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Abstract. Let (A,G) be a C*-dynamical system with G discrete. In this paper we in-
vestigate the ideal structure of the reduced crossed product C*-algebra and in particular
we determine sufficient—and in some cases also necessary—conditions for A to separate
the ideals in A X, G. When A separates the ideals in A X, G, then there is a one-to-one
correspondence between the ideals in A X, G and the invariant ideals in A. We extend
the concept of topological freeness and present a generalization of the Rokhlin property.
Exactness properties of (A, G) turns out to be crucial in these investigations.

In this paper we examine conditions on a C*-dynamical system (4, G) with
G discrete assuring that A separates the ideals in the reduced crossed product
A X, G, i.e. when the (surjective) map J — J N A, from the ideals in A x, G
into the invariant ideals in A, is injective.

Simplicity of A x, G obviously implies that A separates the ideas in A %, G.
Some of the first results about simplicity of crossed products go back to works
of Effros-Hahn [7] and Zeller-Meier [23]. For results restricted to abelian or
Powers groups, we refer to [15] and [6]. Elliott showed in [8] that A x, G
is simple, provided that A is an AF-algebra and the action is minimal and
properly outer. Kishimoto showed in [13] that the reduced crossed product of
a C*-algebra A by a discrete group G is simple if the action is minimal and
fulfills the strong Connes spectrum condition.

Archbold and Spielberg generalized the result of Elliott by introducing topo-
logical freeness. The action of G on A is called topologically free if (), p{z € A :

t.x # x} is dense in the spectrum A of A (1) for any finite subset F C G\ {e}.
They show in [1] that if the action is minimal and topologically free, then the
reduced crossed product A x, G is simple. For (A4,G) with A abelian, the
notion of topological freeness and proper outerness coincide, cp. [1].

Here A denotes the unitary equivalence classes of irreducible representations equipped
with the not necessarily separated topology induced be the natural surjection onto the Ty
space Prim(A).
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We say that an action of G on A has the intersection property if every
non-trivial ideal in A x,. G has a non-trivial intersection with A. The intersec-
tion property is a necessary condition to ensure that A separates the ideals in
A X, G. Kawamura and Tomiyama showed in [11] that if A is abelian and uni-
tal and G is amenable, then topological freeness of G acting on A is equivalent
to the intersection property. There is also some recent work of Svensson and
Tomiyama on a related ideal intersection property in the case where A = C(X)
and G = Z, cp. [21]. Archbold and Spielberg have made a generalization of the
work by Kawamura and Tomiyama to cover also non-amenable groups at the
expense of replacing the intersection property with a stronger one, cp. The-
orem 1.19. Topological freeness is also connected to the property that A is
a maximal abelian sub-C*-algebra in A %, G, cp. [23, Prop. 4.14]. Topologi-
cal freeness alone is however neither sufficient nor necessary to ensure that A
separates the ideals in A x,. G.

It was implicitly stated in the work by Renault, cp. [17], that “essential
freeness” of G acting on A might be enough to ensure that A separates the
ideals in A %, G. The action of G on A'is called essentially free provided that
for every closed invariant subset Y C E, the subset of points in Y with trivial
isotropy is dense in Y. In the context of crossed products the claim of Renault
can be phrased as follows:

Conjecture 0.1. Let (A, G) be a C*-dynamical system with G discrete. If the
action of G on A is essentially free then A separates the ideals in A %, G.

Among other things we show in this paper that, if the action of G on Ais
essentially free, then A separates the ideals in A x,. G if and only if the action
of G on A is ’exact’. An action of G on A is called ezact if every invariant ideal
in A induce a short exact sequence at the level of reduced crossed products (see
Definition 1.5). The necessity follows from Theorem 1.13, and the sufficiency
follows from Theorem 1.20. It is not at all clear, and is an important point, if
we have automatic exactness of the action under the assumption of essential
freeness, compare Remark 1.21.

For a separable C*-dynamical system (A, G), i.e. with G countable and A
separable, Effros and Hahn showed that A separates the ideals in A x,. G when
A is abelian and when G is amenable and acts freely on A, cp. [7].

Zeller-Meier made a generalization of that result to GCR algebras. He
showed in [23] that for a separable C*-dynamical (4,G) with G discrete, A
separates the ideals in A %, G provided A is GCR and the action of G' on A
(which is for GCR algebras naturally isomorphic to Prim(A)) is free and regu-
lar. The action is called regular if every G-ergodic measure on Alis supported
in a single G-orbit. We remark that the conditions, in the work by Effros-Hahn
and by Zeller-Meier, ensuring that A separates the ideals in A x,. G also imply
that the canonical maps 74/7 : (A/I) x G — (A/I) %, G are isomorphisms for
all closed, two-sided G-invariant ideals I of A. The latter property is equivalent
to exactness of the action and injectivity of 74 (by exactness of the full crossed

Miinster Journal of Mathematics VoL. 3 (2010), 237-262



THE IDEAL STRUCTURE OF REDUCED CROSSED PRODUCTS 239

product functor and application of the 5-lemma). We don’t know if exactness
of the action of G on A follows from the injectivity of 74. A counterexample
needs an improvement of Gromov’s construction in [9].

Renault considered in [18] the groupoid crossed product C*-algebras. His
work contains some generalizations of the results in [7, 23], where freeness of
G acting on Ais replaced with essential freeness.

In the first part of this article we show that A separates the ideals in A x,.G
provided that the action of a G on A is exact and the action of G on A is
essentially free. The exactness of the action is a necessary condition to ensure
that A separates the ideals in A x,. G. Certainly, the exactness of the action
alone does not imply that A separates the ideals of A x, G (even in case of
abelian G).

In the second part of the article we present another way of ensuring that
A separates the ideals in A x,. G by means of a Rokhlin type property. We
use this result to make a generalized version of the Rokhlin property, which
we call the residual Rokhlin* property. We show that A separates the ideals
in A %, G provided that the action of G on A is exact and satisfy the residual
Rokhlin* property.

In the case of abelian A and countable G we have the following properties
are equivalent, cp. Corollary 2.22 and Remark 1.18:

(i) For every invariant ideal I in A, the action of G on A/ is topologically
free in the sense of Archbold and Spielberg.
(i) The action of G on A is essentially free in the sense of Renault.
(iii) The action of G on A satisfy the residual Rokhlin* property.
(iv) For every invariant ideal I # A and every ¢ # e the automorphism
[a] — [t.a] on A/I is properly outer in the sense of Elliott.

My profound thanks go to Professor E. Kirchberg for his extensive feed-
back and help on this paper—including the ideas behind the residual Rokhlin*
property — and Professor M. Rgrdam for his guidance. I am also very grateful
for the suggestions, contributions, and bug reports offered by many people,
including Professor G. A. Elliott and Professor N. C. Phillips.

1. CONDITION EXPECTATION

1.1. Notation Let e denote the unit of a group. Ideals are always assumed
to be closed and two-sided. Let M(A) denote the multiplier algebra of A and
let A 1, G (resp. A x G) denote the reduced (resp. the full) crossed product.
The reduced norm will be written as || - ||x. Let Z(A) denote the set of ideals
in a C*-algebra A and let Ideal4[S], or simply Ideal[S], be the smallest ideal
in A generated by S C A. Fix now a C*-dynamical system (A, G) with G
discrete. We will suppress the canonical inclusion map A C A x, G. We let
Z(A)% denote the set of all invariant (or more precisely all G-invariant) ideals
in A and let Ideal4[S], or simply Ideal[S]”, be the smallest invariant ideal
in A generated by S C A. Elements in C.(G, A) will be written as finite sums
> icp Gtug, Where uy is, in a canonical way, a unitary element in M(A x,. G).
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We now mention some of the well know (or easy to prove) results concerning
reduced crossed products.  Let (A,G) be a C*-dynamical system with G
discrete. The map £ : C.(G, A) — A,>,p atus — a. extends by continuity
to a faithful positive conditional expectation F : A x,, G — A. Sometimes one
writes E4 instead of E. For every I € Z(A)“ the natural maps in the short
exact sequence

0 I—= A" AT 0
extend, in a canonical way, to maps at the level of reduced crossed products
and give the following commutative diagram (cp. [22, Rem. 7.14])

(1) 00— I, G2 A, ¢ 2L AT 50, G ——0
lEl lEA lEA/I
0 I : A LA/l 0

Note that the sequence at the level of reduced crossed products is only short
exact provided that ker(p x, id) € I x, G. This inclusion does not hold in
general, cp. Remark 1.21. However when G is exact we do have that ker(p x,
id) C I x, G, cp. [12]. With I € Z(A)“ we have the identities

I x,G=1dealay c[I], (Ix,G)NA=1=FEs(I %, Q)
and for J € Z(A %, G) it follows that J N A € T(A)% is a subset of E(J). For
an introduction to crossed products we refer to [3, 22].

1.2. Ideals in A x, G Fix a C*-dynamical system (A4,G) with G discrete.
The question concerning when the algebra separates the ideals in the reduced
crossed product, i.e. when the map
(A%, G) = IZ(AY: J—JNA

in injective, can be reformulated in several ways. Note that this map is auto-
matically surjective (using that (I x, G)N A = I for I € Z(A)Y). Hence, if
A separates the ideals in A %, GG, then there is a one-to-one correspondence
between ideals in the crossed product A X, G and the invariant ideals in A.

Proposition 1.3. Given a C*-dynamical system (A,G) with G discrete, the
following properties are equivalent:

(i) For every J € (A %, G) we have that J = Idealax,c[J N A].
(ii) The map Z(A %, G) — Z(A)Y : J+— J N A is injective.
(iii) The map T(A)Y — Z(A %, G) : I — I %, G is surjective.
(iv) For every J € (A x, G) we have that J = Idealax, c[E(J)].

Proof. (i) = (ii) Fix ideals Jq, J € Z(A %, G) having the same intersection
with A, one gets

Jl = Ideal[J1 n A] = Ideal[Jz n A] = JQ.
(14) = (7i1) Let J € T(A x, G). Using the general fact that
(JNA)x, G nA=JNA
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together with (i7) it follows that (J N A) x, G = J.
(#i1) = (iv) Let J € Z(A %, G). From (ii1) it follows that J = I x,. G for
some I € Z(A)%. We get that

J =1 %, G =Ideal[I] =1deal[E4(I %, G)] = Ideal[E4(J)].
(iv) = (i) Let J € (A x, G). By (iv) we have that
JNAC Ex(J) C Ideal[E4(J)]NA=JN A
Using (iv) once more we obtain that J = Ideal[E4(J)] = Ideal[J N A]. O

The equality in part (i) of Proposition 1.3 has one trivial inclusion. This
is not the case when we consider the equality in (iv). Here we have two non-
trivial inclusion. However, as we will see, one of the inclusions corresponds to
exactness of the action (cp. Definition 1.5), and hence it is automatic provided
that G is exact.

1.4. Exactness and the residual intersection property Let us now con-
sider the two inclusions corresponding to the last equality in Proposition 1.3
separately.

Definition 1.5. Let (A4, G) be a C*-dynamical system. We say that the action
(of G on A) is ezact if every invariant ideal I in A induces a short exact sequence

0—>Tx,G 2% A, @ 2L AT 0, G —— 0

at the level of reduced crossed products. A group G is called ezact if any action
of G on any C*-algebra is exact, cp. [12].

Proposition 1.6. Let (A, G) be a C*-dynamical system with G discrete. Then
the following properties are equivalent
(i) For every J € I(A %, G) we have that J C Idealsyw, c[E(J)].
(ii) For every x € (A x, G)T we have that x € Idealax,¢[E(z)].
(iii) The action of G on A is exact.

Proof. (it) = (i) From
Jt= J{z} € |J IdeallE(z)] C Ideal[E(J)]
zeJt zeJt

it follows that J = Ideal[J "] C Ideal[E(J)].
(i) = (iii) Let I € Z(A)Y. It is sufficient to verify the inclusion ker(p x,.
id) C I %, G for the commutative diagram (1)

0—> T, G A%, G 2L AT, G ——> 0

0 I : A L AT 0.
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With J := ker(p x, id) we get that p(Ea(J)) = Ea/1(p . id(J)) = 0. This
implies that E4(J) C ker p = I and hence that

J C Ideal[E4(J)] C Ideal[I] = T %, G.

(iii) = (i1) Let z € (A x, G)*. Set I := Ideals[F4(z)]¢ and consider the
two, using (444), short exact sequences in the commutative diagram (1)

X id pXrid

0—=IxG—>Ax.G—>A/Ix,G——=0

l/EI lEA lEA/I
L

0 I A LA/l 0.

As Ea(x) € I, it follows that E,;(p . id(z)) = p(Ea(z)) = 0. As Eyyg is
faithful on positive elements, it follows that p %, id(x) = 0 and hence

z € ker(p %, id) = I x, G = Ideal[I] = Ideal[Ideal 4[Fa(2)]%] = Ideal[E 4(x)].
O

Let us present the first application of Proposition 1.6. In general it is un-
known whenever a family of invariant ideals (I;) fulfills that (,(I; %, G) =
(N, I;) x» G. However when the action is exact the equality is easily shown.

Proposition 1.7. Let (A,G) be a C*-dynamical system with G discrete. If
the group G (or the action) is exact, then every family of ideals (I;) in I(A)%

fulfills the identity
I X, G) < )

Proof. Note that E((; (I xr G)) C N, 1,
inclusion (), (I; x, G) C Ideal[E(,(1; x

i- By Proposition 1.6 we get the
» G))] and hence

S

(ﬂ L») 1 G C [ (I, G) CIdeal | E(()(Li %, G))}

C Ideal lﬂ Ii] = <ﬂ Ii> x, G

O

Remark 1.8. A classical question of non-commutative harmonic analysis is
how the irreducible representations of A x G or at least of A x,. G look like.
Since any proper, closed, two-sided ideal of a C*-algebra is the intersection of
the primitive ideals containing it, we can conclude from Proposition 1.1 and the
semi-continuity property in Proposition 1.7 that at least the following holds:

If the action of G on A is exact, then every irreducible representation D of
A X, G has kernel Jp = (AN Jp) X, G if and only if A separates the ideals of
Ax,G.
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The second inclusion in part (iv) of Proposition 1.3 is closely related to the
way ideals in the reduced crossed product intersect the original algebra.

Definition 1.9. Let (4,G) be a C*-dynamical system with G discrete. We
say that the action (of G on A) has the intersection property if every non-zero
ideal in A X, G has a non-zero intersection with A. If the induced action of G
on A/I has the intersection property for every invariant ideal I in A, we say
that action (of G on A) has the residual intersection property.

Remark 1.10. Let (A4, G) be a C*-dynamical system with G discrete. The
intersection property of the action is equivalent to the requirement that every
representation of A X, G, which is faithful on A, is itself faithful. Hence a way
to ensure that the action has the intersection property is to show that every
representation of A x G, which is faithful on A, weakly contains the regular
representation of (A, G). (For a proof of the first claim consider restricting the
representations of A x,. G. The second part uses the fact that the surjection
m:AxG— Ax, G is the identity map on C.(G, A).)

Proposition 1.11. Let (4,G) be a C*dynamical system with G discrete.
Then the following properties are equivalent

(i) For every J € Z(A %, G) we have that J D Idealgyw, c[E(J)].
(ii) For every x € (A x, G)* we have that E(x) € Idealax, ¢[z].
(iii) The action satisfies the residual intersection property and for every
J € I(A %, G) the intersection (p X, id)(J) N A/I is zero, where
I:=JnNA and p x,id comes from (1).

Proof. (i) = (i4i): First we show the residual intersection property. Take
I € Z(A)Y and J € Z(A/I x, G) and assume that J N A/I = 0. We show
that E4,;(J) = 0, which is equivalent to J = 0. Set Jy := (p %, id)~*(J)
where p X, id comes from (1). As J; € Z(A %, G) it follows from (i) that
E4(J1) C J1 N A and hence

Eayt(9) = Eapr((p %0 id) (1)) = p(Ea(J1)) € p(J1 N A) € T 1 AJT = 0.

For the second part take J € Z(A x, G) and = € (p %, id)(J) N A/T where
I:=JNAand p x,id comes from (1). We show x =0. Find j € J such that
x = (p x,1d)(j) € A/I. Using (i) we have that E4(J) C JN A and hence

v =E(x) = Eayr((p>,id)(j)) = p(Ea(f)) € p(Ea(])) € p(J N A) = 0.

(i73) = (ii) Let © € (A x, G)*. Set J :=Ideal[z] and I := J N A. Using (iii)
on J € Z(A %, G) it follows that

(p xr1d)(J) N A/T =0,

with the surjection p %, id coming from (1). The residual intersection property
implies that the ideal (p %, id)(J) = 0. Using the diagram (1) we now have
that p(Ea(J)) = E4/1(p 2, id(J)) = 0 and hence

Es(z) € E5(J) Ckerp=JNACJ=Ideal[z].
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(14) = (i) Let J € Z(A x, G). Then
Ea(J") = |J {Ba(@)} € |J Idealla] C J.

zeJt zeJt

As every element in J is a linear combination of positive elements in J and F 4
is linear, it follows that E4(J) C J and hence also Ideal[E4(J)] C J. O

Using an additional observation, contained in Lemma 1.12 below, we obtain
a new characterization of when A separates the ideals in A %, G.

Lemma 1.12. Let (A, G) be a C*-dynamical system with G discrete. Suppose
the action of G on A is exact. Then for every J € Z(A X, G) the intersection
(p %, id)(J) N A/I is zero, where I := JN A and p %, id comes from (1).

Proof. For a given J € Z(A %, G) set I := JN A. Using that the action is
exact we have the short exact sequence

LX-id pX-id

0—=Ix.G—A%x.G—=A/Ix,G——=0

and can therefore identify (p x,1d)(A %, G) with A x, G/L, where L := I x,.G.
We obtain the identities
JNA=I=LnNA,
(p 2 id)(J) = J/L,
A/I=A/(LNA)=(A+L)/L.
Assume (p x,-1d)(J) N A/I # 0. Then there exists j € J and a € A such that
j+L=a+L#L.

As L C J it follows that ¢ € J and hence a € JN A =1 C L. But this implies
a+ L = L and we get a contradiction. Hence (p x, id)(J) N A/T = 0. O

Theorem 1.13. Let (A, G) be a C*-dynamical system with G discrete. Then
the following properties are equivalent.
(i) A separates the ideals in A x,. G.
(i) The action is exact and for every x € (Ax,G)T : E(z) € Idealay, ¢|z].
(ili) The action is exact and satisfies the residual intersection property.

Proof. Combine Proposition 1.3, Proposition 1.6 and Proposition 1.11 with
Lemma 1.12. g

Using Proposition 1.7 one can slightly improve the last part of Theorem 1.13
in the following sense:

Corollary 1.14. Let (A, G) be a C*-dynamical system with G discrete. Then
the following properties are equivalent.
(i) A separates the ideals in A x, G.
(ii) The action is exact and the intersection J N A/I is non-zero for every
I € Z(A) and for every non-zero primitive ideal J € T(A/I %, G).
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Proof. (ii) = (i) We show property (4i¢) in Proposition 1.3, i.e. that the map
I(A)Y - I(A %, G) : I — I %, G is surjective. Fix J € Z(A x,. G). Find a
family of primitive ideals (J;) in Z(A X, G) together with irreducible represen-
tations m; : A x,, G — B(H;), such that

J:ﬂJi7 kerm:Ji

Set I; := J;NA. From exactness of the action we get the canonical isomorphism,
for every i, defined by

Lt A X, G/IZ X, G — (A/IZ) X, G:aus +I; X, G — (a—|— Ii)us,
and the well-defined (as m;(I; X, G) = 0) representation
7't Ax, G/I; x, G — B(H;) : aus + I; X, G — m;(aus).
The map
ot (A/L) %, G — B(H,;)
is an irreducible representation of (A4/1;) x, G. With J® := kerz’ o L;l we
have that J®NA/I; = 0 from the following argument: With a+1I; € JWNA/I;
0=7lou Ha+ 1) =n(a+ I x, G) = ma).
Hence a € kerm; N A = I; giving that J® N A/I; = 0. Using (ii) we obtain
that J® = 0 and hence also ker 7/ = 0. With
pi i AX.G— Ax,. G/I; %, G,
fix b € J;. As 7(p;(b)) = m;(b) = 0 it follows that p;(b) = 0. Hence

Ji Ckerpi =Lty G C Jiy T =(VJi=[(li %, G) <ﬂ1>

The last equality uses Proposition 1.7. The map I — I x,. G is surjective. O

1.15. Exactness and essential freeness We will now present a way to
ensure that A separates the ideals in A %, G is by extending the result of
Archbold and Spielberg in [1]. We let A denote the spectrum of a C*-algebra
A, i.e. the set of all equivalence classes of irreducible representations of A. The
induced action of G on A is given by (t.z)(a) := z(t"*.a),a € A, [z] € A. For
an action of G on a topological space X we define the isotropy group of x € X
(also called the stabilizer subgroup) as the set of all elements in G that fix x.

Definition 1.16 (Boyle, Tomiyama [2]). Let G be a discrete group acting
on a topological space X. We say the action of G on X is topologically free
provided that the points in X with trivial isotropy are dense in X.

Definition 1.17 (Renault [18]). Let G be a discrete group acting on a topo-
logical space X. We say the action of G on X is essentially free provided that
for every closed invariant subset Y C X the subset of points in Y with trivial
isotropy is dense in Y.
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Remark 1.18. Let (A, G) be a C*-dynamical system with G discrete. Arch-
bold and Spielberg define topological freeness of G acting on A slightly weaker
than topological freeness of G acting on A. AAn action of G on A is topologically
free if (),cp{z € A:t.x # 2} is dense in A for any finite subset F' C G\ {e},
cp. [1]. If A is Hausdorff (e.g. when A is abelian) and G is countable, then
the two notions of topologlcally free agree because A is always a Baire space.
If we use the natural inclusion A/ I C A, then we see that the induced action
of G on A/I is topologically free for every I € T(A)C if an action of G on A
is essentially free. We will not make a weakening of the notion of essential
freeness, but we use sometimes the following concept: Let P denote a prop-
erty for dynamical systems (A, G). If this property holds (or is required) for
all quotients (A/I,G) with I € Z(A)Y, then we say that (A, Q) is residually
P. E.g. a conceptional name for the topological freeness for all quotients A/I
should be “residual” topological freeness of the action on A.

Archbold and Spielberg considered when the reduced crossed product is
simple. The key result was the following

Theorem 1.19 (Archbold, Spielberg [1, Thm. 1]). Let (A, G) be a C*-dyna-
mical system with G discrete and let w be the surjection A x G — A %, G. If
the action of G on A is topologically free then

VIEI(AXG):JNA=0 = =(J)=0.

Using the above result together with Theorem 1.13 we get the following
generalization.

Theorem 1.20. Let (A, G) be a C*-dynamical system with G discrete. If the

group G (or the action) is exact and the action of G on A s essentially free
then the algebra A separates the ideals in A x,. G.

Proof. Fix I € I(A)¢ and J; € Z((A/I) %, G) and assume J; N (A/I) = 0.
Using Theorem 1.13.(ii4) it is enough to show that J; = 0. Let /! be the
surjection (A/I) x G — (A/I) x, G and set J := (74/1)~1(.J;). Using that
74/ is just the identity on A/I we get that

JNA/ )= Nn(A/I)=0

By Remark 1.18 the action of G on A/I is topologically free. Using Theo-
rem 1.19 we obtain that 74/7(J) = 0. Hence .J; = 0. O

Remark 1.21. Gromov showed the existence of a finitely presented non-exact
discrete group, cp. [9]. Hence there exist a C*-dynamical system (A, G) with
a finitely presented discrete group G and a non-exact action of G on A. By
Theorem 1.13 A does not separates the ideals in A %, G.

If such (A,G) can be found, such that the action is essentially free, then
the Conjecture 0.1 fails. But this is unknown if the action is essentially free,
and the Conjecture 0.1 remains an open problem. In fact, these considerations
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show that the Conjecture of Renault is equivalent to the question of whether
essentially free actions are exact.

Remark 1.22. Let (A, G) be a C*-dynamical system with G discrete. If the
action is essentially free then the properties (i)—(éi7) in Proposition 1.11 are
all fulfilled. (For a proof, use Theorem 1.15 for A/I, the automatic analogue
of Lemma 1.9 for the full crossed product and use that (p x, id) o 74 =

74/T o (p x id) for the canonical maps p: A — A/I, 7% : B x G — B x,.G.)

Corollary 1.23. Let (A,G) be a C*-dynamical system with G discrete. As-
sume that the group G (or the action) is exact and that for every x € A the

points in G.x with trivial isotropy are dense in G.x. Then A separates the
tdeals in A X, G.

Proof. The action is exact and essentially free. O

Corollary 1.24 (cp. [18, Cor. 4.6]). Let (A, G) be a C*-dynamical with G dis-
crete. Suppose the action is minimal (i.e. A contains no non-trivial invariant
ideals) and there exists an element in the spectrum of A with trivial isotropy.
Then A %, G is simple.

Proof. The action is exact and essentially free. O

Remark 1.25. When considering the canonical action of Z on T =R U {oo}
(the right translation, fixing co) it follows that topological freeness of Z acting
on T is not enough to ensure that the action satisfy the residual intersection
property. (For a proof consider the short exact sequence

0——=Co(R) %, Z——=C(T) %, Z——C %, Z——0.

If the action of Z on C(T) had the residual intersection property then the
(trivial) action of Z on C would have the intersection property. But C x,. Z =

C*(Z) = C(T) has the property that all non-zero proper ideals (of which there
are many) have zero intersection with the complex numbers C.)

Remark 1.26. In many cases, including when a countable group acts by an
amenable action on a unital and abelian C*-algebra, essential freeness and
the residual intersection property are equivalent. (For a proof examine Corol-
lary 2.16.) For this class of examples, the essential freeness and exactness of
the action are together necessary and sufficient to ensure that A separates the
ideals in A x,. G (by Theorem 1.16 and Theorem 1.10).

Remark 1.27. Essential freeness and the residual intersection property are in
general different conditions. (For a proof consider any simple crossed product
where the action is not essentially free. For example the free group of two
generators acting trivially on C.)

1.28. The Rokhlin property One application of Theorem 1.13 is an easy
proof of the fact that the algebra separates the ideals in the reduced crossed
product provided the action has the ”Rokhlin property”.
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In the following set Ao, :=1°°(A)/co(A), where {*°(A) is the C*-algebra of
all bounded functions from N into A and where ¢o(A) is the ideal in *°(A)
consisting of sequences (a,)22; for which ||a,| — 0. We will suppress the
canonical inclusion map A C A,. The induced action of G on A is defined
entry-wise.

Definition 1.29 (Izumi [10]). Let (A, G) be a C*-dynamical system with A
unital and G finite. We say that the action (of G on A) satisfies the Rokhlin
property provided there exists a projection p. € A’ N Ay such that

(i) pe Ltpe, t#e
(i) ZteG t.pe = la,,

Theorem 1.30 below is due to Pasnicu and Phillips, cp. [14, 16], who also
consider the case G = Z. Our proof is somewhat different than the original
one and is included to present another application of Theorem 1.13.

Theorem 1.30 (Pasnicu-Phillips). Let (A, G) be a C*-dynamical system with
A unital and G finite. Suppose that the action satisfies the Rokhlin property.
Then A separates the ideals in A X, G .

Proof. Let p. € A’ N Ay, be the projection ensuring the action satisfies the
Rokhlin property and set ps = s.p. for s € G. As G is finite the action is
exact. Fix z:= 3", aruy € (A%, G)T. Using Theorem 1.13.(i7) it is enough
to show that E(z) € Ideal[z].

We can take the implementing unitaries for the action of G on A, to be
the same as those for A. We have the commuting triangle with three canonical
inclusions

Ax,G—— A X, G

Iy

(A %, G)oo
giving the identity
Ideals__x,clz] N A %, G = Ideal s, c|z].

For the completeness of the proof let us recall how the equality is obtained.
With B := A %, G fix b € Idealg_[z] N B and € > 0. Denote the quotient
map [*°(B) — By by 7roo Find a = 377, tjvs; € Idealp_[z] such that

tj = moo(t}), 55 = Too(s\) and [la — b]| < . From ||lmoo(3, t\zs}” —

b)|| = limsup, || Y°7_ 1t§1 ;Z) —b|| < ¢ is follows that b € Idealg[z]. Since
Idealp[x] C Ideals x,.c[z] C Idealp_[z] and Idealp_[z] N B C Idealp[z] we
are done.

i
.738(
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We only need to verify that E(z) € Ideals_x,c[z]. This follows from the
calculation below (J.; is the Kronecker delta)

ps(aut)ps = 5e,tps(aut) = pSEA (a’ut)7 Svt S Ga a < Aa

Zpsxps = ZpSEA(x) = FE4(x) € Ideala__x, q[z].
s€G s€G

O

Remark 1.31. Theorem 1.30 only applies when the group G is finite. It is
natural to consider if there is a way to extend this result. As we will see that
is indeed the case.

2. THE RESIDUAL ROKHLIN* PROPERTY

The Rokhlin property is a quite restrictive property. We present here a
weaker condition, called ”residual Rokhlin* property”, ensuring that A sepa-
rates the ideals in A x, GG, when considering a discrete exact group G acting
on a C*-algebra A.

For a C*-dynamical system (A, G) the induced action of G on A* (resp. on
A**) is given by (t.¢)(a) == p(t~t.a) for a € A,p € A* (resp. for a € A*,p €
A**). We write (4,G) = (B, ) when the isomorphism between A and B is
equivariant, i.e. action preserving.

Definition 2.1. Let (4,G) be a C*-dynamical system with G discrete. We
say that the action (of G on A) has the Rokhlin* property provided that there
exist a projection p. € A’ N (Ax)™, such that

(1) pe Ltpe,t#e

(#9) For every a € A with a # 0 there exist ¢ € G such that a(t.p.) # 0,
If the induced action of G on A/I has the Rokhlin* property for every invariant
ideal I in A, we say that the action (of G on A) has the residual Rokhlin*

property.

Remark 2.2. Note that the residual Rokhlin* property is weaker than the
Rokhlin property. This follows from the fact that the property (ii) in Defi-
nition 2.1 is equivalent to the condition that |[a}”, . t.pe|| = |la| for every
a € A and the fact that the Rokhlin property automatically implies residual
Rokhlin property. (Let us verify the second of the two mentioned properties.
Suppose p. € A’ N Ay is the projection ensuring that the action of G on A has
the Rokhlin property. Fix I € Z(A)¢ and set p! = ¢(p.) using the canonical
equivariant map ¢ : As, — (A/I)s. We obtain that pf L t.pl for t # e and

dtec tpl = YoeaPtpe) =p(lay) =1a/n..)-
Example 2.3. Before giving a proof of Theorem 2.5 we present a concrete C*-
dynamical system (A4, G) with the residual Rokhlin* property. We consider the

well-known example, where A := My~ ® I, the stabilized UHF-algebra of type
n°°, where G := Z, and where Z acts on M~ ® I via an automorphism A that
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scales the trace by a factor 1/n. In this case we have that (M~ ® K) X, Z is
isomorphic to O, ® K, cp. [4].

More precisely let (A, piy, : Mp~ — A), cp. [19, Def. 6.2.2], be the inductive
limit of the sequence

A A A

My Mo Mo

with the connecting map A defined by a — FE11 ® a, where Eq is the projection
diag(1,0,...,0) in M,,. It is well known that X induces an automorphism A on
A fulfilling that i, o A = X0 i, cp. [19, Prop. 6.2.4]. Using the identification
Ax, G20, ®K and the simplicity of A we can give a new proof of the well
known result, that the Cuntz algebra O,, is simple, by proving that the action
of G on A satisfies the Rokhlin* property. This follows using the projection

Pe = (q1,42,03-..) € Axs,

where

= u(l®--- 11 —-En)@FEm @b ®1®...),
—_—————— —_——
2k 2%k

for k € N. Let us now show that p. € A’ N (Aw)*™ and property (ii). Fix
m,l € N and a € M,~. Using the canonical inclusion M,,m C M, together
with the identities My = ;2 Mpi, A = Ujeq pi(Mpe), it is enough to show
that pep(a) = pi(a)pe and || (a)]| = ||pi(a)pel|. But this follows from a simple
calculation. To see (i) we simply use that the projections (t.qx):en are pairwise
orthogonal for a fixed k € N.

We now return to proving the fact that A separates the ideals in A x,. G
provided a discrete exact group G acts on A by an action with the residual
Rokhlin* property. The key idea is the following Lemma

Lemma 2.4. Fiz a discrete group G and von Neumann algebras N C M.
Suppose there exists an action of G on N such that (N,G) = (I(G),G)
(as usual G acts on loo(G) by left translation) and a group homomorphism
U:G— UM) such that

U)fu@) =t.f, tedG, feN.
Then (B,G), given by
B:=N'nM, tb:=U@DU@R)*, teqG, be B,
is a C*-dynamical system. Further the representation
idxU:C.(G,B) - M :bus— bU(s), s€G, beB
is isometric with respect to the reduced norm.

Proof. We show that id xU is isometric. The first statement is straightforward.
We want to use Fell’s result [3, Prop. 4.1.7]. Hence we make the identification
loo(G) = N and M C B(42) for some Hilbert space 5. Note that (id, U, ) is
a normal covariant representation of (I(G), G) in the von Neumann algebra
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sense (?). It is a general fact, cp. [22, Example 2.51], that any covariant
representation (7, U, #) of (Io(G),G), with 7 : loo(G) — B(J#) unital and
normal, is unitarily equivalent to a tensor multiple of the standard covariant
representation

lo(G) C B(l2(G)), t— X\ € B(l(G)), teaq,

where the inclusion corresponds to multiplication operators My, f € I (G)
and where A : G — U(l2(G)) is the left regular representation. Thus, there
exist a Hilbert space H and a unitary W € B(l3(G) ® H, #), such that

W UMW =\ ®idy, WHd()W = My ®@idy, teG, f€lw(G).

With the canonical bijection € : B(l2(G))QB(H) — B(l2(G) ® H) and the
unitary V € B(l2(G) ® I2(G) ® H), defined by 05 ® 0; @ h +— 64-1, Q0 @ h
where (0,)rcc is the basis for 2(G), consider the commuting diagram

(B, @) (4. M

(id,id) id

(Ine(@)' N B(#),G) Skl B(#)
(W™ -W,id) WEW
(< (G)BB(H)), G) S B(i2(G) @ H)
(1®-,id) 5:s@0:@Dh—38:®-(5:®h)
(1® (o (Q)BB(H)), G) — 2V p (@) @ 1,(G) @ H)
(id,id) VeV

(1®id,A®AR1)

(1®e(loo(G)®B(H)),G) B(l2(G)®1:(G) @ H)

(For a C*-algebra A C B(.#") the representation 1®id : 1@ A — B(I*(G)®@.%)
sends 1 ® a into the map defined by d; ® k — d5 ® ak.) For completeness we
show
W (oo (G) N B(A))W C e(loo(G)YRB(H)).
We have that (lo(G)®Clpn)) = loo(G) @B(H) = loo(G)®B(H) where the
first equality is a special case of the commutation theorem. Since both € and
W* - W map commutants to commutants it follows that
W (oo (G) N B(A))W = (1o (G)EC iy )’
= ¢((l(G)@Clpm))') = el (G)@B(H)).

Using Fells Absorption Principle IT [3, Prop. 4.1.7] the map (1®id) x (AQA®1)
is unitarily equivalent to the regular representation and hence is isometric with

2A normal covariant representation of a discrete W*-dynamical system is a covariant

representation in the usual C*-algebra sense with the additional assumption that the repre-
sentation of the von Neumann algebra is normal.
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respect to the reduced norm | - ||x. From the commuting diagram it follows
that id xU is isometric with respect to || - [|x. O

Theorem 2.5. Let (A,G) be a C*dynamical system with G discrete. Sup-
pose the action is eract and satisfies the residual Rokhlin* property. Then A
separates the ideals in A %, G.

Proof. By Theorem 1.13 it is enough to show that the action of G on A has
the intersection property provided there exists a projection p, € A’ N (Ao )™
such that

(1) pe Ltpe,t#e

(74) For every a # 0 in A there exist t € G such that a(t.p.) # 0.
From Remark 1.10 the intersection property is automatically fulfilled if every
representation of A x G, which is faithful on A, weakly contains the regular
representation of (A,G). Fix a covariant representation (m,u, H) of (A,G)
with 7 faithful. As every representation of A X G comes from a covariant
representation of (A4,G), cp. [5], it is sufficient to show that 7m x u weakly
contains the regular representation, i.e.

lallx < [lm x w(a)ll, a€ Ce(G,A).
Using the commuting diagram
T( AT ( T

G—=B(H) ¢ B(H)oo —— (B(H)oo)™ —— B(X),

where (B(H)so)** is faithfully represented on a Hilbert space .7 and letting
u’? be the composition of the maps in the lower part of the diagram, we get a
covariant representation (75, u%*, ) of ((Ax)*™, G), with 7%* faithful, such
that

(2) [mse x uzs(@)| = I x u(@), a € Ce(G,A).

oo

Let R be the weak closed algebra generated by {p; : t € G} in (Ax)*™* with
the identity p, where p; := t.p., t € G. Define von Neumann algebras N C M
and an action of G on N by
N :=nl(R), M :=n(p)(B(H)sx)"75(p),

sa(a) :=7n5(s.a), a€R, seQG.
Note that (NV,G) = (Io(G),G), where G acts on I (G) by left translation.
With

U(t) := moi (puzs ()i (p), teG,

we get a group homomorphism U : G — U(M) fulfilling that
U)fu@) =t.f, teaG, feN.

Miinster Journal of Mathematics VoL. 3 (2010), 237-262



THE IDEAL STRUCTURE OF REDUCED CROSSED PRODUCTS 253

Set B := N'N M. By Lemma 2.4, the representation
idxU :C.(G,B) —» M : bus — bU(s), s€G, be B,

is isometric with respect to the reduced norm on C.(G, B), and hence extends
isometrically to

idx,U:Bx,G— M.

Now consider the homomorphism € : A — M, a +— 7% (ap). For every a € A
we have that ap commutes with the projection p; (since (ap)p: = ap: = pra =
pt(pa) = pi(ap)) for t € G. This implies that ap commutes with the elements
in R, and so €(a) commutes with elements in N, i.e. e(a) € N' N M. We
conclude that € has image contained in B.

By property (i) the map a — ap on A is faithful. As 72 is faithful and the
composition of faithful homomorphisms is faithful we conclude that € is faithful.
Furthermore ¢ : A — B is equivariant and hence the canonical homomorphism
ex,id: A X, G — B x, (G is isometric.

When composing the two norm preserving maps id x,.U and € %, id we
obtain the following:

Ax,G——=Bx,G——= M
a— T X urs(a)mi(p) a€ C.(G,A)

It now follows that

lallx = llmss x uss(a)ms ()| < [w x u(a)l,  a € Ce(G, A),

o0

where the last inequality comes from (2). This completes the proof. O

Remark 2.6. The ideas in Theorem 2.5 can be used to make more general
results concerning C*-dynamical systems with locally compact groups.

Corollary 2.7. Let (A, Q) be a C*-dynamical system with G discrete. Suppose
the action is exact and there exists a projection p. € A' N (Aso)*™ such that

(1) pe Lt.pe, t £e
(ii) For every a € A and every closed invariant projection q in the center
of A** with aq # 0 there exist t € G such that aq(t.pe) # 0

Then A separates the ideals in A X, G

Proof. 1t is a general fact that, for every C*-dynamical system (B,G) with G
discrete and I € Z(B)®, we have the canonical equivariant inclusions B C B,
and B C B**. Further one has the decomposition B** = (B/I)** + I**
with (B/I)** = B**¢k, where g5 is the biggest central projection in B**
orthogonal to I (¢k is the orthogonal complement to the supporting open
central projection of I). Hence ¢} is a closed invariant projection in the center
of B**.

Minster Journal of Mathematics VoL. 3 (2010), 237-262



254 ADAM SIERAKOWSKI

Fix I € Z(A)“ and set B := A/I. Using the identification By = As /I
we have the commuting diagram
A C A** C (Aoo)**

l l-qg lqiﬁ;

B C B** C (Boo)**

Note that ¢}, < qﬁi’; as elements in (A )**. This follows from the fact that ¢}
is central in A** (and hence also central in (A )**) and orthogonal to I (and
hence also orthogonal to I).

Define p! := peqﬁl"; € B’ N (B )**. We now show that the action satisfies
the residual Rokhlin* property by verifying

(") pL Ltpl t#e

(ii') For every b € B with b # 0 there exist ¢ € G such that b(¢.pl) # 0.
Property (i') follows easily from (i). To show (ii’) fix b € B with b # 0. By
(74) and the left part of the diagram we have elements ¢ € A and t € G such
that b = a+1I and agy (t.p.) # 0. From the right part of the diagram b = aqi";
in (Bs)™. As ¢l < qif; we get that

b(t.pl) = a(t.pe)als =0in (Bs)™
= a(t.pe)qif; =01in (Ax)™
= agh(tpe) = (a(t.pe)a= )gh = 0 in (Ax)™,
showing that b(t.pf) # 0 and hence (7). O

Remark 2.8. The condition (i7) of Corollary 2.7 can be replaced with a weaker
condition without changing the conclusion. It is sufficient to consider only the
closed invariant projections in the center of A** obtained as complement of
support projections of invariant ideals in A.

2.9. The residual Rokhlin*-property and essential freeness We have
shown in Theorem 1.20 and Theorem 2.5 that essential freeness and the residual
Rokhlin*-property are sufficient to ensure that A separates the ideals in A, G
for a discrete exact group G acting on A.

We will now argue why the residual Rokhlin*-property is ”better” than
essential freeness. More precisely we will prove that in the case when G acts
by an essentially free action on a C*-algebra A, then the residual Rokhlin*
property is automatic.

Lemma 2.10. Let (A, G) be a C*dynamical system with A abelian and G
discrete. If 1, pa are orthogonal states on A and € > 0 then there exist open
sets Uy, Uy C X :=Prim(A) = A such that

UnUs=2, 1—¢e<pi(Us),

where p; is the unique regqular Borel measure on X corresponding to ;.
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Proof. By [20, Def. 1.14.1] we have that ||¢1 — ¢2|| = 2. Find a selfadjoint
element h € A such that ||h|| <1 and 2 — € < (p1 — @2)(h). With

hi=hy—h_, hiho>0, hih_=0

it follows that 1 —e < ¢1(hy) < sup, npl(hfr/”) = p({z : hy(z) > 0}).
Similarly we get that 1 — e < pa({z : h_(x) > 0}). O

Lemma 2.11. Let (A, G) be a C*-dynamical system with A abelian, G discrete
and let ¢ be a state on A. For every t € G such that ¢ is orthogonal to t.p,
every € > 0 and every open set U C X := Prim(A) = A there exists an open
set U' C U such that

U'ntU =2, wU)>ulU)—c¢,
where p is the unique reqular Borel measure on X corresponding to ¢.

Proof. Assume having t € G,e > 0 and U C X open with the property that ¢
is orthogonal to t.¢. Using Lemma 2.10 find open sets Uy, Uy C X such that

UiNUy =@, 1—% S,LLZ(UZ)v

where p1 := p and po :=t.pn = u(t=1.( - )). Define
U'-=U,nt" 0, U :=U0nU".
Note that U’ C U is open and disjoint from ¢.U’. Using
p(U) = pUNU") +pUnU") < p(U') + p(U")
p(U") = p((Ur Nt 102)°) < pa(Uf) + p2(Us) < e
one get the desired property u(U) < pu(U') +¢€ . O

Theorem 2.12. Let (A,G) be a C*-dynamical system with A abelian and G
countable. Then the following are equivalent

(i) The action of G on A is topologically free.
(i1) There exists a projection p. € A’ N A** (= Z(A**)) such that

a Z(t.pe)

teG

=llall, peLspe, se€G\{e}, acA

In particular if the action is essentially free we obtain the residual Rokhlin*
property.

Proof. (i) = (4i): This direction works also in general for (A4, G) with discrete
G (and A not necessary abelian and G not necessary countable): Let F' C A
denote the set of points in A with trivial isotropy. By axiom of choice we
can find a subset H C F such that {¢t.H : t € G} is a partition of F. Recall
that each von Neumann algebra canonically splits in the direct sum Ny;screte @
Neontinuous by the maximal central projection Cy such that Ngjscrete := NCy
is a discrete Type I von Neumann algebra. In particular, for N := A**  the
minimal projections of the center Z(Ngiscrete) 0f Naiscrete corresponds to the
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unitary equivalence classes of irreducible representation of A. In this way we
get G-equivariant bijection between A and the set of minimal projections in
Z(Ndiscrete), 1-€. the center of A%Y, . ... is naturally isomorphic to loo(g) =
co(A)**, the bounded functions on A equipped with the discrete topology. In
particular, this gives a one-to one correspondence between subsets S C Aof A
and projections gg in the center of A**, such that t.qs = ¢;.¢ for t € G. The
projection

-~

Pe ‘= 4qH
in the discrete part of A** satisfies the desired conditions giving (i), because
the projection \/,.,t.qg is the same as the projection gz corresponding to
F C A, and ||agg|| = ||| for all a € A (because the irreducible representations
in F' are separating for A).

(14) = (4): Identify A = Cp(X) for X := Prim(A) = A and let F C X be
the subset of points in X with trivial isotropy, i.e. elements that are fixed only
by e € G.

Set U := X\F and p¥ := p.q, where ¢ € Cy(X)** is the open invariant
projection corresponding to the invariant ideal Co(U) in Co(X) such that

Co(U)*™ = Co(X)™q, aq=a, a € Co(U).

Note that U = @ implies (¢). Assuming U # & we show U contains elements
with trivial isotropy, giving a contradiction. First we show pl # 0. Using
that A is weakly dense in A** find an increasing net (a;) of positive norm one
elements in Cy(U) weakly converging to ¢ € A**. With p := >, t.p. it
follows from (ii) that

1= [la:]| = llaipll = llaigpll

Since p¥ =0 = gp = 0 = a;qp = 0, we get that pJ # 0.

Find a normal state ¢** on Co(U)** with ¢**(pY) =1 and let ¢ be the re-
striction to Co(U). Now let i be the regular Borel measure on U corresponding
to . Fix {t1,ta,...} := G\ {e} and ¢, = 27D n € N. We now show, using
induction, the existence of open sets U,, C --- C U; C U fulfilling that

Unmtj.Un:@, j=1...,n M(Un)21—(61+---+6n).

For any t # e the state ¢ is orthogonal to t.¢ (since ¢**(pY) = 1 the projection
pY is larger that the support projection of ¢ and as p L t.pU the support
projections of ¢ and ¢.¢ are orthogonal).

For n = 1 we note that ¢ is orthogonal to ¢;.¢o. Using Lemma 2.11 on
t1 € G, e; > 0and U C X there is an open set U; C U such that

Uynt,.Uy =9, ,LL(Ul)Z,LL(U)—élzl—el.

For n > 1 we assume having the desired sets Uy, ...,U,. Using Lemma 2.11
on tyy1 € G and €,41 > 0 and U, C X one gets an open set U, 1 C U,, with

Un+1 N thrl'UnJrl =4, N(UnJrl) > M(Un) — €n+41-
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This implies the desired properties for Up41. As p((\U,) = lim, u(U,) > 0
the set (U, is a non-empty subset in U consisting of elements with trivial
isotropy. (I

Remark 2.13. The property (i7) in Theorem 2.12 is different from either
the Rokhlin or Rokhlin* statements. However it is clear that property (i¢) in
Theorem 2.12 implies the Rokhlin* property.

Remark 2.14. We have the following more general result:

If (A, G) is a C*dynamical system with G discrete and if the action of G
on A is essentially free, then (A, G) satisfy the residual Rokhlin™ property.

See the proof of the direction (i) = (i¢) in the proof of Theorem 2.12.

As a corollary we get a particularly nice reformulation of when A separates
the ideals in A X, G in the case where the action is amenable. The formulation
of amenability stated below is taken from the book by Brown and Ozawa,
cp. [3].

Definition 2.15. Let (C(X),G) be a C*-dynamical system with X compact
and G discrete. The action is called amenable if there exist a net of continuous
maps m; : X — Prob(G) such that for each s € G,

lim (sup Is.mf — mfr||1) =0,
zeX

1—00
where s.m?(t) = m¥(s~t).

Corollary 2.16. Let (A, G) be a C*-dynamical system with A unital, abelian
and G countable, discrete. Suppose the action is amenable. Then A separates
the ideals in A %, G if and only if the action satisfy the residual Rokhlin*
property.

Proof. Assume A separates the ideals in A x,. G. By Theorem 1.13 the action
of G of A satisfies the residual intersection property. This can be reformulated
in the following way. For every I € Z(A)¢ we have that

VI ET(AJIxG):nt(n(J)=J,JNA=0 = =(J)=0,

where 7 is the canonical surjection A/I xG — A/Ix,G. By [3, Exercise 4.4.3]
the induced action of G on A/I, I € Z(A)% is amenable implying that the map
w: A/l xG — A/I x, G is an isomorphism, cp. [3, Thm. 4.2.6]. Using [1,
Thm. 2] the action of G on A/I is topologically free for every I € Z(A)“.
Since G is countable, we obtain from Remark 1.18 that the action of G on A
is essentially free. Using Theorem 2.12 we get the residual Rokhlin* property.

Conversely assume that the action satisfy the residual Rokhlin* property.
An amenable action is automatically exact. Hence A separates the ideals in
A X, G by Theorem 2.5. (]

2.17. Additional remarks The following considerations show the connection
between Rokhlin* property and proper outerness.
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Definition 2.18. In [8] an automorphism « of A is called properly outer if for
any non-zero a-invariant (i.e. (a)-invariant, () being the group generated by
«) ideal I in A and any inner automorphism g of I, ||a|r — G| = 2.

Let (A, G) be a C*-dynamical system with G discrete. The action, say «, of
G on A is called properly outer it oy is properly outer for every ¢ # e, cp. [15].

Let £L(A, A) be the set of linear and bounded maps from A into A. We have
a natural isometric and linear map from L£(A, A) to L(Ac, Axo) given by

(a — Ta) — ((al,ag, )+ co(A) — (Tay,Tag, ) + cO(A))

In particular, we get a natural unital monomorphism ¢ : M(A4) — M(Ax).
The o((Axo)*™, (Ax)*)-closure of A in (Aw)** is naturally W*-isomorphic to
A** via a natural (not necessarily unital) monomorphism  : A** — (A )*™.

For a unitary u € M(A) we let Ad(u)s : Aoy — Ao denote the natural
automorphism (a1, az, ) + co(A) — (uaiu*,uagu®*,---) + co(A). Note that
Ad(u)so is given by the inner automorphism Ad(U) : Ase — Aso,b — UbU*
for the unitary U := v (u). We identify M (A ) naturally with its image in
(Aso)*™ inducing Ad(U)** : (Aoo)*™* — (Ao)™,b+— UbU™.

Lemma 2.19. Fiz a unitary u € M(A) and an automorphism « of A. With
q:=k(las), U:=9(u) and B := an we have the following identities

B(q) =q and Ad(U)™(b) =0b for allbe (AN (Ax)™)q.
Proof. The proof is a just an application of the two diagrams below.

ok

A** o4 S A** M(A) S A**
d R B
(Ae)™ Lo (4™ M(A) == (A

For an element b € A’ N (Axo)™ = k(A*™) N (Ax)*™ we obtain that
Ad(U)™(bg) = Ug)b(Uq)* = k(u)br(u”) = bq.
U

Lemma 2.20. Let (A, G) be a C*-dynamical system with G discrete. Assume
the action of G on A has the Rokhlin® property. Then for every subgroup H
in G and every H-invariant ideal I in A the restricted action of H on I has
the Rokhlin* property.

Proof. Using the equivalence relation s ~g t < 3h € H : t = hs on G let F
be a subset of G with one element from each equivalent class. Further let p be
the supporting open central projection of I. Using the strong convergent sum
qe = K(P) D _4ep Pt i I'N (Ioo)™ it follows that the action of H on I has the
Rokhlin* property. O

Theorem 2.21. Let (A, G) be a C*-dynamical system with G discrete. If the
action has the Rokhlin™ property then it is automatically properly outer.
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Proof. Assume the action « of G on A is not properly outer. Find t # e, an
(o )-invariant ideal I in A and u € M(T) such that

et |r — Ad(u)]| < 2.

By Lemma 2.20 it is sufficient to show that the action of (a;) on I does not
have the Rokhlin* property. Hence we can assume G = (o) and A = I and
show that the action of G on A does not have the Rokhlin* property. With
a := oy we have an automorphism « of A and a unitary u € M(A) such that

lla — Ad(w)]| < 2.

Define ¢ := k(1a=+), U := ¢(u) and 8 := a as in Lemma 2.19. The linear
map ** — Ad(U)** is equal to the natural extension (o — Ad(u))%* of a —

o0

Ad(u) € L(A, A) to a bounded linear operator on (As)**. In particular, we
get |13 — Ad(U)*| < 2.

Assume there exist a projection p. € A" N (Ax)™ such that p.LB**(pe).
With p := p.q it follows from Lemma 2.19 that

Ad(U)™(q) =q¢=p5"(q9), AdU)™(p) =p.
Since pg = gp = p we have that (2p — ¢)*(2p — ¢) = ¢ and hence

2187 (p) = pll = 187 (2p —q) — (2p — @)|| < 2.

Note that pL3**(p). This implies that ||3**(p) — p||*> = ||3**(p) + p|| € {0,1}.
It follows that p = 0. By definition of ¢ and Lemma 2.19 we obtain

at.pe = t.(pet~t.a) = t.(pet "' .(qa)) = t.(peqt*.a) =0, ac€ At eQG.
The action of G on A does not have the Rokhlin* property. ]

Corollary 2.22. Let (A, G) be a C*-dynamical system with G discrete. The
properties

(i) The action of G on A is topologically free.
(ii) The action of G on A has the Rokhlin* property.
(iii) The action of G on A is properly outer.
fulfills the implications (i) = (i) = (¢91). In addition if A is abelian and G
countable then we obtain the implication (iii) = (i) making all the conditions
equivalent.

Proof. (i) = (ii). We refer to the proof of Theorem 2.12 ((i) = (47)).

(ii) = (iii). See Theorem 2.21.

(#i7) = (7). Suppose a countable discrete group G acts by a on an abelian
C*-algebra A. Set X := A and Uy := {z € X : t.x # z}. If the action on X is
not topologically free there exist ¢ # e such that Uy is not dense in X (using
that G is countable). Hence there exist an open non-empty subset V' in Uf.
Note that I := Co(V) is in a natural way a oy-invariant ideal in A fulfilling
that t.z = x for all x € V. In particular ||aq|; — idr|| = 0. Hence the action is
not properly outer. O
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Remark 2.23. We know from the paper of Archbold and Spielberg [1] that
topological freeness of G on A implies the action is properly outer, which is
also contained in Corollary 2.22.

If follows from the paper of Olesen and Pedersen [15, Lem. 7.1] (or of Kishi-
moto [13]), that for a properly outer action on a separable C*-algebra A we
obtain that for b € (A x G)* and € > 0 there exist € A" with [|z| < 1,
|zbx — 2 E(b)z| < e and ||[zE(b)z|| > ||E(b)] — e.

An inspection of the proof of their Theorem 7.2 gives that the latter obser-
vation implies that any closed ideal J of A x G with J N A = {0} must be
contained in the kernel of 7 : A x G — A x, G (in particular the intersection
property holds).

We can apply this in a similar way to all quotients, and get the following
result:

Let G be a discrete group acting by o on a separable C*-algebra A. If
[ar]r = A/T — A/I is properly outer for every G-invariant closed ideal I # A
and every t € G\ {e}, then we obtain the residual intersection property. Thus,
if in addition the action of G on A is exact, then A separates the ideals in
A X, G, by Theorem 1.10.
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