and the principle how they are combined. This step represents
Holzman’s Relations detection step. In a second step, the corresponding relation has to
be applied to continue the series. This corresponds to the Extrapolation step.
In total, the new AIG framework consists of 4 basic rules and three combination princi-

ples for these rules, i.e., a total of 7 item radicals. In order to allow for the generation of
structurally identical but phenotypically different items, several item characteristics are
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defined as incidental. All radicals and incidentals will be explained in more detail in the
following paragraphs.

Item Radicals The choice of item radicals was guided by previous findings (Holzman et
al., 1983; Porsch, 2007) and the changes summarized above. As mentioned in the previous
paragraph, two categories of radicals are used in the new AIG framework, first arithmetic
principles that were explained to the test-takers and define operations independent of
the actual combination in number series. Second, combination principles that do not
represent stand-alone rules but define the mathematic operations that provide the basis
for combining rules into actual items.
Four simple rules requiring only the operations addition and subtraction were identified

based on inspection of existing number series tests. The set of rules was pretested in
several smaller groups of university students willing to contribute to the development of
a new measure. All four rules did not pose high demands on mathematical knowledge or
numeracy, were easy to understand and to apply.
R1: Constant (Const): As a first rule, a constant number c could be introduced as an

element of the formula needed to continue a given number series.

Const = c,with c ∈ N (4.1)

.
This rule simply means that a constant is introduced, not matter what operation is
actually applied to the constant. In some existing number series tests, the introduc-
tion of a constant was defined not separately but directly combined with addition
or subtraction of a constant. In the current framework, the use of a constant in a
series is distinguished from what operation is actually performed with the constant,
defined as the combination principle (see below).

R2: Checksum type 1 (CS1): As a second rule, the checksum of one element y of the
number series could be calculated, such as:

CS1 = checksum(yi). (4.2)

This rule only defines the type of operation needed to solve a number series, not
necessarily the complete logical pattern of the series itself. Depending on what
combination principle is used, the result of this checksum rule could directly give
the next element of the series, or an intermediate result to be combined with another
rule.

R3: Checksum type 2 (CS2): As a third rule, the checksum across two consecutive
elements of the number series could be calculated, such as:
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CS2 = checksum(yi−1) + checksum(yi). (4.3)

Again, this rule only defines the type of operation needed to solve a number series,
not necessarily the actual logical pattern of the series itself. Depending on what
combination principle is used, the result of this checksum rule could directly give
the next element of the series, or an intermediate result to be combined with another
rule.

R4: Fibonacci (Fib): As a forth rule, the sum of the last two elements could be calculated:

Fib = yi + yi−1 (4.4)

This rule uses the same principle as the well-known Fibonacci sequence based on
the works of the Italian mathematician Leonardo Fibonacci in the middle ages. In
the Fibonacci sequence of numbers, each number is the sum of the previous two
numbers, starting with 0 and 1. Depending on what combination principle is used,
the result of this rule could directly give the next element of the series (see example
(a) in Figure 4.3), or an intermediate result to be combined with another rule (see
example (c) in Figure 4.3).

The four rules used differ in their cognitive complexity. The application of some rules
requires only 1 operation while others require several cognitive steps. Previous research
(e.g., Porsch, 2007) showed that one driver of item difficulty in number series tasks besides
the complexity of the actual arithmetic rules was the combination of several rules in one
step. For the new AIG framework, it was decided to follow this rationale, i.e. generating
item difficulty by combining several rules in one step. Three different logical principles
(in the following denoted as combination principles, CP) were used, first an additive
combination, second a subtractive combination, and third a combination by using the
result of one rule as an argument in another rule.
CP1 Addition (Add): When this CP was used in a series, the mathematic operation

addition had to be applied by the test-taker to derive a consecutive element of the
number series. For instance, the result of the CS1 rule or a specific constant c could
be added to the current element of the series:

yi+1 = yi+checksum(yi), (4.5)

yi+1 = yi+c. (4.6)
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Another example could be the additive combination of the results of two individual
rules, such as:

yi+1 = checksum(yi)+c. (4.7)

Here, each element of the number sequence is derived as the checksum of the previous
element plus a constant. Note that, Addition refers to the combination of rules in
actual test items, not to the mathematical operation Addition when part of a rule
itself (such as the addition part of the Fib rule). This distinction is made here
to account for possible differences in cognitive processing when (a) a previously
instructed rule involves the mathematical operation addition, or (b) the test-taker
has to infer from the sequence of numbers that the addition operation is used to
combine or manipulate results of these known rules. In order to make clear what
additions are referred to here, the operations defining the CP are underlined in the
equations. Note that, while the result of one rule is added to the current element
of the series, yi in equations 4.2.1 and 4.2.1, equation 4.2.1 involves the addition of
two (intermediate) results. In the current framework, this difference is formalized
by specifying one parameter less in the design matrix for the former case (i.e., no
separate basic parameter is specified for the inclusion of yi). A number of small
pilot testings with more complex items showed that using both variants in one
item (such as yi+1 = yi+checksum(yi)+c) were problematic both in terms of their
difficulty level, and of complying to the constraint not to exceed the maximum value
of 99 in a given series.

CP2 Subtraction (Sub): This CP is equivalent to CP1 with the only difference that the
mathematical operation subtraction is used instead of addition. An example for the
application of this CP could be:

yi+1 = [yi + yi−1]−[checksum(yi)]. (4.8)

Here, each element of the number sequence is derived as the difference of the result
of the Fibonacci rule and the Checksum Type 1 rule. The rectangular brackets
indicate the two rules.

CP3 Sequence (Sequ): When this CP is used in a series, the result of a first rule was used
as an argument in a second rule, i.e. a certain sequence of rule application has to be
followed. For instance, the CS1 rule could be applied to the result of the Fib rule:

yi+1 = checksum(yi + yi−1).
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Figure 4.4.
Illustration of surface differences in structurally identical items caused by variation of
item incidentals; all items are generated based on the same underlying logical structure,
yi+1 = yi + yi−1 − c.

Here, the Fibonacci rule has to be applied first, and then the checksum rule is needed
in a second step. Figure 4.3 (d) gives an example for this rule-combination. While
CP1 and CP2 allow the separate application of the two rules before combining the
results afterwards, CP3 requires a specific sequence of applying the two rules.

Item incidentals Figure 4.4 shows 5 NST items that were constructed from exactly the
same item radicals, Fib, and Const, using CP2 (subtraction) to combine these two rules.
The different “look” of the items is due to variation of item incidentals. Given that the
radicals capture the main sources of variation in item difficulty there should not be any
systematic differences in difficulties for all 5 items. In the extreme case of within-family
variance of zero the difficulty parameters for these items should be exactly the same.
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In the following, all item incidentals are described in detail In total, two incidentals are
distinguished.

1. Starting numbers: First, the specific numerical values for the starting numbers are
set incidental. As for the application of several rules, two previous elements of the
series had to be used in the calculation, two initial elements, X0 and X1, were ran-
domly chosen for each item. The first element, X0, was, then, not displayed as part
of the actual item. This procedure was chosen to guarantee inherent logical number
series. Given the “random component” in the first numbers, test-takers might detect
inconsistencies (e.g., negative numbers) when tracing back the series to the element
prior to the first element shown. By generating one element more, it could be guar-
anteed that all numbers shown, also the first, were consistent with the logical rules
and fell into the range of allowed numerical values. X0 and X2 both had to be non-
negative numbers within the range from 0 to 99. Also, numbers had to be chosen in
a way that the complete series would not reach values higher than 99 or lower than 0
until the seventh element, X6. Figure 4.4 illustrates the choice of different numbers
for X0 and X1. In series (a)-(c), the numbers “2” and “6” were used, in series (d)
and (e), the numbers “8” and “7” were used. All other things identical, the surface
layout of these two series shows already considerable differences making it hard for
the test-taker to see that the underlying structure is identical without actually an-
alyzing the pattern of numbers. Also, as demonstrated in Figure 4.4, varying only
these two incidentals leads to completely different patterns of differences between
consecutive numbers. Strategies as those analyzed by Irle (1969) could not lead to
successful solutions here. The non-applicability of shortcut strategies and heuristics
such as the differences strategy was considered an important requirement for the
assumption of unequivocal solution processes for each series.

2. Constant: Second, the numerical value of the constant was set incidental for all
items that involved a constant. Based on the findings on the Problem Size Effect,
however, values were not chosen completely at random. Only values between one
and four were considered. The number four poses a natural limit to human working
memory (Cowan, 2010). Figure 4.4 illustrates the effect on the surface appearance
of the items caused by this incidental. Items (a)-(c) use exactly the same starting
numbers but were generated using different values for c. Apart form the first number,
X1, none of the elements or differences between consecutive elements is the same
across the three variants of the same structural item template.

As shown in Figure 4.4, the definition of incidentals applied in the NST framework pro-
duces number series that differ considerably with regard to the surface pattern of numbers.
This can have both beneficial and potentially distracting effects. Surface patterns, such
as the repetition of the same number in two consecutive elements (see Figure 4.4 (b)), or
a pattern across a subset of all numbers suggesting the presence of a rule which is in fact,
when encoding the whole series, not valid are two examples of such potentially distracting
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effects. For instance, the following two items were generated based on the same set of
rules.

A 6, 4, 1, 5, 6, ?

B 4, 11, 6, 8, 5, ?

In both items, the Fibonacci and the Checksum type 1 rule are combined. In a first
step, the sum of the two last elements of the series have to be computed (Fib). Then, the
checksum rule is applied to the results of this rule. Only by inspecting the whole series can
this rule-combination be identified. When only the last 4 elements are inspected (and the
first element is ignored; see underlined elements) one can wrongly induce the Fibonacci
rule for the item in set A, yielding the response “17” instead of the correct solution, “8”; for
the item in set B, no patterning of numbers is as attractive when all but the first elements
of the series are inspected. Even though the two items are, in theory, identical in terms of
their cognitive structure, they look different. While item B has no distinctive patterning
of numbers, the surface pattern in item A might suggest a wrong rule when only elements
2-5 are inspected. Based on the findings on the role of irrelevant relations summarized
in the Introduction (Hersh, 1974; Huesmann & Cheng, 1973) it seems reasonable that
test-takers might be influenced by the existence of certain irrelevant patterns in the new
number series items. If, in contrast, item difficulties are not significantly affected by such
surface patterns, this would be a good result for the robustness of the item-generation
approach. It was decided to investigate the susceptibility of the NST item difficulty model
to such surface patterns empirically instead of directly constraining the AIG model not
to allow items to demonstrate such patterns.

4.2.2. Sample

Participants were recruited at two universities in Russia and Germany (B.Sc. students
of psychology) and received feedback of their results as an incentive. The initial sample
consisted of N = 406 persons (80 % female). 2 participants were excluded from data-
analyses because they didn’t understand the rules of the test, yielding a final sample for
the analyses of N = 404 (229 Russian and 175 German students). The mean age was 21.45
years (SD = 4.18). 154 participants (38.0 %) reported prior experience with IQ tests, and
151 participants (37.3%) reported prior experience with number series tasks. This per-
centage of prior experience is representative (cf. meta-analytic findings by Hausknecht et
al., 2007). All participants gave consent that their data be used for scientific purposes.
The fact that data was collected in 2 countries makes the sample more heterogenous than
typical samples for test development studies. Cross-cultural fairness problems have been
reported especially for tests that were developed in one cultural setting and then, lat-
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eron, carried over to test-takers not sharing the same cultural background as test-takers
of the piloting and calibration samples. The investigation of a less homogeneous sample
as early as during test development and pilot testing is supposed to produce results of
higher generalizability. The hypotheses of this study refer not to cross-cultural perfor-
mance differences on the new number series items. Due to the relatively small sample size,
no explicit comparison between the samples and the item parameters in the two samples
is made. The focus is on the parallelity of item sets, not on the comparison of person
parameter estimates for test-takers with different cultural backgrounds. However, in or-
der to make sure that conclusions regarding the research questions asked are not biased
because of potential cross-cultural effects, analyses that are most central to evaluating
the hypotheses were conducted separately for the two subsamples as well. These analyses
are summarized in the Appendix.

4.2.3. Instruments and procedure

Number series A new set of number series items based on the item-generation frame-
work described in the previous sections was administered in this study. Three items each
for the 11 item types presented in Table 4.3, each defined by a specific item radical com-
bination, were investigated1. Every item type was represented by three exemplars all
sharing the same structural characteristics, while differing in their incidentals. Changing
the incidentals resulted in phenotypically different item isomorphs (see Irvine & Kyllonen,
2002).
Table 4.3 gives the design matrix for all 11 item types. In addition to the item radicals

(left side of table), a formal description of each item type is given in the table (middle).
Also, at the right hand side, the number of cognitive steps needed to follow to solve an
item is given as an additional complexity indicator. Whereas the item radicals present
in an item defines rules as chunks that are processed as a unit by the test-takers (e.g.,
the CS2 rule contains multiple steps itself but is conceptualized as one rule) while the
number of steps describes the actual number of cognitive steps that need to be performed
to arrive at the right solution. Miller (1956) introduced the concept of chunking to explain
how people can overcome limitations in WM storage capacity. Chunking can reduce the
cognitive demand of processing complex relations by recoding a high-dimensional relation
into a lower-dimensional one. Table 4.4 gives a more detailed description of the 11 item
types used.
A number of quality checks were performed for all items. For all items, it was checked

whether it was possible to find the right solution without application of all rules present
in the item and whether there were items allowing for multiple solutions. All items had

1Note that initially 13 item types were designed. However, due to an error during manual item construc-
tion, one item type had to be dropped. Another item type was dropped because it was too difficult
for the test-takers in the sample that was investigated.
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Table 4.4.
Detailed description of all item types of the NST (Study 2)

Type Description

1 For item type 1, yi+1 = yi + c, any subsequent element of the series, yi+1 is given as the current
element, yi, plus a constant c. Only one mathematical operation (+) needs to be applied.

2 Item type 2, yi+1 = yi − c, corresponds to type one, but the mathematical operation addition is
exchanged for a subtraction. Any subsequent element of the series, yi+1 is given as the current
element, yi, minus a constant c.

3 Item type 3, yi+1 = yi + yi−1, is constructed from only one rule, Fib. Any subsequent element of
the series, yi+1 is given as the sum of the current element, yi, and the preceeding element, yi−1.
Again, the number of steps equals one as only one mathematical operation (+) needs to be applied.
The difference compared to item types 1 and 2 is that the preceeding element is added instead
of a constant. The test-taker can solve the number series without representing any number or
intermediate result in working memory while applying the rules.

4 Item type 4, yi+1 = checksum(yi−1)+checksum(yi), is constructed from only one rule as well, CS2.
However, more steps are needed to apply this rule. Any subsequent element of the series, yi+1

is given as the sum of the two checksums checksum(yi−1) and checksum(yi). This combination
of steps was introduced as one rule to the participants in the instruction and can, therefore, be
represented as one chunk by the test-taker. The number of steps denotes to three as test-takers
have to perform three mathematical operations (compute the first checksum, compute the second
checksum, add the two checksums to each other).

5 Item type 5, yi+1 = checksum(yi + yi−1), is constructed from two rules, namely CS1 and Fib, that
are combined using CP3. First, the test-taker has to calculate the sum of the current element,
yi, and the preceeding element, yi−1. Second, the test-taker has to calculate the checksum of this
intermediate result. The result from this calculation is the subsequent element of the series, yi+1.

6 Item type 6, yi+1 = checksum(yi−1)+checksum(yi)−c, combines CS2 and C using the subtraction.
This item type is similar to type 4, but with the additional step of subtracting a constant number,
c. Therefore, the number of cognitive steps is four (compute the first checksum, compute the
second checksum, add the two checksums to each other, subtract a constant).

7 Item type 7, yi+1 = yi + yi−1− c, combines Fib and C, again using subtraction as the combination
principle. This type of number series extends item type 3 by adding the step of subtracting a
constant. The number of cognitive steps is two (apply the fibonacci rule, subtract a constant).

8 Item type 8, yi+1 = yi + checksum(yi), combines CS1 with CP1 by adding the result of the CS1
rule to the current element, yi. This item type is similar to type 1, but with the additional step of
calculating the checksum. Whereas in type 1, the same number is added to the current element in
each part of the series, here the number that is added has to be calculated for each element of the
series.

9 Item type 9, yi+1 = yi + checksum(yi−1) + checksum(yi) combines CS1 with CP1 by adding the
result of the CS2 rule to the current element, yi. This rule combination is very simliar to type 8
with the only difference that CS2 is applied instead of CS1.

10 Item type 10, yi+1 = yi + yi−1 + checksum(yi), combines Fib and CS1 using the first combination
principle, addition. First, the sum of the current element, yi, and the preceeding element, yi−1, has
to be computed, and the result has to be represented in working memory. Second, CS1 has to be
applied to the current element, yi, and the result has to be represented in working memory as well.
Third, the two intermediate results have to be added to each other, resulting in the subsequent
element of the series.

11 Item type 11, yi+1 = yi +yi−1−checksum(yi) corresponds to item type 10, with the only difference
that the subtraction rule is applied instead of addition.
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Figure 4.5.
Test design and testing time for the NST (Study 2)

only one possible solution. However, some items differed from other items in that they
“offered” a certain attractive wrong solution if individuals did not look at the pattern
of the whole series. For instance, in the checksum type 2 item in the warmup-set, one
could wrongly induce the rule “minus 2” if only the last three elements were considered.
Only by looking at the whole series, one could identify the correct rule. It was decided to
explicitly include these items in the test because this represents a realistic case for applied
testing settings. Even though it might be technically possible to control for such surface
patterns, a new item-generative framework would benefit tremendously from a sufficient
robustness against such structurally irrelevant item characteristics.
The three item sets were administered one after another with short breaks in between.

The order of the items was iterated between the sets. This is shown in Figure 4.5.The
first set was considered a warm-up run to make subjects get used to the nature of the
task and the rules to be applied. While only a few items were included as warm-up items
in the other two studies presented in this thesis, an extended warm-up set was included
here because of the specific research question regarding the equivalence of parallel item
sets. Based on the literature review of other findings on number series it seems reasonable
that processing strategies play an even more important role for this task type. Anastasi
(1981) recommends to implement short orientation and practice sessions to establish equal
or at least comparable testing conditions for all subjects. By including a warm-up item
set, variation on one potentially disturbing third variable, i.e. test familiarity, should
be controlled at least to a certain extent. In specific, it was decided to administer the
complete set of all item types as a warm-up set to make sure that test-takers were equally
familiar with all item types investigated here. The two parallel forms that are investigated
in order to answer the main research questions are set A and set B. Analyses for the warm-
up set will be reported to gain additional insights into the role of practice runs and test
familiarity.
Participants were provided with comprehensive instruction material: The arithmetic

rules were explained, together with example number series on several pages. Partici-
pants were informed that up to three rules could be combined in one item, and this was
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also shown in a sample item. Participants were not instructed about the specific rule-
combination principles. That is, they had to discover during test completion how the rules
were combined. This procedure corresponds exactly to the procedure used in Study 1 one
this thesis. Making participants familiar with the item content and the rules by providing
them with comprehensive instruction materials helps to make sure that all participants
have equal conditions and do not need to invent any new rules not considered for item
construction. Beckmann (2008) demonstrated that an explanation of all rules beforehand
actually amplifies the validity of the instrument. Only 2 subjects indicated that they
did not understand at least one rule. Data from these 2 subjects was excluded from all
consecutive data analyses.
Based on several pretests with a few subjects, a testing time of 15 minutes for each set

(i.e., a total testing time of 45 minutes for 33 items) was given. Subjects were instructed in
the beginning of each test to try to finish all items of one set within 15 minutes. All items
for one set were printed on one page. Test-takers did not have to turn pages; all items of
one set were accessible for the test-taker while working on the respective set. Each item
had an equal chance of being completed. After 15 minutes, test-takers were reminded to
come to an end with the given set and proceed with the next set. Compared to average
response times allowed for widely used reasoning power tests, timing is allocated amply
here (e. g., in the CFT-20R (Weiß, 2007), 56 items have to be completed in a total time
of 14 min, yielding an average response time per item of 15 seconds).

School grades Participants were asked to report their most recent math grades as
an additional validity indicator for the number series items administered. Grades were
transformed to a common scale from 1 (best grade) to 5 (worst grade) in advance of the
analyses.

Culture Fair Test (CFT 20) A subsample of 175 German participants also completed
the four subtests from the revised Grundintelligenztest Skala 2 (CFT 20-R; Weiß, 2007), a
German adaptation of the Culture Fair Intelligence Test, Scale 2 (Cattell, 1973). The CFT
20R is a paper-and-pencil test which provides high loadings on fluid intelligence (Cattell,
1968) and has good psychometric properties. It consists of four different subtests: Series
completion, Classifications, Matrices and Topologies.

4.3. Results

The results section is structured along the main research questions of this study. First,
results regarding the equivalence of the parallel test forms are presented. Second, findings
on the internal cognitive structure of the items based on LLTM analyses are summarized.

119



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

Table 4.5.
Summary statistics for all instruments (Study 2)

Instrument k M SD Min Max Skewness Kurtosis α Time SD

NST (warm-up) 11 6.19 2.19 0.00 13.00 0.25 0.01 .69 14.56 1.94
NST (A) 11 6.21 2.30 0.00 13.00 −0.03 −0.02 .72 13.95 2.73
NST (B) 11 6.56 2.40 0.00 12.00 −0.22 −0.25 .73 13.11 3.09
NST (total) 33 18.96 6.20 1.00 37.00 −0.01 −0.08 .86 41.68 5.61
CFT 20-R 56 44.72 5.04 29.00 54.00 −0.56 0.10 .73 −− −−
Last math grade2 1 1.79 0.85 1.00 5.00 0.95 0.67 −− −− −−

Note. 2 self-reported school grades were transformed to a common 5-point scale (low values
represent better grades).

Third, results for additional analyses investigating the CR format and relationships with
other measures will be presented.

4.3.1. Equivalence of parallel test forms

Table 4.5 shows the average scores and reliabilities, and the average time used for each
of the three sets. On average, participants were able to solve about half of the test items
correctly, with considerable variation among test scores.
Test performance increased significantly from the warm-up set to set B (F (2, 598) =

7.451, p = .001). With an effect size of d = 0.16 this gain effect lies in the lower range
of retest-effects reported by meta-analyses (Hausknecht et al. (2007)). The average time
needed to complete each item set decreases by about one minute from the warm-up items
to set B (F (2, 784) = 38.625, p < .001) with the largest decrease after the warm-up items.
Time was significantly related to test performance (r1 = .192, r2 = .230, r3 = .261),
indicating that high achieving subjects were spending more time to answer the items
than subjects pertaining lower numerical reasoning ability.

Table 4.6.
Correlations of the three parallel item sets with math grade and g (Study 2)

Math grade CFT 20-R
Warm-Up −.251∗∗ .436∗∗

Set A −.192∗ .435∗∗

Set B −.265∗∗ .425∗∗

Note. ∗ : p < .05, ∗∗ : p < .01.
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Cronbach’s α is lowest for the first set and considerably higher for the second and
third set. The internal consistency doesn’t reach the desired value of .80 for any of the
individual item sets. When all 33 items are included, Cronbach’s α denotes to α = .861.
The correlations displayed in Table 4.6 show that the new number series test correlates
significantly with both scholastic performance and general reasoning ability. The values
of the correlations are similar across the three subsets of the instrument.
Rasch item parameters and fit statistics for all 33 items are summarized in Table 4.7,

along with classical item statistics. The table is organized according to item types, not
according to the sequence of items in the actual test. For the assessment of item model
fit, z-transformed Q-indices (Rost & Davier, 1994) as well as item Infit statistics (see
Linacre, 2010) were computed (see Table 4.7). Aside from a single item in the warm-up
set, all items across the three sets show at least good Rasch model fit. All Infit statistics
lie in the range [0.5, 1.5] and can, therefore, be considered productive for measurement
(Linacre, 2010). The 33 items generated from 11 item types cover a wide range of the
difficulty-ability continuum: estimated item difficulty parameters σi range from −4.609
to 4.126.
Three different “virtual item models” (e.g., Fischer, 1995; Mair & Hatzinger, 2007) as

described in Chapter 2.4 of this thesis were modeled to investigate the parallelism of
structurally identical item sets. All models are estimated with random-effects in order to
account for the fact that a random variance difficulty component adds to the predicted
difficulty by the linear-combination of item predictor variables.

1. Model 1 is a “virtual item” model (Fischer, 1995) based on a design matrix with one
item predictor for each item type (i.e., for each item radical configuration). This
reflects the case of perfect item cloning. This corresponds to Sinharay et al.’s (2003)
identical sibling model (ISM), i.e., exactly the same item difficulty is estimated for
two items representing the same item type.

2. Model 2 includes an additional difference parameter to model parameter changes
from one item set to the other. This effect can be understood as a general item set
effect affecting all items of this set in an identical way.

3. Model 3 is a “simple” Rasch model with one parameter per item, i.e. an LLTM
with a diagonal design matrix. The way it is written here, though, is that one
parameter for each item type is specified (analogue with Models 1 and 2), and item-
specific change-parameter for the differences in difficulty between the two sets are
estimated. This is the model that was described in Equation ?? in Chapter ??.
This model corresponds to Sinharay et al.’s (2003) unrelated sibling model (USM),
i.e., the difficulties of two structurally identical items are different for all item types
and all item difficulties are only defined by the respective item.

Only two item sets each were compared, treating the item sets A and B as equivalent,
and the warm-up set as potentially more different because of its warm-up character. That
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Table 4.7.
Three parallel NST sets, answer frequencies and item statistics

Number Series Item statistics Rasch model

Itemset Type X1 X2 X3 X4 X5 ? p rit σ SE pQ Infit

W 1 5 8 11 14 17 20 .978 .107 -4.336 0.353 .293 0.966
A 2 1 11 14 17 20 23 26 .936 .455 -3.104 0.224 .063 1.027
B 3 3 6 9 12 15 18 .943 .122 -3.255 0.235 .142 1.078

W 1 35 32 29 26 23 20 .983 .150 -4.609 0.396 .470 0.833
A 2 2 28 25 22 19 16 13 .963 .201 -3.763 0.282 .419 0.892
B 3 20 17 14 11 8 5 .938 .467 -3.152 0.227 .034 1.059

W 1 7 9 16 25 41 66 .973 .142 -4.115 0.323 .343 0.880
A 2 3 3 7 10 17 27 44 .916 .272 -2.760 0.201 .311 0.941
B 3 2 8 10 18 28 46 .906 .188 -2.612 0.192 .511 0.870

W 1 13 10 5 6 11 8 .691 .401 -0.698 0.130 .076 1.036
A 2 4 9 16 16 14 12 8 .809 .146 -1.570 0.149 .783 0.866
B 3 7 16 14 12 8 11 .829 .326 -1.746 0.155 .875 0.819

W 1 3 7 1 8 9 8 .319 .357 1.431 0.126 .022 1.095
A 2 5 6 4 1 5 6 2 .376 .464 1.098 0.122 .496 0.961
B 3 4 11 6 8 5 4 .515 .496 0.332 0.120 .017 1.084

W 1 17 15 12 7 8 13 .554 .601 0.112 0.121 .999 0.767
A 2 6 19 13 12 5 6 9 .636 .550 -0.360 0.125 .960 0.821
B 3 14 11 5 5 8 11 .557 .445 0.098 0.121 .834 0.938

W 1 14 8 19 24 40 61 .463 .556 0.617 0.120 .982 0.836
A 2 7 6 5 8 10 15 22 .673 .541 -0.588 0.128 .978 0.821
B 3 7 12 16 25 38 60 .646 .387 -0.420 0.126 .686 0.912

W 1 6 12 15 21 24 30 .480 .179 0.522 0.120 .000 1.389
A 2 8 14 19 29 40 44 52 .220 .390 2.093 0.140 .271 0.978
B 3 11 13 17 25 32 37 .319 .487 1.431 0.126 .417 0.946

W 1 2 7 16 30 40 47 .099 .383 3.305 0.192 .723 0.865
A 2 9 10 14 20 27 38 58 .161 .512 2.593 0.157 .413 0.941
B 3 5 11 18 29 49 73 .156 .421 2.640 0.159 .744 0.883

W 1 2 7 16 30 49 92 .054 .350 4.126 0.251 .747 0.837
A 2 10 2 5 12 20 34 61 .161 .381 2.593 0.157 .984 0.732
B 3 1 5 11 18 38 67 .139 .345 2.817 0.166 .565 0.889

W 1 5 12 14 21 32 48 .082 .345 3.574 0.209 .619 0.829
A 2 11 2 10 11 19 20 37 .097 .371 3.341 0.194 .683 0.874
B 3 9 17 18 26 36 53 .069 .394 3.800 0.225 .632 0.887

Note. W= warm-up set

is, the primary comparison was the comparison of set A and B. This is a comparison of
two structurally equal sets of items after a phase of getting familiar with the item-type.
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Figure 4.6.
Item parameters across parallel sets; left: warm-up set vs. set A; right: comparison of
item parameters for set A vs. set B

An additional comparison of the warm-up set and set A served to quantify the effects of
practice, or of getting familiar with the item types. Table 4.8 shows the parameters for
the comparisons of item set A and item set B. These models are labelled Model 1a to
Model 3a, with “a” denoting the primary comparison. Table 4.9 shows the parameters for
the comparisons of the warm-up set and set A. These models are labelled Model 1b to
Model 3b, with “b” denoting the secondary comparison. Figure 4.6 shows the congruence
in item parameters for the 11 items constructed from the same vector of item radicals for
the two comparisons. The logit for every item is plotted on the vertical axis against the
item type on the horizontal axis. Smaller logits indicate more difficult items. Plots of the
Item Characteristic Curves (ICCs) for all 11 item types and the three sets are given in
the Appendix.
Parallelism of item sets A and B: From Table 4.8 and Figure 4.6 it can be seen that item

difficulty parameters align mostly between sets A and B. Differences in item parameters
are significant for items 2, 5, 6, 8 and 11, but these effects are not very large in size.
However, they underline that, even though there is only very little overall variation in
difficulty parameters between the two sets, there is some variation across parallel forms.
This effect is not general in nature (as the nonsignificant overall difference parameter
in Model 2a shows) but connected to specific items. AIC favors model 3a whereas BIC
indicates best fit for Model 1a, i.e., the model comprising only one parameter for each
item type. The LR statistics in Table 4.10 show that the model with one parameter for
every actually administered item fits the data significantly better than the two sparser
models. On the other hand, the random effects item variance is already close to zero in
Model 1a (s2e = 0.0240) indicating that almost all of the variation in item difficulties can
be predicted based on the item type. Less than 1 percent of variation in item difficulties
remains unexplained (1−R2 = 1−.996 = .004) when the virtual item model is used instead
of a Rasch model. In order to quantify the differences in parameters for parallel items,
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Table 4.8.
Explanatory IRT modeling: “virtual item model” results, comparison of set A and set B

Model 1a Model 2a Model 3a

Fixed Effects Est SE Est SE Est SE

type1 6.7942∗∗ 0.28 6.7938∗∗ 0.28 7.1069∗∗ 0.33
type2 7.0471∗∗ 0.29 7.0460∗∗ 0.29 7.0028∗∗ 0.32
type3 6.2944∗∗ 0.26 6.2938∗∗ 0.26 6.4561∗∗ 0.30
type4 5.2566∗∗ 0.25 5.2562∗∗ 0.24 5.5828∗∗ 0.27
type5 2.8659∗∗ 0.23 2.8654∗∗ 0.23 3.4901∗∗ 0.25
type6 3.7212∗∗ 0.23 3.7207∗∗ 0.23 3.7277∗∗ 0.25
type7 4.0980∗∗ 0.23 4.0975∗∗ 0.23 4.2501∗∗ 0.25
type8 1.7988∗∗ 0.23 1.7981∗∗ 0.23 2.3584∗∗ 0.25
type9 0.9194∗∗ 0.24 0.9190∗∗ 0.24 1.1269∗∗ 0.27
type10 0.8336∗∗ 0.24 0.8333∗∗ 0.24 0.9509∗∗ 0.27

set B −− −− 0.0214 0.10 −− −−

set B*type1 −− −− −− −− −0.1535 0.32
set B*type2 −− −− −− −− 0.6178∗ 0.36
set B*type3 −− −− −− −− 0.1496 0.27
set B*type4 −− −− −− −− −0.1772 0.21
set B*type5 −− −− −− −− −0.7871∗∗ 0.17
set B*type6 −− −− −− −− 0.4623∗∗ 0.17
set B*type7 −− −− −− −− 0.1690 0.18
set B*type8 −− −− −− −− −0.6796∗∗ 0.19
set B*type9 −− −− −− −− 0.0476 0.22
set B*type10 −− −− −− −− 0.2235 0.22
set B*type11 −− −− −− −− 0.4392∗ 0.28

intercept (type 11) −3.1835∗∗ 0.20 −3.1937∗∗ 0.20 −3.4173∗∗ 0.23

Random Effects VAR SE VAR SE VAR SE

s2e(Item) 0.0240 0.01 0.0236 0.01 0.0000 0.00
∆s2e(Item) −99.59% −99.60% −100.00%

s2e(Person) 2.1906 0.21 2.1905 0.21 2.2160 0.21
∆s2e(Person) −0.76% −0.75% −1.93%

Model Fit

n 404 404 404
ll −3443.74 −3443.72 −3424.19
df 13 14 24
AIC 6913.48 6915.43 6896.38
BIC 6965.50 6971.45 6992.41

Notes. ∗p < .05 and ∗∗p < .01 (2-sided); set B = general set effect; set B*type1-11 = item-specific effects
(differences in item difficulty between set A and set B); information criteria for best fitting models in
bold face.
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Table 4.9.
Explanatory IRT modeling: “virtual item model” results, comparison of warm-up items
and set A

Model 1b Model 2b Model 3b

Fixed Effects Est SE Est SE Est SE

type1 7.1030∗∗ 0.53 7.0993∗∗ 0.53 7.8844∗∗ 0.42
type2 7.6036∗∗ 0.55 7.6006∗∗ 0.55 8.1600∗∗ 0.45
type3 6.8158∗∗ 0.53 6.8123∗∗ 0.52 7.6605∗∗ 0.39
type4 4.5820∗∗ 0.50 4.5827∗∗ 0.50 4.2735∗∗ 0.24
type5 2.1929∗∗ 0.50 2.1932∗∗ 0.49 2.1301∗∗ 0.24
type6 3.5914∗∗ 0.50 3.5919∗∗ 0.49 3.4707∗∗ 0.24
type7 3.4487∗∗ 0.50 3.4492∗∗ 0.49 2.9623∗∗ 0.24
type8 2.1564∗∗ 0.50 2.1574∗∗ 0.49 3.0584∗∗ 0.24
type9 0.5040 0.50 0.5037 0.50 0.2583 0.27
type10 0.1477 0.51 0.1465 0.50 −0.5210 0.31

warm-up −− −− 0.0767 0.21 −− −−

warm-up 1r −− −− −− −− −− −−
warm-up 2r −− −− −− −− −− −−
warm-up 3r −− −− −− −− −− −−

warm-up type1 −− −− −− −− −1.2389∗∗ 0.41
warm-up type2 −− −− −− −− −0.8540 0.48
warm-up type3 −− −− −− −− −1.3568∗∗ 0.38
warm-up type4 −− −− −− −− 0.8567∗∗ 0.19
warm-up type5 −− −− −− −− 0.3416∗ 0.17
warm-up type6 −− −− −− −− 0.4690∗∗ 0.17
warm-up type7 −− −− −− −− 1.2024∗∗ 0.17
warm-up type8 −− −− −− −− −1.6026∗∗ 0.18
warm-up type9 −− −− −− −− 0.6968∗∗ 0.24
warm-up type10 −− −− −− −− 1.4760∗∗ 0.28
warm-up type11 −− −− −− −− 0.2238 0.27

intercept (type 11) −3.0574 0.37 −3.0961 0.38 −3.1688 0.22

Random Effects VAR SE VAR SE VAR SE

s2e(Item) 0.2178 0.08 0.2144 0.08 0.0000 0.00
∆s2e(Item) −97.06% −97.10% −100.00%

s2e(Person) 2.0596 0.20 2.0597 0.20 2.0965 0.20
∆s2e(Person) −0.31% −0.32% −2.11%

Model Fit

n 404 404 404
ll −3322.86 −3322.79 −3285.31
df 13 14 24
AIC 6671.71 6673.59 6618.61
BIC 6723.73 6729.61 6714.64

Notes. ∗p < .05 and ∗∗p < .01 (2-sided); warm-up = general warm-up effect; warm-up type1-11 =
item-type specific warm-up effects; information criteria for best fitting models in bold face.
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Table 4.10.
LR model comparison tests for the the three different explanatory IRT models (Study 2)

Set A vs. Set B Warm-up vs. Set A

Model comparison LR χ2 df p LR χ2 df p

Model 1 vs. 2 0.04 1 .8415 0.14 1 .7083
Model 1 vs. 3 39.10 11 .0001 75.10 11 < .0001
Model 2 vs. 3 39.06 10 < .0001 74.96 10 < .0001

absolute differences between logits for each item family across parallel sets were calculated.
The average absolute difference in logits denoted to M = 0.178 logits (SD = 0.124) for
set A and set B. That is, despite of the reduction of random effects variance to nearly
zero in the explanatory model, parameter differences are present. Compared to the values
reported by Zeuch (2011), the values here are small.
Warm-up effects: Substantial warm-up effects were found and are summarized in Table

4.9 and Figure 4.6. There is considerable variation in difficulty parameters for structurally
identical items between the warm-up set and Set A. For 9 of 11 items, item-specific warm-
up parameters (Model 3b) were significant, i.e. item difficulties changed considerably after
the warm-up. There is no clear direction of an overall warm-up effect, i.e., participants
did not perform better or worse on all items, but some item types were facilitated after
warm-up while difficulties on others increased. In general, the range of item difficulties
was reduced after warm-up. Both AIC and BIC show the best model fit for model 3b,
that is, the RM is best suited for modeling item difficulties from the warm-up set and
set A together. The virtual item model does not fit the data here. Random effects item
variance can be reduced from 0.2178 in the virtual item model (Model 1b) to zero (R2 = 1)
in the Rasch model (Model 3b). 3 percent of the variation in item difficulties remains
unexplained (1−R2 = .03) when the virtual item model is used instead of a Rasch model.
The average absolute difference is M = 0.469 Logits (SD = 0.232) for the warm-up set
and set A. These analyses show that differences in parameters are higher than for the two
item sets A and B. Even though the virtual item model showed reasonable performance
in terms of R2, the investigation of parameter differences showed that parameters in the
warm-up set do not align with “true” parameters found after completion of the warm-up
run.

4.3.2. Item difficulty modeling

Given the considerable warm-up effect, LLTM models were only run based on set A and B,
excluding the 11 warm-up item from analyses. Two LLTM models of different complexity
were estimated to address the second research question and test the appropriateness of
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Table 4.11.
Rescaled item difficulty parameters for two different LLTM models for the NST (Study 2)
Item RM Rescaled Item Param. Error in Prediction Absolute Error

LLTM 1 LLTM 2 LLTM 1 LLTM 2 LLTM 1 LLTM 2

NST-A-01 3.2698 2.7711 3.1492 −0.4987 −0.1206 0.4987 0.1206
NST-A-02 3.1657 2.5254 3.3479 −0.6403 0.1822 0.6403 0.1822
NST-A-03 2.6189 2.7711 2.3726 0.1521 −0.2464 0.1521 0.2464
NST-A-04 1.7457 −0.0476 1.7506 −1.7933 0.0049 1.7933 0.0049
NST-A-05 −0.3470 −2.4831 −0.7174 −2.1361 −0.3704 2.1361 0.3704
NST-A-06 −0.1095 −0.8109 0.0675 −0.7015 0.1769 0.7015 0.1769
NST-A-07 0.4130 1.7620 0.8881 1.3490 0.4752 1.3490 0.4752
NST-A-08 −1.4788 −1.4741 −1.4823 0.0047 −0.0036 0.0047 0.0036
NST-A-09 −2.7103 −0.0476 −2.6659 2.6627 0.0443 2.6627 0.0443
NST-A-10 −2.8862 −2.4831 −2.9668 0.4031 −0.0806 0.4031 0.0806
NST-A-11 −3.8371 −2.4831 −3.7434 1.3540 0.0937 1.3540 0.0937
NST-B-01 3.1162 2.7711 3.1492 −0.3452 0.0330 0.3452 0.0330
NST-B-02 3.7835 2.5254 3.3479 −1.2581 −0.4356 1.2581 0.4356
NST-B-03 2.7685 2.7711 2.3726 0.0026 −0.3959 0.0026 0.3959
NST-B-04 1.5685 −0.0476 1.7506 −1.6161 0.1820 1.6161 0.1820
NST-B-05 −1.1341 −2.4831 −0.7174 −1.3490 0.4168 1.3490 0.4168
NST-B-06 0.3529 −0.8109 0.0675 −1.1638 −0.2854 1.1638 0.2854
NST-B-07 0.5820 1.7620 0.8881 1.1800 0.3061 1.1800 0.3061
NST-B-08 −2.1584 −1.4741 −1.4823 0.6843 0.6760 0.6843 0.6760
NST-B-09 −2.6627 −0.0476 −2.6659 2.6151 −0.0033 2.6151 0.0033
NST-B-10 −2.6627 −2.4831 −2.9668 0.1796 −0.3041 0.1796 0.3041
NST-B-11 −3.3980 −2.4831 −3.7434 0.9149 −0.3454 0.9149 0.3454

Note. Error in Prediction = Difference in sum-normed item difficulty parameters between RM and
rescaled LLTM paramter; Absolute Error = Absolute value of Error in Prediction between Rasch and
rescaled LLTM item difficulties.

the set of pre-specified item radicals to model item difficulties. The first model is an
LLTM that includes only the four single explained rules, Const, CS1, CS2, and Fib. This
model is used to estimate to what degree item difficulties can be explained by the set
of individual rules alone, ignoring the combination principles. The second model is an
LLTM with an extended design matrix that includes the same four radicals plus the three
combination principles as additional radicals, i.e. in total 7 item-predictors.
Table 4.11 summarizes rescaled and sum-normalized LLTM item parameters for the 22

items of set A and B for the two different explanatory models, along with sum-normalized
Rasch item difficulty parameters for a RM applied to the same 22 items. Differences and
absolute differences between rescaled and actual item parameters are given at the right
side of Table 4.11. Figure 4.7 gives a graphical summary of the alignment of parameters.
Several different criteria are considered to evaluate the fit of the LLTM model. First,

the correlation of Rasch and rescaled LLTM parameters is investigated. This measure has
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Figure 4.7.
Alignment of RM item difficulties and rescaled LLTM difficulties for the two LLTM models
for the NST (Study 2)

been widely used in the literature to evaluate the construct representation of the LLTM.
Correlations of r > .80 have been considered indicators of good construct representation
(see e.g., Arendasy et al., 2007; Freund et al., 2008; Preckel, 2003). However, as already
demonstrated in Study 1 in this thesis, the correlation alone might draw a much more
favorable picture of the AIG model than a comparison of actual differences in LLTM
and RM parameters suggests. When rescaled item parameters should be used without
separate calibration in high-stakes settings, wrongly estimated difficulty levels can have
severe consequences on ability estimates. For the Figural Analogy Test in Study 1, it was
shown that substantial differences in parameters are found even for models with R2 > .80.
The picture for the NST looks somewhat similar.
In terms of the correlation with Rasch parameters results for both LLTM models are

very promising: Parameters correlate r = .8459 (R2 = .716) for Model 1 and r = .9926
(R2 = .985) for the more elaborate Model 2. Around 70 percent of variation in item diffi-
culties can be explained by the sparser LLTM model with only 4 parameters. This value
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Figure 4.8.
Relationship of RM and rescaled item parameters for the two LLTM models for the NST
(Study 2)

is very comparable to values reported for item-generation models presented in previous
studies (e.g., Freund et al., 2008). The increase in model fit when the three additional
combination principle radicals are included is tremendous. Only less than 2 percent of
variation in item difficulties remains unexplained by the cognitive model with 7 parame-
ters. This corresponds to a reduction in the number of item-predictors by 68.18%. Figure
4.8 illustrates the relationship of true and rescaled item parameters for the two models.
This figure gives already a more accurate picture of the explanatory power of the two

models. Parameters lie very close to the diagonal for Model 2 but show substantial
deviations for Model 1. Figure 4.9 gives a graphical summary of these deviations. While
in Model 2, the average absolute error in prediction denotes to M = 0.236 Logits (SD =
0.182) with a maximum error of 0.676 logits for item 8 in set B, the average absolute
error is M = 1.046 logits (SD = 0.783) for Model 1 with a maximum error of 2.66 logits
for item 9 in set A. Facing these extreme errors in prediction, Model 1 seems not at all
— despite for the relatively high correlation — a reasonable item difficulty model for the
NST. Results for Model 2, though, are very promising. Item difficulties can be predicted
reasonably well based on this item difficulty model.
Facet level parameter estimates for Model 2 were investigated more closely. Results for

this model are shown in Table 4.12. Parameter estimates for all item-predictors reached
statistical significance. Parameters for all rules reach statistical significance. The Fi-
bonacci rule and the two checksum rules increase item difficulty. Items are especially
more difficult if they contain the CS2 rule, here the logit decreases by around 3 points
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Figure 4.9.
Parameter Differences in logits between RM and rescaled LLTM item difficulties; left:
LLTM including explained rules only; right: LLTM including rules and combination prin-
ciples.
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Table 4.12.
Explanatory IRT modeling (LLTM) for the NST; Parameter estimates for LLTM with
rules and combination principles.

Fixed Effects Est SE

Intercept 5.234∗∗ 0.252

Const 2.733∗∗ 0.270
CS1 −1.898∗∗ 0.303
CS2 −3.082∗∗ 0.222
Fib −1.484∗∗ 0.183
Add −4.417∗∗ 0.278
Sub −5.193∗∗ 0.312
Comp −2.167∗∗ 0.353

Random Effects VAR SE

s2e(Item) 0.0584 0.0239
s2e(Person) 2.1833 .20616

Model Fit

ll −3450.83
df 10
AIC 6921.653
BIC 6992.578

Note. ∗ p < .05 and ∗∗ p < .01
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(βCS2 = −3.082) whereas the increase in item difficulty is lower for both the CS1 and Fib
rules. The CS2 rule requires the test-taker to process more steps than the other two rules.
The combination of multiple rules in one item represented an additional source of item
complexity that would add to the individual contributions to item difficulty by each rule.
The parameter estimates in Table 4.12 support this expectation. LLTM weights for all
three combination principles are statistically significant and of considerable magnitude.
Adding or subtracting a constant instead of a result of another rule reduces relational
complexity in an item. According to the estimated item difficulty model, the probability
of solving an item correctly increases by 2.733 Logits when a constant is used.
All analyses were conducted on a sample consisting student responses from a Russian

and a German university. As mentioned in the introduction, the goal of this study was
not to investigate cross-cultural differences or group differences. All main analyses were
conducted on the full sample including Russian and German test-takers rather than in-
corporating the country as a grouping-variable into the models. However, to assure that
facet-level results reported here are not distorted by potential cross-cultural bias, LLTM
models were re-run for the two separate samples as well and compared for consistency.
Results are summarized in the Appendix. There is a high consistency in parameters with
no major differences in terms of the implications and conclusions. Only one parameter
shows a larger difference, the complex combination principle of rules. It is important that
this difference is investigated further in future studies to cross-validate this effect and
understand why this radical might work differently across cultures. For the current study,
there is no indication that conclusions regarding the research questions are distorted by
the heterogeneity of the sample.
Inspection of constructed responses indicated that there were patterns of certain wrong

responses that were chosen by a considerable number of test-takers. All wrong answers
that were written down by at least 15 individuals are displayed in Table 4.13. A detailed
qualitative analysis of these wrong answers showed that all of these solution attempts
could, in fact, be explained by application of a wrong combination of rules. For some
items, some test-takers seemed to be unable to induce a rule-combination and therefore
used only one rule to compute the missing number. Also, some wrong responses reflect an
application of rules that were not part of the set of allowed rules. A few takers applied, for
instance, the rule +7 regardless of the instruction that stated that only the integers 1− 4
could be used in connection with the addition rule. Further results for the investigation
of items with distinct surface patterns are summarized in the Appendix. These analyses
were done to assure the quality of the item-generation framework, but are not directly
connected to the research questions of this study.
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Table 4.13.
Frequent wrong answers for the NST and possible explanations (Study 2)

Number Series Frequent wrong answers

Set F WT X1 X2 X3 X4 X5 ? X Possible Explanation

W 4 yes 13 10 5 6 11 8 17 Fib instead of CS2
A 4 yes 9 16 16 14 12 8 10 Sub instead of CS2
W 5 yes 3 7 1 8 9 8 17 Fib instead of FibCS1
A 5 yes 6 4 1 5 6 2 11 Fib instead of FibCS1
B 5 no 4 11 6 8 5 4 13 CS2 instead of FibCS1
W 6 no 17 15 12 7 8 13 15 Fib instaed of QS2Sub
W 8 yes 6 12 15 21 24 30 27 Add instead of AddCS1
B 9 no 5 11 18 29 49 73 78 Fib instead of AddCS2
W 11 yes 5 12 14 21 32 48 39 Add (+7) instead of FibSubCS1
W 11 yes 5 12 14 21 32 48 50 FibSub (-3) instead of FibSubCS1
A 11 no 2 10 11 19 20 37 28 Add (+8) instead of FibSubCS1
B 11 no 9 17 18 26 36 53 44 Add (+8) instead of FibSubCS1

Note. Frequent wrong answers are answers with frequencies ≥ 15; WT (wrong track) codes items that
suggested a specific wrong rule-combination if only a subset of all 5 elements of the series were analyzed;
Set denotes the item set (W: warmup, A: set A, B: set B); F: item family

4.3.3. Predictive power of the model

As illustrated in the introduction, both RM and LLTM lie on a continuum of IRT models
with more or less item-explanatory variables with the maximum number of independent
facet parameters in the LLTM defined as the number of item indicators in the RM. The
more explanatory parameters a model has, the higher its explanatory power tends to be.
By definition, adding additional explanatory variables will, in the worst case, leave the
overall model prediction unchanged but will never result in a decline. In the random
effects model, the item-side random effect gives the magnitude of error (i.e., unexplained
variation in item difficulties) for each model. In the RM this error variance is zero as the
model is fully parametrized (i.e., the model contains one parameter for every item). The
virtual item model contains only half of the parameters and the LLTM further reduces the
number of explanatory variables. One important question when evaluating the practical
usefulness of any proposed LLTM model is whether the explanatory model can predict
reasonable proportions of item difficulties based on a relatively sparser set of explanatory
parameters. As was shown above, the LLTM with arithmetic rules only performs much
worse than the model with the additional combination principle parameters.
In the current study, both the average differences and explained variation statistics are

compared for the different models that were estimated. Results are summarized in Table
4.14.
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Table 4.14.
Predictive power and sparseness of different explanatory IRT models for the NST (Study
2)

Item-Explanatory Variables Predictive Power

Model no. of item predictors reduction compared to RM R2 s2e(Item) AAE

RM 22 −0.0% 1 0 0
Virtual item model 11 −50.0% .996 0.024 0.178
LLTM (Model B) 7 −68.18% .985 0.059 0.236
LLTM (Model A) 4 −81.82% .716 1.644 1.046

Note. AAE = average absolute difference in logits between original sum-normed RM item parameters
and predicted sum-normed item parameters based on explanatory model

While the RM has 22 explanatory variables, the virtual item model has only 11 item
predictors, and the two LLTM variants further reduce the number of item predictors to 7
and 4, respectively. The number of parameters is reduced by up to −81.82% compared to
the Rasch Model. Random effects variance components and average absolute differences in
Logits between original sum-normed Rasch parameters and rescaled sum-normed LLTM
parameters show only small differences between the virtual item model and the LLTM
with 7 radicals (Model B), but a substantial increase for the LLTM with the sparser
design matrix of only 4 item radicals (Model A). This indicates that the simple model
without the combination principles does not sufficiently describe the data and predict
item parameters. In contrast, Model B fits only slightly worse than the theoretically less
strong (in terms of Drasgow et al.’s classification) virtual item model.

4.4. Discussion

Number series are ideally suited for rule-based item generation because their algorithmic
nature makes it relatively easy to formalize their structure and create a large pool of
items. However, previous attempts to generate psychometrically parallel number series
items based on the same underlying structural parameters have not been successful. While
the algorithmic structure of a number series item can be defined easily, the cognitive
processes of test-takers completing such items are much harder to formalize in item-
generation models. Based on a comprehensive literature review several challenges for
test-developers regarding the generation of number series items have been identified.
One of the most important specifics of number series is that such items do not have the

same composite character like typical figural item types (e.g., Matrices, Analogies), that
allows for an additive item difficulty modeling based on the classical LLTM. As soon as
two operations are applied to one number in order to calculate the next number, it is not
possible to induce one rule first by inspecting the number sequence, hold it in mind and
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then induce the next rule. Test-takers have to represent several possible rule-combinations
and intermediate results in working memory while solving number series tasks. It has
been shown that the sequence of the rules is an important factor for differences in item
difficulties of number series. Further, different strategic approaches can reduce complexity
for some items but not necessarily for all items of a given logical structure. This can cause
large differences in solution probabilities of supposedly parallel items (e.g., Porsch, 2007).
Ambiguity is not only present in terms of the processing strategies used to solve number
series items; some number series items used in existing cognitive test batteries do not
have unique solutions. This problem was introduced as the “non-uniqueness problem” of
number series in the theoretical background of this study. Depending on the set of rules
that is induced, different possible responses must be considered appropriate. It is without
question that the prediction of item difficulties for automatically generated items will be
less accurate when items, themselves, already contain ambiguity.
Two starting points for the current study were the ideas that, first, if complexity could

be manipulated in a way that several cognitive operations have to be processed simul-
taneously and these operations stay the same across a whole number series, this would
be a great advantage for rule-based generation of number series. Second, if complexity
generated by the combination of single cognitive rules could be captured by additional
item-predictors, a better alignment of true item difficulties and rescaled item difficul-
ties might be possible. Based on this rationale, a new set of item-generative rules was
developed.
Porsch’s study revealed some problems associated with the complexity parameters in-

troduced by Holzman et al. (1983) and thereby helped to chose a set of meaningful item
radicals for the current study. Changes to the item-generative framework in this study
included a reduction of complexity in terms of the number size and extent of mathematical
knowledge needed to solve items (cf. findings on the Problem Size Effect reviewed in the
previous sections), an explicit focus on rather homogeneous rules all based on only two
arithmetic operations, and the abandonment of the two previously malfunctioning design
principles Periodicity and Hierarchy. Furthermore, the elsewhere successful approach to
provide precise explanations of all rules to the test-takers in advance of the assessment
(e.g., Beckmann, 2008; Carlstedt et al., 2000; Freund et al., 2008) was also followed in this
study. The intent was not only to generate a new number series test, but to show that the
new item generation approach with modified sets of cognitive rules was more beneficial
from a construct validity point of view. In the following, results will be discussed along
the two main research questions.

4.4.1. Conclusions regarding the research questions

The first major research question was whether the new item-generative framework pro-
vided a basis for the generation of truly parallel tests. Items sharing the same underlying
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structure should not differ in terms of their statistical properties. It was hypothesized that
structurally equal items of the new test were equally difficult. The feasibility of the item-
generation approach to generate parallel items based on specific radical configurations was
tested. Item difficulties were predicted based on the specific radical combination (i.e., the-
oretically identical items) of the respective item. The general psychometric characteristics
of test items created based on the new item-generative framework were very satisfactory.
Items covered a large range on the difficulty continuum and showed good Rasch-fit. The
test also showed very satisfactory levels of internal consistency with Cronbach’s α > .85.
While high internal consistencies had been shown for other number series tests as well,
the creation of items covering the whole ability-difficulty continuum had turned out less
successful before (e.g., Porsch, 2007). Despite for a comprehensive instruction of all solu-
tion principles, the test did not reach the ceiling for almost all participants, even under
quasi-power conditions. Internal consistencies were higher for Set A and B compared to a
warm-up set, and less items showed slight deviations from Rasch fit in the sets completed
after the warm-up run. These findings are promising because they address a practical
concern that familiarity with test principles is often considered a threat to the validity
of the instrument. In line with the first hypothesis, a high alignment between true item
difficulties and item difficulties predicted based on the item families was found for the
comparison of two structurally parallel item sets A and B. Model comparisons of a RM
with one parameter for each item and a “virtual item model” with one parameter for each
structurally unique item only indicated that the sparser model captured item difficulties
only a little less accurately than the full model. The high alignment between the item
parameters for Set A and Set B is a strong indication that test-takers actually used the
same cognitive processes as expected based on theoretical assumptions.
While, after completion of the warm-up run, item difficulties could be predicted very

reliably for two parallel test forms A and B, item difficulties during warm-up turned out
to differ considerably from these difficulties. This result in line with Anastasi’s (1981)
test sophistication hypothesis, that test-takers have to get used to an instrument while
working on the first set of items, and that the psychometric quality of the test improves
after initial practice. The same explanatory model that fitted very well to Set A and B
data did not fit to the joint data from set A and a warm-up run. There was no general
decrease or increase in item difficulties after the warm-up, but items comprising multiple
rules tended to become easier after the warm-up set while very simple items comprising
only 1 rule tended to increase in difficulty after the warm-up set. Test-takers might have
had a better representation of the rules and their possible combinations after the warm-up
set, therefore performing better on items that required a combination of rules. The slightly
worse performance on very easy items could be a side-effect of the cognitive representation
of all rules and the application of explicit strategies to induce the combination of these
rules. That is, while subjects might have detected the simple addition and subtraction
of a constant immediately in the warm-up set by calculating the differences between all
consecutive elements of the series. Then, for set A and B this “difference-strategy” turned
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out to be not efficient for the identification of rule-combinations in the more complex items,
and therefore test-takers might have tried to solve the easy items in set A and B also with
more advanced strategies. Huesmann and Cheng (1973) have shown for mathematical
induction tasks that test-takers often retest a hypothesis that has been rejected if the
hypothesis was partially supported during a previous test on a similar problem.Taking a
look into the answering patterns for set A and B showed, for instance, that some test-
takers were able to come up with the right solution for a majority of all complex multiple
rule items while leaving the answer-field for one or several easy items blank.
The second research question was whether and how well item difficulties could be pre-

dicted based on the hypothesized underlying cognitive processes. Two drivers for relational
complexity were distinguished, the complexity of each individual mathematical rule, and
the principles of combining rules in one item. Both rule complexity itself, and the com-
bination of rules were expected to increase the relational complexity, and thereby the
difficulty, of a given number series.
From a construct-validity standpoint, all changes to the item-generative framework

proved successful. Effects for all item-explanatory variables were inconsistent with the-
oretical models of numerical reasoning and the process models for number series. Holz-
mann’s Framework of the information processing steps for number series items conceptu-
alizes relations detection as one core process successful test-takers need to complete when
answering number series items. Depending on the complexity of the relations between
elements of the number series, the amount of cognitive resources needed to solve an item
varies. In the new NST framework complexity levels could be manipulated considerably
by combination of a set of relatively simple arithmetic rules requiring only addition and
subtraction. The correlation of scores on the new measure with general cognitive ability
was higher than the association with math grades. This finding is in line with the goal
to generate a test that largely captures numerical reasoning and not primarily arithmetic
skills. The arithmetic operations that had to be performed in order to solve the items
were all simple, involving just the operations of addition and subtraction. Correlations
were rather stable across the three item sets, which is additional support for the validity
of the measure. Earlier studies on the rule-based generation of number series have shown
problems with the robustness of such frameworks against uncontrolled influences such as
surface patterns in a series caused by specific incidentals, effects of specific numbers used
or specifics due to certain mathematical operations. The new item-generation framework
presented here was carefully designed especially to address these common problems with
number series items. The applied LLTM model could replicate true Rasch difficulties very
well when both rules and combination principles were included as explanatory variables.
The alignment of parameters was not only satisfactory in terms of the correlative relation-
ship between Rasch and rescaled LLTM parameters; also the absolute differences between
true and predicted parameters were very small. This is a very satisfactory result because
it demonstrates that the new item type could be a feasible candidate for a fully comput-
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Figure 4.10.
Possible alternative future versions of the NST (Study 2)

erized adaptive and generative test. However, the pre-specified item radicals were only
good predictors for item difficulties after subjects had completed an extensive warm-up
run. This finding points to potential problems of using AIG techniques without individual
item calibrations in operational testing settings. Usually, limited testing time does not
allow for the inclusion of comprehensive training sections under operational high-stakes
conditions. The finding that item difficulties in the warm-up set differed substantially
from difficulties in the consecutive sets shows that practice on reasoning measures has an
influence not only on the level of scores (see Freund & Holling, 2011 for a recent study
on re-test effects for measures of fluid intelligence) but also on the meaning of the mea-
sured construct. Therefore, providing test-takers with adequate training opportunities in
advance of the actual test completion seem even more relevant.
The development of the new NST generative-framework represents an important con-

tribution to research on number series type item. While previous test-development efforts
have usually manipulated the difficulty-level of a series by increasing the period length of
a series and using hierarchical overlap between rules, the current framework can generate
item along the complete item difficulty continuum without making use of these strategies.
This is an important improvement because only when the formal-logical operations are
exactly the same between all elements in the series, can item difficulty be estimated on the
actual item level. If a different rule accounts for the transition from, for instance, element
3 to 4 than from element 4 to 5, no unequivocal difficulty estimates can be derived for
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the complete series. Strictly, difficulty can then only be estimated for the derivation of
the specific missing element of the series. Many of the problems reported by previous
studies (e.g., Porsch, 2007; Ebert & Tack, 1974; Hersh, 1974) can be solved by means of
this change to the logical structure of the series. Furthermore, the fact that the same for-
mal logical operations account for all relations between consecutive elements of the series
opens up new possibilities for variations of the response format. In the current study only
one response format (i.e., constructed response, CR) with only one response instruction
(i. e., “Please continue the number series by one element”) were investigated. Future
studies could investigate NSTs with different response formats, for instance a multiple-
choice format, or — more importantly — alternative response instructions (e.g., continue
by 2 elements, or fill in missing element) and test whether item difficulties for different
variants of the NST can be predicted based on the same set of item radicals. Figure 4.10
illustrates possible different administration modes for the NST. Such research could con-
tribute to the better understanding of the contribution to item difficulties of incidentals at
the test level. If the cognitive model is valid, item difficulties should be determined by the
relational complexity of a series and not by surface characteristics of the items (e.g., the
actual numbers used) or the complete test (e.g., different types of response instruction).

4.4.2. Limitations and future prospects

The conclusions of this study are limited by several factors. Five categories of limitations
are distinguished in the following. For each limitation, possible directions for future
research are discussed.
First, the robustness of the findings of this study in general as well as in cross-cultural

settings needs to be demonstrated by consecutive studies. Replications with larger samples
are necessary to cross-validate the findings with regard to the item generation approach
and the explanatory IRT modeling strategy. Only a selected sample of test-takers has
been investigated and the test was administered in a low-stakes context. Investigations
with other populations of test-takers and a comparison of low- and high-stakes testing
settings are still pending. More emphasis should also be laid on the cross-cultural fairness
of the instrument. While, in this study, it has been shown that the explanatory model
can be applied to data from a culturally very heterogeneous sample, future studies should
explicitly model cross-cultural effects on the functioning of the cloning approach and the
design parameters. Instead of modeling item difficulties based on LLTM models that
model difficulties based on the same principles for the whole sample, Differential Item
Functioning models could be applied to model interactions between item characteristics
and person variables such as cultural background, gender, or levels of previous experience
with similar tests. The sample sizes in the current study were not large enough to focus
explicitly on a cross-cultural research question. In order to make definite conclusions
about the cross-cultural comparability of test scores for the new item type, further re-
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search is needed that includes cultural background as an explicit covariate. Also, stronger
experimental design principles should be applied to replicate the findings of this study
regarding the equivalence of the two item sets A and B and the parameter-changes after
the warm-up run. The question of warm-up effects was not central to this study. In
order to draw clear conclusions regarding the role of warm-up effects, the sequence of test
forms should be fully iterated (i.e., test should be administered in 6 different combina-
tions: {warm-up, A, B}, {warm-up, B, A}, {A, warm-up, B}, {B, warm-up, A}, {A, B,
warm-up}, {B, A, warm-up}).
A second class of limitations refers to the statistical modeling of difficulties for struc-

turally identical items. Only 3 items for each radical combination were investigated in
the current study. No advanced item cloning models were applied. Therefore, the promis-
ing results concerning the accordance of parameter estimates in the two sets A and B
and the good recovery of Rasch item difficulties by rescaled LLTM difficulties have to be
considered preliminary. The results for the “virtual item model” need to be interpreted
with caution. While this model has been proposed as an adequate model to investigate
parameter changes across time (Fischer and Ponocny (1995), for instance, wrote: “Clearly,
change always resides in the persons; for formal convenience, however, we shall equiva-
lently model change in terms of the item parameters. To that end, we again introduce the
notion of virtual items, in contrast to real items”, p. 357), it is a very simplified model
that especially does not account for the covariance between item and time variables. Lo-
cal independence is assumed for all items across all time points. This is a very strong
assumption. More complex longitudinal models should be applied instead of the simple
virtual item model to account for these possible effects in the future. The suitability of
the statistical item difficulty model to predict item difficulties of on-the-fly generated test
items in computerized adaptive testing (CAT) needs to be demonstrated. A further test
of the prediction of item parameters by Item Cloning Models (ICM) would be very useful.
If a larger number of parallel item “clones” could be administered to a larger sample of
test-takers, item family parameters and within-family variances could be estimated by
Bayesian models. Also, sequence effects could be ruled out if more clones are admin-
istered to larger samples and the order of the clones is completely iterated across the
samples. In the current study, all participants worked first on one set of clones and then
proceeded with a second set of structurally equivalent items. Strictly speaking, there is a
dependency of answers between the first and the consecutive sets that is not modeled in
the IRT models applied here. Models with covariance parameters that account for shared
variance across item sets would be a helpful extension of the models used in this study.
Third, the item generation framework itself must be considered only a first step towards

the design of a fully automatic item generator. The demonstration of a fully automatic
computerized item generation is still pending. The equivalence of items administered in
paper-pencil and computer-based format needs to be demonstrated. Beyond that, not
all possible item radical combinations were investigated in this study. The number of 11
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items is by far not enough for CAT applications where large numbers of items covering
the whole ability continuum are needed. It was shown that the combination of multiple
rules in one item was sufficient to generate very easy to very difficult items. Future works
should investigate a more fine graduation of item difficulties based on different radical
combinations. It would also be very useful to investigate the significance of instruction
for the difficulties of specific rule-combinations in future studies. Verguts and De Boeck
(2002), for instance, showed that rules that are instructed prior to testing are facilitated
against rules that are not instructed, and that test-takers tend to try to solve items
predominantly with these rules. In the current study, all test-takers received the same
instruction. Only the rules but not their possible combination principles were instructed.
It is an open question whether it would change the validity of the NST when, instead of
introducing the rules only one at a time, all possible rule-combinations would be instructed
in advance of the assessment as well.
Forth, more research on the warm-up effects found in this study is needed. It was shown

that there was considerable variation in item difficulties between a warm-up set of items
and two subsequent parallel item sets. Though consistent with the assumptions of previous
researchers, the evidence from this study is at most preliminary. This study builds an
ideal starting point for a set of more complex studies that could focus explicitly on practice
and training effects on the functioning of psychometric item-generation frameworks. This
could include explicit analyses of item parameter drift across sets of parallel items. An
extension of parameter drift from the item-level to the facet or family-level would be
another aspect worth investigating. Recent studies have shown that practice and training
effects are a serious threat to the validity of test results from cognitive assessments (e.g.,
Freund & Holling, 2011). If the findings from the current study that practice effects
diminish after a warm-up and do not influence the difficulty of parallel item sets completed
afterwards could be confirmed by other studies, this would be a tremendous benefit for
cognitive diagnostic assessment in general.
Fifth, the criterion-related validity of the new measure has been investigated only at a

minimum level in this study. Further criterion variables that should be included are, for
instance, performance on other number series tests and performance on arithmetic tasks.
Also, an inclusion of additional person variables, such as test motivation or strategy
knowledge, could be beneficial. It is important to identify relevant person variables that
determine whether a certain strategy is followed or not. Noncognitive person characteris-
tics might play an important role here. A closer look at relationships of test performance
with other tasks and additional person variables would help to answer the question of
construct validity of the new measure in more detail.
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5
A cross-cultural investigation of the

Latin Square Task

This study investigates the cross-cultural validity of the Latin Square Task (LST), a figural reasoning
measure that can be generated based on a set of item-generative rules. Performance differences in cross-
cultural settings are a well documented finding, but still only little is known about the bias-generating
processes on the item-level. Two research questions are addressed. First, it is asked whether relational
complexity theory is a cross-culturally valid framework to generate figural reasoning items. Second, it
is investigated whether item difficulties are comparable across countries or whether Bias on the item
level (i.e. Differential Item Functioning) is present. Differential Facet Functioning analyses (i.e., person-
by-facet interactions) are applied to test whether item level DIF can be explained by the underlying
structure of item radicals. Further, qualitative analyses of DIF versus Non-DIF items were conducted
to achieve a better understanding of the generating processes for DIF in the LST. Cultural background
was investigated in a broad sense by comparing students from two countries representing traditionally
individualistic (Germany, N = 452) versus collectivistic (Russia, N = 201) cultures. Countries of medium
cultural distance and moderate differences in school systems and educational expenditures per child were
chosen. Additionally, performance on the LST dependent on the (non-)existence of test-specific pre-
knowledge was investigated. Knowledge of the number-placement game SUDOKU was assessed as a
proxy of relevant pre-knowledge that might facilitate LST performance. Results confirm the cross-cultural
validity of the LST in a broad sense but also point to problems with the functioning of individual items
in a cross-cultural context. DFF analyses could help to some extend understanding item DIF effects but
more research is needed to clarify on the relationships between DIF and DFF. Item surface characteristics
could be identified that contribute to the emergence of DIF and should be controlled in future studies or
applications of the LST.

Keywords. Cross-cultural Bias, Differential Item Functioning, Differential Facet Functioning, Rela-
tional Complexity Theory, Latin Squares, SUDOKU
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5.1. Introduction

Studies 1 and 2 of this thesis described the development of new item generative frame-
works for two of the most important item types in reasoning assessment, figural analogies
and number series. As one limitation to the results presented it was mentioned that
the validity of the item generation framework in one country or one population is only
a first step in establishing fully-functioning AIG engines that are applicable in a wide
range of scenarios, including assessment in the global educational and workforce assess-
ments arena. Cross-cultural comparability problems for well-functioning cognitive tests
have been reported in the literature with studies pointing to the biggest cross-cultural
effects for exactly those item types that are –in theory– meant to function independently
of cultural influences, that is figural language-free fluid intelligence measures (see e.g.,
Brouwers et al., 2009; Carroll, 1993; see also Jensen, 1998 or Hartmann et al., 2007;
Lynn & Owen, 1994; Te Nijenhuis & van der Flier, 2001). At the same time, little is
known about why certain items and item-types do while other do not show DIF. Nearly
twenty years ago, Angoff (1993) wrote that “it has been reported by test developers that
they are often confronted by DIF results that they cannot understand; and no amount of
deliberation seems to help explain why some perfectly reasonable items have large DIF
values” (p. 19). Unfortunately only little has changed since then. In many situations
no explanation can be given why some substantively sound items show large DIF values
statistically whereas some other items expected to be biased from the substantive analysis
do not display DIF at all. Even though DIF research cannot be considered a new analysis
strategy anymore, up to now, the focus has generally been still on detecting (and exclud-
ing) DIF items, not on the identification of item-related sources of DIF. Detecting the
causes of measurement bias presupposes a theory about why items would show bias for
the various groups studied, or what item facets specifically contribute to the emergence
of DIF. Unfortunately, many tests at use lack such a strong underlying theory that would
enable an empirical test of differential effects on the level of underlying item facets. In
many cases, there is no theoretical framework available concerning content-related sources
of DIF. Consequentially, hardly any studies have investigated cross-cultural bias on the
level of item facets so far, and if so, studies have produced inconsistent results (see e.g.,
Van de Vijver, 2002; Xie & Wilson, 2008). For instance, Van de Vijver (2002) used a
LLTM to examine the relationship between item difficulties and the difficulties of their
constituent item-generating rules across three countries. Analyses of equivalence provided
strong evidence for structural equivalence, but only partial evidence for measurement unit
equivalence. Full score equivalence was, however, not supported. Still, the instruments
used in their study lacked the specific theoretical base that is necessary to link invari-
ance findings to theoretical models of item bias (e.g., Spearman’s cognitive complexity
theory). Explanatory IRT modeling with person-by-facet interactions (or “Differential
Facet Functioning” (DFF), Meulders & Xie, 2004) offers, in theory, to go beyond a mere
quantification of DIF and explain and predict DIF effects. The advantage of models that
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try to explain cross-cultural differences by characteristics of the task (opposed to models
that only describe relationships with global country-characteristics in a post-hoc fashion)
is that they allow to test cognitive assumptions about the emergence of cross-cultural
performance differences. Even though bias might be statistically associated with factors
such as educational expenditure or very broad cultural differences (e.g. collectivistic vs.
individualistic cultures), such variables are not at the root of measurable bias at the item
level; a true understanding why individuals from different cultures perform differently on
cognitive tests in general, or certain items in specific, can only be gained when cognitive
variables are considered as well.
Investigations of the relationship between DIF and DFF findings have so far produced,

at best, vague results (cf. e.g., Xie and Wilson (2008): “the significant DFF parameters
reflect the patterns of the significant DIF parameters to some extent”, p. 412). Xie and
Wilson (2008) recommend to “always check the individual DIF estimates first” (p. 414).
This is inconsistent with idea that DFF is a means to predict and better understand DIF
effects. Only if DFF and DIF methods flagged essentially the same items could DFF be
used accordingly. Meulders and Xie (2004) derived the DFF model as a special case of
explanatory IRT models including person-by-item interaction effects. No empirical study
has actually demonstrated that DIF-effects can be in fact predicted by DFF analyses in
actual testing contexts. It is not clear what role mis-specifications of the LLTM design
matrix and the general explanatory power of the LLTM model, for instance, play for the
prediction of DIF based on person-by-facet interaction. The practical use of DFF methods
is therefore still in question. Clearly, more research focusing on the origins and the nature
of DIF in fluid intelligence measures is needed.
The study presented in this chapter focuses on the issue of cross-cultural comparability

of AIG frameworks across cultural boarders and takes the different perspectives to this
topic into account. A holistic approach is taken that includes classical DIF analyses,
explanatory IRT modeling (i.e., DFF), and a qualitative analysis of test items. Cross-
cultural item functioning is investigated on the Latin Square Task (LST; Birney et al.,
2006), a language-free rule-based reasoning measure that has been described and validated
in a number of previous studies. First, background on the LST will be given, followed by
a summary of research questions of the current study. Then, the study design and results
will be presented and discussed.

5.1.1. The Latin Square Task

The Latin Square Task (LST; Birney et al., 2006) is a figural reasoning measure that is
based on RC theory. A Latin square of order n is a matrix of n × n cells, filled with
n symbols such that the same symbol never appears twice in the same row or column.
The origin of those grids dates back to ancient Greece. Later, Leonard Euler proposed
the name “Latin Squares” and studied them. In a typical LST item, some cells are filled
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Figure 5.1.
Cognitive complexity determinants in the LST: Binary, ternary and quarternary process-
ing (Study 3)

with geometric figures, whereas others are left blank. One of these empty cells contains a
question mark. The test-taker has to select the correct geometric figure for this cell from
a set of distractors. Figure 5.1 depicts three example LST items of different cognitive
complexity. The cognitive complexity of a given LST can be described by three underlying
processing variables:

• In Binary processing two sets of elements must be represented, i.e., the complete
set of elements as displayed below the LST, as well as the given set of elements in
a specific row (see Figure 5.1 for an illustration).

• In Ternary processing information from both a row and a column need to be in-
tegrated(see 5.1). Three distinct sets of elements must be cognitively represented,
first the full set of elements, second the two elements in the lowest row, and third
the element in the second column.

• In Quarternary processing elements across multiple rows and columns need to be
integrated. A test-taker must take into consideration all possible symbols in one
specific column or row while holding in mind all symbols in all rows or columns (see
5.1). This entails representing at least four pieces of information. It is assumed to
be the most challenging operation because it has been shown that the upper limit
of information processing in humans is met when four distinct elements must be
simultaneously represented (cf. Cowan, 2010).

LST items can be designed in a very systematic and rule-based way, combining a strong
prior theory based on cognitive psychology with growing empirical support. The LST
minimizes the role of knowledge and storage capacity and thus refines the identification
of a processing-capacity-related complexity effect in task performance. Therefore, its
format offers optimal properties for the study of cross-cultural differences in reasoning
performance.
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Birney et al. (2006) found that cognitive complexity as defined by RC theory explained
64% of variance in item difficulties in the LST, showing that complexity as defined by
RC theory is a powerful and theoretically sound predictor of item difficulty. Since the
first presentation of the new task, the LST has been successfully applied in a number of
studies as well as personnel selection scenarios (e.g., cut-e, 2011; Gold, 2008; Hoffmann,
2007; Kuhn, 2010) indicating that (a.) item difficulties can be, to a sufficient degree,
explained by a manageable number of task parameters, and (b.) the relative weights of
each of these parameters with regard to item difficulty are consistent with the assump-
tions of the underlying theory. The proposed explanatory models differ slightly but all
include item-predictors for the three main complexity stages. For instance, (Zeuch, 2011)
presented a model predicting item difficulties based on 7 item facets, namely “Binary:
1 Step”, “Binary: 2 Steps”, “Ternary: 1 Step”, “Ternary: 2 Steps”, “Ternary: 3 Steps”,
“Ternary: 4 Steps”, and “Quarternary”. That is, she combined complexity stages with the
number of processing steps when building item radicals. (Kuhn, 2010) used a slightly dif-
ferent modeling approach proposing 5 item predictors,“Binary”, “Ternary”, “Quarternary”,
“Memory Load”, and “Size”. Memory load and Size were dichotomous indicators based on
the number of processing steps necessary and the size of the grid (4x4 vs. 5x5). In terms
of their predictive power, differences between these two modeling approaches appeared
rather small (R2 = .86 for Zeuch’s model versus R2 = .82 for Kuhn’s model) with both
“solutions” yielding results that could be interpreted clearly in line with the assumptions
of RC Theory. Kuhn also analyzed what the three cognitive complexity parameters alone
could explain, and how much additional variation in item difficulties could be accounted
for by adding memory load and size to the model. His results showed a quite substantial
improvement by including additional parameters. Cognitive complexity parameters alone
accounted for only R2 = .42 of variation in item difficulties, memory load alone reduced
item random variance by R2 = .14 (Kuhn, 2010, p. 101).

5.1.2. Similarities to the popular number placement game
SUDOKU

The number-placement game “ SUDOKU” (see Figure 5.2 for an example) has become
one of the most popular cognitive puzzles during the last decade. For instance, a search on
Amazon.com for the word “ SUDOKU” reveals more than 8,000 results. SUDOKU puzzles
share many characteristics with the LST as they derive directly from Latin squares. A
standard SUDOKU puzzle is a 9 × 9 Latin Square filled with the digits 1 to 9, which is
divided into nine 3× 3 sub-matrices. Compared to the LST, one additional rule is added:
each sub-matrix also must contain all digits 1 to 9. SUDOKU requires no arithmetic,
no language skills or specific educational competencies. That is why, SUDOKU puzzles
have been classified as tasks “of pure deduction [whose] solution depends ultimately on
the ability to make valid deductive inferences” (Lee et al., 2008, p. 343). An important
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Figure 5.2.
Example SUDOKU puzzle (Study 3)

difference between the LST and SUDOKU is that the SUDOKU player is to fill all vacant
cells, not only one cell marked by a question mark. Because of this, test-takers have more
freedom to decide themselves how to proceed and what strategies to follow, whereas in
the LST is can be clearly described what processes are needed to fill a certain empty cell,
given the current configuration of filled and empty cells. In comparison to LST items,
large SUDOKU puzzles rapidly become intractable.
As described in (Lee et al., 2008) Binary, ternary and quarternary processing are also

key factors for the solution of SUDOKU puzzles. In order to solve a SUDOKU puzzle,
individuals have to follow systematic sequences of elementary mental steps or so-called
tactics. Exclusion tactics directly exclude possible digits from a particular target cell so
that it can only contain one specific digit. Inclusion tactics use the occurrence of a digit
in other cells in a set to infer that it must be included in the target cell.
Simple tactics rely on binary processing, that is if any set contains eight digits, then the

empty cell in the set has the missing ninth digit. When simple tactics are used, individuals
need to consider only one set to deduce the value of the target cell (Lee et al., 2008). Lee
et al. showed in a number of experiments that with no instruction whatsoever individuals
were able to discover most of the simple tactics for themselves. Such tactics are, however,
not appropriate to solve any real SUDOKU puzzle, because the initial state of the puzzle
never has eight digits in the same set. According to Lee et al., a crucial shift in strategy
is therefore necessary to solve SUDOKU puzzles: individuals have to keep a record of
the possible digits in cells, and to use advanced tactics that enable them to eliminate
possible digits. Advanced tactics can be described as a two-step process. The first step
is to infer a set of digits as the only possibilities for certain cells, and the second step
is to use these possibilities to eliminate possibilities from other cells. The same is true
for LST items involving ternary and quarternary processing: in order to find the missing
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element, subjects have to represent the elements of some or all other cells in mind, i.e.
keep a record of the sets of possible elements in the other empty cells.
Lee et al. (2008) showed that the greater the relational complexity, the more difficult

a SUDOKU puzzle is, the longer it takes to solve a puzzle, and individuals are more
likely to make mistakes. It has been demonstrated in a number of studies that SUDOKU-
knowledge relates positively to LST performance (e.g., Kuhn, 2010; Zeuch, 2011).
However, it remains unclear whether SUDOKU knowledge changes the difficulties of

the cognitive processes necessary to solve an item differently, thereby causing changes in
construct validity. One of the major disagreements of the interpretation of the evidence
presented in support of RC theory centers on the role of knowledge in processing and the
determination of task complexity. For instance, taught or acquired processing strategies
might change the effective RC of a task, thereby rending items to be less difficult for
SUDOKU players. This effect might also depend on the complexity of the processing
step, with more complex rules (such as Quarternary) possibly influenced to a large extend.
Specifically, because SUDOKU shares some important solution principles with the LST
(cf. Lee et al., 2008) it is reasonable to assume that playing SUDOKU a lot could be an
advantage when being confronted with LST for the first time or there might be a lasting
advantage for SUDOKU players on the LST. That said, SUDOKU knowledge must not
be ignored when performance on LST items is analyzed.

5.1.3. Cross-cultural validity of the LST

The cross-cultural validity of the LST has not been investigated so far. This is surpris-
ing because its strong foundation in RC theory and its rule-based structure makes the
LST a prototypical instrument to investigate sources for Bias. In a recent study with
German children, Kuhn (2010) investigated the structure of cognitive processes in the
LST. Kuhn (2010) reports that quarternary processing was especially difficult, requiring
the integration of four different information pieces into a temporary representation. Also,
large inter-individual differences with regard to quarternary processing were found. Indi-
viduals use heterogeneous strategies with respect to quarternary processing (Kuhn, 2010).
According to the cognitive complexity model, quarternary processing should be especially
affected by cross-cultural factors.
From the cultural complexity perspective, surface characteristics of LST defined by inci-

dentals seem of at least equal importance. While the contributions of the three processing
variables (i.e., Binary, Ternary and Quarternary) have been analyzed in several studies,
little attention was devoted to the role of item incidentals so far. The specific figural
elements used in a LST, their color and size, or the visual distinctiveness of different
possible patterns of partly filled Latin Squares have not been systematically investigated.
Usually these characteristics have been conceptualized as incidental item features that
are not expected to influence item difficulties. However, item incidentals might influence
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Figure 5.3.
Incidental item surface characteristics in the LST: example of two items based on the
same item radicals (Study 3)

the cultural complexity of the task, independent of its cognitive complexity, and might
be potential factors for the emergence of DIF. Figure 5.3 shows two LST items used in
Holling et al. (2010) and Zeuch (2011) that share the same radicals but differ in terms
of their incidentals. While the solution requires two Binary- and one Ternary-step for
both items, the two LSTs differ in terms of multiple other characteristics. Elements are
all without filling in item 20 whereas element in item 28 are filled with different patterns.
The shapes of the five elements used partly differ as well. 7 cells in LST20 are already
filled, in LST28 this number is 9. The question mark is in a different position and the
number of empty fields in the same row as the question mark differs between the two
items (3 vs. 2). In LST20 no element appears more than twice in the LST, in LST28
two elements appear three times each. This list (which could still be extended) shows
that surface characteristics might play a larger role for item difficulties in the LST than
one could expect. Indications that this is the case can be found in previous studies as
well. For example, Zeuch (2011) reported that “Obviously there are additional factors
with impact on item difficulty apart from the investigated basic parameters.” (p. 57)
and “Limitations of LST can be seen in the possible ambiguity. Although several rounds
of quality and unambiguity verification were conducted, it cannot be guaranteed that all
subjects applied identical solution strategies.” (p. 64). In addition, Zeuch, 2011 reported
Rasch model misfit for some LST items while other items based on exactly the same
structural components showed no indication of model-misfit. Two of these items are the
two LST items shown in Figure 5.3. Zeuch (2011) excluded LST28 from further analyses
due to poor Rasch fit. LST20 did not show any considerable misfit.
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When LST items are generated based on AIG and Item Cloning models, reducing the
influence of item surface characteristics on item properties is a goal of key importance.
For high-stakes applications of the LST in selection contexts it is important to be able
to draw test items from a large pool of items with known difficulties that are as well
valid and fair test items for all possible test-takers. This includes the lack of DIF as well
as the fit of newly generated items to the underlying test model. Especially when test
results are used to justify selection decisions, the equivalence of item characteristics and
the related statistics across different cultural groups is a key variable to test fairness. The
Standards for Educational and Psychological Testing (American Educational Research
Association et al., 1999) indicate that DIF in a test also diminishes the practical value
of the assessment. As pointed out in a recent cross-cultural study on PISA data, ‘it
would be economically and technically worthwhile if it were possible to detect items with
potential of DIF before any test administration process. This might bring more effective
test item writing practices and consequently more fair and valid cross cultural tests could
be constructed.” (Yildirim & Berberoglu, 2009, p. 110). One might think that the
similarities between the LST and SUDOKU might be counterproductive for the use of
the LST in selection practice because some individuals might have gathered strategy
knowledge useful in LST as well, while others do not possess this advantage. Otherwise,
both LST and SUDOKU puzzles build a strong theoretical basis for the investigation of
test fairness and bias both across groups. For the most well-known reasoning measures,
such as the Advanced Progressive Matrices (APM, Raven, 1962), there is no such an
“equivalent” in popular everyday culture that would enable to test pre-knowledge effects
in an ecological setting.

5.1.4. Research questions

The current study attempts to further investigate the cross-cultural comparability of test
scores on reasoning measures using the Latin Square Task. Special attention is devoted
to the identification of potential factors for DIF related to the radicals and incidentals in
the AIG framework of the LST. Two broad research questions are addressed:

1. First, the cross-cultural validity of the LST is investigated in terms of its measure-
ment properties, the internal structure of item difficulties based on the explanatory
model applied, and the pattern of relationships with other cognitive and noncog-
nitive variables. If reasoning processes are universal across countries, reasoning
items based on an AIG framework grounded in RC-Theory generated in one coun-
try should not function considerably different in another country. That is, item
difficulties should reside from the same underlying cognitive task principles in sam-
ples from one or another cultures. Furthermore, in order to be cross-culturally
construct valid, there should be no substantial differences in the nomothetic span
of the measures.
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2. Second, it is investigated whether LST items function differentially across culturally
diverse groups. Previous studies have shown that it is unreasonable to assume full
measurement invariance for instruments administered in cross-cultural settings. It
is investigated whether items requiring operations of higher cognitive complexity
are more susceptible to cross-cultural bias than low-complexity items. Also, item
surface characteristics will be investigated as one potential source of cross-cultural
bias. Two different conceptualizations of “culture” are compared, a broad definition
based on the country of living, and a very narrow conceptualization as the amount of
shared prior knowledge that might facilitate reasoning test performance. Previous
studies have shown that prior knowledge and experience with similar tests leads to
improved performance on cognitive tests. An important research goal of this study
is to identify factors in LST items that determine their cross-cultural comparability.
The demonstration of the cross-cultural comparability of LST items is an important
requirement for future applications of the LST in real-world assessment settings.
Especially when AIG or Item Cloning approaches should be used to generate large
numbers of items, knowledge about such factors could enhance the quality of the
generated items.

In contrast to the first two studies, this study does not involve the derivation of a new
item-generation framework but is based on a framework for figural reasoning items that
has been described and validated previously. Consequentially, the focus of this study
will mostly lie on the second general research goal outlined in the general introduction,
that is, the value of item-generation models for a better understanding and improvement
of construct validity of reasoning measures. Also, the goal of this study is not to study
differences in reasoning ability between countries or cultures but to study item properties,
especially their susceptibility for cross-cultural bias and the benefit of rule-based item
generation models for enhancing the cross-cultural validity of reasoning measures.

5.2. Method

5.2.1. Sample

Participants were recruited at two universities in Russia and Germany and received feed-
back of their results as an incentive. The total sample consists of N = 653 persons (452
German students and 201 Russian students; 66.5% female). The mean age in the Russian
subsample was 19.42 years (SD = 1.42), and in the German subsample 18.83 years (SD
= 0.98). 21.4% of the Russian participants reported prior experience with IQ tests, and
46.8% reported that they had played Sudoku puzzles before. Among the German partici-
pants, these percentages were 48.5% and 66.3%, respectively. The percentage of prior test
experience is representative (cf. meta-analytic findings by Hausknecht et al., 2007). All
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participants gave consent that their data be used for scientific purposes. The countries
were chosen because of their different cultural backgrounds, Germany representing an in-
dividualistic culture, Russia representing a more collectivistic culture. Also, differences in
GDP and school life expectancy were considered when choosing the two countries. Meta-
analytic findings show that educational expenditure is a significant predictor of country
differences in mental test performance (Van de Vijver, 1997). Schooling does not have a
formative influence on higher-order forms of thinking but tends to broaden the domains
in which these skills can be successfully applied. Schooling facilitates the usage of skills
by their training and by exposure to psychological and educational tests. Germany and
Russia show considerable differences in educational systems and GDP (per capita). The
GDP figures per capita for 2009 were US$ 34200 and US$ 15100 (Central Intelligence
Agency, 2009), respectively. School life expectancy (i.e. the expected number of years of
schooling that will be completed, including years spent repeating one or more grades) in
the two countries is 16 and 14 years. That is, countries with considerable differences in
school systems and educational expenditures per child were chosen. Note that the two
countries were chosen as examples of traditionally individualistic vs. traditionally collec-
tivistic societies. This study aimed not at the study of differences in reasoning ability
between countries or cultures but at investigating item properties and their susceptibility
for cross-cultural bias. Countries of medium cultural distance were chosen in order to
guarantee an also practically meaningful comparison.

5.2.2. Instruments and procedure

Figural reasoning measures

Two figural reasoning measures were administered, one of them a rule-based generated
test, the Latin Square Task (LST), the other one an established and cross-culturally
applicable test, Cattell’s Culture Fair Test (CFT). The LST was included as the primary
measure that is focus of the research questions investigated. It allows to relate item
difficulties to an item’s relational complexity. The CFT was used as a control measure
of fluid intelligence that is not core of the research questions. It was used to assure
the comparability of the investigated groups and a necessary measure to investigate the
nomothetic span of the LST across cultures. Testing conditions were hold exactly constant
across the two samples. All tests were administered by the authors of this study under
the assistance of local research assistants. The number of testers in one classroom was at
least two.

Culture Fair Test (CFT 20) As a measure of general cognitive ability g, the four sub-
tests from the Culture-Fair Test (CFT 20; Weiß, 2007), an adaptation of the Culture Fair
Intelligence Test, Scale 2 (Cattell, 1973), were administered. The CFT 20 is a paper-and-
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pencil test which provides high loadings on fluid intelligence and has good psychometric
properties. It consists of four different subtests: Series completion, Classifications, Ma-
trices and Topologies. Items were administered under timed conditions in line with the
guidelines in the test manual. 56 items had to be completed in a total testing time of 14
min plus instruction time.

The Latin Square Task (LST) The same 30 item version of the LST as described
in Holling et al. (2010) and Zeuch (2011) was administered to test-takers from both
samples. Items were administered under power conditions, i.e. no time limit was given
for the completion of the test. Time used by each test taker was registered by the test
administrators. The rule-based item generation of the LST is described in detail elsewhere
(e.g., Birney et al., 2006; Zeuch, 2011). The rule-based generation of the the two item
types used in study 1 and study 2 of this thesis were described in detail because they
were newly developed as part of this thesis. The LST are not developed as a result of this
thesis and, therefore, it is referred to the relevant literature regarding the specifics and
details of the underlying item-generation.
Preceding the actual assessment, a detailed description of the item type at hand was

given. All logical principles that determined the structure of the items (i.e. Binary,
Ternary and Quarternary Processing) were explained in detail including examples for
each rule. Participants were informed that several rules can be combined in one item, and
this was also shown in a sample item. The procedure of the testing was explained and
two warm-up items were given before the start of the actual test.

Experiences as relevant test-specific pre-knowledge

In addition to these two reasoning measures, relevant prior knowledge was assessed by
asking subjects about their previous experiences with intelligence tests in general and
cognitive SUDOKU puzzles in specific. SUDOKU puzzles share core characteristics with
LSTs and must therefore be considered a relevant prior experience. As described above,
binary, ternary and quarternary processing are also key factors for the solution of SU-
DOKU puzzles. Test-takers were asked to indicate whether they (a) had participated in
an intelligence test before and (b) had played SUDOKU before.

Noncognitive variables

Personality variables were assessed to assure the comparability of the samples and pro-
vide variables to investigate the discriminant validity of the LST across the two cultural
samples. The NEO-FFI personality inventory (Bodunov, Bezdenezhnykh, & Akexandrov,
1996; Borkenau & Ostendorf, 1993) was administered as an instrument measuring the big
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Table 5.1.
Means and standard deviations for the German and Russian sample (Study 3)

Germany Russia T p∗

Mean SD Mean SD

LST (raw score) 20.16 (5.414) 17.15 (4.889) 7.035 < .001
LST (time used in minutes) 43.16 (10.783) 38.96 (8.092) 5.179 < .001
CFT20 (raw score) 37.95 (3.980) 37.28 (4.463) 1.563 .120
Openness 2.47 (0.572) 2.45 (0.464) 0.472 .637
Conscientiousness 2.70 (0.568) 2.52 (0.593) 3.605 < .001
Extraversion 2.48 (0.443) 2.68 (0.490) −5.029 < .001
Agreeableness 2.65 (0.508) 2.42 (0.541) 5.214 < .001
Neuroticism 1.68 (0.630) 1.70 (0.594) −0.492 .623

Note. ∗p-value for significance of mean differences between the two samples; Cronbach’s α for
the 30-item LST version is α = .813.

five personality dimensions. These are neuroticism, extraversion, openness, agreeableness,
and conscientiousness. Subjects had to rate 60 statements on a five-point rating scale.

5.3. Results

There are five parts to the results section that address the research questions outlined
above. Parts 1 and 2 present analyses conducted separately for Russian and German
students, parts 3, 4, and 5 present analyses conducted on the joint sample with country
as a grouping variable included in the statistical models. First, analyses regarding the
general comparability of the two samples, the existence of potentially disturbing third
variables, and the psychometric properties of the LST in both samples are presented.
This part includes also results regarding the validity of the LST in terms of relationships
with other measures in the two samples. Second, results from explanatory IRT modeling
applied to each sample separately are presented, addressing the research question whether
item difficulties can be explained based on the same set of item explanatory rules in the
two countries. Third, results from classical and IRT-based DIF analyses are presented.
Forth, results from DFF analyses, i.e. investigating country-by-facet interactions are
presented. Fifth, findings from a qualitative analysis of LST items, specifically of potential
explanations for DIF are presented.
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5.3.1. Psychometric properties of the LST for the two samples

Table 5.1 shows mean scores and standard deviations for the Russian and the German
sample. T statistics indicate whether mean scores differ between the two samples. On
average, test-takers in the German sample were able to solve about three thirds of the 30
items correctly, with considerable variation among test scores. Test performance of the
Russian test-takers is significantly lower with an average score of 17.15 items (dScore =
−0.58, p < .001). Russian students also spent significantly less time to work on the items
(dTime = −0.52, p < .001). With regard to general cognitive ability g as measured by the
CFT20, no differences between the two samples were found (dCFT = −0.16, p = .120).
Scores on the Big Five personality factors partly differed between Germans and Russians,
but these effect sizes are very small and practically negligible. Cronbach’s α for all tests
is satisfactory, exceeding the value of .80 (cf. Anastasi, 1981).
Category frequencies for all items for the Russian and German students were investi-

gated to test the general comparability of the two samples (frequency-plots for all items
are provided in the Appendix). The response patterns were very similar for most items.
However, Russian test takers chose the option “not solvable” significantly more often than
test-takers from the German sample (t = −5.80, p < .001). On average, German students
ticket the “not solvable” option around 4 times (M = 3.92), which exactly corresponds to
the actual number of not solvable items in the test, whereas Russian students chose the
option around 1.5 times more frequently (M = 5.43). Figure C.8 in the Appendix illus-
trates the frequency distributions for choice of the “not solvable”-option for both samples.
Correlations of “not solvable” choice with other measures, specifically CFT scores, val-
ues on the Big Five, and prior Sudoku experiences, were investigated to achieve a better
understanding why students in the Russian sample might have picked this option more
frequently. These analyses extend analyses presented in previous studies (e.g., Kuhn,
2010; Zeuch, 2011) that have used a “not solvable” answer category as well but mostly
did not analyze answer behavior specifically on these items. While the number of “not
solvable” choices was negatively related to performance on the LST (r = −.239, p < .001),
it did not correlate significantly with any of the other measures (correlations ranged from
−.075 to .034; all p-values > .10). That is, choice of this response category seemed to
be unrelated to general cognitive ability, personality attributes, and pre-knowledge. Re-
sponses might be related to lower motivation of some Russian test takers as suggested by
the negative correlation with response times (r = −.173, p = .015) in the Russian sample.
In order to rule out that any of the results regarding the research questions of this study

could be biased because of the differences in relative frequencies for the endorsement of the
“not solvable” option, it was decided to run central analyses not only for the full Russian
sample but as well for a reduced sample. Two different “reduced” samples were created
using different cut-off values for the choice of the not-solvable option, one representing a
lenient, the other a strict cut-off (see also Figure C.8). First, students who ticked the “not
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Table 5.3.
Correlations between the LST and other variables (Study 3)

Gender Time CFT20 O C E A N Sudoku other

RUS .003 .360** .360** .125 −.055 .064 .067 −.113 .185** .014
GER −.044 .305** .358* .051 −.046 .001 .146* −.074 .337** .006

Note. ∗p < .05, ∗∗p < .01; other=prior experience with other cognitive tests

solvable”-option more than 10 times were excluded from the sample. This corresponds
to deleting cases where the “not solvable” option was chosen for more than one third
of all items. This applied to 23 students in the Russian, and 8 student in the German
sample. Second, as a more strict case, all students who ticked the “not solvable”-option
more than 7 times were excluded from the sample. Four items were not solvable in the
test, so under this procedure all students that chose the category at least twice as often as
expected were removed from the sample. This applied to 50 students in the Russian, and
25 student in the German sample. The mean difference between Russian and German
test-takers based on the lenient reduction still reached statistical significance (Difference
= 0.49; p = .022), whereas no significant mean differences for the strict reduction could
be found (Difference= 0.08, p = .64).
The applicability of the Rasch model to the LST in general, and the specific test version

used here has been demonstrated in full detail in previous studies (Hoffmann, 2007; Holling
et al., 2010; Kuhn, 2010). The same modeling strategy was applied here. However,
separate RMs for each sample were run to make sure that the data did not deviate
considerably from the previously reported findings. Rasch models for both samples were
estimated using a conditional maximum likelihood estimator. For the assessment of item
fit, z-transformed Q-indices (Rost & Davier, 1994) as well as Infit and Outfit statistics
(Linacre, 2010) were applied. Item difficulties and fit statistics for the two samples are
summarized in Table 5.2. Three items in the German sample and 8 items in the Russian
sample showed some misfit on at least one of the three fit indices. Especially overfit in
terms of the Q statistic was detected, i.e. items fit the Rasch model “too well” in sense
of an almost Guttman-like deterministic answer pattern for theses items. No deviations
from Rasch-scalability were detected based on the Infit statistic. All values lie in the
range [0.5, 1.5] and can, therefore, be considered productive for measurement (Linacre,
2010). Interestingly, the items that show some degree of Rasch misfit are largely not the
same items that were flagged in the study by Zeuch (2011).
Item difficulty parameters for the total sample of Russian test-takers were compared

with parameters for the previously described subsamples of test-takers to account for
possible differences due to frequent choices of the “not solvable” option. Sum-normed item
difficulty parameters for the two subsamples were highly correlated with the parameters
from the full sample (r = .992 for the lenient cut-off, r = .982 for the strict cut-off) with
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no indication of systematic bias in parameters for the full compared to the two reduced
samples (see Appendix for the exact values and a scatterplot). The average absolute
difference in in sum-normed item difficulty parameters was 0.081 logits for the lenient
cut-off and 0.126 logits for the strict cut-off. Based on these results it seems very unlikely
that there are any systematic differences regarding the item difficulty structure based on
the more frequent choice of the “not solvable” option in the Russian sample.
The correlations displayed in Table 5.3 show that no gender differences were present

for the LST, whereas response time was substantially related to test performance in both
samples, indicating that high achieving subjects were spending more time to answer the
items than subjects pertaining lower reasoning ability. Performance on the LST was as-
sociated with general cognitive ability and not correlated substantially with any of the
Big Five personality factors in both samples. Subjects with higher CFT scores also solved
more LST items correctly. In general, the patterns of correlations were very similar in
the German and the Russian sample. The impact of SUDOKU knowledge on LST perfor-
mance differed between the two samples. The correlation of prior SUDOKU experience
with test performance was high for the German test-takers, but lower in the Russian
sample. All statistics were calculated again for the subsample of the Russian test-takers.
Results showed that there were no considerable differences in the pattern of correlations
between this subsample and the full Russian sample. Based on this finding, subsequent
analyses were run on the full Russian sample. Note that, the analysis summarized in
the previous section was to estimate the degree of cross-cultural validity of the LST, not
to identify or exclude misfitting items in any of the two samples. If automatically and
computerized and “on-the-fly” generated new LST items were to be administered as part
of an operational assessment, a necessary assumption would be that all items that passed
the generation process had sufficient statistical properties.

5.3.2. Item difficulty modeling for the two samples

In order to test whether the same cognitive model was suitable to model item difficulties
in both samples (i.e., whether construct representation was given in both samples), an
LLTM modeling strategy based on item facets defined by RC Theory was applied in line
with previous LST applications (e.g., Zeuch, 2011). Two different LLTM model variants
were estimated. The first model (LLTM 1) was an LLTM that included only the three
relational complexity parameters (i.e., binary, ternary, and quarternary processing). This
model could be directly derived from RC theory and included only the three predictors
that are the core difficulty drivers if RC theory is applied. The sparseness of the model,
however, restricts its explanatory power. Previous applications of the LST (e.g., Zeuch,
2011) have used more complex models that distinguish not only between the three RC
parameters but also take the number of cognitive steps into account. Model 2 is an
LLTM with an extended design matrix that includes 6 item covariates, namely two binary
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Table 5.4.
LLTM with basic design matrix for each sample (Study 3)

Germany Russia

Fixed Effects Est. SE Est. SE

Intercept 3.518∗∗ 0.472 3.055∗∗ 0.573

bin −0.928∗∗ 0.293 −0.746∗∗ 0.351
ter −1.763∗∗ 0.343 −1.913∗∗ 0.420
quar −2.074∗∗ 0.394 −2.336∗∗ 0.478

Random Effects VAR SE VAR SE

s2e(I) 0.321 0.088 0.461 0.131
∆s2e(I) −53.9% −49.7%

s2e(P ) 0.873 0.077 0.519 0.073
∆s2e(P ) ±0.0% ±0.0%

Model fit

n 454 203
ll −7527.189 −3669.660
df 6 6
AIC 15066.377 7351.321
BIC 15091.086 7371.200

Note. ∗p < .05, ∗∗p < .01; Variance components in empty model containing only a constant
and neither person nor item predictors: German sample, item variance: s2e(I) = 0.698 person
variance: s2e(P ) = 0.873; Russian sample, item variance: s2e(I) = 0.917 person variance: s2e(P ) =
0.519

parameters (one step vs. two steps), three ternary parameters (one vs. two vs. three or
more steps), and one parameter for quarternary processing (none of the items in the test
combined more than one quarternary operation in one item, therefore only one parameters
was included here). Results for both models are shown in Table 5.4 and Table 5.5.
Table 5.4 displays parameter estimates for LLTM 1 separately for each country. All three

item facets contributed significantly to item difficulties and the order of the item facet
difficulties was the same across the two data sets. Binary processing was the easiest item
facet. When the relational complexity of a given LST was binary, the logit for a correct
response to the respective item decreased by −0.928 in the German and −0.746 in the
Russian sample. Ternary processing was more difficult, i.e. the logit changed by −1.763
and −1.913, respectively. Relations of the highest complexity level, i.e. Quarternary,
constituted the largest item facet parameters with −2.074 and −2.336. Altogether, the
three item facets explained R2 = 53.9% (Germany) and R2 = 49.7% (Russia) of variation
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Table 5.5.
LLTM with extended design matrix for each sample (Study 3)

Germany Russia

Fixed Effects Est. SE Est. SE

Intercept 3.384∗∗ 0.462 2.956∗∗ 0.569

bin1 −0.421∗∗ 0.280 −0.260∗∗ 0.340
bin2 −0.571∗∗ 0.313 −0.233∗∗ 0.380
ter1 −1.752∗∗ 0.366 −1.857∗∗ 0.453
ter2 −1.960∗∗ 0.424 −2.336∗∗ 0.526
ter3 −2.631∗∗ 0.444 −2.933∗∗ 0.551
quar −2.114∗∗ 0.410 −2.427∗∗ 0.569

Random Effects VAR SE VAR SE

s2e(I) 0.287 0.079 0.419 0.118
∆s2e(I) −58.89% −54.31%

s2e(P ) 0.873 0.077 0.519 0.073
∆s2e(P ) ±0% ±0%

Model fit

n 454 203
ll −7525.622 −3668.086
df 9 9
AIC 15069.244 7354.172
BIC 15106.307 7383.991

Note. ∗p < .05, ∗∗p < .01; Variance components in empty model containing only a constant
and neither person nor item predictors: German sample, item variance: s2e(I) = 0.698 person
variance: s2e(P ) = 0.873; Russian sample, item variance: s2e(I) = 0.917 person variance: s2e(P ) =
0.519

in item difficulties. Item random effect variance could be reduced from s2G(I) = 0.698
(s2R(I) = 0.917) in a model without any item predictor to s2G(I) = 0.321 (s2R(I) = 0.461)
in a model with the 3 relational complexity rules. This amount of variation explained by
the cognitive model is comparable to that reported for some other automatically generated
task types (e.g., Figural Matrices; Freund et al., 2008) but smaller than R2 values reported
previously for the LST when more complex models were used (e.g., Kuhn, 2010).
Table 5.5 shows results for the application of the LLTM in both countries. Not all 6 item

facets contributed significantly to item difficulties in the two countries. Consistent across
the two samples, only the parameters for ternary and quarternary processing reached
statistical significance.The direction of all parameters (also the two non-significant pa-
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rameters for binary) are in line with the hypothesis. Because of the random-effects LLTM
model applied here, standard errors for the facet parameters are very large. The mag-
nitudes of the parameters for Ternary and Quarternary processing are in line with the
assumptions from RC theory. Difficulties increase with the relational complexity (i.e.,
one-step quarternary processing is more difficult than one-step ternary processing), but
also with the number of processing steps (i.e., facet difficulties increase when operations
have to be repeated two or three times). Altogether, the three item facets explained
R2 = 59% (Germany) and R2 = 54% (Russia) of variation in item difficulties. .
In addition to these classical model comparisons of the LLTM and Rasch Model, stan-

dardized absolute errors were analyzed as proposed by Zeuch, 2011: Absolute differences
between Rasch and rescaled LLTM item difficulty parameters were computed and stan-
dardized by dividing them by the standard errors of the Rasch parameters. Detailed re-
sults for the two alternative LLTM models for both samples are provided in the Appendix.
On average, standardized absolute errors denoted to Mbasic = 2.902 and Mext = 2.731 for
the Russian sample, and Mbasic = 4.096 and Mext = 3.649 in the German sample. Larger
values in the German sample are due to the smaller standard errors in this, compared to
the Russian sample, larger sample. These values are in the same range as values reported
by Zeuch (2011) for the same LST items. Unstandardized absolute differences denote to
0.512 (LLTM 1) and 0.468 (LLTM 2) logits for the Russian sample and to 0.480 and 0.426
logits in the German sample, respectively.

5.3.3. Differential item functioning analyses

Uniform as well as non-uniform DIF was analyzed using both IRT and non-IRT methods.
In total, five different methods were applied: Mantel-Haenszel (Mantel & Haenszel, 1959),
Breslow-Day (Breslow & Day, 1980), uni- and non-uniform DIF in the Logistic Regression
framework, and uniform DIF applying Lord’s χ2 statistic (Lord, 1980) based on a 1PL
model. These methods are summarized in detail in the Theoretical Background of this
thesis. These statistics represent the whole range of possible DIF statistics. It was decided
to include multiple different approaches to guarantee that DIF results are not driven by
the assumptions of one specific model used. For instance, Lord’s method based on a 1PL
is based on much stronger assumptions than the contingency-based methods.
All DIF analyses were run for two different grouping criteria. First, item responses for

test-takers from Germany and Russia were compared. This represents the typical DIF
approach where culturally diverse samples are compared (in the following labelled “cDIF”).
Second, item responses for test-takers with and without self-reported SUDOKU knowledge
were compared (in the following labelled “sDIF”). SUDOKU experiences were chosen as a
very narrow operationalization of culture as the amount of shared prior knowledge that
might facilitate reasoning test performance. Results for these analyses are summarized
in Table 5.6 (cDIF) and Table 5.6 (sDIF). In addition to the statistics for five methods,
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cDIF overview

(a) (b)

(c) (d)

(e)

Figure 5.4.
Overview of country-dependent DIF in the LST; (a) MH, (b) BD, (c) Logistic Regression,
Uniform DIF, (d) Logistic Regression, Non-Uniform DIF, (e) Lord
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(a) (b)

sDIF overview

(c) (d)

(e)

Figure 5.5.
Overview of pre-knowledge dependent DIF in the LST; (a) MH, (b) BD, (c) Logistic
regression, Uniform DIF, (d) Logistic regression, Non-uniform DIF, (e) Lord
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several effect size measure are given in these Tables. The Delta scale is used with the
ETS classification for MH and Lord (Holland & Thayer, 1985) and the two alternative
classifications by Zumbo and Thomas (1997) (ZT) and Jodoin and Gierl (2001) (JG) for
the Logistic Regression method. Here, JG represents a less conservative classification
than ZT. Three categories of DIF effects are proposed, i.e. negligible effects (Delta = A),
moderate effects (Delta = B) and large effects (Delta = C). In addition, Nagelkerke’s R2

(Nagelkerke, 1991) is reported for the Logistic Regression methods. Figures 5.4 and 5.4
provide graphical summaries of the DIF effects found. For each method, a scatterplot is
shown that displays Items on the horizontal axis and the respective DIF statistic on the
vertical axis. The horizontal line indicates the cut-off value for this method to flag an
item as DIF.
As a general result, at least one third of the 30 LST items is flagged for DIF on at

least one method for both group comparisons. That is, the amount of DIF in the LST is
substantial. 7 out of 30 items showed large country-dependent DIF effects according to
the ETS Delta scale based on the MH statistic, one of the DIF statistics that is mostly
used in testing practice. 2 out of 30 items showed large pre-knowledge dependent DIF
according to the same criterion. The result that more items are flagged as cDIF than
sDIF was consistently found for the other methods as well. Figure 5.6 plots the number
of methods that flagged an item as DIF for all items for cDIF and sDIF together in one
chart. Items are plotted on the vertical axis, the number of statistically significant DIF
statistics is plotted on the horizontal axis. 10 Items clearly show DIF. These items are
flagged for DIF by three or more of the five methods. None of the items shows sDIF. If a
more strict cut-off is used, almost half of the items, 14, are flagged for cDIF and 5 items
indicate sDIF.

5.3.4. Differential facet functioning analyses

Additionally to the two LLTM models described in the previous section, analyses were
extended to include models with facet*person interaction parameters, i.e. DFF effects
were estimated. In total, 7 different model variants were compared. All analyses were
based on the LLTM with extended design matrix including both cognitive complexity
and processing steps given the better prediction of item difficulties based on this model
(R2 = .539 vs. R2 = .589 for the German sample; R2 = .497 vs. R2 = .543 for the Russian
sample). Estimation results and fit indices for all models are summarized in Table 5.9.
As the interest was in the explicit modeling of specific facet*person interaction effects, a
fixed effects modeling approach was chosen.
Model 1 served as a baseline model. Models 2 and 3 were used to test the cross-cultural

equivalence of item facet difficulties in a broad sense, i.e. whether facet difficulties varied
between the two countries investigated. Models 4 and 5 were used to test the equivalence
of item facet difficulties in a narrow sense, i.e. whether facet difficulties vary between
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Figure 5.6.
Number of items flagged as cDIF and sDIF by the five methods used (Study 3)
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test-takers with or without previous experiences with similar task types. Models 6 and 7
were used to test the equivalence of item facet difficulties both in a broad cross-cultural
and a more narrow pre-knowledge dependent sense. They allow for a direct comparison
of the two sources for possible bias in one model.

1. Model 1 neither included person main effects nor DFF parameters. It was identical
with the respective LLTM model applied to the two samples separately. This model
represented the (null-hypothesis) assumption that DFF was neither present due to
cultural background nor to test-specific prior experiences. Model 1 was considered
the baseline model for all other models that included further predictor variables.
Results were largely in line with the results found in the separate samples. As
summarized in Table 5.9, binary processing overall was less difficult than Ternary
processing), and Quarternary processing had the largest contribution to item diffi-
culties. All item covariates reached statistical significance.

2. Model 2 included an additional dichotomous country indicator as a proxy of cultural
background. This country main effect captured overall mean differences on the
latent ability between the two samples. In alignment with the findings based on sum
scores reported in the previous section, results indicated that solution probabilities
differed significantly between the two samples: the difference in the logit for a
correct response is −0.529 (p < .001). Model fit improved by adding the latent
regression parameter to the LLTM model: AIC and BIC statistics are consistently
smaller compared to model 1. The direction of the country effect is consistent with
well-documented findings in the literature that DIF effects usually favor test-takers
from the country where the test was designed and initially tested and calibrated.
There have been numerous studies using the LST in Germany and the items used in
this study were initially developed for a German sample, but no studies have been
conducted in Russia before.

3. Model 3 tested DFF based on the comparison of individuals from the two culturally
diverse samples. In addition to the country main effect in Model 2, this model
contained additional facet-by-country interaction effects for each item facet, i.e. 6
additional parameters. When interaction effects are included in the model, the
country main effect is reduced but still statistically significant. The effects are
rather small and only partly significant. The direction of these DFF effects is less
clear than expected based on the cognitive complexity model. While two-step binary
processing is facilitated for Russian test-takers, multiple-step Ternary processing and
Quarternary processing are facilitated for German test-takers. Information criteria
and LR tests for the comparison of models 2 and 3 showed that the inclusion of
interaction parameters could only partly improve model fit. A model without DFF
does not necessarily fit worse than a model comprising DFF effects. According to
these results, the functioning of most item facets is not or only minor affected by
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the broad cultural factors captured in the country indicator. While AIC was was
smaller for model 3 compared to models 1 and 2, BIC favored the sparser model 2.

4. Model 4 had the same number of parameters as Model 2 but included Sudoku
experience as a proxy of prior experience with similar tasks instead of the country
indicator. This effects is significant (p < .001) and slightly larger than the country-
related main effect. Results show that solution probabilities depend considerably
on the presence or absence of Sudoku experience: the value of the logit increased
by 0.637 when a test-taker has played Sudoku puzzles before. A comparison of this
model with Model 2 indicated that Model 4 showed better model fit both in terms
of AIC as well as BIC, i.e. prior test experience appeared as a better predictor for
solution probabilities in the LST than broad cultural background.

5. Model 5 contained additional facet-by-Sudoku interaction parameters for each item
facet, i.e., six additional parameters. This model was specified to test DFF based on
the comparison of individuals with and without Sudoku experience, i.e. individuals
with and without prior experiences with similar tests. Whereas the main person
effect for Sudoku experience remained significant, none of the facet-by-Sudoku in-
teraction parameters reached statistical significance or any meaningful effect sizes.
Accordingly, model fit did not clearly improve when DFF (i.e. interaction) param-
eters were added to the model comprising only a Sudoku main effect.

6. Model 6 estimated solution probabilities as dependent on both pre-knowledge and
cultural background, i.e. two latent-regression parameters were added to Model
1. Results indicated that item performance depended on both person variables;
the unique contributions of both predictors were smaller than in Models 2 and 4,
i.e. Sudoku experience and cultural background were not uncorrelated. In direct
comparison, the linear predictor for Sudoku experience was higher than for culture.
This is the case for the two LLTM models with different complex design matrices.
In terms of information criteria, model fit statistics for model 6 were superior to
both models 2 and 4.

7. Model 7 tested DFF based on the combination of the two person predictor variables,
Sudoku experience and cultural background. When both factors were included si-
multaneously, only 3 out of the 14 additional parameters reached statistical sig-
nificance: Sudoku experience had a major impact on item difficulties with a facet
parameter > 0.5 on the logit scale. Cultural background per se had no signifi-
cant impact on solution probabilities, two-step Binary processing favored Russian
test-takers and Quarternary processing was facilitated for German test-takers.

Out of all 7 models, Model 6 showed the best fit in terms of both AIC and BIC. A LR
test for the comparison of model 6 and model 7 misses statistical significance at the 1%
level (∆χ2(12)=24.460, p = .018) That is, in relation to the large number of parameters in
this model, the increase in model fit is rather small. Model 6 represents the assumption
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Figure5.7.
Cross-culturalDFFintheLST(Study3)

Note. Logitsarefacetdifficultiesforindividualsfromeachofthetwoculturalgroupsbasedonjoint

DFF-LLTM;bin=Binaryprocessing,onestep;bin2=Binaryprocessing,twosteps;ter1=Ternary

processing,onestep;ter2=Ternaryprocessing,twosteps,ter3=Ternaryprocessing,threeormore

steps,quar=Quarternaryprocessing

ofexistingcountryandpre-knowledgemaineffectsbutnoDFF;Model7estimatesmain
effectsandDFFeffects.Table5.10summarizesallfitindicesforthe7differentmodels
thatwereestimated.Figure5.7displaystheDFFeffectsinthecurrentstudybasedon
themostcomplexDFF-model(Model7).InordertofocusontheDFFeffects,main
effectsarenotplottedinthisFigure.ItcanbeseenthatDFFeffectsarerelativelysmall.
Thepatternofitemfacetdifficultiesisverysimilarinthetwocountries.Itcanbeseen
thatthereisnocleardirectionofDFFeffects,i.e.notallfacetsarefacilitatedforthe
samecountry.

InordertotestwhetherfacetlevelanalysescouldhelptoidentifyDIF,DFFresults
werecomparedtothe“classical”DIF-analysespresentedintheprevioussection. While
theDFFeffectsreportedaboveindicatedmostlytheabsenceofconsiderablebiasdueto
specificitemfacets,DIFparametersindicateaconsiderableamountofDIFintheLST
scoresofGermanandRussiantest-takers.8to12(dependingonwhetherlenientorstrict
cut-offswereused)outof30items(atleast25%)showedDIF.BasedontheDFFeffects
andthedesignmatrixunderlyingtheLSTversionappliedhere(seeAppendix),rescaled
DIFeffectswerecalculatedinasimilarwayasrescaleditemdifficultiescanbecalculated
basedonLLTMparameters.ThevectorofDFFparametersismultipliedwiththedesign
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matrix so that, for each item, the resulting DIF parameter reflects the sum of all DFF
effects present in the respective item:

Predicted DIFi =
K∑
k=1

γkXik (5.1)

Here, K is the number of item radicals or facets specified in the explanatory model.
γk denote weights for the interaction of item facet difficulties with group membership.
The person group-membership variable Zp is not included in the calculation of predicted
DIF values as DIF is predicted for items and not for persons. These rescaled values are
values on the same logit scale as the “original” item difficulty parameters. That is, a value
of Predicted DIFi = 0.5 means that the difficulty parameter for this item is shifted by
half a logit for the focal relative to the reference group. If DFF “helps to explain the
DIF effects more substantively” (Xie & Wilson, 2008, p. 414), rescaled DIF parameters
should be higher for items that are flagged as DIF items when classical approaches are
used. Table 5.8 includes the predicted DIF effects based on the LLTM with extended
design matrix (LLTM 2). While, for some items (e.g. Items 14 and 15) higher values go
along with DIF results on the other methods, this is not the case for other items. For
instance, DIF should be expected for item 8 based on DFF parameters, but no DIF is
found. On the contrary, item 3 pertains DIF according to all traditional methods, and no
DIF would be expected based on the linear combination of DFF parameters. For practical
purposes, it must be concluded that actual DIF statistics could not be predicted by DFF
parameters or a combination of these parameters. This finding indicates that important
item characteristics that are causal for DIF have not (or not sufficiently) been captured
in the design matrix used here. This might point to more general problems with the item
difficulty model for the LST.

5.3.5. Qualitative analyses of DIF in LSTs

In order to identify sources that might have caused DIF in the current application of the
LST, all 30 items of the LST were investigated qualitatively in detail. Items that were
flagged as DIF items were inspected with special attention and compared to items that
did not manifest DIF. Here, only country-dependent DIF effects were analyzed, given the
almost complete absence of DIF for the groups differing in their SUDOKU experiences. In
several cases, DIF and non-DIF items shared exactly the same item radicals as specified in
the item-difficulty model. Table 5.8 summarizes information on the three item complexity
parameters and the incidentals that were manipulated explicitly during item generation
(cf. previous publications on the generation of LST items, e.g., Birney et al., 2006) along
with an indicator of DIF for each item. These item characteristics are color, size, and
solvability. The color of the LST could vary in the sense that some items contained
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figural shapes that were filled in different shades of grey while other items contained only
shapes with no/white filling (see e.g., Figure 5.8). The parameter size was varied by
including LSTs of dimensionality four as well as LSTs of dimensionality five. LSTs of
higher dimensionality have been shown to be more difficult than lower dimensional LST
items (e.g., Gold, 2008). LSTs of higher dimensionality allow for the combination of more
rules. Solvability refers to the distinction of items with a correct solution and items that
do not have a correct solution. Two different criteria for DIF are given in Table 5.8: based
on the number of DIF statistics that reached statistical significance, a lenient flag was
assigned when three or more methods indicated DIF in an item, a more strict flag was
assigned when two or more methods indicated DIF in an item.
Results from this table indicate that neither the three item radicals nor the three inci-

dentals are linked to the presence or absence of DIF in the LST. From Table 5.8 it can
be seen that the distribution of Binary, Ternary, and Quarternary items is very similar
across items flagged as DIF and non-DIF items. On average, non-DIF items contain 0.88
Bin, 1.63 Ter, and 0.31 Quar steps, For DIF items these numbers are 1.14 Bin steps, 1.07
Ter steps, and 0.29 Quar steps (based on the strict criteria for DIF). That is, DIF items
contain more Binary, but less Ternary and Quarternary steps. This finding does not go in
line with the assumption that cognitively more complex operations are more prone to DIF
as expected based on the cognitive complexity model. Also, no clear pattern of differences
in the incidental parameters Solvability and Size given in Table 5.8 seemed apparent from
the data. 13% of the non-DIF items and 13% of the DIF items were not solvable, 50% of
the non-DIF items and 43% of the DIF items were 5 × 5 matrices instead of 4 × 4. The
proportion of items with white elements (vs. filled elements) among the items flagged
as DIF was higher, though (64% vs. 37%). This might indicate that items with clearly
distinct figural elements might enhance the psychometric quality of the items. However,
this trend is, as all other effects above, not statistically significant (p > .05).
However, the qualitative analysis of the LST items revealed other potentially causal

factors for DIF. Two surface characteristics were identified that apply to most of the
DIF items but not to most of the non-DIF items. First, some items allowed for the quick
exclusion of all but two response alternatives, thereby increasing the chance of picking the
right answer by chance considerably. Second, some items allowed for the identification
of the correct response alternative without considering any other element, simply by
using a falsification strategy. These two characteristics, labelled “reduction of response
alternatives” (H1) and “easy falsification” (H2), are included at the righthand side of Table
5.8. The proportion of DIF vs. Non-DIF items allowing for the application of either of
the strategies is three times higher for H1 and four times higher for H2. Both effects are
statistically significant (H1: χ2(1) = 4.739, p = .029; H2: χ2(1) = 5.000, p = .025). The
underlying qualitative analyses are summarized in more detail in the following section.

173



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

DIF

No DIF

Figure 5.8.
LST items that allow or not allow for the application of a quick exclusion of response
alternatives strategy (Study 3)

All items flagged as DIF were analyses qualitatively and compared with items not
flagged as DIF. Here, the ETS delta criterion based on the MH statistic was used as a
criterion for DIF. Items where flagged as DIF when Delta=C.
First, some items allow for the quick exclusion of all but two response alternatives,

thereby increasing the chance of picking the right answer by chance considerably. If some
test-takers show a higher willingness to guess than others, for instance, independent of
their ability, it is likely that this might cause specific response patterns especially in such
items but not in items with a larger number of reasonable response alternatives. As
shown in Figure 5.8, items 3 and 4 both allow for such a quick reduction of the number of
response alternatives, whereas items 5 and 6 do not. The green highlighted cells indicate
the minimum number of elements that are viable possible responses when only the already
filled cells in the respective row or column or inspected. That is, if a test taker completely
ignores the complete matrix and just focuses on this one row or column, the chance of
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DIF DIF

Figure 5.9.
LST items that allow for application of a quick falsification heuristic (Study 3)

solving an item correctly just by guessing is not the same for items 3 and 4 versus items
4 and 6. The ETS delta statistic indicates DIF for Items 3 and 4 but not for items 5 and
6. In terms of their cognitive complexity as determined based on RC theory in the item
difficulty model applied here, the cognitive complexity of all four items should be very
similar, that is, if cognitive complexity is a causal factor for DIF, all four items should
demonstrate comparable amounts of DIF.
Second, some items allow for the identification of the correct response alternative with-

out considering any other elements, simply by using a falsification strategy. For instance,
items 14 and 15, both flagged for DIF, can be solved by identifying the correct alternative
as the only element that can possibly fill the empty cell with the question mark (see Figure
5.9), notably while at the same time ignoring the possibility that the item might be an
item that has no correct solution. It is plausible that these items draw the test-taker’s
attention to a falsification strategy focusing on one shape only because only few cells in
the matrix are filled out and most shapes are arranged in one part of the matrix (e.g. all
in the right lower corner in item 24). If a test-taker, on the other hand, tries to solve these
items by mentally filling in all elements in the row or column with the question mark,
solving this item will be much harder; moreover, if a verification strategy is followed, it is
sheer not possible to fill in all cells unequivocally. This distinguishes items 14 and 15 from
most of the other items in the test and might be one cause for DIF in these items. Because
of the availability of this rather simple strategy, the cultural complexity of these items is
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No DIFDIF

Figure 5.10.
LST items that allow both for a quick reduction of response alternatives and for application
of a falsification heuristic (Study 3)

stronger relative to their cognitive complexity compared to items where such strategies
are unavailable.
Items 24 and 29 in Figure 5.10 fulfill both of the aforementioned surface characteristics.

Only two response alternatives need to be considered for the solution even though a LST
of dimensionality five is used here. In combination with a falsification strategy, the correct
element can be identified without mentally “filling in” other elements in other columns or
rows. According to the design matrix based on RC theory for the LST, item 24 requires
one ternary and one binary step. As illustrated in Figure 5.10, however, this item can
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be solved by simply crossing out response alternatives. The availability of completely
different, equally successful, solution strategies might be one generating factor for DIF
that is not reflected in the theoretically assumed structure of item difficulties based on
the RC approach only. The same is true for item 29, yet this item is not flagged for DIF.
A deeper comparison of item 24 and item 29 reveals that item 24 might draw the test-
taker much stronger towards quickly excluding a majority of response alternatives. Here,
not only the row with the question mark contains only 2 empty cells; also a neighboring
column is filled out completely but for one cell. This is not the case in item 29. Here, the
four shapes that are present in the LST are also distributed more widely across the whole
matrix, making it less obvious for the test-taker what options to exclude in a first step.
Items 22 and 25 share the same radicals as items 24 and 29 but show neither of the

aforementioned surface characteristics. Both items are free from DIF. Here, the maximum
number of response alternatives that can be excluded by considering the number of already
filled out cells is 2, leaving at minimum 3 response alternatives that need to be further
considered during the solution process. Also, the shapes that are present in the LST are
distributed across the whole matrix. Using one of the simple heuristic strategies cannot
lead to the correct solution easily here.
As these additional qualitative analyses of the DIF and non-DIF items shows, many

characteristics of the items that determine their visual appearance and thereby also their
overall complexity are not covered by the item-radicals specified in the RC-theory based
item difficulty model. This misspecification of the design matrix might be an explanation
for the poor explanatory power of the LLTM models applied, both for the prediction of
item difficulties and for the prediction of differential item functioning. While the item-by-
facet interaction parameters can account for less than 10% of variation in DIF statistics, a
classification of LST items regarding the applicability of the two rather simple heuristics
described above each can explain considerable amounts of variation in DIF operationalized
by the ETS delta statistic (χ2

reduction(2) = 5.970, p = .05, η = .446; χ2
falsification(2) = 8.061,

p = .02, η = .504). The cross-tables for these analyses can be found in the Appendix.

5.4. Discussion

The present study was designed to fill the gap between studies on cross-cultural bias and
rule-based AIG by testing the cross-cultural applicability of an item-generative frame-
work based on relational complexity theory. One reason that only very few studies have
examined content-related causes of cross-cultural differences in test performance is that
most instruments used in educational and vocational assessment lack a strong underlying
theoretical framework available concerning content-related sources of DIF. The genera-
tion of reasoning items “on-the-fly” based on a set of item radicals or item templates
that are cloned by varying surface characteristics pre-assumes (a.) that item difficulties
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No DIF No DIF

By row

By column

Figure 5.11.
LST items that allow neither for a quick reduction of response alternatives nor for ap-
plication of a falsification heuristic; ‘by row” indicates what response alternatives can be
excluded when only the currently present elements in the row with the question mark are
inspected, “by column” indicates what response alternatives can be excluded when only the
currently present elements in the column with the question mark are inspected

for structurally identical items are identical, and (b.) that all clones based on a certain
item type are equally valid for different groups of potential test-taker. Especially when
test-takers from different countries or different cultural background are tested, it is im-
portant that items do not show DIF. The capability of an item-generation framework to
generate DIF-free items is especially important for measures of fluid intelligence given
that the largest cross-cultural differences on cognitive tests have been reported in fluid
reasoning measures (e.g., Brouwers et al., 2009; Carroll, 1993; see also Jensen, 1998 or
Hartmann et al., 2007; Lynn & Owen, 1994; Te Nijenhuis & van der Flier, 2001). At
the same time reasoning measures are among the most relevant psychological tests used
in the workforce (e.g., Ones et al., 2005; Schmidt & Hunter, 1998). If factors could be
identified that increase the likelihood of items of a certain type to pertain or not to pertain
DIF, this could enhance the feasibility of fully computerized automatic item generation
and assessment systems tremendously. Such factors for DIF can, theoretically, refer to
either typical structural complexity parameters (i.e., radicals) of test items (representing
the assumption that cognitive complexity is one important factor for DIF) or to surface
differences in the layout of the items (i.e., incidentals) that are not directly linked to the
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structural complexity of the items (representing the assumption that cultural complexity
is an important factor for DIF). The current study investigated how both structural and
surface characteristics of a widely used item type, the Latin Square Task (LST), could be
linked to the emergence of DIF in these items.

5.4.1. Conclusions regarding the research questions

Two main research questions were addressed, first the cross-cultural validity of the LST
was investigated in terms of its measurement properties and the pattern of relationships
with other cognitive and noncognitive variables. Second, Differential Item Functioning as
an indicator of Item Bias was tested for the LST, along with a detailed qualitative analysis
of DIF items in terms of their structural and incidental item features. Data was collected
from two culturally diverse populations of Russian and German university students. In
order to answer whether factors for performance differences between cultures could be run
down to specific content-related factors or were more related to broad cultural variables, it
was made use of the similarity of the LST and the worldwide popular SUDOKU puzzles.
The resemblance of the two tasks allowed to compare pre-knowledge dependent DIF with
culture-dependent DIF in an ecological quasi-experimental setting.
First, it was investigated whether the same construct was measured with the LST

in both countries, i.e. whether there was a general construct-bias that would render any
subsequent DIF analyses very complicated. The results for Rasch model and correlational
analyses for both countries supported the absence of considerable construct bias. Overall
performance on the LST was substantially related to general cognitive ability as measured
by the CFT. Correlations were nearly identical in the two samples. Correlations with
grades and response times were all substantial and nearly identical in both samples as
well. As expected, SUDOKU knowledge was positively associated with LST performance.
However, this correlation was much stronger in the German sample (r = .34) than in
the Russian Sample (r = .19), indicating that SUDOKU knowledge per se might be
qualitatively not identical in the two samples. At the time of test administration, in
Germany, SUDOKU was much more popular than in Russia with for instance considerably
more newspapers and magazines providing free Sudoku puzzles. Also the proportion of
test-takers that had played Sudoku before was significantly higher in the German sample
(i.e., there was a wider range of pre-knowledge in this sample). LST performance was
not related to unspecific experiences with cognitive ability tests. The same applies to
associations between the LST and the “Big Five” dimensions of personality; this finding
is consistent with the assumption that there are no major differences in the structure of
personality factors across cultures (e.g., McCrae & Costa, 1997). In sum, these findings
show that, in terms of criterion-related validities, the same construct was measured with
the LST in the two cultural samples as well. That is, there was no indication for predictive
bias (cf. Van de Vijver, 2002) of the LST.
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Second, DIF analyses representing both IRT and non-IRT approaches were applied to
test the cross-cultural comparability of the LST. Different models were estimated to test
the proneness of the item-generative framework to both broad cultural biases as well as
bias caused by different levels of task-relevant pre-knowledge. Pre-knowledge-dependent
DIF effects were marginal and mostly not statistically significant. This is an important
finding because it indicates that practice with similar item types as item types used in
actual assessments, in this case the popular number-placement game SUDOKU, does not
diminish the validity of the cognitive measures. Higher scores on the LST for students
pertaining previous SUDOKU experiences do, in fact, point to higher ability levels of these
students, and not to item bias that is unrelated to the underlying ability. While items
showed favorable characteristics when test-takers with and without SUDOKU experiences
were compared, results for country-specific DIF revealed serious problems with the cross-
cultural applicability of the LST. Around one third of all test-items showed substantial
DIF effects, meaning that comparisons of scores on these items from test-takers with
different cultural backgrounds cannot be interpreted as valid indicators of differences in
the underlying ability. Based on the cognitive complexity model, it was expected to find
that DIF effects would be related to the cognitive complexity of the items as defined by
the pre-specified item radicals, Binary, Ternary, and Quarternary processing. However,
results did not support this expectation.
Differential facet functioning (DFF) analyses have been proposed as a means to under-

stand the generating processes for DIF better (Xie & Wilson, 2008). Yet, no published
studies have actually demonstrated this benefit in a practical sense, i.e. for the prediction
of DIF items in real-world testing settings. Results from the few existing studies have been
very vague and not satisfactory. The latter is also true for the current study. DIF effects
could not be predicted by any of the DFF models applied to data from two culturally
diverse samples. Whereas a considerable number of items showed DIF according to clas-
sical DIF indicators, DFF effects were (a) very small in magnitude and (b) inconsistent
with the results of the former. While DFF effects seemed to show a clear picture when
inspected isolated, their correspondence with DIF findings was not given. When DFF pa-
rameters were used to calculate expected DIF based on the design matrix, items showing
higher values on this expected score were not the items actually showing DIF in terms
of both IRT and non-IRT methods. Based on the current data, it cannot be concluded
whether this results indicate a general lack of predictive power of the DFF model, or
whether the lack of predictive power is due to the relatively poor explanation of variation
in item difficulties of the LST by the LLTM, i.e., a design matrix mis-specification. In
any of these two cases, DFF results should be interpreted only with great caution. Given
that the predictive power of the LLTM models in this study was low, but not lower than
those reported for other reasoning item types (cf. e.g., Freund et al., 2008), it must be
concluded that the practical value of DFF analyses for applied testing and item generation
settings seems not to hold up to the expectations.
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The additional qualitative analyses of DIF items in this study further indicated that
it might be item incidentals (here, certain patterns in the surface structure of the items)
rather than radicals in terms of theoretically underlying cognitive processes that drive DIF
effects. First, some items allowed for the quick exclusion of all but two response alterna-
tives, thereby increasing the chance of picking the right answer by chance considerably.
Second, some items allowed for the identification of the correct response alternative with-
out considering any other element, simply by using a falsification strategy. Both of the
two in a post-hoc way identified solution heuristics could explain DIF better than any of
the cognitive facet-by-person interaction parameters included in the DFF models. This
means that special attention should be payed on the design of item surface characteristics
when structurally equivalent items are to be constructed based on item-generation mod-
els. Similar to findings reported about other task types (e.g., Irle, 1969; Mittring & Rost,
2008) the use of test-taking and answer strategies that deviate from the cognitive pro-
cesses assumed by information processing models was found here as well. For the LST, the
underlying cognitive model assumes that test-takers are actually following the logical rea-
soning processes defined by Relational Complexity Theory, and not that test-takers might
simply analyze the sets of distractor stimuli, make decisions based on distinct patterns of
elements in the partly filled matrices, or simply guess what the correct solution might be.
The current study showed that the availability of such simple solution heuristics might
be one reason for the emergence of DIF effects. This is an important finding for future
applications of the LST. AIG or Item Cloning engines should include control mechanisms
for the identification of items allowing for the application of such heuristics to make sure
that test-takers cannot simplify the solution process by deviating from the statistically
modeled cognitive steps. Also, note that the importance of cultural complexity in explain-
ing cross-cultural differences does not imply that cognitive complexity does not matter.
When one of the studied groups has very little experience with certain cognitive tasks
and less training than the other groups in the cognitive abilities reflected in those tasks,
performance of its members is negatively influenced. As as consequence, cross- cultural
score differences are not merely a reflection of differences in familiarity with test content
but also of differences in skills as a result of differences in cognitive ability training. This
implies that research aimed at addressing cross-cultural score differences should take both
explanations (cultural and cognitive complexity) into account and should be careful in
drawing conclusions on the importance of one as compared to the other.

5.4.2. Limitations and future prospects

The findings of this study are only a first step in the full understanding of cross-cultural
differences in test performance of the LST. In order to gain a full understanding of the
cross-cultural fairness of the LST, samples from further cultural populations with greater
differences with regard to educational and economic characteristics could be investigated.
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The mean raw score differences between the German and the Russian samples must
be viewed with caution. The two samples investigated are not representative samples
representing the whole cultural groups. Russian test takers used significantly less time to
work on the LST administered to them. This might point to differences in motivational
states. In addition to this, a robust finding from the data of the current study was
that test-takers from the Russian sample chose, on average, the response category “not
solvable” more often than test-takers from the German sample. A recent study showed
evidence for bias caused by similar response tendencies: Test-takers with a tendency to
skip questions performed significantly worse even if they had the same underlying ability
(Baldiga, 2011). Even though, in the current study, no indication for bias caused by this
pattern among wrong responses could be found, this issue should be investigated more
closely in future studies. The finding demonstrates that reaction to distractor stimuli
can also provide meaningful insights into person characteristics (cf. also Study 1 in this
thesis).
In addition to the methods applied so far, it would be interesting to use specific methods

(e.g. think-aloud protocols) to take a deeper look into the strategies, that test-takers use
explicitly during test completion in order to gain a better understanding of why SUDOKU
knowledge has such strong impact on LST test performance. As shown by Lee et al.
(2008), performance on complex SUDOKU items strongly depends on the familiarity
with the relevant strategies how to solve that type of item. Correlations between actual
Sudoku performance and LST performance could provide a more comprehensive picture
of similarity and differences between the two task types as well.
Replications with larger samples and more than two cultural groups could be bene-

ficial to cross-validate our findings with regard to the ordering and absolute height of
facet*person interaction effects. This might also comprise the investigation of LST items
of higher difficulty level. The 30-item LST used in this study is a relatively easy test
version. Difficulty can be increased by using Latin squares with higher order (i.e. more
rows and columns), thereby increasing the working memory load and allowing for more
combinations of item facets. Successful construction of bigger LSTs was described by Gold
(2008) who used order-6 Latin Squares and could show that item difficulty increased while
item quality was still good.
The two identified solution heuristics related to item surface characteristics should be

further investigated. In the current study, these heuristics have been identified in a
post-hoc way by a qualitative analysis of items that showed DIF and a comparison with
non-DIF items. Future studies could study these item characteristics more thoroughly.
This could involve a systematic manipulation and inclusion in the item-difficulty model
(i.e., the design matrix) or a consequent elimination and empirical comparison of test
forms with and without such items. Other person predictors could be included in the
item-difficulty model as well, such as specific strategy knowledge and the tendency and
ability to actually use relevant strategies in the testing situation.
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In sum, the findings of this study contribute to future studies using LST type items.
This study marks an important step on the way to establishing fully computerized adap-
tive test systems. If DIF-generating item surface characteristics can be controlled during
the item-generation process, LST items seem to be a good candidate item type for such a
test system. Future studies need to cross-validate the findings of this study and should in-
vestigate the impact of the identified heuristics on statistical item properties more closely.
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Table 5.10.
Model fit indices for the different DFF-models (Study 3)

Model 1 Model 2 Model 3 Model 4 Model5 Model 6 Model 7

N 657 657 657 657 657 657 657
ll −11648.118 −11625.685 −11615.635 −11610.796 −11607.844 11595.804 −11583.574
df 6 7 13 7 13 8 20
AIC 23308.236 23265.370 23257.270 23235.592 23241.688 -23175.608 23207.148
BIC 23335.162 23296.784 23315.610 23267.006 23300.028 -23139.707 23296.902

Note. Fit indices printed in boldface indicate best model fit across the competitive models.
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6
Epilogue

With this thesis, “Measuring Reasoning Ability: Applications of Rule-Based Item Gener-
ation”, two general research goals were addressed through three empirical studies. First,
this thesis aimed at further investigating the usefulness of item-generation models, specif-
ically the class of explanatory IRT models, in predicting item difficulties under various
conditions and for different types of reasoning measures. The second goal was to show
the benefits and limitations of item-generation models for a deeper understanding and
improvement of construct validity. The first two studies concerned the construction and
validation of two new instruments, the Figural Analogy Test (FAT), and the Number
Series Test (NST). The third study represents an application of a previously validated
reasoning measure, the Latin Square Task (LST), in a cross-cultural setting. Each of the
three studies contributes to different extents to the two main research goals. An overall
goal of this thesis was to develop new item-generative frameworks that provide a basis for
automatic generation of test items to be included in future computerized adaptive testing
software. Future studies might use a currently being developed software that allows for
the automatic on-the-fly generation of items for all three instruments (i.e., FAT, NST,
and LST) described in this thesis.
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6.1. Prediction of item difficulties by means of
explanatory IRT models

From an applied point of view, rule based AIG comes along with the promise to provide
a framework allowing for the prediction of item difficulties in practical assessment situ-
ations. When explanatory IRT models could be used to predict item difficulties based
on a pre-specified matrix of task parameters calibration of individual items is, in theory,
not necessary anymore and a (more or less) endless universe of possible test items with
known psychometric properties could be generated on-the-fly (i.e., during test adminis-
tration). Here, two aspects need to be highlighted: first, predictions of item difficulties
for actual rule-based generated tests have turned out by far less perfect than expected “in
theory”. Second, the large number of constraints that apply to the free combination of
item radicals to generate new items makes the universe of possible test items by far less
“endless” than one might hope for. The number of constraints of the generation model
often limits the sheer number of possible radical combinations and thereby the number of
theoretically differently difficult item families.
The two new item generation-frameworks devoted special attention to reduce the num-

ber of constraints regarding the possible combinations of item radicals in order to allow for
generation of items covering the full item difficulty continuum. With sets of, when consid-
ered alone, relatively simple logical rules both new item-generation frameworks succeeded
in allowing for the generation of items of low, medium as well as high difficulty. This is
an important requirement for the use of these frameworks in high-stakes and/or adaptive
testing situations. Paper-pencil administrations were conducted for the studies presented
here. A computer-based item-generation and test-administration will be possible with a
software package that is currently under development. Item-generative rules for the FAT
and the NST were outlined in the necessary detail to allow future fully automatic item
generation based on the specified radicals and incidentals. The two empirical studies pre-
sented can be considered important pilot-studies that demonstrate the general feasibility
of the generation approach.
The two new frameworks provide an excellent basis for generating items and show

reasonable to good — depending on how complex the design matrices specified are —
performance in terms of prediction of item difficulty parameters. The extent to which
facet difficulties are good predictors of item difficulties, ultimately, determines how useful
item-generation approaches are for actual testing settings and how much they can increase
the efficiency of the assessment process. A major factor for the explanatory value and the
power in predicting and explaining item difficulties of the model is the structure of the
design matrix chosen. Classical LLTM applications build on the additivity assumption,
i.e., item difficulty is given by a linear combination of item facet difficulties. Item cloning
approaches focus on the difficulties of certain families of structurally identical items. Re-
sults from study 1 and study 2 showed that the item-generating rules underlying a test
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item alone where not sufficient to achieve an accurate prediction of “true” item difficulty
parameters. Although predicted difficulties and true difficulties correlated substantially
(some authors have introduced the correlation of predicted and true parameters as a
goodness-of-fit indicator for the item-generative model; see e.g., Arendasy et al., 2007;
Freund et al., 2008; Preckel, 2003), the error in terms of the absolute difference in pa-
rameters were tremendous. For some items, errors exceeded values of one logit, meaning
that an item with a true difficulty of 1 could be wrongly classified as an item with a
negative parameter. It has been shown that these values are in the range that have been
reported by other item-generation studies as well (see e.g., Zeuch, 2011), and not due
to extremely bad model fit for the current applications. When automatically generated
and uncalibrated items should be used in a CAT context, this could lead to serious er-
rors in the estimation of person abilities. However, these results could be substantially
improved for both new tests when not only rules alone but also other complexity param-
eters, such as the combination principles that were applied to combine rules in one item,
were added to the explanatory models. Here, both correlative relationships between true
and predicted item parameters as well as errors in terms of absolute differences between
parameters indicated that parameter recovery was very satisfactory. Results from study
2 also showed that a “virtual item model” with a less sparse design matrix that included
one item predictor for each radical configuration instead of only one parameter per rad-
ical (i.e., the design matrix was set up in line with the item-cloning idea) could lead to
very accurate predictions of item difficulties. The results of this study demonstrate that
parallel number series test forms could be constructed based on a generative framework
if sources for heterogeneity in item difficulties were carefully controlled.
These findings point to the need of a more precise definition of the design matrix, in-

cluding surface characteristics and specific item features present in individual item types
in addition to the generating and logical rules. By definition, adding item explanatory
variables to the model must increase the predictive value of the model, in the most ex-
treme case leading to a model with one parameter for each item yielding perfect prediction
(or “description”, cf. De Boeck & Wilson, 2004a). Future studies should investigate effects
of this trade-off between a sparse explanatory model for item difficulties and an accurate
prediction of true item difficulties on the estimation of person abilities more systemati-
cally. In order to achieve item parameter predictions based on explanatory IRT modeling
that are accurate enough to be used in practical testing settings, such as computerized
adaptive testing, there seems no way around specifying complex design matrices that in-
corporate more parameters than “just” the very basic set of logical rules that determine
the structure underlying an item. Study 1 showed that spatial displacement parame-
ters alone could explain around 70 percent of variation in item difficulty parameters for
figural analogy items. Results from study 1 showed that the inclusion of additional com-
plexity parameters (parameters that could have been also conceptualized as incidentals
as they were not related to the underlying logical structure of the analogy) could add
significantly to the prediction of item difficulties, yielding an explanatory power of 86
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percent. By investigating both correlational relationships between rescaled LLTM and
true RM parameters and absolute parameter differences, and by demonstrating consider-
able discrepancies in results depending on the method applied, the studies in this thesis
demonstrated the need of development of better criteria of what “good predictions” of item
difficulties are and when item-generation models provide a sufficient basis for “on-the-fly”
generation of items. The extreme absolute errors in predicting item difficulties for models
that, at the same time, fulfilled criteria for sufficient construct representation mentioned
in the literature (e.g., Arendasy, 2005), point that a new answer to the question what
“good enough” prediction means and how it can be operationalized, needs to be found.
Study 3 looked from a different angle on an established rule-based generated figural

reasoning measure by investigating the degree of Differential Item Functioning (DIF) in
items with defined underlying structure. Specifically the finding was further investigated
that items with identical design vectors did not necessary function the same in a cross-
cultural context. some items showed DIF while others did not. These differences could
not be explained by the underlying cognitive structure of an item. Qualitative analyses
showed that other item features than the ones specified in the design matrix seemed to
be causal for the DIF effects.

6.2. Understanding and enhancing construct validity

The three studies presented in this thesis indicated that explanatory IRT models with
comprehensive design matrices can achieve reliable predictions of item difficulties. How-
ever,If accurate item difficulty predictions are needed, individual item calibrations are still
clearly superior than predictions based on calibrated item facets. However, even imperfect
predictions of item difficulties can be of great benefit to understand item-response pro-
cesses better and enhance construct validity. Whereas classical approaches have defined
reasoning rather idiosyncratically and tested the construct-validity of measures supposed
to measure Reasoning ability only in a post-hoc way by investigating correlations of test
scores with other tests and variables, rule-based item generation approaches allow (and
also force) the test developer to break down test items into their constituting parts, i.e.
item facets. Facet level analyses can be used to test the construct validity of a test by
modeling the internal structure of the tasks. Thereby, item-difficulty models can as well
help to test cognitive theories about human performance (cf. Embretson, 1983).
Theories and findings about analogical and spatial reasoning were used to derive item-

generative rules for a new figural-spatial analogy test, the FAT. Information processing
theories for series completion tasks, specifically previous works regarding number series
tasks, were the basis for the derivation of the item-generative framework for a new type
of number series items, the NST. From the perspective of rule-based item generation as
a means to test and enhance construct validity, both test development attempts clearly
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were successful. For both tests, hypotheses about difficulty-generating item features and
rules could be confirmed.
Spatial displacement rules in the FAT were main drivers of item difficulty in figural

analogy items, and gender-effects were driven by specific item-facets that are related to
more narrow gender-specific abilities: in line with the specific hypotheses item facets
related to mental rotation and application of holistic processing strategies were facilitated
for men. Item facets related to the application of analytic processing strategies were
facilitated for female test-takers. The distinction between radicals representing structural-
logical rules and radicals representing general complexity parameters showed that a major
proportion of item difficulties is produced by the difficulty of the underlying logical rules.
However, general complexity parameters turned out to be of considerable importance as
well. This adds an important facet to the knowledge about difficulty generating processes
for figural-spatial reasoning items. Given the inconsistencies between the height of facet
difficulties and underlying information processing theories reported by previous studies
(e.g., Beckmann, 2008; Porsch, 2007) the results of the studies in this thesis are very
promising. The very detail-focused derivation of item-generative rules and the careful
definition of radicals and incidentals turned out to be necessary in order to describe the
underlying construct accurately. The fact that gender differences could be replicated in
line with theories about gender differences in figural-spatial tasks adds to the validity of
the new framework. Correlations with other measures showed that both general figural
reasoning and specific aspects of spatial reasoning could be captured by the new measure.
Even though the FAT is based on strictly two-dimensional stimuli correlations with the
3DW, a three-dimensional mental rotation test, showed substantial overlap between the
two measures. Regarding the prediction of grades, the new measure showed incremental
validity beyond the explanation based on the CFT and the 3DW.
Item difficulties of the NST were predominantly determined by the relational complex-

ity of two consecutive numbers. Complexity levels could be manipulated considerably
by combination of a set of relatively simple arithmetic rules requiring only addition and
subtraction. This helped to solve several of the problems described in previous studies.
By relying on simple arithmetic operations only, a true reasoning measure (instead of a
test of arithmetics) could be developed. Also, problems such as the problem size effect
(cf. Ashcraft, 1992) could be avoided by constraining the range of possible numbers and
mathematic operations. Most notably, the new item-generative framework presented a
solution to how number series can be generated that are built based on exactly the same
logical operations for each pair of neighboring numbers. Existing number series tests
have used a sequential combination of rules to produce complexity (e.g., Amthauer et
al., 2001), thereby — as a side-product — creating number series with increased period
lengths and breaking points that allow the experienced test-taker to apply a number of
facilitating test-taking strategies. However, the difficulty of a number series can only be
defined unequivocally if the operations that need to be performed are exactly the same,
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no matter whether the sixth or seventh, or eighth element has to be derived. Only in this
case do test-takers need to represent all logical rules and cannot solve a series by relying
on heuristics, such as difference- or ratio-strategies (cf. Irle, 1969). In the new item-
generative framework, the logical rules between every pair of neighboring elements are
exactly the same. This also allows for alternative, innovative item presentation modes.
For instance, a series could be presented with any (and not necessarily the rightmost)
element missing — an idea that could be investigated empirically by future studies. The
item-generative framework was shown to be relatively robust against irrelevant surface
patterns in the numbers caused by random incidentals. After a warm-up run, item dif-
ficulties could be predicted very reliably for two parallel test forms. The demonstration
of psychometric equivalence of items with the same underlying theoretical structure is an
important accomplishment for the construct validity of the NST.
Results from the third study confirmed the cross-cultural validity of the LST in a broad

sense but also pointed to problems with the functioning of individual items in a cross-
cultural context. Analyses indicated that the same construct was measured with the LST
in both populations. However, a considerable number of items showed DIF, indicating
that test-takers with the same value on the latent ability continuum did not have equal
chances of answering such items correctly. Analyses indicated that bias might be caused by
item incidental parameters rather than by item radicals. The expectations of the cognitive
complexity approach, that more complex operations were more prone to DIF, could not
be confirmed. With regard to the bias-generating processes, the DIF results suggested
that bias was caused by broad cultural variables that cause differences between the test-
takers from the two countries, and not predominantly by test-specific context variables,
here operationalized as experiences with the number-placement game SUDOKU. Results
from Differential Facet Functioning models were used to evaluate cognitive theories on
the emergence of item bias. The predictive power of this approach for the identification
of DIF items before the actual test administration was investigated in an empirical study
with data from two culturally diverse samples. Results indicate that more research is
needed to clarify on the benefit of facet-level DIF analyses.

6.3. Limitations

In addition to the limitations mentioned in each of the three studies, the conclusions of
this thesis are limited in several ways. Not all tests involved long warm-up runs. Results
of study 2 show that the role of warm-up runs seems to be by far more important than
one might expect with large effects after the initial warm-up run. The fact that only few
warm-up items were used in studies 1 and 3 constitutes a major limitation for these stud-
ies. Future studies need to investigate this and test whether findings reported here might
be biased due to the lack of long warm-up runs. This should involve also a more extensive
study of the effects of prior relevant knowledge and an investigation of the specific transfer
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effects that occur when knowledge gained through certain everyday experiences is applied
to tasks in a testing situation. With regards to the cross-cultural research questions inves-
tigated, this thesis only made a first step towards validating AIG models in multinational
applications. Studies with more than two cultural groups are needed and would consti-
tute important extensions of the work presented here. The DFF results presented need
to be extended to fully clarify on the relationships between DIF and DFF. Simulation
studies might be a way to proceed here. Further, future studies should investigate the
technical feasibility of the new item generation approaches for large-scale or high-stakes
assessments of reasoning ability. The suitability of the statistical item difficulty model to
predict item difficulties of on-the-fly generated test items in computerized adaptive testing
(CAT) needs to be demonstrated. A further test of the prediction of item parameters by
the recently proposed variants of Item Cloning Models (ICM; e.g.Geerlings et al., 2011)
would be very useful. If a larger number of parallel item “clones” could be administered to
a larger sample of test-takers, item family parameters and within-family variances could
be estimated by Bayesian models. A test of the robustness of the generation approach
to practice and training effects would be valuable to determine the suitability of the new
Reasoning measures for high-stakes testing applications. After all, a direct comparison
of items generated manually based on a rule-based framework (as the case in the current
thesis) and fully computerized item generation is still pending. An important step will be
to implement relevant quality control mechanisms when fully computerized generation is
used.
While this thesis illustrated some of the most important advantages and issues regarding

the use of AIG, the major result is probably that it must be said that lots of additional
work is needed to solve all remaining questions and establish a sufficient research base
for operational use of AIG in high-stakes cross-cultural testing scenarios. But it is clear
from the findings presented that this additional research seems worthwhile and is not
unlikely, if successful, to fundamentally change the ways cognitive tests are developed
and implemented in the future.
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Appendix

This Appendix contains all actual test items for the newly developed tests as well as
additional figures and tables that summarize analyses that were done in addition to the
main analyses necessary for answering the central research questions. Mostly these are
analyses that were added to investigate the general psychometric quality of the measures
used and the comparability of test scores from the different samples. The Appendix is
structured along the order of the three studies presented.
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FAT01 

FAT02 

FAT03 

Figure A.1.
Figural Analogy Test: Items 1-3
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FAT04 

FAT05 

FAT06 

Figure A.2.
Figural Analogy Test: Items 4-6
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FAT07 

FAT08 

FAT09 

Figure A.3.
Figural Analogy Test: Items 7-9

215



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

FAT10 

FAT11 

FAT12 

Figure A.4.
Figural Analogy Test: Items 10-12
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FAT13 

FAT14 

FAT15 

Figure A.5.
Figural Analogy Test: Items 13-15
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FAT16 

FAT17 

FAT18 

Figure A.6.
Figural Analogy Test: Items 16-18
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FAT20 

FAT21 

Figure A.7.
Figural Analogy Test: Items 19-21
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FAT22 

FAT23 

FAT24 

Figure A.8.
Figural Analogy Test: Items 22-24
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FAT25 

FAT26 

FAT27 

Figure A.9.
Figural Analogy Test: Items 25-27
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FAT28 

FAT29 

FAT30 

Figure A.10.
Figural Analogy Test: Items 28-30
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FAT31 

FAT32 

FAT33 

Figure A.11.
Figural Analogy Test: Items 31-33

223



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

FAT34 

FAT35 

FAT36 

Figure A.12.
Figural Analogy Test: Items 34-36
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FAT37 

FAT38 

FAT39 

Figure A.13.
Figural Analogy Test: Items 37-39
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FAT40 

Figure A.14.
Figural Analogy Test: Item 40

Figure A.15.
Optimal design SAS input file (Syntax)
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Table A.1.
Design matrix for the 40-item FAT investigated in this study

Spatial Displacement Rules Compl. Param.

Item mx my r90 r180 cp1 cp2 tof fp1 rcf

01 0 1 0 0 0 0 0 1 1
02 0 0 1 0 1 0 0 0 0
03 0 0 0 1 1 0 0 0 0
04 0 1 0 0 1 0 0 0 1
05 1 0 0 0 1 0 1 0 0
06 0 0 1 0 1 0 0 0 0
07 0 0 0 1 1 0 1 0 1
08 1 0 0 0 1 0 1 0 1
09 0 1 0 0 0 0 0 1 0
10 1 0 0 0 0 0 1 1 0
11 0 0 0 1 0 0 1 1 0
12 0 0 0 1 0 1 1 0 1
13 1 0 0 0 0 1 0 0 0
14 0 0 0 1 0 1 0 0 1
15 0 1 0 0 0 1 1 0 1
16 0 0 1 0 0 1 0 0 0
17 0 0 0 0 1 1 0 1 0
18 1 0 0 0 0 0 0 0 0
19 0 1 0 0 1 0 1 0 1
20 0 1 0 0 0 0 1 0 0
21 1 0 0 0 0 0 1 1 1
22 0 0 1 0 0 0 1 1 1
23 0 1 0 0 0 1 1 0 0
24 0 0 1 0 0 1 1 0 1
25 0 1 0 0 1 0 1 1 0
26 0 0 1 0 0 0 0 0 1
27 0 0 0 1 0 0 0 0 1
28 0 0 0 1 0 0 1 0 0
29 1 0 0 0 0 1 0 1 1
30 0 0 1 0 1 0 0 0 1
31 0 0 0 1 1 1 0 1 0
32 0 0 1 0 1 1 1 1 1
33 0 1 0 0 1 1 0 1 1
34 0 0 1 0 1 1 1 1 0
35 0 1 0 0 0 1 0 0 0
36 0 0 1 0 0 1 1 0 0
37 0 0 0 0 1 1 1 0 1
38 1 0 0 0 1 1 1 0 0
39 1 0 0 0 1 1 0 0 1
40 0 0 0 1 1 1 1 0 0

Note. mx= mirroring at horizontal axis; my= mirroring at vertical axis; r90 = rotation by 90 degrees
clockwise or counter-clockwise; r180 = rotation by 180 degrees; cp1 = change in feature-position by
one corner/edge; cp2= change in feature-position by two corners/edges; tof= type of form (0=concave,
1=convex); fp1=additional feature; rcf = random change in feature surface characteristics
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Figure A.16.
Optimal design SAS output file
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Figure A.17.
Item characteristic curves for all 40 FAT items (Study 1)
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Additional analyses for NST items with distinct surface patterns

Answer patterns on items labelled as “wrong track”-items (i.e., items with distinct, po-
tentially distracting, surface patterns) were compared with answers on items that did not
offer any particular wrong solution strategies. Figure B.2 summarizes these items. Test
performance of test-takers following one or more of the “wrong tracks” on all other (non-
WT) items was analyzed. If the wrong-track character of an item led able individuals
on a wrong track, actually distracting them from answering an item correctly (that they
would have answered correctly if it were not WT item), choosing WT solutions should
be positively related to correct performance on all other items. In this case, test-takers
getting in principle many items right would be more likely to get WT items wrong. That
is, discrimination parameters of these items should be negative or very low. Such items
would be not helpful for any productive measurement. The opposite case would be that
choosing WT solutions would be negatively correlated with correct performance on all
other items. In this case, test-takers getting in principle many items right would be likely
to get WT items right as well. That is, discrimination parameters of these items should be
at as high as for all other items.The latter should be the case if the test is robust against
surface characteristics. Only if this is the case could WT items be used for productive
measurement and would not need to be dropped from the test.
For each participant, two scores were computed. First, a count variable was computed

that describes how many of the attractive wrong solutions were chosen. This score is an
indicator of the distractibility of a test-takers by the distinctive patterns in a subset of
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Figure B.1.
Item characteristic curves for all 33 NST items (Study 2)
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Figure B.2.
“Wrong-track” items (Study 2)

the elements of a series. Scores could be between zero (none of the possible attractive
wrong solutions) to 5 (all of the possible attractive wrong solutions were chosen). Second,
the number of correct answers on all WT items was used as an indicator of the ability
to induce and apply the correct solution principles from a given number series, regardless
of distracting surface structures in an item. Scores could be between zero (all WT items
were answered incorrectly) to 5 (all WT items were answered correctly). The difference
between these two scores captures wrong responses on the five WT items that did not
match the expected wrong responses when a test-taker followed the suggested incorrect
rule(s). Correlations of these scores with total test scores, the score on all non-WT items,
general cognitive ability, and scholastic performance are given in Table B.1. individuals
with a tendency to chose such a “wrong track” solution had also lower solution probabilities
on all other items that did not offer such a “wrong track”. No significant correlations with
CFT scores or math grades were found. All WT items had sufficiently high item-total
correlations (average IT-correlations: r̄it = .315 for WT items compared to r̄it = .372
for non-WT-items). Based on these analyses, no obvious differences between WT and
not-WT items were identified.
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Table B.1.
Correlations of responses on WT items with responses of non-WT items, general cognitive
ability, and scholastic performance (Study 2)

WT WT correct non-WT correct CFT20-R Maths

WT 1 −.476∗∗ −.203∗∗ −.114 .089
WT correct 1 .628∗∗ .351∗∗ −.160∗∗

non-WT correct 1 .483∗∗ −.260∗∗

CFT20-R 1 −.283∗∗

Mathematics 1

Note. ∗ : p < .05, ∗∗ : p < .01. WT: number of attractive wrong solutions chosen; WT correct:
number of WT items that were solved correctly; non-WT correct: number of correct answers on
all non-WT items
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Table B.2.
Results for separate LLTM models for Russian and German test takers (Study 2)

Fixed Effects GER RUS

Est SE Est SE

Intercept 4.69 0.21 5.70 0.28

Const 3.04 0.22 2.64 0.20
CS1 −1.88 0.25 −1.67 0.25
CS2 −3.10 0.16 −2.79 0.21
Fib −1.48 0.13 −1.48 0.15
Add −4.74 0.24 −4.27 0.24
Sub −5.44 0.27 −5.20 0.28
Comp −1.71 0.27 −2.73 0.28

Note. facet parameters are logits; smaller values indicate larger difficulties for the respective
facets; all parameters are statistically significant with p < .001

Results for separate analyses of data from Russian and German students

In order to assure that facet-level results reported for the NST are not distorted by
potential cross-cultural bias, LLTM models were re-run for the two separate subsamples
as well and compared for consistency. Results are summarized in Table B.2. As the results
stem from two models estimated separately the absolute values of the parameters cannot
be directly compared. In order to see if there are major differences across countries, the
relative magnitudes and order of parameters across both samples is investigated. Results
show that there is a high consistency across samples no major differences in terms of the
implications and conclusions drawn from analyses of the full sample. Close correspondence
in the relative order of different facet parameters could be found. Only one parameter
seems to show a larger difference, the complex combination principle of rules (“Comp”).
While it is important that this difference is investigated further in future studies, for the
current study, there is no indication that conclusions regarding the research questions
are distorted by the heterogeneity of the sample and by the difference in the parameter
estimate for this radical. However, these findings need to be cross-validated and further
research should be conducted to understand why this radical might work differently across
cultures. Future studies should apply more complex statistical modeling, such as the DIF
and DFF models used in Study 3, to further elaborate on the cross-cultural validity of
the NST.
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Figure C.1.
LST: Items 1-6
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Figure C.2.
LST: Items 7-8
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Figure C.3.
LST: Items 13-18
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Figure C.4.
LST: Items 19-24
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Figure C.5.
LST: Items 25-30
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Figure C.6.
Category frequencies for all LST: Items, comparison of Russian and German samples
(Study 3)
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Figure C.7.
Category frequencies for all LST: Items, comparison of Russian and German samples
(cont’d)

242



Jonas P. Bertling — Measuring Reasoning Ability: Applications of Rule-Based Item Generation

Figure C.8.
Frequencies for “not solvable” choices among Russian and German test-takers; the two
dotted lines indicate the two cut-off values used when creating the subsamples.
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cDIF uniform Logistic Regression

LST01-06 LST07-12 LST13-18 LST19-24 LST25-30

Figure C.9.
Item characteristic curves for uniform country-DIF based on the logistic regression model
(Study 3)
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cDIF nonuniform Logistic Regression

LST01-06 LST07-12 LST13-18 LST19-24 LST25-30

Figure C.10.
Item characteristic curves for non-uniform country-DIF based on the logistic regression
model (Study 3)
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cDIF 1PL Lord

LST01-06 LST07-12 LST13-18 LST19-24 LST25-30

Figure C.11.
Item characteristic curves for uniform country-DIF based on Lord’s approach (Study 3)
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sDIF uniform Logistic Regression

LST01-06 LST07-12 LST13-18 LST19-24 LST25-30

Figure C.12.
Item characteristic curves for uniform pre-knowledge-DIF based on the logistic regression
model (Study 3)
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sDIF nonuniform Logistic Regression

LST01-06 LST07-12 LST13-18 LST19-24 LST25-30

Figure C.13.
Item characteristic curves for non-uniform pre-knowledge-DIF based on the logistic re-
gression model (Study 3)
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sDIF 1PL Lord
LST01-06 LST07-12 LST13-18 LST19-24 LST25-30

Figure C.14.
Item characteristic curves for uniform pre-knowledge-DIF based on Lord’s approach (Study
3)
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Table C.1.
Sum-normed RM item difficulty parameters for full Russian sample (N = 201) and two
subsamples of all Russian participants (N1 = 177; N2 = 151) that chose the response
category “not solvable” less than 11/ less than 8 times; Item Parameters for item 1 are
excluded here because all subjects in the two subsamples solved this item correctly

Item Total 
sample

Subsample a 
(<11 times not

solvable)

Subsample b 
(<8 times not

solvable)

Difference a Difference 
b

Absolute 
difference a

Absolute
difference

b
N 201 177 151

LST2 -1.70 -1.64 -1.63 -0.05 -0.07 0.05 0.07
LST3 -2.36 -2.59 -2.78 0.23 0.42 0.23 0.42
LST4 -0.91 -0.89 -1.01 -0.02 0.10 0.02 0.10
LST5 -0.06 -0.02 -0.11 -0.04 0.05 0.04 0.05
LST6 0.06 0.06 0.02 0.00 0.04 0.00 0.04
LST7 -0.06 -0.13 -0.11 0.07 0.05 0.07 0.05
LST8 -0.37 -0.08 0.08 -0.29 -0.45 0.29 0.45
LST9 1.12 1.13 1.29 -0.01 -0.17 0.01 0.17

LST10 0.59 0.59 0.53 0.00 0.06 0.00 0.06
LST11 -0.01 -0.18 -0.24 0.17 0.22 0.17 0.22
LST12 0.03 -0.18 -0.27 0.22 0.30 0.22 0.30
LST13 0.19 0.26 0.32 -0.07 -0.13 0.07 0.13
LST14 0.28 0.11 0.05 0.17 0.23 0.17 0.23
LST15 -0.01 -0.13 -0.24 0.12 0.22 0.12 0.22
LST16 0.19 0.21 0.23 -0.02 -0.04 0.02 0.04
LST17 -0.71 -0.79 -0.71 0.08 0.00 0.08 0.00
LST18 -0.30 -0.30 -0.34 0.00 0.04 0.00 0.04
LST19 1.94 1.89 1.86 0.05 0.08 0.05 0.08
LST20 -0.08 -0.08 -0.04 -0.01 -0.04 0.01 0.04
LST21 0.30 0.34 0.26 -0.04 0.04 0.04 0.04
LST22 0.41 0.44 0.41 -0.03 0.00 0.03 0.00
LST23 0.26 0.31 0.26 -0.06 -0.01 0.06 0.01
LST24 0.06 0.21 0.32 -0.16 -0.27 0.16 0.27
LST25 0.30 0.34 0.29 -0.04 0.01 0.04 0.01
LST26 1 66 1 69 1 74 0 03 0 08 0 03 0 08LST26 1.66 1.69 1.74 -0.03 -0.08 0.03 0.08
LST27 -0.08 -0.18 -0.20 0.10 0.12 0.10 0.12
LST28 0.55 0.54 0.59 0.01 -0.04 0.01 0.04
LST29 0.98 1.21 1.32 -0.23 -0.34 0.23 0.34
LST30 0.84 0.89 0.86 -0.05 -0.02 0.05 0.02

Correl. 1 .992 .982
.992 1 .997
.982 .997 1

Average
absolute

differences
0.1260.081

Note. Subsample a is based on the lenient cut-off (11 items), subsample b is based on the strict cut-off
(8 items); the columns “Difference a” and ‘Difference b” show differences in sum-normed item difficulty
parameters between each of the subsamples and the total sample.
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Figure C.15.
Alignment sum-normed RM item difficulty parameters for full Russian sample (N = 201)
and two subsamples of all Russian participants (N1 = 177; N2 = 151) that chose the
response category “not solvable” less than 11/ less than 8 times; A) lenient cut-off, B)
strict cut-off value

Table C.2.
Frequencies of A, B, C DIF for items that (not) allow for a reduction of considerable
response alternatives (Study 3)

ETS Reduction of response alternatives

> 2 2 total

A 13 3 16
B 4 3 7
C 2 5 7

total 19 11 30

Table C.3.
Frequencies of A, B, C DIF for items that (not) allow for the application of an easy
falsification strategy (Study 3)

ETS Easy falsification

not possible possible total

A 14 2 16
B 5 2 7
C 2 5 7

total 21 9 30
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