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Zusammenfassung

Die vorliegende Arbeit behandelt das in Physik und Chemie eingeführte, aber bisher nur
mittels Computersimulationen studierte und weder dort noch in der Mathematik rigoros
definierte Phänomen der Metabassins - einer nach genauen Aggregationsvorschriften aus
einem gegebenen endlichen Simulationspfad gebildeten Partition des Zustandsraumes ge-
wisser physikalischer Systeme. Die zentrale Herausforderung dieser Arbeit liegt in der Her-
leitung und Analyse eines pfadunabhängigen Ansatzes, der gewisse, für Metabassins nume-
risch nachgewiesene Eigenschaften erfüllt (siehe Eigenschaften 1–5 in der Einleitung), etwa
das Auftreten bestimmter Verweildauern, das Fehlen multipler Hin- und Rücksprünge, die
Unabhängigkeit von Eintritts- und Austrittszustand oder die Ähnlichkeit der Energiebar-
rieren zwischen verschiedenen Bassins. Dies geschieht im Rahmen ergodischer, reversibler
endlicher Markovketten mit exponentiell kleinen, durch eine Energiefunktion gegebenen
Übergangswahrscheinlichkeiten.

Im ersten Teil der Arbeit wird eine Definition der Metabassins entwickelt, die auf die
etablierte Theorie der Metastabilität zurückgeht und die Eigenschaften 1–5 erfüllt. Die
Metabassins ergeben sich im Grunde als Täler und Vereinigungen von Tälern der Energie-
landschaft, wobei - anders als in anderen Arbeiten zu diesem Thema - Täler ganz verschie-
dener Ordnung oder Stabilität berücksichtigt werden. Nachdem diese Täler und der ihnen
innewohnende Stabilitätsbegriff ausführlich eingeführt und studiert wurden, werden die ge-
wünschten Eigenschaften hergeleitet, indem das Verhalten des Prozesses auf den einzelnen
Tälern sowie die Übergänge zwischen diesen vollständig beschrieben werden. Dazu werden
typische Trajektorien in den einzelnen Tälern bestimmt, durchschnittliche Verweildauern
als exponentielle Funktionen der Tiefe der Täler identifiziert und insbesondere ein aggre-
gierter Prozess hergeleitet, der jeweils nur das aktuelle Tal angibt, nicht aber den konkreten
Zustand darin. Für diesen wird eine asymptotische (Semi-)Markoveigenschaft nachgewie-
sen und dessen Übergangswahrscheinlichkeiten werden ermittelt. Damit kann anschließend
gezeigt werden, dass die Wahrscheinlichkeit für multiple Hin- und Rücksprünge genau dann
klein ist, wenn die Energiebarrieren in etwa gleich hoch sind.

Der zweite Teil dieser Arbeit widmet sich der Güte der hergeleiteten Aggregation, in-
dem die Übereinstimmung mit der pfadabhängigen Definition sowie die Auswirkung der
Aggregation auf die Misch-, Überdeckungs- und Trefferzeiten studiert wird. Die Wahr-
scheinlichkeit für die Übereinstimmung beider Definitionen wird mit Hilfe gewisser Para-
meter beschrieben, die den Grad der Unordnung im System messen und für hochgradig
ungeordnete Systeme eine große Wahrscheinlichkeit der Übereinstimmung liefern. Des
Weiteren wird gezeigt, dass die Aggregation auf die oben genannten Zeiten einen nahezu
vernachlässigbar kleinen Einfluss hat. Bezüglich der Mischzeiten wird dies im Rahmen
der allgemeinen Fragestellung untersucht, welche Auswirkungen die Verlangsamung einer
Markovkette durch Einführung zufälliger Verweildauern auf die Mischrate hat. Die nahe-
liegende Vermutung, dass sich die Mischzeit bei Verlangsamung in etwa multiplikativ um
die durchschnittliche Verweildauer erhöht, kann mit Hilfe von Spektraltheorie und Kopp-
lungsargumenten für markovsche und auch semi-markovsche verlangsamte Ketten unter
zusätzlichen Annahmen bewiesen werden. Die Notwendigkeit dieser zusätzlichen Annah-
men wird ausführlich erläutert. Außerdem werden verschiedene Konvergenzraten explizit
bestimmt, wie etwa die Mischraten der ursprünglichen Kette, der Einschränkung auf ein
Metabassin oder der Konvergenz gegen die quasistationäre Verteilung.
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Summary

The present work is devoted to a phenomenon known from physics and chemistry that is
hitherto studied only by means of computer simulations and neither there nor in mathe-
matics rigorously defined: the notion of metabasins. Metabasins are a partition of the state
space of certain physical systems according to specific aggregation rules along a given finite
simulation path. The main challenge of this thesis lies in the construction and analysis of
a path-independent approach providing certain metabasin-intrinsic properties (see Prop-
erties 1–5 in the Introduction). These are for instance the occurrence of specific sojourn
times, the absence of multiple forward-backward jumps, the independence of entrance and
exit state, or the similarity of energy barriers between different basins. The study of this
problem is done within the framework of ergodic, reversible finite Markov chains with
exponentially small transition probabilities depending on some energy function.

In the first part of this thesis, a definition of metabasins is developed, which relies
on the well established theory of metastability and complies with Properties 1–5. These
metabasins basically emerge as valleys and unions of valleys of the energy landscape. Un-
like similar works on this topic, valleys of completely different order are considered. Having
introduced and analyzed those valleys and the notion of stability which is immanent to
them in detail, the requested properties are derived. For this purpose, the process behavior
on single valleys and the transitions between them are entirely specified. More specifically,
typical trajectories on single valleys are determined, the average sojourn times are identified
to depend on the depth of the valley in an exponential manner, and a certain aggregated
process is defined that detects only the current valley and neglects the specific state therein.
For this process, an asymptotic (semi-)Markov property is proved and its transition prob-
abilities are determined. Using these probabilities, multiple forward-backward jumps are
shown to be quite unlikely if and only if the energy barriers are approximately of the same
height.

The second part of this work is addressed to the goodness of the aggregation and studies
the accordance with the path-dependent definition as well as the impact of the aggregation
on the mixing-, cover-, and hitting times. The probability of accordance of both definitions
is described by means of certain parameters measuring the degree of disorder in the system.
For highly disordered systems arises a high probability of accordance. Furthermore, it is
proved that the impact of the aggregation on the mixing-, cover-, and hitting times is
virtually negligible. For the mixing time, this is shown in the context of the general
question about how the deceleration of a Markov chain via additional random sojourn
times in every state affects the mixing time. The nearby conjecture is that a deceleration
basically increases the mixing performance multiplicatively by the average sojourn time.
With spectral theory and coupling arguments, this conjecture is proved to hold true for
Markovian and semi-Markovian decelerated chains under some further assumptions. The
need for these further assumptions is explained in detail. In addition, different rates of
convergence are calculated explicitly, for instance the mixing rates of the original chain, of
the restriction to a metabasin, or of the convergence against quasi-stationarity.
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Introduction

Physical Background

Imagine a system of many (ball-like) particles moving in a given space or interacting with each other
– a many-particle system. Examples are a cup of coffee or a piece of amber where the resin-particles
(almost) stopped moving, but also a pattern of spins. Depending on the spatial arrangement of the
particles, those systems exhibit different energies. For a pattern σ ∈ {±1}[1,...,N ]×[1,...,M ] of spins on
an N ×M -lattice, the energy can be defined as the Hamiltonian Function

E(σ) := −
∑
i,j

σiσj ,

where the sum ranges over all neighboring pairs 〈i, j〉 (see e.g. [39, Section 3.3.5]). For example,

E ((+,+,−,+)) = −(1− 1− 1) = 1.

This model is known as the Ising model and extensively studied. For a cup of coffee or a piece of
amber, the energy of a specific arrangement

σ ∈ {
(σ1,...,σN )|σi ∈ [a, b]3, 1 ≤ i ≤ N

}
of N particles in a box [a, b]3, 0 ≤ a < b < ∞, can be defined as the Lennard-Jones-potential [4,
Section 18.2.2]

Ed,ε(σ) :=
∑
i �=j

4ε

((
d

‖σi − σj‖2

)12

−
(

d

‖σi − σj‖2

)6
)
.

Here the sum ranges over all pairs of particles, d is a constant giving the distance at which the pair
interaction changes from repellent to attractive, and ε equals the pair-energy at the distance 6

√
2d. For

example, the 3-particle configuration σ in Figure 0.1 has a Lennard-Jones potential E2,1(σ) = −0.28.
In both cases, the energy function as a function from the state space to R gives rise to a high-
dimensional graph: the (potential) energy landscape (PEL).

�

�

�

�

√
18

2

√
10

Figure 0.1.: Example of a 3-particle configuration

Now let us follow the trace of our system in the PEL when it traverses through the state space via
movements of single particles or flippings of single spins. Every time it descends from an energetically
higher state to a lower one, it loses energy, which may go as heat into the surroundings. When
a movement increases the energy, the system seizes energy from the surroundings to afford this
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Introduction

ascent. In case it can not afford the ascent, the higher state is not feasible. Thus, by decreasing
the temperature of the coffee, more and more states are unfeasible, until at 0℃ the highly ordered,
crystalline icy state is the only possible arrangement of the particles in the cup, the stable state at
that temperature. When increasing the temperature of the surroundings, the frozen coffee will melt
again. During the melting, the temperature of the coffee stays at 0℃ and starts increasing not until
it is completely liquid. Coffee (more precisely water) has a freezing/melting point at 0℃.

But there are liquids behaving differently, for example liquid amber. When heating up amber, it
becomes more and more viscous but there is no accentuated melting point above which it is liquid
and below which it is solid. When cooling it down, the particles are less and less mobile, the amber
becomes more and more hardened, but there is no freezing point where the particles are well arranged
in a specific structure with long-range order. This amorphous behavior is a consequence of the (in
comparison for example to water) highly disordered energy landscape of amber: Independent of how
we cool down water, before being too immobile, the particles always find a path of feasible states to
reach the stable state. When cooling down liquid amber, it becomes stuck in some part of the PEL
with no feasible transition to the stable crystalline state. The solid structure is a randomly frozen
liquid arrangement, the particles are by no means well arranged. Hence, solid amber is an unstable
particle-arrangement, a supercooled liquid.

Physical systems with this behavior are called (structural) glasses or glass formers, and should be
kept in mind while reading this thesis. Examples are of course soda-lime glass known from windows
or drinking vessels, but also coal tar, plastics, polymers, or metallic alloys [46, Section 11.8]. Spin
patterns, though not belonging to the family of glasses, as well exhibit a high disorder, yet magnetic
instead of positional. This disorder causes a phase transition and a spin-glass phase with a randomly
frozen pattern [9]. Therefore, they are also called spin-glasses and another basic example.

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120

n

E(Xn)

Figure 0.2.: Typical energy trajectory of a glass-forming system.

In modern natural sciences, real phenomenons are more and more studied with IT-techniques.
Thus, systems of this kind are simulated on computers as random processes, sampling the state
space resp. the energy landscape. Figure 0.2 shows a typical energy trajectory comprising long
sojourn times in low-energy states with forward-backward jumps to neighbors and fast transitions
between those very areas. To characterize glass-forming systems at low temperatures via their energy
landscape was first done by Goldstein in 1969 [26] (“...when all is said and done, the existence of
potential energy barriers large compared to thermal energy are intrinsic to the occurrence of the
glassy state...”) and has by now become a common method with the major goal to relate dynamics
to properties of the PEL. Heuer [29] gives an exhaustive topical review on this issue until 2008.
Typically, the trajectory of consecutively visited local minima is studied to determine the partition
function

Z =

∫
e−

E(σ1,...,σN )

T d(σ1,...,σN ),

2
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or the entropy of an energy level e,

S(e) = ln (|{(σ1,...,σN )|E(σ1,...,σN )) = e}|) .

Heuer’s review also includes his own results, namely that those computer simulations have shown
important characteristics of such systems to be describable by energetic properties of the so-called
metabasins (MB) [29, Chapter 6 and 7]. Based on Stillinger’s concept of grouping states [60],
those MB are formed in the following way by aggregation of suitable states of the describing process
(Xn)n≥0 along a simulated trajectory: Fixing a reasonable observation time T , define χ0 ≡ 0 and
then recursively for n ≥ 1

χn := inf
{
k > χn−1 | {Xk,..., XT } ∩ {X0,..., Xk−1} = ∅}.

MB up to υ := sup{n ≥ 0 |χn ≤ T} are chosen as

Vn := {Xχn ,..., Xχn+1−1}, 0 ≤ n ≤ υ,

each of which comprises typically a large number of minima of the PEL. There is an unprecedented
information this aggregation provides for the goal to relate energy and mobility: The diffusion con-
stant D (a system-inherent proportionality constant between the mean squared covered distance and
the time [4, Equation 21-83]) and the relaxation time τα (the time needed for the supercooled liquid
to approach the molecular state of a crystal) are proportional to fractions of moments of the MB-
waiting time [29, Chapter 6 and 7]. This is in strong contrast to the unaggregated process, keeping
track of every single visited local minimum: As there are very many forward-backward jumps be-
tween neighboring minima separated by an energy barrier lower than the barrier to other minima (see
Figure 0.2), not only their average waiting time but also the number of these reciprocating jumps
influences the time-scale of the long-range transport.

As developed in [29] and [53], the most important advantages of this model reduction, notably
including the above one, are (referred to as Properties 1–5 hereafter):

1. Markov Property: The distribution of the successor of one MB is statistically independent of
its entrance state. This justifies to lump them together and regard them as one single metastate.

2. Reciprocating Jumps: There are per definition no reciprocating jumps between MB. Hence,
only the effective motion is displayed, giving the formula

D ∼ 1

〈τ〉 and τα ∼ 〈τ2〉
〈τ〉 ,

where 〈τ〉 and 〈τ2〉 are the average resp. the average squared MB-waiting time.

3. Exit Time: The average MB-waiting time is proportional to its depth. Together with Property 2,
this provides a strong and explicit relation between dynamics (D and τα) and thermodynamics
(energies).

4. Trap Model: All energy barriers between different MB are approximately of the same height.
Thus, for every MB-transition it requires to cross approximately the same energy threshold E0,
though via possibly different states. Such systems are called trap models (see [10]).

5. CTRW-Hypothesis: The sojourn times and jump distances between consecutively visited MB
(measured in Euclidean distance) form sequences of statistically uncorrelated random variables,
which are approximately mutually independent (continuous time random walk-hypothesis [53]).
This simplifies the analysis in such a way that the diffusion constant equals the average spatial

3
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MB-increment divided by the average MB-waiting time. Surprisingly, the average spatial MB-
increment is almost independent of the temperature. Hence, the temperature dependence of the
diffusion is completely characterized by the temperature dependence of the average MB-waiting
time.

Despite these advantages, the suggested definition of MB has the obvious blemish that it, first,
depends on the realization of the considered process and may thus vary from simulation to simulation,
and second, proves the diffusion and relaxation to be determined by MB-coarse graining effects,
without explaining how exactly the MB look like and why they look like that.

Outline

To provide and analyze a mathematically stringent definition of a path-independent aggregation of
the state space which maintains the above properties is the principal concern here. We get a deeper
understanding of the MB-concept along the way. In this endeavor, we will rely on ideas about metasta-
bility and metastable states, the mathematical framework in which systems such as glass-formers are
studied because of their basic phenomenon: the sampling of the state space along trajectories com-
prising alternately immobile phases of a pretended equilibrium and very mobile phases sling-shooting
the system to distant areas of the state space (see again Figure 0.2).

Over the years, metastability was studied in many different ways using various techniques and is
still a field of great interest for complex physical systems. To mention only a few, as one of the
first Lebowitz & Penrose [50] in 1971 identified metastable states via their long sojourn in a
pretended equilibrium and the small return probability once this pretended equilibrium is left. In
1970, Freidlin & Wentzell started to use large deviation theory to study metastable states in
deterministic dynamical systems with a stochastic perturbation tending to zero. We refer to their
textbook [24] and the references therein. Influenced by that, for example Olivieri & Scoppola

[49], Catoni & Cerf [16], or Beltrán & Landim [7] studied discrete (time and space) Markov
chains with transition probabilities depending on a parameter β representing the inverse temperature
such that the transition probabilities are either exponentially small in β or bounded away from zero.
Cassandro, Galves, Olivieri & Vares [15], Bovier [11] and many more transferred this to
stochastic mean field models and spin systems, where in contrast to the above works the number
of states tends to infinity instead of the temperature tending to zero. Whereas in [15], following
the ideas of [24], the focus is on typical trajectories of the process and their large deviations, in
[11] the relation between exit times and capacities is emphasized. These two perceptions established
themselves as the pathwise approach resp. potential theoretic approach. Furthermore, metastability
has been linked to spectral methods (Bovier, Eckhoff, Gayrard & Klein [13], Matthieu [44])
and quasi-stationarity (Huisinga, Meyn & Schütte [34], Bianchi & Gaudillière [8]). We want
to mention particularly the works of Scoppola ([56] and [55]) and Bovier, Eckhoff, Gayrard &

Klein [12], as this thesis is highly influenced by and draws on many ideas and results from these. The
former introduced a renormalization procedure that gives rise to an ordering of the states according
to their (meta-) stability, and the latter links the metastable behavior of energy-driven systems to
the PEL. For more literature and a general overview, we mention the monographs [11], [18] and [19]
and the references therein.

This thesis is divided into two parts: the construction of a definition of metabasins (Chapters
1–4) and the study of the goodness of the accompanying aggregation (Chapters 5–7). Inspired by
simulations of glass forming systems at very low temperatures with the Metropolis algorithm, we
study reversible, ergodic finite Markov chains with exponentially small transition probabilities, which
are determined by an energy function and a parameter β > 0 giving the inverse temperature. We are
interested in the behavior of the process as β → ∞ (low-temperature limit) and envisage a highly

4
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disordered energy function. The precise assumptions are listed in Section 1.1. In the remainder
of Chapter 1, the foundation towards an aggregation as outlined above is laid. Around certain
metastable states (see also [55]), entailing an order from a kind of “weak” to a kind of “strong”
metastability, we will define (Section 1.2) and study (Section 1.3) valleys characterized by minimal
energy barriers and minimal paths. The notion of those energy barriers or saddles is very popular
(see [12], [48] or [15] for a few examples), but to our best knowledge this closed definition of valleys,
referring to barriers and paths, is new and so are the results on their shape. They will prove to be well
behaving by being connected, adopting the hierarchical order of their ground states, and possessing a
nice nesting structure. This definition of valleys allows a microscopic view, where the system behavior
is studied when moving within a fixed valley, and a macroscopic view, which describes the transitions
between valleys.

In Chapter 2, the process is studied from the microscopic perception. By slightly modifying results
from [12] to comply with our situation, it is shown via variational techniques resp. a reduction to
the one-dimensional case that in the limit of low temperatures the minimal energy barriers from the
definition of valleys determine the speed resp. probability of a transition between the two states they
separate. More precisely, in the limit β → ∞, with probability tending to 1, the process reaches a
state with lower barrier earlier than one with a higher barrier (Section 2.1). We infer that between
the entrance and exit of a valley, with probability tending to 1 as β → ∞, the ground state is reached.
Section 2.2 regards the time needed to leave a given valley and connects this exit time with the PEL-
parameters of the valley, namely the exponential dependence on its depth. This confirms Property
3. Similar forms of this result have been proved in different situations in many different ways, for
example in [61, Chapter XI.2] for birth and death processes by solving linear equations of generating
functions or in [24, Chapter 4, §4, Theorem 4.1] for continuous (time and space) processes by a
geometric trials argument. We derive it with the help of the main theorem for the renormalization
procedure in [55] and a discretization of the geometric trials argument in [24]. As a consequence,
we obtain that there is no universal time scale since those depths are quite variable and the single
time scales vary exponentially. We will also briefly touch on the phenomenon of quasi-stationarity
in Section 2.3 by showing that the nesting structure of valleys induces an order on the absorption
probability of the process with killing on the boundary of the valley.

On the macroscopic side in Chapter 3, we start by introducing two macroscopic processes which
only detect the current valley and neglect specific states in it. The first one, denoted by Y , considers
the time spent in a valley, the second, denoted by Y , ignores it. With the use of the evolved prop-
erties of trajectories within a valley, we derive an asymptotic (semi-)Markovian structure (Section
3.2), confirming Property 1. The limiting (semi-)Markov chain is identified and studied in terms
of recurrence and transience. Finally, Section 3.3 examines that, given an appropriate energy land-
scape, the nesting procedure of valleys annihilates (on the macroscopic scale) the accumulation of
reciprocating jumps by merging valleys exhibiting such jumps into a single valley. By giving explicit
bounds on macroscopic transition probabilities as consequences of the microscopic results, it will
be shown that forward-backward jumps are more and more unlikely when the energy barriers are
brought in line. Hence, valleys of sufficiently high order will satisfy Property 2. Finally, we can
also identify conditions under which a diffusive behavior as described in Property 5 can be achieved,
namely a sufficient homogeneity of the state space in such a way that MB-increments are centered
and mutually uncorrelated.

From the first three chapters, we construct the aimed definition of metabasins in Chapter 4 which
provides Property 4 inevitably. Though the clustering of states into basins of attraction or metastates
is a common tool in metastability analysis, our approach differs from the literature by having a
different thrust. As an example, Olivieri & Scoppola [49] fully describe the tube of exit from a
domain in terms of which basins of attraction of increasing order are visited and for how long these
basins are visited. In [7], Beltrán & Landim work with transition rates instead of energies, and
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aim at finding a universal depth (and time scale) for all metastates. However, we rather aim at the
finest aggregation such that transitions back to an already visited metastate are very unlikely within
a time frame used in simulations. This finest aggregation will lead to valleys of very variable depth
just as simulations do not exhibit a universal depth or timescale. Unlike the afore mentioned, we mix
metastable states and valleys of different order to meet Properties 1–5. Most obviously, Property
1 loses its validity when assigning lower valleys to higher-order metastates against our aggregation
rule, for which there is no natural way. Furthermore, we are interested in the aggregated processes,
either time preserving or with an acceleration depending on the process itself, rather than a “blindly”
accelerated version (XnT )n≥0 for some T ∈ R>0 as in [7], or a version whose Markov property is
artificially created as in [49].

Having established Properties 1–5 [Theorem 4.2.1], the second part of this work proceeds in Chap-
ter 5 with a comparison of the path-independent definition of MB with the path-dependent one, so as
to study the goodness of the above MB-aggregation. After illustrating that the trajectory-dependent
procedure can not be valuably applied to all kinds of energy landscapes, we identify system param-
eters measuring the disorder (Section 5.1). Under some reasonable conditions on this disorder or
connectivity, which, in essence, ensure the existence of reasonable path-dependent MB, Section 5.2
presents the accordance of both definitions.

The two remaining chapters deal with the comparison of the mixing-, cover-, and hitting times of
the original and the aggregated processes. Using spectral-gap techniques as in [30], we will determine
the asymptotic geometric mixing rate of the original process X, its restriction to a specific valley,
the hit chain on the metastable states, a Markovian macroscopic process and the rate of mixing
against the quasi-stationary distribution (Section 6.1). It turns out that all global processes (X,
the hit chain and the Markovian macroscopic process) mix with geometric rates showing the same
asymptotic behavior for β → ∞ (on a logarithmic scale). The geometric rates of the local processes
(the restricted and conditioned chains) are smaller but coincide asymptotically, too. This indicates
that the aggregation procedure of the first part generates a macroscopic process with the same mixing
behavior as X and faster mixing microscopic processes, confirming the metastability. The study of
the mixing time of Y and Y , one being the embedded jump chain of the other, motivates to analyze
how the deceleration of a Markov chain by introducing sojourn times in every state affects the mixing
time. Although results are known for the comparison of the mixing performance of some chains (see
for example [21]), this precise problem is not investigated so far. We describe the problem in Section
6.2 and give various results for the three different cases where, first, the decelerated process is again
Markovian (Section 6.3), second, the sojourn times are independent of the Markov chain (Subsection
6.4.1), and third, the decelerated process is semi-Markovian (Subsection 6.4.2). Broadly speaking,
the deceleration increases the mixing time multiplicatively by the expected sojourn time. The proofs
rely on spectral theory and coupling arguments. In Section 6.5, we come back to the originally raised
problem and determine the mixing performance of the accelerated aggregated process by applying
the theory just introduced. Here again, the mixing time of X is roughly at most the mixing time
of Y times the average sojourn time. For the time preserving aggregated chain it is easy to see
that it mixes at least as fast as the original process. Examples and preliminary results support the
conjecture that they mix asymptotically with the same geometric rate, which remains as an open
problem in this work.

In the final Chapter 7, we bound the relative difference between the cover times of the original and
the aggregated process Y (Section 7.1) as well as the relative difference between the hitting times of
the overall minimum of these two processes (Section 7.2). Though the according time for X is almost
surely larger than the one for Y , both results indicate that the difference is rather small compared
to the dimension of those times.
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In conclusion, we derive an aggregation procedure satisfying Properties 1–5 and coinciding to a
certain extend with the definition established in physics so that the macroscopic process is consistent
with the original one (in the studied aspects). Along the way, we develop results about the effect of
deceleration of Markov chains on the mixing time.

Notation

Throughout this work, we use the following notation: In every chapter, there is an underlying
probability space (Ω,A,P) which is assumed to be large enough to ensure every appearing random
variable to be well defined. For stochastic processes on a state space S, the initial distribution is
specified via an index, that is Pλ for λ ∈ W(S) resp. Px for λ = δx, x ∈ S. The expectation with
respect to P or Pλ is denoted by E or Eλ. We use PX and PX

x as the law of a random variable X
under P resp. under Px. For A ⊂ S and x ∈ S, we define the entrance times

τA := inf{n ≥ 1|Xn ∈ A}, τ0A := inf{n ≥ 0|Xn ∈ A}, τx := τ{x}, τ0x := τ0{x}.

For two real numbers a, b ∈ R we denote with a ∧ b their minimum and with a ∨ b their maximum.
An empty sum

∑m
i=n a(i), m < n, is always defined to equal zero, whereas an empty product∏m

i=n a(i), m < n, is understood as 1. Matrices are always assumed to be finite and real.
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1. Valleys

Following the outline in the Introduction, we start this part with a precise model description and
the analysis of valleys, using a definition of metastable states influenced by the one in [55] and the
definition of essential saddles as in [12].

1.1. The Model

Let X be a Markov chain on a finite set S with transition matrix P = (p(r, s))r,s∈S and stationary
distribution π, and let E : S → R be an energy function such that the following conditions hold:

Irreducibility: P is irreducible with p(s, s) ≥ 1
2 and p(r, s) > 0 if and only if p(s, r) > 0 for all

r, s ∈ S.

Transition Probabilities: There exists a parameter β > 0 and for every β > 0 some γβ > 0
with limβ→∞ γβ = 0 and limβ→∞ βγβ ∈ (0,∞) such that

e−β((E(s)−E(r))++γβ) ≤ p(r, s) ≤ e−β((E(s)−E(r))+−γβ)

for all distinct r, s ∈ S with p(r, s) > 0. Furthermore,

p∗(r, s) := lim
β→∞

p(r, s)

exists for all r, s ∈ S, is positive if E(r) ≥ E(s) and = 0 otherwise.

Reversibility: The pair (π,P) satisfies the detailed balance equations, i.e.

π(r)p(r, s) = π(s)p(s, r)

for all r, s ∈ S.

Non-Degeneracy: E(r) �= E(s) for all local minima r, s ∈ S, r �= s, of E, where x ∈ S is a local
minimum of E if E(x) ≤ E(y) for every y with p(x, y) > 0.

Thus, we are dealing with a reversible Markov chain with exponentially small transition probabil-
ities driven by an energy landscape. The non-degeneracy condition ensures the distinguishability of
any two minima by their energy. This will later give us a way to determine the stable and the unstable
one of any pair. Furthermore this condition provides that every local minimum is isolated. Results
analog to those of this first part have been pre-published in [3] for a more restrictive non-degeneracy
condition, namely the injectivity of the energy function.

An example of a Markov chain satisfying the above conditions, and also the main motivation
behind this work, is a Metropolis chain with transition probabilities

p(r, s) = q(r, s)e−β(E(s)−E(r))+ .

Here β is the inverse temperature and (q(r, s))r,s∈S is an irreducible and symmetric transition matrix
independent of β - the proposal chain. For γβ := −minr,s ln(q(r, s))β

−1, where the minimum is taken
over all r, s ∈ S with q(r, s) > 0, the above conditions are fulfilled.

In the following, two states x, y with p(x, y) > 0 are called neighbors (x ∼ y) and N (x) := {y ∈
S|p(x, y) > 0} the neighborhood of x. Let us start with the following basic results for the stationary
distribution.
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Lemma 1.1.1. For any two states r, s ∈ S we have

e−β(E(r)−E(s)+2|S|γβ) ≤ π(r)

π(s)
≤ e−β(E(r)−E(s)−2|S|γβ).

Proof: To start with, assume r ∼ s. Reversibility and the assumptions on the transition probabilities
imply

π(r)

π(s)
=

p(s, r)

p(r, s)
≤ e−β((E(r)−E(s))+−γβ)

e−β((E(s)−E(r))++γβ)
= e−β(E(r)−E(s)−2γβ).

and

π(r)

π(s)
=

p(s, r)

p(r, s)
≥ e−β((E(r)−E(s))++γβ)

e−β((E(s)−E(r))+−γβ)
= e−β(E(r)−E(s)+2γβ).

Now let r and s be arbitrary. By the irreducibility, there is a path r = r0, r1,..., rn = s from r to s of
neighboring states with π(ri)/π(ri+1) ∈ [e−β(E(ri)−E(ri+1)+2γβ), e−β(E(ri)−E(ri+1)−2γβ)], 0 ≤ i ≤ n− 1.
Therefore,

π(r)

π(s)
=

n−1∏
i=0

π(ri)

π(ri+1)

{
≤ e−β(E(r)−E(s)−2|S|γβ)

≥ e−β(E(r)−E(s)+2|S|γβ).

Lemma 1.1.2. Let Emin = minsE(s) be the minimal energy on S. For any state s ∈ S we have

1

|S|e
−β(E(s)−Emin+2|S|γβ) ≤ π(s) ≤ e−β(E(s)−Emin−2|S|γβ).

In particular, π(s) → 0 as β → ∞ if E(s) > Emin.

Proof: Using the previous lemma, we obtain∑
r

π(r)

π(s)
≥

∑
r

e−β(E(r)−E(s)+2|S|γβ) ≥ eβ(E(s)−Emin−2|S|γβ)

and ∑
r

π(r)

π(s)
≤

∑
r

e−β(E(r)−E(s)−2|S|γβ) ≤ |S|eβ(E(s)−Emin+2|S|γβ).

Therefore,

π(s) =
π(s)∑
r π(r)

=

(∑
r

π(r)

π(s)

)−1 {
≤ e−β(E(s)−Emin−2|S|γβ)

≥ 1
|S|e

−β(E(s)−Emin+2|S|γβ) .

1.2. Valleys: the Definition

Now we start to develop the notion of metastable states and valleys. In order to do so, we must first
study minimal paths between two states and maximal energies along such paths.
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1.2 Valleys: the Definition

1.2.1. Metastable States

Definition 1.2.1. (a) For any two distinct states r, s ∈ S, let

Γ(r, s) := {(x0,..., xk)| k ∈ N, x0 = r, xk = s, xi �= xj for i �= j, p(xi, xi+1) > 0 for 0 ≤ i ≤ k − 1}

be the set of all finite self-avoiding paths from r to s having positive probability. For any such
path γ = (γ0,..., γk) ∈ Γ(r, s), let |γ| := k be its length. We further write t ∈ γ if t ∈ {γ1,..., γk}.

(b) A self-avoiding path γ = (γ1,..., γk) from r to s is called minimal if its maximal energy
max1≤i≤k E(γi) is minimal among all γ′ ∈ Γ(r, s). The set of these paths is denoted Γ∗(r, s).

(c) The set of essential saddles z∗(r, s) between r and s is defined as

z∗(r, s) :=

{
argmax

t∈γ
E(t)

∣∣∣γ ∈ Γ∗(r, s)
}

⊂ S.

As for (c), it is to be noted that the essential saddle is not unique. Indeed, there may be several
minimal paths with different maxima. But nevertheless, the energy of all essential saddles is the
same, denoted by E(z∗(r, s)) hereafter.

Definition 1.2.2. Let M (1) be the set of local minima of E and n := |M (1)|. For 2 ≤ i ≤ n let
successively M(i−1) be the set of states m ∈ M (i−1) with

min
s∈M(i−1)\{m}

E(z∗(m, s))− E(m) = min
m′∈M(i−1)

min
s∈M(i−1)\{m′}

E(z∗(m′, s))− E(m′)

and m(i−1) := argmaxm∈M(i−1) E(m). Then M (i) := M (i−1)\{m(i−1)}. The elements of M (i), 1 ≤
i ≤ n, are called metastable at level i.

In words, given the minima of E, we denote the subset of minima with minimal relative barrier
by M(1), and the state with highest energy in this subset by m(1). We understand m(1) as the most
unstable metastable state at level 1 so that the next-level metastable set M (2) no longer comprises
m(1). We proceed inductively with identifying the most unstable state in M (2), remove it to obtain
M (3) and so forth. Due to the non-degeneracy, the states m(i), 1 ≤ i ≤ n− 1, are well defined. With
{m(n)} := M (n) we yield for 1 ≤ i ≤ n

M (i) = {m(i), . . . ,m(n)}.

Thus, the above definition gives a successive filtration of the state space into S =: M (0) ⊃ M (1) ⊃
... ⊃ M (n) = {m(n)}, where, starting with all local minima, in each step one local minimum is deleted.
We want to emphasize that not the (absolute) minimal energy but the (relative) minimal activation
energy or barrier (for a transition to another minimum of the same level) is the main criterion for
being no longer metastable.

In [55] and [56], Scoppola introduced a similar filtration of the state space which gave rise to
our definition in fact. From the sequence of sets defined above, take the subsequence given by those
indices where all metastable states with the same relative barrier are deleted. This is as well that
subsequence of the decreasing set-sequence in [55] which makes each inclusion proper. Calling the
elements of M (i), 1 ≤ i ≤ n, metastable arises for example from the fact that there exists a constant
C such that

Pm(Xn /∈ M (i)) ≤ e−Cβ
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for all m ∈ M (i−1), 1 ≤ i ≤ n, and sufficiently large n [55, Theorem 2.2]. That is, the process is to be
found most likely in those metastable states. Furthermore, as we will see in Section 2.2, the mean
exit times of certain domains around those metastable states are very large with very many returns
to the metastable state in between (metastability in the pathwise approach). A third reason for this
appellation is that for a metastable state m of appropriate level the probability to reach any other
metastable state without returning to m tends faster to zero than the corresponding probability for
any non-metastable state (potential theoretic approach), see Corollary 2.1.4.
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Figure 1.1.: Example of an energy landscape with minima shown as black dots (•)

Example 1.2.3. For the simple energy function depicted in Figure 1.1, a successive application of
the algorithm from 1.2.2 as illustrated in Figure 1.2 leads to the following decomposition into subsets
of metastable states:

M (1) = {2, 4, 6, 8, 10, 12, 14}, M (2) = {2, 4, 6, 10, 12, 14}, M (3) = {2, 4, 6, 10, 14},
M (4) = {2, 4, 10, 14}, M (5) = {4, 10, 14}, M (6) = {4, 14},
M (7) = {4}.

1.2.2. Valleys

Based on the filtration of S just described, we proceed to the definition of a sequence of metastable
sets associated with the metastable states. Those sets will induce the MB.

Definition 1.2.4. For each m ∈ M (i), 1 ≤ i ≤ n, let

V
(i)
< (m) :=

{
s ∈ S

∣∣∣E(z∗(s,m)) < E(z∗(s,m′)) for all m′ ∈ M (i)\{m}
}
.

We say that state s is attracted by m at level i, expressed as s� m at level i, if

E(z∗(s,m)) = min
n∈M(i)

E(z∗(s, n))

and every minimal path from s to a state m′ ∈ M (i)\{m} with E(z∗(s,m′)) = E(z∗(s,m)) hits
V

(i)
< (m) at some time. Finally, let

l(i) := inf
{
i < j ≤ n|m(i) � m at level j for some m ∈ M (j)

}
denote the minimal level at which the metastable state m(i) becomes attracted by a metastable state
of superior level.
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Figure 1.2.: Successive application of the algorithms in 1.2.2 and 1.2.5 to the energy landscape in
Figure 1.1. For each step i, the metastable states and corresponding valleys are shown.

Definition 1.2.5. (a) Initialization: For each m ∈ M (1), define

V (1)(m) :=
{
s ∈ S

∣∣∣ s� m at level 1
}
.

as the valley of order 1 containing m and let

N (1) :=

⎛⎝ n⋃
j=1

V (1)(m(j))

⎞⎠c

be the set of non-assigned states at level 1.

(b) Recursion: For 2 ≤ i ≤ n and m ∈ M (i), define

V (i)(m) := V (i−1)(m) ∪
{
s ∈ N (i−1)

∣∣∣ s� m at level i
}

∪
⋃

j:l(j)=i,m(j)�m at level i

V (j)(m(j))

as the valley of order i containing m and let

N (i) :=

⎛⎝ n⋃
j=1

V (i∧j)(m(j))

⎞⎠c

be the set of non-assigned states at level i.
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1 Valleys

Here is a more intuitive description of what the previous two definitions render in a formal way:
First, we define, for each level i and m ∈ M (i), the set V

(i)
< (m) of those states s that are strongly

attracted by m in the sense that E(z∗(s,m)) is strictly smaller than E(z∗(s,m′)) for any other
m′ ∈ M (i). Then, starting at level one, each valley V (1)(m), m ∈ M (1), is formed from V

(1)
< (m) by

adjoining all further states s attracted by m at this level. This leaves us with a set of non-assigned
states, denoted N (1). In the next step (level 2), any V (2)(m) for m ∈ M (2) is obtained by adjoining
to V (1)(m) all those s ∈ N (1) which are attracted by m at level 2. Moreover, if m(1) is attracted by
m at level 2, then V (1)(m(1)) is merged into V (2)(m) as well. If no such m exists (thus l(1) > 2),
it remains untouched until reaching level l(1) where its bottom state m(1) becomes attracted by
some m′ ∈ M (l(1)) causing its valley to be merged into V (l(1))(m′). We will see that this ensures
V

(2)
< (m) ⊂ V (2)(m). This procedure continues in the now obvious recursive manner until at level

n all states have been merged into one valley. Obviously, valleys of the same order are pairwise
disjoint. Also, valleys once formed at some level can only be merged as a whole and will thus never
be ripped apart during the recursive construction. For the energy function depicted in Figure 1.1,
the successively derived valleys of order i = 1,..., 7 are shown in Figure 1.2.

The reader should note that the valleys are defined in a completely deterministic way without any
reference to dynamics, although they shall map a dynamical and random object. Hence, with these
objects we can characterize the deterministic background of the random dynamical behavior.

1.3. Valleys: the Structure

1.3.1. Elements of a Valley

Before proceeding to results on the general shape of valleys, we collect some basic, mostly technical
properties of essential saddles and first results on the structure of valleys. Both will be useful
thereafter.

Proposition 1.3.1. For any r, s, u ∈ S, 1 ≤ i ≤ n, m1,m2 ∈ M (i),m1 �= m2, and x1, x2 ∈ S with
x1 ∈ V

(i)
< (m1) and x2 ∈ V (i)(m2), we have

(a) z∗(r, s) = z∗(s, r).

(b) E(z∗(r, s)) ≤ E(z∗(r, u)) ∨ E(z∗(u, s)).

(c) E(z∗(x2,m2)) ≤ E(z∗(x2,m′)) for all m′ ∈ M (i).

(d) E(z∗(x1,m2)) = E(z∗(m1,m2)).

(e) E(z∗(x1, x2)) ≥ E(z∗(m1,m2)).

(f) x1 /∈ z∗(x1, x2).

Proof: Parts (a) and (b) are obvious.
For (c) we use an induction over i and note that there is nothing to show when i = 1. For general i,

we must only verify that E(z∗(x2,m2)) ≤ E(z∗(x2,m′)) for all m′ ∈ M (i) if x2 ∈ V (j)(m(j)) for some
j < i such that l(j) = i and m(j) � m2 at level i (due to the recursive definition of V (i)(m2)). But
the latter ensures that E(z∗(x2,m(j))) ≤ E(z∗(x2, n)) for all n ∈ M (j) ⊃ M (i) (inductive hypothesis)
as well as E(z∗(m(j),m2)) ≤ E(z∗(m(j),m′)) for all m′ ∈ M (i). Consequently, for any such m′,

E(z∗(x2,m2)) ≤ E(z∗(x2,m(j))) ∨ E(z∗(m(j),m2))

≤ E(z∗(x2,m(j))) ∨ E(z∗(m(j),m′))

≤ E(z∗(x2,m(j))) ∨ E(z∗(x2,m′)))
= E(z∗(x2,m′)).
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For assertion (d), note that E(z∗(x1,m2)) > E(z∗(x1,m1)), which in combination with (a) and
(b) implies

E(z∗(m1,m2)) ≤ E(z∗(m1, x1)) ∨ E(z∗(x1,m2)) = E(z∗(x1,m2))

and then further

E(z∗(x1,m2)) ≤ E(z∗(x1,m1))︸ ︷︷ ︸
<E(z∗(x1,m2))

∨E(z∗(m1,m2))︸ ︷︷ ︸
≤E(z∗(x1,m2))

≤ E(z∗(x1,m2)).

So the above must be an identity, i.e. E(z∗(x1,m2)) = E(z∗(m1,m2)).
Turning to part (e), we first infer with the help of (c) and (d) that

E(z∗(x1,m1)) < E(z∗(x1,m2)) = E(z∗(m1,m2))

≤ E(z∗(m1, x2)) ∨ E(z∗(x2,m2)) = E(z∗(x2,m1)) (1.1)
≤ E(z∗(x2, x1)) ∨ E(z∗(x1,m1)),

thus
E(z∗(x1,m1)) < E(z∗(x1, x2)). (1.2)

Together with the just shown inequality E(z∗(m1,m2)) ≤ E(z∗(x2,m1)) (see (1.1)) and another use
of (c), this yields

E(z∗(m1,m2)) ≤ E(z∗(x2,m1)) ≤ E(z∗(x2, x1)) ∨ E(z∗(x1,m1)) = E(z∗(x1, x2)).

Finally, we infer with the help of (1.2) that

E(z∗(x1, x2)) > E(z∗(x1,m1)) ≥ E(x1)

and thus x1 /∈ z∗(x1, x2), as claimed in (f).

Remark 1.3.2. It is useful to point out the following consequence of the previous proposition. If,
for an arbitrary state s and any two distinct metastable states m,n ∈ M (i), there exists a minimal
path γ from s to n that hits a state r with E(z∗(r,m)) < E(z∗(r, n), then there is also a minimal
path from s to n that passes through m. Namely, if we replace the segment from r to n of the former
path by the concatenation of two minimal paths from r to m and from m to n, then the maximal
energy of this new path is

E(z∗(s, n)) ∨ E(z∗(r,m)) ∨ E(z∗(m,n)) ≤ E(z∗(s, n)) ∨ E(z∗(r,m)) ∨ E(z∗(r, n))
= E(z∗(s, n)) ∨ E(z∗(r, n))
= E(z∗(s, n)),

by Proposition 1.3.1 (b), whence the new path has to be minimal from s to n as well. This yields
two facts:

(a) A minimal path from s to n, where s � n at level i, hits V
(i)
< (n) before it hits any r with

E(z∗(r,m)) < E(z∗(r, n)) for some m ∈ M (i). Otherwise, since the subpath from r to m can
be chosen to stay in {t|E(z∗(t,m)) < E(z∗(t, n))} and thus E(z∗(s,m)) = E(z∗(s, n)), there
would be a path from s to m not hitting V

(i)
< (n).

(b) If s � n at level i and m ∈ M (i)\{n} with E(z∗(s, n)) = E(z∗(s,m)), then a minimal path
from s to m does not only hit V

(i)
< (n) at some time, but in fact earlier than any other valley

V
(i)
< (m′),m′ ∈ M (i)\{n}.
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1 Valleys

Lemma 1.3.3. Let 1 ≤ i < j ≤ n, m = m(i) and E(z∗(s,m)) ≤ E(z∗(s,m′)) for every m′ ∈
M (i)\{m}. Then s ∈ V

(j)
< (m′) for some m′ ∈ M (j) implies l(i) ≤ j, m ∈ V

(j)
< (m′) and thus

V (i)(m) ⊂ V (j)(m′).

In other words, whenever V (i)(m(i)) contains an element s which at some higher level j belongs to
some V

(j)
< (m′), m′ ∈ M (j), the same must hold true for m(i) itself implying V (i)(m(i)) ⊂ V (j)(m′).

Conversely, this guarantees that V (i)(m(i)) will have no common elements with any V
(j)
< (m′) at levels

j < l(i) where it has not yet been merged into a valley of higher order. Furthermore, we conclude
that V

(i)
< (m) ⊂ V (i)(m) for every m ∈ M (i), 1 ≤ i ≤ n: By induction it suffices to show x ∈ V (i)(m)

for x ∈ V (i−1)(m′) ∩ V
(i)
< (m), m′ ∈ M (i−1), in which case by Proposition 1.3.1 (c) m′ /∈ M (i) and

thus by the above Lemma x ∈ V (i−1)(m′) ⊂ V (i)(m).

Proof: Let us first note that, under the given assumptions,

E(z∗(s,m)) ≤ E(z∗(s,m′)) < E(z∗(s, n))

for all n ∈ M (j)\{m′}, whence

E(z∗(m,n)) ≤ E(z∗(s,m)) ∨ E(z∗(s, n)) = E(z∗(s, n)) ≤ E(z∗(s,m)) ∨ E(z∗(m,n))

entails E(z∗(m,n)) = E(z∗(s, n)) for all such n. Using this fact, we find that

E(z∗(m,m′)) ≤ E(z∗(s,m)) ∨ E(z∗(s,m′)) < E(z∗(s, n)) = E(z∗(m,n))

for all n ∈ M (j)\{m′}, which implies m � m′ at level j and thus l(i) ≤ j as well as the other
assertions.

Lemma 1.3.4. Given 1 ≤ i ≤ n, m ∈ M (i) and s� m at level i, let γ = (γ1,..., γk) ∈ Γ∗(s,m) be a
path such that E(z∗(γi,m)) ≤ E(z∗(γi, n)) for all n ∈ M (i)\{m}, and which stays in V

(i)
< (m) once

hitting this set (such a γ exists by Remark 1.3.2 (a)). Then γj � m at level i for each j = 1,..., k.

Proof: There is nothing to prove for γ1 = s and any γj ∈ V
(i)
< (m). So let r be any other state visited

by γ, pick an arbitrary n ∈ M (i)\{m} with E(z∗(r, n)) = E(z∗(r,m)) and then any minimal path
τ from r to n. Let σ be the subpath of γ from s to r. We must show that τ hits V

(i)
< (m). First,

we point out that the maximal energy E(z∗(s, r))∨E(z∗(r, n)) of στ , the concatenation of σ and τ ,
satisfies

E(z∗(s, n)) ≤ E(z∗(s, r)) ∨ E(z∗(r, n))
≤ E(z∗(s,m)) ∨ E(z∗(r,m))

= E(z∗(s,m))

≤ E(z∗(s, n)),

implying στ ∈ Γ∗(s, n) and, furthermore, E(z∗(s, n)) = E(z∗(s,m)). Thus στ must hit V (i)
< (m). But

since σ does not hit V (i)
< (m) by assumption, we conclude that τ must hit V (i)

< (m). Since τ ∈ Γ∗(r, n)
was arbitrary, we infer r � m at level i.

With the above preliminaries, we can give the following beautiful characterization of the states in
a valley:

Lemma 1.3.5. For each 1 ≤ i ≤ n and m ∈ M (i), we have that{
s ∈ S∣∣s� m at level i

} ⊂ V (i)(m) ⊂
{
s ∈ S∣∣E(z∗(s,m)) ≤ E(z∗(s,m′)) for all m′ ∈ M (i)

}
.
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1.3 Valleys: the Structure

Proof: For the second inclusion it suffices to refer to Proposition 1.3.1 (c). The first inclusion being
obviously true for s ∈ N (i−1), we turn directly to the case when

s� n1 at level l1, n1 � n2 at level l2, ... nk−1 � nk at level lk

with k ≥ 1 and 1 ≤ l1 ≤ ... ≤ lk ≤ i− 1. Here, n1 denotes the first minimum to which s is attracted
(thus s ∈ V (l1)(n1)), while nk is the last minimum of this kind in the sequence. We may assume
without loss of generality that nj �= m for all j, for otherwise the assertion is clear.

Now we show that n1 � m at level i, which in turn implies nj � m at level i for all 1 ≤ j ≤ k. As
a consequence, nk /∈ M (i), nk ∈ V (i)(m) and thus s ∈ V (i)(m). If E(z∗(n1,m)) < E(z∗(n1,m

′)) for
all m′ ∈ M (i)\{m}, the assertion is proved. Hence suppose E(z∗(n1,m)) ≥ E(z∗(n1,m

′)) for some
m′ ∈ M (i)\{m}. Then

E(z∗(s,m′)) ≤ E(z∗(s, n1)) ∨ E(z∗(n1,m
′)) ≤ E(z∗(s, n1)) ∨ E(z∗(n1,m))

≤ E(z∗(s, n1)) ∨ E(z∗(s,m)) = E(z∗(s,m))

≤ E(z∗(s,m′))

implies E(z∗(s,m)) = E(z∗(s,m′)) and also that the concatenation of any minimal path γ from s
to n1 and any minimal path τ from n1 to m′ (with maximal energy E(z∗(s, n1)) ∨ E(z∗(n1,m

′)))
constitutes a minimal path from s to m′ and must therefore hit V (i)

< (m). Note that by Lemma 1.3.4
we can choose γ to stay in the set of states attracted by n1 at level l1. Now, if τ hits V

(i)
< (m), then

E(z∗(n1,m)) = E(z∗(n1,m
′)) and we are done. Otherwise, γ hits V

(i)
< (m) implying the existence of

some r ∈ V
(i)
< (m) with E(z∗(r, n1)) ≤ E(z∗(r, n′)) for every n′ ∈ M (l1)\{n1}. Now use Lemma 1.3.3

to conclude n1 ∈ V
(i)
< (m) and therefore n1 � m at level i. This completes the argument for the first

inclusion.

1.3.2. Connectivity and Nesting

The announced results on the shape of the valleys and their nested structure are provided by the
next propositions.

Proposition 1.3.6. For every m ∈ M (i) and 1 ≤ i ≤ n, V (i)
< (m) is connected.

Proof: Pick any s ∈ V
(i)
< (m), any minimal path from s to m and finally any intermediate state r

along this path for which r ∈ V
(i)
< (m) must be verified. For every m′ ∈ M (i)\{m}, we find

E(z∗(r,m)) ≤ E(z∗(r, s)) ∨ E(z∗(s,m)) = E(z∗(s,m))

< E(z∗(s,m′))
≤ E(z∗(s, r))︸ ︷︷ ︸

<E(z∗(s,m′))

∨E(z∗(r,m′))

= E(z∗(r,m′)),

which shows r ∈ V
(i)
< (m) as required.

Note that we have even shown that a minimal path from a state in V
(i)
< (m) to m will never leave

this set.

Proposition 1.3.7. For every m ∈ M (i) and 1 ≤ i ≤ n, V (i)(m) is connected.

19



1 Valleys

Proof: We use an inductive argument. If i = 1, the assertion follows directly from the definition of
the level-one valleys because any s ∈ V (1)(m), m ∈ M (1), may be connected to m by a minimal
path that eventually enters V

(1)
< (m) without hitting any other V

(1)
< (n) and is therefore completely

contained in V (1)(m) by the previous lemma.
Turning to the inductive step, suppose the assertion holds true up to level i−1. Fix any m ∈ M (i)

and notice that, by the inductive hypothesis, V (i−1)(m) as well as all V (j)(m(j)) with l(j) = i and
m(j) � m at level i are connected. Now, since these m(j) as well as all s ∈ N (i−1) attracted by m
at level i may be connected to m by minimal paths as assumed in Lemma 1.3.4, we conclude that
V (i)(m) is also connected.

Proposition 1.3.8. The following inclusions hold true:

(a) V (1)(m) ⊆ ... ⊆ V (i)(m) for each m ∈ M (i), 1 ≤ i ≤ n.

(b) V (i)(m) ⊆ V (j)(n) for each 1 ≤ i < j ≤ n, n ∈ M (j) and m ∈ M (i) ∩ V (j)(n).

Proof: Since there is nothing to show for (a) we move directly to (b). But if m ∈ M (i) ∩ V (j)(n),
then the definition of valleys ensures the existence of 1 ≤ k ≤ j − i and of n1,..., nk−1 ∈ M (j)\M (i)

such that np−1 � np at level lp for each p = 1,..., k and levels i < l1 < ... < lk = j, where n0 := m
and nk := n. As a consequence,

V (i)(m) ⊆ V (l1)(n1) ⊆ ... ⊆ V (lk−1)(nk−1) ⊆ V (j)(n),

which proves the asserted inclusion.

1.3.3. Leaving a Valley

To finish the analysis of the shape of the valleys, we study its boundary and exiting paths. In the
next chapter we will need the following important property: A special class of minimal paths from
the inside of any V (i)(m) to its outside must hit its interior V

(i)
< (m).

Lemma 1.3.9. Let m ∈ M (i), x � m at level i and y /∈ V (i)(m). Then either every minimal path
from x to y hits the set V (i)

< (m), or E(z∗(x, y)) > E(z∗(x,m)).

Proof: Suppose there is a minimal path γ from x to y avoiding V
(i)
< (m). Since y /∈ V (i)(m), it is not

attracted by m at level i implying the existence of some m′ ∈ M (i) with E(z∗(y,m′)) ≤ E(z∗(y,m))

and of some τ ∈ Γ∗(y,m′) avoiding V
(i)
< (m). Hence, the concatenation γτ avoids V

(i)
< (m) and must

therefore have maximal energy larger than E(z∗(x,m)). Consequently,

E(z∗(x,m)) < E(z∗(x, y)) ∨ E(z∗(y,m′))
≤ E(z∗(x, y)) ∨ E(z∗(y,m))

≤ E(z∗(x, y)) ∨ E(z∗(x,m)),

and thus E(z∗(x, y)) > E(z∗(x,m)).

Let us define the outer boundary ∂+V of a valley V to be the set of those states outside of V which
are adjacent to a state in V . In contrast, ∂V should denote the inner boundary of the valley V , that
is, those states in V which are adjacent to a state in ∂+V . With the help of the previous result, we
can easily show that ∂+V contains only non-assigned states at any level where V has not yet been
merged into a larger valley.

Lemma 1.3.10. For any 1 ≤ i, j ≤ n and m = m(i) with l(i) > j, the outer part ∂+V of the valley
V := V (j∧i)(m) is a subset of N (j) and E(z∗(s,m)) = E(s) for every s ∈ ∂+V .
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1.4 Remarks

Proof: First, let s ∈ ∂+V and suppose that s /∈ N (j). Then s � m′ at level k, in particular
s ∈ V (k)(m′) for some m′ ∈ M (k) and k ≤ j. Pick any r ∈ V with r ∼ s and note that r ∈ ∂+V (k)(m′).
W.l.o.g. we may assume that r � m at level j ∧ i. Then Lemma 1.3.9 (with x = r and y = s)
ensures that either E(z∗(r, s)) > E(z∗(r,m) ≥ E(r), thus z∗(r, s) = argmax{E(r), E(s)} = s and
E(r) < E(s), or r ∈ V<(m) and, for some n ∈ M (j∧i),

E(z∗(r,m)) < E(z∗(r, n)) ≤ E(z∗(r, s)) ∨ E(z∗(s, n))
≤ E(z∗(r, s)) ∨ E(z∗(s,m)) ≤ E(z∗(r, s)) ∨ E(z∗(r,m))

= E(s) ∨ E(z∗(r,m)),

(1.3)

and thus again E(r) < E(s). On the other hand, by the very same lemma (now with x = s and
y = r), we infer E(r) > E(s) which is clearly impossible. Consequently, s must be non-assigned at
level j as claimed.

For the second assertion take again s ∈ ∂+V and a minimal path γ = (s, r,...,m) from s to m
with r ∈ V . Again, by use of Lemma 1.3.9, we find either E(z∗(r,m)) < E(z∗(r, s)) = E(s) or
r ∈ V<(m), which leads analogously to equation (1.3) to E(z∗(r,m)) < E(s) ∨E(z∗(r,m)) and thus
E(z∗(r,m)) < E(s). In conclusion, both cases result in

E(z∗(s,m)) = E(s) ∨ E(z∗(r,m)) = E(s),

finishing the proof.

1.4. Remarks

In a nutshell, by going from (V (i)(m))m∈M(i) to (V (i+1)(m))m∈M(i+1) , some valleys are merged into
one (with only the smaller minimum retained as metastable state). Additionally those states from
N (i) are added which at level i were attracted by metastable states now all belonging to the same
valley. This induces the following tree-structure on the state space:

• Fix ∅ = s0.

• The first generation of the tree consists of all m ∈ M (n−1) ∪N (n−1) and are thus connected to
the root.

• The second generation of the tree consists of all m ∈ M (n−2) ∪N (n−2), and m is connected to
the node k of the first generation for which E(z∗(m, k)) is minimal or to itself (in the obvious
sense).

• This continues until in the nth generation each state is listed and connected either with its
unique point of attraction in the previous generation or with itself.

At each level i of such a tree, the nodes identify the metastable states that are not yet absorbed by
higher order valleys as well as the saddles between them. The subtree rooted at any node m ∈ M (i)

consists of the states in the valley V (i)(m).

Example 1.4.1. For the energy function of Example 1.2.3 and depicted in Figure 1.1, the described
tree is shown in Figure 1.3. The sets of non-assigned states at the different levels are

N (1) = {3, 5, 7, 9, 11, 13}, N (2) = {3, 5, 7, 11, 13}, N (3) = {3, 5, 7, 11},
N (4) = {3, 7, 11}, N (5) = {7, 11}, N (6) = {11},
N (7) = ∅.
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Figure 1.3.: The tree belonging to Figure 1.1
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Figure 1.4.: Exemplary energy landscape

There are other authors who use similar graph-theoretical models in order to visualize high dimen-
sional energy landscapes, for example, Okushima et al. in [47] or Bovier et al. in [12]. Both work
with saddles of paths, just as we do. In contrast to our approach, in [47] every possible path, that
is, every possible saddle, is represented as a node in the tree. But, as we will see, in the limit of low
temperatures (β → ∞) the essential saddle is all we need. In [12] the emphasis is on the separating
saddles and absolute energies so that the order of metastability, given by the relative energies, is
neglected.

The reader may wonder why valleys are defined via essential saddles and not via the at first glance
more natural overall energy barriers, viz.

I(s,m) := inf
γ∈Γ(s,m)

I(γ1,..., γ|γ|) with I(s1,..., sn) :=
n∑

i=1

(E(si)− E(si−1))
+

for a state s in a valley and the pertinent minimum m. This latter quantity, also called cumulative
activation energy, is indeed an important parameter in [56]. The reason for our definition is, first,
that the essential saddles are the critical parameters for the behavior of the aggregated chain (see
Theorem 2.1.5), and second, that nice properties of the valleys fail when defining them through
the cumulative activation energy instead of the energy of the essential saddle, first and foremost
Lemma 1.3.5. This is visualized in Figure 1.4: If attraction and then valleys would be defined via
the minimal cumulative activation energy, m3 would be attracted by m2 at level 2 which would be
attracted by m1 at level 3. But at level 3, m3 would be attracted by m4. That is, being attracted
would no longer cause being in the corresponding valley and being in the valley would not cause the
cumulative activation energy to be minimal.

Now there are two fundamental directions for further investigations:

Microscopic View: What happens while the process visits a fixed valley V ?
In Chapter 2, we will show that during each visit of a valley V its minimum will be reached
with probability tending to 1 as β → ∞. We also calculate the expected residence time in V ,
establish Property 3 stated in the Introduction, and comment briefly on quasi-stationarity.

Macroscopic View: How does the process jump between the valleys?
In Chapter 3, by drawing on the results of Chapter 2, we will show that an appropriate ag-
gregated chain is Markovian in the limit as β → ∞ and calculate its transition probabilities.
With this we will be able to establish Properties 1 and 2 listed in the Introduction and derive
conditions under which Property 5 holds true.

The assembly of the results of these two chapters finally provides the envisaged definition of MB in
Chapter 4.
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2. Microscopic View: Fixing a Valley

Based on the provided definition of valleys of different orders, from the microscopic perception we are
interested in the system behavior when moving within a fixed valley. We study typical trajectories of
the process, determine the growth rate of the expected exit time when β tends to infinity (which is
the low temperature limit in the Metropolis Algorithm) and introduce the topic of quasi-stationarity
for the nesting procedure.

2.1. Low-Temperature Trajectories

The first goal in our study of the microscopic process and also the basic result for the subsequent
analysis of the macroscopic process deals with the probabilities of reaching certain states earlier than
others. We will conclude that in the limit β → ∞ the process, when starting somewhere in a valley,
will visit its minimum before leaving it. This will prove the metastability defined above to be conform
with the potential theoretic approach to metastability defined by Bovier, Eckhoff, Gayrard &

Klein in [13, Definition 1.1]. The deduction follows closely the ideas in [12], as this fundamental
property of the valleys is a modification of Proposition 4.1. therein.
S may (and will) be viewed as a graph hereafter with edge set {(x, y)|x ∼ y}. Given any subgraph

Δ, we will write P̃ for the transition matrix of the chain restricted to Δ (p̃(r, s) = p(r, s) for all distinct
r, s ∈ Δ, p̃(r, r) = 1−∑

s∈Δ,s �=r p̃(r, s)) and P̃x for probabilities when regarding this restricted chain
starting at x ∈ Δ.

2.1.1. Results on Hitting Probabilities

Theorem 2.1.1 (compare Proposition 4.1 in [12]). Let x, y, z ∈ S be any pairwise distinct states
with x /∈ z∗(x, z) and E(z∗(x, z)) > E(z∗(x, y)). Then

Px(τy > τz) ≤ |S|3e−β(E(z∗(x,z))−E(z∗(x,y))−8|S|γβ) =: ε(x, y, z, β)
β→∞−→ 0.

Thus, in the limit of low temperatures (β → ∞), only the smallest of all possible energy barriers
affects the speed of a transition. In particular, we have the following result which is preliminary to
the subsequent one.

Theorem 2.1.2. Given distinct x, y ∈ S and m ∈ M (i) such that x� m at level i and y /∈ V (i)(m),
let B := {z ∈ S|E(z∗(x, z)) > E(z∗(x,m))}. Then it holds true that

Px(τm > τy) ≤ ε(x,m, y, β)1B(y)

+

⎛⎜⎝ ∑
z:E(z)>E(z∗(x,y))

ε(x, y, z, β) +
∑

z∈V (i)
< (m)

ε(z,m, y, β)

⎞⎟⎠ 1Bc(y)

=: ε̃(x,m, y, β)

β→∞−→ 0.
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2 Microscopic View: Fixing a Valley

Theorem 2.1.3. Given m ∈ M (i), x ∈ V (i)(m) and y /∈ V (i)(m), let k ≤ i be such that

m0 := x� m1 at level l1, m1 � m2 at level l2, ... mk−1 � mk = m at level lk

for suitable 1 ≤ l1 < ... < lk ≤ i, mj ∈ M (lj) for j = 1,..., k determined by the construction in
Definition 1.2.5. Then

Px(τm > τy) ≤
k∑

j=1

Pmj−1(τmj > τy) ≤
k∑

j=1

ε̃(mj−1,mj , y, β)
β→∞−→ 0.

Theorem 2.1.1 is the background for the definition of valleys in this work with the consequence in
Theorem 2.1.3 that for β sufficiently large, with high probability the minimum of a valley is visited
before this valley is left. In Section 3.2, this will be the basic ingredient to confirm Property 1 stated
in the Introduction

As announced, we deduce another potential theoretic definition of metastability to hold true for
our metastable states:

Corollary 2.1.4. Let 1 ≤ i ≤ n be a level of aggregation such that

max
m∈S\M(i)

(
min

m′∈M(i)
E(z∗(m,m′))

)
−E(m) < min

m∈M(i)

(
min

m′∈M(i)
E(z∗(m,m′))

)
− E(m).

Then

maxm∈M(i) Pm(τM(i)\{m} < τm)

minm∈S\M(i) Pm(τM(i) < τm)
→ 0, β → ∞. (2.1)

In [13], metastability is defined precisely via the convergence in Equation (2.1), having in mind
that Bovier et al. let the number of states tend to infinity, not the temperature to zero. By the above
corollary, this convergence holds true for every aggregation level for which all valleys of the same
depth as the last erased minimum are erased as well since those level fulfill the above assumption.
This characterization emphasizes that the probability to escape from a metastable state is much
smaller than the corresponding probability for a non-metastable state, though both may tend to 0.

All three theorems and the corollary are proved at the end of the next subsection after a number
of auxiliary results.

2.1.2. Auxiliary Results and Proofs

The proof of Theorem 2.1.1 will be accomplished by a combination of two propositions due to Bovier

et al. [12] for a more special situation. We proceed with a reformulation of the first one in a weaker
form and under weaker assumptions.

Proposition 2.1.5 (compare Theorem 1.8 in [12]). Let x, y, z ∈ S be pairwise distinct such that
x /∈ z∗(x, z). Then

Px(τx > τz) ≤ |S|2 e−β(E(z∗(x,z))−E(x)−3|S|γβ),

Px(τx > τy) ≥ |S|−1 e−β(E(z∗(x,y))−E(x)+5|S|γβ).

The proof requires two lemmata, the first of which may already be found in [40, Theorem 6.1] and
is stated here in the notation of [12]. Its proof can be adopt to our situation without change.
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2.1 Low-Temperature Trajectories

Lemma 2.1.6 (see Theorem 2.1 in [12]). Defining

Hx
z := {h : S → [0, 1] |h(x) = 0, h(z) = 1}

and the Dirichlet form

E(h) :=
1

2

∑
r∼s∈S

π(r)p(r, s)(h(r)− h(s))2,

we have
Px(τx > τz) =

1

π(x)
inf

h∈Hx
z

E(h).

Lemma 2.1.7 (see Lemma 2.2 and 2.5 in [12]). For any one-dimensional subgraph Δ = (ω0,..., ωk)
of S and corresponding transition matrix P̃, we have

Pω0(τω0 > τωk
) ≥ P̃ω0(τω0 > τωk

) =

(
k∑

i=1

π(ω0)

π(ωi)

1

p(ωi, ωi−1)

)−1

.

Since the second part of this lemma is stated in [12] without proof, we include it in the Appendix
(see Lemma A.1.1).

Proof of Proposition 2.1.5: In view of Lemma 2.1.6, we must find an appropriate function h for the
upper bound. Let us define

A := {s ∈ S|E(z∗(s, x)) < E(z∗(s, z))} .
As x /∈ z∗(x, z),

E(z∗(x, x)) = E(x) < E(z∗(x, z)) and E(z∗(z, x)) ≥ E(z) = E(z∗(z, z)),

and therefore x ∈ A and z /∈ A. Furthermore, for r /∈ A, s ∈ A with p(r, s) > 0,

E(z∗(s, x)) < E(z∗(s, z)) ≤ E(z∗(s, x)) ∨ E(z∗(x, z)) = E(z∗(x, z))

so that

E(z∗(x, z)) ≤ E(z∗(x, r)) ∨ E(z∗(r, z)) = E(z∗(r, x))
≤ E(z∗(r, s)) ∨ E(z∗(s, x)) = E(r) ∨ E(s) ∨ E(z∗(s, x))
= E(r) ∨ E(s).

Now define h := 1Ac . By invoking Lemma 1.1.1, we obtain

Px(τx > τz) =
1

π(x)
inf

h∈Hx
z

E(h)

=
1

2π(x)

∑
r �=s

(1Ac(r)− 1Ac(s))2 π(r)p(r, s)

=
∑

r/∈A�s

π(r)

π(x)
p(r, s)

≤
∑

r/∈A�s
e−β(E(r)−E(x)+(E(s)−E(r))+−3|S|γβ)

=
∑

r/∈A�s
e−β(E(r)∨E(s)−E(x)−3|S|γβ)

≤
∑

r/∈A�s
e−β(E(z∗(x,z))−E(x)−3|S|γβ)

≤ |S|2e−β(E(z∗(x,z))−E(x)−3|S|γβ),
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2 Microscopic View: Fixing a Valley

where of course the sum ranges over those r /∈ A � s with p(r, s) > 0.
Lemma 2.1.7 will enter in the proof of the lower bound. Consider the chain restricted to the one-

dimensional subgraph given by a minimal path ρ = (s1,..., s|ρ|) from x to y. Let x∗ be one essential
saddle along this path. Then

Px(τx > τy) ≥
⎛⎝ |ρ|∑

i=1

π(x)

π(si)

1

p(si, si−1)

⎞⎠−1

≥ π(x∗)
π(x)

⎛⎝ |ρ|∑
i=1

π(x∗)
π(si)

eβ((E(si−1)−E(si))
++γβ)

⎞⎠−1

≥ e−β(E(z∗(x,y))−E(x)+5|S|γβ)

⎛⎝ |ρ|∑
i=1

e−β(E(z∗(x,y))−E(si)−(E(si−1)−E(si))
+)

⎞⎠−1

≥ e−β(E(z∗(x,y))−E(x)+5|S|γβ) 1

|S| .

This completes the proof of Proposition 2.1.5.
We proceed to the second proposition needed to prove Theorem 2.1.1.

Proposition 2.1.8 (see Corollary 1.6 in [12]). Given I ⊂ S and distinct x, z ∈ S\I,

Px(τz < τI) =
Px(τz < τI∪{x})
Px(τI∪{z} < τx)

.

Since no proof is provided in [12], we include it in the Appendix for completeness (see Proposition
A.1.2). With the help of Propositions 2.1.5 and 2.1.8, the proof of Theorem 2.1.1 can now be given
quite easily.

Proof of Theorem 2.1.1: By first using the previous result and then Proposition 2.1.5, we find

Px(τz < τy) =
Px(τz < τ{x,y})
Px(τ{z,y} < τx)

≤ Px(τz < τx)

Px(τy < τx)
≤ |S|3e−β(E(z∗(x,z))−E(z∗(x,y))−8|S|γβ).

The argument is completed by noting that E(z∗(x, z)) > E(z∗(x, y)).

Proof of Theorem 2.1.2: If B occurs, the asserted bound follows directly from Theorem 2.1.1. Pro-
ceeding to the case when Bc occurs, i.e. E(z∗(x, y)) ≤ E(z∗(x,m)), we first point out that

Px(τm > τy) = Px(τm > τy, E(Xn) > E(z∗(x, y)) for some n ≤ τy)

+ Px(τm > τy, E(Xn) ≤ E(z∗(x, y)) for all n ≤ τy)

=: P1 + P2.

For all z ∈ S with E(z) > E(z∗(x, y)), we have x /∈ z∗(x, z) and E(z∗(x, z)) > E(z∗(x, y)), for

E(z∗(x, z)) ≥ E(z) > E(z∗(x, y)) ≥ E(x).

Therefore, by an appeal to Theorem 2.1.1,

P1 ≤ Px(τy > τz for some z with E(z) > E(z∗(x, y)))

≤
∑

z:E(z)>E(z∗(x,y))

Px(τy > τz)

≤
∑

z:E(z)>E(z∗(x,y))

ε(x, y, z, β).
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2.1 Low-Temperature Trajectories

To get an estimate for P2, note that every minimal path from x to y must pass through V
(i)
< (m)

(Lemma 1.3.9). With this observation and by another appeal to Theorem 2.1.1, we infer

P2 ≤
∑

z∈V (i)
< (m)

Pz(τm > τy) ≤
∑

z∈V (i)
< (m)

ε(z,m, y, β),

having further utilized that (by Proposition 1.3.1 (f) and (e)) z /∈ z∗(z, y) and

E(z∗(z,m)) < E(z∗(z,m′)) ≤ E(z∗(z, y)) ∨ E(z∗(y,m′))
≤ E(z∗(z, y)) ∨ E(z∗(y,m)) ≤ E(z∗(z, y)) ∨ E(z∗(z,m))

= E(z∗(z, y))

for some m′ ∈ M (i)\{m} with E(z∗(y,m)) ≥ E(z∗(y,m′)), which must exist since y /∈ V (i)(m).

Proof of Theorem 2.1.3: We first note that y /∈ V (lj)(mj) for all 1 ≤ j ≤ k. With m0,...,mk as stated
in the theorem (recall m0 = x and mk = m), we obtain

Px(τm > τy) = Px(τm > τy > τm1) + Px(τm1 ∧ τm > τy)

≤ Pm1(τm > τy) + Px(τm1 > τy)

≤ Pm2(τm > τy) + Pm1(τm2 > τy) + Px(τm1 > τy)

...

≤
k∑

j=1

Pmj−1(τmj > τy).

Finally, use Theorem 2.1.2 to infer

Pmj−1(τmj > τy) ≤ ε̃(mj−1,mj , y, β)

for each j = 1,..., k.

Proof of Corollary 2.1.4: For every m ∈ M (i), it holds true that

Pm(τM(i)\{m} < τm) ≤
∑

m′∈M(i)\{m}
Pm(τm′ < τm)

≤ |S|2e−β(min
m∈M(i) (min

m′∈M(i) E(z∗(m,m′))−E(m))−3|S|γβ),

while for every m ∈ S\M (i),

Pm(τM(i) < τm) ≥ Pm(τm′ < τm) ≥ |S|−1 e−β(E(z∗(m,m′))−E(m)+5|S|γβ),

for some m′ ∈ M (i) maximizing E(z∗(m,m′)). Thus, under the given assumptions,

maxm∈M(i) Pm(τM(i)\{m}) < τm)

minm∈S\M(i) Pm(τM(i) < τm)
≤ |S|2e−β(min

m∈M(i) (min
m′∈M(i) E(z∗(m,m′))−E(m))−3|S|γβ)

|S|−1 e
−β(max

m∈S\M(i) (min
m′∈M(i) E(z∗(m,m′))−E(m)+5|S|γβ)

→ 0

as β → ∞.
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2 Microscopic View: Fixing a Valley

2.2. Exit Time

In view of Property 3, in this section we want to analyze how long a given valley is visited, that is, we
study its exit time. There is an extensive literature on exit problems for different kinds of stochastic
processes. We mention [61, Ch. XI.2] and [24, Ch. 4, §4, Theorem 4.1] as two related to our work.
The latter one studies perturbed systems on a continuous space. We can discretize their argument to
get, with use of a result from [55], a nice result on the time needed to leave a valley V (i)(m) for any
fixed 1 ≤ i ≤ n and m ∈ M (i). This result is more explicit than the one in [49, Proposition 4.6], as
it only uses system parameters of the specific valley V (i)(m) and not of the whole energy landscape.

Definition 2.2.1. For 1 ≤ i ≤ n, N := N (i), we define the following stopping (entrance/exit)
times:

ξ
(i)
0 := τ0Nc

ζ(i)n := inf
{
k ≥ ξ(i)n |Xk ∈ N

}
ξ
(i)
n+1 := inf

{
k ≥ ζ(i)n |Xk ∈ N c

}
, n ≥ 0.

The entrance times ξ
(i)
n mark the epochs when a new valley is visited, while the exit times ζ

(i)
n

are the epochs at which a valley is left. The reader should notice that we do not restrict ourselves
to valleys of order i but include those valleys which up to order i have not yet been absorbed by
some larger valley. Exit and entrance times never coincide, for there is no way to go from one valley
to another one without hitting a non-assigned state - crests are always non-assigned (see Lemma
1.3.10).

In this section, we will focus on ζ
(i)
0 for any fixed i, thus writing ζ0 := ζ

(i)
0 hereafter, but later for

the macroscopic process the other times will be needed as well.

For each valley V (i)(m), m ∈ M (i), let us define

sm = s(i)m :=
{
s ∈ ∂+V (i)(m)|E(s) ≤ E(s′) for any s′ ∈ ∂+V (i)(m)

}
. (2.2)

Due to Lemma 1.3.10, sm is as well characterized by

sm =
{
s ∈ ∂+V (i)(m)|E(z∗(m, s)) ≤ E(z∗(m, s′)) for any s′ ∈ ∂+V (i)(m)

}
.

Like the essential saddle between to states, the (in terms of energy) minimal state on the outer
boundary of a valley is not unique - sm is a whole set of states. But, as well similar to the essential
saddle, every s ∈ sm has the same energy, which we denote by E(sm).

2.2.1. Mean Exit Time

Theorem 2.2.2. Let m ∈ M (i), 1 ≤ i ≤ n. Then

lim
β→∞

1

β
lnErζ0 = E(sm)− E(m)

for any r ∈ V (i)(m).

That the mean exit time tends to infinity with increasing β is not surprising, neither is the expo-
nential growth since the escape probabilities are exponentially small. That the normalized mean (by
taking logarithms and dividing by β) is independent of the starting point is up to the diminutiveness
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2.2 Exit Time

(in comparison to the exit time) of the time to reach the minimum. In [29], our physical encour-
agement, Heuer refers to E(sm)−E(m), m ∈ M (i), as the apparent activation energy (page 22) or
barrier height (page 7), which is nothing else than the depth of the valley V (m). Therefore, Property
3 from the Introduction holds true and we can relate thermodynamics of the system (energies) to
dynamics of the chain (holding times) in a very precise way.

For the upper bound, we need a result from [55], which in our notation is:

Proposition 2.2.3 (see Theorem 2.2 in [55]). For any 1 ≤ i ≤ n, β sufficiently large and t >
2i−1 exp(β(E(sm(i−1))− E(m(i−1)) + 2i|S|γβ)),

sup
x∈M(i−1)

Px(τM(i) > t) ≤ exp(−Δβ)

holds true with a positive constant Δ, where M (0) = S should be recalled.

Scoppola proved it inductively, using the renormalization procedure defined in that work. We
conclude the following result as a corollary.

Corollary 2.2.4. Fix 1 ≤ i ≤ n, m ∈ M (i) and r ∈ V (i)(m). Then, for any β sufficiently large
and t > 2i exp(β(E(sm)− E(m) + 2(i+ 1)|S|γβ)), it holds true that

Pr(ζ0 < (i+ 1)t) ≥ 1

4
.

Proof: Let us first note that we can always arrange for m being equal to m(i) by sufficiently decreasing
the energy function at any m′ ∈ M (i)\{m} so as to make E(sm) − E(m) minimal among all states
in M (i). This affects neither the valley V (i)(m) and its outer boundary nor the distribution of
ζ0 when starting in m, for this distribution does not depend on the energy landscape outside of
V (i)(m) ∪ ∂+V (i)(m). When applying the previous proposition, the constant Δ may have changed
but is still positive which suffices for our purposes. So let m = m(i) hereafter.

Fix t > 2i exp(β(E(sm)− E(m) + 2(i+ 1)|S|γβ)) and T := it. Since

E(sm)− E(m) ≥ E(sm(j))− E(m(j))

for every 1 ≤ j ≤ i, we infer

Pr(τM(i) ≤ T ) ≥ Pr(τM(i) ≤ T, τM(1) ≤ t)

≥ Pr(τM(1) ≤ t) inf
x∈M(1)

Px(τM(i) ≤ (i− 1)t)

≥ Pr(τM(1) ≤ t) inf
x∈M(1)

Px(τM(2) ≤ t) inf
x∈M(2)

Px(τM(i) ≤ (i− 2)t)

≥
i∏

j=1

inf
x∈M(j−1)

Px(τM(j) ≤ t)

≥ (
1− exp(−Δβ)

)i
≥ 3

4

for β sufficiently large. Furthermore, for β so large that Pr(τM(i) < τm) ≤ 1/4, we find that

Pr(τM(i) ≤ T ) = Pr(τM(i) = τm ≤ T ) + Pr(τM(i) ≤ T, τM(i) < τm)

≤ Pr(τm ≤ T ) + Pr(τM(i) < τm)

≤ Pr(τm ≤ T ) +
1

4
.
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2 Microscopic View: Fixing a Valley

By combining both estimates, we obtain

Pr(τm ≤ T ) ≥ Pr(τM(i) ≤ T )− 1

4
≥ 1

2
.

Hence, state m is hit in time T with at least probability 1/2 when starting in r. Since m = m(i), we
further have

Pm(ζ0 ≤ t) ≥ Pm(τM(i+1) ≤ t) ≥ 1− exp(−Δβ) ≥ 1

2

for β sufficiently large. Hence, the valley is left in time t with at least probability 1/2 when starting
in m. By combining the estimates, we finally obtain

Pr(ζ0 ≤ (i+ 1)t) ≥ Pr(ζ0 ≤ T + t|τm ≤ T )Pr(τm ≤ T )

≥ Pr(τm ≤ T )Pm(ζ0 ≤ t)

≥ 1

4
,

which proves our claim.

Proof of Theorem 2.2.2: Using the lemma just shown, we infer

Er(ζ0) ≤ (i+ 1)t
∑
n≥0

(n+ 1)Pr (n(i+ 1)t ≤ ζ0 < (n+ 1)(i+ 1)t)

= (i+ 1)t
∑
n≥0

(n+ 1)
(
Pr (ζ0 ≥ n(i+ 1)t)− Pr (ζ0 ≥ (n+ 1)(i+ 1)t)

)
= (i+ 1)t

∑
n≥0

Pr (ζ0 ≥ n(i+ 1)t)

≤ (i+ 1)t
∑
n≥0

(
max
x∈V

Px (ζ0 ≥ (i+ 1)t)

)n

≤ (i+ 1)t
∑
n≥0

(
3

4

)n

= 4(i+ 1)t,

where t := 2i exp(β(E(sm)− E(m) + 2(i+ 1)|S|γβ)) + 1. Since γβ → 0, we get in the limit

lim sup
β→∞

1

β
lnErζ0 ≤ E(sm)− E(m)

for all r ∈ V (i)(m).

Turning to the lower bound, define a sequence of stopping times, viz. ρ0 := 0 and

ρn := inf{k > ρn−1|Xk = m or Xk ∈ ∂+V }
for n ≥ 1. Then Zn := Xρn , n ≥ 0, forms a Markov chain, the transition probabilities of which can
be estimated with the help of Proposition 2.1.5, namely

P(Z1 ∈ ∂+V (i)(m)|Z0 = m) = Pm(ρ1 = ζ0)

= Pm(ζ0 < τm)

≤
∑

s∈∂+V

Pm(τs < τm)

≤ |S|3e−β(mins∈∂+V E(z∗(m,s))−E(m)−3|S|γβ)

= |S|3e−β(E(sm)−E(m)−3|S|γβ).
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2.2 Exit Time

Further defining ν := inf{k ≥ 0|Zk ∈ ∂+V (i)(m)}, this implies in combination with a geometric trials
argument that

Pm(ν > n) ≥
(
1− |S|3e−β(E(sm)−E(m)−3|S|γβ)

)n−1
.

As a consequence,

Emζ0 =
∑
n≥1

Em(ρn − ρn−1︸ ︷︷ ︸
≥1

)1{ν≥n} ≥
∑
n≥1

Pm(ν ≥ n) ≥ |S|−3eβ(E(sm)−E(m)−3|S|γβ).

For arbitrary r ∈ V , we now infer

Erζ0 = Erζ01{ζ0≤ρ1} + Erζ01{ζ0>ρ1}
≥ Er

(
Er(ζ01{ζ0>ρ1}|Xρ1 = m)

)
≥ Er1{ζ0>ρ1}Emζ0

≥ Pr(ζ0 > ρ1)|S|−3eβ(E(sm)−E(m)−3|S|γβ)

≥ 1

2
|S|−3eβ(E(sm)−E(m)−3|S|γβ)

for all sufficiently large β, because limβ→∞ Pr(ζ0 > ρ1) = 1 (Theorem 2.1.3). Finally, by taking
logarithms and letting β tend to ∞, we arrive at the inequality

lim inf
β→∞

1

β
lnErζ0 ≥ E(sm)− E(m),

which completes the proof.

2.2.2. Universal Time Scale

The next result distinguishes our approach from others mentioned in the Introduction which aim at
universal time scales or universal stability. As the exit times depend on the depth and those depths
differ exponentially from valley to valley, in our situation it is impossible to identify a universal scale
for the times spent in different valleys.

Corollary 2.2.5. Let T = eβt for some t > 0.

(a) For every r ∈ V (i)(m) with m ∈ M (i), 1 ≤ i ≤ n, satisfying E(sm)− E(m) > t,

lim
β→∞

Pr(ζ0 ≤ T ) = 0.

(b) For t > maxm∈M(i) (E(sm)− E(m)) , 1 ≤ i ≤ n, and every r ∈ S,

lim
β→∞

Pr(T < ζ1) = 0.

Thus, if we choose T = eβt, t > 0, as a typical time scale, that is, study (XnT )n≥0, once a valley
deeper than t is reached, it will a.a.s. not be left within K steps for every K ∈ N. But if every valley
is shallower than t, the process (XnT )n≥0 overlooks the valleys.

Proof: (a) We need the bound

P(X > a) ≥ E(X − a)2

E(X2)
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2 Microscopic View: Fixing a Valley

for every integrable random variable X and a ≤ E(X), which is proved in [51, Equation (10)]. Thus,

Pr(ζ0 ≤ T ) = 1− Pr(ζ0 ≥ T )

≤ 1− Er(ζ0 − T )2

Er(ζ20 )

=
2TEr(ζ0)− T 2

Er(ζ20 )

≤
(
2eβ(t+E(sm)−E(m)+o(1)) − e2βt

)
e−2β(E(sm)−E(m)+o(1))

= 2eβ(t−E(sm)+E(m)+o(1)) − e2β(t−E(sm)+E(m)+o(1))

= eβ(t−E(sm)+E(m)+o(1))

→ 0

as β → ∞, because t < E(sm)− E(m).
(b) In this case,

Ps(ζ0 > T/2) ≤ 2
Es(ζ0)

T
= 2eβ(E(sm)−E(m)−t+o(1)) → 0

for every s ∈ V (i)(m), m ∈ M (i). Furthermore,

Pr(ξ1 > T/2) ≤ Pr(ζ0 > T/4) + Pr(ξ1 > T/2, ζ0 ≤ T/4)

≤ 4eβ(E(sm)−E(m)−t+o(1)) + Pr(ξ1 − ζ0 > T/4)

→ 0

for every r ∈ V (i)(m), m ∈ M (i), since ξ1− ζ0 is a sum of geometrically distributed random variables
with parameters p = p(s, s) for some s ∈ N (i). These parameters converge to positive constants as β
tends to infinity, because for every s ∈ N (i) there is at least one r ∼ s with E(r) ≤ E(s). Thus,

Pr(T < ζ1) ≤ Pr(ξ1 > T/2) + Pr(ξ1 ≤ T/2, ζ1 > T )

= Pr(ξ1 > T/2) +
∑
s∈S

Pr(Xξ1 = s, ξ1 ≤ T/2, T < ζ1)

≤ Pr(ξ1 > T/2) +
∑
s∈S

Pr(Xξ1 = s)Ps(ζ0 > T/2)

→ 0.

2.3. Quasi-Stationarity

Naturally, several other questions concerning the behavior of the process when moving in a fixed valley
are of interest, and quasi-stationarity may appear as one to come up with first. Quasi-stationarity
is strongly linked to metastability, see for example the new results of Bianchi & Gaudillière [8].
In [52], Pollett gives a bibliography on the immense literature on the topic of quasi-stationarity.

For a given valley V (of any level), a quasi-stationary distribution ν = (ν(j))j∈V is characterized
by the quasi-invariance, viz.

Pν(Xn = j|τS\V > n) = ν(j) for all j ∈ V, n ≥ 0. (2.3)
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2.3 Quasi-Stationarity

It also satisfies
lim
n→∞ Pμ(Xn = j|τS\V > n) = ν(j) for all j ∈ V, (2.4)

if μ is an arbitrary distribution with μ(V ) = 1, for X is irreducible. The latter property renders
uniqueness of ν. Since S is finite, the existence of ν follows by an old result due to Darroch

& Seneta [17, Section 4]. It is obtained as the normalized eigenvector of the Perron-Frobenius
eigenvalue λ = λ(V ) of the submatrix (p(x, y))x,y∈V . This eigenvalue λ is also the probability for the
chain to stay in V at least one step when started with ν, thus Pν(τV c > 1) = λ. As an immediate
consequence, one finds that the exit time τV c has a geometric distribution with parameter 1−λ under
Pν . In the present context, this naturally raises the question about how the parameter λ relates to
the transition probabilities or the energies of the valley V . A simple probabilistic argument shows the
following basic and intuitively obvious result concerning the eigenvalues associated with the nesting
V (1)(m) ⊂ ... ⊂ V (i)(m) (Proposition 1.3.8) for any 1 ≤ i ≤ n and m ∈ M (i).

Proposition 2.3.1. Fixing any 1 ≤ i ≤ n and m ∈ M (i), let λ(j) := λ(V (j)(m)) for j = 1,..., i.
Then λ(1) ≤ ... ≤ λ(i).

Proof: Write νj as shorthand for the quasi-stationary distribution on V (j)(m) and Tj for τS\V (j)(m).
Plainly, Tj ≤ Tj+1 and

(λ(j))n = Pνj (Tj > n) ≤ Pνj (Tj+1 > n)

=

∫
{Tj+1>k}

PXk
(Tj+1 > n− k) dPνj (2.5)

= Pνj (Tj+1 > k)Pμk
(Tj+1 > n− k),

where μk(x) := Pνj (Xk = x|Tj+1 > k) for x ∈ V (j+1). Since S is finite and by virtue of (2.4), we
have that μk ≤ 2νj+1 when choosing k sufficiently large. For any such k, we find that (2.5) has upper
bound

2Pνj (Tj+1 > k)Pνj+1(Tj+1 > n− k) = 2Pνj (Tj+1 > k) (λ(j+1))n−k.

Hence, we finally conclude

λ(j) ≤
(
2Pνj (Tj+1 > k) (λ(j+1))−k

)1/n
λ(j+1)

and thereby the assertion upon letting n → ∞.

An alternative matrix-analytic proof draws on an old result by Frobenius [25], here cited from
Seneta [57, Theorem 1.1], which is a very useful monograph on Matrix theory needed for time-
homogeneous and -inhomogeneous Markov chains on finite and countable state spaces.

Lemma 2.3.2 (see Theorem 1.1 in [57]). If A = (aij) and C = (cij) denote two real k × k-matrices
such that A is nonnegative and irreducible with maximal eigenvalue λ∗

A and |cij | ≤ aij for all 1 ≤
i, j ≤ k, then |λ| ≤ λ∗

A for all eigenvalues λ of C.

Second proof of Proposition 2.3.1: For any fixed valley V , collapse all states s /∈ V into an absorbing
state (grave) Δ. This leaves transition probabilities between states in V unchanged. A proper
rearrangement of states allows us to assume that the new transition matrix has the form

P =

(
1 0
p Q

)
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2 Microscopic View: Fixing a Valley

for a |V | × 1-column vector p �= 0 and a nonnegative, substochastic and irreducible |V | × |V |-matrix
Q. Now, for any 2 ≤ j ≤ i, let A be this matrix Q when V = V (j)(m), and D be this matrix when
V = V (j−1)(m). Then, obviously,

A :=

(
A1 A2

A3 D

)
and A is irreducible and nonnegative with maximal eigenvalue λ(j). Defining furthermore

C :=

(
0 0
0 D

)
,

The largest eigenvalue of C equals the largest eigenvalue of D, thus λ(j−1). Finally, the desired
conclusion follows from the previous lemma since |cij | = cij ≤ aij for all i ≤ i, j ≤ k. �

In our special case, we can say more about the eigenvalues λ(V (m)):

Proposition 2.3.3. Fixing any 1 ≤ i ≤ n and m ∈ M (i), V := V (i)(m), then

lim
β→∞

1

β
ln (1− λ(V )) = −(E(sm)− E(m)).

Proof: Since Eν(τV c) = 1
1−λ(V ) , we have

lim
β→∞

1

β
ln (1− λ(V )) = lim

β→∞
1

β
ln

(
1

Eν(τV c)

)
= − lim

β→∞
1

β
ln (Eν(τV c)) = −(E(sm)− E(m)).

The above result is also known for continuous time Markov chains driven by a Brownian Motion
with absorption outside of a smooth bounded domain of Rn, n ≥ 2, see Mathieu [44, Theorem 1].
He even determined the whole spectrum of the sub-stochastic operator. In Section 6.1 we will come
back to the spectrum of (p(x, y))x,y∈V (m) when determining the speed of convergence against the
quasi-stationary distribution.
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3. Macroscopic View:

Transitions between Valleys

With the help of the nested state space decomposition into valleys of different orders and around
bottom states of different stability, we will now be able to define and study macroscopic versions of
the original process X = (Xn)n≥0. Those coarse grained processes keep track only of the valleys that
are visited by X, neglecting the specific state in them. As already explained, we do not fix the order
of stability of the considered valleys, rather we consider every valley which is at a given level not yet
absorbed by another valley, though its ground state may be of lower stability. Aggregated processes
like these, as a special kind of hidden Markov models, have received quite some attention in the
literature and are studied for example as canonical models of systems with observability restrictions
(e.g. [58] and [62]), in terms of lumpability (e.g.. [37, Chapter VI] and [38]), or in terms of transition
probabilities under different conditions (e.g. [54], [35] and [59]). Here we will show an asymptotically
(semi-)Markovian behavior and study the trajectories of the aggregated process in order to identify
the reasons for forward-backward jumps.

3.1. Macroscopic Processes

In the subsequent definition of aggregated versions of X, we will distinguish between two variants:

A time-scale preserving aggregation that, for a fixed level and each n, keeps track of the
valley the original chain visits at time n and thus only blinds its exact location within a valley.

An accelerated version that, while also keeping track of the visited valleys, further blinds the
sojourn times within a valley by counting a visit just once.

Actually, the definition of these aggregations at a chosen level i is a little more complicated because
their state space, denoted S(i) below and the elements of which we call level i metastates, also
comprises the non-assigned states at level i as well as the minima of those valleys that were formed
at an earlier level and whose merger is pending at level i because their minima are not attracted at
this level.

Definition 3.1.1. Fix 1 ≤ i ≤ n, let S(i) := {m(j) ∈ M (1)| l(j) > i} ∪N (i) and

V (i)(s) :=

⎧⎪⎨⎪⎩
V (i)(m(j)), if s = m(j) for some j ≥ i

V (j)(m(j)), if s = m(j) for some j < i

{s}, if s ∈ N (i)

for s ∈ S(i). Then define

Y
(i)
n :=

∑
s∈S(i)

s1{Xn∈V (i)(s)} and Y (i)
n := Y

(i)
σn
,

n ≥ 0, where σ0 = σ
(i)
0 :≡ 0 and

σn = σ(i)
n := inf

{
k > σn−1

∣∣∣Y (i)
k �= Y

(i)
k−1

}
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3 Macroscopic View: Transitions between Valleys

for n ≥ 1. We call Y
(i)

= (Y
(i)
n )n≥0 and Y (i) = (Y

(i)
n )n≥0 the aggregated chain (AC) and the

accelerated aggregated chain (AAC) (at level i) associated with X = (Xn)n≥0.

Hence, starting in an arbitrary valley, the original chain stays there for a time σ1 = ζ0 = ζ
(i)
0 (as

defined in Definition 2.2.1) before it jumps via some non-assigned states k1,..., kl, l ≥ 1, (staying a
geometric time in each of these states) to another valley at time σl+1 = ξ1 = ξ

(i)
1 . There it stays for

σl+2 − σl+1 = ζ1 − ξ1 time units, before it moves on in a similar manner. By going from X to its
aggregation Y

(i) at level i, we regard the whole valley V (i)(s) for s ∈ S(i) as one single metastate and
therefore give up information about the exact location of X within a valley. Y

(i) is a jump process
on S(i) with successive sojourn times σn+1 − σn, n ≥ 0, which do not only depend on the valley but
also on the states of entrance and exit. The AAC is the embedded jump process, viz.

Y
(i)
n =

∑
j≥0

Y
(i)
j 1{σj≤n<σj+1},

giving the states only at jump epochs. Starting from the minimum of the first valley, it moves to the
states k1,..., kl ∈ N (i), proceeds to the minimum of a second valley and so on. Its sojourn times are
always 1.

Of course, at small temperatures the time spent in a non-assigned state or in a valley around a
low order metastable state is very small compared to the time spent in a valley around a metastable
state of higher order. Thus, such states can be seen as instantaneous but not are necessarily of
little importance for the evolution of the process. We account for them for several reasons: First, in
the path-dependent definition mentioned in the Introduction and used in physics, they build small
MB of great transitional activity of the process and are thus relevant in view of our goal to provide
a definition of MB that conforms as much as possible with the path-dependent one. Additionally,
there are very many low-order metastable states, a good approximation for the energies of the local
minima is to be normally distributed. Though a single “instantaneous” state has only little effect,
they become importance due to their mere number. Second, a complete partitioning of the state
space, that is, an assignment of every s ∈ S to a metastate m ∈ S(i) via a global algorithm, fails
when merely focusing on

{
V (i)(m),m ∈ M (i)

}
. There is neither an obvious nor natural way to assign

non-assigned states or non-attracted minima to them. Any such assignment would cause Property 1
to fail (as we will see below). However, we see no reason to ignore low order metastates completely,
as they possess the same features as higher order metastates.

As energetically lower states are always more likely than higher ones under the stationary distri-
bution π, X is most likely to be found in a minimum and Pπ(Xn �= Y

(i)
n ) ≤ e−Δ(i)β , n ≥ 0, 1 ≤ i ≤ n,

for an appropriate constant Δ(i). Therefore, it is not far-fetched to study the AC Y
(i) in order to

obtain results concerning the underlying system. We dedicate this chapter to the identification of
the most convenient level i. In the second part of the present work, most notably Chapters 6 and 7,
we come back to the question about which information of the original process can be obtained from
the AAC and AC.

3.2. (Semi-)Markov Property

In general, both aggregated chains are no longer Markovian. Transition probabilities of the AAC
not only depend on the current state, i.e. the current valley, but also on the entrance state into that
valley, whereas transition probabilities of the AC depend on the current sojourn times, which in
turn depend on the previous, the present and the next valley. On the other hand, since valleys are
defined in such a way that asymptotically almost surely (a.a.s.), i.e., with probability tending to one
as β → ∞, the minimum will be reached from anywhere inside the valley before the valley is left, the
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3.2 (Semi-)Markov Property

AAC will be shown below to converge to a certain Markov chain on S(i). Also, when passing over to
the bivariate AC (Y

(i)
n , Y

(i)
n+1)n≥0, it converges to a semi-Markov chain.

Definition 3.2.1. Given any nonempty countable set S, let (Mn, Tn)n≥0 be a bivariate temporally
homogeneous Markov chain on S × N, with transition kernel Q(s, ·) only depending on the first
component, viz., for all n ≥ 0, s ∈ S and t ≥ 0,

P(Mn+1 = s, Tn+1 ≤ t|Mn, Tn) = Q(Mn, {s} × [0, t]) (3.1)

holds. Put Sn :=
∑n

i=0 Ti for n ≥ 0 and ν(t) := max{n ≥ 0|Sn ≤ t} (max ∅ := 0) for t ≥ 0. Then
Zn := Mν(n), n ≥ 0, is called semi-Markov chain with embedded Markov chain (Mn)n≥0 and sojourn
or holding times T0, T1,....

Note that equation (3.1) holds if and only if M = (Mn)n≥0 forms a temporally homogeneous
Markov chain and the (Tn)n≥0 are conditionally independent given M such that the distribution of
Tn only depends on Mn−1,Mn for n ≥ 1 (in a temporally homogeneous manner), and on M0 for
n = 0. Note further that we have specialized to the case where holding times take values in N only
(instead of (0,∞)). For a very vivid introduction to discrete time semi-Markov chains on countable
state spaces see for example [5, Chapter 3] or [1, Chapter 9] for more general results.

3.2.1. Markov Property

Recall from (2.2) the definition of sm for m ∈ S(i)\N (i) and notice that the second equality there
entails E(z∗(m, s)) < E(z∗(m, s′)) for any s ∈ sm and any s′ ∈ ∂+V (i)(m)\sm. Further recall from
our basic assumptions that for any r, s ∈ S the limit p∗(r, s) = limβ→∞ p(r, s) exists and is positive
if r ∼ s and E(r) ≥ E(s). The following result, revealing the announced convergence for the AAC,
confirms in particular that a valley V (i)(m), m ∈ S(i)\N (i), is a.a.s. to be left via sm.

We are interested in Pr(Y
(i)
1 = s), r, s ∈ S(i) when β tends to infinity. The model assumptions

ensure the existence of this limit if, either r ∈ N (i), or r ∈ S(i)\N (i) and s /∈ sr, or r ∈ S(i)\N (i), s ∈
sr and |sr| = 1. We will see this in the proof of the next proposition. However, the assumptions
do not ensure the existence for r ∈ S(i)\N (i), s ∈ sr and |sr| ≥ 2. Regard as an example a Markov
chain on S = {1, 2, 3} with p(2, 1) = exp(−β − (−1)�β�) and p(2, 3) = exp(−β), and observe that
P2(τ1 < τ3) = 1/(1+exp((−1)�β�)) does not converge. Therefore, we have to pass on to an appropriate
subsequence along which β tends to infinity. That is, we restrict to a specific annealing schedule.

Definition 3.2.2. We call a subsequence (βn)n≥0 with βn → ∞ as n → ∞ a proper annealing
schedule, if limβn→∞ Pr(Y

(i)
1 = s) exists for every r, s ∈ S(i).

Such a proper annealing schedule exists since the probabilities are bounded and S(i) is finite. In
the following, whenever it is necessary to pass on to such a subsequence, we write βn → ∞ instead of
β → ∞ and assume that we have fixed some proper annealing schedule (βn)n≥0. The limit of course
depends on this schedule.

Proposition 3.2.3. For each 1 ≤ i ≤ n and as βn → ∞ along a proper annealing schedule, the
level i AAC Y (i) converges to a Markov chain Ŷ (i) = (Ŷ

(i)
n )n≥0 on S(i) with transition probabilities

p̂(r, s) = p̂i(r, s) stated below, that is,

lim
βn→∞

P(Y
(i)
n+1 = s|Y (i)

n = r, Y
(i)
n−1 = mn−1,..., Y

(i)
0 = m0) = p̂(r, s)
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3 Macroscopic View: Transitions between Valleys

for all m0,...,mn−1, r, s ∈ S(i) and n ≥ 0. For r ∈ S(i)\N (i) we have p̂(r, s) := limβn→∞ Pr(Xζ0 = s),
which is positive if and only if s ∈ sr, and for r ∈ N (i)

p̂(r, s) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p∗(r, s)

1− p∗(r, r)
, s ∈ N (r) ∩N (i)

∑
r′∈N (r)∩V (i)(s)

p∗(r, r′)
1− p∗(r, r)

, s ∈ S(i)\N (i).

Proof: Fix 1 ≤ i ≤ n and write Yn for Y
(i)
n . The first step is to verify that, as β → ∞,

P(Yn+1 = s|Yn = r, Yn−1 = mn−1,..., Y0 = m0) = Pr(Y1 = s) + o(1)

for all m0,...,mn−1, r, s ∈ S(i) and n ≥ 0. If r ∈ N (i), then Yn = Xσn and the Markov property of X
provide us with the even stronger result

P(Yn+1 = s|Yn = r, Yn−1 = mn−1,..., Y0 = m0) = Pr(Y1 = s).

A little more care is needed if r ∈ S(i)\N (i). For any s ∈ S(i), x ∈ V (i)(r) and n ≥ 0, we have

P(Yn+1 = s|Yn = r,Xσn = x) = Px(Y1 = s, τr < σ1) + Px(Y1 = s, τr > σ1)

= Pr(Y1 = s)Px(τr < σ1) + Px(Y1 = s, τr > σ1).

The last two summands can further be bounded by

Pr(Y1 = s)Px(τr < σ1) ≤ Pr(Y1 = s) and Px(Y1 = s, τr > σ1) ≤ Px(σ1 < τr).

For the last probability, Theorem 2.1.3 ensures

Px(σ1 < τr) ≤
∑

z∈∂+V (i)(r)

Px(τz < τr)
β→∞−→ 0.

Consequently, as β → ∞,

Pr(Y1 = s) =

⎛⎝1−
∑

z∈∂+V (i)(r)

ε̃(x, r, z, β)

⎞⎠Pr(Y1 = s) + o(1)

≤ (
1− Px(σ1 < τr)

)
Pr(Y1 = s) + o(1)

≤ P(Yn+1 = s|Xσn = x, Yn = r) + o(1)

≤ Pr(Y1 = s) + o(1),

and therefore

P(Yn+1 = s|Yn = r, Yn−1 = mn−1,..., Y0 = m0)

=
∑

x∈V (i)(r)

P(Yn+1 = s|Xσn = x, Yn = r)P(Xσn = x|Yn = r, Yn−1 = mn−1,..., Y0 = m0)

= Pr(Y1 = s) + o(1).
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3.2 (Semi-)Markov Property

It remains to verify that Pr(Y1 = s) = p̂(r, s) + o(1) for any r, s ∈ S(i). First, if r ∈ S(i)\N (i),
then σ1 = τN(i) = ζ0 and Y1 = Xζ0 . Since E(z∗(r, s)) < E(z∗(r, s′)) for any s ∈ sr and any
s′ ∈ ∂+V (i)(r)\sr, we now infer with the help of Theorem 2.1.1

Pr(Y1 /∈ sr) = Pr

(
τsr > τs′ for some s′ ∈ ∂+V (i)(r)\sr

)
≤

∑
s′∈∂+V (i)(r)\sr

Pr

(
τs > τs′)

≤
∑

s′∈∂+V (i)(r)

ε(r, s, s′, β)

= o(1),

as β → ∞, where s should denote an arbitrary state in sr. This yields Pr(Y1 = s) = Pr(Xζ0 = s)+o(1)
and Pr(Xζ0 = s) → 0 if s /∈ sr. If otherwise s ∈ sr, then let s′ ∼ s be a neighboring state of s in
V (i)(r) with E(z∗(r, s′)) < E(sr). Thus,

Pr(τs′ > ζ0) ≤
∑

s∈∂+V (i)(r)

Pr(τs′ > τs) ≤
∑

s∈∂+V (i)(r)

ε(r, s′, s, β) ≤ 1

2

for β large enough. This yields

Pr(Y1 = s) ≥ Pr(τs′ < ζ0, Y1 = s)

≥ Pr(τs′ < ζ0)Ps′(Y1 = s)

= Pr(τs′ < ζ0)
Ps′(τs < τ∂+V (i)(r)∪{s′}\{s})

Ps′(τsr < τs′)

≥ Pr(τs′ < ζ0)
p(s′, s)∑

s∈sr Ps′(τs < τs′)

≥ Pr(τs′ < ζ0)
e−β(E(sr)−E(s′)+γβ)∑

s∈sr e
−β(E(sr)−E(s′)−2|S|γβ)

≥ Pr(τs′ < ζ0)
e−3β|S|γβ

|sr| ,

by use of Proposition 2.1.8 and Theorem 2.1.1. We can finally conclude that

lim
βn→∞

Pr(Y1 = s) ≥ lim
β→∞

1

2|S| e
−3β|S|γβ > 0.

Here we need to pass on to the proper annealing schedule to ensure the existence of the limit. Second,
if r ∈ N (i), then either Y1 = s ∈ N (r)∩N (i), or otherwise Y1 = s ∈ S(i)\N (i) and Xσ1 = r′ for some
r′ ∈ N (r) ∩ V (i)(s). It thus follows that

Pr(Y1 = s) = Pr(Xσ1 = s) =
p(r, s)

1− p(r, r)
=

p∗(r, s)
1− p∗(r, r)

+ o(1)

if s ∈ N (r) ∩N (i), while

Pr(Y1 = s) =
∑

r′∈N (r)∩V (i)(s)

Pr(Xσ1 = r′) =
∑

r′∈N (r)∩V (i)(s)

p∗(r, r′)
1− p∗(r, r)

+ o(1)

in the second case.
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3 Macroscopic View: Transitions between Valleys

3.2.2. The Asymptotic Jump Chain

The limiting chain Ŷ (i) = (Ŷ
(i)
n )n≥0 from above is called the asymptotic jump chain at level i hereafter.

Note that, typically, it is not irreducible. It may have transient states, not necessarily non-assigned,
and several irreducibility classes. For the energy landscape given in Figure 1.1 (see also Figure 1.2),
the states 2, 3 and 11 are transient states of Ŷ (4) and {4, 7, 10} is one recurrence class.

Proposition 3.2.4. Let Ŷ := Ŷ (i) be the asymptotic jump chain at level i (according to a proper
annealing schedule) and write sm := m for m ∈ N (i).

(a) A state m ∈ S(i) is recurrent for Ŷ if and only if E(sm′) = E(sm) for every m′ ∈ S(i) with
E(z∗(m,m′)) = E(sm). In particular, if for m ∈ S(i)\N (i) one s ∈ sm is transient, then already
every s ∈ sm and m itself is transient.

(b) Any two recurrent states m,n ∈ S(i) are in the same irreducibility class of Ŷ if and only if
E(z∗(m,n)) = E(sm) = E(sn). In particular, if E(z∗(r, s)) ≡ E for every r, s ∈ S(i)\N (i) and
some E ∈ R+, then every s ∈ S(i)\N (i) is recurrent and they are all the the same irreducibility
class of Ŷ .

Proof: For part (a), first note that m is not reachable by Ŷ from any state m′ with E(sm′) < E(sm).
Therefore, if there is some m′ with E(sm′) < E(sm) and E(z∗(m,m′)) = E(sm), then there is a path
γ from m to m′ of states in S(i) which does not exceed E(sm). Let γj be the first state n along
this path with E(sn) < E(sm). Then p̂(γi, γi+1) > 0 for every 0 ≤ i ≤ j − 1. This means that γj
is reachable from m but m is not reachable from γj . Thus, m is transitive. On the other hand, if
E(sm′) = E(sm) for every m′ ∈ S(i) with E(z∗(m,m′)) = E(sm), then m is reachable from any state
s which is reachable from m. Since, furthermore, for any r, r′ ∈ sm,

E(z∗(r, s)) ≤ E(z∗(r,m)) ∨ E(z∗(m, r′)) ∨ E(z∗(r′, s)) = E(sm) ∨ E(z∗(r′, s)) = E(z∗(r′, s)),

and in the same way E(z∗(r′, s)) ≤ E(z∗(r, s)) for any s ∈ S(i), the second claim in (a) follows.
(b) It suffices to note that in the proof of (a) we have seen that a recurrent state m is reachable

by and reaches every m′ with E(z∗(m,m′)) = E(sm) = E(sm′).

3.2.3. Semi-Markov Property

Having shown that Y (i) behaves asymptotically as a Markov chain, viz. the jump chain Ŷ (i), it
is fairly easy to verify with the help of the next simple lemma that the augmented bivariate AC(
Y

(i)
n , Y

(i)
n+1

)
n≥0

is asymptotically semi-Markovian.

Lemma 3.2.5. For each β > 0, the sojourn times σn+1−σn, n ≥ 0, of the AC Y
(i) are conditionally

independent given Y (i). The conditional law of σn+1 − σn depends only on (Y
(i)
n−1, Y

(i)
n , Y

(i)
n+1) and

satisfies

P
(
σn+1 − σn ∈ · |Y (i)

n−1 = x, Y (i)
n = y, Y

(i)
n+1 = z

)
= Q((x, y, z), · )

:=

{
Geom(1− p(y, y)), if y ∈ N (i)∑

s∈V (i)(y),s∼x Ps(σ1 ∈ · |Y (i)
1 = z)Px(Xσ1 = s), if y /∈ N (i)

(3.2)

for all x, y, z ∈ S(i) with P(Y
(i)
n−1 = x, Y

(i)
n = y, Y

(i)
n+1 = z) > 0 and n ≥ 1.

Proof: The assertions follow easily when observing that, on the one hand, at least one state y ∈ N (i)

must be visited between two states x, z ∈ S(i)\N (i) (Lemma 1.3.10) and that, on the other hand, the
original chain X and its aggregation Y

(i) coincide at any epoch where a non-assigned state is hit,
which renders the Markov property of Y (i) at these epochs. Further details are omitted.
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3.3 Reciprocating Jumps

In order to formulate the next result, let 0 = σ̂0 < σ̂1 < ... be an increasing sequence of ran-
dom variables such that its increments σ̂n+1 − σ̂n, n ≥ 0, are conditionally independent given
the asymptotic jump chain Ŷ (i). Moreover, let the conditional law of σ̂n+1 − σ̂n depend only
on

(
Ŷ

(i)
n−1, Ŷ

(i)
n , Ŷ

(i)
n+1

)
and be equal to Q

((
Ŷ

(i)
n−1, Ŷ

(i)
n , Ŷ

(i)
n+1

)
, · ), with Q as defined in (3.2). Then

((Ŷ
(i)
n , Ŷ

(i)
n+1), σ̂n+1)n≥0 forms a Markov renewal process and

(
Ŷ

(i)
ν̂(n), Ŷ

(i)
ν̂(n+1)

)
n≥0

a semi-Markov chain,
where ν̂(n) := sup{k ≥ 0|σ̂k ≤ n}.
Proposition 3.2.6. For each 1 ≤ i ≤ n, ((Y (i)

n , Y
(i)
n+1), σn+1)n≥0 converges to the Markov renewal

process ((Ŷ
(i)
n , Ŷ

(i)
n+1), σ̂n+1)n≥0 as βn → ∞ along a proper annealing schedule, in the sense that

lim
βn→∞

Py0

((
Y

(i)
k , Y

(i)
k+1

)
= (yk, yk+1), σk+1 = ik+1, 0 ≤ k ≤ n

)
Py0

((
Ŷ

(i)
k , Ŷ

(i)
k+1

)
= (yk, yk+1), σ̂k+1 = ik+1, 0 ≤ k ≤ n

) = 1

for all y0,..., yn+1 ∈ S(i), 0 < i1 < ... < in+1 and n ≥ 0 such that the denominator is positive.
Furthermore, (Y (i)

n , Y
(i)
n+1)n≥0 is asymptotically semi-Markovian in the sense that

lim
βn→∞

Py0

((
Y

(i)
k , Y

(i)
k+1

)
= (yk, yk+1), 0 ≤ k ≤ n

)
Py0

((
Ŷ

(i)
ν̂(k), Ŷ

(i)
ν̂(k+1)

)
= (yk, yk+1), 0 ≤ k ≤ n

) = 1

for all y0,..., yn+1 ∈ S(i) and n ≥ 0 such that the denominator is positive.

Proof: The first assertion being obvious by Proposition 3.2.3, note that it implies, with ν(n) :=
sup{k ≥ 0|σk ≤ n},

lim
βn→∞

Py0

((
Y

(i)
ν(k), Y

(i)
ν(k+1)

)
= (yk, yk+1), 0 ≤ k ≤ n

)
Py0

((
Ŷ

(i)
ν̂(k), Ŷ

(i)
ν̂(k+1)

)
= (yk, yk+1), 0 ≤ k ≤ n

) = 1

for all y0,..., yn+1 ∈ S(i) and n ≥ 0 such that the denominator is positive. Therefore, the second
assertion follows when finally noting that

Y
(i)
ν(n) =

∑
j≥0

Y
(i)
j 1{σj≤n<σj+1} = Y

(i)
n

for each n ≥ 0.

So we have shown that, although aggregation generally entails the loss of the Markov property,
here it leads back to processes of this kind (Markov or semi-Markov chains) in an asymptotic sense
at low temperature regimes. This confirms Property 1.

3.3. Reciprocating Jumps

As discussed to some extent in the Introduction, we want to find an aggregation level at which
reciprocating jumps appear to be very unlikely so as to obtain a better picture of essential features
of the observed process. To render precision to this informal statement requires to further specify
the term “reciprocating jump” and to provide a measure of likelihood for its occurrence. It is useful
to point out first that the original chain X exhibits two types of forward-backward jumps (compare
Figure 3.1):

Intra-valley jumps which occur between states inside a valley (starting in a minimum the process
falls back to it many times before leaving the valley).
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3 Macroscopic View: Transitions between Valleys
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Figure 3.1.: Illustration of intra-valley jumps (left panel) versus inter-valley jumps (right panel).

Inter-valley jumps which occur between two valleys (typically, when the energy barrier between
these valleys is much lower than the barrier to any other valley).

Clearly, intra-valley jumps disappear by aggregating valleys into metastates, while inter-valley jumps
may also be viewed as intra-valley jumps for higher order valleys and do occur when transitions
between any two of them are much more likely than those to other valleys, in which case they should
be aggregated into one valley. This motivates the following definition.

Definition 3.3.1. We say the process (Y
(i)
n )n∈N exhibits reciprocating jumps of order ε ≥ 0 if

there exists a nonempty subset A � S(i)\N (i) with the following property: For each m1 ∈ A, there
exists m2 ∈ A such that

lim inf
β→∞

1

β

(
ln

(
Pm1

(
Xξ1 ∈ V (i)(m2)

))
− ln

(
Pm1

(
Xξ1 ∈ V (i)(m)

)))
≥ ε

for all m ∈ S(i)\(N (i) ∪A). In other words, it is exponentially (with rate ε) more likely to stay in A
than to leave it (ignoring intermediate visits to non-assigned states).

In view of our principal goal to give a path-independent definition of MBs, we must point out that,
by irreducibility, forward-backward jumps always occur with positive probability at any nontrivial
level of aggregation and can therefore never be ruled out completely. This is in contrast to the path-
dependent version by Heuer [29] in which the non-occurrence of forward-backward jumps appears to
be the crucial requirement. As a consequence, Definition 3.3.1 provides an alternative, probabilistic
and verifiable criterion for reciprocating jumps to be sufficiently unlikely in a chosen aggregation.

3.3.1. Macroscopic Transition Probabilities

The following proposition contains further information on which valleys are visited consecutively by
providing the probabilities of a transition from V (i)(m) to V (i)(m′) for any m,m′ ∈ S(i)\N (i). It is
a direct consequence of the asymptotic results in the previous section, notably Proposition 3.2.3.

Proposition 3.3.2. Let m ∈ S(i)\N (i), sm ⊂ ∂+V (i)(m) be as defined in (2.2). Then

lim
βn→∞

Pm(Xξ1 ∈ V (i)(m′))

=
∑
s∈sm

p̂(m, s)

⎛⎝p̂(s,m′) +
∑
n≥1

∑
r1,...,rn∈N(i)

p̂(s, r1) · ... · p̂(rn−1, rn) p̂(rn,m
′)

⎞⎠
for any m′ ∈ S(i)\N (i).
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3.3 Reciprocating Jumps

The reader should notice that, as p̂(s, r) = 0 whenever E(s) < E(r), the last sum actually ranges
only over those non-assigned r1,..., rn with E(sm) ≥ E(r1) ≥ ... ≥ E(rn) ≥ E(sm′). In particular for
m′ = m it has to be E(ri) = E(sm) for every 1 ≤ i ≤ n.

Proof: Let us first point out that Pr(Xξ0 ∈ V (i)(m)) = o(1) as β → ∞ for any r ∈ N (i) such that
E(r) < E(sm). Namely, since the last property implies r �∈ ∂+V (i)(m), any path from r into V (i)(m)
must traverse a state s ∈ ∂+V (i)(m) with E(s) ≥ E(sm) > E(r), whence the probability for such a
path goes to zero as β → ∞. Noting further that Pm(Y

(i)
1 /∈ sm) = o(1) as β → ∞ by Proposition

3.2.3, we now infer (with ξn = ξ
(i)
n )

Pm(Xξ1 ∈ V (i)(m′)) =
∑
s∈sm

Pm(Y
(i)
1 = s)Ps(Xξ0 ∈ V (i)(m′)) + o(1)

with

Ps(Xξ0 ∈V (i)(m′))

= Ps(Y
(i)
1 = m′) +

∑
n≥1

∑
r1,...,rn∈N(i)

Ps(Y
(i)
1 = r1,..., Y

(i)
n = rn, Y

(i)
n+1 = m′)

= p̂(s,m′) +
∑
n≥1

∑
r1,...,rn∈N(i)

p̂(s, r1) · ... · p̂(rn−1, rn) p̂(rn,m
′) + o(1)

as βn → ∞.

In essence, the previous result tells us that a valley V (i)(m′) is neighboring to V (i)(m), that is,
reachable with positive probability by the asymptotic jump chain Ŷ (i) (and thus by Y (i) at any
temperature level β) without intermediately hitting any other valley, if and only if there exists at
least one (in terms of energies) decreasing path in N (i) from some s ∈ sm to V (i)(m′). For any
other such pair of valleys, connected by a non-decreasing path through states in N (i), the transition
probability decreases to zero exponentially in β. If this path can chosen to be unimodal, here called
uphill-downhill-path, this can be stated in a very precise way. In order to do so, we need the following
lemma about the decay of the probability to leave V (i)(m) via a specific s ∈ ∂+V (i)(m).

Lemma 3.3.3. Let m ∈ S(i)\N (i) and s ∈ ∂+V (i)(m). Then

lim
β→∞

1

β
lnPm(Y1 = s) = −(E(s)− E(sm)).

Proof: First, note that for s ∈ sm the right-hand side is zero and the probability on the left-hand side
is bounded above by one and below by C exp(−3β|S|γβ), which converges to some strictly positive
constant. Therefore, the whole term on the left-hand side converges to zero as well, in particular
independently of the annealing schedule. We proceed to s ∈ ∂+V (i)(m)\sm. Decompose the event
{Y1 = s} with respect to the number of visits to m before V (m) := V (i)(m) is left (or use Proposition
2.1.8), giving

Pm(Y1 = s) =
Pm(σ1 = τs < τm)

Pm(σ1 < τm)
.

For the upper bound, we obtain by another appeal to Proposition 2.1.5 that

Pm(Y1 = s) =
Pm(σ1 = τs < τm)

Pm(σ1 < τm)
≤ Pm(τs < τm)

Pm(τsm < τm)
≤ e−β(E(s)−E(sm)+o(1)).
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3 Macroscopic View: Transitions between Valleys

The proof of the lower bound is much more technical. Let γ = (γ1,..., γn) ∈ Γ∗(m, s) be a minimal
path which leaves V (m) only in the last step and such that for any γi, γj ∈ γ both, the subpath from
γi to γj , and the inversed path from γj to γi, are minimal. Define

r0 := m and r1 := γi0 with i0 := inf{0 ≤ i ≤ n− 1|E(γi+1) ≥ E(sm)}.

In particular, E(r1) < E(sm) and E(z∗(r1, r0)) < E(sm). Define furthermore the first record by
s1 := γi1 with

i1 := inf
{
i0 < i ≤ n

∣∣∣E(γi) ≥ E(sm), inf{j ≥ i|E(γj) < E(γi)} < inf{j ≥ i|E(γj) > E(γi)}
}
,

and then successively for k ≥ 1 with sk = γik �= s the records sk+1 := γik+1
with

ik+1 := inf
{
n ≥ i ≥ inf{j ≥ ik|E(γj) < E(sk)}

∣∣∣E(γi) ≥ E(sk),

inf{j ≥ i|E(γj) < E(γi)} < inf{j ≥ i|E(γj) > E(γi)}
}
.

Note that the energy of these records is increasing, though not strictly increasing. Let sk−1 be the
last record defined in this way and sk := s. Since E(z∗(m, s)) = E(s), sk is as well a record. Given
the records s1,..., sk, for 1 ≤ i ≤ k− 1 let r2i be the first (not necessarily isolated) minimum along γ
after si and r2i+1 the last (not necessarily isolated) minimum along γ before si+1. Here a minimum
along γ is some γi ∈ γ such that it is a minimum of E restricted to γ. Finally, let r2k := sk = s. In
the following we will proof that

(a) Pr2j (τr2j+1 < ζ0) → 1 as β → ∞ for any 0 ≤ j ≤ k − 1,

(b) Pr1(τr2 < ζ0) ≥ e−β(E(z∗(r1,r2))−E(sm)+o(1)),

(c) Pr2j+1(τr2j+2 < ζ0) ≥ e−β(E(z∗(r2j+1,r2j+2))−E(z∗(r2j−1,r2j))+o(1)) for any 1 ≤ j ≤ k − 2,

(d) Pr2k−1
(τr2k = ζ0) ≥ e−β(E(z∗(r2k−1,r2k))−E(z∗(r2k−3,r2k−2))+o(1)).

This gives for β large enough

Pm(Y1 = s) ≥
⎛⎝2k−2∏

j=0

Prj (τrj+1 < ζ0)

⎞⎠Pr2k−1
(τr2k = ζ0)

≥ 1

2

⎛⎝k−2∏
j=0

Pr2j+1(τr2j+2 < ζ0)

⎞⎠Pr2k−1
(τr2k = ζ0)

≥ 1

2
e−β(E(z∗(r1,r2))−E(sm)+o(1)) ·

k−1∏
j=1

e−β(E(z∗(r2j+1,r2j+2))−E(z∗(r2j−1,r2j))+o(1))

=
1

2
e−β(E(z∗(r2k−1,r2k))−E(sm)+o(1))

= e−β(E(s)−E(sm)+o(1)),

and thus the assertion.
(a) For j = 0 this is obvious since E(z∗(r0, r1)) < E(sm). For 1 ≤ j ≤ k− 1 and any r′ ∈ ∂+V (m)

it holds true that

E(z∗(r2j , r2j+1)) < E(z∗(r2j , r2j−1)) ≤ E(z∗(r2j ,m)) ≤ E(z∗(r2j , r′)), (3.3)
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3.3 Reciprocating Jumps

where we make use of the fact that between r2j and r2j+1 the energy stays below the last record,
and that all subpaths of γ are minimal as well.

(b) By the definition of r1 and r2, there is a unimodal path between them so that the cumulative
activation energy along this path equals E(z∗(r1, r2))− E(r1). Therefore

Pr1(τr2 < (ζ0 ∧ τr1)) ≥ e−β(E(z∗(r1,r2))−E(r1)+o(1)).

Furthermore, for any r′ ∈ ∂+V (m) we have

E(z∗(r1, r′)) ≥ E(sm) > E(r1) and E(z∗(r1, r2)) ≥ E(sm) > E(r1).

Therefore,

Pr1((τr2 ∧ ζ0) < τr1) ≤
∑

r′∈∂+V (m)∪{r2}
Pr1(τr′ < τr1)

≤
∑

r′∈∂+V (m)∪{r2}
e−β(E(z∗(r1,r′))−E(r1)+o(1))

≤ e−β(E(sm)−E(r1)+o(1)).

Combining the two estimates, we get

Pr1(τr2 < ζ0) =
Pr1(τr2 < (ζ0 ∧ τr1))

Pr1((τr2 ∧ ζ0) < τr1)
≥ e−β(E(z∗(r1,r2))−E(sm)+o(1)).

(c) Let 1 ≤ j ≤ k − 2. We use the same strategy as in the proof of (b). So, again, by the
definition of r2j+1 and r2j+2, there is a unimodal path between them with cumulative activation
energy E(z∗(r2j+1, r2j+2))− E(r2j+1) along this path, and

Pr2j+1(τr2j+2 < (ζ0 ∧ τr2j+1)) ≥ e−β(E(z∗(r2j+1,r2j+2))−E(r2j+1)+o(1)).

Furthermore,

E(z∗(r2j−1, r2j)) ≤ E(z∗(r2j+1, r2j+2)) and E(r2j+1) < E(z∗(r2j+1, r2j+2)).

Finally, for any r′ ∈ ∂+V (m), by use of Equation (3.3),

E(r2j+1) ≤ E(z∗(r2j+1, r2j))

< E(z∗(r2j , r′))
≤ E(z∗(r2j , r2j+1)) ∨ E(z∗(r2j+1, r

′))
= E(z∗(r2j+1, r

′)).

Thus,

Pr2j+1((τr2j+2 ∧ ζ0) < τr2j+1) ≤
∑

r′∈∂+V (m)∪{r2j+2}
Pr2j+1(τr′ < τr2j+1)

≤
∑

r′∈∂+V (m)∪{r2j+2}
e−β(E(z∗(r2j+1,r

′))−E(r2j+1)+o(1))

≤ e−β(E(r2j−1,r2j)−E(r2j+1)+o(1)).

Combining the two estimates, we get

Pr2j+1(τr2j+2 < ζ0) =
Pr2j+1(τr2j+2 < (ζ0 ∧ τr2j+1))

Pr2j+1((τr2j+2 ∧ ζ0) < τr2j+1)
≥ e−β(E(z∗(r2j+1,r2j+2))−E(r2j−1,r2j)+o(1)).
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3 Macroscopic View: Transitions between Valleys

(d) All bounds for energies in (c) can be proved in the very same way (here r′ ∈ ∂+V (m)\{s}), so
that

Pr2k−1
(τr2k = ζ0) =

Pr2k−1
(τr2k = (ζ0 ∧ τr2k−1

))

Pr2k−1
((τr2k ∧ ζ0) < τr2k−1

)
≥ e−β(E(z∗(r2k−1,r2k))−E(r2k−3,r2k−2)+o(1)).

Lemma 3.3.4. Let m0,m1 ∈ S(i)\N (i) be two distinct local minima for some 1 ≤ i ≤ n.

(a) It holds true that

lim sup
β→∞

1

β
lnPm0(Xξ1 ∈ V (i)(m1)) ≤ − (E(z∗(m0,m1))− E(sm0)) .

(b) Suppose there exists a path γ = (γ0,..., γk) from some s ∈ ∂+V (i)(m0) with E(z∗(s,m1)) =
E(z∗(m0,m1)) to V (i)(m1), avoiding every other valley. Then

lim inf
β→∞

1

β
lnPm0(Xξ1 ∈ V (i)(m1)) ≥ − (I(γ0,..., γk) + E(s)− E(sm0)) .

Note that the equality I(γ0,..., γk) = E(z∗(s,m1))− E(s), in which case

lim
β→∞

1

β
lnPm0(Xξ1 ∈ V (i)(m1)) = − (E(z∗(m0,m1))− E(sm0)) ,

does indeed imply the already mentioned property

E(γi) ≥ E(γi−1) for 1 ≤ i ≤ j and E(γi) ≤ E(γi−1) for j + 1 ≤ i ≤ k

with γj ∈ z∗(s,m1). We call such a path an uphill-downhill-path because it first straddles the energy
barrier E(z∗(s,m1)) and then falls down to the valley V (i)(m1). The existence of such a path can
be found in most 2- or higher dimensional energy landscapes. Furthermore, we write m0 �� m1 if
there exists an uphill-downhill-path from some s ∈ ∂+V (i)(m0) with E(z∗(s,m1)) = E(z∗(m0,m1))
to V (i)(m1) which avoids every other valley.

Proof: With γ as stated, the lower bound for Pm0(Xξ1 ∈ V (i)(m1)) in (b) is easily obtained as follows:

Pm0(Xξ1 ∈ V (i)(m1)) ≥ Pm0(Xζ0+i = γi, 0 ≤ i ≤ k) ≥ Pm0(Xζ0 = s) e−βI(γ0,...,γk)−γββ|S|.

Since Pm0(Xζ0 = s) = e−β(E(s)−E(sm0 )+o(1)) by Lemma 3.3.3, the exponential decay in β is with an
exponent of at most I(γ0,...,γk) + E(s)− E(sm0) as claimed.

For the upper bound in (a), we decompose the event into disjoint sets depending on the number of
visits N , say, to m0 between 1 and ζ0 = ζ

(i)
0 (as ζ0 �= ξ1, we can not apply Proposition 2.1.8). This

leads to
Pm0(Xξ1 ∈ V (i)(m1), N = 0) = Pm0(ξ1 = τV (i)(m1)

< τm0)

and, for k ≥ 1,

Pm0(Xξ1 ∈ V (i)(m1), N = k)

= Pm0(Xξ1 ∈ V (i)(m1), |{τm0 < n ≤ ζ0|Xn = m0}| = k − 1, τm0 < ζ0)

= Pm0(Xξ1 ∈ V (i)(m1), N = k − 1)Pm0(τm0 < ζ0)

...

= Pm0(Xξ1 ∈ V (i)(m1), N = 0)Pm0(τm0 < ζ0)
k

= Pm0(ξ1 = τV (i)(m1)
< τm0)Pm0(τm0 < ζ0)

k.
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3.3 Reciprocating Jumps

Consequently,

Pm0(Xξ1 ∈ V (i)(m1)) =
∑
k≥0

Pm0(Xξ1 ∈ V (i)(m1), N = k)

=
∑
k≥0

Pm0(ξ1 = τV (i)(m1)
< τm0)Pm0(τm0 < ζ0)

k

=
Pm0(ξ1 = τV (i)(m1)

< τm0)

Pm0(ζ0 < τm0)
.

By invoking Proposition 2.1.5, we infer

Pm0(ξ1 = τV (i)(m1)
< τm0)

Pm0(ζ0 < τm0)
≤

∑
r∈V (i)(m1)

Pm0(τr < τm0)

Pm0(τx < τm0)

≤ |S|3
∑

r∈V (i)(m1)

e−β(E(z∗(m0,r))−E(z∗(m0,x))−8|S|γβ) (3.4)

for all x ∈ V (i)(m0)
c. For any r ∈ V (i)(m1), we have E(z∗(m0, r)) ≥ E(z∗(m1, r)), and thereby

E(z∗(m0,m1)) ≤ E(z∗(m0, r)) ∨ E(z∗(r,m1)) = E(z∗(m0, r)).

Using this in (3.4), we obtain

Pm0(ξ
(i)
1 = τV (i)(m1)

< τm0)

Pm0(ζ0 < τm0)
≤ |S|4e−β(E(z∗(m0,m1))−E(z∗(m0,x))−8|S|γβ)

and then, upon choosing x ∈ sm0 and noting that E(z∗(m0, x)) = E(sm0),

Pm0(Xξ1 ∈ V (i)(m1)) ≤ |S|4e−β(E(z∗(m0,m1))−E(sm0 )−8|S|γβ).

We finally conclude

lim sup
β→∞

1

β
lnPm0(Xξ1 ∈ V (i)(m1)) ≤ − (E(z∗(m0,m1))− E(sm0))

as asserted.

To summarize, which valleys are visited consecutively depends on (a) their spatial arrangement
and (b) the energy barriers between them: A transition from one valley V (i)(m0) to another valley
V (i)(m1) is only possible if there exists a path from s ∈ ∂+V (i)(m0) to V (i)(m1), not hitting any other
valley. This transition is made at small temperatures (i.e. large β) if the additional energy barrier
E(z∗(sm0 ,m1))−E(sm0) is sufficiently small or in other words the energy barrier E(z∗(sm0 ,m1)) is
approximately of the same height as all other energy barriers, including the barrier E(z∗(sm0 ,m0)) =
E(sm0). Results similar to the two lemmata above can be found in [16], where they used the cycle-
approach due to Freidlin and Wentzell [24]. The obtained bounds are more general but the derivation
of this special case from those results would be more work-intensive than proving them as done above.

Whereas the upper bound is proved in Lemma 3.3.4 and Lemma 3.3.3 in the same way by decom-
posing the event according to the number of visits of the ground state before the valley is left, the
proofs of the lower bound differ. For Lemma 3.3.4 we simply determine the probability of one specific
path by its cumulative activation energy. For Lemma 3.3.3 we identify the relevant minima along
such a path and the probabilities to reach one minimum from the other one earlier than ∂+V (m).
The crucial point is that, first, for any such minimum r2j+1 both, the essential saddle to the next
minimum r2j+2, and the essential saddle to ∂+V (m), are at least as high as the essential saddle
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3 Macroscopic View: Transitions between Valleys

between the previous pair (r2j−1, r2j), and, second, there is an uphill-downhill path between r2j+1

and r2j+2. Thus, the rate for the exponential decay of the probability to reach the next minimum
before ∂+V (m) is at most the additional energy barrier E(z∗(r2j+1, r2j+2)) − E(z∗(r2j−1, r2j)) and
not the energy barrier E(z∗(r2j+1, r2j+1)) − E(r2j+1). When calculating the product in the proof,
this leads to the additional energy barrier E(z∗(s,m))− E(sm) instead o the cumulative activation
energy.

This strategy fails in Lemma 3.3.4: If there is a minimum r1 along the path from sm0 to V (m1),
then by definition of this path, r1 is non-assigned. Therefore, although a minimum along the path, it
is no local minimum of E. In fact, there is a decreasing path to some other valley, the essential saddle
being r1 itself. Thus, the additional energy barrier equals the energy barrier E(z∗(r1, r2)) − E(r1),
which therefore is the rate for the exponential decay of the probability to reach r2 earlier than the
union of all valleys. The sum of all these energy barriers leads to the cumulative activation energy.

Now we come back to the reciprocating jumps in the accelerated chain and see:

Proposition 3.3.5. Fix 1 ≤ i ≤ n and ε ≥ 0. For m ∈ S(i)\N (i), define

N (m, ε) :=
{
m′ ∈ S(i)\N (i)

∣∣m �� m′, E(z∗(m,m′))− E(sm) ≤ ε
}
.

Then the AAC at level i exhibits no reciprocating jumps of order ε if for every m,m′ ∈ S(i)\N (i)

there exist a sequence m = m0,m1,...,mn = m′ ∈ S(i)\N (i) such that mj+1 ∈ N (mj , ε) for every
0 ≤ j ≤ n− 1.

Obviously, if all metastable states are in the same recurrence class of Ŷ , that is, if E(z∗(m,m′)) ≡ E
for every m,m′ ∈ S(i)\N (i) and some E ∈ R+, then there are no reciprocating jumps of order ε = 0.
Or, the other way around, if there are reciprocating jumps to some order ε > 0, then Ŷ is not
irreducible (referring to S(i)\N (i)). But for finite β and sufficiently small ε, transitions between the
different recurrence classes of Ŷ still are not too unlikely.

3.3.2. Diffusive Behavior

The origin of our endeavor to define aggregations with no reciprocating jumps of an order larger than
a small ε is to obtain an associated process with (almost) decorrelated increments (in Euclidean state
space), for this and a proper centering causes the mean squared displacement up to the n-th jump
to grow with n instead of n2. This is known as normal diffusive behavior in physics, described by
Fick’s second law, see e.g. [4, Section 21.3.3], most notably Equation (21-83) therein which says:

Definition 3.3.6. A stochastic process (Mn)n≥0 on R is diffusive under Px, x ∈ R, if there exists
a ≤ b ∈ R>0 such that

an ≤ Ex(Mn −M0)
2 ≤ bn

for every n ≥ 0.

In physical diffusive systems it is observed that Ex(Mn − M0)
2n−1 is almost constant in n on a

moderate time scale, which depends on the system itself. This constant is called diffusion coefficient.
The above definition differs from the traditional, continuous time one where “[a] continuous time

parameter stochastic process which possesses the (strong) Markov property and for which the sample
paths X(t) are (almost always) continuous functions of t is called a diffusion process” [36, Section
15.1, page 157], for example a Brownian motion. In most situations, it is additionally assumed that

lim
h↘0

1

h
E
(
(X(t+ h)−X(t))2 |X(t) = x

)
= σ2(x, t),
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3.3 Reciprocating Jumps

where σ2(x, t) is called diffusion parameter. Thus, whereas in the continuous case the diffusion
parameter is defined via infinitesimal motion, we define it in accordance to the physical meaning via
long-range motion. As the normalized mean squared displacement of the Brownian motion is 1, both
definitions of the diffusion parameter coincide for this diffusion.

Lemma 3.3.7. A stochastic process (Mn)n≥0 on R whose increments (Mn−Mn−1)n≥1 are centered
and uncorrelated under Px (in particular a martingale in L2) is diffusive under Px.

Proof: The assertion can be deduced by the following easy calculation: For every n ≥ 0 we have

Ex

(
(Mn −M0)

2
)

= Ex

⎛⎝(
n∑

i=1

Mi −Mi−1

)2
⎞⎠

= Ex

(
n∑

i=1

(Mi −Mi−1)
2

)
+ 2

∑
1≤i<j≤n

Ex ((Mi −Mi−1) (Mj −Mj−1))

=
n∑

i=1

Ex

(
(Mi −Mi−1)

2
)

with

n ·min
x∼y

(x− y)2 ≤
n∑

i=1

Ex

(
(Mi −Mi−1)

2
)

≤ n ·max
x∼y

(x− y)2.

In our situation, identifying S with a subspace of Rd for some d ∈ N, without aggregation the
increments are highly correlated due to the following argument: At any given time, the process is with
high probability in a minimum and when leaving it, say by making a positive jump, the next increment
is most likely negative because of the drift back to the minimum. When regarding the asymptotic
jump chain, correlations like the above vanish: On an irreducibility class there are no forward-
backward jumps, that is, no reciprocating jumps of any order ε ≥ 0, when the energy landscape is
well behaving. However, we still have to grapple with the finiteness of the state space preventing
the increments from being strictly uncorrelated and having mean zero. But if the irreducibility
class is quite large in comparison to the observation time n, and the energy landscape is sufficiently
homogeneous, there is a diffusive behavior up to the n-th jump. We obtain the largest irreducibility
class if we assume E(sm) ≡ E for every m ∈ S(i)\N (i), that is, E(z∗(m0,m1))− E(sm0) = 0 for all
distinct m0,m1 ∈ S(i)\N (i). Then all minima m ∈ S(i)\N (i) are in the same irreducibility class of
Ŷ (i).

Lemma 3.3.8. Identify every state m ∈ S(i) with a point m ∈ Rd for some d ∈ N. Let 1 ≤ i ≤ n
be an aggregation level with E(z∗(m,m′)) = E(sm) for every two m,m′ ∈ S(i)\N (i) and let R be the
irreducibility class of Ŷ (i) comprising the minima S(i)\N (i). Let the energy landscape be homogeneous
enough to ensure that there is some m0 ∈ R from which Ŷ (i) needs at least n steps to leave the set{

m ∈ R|Em(Ŷ
(i)
1,j − Ŷ

(i)
0,j ) = 0, 1 ≤ j ≤ d

}
.

Then the asymptotic jump chain shows a diffusive behavior up to time n when starting in m0, that
is,

ak ≤ Em0

((
Ŷ

(i)
k,j − Ŷ

(i)
0,j

)2
)

≤ bk

for every 1 ≤ j ≤ d, some a ≤ b ∈ R>0 and every 0 ≤ k < n.
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3 Macroscopic View: Transitions between Valleys

Proof: Since

Em0

((
Ŷ

(i)
l,j − Ŷ

(i)
l−1,j

)(
Ŷ

(i)
l′,j − Ŷ

(i)
l′−1,j

))
= Em0

(
Em0

((
Ŷ

(i)
l,j − Ŷ

(i)
l−1,j

) ∣∣∣Ŷ (i)
0 , . . . , Ŷ

(i)
l−1

)(
Ŷ

(i)
l′,j − Ŷ

(i)
l′−1,j

))
= Em0

(
Em0

(
Ŷ

(i)
l,j − Ŷ

(i)
l−1,j

∣∣∣Ŷ (i)
l−1

)(
Ŷ

(i)
l′,j − Ŷ

(i)
l′−1,j

))
= Em0

(
E

̂Y
(i)
l−1

(
Ŷ

(i)
1,j − Ŷ

(i)
0,j

)(
Ŷ

(i)
l′,j − Ŷ

(i)
l′−1,j

))
= 0

for every 1 ≤ l′ < l ≤ k, the assertion is a direct consequence of the previous lemma.

We want to conclude the diffusion-studies for this case of a constant energy threshold between the
basins by the following informal observation: Recall the definition of ν̂(k) before Definition 3.2.1 as
the time needed by the semi-Markov process associated with Ŷ (i) to undertake k transitions. Under
more restrictive conditions, namely

Em0

((
Ŷ

(i)
l,j − Ŷ

(i)
l−1,j

)(
Ŷ

(i)
l′,j − Ŷ

(i)
l′−1,j

) ∣∣∣ ν̂(k)) = 0 Pm0-a.s.

for every 1 ≤ l′ < l ≤ ν̂(k), it can be shown in the same way that

Em0

((
Ŷ

(i)
ν̂(k),j − Ŷ

(i)
0,j

)2
)

= Em0

⎛⎜⎜⎜⎜⎝ν̂(k) ·
ν̂(k)∑
i=1

Em0

((
Ŷi,j − Ŷi−1,j

)2
)

ν̂(k)︸ ︷︷ ︸
=:A

⎞⎟⎟⎟⎟⎠
for every 1 ≤ j ≤ d and every 0 ≤ k with ν̂(k) < n a.s. Due to the fact that Ŷ (i) is irreducible on R
with stationary distribution π∗ it holds true that

k

ν̂(k)

⎧⎨⎩≤ (σ̂1−σ̂0)+...+(σ̂ν̂(k)+1−σ̂ν̂(k))

ν̂(k) → Eπ∗(σ̂1)

≥ (σ̂1−σ̂0)+...+(σ̂ν̂(k)−σ̂ν̂(k)−1)

ν̂(k) → Eπ∗(σ̂1)
a.s.

as k → ∞. Therefore,
Em0(ν̂(k))

k
→ 1

Eπ∗(σ̂1)

as k → ∞. Given that the average A of the squared increments converges, we finally observe for

large but not too large k (ν̂(k) < n) that 1
kEm0

((
Ŷ

(i)
ν̂(k),j − Ŷ

(i)
0,j

)2
)
, 1 ≤ j ≤ d, the mean squared

displacement of the limiting semi-Markov chain (Ŷ
(i)
ν̂(k))k≥0, is close to the fraction of the average

squared increment of Ŷ and the expected sojourn time in the stationary regime. For sufficiently
large βn, the same holds true for Y

(i)
= (Y

(i)
ν(k))k≥0 because it is close to (Ŷ

(i)
ν̂(k))k≥0. It is interesting

to note that for large βn the temperature dependence of the mean squared displacement of Y (i) is
solely given by the temperature dependence of the sojourn times. As the mean squared displacement
equals the diffusion coefficient, this is in good accordance to the results of computer simulations of
glassy systems with small but positive temperature. As already pointed out in the Introduction,
there as well the diffusion coefficient is roughly the fraction of an almost temperature independent
constant and the average sojourn time, the last depending highly on the temperature.

Now regard the situation with different barriers between different basins, that is, some level 1 ≤ i ≤
n where ε > 0 is the smallest order for which there are no reciprocating jumps. Thus, E(z∗(m0,m1))−

50



3.3 Reciprocating Jumps

E(sm0) ≤ ε for all distinct m0,m1 ∈ S(i)\N (i) and the bound ε in the inequality is reached for some
m0,m1 ∈ S(i)\N (i). Then S(i)\N (i) disintegrates into several irreducibility classes of Ŷ (i), each of
which may consist only of very few metastates of order i. Consequently, due to the smallness of
these irreducibility classes, the increments of Ŷ (i) are no longer decorrelated, as we can not assume
the process to stay for a long time in a set analog to the one in the above lemma. Thus, for the
increments of Y (i) to be decorrelated it is not appropriate to study the limit βn → ∞. Rather β has
to be small enough to ensure the probability of a jump with additional energy ε to be likely enough.
Or, the other way around, for a given finite β, the bound ε has to be small enough.

Example 3.3.9. Let E be a one dimensional energy landscape, identify the state space with a
subset of R, and let m be a metastable state for some level 1 ≤ i ≤ n such that for its neighboring
metastable states m1 and m2 we have

E(z∗(m,m1)) = E(sm) and E(z∗(m,m2)) > E(sm).

Then the expected increment is given by

Em(Y1 − Y0) = (sm −m)Pm(Y1 = sm) + (z∗(m,m2)−m)Pm(Y1 = z∗(m,m2))

with

Pm(Y1 = sm) → 1 and Pm(Y1 = z∗(m,m2)) → 0

as β → ∞. Thus, as β → ∞, the increment is not centered. Therefore, fix some large β < ∞ with

Pm(Y1 = z∗(m,m2)) = Pm(Y1 = sm)e−β(E(z∗(m,m2))−E(sm)+R(β)),

where R(β) is the remainder and converges to 0. To obtain a centered increment in m, the difference
E(z∗(m,m2))− E(sm) has to be small enough to ensure

sm −m = −(z∗(m,m2)−m)e−β(E(z∗(m,m2))−E(sm)+R(β)),

that is

1

β
ln

(
sm −m

m− z∗(m,m2)

)
= − (E(z∗(m,m2))− E(sm) +R(β)) .

When increasing β (that is decreasing the temperature) the additional energy barrier E(z∗(m,m2))−
E(sm) has to be smaller and smaller to allow a centered increment.
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4. Metabasins

4.1. A Path-Independent Definition...

A path-independent definition of metabasins, announced and to some extent discussed in the Intro-
duction, can now be given on the basis of the previous considerations as the valleys of an appropriate
order.

Definition 4.1.1. A finite Markov chain X driven by an energy function E satisfying the assump-
tions stated at the beginning of Chapter 1 has metabasins of order ε ≥ 0 if there exists an aggregation
level i < n− 1 such that the following conditions are fulfilled for each m ∈ S(i)\N (i):

(MB1) supm′∈S(i)\(N(i)∪{m})E(z∗(m,m′))− E(sm) ≤ ε.

(MB2) For every m′ ∈ S(i)\N (i) there exist states m = m0,m1,...,mn = m′ ∈ S(i)\N (i), n ∈ N, such
that mj �� mj+1 for every 0 ≤ j ≤ n− 1.

In this case, the valleys (V (i)(m))m∈S(i) are called metabasins (MB) of order ε.

The reader should notice that each singleton set {s} consisting of a non-assigned state s ∈ N (i)

forms a MB. The conditions (MB1) and (MB2) ensure the good nature of (a) the energy barriers
and (b) the spatial arrangement of minima. As already pointed out, this determines which valleys
are visited consecutively. Furthermore, we note again that the MB are defined purely deterministic
on the basis of the energy function, but nevertheless satisfy all the random dynamical properties, as
we will see in the next section. Therefore, unlike with the path-dependent definition, we are able
to explain those properties and behavior, and not only observe it: All Properties 1–5 result from
necessary transitions of energy thresholds and a high-dimensional energy landscape.

Before concluding this chapter and the first part of this thesis with a numerical example and the
final theorem which summarizes the results obtained so far, we want to compare our approach and
definition with the literature. Traditionally, when studying metastability, one is interested in the
sequence of metastates visited by the system and their sojourn times. Those metastates can only
be defined via metastable sets around metastable states because the system will not strictly stay in
the metastable state very long and traverse to another metastable state. It will stay in the basin
of attraction for a long time and then traverse to another basin of attraction. Now, in contrast to
others (for example Olivieri & Scoppola [49] or Beltrán & Landim [7], already discussed in the
Introduction), we are not interested in the aging effect which is to find metastates of increasing or
at least monotone stability. This perception would neglect all less stable areas, though they behave
in the very same way as the more stable ones, only on a smaller time scale. A description of the
effective motion in state space can only be given when regarding all the different time scales in the
different areas and therefore valleys of different stability. There is a second distinguishing mark by
which our approach goes beyond previous works: We do not look at a “blindly” accelerated version
(XnT )n≥0 for some appropriate time-scale T . We rather identify the embedded jump process of the
aggregated chain, that is, the accelerated aggregated chain, to be in the limit Markovian (along a
proper annealing schedule). This AAC and its decelerated version, the AC, are the processes of
interest in this work.
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Figure 4.1.: (a) 2-dimensional modification of the energy landscape from Example 1.2.3.
(b) supm′∈S(i)\N(i) |E(z∗(m,m′))−E(sm)| for the various metastable states in S(i)\N (i)

in dependence of the level 1 ≤ i ≤ n.

4.2. ...Possessed of the Requested Properties

Properties of MB which can be concluded from the results of the previous chapters are summarized
in the next theorem. The reader is reminded of Properties 1–5 stated in the Introduction.

Theorem 4.2.1. For MB as defined in Definition 4.1.1 we have:

(1) The transition probabilities for jumps between MB do not depend on the point of entrance as
β → ∞ and the AAC converges towards a limiting Markov chain along a proper annealing
schedule (Property 1).

(2) There are no reciprocating jumps of order ε (Property 2).

(3) The expected residence time in a MB depends on E exponentially via the depth of the MB as
β → ∞ (Property 3).

(4) Regarding only MB pertaining to local minima, the system is a trap model (Property 4).

(5) For ε = 0, all metastable states m ∈ S(i)\N (i) are in the same irreducibility class of the asymptotic
jump chain which is diffusive up to a specific time, given the homogeneity assumptions of E in
Lemma 3.3.8 (compare Property 5).

Proof: (1) follows from Proposition 3.2.3, (2) from Proposition 3.3.5, (3) from Theorem 2.2.2, (4)
directly from the definition, and (5) from Lemma 3.3.8.

We defined MB as valleys of an appropriate order since we know that, first, the AAC exhibits the
Markov property in the limit βn → ∞, and, second, the expected residence times behave like in the
simulations. To determine the appropriate level, we noticed that the additional energy barrier has to
be small to arrange for no reciprocating jumps resp. has to be zero to arrange for the irreducibility
of Ŷ (with respect to S(i)\N (i)). That we end up with a trap model is an immediate consequence of
this procedure.

Example 4.2.2. We return to Example 1.2.3 given in Chapter 1, but modify the energy landscape
by allowing direct transitions between some saddles (see Figure 4.1 (a)) because (MB2) can clearly
not be fulfilled in a one-dimensional model. While having no effect on the metastable states m ∈ M (i),
valleys change in the way that, for levels i ∈ {5, 6}, the states {1, 2, 3} do no longer belong to the valley
around state 4 and {1, 2} forms its own valley. The energy-differences supm′∈S(i)\N(i) E(z∗(m,m′))−
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Figure 4.2.: Energies of the true trajectory and of the trajectories of the aggregated chains at levels
i = 3, 4, 5.

E(sm) of the various metastable states m at each level 1 ≤ i ≤ n = 7 are shown in Figure 4.1 (b).
The supremum of these energy differences decreases in i, and we obtain MB of order 1 for i ≥ 4, and
of order 0.5 for i ≥ 6.

To illustrate the behavior, we have run a Metropolis Algorithm on this energy landscape. For
initial state s = 4 and β = 0.75, the energies of the trajectories of the original and the aggregated
process at levels i = 3, 4, 5 are shown in Figure 4.2. The following observations are worth to be
pointed out:

Reciprocating Jumps: In the original trajectory there are correlated forward-backward jumps
between the times n = 60 and n = 110, between 320 and 380, and between 410 and 440. They
result from reciprocating jumps between (12,13) and (8,10). At aggregation level 3, where
those pairs belong to the same level, these reciprocating jumps are no longer observed. When
further increasing the level of aggregation, remaining forward-backward jumps vanish as well,
for example the unsuccessful trials to escape at the beginning and at the end of the trajectory.
But since in this example the energy landscape is not at all high dimensional, re-visits of valleys
occur due to the comparatively long simulation time.

Exit Time: In accordance to our results, the sojourn times increase with increasing depth of the
valley. Furthermore, those exits really mark epochs after which a return takes not place within

55



4 Metabasins

some reasonable time. In the real trajectory the exit times as well depend on the depth of
the 1-state valleys, but those “exits” are most often improper, as they are followed by a return
within a rather short time (see the trajectory between n = 320 and n = 380). Therefore, those
exit times without aggregation can not describe the time spent in some region of the state
space.

Trap Model: Whereas in the real trajectory there is no particular energy threshold which has to
be crossed by a transition, this is the fact most obviously in aggregation level i = 5. This
energy threshold is between 5.75 ± 0.25. As explained, this gives rise to a trap model, which
can clearly be identified in the trajectory for i = 5.

Long-Range Motion: Since with the cumulated forward-backward jumps there is no real trans-
port within one valley, the motion in state space is well described by the aggregated process.
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Part II.

Goodness of Metabasin-Aggregation

57





5. Comparison with

Path-Dependent Definition

In Part I, we constructed a definition of MB which satisfies Properties 1 to 5 of the Introduction.
Now we want to study its goodness, here measured by, first, the consistence with the MB from
computer simulations, and, second, the similarity of the mixing-, cover-, and hitting times of X and
Y . This will prove our coarse graining procedure to be in fact rewarding, as it is coarse enough to
provide benefits like the nice structure of the aggregated processes, but also subtle enough to map
important characteristics of the original system. The consistence with the path-dependent definition,
topic of this chapter, will finally clarify what the simulated MB are made of in most trajectories. As
the MB trajectory determines the long-range transport, their deterministic description identifies the
mechanisms behind.
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Figure 5.1.: Example of an energy landscape with a tree-like structure and a marked root x.

It should not be surprising that the path-dependent definition of MB by Heuer [29] and stated
in the Introduction differs from our path-independent one. For example, the energy landscape in
Figure 5.1 has no reasonable path-dependent MB because every transition between two branches of
the shown tree must pass through the state x. For a typical trajectory, there will be at most three
MB: the states visited before the first occurrence of x, the states visited between the first and the
last occurrence of x, and the states visited after the last occurrence of x. The reason for this poor
performance is the tree-like structure of the energy landscape or, more generally, the fact that the
connectivity between the branches is too small to allow a selfavoiding walk through more than two
branches. This results in a small recurrence time for x (compared to the number of states visited
in between). However, every branch constitutes a MB when using the path-independent definition
for sufficiently small ε, in which case the AAC forms a Markov chain and, in case of the Metropolis
algorithm, even a random walk on the graph.

Having thus exemplified that the two definitions of MB do not necessarily coincide, where the
path-independent approach applies to a wider class of energy landscapes, we turn to the question
about conditions for them to coincide with at least a given probability. As already pointed out, we
have to assume a sufficient connectivity between the metastates to ensure the existence of reasonable
path-dependent MB. In terms of this connectivity (for a precise definition see Definition 5.1.1) and
the parameters β and ε, the main result of this chapter, Theorem 5.2.3 below, provides lower bounds
for the probability that both definitions yield the same partition of the state space.
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5 Comparison with Path-Dependent Definition

5.1. Connectivity Parameters

The first step towards bounding the probability for the definitions to coincide is to identify and count,
for a fixed level 1 ≤ i ≤ n, each m ∈ S(i) and a given β, the states s ∈ S(i) for which a transition of
Y (i) from m to s is likely. This leads to the announced connectivity parameters, where of course it
is to specify what “likely” is.

Definition 5.1.1. Let ε ≥ 0 and 1 ≤ i ≤ n. Define the connectivity parameters

η1 = η1,ε := min
n∈N(i),r∈S(i):V (i)(r)∩N (n) �=∅

∣∣∣{s ∈ N (n)\V (i)(r)
∣∣E(s) ≤ E(n) + ε

}∣∣∣ ,
η2 = η2,ε := min

m∈S(i)\N(i)

∣∣∣{s ∈ ∂+V (i)(m)|E(s) ≤ E(sm) + ε
}∣∣∣ , (5.1)

η3 = η3,ε := min
n∈N(i)

∣∣∣{s ∈ S(i)|E(x) ≤ E(n) + ε for some x ∈ V (i)(s) ∩N (n)
}∣∣∣ .

η1 is the minimal number of neighboring sites of a non-assigned state n which do not belong to a
particular neighboring valley and whose energy is at most ε plus the energy of n. η2 is the minimal
number of neighboring sites/valleys of a valley V (i)(m) whose energy is at most ε plus the energy
of sm. Finally, η3 is the minimal number of neighboring valleys of a non-assigned state n which
comprise a state with energy of at most ε plus the energy of n. Independent from ε, η1 and η3
are quite large in the high dimensional and complex energy landscape of a structural glass, where
non-assigned states are neighbored to very many different valleys. For very small ε, η2 may be 1, but
if X has MB of order ε in a high dimensional energy landscape, then η2 can be assumed to be quite
large as well.

For ε = 0, the connectivity parameters η2 and η3 count the neighboring sites according to the
asymptotic jump chain Ŷ (i), that is, transitions of Ŷ (i) to states counted above have positive prob-
ability. That for ε > 0 transitions to states counted above have reasonable large probabilities is
content of the next lemma, revealing that the defined parameters in fact measure the connectivity of
the MB.

Lemma 5.1.2. Let ε > 0 and 1 ≤ i ≤ n with connectivity parameters defined in (5.1). Writing Yk

for Y
(i)
k and V (m) for V (i)(m), m ∈ S(i), the following assertions hold true for β sufficiently large:

(a) If m ∈ S(i)\N (i) and s ∈ ∂+V (m) ∩ {x|E(x)− E(sm) ≤ ε}, or m ∈ N (i) and s ∈ S(i) satisfies
V (s) ∩ {x ∈ N (m)|E(x)− E(m) ≤ ε} �= ∅, then

Pm(Y1 = s) ≥ e−2βε.

(b) Pm(Y1 �= s) ≥ η1 e
−2βε for any distinct m ∈ N (i) and s ∈ S(i).

(c) Pm(Y1 �= s) ≥ (η2 − 1) e−2βε for any distinct m ∈ S(i)\N (i) and s ∈ S(i).

We see that, for ε small enough according to β, transitions with an energy barrier of at most ε are
still quite likely and thus a jump to a particular valley quite unlikely in the case of high connectivity.

Proof: (a) Choose β0 > 0 so large that, for β ≥ β0, γβ ≤ ε and Pm(Y1 = s) ≥ e−2β(E(s)−E(sm))

for any m ∈ S(i)\N (i) and s ∈ ∂+V (m), the latter being possible by Lemma 3.3.3. Then for any
such m and s, we infer Pm(Y1 = s) ≥ e−2εβ provided that additionally E(s) ≤ E(sm) + ε holds
true. If m ∈ N (i), then Pm(Y1 = s) ≥ e−2εβ for any s ∈ S(i) such that E(x) ≤ E(s) + ε for some
x ∈ V (s) ∩N (m), for

Pm(Y1 = s) ≥ Pm(Xσ1 = x) = p(m,x) ≥ e−β((E(x)−E(m))++γβ).
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5.2 Accordance of Path-Dependent and Path-Independent MB

(b) Pick again β0 so large that γβ ≤ ε for all β ≥ β0. Then, by definition of η1,

Pm(Y1 �= s) ≥
∑

x∈N (m),x/∈V (s)

p(m,x)

≥
∑

x∈N (m),x/∈V (s),E(x)≤E(m)+ε

exp
(− β((E(x)− E(m))+ + γβ)

)
≥ η1 exp(−2βε).

(c) Fix β0 so large that Pm(Y1 = x) ≥ e−2β(E(x)−E(sm)) for any x ∈ ∂+V (m) and β ≥ β0. In the
very same way as in part (b), we get for all β ≥ β0, by definition of η2,

Pm(Y1 �= s) ≥
∑

x∈∂+V (m),x �=s

Pm(Y1 = x)

≥
∑

x∈∂+V (m),x �=s,E(x)≤E(sm)+ε

exp
(− 2β(E(x)− E(sm))

)
≥ (η2 − 1) exp(−2βε).

5.2. Accordance of Path-Dependent

and Path-Independent MB

The above result motivates that in the case of high connectivity the probability to revisit a particular
valley within a fixed time T is quite small, or in other words, the probability for the AAC to jump
along a selfavoiding path is quite high. This is the main step towards the announced theorem and
stated below. The observation time T of course has to be small compared to the cover time of the
process.

Lemma 5.2.1. Let ε > 0 and 1 ≤ i ≤ n with connectivity parameters defined in (5.1). Writing Yk

for Y
(i)
k and V (m) for V (i)(m), m ∈ S(i), define

τ
(i)
V (m) := inf{k ≥ 1|Yk = m}.

Then the following assertions hold true for all sufficiently large β:

(a) For any 0 < δ < 1− Pm(Y2 = m) and 1 ≤ T ≤ T (m,β) + 1,

Pm

(
τ
(i)
V (m) > T

)
≥ δ,

where

T (m,β) :=
ln δ

ln
(
minm′ �=m Pm′(Y1 �= m)(1− 1{m′ /∈N(i)} δ(m′, β))

)
and

δ(m′, β) := max
x∈V (m′)

∑
z∈∂+V (m′)

ε̃(x,m′, z, β).

In particular, if δ ≤ (
(η1 ∧ (η2 − 2))e−2βε

)T for some T > 0, then T (m,β) ≥ T .
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5 Comparison with Path-Dependent Definition

(b) For each k ≥ 1 and m0 ∈ S(i),

∑
m1,...,mk

k−1∏
j=0

Pmj (Y1 = mj+1) ≥ [η2 ∧ η3]k e
−2kεβ

where summation ranges over all pairwise distinct m1,...,mk ∈ S(i)\{m0} and for N ∈ N we
write [N ]k := N(N − 1) · ... · (N − k + 1).

It should be noticed that Pm(τ
(i)
V (m) > 1) = 1 (the AAC never stays put) and

Pm(τ
(i)
V (m) > T ) ≤ Pm(τ

(i)
V (m) > 2) = 1− Pm(Y

(i)
2 = m)

for every T ≥ 2 with equality holding only if T = 2. We thus see that Pm(τ
(i)
V (m) > T ) ≥ δ entails

δ < 1 − Pm(Y2 = m), the latter being typically large. Furthermore, the bound on the number of
self-avoiding path of length k is very crude and can be improved when knowing more about the
spatial arrangement of the metastable states.

Proof: (a) Recall from the first part of the proof of Proposition 3.2.3 that

Pm(Yn+1 �= z|Yn = y,Xσn = x) ≥ Py(Y1 �= z)

⎛⎝1− 1{y/∈N(i)}
∑

r∈∂+V (y)

Px(τr < τy)

⎞⎠
≥ Py(Y1 �= z)

⎛⎝1− 1{y/∈N(i)}
∑

r∈∂+V (y)

ε̃(x, y, r, β)

⎞⎠
≥ Py(Y1 �= z)

(
1− 1{y/∈N(i)} δ(y, β)

)

holds true for all y, z ∈ S(i), x ∈ V (y) and β > 0. Putting m(x) := m′ if x ∈ V (m′) for m′ ∈ S(i), we
obtain for T ≥ 2, by using the above bound repeatedly,

Pm

(
τ
(i)
V (m) > T

)
= Pm(Y1 �= m,..., YT �= m)

=
∑

x1,...,xT−1 /∈V (i)(m)

Pm(Xσ1 = x1)

T−2∏
k=1

Pm

(
Xσk+1

= xk+1|Xσk
= xk, Yk = m(xk)

)
× Pm(YT �= m|XσT−1 = xT−1, YT−1 = m(xT−1))

≥
∑

x1,...,xT−1 /∈V (i)(m)

Pm(Xσ1 = x1)
T−2∏
k=1

Pm

(
Xσk+1

= xk+1|Xσk
= xk, Yk = m(xk)

)
×

(
min
m′ �=m

(
Pm′(Y1 �= m)(1− 1{m′ /∈N(i)} δ(m

′, β))
))

...

≥ min
m′ �=m

(
Pm′(Y1 �= m)(1− 1{m′ /∈N(i)} δ(m

′, β))
)T−1

.

But this establishes the asserted inequality when finally observing that the last expression is ≥ δ if
and only if T ≤ T (m,β) + 1.

62



5.2 Accordance of Path-Dependent and Path-Independent MB

Having just said that T (m,β) ≥ T holds if and only if

min
m′ �=m

(
Pm′(Y1 �= m)(1− 1{m′ /∈N(i)} δ(m

′, β))
)T ≥ δ,

it suffices to note that, as β → ∞, δ(m′, β) → 0 holds true if m′ ∈ S(i)\N (i), giving

1− δ(m′, β) ≥ η2 − 2

η2 − 1

for sufficiently large β. Together with Lemma 5.1.2 (b), this further yields

min
m′ �=m

(
Pm′(Y1 �= m)(1− 1{m′ /∈N(i)} δ(m

′, β))
)T ≥

(
(η1 ∧ (η2 − 2))e−2βε

)T

and then the assertion.
(b) Here it suffices to notice that, by Lemma 5.1.2 (a), [η2∧η3]k forms a lower bound for the number

of self-avoiding paths (m0,...,mk) such that Pmj (Y1 = mj+1) ≥ e−2βε for each j = 0,..., k − 1.

For ε = 0, we have a similar result for the asymptotic jump chain.

Lemma 5.2.2. Let ε = 0 and 1 ≤ i ≤ n with connectivity parameters defined in (5.1). Writing Ŷk

for Ŷ
(i)
k and V (m) for V (i)(m), m ∈ S(i), define

τ̂ (i) := inf{k ≥ 1|Ŷk = m}.
Then the following assertions hold true:

(a) For any 0 < δ < 1− Pm(Ŷ2 = m) and 1 ≤ T ≤ T (m) + 1,

Pm

(
τ̂ (i) > T

)
≥ δ,

where
T (m) := T (m,∞) :=

ln δ

ln
(
minm′ �=m Pm′(Ŷ1 �= m)

) .
In particular, if δ ≤ (

(η1 ∧ (η2 − 2))minr,s:p̂(r,s)>0 p̂(r, s)
)T for some T > 0, then T (m) ≥ T .

(b) For each k ≥ 1 and m0 ∈ S(i),

∑
m1,...,mk

k−1∏
j=0

Pmj (Ŷ1 = mj+1) ≥ [η2 ∧ η3]k min
r,s:p̂(r,s)>0

p̂(r, s)k

where summation ranges over all pairwise distinct m1,...,mk ∈ S(i)\{m0}.
Proof: (a) In perfect analogy to the previous proof we obtain

Pm

(
τ̂ (i) > T

)
= Pm(Ŷ1 �= m,..., ŶT �= m) ≥ min

m′ �=m

(
Pm′(Ŷ1 �= m)

)T−1
,

which is bounded below by δ if and only if T ≤ T (m) + 1. Furthermore,

min
m′ �=m

(
Pm′(Ŷ1 �= m)

)T ≥
(
(η1 ∧ (η2 − 1)) min

r,s:p̂(r,s)>0
p̂(r, s)

)T

,

which yields the assertions.
(b) Again, it suffices to notice that [η2 ∧ η3]k forms a lower bound for the number of self-avoiding

paths (m0,...,mk) such that p̂(mj ,mj+1) > 0 for each j = 0,..., k − 1.

63



5 Comparison with Path-Dependent Definition

We proceed with the announced result about the relation between path-dependent and path-
independent MB. To this end we fix T = σK for some K ∈ N. Let Vk for k = 1,..., υ denote the
random MB obtained from X0,..., XT as defined in the Introduction. For x ∈ S, we further let V(x)
denote the MB Vk containing x and put V(x) := ∅ if no such MB exists which is the case if and only
if x /∈ {X0,..., XT }.
Theorem 5.2.3. Let ε > 0 and suppose that X has MB of order ε at level i with connectivity
parameters defined in (5.1). Fix K ∈ N, T = σK and 0 < δ ≤ (

(η1 ∧ (η2 − 1)− 1)e−2βε
)K . Then,

for each 0 ≤ k < K and m0 ∈ S(i), there exists β0 > 0 such that for all β ≥ β0

(a) with V
(i)
< (s) := {s} if s ∈ N (i)

Pm0

(
V

(i)
< (Yk) ⊆ V(Yk)

)
≥ 1− max

m∈S(i)\N(i)
δ(m,β)

(
max

m∈S(i)\N(i)
|V<(m)|+ 2

)
,

and the right-hand side goes to 1 as β → ∞.

(b) Pm0(V(Yj) ⊆ V (i)(Yj), 0 ≤ j < k) ≥ 1− k(maxm∈S(i)\N(i) δ(m,β) + (1− δ)).

(c) If η2 ∧ η3 > K − 1, then

Pm0(V(Yj) ⊆ V (i)(Yj), 0 ≤ j ≤ K − 1) ≥ [η2 ∧ η3]K

(
1− max

m∈S(i)\N(i)
δ(m,β)

)K−1

e−2Kεβ .

We conclude that the inner part of the path-independent MB is a.a.s. part of the path-dependent
one and the probability of the path-dependent MB to be part of the path-independent ones is high
whenever the connectivity is high and ε is small according to β. Namely, for the occurring bounds to
be significant, two requirements must be met. First, K must be small compared to the cover time of
the AAC and ε must be small compared to β0 to ensure exp(−2βε) � 0. Second, the connectivity
must be high to ensure 1− δ � 1 and [η2 ∧ η3]Ke−2Kεβ � 0.

Typically, the inclusions in parts (b) and (c) are strict because of high energy states within a
valley that will probably be missed during one simulation run and therefore not belong to any path-
dependent MB. On the other hand, since our approach strives to cover the state space as completely
as possible by valleys, the latter comprise such high energy states whenever they are assignable in
the sense described in Chapter 1.

Further note that there is obviously an analog statement for ε = 0 where only e−2βε has to be
replaced by minr,s:p̂(r,s)>0 p̂(r, s) and e−2Kβε by

(
minr,s:p̂(r,s)>0 p̂(r, s)

)K . We omit stating it here.

Proof: With i being fixed, let us write as earlier V (m) for V (i)(m), and also V<(m) for V
(i)
< (m).

(a) For a given 0 ≤ k < K, define

Ak := {σk ≤ τYk
< σk+1} ,

Bk := { for every x ∈ V<(m) there exists τYk
≤ lx < σk such that Xl = x} ,

Ck :=

{
Xl = Yk for some max

x∈V<(Yk)
τx ≤ l < σk

}
,

as the events that, first, during a visit of a valley its ground state is visited, second, every element of
V<(m) is visited after visiting the ground state and before leaving the valley, and third, the ground
state is again visited after the whole inner part V<(m) is visited and before the valley is left. With
δ(m,β) as defined in Lemma 5.2.1 and using

Px(σ1 < τm) ≤
∑

y∈∂+V (m)

ε̃(x,m, y, β) ≤ max
m∈S(i)\N(i)

δ(m,β) =: δmax (5.2)
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5.2 Accordance of Path-Dependent and Path-Independent MB

for x ∈ V (m), m ∈ S(i)\N (i), we obtain

Pm0

(
V

(i)
< (Yk) ⊆ V(Yk)

)
≥ Pm0(Ak ∩Bk ∩ Ck)

=
∑

m∈S(i),r∈V (m)

Pm0({Xσk
= r} ∩Ak ∩Bk ∩ Ck)

=
∑

m∈S(i),r∈V (m)

Pm0(Xσk
= r)Pm0(Ak|Xσk

= r)Pm0(Bk ∩ Ck|{Xσk
= r} ∩Ak)

=
∑

m∈S(i),r∈V (m)

Pm0(Xσk
= r)Pr(τm < σ1)

× Pm(τx < σ1 for every x ∈ V<(m), Xl = m for some max
x∈V<(m)

τx ≤ l < σ1)

≥
∑

m∈S(i),r∈V (m)

Pm0(Xσk
= r)(1− δmax)

× Pm(τx < σ1 for every x ∈ V<(m), Xl = m for some max
x∈V<(m)

τx ≤ l < σ1)

= (1− δmax)
∑

m∈S(i)

Pm0(Yk = m) (5.3)

× Pm(τx < σ1 for every x ∈ V<(m), Xl = m for some max
x∈V<(m)

τx ≤ l < σ1).

Thus, in order to show that with high probability a path-dependent MB comprises the inner part
of a valley, we show that with high probability, when starting in its minimum, the whole inner part
will be visited and the process will return to the minimum once more before the valley is left. This
is trivial if m ∈ N (i) and thus V

(i)
< (m) = {m}, for then

Pm

(
τx < σ1 for every x ∈ V<(m), Xl = m for some max

x∈V<(m)
τx ≤ l < σ1

)
= 1.

More needs to be done if m ∈ S(i)\N (i), where

Pm

(
τx < σ1 for every x ∈ V<(m), Xl = m for some max

x∈V<(m)
τx ≤ l < σ1

)
≥ 1− Pm (τx > σ1 for some x ∈ V<(m))− Pm

(
Xl �= m for each max

x∈V<(m)
τx ≤ l < σ1

)
.

The second probability in the preceding line can further be bounded with the help of (5.2), viz.

Pm(Xl �= m for each max
x∈V<(m)

τx ≤ l < σ1)

=
∑

y∈V<(m)

Pm( max
x∈V<(m)

τx = τy, Xl �= m for every max
x∈V<(m)

τx ≤ l < σ1)

≤
∑

y∈V<(m)

Pm( max
x∈V<(m)

τx = τy)Py(τm > σ1)

≤ δmax.
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For the first probability, we obtain with the help of Theorem 2.1.1

Pm (τx > σ1 for some x ∈ V<(m)) ≤
∑

x∈V<(m)

Pm(σ1 < τx)

≤
∑

x∈V<(m)

∑
y∈∂+V (m)

Pm(τy < τx)

≤
∑

x∈V<(m)

∑
y∈∂+V (m)

ε(m,x, y, β), (5.4)

because E(z∗(m, y)) > E(z∗(m,x)) for x ∈ V<(m) and y ∈ ∂+V (m). The latter can be seen as
follows: It has been shown in the proof of Theorem 2.1.2 that E(z∗(x,m)) < E(z∗(x, y)). Hence,

E(z∗(x,m)) < E(z∗(x, y)) ≤ E(z∗(x,m)) ∨ E(z∗(y,m)) = E(z∗(y,m)),

as asserted. Next, we infer

E(z∗(x, y)) ≤ E(z∗(x,m)) ∨ E(z∗(m, y)) ≤ E(z∗(x,m)) ∨ E(z∗(x, y)) = E(z∗(x, y)),

thus E(z∗(x, y)) = E(z∗(m, y)). Recalling the definition of ε(m,x, y, β), the last equality implies
ε(m,x, y, β) = ε(x,m, y, β), which will now be used to further bound the expression in (5.4), namely

∑
x∈V<(m)

∑
y∈∂+V (m)

ε(m,x, y, β) =
∑

x∈V<(m)

∑
y∈∂+V (m)

ε(x,m, y, β)

=
∑

x∈V<(m)

∑
y∈∂+V (m)

ε̃(x,m, y, β)

≤ |V<(m)| δmax

≤ max
m∈S(i)\N(i)

|V<(m)| δmax.

Together with (5.3), this yields, as asserted,

Pm0

(
V

(i)
< (Yk) ⊆ V(Yk)

)
≥ (1− δmax)

∑
m∈S(i)

Pm0(Yk = m)

× Pm(τx < σ1 for every x ∈ V<(m), Xl = m for some max
x∈V<(m)

τx ≤ l < σ1)

≥ (1− δmax)

(
1−

(
max

m∈S(i)\N(i)
|V<(m)|+ 1

)
δmax

)
≥ 1−

(
max

m∈S(i)\N(i)
|V<(m)|+ 2

)
δmax.

(b) According to Lemma 5.2.1, choose β0 > 0 such that

max
m∈S(i)

Pm

(
τ
(i)
V (m) ≤ K

)
≤ 1− δ (5.5)
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5.2 Accordance of Path-Dependent and Path-Independent MB

for each β ≥ β0. By using (5.5) and (5.2), we now infer

Pm0(Yl = Yk for some k + 1 ≤ l ≤ K)

=
∑
s∈S

Pm0(Yl = Yk for some k + 1 ≤ l ≤ K,Xσk
= s)

≤
∑
s∈S

Pm0(Xσk
= s)

(
Ps(τ

(i)
V (Y0)

≤ K − k, Xj = m(s) for some 0 ≤ j < σ1)

+ 1{s/∈N(i)} Ps(τ
(i)
V (Y0)

≤ K − k,Xj �= m(s) for all 0 ≤ j < σ1)
)

≤
∑
s∈S

Pm0(Xσk
= s)Pm(s)(τ

(i)
V (Y0)

≤ K − k) +
∑

s/∈N(i)

Pm0(Xσk
= s)Ps(σ1 < τm(s))

≤ 1− δ + δmax,

and finally

Pm0(V(Yj) ⊂ V (i)(Yj), 0 ≤ j < k) ≥ Pm0

⎛⎝k−1⋂
j=0

{Yl �= Yj , j + 1 ≤ l ≤ K}
⎞⎠

≥ 1−
k−1∑
j=0

Pm0(Yl = Yj for some j + 1 ≤ l ≤ K)

≥ 1− k(δmax + (1− δ)).

(c) In the following calculation, let r0 = m0,
∑

mj
range over all K-vectors (m1,...,mK) with

pairwise distinct components in S(i)\{m0} and, for each k < K, let
∑

r1,...,rk
range over all k-vectors

(r1,..., rk) such that rj ∈ V (mj) for each j = 1,..., k. As in part (b), use (5.2) repeatedly to infer

Pm0(V(Yj) ⊂ V (i)(Yj), 0 ≤ j ≤ K − 1)

≥
∑
mj

∑
r1,...,rK−1

Pm0

⎛⎝K−1⋂
j=0

{Yj = mj , Xσj = rj , τmj < σj+1} ∩ {YK = mK}
⎞⎠

=
∑
mj

∑
r1,...,rK−1

K−2∏
j=0

Prj

(
Y0 = mj , Xσ1 = rj+1, τmj < σ1

)
× PrK−1

(
τmK−1 < σ1

)
PmK−1(Y1 = mK)

≥
∑
mj

∑
r1,...,rK−1

K−2∏
j=0

Prj

(
Y0 = mj , Xσ1 = rj+1, τmj < σ1

)
× (1− δmax)PmK−1(Y1 = mK)

= (1− δmax)
∑
mj

∑
r1,...,rK−2

K−3∏
j=0

Prj

(
Y0 = mj , Xσ1 = rj+1, τmj < σ1

)
× PrK−2

(
Y0 = mK−2, Y1 = mK−1, τmK−2 < σ1

)
PmK−1(Y1 = mK)

= (1− δmax)
∑
mj

∑
r1,...,rK−2

K−3∏
j=0

Prj

(
Y0 = mj , Xσ1 = rj+1, τmj < σ1

)
× PrK−2

(
Y1 = mK−1, τmK−2 < σ1

)
PmK−1(Y1 = mK)
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≥ (1− δmax)
∑
mj

∑
r1,...,rK−2

K−3∏
j=0

Prj

(
Y0 = mj , Xσ1 = rj+1, τmj < σ1

)
× PmK−2 (Y1 = mK−1) PrK−2(τmK−2 < σ1)PmK−1(Y1 = mK)

≥ (1− δmax)
2
∑
mj

∑
r1,...,rK−2

K−3∏
j=0

Prj

(
Y0 = mj , Xσ1 = rj+1, τmj < σ1

)
× PmK−2 (Y1 = mK−1) PmK−1(Y1 = mK)

...

≥ (1− δmax)
K−1

∑
mj

K−1∏
j=0

Pmj (Y1 = mj+1)

≥ (1− δmax)
K−1 [η2 ∧ η3]K e−2Kεβ ,

the last line following from Lemma 5.2.1.
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6. Comparison of Mixing Times

In this chapter, we want to compare the mixing times of the original process and its aggregated
versions to show in particular that the relaxation (i.e. convergence to the equilibrium) of X can be
mapped by the relaxation of Y . For a Markov chain M with stationary distribution π the mixing
time for ε ≥ 0 is defined as

τMmix(ε) := inf{n ≥ 0| sup
x

dTV (P
Mk
x , π) ≤ ε for every k ≥ n},

where dTV (· , ·) denotes the total variation (distance) of two measures. In computer simulations, the
mixing time is an important characteristic of a Markov chain, as it allows sampling from a distribution
arbitrary close to the stationary distribution. This is used in many applications, for example in [63],
where the author (in joint work with Alsmeyer and the theoretical chemists Heuer and Rubner)
studies the number of feasible states in the hard core model with a fixed number of particles using
the so called Widom-method.

For finite Markov chains, there are several methods to specify the mixing time, one of the most
popular ones working with the eigenvalues of the transition matrix. Analytically, with these eigenval-
ues the exact rate of convergence to the stationary distribution can be calculated, but unfortunately
there is no probabilistic explanation. We draw on various well known facts from the theory of spectral
analysis of finite Markov chains and refer to the excellent textbook by Levin, Peres & Wilmer

[39] for the general picture. The basic definitions are:

Definition 6.0.4. Let P be a finite stochastic matrix with stationary distribution π. If π is also
reversible for P, we call (P, π) a reversible pair. If p(x, x) ≥ 1

2 for every x ∈ S, we call P lazy. For
every reversible pair (P, π) we define

(a) the spectral gap as γ := 1− λ2, where

λ2 := max{λ | λ is eigenvalue of P and λ < 1},

(b) the absolute spectral gap as γ� := 1− λ�, where

λ� := max{|λ| | λ is eigenvalue of P and λ < 1},

(c) the relaxation time as trel := γ−1
� ,

(d) the Dirichlet form for any real function f as

E(f) :=
1

2

∑
x �=y

(f(x)− f(y))2 π(x)p(x, y).

As we use some results various times, a toolbox on how these parameters are related with the mixing
time of the Markov chain, most notably the variational characterization, is given in the Appendix,
Section A.2.
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6 Comparison of Mixing Times

6.1. Mixing Time of the Original Chain

and some Functionals

6.1.1. The Original Chain

We start the investigation of the different mixing times by calculating the (absolute) spectral gap γ
of the original process, depending of course on β. Since the holding probabilities of X are at least 1

2 ,
the spectral gap and the absolute spectral gap of X coincide.

Theorem 6.1.1. Let Δ := E(z∗(m(n−1),m(n))) − E(m(n−1)) be the depth of the second deepest
valley and γ the spectral gap of X. Then

lim
β→∞

1

β
ln(γ) = −Δ.

This is known for continuous-time processes on compact connected manifolds [31, Theorem 1.14]
and smooth bounded domains in Rn, n ∈ N, [44, Theorem 2], as well as for a specific discrete-time
Metropolis-process on a finite state space, where the proposal chain is symmetric and independent of
β [30, Theorem 2.1]. We use the same technique as Holley & Stroock in [30] to extend this result
to the perturbed Metropolis-algorithm of our chain and later also for several functionals of X. That
the exponential rate of the spectral gap is given by the depth of the second deepest valley can be
explained heuristically as follows: As β tends to infinity, the stationary distribution tends to δm(n) .
Thus, the crucial time for mixing in the worst case is given by the time needed to enter V (n−1)(m(n)),
which again is given by the time needed to leave V (n−1)(m(n−1)) (and not to leave V (n−1)(m(n))).

Proof: We want to derive a lower bound of γ with the variational characterization by the Dirichlet
form. Therefore, let f : S → R be some function with V arπ(f) �= 0. This variance can be bounded
by

V arπ(f) =
∑
s

(
f(s)−

∑
r

f(r)π(r)

)2

π(s)

=
∑
s

(∑
r

(f(s)− f(r))π(r)

)2

π(s) (6.1)

≤
∑
s

∑
r

(f(s)− f(r))2 π(r)π(s),

using Jensen’s Inequality. Now let γ = (γ0,..., γk) ∈ Γ∗(r, s) with k := k(r, s) := |γ| be a minimal
path from r to s. Note that, using again Jensen’s Inequality,(

n∑
i=1

ai

)2

≤ n
n∑

i=1

a2i

for every sequence (a1,..., an) ∈ Rn, and therefore

(f(s)− f(r))2π(r)π(s) =

(
k∑

i=1

f(γi)− f(γi−1)

)2

π(r)π(s)

≤ k
k∑

i=1

(f(γi)− f(γi−1))
2 π(r)π(s) (6.2)

≤ |S|
k∑

i=1

(f(γi)− f(γi−1))
2 (π(γi) ∧ π(γi−1))

π(r)π(s)

π(γi) ∧ π(γi−1)
.
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6.1 Mixing Time of the Original Chain and some Functionals

Since by Lemma 1.1.2,

π(γi) ∧ π(γi−1) ≥ min
1≤i≤k

π(γi) ≥ min
1≤i≤k

1

|S|e
−β(E(γi)−E(m(n))+2|S|γβ)

=
1

|S|e
−β(E(z∗(r,s))−E(m(n))+2|S|γβ),

we obtain, again using Lemma 1.1.2,

π(r)π(s)

π(γi) ∧ π(γi−1)
≤ e−β(E(r)−E(m(n))−2|S|γβ)e−β(E(s)−E(m(n))−2|S|γβ)

1
|S|e

−β(E(z∗(r,s))−E(m(n))+2|S|γβ)

= |S|e−β(E(r)+E(s)−E(z∗(r,s))−E(m(n))−6|S|γβ) (6.3)

≤ max
r,s

|S|eβ(E(z∗(r,s))−E(r)−E(s)+E(m(n))−6|S|γβ).

The above maximum is attained for r = m(n) and s = m(n−1) or vice versa (in the case of m(n) = m(1),
m(n−1) should denote an arbitrary state; in this case Δ = 0): For E(z∗(r, s)) − E(r) − E(s) to be
positive, r, s /∈ z∗(r, s) and thus, for maximization, they have to be in different valleys. Among the
local minima, m(n) and m(n−1) provide the highest value.

Furthermore, for E(γi) ≥ E(γi−1),

π(γi) ∧ π(γi−1) ≤ e−β(E(γi)−E(m(n))−2|S|γβ) ∧ e−β(E(γi−1)−E(m(n))−2|S|γβ)

= e−β(E(γi)−E(m(n))−2|S|γβ)

= e−β(E(γi−1)−E(m(n))+2|S|γβ)e−β(E(γi)−E(γi−1)+γβ)e5β|S|γβ

≤ |S|π(γi−1)p(γi−1, γi)e
5β|S|γβ , (6.4)

and analogously for E(γi) < E(γi−1),

π(γi) ∧ π(γi−1) ≤ |S|π(γi)p(γi, γi−1)e
5β|S|γβ .

Combining Equations (6.1), (6.2), (6.3), and (6.4), we conclude

V arπ(f) ≤
∑
s

∑
r

(f(s)− f(r))2 π(r)π(s)

≤
∑
s

∑
r

|S|
k(r,s)∑
i=1

(f(γi)− f(γi−1))
2 (π(γi) ∧ π(γi−1))

π(r)π(s)

π(γi) ∧ π(γi−1)

≤
∑
s

∑
r

k(r,s)∑
i=1

(f(γi)− f(γi−1))
2 |S|3eβ(Δ−|S|γβ)

× (
π(γi−1)p(γi−1, γi)1{E(γi)≥E(γi−1)} + π(γi)p(γi, γi−1)1{E(γi)<E(γi−1)}

)
≤ 2|S|4E(f)eβ(Δ−|S|γβ),

and therefore, recalling Proposition A.2.1 (d),

γ = min
f

E(f)
V arπ(f)

≥ 1

2
|S|−5e−β(Δ−|S|γβ).

Finally,

lim inf
β→∞

1

β
ln(γ) ≥ −Δ.
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For the upper bound, we have to distinguish two cases, Δ > 0 and Δ = 0. If Δ > 0, define

A :=
{
x ∈ S

∣∣∣E(z∗(m(n−1), x)) < E(z∗(m(n), x))
}
.

As

E(z∗(m(n−1),m(n−1))) = E(m(n−1)) < Δ+ E(m(n−1)) = E(z∗(m(n),m(n−1))),

A comprises m(n−1) and is therefore not empty. Due to a similar equation, namely

E(z∗(m(n),m(n))) = E(m(n)) < E(m(n−1)) < E(z∗(m(n),m(n−1))),

we see furthermore that m(n) /∈ A. Now let x ∈ A, y /∈ A, x ∼ y. Then

E(z∗(m(n−1), x)) < E(z∗(m(n), x)) ≤ E(z∗(m(n),m(n−1))) ∨ E(z∗(m(n−1), x))

= E(z∗(m(n),m(n−1))),

and thus

E(z∗(m(n−1),m(n))) ≤ E(z∗(m(n−1), y)) ∨ E(z∗(m(n), y))

= E(z∗(m(n−1), y))

≤ E(z∗(m(n−1), x)) ∨ E(z∗(x, y)) (6.5)

= E(z∗(m(n−1), x)) ∨ E(x) ∨ E(y)

= E(z∗(m(n−1), x)) ∨ E(y)

= E(y).

In particular E(x) ≤ E(y). We obtain for the Dirichlet form of f = 1A

E(1A) =
1

2

∑
x �=y

(1A(x)− 1A(y))
2 π(x)p(x, y) =

∑
x∈A�/ y

π(x)p(x, y),

and for the variance

V arπ(1A) =
∑
x

(
1A(x)−

∑
y

1A(y)π(y)

)2

π(x)

=
∑
x

(1A(x)− π(A))2 π(x)

=
∑
x

(
1A(x)− 21A(x)π(A) + π(A)2

)
π(x)

= π(A)− 2π(A)2 + π(A)2

= π(A)(1− π(A))

= π(A)π(Ac)

≥ π(m(n−1))π(m(n)).
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Therefore, using Equation (6.5),

γ ≤ E(1A)

V arπ(1A)

≤
∑

x∈A�/ y

π(x)p(x, y)

π(m(n))π(m(n−1))

≤
∑

x∈A�/ y

e−β(E(x)−E(m(n))−2|S|γβ+(E(y)−E(x))+−γβ−E(m(n−1))+E(m(n))−2|S|γβ)

≤
∑

x∈A�/ y

e−β(E(y)−E(m(n−1))−5|S|γβ)

≤ |S|2e−β(E(z∗(m(n−1),m(n)))−E(m(n−1))−5|S|γβ)

= |S|2e−β(Δ−5|S|γβ),

where of course the sum ranges over those x /∈ A � y with p(x, y) > 0. This gives the upper bound

lim sup
β→∞

1

β
ln(γ) ≤ −Δ

in the considered case.
If Δ = 0 and the set A from above is empty, define the set

B :=

{
x ∈ S

∣∣∣E(x) = max
y

E(y)

}
.

Note that m(n) /∈ B and let s ∈ B be arbitrary. In the same manner as above,

γ ≤ E(1B)

V arπ(1B)

≤
∑

x/∈B�y

π(x)p(x, y)

π(m(n))π(s)

≤
∑

x/∈B�y
e−β(E(x)−E(m(n))−2|S|γβ+(E(y)−E(x))+−γβ−E(s)+E(m(n))−2|S|γβ)

≤
∑

x/∈B�y
e−β(E(y)−E(s)−5|S|γβ)

≤ |S|2e5β|S|γβ ,

where again the sum ranges over those x /∈ B � y with p(x, y) > 0. We conclude the upper bound

lim sup
β→∞

1

β
ln(γ) ≤ 0 = −Δ

in this case as well.

We state the results in the following subsections as corollaries of this theorem, not because they
all are straight forward consequences of it, but because the used techniques are basically the same.
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6.1.2. The Restricted Chain

Definition 6.1.2. Let V = V (i)(m) be a valley of some order 1 ≤ i ≤ n around some metastable
m ∈ S(i)\N (i). Then the restricted chain X|V is a Markov chain on V with transition probabilities

p|V (x, y) =

{
p(x, y), x �= y

p(x, x) +
∑

z /∈V p(x, z), x = y

for x, y ∈ V .

In the same manner as for S (in Subsection 1.2.1), we identify the local minima m
(1)
V ,...,m

(k)
V in V ,

ordered by increasing stability, and the depth ΔV := E(z∗(m(k−1)
V ,m

(k)
V ))−E(m

(k−1)
V ) of the second

deepest (sub-)valley in V .

Corollary 6.1.3. Let V = V (i)(m) by a valley of some order 1 ≤ i < n around some metastable
m ∈ S(i)\N (i) and m

(1)
V ,...,m

(k)
V the local minima in V, ordered by increasing stability. Let γ|V be

the spectral gap of X|V and ΔV := E(z∗(m(k−1)
V ,m

(k)
V ))− E(m

(k−1)
V ) the depth of the second deepest

(sub-)valley. Then

lim
β→∞

1

β
ln(γ|V ) = −ΔV .

This statement is a direct consequence of Theorem 6.1.1, as the restricted chain acts on V in the
same way as X acts on S. In virtue of this corollary, the restricted chains mix exponentially faster
than the original one, for the subvalleys are always less deep than the second deepest valley, that is,
ΔV < Δ for every valley of order i < n. This is another definition of metastability (see [45]) since it
entails a slow motion between the subsets compared to the motion within these subsets. Mimicking
the proof from above, we see that for ΔV > 0∑

x/∈A�y

π(x)p(x, y)

π(m(k−1))
≤

∑
x/∈A�y

e−β(E(x)−E(m(k−1))−2|S|γβ+(E(y)−E(x))+−γβ)

≤
∑

x/∈A�y
e−β(E(x)∨E(y)−E(m(k−1))−3|S|γβ)

=
∑

x/∈A�y
e−β(E(z∗(m(k−1),m(k)))−E(m(k−1))−3|S|γβ) (6.6)

≤ |V |2e−β(ΔV −3|S|γβ),

with
A :=

{
x ∈ V

∣∣∣E(z∗(m(k−1), x)) < E(z∗(m(k), x))
}
.

We will use this later.

6.1.3. Mixing to Quasi-Stationarity

The above corollary, most notably Equation (6.6), entails the following result on the convergence
rate towards the quasi-stationary distribution on a valley V . As in Section 2.3, we denote the
quasi-stationary distribution by ν and the second larges eigenvalue of (p(x, y))x,y∈V by λ(V ).

Corollary 6.1.4. Let V = V (i)(m) be a valley of some order 1 ≤ i < n around some metastable
m ∈ S(i)\N (i) with E(sm) − E(m′) > ΔV > 0 for the second most stable minimum m′ in V (after
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6.1 Mixing Time of the Original Chain and some Functionals

m). Let |λ2(V )| be the modulus of the (in terms of moduli) second largest eigenvalue of (p(x, y))x,y∈V
and k the highest multiplicity of all eigenvalues with modulus equal to |λ2(V )|. Then

lim
β→∞

1

β
ln

(
1− lim

n→∞

(
max
x∈V

dTV (P
Xn|ζ0>n
x , ν)

) 1
n

)
= −ΔV .

As γ = 1 − limn→∞
(
maxx∈S dTV

(
PXn
x , π

)) 1
n , this is the analog of the previous result. It reveals

that, when comparing with the restricted chain, the draining of mass does not affect the rate of
convergence against the quasi-stationary distribution whenever E(sm) − E(m′) ≥ ΔV . We will see
in the proof that this assumption causes the draining to be of a sufficiently small rate.

Proof: In [17, Section 4], Darroch & Seneta argue that for every initial distribution μ, x ∈ V and
n → ∞

Pμ(Xn = x|ζ0 > n) = ν(x) +O
(
nk−1

( |λ2(V )|
λ(V )

)n)
.

Therefore, for every x ∈ V ,

dTV (P
Xn|ζ0>n
x , ν)

1
n = O

(
nk−1

( |λ2(V )|
λ(V )

)n) 1
n

= O
(
n(k−1)/n |λ2(V )|

λ(V )

)
n→∞−→ |λ2(V )|

λ(V )

and

lim
β→∞

1

β
ln

(
1− lim

n→∞

(
max
x∈V

dTV (P
Xn|ζ0>n
x , ν)

) 1
n

)
= lim

β→∞
1

β
ln

(
1− |λ2(V )|

λ(V )

)
,

if the limit exists. The rest of the proof is dedicated to the estimation of the ratio and the deter-
mination of the limit. The proof is rather long but based on a simple idea: For the lower bound,
we use the Courant-Fischer-Theorem (see e.g. Theorem 4.2.12 in [32]), whereas for the upper bound
we mimic the characterization of the second largest eigenvalue of an ergodic, reversible Markovian
transition matrix by its Dirichlet form. We will end up with the left-hand side of Equation (6.6).

Let Q := (p(x, y))x,y∈V and d be a right eigenfunction of Q to the eigenvalue λ(V ) > |λ2(V )|. By
the Perron-Frobenius Theorem ([57, Theorem 1.1], original from 1912 in [25]), all entries of d are
strictly positive, and we further assume

∑
x∈V d(x)2π(x) = 1. Then define Dπ := diag(π(x), x ∈ V )

and
A := D1/2

π QD−1/2
π , a(x, y) = π(x)

1
2 p(x, y)π(y)−

1
2 , x, y ∈ V.

From the reversibility of (P, π) we obtain

a(x, y) =
π(x)p(x, y)√
π(x)π(y)

=
π(y)p(y, x)√
π(x)π(y)

= a(y, x),

that is A is symmetric. Due to the spectral theorem for symmetric matrices (see for example [11, Ch.
7.6, Corollary 5]), all eigenvalues (λj)1≤j≤|V | are real and there is an orthonormal basis (φj)1≤j≤|V |
of

(
R|V |, 〈·, ·〉) given by the eigenfunctions of A. As

A(D1/2
π d) = D1/2

π Qd = λ(V )(D1/2
π d), and 〈D1/2

π d,D1/2
π d〉 =

∑
x

π(x)d(x)2 = 1,

we fix φ1 ≡ D
1/2
π d and λ1 ≡ λ(V ). On the other hand, with f1 := d = D

−1/2
π φ1 and fj := D

−1/2
π φj

for j ≥ 2, we have

Qfj = (D−1/2
π AD1/2

π )(D−1/2
π φj) = D−1/2

π Aφj = D−1/2
π λjφj = λjfj .
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Therefore, (fj)1≤j≤|V | are eigenfunctions of Q to the eigenvalues (λj)1≤j≤|V |. In particular, λ2(V ) =

λ2 is real. As P is lazy, that is, p(x, x) ≥ 1
2 for every x ∈ S, (2Q − I) is substochastic and still

aperiodic. Hence, all eigenvalues of Q = 1
2I+

1
2(2Q−I) are nonnegative and λ2 ≥ λj for every j ≥ 2.

For the lower bound, by the Courant-Fischer-Theorem [32, Theorem 4.2.12],

λ2 = min
x∈R|V |

max
0 �=y∈R|V |,y⊥x,‖y‖=1

〈y,Ay〉.

But A = D
1/2
π QD

−1/2
π = D

1/2
π (P|V − (I − D))D

−1/2
π with D = diag(p(x, V ), x ∈ V ), and π|V =

π/π(V ) is the stationary distribution of X|V . Therefore,

〈y,Ay〉 = 〈y,D1/2
π P|V D−1/2

π y〉 − 〈y,D1/2
π (I −D)D−1/2

π y〉
= 〈y,D1/2

π|V P|V D−1/2
π|V y〉 − 〈y, (I −D)y〉

≤ 〈y,D1/2
π|V P|V D−1/2

π|V y〉.

In the same manner as before, it can be shown that D
1/2
π|V P|V D

−1/2
π|V is symmetric with the same

eigenvalues as P|V , which are positive and the second largest of which is given by 1−γ|V . Therefore,

λ2 = min
x∈R|V |

max
0 �=y∈R|V |,y⊥x,‖y‖=1

〈y,Ay〉

≤ min
x∈R|V |

max
0 �=y∈R|V |,y⊥x,‖y‖=1

〈y,D1/2
π|V P|V D−1/2

π|V y〉 (6.7)

= 1− γ|V
= 1− e−β(ΔV +o(1))

as β → ∞.
For the upper bound, define a scalar product 〈·, ·〉π on R|V | by

〈f, g〉π :=
∑
x∈V

f(x)g(x)π(x).

With respect to this scalar product, the eigenfunctions (fj)1≤j≤|V | are orthonormal, for

δij = 〈φi, φj〉 = 〈D1/2
π fi, D

1/2
π fj〉 = 〈fi, fj〉π

for every 1 ≤ i, j ≤ |V |. Furthermore, since (φj)1≤j≤|V | is a basis, so is (fj)1≤j≤|V |. Now we define
the Dirichlet form of (Q, π), though π is not stationary for Q. For any function f : V → R let

EQ(f) :=
1

2

∑
x,y∈V

(f(x)− f(y))2π(x)q(x, y)

=
1

2

⎛⎝ ∑
x,y∈V

f(x)2π(x)p(x, y) +
∑

x,y∈V
f(y)2π(x)p(x, y)

⎞⎠−
∑

x,y∈V
f(x)f(y)π(x)p(x, y)

=
∑
x∈V

f(x)2π(x)p(x, V )−
∑
x∈V

f(x)(Qf)(x)π(x)

= 〈f,Df〉π − 〈f,Qf〉π.
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In particular, for f =
∑|V |

j=1 ajfj , aj ∈ R, 1 ≤ j ≤ |V |, with 〈f, f1〉π = 0 (that is a1 = 0), this yields

EQ(f) = 〈f,Df〉π − 〈f,Qf〉π

= 〈f,Df〉π −
|V |∑
j=1

aj〈f,Qfj〉π

= 〈f,Df〉π −
|V |∑
j=2

ajλj〈f, fj〉π (6.8)

= 〈f,Df〉π −
|V |∑
j=2

a2jλj

≥ 〈f,Df〉π − λ2

|V |∑
j=2

a2j

= 〈f,Df〉π − λ2〈f, f〉π.
Let as before f := 1A with

A :=
{
x ∈ V |E(z∗(m(k−1)

V , x)) < E(z∗(m(k)
V , x))

}
.

Again, m(1)
V ,...,m

(k)
V are the local minima in V , ordered by increasing stability. Note that m

(k−1)
V ∈

A, m
(k)
V /∈ A, for ΔV > 0. Since 〈f, f1〉π �= 0 in general, define

g := f − 〈f, f1〉π
〈1, f1〉π ,

which satisfies

〈g, f1〉π = 〈f, f1〉π − 〈1, f1〉π 〈f, f1〉π〈1, f1〉π = 0.

Equation (6.8) applied to f resp. g yields

EQ(f) = EQ(g) ≥ 〈g,Dg〉π − λ2〈g, g〉π
or, equivalently,

EQ(f)
〈g,Dg〉π ≥ 1− λ2

〈g, g〉π
〈g,Dg〉π .

A simple calculation shows that

〈g,Dg〉π =
∑
x∈A

π(x)p(x, V )

(
1−

(〈f, f1〉π
〈1, f1〉π

))2

+
∑

x∈V \A
π(x)p(x, V )

(〈f, f1〉π
〈1, f1〉π

)2

≥ (π(A) ∧ π(V \A))min
x∈V

p(x, V )

((
1− 〈f, f1〉π

〈1, f1〉π

)2

+

(〈f, f1〉π
〈1, f1〉π

)2
)

≥ (π(A) ∧ π(V \A))min
x∈V

p(x, V )
1

2

≥
(
π
(
m

(k−1)
V

)
∧ π

(
m

(k)
V

)) minx∈V p(x, V )

2

= π
(
m

(k−1)
V

) minx∈V p(x, V )

2
.
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Here we used the fact that (1−x)2+x2 = 2
(
1
2 − x

)2
+ 1

2 ≥ 1
2 for any x ∈ [0, 1], and that f1 is strictly

positive, which yields 〈f, f1〉π =
∑

x∈A f1(x)π(x) ≤ ∑
x∈V f1(x)π(x) = 〈1, f1〉π. Now we conclude

that minx∈V p(x, V ) tends to 1 as β tends to infinity, so that, using Equation (6.6),

1− λ2
〈g, g〉π
〈g,Dg〉π ≤ EQ(f)

〈g,Dg〉π
≤ 4 · EQ(1A)

π
(
m

(k−1)
V

) (6.9)

= 4
∑

x/∈A�y

π(x)p(x, y)

π
(
m

(k−1)
V

)
≤ 4|V |2e−β(ΔV −3|S|γβ).

We further infer

〈g, g〉π = π(A)

(
1− 〈f, f1〉π

〈1, f1〉π

)2

+ π(V \A)

(〈f, f1〉π
〈1, f1〉π

)2

≥ π
(
mV (k−1)

)
2

,

and, using g(x) ∈ [−1, 1], for 〈f, f1〉π ≤ 〈1, f1〉π,

〈g,Dg〉π = 〈g, g〉π − 〈g, (I −D)g〉π
= 〈g, g〉π −

∑
x∈∂V

g(x)2π(x)p(x,N (i))

≥ 〈g, g〉π −
∑
x∈∂V

π(x)p(x,N (i))

≥ 〈g, g〉π −
∑
x∈∂V

∑
y∈N(i),y∼x

e−β(E(x)−E(m(n))+(E(y)−E(x))++o(1))

≥ 〈g, g〉π − e−β(E(sm)−E(m(n))+o(1))

since E(y) ∨ E(x) = E(y) ≥ E(sm) for every x ∈ ∂V, y ∈ ∂+V with x ∼ y. A combination of both
estimates yields

〈g,Dg〉π
〈g, g〉π ≥ 1− 2

e−β(E(sm)−E(m(n))+o(1))

π(m(k−1))

≥ 1− 2e−β(E(sm)−E(m(n))−E(m(k−1))+E(m(n))+o(1)) (6.10)

= 1− e−β(E(sm)−E(m(k−1))+o(1)).

Via Insertion of Equation (6.10) in Equation (6.9) we obtain

λ2 ≥
(
1− e−β(ΔV +o(1))

)(
1− e−β(E(sm)−E(m(k−1))+o(1))

)
= 1− e−β(ΔV +o(1))

(
1− e−β(E(sm)−E(m(k−1))+o(1)) + e−β(E(sm)−E(m(k−1))−ΔV +o(1))

)
= 1− e−β(ΔV +o(1))(1 + o(1)),

as by assumption ΔV < E(sm)− E(m(k−1)). Together with Equation (6.7) we infer

λ2 = 1− e−β(ΔV +o(1))(1 + o(1)).
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6.1 Mixing Time of the Original Chain and some Functionals

Using now that λ(V ) = 1− e−β(E(sm)−E(m)+o(1)) by Proposition 2.3.3, this yields

1− λ2(V )

λ(V )
= 1− 1− e−β(ΔV +o(1))(1 + o(1))

1− e−β(E(sm)−E(m)+o(1))

=
(1 + o(1))e−β(ΔV +o(1)) − e−β(E(sm)−E(m)+o(1))

1− e−β(E(sm)−E(m)+o(1))

= e−β(ΔV +o(1)) (1 + o(1))− e−β(E(sm)−E(m)−ΔV +o(1))

1− e−β(E(sm)−E(m)+o(1))
,

and therefore, as asserted,

lim
β→∞

1

β
ln

(
1− lim

n→∞

(
max
x∈V

dTV (P
Xn|ζ0>n
x , ν)

) 1
n

)

= lim
β→∞

1

β
ln

(
1− |λ2(V )|

λ(V )

)
= lim

β→∞
1

β
ln

(
e−β(ΔV +o(1)) (1 + o(1))− e−β(E(sm)−E(m)−ΔV +o(1))

1− e−β(E(sm)−E(m)+o(1))

)
= −ΔV

since E(sm)− E(m) > E(sm)− E(m(k−1)) > ΔV by assumption.

6.1.4. The Hit Chain

Another interesting process derived from X is the hit chain on S(i), which will be used later for the
comparison of the mixing times of X and Y .

Definition 6.1.5. The hit chain Z on S(i) has the transition matrix

pS(i)(m,m′) = Pm(XτS(i)
= m′), m,m′ ∈ S(i).

Recall that by definition τS(i) ≥ 1. Due to holding probabilities of at least 1
2 , the absolute spectral

gap and the spectral gap coincide for Z as well. We will prove that the asymptotic behavior of the
convergence rate as a function of β is the same for Z and X. This indicates that the relaxation time
of X is dominated by the mass-transport between valleys, given by the AC, and not within valleys.

Corollary 6.1.6. Let Δ be defined as in Theorem 6.1.1, satisfying Δ > 0, and denote the spectral
gap of Z by γZ . Then

lim
β→∞

1

β
ln(γZ) = −Δ.

As already mentioned, the denotation as a corollary is justified by being proved basically with the
same argument as Theorem 6.1.1.

Proof: First, we cite Lemma A.2.4 to see that πS(i) := (π(x)/π(S(i)))x∈S(i) is reversible for Z and
that γZ ≥ γ. Thus,

lim inf
β→∞

1

β
ln(γZ) ≥ −Δ.

Using the same argument as before, define

A :=
{
m ∈ S(i)|E(z∗(m(n−1),m)) < E(z∗(m(n),m))

}
.
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6 Comparison of Mixing Times

Then m(n−1) ∈ A, m(n) /∈ A. Now let m ∈ A, n ∈ S(i)\A and note that

E(z∗(m(n−1),m)) < E(z∗(m(n),m)) ≤ E(z∗(m(n),m(n−1))) ∨ E(z∗(m(n−1),m))

= E(z∗(m(n),m(n−1))).

Thus,

E(z∗(m(n−1),m(n))) ≤ E(z∗(m(n−1), n)) ∨ E(z∗(m(n), n)) = E(z∗(m(n−1), n))

≤ E(z∗(m(n−1),m)) ∨ E(z∗(m,n)) = E(z∗(m,n)), (6.11)

and E(m) ≤ E(z∗(m(n−1),m)) < E(z∗(m(n),m(n−1))) ≤ E(z∗(m,n)). We conclude that m /∈
z∗(m,n) and therefore, for this choice of m and n,

pS(i)(m,n) = Pm(XτS(i)
= n) ≤ Pm(τn < τm)

≤ e−β(E(z∗(m,n))−E(m)+o(1))

≤ e−β(E(z∗(m(n−1),m(n)))−E(m)+o(1)).

In the by now familiar manner,

γZ ≤ ES(i)(1A)

V arπS(i)
(1A)

≤
∑

m∈A�/ n

πS(i)(m)pS(i)(m,n)

πS(i)(m(n))πS(i)(m(n−1))

≤
∑

m∈A�/ n

π(m)pS(i)(m,n)

π(m(n))π(m(n−1))

≤
∑

m∈A�/ n

e−β(E(m)−E(m(n))+E(z∗(m(n−1),m(n)))−E(m)−E(m(n−1))+E(m(n))+o(1))

≤
∑

m∈A�/ n

e−β(E(z∗(m(n−1),m(n)))−E(m(n−1))+o(1))

≤ |S|2e−β(Δ+o(1)),

from which we conclude
lim sup
β→∞

1

β
ln(γZ) ≤ −Δ,

and thus, together with the lower bound, the assertion.

6.1.5. A Markovian Macroscopic Process

As a last functional, we regard the Markov chain given by the transition probabilities of the AC
in the stationary regime, and show that it mixes asymptotically with the same rate as X, too. In
addition to the previous subsections, this is another indication for Y describing the long-range part
of X in an appropriate way.

Corollary 6.1.7. Let Δ as defined in Theorem 6.1.1 be positive and 1 ≤ i < n some fixed
aggregation level. Write V (m) := V (i)(m) for every m ∈ S(i). Let

q(m,n) :=
1

π(V (m))

∑
x∈V (m)

∑
y∈V (n)

π(x)p(x, y)
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6.1 Mixing Time of the Original Chain and some Functionals

be the transition probabilities of the AC in the stationary regime with spectral gap γQ. Then (Q, π)
with π(·) := π(V (·)) is a reversible pair and

lim
β→∞

1

β
ln(γQ) = −Δ.

Proof: The reversibility is a consequence of the obvious symmetry of
∑

x∈V (m)

∑
y∈V (n) π(x)p(x, y)

in m and n. For the second assertion, let f : S → R be some function which is constant on every
V (m), m ∈ S(i), and EQ the Dirichlet form with respect to (Q, π). Then

EQ(f) :=
∑
m �=n

(f(m)− f(n))2π(m)q(m,n)

=
∑
m �=n

(f(m)− f(n))2
∑

x∈V (m)

∑
y∈V (n)

π(x)p(x, y)

=
∑
m �=n

∑
x∈V (m)

∑
y∈V (n)

(f(x)− f(y))2π(x)p(x, y)

= E(f)

and

V arπ(f) :=
∑
m

(
f(m)−

∑
n

f(n)π(n)

)2

π(m)

=
∑
m

f(m)2π(m)−
(∑

n

f(n)π(n)

)2

=
∑
x∈S

f(x)2π(x)−
(∑

x∈S
f(x)π(x)

)2

= V arπ(f).

Therefore,

γQ = inf
f :S(i)→R,V arπ(f) �=0

EQ(f)
V arπ(f)

= inf
f :S(i)→R,V arπ(f) �=0

E(f)
V arπ(f)

≥ inf
f :S→R,V arπ(f) �=0

E(f)
V arπ(f)

= γ,

and
lim inf
β→∞

1

β
ln(γQ) ≥ lim

β→∞
1

β
ln(γ) = −Δ.

Furthermore, define again

A :=
{
m ∈ S(i)|E(z∗(m(n−1),m)) < E(z∗(m(n),m))

}
.

We know already by Equation (6.11) that E(z∗(m(n−1),m(n))) ≤ E(z∗(m,n)) for m ∈ A, n ∈ S(i)\A.
In addition, if q(m,n) > 0, then at least one of the two states is non-assigned and by Lemma 1.3.10,

E(z∗(m,n)) = E(m) ∨ E(n) ≤ E(x) ∨ E(y)
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6 Comparison of Mixing Times

for every two states x ∈ V (i)(m) and y ∈ V (i)(n). We obtain

γQ ≤ E(1A)

V arπ(1A)

≤
∑

m∈A�/ n

π(m)q(m,n)

π(m(n))π(m(n−1))

≤
∑

m∈A�/ n

∑
x∈V (m)

∑
y∈V (n)

π(x)p(x, y)

π(m(n))π(m(n−1))

≤
∑

m∈A�/ n

∑
x∈V (m)

∑
y∈V (n)

e−β(E(x)−E(m(n))+(E(y)−E(x))+−E(m(n−1))+E(m(n))+o(1))

≤
∑

m∈A�/ n

∑
x∈V (m)

∑
y∈V (n)

e−β(E(z∗(m,n))−E(m(n−1))+o(1))

≤ |S|2e−β(E(z∗(m(n−1),m(n)))−E(m(n−1))+o(1))

= |S|2e−β(Δ+o(1)),

where the sum of course ranges over those n /∈ A � m with q(m,n) > 0. This proves

lim sup
β→∞

1

β
ln(γQ) ≤ −Δ

and thus, together with the lower bound, the assertion.

6.2. The General Problem

The basic idea for the derivation of a relation between the mixing times of X and Y (the precise
definition of the mixing time of Y is given below) is to study the hit chain Z on S(i) and its embedded
jump chain Z: As we can relate the spectral gaps of X and Z as well as the mixing times of Y and
Z due to the fact that both chains converge to the same Markov chain, it remains to compare the
mixing times or gaps of Z and Z. This is a special case of the following

General Problem: Given a finite Markov chain and a decelerated version of it (for the exact
definition see below), are there relations between the two associated mixing times?

In the literature, there are some results on comparisons of Markov chains in terms of their spectral
gaps, most notably by Diaconis & Saloff-Coste in [20] and [21]. We can use them in the case
where the decelerated version is again Markovian to obtain catchy relations between the spectral
gaps. We will also study this natural problem in the case where the slowed version is only semi-
Markovian. The final outcome will be formulas for the mixing time of Y in terms of the mixing time
of X in Section 6.5.

Definition 6.2.1. Let M be an irreducible finite Markov chain with transition matrix P. With
the jump epochs σ0 ≡ 0 and σn+1 := inf{k > σn|Mk �= Mk−1}, n ≥ 0, we define the embedded jump
chain M of M by Mn := Mσn , n ≥ 0.

The embedded jump chain is again Markovian with transition matrix P given by

p(x, y) =
∑
n≥0

p(x, x)n p(x, y) =
p(x, y)

1− p(x, x)
, x �= y,
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6.3 Markovian Decelerated Chains

and p(x, x) = 0, that is,

P = diag

(
1

1− p(x, x)
, x ∈ S

)
P− diag

(
p(x, x)

1− p(x, x)
, x ∈ S

)
.

Conversely, given a finite Markov chain M with transition matrix P and a sequence of sojourn
times (Tn)n≥0 on N>0, we can define a decelerated version: M visits the same states as M but stays
in the k-th state for Tk time units, k ≥ 0.

Definition 6.2.2. Let M be an irreducible finite Markov chain on S with transition matrix P and
(Tn)n≥0 a sequence of random variables on N>0. We define the (by (Tn)n≥0) decelerated version M
of M as the random process given by

Mn :=
n∑

k=0

Mk1{T0+...+Tk−1≤n<T0+...+Tk}.

Let Geo(p) be the geometric distribution on N>0 with parameter p ∈ [0, 1]. Due to the memoryless
property of this distribution, the decelerated process is Markovian if

P ((Tn)n≥0 ∈ · |M) =
∏
n≥0

P(Tn ∈ · |M) =
∏
n≥0

Geo(1− pMn)

for some (px)x∈S ∈ [0, 1]S . Note that in particular the different sojourn times at a given state x are
independent and identically distributed whenever this state is reached by M . Thus, in the Markovian
case it suffices to specify those geometric distributions as (Tx)x∈S . The transition matrix P of M is
then given by

p(x, x) = P(Tx > 1) + P(Tx = 1)p(x, x) = px + (1− px)p(x, x),

p(x, y) = p(x, y)P(Tx = 1) = p(x, y)(1− px), x �= y,
(6.12)

that is
P = diag (1− px, x ∈ S)P+ diag (px, x ∈ S) .

For Markov chains M and M with p(x, x) = 0 for every x ∈ S we have: M is the embedded jump
chain of M if and only if M is a decelerated chain of M . Of course, M can have more than one
decelerated Markov chain (by varying the holding parameters (px)x∈S), as well as different Markov
chains can have the same embedded jump chain.

6.3. Markovian Decelerated Chains

In this section, we focus on the case where M is a Markovian decelerated version of a finite Markov
chain M . Before we give first statements on relations between the spectral gaps of a M and M , we
want to illustrate why deceleration not always increases the mixing time as one would expect at first
glance.

Example 6.3.1. Let M be a random walk on a complete graph without loops on n ≥ 3 vertices
and M a decelerated version with geometric sojourn times such that M is the random walk with
loops and probability p ∈ (0, 1) to stay put in any vertex. Let

P =

⎛⎜⎜⎜⎝
0 1

n−1 . . . 1
n−1

1
n−1 0 . . . 1

n−1
...

. . .
...

1
n−1

1
n−1 . . . 0

⎞⎟⎟⎟⎠ resp. P = pI+ (1− p)P
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0

1

0 1
p

λ�(p)

1
n

λ� = 1
n−1

Figure 6.1.: Plot of the second largest eigenvalue (in modulus) of the decelerated transition matrix
P in Example 6.3.1 as a function of the holding probability p.

be the transition matrices of M resp. M . Then

v1 =

(
−1,

1

n− 1
,...,

1

n− 1

)
v2 =

(
1

n− 1
,−1,

1

n− 1
,...,

1

n− 1

)
...

vn−1 =

(
1

n− 1
,...,

1

n− 1
,−1,

1

n− 1

)
are left eigenvectors of P to the eigenvalue −1

n−1 . Furthermore, they are linearly independent, which
can be seen by an inductive argument (see Lemma A.3.1 in the Appendix). In particular, λ = −1

n−1
is an (n− 1)-fold eigenvalue. Another eigenvector is given by vn = (1,..., 1) with eigenvalue 1. Thus,
λ� =

1
n−1 .

Since P = pI+(1− p)P, every eigenvector of P with eigenvalue λ is also an eigenvector of P with
eigenvalue p+ λ(1− p). Therefore, the set of eigenvalues of P is given by {1, p− 1−p

n−1} with

λ� =

∣∣∣∣p− 1− p

n− 1

∣∣∣∣ =
|np− 1|
n− 1

.

Depending on the sojourn distribution, that is, on p, the absolute value of the second largest eigen-
value thus can be both: arbitrarily close to 1 as well as to 0. It is not even monotone in p, see Figure
6.1. In fact, in the case p = 1

n , the transition matrix is given by

P =

⎛⎜⎝
1
n · · · 1

n
...

. . .
...

1
n · · · 1

n

⎞⎟⎠ ,

which equilibrates within one step. The crux in this example is that λ2 is negative and the absolute
value of the average p · 1 + (1− p) · λ2 is less than |λ2| when choosing p properly.

Proposition 6.3.2. Let M and M be two finite Markov chains satisfying (6.12) (for example M
is the embedded jump chain of M).

(a) π is stationary for M ⇔ (π(x))x∈S :=
(
1
N π(x)(1− px)

)
x∈S is stationary for M , where N :=∑

x π(x)(1− px) is the normalization constant.

(b) M is reversible with respect to π ⇔ M is reversible with respect to π.
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6.3 Markovian Decelerated Chains

(c) If both chains are reversible with respect to π reps. π, then

γ

maxx E(Tx)
= min

x
(1− px)γ ≤ γ ≤ max

x
(1− px)γ =

γ

minx E(Tx)
≤ γ.

Proof: The proof of the reversibility and stationarity just requires an easy calculation. For every
x �= y,

π(x)p(x, y) =
π(x)(1− px)

N

p(x, y)

1− px
=

π(x)p(x, y)

N
.

We infer that the left-hand side is symmetric in x and y if and only if the right-hand side is symmetric.
Furthermore, for every y,

N ·
∑
x

π(x)p(x, y) =
∑
x �=y

π(x)p(x, y) + π(y)(1− py)p(y, y)

=
∑
x �=y

π(x)p(x, y) + π(y)(p(y, y)− py)

=
∑
x

π(x)p(x, y)− π(y)py.

Therefore, ∑
x

π(x)p(x, y) = π(y) ⇔
∑
x

π(x)p(x, y)− π(y)py = π(y)(1− py)

⇔
∑
x

π(x)p(x, y) = π(y).

For part (c) let E and E be the Dirichlet forms of M and M . Then we obtain for every f : S → R

E(f) =
1

2

∑
x �=y

(f(x)− f(y))2 π(x)p(x, y) =
1

2N

∑
x �=y

(f(x)− f(y))2 π(x)p(x, y) =
1

N
E(f).

Thus, with Lemma A.2.3, we obtain

γ ≤ 1

N
max
x

Nπ(x)

π(x)(1− px)
γ = max

x

1

1− px
γ,

and, using NE(f) = E(f) for every f and the same lemma,

γ ≤ N max
x

π(x)(1− px)

Nπ(x)
γ = max

x
(1− px)γ.

We note the following special case:

Corollary 6.3.3. Let M and M be two reversible finite Markov chains satisfying (6.12) and
px = p for every x ∈ S. Then

(1− p)γ = γ.
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Hence, the deceleration of a reversible finite Markov chain to a Markov chain by independent geo-
metric sojourn times (Tx)x∈S decreases the spectral gap, in fact by at most the factor (maxx E(Tx))

−1

and at least the factor (minx E(Tx))
−1. This result would be even more satisfactory, if it held for

the relaxation times as well. But unfortunately, all statements above are made for the spectral gap
(or equivalently for λ2), and do not generally hold for the absolute spectral gap (or equivalently λ�)
which defines the relaxation and mixing time. Moreover, the ergodicity (in particular the aperiodic-
ity) of M carries not necessarily over to M . On the other hand, if p(x, x) ≥ 1

2 for every x ∈ S, we
obtain results for the absolute spectral gap without additional work.

Theorem 6.3.4. Let M and M be two reversible finite Markov chains satisfying (6.12) with
p(x, x) ≥ 1

2 for every x ∈ S. Then
min
x

(1− px)γ� ≤ γ�. (6.13)

If additionally p(x, x) ≥ 1
2 for every x ∈ S, then

γ� ≤ max
x

(1− px)γ� ≤ γ�.

Proof: These bounds follow directly from Proposition 6.3.2 by observing γ� = 1−λ� ≤ 1−λ2 = γ in
general, and γ� = γ if minx p(x, x) ≥ 1

2 as well as γ� = γ if minx p(x, x) ≥ 1
2 (Proposition A.2.1).

Remark 6.3.5. (a) Obviously, the above theorem provides also a statement for two different decel-
erated Markovian versions of the same reversible finite Markov chain M : Let (Tx)x∈S and (Sx)x∈S
be to two different families of waiting times with Tx ≤st Sx for every x ∈ S, that is, pTx ≤ pSx for
every x ∈ S. Denote the two decelerated versions by M

S and M
T , and

px :=
pSx − pTx
1− pTx

= 1− 1− pSx
1− pTx

= 1− E(Tx)

E(Sx)
.

The transition probabilities satisfy

px + (1− px)p
T (x, x) =

pSx − pTx
1− pTx

+

(
1− pSx − pTx

1− pTx

)(
pTx + (1− pTx )p(x, x)

)
=

pSx − pTx
1− pTx

(
1− pTx − (1− pTx )p(x, x)

)
+ pTx + (1− pTx )p(x, x)

=
(
pSx − pTx

)
(1− p(x, x)) + pTx (1− p(x, x)) + p(x, x)

= pSx (1− p(x, x)) + p(x, x)

= pSx + (1− pSx )p(x, x)

= pS(x, x)

for every x ∈ S, and

(1− px)p
T (x, y) =

(
1− pSx − pTx

1− pTx

)
(1− pTx )p(x, y) = (1− pSx )p(x, y) = pS(x, y)

for x �= y. Thus, MS is a decelerated version of MT . If pT (x, x) ≥ 1
2 and pS(x, x) ≥ 1

2 for every
x ∈ S, then

min
x

E(Tx)

E(Sx)
γT� = min

x
(1− px)γ

T
� ≤ γS� ≤ max

x
(1− px)γ

T
� = max

x

E(Tx)

E(Sx)
γT� ≤ γT� .

As the two decelerated chains are ergodic due to the positive holding probabilities, this yields that
M

T mixes faster than M
S .
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(b) In the special case where px = p for every x, Equation (6.13) (even without assuming holding
probabilities of at least 1/2) is also a consequence of the convexity of λ� = λ�(P) as a function of P,
giving the second largest eigenvalue in terms of moduli (see [14]). Namely,

λ� = λ�((1− p)P+ pI) ≤ (1− p)λ�(P) + p = (1− p)λ� + p

⇒ γ� = 1− λ� ≥ 1− (1− p)λ� − p = (1− p)(1− λ�) = (1− p)γ�.

The assumption on M having holding probabilities of at least 0.5 is way more restrictive than
the same assumption for M because it completely rules out the case where M is the embedded
jump chain. The main problem with bounding γ� from below by γ� without this assumption is the
possibility of P having negative eigenvalues and λ� = |λn|. This can stand in any relation to λ�,
for example given by (1 − p)λ2 + p in the special case px ≡ p ≥ 0.5. With a trick, we can handle
this problem by passing over to the (2n)th product P2n for an appropriate n. This squared matrix
has only positive eigenvalues so that the absolute spectral gap equals the spectral gap, which in turn
can be related to the spectral gap of P via Dirichlet forms. This relation can be pulled back to the
original absolute spectral gap.

Lemma 6.3.6. Let M be the embedded jump chain of a reversible, ergodic finite Markov chain M
with stationary distribution π and p(x, x) = p ≥ 1

2 for every x ∈ S. Furthermore, let n be the well
defined natural number

n := min
{
m ∈ N|p(2m)(x, y) > 0 for every x �= y with p(x, y) > 0

}
and denote by E(2n) the Dirichlet form of P2n. Then

γ� ≥ 1

2n(1− p)
min

x �=y:p(x,y)>0

p(2n)(x, y)

p(x, y)
γ�.

Proof: In order to determine the Dirichlet form E(2n), we have to identify the associated stationary
distribution. Obviously, if (P, π) is a reversible pair, so is (P, π), by Proposition 6.3.2, and therefore
also (P2n, π). Proceeding to the Dirichlet forms, define the system parameter

C := min
x �=y:p(x,y)>0

p(2n)(x, y)

p(x, y)
,

which is positive due to the finiteness of S and the positivity of p(2n)(x, y) for all x �= y with
p(x, y) > 0. With this, the Dirichlet form E(2n) can be bounded via

E(2n)(f) =
1

2

∑
x �=y

(f(x)− f(y))2π(x)p(2n)(x, y)

≥ 1

2

∑
x �=y,p(x,y)>0

(f(x)− f(y))2π(x)p(x, y)
p(2n)(x, y)

(1− p)p(x, y)

≥ 1

2

∑
x �=y

(f(x)− f(y))2π(x)p(x, y)
C

1− p

= E(f) C

1− p

(6.14)

for any f : S → R. Thus, as before,

γ
(2n)
� = γ(2n) ≥ C

1− p
γ =

C

1− p
γ�
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since P2n and P have only positive eigenvalues. It remains to relate γ
(2n)
� to γ�. For this we use the

fact that λ
(2n)
� = λ2n

� , and therefore

γ� = 1− λ� =
1− λ2n

�∑2n−1
i=0 λi

�

≥ 1

2n
γ
(2n)
� ≥ C

2n(1− p)
γ�.

Using Remark 6.3.5 (a), we can extend Lemma 6.3.6 to a Markov chain M and its embedded
jump chain M , where p(x, x) is not constant. We will reduce this problem to the just solved one by
comparing M with a decelerated version M̃ of M with constant holding probabilities p ≤ minx p(x, x).

Theorem 6.3.7. Let M be the embedded jump chain of a reversible finite chain M with stationary
distribution π and p(x, x) ≥ 1

2 for every x ∈ S. Furthermore, define

n := min
{
m ∈ N|p(2m)(x, y) > 0 for every x �= y with p(x, y) > 0

}
,

C := min
x�=y:p(x,y)>0

p(2n)(x, y)

p(x, y)
,

and let E(2n) be the Dirichlet form of P(2n). Then, with p := minx p(x, x) ≥ 1
2 , it holds true that

γ� ≥ C

2n(1− p)
γ�.

Proof: Let M̃ be the decelerated version of M with holding probabilities p and γ̃� its absolute spectral
gap. Then, by Lemma 6.3.6,

γ� ≥ C

2n(1− p)
γ̃�. (6.15)

With a look at the holding probabilities, we see that p ≤ p(x, x) for every x, which ensures according
to Remark 6.3.5 (a) that γ̃� ≥ γ�. This leads in combination with (6.15) to

γ� ≥ C

2n(1− p)
γ�.

The inequality may be strict when the constant C in the above theorem is too small. This is the
case in Example 6.3.1 with n = 3 and p = 1

2 . There, γ� = 1− λ� = 1
2 , γ� = 1− λ� = 3

4 and C = 1
2 ,

min
{
m ∈ N|p(2m)(x, y) > 0 for every x �= y with p(x, y) > 0

}
= 1. In this case Theorem 6.3.7 only

ensures
(
1
2 =

)
γ� ≥

1
2

2·1· 1
2

· 3
4 = 3

8 .

6.4. Semi-Markovian Decelerated Chains

In this section, we study decelerated versions MT := M not necessarily Markovian but still semi-
Markovian (compare Definition 3.2.1). Note that here (unlike Definition 3.2.1) Tn is not the sojourn
time in the state Mn−1 but in Mn. Hence, we assume the sojourn times to be still conditionally
independent given M and Tn to depend on M only via Mn and Mn+1.
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6.4.1. Independent Sojourn Times

Since the above concepts lose their applicability, we start from scratch in the special case of sojourn
times being independent of M , i.e. (Tn)n≥0 is a family of i.i.d. random variables. We launch this
subsection by verifying that with M also MT has a stationary distribution to which it converges in
total variation whenever ET0 < ∞. To this end we bound the total variation in terms of the tails of
the number of jumps up to time n.

Definition 6.4.1. For a family (Tn)n≥0 of random variables on N>0, define for any n ≥ 0

NT (n) := inf{k ≥ 0|T0 + ...+ Tk > n} = sup{k ≥ 0|T0 + ...+ Tk−1 ≤ n}, sup ∅ = 0.

If MT := M is a by (Tn)n≥0 decelerated version of a finite Markov chain M , than NT (n) is the
number of jumps of MT up to time n.

Although MT is not Markovian, we are able to define a mixing time with respect to the limiting
distribution π by

τM
T

mix (ε) := inf{n ≥ 0| sup
x

dTV (P
MT

k
x , π) ≤ ε for every k ≥ n}, ε > 0.

Lemma 6.4.2. Let M be an ergodic finite Markov chain with respect to π, MT a decelerated version
with i.i.d. sojourn times independent of M , and NT (n) the number of jumps of MT up to time n ≥ 0.
Then π is also stationary for MT and

(a) max
x

dTV (P
MT

n
x , π) ≤ max

x
dTV (P

MK
x , π) + Px(N

T (n) < K) for every 0 ≤ K ≤ n.

(b) τM
T

mix (2ε) ≤ E(T0)
ε τMmix(ε) for every ε > 0 if E(T0) < ∞.

Proof: First, we note that, by the assumed independence, the n-step transition probabilities of MT

are given by

Px

(
MT

n = y
)

=

n∑
k=0

Px

(
Mk = y,NT (n) = k

)
=

n∑
k=0

Px (Mk = y)P
(
NT (n) = k

)
. (6.16)

Therefore,

Pπ

(
MT

n = y
)

=
∑
x

π(x)Px

(
MT

n = y
)

=
∑
x

n∑
k=0

π(x)Px (Mk = y)P
(
NT (n) = k

)
= π(y),

and thus, the stationarity of π.
(a) With this characterization of the transition probabilities, we observe

max
x

dTV (P
MT

n
x , π) = max

x

1

2

∑
y

∣∣Px(M
T
n = y)− π(y)

∣∣
= max

x

1

2

∑
y

∣∣∣∣∣
n∑

k=0

Px(Mk = y)P(NT (n) = k)− π(y)

∣∣∣∣∣
= max

x

1

2

∑
y

∣∣∣∣∣
n∑

k=0

(Px(Mk = y)− π(y))P(NT (n) = k)

∣∣∣∣∣
≤ max

x

1

2

∑
y

n∑
k=0

|Px(Mk = y)− π(y)|P(NT (n) = k)

=
n∑

k=0

max
x

dTV (P
Mk
x , π)P(NT (n) = k).
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Finally noting that, for every n ≥ 0,

dTV (P
Mn+1
x , π) ≤ dTV (P

Mn
x , π),

we infer
max
x

dTV (P
MT

n
x , π) ≤ P(NT (n) < K) + max

x
dTV (P

MK
x , π)

for every K ≤ n.
(b) In particular, for K = τMmix(ε) ≤ n we find

P(NT (n) < K) = P
(
T0 + . . .+ TτMmix(ε)−1 > n

)
≤

E
(
T0 + . . .+ TτMmix(ε)−1

)
n

≤ τMmix(ε)

n
E(T0),

which is less than or equal to some ε ∈ (0, 1], if

n ≥ E(T0)

ε
τMmix(ε).

Thus, for such n,

max
x

dTV (P
MT

n
x , π) ≤ P(NT (n) < τMmix(ε)) + max

x
dTV (P

M
τM
mix

(ε)

x , π) ≤ 2ε,

which finishes the proof.

In particular, this proves that the total variation of P
MT

n
x and π vanishes as n goes to ∞. This

first bound is yet very rough and we can give a better one making use of the coupling method. For
the existence of a maximal coupling of two random processes X and Y with dTV (P

Xn
x ,PYn

y ) → 0
as n → ∞ see [27, Theorem 3.3] or [28, Theorem 4]. If a maximal coupling is given by a bivariate
process (X1, X2), then its coupling time is defined as

inf
{
n ≥ 0|X1

m = X2
m for every m ≥ n

}
.

Proposition 6.4.3. Let M be a reversible, ergodic finite Markov chain with respect to π and
MT a decelerated version with i.i.d. sojourn times independent of M . Then, for every x ∈ S,
there exists a maximal coupling of PM

x and π∞ with coupling time T x
C(M),max. Every coupling time

T x
C(M),max, x ∈ S, has a finite second moment and

τM
T

mix (ε) ≤ E(T0)

ε

(
τMmix(ε) + max

x

√
εE(T x

C(M),max)
2
)

for every ε > 0.

Note that

τMmix(ε) + max
x

√
εE(T x

C(M),max)
2 = τMmix(ε) + o(1)

as ε → 0.

Proof: Since M is ergodic, λ� is bounded away from 1. Therefore, there exists ε > 0 with λ� + ε < 1
and N ∈ N such that (

max
x∈S

dTV (P
Mn
x , π)

) 1
n

≤ λ� + ε
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for every n ≥ N . This further implies

E((T x
C(M),max)

2) =
∑
n≥0

(2n+ 1)P(T x
C(M),max > n)

=
∑
n≥0

(2n+ 1)dTV (P
Mn
x , π)

≤
N−1∑
n=0

(2n+ 1)dTV (P
Mn
x , π) +

∑
n≥N

(2n+ 1)(λ� + ε)n

< ∞

by the generalized ratio test. For the decelerated process, the bound

dTV (P
MT

n
x , π) ≤ P(T x

C(MT ) > n)

holds true for every coupling of PMT

x and π∞ with coupling time T x
C(MT )

. We choose the following
one: the waiting times of the two marginals are exactly the same ones (distributed like T0) and the
coupling of the visited states is the maximal coupling of PM

x and π∞ above. More precisely, let Qx

be the maximal coupling of PM
x and π∞, that is,

Qx({(yn)n≥0} × SN) = Px(M = (yn)n≥0)

Qx(SN × {(zn)n≥0}) = Pπ(M = (zn)n≥0)

for each {(yn)n≥0}, {(zn)n≥0} ∈ SN. Then the described coupling of PMT

x and π∞ is a measure QT
x

with

QT
x ({y} × {z}) = Qx

({y′} × {z′}) · P ((Tn)n≥0 = t)1{t=s}

for every

y = (y0,..., y0︸ ︷︷ ︸
t0 times

, y1,..., y1︸ ︷︷ ︸
t1 times

,...), z = (z0,..., z0︸ ︷︷ ︸
s0 times

, z1,..., z1︸ ︷︷ ︸
s1 times

,...)

with induced jumps y′ = (y0,y1,...), z′ = (z0,z1,...) and sojourn times t = (t0, t1,...) and s = (s0, s1,...).
Because of the assumed independence, QT

x satisfies

QT
x ({y} × SN) = Px(M = y′)P((Tn)n≥0 = t) = Px(Mn = yn, Tn = tn, n ≥ 0) = Px(M

T = y)

and

QT
x (SN × {z}) = Pπ(M = z′)P((Tn)n≥0 = s) = Pπ(Mn = zn, Tn = sn, n ≥ 0) = Pπ(M

T = z).

Thus, it is a coupling of PMT

x and π∞. Its coupling time T x
C(MT )

is given by

T x
C(MT ) =

Tx
C(M),max

−1∑
i=0

Ti a.s. (6.17)
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Therefore, again using the independence, we can bound the total variation by

dTV (P
MT

n
x , π) ≤ P

⎛⎝Tx
C(M),max

−1∑
i=0

Ti > n

⎞⎠
=

∑
k≥1

P

(
k−1∑
i=0

Ti > n, T x
C(M),max = k

)

=
∑
k≥1

P

(
k−1∑
i=0

Ti > n

)
P(T x

C(M),max = k)

≤ E(T0)

n

∑
k≥1

kP(T x
C(M),max = k)

=
E(T0)

n
E(T x

C(M),max).

Written in terms of the mixing time, this gives

τM
T

mix (ε) ≤ E(T0)

ε
max
x

E(T x
C(M),max). (6.18)

The remainder of the proof is to express the right-hand side of Equation (6.18), that is, the moments
of T x

C(M),max, in terms of the mixing time of M . By the formulas derived in [51, Equation (10)]
and already used in Section 2.2, we can bound the tail probabilities of the coupling time for n ≤
E(T x

C(M),max) by

dTV (P
Mn
x , π) = P(T x

C(M),max > n) ≥
(
ET x

C(M),max − n
)2

E(T x
C(M),max)

2
,

which is larger than some ε > 0 if

E(T x
C(M),max)−

√
εE(T x

C(M),max)
2 ≥ n.

This yields
τMmix(ε) ≥ E(T x

C(M),max)−
√
εE(T x

C(M),max)
2

for every ε > 0 and every x. Via insertion in equation (6.18), we obtain

τM
T

mix (ε) ≤ E(T0)

ε
max
x

E(T x
C(M),max) ≤ E(T0)

ε

(
τMmix(ε) + max

x

√
εE(T x

C(M),max)
2
)

for every ε > 0.

The above proof can not be generalized to waiting times depending on M due to the unavailability
of this specific coupling. When the waiting times of the two marginals have different distributions,
the jumps occur at different times. Equation (6.17) (or a sufficient version with “≤” instead of “=”),
which is the main ingredient of the proof, would no longer be valid. A typical trajectory of the
coupling process (X,X ′) would look like in Figure 6.2 where the embedded jump chain couples at
time 1, but the decelerated version couples at time s0 + s1, which is larger than both sojourn times
in the initial states.
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X

X ′

t0 t0 + t1 s0 s0 + s1 s0 + s1 + s2
= t0 + t1 + t2

Figure 6.2.: Typical trajectory of a coupling process (X,X ′) with different sojourn times (t0, t1,...
and s0, s1,...) in the two marginals.

Nor did we find a corresponding coupling for the other direction, that is, starting with a maximal
coupling of PMT

x and π∞ with coupling time TC(MT ),max, a coupling of PM
x and π∞ with coupling

time T x
C(M) that satisfies

ET x
C(M) · ET0 ≤ ET x

C(MT ),max,

the integrated version of Equation (6.17).

As mentioned before, the concepts of the previous section can not be applied without further ado.
Nevertheless, the spectrum of (Px(M

T
n = y))x,y is still linked with the mixing time as we will see.

Again, we restrict ourselves to embedded processes with λ� = λ2 > 0 for the same reasons as before,
once more illustrated by an example later on.

Proposition 6.4.4. Let M be an ergodic, reversible finite Markov chain with respect to π that
satisfies λ� = λ2 > 0 and MT a decelerated version with i.i.d. sojourn times independent of M . Then
π(x)Px(M

T
n = y) = π(y)Py(M

T
n = x) for every x, y and each n ≥ 0. Moreover, define

λT,n
� := max

{|λ| < 1|λ is eigenvalue of (Px(M
T
n = y))x,y

}
.

(a) For every n ≥ 0 with P(T0 ≤ n) > 0,

λT,n
�

2
≤ max

x
dTV (P

MT
n

x , π) ≤ λT,n
�

πmin
,

where πmin := minx π(x). That is, if limn→∞
n

√
λT,n
� exists and is less than 1, then it is the

geometric rate of convergence of the law of MT
n towards its stationary distribution as n → ∞.

(b) For every n ≥ 0,

λT,n
� = E(λ

NT (n)
� ) ≥ λn

� .

That is, n

√
λT,n
� ≥ λ�, which is the rate of convergence of the law of M towards its stationary

distribution.
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Proof: The reversibility is an easy consequence of equation (6.16), namely

π(x)Px(M
T
n = y) =

n∑
k=0

π(x)Px(Mk = y)P(NT (n) = k)

=
n∑

k=0

π(y)Py(Mk = x)P(NT (n) = k)

= π(y)Py(M
T
n = x).

(a) Fix n ≥ 0 with P(T0 ≤ n) > 0 and define the transition matrix

Q := (Px(M
T
n = y))x,y.

It is reversible with respect to π and has second largest eigenvalue (in modulus) λT,n
� . Furthermore, it

is irreducible and aperiodic. For this to see, choose, first, k ∈ N with Px(Mk′ = y) > 0 for every k′ ≥ k
and any x, y (which exists by the ergodicity of M) and, second, m := max{m′ ≤ n|P(T0 = m′) > 0}.
Then n = k′′m+ l for some k′′ ≥ 1 and l < m, and

Q(k′)(x, y) =
∑

x1,...,xk′−1

Px(M
T
k′′m+l = x1)Px1(M

T
k′′m+l = x2) · ... · Pxk′−1

(MT
k′′m+l = y)

≥
∑

x1,...,xk′−1

Px(Mk′′ = x1)Px1(Mk′′ = x2) · ... · Pxk′−1
(Mk′′ = y) · P(T0 = m)k

′(k′′+1)

≥ Px(Mk′k′′ = y)P(T0 = m)k
′(k′′+1)

> 0

for every k′ ≥ k and any x, y. Hence, any pair x, y is connected and returns to any x are possible
at times k, k + 1,..., ensuring the ergodicity. Now part (a) is a consequence of results from Chapter
12.2 in [39]. There,∣∣∣∣P(x, y)

ρ(y)
− 1

∣∣∣∣ ≤ λ�

ρmin
and λ� ≤ max

x

∑
y

|P(x, y)− ρ(y)|

is proved for every reversible and ergodic finite Markov chain with transition matrix P, stationary
distribution ρ, second largest eigenvalue λ� (in modulus) and each x, y. Applying this to Q, the first
assertion follows by

dTV (P
MT

n
x , π) =

∑
y:Q(x,y)>π(y)

π(y)

(
Q(x, y)

π(y)
− 1

)
≤ max

y

∣∣∣∣Q(x, y)

π(y)
− 1

∣∣∣∣ ≤ λT,n
�

πmin

for any x ∈ S, and the second by

λT,n
�

2
≤ 1

2
max
x

∑
y

|Q(x, y)− π(y)| = max
x

dTV (P
MT

n
x , π).

For part (b), we have seen in (6.16) that the matrix (Px(M
T
n = y))x,y can be written as a weighted

sum of powers of P with (P(NT (n) = k)0≤k≤n) being the weights. Thus, if λ is an eigenvalue of P,
then

n∑
k=0

P(NT (n) = k)λk = E(λNT (n))

is an eigenvalue of (Px(M
T
n = y))x,y. By assumption, λ� = λ2 > 0, and therefore the second largest

eigenvalue of this matrix is E(λ
NT (n)
� ), which is larger than λn

� since NT (n) ≤ n a.s.
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For the special case of almost surely constant sojourn times we obtain:

Corollary 6.4.5. Let M be an ergodic, reversible finite Markov chain with respect to π that
satisfies λ� = λ2 > 0 and MT a decelerated version with sojourn times Tn ≡ k a.s. for every n ≥ 0

and some k ∈ N. Then NT (n) =
⌊
n
k

⌋
a.s., and therefore λT,n

� = λ
�n/k�
� and

(
max
x

dTV (P
MT

n
x , π)

)1/n n→∞−→ λ
1/k
� .

So in fact, just as in Section 6.3, the mixing performance of the decelerated process is decelerated
when λ� = λ2, for example, if M is lazy. Compared with Example 6.3.1, we have good general insight
in this necessary condition here, as without it we would lose control of λT,n

� = maxλ �=1

∣∣∣E(λNT (n))
∣∣∣.

Example 6.4.6. We take another look at the Markovian case. The sojourn times are independent
Geo(1− p) variables, so that T0 + . . .+ Tk − (k + 1) ∼ NB(k + 1, 1− p), k ≥ 1. This yields

P(NT (n) = 0) = P(T0 > n) = pn,

and for 1 ≤ k ≤ n,

P(NT (n) = k) = P(T0 + . . .+ Tk−1 ≤ n < T0 + . . .+ Tk)

=
n∑

i=k

P(T0 + . . .+ Tk−1 = i, Tk > n− i)

=

n∑
i=k

P(T0 + . . .+ Tk−1 = i)P(Tk > n− i)

=

n∑
i=k

(
i− 1

i− k

)
(1− p)kpi−kpn−i

=

n−k∑
i=0

(
i+ k − 1

i

)
(1− p)kpn−k

=

(
n

k

)
(1− p)kpn−k,

where the last equality can be proved via induction for n ≥ k. This proves NT (n) ∼ B(n, 1 − p),
with moment generating function

E(λNT (n)) = (λ(1− p) + p)n.

Therefore, λ� =
n

√
λT,n
� = maxλ �=1(λ(1− p) + p), where the maximum ranges over the eigenvalues of

M . As in Example 6.3.1, we observe that, given λ�, p has to be suitably chosen to for λ� ≥ λ�.

In order to give bounds on the mixing time, we have to bound the limit of the rates n

√
λT,n
� , the

existence of which is not clear in general. The above example disproves this rates to converge against
λ
1/E(T0)
� in general.

Proposition 6.4.7. Let M be an ergodic, reversible finite Markov chain with respect to π that sat-
isfies λ� = λ2 > 0 and MT a decelerated version with i.i.d. and integrable sojourn times independent
of M .
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(a) It holds true that

lim inf
n→∞

n

√
λT,n
� ≥ λ

1
E(T0)
� and lim inf

ε→0

τM
T

mix (ε)

τMmix(ε)
≥ E(T0).

(b) If E(aT0) < ∞ for some a > 1 with E(aT0−E(T0)/(1−δ)) < λ� for some δ ∈ (0, 1), then

lim sup
n→∞

n

√
λT,n
� ≤ λ

(1−δ)/E(T0)
� and lim sup

ε→0

τM
T

mix (ε)

τMmix(ε)
≤ E(T0)

1− δ
.

Proof: We note for both parts that, by Proposition A.2.1 (b),

λ
1+δ(N)
� ≤ max

x
dTV (P

Mn
x , π)

1
n ≤ λ

1−δ(N)
�

for any n ≥ N and some δ(N) such that δ(N) → 0 as N → ∞. Thus, for n ≥ N ,

max
x

dTV (P
Mn
x , π) ≤ λ

n(1−δ(N))
� ≤ ε if n ≥ ln(ε)

ln(λ�)
· 1

1− δ(N)
,

max
x

dTV (P
Mn
x , π) ≥ λ

n(1+δ(N))
� ≥ ε if n ≤ ln(ε)

ln(λ�)
· 1

1 + δ(N)
.

Note that for any ε > 0 there is some N1 := N1(ε) such that

ln(ε)

ln(λ�)
· 1

(1 + δ(N1))
≥ N1

and N1(ε) → ∞ as ε → 0. This yields for ε → 0

τMmix(ε)

⎧⎪⎪⎨⎪⎪⎩
≤ ln(ε)

ln(λ�)
· 1

1− δ(N1(ε))

≥ ln(ε)

ln(λ�)
· 1

1 + δ(N1(ε))

=
ln(ε)

ln(λ�)
· 1

1 + o(1)
. (6.19)

Turning to (a), it is known from renewal theory that

n

NT (n)
≤ T0 + . . .+ TNT (n)

NT (n)
→ E(T0) a.s.

n

NT (n)
≥ T0 + . . .+ TNT (n)−1

NT (n)
→ E(T0) a.s.,

and thus 1
nN

T (n) → E(T0)
−1 a.s. as n → ∞. Using this, a lower bound on lim infn→∞

n

√
λT,n
� is

given by an application of Jensen’s Inequality and Fatou’s Lemma, viz.

lim inf
n→∞

n

√
λT,n
� = lim inf

n→∞
n

√
E(λ

NT (n)
� ) ≥ lim inf

n→∞ E(λ
NT (n)/n
� ) ≥ λ

1
E(T0)
� > 0.

Now, for any ε > 0,

max
x

dTV (P
MT

n
x , π) ≥ 1

2
λT,n
� > ε if P(T0 ≤ n) > 0 and n <

ln(2ε)

ln

(
n

√
λT,n
�

)
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by Proposition 6.4.4. Therefore, denote by N2 := N2(ε) the smallest n ∈ N violating this, that is,

N2 := min

⎧⎪⎪⎨⎪⎪⎩n ≥ 1

∣∣∣∣∣P(T0 ≤ n) > 0, and n ≥ ln(2ε)

ln

(
n

√
λT,n
�

)
⎫⎪⎪⎬⎪⎪⎭ ,

which is finite since maxx dTV (P
MT

n
x , π) → 0 as n → ∞. Choose δ := δ(ε) large enough to ensure

N2

√
λT,N2
� ≥ λ

(1+δ)/E(T0)
� , and observe that δ(ε) tends to 0 as ε tends to 0. Then

τM
T

mix (ε) ≥ N2 ≥ ln(2ε)

ln

(
N2

√
λT,N2
�

) ≥ ln(2ε)

ln

(
λ

1+δ
E(T0)
�

) =
E(T0)

1 + δ
· ln(2ε)
ln(λ�)

=
E(T0)

1 + δ
τMmix(ε)(1 + o(1)) +O(1)

and therefore,

lim inf
ε→0

τM
T

mix (ε)

τMmix(ε)
≥ E(T0).

Part (b) can be proved by giving an upper bound for the limes superior of the sequence of roots
of eigenvalues. But first we prove the following technical assertion which we will need thereafter:
If (an)n≥0 and (bn)n≥0 are two positive sequences with lim supn→∞ n

√
an ≤ a, lim supn→∞

n
√
bn ≤ a,

then lim supn→∞
n
√
an + bn ≤ a. To see this, take some arbitrary ε > 0 and N ∈ N large enough to

ensure n
√
an ≤ (1 + ε)a and n

√
bn ≤ (1 + ε)a for any n ≥ N . Then it holds true for n ≥ N that

n
√
an + bn ≤ n

√
2(1 + ε)a → (1 + ε)a

as n → ∞. For the lower bound, take ε < 0.
Writing

C(n) :=

⌊
n(1− δ)

E(T0)

⌋
,

under the given assumptions, we obtain with the exponential Chebychev Inequality

P
(
T1 + ...+ TC(n) > n

) ≤ E
(
aT1+...+TC(n)

)
an

≤ E
(
aT0

)C(n)
a−n

and

n

√
P
(
T1 + ...+ TC(n) > n

) ≤ E
(
aT0

) 1
n
C(n)

a−1

n→∞−→ E
(
aT0

)(1−δ)/E(T0)
a−1

= E
(
aT0−E(T0)/(1−δ)

)(1−δ)/E(T0)

≤ λ
(1−δ)/E(T0)
� .

Furthermore, lim supn→∞ λ
C(n)/n
� = λ

(1−δ)/E(T0)
� . Thus, using the special structure of NT (n), we
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obtain

lim sup
n→∞

n

√
E
(
λ
NT (n)
�

)
= lim sup

n→∞
n

√
E
(
λ
NT (n)
� 1{NT (n)<C(n)} + λ

NT (n)
� 1{NT (n)≥C(n)}

)
≤ lim sup

n→∞
n

√
P (NT (n) < C(n)) + λ

C(n)
�

= lim sup
n→∞

n

√
P
(
T1 + . . .+ TC(n) > n

)
+ λ

C(n)
�

= λ
(1−δ)/E(T0)
� .

Similar to part (a), for any given ε > 0,

max
x

dTV (P
MT

n
x , π) ≤ λT,n

�

πmin
< ε if P(T0 ≤ n) > 0 and n >

ln(επmin)

ln

(
n

√
λT,n
�

) .

Therefore, denote now by N3 := N3(ε) the largest n ∈ N violating this inequality, that is,

N3 := max

⎧⎪⎪⎨⎪⎪⎩n ≥ 1

∣∣∣∣∣P(T0 ≤ n) > 0, and n ≤ ln(πminε)

ln

(
n

√
λT,n
�

)
⎫⎪⎪⎬⎪⎪⎭ .

Since n

√
λT,n
� is bounded away form 1 and 0 as n → ∞, the above set is nonempty for sufficiently small

ε and the maximum exists. Choose δ2 := δ2(ε) large enough to ensure N3

√
λT,N3
� ≤ λ

(1−δ−δ2)/E(T0)
� ,

and observe that δ2(ε) tends to 0 as ε tends to 0. Then

τM
T

mix (ε) ≤ N3 + 1 ≤ ln(πminε)

ln

(
N3

√
λT,N3
�

) + 1 ≤ ln(πminε)

ln
(
λ
(1−δ−δ2)/E(T0)
�

) + 1

=
E(T0)

1− δ − δ2

ln(πminε)

ln(λ�)
+ 1

=
E(T0)

1− δ − δ2
τMmix(ε)(1 + o(1)) +O(1),

and therefore, proving the remaining part of (b),

lim sup
ε→0

τM
T

mix (ε)

τMmix(ε)
≤ E(T0)

1− δ
.

Again regarding the special case of almost surely constant sojourn times equal to k ∈ N, we find
with the same arguments that

lim
ε→0

τM
T

mix (ε)

τMmix(ε)
= k.

If the condition λ� = λ2 > 0 is violated, one can still hope for MT being also a decelerated version
of some M̃ , where M̃ is a decelerated version of M and Markovian, satisfying the condition above -
for example M̃ being a lazy version of M . Then a combination of the above proposition and Theorem
6.3.7 provides a relation between the mixing times of M and MT .

In other cases, a simplification may be achieved by changing the family of sojourn times for the
deceleration. How this affects the spectral gap is content of the following easy corollary.
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Corollary 6.4.8. Let M be an ergodic, reversible finite Markov chain with respect to π that
satisfies λ� = λ2 > 0. If (Tn)n≥0 and (Sn)n≥0 are two families of waiting times, both independent of
M with T0 ≤st S0, then

λT,n
� ≤ λS,n

� .

Thus, the process decelerated by the stochastically smaller waiting times mixes faster than the
process decelerated by the stochastically larger waiting time.

Proof: Via standard calculations (see e.g. Corollary A.2 in [2]) we obtain

λT,n
� = E(λ

NT (n)
� )

= 1− (1− λ�)
∑
k≥0

λk
�P(N

T (n) > k)

= 1− (1− λ�)
∑
k≥0

λk
�P(T0 + ...+ Tk ≤ n)

≤ 1− (1− λ�)
∑
k≥0

λk
�P(S0 + ...+ Sk ≤ n)

= λS,n
� .

6.4.2. General Sojourn Times

Having studied sojourn times independent of the jump chain to some extent so far, we want to
proceed with the more general case when the sojourn times depend on M in such a way that MT

is a semi-Markov chain. Providing M is ergodic, MT is aperiodic and the sojourn times have finite
moments, there is still a convergence to a distribution πT ,

Px

(
MT

n = y
) n→∞−→ πT (y) =

π(y)Ey (T0)

Eπ(T0)
, (6.20)

where Eπ(T0) =
∑

x∈S π(x)Ex(T0) is the normalization constant (see [6, Chapter 4]). This limiting
distribution is no longer stationary, that is,

P
MT

n

πT �= πT , n ≥ 1,

in general. Es a simple example, regard the random walk M on {1, 2, 3} without loops and sojourn
times Ti ≡ i for the states i ∈ {1, 2, 3}. But, as (MT

n , T0 + ... + TNT (n) − n)n≥0 is a homogeneous
Markov chain with stationary distribution μ(x, s) = πT (x)Px(T0 ≥ s)/Ex(T0), x ∈ S, s ≥ 1 (see
Lemma A.3.2),

PMT
n

μ = πT for every n ≥ 0.

This reveals that stationarity can only be achieved when specifying also the residual sojourn times
T0+ ...+TNT (n)−n. The distribution of this residual sojourn time must equal the biased distribution
of TNT (n).

For every fixed y, the convergence in Equation 6.20 is a consequence of Blackwell’s renewal theorem
for delayed renewal processes (see [1, Theorem 2.4.1]), applied to the renewal process which counts
the occurrences of the state y ∈ S (resp. the Markov Renewal Theorem [1, Theorem 9.2.6]). In
[41, Chapter II. (p. 30)], Lindvall argues that the convergence in Blackwell’s renewal theorem is
exponentially fast with rate at most ρ < 1 if for the i.i.d. renewal times (Sn)n≥1, the delay waiting

99



6 Comparison of Mixing Times

time S0 and a random variable S′
0 with the biased distribution P(S′

0 = k) = 1
E(S1)

P(S1 > k), k ≥ 0,
the respective exponential moments

E
(
ρ−S1

)
, E

(
ρ−S0

)
and E

(
ρ−S′

0

)
are finite. For the specific delayed renewal process used for the convergence of the distribution of
MT , the i.i.d. renewal times are given by the recurrence times of the fixed state y and the delay
waiting time equals the time needed to reach y from the initial state x. Therefore, we conclude the
following conditions for geometric ergodicity of MT .

Proposition 6.4.9. Let MT be an irreducible and aperiodic semi-Markov chain with ergodic em-
bedded Markov chain M . For every x ∈ S define

τx := inf {n ≥ 1|Mn = x} and τTx := T0 + ...+ Tτx−1.

If maxr,s Er

(
ρ−T0 |M1 = s

)
< ∞ for some ρ < 1 and Ex

(
maxr,s Er(ρ

−T0 |M1 = s)τy
)
< ∞ for every

x, y ∈ S, then
Px

(
MT

n = y
)− πT (y) = o(ρn)

for every x, y ∈ S.

Proof: Fix x, y ∈ S and let θTy be a random variable on N0 with the size biased distribution of τTy
that is given by P(θTy = k) = P(τTy > k)/E(τTy ), k ≥ 0. In view of the previous remarks, it remains
to show that the hitting times τTy under Px (delay), the hitting times τTy under Py (renewal times),
and the biased version θTy under Py have finite exponential moments, that is,

Ex

(
ρ−τTy

)
∨ Ey

(
ρ−τTy

)
< ∞ and Ey

(
ρ−θTy

)
=

∑
k≥0

ρ−k 1

Ey(τTy )
Py

(
τTy > k

)
< ∞.

Assuming for the moment the existence of the exponential moment of τTy under Py, its first moment
is finite as well. Furthermore,∑

l≥1

l−1∑
k=0

ρ−kPy

(
τTy = l

)
=

∑
l≥1

ρ−l − 1

ρ−1 − 1
Py

(
τTy = l

)
possesses the summable majorant f(l) = ρ−lPy

(
τTy = l

)
/(ρ−1 − 1), as∑

l≥1

ρ−l

ρ−1 − 1
Py

(
τTy = l

)
=

1

ρ−1 − 1
Ey

(
ρ−τTy

)
< ∞.

We conclude that

∞ >
∑
l≥1

l−1∑
k=0

ρ−kPy

(
τTy = l

)
=

∑
k≥0

∑
l>k

ρ−kPy

(
τTy = l

)
=

∑
k≥0

ρ−kPy

(
τTy > k

)
.

But the assumed existence of the exponential moment of τTy under Px and Py is easily proved by

Ez

(
ρ−τTy

)
= Ez

(
Ez

(
ρ−(T0+...+Tτy−1)|M

))
= Ez

⎛⎝τy−1∏
i=0

Ez

(
ρ−Ti |Mi,Mi+1

)⎞⎠
≤ Ez

(
max
r,s

Er(ρ
−T0 |M1 = s)τy

)
< ∞,

where z is either x or y.
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Hence, there is geometric ergodicity if the sojourn distributions are suitably chosen, but the ob-
tained rate is far from being optimal. Nevertheless, in analogy to Corollary 6.4.8, for two families of
sojourn times (Tn)n≥0 an (Sn)n≥0 with Px(T0 ≤ n|M1 = y) ≥ Px(S0 ≤ n|M1 = y) for every x, y ∈ S,

Ex(ρ
−T0 |M1 = y) ≤ Ex(ρ

−S0 |M1 = y)

for every x, y ∈ S and ρ < 1. Thus, the finiteness of these moments for the sojourn times (Sn)n≥0

ensures the finiteness of these moments for the sojourn times (Tn)n≥0. Moreover, it ensures the
geometric ergodicity of MT as well as an upper bound for the rate of this convergence, given the
aperiodicity of MT and Ex

(
maxy,z Ey(ρ

−S0 |M1 = z)τy
)
< ∞ for every x, y ∈ S.

In addition to the above convergence performance which hearkens back on Blackwells renewal
theorem, we can also use the Markov chain (MT

n , T0+ ...+TNT (n)−n)n≥0 to obtain convergence rate
results.

Lemma 6.4.10. Let MT be a semi-Markov chain with integrable sojourn times (Tn)n≥0, limiting
distribution πT and embedded Markov chain M with stationary distribution π. Let as before μ(x, s) =
πT (x)Px(T0 ≥ s)/Ex(T0), x ∈ S, s ≥ 1, and write μ0,x := δx ⊗ PT0

x , x ∈ S, as well as Sn :=
T0 + ...+ TNT (n), n ≥ 0. Then, for every n ≥ 0,

dTV (P
MT

n
x , πT ) ≤ dTV (P

(MT
n ,Sn−n)

μ0,x
, μ).

Proof: Specifying the remaining sojourn time Sn − n for every n ≥ 0 yields

dTV (P
MT

n
x , πT ) =

1

2

∑
y

∣∣∣∣∣∣
∑
s≥1

Px(M
T
n = y, Sn − n = s)− πT (x)

Ex(T0)
Px(T0 ≥ s)

∣∣∣∣∣∣
≤ 1

2

∑
x

∑
s≥1

∣∣Pμ0,x(M
T
n = x, Sn − n = s)− μ(x, s)

∣∣
= dTV (P

(MT
n ,Sn−n)

μ0,x
, μ).

6.5. Aggregated Processes

We return to our model and the problem of relating the mixing time of the original chain X and the
aggregated resp. accelerated aggregated chains Y

(i) resp. Y (i). It is intuitively clear that the mixing
time is not much affected by aggregating only very few states. So, for small i, we expect the processes
Y

(i) and X to have almost the same mixing times. But by aggregating more and more states, this
strong relation will decrease until at aggregation level i = n the mixing time of Y (n) is 1. This proves
the behavior of the mixing time to depend strongly on i.

In the following, fix some 1 ≤ i ≤ n and write Y := Y (i), Y := Y
(i) and V (m) := V (i)(m) for

m ∈ S(i) for ease of notation.

6.5.1. The AAC

We start by giving explicit bounds on the mixing time of the AAC in terms of the mixing time of X,
the first being expected to be smaller than the latter because the time is accelerated. As explained
at the beginning of this chapter, we want to use that Y and the embedded jump chain Z of the hit
chain Z on S(i) do not differ much for large β. We formalize this as follows:
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Lemma 6.5.1. For every ε > 0 and every n ≥ 1, there exists some β large enough such that
maxm∈S(i) dTV (P

Yn
m ,PZn

m ) ≤ ε.

Proof: To bound the total variation, we first bound the difference between the transition probabilities
of Y and Z. By Theorem 2.1.3,

Pr(Y1 = s, σ2 < τs) ≤
∑

x∈V (s)

Px(σ1 < τs)
β→∞−→ 0

for every r, s ∈ S(i). Furthermore,

Pr(Z1 �= Y1) =
∑

x∈N (r)\N(i)

Pr(Xσ1 = x)Px(σ1 < τm(x))
β→∞−→ 0

for r ∈ N (i) and Pr(Z1 �= Y1) = 0 for r ∈ S(i)\N (i). Therefore,

Pr(Y1 = s) = Pr(Y1 = s, σ2 < τs) + Pr(Y1 = s, σ2 > τs)

≤ o(1) + Pr(Z1 = s),

Pr(Z1 = s) = Pr(Z1 = s = Y1) + Pr(Z1 = s �= Y1)

≤ Pr(Y1 = s) + Pr(Z1 �= Y1)

= Pr(Y1 = s) + o(1),

as β tends to infinity. Using the results of Section 3.2, we further infer

Pm(Yk = s|Yk−1 = r) =
∑

x∈V (r)

Pm(Yk = s|Xσk−1
= x)Pm(Xσk−1

= x)

Pm(Yk−1 = r)

=
∑

x∈V (r)

(Pr(Y1 = s) + o(1))Pm(Xσk−1
= x)

Pm(Yk−1 = r)

= Pr(Y1 = s) + o(1)

= Pr(Z1 = s) + o(1)

as β → ∞ for every m, s ∈ S(i), k ≥ 1 and r ∈ S(i) with Pm(Yk−1 = r) > 0. Hence, there exists some
β large enough such that

|Pm(Yk = s|Yk−1 = r)− Pr(Z1 = s)| ≤ 2ε

n|S(i)| (6.21)

for any 1 ≤ k ≤ n. This yields

max
r:Pm(Yk−1=r)>0

∑
s

|Pm(Yk = s|Yk−1 = r)− Pr(Z1 = s)| ≤ 2ε

n

for every 1 ≤ k ≤ n and β large enough (depending on ε and n). With this and in consideration of
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Pm(Yk−1 = r) > 0 if and only if Pm(Zk−1 = r) > 0, we find

dTV (P
Yk
m ,PZk

m )

=
1

2

∑
s

|Pm(Yk = s)− Pm(Zk = s)|

=
1

2

∑
s

∣∣∣ ∑
r:Pm(Yk−1=r)>0

Pm(Yk = s|Yk−1 = r)Pm(Yk−1 = r)

− Pm(Zk = s|Zk−1 = r)Pm(Zk−1 = r)
∣∣∣

≤ 1

2

∑
r:Pm(Yk−1=r)>0

∑
s

Pm(Yk = s|Yk−1 = r)|Pm(Yk−1 = r)− Pm(Zk−1 = r)|

+
1

2

∑
r:Pm(Yk−1=r)>0

∑
s

Pm(Zk−1 = r)|Pm(Zk = s|Zk−1 = r)− Pm(Yk = s|Yk−1 = r)|

≤ 1

2

∑
r:Pm(Yk−1=r)>0

|Pm(Yk−1 = r)− Pm(Zk−1 = r)|

+
1

2
max

r:Pm(Yk−1=r)>0

∑
s

|Pm(Zk = s|Zk−1 = r)− Pm(Yk = s|Yk−1 = r)|

≤ dTV (P
Yk−1
m ,P

Zk−1
m ) +

ε

n

for any 1 ≤ k ≤ n. In conclusion,

dTV (P
Yn
m ,PZn

m ) ≤ dTV (P
Yn−1
m ,PZn−1

m ) +
ε

n
≤ ... ≤ ε

for every m ∈ S(i).

Since the processes Y and Z behave quite similar as β → ∞, so do the limiting distributions.
For results on the mixing time, we identify these limiting distributions and specify their distance.
Let π∗ be the stationary distribution of Z, which is an irreducible Markov chain and aperiodic if
Pm(Z2 = m′) > 0 for every pair (m,m′) with Pm(Z1 = m′) > 0. This ensures the existence of and
convergence to π∗. From Lemma A.2.4 we know that π(·)/π(S(i)) is the stationary distribution of
Z, and thus, by Proposition 6.3.2 (a),

π∗(m) =
1

K
π(m)

(
1− Pm(Z1 = m)

)
, m ∈ S(i),

where K is the normalization constant. More precisely, we have for m ∈ N (i)

π(m)
(
1− Pm(Z1 = m)

)
= π(m) (1− p(m,m)−R(m)) ,

where

R(m) := Pm

(
X1 ∈ V (m′) for some m′ ∈ S(i)\N (i), τm′ > ζ0, Xζ0 = m

)
→ 0
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as β → ∞, and for m ∈ S(i)\N (i)

π(m)(1− Pm(Z1 = m))

= π(m)p(m,N (i)) +
∑
n≥1

∑
x1,...,xn∈V (m)\{m}

∑
x∈N(i)

π(m)p(m,x1) · ... · p(xn, x)

= π(m)p(m,N (i)) +
∑
n≥1

∑
x1,...,xn∈V (m)\{m}

∑
x∈N(i)

p(xn, xn−1) · ... · p(x1,m)π(xn)p(xn, x)

= π(m)p(m,N (i)) +
∑

x′∈∂V (m)

∑
n≥1

Px′(ζ0 > τm = n)
∑

x∈N(i)

π(x′)p(x′, x)

= π(m)p(m,N (i)) +
∑

x′∈∂V (m)

Px′(ζ0 > τm ≥ 1)π(x′)p(x′, N (i))

=
∑

x′∈∂V (m)

Px′(ζ0 > τ0m)π(x′)p(x′, N (i)).

Proposition 6.5.2. Let Pm(Z2 = m′) > 0 for every pair (m,m′) with Pm(Z1 = m′) > 0. For
every m,m′ ∈ S(i),

Pm(Yn = m′) n→∞−→ 1

K ′
∑

x∈∂V (m′)

π(x)(1− p(x, V (m′))),

where K ′ is a normalization constant.

The assumption may seem quite unintuitive but it ensures the ergodicity of the Markov chains
(Xσn)n≥0 (needed in the proof) as well as the ergodicity of Z. Furthermore, in view of an application
of Theorem 6.3.7, this precise assumptions appears to be more convenient than the ergodicity of the
two chains

Proof: In this proof, if not otherwise specified, x and y are elements of N (i) or ∂V (m) for some
m ∈ S(i)\N (i), that is, possible values of (Xσn)n≥0, and m(x) := m if x ∈ ∂V (m). Since the
assumption ensures the ergodicity of (Xσn)n≥0, it suffices to prove that {π (x) (1− p (x, V (m (x))))}x
is stationary for (Xσn)n≥0. Then the normalized version is the unique limiting distribution and

Pm(Yn = m′) =
∑

x∈∂V (m′)

Pm(Xσn = x)
n→∞−→ 1

K ′
∑

x∈∂V (m′)

π(x)(1− p(x, V (m′))).

For the stationarity, first, let y /∈ N (i). Then

Px(Xσ1 = y) =
p(x, y)

1− p(x, x)

for x ∈ N (i) and zero otherwise. Thereby,

∑
x

Px(Xσ1 = y)π(x)(1− p(x, V (m(x)))) =
∑

x∈N(i)

p(x, y)

1− p(x, x)
π(x)(1− p(x, x))

= π(y)p(y,N (i))

= π(y) (1− p (y, V (m (y)))) .
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6.5 Aggregated Processes

For y ∈ N (i), observe first that∑
x/∈N(i)

Px(Xσ1 = y)π(x)(1− p(x, V (m(x))))

=
∑

x/∈N(i)

(
π(x)p(x, y)p(x,N (i)) +

∑
n≥1

∑
x1,...,xn∈V (m(x))

π(x)p(x, x1) · ... · p(xn, y)p(x,N (i))

)

=
∑

x/∈N(i)

(
π(y)p(y, x)p(x,N (i))

+
∑
n≥1

∑
x1,...,xn−1,x′∈V (m(x))

x′′∈N(i)

π(y)p(y, x′)p(x′, xn−1) · ... · p(x1, x)p(x, x′′)
)

= π(y)
∑

x′ /∈N(i)

p(y, x′)

⎛⎝Px′(ζ0 = 1) +
∑
n≥1

Px′(ζ0 = n+ 1)

⎞⎠
= π(y)(1− p(y,N (i))).

This provides the announced stationarity, for∑
x

Px(Xσ1 = y)π(x)(1− p(x, V (m(x))))

=
∑

x∈N(i)\{y}
p(x, y)π(x) +

∑
x/∈N(i)

Px(Xσ1 = y)π(x)(1− p(x, V (m(x))))

= π(y)p(y,N (i)\{y}) + π(y)(1− p(y,N (i)))

= π(y)(1− p(y, y)).

Hence, though Y is in general not Markovian, it has a limiting distribution, denoted by πY here-
after. Therefore, we are able to define a mixing time

τYmix(ε) := inf
{
k ≥ 0 | max

m
dTV (P

Yn
m , πY ) ≤ ε for every n ≥ k

}
.

Next, we show that for every ε > 0 there exists some β large enough such that dTV (π
∗, πY ) ≤ ε.

Proposition 6.5.3. For the limiting distributions π∗ and πY of Z and Y it holds true that

dTV (π
∗, πY ) → 0 as β → ∞.

Proof: For m ∈ N (i),

π∗(m)− πY (m) =
π(m) (1− p(m,m)−R(m))

K
− π(m) (1− p(m,m))

K ′

= π(m) (1− p(m,m))

⎛⎝1− R(m)
1−p(m,m)

K
− 1

K ′

⎞⎠ ,
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and for m ∈ S(i)\N (i)

π∗(m)− πY (m) =
∑

x∈∂V (m)

Px(ζ0 > τ0m)π(x)p(x,N (i))

K
−

∑
x∈∂V (m)

π(x)p(x,N (i))

K ′

=
∑

x∈∂V (m)

π(x)p(x,N (i))

(
Px(ζ0 > τ0m)

K
− 1

K ′

)
.

Therefore,

dTV (π
∗, πY ) =

1

2

∑
m∈S(i)

|π∗(m)− πY (m)|

≤ 1

2

∑
m∈S(i)

∑
x∈∂V (m)

π(x) (1− p(x, V (m(x))))

×max

⎧⎪⎨⎪⎩ max
m∈N(i)

∣∣∣∣∣∣
1− R(m)

1−p(m,m)

K
− 1

K ′

∣∣∣∣∣∣ , max
m∈S(i)\N(i)

x∈∂V (m)

∣∣∣∣Px(ζ0 > τ0m)

K
− 1

K ′

∣∣∣∣
⎫⎪⎬⎪⎭

=
1

2
max

⎧⎪⎨⎪⎩ max
m∈N(i)

∣∣∣∣∣∣
K ′

(
1− R(m)

1−p(m,m)

)
K

− 1

∣∣∣∣∣∣ , max
m∈S(i)\N(i)

x∈∂V (m)

∣∣∣∣K ′Px(ζ0 > τ0m)

K
− 1

∣∣∣∣
⎫⎪⎬⎪⎭ .

But we see for every m ∈ N (i),∣∣∣∣∣∣
K ′

(
1− R(m)

1−p(m,m)

)
K

− 1

∣∣∣∣∣∣ ≤
∣∣∣∣K ′

K
− 1

∣∣∣∣+ K ′

K

R(m)

1− p(m,m)︸ ︷︷ ︸
→0 as β→∞

since p∗(m,m) < 1 and R(m) → 0 as β → ∞ for every m ∈ N (i). In a similar vein, for every
m ∈ S(i)\N (i), x ∈ ∂V (m),∣∣∣∣K ′Px(ζ0 > τ0m)

K
− 1

∣∣∣∣ ≤
∣∣∣∣K ′

K
− 1

∣∣∣∣+ K ′

K
Px(ζ0 < τ0m)︸ ︷︷ ︸
→0 as β→∞

.

We are left with the proof of K ′/K → 1 as β → ∞. This is a consequence of

K ′ −K =
∑

m∈N(i)

π(m)R(m) +
∑

m∈S(i)\N(i)

∑
x∈∂V (m)

π(x)(1− p(x, V (m)))Px(ζ0 < τ0m)

≤ K ·

⎛⎜⎝(
max

m∈N(i)

R(m)

1− p(m,m)−R(m)

)
∨

⎛⎜⎝ max
m∈S(i)\N(i)

x∈∂V (m)

Px(ζ0 < τ0m)

Px(ζ0 > τ0m)

⎞⎟⎠
⎞⎟⎠

and

K ′

K
− 1 =

K ′ −K

K
≤

(
max

m∈N(i)

R(m)

1− p(m,m)−R(m)

)
∨

⎛⎜⎝ max
m∈S(i)\N(i)

x∈∂V (m)

Px(ζ0 < τ0m)

Px(ζ0 > τ0m)

⎞⎟⎠ → 0

as β → ∞.
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The next proposition summarizes the above results. It is preliminary to the main result, stated in
Theorem 6.5.5, but also of interest on its own right.

Proposition 6.5.4. Given the previous notation, let Pm(Z2 = m′) > 0 whenever Pm(Z1 = m′) >
0, and let the parameter Δ in Theorem 6.1.1 be positive.

(a) Then 2(1−p)
C γZ� ≥ γZ� ≥ γX� , where

C := min

{
Pm(Z2 = m′)
Pm(Z1 = m′)

∣∣∣m �= m′,Pm(Z1 = m′) > 0

}
p := min

m
Pm(Z1 = m).

(b) Furthermore, in the low-temperature limit,

lim sup
β→∞

1

β
ln

(
min
m

(1− Pm(Z1 = m))γZ�

)
≤ lim

β→∞
1

β
ln

(
γZ�

)
= lim

β→∞
1

β
ln

(
γX�

)
and

lim
β→∞

1

β
ln

(
min
m

(1− Pm(Z1 = m))
)

= − max
m∈S(i)\N(i)

(E(sm)− E(m)) .

(c) Finally, let ε, δ > 0. For every (n, β) with dTV (π
∗, πY ) ≤ δ, maxm dTV (P

Yn
m ,PZn

m ) ≤ δ and
n ≥ τZmix(ε),

max
m

dTV (P
Yn
m , πY ) ≤ ε+ 2δ.

For every (n, β) with dTV (π
∗, πY ) ≤ δ, maxm dTV (P

Yn
m ,PZn

m ) ≤ δ and n ≥ τYmix(ε),

max
m

dTV (P
Zn
m , π∗) ≤ ε+ 2δ.

Proof: The first inequality in part (a) is a consequence of Theorem 6.3.7 above, for the second we
refer to Lemma A.2.4. The first inequality in part (b) follows from Theorem 6.3.4. In all these parts
we used the fact that X and Z have holding probabilities of at least 1

2 in every state. The remaining
equality in the first part of (b) is a combination of Theorem 6.1.1 and Corollary 6.1.6. For the second
line in (b), note that for m ∈ N (i),

1− Pm(Z1 = m) = 1− p(m,m)−R(m),

which converges to a positive limit, whereas for m ∈ S(i)\N (i),

1− Pm(Z1 = m) = Pm(ζ0 < τm),

which converges to zero. Therefore, as β → ∞,

min
m∈S(i)

(1− Pm(Z1 = m)) = min
m∈S(i)\N(i)

Pm(ζ0 < τm) = min
m∈S(i)\N(i)

e−β(E(sm)−E(m)+o(1))

= e
−β(max

m∈S(i)\N(i) (E(sm)−E(m))+o(1))
.

To prove part (c), Lemma 6.5.1 and Proposition 6.5.3 yield for every n ≥ τZmix(ε) and β large
enough (depending on n and δ),

max
m

dTV (P
Yn
m , πY ) ≤ max

m
dTV (P

Yn
m ,PZn

m ) + max
m

dTV (P
Zn
m , π∗) + dTV (π

∗, πY ) ≤ ε+ 2δ

and analogously for n ≥ τYmix(ε) and β large enough, again depending on n and δ,

max
m

dTV (P
Zn
m , π∗) ≤ max

m
dTV (P

Yn
m ,PZn

m ) + max
m

dTV (P
Yn
m , πY ) + dTV (π

Y , π∗) ≤ ε+ 2δ.
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Theorem 6.5.5. Given the previous notation, let Pm(Z2 = m′) > 0 whenever Pm(Z1 = m′) > 0,
and let the parameter Δ in Theorem 6.1.1 be positive. Then

(a) max
m

dTV (P
Yn
m , π∗) ≤ ε+ 2δ for every ε, δ > 0 and any (n, β) such that

n ≥ ln

(
1

εminx π∗(x)

)(
1

ln
(

1
2ε

)τXmix(ε) + 1

)
2(1− p)

C
,

dTV (π
∗, πY ) ≤ δ, and maxm dTV (P

Yn
m ,PZn

m ) ≤ δ.

(b) If n and β both tend to infinity in such a way that dTV (π
Y , π∗) ≤ maxm dTV (P

Yn
m , πY ) and

maxm dTV (P
Yn
m ,PZn

m ) ≤ maxm dTV (P
Yn
m , πY ) for each pair (n, β), then

lim sup
n,β→∞

1

β
ln

(
1− n

√
max
m

dTV (P
Yn
m , πY )

)
≤ −Δ+ max

m∈S(i)\N(i)
(E(sm)− E(m)) .

Proof: (a) The statement is a combination of Proposition 6.5.4 and Proposition A.2.1 (c). Namely,
by Proposition 6.5.4 (c), the statement holds true for n ≥ τZmix(ε) and

τZmix(ε) ≤ ln

(
1

εminx π∗(x)

)
1

γZ�

≤ ln

(
1

εminx π∗(x)

)
2(1− p)

CγZ�

≤ ln

(
1

εminx π∗(x)

)
2(1− p)

CγX�

≤ ln

(
1

εminx π∗(x)

)(
1

ln
(

1
2ε

)τXmix(ε) + 1

)
2(1− p)

C
.

(b) Under the given assumptions,

3max
m

dTV (P
Yn
m , πY ) ≥ max

m
dTV (P

Yn
m ,PZn

m ) + max
m

dTV (P
Yn
m , πY ) + dTV (π

∗, πY )

≥ max
m

dTV (P
Zn
m , π∗)

so that

lim sup
n,β→∞

1

β
ln

(
1− n

√
max
m

dTV (P
Yn
m , πY )

)
= lim sup

n,β→∞
1

β
ln

(
1− n

√
3max

m
dTV (P

Yn
m , πY )

)
≤ lim sup

n,β→∞
1

β
ln

(
1− n

√
max
m

dTV (P
Zn
m , π∗)

)
= lim sup

β→∞
1

β
ln

(
1− λZ

�

)
= lim sup

β→∞
1

β
ln

(
γZ�

)
≤ − lim

β→∞
1

β
ln

(
min
m

(1− Pm(Z1 = m))
)
+ lim

β→∞
1

β
ln

(
γX�

)
≤ −Δ+ max

m∈S(i)\N(i)
(E(sm)− E(m)) .
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Here is an informal interpretation of this theoretic result under the assumption that the above
bound is significant, that is, Δ−maxm∈S(i)\N(i) (E(sm)− E(m)) > 0: By the above, as n and β tend
to infinity, maxm dTV (P

Yn
m , πY ) is approximately bounded below by(

1− e
−β(Δ−max

m∈S(i)\N(i) (E(sm)−E(m))+o(1))
)n

.

Hence, as ε → 0 and n, β → ∞,

τYmix(ε) ≥ ln(ε)

ln
(
1− e

−β(Δ−max
m∈S(i)\N(i) (E(sm)−E(m))+o(1))

)
≈ ln(ε)

−e
−β(Δ−max

m∈S(i)\N(i) (E(sm)−E(m))+o(1))

=
− ln(ε)

e−β(Δ+o(1))maxm∈S(i)\N(i) eβ((E(sm)−E(m))+o(1))

=
− ln(ε)

γX� maxm∈S(i)\N(i) Em(ζ0)

≥ τXmix(ε)

maxm∈S(i)\N(i) Em(ζ0)
· ln(ε)

ln(επmin)
.

That is, the mixing time of X is at most the mixing time of Y times the maximal expected sojourn
time in a metastable state. If, otherwise, Δ−maxm∈S(i)\N(i) (E(sm)− E(m)) < 0, the bound

τYmix(ε) ≥ 1 ≥ − ln(ε)e
β(Δ−max

m∈S(i)\N(i) (E(sm)−E(m))+o(1))

is trivially true for every fixed ε > 0 and β → ∞.

6.5.2. The AC

Much is known on how to relate the mixing time of a Markov chain with the mixing time of its
restriction to given subsets and of certain Markov chains representing the transitions between those
subsets (see e.g. [42], [43], [21] or [22]). For example, let M be an ergodic, reversible Markov
chain with stationary distribution π and S1,...,Sl such a partition of the state space that Y n :=∑l

k=1 k1{Mn∈Sk}, n ≥ 0, is again Markovian (in this case M is called lumpable and
∑

y∈Sj
p(x, y) =∑

y∈Sj
p(x′, y) for every x, x′ ∈ Sk, 1 ≤ k ≤ l) with transition probabilities q(k, j) =

∑
y∈Sj

p(x, y)
for some x ∈ Sk. The ergodicity and reversibility of M ensure the ergodicity and reversibility
of Y with respect to π(k) := π(Sk), 1 ≤ k ≤ l. Furthermore, easy calculations show for the
corresponding Dirichlet forms and variances that EM (g) = EY (f) and V arπ(g) = V arπ(f) for any
function f : {1,...,l} → R and g : S → R, g(x) :=

∑l
k=1 f(k)1{x∈Sk}. Thus, for the corresponding

spectral gaps γ(M) and γ(Y ) it holds true that γ(M) ≤ γ(Y ).
But since the chains studied in the above-mentioned works do not coincide with the AC, the letter

not being Markovian in general, relations of X and Y apparently have not yet been studied. We
begin with an example where the total variation distance is calculated numerically to illustrate the
general picture.

Example 6.5.6. (a) Let M a birth and death chain on S := {1,...,N} with

p(i, i+ 1) = p(N,N) = p for 1 ≤ i ≤ N − 1,

p(i, i− 1) = p(1, 1) = 1− p for 2 ≤ i ≤ N.
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Figure 6.3.: Total variation distance between the distribution of the Markov chain with transition
probabilities given in Example 6.5.6 (a) and its stationary distribution (squares) as well
as the total variation distance between the aggregated chains for l = 2 (diamond), l = 3
(circle), l = 5 (pentagon) and l = 10 (triangle) and their limiting distributions. Grey
lines mark the height 0.2 and the length 49 resp. 65.

For l ∈ N, N/l ∈ N, define subsets (Sk)1≤k≤l of S by Sk :=
{
k−1
l N + 1, klN

}
, 1 ≤ k ≤ l. On these

segments, we can define the aggregated chain Y n :=
∑l

k=1 k1{Xn∈Sk} with limiting distribution
(π(Sk))1≤k≤l. For N = 30, p = 0.25 and initial distribution λ = δN , Figure 6.3 shows the total
variation distance between the original chain resp. the aggregated chains (for l ∈ {2, 3, 5, 10}) and
their limiting distributions evolving with n. The reader should notice that the higher the level of
aggregation (that is, the smaller l), the faster the convergence.

(b) In part (a) there is a constant drift towards one end of the state space. Now we introduce on
every segment a drift towards its center by changing some of the transition probabilities, namely

p(i, i+ 1) = 1− p and p(i, i− 1) = p(1, 1) = p

for i = k−1
l N + j, 1 ≤ k ≤ l, 1 ≤ j ≤ N

2l . Then the aggregated chain is still mixing faster but
the difference is very small compared to the mixing time in total. In Figure 6.4 we see, again for
N = 30, p = 0.25 and initial distribution λ = δN , the total variation distance between the original
chain resp. the aggregated chain for l = 3 and their limiting distributions. Regarding for example
ε = 0.2, we have in the original chain a mixing time of 2054 and in the aggregated chain of 1857,
giving a relative difference of 0.1. Without drift we have for l = 3 and ε = 0.2 a relative difference of
(65−49)/65 = 0.25. Heuristically, this can be explained by the following: If we had two independent
versions of the process starting in different states, due to the drift it would take quite a while for the
corresponding ACs to meet. But once they meet, the original processes would comparably fast fall
down to the center of that Sk and meet as well.

We want to record the obvious observation that Y is stationary under Pπ, where π is the stationary
distribution of X.

Lemma 6.5.7. For every n ≥ 0 and m ∈ S(i) the distribution of Y n under Pπ is given by

Pπ(Y n = m) = π(V (m)) =: π(m).
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Figure 6.4.: Total variation distance between the distribution of the Markov chain with transition
probabilities given in Example 6.5.6 (b) and its stationary distribution (solid line) as well
as the total variation distance between the aggregated chain for l = 3 and its limiting
distribution (dashed line). Grey lines mark the height 0.2 and the length 1857 resp. 2054.

So both processes converge towards some equilibrium distribution and the following lemma shows
that the mixing time of the AC is smaller than the mixing time of the original process.

Lemma 6.5.8. For every initial state x ∈ S, the total variation satisfies

dTV (P
Y n
x , π) ≤ dTV (P

Xn
x , π).

Proof: We just need the maximum-notation of the total variation to show

dTV (P
Y n
x , π) = max

A⊂S(i)

∣∣Px

(
Y n ∈ A

)− π(A)
∣∣

= max
A⊂S(i)

∣∣∣∣∣Px

(
Xn ∈

⋃
m∈A

V (m)

)
− π

( ⋃
m∈A

V (m)

)∣∣∣∣∣
≤ max

A⊂S
|Px(Xn ∈ A)− π(A)|

= dTV (P
Xn
x , π).

In addition to this analytic proof, Lemma 6.5.8 can be verified by a coupling argument, as a
coupling of PX

x and PX
π induces a coupling of PY

x and PY
π , the coupling time of the former being

almost surely larger than the coupling time of the latter.
Consequently, if X is equilibrated up to some ε ≥ 0, then Y is equilibrated up to ε as well. The

converse is not that obvious since the stationarity of Y does not lead to a stationarity of X. This is
illustrated in the following example, where it is also seen that at least in some cases it takes not that
much more time for X to equilibrate once Y is equilibrated.

Example 6.5.9. Let M be a Birth and Death Process on {1, 2, 3, 4} with

p(i, i+ 1) = p(4, 4) = p for 1 ≤ i ≤ 3,

p(i, i− 1) = p(1, 1) = 1− p for 2 ≤ i ≤ 4.

The stationary distribution π for which (P, π) is a reversible pair is proportional to(
p

1− p

)i−1

, 1 ≤ i ≤ 4.
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We partition this state space into S1 := {1, 2} and S2 := {3, 4}. Furthermore, let λ be some initial
distribution with

λ(1) = aπ(S1), λ(2) = (1− a)π(S1), λ(3) = bπ(S2), λ(4) = (1− b)π(S2).

with a, b ∈ [0, 1]. Then λ(1) + λ(2) = π(S1), λ(3) + λ(4) = π(S2), and

(1− p)λ(3) = (1− p)bπ(S2) = (1− p)b

(
p

1− p

)2

π(S1) =
bp2

1− p
π(S1),

pλ(2) = p(1− a)π(S1) = p(1− a)

(
1− p

p

)2

π(S2) =
(1− a)(1− p)2

p
π(S2).

Furthermore,

Pλ(M1 = 1) = (1− p)λ(1) + (1− p)λ(2) = (1− p)π(S1)

Pλ(M1 = 2) = pλ(1) + (1− p)λ(3) =

(
a+

bp

1− p

)
pπ(S1)

Pλ(M1 = 3) = pλ(2) + (1− p)λ(4) =

(
(1− a)(1− p)

p
+ 1− b

)
(1− p)π(S2)

Pλ(M1 = 4) = pλ(3) + pλ(4) = pπ(S2).

That is, Pλ(Mn ∈ Sk) = π(Sk), k ∈ {1, 2}, for any n ≥ 0, if and only if b = (1− a)(1− p)/p. Hence,
with this parameter in the initial distribution, the aggregated chain is in its equilibrium ab initio,
whereas the original chain is not. We want to study how long it takes for the original chain to reach
equilibrium. As

Pλ(M1 = 1) = (1− p)π(S1) = (1− p)(π(1) + π(2)) = (1− p)

(
π(1) +

p

1− p
π(1)

)
= π(1),

Pλ(M1 = 2) = π(S1)− π(1) = π(2),

Pλ(M1 = 3) = (1− p)π(S2) = (1− p)(π(3) + π(4)) = (1− p)

(
π(3) +

p

1− p
π(3)

)
= π(3),

Pλ(M1 = 4) = π(S2)− π(3) = π(4),

we can conclude for this example that once the aggregated chain is in its equilibrium, it takes at
most one more step for the original chain to reach its equilibrium.

Via the following method, it is possible to derive an upper bound on the mixing time of X in
terms of the mixing time of Y for every ε > 0. Let more generally M be an irreducible, ergodic finite
Markov chain on a set S =

∑l
k=1 Sk with stationary distribution π. Then

π(s) =
l∑

k=1

πkπ
(k)(s) with π(k)(s) =

π(s)

π(Sk)
1Sk

(s)

for every 1 ≤ k ≤ l, and πk = π(Sk) = limn→∞ Px(Mn ∈ Sk) for every x ∈ S. A similar result holds
true for the distribution of M at time n, namely

Px(Mn = s) =

l∑
k=1

Px(Mn = s,Mn ∈ Sk) =

l∑
k=1

Px(Mn = s|Mn ∈ Sk)Px(Mn ∈ Sk)
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6.5 Aggregated Processes

for every x ∈ S and n ≥ 0 with Px(Mn ∈ Sk) > 0. Given this decomposition and the aggregated
chain Y n :=

∑l
k=1 k1{Mn∈Sk}, n ≥ 0, we can write the total variation distance between PMn

x , n ≥ |S|,
and π as

dTV (P
Mn
x , π) =

1

2

∑
s∈S

|Px(Mn = s)− π(s)|

=
1

2

∑
s∈S

∣∣∣∣∣
l∑

k=1

(
Px(Y n = k)Px(Mn = s|Mn ∈ Sk)− πkπ

(k)(s)
)∣∣∣∣∣

≤ 1

2

∑
s∈S

l∑
k=1

∣∣∣Px(Y n = k)Px(Mn = s|Mn ∈ Sk)− πkπ
(k)(s)

∣∣∣ (6.22)

≤ 1

2

∑
s∈S

l∑
k=1

( ∣∣Px(Y n = k)− πk

∣∣Px(Mn = s|Mn ∈ Sk)

+ πk

∣∣∣π(k)(s)− Px(Mn = s|Mn ∈ Sk)
∣∣∣ )

= dTV (P
Y n
x , (πk)1≤k≤l) +

l∑
k=1

πkdTV (P
Mn|Mn∈Sk
x , π(k))

= dTV (P
Y n
x , (πk)1≤k≤l) + max

1≤k≤l
dTV (P

Mn|Mn∈Sk
x , π(k)).

Therefore, we can give a bound on the mixing time of M in terms of the mixing times of Y and
Px(Mn ∈ · |Mn ∈ Sk)n≥|S| for 1 ≤ k ≤ l, x ∈ S. More precisely:

Proposition 6.5.10. Let M an irreducible, ergodic finite Markov chain on a set S =
∑l

k=1 Sk

with stationary distribution π, and Y n :=
∑l

k=1 k1{Mn∈Sk}, n ≥ 0. Let ε > 0, δ > 0.

dTV (P
Mn
x , π) ≤ ε+ δ

for x ∈ S and every n ≥ max
{
|S|, τYmix(ε),maxk τ

(Mn|Mn∈Sk)n≥|S|
mix (δ)

}
.

The above estimation

dTV (P
Mn
x , π) ≤ dTV (P

Y n
x , (πk)1≤k≤l) + max

1≤k≤l
dTV (P

Mn|Mn∈Sk
x , π(k)) (6.23)

is similar to the one obtain by Madras & Randall in [42], resp. Martin & Randall [43]:

Theorem 6.5.11 (Theorem 4.1 in [43]). In the above notation, let P|Sk
for every 1 ≤ k ≤ l be the

restricted Markov chain on Sk (in canonical extension of Definition 6.1.2) with spectral gap γ|Sk
and

Q be the limiting transition probabilities of Y with spectral gap γQ as in Corollary 6.1.7. Then

γ ≥ 1

2
γQ min

1≤k≤l
γ|Sk

.

Note that in the case where Y itself is again Markovian (that is P is lumpable with respect to
S1,...,Sl), γQ is the spectral gap of Y .

In terms of the variation distance, with λQ = 1− γQ, λ|Sk
= 1− γ|Sk

, this theorem of Martin &

Randall states that

max
x

dTV (P
Mn
x , π) ≤

(
(1 + o(1))

(
1− 1

2
γQ min

1≤k≤l
γ|Sk

))n

=

(
1 + o(1)

2

)n (
1 + λQ + max

1≤k≤l
λ|Sk

− λQ max
1≤k≤l

λ|Sk

)n
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as n → ∞. Furthermore, since

1

2
(1 + a+ b− ab) =

1

2
(1 + a)(1− b) + b ≥ b

for every 0 ≤ a < b ≤ 1, we find

(1 + o(1))

(
1

2
(1 + a+ b− ab)

)n

≥ (1 + o(1))bn =

(
1 +

an

bn

)
bn = bn + an

for n sufficiently large. Therefore,(
1 + o(1)

2

)n (
1 + λQ + max

1≤k≤l
λ|Sk

− λQ max
1≤k≤l

λ|Sk

)n

≥
(
(λQ)

n +

(
max
1≤k≤l

λ|Sk

)n)
(1 + o(1))n−1

=

(
max
x

dTV (δxQ
n, (πk)1≤k≤l) + max

1≤k≤l
max
x∈Sk

dTV

(
δxP

n
|Sk

, π(k)
))

(1 + o(1))

as n → ∞ whenever λQ �= max1≤k≤l λ|Sk
. In our situation, as β → ∞, λQ = 1 − e−β(Δ+o(1)) differs

from this maximum, as λ|Sk
= 1 − e−β(ΔV +o(1)) whenever Sk = V := V (m) for some m ∈ S(i)\N (i)

and λ|Sk
:= 0 for Sk = {s} with s ∈ N (i). To compare this with our result, recall that Q contains the

limiting transition probabilities of Y and, furthermore, the restricted transition probabilities P|Sk

equal in the same sense the limiting transition probabilities of Px(Mn ∈ · |Mn ∈ Sk). Namely, for n
sufficiently large,

Px(Mn = s|Mn ∈ Sk) =
∑
r∈S

Px(Mn−1 = r,Mn = s)

Px(Mn ∈ Sk)

=
∑

r∈Sk\{s}

Px(Mn−1 = r)

Px(Mn−1 ∈ Sk)

Px(Mn−1 ∈ Sk)

Px(Mn ∈ Sk)
p(r, s)

+
Px(Mn−1 = s)

Px(Mn−1 ∈ Sk)

Px(Mn−1 ∈ Sk)

Px(Mn ∈ Sk)
p(s, s)

+
Px(Mn−1 = s)

Px(Mn−1 ∈ Sk)

∑
y/∈Sk

Px(Mn−1 = y)

Px(Mn−1 = s)

Px(Mn−1 ∈ Sk)

Px(Mn ∈ Sk)
p(y, s)

=
∑
r∈Sk

Px(Mn−1 = r|Mn−1 ∈ Sk)p
(x,n)
|Sk

(r, s),

where

p
(x,n)
|Sk

(r, s) =
Px(Mn−1 ∈ Sk)

Px(Mn ∈ Sk)

⎛⎝p(r, s) +
∑
y/∈Sk

Px(Mn−1 = y)

Px(Mn−1 = s)
p(y, s)1{r=s}

⎞⎠ , r, s ∈ Sk.

Since M converges in distribution,

p
(x,n)
|Sk

(r, s)
n→∞→ p(r, s) + p(s,Sc

k)1{r=s} = p|Sk
(r, s)

for every r, s ∈ Sk. Thus, the result of Martin & Randall coincides with ours whenever the
processes Y and Px(Mn ∈ · |Mn ∈ Sk)n≥|S| are Markovian and gives the analogous statement for the
limiting Markov chains.

Regarding again Equation (6.23) and recalling Lemma 6.5.8, for the author it seems reasonable
that Y mixes asymptotically with the same rate as X (on a logarithmic scale) because of several
reasons:
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Figure 6.5.: Total variation distance between the distribution of the Markov chain with transition
probabilities given in Example 6.5.6 (b) and its stationary distribution (solid, light gray
line); the total variation distance between the aggregated chain for l = 3 and its station-
ary distribution (dashed, light gray line), and the total variation distance between the
process conditioned on being in {1,...10} (dotted) resp. in {1,..., 20} (dashed) and their
conditional stationary distribution.

Limiting Chains: According to Corollary 6.1.7, the limiting Markov chain of Y mixes with the same
rate as X. According to Corollary 6.1.3, the limiting Markov chain of Px(Mn ∈ · |Mn ∈ Sk)n≥|S|
mixes with a rate smaller than the one of X.

Time-Inhomogeneous Chains: We can understand Px(Mn ∈ · |Mn ∈ Sk)n≥|S| as the distribution
of a time-inhomogeneous Markov chain (whose transition probabilities depend also on x). In
this case there are bounds on the mixing rates in terms of the mixing rate of the limiting chain
(see e.g. the Main Theorem in [33]). This precise bound is to rough for our situation but can
be improved at least in special cases.

Variational Characterization: Recall the proof of Theorem 6.1.1, where the function f which
minimizes the ratio of Dirichlet form and variance (and therefore specifies the spectral gap) is
constant on every valley. Hence, only pairs of states from different valleys contribute to the
spectral gap. This indicates that the mixing between valleys is slower than the mixing within
valleys.

We conclude with the example form above, studied in regard of the mixing performance of the
distribution Px(Mn ∈ · |Mn ∈ Sk)n≥|S|.

Example 6.5.12. Regard again Example 6.5.6 (b). For N = 30 and l = 3 we have three sub-
spaces, each consisting of a birth and death process with drift towards the center of the sub-
space. Due to this drift, in terms of energies the subspaces are valleys around local minima.
Figure 6.5 shows the total variation distance between the original resp. the aggregated chain and
their limiting distributions (compare Figure 6.4) and, most notably, the variation distance between
PN (Xn ∈ · |Xn ∈ {1,..., 10})n≥21 resp. PN (Xn ∈ · |Xn ∈ {1,..., 20})n≥11 and their limiting distribu-
tions. What should be noticed is that, first, the process conditioned on one subvalley mixes much
faster than the aggregated chain and, second, even the process conditioned on the union of two
subvalleys mixes faster than the aggregated process.
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7. Comparison of Hitting and Cover Times

7.1. Cover Time

Another characterizing quantity is the cover time of a process, defined by

τcov := inf {n ≥ 0|{X0,..., Xn} = S} = max
s∈S

τs.

As usual, fix 1 ≤ i ≤ n and write Y := Y
(i) and V (m) := V (i)(m) for every m ∈ S(i). Defining the

cover times τXcov and τYcov for the processes X and Y , we obviously have

τXcov ≥ τYcov a.s.

since by the time every state has been visited, every valley must have been visited.
Now we want to show that, nevertheless, the cover time of Y is of the same order as the cover time

of X. Obviously, if there is a valley V (m) containing some state s with an energy higher than the
energy barrier arising from the MB-definition, then this state will most likely not be visited during a
stay in V (m). Thus, the above conjecture can only hold true if the valleys coincide with their inner
part V<. As every finite trajectory stays most likely beyond the energy level given by the trap model,
it is no big restriction to assume the energy landscape to satisfy

(A) V (m) = V<(m) for every m ∈ S(i).

Recall that for m ∈ S(i),
τ
(i)
V (m) := inf

{
k ≥ 1|Y (i)

k = m
}
.

Theorem 7.1.1. Let the energy function satisfy (A). Let m1 be a metastable state with the deepest
valley at level i and let it be unique. Define, for m ∈ S(i),

Bm :=

{
for every s ∈ V (m), there exists some σ

τ
(i)
V (m)

≤ n < σ
τ
(i)
V (m)

+1
such that Xn = s

}
B :=

⋂
m∈S(i)

Bm.

Then Px(B) → 1 as β → ∞ for every initial state x ∈ S, and

Ex

(
τXcov1B

)
Ex

(
τYcov

) =
Ex

(
τYcov1B

)
Ex

(
τYcov

) +
Ex

((
τXcov − τYcov

)
1B

)
Ex

(
τYcov

)
with

Ex

((
τXcov − τYcov

)
1B

)
Ex

(
τYcov

) ≤
Px

(
Y

τYcov
= m1

)
+ o(1)

Px

(
Y

τYcov
�= m1

)
+ o(1)

(7.1)

as β → ∞.
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Since in most energy landscapes the numerator of the right-hand side of (7.1) is close to 0 and
therefore the denominator is close to 1, this confirms the following heuristic: Regard the event that
during the first visit of every valley it is completely sampled. Then the difference between the two
cover times is in average smaller than the cover time of Y and the fraction becomes very small when
β is large. The proof relies on the fact that, first, with high probability all states in a given valley
are visited during the stay in this valley and that, second, once every valley is visited, for X to cover
the whole state space it just has to scan the last valley. But scanning this valley needs less time than
leaving it and scanning all the previous valleys needs more time than leaving the deepest of them.
Both expected times can be expressed with the help of Theorem 2.2.2.

Proof: The first part uses the well known fact that Pr(τs > σ1) → 0 as β → ∞ for every r and s in
the same valley. Thus,

Px(B) ≥
∏

m∈S(i)

min
r∈V (m)

Pr (τs < σ1 for every s ∈ V (m)) → 1.

For the second part, let m2 be the metastable state with the second deepest valley at level i. Notice
that, as β → ∞,

Ex

(
(τXcov − τYcov)1B

)
=

∑
m∈S(i)

Ex

(
(τXcov − τYcov)1B|Y τYcov

= m
)
Px(Y τYcov

= m)

≤
∑

m∈S(i)

max
r∈V (m)

Er(σ1)Px(Y τYcov
= m)

=
∑

m∈S(i)\N(i)

eβ(E(sm)−E(m)+o(1))Px(Y τYcov
= m) +

∑
m∈N(i)

Px(Y τYcov
= m)

1− p(m,m)

≤ eβ(E(sm1 )−E(m1)+o(1))Px(Y τYcov
= m1)

+ eβ(E(sm2 )−E(m2)+o(1))Px(Y τYcov
�= m1)

by use of Theorem 2.2.2. Analogously,

Ex(τ
Y
cov) ≥ eβ(E(sm1 )−E(m1)+o(1))Px(Y τYcov

�= m1) + eβ(E(sm2 )−E(m2)+o(1))Px(Y τYcov
= m1).

Combining these two estimates and using the abbreviations

a := eβ(E(sm1 )−E(m1)+o(1))

b := eβ(E(sm2 )−E(m2)+o(1))

p := Px

(
Y

τYcov
= m1

)
1− p := Px

(
Y

τYcov
�= m1

)
,

we obtain

Ex

((
τXcov − τYcov

)
1B

)
Ex

(
τYcov

) ≤ pa+ (1− p)b

(1− p)a+ pb
=

p+ (1− p) ba
1− p+ p b

a

.

Since b
a → 0 as β → ∞, this gives for large β

Ex

((
τXcov − τYcov

)
1B

)
Ex

(
τYcov

) ≤ p+ o(1)

1− p+ o(1)
=

Px

(
Y

τYcov
= m1

)
+ o(1)

Px

(
Y

τYcov
�= m1

)
+ o(1)

.
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7.2 Hitting Time

7.2. Hitting Time

The same intuition holds true for the hitting time of the over all minimum m(n). By the time X
hits this state, Y as well had hit it, thus, τX

m(n) ≥ τY
m(n) a.s. By the first time the valley around this

minimum is visited, it just needs another few steps for X to decline to m(n). Of course X may have
to cross several sub-valleys which may take some time, but leaving a sub-valley is exponentially faster
than leaving the valleys visited before since the depth is smaller.

Before giving a result similar to the above one for the cover time, we want to note the following:

Proposition 7.2.1. For every x ∈ S it holds true that

Px

(
τX
m(n) − τY

m(n) > σ′
1

)
→ 0

as β → ∞, where σ′
1 should denote the time spend in V (m(n)).

This proposition of course is an easy consequence of the fact that starting anywhere in the valley,
the minimum will be reach a.a.s. earlier than the valley is left again.

Theorem 7.2.2. Define

B :=
{
E(Xk) ≤ E(z∗(Xn,m

(n))) for every τY
m(n) ≤ n ≤ k ≤ τX

m(n)

}
,

and let m∗ be the deepest sub-valley in V (m(n)) and D(m) the depth E(sm)−E(m) of a valley V (m).
Then Px(B) → 1 as β → ∞ for every initial state x ∈ S, and

Ex

(
τX
m(n)1B

)
Ex

(
τY
m(n)

) =
Ex

(
τY
m(n)1B

)
Ex

(
τY
m(n)

) +
Ex

((
τX
m(n) − τY

m(n)

)
1B

)
Ex

(
τY
m(n)

)
with

Ex

((
τX
m(n) − τY

m(n)

)
1B

)
Ex

(
τY
m(n)

) → 0

as β → ∞ as long as

lim inf
β→∞

Px

(
D(Y n) ≥ D(m∗) + ε for some 0 ≤ n < τY

m(n)

)
> 0

for some ε > 0.

Proof: B is the event that once the valley around m(n) is visited, the process will not visit states
with higher energy than necessary to reach m(n). Similar to the proof of Theorem 2.1.2, it holds true
that

Px(B
c) ≤

∑
r∈V (m(n))

Pr

(
E(Xk) > E(z∗(r,m(n))) for some 0 ≤ k ≤ τm(n)

)
=

∑
r∈V (m(n))

Pr

(
τs < τm(n) for some s with E(s) > E(z∗(r,m(n)))

)
→ 0

as β → ∞, and thus B occurs a.a.s.
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To estimate the time needed to decline to m(n) once V (m(n)) is entered, let r0 be the state via
which this valley is entered at time τY

m(n) . For any r ∈ V (m(n)) we write r ↔B r0 if, on the
set B, r is reachable from r0 and r0 is reachable from r. That is r ↔B r0, if there is a path
γ = (γ0,..., γk) ∈ Γ(r0, r) with E(γj) ≤ E(z∗(γi,m(n))) for every 0 ≤ i, j ≤ k. With this, let

Sr0 :=
{
r ∈ V (m(n)) | r ↔B r0

}
be the set of states which, on B, can be reached from r0 and from which r0 can be reached. Observe
that in particular

E(z∗(r, r0)) ≤ E(z∗(r,m(n))) ∧ E(z∗(r0,m(n)))

and
E(z∗(r,m(n))) ≤ E(z∗(r, s)) ∨ E(z∗(s,m(n))) = E(z∗(s,m(n))) ≤ E(z∗(r,m(n)))

holds true for every r, s ∈ Sr0 . Thus, E(z∗(r,m(n))) = E(z∗(s,m(n))) for every r, s ∈ Sr0 . The process
samples Sr0 until some r1 /∈ Sr0 is reached. But r1 /∈ Sr0 provides E(z∗(r0, r1)) > E(z∗(r1,m(n))).
In this case

E(z∗(r1,m(n))) < E(z∗(r1, r0))
≤ E(z∗(r1, r)) ∨ E(z∗(r, r0))

≤ E(z∗(r1, r)) ∨ E(z∗(r,m(n)))

≤ E(z∗(r1, r)) ∨ E(z∗(r1,m(n)))

= E(z∗(r1, r))

for every r ∈ Sr0 . Thus, once reaching r1 /∈ Sr0 , on the set B the set Sr0 will not be visited again.
Starting the above procedure again in r1, inductively we decent down to rk = m(n) in a finite number
k of steps. For determining Er0(τ

X
m(n)1B) we therefore have to determine the expected time the

process spends in every Sri defined above. We have to distinguish two different types of sets Sri :

(1) E(r) = E(ri) for every r ∈ Sri ,

(2) there is some r ∈ Sri with E(r) < E(ri).

In the first case, for every r ∈ Sri there is a non-increasing path leaving Sri in some ri+1 /∈ Sri with
E(z∗(ri+1,m

(n))) < E(z∗(ri,m(n))). Therefore, the expected residence time in Sri converges to a
finite constant when β tends to ∞.

The second case is more complicated. When there are local minima in Sri , then there are subvalleys
which must be left and whose residence times converge to ∞. In the following we will argue that
nevertheless the residence time in Sri is at most exp(β(E(sm∗) − E(m∗) + o(1))), what should not
be surprising.

To this end, define on Sri\z∗(ri,m(n)) the relation

r ∼ri s :⇔ E(z∗(r, s)) < E(z∗(ri,m(n))).

Since E(r) < E(z∗(ri,m(n))) for r ∈ Sri\z∗(ri,m(n)) the relation ∼ri is reflexive. Obviously it is
symmetric and the transience arises from

E(z∗(r, z)) ≤ E(z∗(r, s)) ∨ E(z∗(s, z)) < E(z∗(ri,m(n)))

for r ∼ri s ∼ri z. Thus, Sri\z∗(ri,m(n)) separates into equivalence classes of ∼ri with E(z∗(r, s)) =
E(z∗(ri,m(n))) for r and s in different equivalence classes. Every such equivalence class [m] is a
subvalley of V (m(n)) of some order l(m), centered around its minimum m, with the essential saddles
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between them being all of the height E(z∗(ri,m(n))). Thus, l(m) can chosen to be the same level
for every equivalence class in Sri\z∗(ri,m(n)) but varies with ri. Since the essential saddle between
these subvalleys is of the same hight as the essential saddle to m(n), the AAC Y (l(m)) will leave this
set of minima and saddles almost surely in a finite time whose expectation is bounded. Therefore,
as β → ∞, the time needed for X to leave Sri is bounded above by the time Y (l(m)) needs to leave
this set times the maximal time to leave a single subvalley which is neglected by Y (l(m)). That is
why the expected time for the descent from r0 to m(n) on the set B can be bounded by

Er0

((
τX
m(n) − τY

m(n)

)
1B

)
≤ O(1) · max

m∈V (m(n))\{m(n)}
Em(σ

(l(m))
1 ) ≤ eβ(E(sm∗ )−E(m∗)+o(1))

as β → ∞. Define, for ε > 0,

C := C(ε) :=
{
D(Y n) ≥ D(m∗) + ε for some 0 ≤ n < τY

m(n)

}
.

As in the previous theorem, we obtain

Ex

(
τY
m(n)

)
≥ eβ(D(m∗)+ε+o(1))Px(C) + eβ(D(m′)+o(1)) (1− Pλ(C)) ,

where m′ is the valley with the lowest depth. Hence, we have for the quotient

Ex

((
τX
m(n) − τY

m(n)

)
1B

)
Ex

(
τY
m(n)

) ≤ eβ(D(m∗)+o(1))

eβ(D(m∗)+ε+o(1))Px(C) + eβ(D(m′)+o(1))(1− Px(C))

≤ 1

eβ(ε+o(1))Px(C) + eβ(D(m′)−D(m∗)+o(1))(1− Px(C))

→ 0

as β → ∞ as long as lim infβ→∞ Px(C(ε)) > 0 for some ε > 0.
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A.1. Auxiliaries for Chapter 2

Lemma A.1.1. Let (P, π) be a reversible pair on S. For any one-dimensional subgraph Δ =
(ω0,..., ωk) of S and corresponding transition matrix P̃ = P|Δ, we have

Pω0(τω0 > τωk
) ≥ P̃ω0(τω0 > τωk

) =

(
k∑

i=1

π(ω0)

π(ωi)

1

p(ωi, ωi−1)

)−1

.

Proof: We just prove the second inequality, as its proof (unlike that of the first inequality) is not
given in [12]. The restricted process P̃ is a birth-and-death process whose transition probabilities are
given by

p̃(ωi, ωi+1) = p(ωi, ωi+1), 0 ≤ i ≤ k − 1,

p̃(ωi, ωi−1) = p(ωi, ωi−1), 1 ≤ i ≤ k,

p̃(ωi, ωi) = 1− p̃(ωi, ωi+1)− p̃(ωi, ωi−1), 1 ≤ i ≤ k − 1, (A.1)
p̃(ω0, ω0) = 1− p̃(ω0, ω1),

p̃(ωk, ωk) = 1− p̃(ωk, ωk−1).

It is a well-known fact in Markov chain theory and can be verified easily that it has stationary
measure

π̃(ω0) = 1 and π̃(ωi) =
p̃(ω0, ω1) · ... · p̃(ωi−1, ωi)

p̃(ω1, ω0) · ... · p̃(ωi, ωi−1)
for 1 ≤ i ≤ k,

and further satisfies

π̃(ωi) =
π(ωi)

π(ω0)
, 0 ≤ i ≤ k. (A.2)

Furthermore, the probability of hitting ωk before ω0 when starting in ω1 may explicitly be calculated
by solving the system of linear equations given by

Pωi(τ
0
ωk

< τ0ω0
) = p̃(ωi, ωi)Pωi(τ

0
ωk

< τ0ω0
) + p̃(ωi, ωi+1)Pωi+1(τ

0
ωk

< τ0ω0
)

+ p̃(ωi, ωi−1)Pωi−1(τ
0
ωk

< τ0ω0
)

for 1 ≤ i ≤ k − 1 and Pω0(τ
0
ωk

< τ0ω0
) = 0, Pωk

(τ0ωk
< τ0ω0

) = 1. One gets

P̃ω1(τω0 > τωk
) = P̃ω1(τ

0
ω0

> τ0ωk
) =

(
1 +

k−1∑
i=1

p̃(ω0, ω1)

π̃(ωi)p̃(ωi, ωi+1)

)−1

.
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Using that (P, π) is a reversible pair, we now obtain

P̃ω0(τω0 > τωk
) = p̃(ω0, ω1)P̃ω1(τω0 > τωk

)

=

(
1

p̃(ω0, ω1)

(
1 +

k−1∑
i=1

p̃(ω0, ω1)

π̃(ωi)p̃(ωi, ωi+1)

))−1

=

(
k−1∑
i=0

π(ω0)

π(ωi)p(ωi, ωi+1)

)−1

=

(
k−1∑
i=0

π(ω0)

π(ωi+1)p(ωi+1, ωi)

)−1

=

(
k∑

i=1

π(ω0)

π(ωi)p(ωi, ωi−1)

)−1

,

where (A.1) and (A.2) have been utilized for the last identity.

Proposition A.1.2 (see Corollary 1.6 in [12]). Given I ⊂ S and distinct x, z ∈ S\I,

Px(τz < τI) =
Px(τz < τI∪{x})
Px(τI∪{z} < τx)

holds true.

Proof: We first show that, for all u ∈ [0, 1],⎛⎝∑
t≥0

ut Px(τz = t < τI)

⎞⎠⎛⎝1−
∑
s≥0

us Px(τx = s ≤ τI∪{z})

⎞⎠ =
∑
t≥0

ut Px(τz = t < τI∪{x}), (A.3)

which in fact follows directly from∑
s,t≥0

ut+s Px(τx = s ≤ τI∪{z})Px(τz = t < τI)

=
∑
t≥0

ut
(
Px(τz = t < τI)− Px(τz = t < τI∪{x})

)
. (A.4)

To see the latter, we compute∑
s,t≥0

ut+s Px(τx = s ≤ τI∪{z})Px(τz = t < τI)

=
∑
t≥0

ut
∑
s≤t

Px(τz = t− s < τI)Px(τx = s ≤ τI∪{z})

=
∑
t≥0

ut
∑
s≤t

Px(τz = t < τI |τx = s ≤ τI∪{z})Px(τx = s < τI∪{z})

=
∑
t≥0

ut
∑
s≤t

Px(s = τx ≤ τz = t < τI)

=
∑
t≥0

ut Px(τx ≤ τz = t < τI),
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which proves (A.4), for

Px(τz = t < τI)− Px(τz = t < τI∪{x}) = Px(τx ≤ τz = t < τI).

Upon choosing u = 1 in (A.3), we obtain for the left-hand side⎛⎝∑
t≥0

Px(τz = t < τI)

⎞⎠⎛⎝1−
∑
t≥0

Px(τx = t ≤ τI∪{z})

⎞⎠ = Px(τz < τI)
(
1− Px(τx ≤ τI∪{z})

)
= Px(τz < τI)Px(τx > τI∪{z}),

while the right-hand side equals∑
t≥0

Px(τz = t < τI∪{x}) = Px(τz < τI∪{x}).

Since Px(τx > τI∪{z}) must be positive, the assertion follows.

A.2. Toolbox for Spectral Gap Analysis

Proposition A.2.1. Let (P, π) be a reversible pair of a finite Markov chain M .

(a) Is p(x, x) ≥ 1
2 for every x, then all eigenvalues of P are positive and λ2 = λ�.

(b) Is M ergodic, then
(
maxx dTV (P

Mn
x , π)

) 1
n → λ� as n → ∞.

(c) Is M ergodic and λ� > 0, then (trel − 1) log
(

1
2ε

) ≤ τmix(ε) ≤ log
(

1
επmin

)
trel for every ε > 0,

where πmin := minx π(x).

(d) γ = minf
E(f)

V arπ(f)
, where V arπ(f) :=

∑
s(f(s) −

∑
r f(r)π(r))

2π(s) and the minimum ranges
over all functions f : S → R with V arπ(f) �= 0 (variational characterization).

Whereas (a) is trivial (P can be written as 1
2P̃+ 1

2I, for the transition matrix P̃ = 2P− I) for the
proof of the remaining parts we just give references: (b) is Corollary 12.6, (c) is Theorem 12.3 and
Theorem 12.4 in [39]. (d) is Lemma 13.12 ibidem.

There is the following generalization of part (b) for non-reversible Markov chains by Fill:

Proposition A.2.2 (Theorem 2.1 in [23]). Let M be an ergodic finite Markov chain with transition
matrix P and stationary distribution π. Then all eigenvalues of the multiplicative reversiblization∑

z p(x, z)p(y, z)π(y)/π(z), x, z ∈ S, are positive, the second largest of which we denote by ρ. Fur-
thermore, dTV (P

Xn
x , π) ≤ ρn/2

πmin
for every x ∈ S and n ≥ 0.

Furthermore, with the Dirichlet form a comparison of the gaps of two chains is possible. Again, a
proof can be found in [39, Lemma 13.22].

Lemma A.2.3 (see Lemma 13.22 in [39]). Let M and M̃ be two reversible finite Markov chains on
S with stationary distributions π and π̃. If E(f) ≤ cẼ(f) for every f , then

γ ≤ γ̃ · cmax
x

π̃(x)

π(x)
.

Lemma A.2.4 (see Theorem 13.20 in [39]). Let M be a reversible finite Markov chain on S with
stationary distribution π and spectral gap γ. Let A ⊂ S be non-empty and let γA be the spectral
gap of the hit chain on A with transition probabilities pA(x, y) = Px(MτA = y), x, y ∈ A. Then
(PA, (π(· ∩A))/π(A)) is a reversible pair and γA ≥ γ.
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A.3. Auxiliaries for Chapter 6

Lemma A.3.1. For n ≥ 3, the vectors

v1 =

(
−1,

1

n− 1
,...,

1

n− 1

)
v2 =

(
1

n− 1
,−1,

1

n− 1
,...,

1

n− 1

)
...

vn−1 =

(
1

n− 1
,...,

1

n− 1
,−1,

1

n− 1

)
are linearly independent.

Proof: We use an inductive argument: For n = 3 it is an easy calculation that (−1, 12 ,
1
2) and (12 ,−1, 12)

are linearly independent. Thus, assume the independence to hold true for some n ≥ 3. In particular
the system of linear equations⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
n−1

1
n−1 · · · 1

n−1 0
1

n−1 −1 1
n−1 · · · 1

n−1 0
1

n−1
1

n−1 −1 · · · 1
n−1 0

...
. . .

...
...

1
n−1

1
n−1

1
n−1 · · · −1 0

1
n−1

1
n−1

1
n−1 · · · 1

n−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
n many (A.5)

︸ ︷︷ ︸
n− 1 many

exhibits only the trivial solution. Passing over to n+1, the system of linear equations in question is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
n

1
n · · · 1

n 0
1
n −1 1

n · · · 1
n 0

1
n

1
n −1 · · · 1

n 0
...

. . .
...

...
1
n

1
n

1
n · · · −1 0

1
n

1
n

1
n · · · 1

n 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
n+ 1 many

︸ ︷︷ ︸
n many

and changes to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
n

1
n · · · 1

n 0

0 1−n2

n2
n+1
n2 · · · n+1

n2 0

0 n+1
n2

1−n2

n2 · · · n+1
n2 0

...
. . .

...
...

0 n+1
n2

n+1
n2 · · · 1−n2

n2 0

0 n+1
n2

n+1
n2 · · · n+1

n2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
n

1
n · · · 1

n 0

0 −1 1
n−1 · · · 1

n−1 0

0 1
n−1 −1 · · · 1

n−1 0
...

. . .
...

...
0 1

n−1
1

n−1 · · · −1 0

0 1
n−1

1
n−1 · · · 1

n−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
n many

︸ ︷︷ ︸
n− 1 many
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when, first, adding n−1 times the first row to all other rows and, second, multiplying those other
rows with − n2

1−n2 . Neglecting the first row and column, this is the system in (A.5), of which we know
that it has only the trivial solution. Thus, the whole system itself exhibits just the trivial solution,
and the eigenvectors are linearly independent.

Lemma A.3.2. Let MT be a semi-Markov chain on S with sojourn times (Tn)n≥0 and embedded
Markov chain M whose transition matrix we denote by P. Write Sn := T0 + ... + TNT (n), n ≥ 0.
Then the process (MT

n , Sn − n)n≥0 is a homogeneous Markov chain with transition matrix

q((x, s), (y, t)) =

{
1{x=y,t=s−1}, s > 1

p(x, y)Py(T0 = t), s = 1,

and stationary distribution μ(x, k) = πT (x)Px(T0 ≥ k)/Ex(T0), x ∈ S, k ≥ 1.

Proof: Let m0,...,mn+1 ∈ S and s0,..., sn−1, s, t ∈ N. If Sn − n = s > 1, then NT (n + 1) = NT (n)
and therefore,

P
(
MT

n+1 = mn+1, Sn+1 − (n+ 1) = t|MT
n = mn,...,M

T
0 = m0, Sn − n = s,..., S0 − 0 = s0

)
= P

(
MNT (n) = mn+1, Sn − (n+ 1) = t|MNT (n) = mn, Sn − n = s

)
= 1{mn+1=mn,t=s−1}.

If Sn − n = s = 1, then NT (n+ 1) = NT (n) + 1 and

P
(
MT

n+1 = mn+1, Sn+1 − (n+ 1) = t|MT
n = mn,...,M

T
0 = m0, Sn − n = 1,..., S0 − 0 = s0

)
= P

(
MNT (n)+1 = mn+1, Sn + TNT (n)+1 − (n+ 1) = t|MNT (n) = mn, Sn − n = 1

)
= P

(
MNT (n)+1 = mn+1, TNT (n)+1 = t|MNT (n) = mn, Sn − n = 1

)
= P

(
MNT (n)+1 = mn+1, TNT (n)+1 = t|MNT (n) = mn

)
= p(mn,mn+1)Pmn+1(T0 = t).

It remains to show the stationarity of μ, which is obtained by∑
x

∑
s

q((x, s), (y, t))μ(x, s) =
∑
x

∑
s>1

1{x=y,t=s−1}μ(x, s) +
∑
x

p(x, y)Py(T0 = t)μ(x, 1)

= μ(y, t+ 1) +
1

Eπ(T0)

∑
x

p(x, y)Py(T0 = t)π(x)Px(T0 ≥ 1)

=
1

Eπ(T0)

(
π(y)Py(T0 ≥ t+ 1) + Py(T0 = t)

∑
x

p(x, y)π(x)

)

=
π(y)

Eπ(T0)
Py(T0 ≥ t).
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λT,n
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∂V (i)(m) inner boundary of the valley V (i)(m), page 20
∂+V (i)(m) outer boundary of the valley V (i)(m), page 20
P|V transition matrix of the (to a valley V ) restricted chain, page 74
PS(i) transition matrix of Z, page 79
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trel relaxation time, page 69
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