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Abstract. We give a general formula for the equivariant complex K-theory K∗

G
(V ) of a

finite dimensional real linear space V equipped with a linear action of a compact group G

in terms of the representation theory of a certain double cover of G. Using this general
formula, we give explicit computations in various interesting special cases. In particular, as
an application we obtain explicit formulas for the K-theory of C∗

r (GL(n, R)), the reduced
group C*-algebra of GL(n, R).

1. Introduction

Let G be a compact group acting linearly on the real vector space V . In
this paper we want to give explicit formulas for the complex equivariant K-
theory K∗

G(V ) depending on the action of the given group G on V . By use of
the positive solution of the Connes-Kasparov conjecture in [5], this will also
provide explicit formulas for theK-theoryK∗(C

∗
r (H)) of the reduced groupC∗-

algebra C∗
r (H) for any second countable almost connected group H depending

on the action of the maximal compact subgroup G of H on the tangent space
V = TeG(H/G).

If the action ofG on V is orientation preserving (which is always the case ifG
is connected) and lifts to a homomorphism of G to Spin(V ) (or even Spinc(V )),
we get the well-known answer from the equivariant Bott periodicity theorem.
It implies that

K∗
G(V ) ∼= K

∗+dim(V )
G (pt) =

{⊕
ρ∈ bG Z if ∗ + dim(V ) is even

{0} if ∗ + dim(V ) is odd.

The obstruction for a linear action of G on V to lift to a homomorphism into
Spin(V ) is given by the Stiefel-Whitney class [ζ] ∈ H2(G,Z2), where we write
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Z2 := Z/2Z. This class ζ determines a central group extension

1 −−−−→ Z2 −−−−→ Gζ −−−−→ G −−−−→ 1.

If we denote by −1 the nontrivial element of Z2 ⊆ Gζ , then the irreducible

representations of Gζ can be divided into the disjoint subsets Ĝ+
ζ and Ĝ−

ζ with

Ĝ+
ζ := {ρ ∈ Ĝ : ρ(−1) = 1Vρ

} Ĝ−
ζ := {ρ ∈ Ĝ : ρ(−1) = −1Vρ

}.

It is then well known (e.g., see [5, §7]) that K∗
G(V ) is a free abelian group

with one generator for every element ρ ∈ Ĝ−
ζ . In particular, it follows that

the equivariant K-theory of V is always concentrated in dim(V ) mod 2 if the
action of G on V is orientation preserving.

The situation becomes more complicated if the action of G on V is not
orientation preserving. As examples show, in this case nontrivial K-groups
may appear in all dimensions. The situation has been studied in case of finite
groups by Karoubi in [8]. In this paper we use different methods to give a
general description of K∗

G(V ) which works for all compact groups G. We then
show in several particular examples how one can extract explicit formulas from
our general result, also recovering the explicit formulas given by Karoubi in the
case of the symmetric group Sn acting on Rn by permuting the coordinates.

To explain our general formula we assume first that dim(V ) is even. Then
there is a central extension

1 −−−−→ Z2 −−−−→ Pin(V )
Ad

−−−−→ O(V ) −−−−→ 1,

where Pin(V ) ⊂ ClR(V ) denotes the Pin group of V (see §2 for further details
on this extension). If ρ : G→ O(V ) is any continuous homomorphism, let

Gρ := {(x, g) ∈ Pin(V ) ×G : Ad(x) = ρ(g)}.

Then Gρ is a central extension of G by Z2 with quotient map q : Gρ → G
given by the projection to the second factor.

LetKρ ⊆ Gρ denote the pre-image of SO(V ) under the homomorphism ρ◦q :
Gρ → O(V ). Then Kρ = Gρ, if the action of G on V is orientation preserving,

and [Gρ : Kρ] = 2 otherwise. The group Gρ acts on K̂ρ by conjugation. Let

K̂−
ρ = {τ ∈ K̂ρ : τ(−1) = −1Vτ

}

be the set of negative representations of Kρ. This set is invariant under the

action of Gρ. Write O1 as the set of all orbits of length one in K̂−
ρ and O2 as

the set of all orbits of length two in K̂−
ρ . We then get the following general

result:

Theorem 1.1. Suppose that G is a compact group acting on the even dimen-
sional real vector space V via the homomorphism ρ : G → O(V ). Then, using
the above notations, we have:

(i) If ρ(G) ⊆ SO(V ), then

KG
0 (V ) ∼=

⊕

[τ ]∈ bG−

ρ

Z and KG
1 (V ) = {0}.
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(ii) If ρ(G) 6⊆ SO(V ), then

KG
0 (V ) ∼=

⊕

[τ ]∈O2

Z and KG
1 (V ) ∼=

⊕

[τ ]∈O1

Z.

The odd-dimensional case can easily be reduced to the even case by passing
from V to V

⊕
R together with Bott periodicity. The main tool for proving

the theorem is Kasparov’s KK-theoretic version of equivariant Bott periodicity,
which provides a KKG-equivalence between C0(V ) and the complex Clifford
algebra Cl(V ) (e.g. see [9, Theorem 7]). By the Green-Julg theorem, this
reduces everything to a study of KK(C,Cl(V ) ⋊ G), which then leads to the
above representation theoretic description of KG

∗ (V ).
After having shown the above general theorem we shall consider various

special cases in which we present more explicit formulas. In particular we shall
consider the case of finite groups in §4 and the case of actions of O(n) in §5
below. In particular, we show that for the canonical action of O(n) on Rn we
always get K1

O(n)(R
n) = {0} and

K0
O(n)(R

n) ∼=

{
Z if n = 1⊕

n∈N
Z if n > 1

(see Example 4.2 for the case n = 1 and Theorem 5.7 for the case n > 1).
Another interesting action of O(n) is the action by conjugation on the space Vn

of symmetric matrices in M(n,R). By (the solution of) the Connes-Kasparov
conjecture we have K∗

(
C∗

r (GL(n,R))
)
∼= K∗

O(n)(Vn) which now allows us to

give explicit computations of these groups in all cases (see Theorem 5.9 below)
In particular, in case n = 2 we get

K0

(
C∗

r (GL(2,R))
)
∼= Z and K1

(
C∗

r (GL(2,R))
)
∼=
⊕

n∈N

Z,

which also shows that, for K∗
G(V ), it is possible to have infinite rank in one

dimension and finite rank in the other. While these results are stated and
prepared in §5, some representation theoretical background and part of the
proof are given in §6.

This paper is based on the Diplom thesis of the second named author written
under the direction of the first named author at the University of Münster. The
authors are grateful to Linus Kramer for some useful discussions.

2. Some preliminaries on Clifford algebras

For the reader’s convenience, we recall in this section some basic facts on
Clifford algebras which will be used throughout this paper. For this let V be
a fixed finite dimensional real vector space equipped with an inner product
〈·, ·〉. We denote by ClR(V ) the real and by Cl(V ) = ClR(V )⊗R C the complex
Clifford algebras of V with respect to this inner product. Recall that ClR(V )
is the universal algebra generated by the elements of V subject to the relation

v · v = −〈v, v〉1.

Münster Journal of Mathematics Vol. 2 (2009), 65–94
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Every element of ClR(V ) is a finite linear combination of elements of the form
v1 · v2 · · · vk with 0 ≤ k ≤ dim(V ) and there is a canonical Z2-grading on
ClR(V ) with grading operator

α : ClR(V ) → ClR(V ), α(v1 · · · vk) = (−1)kv1 · · · vk.

We shall write ClR(V )0 and ClR(V )1 for the even and odd graded elements
of ClR(V ), respectively. We also have an involution on ClR(V ) given by
(v1 · · · vk)∗ = (−1)kvk · · · v1. With this notation, the Pin group is defined
as

Pin(V ) = {x ∈ ClR(V ) : x∗x = 1 and xvx∗ ∈ V for all v ∈ V }

and Spin(V ) = Pin(V ) ∩ ClR(V )0, where we regard V as a linear subspace of
ClR(V ) in the canonical way. Similar statements hold for the complex Clif-
ford algebra Cl(V ) if we replace V by its complexification VC = V ⊗R C. In
particular, we obtain the complex Pin group

Pinc(V ) = {x ∈ Cl(V ) : x∗x = 1 and xvx∗ ∈ V for all v ∈ V },

and Spinc(V ) = Pinc(V ) ∩ Cl(V )0, where we regard V as a linear subspace of
Cl(V ) via the inclusion x 7→ x⊗R 1 of ClR(V ) into Cl(V ). Note that this map
also induces an inclusion ι : Pin(V ) → Pinc(V ).

If V is even dimensional with dimension 2n, then Cl(V ) is isomorphic to the
full matrix algebra M2n(C) and the grading on Cl(V ) is given by conjugation
with the element

J := e1e2 · · · e2n ∈ Spin(V ),

where {e1, . . . , e2n} is any given orthonormal base of V . Moreover, there is a
short exact sequence

(2.1) 1 −−−−→ Z2 −−−−→ Pin(V )
Ad

−−−−→ O(V ) −−−−→ 1,

where for x ∈ Pin(V ) the transformation Ad(x) ∈ O(V ) is defined by
Ad(x)(v) = xvx∗. The group Spin(V ) is the inverse image of SO(V ) under
the adjoint homomorphism. For more details on Clifford algebras and the Pin
groups we refer to [2].

Notice that an analogue of the above extension is given in the odd-
dimensional case by

(2.2) 1 −−−−→ Z2 −−−−→ Pin(V )
A

−−−−→ O(V ) −−−−→ 1,

where A : Pin(V ) → O(V ) denotes the twisted adjoint given by A(x)(v) =
α(x)vx∗ . But this will not play a serious rôle in this paper.

Suppose now that G is a compact group and that ρ : G→ O(V ) is a linear
representation of G on V . Then ρ induces an action γ : G → Aut(Cl(V )) by
defining

γg(v1 · · · vk) = ρ(g)(v1) · · · ρ(g)(vk).

Note that if x ∈ Pinc(V ) such that Ad(x) = ρ(g) for some g ∈ G, then

(2.3) γg(y) = xyx∗
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for all y ∈ Cl(V ), which can be checked on the basic elements x = v1 · · · vk.
Note that this action is compatible with the grading α = AdJ on Cl(V ).

If dim(V ) is even, we define

Gρ := {(x, g) ∈ Pin(V ) ×G : Ad(x) = ρ(g)}.

Then the kernel of the projection q : Gρ → G equals Z2 and we obtain a central
extension

(2.4) 1 −−−−→ Z2 −−−−→ Gρ
q

−−−−→ G −−−−→ 1.

Let u : Gρ → Pin(V ), u(x, g) = x denote the canonical homomorphism. Then
it follows from (2.3) that

(2.5) γg(y) = u(x, g)yu(x, g)∗ for all y ∈ Cl(V ).

Note also that for each v ∈ Pinc(V ) we have the equation

JvJ∗ = α(v) = det(Ad(v))v

which follows from the fact that for v ∈ Pinc(V ) the transformation Ad v on
V has determinant 1 if and only if x ∈ Cl(V )0. In particular we get

(2.6) Ju(x, g)J∗ = det ρ(g)u(x, g) for all (x, g) ∈ Gρ.

If dim(V ) is odd, we consider the homomorphism ρ̃ : G → O(V
⊕

R) given

by ρ̃(g) =
(

ρ(g) 0
0 1

)
. We then put Gρ := Gρ̃. In this way we obtain a similar

central extension as in (2.4) in the odd-dimensional case.

3. The main result

Throughout this section we assume that ρ : G → O(V ) is a linear action
of the compact group G on the finite-dimensional real vector space V and
we let γ : G → Aut(Cl(V )) denote the corresponding action on the complex
Clifford algebra Cl(V ). Let us recall Kasparov’s KK-theoretic version of the
Bott periodicity theorem:

Theorem 3.1 ([9, Theorem 7]). Let ρ : G → O(V ) be as above. Then there

are classes α ∈ KKG
0 (C0(V ),Cl(V )) and β ∈ KKG

0 (Cl(V ), C0(V )) which are
inverse to each other with respect to the Kasparov product and therefore in-
duce a KKG-equivalence between the graded C∗-algebra Cl(V ) and the trivially
graded algebra C0(V ).

From this theorem and the Green-Julg theorem (e.g., see [1, 20.2.7]), it
follows that

K∗
G(V ) = KKG

∗ (C, C0(V )) ∼= KKG
∗ (C,Cl(V )) ∼= KK∗(C,Cl(V ) ⋊γ G).

So in order to describe the K-theory groups K∗
G(V ) it suffices to compute

the groups KK∗(C,Cl(V ) ⋊γ G). Note that we use the KK-notation here and
not the notation K∗(Cl(V ) ⋊γ G), since it is important to keep in mind that
Cl(V ) ⋊γ G is a graded algebra. Indeed, for any function f ∈ C(G,Cl(V )),
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regarded as a dense subalgebra of Cl(V )⋊γG, the grading operator ǫ : Cl(V )⋊γ

G→ Cl(V ) ⋊γ G is given by

ǫ(f)(g) = α(f(g)),

where α : Cl(V ) → Cl(V ) denotes the grading of Cl(V ).
In case where dim(V ) = 2n is even, we shall explicitly describe the crossed

product Cl(V ) ⋊γ G as a direct sum of full matrix algebras indexed by certain
representations of the compact group Gρ as defined in (2.4).

In general, we have Z2 = {±1} as a central subgroup of Gρ which gives
us a distinct element −1 ∈ Gρ. We then write −g for (−1)g for all g ∈ Gρ.
A function f ∈ C(Gρ) is said to be even (resp. odd), if f(−g) = f(g) (resp.
f(−g) = −f(g)) for all g ∈ Gρ. The even functions can be identified with
C(G) in a canonical way, and a short computation shows that the convolution
on C(Gρ) restricts to ordinary convolution on C(G) ⊆ C(Gρ). Similarly, the
set of odd functions C(Gρ)

− is also closed under convolution and involution,
and we shall write C∗(Gρ)

− for its closure in C∗(Gρ). With this notation we
get

Lemma 3.2. The decomposition of C(Gρ) into even and odd functions induces
a direct sum decomposition

C∗(Gρ) = C∗(G)
⊕

C∗(Gρ)−

with projections φ+ : C∗(Gρ) → C∗(G), φ− : C∗(Gρ) → C∗(Gρ)
− given on

f ∈ C(Gρ) by

φ+(f)(g) =
1

2

(
f(g) + f(−g)

)
and φ−(f)(g) =

1

2

(
f(g) − f(−g)

)
.

There is a corresponding decomposition of Ĝρ as a disjoint union Ĝ∪ Ĝ−
ρ with

Ĝ−
ρ := {τ ∈ Ĝρ : τ(−1) = −1Vτ

}.

Proof. The proof is fairly straight-forward: If τ : Gρ → U(Vτ ) is any irreducible
unitary representation of Gρ, then τ(−1) commutes with τ(g) for all g ∈ Gρ

and since τ(−1)2 = 1Vτ
, it follows from Schur’s lemma that either τ(−1) = 1Vτ

or τ(−1) = −1Vτ
. In the first case, the representation factors through an

irreducible representation of G via the quotient map q : Gρ → G. Thus we

obtain a decomposition of the dual Ĝρ into the disjoint union Ĝρ = Ĝ ∪ Ĝ−
ρ .

One easily checks that the even (resp. odd) functions on Gρ are annihilated by

(the integrated forms of) all elements of Ĝ−
ρ (resp. Ĝ), which then implies that

this decomposition of Ĝρ corresponds to the above described decomposition of
C∗(Gρ). �

Definition 3.3. A representation τ of Gρ is called negative if τ(−1) = −1Vτ
.

The negative representations are precisely those unitary representation of
Gρ which factor through C∗(Gρ)

−. In what follows next, we want to show
that in case where dim(V ) = 2n is even, there is a canonical isomorphism
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Cl(V ) ⊗ C∗(Gρ)
− ∼= Cl(V ) ⋊γ G. To prepare for this result we first note

that the tensor product Cl(V ) ⊗ C∗(Gρ)
− can be realized as the closure of

the odd functions f ∈ C(Gρ,Cl(V )) in the crossed product Cl(V ) ⋊idGρ with
respect to the trivial action of Gρ on Cl(V ). The representations are given
by the integrated forms ϕ × σ of pairs of representations (ϕ, σ) on Hilbert
spaces H such that ϕ is a ∗-representation of Cl(V ), σ is a negative unitary
representation of Gρ, and

ϕ(x)σg = σgϕ(x) for all g ∈ Gρ, x ∈ Cl(V ).

For the following proposition recall that q : Gρ → G denotes the quotient map.

Proposition 3.4. Suppose that dim(V ) = 2n is even. Then there is a canon-
ical isomorphism

Θ : Cl(V ) ⊗ C∗(Gρ)
− ∼=
−→ Cl(V ) ⋊γ G

which sends an odd function f ∈ C(Gρ,Cl(V )) to the function Θ(f) ∈
C(G,Cl(V )) ⊆ Cl(V ) ⋊γ G, given by

Θ(f)(q(g)) =
1

2

(
f(g)ug + f(−g)u−g

)
.

Under this isomorphism, a representation ϕ × σ of Cl(V ) ⊗ C∗(Gρ)
− on a

Hilbert space H corresponds to the representation ϕ × τ of Cl(V ) ⋊γ G on H
with τ : G→ U(H) given by

τ(q(g)) = ϕ(u∗g)σ(g).

Proof. For the proof we first inflate the action γ : G→ Aut(Cl(V )) to an action
γ̃ : Gρ → Aut(Cl(V )) in the obvious way. It follows then from (2.5) that this
action is implemented by the canonical homomorphism u : Gρ → Pin(V ) in
such a way that

γ̃g = Adug

for all g ∈ Gρ. It follows that the crossed product Cl(V ) ⋊γ̃ Gρ is isomorphic
to Cl(V ) ⋊id Gρ

∼= C∗(Gρ) ⊗ Cl(V ) with isomorphism Φ : Cl(V ) ⋊id Gρ →
Cl(V ) ⋊γ̃ Gρ given on the dense subalgebra C(Gρ,Cl(V )) by

(
Φ(f)

)
(g) = f(g)ug.

On the other hand, we have a canonical surjective ∗-homomorphism

Ψ : Cl(V ) ⋊γ̃ Gρ → Cl(V ) ⋊γ G

given on C(Gρ,Cl(V )) by Ψ(f)(q(g)) = 1
2 (f(g) + f(−g)).

We claim that the ∗-homomorphism Θ : Cl(V ) ⊗ C∗(Gρ) → Cl(V ) ⋊γ G
given by the composition

Cl(V ) ⊗ C∗(Gρ) ∼= Cl(V ) ⋊id Gρ
Φ

−−−−→ Cl(V ) ⋊γ̃ Gρ
Ψ

−−−−→ Cl(V ) ⋊γ G

factors through the desired isomorphism Cl(V ) ⊗ C∗(Gρ)
− ∼= Cl(V ) ⋊γ G. It

is then clear that it is given by the formula as in the proposition.

Münster Journal of Mathematics Vol. 2 (2009), 65–94



72 Siegfried Echterhoff and Oliver Pfante

For the proof of the claim it suffices to show that the map

Θ̂ : (Cl(V ) ⋊γ G)̂ → (Cl(V ) ⊗ C∗(Gρ))̂ , ϕ× τ 7→ (ϕ× τ) ◦ Θ

is injective with image (Cl(V ) ⊗ C∗(Gρ)
−)̂ .

To see this let (ϕ, τ) be any covariant representation of
(
Cl(V ), G, γ

)
on the

Hilbert space H . Composing it with the quotient map Ψ gives the covariant
representation (ϕ, τ ◦ q) of

(
Cl(V ), Gρ, γ̃

)
. This representation corresponds to

the representation (ϕ, σ) of
(
Cl(V ), Gρ, id

)
with σ : Gρ → U(Vτ ) given by

σg = ϕ(ug) · τq(g).

To see this, we simply compute for given f ∈ C(Gρ,Cl(V )) the integrated form

ϕ× τ ◦ q(Φ(f)) =

∫

Gρ

ϕ(Φ(f)(g))τq(g) dg

=

∫

Gρ

ϕ(f(g)ug)τq(g) dg = ϕ× σ(f).

Since u−1 = −1 in Cl(V ), we see that σ(−1) = ϕ(−1)τ(1) = −1H , which
implies that σ factors through a representation of C∗(Gρ)

−, and therefore
ϕ × σ = (ϕ × τ) ◦ Θ is an irreducible representation of Cl(V ) ⊗ C∗(Gρ)

−.
Conversely, assume that a representation ϕ×σ of Cl(V )⊗C∗(Gρ)

− on a Hilbert
space H is given. Then one checks that (ϕ, τ) with τ(q(g)) = ϕ(u∗g)σ(g) is a

covariant representation of
(
Cl(V ), G, γ

)
such that ϕ × σ = (ϕ × τ) ◦ Θ, and

the result follows. �

Recall that by the Peter-Weyl Theorem the C*-algebra C∗(Gρ) of the com-
pact group Gρ has a decomposition

C∗(Gρ) =
⊕

τ∈ bGρ

End(Vτ )

with projection from C∗(Gρ) onto the summand End(Vτ ) given by f 7→ τ(f) =∫
Gρ
f(g)τg dg. The above decomposition together with Proposition 3.4 induces

a decomposition

Cl(V ) ⋊γ G ∼=
⊕

τ∈ bG−

ρ

Cl(V )⊗̂End(Vτ ).

We need to analyze the grading on the direct sum decomposition induced by
the grading ǫ of Cl(V ) ⋊γ G. Recall that the latter is given on functions
f ∈ C(G,Cl(V )) by

ǫ(f)(g) = α(f(g)) = Jf(g)J∗

with J = e1 · · · e2n and {e1, . . . , e2n} an orthonormal basis of V . If Θ is
the isomorphism of Proposition 3.4 we compute for any elementary tensor
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x⊗ f ∈ Cl(V ) ⊗ C(Gρ)− ⊂ C(Gρ,Cl(V )) that

ǫ(Θ(x⊗ f))(q(g)) = JΘ(x⊗ f)(q(g))J∗

= J
1

2

(
xf(g)ug + xf(−g)u−g

)
J∗

=
1

2

(
JxJ∗f(g)JugJ

∗ + JxJ∗f(−g)Ju−gJ
∗
)

= JxJ∗ det(ρ(q(g)))
1

2

(
f(g)ug + f(−g)u−g

)

= Θ(α(x) ⊗ (det ◦ρ) · f)(q(g)),

where the second to last equation follows from (2.6). This shows that the
grading on Cl(V )⊗̂C∗(Gρ)

− corresponding to ǫ is the diagonal grading given
by the standard grading α on Cl(V ) and the grading on C∗(Gρ)− given on
C(Gρ)− via point-wise multiplication with the Z2-valued character

µ : Gρ → Z2, µ(g) = det ◦ρ ◦ q(g).

Now, for any function f ∈ C(Gρ) and τ ∈ Ĝρ we get

τ(µ · f)(g) =

∫

Gρ

µ(g)f(g)τg dg = (µ · τ)(f),

which implies that the corresponding grading on C∗(Gρ)
− =

⊕
τ∈ bG−

ρ
End(Vτ )

induces an inner automorphism on the block End(Vτ ) if τ ∼= µ·τ and intertwines
End(Vτ ) with End(Vµτ ) if µτ 6∼= τ .

Write Mτ := Cl(V ) ⊗ End(Vτ ). Then Mτ is isomorphic to a full matrix
algebra. If τ ∼= µ · τ , this summand of Cl(V ) ⊗ C∗(Gρ)

− is fixed by the
grading and Mτ is Morita equivalent (as graded algebra) to the trivially graded
algebra Mτ . If µτ 6∼= τ , the grading intertwines Mτ with Mµτ and the direct
sum Mτ

⊕
Mµτ is isomorphic to the algebra Mτ

⊕
Mτ with the standard odd

grading given by (S, T ) 7→ (T, S). Thus Mτ

⊕
Mµτ is isomorphic to Mτ ⊗̂Cl1,

where Cl1 = C
⊕

C denotes the first Clifford algebra. We therefore obtain a
decomposition

(3.1) Cl(V ) ⋊γ G ∼=

(⊕

τ∈O1

Mτ

)⊕

 ⊕

{τ,µτ}∈O2

Mτ ⊗̂Cl1


 ,

where O1 denotes the set of fixed points in Ĝ−
ρ under the order-two transfor-

mation τ 7→ µτ , and O2 denotes the set of orbits of length two under this
action. Using this, it is now easy to prove:

Theorem 3.5. Let ρ : G → O(V ) be a linear action of the compact group
G on the finite-dimensional real vector space V and let γ : G → Aut(Cl(V ))

denote the corresponding action on Cl(V ). Let Ĝ−
ρ , O1 and O2 be as above.

Then

K∗
G(V ) ∼= KK∗(C,Cl(V ) ⋊γ G) =

{⊕
τ∈O1

Z if ∗ + dim(V ) = 0 mod2⊕
{τ,µτ}∈O2

Z if ∗ + dim(V ) = 1 mod2.
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Proof. We first assume that dim(V ) = 2n is even. The isomorphism K∗
G(V ) ∼=

KK∗(C,Cl(V ) ⋊γ G) is Kasparov’s Bott periodicity theorem. The decomposi-
tion of Cl(V ) ⋊γ G of (3.1) implies a decomposition

KK∗(C,Cl(V ) ⋊γ G) ∼= KK∗

(
C,
⊕

τ∈O1

Mτ

)⊕
KK∗

(
C,

⊕

{τ,µτ}∈O2

Mτ ⊗̂Cl1

)

= K∗

( ⊕

τ∈O1

Mτ

)⊕
K∗+1

( ⊕

{τ,µτ}∈O2

Mτ

)

=

( ⊕

τ∈O1

K∗(Mτ )

)⊕( ⊕

{τ,µτ}∈O2

K∗+1(Mτ )

)
,

and the result follows from the fact that K0(M) = Z and K1(M) = {0} for
any full matrix algebra M .

If dim(V ) is odd, we defined Gρ = Gρ̃ where ρ̃ : G → O(V
⊕

R), ρ̃(g) =(
ρ(g) 0
0 1

)
. Note that we haveK∗

G(V ) ∼= K∗+1
G (V

⊕
R) by Bott periodicity. Thus

the result follows from the even-dimensional case applied to the action ρ̃ on
V
⊕

R. �

Note that the homomorphism µ is trivial if and only if ρ takes image in
SO(V ), i.e., the action of G on V is orientation preserving. In this case we get

O1 = Ĝ−
ρ and O2 = ∅. Moreover, we then have

Gρ = {(x, g) ∈ Spin(V ) ×G : Adx = ρ(g)}.

This construction of Gρ makes also sense if the dimension of V is odd, and it
then coincides with the extension Gρ̃ we obtain by passing to the action ρ̃ of
G on V

⊕
R. We leave the verification of this simple fact to the reader. We

therefore recover the following well-known result (e.g., see [5, §7]):

Corollary 3.6. Let ρ : G→ SO(V ) be an orientation preserving linear action
of the compact group G on the finite dimensional real vector space V . Then

K∗
G(V ) ∼=

{⊕
τ∈ bG−

ρ
Z if ∗ + dim(V ) = 0 mod 2

{0} if ∗ + dim(V ) = 1 mod 2.

At this point it might be interesting to notice that for infinite compact

groups G the cardinality of Ĝ−
ρ is always countably infinite if G is second

countable. This follows from the next lemma.

Lemma 3.7. Let 1 → Z2 → H → G→ 1 be a central extension of an infinite

compact second countable group G by Z2. Then the set Ĥ− of equivalence
classes of negative irreducible representations of H is countably infinite.

Proof. We decompose L2(H) as a direct sum L2(G)
⊕
L2(H)−, where we

identify L2(G) with the set of even functions in L2(H), and where L2(H)−

denotes the set odd functions in L2(H). Since G is not finite, both spaces
are separable infinite dimensional Hilbert spaces. The regular representation
λH : H → U(L2(H)) then decomposes into the direct sum λG

⊕
λ−H , with
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λ−H a negative representation of H . By the Peter-Weyl Theorem we get a
decomposition

λG

⊕
λ−H =

⊕

τ∈ bH

dτ · τ,

where dτ denotes the dimension of τ and dτ · τ stands for the dτ -fold direct
sum of τ with itself. Since a direct summand of a negative (resp. positive)
representation must be negative (resp. positive), we get the decomposition

λ−H =
⊕

τ∈ bH−

dτ τ.

The result now follows from the fact that all representations τ in this decom-
position are finite dimensional. �

We proceed with a discussion of the special case, where the homomorphism
ρ : G→ O(V ) (resp. ρ̃ : G→ O(V

⊕
R) in case where dim(V ) is odd) factors

through a homomorphism v : G→ Pinc(V ) (resp. Pinc(V
⊕

R)). We then say
that the action satisfies a Pinc-condition. If ρ(G) ⊆ SO(V ), this implies that
the action factors through a homomorphism to Spinc(V ), in which case we say
that the action satisfies a Spinc-condition. Assume first that dim(V ) is even.
It follows then from (2.3) that the corresponding action on Cl(V ) is given by
γ = Ad v, which then implies that

Cl(V ) ⋊γ G ∼= Cl(V ) ⋊id G ∼= Cl(V ) ⊗ C∗(G)

with isomorphism Θ : Cl(V ) ⋊id G → Cl(V ) ⋊γ G given on functions f ∈
C(G,Cl(V )) by (

Θ(f)
)
(g) = f(g)vg.

Let ǫ be the grading on Cl(V ) ⋊γ G. On elementary tensors x⊗ f ∈ Cl(V ) ⊗
C(G) ⊂ Cl(V ) ⊗ C∗(G) we compute

ǫ
(
Θ(x⊗ f)

)
(g) = J(xf(g)vg)J∗ = JxJ∗ det(ρ(g))f(g)vg

= Θ
(
α(x) ⊗ (det ◦ρ) · f

)
(g),

where the second to last equation follows from (2.6). So we see that if µ :
G → Z2 denotes the character µ = det ◦ρ then the grading on Cl(V ) ⋊γ G
corresponds to the diagonal grading on Cl(V ) ⊗ C∗(G) given on the second
factor by multiplication with the character µ. Passing to V

⊕
R in case where

dim(V ) is odd, we now obtain the following theorem, where the proof proceeds
precisely as in Theorem 3.5:

Theorem 3.8. Assume that the linear action ρ : G → O(V ) satisfies a Pinc-

condition as defined above. Let O1 and O2 denote the sets of orbits in Ĝ under
the order two transformation τ 7→ µτ with µ = det ◦ρ : G→ Z2. Then

K∗
G(V ) ∼= KK∗(C,Cl(V ) ⋊γ G) =

{⊕
τ∈O1

Z if ∗ + dim(V ) = 0 mod2⊕
{τ,µτ}∈O2

Z if ∗ + dim(V ) = 1 mod2.

Münster Journal of Mathematics Vol. 2 (2009), 65–94



76 Siegfried Echterhoff and Oliver Pfante

In particular, if ρ satisfies a Spinc-condition, then O1 = Ĝ and O2 = ∅ and
then

K∗
G(V ) ∼= KK∗(C,Cl(V ) ⋊γ G) =

{⊕
τ∈ bG Z if ∗ + dim(V ) = 0 mod2

{0} if ∗ + dim(V ) = 1 mod2.

Note that the above statements are different from the statement given in
the introduction, where we describe the K-groups in terms of the kernel Kρ of

the character µ : Gρ → Z2 and the action of Gρ on K̂ρ.
In order to see that the above results can be formulated as in the introduc-

tion let us assume that G is any compact group, µ : G → Z2 is a nontrivial
continuous group homomorphism, and K := kerµ ⊆ G. Then K is a normal

subgroup of index two in G and G acts on K̂ by conjugation. This action is

trivial on K and therefore factors to an action of G/K ∼= Z2 on K̂. Thus the

G-orbits in K̂ are either of length one or of length two.

Proposition 3.9. Let µ : G → Z2 and K = kerµ as above. Consider the

action of Z2 on Ĝ given on the generator by multiplying with µ and let Z2
∼=

G/K act on K̂ via conjugation. Then there is a canonical bijection

res : Ĝ/Z2 → K̂/Z2

which maps orbits of length one in Ĝ to orbits of length two in K̂ and vice
versa.

This proposition is well known to the experts and follows from basic rep-
resentation theory. An elementary proof in case of finite groups G is given in
[7, Theorem 4.2 and Corollary 4.3] and the same arguments work for general
compact groups. Let g ∈ G \K be any fixed element. The basic steps for the
proof are as follows:

• If τ is an irreducible representation of G, the restriction τ |K is either
irreducible, or it decomposes into the direct sum σ

⊕
g · σ for some

σ ∈ K̂ with g · σ(k) = σ(g−1kg) for k ∈ K.
• τ |K is irreducible if and only if τ 6∼= µτ .

• If τ |K ∼= σ
⊕
g · σ for some σ ∈ K̂, then σ 6∼= g · σ.

The map res : Ĝ/Z2 → K̂/Z2 of the proposition is then given by sending the

an orbit {τ, µτ} of length two in Ĝ to the orbit {τ |K} of length one in K̂

and an orbit {τ} of length one in Ĝ to the orbit {σ, g · σ} of length two in K̂
determined by τ |K ∼= σ

⊕
g · σ. It follows from Frobenius reciprocity that this

map is onto.
We now come back to the description of K∗

G(V ):

Corollary 3.10. Suppose that G is a compact group and ρ : G → O(V ) is
a linear action of G on the finite dimensional real vector space V . Assume
that µ = det ◦ρ ◦ q : Gρ → Z2 is not trivial, i.e the action of G on V is not
orientation preserving. Let Kρ = kerµ ⊆ G and let

K̂−
ρ = {σ ∈ K̂ρ : σ(−1) = −1Vσ

}.
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Then K̂−
ρ is invariant under the conjugation action of Gρ on K̂ρ. Let O1 and

O2 denote the set of orbits of length one or two in K̂−
ρ . Then

K∗
G(V ) ∼=

{⊕
σ∈O1

Z if ∗ + dim(V ) = 1 mod2⊕
{σ,gσ}∈O2

Z if ∗ + dim(V ) = 0 mod2.

Proof. We first note that the central subgroup Z2 of Gρ lies in the kernel of

µ, since µ factors through G. So the definition of K̂−
ρ makes sense. Moreover,

since Z2 is central in Gρ, we get g(−1)g−1 = −1 for all g ∈ Gρ, which implies

that K̂−
ρ is invariant under the conjugation action. The description of the

bijection res : Ĝρ/Z2 → K̂ρ/Z2 of Proposition 3.9 given above now implies

that it restricts to a bijection res− : Ĝ−
ρ /Z2 → K̂−

ρ /Z2, which maps orbits
of length one to orbits of length two and vice versa. The result then follows
directly from Theorem 3.5. �

In case where ρ : G → O(V ) satisfies a Pinc-condition as considered in
Theorem 3.8, the same proof as for the above corollary together with Theorem
3.8 gives

Corollary 3.11. Suppose that the linear action ρ : G → O(V ) satisfies a
Pinc-condition and assume that µ = det ◦ρ : G → Z2 is nontrivial. Let K =

kerµ ⊆ G and let O1 and O2 denote the set of G-orbits in K̂ of length one
and two, respectively. Then

K∗
G(V ) ∼=

{⊕
σ∈O1

Z if ∗ + dim(V ) = 1 mod2⊕
{σ,gσ}∈O2

Z if ∗ + dim(V ) = 0 mod2.

4. Actions of finite groups

In this section we want to study the case of finite groups in more detail.
This case was already considered by Karoubi in [8], but the methods used here
are different from those used by Karoubi. We first notice that it follows from
Theorem 3.5 that for actions of finite groups G, the K-theory groups K∗

G(V )
are always finitely generated free abelian groups. In what follows next we want
to give formulas for the ranks of these groups in terms of conjugacy classes.

Recall that for every finite group G the number |Ĝ| of (equivalence classes of)
irreducible representations of G equals the number CG of conjugacy classes in
G.

We first look at the case where the action ρ : G → O(V ) satisfies a Pinc-
condition. Let µ = det ◦ρ : V → Z2. If µ is trivial it follows from Theorem 3.8

that rank(K∗
G(V )) = |Ĝ| = CG if ∗+ dim(V ) = 0 mod2 and rank(K∗

G(V )) = 0
otherwise.

If µ is nontrivial, let K = kerµ and let O1 and O2 denote the number of

G-orbits in K̂ of length one and two, respectively. The numbers O1, O2 satisfy
the equations

(4.1) O1 + 2O2 = |K̂| = CK and 2O1 +O2 = |Ĝ| = CG.
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Indeed, the first equation follows from the obvious fact that O1 + 2O2 coin-
cides with the number of irreducible representations of K and it follows from
Proposition 3.9 that 2O1 +O2 coincides with the number of irreducible repre-
sentations of G. By basic linear algebra the equations (4.1) have the unique
solutions

(4.2) O1 =
1

3

(
2CG − CK) and O2 =

1

3
(2CK − CG).

Combining all this with Corollary 3.11 implies

Proposition 4.1. Suppose that the linear action ρ : G → O(V ) of the finite
group G satisfies a Pinc-condition. Then

(4.3) rank(K∗
G(V )) =

{
CG if ∗ + dim(V ) = 0 mod2

0 if ∗ + dim(V ) = 1 mod2

if the action is orientation preserving, and

(4.4) rank(K∗
G(V )) =

{
1
3

(
2CK − CG) if ∗ + dim(V ) = 0 mod2

1
3 (2CG − CK) if ∗ + dim(V ) = 1 mod2

if the action is not orientation preserving, where K = {g ∈ G : det(ρ(g)) = 1}.

Example 4.2. Let G = Zm, the cyclic group of orderm, and let ρ : Zm → O(V )
be a linear action of Zm on V . We claim that ρ automatically satisfies a
Pinc-condition. For this let g be a generator of Zm. By passing to V

⊕
R

if necessary, we may assume without loss of generality that dim(V ) is even.
Choose u ∈ Pinc(V ) such that Ad(c) = ρ(g). Then Ad(um) = ρ(gm) = ρ(e) =
1V , and there exists λ ∈ T with um = λ1. Changing u into ζu, where ζ ∈ T is
an mth root of λ̄, we obtain a well defined homomorphism v : Zm → Pinc(V )
which sends g to ζu such that Ad v(gk) = ρ(gk) for all k ∈ Z. If the action ρ
takes image in SO(V ) (which is automatic if m is odd), we get

K∗
Zm

(V ) ∼=

{
Zm if ∗ + dim(V ) = 0 mod 2

{0} if ∗ + dim(V ) = 1 mod 2,

since CG = m. Assume now that m is even and the action is not orientation
preserving. Then the group K = ker(det ◦ρ) is cyclic of order m

2 . With the
values CG = m and CK = m

2 , Proposition 4.1 implies

K∗
Zm

(V ) ∼=

{
Zm/2 if ∗ + dim(V ) = 1 mod2

{0} if ∗ + dim(V ) = 0 mod2.

As a particular example, consider the action of Z2 on R by reflection. Then
we get

K0
Z2

(R) = Z and K1
Z2

(R) = {0}.
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We now study the general case. Consider the central extension 1 → Z2 →

Gρ
q
→ G → 1 as in (2.4). As shown in the previous section we have a disjoint

decomposition Ĝρ = Ĝ−
ρ ∪ Ĝ. We therefore get

|Ĝ−
ρ | = |Ĝρ| − |Ĝ| = CGρ

− CG.

Thus, if the action ρ : G → SO(V ) is orientation preserving, it follows from
Corollary 3.6 that rank(K∗

G(V )) = CGρ
− CG if ∗ + dim(V ) = 0 mod 2 and

rank(K∗
G(V )) = 0 otherwise.

If ρ is not orientation preserving we obtain the nontrivial character µ : Gρ →
Z2, µ = det ◦ρ ◦ q. Let Kρ = kerµ and let O1 and O2 denote the number of

Gρ-orbits of length one and two in K̂−
ρ , respectively. Similarly as for |Ĝ−

ρ | we
have the formula

|K̂−
ρ | = |K̂ρ| − |K̂| = CKρ

− CK .

Thus, as a consequence of Proposition 3.9 we see that

(4.5) O1 + 2O2 = |K̂−
ρ | = CKρ

− CK and 2O1 +O2 = |Ĝ−
ρ | = CGρ

− CG,

As in the Pinc-case, these equations have unique solutions and, using Corollary
3.10, we obtain

Proposition 4.3. Let ρ : G → O(V ) be a linear action of the finite group G
on V . Then

(4.6) rank(K∗
G(V )) =

{
CGρ

− CG if ∗ + dim(V ) = 0 mod2

0 if ∗ + dim(V ) = 1 mod2

if the action is orientation preserving, and
(4.7)

rank(K∗
G(V )) =

{
1
3

(
2(CKρ

− CK) − (CGρ
− CG)

)
if ∗ + dim(V ) = 0 mod2

1
3

(
2(CGρ

− CG) − (CKρ
− CK)

)
if ∗ + dim(V ) = 1 mod2

if the action is not orientation preserving.

Remark 4.4. Karoubi shows in [8] that for any linear action ρ : G→ O(V ) of a
finite group G the ranks of K0

G(V ) and K1
G(V ) can alternatively be computed

as follows: For any conjugacy class Cg in G let V g denote the fixed-point set
of ρ(g) in V . This space is ρ(h)-invariant for any h in the centralizer Cg of
g, and therefore Cg acts linearly on V g for all g in G. With these facts in
mind, Karoubi denotes a conjugacy class Cg oriented, if the action of Cg on
V g is oriented and Cg is called even (resp. odd) if dim(V g) is even (resp. odd).
He then shows in [8, Theorem 1.8] that the rank of K0

G(V ) (resp. K1
G(V ))

equals the number of oriented even (resp. odd) conjugacy classes in G. It
seems not obvious to us that Karoubi’s result coincides with the result given
in Proposition 4.3 above.

In what follows we want to apply our results to give an alternative proof
of the formulas for the ranks of K0

Sn
(Rn) and K1

Sn
(Rn), as given by Karoubi

in [8, Corollary 1.9], where the symmetric group Sn, for n ≥ 2, acts on Rn
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by permuting the standard orthonormal base {e1, . . . , en}. Let ρ : Sn → O(n)
denote the corresponding homomorphism. It is clear that the inverse image
of SO(n) is the alternating group An. To simplify notation, we shall write S̃n

and Ãn for the groups (Sn)ρ and (An)ρ. Thus it follows from Proposition 4.3
that
(4.8)

rank(K∗
Sn

(Rn)) =

{
1
3

(
2(CÃn

− CAn
) − (CS̃n

− CSn
)
)

if ∗ + n = 0 mod2
1
3

(
2(CS̃n

− CSn
) − (CÃn

− CAn
)
)

if ∗ + n = 1 mod2

}

Thus, to get explicit formulas we need to compute the numbers CS̃n
−CSn

and
CÃn

− CAn
. For this we use the following general observations: If

1 −−−−→ Z2 −−−−→ G̃
q

−−−−→ G −−−−→ 1

is any central extension of G by Z2, the inverse image q−1(Cg) of a conjugacy

class Cg in G is either a conjugacy class in G̃ itself, or it decomposes into two
disjoint conjugacy classes of the same length in G̃. If t ∈ G̃ such that q(t) = g,

the second possibility happens if and only if t is not conjugate to −t in G̃ (e.g.,
see [7, Theorem 3.6]). Thus, if Cdec

G denotes the number of conjugacy classes

in G which decompose in G̃, the number CG̃ of conjugacy classes in G̃ is equal

to CG + Cdec
G , and hence

CG̃ − CG = Cdec
G .

Now, for the groups G = Sn and K = An the numbers Cdec
Sn

and Cdec
An

have
been computed explicitly in [7, Theorem 3.8 and Corollary 3.10]:

Proposition 4.5. For each n ≥ 2 let an (resp. bn) denote the number of all
finite tuples of natural numbers (λ1, . . . , λm) such that 1 ≤ λ1 < λ2 < · · · <
λm,

∑m
i=1 λi = n, and the number of even entries λi is even (resp. odd). Then

Cdec
Sn

= an + 2bn and Cdec
An

= 2an + bn.

We should note that the definitions of S̃n and Ãn considered in [7] are
slightly different from ours, but a study of the proofs of Theorem 3.8 and
Corollary 3.10 in that paper shows that the arguments apply step by step to
our situation. As a consequence we get

Corollary 4.6. Let ρ : Sn → O(n) be as above. Then

K∗
Sn

(Rn) =

{
Zan if ∗ + n = 0 mod2
Zbn if ∗ + n = 1 mod2

}
.

Remark 4.7. In [8, Corollary 1.9], Karoubi gives the formulas

K0
Sn

(Rn) = Z
pn and K1

Sn
(Rn) = Z

in

where pn (resp. in) denotes the number of partitions n =
∑m

i=1 λi with 1 ≤
λ1 < · · · < λm and m = 2k even (resp. m = 2k + 1 odd). One checks that
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the numbers pn and in are related to the numbers an and bn, as defined in the
corollary above, by the equations:

a2n+1 = i2n+1 b2n+1 = p2n+1

a2n = p2n b2n = i2n,

and hence Karoubi’s formula coincides with ours. We give the argument for
the equation a2n+1 = i2n+1; the other equations can be shown similarly. So
let n ∈ N and let (λ1, . . . , λm) be a partition of 2n + 1 as in the definition
of a2n+1, i.e., there is an even number 2r of even entries λi in this partition.
Since λ1 + · · · + λm = 2n + 1 is odd, it follows that there is an odd number
of odd entries λj in the partition. Thus m = 2k + 1 is odd. Conversely, if
m = 2k+1 is odd, the fact that λ1 + · · ·+λm = 2n+1 is odd implies that the
number l of odd entries λj must be odd, and then the number m − l of even
entries must be even.

If we restrict the action of Sn to the alternating group An, we obtain the
formulas

K∗
An

(Rn) =

{
Z2an+bn if ∗ +n = 0 mod2

{0} if ∗ +n = 1 mod2,

since this action is orientation preserving.

5. Actions of O(n)

In this section we want to study the K-theory groups K∗
O(n)(V ) for linear

actions ρ : O(n) → O(V ) of the orthogonal group O(n) on an arbitrary real
vector space V . We are in particular interested in the canonical action of O(n)
on V = Rn and in the action of O(n) on the space Vn of all symmetric matrices
in Mn(R), with action given by conjugation. The study of the latter will allow
us to compute explicitly the K-theory groups of the reduced group C*-algebra
C∗

r (GL(n,R)) of the general linear group GL(n,R) via the positive solution of
the Connes-Kasparov conjecture.

Recall that O(n) ∼= SO(n) × Z2 if n is odd, with −I ∈ O(n) the generator
of Z2 (in what follows we denote by I the unit matrix in O(n) ⊆ Mn(R)
and we denote by 1 the unit in Spin(n) ⊆ ClR(n)). If n is even, we have
O(n) ∼= SO(n) ⋊ Z2, the semi-direct product of SO(n) with Z2, where the
generator of Z2 can be chosen to be the matrix g := diag(−1, 1, . . . , 1) ∈ O(n)
acting on SO(n) by conjugation.

Given a representation ρ : O(n) → O(V ), we need to describe the group
O(n)ρ and its representations. For this we start by describing all possible
central extensions of O(n) by Z2. Indeed, we shall see below that for any fixed
n ≥ 2 there are precisely four such extensions

1 −−−−→ Z2 −−−−→ Gn
i

q
−−−−→ O(n) −−−−→ 1,

i = 0, . . . , 3. To describe them, we let Kn
i denote the inverse image of SO(n) in

Gn
i for i = 0, . . . , 3. This is a central extension of SO(n) by Z2 and therefore the

Kn
i are either isomorphic to the trivial extension SO(n)×Z2 or the nontrivial
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extension Spin(n). Using this, the extensions Gn
i , 2 ≤ n ∈ N, i = 0, . . . , 3 are

given as follows:
If n = 2m+ 1 is odd, then

(O1) there are two extensionsGn
0 andGn

1 such thatKn
0 = Kn

1 = SO(n)×Z2:
the trivial extension Gn

0 = O(n) × Z2 and the nontrivial extension
Gn

1 = SO(n) × Z4, with central subgroup Z2 being the order-two
subgroup of Z4.

(O2) There are two extensions Gn
2 , G

n
3 such that Kn

2 = Kn
3 = Spin(n). To

characterize them let x ∈ Gn
i such that q(x) = −I ∈ O(n). Then

x2 = 1 for x ∈ Gn
2 and x2 = −1 for x ∈ Gn

3 . We then have Gn
2
∼=

Spin(n) × Z2 with x a generator for Z2 and Gn
3
∼= (Spin(n) × Z4)/Z2

with respect to the diagonal embedding of Z2 into Spin(n)×Z4. The
central subgroup Z2 is given by (the image of) the order-two subgroup
{±1} ⊆ Spin(n).

If n = 2m is even, then

(E1) there are two extensionsGn
0 andGn

1 such thatKn
0 = Kn

1 = SO(n)×Z2:
the trivial extension Gn

0 = O(n) × Z2 and the nontrivial extension
Gn

1 = SO(n) ⋊ Z4, with action of Z4 on SO(n) given on the generator
by conjugation with g = diag(−1, 1, . . . , 1), and the central subgroup
Z2 of SO(n) ⋊ Z4 is given by the order-two subgroup of Z4.

(E2) There are two extensions Gn
2 , G

n
3 such that Kn

2 = Kn
3 = Spin(n).

If x ∈ Gn
i such that q(x) = diag(−1, 1, . . . , 1), then x2 = 1 in case

x ∈ Gn
2 and x2 = −1 in case x ∈ Gn

3 . Then Gn
2
∼= Spin(n) ⋊ Z2 with

Z2 generated by x and Gn
3
∼= (Spin(n)⋊Z4)/Z2 where Z4 is generated

by an element x̃ ∈ Spin(n)⋊Z4 which acts on Spin(n) by conjugation
with x, and Z2 is embedded diagonally into Spin(n)⋊Z4 as in the odd
case. The central copy of Z2 is given by (the image of) the order-two
subgroup {±1} ⊆ Spin(n).

Although we are convinced that this description of the central extensions
of O(n) by Z2 is well-known, we give a proof since we didn’t find a direct
reference:

Proposition 5.1. For any fixed n ≥ 2 the above described extensions are, up
to isomorphism of extensions, the only central extensions of O(n) by Z2.

Proof. Recall first that the set of isomorphism classes of central extensions of
any given group H by Z2 forms a group E(H,Z2) with group operation given
as follows: if

1 → Z2 → G
q
→ H → 1 and 1 → Z2 → G′ q′

→ H → 1

are central extensions of H by Z2, then the product is given by the (isomor-
phism class) of the extension

(5.1) 1 −→ Z2
ι

−→ G ∗G′ q′′

−→ H −→ 1,
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where G ∗ G′ = {(x, x′) ∈ G × G′ : q(x) = q′(x′)}/Z2 with respect to the
diagonal embedding of Z2 into G×G′. The central copy of Z2 in G∗G′ can be
taken as the image in G ∗G′ of the central copy of Z2 in either G or G′. It is
well known that E(SO(n),Z2) ∼= Z2 with nontrivial element given by Spin(n).

Suppose now that 1 → Z2 → G
q
→ O(n) → 1 represents an element in

E(O(n),Z2). It restricts to a representative 1 → Z2 → K → SO(n) → 1
in E(SO(n),Z2) with K := q−1(SO(n)). This restriction procedure induces
a homomorphism of E(O(n),Z2) to E(SO(n),Z2). Therefore, given any fixed
extension G which restricts to K = Spin(n), then all other extension which
restrict to Spin(n) are given as products G∗G′ where G′ is an extension which
restricts to K ′ = SO(n) × Z2. In particular, if we can show that there are
only two extensions which restrict to SO(n)×Z2, then there are also only two
extensions which restrict to Spin(n). Since the ones given in the above list are
obviously nonisomorphic (as extensions), the list must be complete.

So let G′ be any extension which restricts to K ′ = SO(n)×Z2. We show that
it equals Gn

0 or Gn
1 described above. Suppose first that n = 2m is even. Choose

x ∈ G′ such that q(x) = g := diag(−1, 1, . . . , 1) ∈ O(n). Then q(x2) = I and
hence x2 = ±1. We claim that

x(h, ǫ)x−1 = (ghg−1, ǫ)

for all (h, ǫ) ∈ SO(n) × Z2. To see this, note first that q
(
x(h, ǫ)x−1

)
=

g
(
q(h, ǫ)

)
g−1 = ghg−1, which implies that x(h, ǫ)x−1 = (ghg−1, ǫ′) for some

ǫ′ ∈ Z2. To see that ǫ′ = ǫ we simply observe that the map SO(n) → Z2

which sends h ∈ SO(n) to the projection of x(h, 1)x−1 to Z2 is a continuous
group homomorphism, and hence trivial. This implies 1′ = 1 and then also
(−1)′ = −1.

If x2 = 1, it follows that G = (SO(n) × Z2) ⋊ 〈x〉 = (SO(n) ⋊ 〈g〉) ×
Z2 = O(n) × Z2 = Gn

0 . If x2 = −1, we obtain a surjective homomorphism
ϕ : (SO(n) × Z2) ⋊ 〈x〉 → G given by ϕ

(
xj , (g,±1)

)
= xj(g,±1) with kernel

generated by the order-two element (x2,−1). This implies G = Gn
1 .

A similar but easier argument applies in the case where n = 2m+ 1 is odd.
We omit the details. �

Remark 5.2. As we saw in Section 2 (e.g. see (2.1) and (2.2)) the group Pin(n)
is a central extension of O(n) by Z2 which restricts to Spin(n). Thus the other
such extension is given by the product Pin(n) ∗Gn

1 . To see whether Pin(n) is
the group Gn

2 or the group Gn
3 , we need to identify an inverse image x ∈ Pin(n)

of the matrix −I if n = 2m + 1 is odd, or of g = diag(−1, 1, . . . , 1) ∈ O(n) if
n = 2m is even.

Indeed, if e1, . . . , en denotes the standard orthonormal base of Rn, then it
follows from the basic relations in in ClR(n) that x = ±e1 · · · en if n = 2m+ 1
is odd (with respect to extension (2.2)) and x = ±e2 · · · en if n = 2m is even.
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In the first case we get

x2 = (−1)
n(n+1)

2 = (−1)(m+1)(2m+1) =

{
−1 if m is even

1 if m is odd,

and in the second case we get

x2 = (−1)
n(n−1)

2 = (−1)m(2m−1) =

{
1 if m is even

−1 if m is odd.

In what follows we need to understand the conjugation action of Gn
i on K̂n

i .
Note that in all cases we can identify Gn

i /K
n
i with Z2.

Lemma 5.3. Let n ≥ 2, let 1 → Z2 → G
q
→ O(n) → 1 be any central extension

of O(n) by Z2 and let K = q−1(SO(n)). Then

(i) If n is odd, the conjugation action of G/K on K̂ is trivial.

(ii) If n is even, and if K = SO(n) × Z2, the action of G/K on K̂ =

ŜO(n)× Ẑ2 is given by the conjugation action of O(n)/ SO(n) on the
first factor and the trivial action on the second. If K = Spin(n), the

action of G/K on ̂Spin(n) coincides with the conjugation action of

Pin(n)/ Spin(n) on ̂Spin(n).

Proof. The first assertion follows directly from the description of the groups
Gn

i in case where n is odd. So assume now that n is even and K = SO(n)×Z2.
Let x ∈ G with q(x) = g := diag(−1, 1 . . . , 1). It is shown in the proof of
Proposition 5.1 that the conjugation action of x on SO(n) × Z2 is given by
conjugation with g ∈ O(n) in the first factor and the trivial action in the
second factor. This proves the first assertion in (ii).

So assume now that K = Spin(n). Then G = Pin(n) or G = Pin(n) ∗ Gn
1 .

The result is clear in the first case. So let G = Pin(n) ∗Gn
1 . If y = e2 · · · en ∈

Pin(n) and x1 ∈ Gn
1 with q1(x1) = g, then x = [y, x1] is an inverse image of g

in G. The group Spin(n) then identifies with K ⊆ G via the embedding

ϕ : Spin(n) → Pin(n) ∗Gn
1 , z 7→ [z, (Ad(z), 1)].

Conjugating [z, (Ad(z), 1)] by [y, x1] provides [yzy−1, x1(Ad(z), 1)x−1
1 ] =

[yzy−1, (gAd(z)g−1, 1)] = ϕ(yzy−1), which finishes the proof. �

Suppose now that ρ : O(n) → O(V ) is any linear action of O(n) on a finite
dimensional real vector space V . In all cases the group O(n)ρ must be one of
the groups Gn

0 , . . . , G
n
3 . If we fix n ≥ 2, we have the following possibilities for

the computation of the K-theory groups K∗
O(n)(V ):

The orientation preserving case: If the action of O(n) on V is ori-
entation preserving, then Corollary 3.6 implies that

(5.2) K∗
O(n)(V ) ∼=

{⊕
σ∈ cGn

i

− Z if ∗ + dim(V ) is even,

{0} if ∗ + dim(V ) is odd.
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Note that although we have four different possibilities Gn
0 , . . . , G

n
3 for the

groups O(n)ρ, it follows from Lemma 3.7 that the cardinality of Ĝn
i

−
is always

countably infinite. Thus the isomorphism class of K∗
O(n)(V ) only depends on

whether dim(V ) is even or odd.

The non-orientation preserving case: If the action of O(n) is not
orientation preserving, the question which group out of the list Gn

0 , . . . , G
n
3

we get for O(n)ρ becomes more interesting (at least if n is even). In fact, if
i ∈ {0, . . . , 3} is such that O(n)ρ

∼= Gn
i as central extension of O(n) by Z2, it

follows from Corollary 3.10 that

(5.3) K∗
O(n)(V ) ∼=

{⊕
σ∈O1

Z if ∗ + dim(V ) is odd,⊕
{σ,gσ}∈O2

Z if ∗ + dim(V ) is even,

where O1 and O2 denote the numbers of orbits of length one or two in the set

K̂− of negative representations of K := Kn
i under the conjugation action of

Gn
i . So in order to get the general picture, we need to study the cardinalities

of the sets O1 and O2 in the four possible cases. We actually get different
answers depending on whether n is even or odd:

The odd case n = 2m + 1: In this case Lemma 5.3 implies that the

action of Gn
i on K̂− is trivial in all cases. Thus, from the above formula we

get

(5.4) K∗
G(V ) ∼=

{⊕
σ∈ bK−

Z if ∗ + dim(V ) is odd

{0} if ∗ + dim(V ) is even.

As in the orientation preserving case, it follows from Lemma 3.7 that the

cardinality of K̂− is always countably infinite.

The even case n = 2m: Let G = O(n)ρ and K = q−1(SO(n)). If

K = SO(n) × Z2 we get K̂− = ŜO(n) × {µ} ∼= ŜO(n), where µ denotes the
nontrivial character of Z2, and it follows from Lemma 5.3 that the action of

G/K on K̂− is given by the conjugation action of O(n)/ SO(n) on ŜO(n) ∼= K̂.
Thus, the orbit sets O1 and O2 can be identified with the O(n)-orbits of length

one and two in ŜO(n) and the K-theory groups in the cases O(n)ρ = Gn
0 and

O(n)ρ = Gn
1 are the same (up to isomorphism).

In case K = Spin(n) it follows from Lemma 5.3 that the action of G/K on
̂Spin(n) coincides with the conjugation action of Pin(n)/ Spin(n) on ̂Spin(n).

Thus, to compute the sets O1 and O2 in the K-theory formula (5.3), we may
assume without loss of generality that O(n)ρ = Pin(n).

In view of the above discussions, it is desirable to find an easy criterion
for the group K ⊆ O(n)ρ being isomorphic to SO(n) × Z2 or not. It is clear
that this is the case if and only if the restriction ρ : SO(n) → SO(V ) of

Münster Journal of Mathematics Vol. 2 (2009), 65–94



86 Siegfried Echterhoff and Oliver Pfante

the given action ρ : O(n) → O(V ) is spinor in the sense that there exists a
homomorphism ρ̃ : SO(n) → Spin(V ) such that ρ = q ◦ ρ̃ with q : Spin(V ) →
SO(V ) the quotient map. We believe that the following result can also be
deduced from the results in [6] (we are grateful to Linus Kramer for pointing
out this reference). We give an easy direct argument below:

Proposition 5.4. Let n ≥ 2 and let ρ : SO(n) → SO(V ) be any linear
action of SO(n) on the finite dimensional real vector space V . Let h :=
diag(−1,−1, 1, . . . , 1) ∈ SO(n) and let V − = {v ∈ V : ρ(h)v = −v} denote
the eigenspace for the eigenvalue −1 of ρ(h). Then ρ is spinor if and only if
dim(V −) = 4k for some k ∈ N0.

Proof. We first need to know that, given a representation ρ : SO(n) → SO(V ),
there always exists a representation ρ̂ : Spin(n) → Spin(V ) such that the
diagram

(5.5)

Spin(n)
ρ̂

−−−−→ Spin(V )

q=Ad

y
yq=Ad

SO(n) −−−−→
ρ

SO(V )

commutes. In case n > 2 this follows from the universal properties of the
universal covering Spin(n) of SO(n). In case n = 2, the groups Spin(2) and
SO(2) are both isomorphic to the circle group T with covering map q : T → T,
z 7→ z2. The image ρ(SO(2)) lies in a maximal torus T ⊆ SO(V ) and there is a

maximal Torus T̃ in Spin(V ) which projects onto T via a double covering map

q : T̃ → T . Thus the problem reduces to the problem whether there exists a
map ρ̂ : T → T̃ which makes the diagram

T
ρ̂

−−−−→ T̃

q

y
yq

T −−−−→
ρ

T

commute. It is straightforward to check that this is always possible.
It follows from (5.5) that there exists a lift ρ̃ : SO(n) → Spin(n) for ρ if and

only

{±1} = ker
(
q : Spin(n) → SO(n)

)
⊆ ker ρ̂.

So we simply have to check whether ρ̂(−1) = 1 or not. For this let e1, . . . , en

denote the standard orthonormal base of Rn. Then the product e1e2 ∈ Spin(n)
projects onto h and (e1e2)

2 = −1. Since ρ(h)2 = ρ(h2) = 1 we see that V
decomposes into the orthogonal direct sum V +

⊕
V − with V + and V − the

eigenspaces for ±1 of ρ(h). Since det(ρ(h)) = 1, it follows that l = dim(V −)
is even. If V − = {0} we have ρ(h) = 1, which implies ρ̂(e1e2) = ±1 and hence
ρ̂(−1) = ρ̂((e1e2)

2) = 1.
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If V − 6= {0} let {v1, . . . vl} be any orthonormal base for V −. It then follows
from the relations in Cl(V ) that the element

y := v1 · · · vl ∈ Spin(V )

projects onto ρ(h) ∈ SO(V ). This implies that ρ̂(e1e2) = ±y and hence that

ρ̂(−1) = ρ̂((e1e2)
2) = y2 = (v1 · · · vl)

2 = (−1)
l(l+1)

2 .

Since l is even, we get l = 2m for some m ∈ N and then

ρ̂(−1) = (−1)m(2m+1) =

{
1 if m is even

−1 if m is odd.

This finishes the proof. �

The only problem which now remains for the general computation of
K∗

O(n)(V ) is the problem of computing explicitly the orbit sets O1 and O2

which appear in formula (5.3) in the case where n is even (as observed above,
we always have O1 countably infinite and O2 = ∅ if 3 ≤ n = 2m + 1 is
odd). In order to give the complete picture, we now state the general result,
although we postpone the proof for the case n > 2 to §6 below:

Theorem 5.5. Suppose that ρ : O(n) → O(V ) is a non-orientation preserving
action of O(n) on V with n = 2m even. Then the following are true:

(i) If the restriction ρ : SO(n) → SO(V ) is spinor, then O1 consists of a
single point if n = 2 and O1 is countably infinite if n > 2. The set
O2 is always countably infinite.

(ii) If ρ : SO(n) → SO(V ) is not spinor, then O1 = ∅ and O2 is countably
infinite.

Combining this result with (5.3) immediately gives

Corollary 5.6. Suppose that ρ : O(n) → O(V ) is a non-orientation preserving
action of O(n) on V with n = 2m even. Then

K0
O(n)

∼=
⊕

n∈N

Z and K1
O(n)(V ) ∼=

{
Z if n = 2,⊕

n∈N
Z if 2 < n = 2m

if the restriction ρ : SO(n) → SO(V ) is spinor. Otherwise we get

K0
O(n)(V ) ∼=

⊕

n∈N

Z and K1
O(n) = {0}.

This corollary together with the discussions on the odd case implies

Theorem 5.7. Let O(n) act on Rn by matrix multiplication. Then

K0
O(n)(R

n) =
⊕

k∈N

Z and K1
O(n)(R

n) = {0}

for all n ∈ N with n ≥ 2.
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Proof. Since the action is not orientation preserving and the restriction of
id : O(n) → O(n) to SO(n) is not spinor (which is an easy consequence of
Proposition 5.4), the result follows from formula (5.4) in case where n is odd,
and from Corollary 5.6 if n is even. �

The case n = 2 of Theorem 5.5 is quite easy and has to be done separately,
since the general methods used for n > 2 in §6 below will not apply to this
case. So we do the case n = 2 now:

Proof of Theorem 5.5 in case n = 2. As usual, let K = q−1(SO(2)) denote the
inverse image of SO(2) in O(2)ρ. If ρ : SO(2) → SO(V ) is spinor, we have
K = SO(2) × Z2. Otherwise we have K = Spin(2).

The case K = SO(2) × Z2: It follows from Lemma 5.3 that in this case the

sets O1 and O2 can be identified with the sets of O(2)-orbits in ŜO(2) of length
one and two, respectively. Writing

SO(2) =
{
gα =

(
cos(α) sin(α)

− sin(α) cos(α)

)
: α ∈ [0, 2π)

}

we have ŜO(2) = {χk : k ∈ Z} with χk(gα) = eikα. The action of O(2) on

ŜO(2) is given by conjugation with g = diag(−1, 1). Since ggαg
−1 = g−α we

get g · χk = χ−k, which implies that

O1 = {χ0} and O2 = {{χk, χ−k} : k ∈ N}.

The case K = Spin(2): In this case the sets O1 and O2 can be identified

with the sets of Pin(2)-orbits in Ŝpin(2)
−

of length one and two, respectively.
Recall that Spin(2) can be described as

Spin(2) = {x(α) := cos(α)1 + sin(α)e1e2 : α ∈ [0, 2π)} ⊆ ClR(2).

Then Ŝpin(2) = {χk : k ∈ Z} with χk : Spin(2) → T, χk(x(α)) = eikα. It

follows that Ŝpin(2)
−

= {χ2m+1 : m ∈ Z}. The action of Pin(2) on Ŝpin(2) is
given by conjugation with x = e2. A short computation shows that

e2x(α)e∗2 = −e2x(α)e2 = x(−α)

which implies that x · χk = χ−k for all k ∈ Z. We therefore get x · χ2m+1 =

χ−2m−1 6= χ2m+1 for all χ2m+1 ∈ Ŝpin(2)
−

. Thus

O1 = ∅ and O2 = {{χ2m+1, χ−2m+1} : m ∈ N}.

�

We close this section with another interesting application of our main results.
Recall that for a locally compact group H , the reduced group C∗-algebra
C∗

r (H) is the closure of λ(L1(H)) ⊆ B(L2(H)), where

λ : L1(H) → B(L2(H)), λ(f)ξ = f ∗ ξ

denotes the left regular representation ofH . IfH is almost connected, it follows
from the positive solution of the Connes-Kasparov conjecture, that there is a

Münster Journal of Mathematics Vol. 2 (2009), 65–94



Equivariant K-theory of finite dimensional real vector spaces 89

(more or less) canonical isomorphism K∗(C∗
r (H)) ∼= K∗

G(V ), where G ⊆ H
denotes the maximal compact subgroup of H and V = TeG(H/G) denotes the
tangent space of H/G at the trivial coset eG = G. The action of G on V
is given by the differential of the left translation action of G on the manifold
H/G (see [5, §7]).

In case where H = GL(n,R), the maximal compact subgroup is O(n). If
Vn = {A ∈ M(n,R) : A = At} denotes the space of symmetric matrices in
Mn(R), we have the well-known diffeomorphism

Vn × O(n) → GL(n,R), (A, g) 7→ exp(A)g,

with exp(A) =
∑∞

n=0
1
n!A

n the usual exponential map. Composing exp with
the quotient map GL(n,R) → GL(n,R)/O(n) provides a diffeomorphism ẽxp :
Vn → GL(n,R)/O(n). We then get ẽxp(gAg−1) = g · ẽxp(A) and it follows
from the above discussion that

(5.6) K∗

(
C∗

r (GL(n,R))
)
∼= K∗

O(n)(Vn)

for all n ≥ 2, where the action of O(n) on Vn is given by the representation

ρ : O(n) → O(Vn), ρ(g)A = gAg−1

for all g ∈ O(n), A ∈ Vn ⊆M(n,R).

Lemma 5.8. Let ρ : O(n) → O(Vn) be as above. Then

(i) ρ is orientation preserving if and only if n is odd.
(ii) The restriction ρ : SO(n) → SO(Vn) is spinor if and only if n is even.

Proof. Let {Eij : 1 ≤ i ≤ j ≤ n} denote the standard basis of Vn, i.e., Eij has
entry 1 at the ij-th and ji-th place, and 0 entries everywhere else. Conjugation
with g = diag(−1, 1, . . . , 1) ∈ O(n) maps E1j to −E1j for all j > 1 and fixes
all other Eij ’s. It thus follows that det(ρ(g)) = (−1)n−1, which shows that ρ
is orientation preserving if and only if n is odd.

For the proof of (ii) we use Proposition 5.4: let h = diag(−1,−1, 1 . . . , 1) ∈
SO(n). Then conjugation with h maps Eij to −Eij for all i = 1, 2 and j > 2
and fixes all other Eij . Thus {Eij : i = 1, 2, j > 2} forms a base for V −

n , the
eigenspace of ρ(h) for the eigenvalue −1. We therefore get l := dim(V −

n ) =
2(n− 2). This is a multiple of 4 if and only if n is even. �

Theorem 5.9. If n = 2m+ 1 is odd, then

K∗

(
C∗

r (GL(n,R))
)
∼=

{⊕
n∈N

Z if ∗ +m is odd

{0} if ∗ +m is even.

If n = 2m ≥ 4 is even, we get

K0(C
∗
r (GL(n,R)) ∼=

⊕

n∈N

Z ∼= K1

(
C∗

r (GL(n,R))
)
,

and for n = 2 we get

K0

(
C∗

r (GL(2,R))
)
∼= Z and K1

(
C∗

r (GL(2,R))
)
∼=
⊕

n∈N

Z.
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Proof. We use formula (5.6). If n = 2m + 1 is odd, the result then follows
directly from formula (5.2) together with Lemma 5.8 above and the fact that

dim(Vn) = n(n+1)
2 = (2m+ 1)(m+ 1) is even if and only if m is odd.

If n is even, it follows from Lemma 5.8 above that the action of O(n) on Vn

is not orientation preserving and the restriction of ρ to SO(n) is spinor. Thus
the result follows from Corollary 5.6. �

6. Orbits in ̂Spin(n)
−

and ŜO(n)

In this section we want to provide the theoretical background to complete
the proof of Theorem 5.5. We need to compute the cardinalities for the orbit

sets O1 and O2 in ̂Spin(m)
−

under the conjugation action of Pin(m) and

similarly for the conjugation action of O(n) on ŜO(n).
To solve this problem, we need some background on the representation

theory of a connected compact Lie group G. We use [4, Chapter VI] as a
general reference. Let T denote a maximal torus in G and let t denote its Lie
algebra. Let I∗ ⊆ t

∗ denote the set of integral weights on T , i.e., the set of
linear functionals λ : t → R which vanish on the kernel of exp : t → T . There

is a one to one correspondence between I∗ and T̂ given by sending an integral
weight λ to the character eλ : T → T defined by eλ(exp(t)) = e2πiλ(t) for all
t ∈ t.

Let C̄ denote the closure of a fundamental Weyl chamber C in t
∗ and let

θ1, . . . , θl ∈ I∗ ∩ C̄ be the corresponding set of positive roots. In particular,

θ1, . . . , θl is a base of t
∗ and C̄ = {

∑l
i=1 aiθi : ai ≥ 0}. There is a natural order

on C̄ given by λ ≤ η ⇔ η − λ ∈ C̄. Let W be the Weyl group of G, i.e., the
group of automorphisms of T induced from inner automorphisms of G. Then
W acts canonically on T , t, t

∗ and I∗.
For any finite dimensional complex representation τ of G the equivalence

class of τ is uniquely determined by its character χτ := tr τ , which is constant
on conjugacy classes in G. A virtual character is a linear combination of such
characters with integer coefficients. The set R(G) of all virtual characters of
G is called the representation ring of G. It is actually a subring of the ring of
continuous functions on G. Every element in R(G) can be written as a (integer)
linear combination of irreducible characters, i.e., the characters corresponding
to irreducible representations of G. Since the restriction τ |T of a representation
τ of G is invariant under conjugation with elements in W (up to equivalence),
the restriction of its character χτ to T is conjugation invariant, and hence lies
in the set R(T )W of symmetric (i.e., W -invariant) virtual characters of T . By
[4, Chapter VI, Proposition (2.1)] the restriction map

res : R(G) → R(T )W , χ 7→ χ|T

is an isomorphism of rings. Now, for any λ ∈ I∗ we let Wλ = {w · λ : w ∈W}
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denote the W -orbit of λ in I∗ and let

S(λ) =
∑

ξ∈Wλ

eξ

denote the symmetrized character corresponding to λ. Combining [4, Chapter
VI, Theorem (1.7) and Proposition (2.6)] we get the following version of Weyl’s
character formula:

Theorem 6.1. For each irreducible representation τ of G there exists a unique
decomposition

χτ |T = S(λ) +

k∑

i=1

liS(λi)

with pairwise different λ, λ1, . . . , λk ∈ I∗ ∩ K̄, l1, . . . , lk ∈ Z and λi < λ for all
1 ≤ i ≤ k. We call λ ∈ I∗ ∩ C̄ the highest weight of the representation τ . The

map which assigns τ to its highest weight λ induces a bijection between Ĝ and
I∗ ∩ C̄.

In what follows we shall denote by χλ ∈ R(G) the character of the irreducible
representation τ with highest weight λ. If γ, λ are weights in I∗ ∩ C̄, then so
is γ + λ and there is a corresponding irreducible character χγ+λ of G. By [4,
Chapter VI, (2.8)] we have

Lemma 6.2. For all γ, λ ∈ I∗ ∩ C̄ there is a unique decomposition

χγ · χλ = χγ+λ +
∑

µ

lµχµ,

where µ runs through {µ ∈ I∗ ∩ C̄ : µ < λ+ γ} and 0 ≤ lµ ∈ Z.

A set {λ1, . . . , λk} of integral weights in I∗ ∩ C̄ is called a fundamental
system, if the map

ϕ : N
k
0 → I∗ ∩ C̄, ϕ(l1, . . . , lk) =

k∑

i=1

liλi

is an ordered bijection with respect to the standard order on Nk
0 . The cor-

responding irreducible representations τ1, . . . , τk are then called a system of
fundamental representations of G. By [4, Chapter VI (2.10) and (2.11)] we
have

Theorem 6.3. Suppose that G is a connected and simply connected compact
Lie group. Then there exists a fundamental system {λ1, . . . , λk} in I∗ ∩ C̄ and
there is a ring isomorphism ψ : Z[X1, . . . , Xk] → R(G) which sends Xi to χλi

.

Combining these results, we get

Lemma 6.4. Let G be a connected and simply connected Lie group and let

{λ1, . . . , λk} be a fundamental system in I∗ ∩ C̄. Let γ =
∑k

i=1 liλi be any
given weight in I∗ ∩ C̄ and let χγ be the corresponding irreducible character
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of G. Then there exists a unique polynomial P ∈ Z[X1, . . . , Xk] of order less
than l := l1 + l2 + . . .+ lk such that

χγ =

k∏

i=1

χli
λi

+ P (χλ1 , . . . , χλk
).

Proof. Uniqueness is a direct consequence of Theorem 6.3 above. For existence,
we give a proof by induction on the sum l = l1 + l2 + . . . + lk corresponding
to γ, which we call the order of γ. If l = 0, then χγ ≡ 1 is the character
of the trivial representation and the formula is true with P = 0 (we use the
convention that the order of the zero-polynomial is −∞). Suppose now that
for given l > 0 the lemma is true for all m < l. Let γ ∈ I∗ ∩ C̄ with order l,

γ =
∑k

i=1 liχλi
. Without loss of generality we may assume that l1 > 0. By

Lemma 6.2 we have

χγ = χλ1χγ−λ1 −
∑

µ<γ

lµχµ

for suitable lµ ∈ N0. Since µ < γ, the order of µ is less than the order of γ.
Thus, by the induction hypothesis, there exists a polynomial Pµ with order < l
such that χµ = Pµ(χλ1 , . . . , χλk

). Similarly, the induction hypothesis gives a
decomposition

χγ−λ1 = χl1−1
λ1

k∏

i=2

χli
λi

+ Pγ−λ1(χλ1 , . . . , χλk
),

such that the order of Pγ−λ is smaller than l− 1. The result then follows with
P = X1Pγ−λ1 −

∑
µ<γ lµPµ. �

We are now coming back to the special case of the group G = Spin(n) with
n = 2m and m ≥ 2. This group is simply connected and connected and by [4,
Chapter VI, Theorem (6.2)] a system of fundamental representations is given
by the representations

Λ1, . . . ,Λm−2,Σ+,Σ−

defined as follows: The representations Λi act on the complexification Λi(Cn)
of the ith exterior power Λi(Rn) by inflating the canonical action of SO(n)
on Λi(Rn) to Spin(n). Note that these representations extend canonically to
Pin(n) (resp. to O(n), if we view them as representations of SO(n)), which
implies that the Λi are stable (up to equivalence) under conjugation by ele-
ments in Pin(n) (resp. O(n)). It is also clear that the Λi are non-negative, i.e,
Λi(−1) = 1.

The representations Σ+,Σ− are the half-spin representations on the spaces
S+, S− defined as follows: By the isomorphism Cl(n) ∼= M2m(C) we find a
canonical irreducible action of the complex Clifford algebra Cl(n) on S := C2m

.

Since J2 = (−1)m, for J = e1 · · · en, it follows that J̃ := imJ satisfies J̃ = J̃∗ =

J̃−1, which implies that S decomposes into the direct sum of two orthogonal
eigenspaces S+, S− for the eigenvalues ±1 of J̃ . Since J̃xJ̃ = JxJ∗ = x for
all x ∈ Cl(n)0, these spaces are invariant under the action of Cl(n)0, and then
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restrict to unitary representations Σ± of Spin(n) ⊆ Cl(n)0. One easily checks
that conjugation by e1 ∈ Pin(n) \ Spin(n) intertwines these representations.

We therefore see that {Σ+,Σ−} forms one orbit of length two in ̂Spin(n) under
conjugation by Pin(n). By construction, the representations Σ± are negative
representations, i.e., Σ±(−1) = −1.

We are now ready to prove the following proposition, which will give the
last step in the proof of Theorem 5.5 of the previous section.

Proposition 6.5. Let n = 2m ≥ 4. Then the following are true:

(i) If x ∈ Pin(n) \ Spin(n) and τ is a negative irreducible representation
of Spin(n), then τ 6∼= x · τ . Thus, for the orbit sets O1 and O2 in

̂Spin(n)
−

we get O1 = ∅ and O2 is countably infinite.

(ii) For the action of O(n) on ŜO(n) both orbit sets O1 and O2 are count-
ably infinite.

Proof. Let χ1, . . . , χm−2, χ+, χ− denote the characters corresponding to the
fundamental representations Λ1, . . . ,Λm−2,Σ±. Let τ be any negative irre-
ducible representation of Spin(n) with character χτ . By Theorem 6.3 there
exists a unique Polynomial Q ∈ Z[X1, . . . , Xm−2, X+, X−] such that χτ =
Q(χ1, . . . , χm+2, χ+, χ−). By Lemma 6.4 the polynomial Q is of the form

(
m−2∏

i=1

X li
i

)
X

l+
+ X

l−
− + P (X1, . . . , Xm−2, X+, X−)

with the order of P less than l = l1 + · · ·+ lm−2 + l+ + l−. Since τ is negative,
we have χτ (−x) = −χτ (x) for all gx ∈ Spin(n). Since for all x ∈ Spin(n) we
have χi(−x) = χi(x), for all 1 ≤ i ≤ m− 2, and χ±(−x) = −χ±(x) we get

χτ = −(−1)l++l−

(
m−2∏

i=1

χli
i

)
χ

l+
+ χ

l−
− + P̃ (χ1, . . . , χn−2, χ+, χ−)

with the order of P̃ less than l. By the uniqueness of the polynomial represen-
tation of χτ it follows that (−1)l++l− = −1 and, in particular, that l+ 6= l−.

Suppose now that x ∈ Pin(n)\Spin(n). Since x·χi = χi for all 1 ≤ i ≤ m−2
and xχ+ = χ− (and vice versa) we get

xχτ = Q(xχ1, . . . , xχm−2, xχ+, xχ−)

=

(
m−2∏

i=1

(xχi)
li

)
(xχ+)l+(xχ−)l− + P (xχ1, . . . , xχm−2, xχ+, xχ−)

=

(
m−2∏

i=1

χli
i

)
χ

l+
− χ

l−
+ + P (χ1, . . . , χm−2, χ−, χ+)

= Q̃(χ1, . . . , χm−2, χ+, χ−).

Since l+ 6= l− we have Q 6= Q̃, hence χxτ = xχτ 6= χτ , and therefore xτ 6∼= τ .
This proves (i).
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For the proof of (ii) note first that ŜO(n) = ̂Spin(n)
+
, the set of irreducible

representations τ of Spin(n) with τ(−1) = 1. Writing its character χτ as

Q(χ1, . . . , χm+2, χ+, χ−) as above, we see that τ ∈ ŜO(n) if and only if l++l− is
even. Then a similar computation as above shows that for x ∈ Pin(n)\Spin(n)
we get

xτ ∼= τ ⇔ xχτ = χτ ⇔ l+ = l−.

It is now clear that there are infinitely many representations which are fixed
by conjugation and there are also infinitely many pairs of conjugate represen-

tations in ŜO(n). �

Proof of Theorem 5.5. The proof now follows from the above proposition to-
gether with the discussion of the even case preceding Proposition 5.4. �
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