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Abstract

We define a theory of etale (¢,I')-modules with values in a lin-
ear algebraic group G over the ring of integers of a p-adic field and
show that under certain conditions on G, there is an abstraction of
Fontaine’s method for GL,,, which gives rise to a correspondence to
the theory of p-adic Galois representations with values in G.

Introduction & Summary

In the p-adic Langlands programm, we are interested in representations of
the absolute Galois group of Q,, which we denote by Gg,, with values in a
finite field extension L|Q,. These are finite-dimensional L-vector spaces V/,
such that Gg, acts linearly and continuously on V' with respect to the p-adic
topology. By choosing an L-basis of V', we can view such a representation as a
continuous morphism of groups G, — GLagim, (v) (L). Let Op, denote the ring
of integers of L. Then it is well known that V' contains an Op-lattice, which
is invariant under the Gg,-action. This means that the morphism Gg, —
GLagim, (v)(L) is conjugate to a continuous morphism Gg, — GLaim, (v)(Or).

For L = Q, Fontaine constructed a period ring Ag,, such that the multi-
plicative monoid Zs := Z,\{0} acts on Ag, with respect to the ring structure
and showed that the (abelian) category of continuous Gg,-representations
finitely generated over Z, is equivalent to the category of etale (¢, I')-modules
over Ag, (See Fon90, Theorem 3.4.3). This is the category of finitely gener-
ated Ag,-modules M equipped with a semilinear Z2-action, which satisfies
that the image of the action of p € Z; generates M as an Ag,-module.

If such an M is free of rank n, choosing an Ag,-basis of M and the
etaleness property allow us to view the ZJ-action on M as a l-cocycle Zp —
GL,(Ag,). Since the equivalence of Fontaine preserves freeness and the rank,
the bijection of the isomorphism classes induced by the equivalence gives the
following statement.

Theorem. There are inverse bijections
D: (morc‘mt(G@p, GL.(Zy,))] ~) < HI(Z;, GL,(Ag,)) : V,

where (mor®™(Gq,, GL,(Z,))/ ~) is the set of conjugacy classes of continu-
ous morphisms and H* (Zy, GLn(Ag,)) is the set of of cohomology classes of
the 1-cocycles denoted by C*! (Zy, GLn(Ag,))-

Now let G be a linear algebraic group over Z,, i.e. an affine group
scheme of finite type over Z,. Then there is no canonical way to view a



map f € mor“"(Gq,,G(Z,)) as an object of an abelian category. Here
G(Z,) = limG(Z,/p"Z,) carries the profinite topology. But we will see how
—

these maps can be seen as functors between certain tannakian categories,
such that the conjugacy classes of mor®™(Gg,,G(%Z,)) correspond to the
isomorphism classes on these functors induced by tensorproduct-preserving
natural isomorphisms.

We will give an abstraction of the methods of Fontaine, such that we
can give a direct correspondence for certain G as in the theorem above.
We will start by observing the case of “p-torsion” maps, so for now G is
a linear algebraic group over I, := Z/pZ. For this we recall, that Ag,
is a complete discrete valuation ring with uniformizer p and residue field
E := F,((X)), the field of Laurent series with coefficients in F,. Any 1-
cocycle ¢ € CY(Gg, G(E%)) gives a pure inner form of the basechange GQE,

P

which we denote by G©. Here Gy is the absolute Galois group of E and Es?
is the separable closure of E in an algebraic closure E of E. Considering that
G, has a closed subgroup H, such that H = Gf via the p-power cyclotomic
extension, we can define

j : mor®™(Gg,, G(F,)) = C* (G, G(E*?)),

the map given by restriction H C Gg, and inclusion F, C E*”. The group
G(® might not necessarily be a group over [F,, but there is still a way to make
G (E) into a Zs-group, if ¢ lies in the image of j and which is dependent on
the choice of an inverse image of ¢ under j, see part 2.2.2. Then we have the
following correspondence.

Theorem A. Let G be connected and (f;); C mor®™(Gq,, G(F,)) be a family
of elements, such that (j(f;)); Cim(j) is a set of representatives in im(j) for
the relation of cohomology. Then we have inverse bijections

D : (mor*"(Gg,, G(F,))/ ~) < [[H'(Z;, GVUD(E)) : V,

such that H'(Z3, GUUD(E)) corresponds to

{[f]~ € (morcom(GQp,G(Fp))/ ~) | j(f) is cohomological to j(fi)}.

These bijections are natural in morphisms of linear algebraic groups up to
some twisted conjugation dependent on the choice of the (f;);, see Lemma
2.2.18.

We will calculate the map j for certain classes of linear algebraic groups.
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Theorem B. In “many cases” (see Theorem 2.3.26 for details) the map j is
trivial up to cohomology for semisimple groups over IF,, which are split over

F

p-

In particular, if H'(Gg, G(E*?)) = 1 or more general, if the map j is
trivial up to cohomology, we get a correspondence

D: (mor*™(Gg,,G(F,))/ ~) < H\(Z3, G(E)) : V,

if G is connected. Now let G be a linear algebraic group over Z,. Then we
get the following statement.

Theorem C. If G is smooth over Z,, j is trivial up to cohomology and the

base change G ® ), s connected, then we have inverse bijections
D

D : (mor*"™(Gq,, G(Zy))/ ~) ¢ H'(Z},G(Ag,)) : V.
These bijections are natural in morphisms of such linear algebraic groups.

The condition on j is not necessary, although then we obtain a correspon-
dence as in Theorem A, but the Z2-groups on the right hand side might not
necessarily be given by Ag,-valued points of forms of G ® Ag, = Spec(A4),

ZP

~

but instead by Ag,-valued points of forms of the formal group Spf(A), where
A is the p-adic completion of A and we view A with the p-adic topology.

We can also work with F := EP*"/ instead of E. Under certain conditions
on G, we will then show that the theory of etale (p, I')-modules with values in
G over W (IF) is the same as the theory of etale (¢, I')-modules with values in
G over Ag,. Here W (IF) denotes the ring of Witt vectors of F, which carries a
Zy-action of rings via functoriality in F. Recall that there is a Z;-equivariant
embedding of rings Ag, C W(F).

Theorem D. Let G be smooth over Z, and the basechange G ® F, be con-
ZP

nected. The inclusion Ag, C W(IF) induces a bijection
H(Z3, G(Aq,)) > H (Z, G(W (F))).

The proof of Theorem D in this work relies on Theorem C, but in the “p-
torsion” case there exists a more direct proof, which doesn’t rely on Theorem
A and in this case one can drop the assumptions that G is smooth over [,
and connected.

In (Sch17) constructions are given for more general objects than the ones
used by Fontaine. Those objects are associated to a finite extension L|Q,
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instead of Q,. We will work in this setup to obtain the Theorems A to D for
these objects associated to L.

This paper is organized in the following way. Segments of the work des-
ignated by a single number x are called “chapters”, by two numbers x.y are
called “sections” and by three numbers x.y.z are called “parts”.

In chapter 1 we will give the constructions of the objects for which we want
to define the theory of etale (¢, ')-modules with values in G. Furthermore,
we recall the correspondence given by Fontaine and rewrite it in a way to
give a motivation for the generalisations made in the rest of the paper.

In chapter 2 we will follow the methods of Fontaine to construct the de-
sired correspondence in the “p-torsion case”, i.e. when G is a linear algebraic
group over a finite field and we observe the objects with coefficients in certain
field extensions of this finite field. We also show in this case, that the theory
of perfect and non-perfect (¢, I')-modules with values in G is the same.

In chapter 3 we will work with G being a linear algebraic group over a
ring of integers of a p-adic field. We will consider smoothness of G, so that we
can use the methods of Fontaine to succesively lift the desired correspondence
from the correspondence in the “p-torsion case”. Furthermore we also show,
that the theory of perfect and non-perfect (¢, I')-modules with values in G, if
G is smooth and has connected base change to the residue field of the p-adic
field.

v



Notation

We follow the usual convention in commutative algebra that, unless specifi-
cally stated otherwise, every ring is commutative with unit and every mor-
phism of rings respects the unit.

If (E,]-]) is a non archimedean valued field, we denote its ring of integers
by Op :={z € E | |z| <1} and by mg := {z € F'| |z| < 1} the unique max-
imal ideal in Op. We define its residue field kg := Op/mpg. Furthermore we
denote the multiplicative monoid of its non zero numbers by O%, := Og\{0}.

If Ais a (non commutative) ring, then A* denotes its group of units.

If E is any field, we denote by G := Gal(E*P|E) its absolute Galois
group with respect to a fixed separable algebraic closure E*?|E.

When G is a group (or a monoid), which acts on a group M, then MY
denote the G-invariants of M. If o : M — M is an endomorphism of groups,
we denote by M*=! the elements in M, which are fixed by a.

If A is a ring, we denote by A — Alg the category of A-algebras and
A— Mod the category of A-modules and Grp denotes the category of groups.

If X — Sand S" — S are (formal) schemes over a base S, then by Xg we
denote the base change X . S" — S’. We further define X (5”) := morg(5’, X)

to be the morphisms over S. If S" = Spec(B) (S’ = Spf(B)) is affine, we also
write Xp := Xg and X (B) := X(5). If ¢ : S; — S5 is a morphism over S,
we write X (¢) : X (S3) — X(S1) for the induced morphism.

If f:X —Y and g: X — Z are morphisms in any category, we denote
by f xg: X — Y x Z the morphism induced by the universal property
of the product. If f : X; — Y] and g : Xo — Y, are morphisms in any
category, then (f,g) : X; x Xy — Y7 x Y5 denotes the morphism induced
by functoriality of the product, i.e. (f,g) = (f opry,) x (g o pry,), where
pry, : X1 X Xo — Xj is the projection for ¢ = 1, 2.

o Let L|Q, be a finite extension with uniformizer 7 and residue field k

with cardinality g := #k and let C, be the completion of an algebraic

closure L of L. We normalize the absolute value |- | on C,, so that
7| =q".

e If Bis an Op-Algebra, then W (B), denotes the ring of over L ramified
Witt vectors of B, see Proposition 1.1.4.

e Let K|L be a finite extension in L with uniformizer 7. Furthermore
let Ko|L with Ky C K denote an unramified extension with residue
field k. It is W := W (k) = Ok,, see Corollary 1.1.14.

o Let Koo C L denote Koo := KoLo the Lubin-Tate extension of L
corresponding to 7 adjoint to Ky, see Lemma 1.1.21. Furthermore let



and Hg, C Gk, be the absolute galoisgroup of Ky ... We define I', :=
Gk,/Hk, = Gal(Kj | Ko) = Gal(L|L) = OF, see Proposition 1.1.23.

We set Hg := Gx N Hg, C Gk C Gk, and define 'y := Gx/Hk C
Ik, Then we have Hy = Gal(L|K.) and T'yy = Gal(K|K), where
Ky = KKyoo = KLy. We define O C O to be the submonoid
generated by 'k and 7, see Definition 1.3.13.

In chapter 2 G will denote a linear algebraic group over k, except in
part 2.1.3, where it denotes a linear algebraic group over an arbitrary
field F, see Definition 2.1.7.

In chapter 3 G will denote a linear algebraic group over Oy, except in
part 3.1.2, where it denotes a linear algebraic group over an arbitrary
complete discrete valuation ring R, see Definition 3.1.7.

If L ¢ F c C, is a perfectoid field, see Definition 1.1.24, then F’
denotes its tilt, see Proposition 1.1.28.

Let kg := k((X)) denote the field of Laurent series with coefficients in
K, see Definition 1.1.15, and let Ex, denote the image of the embedding
Kp — CI;: as constructed before Definition 1.1.32. Let ]E;?f be the
separable closure of Ex, in C). We set E := (Ex”)?% for the G-action
on (C; defined before Lemma 1.1.30, see Definition 1.1.35. Furthermore
let F := EP"/ be the perfect hull of E, E* be the separable closure
of E in (C; and F be the algebraic closure of F in CE,, see Proposition
1.1.29.i). Of course, it is E** = 3"

Let Ai denote the complete discrete valuation ring with residue field
E as defined in Definition 1.2.31 and A C W(E*®P); be the m-adic
completion of the maximal unramified extension A g as constructed in
Definition 1.2.32.

By o1 € Endo, a,,(W(F)L) we denote the Frobenius on W (F)y, see

Definition 1.1.5. By abuse of notation, we also denote ¢, € Endy_ 4;4(FF)
to be the induced map on the residue field.

By p : Gk — Autp, a,(W(F).) we denote the action defined in
Definition 1.2.16 and p : Gx — Auty_a,(F) denotes the induced
action on the residue field, see Definition 1.1.38. Furthermore let
7 : g — Auto,—ay(W(F).) and 7 : T'x — Auty_ 45, (F) denote the
actions induced by p and p, see Definition 1.2.16 and Definition 1.1.38.
We also denote 7 : O — Endo, —a;,(W(FF) 1) to be the extension of 7
via m — ¢, see Definition 1.3.13.

vi



1 Period Rings and Motivation

In this chapter, we will follow (Sch17) to construct the objects over which we
will define the theory of etale (¢, I')-modules with values in G. For this, we
will give a slightly generalized version of the constructions, which are defined
in (Schl7).

Furthermore, we will give a version of the correspondence of Galois rep-
resentations and (¢, I')-modules (Sch17, Theorem 3.3.10) in the language
of the linear algebraic group GL,,, that will help us understand, where the
constructions in the next chapters are motivated from.

In the same way, we will give a version of the comparasion of perfect and
non-perfect (¢, I')-modules for GL,, via (I<le16, Theorem 3.2.15).

1.1 Preliminaries and Actions in the Torsion Case

In this section, we will follow (Sch17, chapter 1.1-1.4) to give an overview of
the constructions necessary to obtain the rings, we want to work with. We
will only give a shortened construction and drop most of the technicalities
that arise, except in the places, where we want to make slight generalizations.

1.1.1 Ramified Witt Vectors

We choose L to be our base field and give an overview how to construct Witt
vectors ramified over L. For this part B will always denote an Op-Algebra.

Definition 1.1.1. Let n > 0 be any integer and O [Xo, ..., X,] denote the
ring of polynomials in n+ 1 indeterminants with coefficients in 0. We define

n n—1
D, (Xo,...,. Xp) =X§ +7X{ +---+71"X,,
which we call the n-th Witt polynomaial.

By abuse of notation, we also define the following map
®, : BY — B, (by)n — ®p(bo, ..., byn)
and introduce the map
®p: BY — BN b (@,(b)),.
Lemma 1.1.2. (Sch17, Lemma 1.1.3)

i) If mlg is not a zero diwvisor in B, then ®g is injective.

1



ii) If m1p € B>, then ®p is bijective.
We furthermore introduce the maps
fp: BY — BY (b, by,...) = (b1, ba,...),
which is a morphism of Op-algebras and
vp : BN — BNo(by, by, ...) = (0,7hg, by, .. .),
which is a morphism of Op-modules.

Proposition 1.1.3. (Sch17, Proposition 1.1.5)
If there exists an 0 € Endo, —a14,(B), such that

o(b) =b? mod 7B Vb € B,

then we have the following.
It is B := im(®p) C BY an Or-subalgebra, such that

B' = {(bn)n S BNO | O-(bn> = bn+1 mod 7Tn+lB Vn > 0}

and
fB(B/) C B/,’UB(B/) C BI.

We introduce the polynomial Op-algebra
A= OL[Xo,Xl,...,}/E),Yi,...]

in two infinite and countable sets of indeterminants. We introduce 0 €
Endp, —ai4(A) by setting

0(T,) =T1¥n>0and T, € {X,,Y,}.

Then 6 satisfies the condition in Proposition 1.1.3 (See Sch17, Remark 1.1.6).

We define X := (Xg, X1,...) € A and analoguesly Y. Then by Lemma
1.1.2 and Proposition 1.1.3 there exist unique elements S,P,ILF € ANo,
satisfying the following conditions.



We write S = (Sp, S1, ... ) and analoguesly for P, I, F. Then we have

Snapn S OL[X()?"'?Xn?}/E)?""Y?’L]?
I,,F, 1 € Op[Xo,...,X,] (see 5Sch17, discussion before Lemma 1.1.7).

We define W(B), := BY with a new structure of an Op-algebra in the
following way.

(an)n +s (bn)n := (Sn(ag, -, an,boy -+, bn))n
(an)n P (bn)n == (Pu(ag, ..., an,bo, ... bp))n
0:=(0,0,...)
1:=(1,0,0,...).

For every morphism of Op-algebras ¢ : By — Bs, we define

W(o) : W(B1)L = W(Bz)L, (bn)n = (6(bn))n-

Let ¢p : B — O be the map, which makes B into an Op-Algebra. The
identity on Op satisfies the condition in Proposition 1.1.3. It follows by
Lemma 1.1.2 and Proposition 1.1.3 that we can introduce the map Q : O —
W(OpL)r, which is given in the following way. For every A € Op there exists
a unique element Q(\), which satisfies @, (2(X)) = (A, A, ... ). We define

QB = W(¢B)L of): OL — W(B)L
Proposition 1.1.4. (Sch17, Proposition 1.1.8)

i) Itis (W(B)r,+s, p, ) an Op-algebra, the ring of ramified Witt vec-
tors over B.

i) The map ®p : W(B), — BY is a morphism of Op-algebras.

ii1) The construction W (-)r is an endofunctor of Op — Alg, i.e. for every
morphism of Or-algebras ¢ : By — By, the map W(¢)L is also a
morphism of Op-algebras satisfying the usual functorial identities.

From now on, we will use the usual notation of addition and multiplication
on W(B)., as well as the usual notation of scalar multiplication of Oy, on

W(B);.

Remark. The construction of W (B), is independent of the choice of the
uniformizer 7.



Proof. We define the polynomial Op-algebra By := Op[{ X} }pep| with set of
indeterminants indexed by B. Let pr : By — B (resp 6 : By — By) be
the Op-algebra morphism given by X;, — b (resp. X, — X}!). As before 6
satisfies the condition of Proposition 1.1.3. It follows by Lemma 1.1.2.i) and
Proposition 1.1.4 that &5, : W(By), — im(®Pp,) is an isomorphism of Op-
algebras. By Proposition 1.1.3 im(®p,) is only dependent on the ideals 7" By
and not on the elements 7™ for every n > 1, so W (By)y, is independent on the
choice of 7. It follows that W (B), = W(By)r/ ker(W (pr)) is independent
on the choice of . O

We consider the following maps on W (B).
F: W(B)L — W(B)L, (bn)n = (Fn(b(b s 7bn+1))n

and

ViW(B)L — W(B)L, (ba)n = (0,00, b1, ... ).

Definition 1.1.5. We call F the Frobenius and V the Verschiebung on
W(B)r.

Proposition 1.1.6. (Sch17, Proposition 1.1.10)
Let a,b € W(B). The maps F and V' satisfy the following properties.

i) Itis fpo®p=PgoF andvgoPg=>PgoV.
i) It is F' € Endp, —a1;(W(B)yL).
iii) It is V € Endo, —mea(W(B)L).
) It is F(V (b)) = 7b.
v) It is V(ab) = V(a)b.
vi) It is F(b) = b? mod 71W(B).

We define V,,,(B), = im(V"™) € W(B)y for every m > 0. Those are
ideals by Proposition 1.1.6.v).

Definition 1.1.7. We call W,,,(B) := W(B)r/V,n(B)L the ring of ramified
Wittvectors of length m over B.

Lemma 1.1.8. (Sch17, Lemma 1.1.15)
The map
7:B— W(B)L,b~— (b,0,0,...)

is multiplicative. We call T(b) the Teichmiiller representative or Teichmiiller

lift of b € B.



Definition 1.1.9. If B is a k-Algebra, then the ¢-Frobenius B — B, b+ b7
is an endomorphism of Oy-algebras. If this map is bijective, we call B perfect.

Proposition 1.1.10. (Schi7, Proposition 1.1.18)
If B is a k-Algebra, we have the following.

i) Any b = (b,), € W(B)y satisfies
F(b) = (b%), and tb = F(V (b)) = V(F(b)) = (0,5}, ...).

ii) For every m,n > 0 we have V,,(B) LV, (B)r C Viin(B) L.
iii) For every m > 1 it is

"W (B), C Vi(B)7' = ™ 'Wi(B), C #™ "W (B)y.

i) The canonical maps
«—
and
W(B), — IV (B),/Vi(B)y
are bijective.

Proposition 1.1.11. (Sc¢hi7, Proposition 1.1.19)
If B is a perfect k-algebra we have the following.

i) The element wly gy, # 0 is not a zero divisor in W (B).
ii) For any m > 0, we have
Va(B)1 = 7" W (B); = Vi(B).
Proposition 1.1.12. (Sc¢hi7, Proposition 1.1.21 € Remark 1.2.22)
Let B|k be a field extension.

i) The ring W(B)r, is an integral domain and a local ring with mazi-
mal ideal V1(B)r, and residue field B. Furthermore its quotient field
Quot(W(B)yL) is of characteristic 0.

ii) If B is perfect, then W(B), is a complete discrete valuation ring with
mazimal ideal mW(B)L and residue field B. Furthermore any b =
(bn)n € W(B)r has the convergent expansion

b= ZW”T(()Z_”).

n>0

5



Lemma 1.1.13. (Schl17, Proposition 1.1.23 & Corollary 1.1.24)
Suppose that we have the following information.

i) The element Tlp is not a zero divisor in B.
ii) The k-algebra B/mB is perfect.

iii) The natural map B — limB /7™ B is an isomorphism.
—

iv) There ezists an endomorphism of Op-algebras o : B — B, such that
o(x) =x? mod 7B for all x € B.

Then there ezists a unique morphism of Op-algebras
sp: B — W(B)r, such that o sg = (0"),.

Furthermore the morphism of Op-algebras

W(pr)Losg: B — W(B/mB)L
1S an isomorphism.
Corollary 1.1.14. There exists an endomorphism of Or-algebras o : Ok, —
Ok,, such that o(z) = 27 mod 10k, for all x € Ok,. So we have the
isomorphism of Op-algebras

Wi(pr)r o soy, : Ox, = W(K)L
In particular, for any k-algebra B, we can view W (B), as an Ok, -algebra.
Proof. Since Ky|L is unramified, the canonical map

f: Endp, (Ok,) — Gal(k|k), ¢ — [z mod 7O, = ¢(x) mod 1Ok,]

is an isomorphism. So there exists a (unique) o € Endp, (Ok,), such that

f(o) = ()%. Furthermore, since Ky|L is unramified Oy, /7O, is perfect and
Ok, = limOk, /1" Of,. Obviously, m € Ok, is not a zero divisor, since Ok,
—

is an integral domain. O]

From here on out, we will always identify W := W (k) = Ok,.
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1.1.2 Lubin-Tate Extensions

In this part, we will construct formal group laws over L and use those to
construct field extensions over L, Ky and K.

Definition 1.1.15. Let A be a ring.

i) We define the ring of formal power series over A (in one indeterminant
X ) to be the following,.

AlX]] =D anX" | an € AVn}.

n=0
We successively define A[[ X7, ..., X,,]] == A[[ X1, ..., X ]][[Xm]]-

ii) We define the ring of Laurent series over A (in one indeterminant X )
to be the following.

A((X)) = {ianX" | m € Z,a, € AVn}.

Remark. If A is a field, then A[[X]] is a complete discrete valuation ring with
uniformizer X, residue field A and quotient field A((X)).

Definition 1.1.16. A commutative formal group law over O is a formal
power series F(X,Y) € O[[X, Y]] in two variables with coefficients in Oy,
which satisfies the following conditions.

e Itis F(X,0) =X and F(0,Y) =Y.
o Itis F(X,F(Y,2)) = F(F(X,Y),Z).
o Itis F(X,Y) = F(Y, X).

A morphism h : F — G between such formal group laws F' and G is a
formal power series h(X) € Op[[X]], such that h(0) = 0 and h(F(X,Y)) =
G(h(X),h(Y)). By morp, (F,G) we denote the set of all those morphisms
between F' and G.

From this definition we see that the set of endomorphisms of a commu-
tative formal group law F over Op, which we denote by Endp, (F), is a
(possibly non-commutative) ring with the following structure.

(h1 + ha)(X) := F(h(X), ha(X))
(P - he)(X) := I (ha(X))
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Lemma 1.1.17. (Haz78, (A.4.7))

Let F' be a commutative formal group over O and let E|L be a complete
non archimedean field extension. By mg we denote the maximal ideal of the
ring of integers of E.

i) There exists a unique formal power series tp(X) € Op[[X]], such that

tp(X) ==X+ higher Terms and F (X, (X)) =0.

ii) For x,y € mg it is v +py := F(x,y) a well defined element in mg.
Furthermore, (mg,+p) is an abelian group and any h € Ende, (F)
induces an endomorphism of groups of (mg,+r) by x +— h(x).

iii) The statement of ii) is also true for L instead of E.

Definition 1.1.18. A Frobenius power series for m is a formal power series
#(X) € Or[[X]], which satisfies the following conditions.

¢(X) =7mX + higher terms ; ¢(X) = X? mod 7O[[X]].

Proposition 1.1.19. (Schi7, Proposition 1.5.4)

For any Frobenius power series ¢(X) for m, there exists a unique com-
mutative formal group law Fy(X,Y") over O, such that ¢(X) € Endo, (Fy).
We call F, the Lubin-Tate group law of ¢.

Example. For ¢ = 71X 4 X9, we call F, the special Lubin-Tate group law of
.

Proposition 1.1.20. (Schi7, Proposition 1.5.6)
For any Frobenius power series ¢(X) for m, there erxists a unique mor-
phism of rings
Or — Endp, (Fy), a — [a]s(X),

such that [a],(X) = aX+ higher terms and ||, = ¢. Furthermore, this
morphism is injective.

For the rest of this part, we fix a Frobenius power series ¢(X) for =
and write F' := F, for its Lubin-Tate group law. By Lemma 1.1.17.iii) and
Proposition 1.1.20 we have an action

Or X (mf, +F) — (mf, +F), (a, Z) — [a]¢(z).
So for any n > 1 we obtain the Op-submodule
§n = ker([m"]y) = {z € my | [7"]4(2) = 0},

8



which obviously is an O /7" Og-module and

Fi1CF2C....

By adjoining §, to L we get the tower of field extensions

LCL:=K)C - CLy:=K@)CLoo:=|JLn CL.

Lemma 1.1.21. (Schi17, Remark 1.3.8)

The extensions L, and L., depend only on the choice of m and not on
the choice of ¢. We call L,, the n-th Lubin-Tate extension for m and L., the
Lubin-Tate extension for 7

Proposition 1.1.22. (Schi7, Proposition 1.5.10)
For anyn > 1, it is §, a free Op/m"Op-module of rank 1, such that there
exist generators z, € §, for every n > 1 satisfying

(7)o (2n41) = 2, Y > 1.

By (Ser79, 11.§2 Corollary 3) every element in G, respects the absolute
value on L. It follows that

olals(2) = [als(o(2)) and o(F(z1, 22)) = F(0(21),0(22)) Vo € Gk, 2z, 21,22 € mp,a € O,
So for every n > 1 we have a O /7" Op-linear action of G, on §,, given by
Gr X §n = &n, (0,2) = o(x).

Using Proposition 1.1.22, we see that for every o € GG, there exists a unique
XLn(o) € (Or/7"Or)*, such that

0(2) = [xLn(0)](2) V2 € Fn.

It is x (o) independent on the choice of ¢ and only dependent on the choice
of m (See Schl17, the discussion before Proposition 1.3.12).

Proposition 1.1.23. (Schi7, Proposition 1.5.12)
For any n > 1 the extension L,|L is finite Galois, and

Xon: Gal(L,|L) — (Or/7"OL)™
s an isomorphism of groups. Furthermore the following holds.

i) The extension Ly,|L is totally ramified of degree (q — 1)g" .
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it) If z, € §n is a generator of Fn as an Op /7" Or-module, then we have
the following statements.

a) It is L, = L(z,).
b) The element z, generates Op, as an Op-algebra.

c) The element z, is a prime element of Oy, .
By passing to the projective limit with respect to n, we obtain an isomorphism
xr : Gal(L|L) — OF.
We define
Ko == KoL, and K,, := KL, Vn € NU {oo}.

Since Ky over L is unramified K ,|K, satisfies the properties of Proposi-
tion 1.1.23.i) & ii) and K,,|K at least satisfies Proposition 1.1.23.ii) a)& b).
Furthermore K | Ko and K |K are Galois extensions. We define

Hy, = Gal(I|Kono) C G,

and
I'ky = Gr,/Hr, = Gal(Ky | Ko) = Gal(Lwo|L) = OF.

Furthermore we define

HK = GK N HKO = Gal(f|Koo) and FK = GK/HK = Gal(K07oo|Kﬂ K(),OO).

Since Gk C Gk, is an open subgroup, so is I'x C 'k, = OF.

1.1.3 Perfectoid Fields and Tilting

We give the Tilting construction for a perfectoid field L C F' C C, due to
Scholze and give a small overview over the facts in this theory, that we need.

Definition 1.1.24. Let L C F' C C, be an intermediate field equiped with
the non archimedean value | - | on C,. We say that F is perfectoid, if it
satisfies the following conditions.

e The valued field (F,|-|) is complete.
e The subgroup |F*| C RZ, is dense.

o It is (OF/pOF)p = (OF/pOF)
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Example. Since C, is algebraically closed (See Sch17, Remark 1.4.1), it is
(Oc,/pOc,)? = (Oc,/pOc,). Furthermore we have Lo, C C,, but |L|* C
RZ, is dense by Proposition 1.1.23.i), so |C| C RZ, is dense. So C, is
perfectoid, since it is complete by definition.

We fix a perfectoid Ko C F' C C, for the rest of this part.

Remark. (Sch17, Remark 1.4.3)
Every element of the value group |F*| is a power of p.

We fix an element w € mpg, such that || > |7|. We construct the

k-algebra

Op =lim(... L 0p/00r L 0p/00: L .. L 0p/wOr).

Remark 1.1.25. (Sch17, Remark 1.4.4)
The k-algebra Op» is perfect.

Lemma 1.1.26. (Schl17, Discussion after Remark 1.4.4)
Let o = (..., Qp,...,0) € Ops be an arbitrary element. Choose for any
n an element a, € Op, such that a,, mod w = «,,. Then

of :=lim a?" € Op
n

1s well defined and independent on the choice of the a,,.

Remark. (Schl17, Lemma 1.4.5)
The map

ImOp — Ops, (... an, ... a0) = (...,a, mod wOF,...,a9 mod wOp)
F
(e

is a multiplicative bijection. In particular, the k-algebra Op» is independent
on the choice of w.

Recall that we have the Teichmiiller map 7 : K = W = Og,. Let
¢r : Ok, = Op be the map that makes Op into an Ok, -algebra. We define

TFZIQL)OK()%OF.

Proposition 1.1.27. (Compare to Sch09, Satz 2.2.2.1ii))
The map
k— Op,a (tp(a? ") mod wOFr),

1s @ morphism of k-algebras. In particular, we have that Oy is a k-algebra.
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Proposition 1.1.28. (Schi17, Lemma 1.4.6 € Proposition 1.4.7)

The map
‘ . |b : OFb —>R20,a — |Oéb|

1s a nonarchimedean absolute value. Furthermore, it satisfies the following
properties.

i) It is |Op |, = |Op|.
ii) For any o, B € O, it is

aOpy C BOp if and only if |af, < |8,

iii) It is mp == {a € O | ||, < 1} the unique maximal ideal in Opy.

w) Let @ € O be any element, such that |@’|, = |w|. Then the projec-
tion map sending (..., ap) — g induces an isomorphism of rings

OFb/waFb — OF/WOF
In particular, we have O /mp, = Op /mp.

In particular Ops is an integral domain. Its quotient field F” := Quot(Op)
has a unique multiplicative continuation of | - |,. With it, F > is a perfect and

complete non archimedean field extension of k, such that Op» s its ring of
integers and |F°|, = |F|. We call F” the tilt of F.

Proposition 1.1.29. i) The field CE, 15 algebraically closed.

it) The completions fzm of Lo, KOO of Ko and IA(O’OO of Ko~ are perfec-
toid and if F1 C Fy are two perfectoid fields over L, then we have the
inclusion of valued fields

(Flbv||b)C(F2ba||b)

Proof. For i) and L. being perfectoid, see (Sch17, Lemma 1.4.10 & Proposi-
tion 1.4.12). Since K Loo| Lo is finite, it is complete and so Koo = K L. So
by (Sch17, Proposition 1.6.8.1)) K. is perfectoid. The same is analoguesly
true for IA(OOO. The statement about the inclusions follows from the definition
of Op for perfectoid F' and since O, N wOp, = wOp,. []

Since every o € G acts continuous on the valued field L, we get an
action of G, on C,. This action is continuous for the absolute value on C,
(See Schl17, Lemma 1.4.2).
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From this point on we consider w := 7. Since every o € (G, preserves
7Oc,, we obtain an action

GLxOc — O, (0,(...,a, mod 70¢,,...)) = (...,0(a,) mod 70Oc,,...),

which acts by continuous endomorphisms of k-algebras. This action extends
uniquely to an action on C; by continuous endomorphisms of k-algebras
and it preserves | - |, by the definition of o in Lemma 1.1.26. Furthermore
Gk, C G, even acts by continuous endomorphisms of x-algebras.

Lemma 1.1.30. (Schi7, Lemma 1.4.13) The Gp-action on the valued field
C; s continuous.

The field extensions K |K are normal and Hy fixes koo and K C")O, since
its acts by continuous morphisms. An analogues statement holds for K o| Ko
and Hg,. By (Bou606, III §2.4 Lemma 2), the projection Gx — T'y is an
open map. It follows by an easy calculation (see for example (Kle16, Lemma
2.1.21)) that we get continuous actions

g x K’, — K’
and
b b
FK(J X KO,OO — KO,OO

by Proposition 1.1.29.ii) and since the Gg-action on C*}’, is continuous by
Lemma 1.1.30.

We fix a Frobenius power series ¢ for m and define the following Op-
module.

(7] () (7] (") (7] ()
i)> Sn—l — ... i>> 81)

T :=lim(... [W]i))(.) Sn
—
Since ¢p(X) = X7 mod 7O[[X]], we have
Yi1r = Ym mod 1O0x  Vm > 1, (yn)n € T.
It follows that
L:T — Okg’w, (Yn)n = (.- Yy, mod Ok, vy mod 7O, 0)

is a well defined map. By Proposition 1.1.22, we have that T is a free O-
module of rank one and that an element (z,), € T is a generator of T" as an
Op-module if and only if z, is a generator of §,, as an O /7" Or-module for
all n. We fix such a generator t = (z,), € T.

Lemma 1.1.31. (Schi7, Lemma 1.4.14) It is |u(t)], = |7|7T < |n].
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We set w := «(t). By Lemma 1.1.31 we get a morphism of x-algebras
RlIX) > Ogy L F(X) o> F().
Since w € [A(B’oo is invertible this morphism extends to an embedding of fields
L R((X)) — [A(gm.

Definition 1.1.32. We define the subfield Eg, := ¢(k((X))) C f((b),oo'

Remark. The valued field (Eg,, |-|,) is a complete non archimedean discretely
valued field with residue field x, uniformizer w and its ring of integers satisfies

Ok, = k[[X]].
Lemma 1.1.33. (Compare to Schl7, Lemma 1.4.15)

For any a € Ok, we put [a](X) := [a],(X) mod 7OL[[X]] € k[[X]].

i) For any v € 'k, we have y(w) = [x5(7)](w).

ii) The I, -action on IA(SVOO preserves the subfield Eg, .

iii) The subfield Eg, of IA(&OO does not depend on the choice of the generator
teT.

We define Eiff C (C;, to be the separable closure in C;. By Proposition
1.1.29.i) it is a separably algebraically closed extension of Eg, and the G-
action on C;’D preserves K" by Lemma 1.1.33.ii).

Lemma 1.1.34. Let E;, C Eg, be the image of k((X)) C k((X)) under j.
Then ET” = Ey”. Furthermore by (Sch17, Lemma 1.4.15.11)), the G'.-action

b sep
on C,, preserves E*.

Proof. This follows from the fact that x((X))[k((X)) is the unique unramified
extension in k((X)) with residue field x and so, it is separable by Lemma
1.2.26.i). O

Definition 1.1.35. We define the s-algebra
E = (B = (B)7)" C R,

The last inclusion is well defined by the remark after Lemma 1.1.26 and since
Ky = C}' by (Ax69, Theorem).

Remark. Since Hx C Gk is normal, the continuous Gg-action on CZ pre-
serves E and hence induces a continuous action of I'x on E.
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Definition 1.1.36. Let E be a field of characteristic p with a fixed alge-
braiclly closed field extension C|E. We define the perfect hull of E in C' to
be

Errf ={zxecC|3IneN: 2 c E}.
Remark. The subset EP*"/ C (' is a subfield, which is algebraic over E.

Lemma 1.1.37. (Bou90, §§V.5.2 and V.7.7)
Let E be a field of characteristic p with fized algebraic closure E. Then
Ererf C E satisfies the following conditions.

i) The field extension EP'Y|E is the largest intermediate field of E|E
which 1s purely inseparable over E.

i) The field extension EPJ|E is the smalles intermediate field of E|E
which is perfect. In particular, the extension E|EP*T is Galois.

ii) If E*P|E denotes the separable closure of E in E, then EsPNEP"T = F
and E = (Ererf)ser = (psepyrerf = psep ppert - In particular, restricting
automorphisms to E*P induces a topological isomorphism of groups

Gal(E|EPrf) — Gal(E*P|E).
By Proposition 1.1.29.i), we can define the perfect hull of E in (CZ,
F:=FE/ cC.

We furthermore define E*P (resp. F) to be the separable closure of E (resp.
F) in CZ). Again by Proposition 1.1.29.i), F is an algebraically closed field
and obviously E*? = E}?.

By Lemma 1.1.37.iii) we can identify the absolute Galois group Gg of E
with the absolute Galois group Gy of F.

Since the G g-action on C; preserves E7” and Hx C Gk is normal, it
preserves [ and [E.

Definition 1.1.38. The continuous G g-action on F gives us a map

p: Gg — AutH_Alg(F).
By abuse of notation we also denote p : Gx — Aut,_4;4(E*?) to be the map
given by restriction. We furthermore define 7 : I'x — Aut,_4;4(F) (and also

7T : g — Aut,_4,4(E)) to be the map induced by p.
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Since p(Hg) fixes E, the map p induces a map
p: Hx — Gg
by restricting to Hg. Furthermore, since E; C I:E,O, we have a restriction
p: Hp = Gal(L|Ly) — Gg,

Theorem 1.1.39. (Sch17, Theorem 1.6.7)
The map
p: HL — GEL

18 a topological isomorphism of groups.

Corollary 1.1.40. i) The map
p: Hx — Gg
s a topological isomorphism of groups.
ii) The extension E|E, is finite. In particular E = kg((Y)) is a local field.

iii) It is Bx, = (E77)"%0. In particular, if K = Ky is unramified over L,
we have £ = Eg, .

Proof. The first statement follows from Theorem 1.1.39 and the main theorem
of Galois theory. Furthermore, since K., = KL |Ls is a finite extension,
it is Hx C Hy open and hence E|E is finite by the main theory of Galois
theory. For the third statement, we know that E |E. is a finite Galois
extension, so by the main theorem of Galois theory there exists an open and
normal H C Hp, such that Ex, = (E;*)# and H;/H = Gal(Eg,|EL). By
(Ax69, Theorem) and the Remark after Lemma 1.1.26, it is (C})"r0 = IA(&OO
and hence, (E;7)# C (E;")"x0 and so Hx, C H C Hy,. Since L,|L is totally
ramified for all n > 1 and Kj|L is unramified and Galois, we have

H;/Hg, = Gal(KoLs|Loo) = Gal(Ko|L) = Gal(k|k).
On the other hand, since Eg,|E; is unramified, we have
HL/H = Gal(EKOHEL) = G&l(lﬂk/‘)

and so Hg, C H is actually an equality. O]

We furthermore define
o F—=F, o a7

Obviously, this map commutes with the automorphisms p(o) for all o € G.
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Definition 1.1.41. A topological field is a field E, which is a topological
ring, such that £~ is a topological group.

We recall the following elementary fact.
Remark 1.1.42. Any field with an absolute value is a topological field.

Proof. Let (E,|-|) denote such a field. Let € > 0.
By the triangle inequality, the addition is continuous on such a field.

Let 2,y € E and 2’ € By, (),y € Bs,(y), then
jzy—a'y| = [zy—2'y+a'y—2'y'| < |z—2|ly|+[2'[ly—y'| < dily[+0a2(|2]+01),
where the last inequality follows from
2] = [2f| <o — 2’| <6y

€

Choose §; = ﬁ and dy = ‘xl%él'
Let x € EX and 0 # y € Bs(z). If 6 < %‘, then

1 1, |z—y J 2
‘_'_'_|:: < S < 2°
vy ellyl o fel(e] = 6) T fa]
So choose § := mm{‘fﬁ—', @ : O

In particular, all the fields we are observing in this part are topological
fields with their non archimidean value.
Lastly, we will need to use the following map.

Lemma 1.1.43. (Schl7, Lemma 1.4.18)
The map

Or : W(Op)r — Op, ZT(an)W” o Zaiw”

n>0 n>0

s a well-defined surjective morphism of Op-algebras.
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1.2 Topologies and the Period Rings

In this section, we want to construct the period rings in characteristic 0 as
subrings of certain rings of ramified Witt vectors and furthermore lift the
actions from the last section onto these rings. For this, we will need to
endow the ramified Witt vectors with a topology, such that the lifted actions
become continuous for this topology on the ring of Witt vectors over the
fields we constructed in the last section.

We will follow (Schl7, chapter 1.5 & 1.7) for the general constructions
of the topologies we want. Then we will embed the ring of integers of a
two-dimensional local field with residue field x((X)) into W (E). Lastly, we
will see that the maximal unramified extension of this two-dimensional local
field can be embedded into W (E*®), and will define our ring of coefficients
as a ring of H-invariants of this ring. These are slight generalizations of the
constructions made in (Sch17, chapters 2.1 & 3.1).

1.2.1 Weak Topologies and Actions

We will begin this part by constructing a two-dimensional local field with
residue field x((X)). We will then construct certain topologies on this field
and on rings of ramified Witt vectors.

Definition 1.2.1. We define the Ok, -algebra
Ak = ImOp, ((X))/7" O, (X))

Remark. (Sch17, Discussion at the beginning of chapter 1.7)
We have the isomorphism of Ok, -algebras

{ZanX” | a, € OKO’TLEI—HOO a, =0} = Ag,, ZanX" > (Z(an mod Oy ) X" ).

ne”L neZ nez

From now on, we will often write »_ a,X™ for elements in Ag,. So for

nez
f(X) = > a, X" € Ak, we define

nez

F(X)] := maxa, |

Note that this maximum exists, since K is discretely valued.

Lemma 1.2.2. (Schi7, Lemma 1.7.1, Remark 1.7.2 & the following discus-
sion)
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i) The map |-| on Ak, is a non archimedean absolute value, which makes
Ak, into a complete discrete valuation ring with uniformizer m and

residue field k((X)). The quotient field of Ak, satisfies

B, := Quot(Ag,) = {ZanX” | an € Ko, sup |a,| < oo, lim |a,| =0}
n n——o0

neL
and its ring of integers is Ag,.

i) If 9(X) € XOk,[[X]] and g(X) € Ak, , then g induces an endomor-
phism of Ok, -algebras

Ak, = Ak, f(X) = f(9(X)),

which extends to an endomorphism of the field of fractions
BKO — BKoa f(X) = f(g(X))

Let ¢ be a fixed Frobenius power series for 7. Because of Lemma 1.2.2.ii)
we get an action

FKO X AKO — 'AKoa (’7, f) = 7f = f([XL('Y)]Gﬁ(X))

and a injective Frobenius endomorphism of Ok, -algebras

PKop * AKO — AKoa f = f([ﬂ-]QS(X))

The induced map ¢g, : kK((X)) — &((X)) is the r-algebra morphism given
by X +— X1, since ¢(X) = X9 mod 7O[[X]].

Since Of is a commutative monoid, the map ¢g, commutes with the
action of every v € I'g,.

We give Ak, the topology of a topological Ox-module by setting

Up == X"O[[X]] + 7" Ak, Ym >1

as a fundamental system of open neighbourhoods of 0. This is possible,
since Unax(m,n) C Upm N U,. Obviously, the following submodules also form a
fundamental system of open neighbourhoods of 0 for this topology.

Ui = X'O[[X]] + 7™ Ag, VI, m > 1.
Definition 1.2.3. We call this topology the weak topology on Ag,.

Proposition 1.2.4. (Schi17, Lemma 1.7.6) The Ok,-algebra Ak, is a com-
plete Hausdorff topological Ok, -algebra with respect to the weak topology.
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Beware that we still need an endomorphism ¢, on Ag of Op-algebras,
which is a lift of the map (-)? and not of the k-algebra endomorphism on
k((X)) given by X — X9. We come to this later.

The ring W(OC; )z with the m-adic topology is not suitable for our pur-
poses, as the following Lemma indicates.

Lemma 1.2.5. (Klel6, Lemma 3.1.18)
The action

Gp X W(OC';,)L - W(OC;)L’ (0, (zn)n) = (0(z0))n
1s not continuous for the m-adic topology.

We introduce a new topology on ramified Witt vectors. Now let B be a
perfect topological k-algebra, such that there exists a fundamental system of
open neighbourhoods of 0 given by ideals of B.

Definition 1.2.6. For any open ideal a C B and m > 1 we define

Vo = ker(W(B)p 2 Wi (B) ™87 W, (B/a).)

If b C B is another open Ideal and n > 1, it is Vi max(mmn) C Vam N Von,
so there is a structure of a topological O,-module on W (B), for which the
ideals V; ,, form a fundamental system of open neighbourhoods of 0. We call
this topology the weak topology on W (B)p.

Remark. (Sch17, Exercise 1.5.1) or (Kle16, Bemerkung after Definition 3.1.19)

The weak topology on W(B)y, is the same as the product topology on
W(B)r = BY° induced by the topology on B. In particular, if p : By — By
is a continuous morphism between two perfect topological k-algebras with a
fundamental system of open neighbourhoods of 0 consisting of ideals, then
W(p)r : W(B1)L — W (B2) is continuous for the weak topology.

Lemma 1.2.7. (Sch17, Remark 1.5.2 & Lemma 1.5.3)
Let G be a profinite group, which acts continuously on B by automor-
phisms of k-algebras.

i) If the topology on B is Hausdorff (resp. complete), then the correspond-
ing on W(B), is Hausdorff (resp. complete).

it) The action
G xW(B)r — W(B)r, (0, (bn)n) = (0(bn))n

s an action by automorphisms of Ok, -algebras which is continuous for
the weak topology on W (B)r.
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Now let F'|k be a perfect and complete non archimedean field extension
with the absolute value denoted by | -|. We consider the topological sub-
r-algebra Op. It has a fundamental system of open neighbourhoods of 0,
consisting of the ideals B.(0) := {x € OF | |z| < ¢} C Op for any € > 0.

Definition 1.2.8. For any open ideal a C Op and m > 1, we define the
W(Op)-submodules of W (F),

Us = Vi + 7" W(F) = {(ba)n € W(F) | b € a¥0 < i < m}.

Then W (F'), carries the structure of a topological Or-module with respect
to this fundamental system of open neighbourhoods of 0. We call it the weak
topology on W (F),

Remark. (Sch17, Discussion before Lemma 1.5.4)

The weak topology on W (F'), is the same as the product topology W (F) =
F™No induced by the topology on F given by its absolute value. In particular,
if F1|F is a field extension of valued field, which satisfies the same conditions
as F', then the topology induced by the inclusion W (F), C W(F})r, where
the right hand side carries the weak topology is the weak topology on the
left hand side.

Lemma 1.2.9. (Sch17, Lemma 1.5.4 & Lemma 1.5.5)
The ring W (F)r, is a complete and Hausdorff topological O, -algebra with
respect to the weak topology.

Definition 1.2.10. Let X be a topological space and A be a topological
Hausdorff group, which has an open neighbourhood of 0 consisting of sub-
groups. If (f,), : X — Y is a sequence of continuous functions, which
converges pointwise, i.e. there exists a function f: X — A, such that

fl@) = lim f, ()

exists for all x € X. We say that the f,, converge uniformly against f, if for
all open subgroups H C A there exists N € N such that

fn(m)f(.irz)_l cH
forallm > N and z € X.

Lemma 1.2.11. (Uniform Limit Theorem) Let X, A, (fn)n, [ be as in the
last Definition. Then f is continuous, if the f, converge uniformly against

f.

21



Proof. Let H C A be an open subgroup and x € X. By the hypothesis
and since the f, are continuous and H is a group, there exists N € N and
x € U C X open such that

F@) ()™ = (f@) (@) ) (@) ) ) (v fly) ) € H

for all y € U. O]
Remark. Let A =W (F). If a sequence

fn X = W(F ) L
converges uniformly against an
fiX > W),

in the m-adic topology, then it converges against f in the weak topology.
Proof. First of all, if the lim f,(z) exist in the m-adic topology and converge

against f(z), then the same is true for the weak topology, since if

f(@) = fulz) € T"W(F)L,

then
f(z) = fulz) e " W(F)L 4+ Von = Uan

for all open a € W(Op)r. The same argument shows that they converge
uniformly in the weak topology, if they converge uniformly in the m-adic
topology. O]

Proposition 1.2.12. The group of units W (F)} is a topological group.
Proof. By Lemma 1.1.8 and Proposition 1.1.12.ii), it is
W(F); 27(F*)x (14+7W(F)L)

a isomorphism of groups, which is a homeomorphism for the subset topologies
of weak topology, since W (F)y, is a topological ring. Since 7: F* — W (F)}
is a homeomorphism onto its image and F' is a topological field by Remark
1.1.42, it suffices to show that inverting on

Uw =1+ 7W(F)

is continuous. But for every ¢ € #W (F'), the geometric series

>

n>0
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converges for the m-adic and hence for the weak topology. It follows that for
u € Uy with
u=1—cforcenW(F)L,

that

n>0

Since W (F'), is a topological ring for the weak topology, the map
Uy - W (F)p,u—~1—u
is a homeomorphism for the weak topology. So we need to show that

fiaW(F), = W(F),c— Y "

n>0

is continuous. Consider for every m € N the map
fm :7TW(F), = W(F)p,c— icn.
n=0
This is the composition of the maps
Fo s AW (F) O e ﬁW(F)L = W(F),.
n=0

These are continuous, since W (F'), is a topological ring. Since W (F), is
Hausdorff and the f,, clearly converge pointwise against f, it suffices to
show that they converge uniformly. But for every ¢ € W (F)p, it is

ch — icn c 7" HW(F)yL.

n>0 n=0

for all m > 0. O

Now let E|x be a complete non archimedean but not necessarily perfect
field extension. By (Neu99, IT Theorem 4.8) the non archimedean value on E
extends uniquely to an algebraic closure E of E and especially to F := EPef
and a separable closure E*?. We furthermore set F := E. Since the map
(+)P is continuous on F and F for the topology induced by the absolute value,

the completion F and F are still perfect.
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Definition 1.2.13. We define the weak topology on W (E), (resp. on W (E*%) )
to be the topology induced by the inclusion

A

W(E), € W(E); (vesp. W(E*?), ¢ W(F)y),

where the right hand side is equipped with the weak topology as defined in
Definition 1.2.8.

Analoguesly, we define the weak topology on W (F)y, (resp. on W (F)p)
as the topology induced by the inclusion

A~

W (F), c W(F);, (resp. W(F), c W(F)p).

By this definition and the remark after Definition 1.2.8 we get the follow-
ing remark.

Remark. The weak topology on W (E). (resp. on W(E®*®P),) is the same
as the product topology on W(E);, = EY (resp. on W (E*?) = (EsP)No),
induced by the topology on E (resp. on E*?) given by its absolute value.
In particular, the topology induced by the inclusion W(E), C W(E*%?),,

where the right hand side carries the weak topology is the weak topology on
the left hand side. B
The same statements hold for W (F') (resp. for W(F)p).

Proposition 1.2.14. (Sch17, Proposition 1.4.27)
i) It isF c K2,
ii) It is B = F = C).
Proposition 1.2.15. The actions
Gr x W(EF)L = W(F)r, (0, (za)n) = (P(0)(x0))n

and
L x W(F) — W(F)r, (7, (xn)n) = T(7)(2n))n

define actions of Ok, -algebras and are continuous for the weak topologies.
The same statements hold for E instead of F (resp. for E**P instead of
F.)

Proof. (Inspired by Sch17, Remark 2.1.14)
By Definition 1.2.13 the weak topology on W (FE), for any field extension
E|L with E C C,, is given by the weak topology on C,. By (Bou66, III §2.4
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Lemma 2) the projection G — 'k is open. So by an easy calculation (see
again (I<le16, Lemma 2.1.21)) it suffices to show, that

Gr x W(C,)r = W(C,)L, (0, (z)n) = (p(0)(20))n
is continuous for the weak topology. By Lemma 1.1.30 and Lemma 1.2.7.ii)
Gr x W(Og,)r = W(Og; )1, (0, (xn)n) = (p(0)(2n))n

is continuous for the weak topology, but since GK(WmW(C;)L) = WmW(@;)L

this remains true for the G'x-action on W(CZ)L. [

Definition 1.2.16. The continuous G g-action on W (FF), gives us a map

p: GK — AUtOKO—Alg(W(F>L>‘

By abuse of Notation we also denote p : Gx — Aut@Ko_Alg(W(Esef’)L)
to be the map given by restriction. We furthermore define 7 : 'y —
AUtOKO—Alg(W<F)L) (and also 7 : I'ne — AUt(’)KO—Alg<W(E)L)) to be the
map induced by p.

Furthermore, we define

Qr, - W(F)L — W(]F)L,x —> FF<I),

where Fy denotes the Frobenius on W(IF), (see Definition 1.1.5). This is an
abuse of notation, since it is a lift of the map ¢, = (-)? defined after Theorem
1.1.39. Since it is ¢, = W((-)?), by Proposition 1.1.10.i) ¢ is continuous
for the weak topology and commutes with the automorphisms p(o) for all
S GK

Lastly, we will need to use that ©¢, is compatible with the actions and
topologies defined in this part.

Lemma 1.2.17. (Sch17, Lemma 1.6.1)
The map
Oc, : W(OC;)L — O(cp

P

from Lemma 1.1.43 satisfies the following properties. For this, we also denote
p:Gg — AUtOKO—Azg(W(Oc;)L) for the map induced by the action.

i) It is 0(Oc,(a)) = O, (p(o)(a)) for allo € Gk and a € W(Ogs)1.-

i) The map Oc, is continuous and open with respect to the weak topology

on W(Og )1

25



1.2.2 The Period Ring

In this part, we will construct a lift of the isomorphism ¢ : kK((X)) — Eg, to
an embedding j : A, — W (Eg,)r, which is topological for the weak topolo-
gies and such that the I'k, -action and ¢, on the right hand side preserve the
image of j, which we will denote by Ag,.

Definition 1.2.18. We define Mg, C W(Eg,); to be the maximal ideal
MEKO = q)al<mEK0)'

Remark. (Sch17, Remark 2.1.2)

With respect to its weak topology, the ring W(OIEKO) 1 is a topologi-
cal Og,-algebra, which is Hausdorff and complete. Furthermore MEKO C
W(OJEK0> 1 is closed and hence complete.

Lemma 1.2.19. (Sch17, Lemma 2.1.4 & Lemma 2.1.6)

i) The ideals (@a(ﬁ(’)@p)m)m form a fundamental system of open neigh-
bourhoods of O for the weak topology on W(OC;).

i) It is Mg, C O (7O0g,).

iii) With respect to the weak topology any element a € Mg, is topologically
nilpotent, i.e. lim o" = 0.

Proof. We only need to prove ii). Let o = (an), € Mg, . Then laf| =

|l < |w] < |m|. On the other hand we have O¢, () = af mod 70c, by

definition, so we obtain |O¢, ()| < |7|. O

Corollary 1.2.20. Let ¢ be a Frobenius power series for m and F := Fy
denote the corresponding Lubin-Tate formal group law. Then (MEKO, +r) is
a Or-module via

OL X MEKO — MEKO, (b, Z) — [b]¢(2)

Furthermore, any formal power series X Ok, [[X]] converges on Mg, and so
for any o € Mg, and f € Ok, [[X]], it is f(a) € W(Og,, )r-
We consider Ay, := limO.((X))/7"OL((X)) C Ag,. This ring has the
—

same properties we established for Ag, and in particular has a weak topology.
By going through the definitions one easily sees, that the weak topology on
Ay is the same topology as the topology induced by the inclusion A; C Ag,.
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Furthermore the residue field of Ay is k((X)) = E. We define the maximal
ideal
IMI]EL = q)(;l(m]EL) - W(OEL)L

Just like Mg, ~this maximal ideal Mg, satisfies the properties of Corollary
1.2.20.

Lemma 1.2.21. (Schl7, Lemma 2.1.11)
There exists a unique endomorphism of Or-algebras

{} : Mg, — Mg,,
which satisfies
®oo{} =Py and [7]s o {} = Fo,, o {},
where Fo, ~denotes the Frobenius on W(Og, ).
We define
Ty : Mg, N Mg, Q Mg, C MJEKO and vy :=T1400: T — M]EKO'

Let t € T be a generator as an Op-module and w = «(t) € Eg, be the
corresponding uniformizer. We furthermore define wy := 14(t) = 74(w). By
Lemma 1.2.21, it is ®y(wy) = w. By Corollary 1.2.20, we obtain a map

Owo[[X]] = W( Ok, )1, f(X) = f(ws)-

Since ®p(wy) = w # 0, the element w, € W (Egk,); is a unit by Proposition
1.1.12.i). It follows that we have a map

Ok, (X)) = W(Ek,)r
and by passing to the m-adic completion we get a map of Ok, -algebras

)+ Ak = im0, (X)) /7" Ok, (X)) = ImW (B ) /7" W (B ) = W (Eieo)1,

see Proposition 1.1.10.iv). This map is an embedding, since we can further
lift them to their quotient fields. It obviously satisfies, that the following
diagram is commutative.

Ar, j W(Ek,)z
pr (o3
K((X)) : Ex,



Definition 1.2.22. We define
Ak, :==im(j) and Ay :=j(AL).

Lemma 1.2.23. (Compare to Schl1’7, Proposition 2.1.16.1)) The map j is a
topological embedding for the weak topologies.

Proof. We have |®y(wy)], = 7|77 < 1, so the statement follows from (Sch17,
Remark 2.1.5.ii)). O

The ring Ay, is invariant under the Frobenius and the Gk, -action.

Proposition 1.2.24. (Schi7, Proposition 2.1.16)
For any f € Ap and v € T'g,, we have

i) Fag, () =i, (1)),
i) 7((f)) =i f).

The second identity extends by continuity and Og,-linearity of the I'k,-
action for every f € Ag,. The first identity cannot extend for Ay, if Ky # L,
since I, induces the map (-)? on Eg,, but ¢k, induces the endomorphism
of k-algebras X — X% on £((X)). In the next section we will see that A,
is still invariant under the Frobenius.

Remark. (Compare to Sch17, Remark 2.1.17)
The ring Ak, does not depend on the choice of generator ¢ € T'.

1.2.3 Unramified Extensions

In this part we will give a brief reminder of the theory of unramified exten-
sions and then construct our Period ring Ax C W(E), and furthermore the
completion of the maximal unramified extension A C W (E*P).

Definition 1.2.25. Let E be a complete, discretely valued non archimedean
field with uniformizer 7z and residue field kg. A finite extension Ey|FE is
called unramified, if Ey, has uniformizer 7r and the extension of residue
fields kg, |kg is separable. In this case we also call the extension Op,|Og
unramified.

Lemma 1.2.26. (Schl17, Lemma 1.2.4)
For any unramified extension Ey|E, we have the following.

i) The extension Ey|E is separable.
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ii) If a € O, is such that kg, = kg(a) for the image a € kg, of a, then
Ey = Ela) and 1,a,...,aP*F171 s an Og-basis of O, .

By (5ch17, Lemma 1.7.1.ii)) Ay, is a complete discrete valuation ring with
uniformizer .

Example 1.2.27. The extension Ag,|Ay is unramified, because an element
a € Ok,, such that kx, = kr[a] as in Lemma 1.2.26.ii) satisfies A, = A[a],
since we can write any element in Ag, as

> O bWa™ X" with by, € Oy

nezZ m

by the remark after Definition 1.2.1 and Lemma 1.2.26.ii). Since the m-adic
value is non archmidean, we can change the order of the summands in the
“powerseries” to obtain the equality

> O bwamxm =3 () b X™)am.

nezZ m m neZ

So Ak, | AL is finite. Furthermore, both rings have uniformizer 7 and x((X))|k((X))
is separable by Lemma 1.2.26.i).

Lemma 1.2.28. (See Sch17, Lemma 1.2.5)
For finite extensions E C Ey C Ey and E C Ej C Ey, we have the
following.

i) The extension E\|E is unramified if and only if E1|Ey and Eo|E are
unramified.

ii) If Eo|E is unramified, then EqEy|E] is unramified.
iii) If Eo|E and E{|E are unramified, then EyE||E is unramified.
Fix a separable closure E*® of E. By Lemma 1.2.28, the union E™ of
all unramified extensions of F in E*? is a Galois extension E™|FE, which we
call the maximal unramified extension.

Proposition 1.2.29. (See Schi7, Proposition 1.2.6 € Exercise 1.2.7)

i) The residue field of E™ is a separable closure k" of kg in an alge-
braically closed field containing kg.
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ii) The natural maps
Gal(E™|E) & Aute, (Op) B G,

with
fl (0) = 0|0gnr

and
f2(¢) = [r mod mpgnr — ¢(z) mod mpnr

are 1isomorphisms and fyo f1 is a topological isomorphism for the Krull
topologies.

Lemma 1.2.30. (See Schl17, Lemma 3.1.3)

Let E|Ey, be any finite extension contained in B}, There exists a unique
finite ring extension Ay, C AL(E) C W(ET?), which satisfies the following
properties.

a) The ring AL (E) is a complete discrete valuation ring with prime ele-
ment .

b) The map ®¢: W(ET?), — EI" induces an isomorphism

Furthermore, we have the following.

c) It is AL(E) C W(E)L and the quotient field Quot(AL(E)) is a finite

unramified extension of By.
d) The Frobenius F on W(E}?) preserves A (E).

By the uniqueness, we have that Ax, = Ap(Eg,) and so by Lemma
1.2.30.d) the Frobenius preserves Ay, .

Definition 1.2.31. We set
AK = AL(E),BK = Quot(AK).
We view A C W(E), with the subset topology of the weak topology.

We furthermore set

AP = JAL(E), B} := Quot(A}").
E
By Lemma 1.2.30, Proposition 1.2.29 and Corollary 1.1.40.i), we see that
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e the map @ : A" /rA}" — E" is an isomorphism,
e the Frobenius ¢, and Gp-action p on W(E7™")., preserve A}" and
e the G-action on W(E}?), induces isomorphisms

HK% Gal(]B’L”|IB3K)i>GE

Definition 1.2.32. We set A to be the m-adic completion of A}" in W (E7™®) .
Remark 1.2.33. (See Sch17, Remark 3.1.4)
i) The m-adic topology on W (E7?"). induces the m-adic topology on A}
ii) The map liinA’z’“ /™A — A is an isomorphism.
Since any o € Gy, and the Frobenius on W (E7™"). act continuously for the
m-adic topology, the list of properties above yields that
e the map @y : A/mA — E7? is an isomorphism,

e the Frobenius ¢, and the G -action p on W(E™?), preserve A and H
fixes Ag.

Remark 1.2.34. (Compare to Sch17, Remark 3.1.5)
i) The G-action on W(C}),, commutes with the Frobenius F.
i) It is (W(C))"=!' = W (k)L = OL.

Lemma 1.2.35. [t is A5 = Ay, In particular, the Gg-action on A induces
a continuous Ik -action on Ak, which we also denote by T.

Proof. (Inspired by Sch17, Lemma 3.1.6)
Since Hx = G, we have that (A/7A)x = (E}7)x = E = Ay /mAxk.

Considering the commutative and exact diagram

Oﬁ-AK/ﬂ'mAKﬁAK/ﬂ'm—i_lAKﬁAK/?TAKﬁO

| | -

00— (A/7mmA)Hx — (A/amHA)Hr — (A /7 A)Hx

we deduce from the snake lemma and induction that (A/7mA)IK = Ay /7™ Ak
for all m > 1. By Remark 1.2.33.ii), we see that

AHr — (hmA/ﬁmA)HK = lim(A/ﬂmA)HK = limAg /7m"Axg = Ag.
— — —
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1.3 Modules and Motivation

In this section, we want to give the definition of (¢, I')-modules and cite the
classical correspondence to Galois representations. We will then proceed how
this correspondence translates to a correspondence in the context of linear
algebraic groups, which will serve as the motivation for us to obtain a more
general statement.

1.3.1 Etale (¢, ['x)-Modules

We begin with the definition of the weak topologies for finitely generated
modules over our period rings. Let R € {Ag, W(F).}.

Definition 1.3.1. Let M be a finitely generated R-module with projection
R"™ — M. We give R™ the product topology of the weak topology on R and
M the quotient topology of the projection.

Remark. (Compare to Sch17, Exercise 2.2.3)

The topology on M from the last definition is independent on the choice
of projection. We call this topology the weak topology on M. With its weak
topology M is a topological R-module.

Lemma 1.3.2. (Compare to Schl7, Remark 2.2.5)

Let a: R = R be a continuous ring homomorphism, and let : M — N
be any a-semilinear homomorphism between finitely generated R-modules M
and N. Then [ is continuous for the weak topologies on M and N.

Definition 1.3.3. Let I' be a topological group, which acts continuously on
R via automorphisms of Op-algebras.

i) Let V be a finitely generated Op-module. If 0 : Gx — Autp, (V) is
an action, which is continuous for the m-adic topology on V', then we
call (Vo) a continuous Gk -representation over Or. A homomorphism
between two representations (V, oy ) and (W, oy ) is a linear map V' —
W, which commutes with the actions. By Repp, (Gk) we denote the
category of continuous G-representations over Q.

ii) Let M be a finitely generated R-module. If a : I' = Autp, (M) is an
action, which is semilinear for the action on R and the map 'x M — M
induced by « is continuous for the weak topology on M and ¢, :
M — M is an @p-semilinear endomorphism, which commutes with
every a(7y), v € T, then we call (M, oy, ) a (o, I')-module over R.
A homomorphism between (¢r,I')-modules is an R-linear map, which
commutes with the I'-actions and the (pp-semilinear maps. By I'®g,
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we denote the category of (¢r,')-modules over R. If I' = {1} is the
trivial group, we just write & for {1}Px.

iii) By I'®d% C I'dr we denote the full subcategory of (¢r,I')-modules
(M, pur, ), such that the linearisation of ¢y

PR ®@ M — M,z ®m— xpy(m)
YL, R

is an isomorphism. Here R ® M denotes the basechange of M via
»L,R

o1 : R = R. We call an object in I'®% an etale (¢, ')-module over
R.

We will sometimes implicitly use the following fact.

Remark. (Compare to Sch17, Exercise after Proposition 2.2.7) or (See Klel6,
Proposition 2.1.18)

An object (M, pp) € Pg is etale, if and only if v (M) C M generates
M as an R-module.

Theorem 1.3.4. (See Sch17, Theorem 3.3.10)
If K = L, then we have quasi-inverse equivalences of categories

D : Repo, (Gr) > Tp®f, -V
(V.o) = (A @ V)
Or,

(Ao M)¥=" <+ (M, par, @),
L

where A ® V' carries the diagonal Gp-action p ® o and the Frobenius is
Or,

gwen by ¢ ®id for the Frobenius g on A. On the other side the Frobenius
v on A ® M is given by pp ® @y and the Gp-action on A ® M is given

by the dzagonal action p ® (a o pry,) for the projection erL Gp — I'p.
Furthermore these functors preserve elementary divisors and the rank of a
module.

Remark. The author thinks that one should be able to drop the assumption
that K = L, but since this work will be going into a different direction, we
will not prove this here. To prove this, it is advised to work through (Sch17,
chapter 2 & 3) with the setup of rings and modules we have established here,
but one has to be careful that Ax might not necessarily have a description
as in Definition 1.2.1, if K|L is ramified. So some statements and proofs in
(Sch17, chapter 2 & 3) might have to be changed.
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Theorem 1.3.5. (See Klel06, Lemma 2.2.16, Proposition 2.2.25 € Proposi-
tion 3.2.16)

i) Let E|k be any field extension and Og be a complete discrete valua-
tion ring, which is an Or-algebra with uniformizer m and residue field
E. Let ¢ € Endo,_a14(O¢) be a local endomorphism, which lifts the
q-Frobenius (-)? : E — E. Let F := EP*"J be the perfect hull of E.
Then there exists an embedding Og C W(F)r, such that the Frobe-
nius on W (F)r induces ¢ on Og. We also denote ¢ for the Frobenius
on W(F). As in i) and i) of the last definition, we define % to
be the category of etale p-modules over R, where R € {Og, W (F)L}.
Then for every (M, pyr) € (ID%(F)L, there exists a unique Og-submodule
Mg C M, such that (Mg, ¢mpr,) € 5, and for every N C M with
(N, omn) € 5., we have N C Mg. This construction is functorial
and induces a quasi-inverse for the quasi-equivalence

W(F)L ((? .l (bgg — ®(€/It/(F)L
&€

it) If K = L, then the functors in i) induce quasi-equivalences

W(FL>L AX) <l FL(I)XL < FL(I)%(FL)L : ()EL
L

We will generalize the following statement.

Theorem 1.3.6. Let (M, py) € ®F . If there is a T'x-action on M, which
is semilinear for the action of Ay denoted by o : I'x — Aute, (M), such that
every o), v € ' commutes with @y, then (M, onr, ) € Tg®Y , i.e. the
map U'x X M — M induced by « is automatically continuous for the weak
topology on M.

Proof. For I'g = T'f, this is (See Sch17, Theorem 2.2.8). But the proof there
works just as well for open subgroups I' C I'y. O]

To generalize the last theorem for R instead of Ay, we will deduce the
general case from the special case above. To do this, we need some technical
Lemmas.

Lemma 1.3.7. Let (M, @y, o) € Tg®§ . Then

<W(F)L1§?{ M, pr ® SOM,T@O() S FK(I)%(F)L’

where T ® a denotes the diagonal Ik -action. The same is true for Ay and

W(Fp). instead of Ax and W(F).

34



Proof. This can be proven in the same way as (Sch17, Lemma 3.1.11). O

Lemma 1.3.8. (based on Klel0, Lemma 3.2.3)
Let 7 = 0. Let n € NU{oo} We endow W (F),/n"W (FF) with the weak
topology as a W (F)-module. Then the subset topology on

A /m" A C W (F) /7" W (F),
is the same as the weak topology of Ak /n" Ak as a Ax /7" Ak.

Proof. For n = oo this is just by definition. So let n € N. We set R := A
and S := W(F). Since

Pr'znr = Plans|r
is open for the weak topology and R/7n"R resp. S/n"S is a topological R-
resp. S-module, it suffices to show that

prTr"S<Ua,m N R) = prﬂ'"S(Uﬂ,m) N Pling (R)

where m > n and U,,, is the W (Op)-module corresponding to an open ideal
a C O, which defines the weak topology on §. By definition, it is

Usm = {(ap,a1,...) €S| a; €aforallie{0,...,m—1}}.
By (Sch17, Lemma 1.1.13.i)), we have

(an + bp)n = (an)n + (bp)n for all (ay)n, (b)), € S with a,b, = 0 for all n.
(%)

Since m > n and Fy is perfect, we calculate for a := (ag,...) and the
corresponding a(™ := (aq, ..., am_1,0,...)
Prong(Uam NR) = {prms(a) | a; € aforalli € {0,...,m—1}, a € R}
© {a™ +7"S | a; €a,Ib e ™S :a™ +be R}
= {a™ +7"S | a; € a,a"™ € R 4+ 7S}
= Prong(Uam) N Prmg(R 4+ 7"S) = prong(Usm) N Prmg(R).
O

Proposition 1.3.9. Let (M, n) € OF, (resp. (M, pur) € Oy, ) together

with a T g-semilinear action M, which commutes with py. As always, we

denote this action by o. Then (M, n, ) € Tr®§  (resp. (M, ou, ) €

k@), ) if and only if (W(F)L A® M, o1 ® o, T®a) € Tx®f i), (Tesp.
K

(Mg, oa1asg: i) € T @Y, ). The same is true for Ay and W(Fy)p, instead

of A and W(F).
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Proof. By Theorem 1.3.5.1), the two cases here are linked by natural iso-
morphisms. These are topological isomorphisms for the weak topology by
Lemma 1.3.2, so the two cases are equivalent. The direction “‘nonperfect
to perfect” is Lemma 1.3.7. For the other direction, we will prove that,
if (M,pu,a) € FKCD%(F)L, then (Mg, Oarjag, ;) € [x®¢ . By Theo-
rem 1.3.5.1) it suffices to show that a induces an action on Mg and the map
I'x My — My induced by « restricted to Mg is continuous. For the first state-
ment, let v € I'x. Then (a(v)(Mg), par) is a finitely generated pr-module
over Ay, since ¢y and a(y) commute by assumption. Since 7(7y) : Ax — Ak
is bijective and My is etale, we calculate

Ar-ou((()(Me)) = 7(7)(Ax)-(7)(on (Mg)) = () (Ax-pu (Me)) = a(y)(Mg),

so a(y)(Mg) is etale. By the uniqueness of Theorem 1.3.5.1), it follows that
a(y)(Mg) C M.

For the second statement, we have by the equivalence of Theorem 1.3.5.1)
and the elementary divisor theorem that there are topological isomorphisms,
such that the following diagram is commutative.

o)

M W(E); @ W(E)L/(x™) @ --- @ W(F)L/(7")
Mpgr - A @ Are/(x™) & - @ Arc/(n™)

Since the weak topology is compatible with direct sums by (Sch17, Exercise
2.2.3.(3)), it suffices to prove the statement for M = W (F)./(7") and Mg =
Ag /(") for n € NU{oo}. But then the weak topology on Mg is the subspace
topology Mg C M of the weak topology on M by Lemma 1.3.8, so since « is
continuous, so is « restricted to Mg. The argumentation is the same for Ay,
and W(IFL)L ]

We also the need the following property in the perfect case.

Lemma 1.3.10. [t is (W(F)r, 1, 7) € Pr®fy gy, i-e. W(F)L is a finite
W(FpL)r-module and the Frobenius on W (F)r has bijective linearisation as
an W(Fp)-module.

Proof. First, we show that W (F)y, is a finite unramified extension of W (Fp).
By Proposition 1.2.29.ii), there exists a finite unramified extension C' of the
quotient field Quot(W (F)) with residue field F. By the universial property
of the maximal unramified extension (See Klel6, Satz 2.1.10.ii)) or by a
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variant of (Sch17, Lemma 3.1.2) there exists a lift of the g-Frobenius (-)? :
F — F on Og, which we denote by vc : Oc — O¢. It follows that we can
deduce from Lemma 1.1.13 that

in particular W(F), C W(F). is the finite unramified extension of W (F),
with residue field F, which is unique by Proposition 1.2.29.ii). Since F is
perfect, the Frobenius on W (F), is surjective. So the W (IFy,)-linearisation of
the Frobenius is bijective, since then the image trivially is a subset generating

W(F). as a W(Fp),-module. O

Corollary 1.3.11. If M € (I)%/(F)L’ then M € @,

(Fr)r"

Proof. In Lemma 1.3.10, we have seen that W (FF), is a finite W (F) ,-module,
so M is a finite W (F ) -module. We only need to show that the Frobenius
o on M is etale as an W (Fp)-module, but

W(FL)L - om(M) =W(Fr)r - o(W(F)L) - oar (M)
=W(F)L - ou(M)
— M,

where the first equality comes from the semilinearity of ¢,,, the second equal-
ity is Lemma 1.3.10 and the last equality is due to the hypothesis. So ¢ (M)
generates M as an W (IF ), and so M is etale over this ring. O

As before, let
R € {Ag, W(F)L}.

Now we can prove the generalized Theorem.

Theorem 1.3.12. Let (M, py) € L. If there is a T g-action on M, which
is semilinear for the action of R denoted by o : I'ix — Aute, (M), such that
every (), v € I'x commutes with @y, then (M, oy, ) € Tg®%E, i.e. the
map ' x M — M induced by « is automatically continuous for the weak
topology on M.

Proof. Let M be as in the hypothesis. By Proposition 1.3.9, we can restrict
ourselves to the perfect case R = W (FF),, as it is equivalent to the nonperfect
one. Now by Corollary 1.3.11, we can view M as an etale W (F) -module.
Again by Proposition 1.3.9, we can instead show that Mg, € I’K<I>§L. But
this is exactly Theorem 1.3.6. O]
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1.3.2 Motivation

In this part, we will reformulate the statements of Theorem 1.3.4 and The-
orem 1.3.5.ii) to statements for the linear algebraic group GL, over Of.
Recall that 'k has an open embedding in Of by Proposition 1.1.23. Let
again R € {Ag, W(F).}.

Definition 1.3.13. Let Ok C O} be the submonoid generated by ' and
7. Then Qi = T'g x 7. We view O C Oy with the subset topology of
the m-adic topology. Furthermore, we extend 7 : Ox — Endp, —4,,(R) via
" — ¢} for n € N.

Remark. An object in M € I'x®x is the same as a morphism of monoids
Ok — Ende, (M), such that the induced Og-action on M is semilinear for
the Og-action on R and continuous on I'k for the weak topology on M. The
object is etale, if and only if the action of 7 is etale.

By FK(P%) C I'k®x, we denote the full subcategory of those modules,
which are free of rank n. Analoguesly, we define I K(IJ%’(”) and Repo, (Gg)™.
Let M be a free R-module of rank n with an Og-semilinear action. We
consider an R-basis z := (z;)1<;<n. Let v € Og. By v % m, we denote the
action of v on m € M. We define A := A, , € Mat,«,(R) to be the Matrix,

which satisfies
Y RIT; = ZA]‘Z'{EJ‘.

Jjsn

Lemma 1.3.14. A module (M, py) € @%) is etale if and only if A, €
GL,(R) for some R-basis x = (x;); of M, where A, is defined as above for
the semilinear map @y considered as an action of .

Proof. Let 1 ®  := (1 ® x;); be the corresponding R-basis of R ® M. Let
pL,R

goﬁ\"} : R ® M — M be the linearisation of ¢y;. Then A, = m[@é@l]l@ﬂ?
¢r,R == -

is the Matrix that describes 4r for the R-bases 1 ® x on the left hand
side and z on the right hand side. So ¢4 is an isomorphism if and only if
Are € GL,(R). O

Let v * B denote the canonical action of v € Og on B € Mat,x,(R)
given by the action 7 on the entries of B. Then

j<n j<nk<n

It follows that
Ayse = Ay % AJ@'
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Since any morphism of rings sends units into units and the determinant is
polynomial over Z, the canonical action of Qg on Mat,«,(R) restricts to
an Og-action on GL,(R) = {4 € Mat,x, | det(A) € R*}, which makes
it into an Qg-group. It is continuous on 'k for the topology on GL,(R),
which is induced by the weak topology on R. We denote the action also by
GL,(7(7))(B) instead of v * B, if B € GL,(R).

Definition 1.3.15. Set

C'(Ok,GL,(R))
={a: 0x = GL,(R) | a(7d) = a(y) - v * a(d) V7,6 € Ok, ajr, is continuous.}.

Lemma 1.3.16. If M 21(9 )afree R-module of rank n with a semilinear Qg -
et,(n

action, then M € I'x®z"", if and only if
¢y = [y A, ] € C'(Ok,GL,(R))
for some R-basis x = (x;); of M.

Proof. By Lemma 1.3.14 and the calculations above, it suffices to show that
¢, 1s continuous on I'k if and only if the I'k-action on M is continuous. Let
the I'k-action on M be continuous. By Lemma 1.3.2 the isomorphism

fZRn—>M,€Z‘|—>ZL‘i
is a topological isomorphism for the weak topologies and we have
F((Aqzgi)i) = 7 * @i

So v — A, . is continuous if and only if v — 7 * 2; is continuous for all
1 <4 < n. But this holds true, since I'x acts continuously on M. On the
other hand, let ¢, be continuous on I'x. We have already seen that

o ' = M,y — yx*a;

is continuous for all x; in z. Let f be as above, u : M x R — M be the
scalar multiplication and

To T X R" = R™, (v, (@:)i) = (T(7)(a))s-
By semilinearity the action 'y x M — M is given by the continuous maps

(idre,f™1) PIT, XTn (E[aiﬁian) o
Tex M TS TR ST xR 5 MRS (MR Y M S

[]
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Because of Lemma 1.3.16, we call elements ¢ € C'(Qg, GL,(R)) etale
(pr, T k)-modules over R with values in GL,,.

Proposition 1.3.17. Let M € I‘K(ID%’(") and x = (x;); be as in the previ-
ous Lemma. Then the construction c, as in the previous Lemma induces a
bijection

Pk / =) = H'(Ox, GL,(R)), [M] = [cd],
which 1s independent on the choice of x.

Proof. Let y = (y;); be another R-basis and X := ,[idy], € GL,(R) be the
Matrix, which describes the basechange from x to y. Then

chg(W)jiXkﬂk =Y *Y

j<nk<n
=* E Xjiw;

Jjsn

=Y (N (Xji)y * g

j<m

- ZZT(V)(in)CQ(v)ijk.

Jj<nk<n

Since the (xy)x are linearly independent over R it follows that
(7)) - GLa(T(7))(X) = X - ¢y(7) Vy € Ok

Let f: M= N be an isomorphism of etale (¢, 'k )-modules over R and let
f(x) == (f(x:))i- Then c; = cp(s), since v * f(x;) = f(y * ;) and f is linear.
Let ¢ € CY(Ok, GL,(R)), then we define for every v € O a ~-semilinear
map on R" via v * ¢; := ¢(7) - e; for the standard R-basis (e;); of R™. This
makes R" into an object of FK@%’(n), since it is an action by the cocycle
condition, so by Lemma 1.3.16 it is in FKCD%’W). If ¢1,¢0 € CY Ok, GL,(R))
are cohomological, i.e. there exists B € GL,(R), such that

c1(7) - GLu(7(7))(B) = B - ca(v) Vv € O,

then B induces an isomorphism R"” — R", where the left hand side carries
the action induced by ¢, and the right hand side carries the action induced
by ¢, which can be shown by a calculation as in the beginning of the proof.
This induces an inverse map, since if we start with ¢ € C*(Qg, GL,(R)) and
we take the standard R-basis (e;); of R", then

yre =Y c(7)jie;

Jj<n
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On the other hand, if we start with M € I‘K(ID%’(n) and R-basis z = (z;); of

M and we make R™ into an object in I K@%’(n) via ¢, then the isomorphism

f:R"— M,e; — x; satisfies

fly=e) =Y fleiMe) =D oMy =y % =7 fle) Vi

j<n Jjsn

Since the e; are an R-basis of R™ and the action is semilinear, this identity
holds for all x € R". m

By doing an analogues construction and argument for Repo, (G K)(”), we
get a bijection

(Repo, (Gr)™)= mor®™ (G, GL,(OL))/ ~ .
Then Theorem 1.3.4 and Theorem 1.3.5.ii) give us the following statements.
Theorem 1.3.18. If K = L, then we have the following.

i) There exist inverse bijections
D, : (mor®™ (G, GL,(O))/ ~) «» H' (O3, CL,(AL)) : V,,
such that

(mor®™ (G, GL,(O1))/ ~) —2= HY(O%,GL,(AL))

(UOL)*l L(UAL)*
(mor®™ (G, GL,,(0r))/ ~) HY(03,GL,,(AL))

m

commutes for any morphism of groups o : GL,, — GL,, over O.
ii) The inclusion Ay, C W(FL) L induces a bijection

H'(O1,GLa(AL)) = H(OF, GLy(W (F1)L))-

Remark. The part about the commutative diagram does not directly follow
from the results we established here. We will later prove it in a more general
setting and show that the map here induced by Fontaine’s functor is the one,
we will develop later on.

In the following chapters, we want to generalize this statement for smooth
linear algebraic groups G over Oy, instead of just GL,,.
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2 The Case of Characteristic p Coefficients

In this chapter, we will prove the correspondence for general linear algebraic
groups over k, i.e. in the “m-torsion” case. For this, we will start with
recalling some general theories and theorems that will help us. Then we
will show for a general linear algebraic group G over k that the continuous
morphisms mor®™ (G, G(k)) can be viewed as a category of functors, such
that the conjugacy classes of morphisms correspond to isomorphism classes
of these functors. Afterward we will give a generalisation of Theorem 1.3.18
in the “m-torsion” case. In the end, we will calculate some examples.

2.1 General Theories

In this section, we will give an overview of the theories of tannakian cate-
gories and forms of linear algebraic groups. We will also recall a theorem
of Steinberg, which deals with the surjectivity of a self-map of a linear al-
gebraic group over an algebraically closed field of positive characteristic and
generalize it for separably algebrically closed fields.

2.1.1 Tannakian Categories

We will follow Delignes and Milnes (Dell2, chapter 1 and 2) to give an
overview of those parts in the theory of Tannakian categories that we will
need to give a “categorification” of the set of continuous morphisms from G
to the k-valued points of a linear algebraic group over k.

Let (C,®,¢,1) be a tensorcategory as in (Dell2, Definition 1.1), i.e. C
is a category, ® : C x C — C is a bifunctor together with an associativity
constraint ¢ and a commutativity constraint 1, which is compatible with ¢
(See Dell2; (1.0.1) & (1.0.2)), such that there exists an object 1 in C, called
unit object, with the property that - ® 1 is an auto-equivalence of C.

Definition 2.1.1. Let (C',®', ¢/,1’) be another tensorcategory. For conve-
nience, we will also write ® for ®'.

i) A tensor functor from C to C' is a pair (F, c), where
F:C—=(C

is a functor and
c:®o0(FXF)—Fo®

is a natural isomorphism, which satisfies the following properties.

a) For all X,Y,Z in C the following diagram is commutative.
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FX)®(FY)@FZ)NE-FX)FY ®2)—“=F(X® (Y ® 2))

/ o

(F(X) ®F(Y))®F(Z)C®T>F(X®Y) QF(Z)—F(X®Y)® 2)
b) For all X,Y in C the following diagram is commutative.

FIX) FY)“—=F(X®Y)

‘| [

F(Y) & F(X) = F(Y ® X)
c¢) For any unit object 1 in C, F/(1) is a unit object in C'.

ii) Let C” be a third tensorcategory. If (F,c) is a tensor functor from C
to C" and (G, d) be a tensor functor from C’ to C”. Then we define the
concatenation

(G,d)O(F,C) = (GOF>G(C)OCZ)’

where (G(c) o d)xy is the map

(GoF)(X)@(GoF)(Y) U G(P(X)oF(Y)) "S5 (GoF) (XaY)
for every X,Y in C.

Remark. If (F, c), (G, d) are as in ii) in the Definition above, then (G, d)o(F, ¢)

is a tensor functor.

Lemma 2.1.2. (See Dell2, Proposition 1.3.(b))

Let U,V in C be two unit objects. Letu : U - UQU andv:V - VRV
be isomorphisms. Then there exists a unique isomorphism o = o, 1 U =V,
such that (a ® a)ou =v o a.

By abuse of notation, we also refer to (U, u) as a unit object in C, where
U and u are as in Lemma 2.1.2.

Definition 2.1.3. Let (F,c¢),(G,d) be two tensor functors from C to C'.
A tensor natural morphism between F and G is a natural transformation
A : F — @, which satisifies the following properties.

i) For all X,Y in C, the following diagram commutes.
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FIX) F(Y)“—=F(X®Y)
>\X®>\YL lb{@y

G(X)®CY) ——~G(X®Y)

ii) For all unit objects (U, ) in C and all unit objects (U’,u’) in C’, the
following diagram commutes.

F(U) et g
)\Ul lid
GU)—— U

Xa—1oG(u),u!

Here, the a are as in Lemma 2.1.2.

We fix a unit object 1 in C. Let X,Y be in C, then an inner hom of X
and Y is a representing object for the contravariant functor

more(- @ X,Y) : C — Set,

if it is a representable functor. We denote such an object by Hom(X,Y') and
by evxy : Hom(X,Y)®X — Y, we denote the morphism, which corresponds
to idgom(x,v). We set XV := Hom(X, 1) and evy := evy,y. Then there is a
morphism ¢tx : X — (XV)Y corresponding to evxy o) : X @ XV — 1, if XV
and (XV)Y exist.

Definition 2.1.4. We call X in C reflexive, if X and (XV)" exist and ¢y is
an isomorphism.

Furthermore there exists a morphism
®: Hom(X,Y)® Hom(X,Y) = Hom(X ® X, Y ®Y)
corresponding to

(Hom(X,Y)®Hom(X,Y)®(X®X) > (Hom(X,Y)@X)2(Hom(X,V)oX) 5" YRV,

where the isomorphism is given by the associativity and commutativity con-
straint, if all those objects exist.

Definition 2.1.5. The tensorcategory (C, ®) is called rigid, if it satisfies the
following properties.
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i) For all X,Y in C, the inner hom Hom(X,Y') exists.

ii) For all X, Y, X,Y in C, the morphism ® defined above is an isomor-
phism.

iii) Every X in C is reflexive.

Definition 2.1.6. If C is additive (resp. abelian), we say that the tensorcat-
egory (C,®) is an additive (resp. abelian) tensorcategory, if ® is a bi-additive
functor.

We fix a field £. From now on, we consider that (C,®) is an abelian
tensorcategory, such that C is E-linear.

Definition 2.1.7. A linear algebraic group over FE is an affine group scheme
of finite type over E.

Example. i) The abelian category vecg of finite dimensional vector spaces
over F is a rigid abelian tensorcategory with the usual tensorproduct
over F, since Hom(X,Y) = morg(X,Y) is an inner hom by the adjoint-
ness of tensorproduct and morphisms. Furthermore, the morphisms
X — (XY)Y and morg(X,Y) ® morg(X,Y) = morg(X @ X,Y @)
for the definition of rigidity are the obvious ones. It is Endg(1) = E.

ii) Let G be a topological group and Repg(G) be category of continuous
representations on finite dimensional vector spaces over E, i.e. (V, py)
is in Repgr(G), if V is in vecg and py : G — Autg(V) is a morphism of
groups, such that the induced action G x V' — V is continuous for the
discrete topology on V. The morphisms in Repg(G) are those E-linear
morphisms, which respect the G-actions. This is a rigid abelian tensor
category with (V, py) @ (W, pw) = (V %) W, pv ® pw), since we can

equip morg(V, W) with a G-action by conjugation of the G-actions on
V and W. Then the forgetful functor wg : Repr(G) — vecg is faithful
and exact. It is Endpep,q)(1) = E.

iii) Let G be a linear algebraic group over E. By Repr(G), we denote the
category of E-linear representations over G, i.e. (V,oy) is in Repr(G),
if V' is in vecg and oy is a collection of R-linear actions

ovr: G(R) x (V%)R) — (V%)R)

for every FE-algebra R, which is functorial in R. The morphisms of
Repp(G) are those E-linear morphisms f : V' — W, such that f ®id :
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V®R — W ® R respects the actions oy g and o g for every E-algebra
E E

R. This is an abelian rigid tensorcategory with tensorproduct similiarly
defined as in ii). The forgetful functor Repg(G) — vecg is exact and
faithful. Furthermore, it is Endgep, @) (1) = E.

Definition 2.1.8. Let w : C — vecg be a faithful, exact and E-linear
functor, such that (w, ¢) is a tensor functor for some ¢ as in the definiton
of a tensor functor.

i) We say that (C, (w,¢)) is a (neutral) tannakian category over E, if C it
is rigid and Ende(1) = E. We call (w, ¢) a fibre functor of C.

ii) If (C, (we,cc)), (D, (wp,cp)) are two tannakian categories over E and
(F,c) is a tensor functor between C and D, we say that (F,c) is a
tannakian functor between C and D, if F' is E-linear and (wp,cp) o
(F,c) = (we, cc). We set

Fun'™(C, D)
to be the collection of all tannakian functors between C and D.

Remark. Our definition of neutral tannakian category differs from the one in
(Del12, Definition 2.19) in the way that the fibre functor is part of the datum
for us, where in (Del12, Definition 2.19), such a fibre functor is only required
to exist, but not part of the datum. We do this here for the definition of a
tannakian functor.

Furthermore by using tensor natural transformations as morphisms, we
can make Fun'(C, D) into a category.

Let G be a linear algebraic group and (Repg(G), (wg,id)) be the neu-
tral tannakian category of E-linear G-representations with the forgetful fibre
functor w := (wg,id). By Aut®(w), we denote the group of all tensor natural
automorphisms of w.

Lemma 2.1.9. (See Dell2, Proposition 2.8)
If (V,ov) is in Repg(G) and g € G(E), we write o3,(g) for the automor-
phism of V induced by the G(E)-action oy, g under g. The map

G(E) — Aut®(w), g = (07(9)) (viov)
s a well defined isomorphism of groups.

Proposition 2.1.10. (See Wat79, 3.4 Theorem)

A group scheme G over E is a linear algebraic group over E if and only
if there exists a closed immersion v : G — GL,, of groups over E for some
n € N.
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2.1.2 Theorem of Lang-Steinberg

In this part, we recall the classical theorem of Steinberg for the so called Lang
map and give a slight generalization, so that we can also use it in the non
perfect setting for the next section. So let G be a linear algebraic group over
k. Let R be a k-algebra. By ¢or: R — R,z + 29, we denote the ¢g-Frobenius
on R.

Definition 2.1.11. We define the Lang map on G(R) to be
Vg G(R) = G(R), A A~ G(pg)(A).

Theorem 2.1.12. (Theorem of Lang-Steinberg)(See Ste6S, Theorem 10.1)
If E|k is an algebraically closed field extension and G is connected, then
Vg 1s surjective.

Remark. Since Steinberg works with classical group varieties over an alge-
braically closed field, the correct assumption on G for this theorem is that
the group G(FE) should be connected for the Zariski topology. But G(FE) is
connected for the Zariski topology, if and only if the base change Gg of G to
E is connected by (G610, Corollary 3.36), which says that G(FE) corresponds
to the closed points of Gg and that this is a very dense subset in Gg, i.e.
its intersection with any closed subset X C Gg is dense in X for the subset
topology of X C Gg. Here, we used that for Gg = Spec(A) the embedding

G(E) = morg_ay(A, E) = Gg, f — ker(f)

onto the closed points is a topological embedding for the Zariski topologies,
but this is immediate by the definition of these topologies (Compare to G610,
Example 2.15). Now, every connected group over a field is automatically
geometrically connected (See Varl9, Proposition 38.7.11), so our assumption
for this Theorem is the correct one.

We will generalize this for separably algebraically closed field extensions
E|k, which means that every algebraic and separable element over E already
lies in F.

Theorem 2.1.13. (See Sch07, Satz 2.1)

Let E|k be a separably algebraically closed field extension. Let' V' be a finite
dimensional E-vector space together with a pg-semilinear endomorphism f :
V' — V, which is etale. Then there exists an E-basis (v;); of V', such that
f(vi) = v; for alli.
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Lemma 2.1.14. If E|k is a separably algebraically closed field extension,
then for G = GL,,, we have that

V) : GLL(E) - GLu(E), A > A"+ GLy(¢2)(A)
18 surjective for alln € N,

Proof. Let B € GL,(E) be arbitrary. Let (e;) denote the standard E-basis
of E™. Define a pg-semilinear endomorphism ¢p : E” — E" by extending
(e; — B - e;); pp-semilinearly. Since B is invertible, ¢p is etale (compare
to Lemma 1.3.14). So there exists a yp-invariant E-basis (x;); of E™ by
Theorem 2.1.13. By xg.i), we denote the i-th entry of x;. Define X := (azy))”
Since the (x;); form an E-basis of E", it is X € GL,(F). We calculate for
any 7 that

7= ople;) = D _en(e;)(B - ei) = (3 _or(Xij) Bri)r.

It follows that X = B - GL,(pg)(X), so B = (X 1), O

To show the surjectivity for general connected groups, we need the fol-
lowing technical Lemma.

Lemma 2.1.15. Let Y = Spec(A) and X = Spec(B) be two schemes over
a basering C, such that there exists a closed immersion v : X — Y, with
corresponding projection * : A — B. Let R C S be two C-algebras. Then

X(R) = 15(X(S5)) NY(R)
via the embedding vs : X (S) — Y (S) induced by ¢.

Proof. The inclusion X (R) C X (S)NY (R) follows from the inclusions R C S
and X C Y. Let f € X(S)NY(R). This is a morphism f: B — S over C,
such that f o* = g for a morphism g : B — R over C. So im(f) C R and
so f € X(R). O

We will mostly use the following special case, which is why we write it
down redundantly as its own Lemma.

Lemma 2.1.16. Let H C GL, be a closed subgroup over a ring C' and let
R, S be two C-algebras with R C S. Then

H(R) = H(S) N GL,(R).

49



Proof. 1t is H = Spec(C[{ Xi; }1<ij<nldet(x,;))/I) for some ideal I C C[{ Xy }1<ij<n]-
Then for any C-algebra T', we have

H(T)={A e GL,(T) | P(A) =0VP €I},
so H(R) = H(S) N GL,(R). O

Proposition 2.1.17. Let R be a k-algebra, which is an integral domain.
Then ¥ : G(R) — G(R) is surjective for all connected linear algebraic

groups G over k, if and only if \Ifg) : GL,(R) — GL,(R) is surjective for all
n € N.

Proof. All the GL,, are connected, so the ’only if’ part is immediate. Let
E := Quot(R) be the quotient field of R and E|E be an algebraic closure of
E. Let G be connected. We fix an embedding G C GL,,. Let A € G(R) be
arbitary. By the Theorem of Lang-Steinberg there exists an B € G(FE), such
that U(B) = A and by hypothesis, there exists an B € GL,(R), such that

\I/g)(ff) = A. By functoriality of G, it is also \II%L)(B) = A. We calculate
(W) 1 {A} = GL, (k) - B,
since ByB € (\IJ%))A{A}, if and only if
BBy - GLu(g)(Bo) GLa(¢5)(B) = B~ - GLu(¢5)(B),
if and only if By = GL,(¢5)(Bo), if and only if
By € GL,(E) N Mat,xn(k) = GL, (k).
Since G C GL,, is a natural transformation, we conclude

B € (I5) A} C (P)"{A} = GL,(k) - B C GL,(R).

So B € G(E)NGL,(R) = G(R) by Lemma 2.1.16. So A = U+(B) = U(B)
by functoriality of G. O

Corollary 2.1.18. If G is connected and E|k is a separably algebraically
closed field extension, then Vg : G(E) — G(F) is surjective.

Proof. Lemma 2.1.14 and Proposition 2.1.17. 0
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2.1.3 Pure Inner Forms

In this section, we recall the theory of forms of a linear algebraic group G
over a field E.

Definition 2.1.19. Let Ey|E be an extension of fields. Then a linear alge-
braic group H over F is called an Ey|E-Form of G, if

GEO = HEO

for the basechange to Ey. If Ey = E*P is the separable closure in an algebraic
closure of E, we call an E*?|E-Form just an E-Form.

Let Ey|E be Galois with galoisgroup Gg, . Let H be a Ey|E-Form of G.
Choose an FEp-isomorphism « : Gg,—Hg,. For any s € Gg,r we define an
Ey-automorphism of Gg, denoted by

o, = [a,id ®s] := ™' o (idy, Spec(s 1)) o a o (idg, Spec(s)).

Beware that Spec is contravariant, which is why we have to conjugate a with
Spec(s™!) and not with Spec(s) for the following proposition. We say that
two Forms of G are isomorphic, if they are isomorphic as groups over F.
Let F(G, Ey|E) be the set of isomorphism classes of Ey|E-Forms of G and
Ag, = Autg,(Gg,). We make the latter into a discrete G'g,g-group by the
formula

°f = (idg, Spec(s™")) o f o (idg, Spec(s)), Vf € Ag,, s € Gy |p-
Proposition 2.1.20. (Compare to Ser97, 111.§1 Proposition 5)

The construction above induces a well defined bijection
GEO\E : F(G, E0|E);>H1(GEO‘E,AEO),H — [S — Ofs].
Remark 2.1.21. (Based on Spr79, Discussion on p. 11)

Let (¢5)s € CYGpyE, AR,) be a cocycle. Then 9]501|E is induced by a
construction of a form G, for which there exists an identification of the
points G9(Ey) = G(Ej), such that

G(5)(A) = o1 © G(5)(A) Vs € Gy, A € G(Ep), (1)

where ¢, g, € Aut(G(Ep)) is the automorphism induced by ¢, via the canon-
ical isomorphism Gpg,(Ey) = G(E,). Furthermore, let Fy := E/ be the
perfect hull. Recall that Fy|EPer/ is galois with the same galoisgroup as
Ey|E. Thus, it makes sense to say that we also have

G(5)(A) = (cs 1, id) 0 G(5)(A) Vs € Gy, A € G(Fp), (2)
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where (cs g,,1d) € Aut(G(Fp)) is the automorphism induced by (cs,idg,) €
Autp, (Gp,) via the canonical isomorphism (Gg,) g, (Fo) = G(Fy). The con-
struction is as follows. We define an action of G, g on Gg, via

-1
s -

s +— (idg, Spec(s)) o ¢

If G = Spec(A), then this induces a G g, g-semilinar action of Hopfalgebras
on A® Ey. We define
E

G := Spec((A ® Ey)C*olr)
E
for the invariants under this action. We define the E-algebra
A = (A ® Ey)%roie.
E

By classical Galois descent (Compare to Sil09, II Lemma 5.8.1), we have that
the scalar multiplication induces an isomorphism of Hopfalgebras

ILLA(C)®EO—>A®EO
E E
So G is an Fy|E-Form of G. Let
C:ZA®E0—>A®EO
E E

be the Ey-hopfalgebra morphism, which is induced by c; for s € Egyg. Then
p induces the following diagrams to be commutative for every s € G g.

idA(c> Xs

A @ F, A9 @ B,
E E
" 7
AR E AR E
B T ) Tetida o) % £o
and
A(C) 2 FO idA(c) Xs A(C) % FO
E E
Spec(u®idp,) Spec(u®idr,)
AR F AR F
® Lo (c;®idpy)~Lo(ida ©3) © Fo
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We will only calculate (1). The calculation for (2) goes analogously.
Let f € morE_Alg(A, E()) = G(E(]),

LA AR FE), a—~a®1
E

and
19 A0 5 AR E), x2® 1.
E

Then we have the following chain of corresponding elements

(f € morg_aiy(A, Ey))
= (f ® idEo) - IIIOI'EO_Alg(A % Eo, E()))

(
=((f ®idpg,) o u € morg,_ a1y(A % Ey, Ey))
=((f ®idg,) o po !9 € morg_4,(A“, Ey)) = ((f ® idg,)jae € morg_ 415(A) Fyp)).
Applying G©(s) gives us
(sof® 5)|A<c) € morE_Alg(A(c), Ey).
We then have the following chain of corresponding elements.

((sof® s)m(c) € morE_Alg(A(C), Fy))
=((s0 f® )40 ®idg,) € mor g, azg(A© %) Ey, Ey))
=((so f ® s)ja@ ®idg,) o ™! € morg,_ (A %} Ey, Ey))
=((s o f ® s)ja@ ®idg,) o p~! 0 € morg_ay(A, Ey)).
It follows that to calculate (1), we have to show the equality
((sof®s)jaw @idg,)op ™ or=((so f)®idg,) o c}oL
For this we note that by the definition of the Gg, g-action and A it is
(c5)jae = (1da ®5) 400 Vs € Gyl (C)

Let a € A. Since p is bijective, it is

a®l= Zal(-j) ® :Egj)yj = M(Z(Zagj) ® xz@) ®y;)

ij i i
for some Zal(-j ) ® x? ) € A© and y; € Ey for every j. It follows by (C') and
the fact that ¢} is Ep-linear that

clal) =Y O @2y =Y a0 @ s(zi)y;.

J i 1]
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So by the multiplicativity of s € G'g,r and since

pa®l) = Z(Zaﬁj) ® .Igj)) ® yj

7 7

it follows that

((sof)@ide)oci(a@1) = s(f(a)z)y,

=((sof® s)|A(C) ®idg,) op Ha®1).

This is the desired equality.

Any g € G(Ep) can be made into an inner automorphism of G(R), where
R is an Fjy-algebra with the same formula [G(R) > y + gyg~']. Via this
construction and the Yoneda Lemma, ® extends to a morphism of groups

P G(EQ) — AEO-

Remark 2.1.22. Let p: Gg, X Gg, X Gy, = Gg, be the map induced by the
multiplication. Then for every g € G(Ey), we have

®(g) =

Prg, X id X prg (gXidEO,id,gflxidEO
Gg, — —

0 SpeC(Eo) X GEO X SPGC(E()) ) GEO X GEO X GEO ﬂ> GEO-

Proof. Let R be a Eg-algebra and can : Spec(R) — Spec(Ep) be the canonical
morphism. Let f € Gg,(R). It is f = f; X can for some f; € G(R). We have
to show that

((gxidg,)ocan)- f+((g~ " xidg,)ocan) = po(gxidg,,id, g~ ' xidg,)o(pry, x id X prg, )of.
By the universial property of the product and f = f; X can, it is
(prpg, xid x prg, ) o f = can x f x can.
Again by the universtial property of the product, we have
(gxidg,,id, g~ xidg, )o(canx f xcan) = ((gxidg,)ocan)x fx ((g~ ' xidg, )ocan).
Since i induces the multiplication, we have
po((gxidg, ocan) x fx((g~ ' xidg, )ocan) = ((gxidg,)ocan)-f-((g~* xidg, )ocan).

[]
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Lemma 2.1.23. The map ® : G(Ey) — Ag, is Ggy|p-equivariant.

Proof. We have to show that

®(g o Spec(s)) = (idg, Spec(s 1)) o ®(g) o (idg, Spec(s)).

We use the identity in Remark 2.1.22 to calculate this. So first we calculate
by using the universial property of the product that

(prg, X id X prg, Jo(idg, Spec(s)) = (Spec(s)oprg, ) x (idg, Spec(s)) x (Spec(s)opry, ).
Using the fact that - o Spec(s) is an endomorphism of groups on G(Ey), we
calculate

(9 x idg,,id, 7" x idg,) o ((Spec(s) o prg,) x (idg, Spec(s)) x (Spec(s) o pry,))
=(g o Spec(s) x Spec(s)) x (idg, Spec(s)) x ((g o Spec(s))~! x Spec(s)).

Let py : G x G x G — G be the map induced by the multiplication on G.
Then

p = (p1,1dg,) o (prg, prg, Pre) X PTg, -
Via this, we deduce

(idg, Spec(sfl)) op = po (idg, Spec(871))3’

where
(id, Spec(s™1))? := (idg, Spec(s 1), idg, Spec(s 1), idg, Spec(s ™ 1)).
It follows that

(id, Spec(s™))* o (g o Spec(s) x Spec(s))  (ids, Spec(s)) x (g 0 Spec(s))™ x Spec(s))
=(g o Spec(s) x idg,) x id x((g o Spec(s)) ™ x idg,)
=(g o Spec(s) x idg,, id, (g o Spec(s)) ™" x idg,) o (prg, X id X pry, ).

So by using the identity in Remark 2.1.22 again for g o Spec(s), we get the
desired identity. O

We obtain a map
E(p) : Hl(GEO|E, G(Eo)) — Hl(GEO|E, AEO)'
Beware that this map is in general neither surjective nor injective.

Definition 2.1.24. We call an Ey|E-Form H of G a pure inner form, if its

isomorphism class is in QESI E(im(E(p))).
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We close this part with the following technical Lemma that will often be
used for calculating points of schemes, in particular for pure inner forms of
some group.

Lemma 2.1.25. If X = Spec(A) is an affine scheme over an ring R, B is
an R-algebra and S C Endg_q,(B) is any subset of endomorphisms, then

X(B%) = X(B)*®

for the “action” of S on X(B) induced by X (s) for any s € S. In particular
for X over E, we have

X(E) = X(Ey)%#ol®,

Proof. It is X (B) = morg_q,(A, B) and X (s)(f) = so f for any s € S and
f € X(B). Itisso f=fforall s, if and only if im(f) € B. O

Appendix: Smooth Schemes over an separably algebraically closed
field

The following result ties in neatly into the thematics of comparing perfect
with non perfect setups, so the author chose to include it.

Definition 2.1.26.

i) Denote by Varg the category of pairs (X, ASE[Xy, ..., X,]/I), where X =
Spec(A) is a smooth, affine schemes over E together with a fixed isomorphism
of E-algebras ASFE[X,...,X,]/I. The morphisms (X,=) — (Y,=) are
morphisms X — Y of schemes over E.

ii) Let Varé be the category of Zariski closed embeddings ¢ : X (E) C A"(E) :=
E™ for some n € N, where X is a smooth, affine scheme over E and ¢ is
given by an closed embedding 7 : X — A" of schemes over . A mor-
phism (;; : X(F) — E™) — (1 : Y(F) — E™) is a polynomial map
f:im(e) = im(eg), i.e. there exist polynomials P, ..., P, € E[X1,...,X,],
such that

flzr, . xn) = (P, ooy xn)y e ooy P, .oy m)).
Proposition 2.1.27. (Nonperfect Nullstellensatz)
Let X = Spec(A) € Varg with the fized isomorphism A = E[X, ..., X,]/I.
View X(E)={x € E™ | f(x) =0VYf € l}. Then
I(X(E)):={P€FE[X1,...X,] | P(x)=0Vz € X(E)} =1.
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Proof. Obviously I C I(X(F)). Let g € I(X(F)) and g € A be the cor-
responding element. Define J := [E[Xy,..., X, 1] + (¢Xn:1 — 1)). Then
ElXy, ..., Xn1]/J = Ag. Set X, := Spec(Agz). Then we calculate

X, (E)=A{(x1,...,2p11) € Entl | fx,...xn) =0Vf €T, g(x1,...,25)T040 = 1} =0,

since g € I(X(F)). But X, (E) C X, is dense (See G010, B.74, Corollary
6.32, Proposition 6.21), since X, is smooth over E as an open subscheme of
X (See G010, Proposition 6.15.(5)). It follows that A; = 0, so there exists
m € N, such that g™ = 0 in A. It follows that ¢™ € I, so g € Rad(l) = I,
since X is reduced as a smooth scheme (See G610, B.74, Corollary 6.32). [

We have the following functors

Definition 2.1.28.

i) Let (X, : ASE[Xy, ..., X,]/I), (Y, : B>E[Xy,...,X,,]/J) € Varg
with a morphism f : X — Y. This induces a morphism f : B — A, which
gives a unique morphism g : F[X7,..., X,,]/J — E[Xy,..., X,]/1, such that
goty =110 f. This induces a well defined polynomial map

Gpoly im(Spec(t;Y) ) — im(Spec(i; M) g)
(1, ..y z0) = (g( X)) (21, )y (X)) (21, o)),

We obtain a functor
evg : Varg — Vars, (X,1: ASE[Xy, ..., X,]/I) — (Spec(pr;or g : X(E) — E™),
where pr; : F[Xq,...,X,] = E[Xy,...,X,]/I is the projection.
ii) We have a contravariant functor
Fr:Varg — E —alg, (1: X(E) = A™(E)) — E[Xy,..., X,]/I(X(E)),

since any polynomial map f :im(s;) — im(ee) with im(s;) C E™ for i =1,2
defines a well defined morphism

E[Xy, ... Xop]/1(im(e)) = EY1, ..., Yo, [/1(im(s)
by sending X; to P;, if f is defined by polynomials Py, ..., P,,.
Lemma 2.1.29. The functors evg and F; are fully faithful.

Proof. By the nonperfect Nullstellensatz, it is I’ = Fjoevg, where I' : Varg —
E — alg is taking global sections. Beware that this isomorphism is natural
and not only pointwise, since the isomorphism I'(X) — Fj o evp(X) is part
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of the datum in Varg and the morphism of Fj o evg(Y) — Fy o evg(X)
induced by X — Y is by construction the morphism, which is induced by
the isomorphisms of the data (X, %), (Y,=). But I is fully faithful, so evg
is faithful and F7 is full. To show that they are fully faithful, we only have
to show that Fj is faithful. But if F;(f) = Fj(g) for polynomial maps
f,g:im(t1) = im(eo) with im(¢y) C E™, then f and g are equal on

V(I(im(t))) :={x € E" | P(z) =0VP € I(im(¢2))}

by construction of F;(f) and Fy(g). Let © € im(¢y), then P(z) = 0 VP €
I(im(¢1)) by definition of I(im(¢1)), so im(ey) C V(I(¢1)), which means that
f=g ]
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2.2 The Correspondences

In this section, we will finally construct the bijections to generalize Theorem
1.3.18 in the “m-torsion” case. In the first part, we will give a categorification
of Galois representations with values in a linear algebraic group as a category
of Tannakian Functors for certain Tannakian categories.

In the second part, we will give a correspondence for those representations
to (¢, 'k)-modules with values in Forms of the linear algebraic group we
start with.

In the last part, we will give a correspondence of the nonperfect and the
perfect setting.

2.2.1 Galois Representations as Tannakian Functors

Let G be a linear algebraic group over k. We view G(k) with the discrete
topology.

Definition 2.2.1. A continuous G -representation over k with values in G
is an element

f € mor®(Gg,G(k)) := {a € morg,,(Gx,G(k)) | ais continuous}.

Recall the Tannakian categories (Repy(G),w) and (Repx(Gr),wk) over
k, where the fibre functors are the forgetful ones.

Remark. Let (C,wc) and (D, wp) be two neutral Tannakian categories over k.
A Tannakian functor (F, ¢) from (C, w¢) to (D,wp) is a pair, where F' : C — D
is a k-linear functor, such that (F,c) is a tensor functor, which satisfies
wpo(F,c) = we. Since wp is faithful, ¢ is uniquely determined by we and wp.
This is why we will only write F' for (F,¢) in the following. For example, if
C = Repr(G),D = Repp(Gk), then (F,c) = (F,id). Furthermore, since wp
is faithful, F' is already uniquely determined on the morphisms by we and
wp, which is why in the following we will only write what F' does on the
objects. For example, if C = Repy(G), D = Repy(Gk), then F((V,ov)) is of
the form (V, py) for any (V, oy ) in Repi(G) and F'(¢) = ¢ for all morphisms
¢ € Repi(G). In particular, in this case any such functor is automatically
k-linear.

Proposition 2.2.2. We have a well defined bijection

mor®™ (G, G(k)) — ob(Fun'"(Rep(G), Repr(Gk)))
[ [(Viov) = (Vilg = oy (f(9))])]

which induces a bijection from the set of conjugacy classes to the set of iso-
morphism classes.

59



Proof. Via the isomorphism G(k) — Aut®(w) of Lemma 2.1.9, the statement
becomes showing that

mor™ (G, Aut®(w)) <> ob(Fun'(Repy(G), Repr(Gk)))
[ lFr(Viov) = (Vilproy 1 97 f(9)ay])]
fr: 9= (Prwen) () viov)) < F

are welldefined maps, which are inverse to each other. Here p*F(VJV) is the
map Gk — Autg(V) induced by the Gg-action on V' of F(V, o). We only
show that the maps are welldefined, because then it is easy to see that they
are inverse to each other.

First we show that F is a Tannakian functor for any f € mor®™ (G, Aut®(w)).
We need to show that py,,, is an automorphism of groups, which induces an
continuous action on V for every (V, oy ) in Repi(G). Since f is a morphism
of groups, so is pfq, . To show that p;,, induces a continuous action on V/,
we need to show that the stabilizer

G, :=1{9 € Gk | proy(9)(v) = v}

is open for any v € V. But we see that

ker(f) C{g € G| f(9)oy =idv} C G,

and since ker(f) is open, so is G, as a subgroup of Gx. Now let ¢ : (V,oy) —
(W, ow) be a morphism in Repy(G). Since f(g) is a natural transformation
of the forgetful functor w : Repy(G) — vecy, for every g € G, the morphism
F¢(¢) = ¢ commutes with pys ., (g) and ps., (g) for every g € Gi. So Fyis a
functor. By definition it commutes with the forgetful functors w and wy and
it is a Tensor functor sind f(g) is a tensor autormorphism for every g € G.

Now, we show that fr is a continuous morphism of groups for any Tensor
functor F. First of all, F'(¢) = ¢ for ¢ as above and so ¢ commutes with
fr(9)oy and fr(g)oy, so fr(g) is a natural automorphism of w for any g €
G. Furthermore, since F is a tensor functor, it is fr(g) € Aut®(w). The
map fr is a morphism of groups, since F(oy) is a morphism of groups for
any (V,oy). Since G is a profinite group and Aut®(w) is finite by Lemma
2.1.9 and Proposition 2.1.10, it suffices to show that ker(fr) C Gk is closed
for fr to be continuous. Let GY) be the stabilizer of v € V for the action
induced by F'(oy). This is open and hence closed in G, since F(oy) is an
object in Repy(Gg). We calculate

ker(fr) = {9 € G | fr(9)ey = idy You} =()([GL")).

oy veV
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Beware that this intersection makes sense in a set theoretical way, since any

() G2V is an element in the powerset of G for any (V,oy). So fr is a
veV
continuous morphism of groups.

Lastly, we want to show that these bijections respect the equivalences on
the respective set. For this take note that any Isomorphism between Tan-
nakian functors in ob( Fun'(Repi(G), Repr(Gr))) is an element in Aut®(w),
by an argument as for showing that fr(g) € Aut®(w) for any g € Gk, since
such functors commute with the forgetful functors. So let 7 : FF — G be
such an isomorphism between two Tannakian functors F' and G. Then we
calculate for any (Vo) in Repy(G) that

T, 0 fa(9)e = T 0 G(0)(g9) = F(0)(g9) 0T = fr(g)s © Tp-

So fr and fg are conjugated via 7. A similar calculation gives that 7 : Fy —
Fr-15f0r 1s an isomorphism. ]

Remark. Following through the proof of this Proposition, we see that one
can exchange Gi by any profinite group G.

2.2.2 Galois Representations and Etale (¢, 'x)-Modules

In this part, G is a linear algebraic group over k. We fix an embedding
G c GL,, over k. Let

K € {E,F} and f € mor®™(Gg, G(k)).

Let
j]K : morc‘mt(GK, G(k’)) — 01<HK,G(Ksep))

and
Jx : mor“™ (G, G(k)) — H'(Hg, G(K*?))

be the maps induced by restricting to Hx and the inclusion k& C K*.

Remark. Let C' be a ring and R,S be C-algebras. Let ¢ : R — S be a
morphism of C-Algebras and X be a scheme over C. We view A € X(C) as
an element in X (R) via the map that makes R into a C-algebra. Then we
have X (¢)(A) = A. We will use this fact for C =k, R=5=K*? X =G
and the Gg-action p(g) for g € Gi and the Frobenius ¢y, several times in
this part.

Remark 2.2.3. The map

im(ji) — im(je)

induced by the inclusion E*? C T is bijective.
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PT’OOf. Let f17 f2 S morcont(GK’G(k)). Let .]E(fl)a.]E(fQ) € 1m(])7 such that

fi(h) = B~ f2(h)G(p(h))(B)

for all h € Hy and some B € G(F). Since fi(h), fo(h) € G(k) and o,
commutes with the p(h), we have

fi(h) = G(L)(B) ™" - falh) - G(p(R)) (G (] )(B))

for all m € N. Tt is G(E;*) = GL,(E}*) N G(F;) by Lemma 2.1.16 and so
there exists an N > 0, such that

G(e1)(B) € G(EF™) and so je(f1) = je(f2), -

since F = (E*P)Prf and ¢, = (+)7. O
By Lemma 2.1.23 there are maps

3" . HY(Hy, G(E*?)) — H'(Hy, Ageer) and 3 : H'(Hy, G(F)) — H'(Hy, As)
and
3P . OV (Hy, G(E*?)) — C\(Hp, Apeer) and 37 : O (Hy, G(F)) — C'(Hg, Ag),

where Agser := Autgser (Ggser) are the automorphisms of groupschemes over
K%P, The map

AutEsep (GESEP) — AutF(GF), f > (f, ldF)

is H-equivariant, since conjugating (f,idg) with (idg, Spec(s™")) for s € Hg
cancels itself out on Spec(F), so

(idg, Spec(s™1))o(f, idg)o(idg, Spec(s)) = ((idg, Spec(s'))o fo(idg, Spec(s)), idx).
Lemma 2.2.4. The following diagram is commutative.

()«

C'(Hg, G(E*?)) C'(Hg,G(F))

6(?) EEP)

Cl(HK,A]Esep) Ol(HK,AF)

(cs)s(cs ,idﬁ)S
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Proof. Let (cy)s € C*(Hy, G(E*?)). Then we need to show that (®(c,),idz)s
induces conjugating with ¢, on G(R) for every F-algebra R and s € Hg. So
let f € G(R) and f x can € Gg(R) be the corresponding element, where
can : Spec(R) — Spec(F) is the canonical morphism. Then by definition of
® and the universial property of the fiber product, we calculate

(®(cs),idz) o (f x can) = (®(cs) o f) x can = (cs - f - ;') x can,

which corresponds to ¢ - f - c;t € G(R). O

For this section, we shorten j := jg and j := jg. For f € mor®™ (G, G(k))
we define )
GO = (Gg) @G0,

This is a pure inner form of Gg (over E!) and we have an identification

G (K*?) = G(K*), (F1)
G (p(h)(A) = f(h) - G(p(h))(A) - f(h)"' VA € GV(K*?),h € Hx (F2)
G (K) = G (Ksep)HK (F3)

by Remark 2.1.21.(1) & (2), Lemma 2.2.4 and Lemma 2.1.25. For K = F, we

could also define o
GUIF .= (Gg) @ Gr(1)

9

but going through the definitions and with Lemma 2.2.4 one sees that

so working with GU)'F gives the same results as working with G) in this
part for the perfect setting, but in the next part, where we want to compare
the perfect with the nonperfect case, we will need to work with G) for both
settings.

Since GY) is not necessarily defined over k, it is

GO(() : GV(K) » CD(K)

not a well defined morphism of groups for v € Og. But because of (F1),(F2),
(F3), f is defined on Gk and takes values in G(k), we can well define for
Y = DPry, (gv)ﬂ”m, where g, € Gk the morphism of groups

v A=y A= f(9)6(p(9,)0L ") (A f9,) 7! VA € GU(K).
Since Hx C G is normal and (F2),(F3), it is v+ A € GW)(K) and since f(g)
takes values in G(k), it is (y0) * A =y (6 x A).
It follows, that GV)(K) is an Ox-group.
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Lemma 2.2.5. Let X be an affine scheme of finite type over a topological
ring R. Let X C A" be a closed immersion into an affine space. Then the

induced topology
X(R)C R"

1s independent of the choice of embedding. Furthermore, if X C GL, is a
closed subgroup and R* is a topological group, then X(R) C GL,(R) is a
topological group with the induced topology, which is the same topology as for
a closed embedding X C A".

Proof. Let v; : X — A" and 15 : X — A™ be two closed immersions.
Let ¢1(X) = Spec(R[X1, ..., X,]/]1) and 12(X) = Spec(R[ X1, ..., Xun]/2).
Then

oyt (X) = 1a(X)

is given by a map of R-algebras
R[X1,..., Xnl/lo — R[Xy,..., X,]/1
and so induces a polynomial map
(L1 (X))(R) = (e2(X))(R)

Since R is a topological ring, every polynomial map is continuous and by
symmetry the inverse map

(e2(X))(R) = (1 (X))(R)

is also continuous.

If X c GL, is a closed subgroup, we have the closed embedding GL,, C
A"*1 By the first part of this Lemma, the topology on X (R) via X c A"+
is independent of the choice of embedding X C GL,, C A™*L but the open
embedding GL,, C A" gives the same topology on GL,(R) as the embedding
GL, C A™*!. Tt follows that the topology on X (R) is also independent of
the choice of embedding X C GL,,.

To show that X (R) is a topological group, it suffices to show that GL,,(R)
is a topological group, since then X (R) C GL,(R) is a subgroup. But this
is true by the hypothesis, since multiplication on GL,(R) is polynomial and
inverting elements is given by polynomial maps and inverting elements in R*
by Cramer’s rule. m

Remark. If R is one of the topological rings with a weak topology we con-
structed in this work, then we also call the topology of this Lemma the weak
topology on X (R). Those rings satisfy all conditions made in this Lemma by
Remark 1.1.42, Lemma 1.2.9 and Proposition 1.2.12.
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We view G)(K) as a topological group with the weak topology. Then
GY(K) is a topological I'g-group via the action 7 * - defined above. To see
this, one first notices that the weak topology on K*? induces the discrete
topology on k, so f is continuous for the weak topology on G(K*%). Secondly
the action Gk x G(K*?) — G(K*?) given by G(p(-)) is continuous for the
weak topology on G(K*?) by Lemma 1.1.30 and Lemma 2.2.5. Lastly, one
has to check that

1 GY(K) C G(K*P) ¢ GL,(K*P)

is continuous for the weak topologies. For this last statement, view jk(f) :
Hyi — GL,(K*). By Hilbert 90, there exists B € GL, (K*®?), such that

f(h)=B""-G(p(h))(B) Vh € Hy.
From this and (F2),(F3), it follows that
ty: GV(K) = GL,(K), A+ B -1 (A)- B~

is a well defined embedding, which is conjugate and hence topologically iso-
morphic to ¢;. Furthermore, ¢ is the embedding given by

G c GLY) = GL,,
where “=” is the following isomorphism. Let
GL,x = Spec(R), Gg = Spec(S) and p: R — S

be the projection that induces our fixed embedding G C GL,,. By Remark
2.1.21 the linear algebraic group GL;f ) is defined by

Spec((R @ K*P)Hx)
K
with the Hg-action being induced by the action on GL,, gser via
h = (idar,, Spec(p(h))) o (f(h).)™" Vh € Hg

with f(h). being the map induced by conjugation with f(h) on GL,(T") for
all K**P-algebras T. By (G010, Proposition 12.27 (1)) GLY) is the quotient
of GL,, gser under this Hg-action. Consider the map

¢ : GLn’Ksep B4 GLn’KSEP pr%n GLn7

where B, is analoguesly defined as f(h). above by the induced map of conju-
gation with B. Then by the following calculation ¢oa(h) = ¢ for all h € Hg
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with a(h) being the map given by the action above. By Lemma 2.1.23, we
have

B, o (ida, , Spec(p(h))) = (idar,, Spec(p(h)) ™) o G(p(h))(B). Vh € H.
Furthermore, we have
G(p(h))(B)- f(h)™' = BVh € Hg

and
preg, o(idar,, Spec(p(h)) ™) = prqy, ,

so together we get poa(h) = ¢. By the universal property of the the quotient
GLglf ). this induces a morphism of groups

¢: GLY) — GL,
with ¢ = ¢ o pr, where pr : GL,, gser — GLgf) is the projection given by the
inclusion
(R ® Ksep)HK CR ® Ksep.
K K
Then ¢ induces the map
CL,(K*?) = GLY)(K*?) - GL,(K*®"), A — BAB™!,

since ¢ = ¢ o pr and the identification GL, (K*?) = GLY)(K**) is induced
by the isomorphism pr X prr., given by classical Galois descent, where

ersep . GL?’L,KSEP — SpeC(KSEP)

is the projection. Furthermore ¢ is an isomorphism, since by a similar argu-
mentation as above, we obtain that

-1
’QZ) : GLn,KSEP Bi) GLn,KSEp E) GL%f)
induces an inverse GL,, — GLSZf ) to ¢ by the universal property of
GL, = GLW,

where 1 € mor®™ (G, G(k)) is the trivial morphism.
The closed immersion GY) ¢ GLgLf ) is the map induced on the respective
H -invariants by the projection

p ® idgeer : RRK™ — § @ K.
K K
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This is an embedding, since taking Hg-invariants in this setting is exact by
the classical Galois descent. Furthermore, this embedding induces the map

71 GV(K) € GO (K*P) — GLY (K*P) = GL,, (K*%"), A — 11(A),

since

1 GY(K) ¢ GV (K*P) = G(K*P) — GL, (K*P)
and by definition we have the equality of embeddings
(G]ggs)ep C GLELJ:‘]%(Sep g GLn’Ksep) = <G](Kf:5)ep g GKSep C GLn’Ksep)7

where the isomorphisms are the ones given by classical Galois descent, which
also induce the equalities in both maps j; and ¢; above.
Together, we obtain that

GY¥ c GLY = GL,
induces ¢5.
Definition 2.2.6. We define
CHOk, GY(K)) := {a: O — GV(K) | a(v6) = a(y)-(y*a(d)) ¥y, d, ajr, is continuous}.
An etale (o1, Tk)-module over K with values in GY) is an element o €
CY Ok, GW(K)).

We say, that a, 8 € C'(Qg, GY)(K)) are cohomologous or o ~ 3, if there
exists an A € GY)(K), such that a(y) = A7 - B(y) - v ; A for all v € Og.

We define
H'(Ok,GY(K)) := C' (0, GV(K))/ ~ .

Consider the map
j s mor*™(Gx, G(k)) — H' (Hk, G(E*T))
and fix a family of elements { f;}; C mor®™ (G, G(k)), such that
JjAfiki = im(j)

is bijective. Now let f € mor®™(Gk,G(k)) be any element. Then there
exists an unique ¢ and some B € G(K*?), such that

f(h)=B""- fi(h) - G(p(h))(B) Vh € H (%)
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We define a G g-action of sets on G (K**P) via
g-A=g . A= f(9)-Clp(9)(A)- filg)™
and 7. A = w"f.fA = G(ph)(A) VA € GUI(K*P), g € Gg,n € N.

Since f and f; take values in G(k) and o, commutes with p(g) for all g € G,
we calculate

(9192)-A = g1.(g2.A) VA € GUI(K*P), g1, 9o € G
g.(m". A) = 1".(g.A) VA € GU)(K*?) g € Gx,n € N (act)
A = " (7™ A) VA € GYI(K*P), n,m € N.
By (%), it is
B7! e GUI(KRsP)Hrf .= {4 € GUI(K*P) | h.A= AVh € Hg},

since for any h € Hy, it is

h(B™Y) = f(h) - G(p())(B~) - fi(h) ™"

Remark. If Ay € GUI(K*P)Hx:/  then
G(fi)(Ksep)HK,f — AOG(fi)(K)'

Proof. If A € GUI(K>?)Ax:f then A = AyB, for some By € G (K*?) and
for h € Hi we have

Ay - G (p(R))(By) = (h.Ao) - G (p(h))(By) 2 h.(AgBy) = A¢B,

so By € GY)(KK) and the same calculation shows that if By € GV (K), then
A= AyBy € G (Ksep)Hreof, O

If Ay € GY)(K*P)Hx:f then because of (F2),(F3) and (act) it makes
sense to define 7. A for 7 € Ok and since Hx C G is normal and (F2), (F3)
it is v.A4g € GW)(K*P)Hr:F . So by the last remark, we define

apa,(7) = Aty A € GY)(K).
Lemma 2.2.7. [t is
a:=ay4, € C'(Ok, GY(K))
and if B € GY)(K*P)Hr:S s another element, then [a )~ = |aspl~ €
HY(Og, GW)(K)).
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Proof. If v = pry(g,)m", we calculate

a(yd) = Ay (78)-A

By the construction of the action (act) oyr, is continuous, since f, f; and p
are continuous for the weak topology on G(K?*) and by the discussion before

Definition 2.2.6. If B € GY)(K*?)Hx:f then B = AyB, for By € GU)(K),
so we calculate for v € Ok that

Bytaga(y)y x By = a;.5(7).

Definition 2.2.8. We define a map

D : mor™ (G, G(k)) = [[H' (O, GYI(K)), f = [orf.a0)~ =t ay,

which is independent of the choice of Ay € G (K**P)Hx:f by the last Lemma.

Definition 2.2.9. Let G, H be topological groups. We denote for two mor-
phisms of topological groups

fof € mor™(G, H) := {a € morg,,(G, H) | a is continuous}
the relation f ~ f’, if they are conjugate, i.e. there exists B € H, such that
floy =B f(g) B~
for every g € G.

Lemma 2.2.10. If f, f' € mor®™(Gg,G(k)) are conjugate, then
D(f) =D(f").

Proof. 1t is
AT flg) - A= flg)
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for some A € G(k) and all g € Gg. Furthermore, if

f(h) = B" fi(h) - G(p(h))(B) Vh € H,

then
f'(h) = (BA)™"- f;(h) - G(p(h))(BA)

and
A € GUI(K*P)Hreof | if and only if A4, € GW) (Keep)Hx:f",

In that case, we calculate for v = pry(g,)m") that

apramiag(7) = AyTAATY - f(g,) - G(p(g,) 0 V) AAT Ag) - filgy)
= Qf A (’7)

Let
U = Ugeep : GK*P) = GK*P), A = A7 - G(pr)(A)

be the Langmap.

Remark. If o € CY (O, GY)(K)), such that a(n) = W(A) for some A €
G(K*?), then for every g € Gk, it is

fa,a-1(9) = Aa(pry, (9)) - fi(g) - G(p(9))(A™Y) € G(k).
Proof. Set B := A™1, so it is
a(r) - GleL)(B) = B. (%)

Using that « is a cocycle, we calculate

*

SN—
o
o
K
SN—
o)
/-\
el
VoS
K
N—
SN—
~
oy
S—
S—

B - G(er)(fa(9) = a(r) - Glew)(apry,(9)) - fi

= a(pry, (9)7) - fi(9) - G(p(9)¢L)(B)
= a( «(9)) - fi(g) - G(p(g))(a(m) - G(pr)(B))
® 5
= B fa5(9),
fa,p(9) € GK*?)? =1 = G(k)
by Lemma 2.1.25. —~
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Lemma 2.2.11. Let o € CY(Qg, GYI(K)), such that a(r) = W(A) for some
A € G(K*?) and B := At It is

fop € mor™™(Gg, G(k)),
which satisfies

fap(h) =B~ fi(h) - G(p(h))(B) Yh € H.

Proof. Tt is continuous by construction, since «, p and f; are continuous for
the weak topology on G(K*") by the discussion before Definition 2.2.6 and
this weak topology induces the discrete topology on G(k). Using that « is a
cocycle and f; takes values in G(k), we calculate

fa.(9192) = B~ a(pryg, (1)) fi(91)G(p(g1)) ( (erK(92)))fi(91)_1fi(91)fi(92)G(/5(9192))(B)
= B a(pry, (91)) fi(91)G(p(91)) (BB~ a(prr, (92)) fi(92) - G(p(92))(B))
= fa,5(91)G(p(91))(fa,5(g2))
= fo.B(91)fa,8(92),

where the last equality follows from f, 5(g2) € G(k).
The second part of the statement follows from the definition, since it is
a(1) =1 by the cocycle condition of a. O

Lemma 2.2.12. Let a € CY(Og, GYP)(K)). If
a(r) - G(eL)(B) = B

and
a(m) - G(pL)(BBy) = BBy

for two different elements B € G(K*?) and BB, € G(K*?), then
By € G(k) and By fa.5(9)Bo = fa.BB, V9 € Gk,
S0 fa,B ~ fa,BBO-
Proof. We calculate
BBy - G(pr)(By'B™) = a(r) = B- Glpr)(B™),
so By € G(K*?)#t=! = G(k) by Lemma 2.1.25.

The second part of the statement follows from this and the definitions of
those maps. O
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Definition 2.2.13. We obtain maps
Vi {[a]. € H'(Ox,GY(K)) | a(7) € im(V)} — (mor*™ (G, G(k))/ ~), fa = [fas]~
for every 4, which is independent of the choice of B with ¥(B™!) = a(n).

Lemma 2.2.14. If o, 3 € C' (O, GY)(K)), such that
a(n) - Glpr)(B) = B and f(y) = A-al(y) -7 x AT B(v),

for B € G(K**P) and A € GY)(K), then
6(77) . G(QOL)(AB) = AB and f,B,AB = fa,B~

Proof. The first statement follows directly from the hypothesis. For the
second one, we calculate

fo.an(9) = B~ A Aa(pry, ) fi(9)G(p(9)) (A1) filg) ™ fi(9)G(p(9))(AB) = fa.5(9).
0

We can now prove the desired correspondence between galois representa-
tions with values in G and certain (¢, I )-modules in the “m-torsion case”.

Proposition 2.2.15. The map

D : (mor®™ (G, G(k))/ ~) — HHl(@K, GY(K)), [f]~ = oy

18 injective and has image

[[{lel~ € H'(0k,GY)(K)) | a(r) € im(W)}.

i

The inverse map is given by

V= HV ]_[{ € HYOg, GU(K)) | a(r) € im(¥)} — (mor™ (G, G(k))/ ~).

This bijection identifies
{la]~ € mor"™ (G, G(k))/ ~ | ju(a) = ju(f:)} = {[a] € H'(Ox, GYI(K)) | a(7) € im (W)}

for every i.
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Proof. For f € mor®™(G g, G(k))/ ~ with j(f) ~ j(f;) and Ay € G (K=eP)Hr-f
it is

aya(m) = U(Ag).
If o € C' (O, GY)(K)), such that

a(m)G(pL)(B) = B, (*)

then f,p € mor®"(Gg,G(k)) and f,p(h) = B7'f;(R)G(p(h))(B), so we
calculate for v = pry, (g)

ay, ,.5-1(7) = BB~ a(7) fi(9)G(p(9))(B)G(p(9)) (B~ filg) ™' = a(v)

and “
Ay, p5-1(m) = BG(pr)(B™") = a(n),
and since a and ay, , p-1 are both 1-cocycles in CY(Og,GY)(K)), they are
equal and hence it is D(V([a].)).
For f as in the beginning of the proof, we calculate

Fagagas (9) = AoAg F(9)G(p(9))(Ao) filg) " fil9)G(p(9))(Ag ") = f(9),

so we have V(D([f]~)) = [f~] and so D is injective with inverse V on the
image
[T{la]~ € H'(0k,GY(K)) | a(r) € im(¥)}.
O
Since this bijection is dependent on the choice of { f;};, the maps D and V
are in general not “functorial”. Under certain conditions, there is still a way
to get something like functoriality. For this we first note that, if ¢ : Gy — Go
is a morphism of groups and f € mor®™ (G, Gy (k)), then

deer : GV (K) = GI°P(K)

is a well defined morphism of Qg-groups by (F2),(F3), which is continuous,
because it is a polynomial map.

Lemma 2.2.16. Let ¢ : Gy — Gy be a morphism of groupschemes over k,
such that the induced map

(¢eer)s  H' (Hg,G1(E*?)) — H'(Hy, Go(E*P))

is injective on im(j%1). Then for any choice {fi(l)}i C mor“™(Gg, Gy (k)),
such that

Gy 1 : Gy

AR} = (G
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is bijective, we can complement {¢ o f;}; C mor®™ (G, Gy(k)) to a subset
{fl(Q)}l, such that

7% {0 = im(5%)

18 bijective. Furthermore, the following diagram is commutative.
cont D 1 (fi(l))

(mor™ (G, Gy (k))/ ~) —=11H (O, Gy "(K))
(%) l(dmsep)*

(001 (Gire, G (K))/ ~) —= [1H' (O, G ().

Proof. The first part of the statement that for any such subset { fi(l)}i, the
subsets {¢y o fi}; can be complemented, follows directly from the hypothesis

that (¢gses)s is injective on im(j¢!) and because the following diagram is

commutative, which is commutative since ¢ is a natural transformation.

mor®™ (G e, G (k) = HY(H, Gy (K*P))
(¢>k)*l j(@}(se;ﬂ)*
Mot (G, Go (k) e H' (Hy, Go(K57)).

For the second part of the statement about the commutative diagram, let
f € mor®™(Gg,Gy(k)), such that there exists B € G(K*) with

f(h) =B~ £V(h) - Gy(p(h))(B™') Vh € Hg.
Since ¢ is a natural transformation of groups, it follows that
(£ (h)) = preer(B) - dr (1 () - Ga(p(h)) (dxceer (B) 1) Vh € H.
Now D([f].) is given by
ar(v) = B- f(9,)G(p(g)r )(B™) - filgy) ™ Vpry, (g,)7" =~ € Ok.
On the other hand D([¢y o f].) is given by
Apof.buser (V) = Seen (B) - du(£(97))G(p(9) 9, ) @oen (B™)) - dr(figy)) ™!

for all v as above. Again, since ¢ is a natural transformation of groups, it
follows that

PKser O Af B = Qgyof,gysen-
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Remark. This condition on ¢ is rather restricitve. For example, if ¢ : G —
GL,, is a representation in Repy(G), then ¢ satisfies the condition in this
Lemma, if and only if j© = 1 is the trivial map. We will give examples of
this in the next section. The problem for the general case lies within the
fact that the map I depends on the choice of representatives { f;}; as chosen
after Definition 2.2.6. In the general case, we can still write down a diagram
that is natural up to some twisted conjugation, which depends on the choice
of those representatives, as we will see in the following Lemma.

But before that, we get the following technicallity out of the way.

Remark 2.2.17. As always in this part, let G be a linear algebraic group over
k. Let fi, fa, f3 : Gk — G(k) be morphisms of groups. As before, we define
a Gg-action of sets on G(K*) by setting

g, A= 19)7" - Gp(9)(A)f(9) VA € G(K™), g € Cr.

Then for A, B € G(K*®?) and g € Gk, we have

g . Ag . B=g . (AB).

fifo forfs fifs

Proof. We calculate
gf1:f2A . gszfsB

=f1(9)7" - G(p(9))(A) - fal9) f2(9) ™" - G(p(g))(B) f(9) ™

=filg)™" - G( )

=g . (AB),

ey
—~

o
SN—
SN—
—
N
oy
SN—
poo

o
N

fits

where the second equality comes from the fact aht G(p(g)) is an endomor-
phism of groups. [

Lemma 2.2.18. Let ¢ : G; — Go be a morphism of groupschemes over
k. Choose some representatives {fi(l)}i for Gy and {fl@)}l for Gy as in the

last Lemma. By definition of these representatives for any fz-(l) there exists a
unique fz(2) and some (non-unique) B; € Go(K*%P), such that

oo f0(h) = Bi - [P (h) - Ga(p(h))(B). (+)

Then the following diagram is commutative and the right vertical map is
independent of the choice of B;.
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(mor (G, G (£)/ ~) 2 L1H' (0. G 0 (k)

(60 lL_[[w—>[WHB{1-¢Ksep°a(7)~7-B¢H
(2)
(mor ™ (Gre, Ga(k))/ ~) 5= LIH' (O Gs' ) (K)).

Here for v = pry, (g,)7™" € O, we have

1Bii=y o Bii= o f7(9)) - Galplon) 0 @) (B - £ (9)
oo f; 51

This is well defined by the discussion before Lemma 2.2.7.

Proof. We first show that the right vertical map is well defined. So let
o € C'(Ok). First we calculate for v = pry, (g,)7"" € Ok and h € Hg that

h x (B dgeer 0 ay) - 7.B;)

= (WG (p(h)(B;") - deen (G (p(M) (@(1))) - Galp(h) (7. Bo) - £ ()~
OB geer 0 (£ (MG (p(R) (1)) - Gal () (7. By - £ ()
=B;" - $eer 0 a(7) - Si 0 1 (1) - Ga(p(h))(v.By) - £ ()
=B;" - pgser 0 () - 7. Bi.
The first equality comes from the fact that ¢ is a natural transformation, the
third one follows from the fact that a(y) € GUi 1))(K), SO

1) - Gu(p(h) () = alr) - £ (0)
by (F2) and (F3). The last equality follows from the fact that
’}/Bz S {A c GQ(KSGP) ‘ h.A=AVYhe HK},

which is shown as in the discussion before Lemma 2.2.7. Again by (F2) and
(F3), it follows that the right vertical map sends a to a map, which takes

values in G(fl )(K)
Next we calculate for v,6 € Qg that
B! ¢sen(a(0)) - 4. B;
=B - fceen (7)) frcoen (v By (0 7-(0.B)

i

=B dwer(a(v) -y Bivy o Bty dwee(al9)) - 7-(0.B)
fi <¢> of; ¢k0f
:BZ_I : ¢Ksep(0((’y)) . ’YBz =Y f?;) ( i 1¢Ksep< (5))6.81)
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The first equality comes from the fact that « is a cocycle, the second equality
is due to multiplying with 1 = ~v.B; -~ o - <1)Bi—1 (see Remark 2.2.17) and
fl 1¢kofi
the fact that
Preen(y * A) =7 *  ggeen(A) VA € G1(K*).
Y orof)
The third equality follows from Remark 2.2.17. So the right vertical map
sends a continuous cocycle to a cocycle, which is continuous by an analogues
argument as in Lemma 2.2.7. So the right vertical map sends elements of
1) (2)
CH (O, Ggfi )(K)) to HY(Og, Ggf’ )(K)) So next, we have to show that this
map is independent of the choice of cohomology class, but first we show that
the map is independent of the choice of B;. So let A; € G(K*®) be another
element satisfying (x). As in the remark before Lemma 2.2.7, we calculate
that
Ai = BiBO7

where By € G(fl(2))(K), so we have that
A,L_l M ¢Ksep (o] O[(’y) M ’YAZ — Bo_l * B,L_l M ¢Ksep O Oé(v) N fyBZ * ’7 S

(2

f

by Remark 2.2.17, so those maps are the same on the cohomology. Now let

)B()V’)/E@K

(1)
a, B € CH Ok, Ggfi )(K)) be in the same cohomology class, i.e. there exists
(1)
B e (Ggfi )(K), such that

o(y)=B7"-B(v) v % B
7

Then we have
Gxceer(B) By - {2 () - Ga(p(h)) (dxser (B) By) ™)
=¢zeer(B)B: - f{7 () - Ga(p(h)) (B ) ceen (G (5(h)) (B7))
Doeen(B- 10 (h) - G (p(h))(B™))
—gr o fI(h).

Here, the first equality is due to the fact that ¢ is a natural transformation

Gof
Gof

and the last equality comes from the fact that B € Ggf"(l))(K) and, again,
(F2) and (F3). It follows that ¢gser(B)B; is an element satisfying (%) and
we have for every v € O
Bt ggsen 0 B(7) - 7. B
:Bgl(ﬁKsep(Bil) . ¢Ksep e} B(’)/) . ")/((step(B)Bl)
=B, - pgser 0 () - 7. Bs.
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Here the first equality follows from the independence of the choice of the
element satisfying () and the second equality is due to a and § being coho-
mological and Remark 2.2.17. Thus, the right vertical map does not depend
on the cohomology class of a and so the map is well defined. Finally, we
calculate that the diagram is commutative. So let f € mor®™ (G, Gy (k))

and fi(l) be the representative, such that there exists an Ay € G(K*?") with
F(h) = Ao f17 () - Gu(p(h)(A5") Vh € Hic.
It follows by () and the fact that ¢ is a natural transformation that

&1 0 f(h) = deen(A0) By - £ () - Ga(p(h))(een (Ag) Bi) 7).
So we calculate

D([Cbk © f]~)

=[y = B; 'xeer (A5 1) -7 (¢rser (Ao) Bi)]~

¢ko}7f{2> ()

=y = B ggsen (Ag1) -y Prcser(Ao) - v-Bil~,

¢k0f7¢>k0fi(1)

where the first equality is by definition and the second one is by Remark
2.2.17. On the other hand, we have that

Pser © D([f]-)

:[’y —> ¢Ksep (Aal) . ¢Ksep (’y .(1)A0)]N
I fs

=[v > dreer (A7) -y Prser (Ag)]~,

orof,prof )

so the equality (xx) before this one gives the desired commutativity. ]

The welldefinedness of the map on the right in the last Lemma has the
following application.

Proposition 2.2.19. Let f € mor®™ (G, G(k)). Then

C Ok, GV(K)) = {a: O = GV(K) | a(vd) = a(v)q?a(é) Vy,8 € Ok} =: C,
1.e. such an 1-cocycle is automatically continuous for the weak topology on

G (K).

Proof. Choose an embedding ¢ : G — GL,, and a matrix B € GL,(K*?),
such that
o f(h) = B~'-GL,(p(h))(B) Yh € Hg.
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This is possible by Hilbert 90. Let o € C!, then as in the last Lemma, we
see that

[y = B geer(a(y)) -y . B

Lko.f,l

is a l-cocycle O — GL,(K), where GL,(K) is an Qg-group via GL, (7).
By the discussion before Definition 2.2.6, the weak topology on G/)(K) is
the same as the topology induced by the embedding

GCH(K) S GK=P) "’ GL, (K*P),

where GL,, (K*) carries the weak topology induced by the valuation on K*.
So by arguments as in the proof of Lemma 2.2.7, this map is continuous on
'k for the weak topology on GL, (K), if and only if o, is continuous for the
weak topology on G) (K). So we can reduce ourselves to the case that f =1
is the trivial morphism and G = GL,,, but in this case the claim follows from
a variant of Lemma 1.3.16 for the m-torsion case and Theorem 1.3.12. O]

If we assume G to be connected, then the correspondence “reaches” all
(¢r, 'k )-modules.

Theorem 2.2.20. If G is connected, we have inverse bijections

D : (mor”" (G, G(k))/ ~) = [[H" Ok, GY)(K)) : V.

This bijection identifies
{la]~ € mor*™ (G, G(k))/ ~ | ji(a) = ju(fi)} = H'(Ox, GY(K))
for every i.

Proof. This follows from Proposition 2.2.15 and Corollary 2.1.18. O]

2.2.3 The Perfect versus the Nonperfect Case

Let f € mor®™(Gy,G(k)) and GY) again be the corresponding form of G
for j(f) over E. Since the correspondence in the last part was possible for
K € {E,F}, we can calculate for connected G that

Dg o Vg : H'(Og,GY(E)) — H'(Ok, G (F))

is the map given by the inclusion E C F, which is therefore bijective. But in
the “m-torsion” case, we can generalize this for general G by giving a direct
proof. This needs some preparation.
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Remark. Let GY) C GL, be an embedding. Since E is complete as a local
field, the induced topology on

GY(E) c GL,(F)

is complete as well, since G(E) is closed a closed subgroup of the complete
subgroup GL,(E). The later is complete, since

GL,(E) c EV+!
is closed.

Proposition 2.2.21. (See Coh00, Propositions 4.2.10 & 4.4.45)
Let e be the ramification index of L|Q,. The p-adic logarithm

log:1+my =70, 2 0p1+am Y (—1)
n
n>1

18 a well defined continuous morphism of compact topological groups, which
18 1njective on 1 + mg for some N >> 0.

Proof. Using the Propositions of (Coh00), it only remains to show that

Z(—l)”““% ern'~Oy

n>1

for every x € my, and the injectivity statement. For the first statement, we
calculate for every n € N, such that n = p"m with (p,m) = 1 that

o I

— |ﬂ_|nfer < |ﬂ_r(176)’ < |7T|1ie.

nl = Inl 7

For the second statement, we have that the only elements in the kernel of log
are roots of unity by (Coh00, Propositions 4.4.45). Since [L : Q,] is finite,
there are only finitely many roots of unity in 1 +my. Let p C 1+ my be this
set of roots of unity. Let v : L — Z be the valuation with respect to my and
set

N:=max{v(r—1) |z € u} + 1.

Then pN (14 mY) = {1}, so log is injective on 1 + m¥. O

Lemma 2.2.22. Any closed subgroup H C Oy, is a Z,-module of finite rank
with a topological isomorphism H = Z;'. In particular, it is topologically
finitely generated.
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Proof. For every a € Z,, it is a = lim a,, with a,, € Z and so
a-h =lim(a,h) € HVh € H,

since H is closed and the Z-module structure of H is continuous. It follows
that H C Oy is a Z,-submodule. But Oy, is finitely generated and free over

Z,, with a topological isomorphism O, = ZZ[DL:Q”]. It follows that there exists
an isomorphism of Z,-modules H = Z7" with m < [L : Q,] by the elementary
divisor theorem (See Bos05, 2.9 Theorem 2). Again by the elementary divisor
theorem (See Bos05, 2.9 Theorem 2), the isomorphism Z* — H C ZI[DL:@”] is
given via multiplication with a matrix A € Mat[y.q,)xm(Z,). This is contin-
uous and hence a topological isomorphism, since Z;" is compact.

So H = Zj' is topologically finitely generated, since Z, is topologically
generated by 1 € Z,. O]

Lemma 2.2.23. Let GG be topological group and H C G be a subgroup of finite
index. If H is topologically finitely generated as the topological subgroup of
G, then so is G.

Proof. Let Uy := (hy,...,h,) C H be a finitely generated subgroup, such
that
H c Uy,

where Uy C G denotes the closure of Uy in G. Let ¢1,...,9m € G be
representatives of G/H. Then

U:={g1,- -, 9m, h1,- .., hn)
is dense in (G, since for any 1 < ¢ < m we have that
Ui = <gi7h1,...,hn>

satisfies
gH C gUy =gUyg CU, CU

by the fact that multiplication with g; is a homeomorphism from G to itself.
It follows that

Corollary 2.2.24. The group 'k is topologically finitely generated.
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Proof. 1t is
O =Z/(qg—1)Z x (1+my).
First we show
Ik =Tk NZ/(qg—1)Z) x Tk N(1+my)). (%)
We have to show that for x,y € O], such that x € Z/(¢—1)Z and y € 1+m,,
it is
ryel'rx relk,yelk.

The direction from right to left is obvious. If zy € 'k, it follows from
z € Z/(g— 1)Z that

(zy)t =0y =y,

so y?! € T'x. The group 1+my, is a pro-p-group by Proposition 1.1.23.a), so
the Z-module structure extends to a Z,-module structure via taking limits
similar as in the proof of Lemma 2.2.22. It follows that

Uk = FKﬂ(l—i—mL)

is a Z,-module by an argument as in the proof of Lemma 2.2.22, since Ux C
1 +my, is open and hence closed. But ¢ — 1 is a unit in Z,, so

Pl eTe =y = (y )@ € Iy
It follows that
vy €Tx =y €Tk and z = (zy)y ' € I'k.

By (x) it suffices to show that Ug is topologically finitely generated, but
Uk C (14 my) is open and hence closed in the compact topological group
1+ my. By Proposition 2.2.21 and Lemma 2.2.22, it is

1+mp =77
for some N, m > 1. We deduce via Proposition 2.2.21 that the group
UK,N = UKﬂ (1 +mg) = FKﬂ (1 +mg)

is topologically isomorphic to a closed subgroup of O, and so Uk y is topo-
logically finitely generated by Lemma 2.2.22. So Uy is topologically finitely
generated by Lemma 2.2.23, since Ux ny C Uk is of finite index. This last
statement follows from the fact that

UK/UKJV = Gal(KN|K1)
by Proposition 1.1.23, where K, = KL, for r € N. ]
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Proposition 2.2.25. The inclusion E C F induces a bijection
v HY(Qk,GY(E) S HY(Qk, GO (F)).

Proof. By Lemma 2.1.16 and (F3) we have that for any A € GY)(F), there
is an n € N, such that

G(¢})(A) € GY(E).
It is Ox = 7V x I'g. Since 'k is topologically finitely generated, every
a € CY Ok, GY)(F)) is continuous on 'y and GY)() is complete, we have
that there exists an n € N, such that

G(pt) oa € CH Ok, GV(R)).

Here G(¢}) o a is still a cocycle since G(¢}) commutes with the Qg-action
on GY)(F) as it is the action given by 7.

Now let g € C*(Qg, GY)(E)) and m € N be arbitrary. Then we calculate
using that G(pr) = GY) (1) and ay is a 1-cocycle

G(er)(a0(7)) = ao(r™) " ao(7™)G(e] ) (a0(7))

|
o
o
3
o
)
o
5
3

So
ap ~ G(pf") o ag

are cohomological and thus
CH Ok, GYV(F)) = H'(Ok, GV (E)),a = [G(p}) 0 a]~, n>>0
is independent on the choice of n, if chosen big enough. Let
a, 5 € C'(O, GV (F))
cohomological, so there is a B € GY)(IF), such that
B! -a(y) 7% B =B(7) ¥y € Ox.
Now choose n big enough, so that
G(p}) o € C'(Ok, GV (E)) and G(¢})(B) € GY(E).
Then

G(e)(B(7) = G(e1)(B™) - G(eh) (7)) - 7% (G(L)(B)) ¥7 € Ok,
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so G(¢h) o € CHOk,GY)(E)) and
G(pf) oa~G(er)of
are cohomological, so we get an induced map
¢ H'(Ox, GY(F)) — H'(Ox, GV(E)), [a] = [G(¢}) 0 al, n >> 0.
Since we can choose n = 0 for oy € CH(Qg, GY)(E)), we have
¢(¢([ao]~)) = lao]~.

On the other hand for any o € C*(Qg, GY)(F)) and any m, it is G(¢)oa €
CY(Og,GY)(F)) cohomological to a. This is shown just as for ag above.
Thus, we obtain
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2.3

Examples

In this section, we will give a few examples for the image of the map

7 mor™(Gg,G(k)) — H' (Hg, G(E*P)),

Example 2.3.1. i) For G = GL,, we have j = 1 by Hilbert 90 (See

ii)

iii)

Ser79, chapter X §1 Proposition 3), and so we “recover” the classical
correspondence of representations and (¢, I')-modules. (In the charac-
teristic 0 case, we will see a proof that the maps defined in the last
section coincide with the maps induced by the Functor of Theorem
1.3.4 for GL,,, if L = K.) The same is true for the affine space G = A"
by the additive version of Hilbert 90.

Since E is a local field, if G is semisimple and simply connected, then
we also have j = 1, since then

H'(Hg,G(E*?)) =1
by (Ser97, chapter III §3.1 b) on p. 139).

Let G = PGL,, the quotient GL,, / GL;. It exists and is a linear alge-
braic group by (Mill7, 5.c) Proposition 5.18) and is smooth by (Mill7,
1.e) Proposition 1.62.b)). Then for every field extension E|k, we have
that

PGL,(E) = GL,(E)/E*

as we will prove later in Corollary 2.3.24. We will use this fact implicit-
edly many times in the following.

In this case, we also have j = 1, if K, |K contains a (galois) extension
E|K, such that [F : K] = gq—1, for example if L., N K = L, since then
K;|K has degree ¢ — 1, see Proposition 1.1.23.1). This is non trivial,
since

H'(Hg, PGL,(E*?)) = Z/nZ

by local classfield theory, see (Ser79, chapter X §5 Proposition 9 and
Lemma 1) and (Ser67, 1.6 Proposition 4). For this, we calculate

H* (G, k) = Z/(¢ - 1)Z
via the short exact sequence
OIN

_ 1 __
1k STS T 5.
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and the fact that we have an isomorphism
i« H(Gre, L) "3 122, (50 % 12(2,2) S BW2,Q/2) “ 40 @)z
by the exact sequence

0-Z—-Q—Q/Z—0,

where v : K™ — 7 is the valuation with respect to a uniformizer
Tk € Mg, inf is the inflation map, Z = Gal(K"|K), see Proposi-
tion 1.2.29.ii) and (SerG7, 1.1 Theorem 1 & Corollary before Theorem
3). Now consider the commutative diagram, where res denotes the
restriction map

H*(Gal( B|K), B) ™ H*(T, K2)

H (G, k) — 5= H*(Gx, L")
H*(Hie, k) — 5 H2(Hg,L™).

Here the maps (C), are injective by Hilbert 90. Furthermore
inf : H*(Gal(E|K), EX) — H*(Gg, L")

is injective and
invg oinf : H*(Gal(E|K), E*) — Q/Z

has image Z/(q—1)Z by (Neul5, chapter I § 6 (1.6.7) Proposition) and
(Ser67, 1.6 Proposition 4). By (Neulb, chapter I § 6 (1.6.7) Proposi-
tion) and Hilbert 90 it furthermore follows that

H*(Tx, K2) ™ H* Gy, T™) ™S HX(Hy, L")

is exact. So since

(CQ)y : H¥ (G, k) = H* Gk, L") and inf : H*(Gal(E|K), EX) — H*(Gg, L")
have the same image and

(C)y : H*(Hy, k*) — H*(Hg, L)
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is injective it follows that
res: H* (G, k*) — H*(Hg, k™)

is the trivial map 0. Now consider the following commutative diagram,
which has an exact horizontal sequence.

HY (G, PGL, (k) —= H%(Gy, k*)

H'(Hy, GLo(k)) — 22 H'(Hyc, PGL, (k)) > H2(Hy, )

(C)*L l(c)*

H'(Hie, GL, (E*?)) "% {1 (H e, PGL,, (E*?))

It follows by the diagonal 0 that
res : H'(Gg,PGL,(k)) — H'(Hg, PGL,(k))
has image in the image of (pr). and so

(C)xores
—

j : mor®" (G, PGL,(k)) & H'(Gk,PGL,(k)) H'(Hg,PGL, (E*?))

is the trivial map since
H'(Hg, GL,(E*?)) =0
by Hilbert 90.

iv) Let again G = PGL,. In the last example, we have seen that j is triv-
ial, if K, contains a field extension E|K, such that [F : K] = ¢ — 1.
We now show that this condition is necessary for the triviality of j,
if n >> 0 is chosen suitably. In particular, if ¢ # 2 and K = L,
then K. |K doesn’t contain such a field by Proposition 1.1.23.i), so we
see that then j is not trivial for some suitable n >> 0 by the follow-
ing argumentation. In particular, since the only cohomology class in
H'(Hg, PGL,(E*®?)) that induces the isomorphism class of the trivial
E-form PGL, g is the trivial cohomology class by (Har68, §3.3), in this
case there is a nontrivial (pure) inner form for the correspondence of
Galois representations and (¢r, 'k )-module.

We consider the commutative diagram
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H'(Gy,PGL, (k) — H2(Gre, k%)
H'(Hy, PGL,(k)) H2(Hpe, k%)

(C)« (Q)«

H'(Hy,PGL, (E?)) H?*(Hyg, (E3P)>)

2
By (Ser79, chapter X §5 Proposition 9) the map ds is injective. Consider
the short exact sequence

0— kS Er) L @) o,

where the right arrow is indeed surjective, since the polynomials X% 1 —
a € E*P[X] are separable for a # 0. As in the last example, we see via
Hilbert 90 that

HZ(HK’ k><) (3* HQ(HK7 (]Esep)X)
is injective. If m|n, i.e. n = rm for n,r,m > 1 we have an embedding
of G-groups
A 0

Gmn : PGLy (k) = PGL,(k), A — ,
0 A

which comes from an embedding ¢y, , GLy, (k) — GL, (k) given by the
definition. We have the following commutative diagram of short exact
sequences.

0— k> QL (k) PGL,, (k) — 0
id Lq;m,n l¢m,n
0k~ GL, (k) PGL, (k) ——0

By functoriality of the linking morphisms 5§m), 55“, we obtain the com-
mutativity
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HY(Gg,PGL,,(k))

\gm)

(¢m,n)* HQ(GK, kX)

%

H'(Gk,PGL,(k))
It follows that for m|n, we have that
im(5™)  im(5™). (div)

In the last example, we calculated that H?(Gy,k*) = Z/(q — 1)Z is
finite. We write
{1,...,q— 1} = H*(Gg, k).

Furthermore the union of the image of the maps 5@ going through all
n > 1is all of H?(Gg,k*) by (Hup67, V 24.2 Hilfssatz ¢)). So, for

every i € H2(Gy, k), there exists an n; > 1, such that i € im(6{"").
Then by (div), we have that 5%”1712'"”"’1) is surjective.

The map j is the one on the left (post composed with the projection
mor®™ (G, PGL,(k)) — H'(Gg,PGL,(k))) in the first diagram of
this example iv), so j is trivial for some n >> 0, such that 6" is
surjective, if and only if

res: H*(Gg,k*) — H*(Hg, k)

is the trivial map. But in the last example, we calculated that the
kernel of res is the image of the inflation

an : HZ(FKaKoé) - HZ(GKazX)

intersected with H?(Gy, k*) = Z/(q — 1)Z. So res is zero, if and only
if K, contains a field extension F|K, such that [E : K] = ¢ — 1 by
(Ser67, 1.6 Proposition 4).

Let Sy be the group with 2 elements. For G = 5, = Spec(xggzk), we
have that

J :mor (G, Sa) — mor®™ (Hy, S2), f + [l
By Galoistheory this corresponds to

{LIEIK | [E: K] <2} 2 {L|Ex|Ex | [Ex : K&o) <2}, E = EK,,.
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But this map is nontrivial, e.g. choose K to be the unramified extension
of L of degree 2. On the other hand S, is commutative, so the only inner
form of G is the trival one. That means that we go through “multiple
copies” of H' (O, G(K)) on the right hand side of the correspondence,
although the different copies of G(K) might have different Qg-actions.
Also consider that W = 1 in this case.

vi) Let S5 be the non commutative group with 6 elements. For G = S35
we have Sy C S3, and so j is non trivial, but S3 also has trivial
center and only inner automorphisms, so we have to go through at
least one non trivial (pure) inner form for the correspondence of Galois
representations and (¢r, 'k )-module. Here we also have U = 1.

In our examples, j was always trivial, when G was connected (or reduc-
tive, or semisimple) and L = K. In the proof for PGL,, we used “both
parts” of the map 7, i.e. that it is the composition of the map induced by the
inclusion k£ C E®*? and the restriction Hx C Gx. We show in the following
that this was necessary: For the rest of this section, we assume

G:PGLQ andK:L:Qg
and we show that the map induced by the inclusion k C E**
H'(Hg,PGLy(k)) — H'(Hg, PGLy(E*P))

is non trivial. So, if one wants to go prove that j is trivial for a bigger class
of linear algebraic groups, one has to use both the inclusion and restriction
part.

Lemma 2.3.2. For a totally ramified field E|E, there exist exactly two cyclic
galois extensions
Eo|E with [Ey : E] = 4,

which are in 5P,

Proof. Denote by E® C E*P the maximal abelian extension of F. By local
classfield theory, it is
Eab — EnTEoo
So it is K
Gal(E®|E) 2 Z x Z)2Z x (1 + mg).
By Proposition 1.1.23.i), the group (1 + mg) is a pro-3-group. It follows by
Galois theory that the cyclic extensions Ey|E of degree 4 correspond to the

continuous projections R
7 X 1]27 — 7JAZ
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up to having the same kernel. There are exactly two of those, namely the
map (pr,triv) and (pr,¢), where pr : Z — Z/4Z is the projection, triv :
Z7]27 — Z.JAZ is the trivial map and ¢ : Z/27 — 7Z/47Z is the inclusion. [

One of these extensions is obviously E®|E, where E® denotes the un-
ramified extension of degree 4 over E. The other extension is the following.

Proposition 2.3.3. Let E|E be a totally ramified field extension. Then
E2F3((Y)). It is Fg = F3li] fori* = —1. We set

u:=+/(1+49)Y andv:=+/(1 —9)Y.

Then
Ey .= E(u) = E(u,v)

s a cyclic galois extension of degree 4 over E with ramification index e = 2
and inertia index f = 2.

Proof. We calculate
uv = £y,

SO
2

E(u) = E(u,v), since i = u? — 1€ E(u).
Furthermore, it is
w € Ku? ¢ K,v* ¢ K.
On the other hand we have
P(T) = (T? = u*)(T? —*) =T* +YT? - Y* € E[T],
since
u? 4+ vt = =Y.

This implies that P(T") is the minimal polynomial of u and that F(u) =
E(u,v) is its splitting field. It is b := —Y? not a square in F, since i € FE,
but for a :=Y, it is

b(a®> —4b) = —Y*(Y? +Y?) = —2v* =Y*

a square. By (Hun00, chapter V.4 exercise 9.(b)), it follows that E(u)|E is
cyclic of degree 4. Since i € E(u), it is Fg C E(u), so 2 | f, but on the other
hand it is

u? = (1+1)Y,

so 2 |e. Since [E(u): E] =4,itise=2= f. O

91



Recall that we set K = L = Q3. Consider the exact, commutative
diagram

H'(Hy, GLo(k)) — 2% HY(Hy, PGLo(k)) ——~ H?(Hy, k*)

(C)*=¢1j l(c)*:@
(i POLy(B9)) < H(Hy (£°)%)

By Hilbert 90, ¢ and 4, are injective. It follows for [f] € H'(Hg, PGLy(k))
that

¢1([f]) = 1, if and only if [f] € im((pr).).
Since Hp, acts trivially on GLa(k), it is

H'(H, GLa(k)) = mor™" (Hy, GL, (k))/ ~ .

The same holds for PGL,.

Consider K®|E to be the unramified extension of degree 2 and Ks|E to
be a totally ramified extension of degree 2 given by taking an uniformizer
X € E and setting

Y = VX, Ky :=E(Y).

Then K@ K, is galois with galois group Sy @ Sy, where S, denotes the group
with two elements.

Proposition 2.3.4. Let Z C GL, (k) be the center. We define a morphism
[ € mor®™(Hy,PGLy(k)) by setting

(1,0) —
f : HK — HK/GK(Q)KQ — PGLQ(k),

O = = O
(@)

(0,1) —

where (1,0) corresponds to the Frobenius ¢ on K@|E and (0,1) corresponds
to the non trivial automorphism on Ks|E. Then [f] ¢ im((pr).).
Proof. Assume there exists B € PGLy(k) and a continuous morphism

f: Hp — GLy(k),

such that pr of(i}) — B7'f(h)B for all h € Hy. Since there exists B €
GLa(k) with pr(B) = B, we can assume that B = 1.
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It is ker(f) € f~'(Z) = ker(f) open and normal and so ker(f) = G for
a finite galois extension E|E, such that K® K, C E. Since Z = {idy, —ids},

we see, by making a case study, that any lift of (O _1) - Z and any lift of

1 0
10
(0 _1> - Z, generate

vy ) 2 (o L) o

It follows that im(f) = U and so E|K® K, has degree 2, since

0 —1 1 0
U—>(<1 0).2, (0 _1> 2)
) . 0 —1
has kernel Z = S;. It is easy to see that any lift of (1 0 > - Z has order
1 0
0 —1
ramified, then F|K, is a galois extension of degree 4 with inertia degree
f = 2 and ramification index e = 2, since K® C E and E|K@®K, is totally

ramified. If E|K5 has galois group Sy @ Ss, then

4 and any lift of ( - Z has order 2. If E|K® K, would be totally

E=K® Ky
for a totally ramified extension K;,|E of degree 4 with Ky C K;p. Then

E=K® @ K,,
E

since K@ NK,,, = E. Tt follows that ¢ ®idg,,, is an E-algebra automorphism
on E, which lifts the automorphism of K2 K, corresponding to (1,0), since
Ky C K;y. This element has order 2, but f(gp ® idg,,,) has order 4. This is
a contradiction.

So E|Kj is cyclic. By Lemma 2.3.2 and Proposition 2.3.3, we have that
E = Ky(u), where u := /(1 +)Y and i € Fg with i* = —1. Then

P(T) :=T*—(1+1i)*X € K?T]

is the minimal polynomial of u over K. It is b := —(1 +14)%X not a square
in K@ since X is a uniformizer in K®, but for a = 0, we have that

bla — 4b) = —4b?
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is a square in K@ since i € K®). So E|K®? is cyclic of degree 4 by (Hun00,
chapter V.4 exercise 9.(b)). Let
¢ € Gal(E|K®)
be a lift of the nontrivial element ¢ € Gal(K5|E) via
Gal(E|K®) — Gal(K,[E), a — ajk,.

Since Gal(E|K®) is cyclic of degree 4, it is ¢ of order 4, but f(¢) is of order
2. This is a contradiction, since f : Gal(E|K®) — U is injective.

It follows that E|K® K, is unramified, so B = KWK,, where KW|E is
the unramified extension of degree 4, which is an abelian galois extension

over E; with Galois group
ZJAZ & S,,

but U is not abelian. Sin~ce U = Hg/Gg, this is yet another contradiction,
so there can’t be such a f. m

Corollary 2.3.5. The map
H'(Hy,PGLy(k)) — H'(Hp, PGLy(E*))
induced by the inclusion k C E*P is surjective and in particular not constant.

Proof. Since
H'(Hg, PGLy(E*P) = 7,/27

by (Ser79, chapter X §5 Proposition 9 and Lemma 1) and (Ser67, 1.6 Propo-
sition 4), it suffices to show that the map is not constant. But this follows
from Proposition 2.3.4 and the discussion before it. O

2.3.1 Some Calculations for Semisimple Groups
Definition 2.3.6. We define
(K : K]

to be the set of all degrees [E : K|, where F|K is a finite extension with
E C K.. We say that an n > 1 satisfies that n divides [Ko, : K| or
n|[Kw : K], if n divides one of the degrees [E : K] in [K : K].

Let
fin == Spec(k[X]/(X" = 1))

be the groupscheme of n-the roots of unity.
The argumentation in Example 2.3.1.iii) has the following generalization.
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Proposition 2.3.7. Letk C CZ be the algebraic closure of k. Let H, G be two
linear algebraic groups over k, such that there exists a commutative diagram
of short exact sequences

1 — P, (F) — H(F) —> G(F) —~ 1

i=1
(C)*L (C)*l (C)*|

1 — B, (F) — H(F) —C(F) —1

(2

of Gk -groups, where the G -action is the one induced by the natural action
on k resp. F. If the éun(E) lie in the center of H(E) for E € {k,F},
ni|[Keo : K| for all 1 gz:z‘lg m and H'(Hg, H(F)) = 1, then

7 1 mor™(Gg,G(k)) = H'(Hg, G(F))
15 the trivial map.

Proof. Since char(k) = p, we can without loss of generality assume that p { n;
for alle 1 < ¢ < m. Since k is algebraically closed, we have a short exact
sequence of G g-groups

)

0—>un(E)—>f—;Lf—>O,

if ptn. Beware that the G'i-action of k as the residue field of L and as the
subfield k C C;’D coinside, since

k = lm(Opn /TOpnr) C Ogs .
(1 p
As in Example 2.3.1.iii), we calculate that
H*(Gx, (k) = Z/nZ C Q/Z
and that
inf : H¥(Tg, KX) — H* Gk, L) = Q/Z
has image containing Z/nZ, if n|[K, : K|. It follows that
res : H*(Gr, pin(k)) — H*(Hg, i (k))

is the zero map, if n|[K, : K], since im(inf) C res ' ({1}) already on cocycle
level by definition of these maps and since

(C)s : H*(Hyc, pn(K)) = H*(Hg, L)

is injective by Hilbert 90. We have the following commutative diagram.
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HY (G, G(k))

()«

H' (G G(R) ——"—= @ H (G, 1, (F)
res @res
H'(Hi, G()) DH (i, 1o (F)
() PB(C)«

iH%HK,um(F))

H' (H, G(F)) ——— ¢

Beware here that k is a topological Gx-group with the discrete topology,
so the second row makes sense. Furthermore, we could pull out the €
in the second column by (Neul3, (3.7) Proposition). By assumption and
the argument above the map @res is the zero map and d, has trivial fiber
551 ({1}) = {1}, so the map on the left column is the trivial map. But this
map is the map j, since (C), commutes with the restriction res. O

Remark. Recall that by Remark 2.2.3 the map
jg : mor™ (G, G(k)) — H'(Hg, G(E*?))
is trivial, if and only if the map
g : mor“™(Gg,G(k)) — H'(Hg,G(F))
is trivial.
We will apply this Proposition to the universal covering of a simple reduc-

tive group over k. We recall some facts about the classification of reductive
groups via root data that we need for this.

Lemma 2.3.8. Let E be a field of characteristic char(E) =p > 0. Let H be
a linear algebraic group over E. Then

{AcH(E) | In>1: A" =1} = {1}.
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Proof. Fix an embedding H C GL,. It suffices to show the statement for
GL,(E), since H(E) C GL,(E) is an embedding of groups. Let A = (a;;);; €
GL,(F). Since ()P : E — F is a morphism of rings, we have

so AP" = 1 holds, if and only if if and only if A = 1, because (-)? : E — E is
injective. O

We will follow the convention that every reductive (and in particular
semisimple) group over k are connected and smooth.

Definition 2.3.9. Let E be a field. A smooth and connected linear algebraic
group H over F is called reductive (resp. semisimple), if there exists no non-
zero Zariski-closed, Zariski-connected, normal and unipotent (resp. solvable)
subgroup in H(E) for some algebraic closure E|FE.

Definition 2.3.10. Let X be a free abelian group of finite rank with a finite
subset R C X and @@ C X be the subgroup generated by R. If (Q ® R, R) is
a root system (See Spr98, part 7.4.1), we will write (X, R) to be an integral
root system. Let H be a reductive group over some field £ with algebraic

closure E. Let T  H(E) be a maximal torus, i.e. T2 [JE™ is isomorphic
i=1
as varieties over . We define the characters of T to be

X*(T):={¢: T — E" | ¢ is a morphism of group varieties}.

Let (X, R) := (X*(T), R) be the integral root system corresponding to H(FE)
(See Spr98, part 7.4.3). This is independent of the choice of T. We define
the cocenter of H or of (X, R) to be
C*:=C*"(H) = C"(X,R) = X/Q,
where () is the subgroup generated by R C X.
From now on G is always a semisimple group over k.

Lemma 2.3.11. Let C C G(k) be the center. Then there exists a (non
canonical) embedding of groups

CccCr

from the center to the cocenter.
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Proof. Let G := G(k). The group C is a group variety over k, since it is the
intersection of all Zariski-closed subsets

C.(G):={g€qG|grg "' =u}

for all z € G. It is finite by (Spr98, 1.2.4 Proposition, 7.3.1 Proposition

& 8.1.5.ii) Theorem). Let mor;_,, (C,k") be the maps of group varieties.
Then B B
mory_,,.(C, k") = morg,,(C, k")

are the morphisms of groups, since any map from a finite subset of a vari-
. . . . 7 X .

ety into a variety is polynomial. Furthermore k£~ C Q/Z is the subgroup

limZ/nZ. 1t follows by Lemma 2.3.8 and the structure theorem of finite

_)

pin
abelian groups that there exists a non canonical isomorphism

C =~ mory_, (C,k).
Now by (Spr98, 8.1.12.(8) Exercises), there exists an embedding
mor;_,. (C, k") C C*.
[l

Definition 2.3.12. Let (V,R) be a rootsystem. Denote RY C VV :=
MOTR _mod(V,R) the dual to the root system R. We define the weight lat-
tice of (V, R) to be the free abelian group of finite rank

P={veV ]| (R CZ}.

Let Q C V be the subgroup generated by R. It is ) C P and we define the
fundamental group of (V, R) to be

m (V. R) == P/Q.

Remark 2.3.13. If (X, R) is the integral root system of a semisimple group
H over some field £, we set V := X ® R. Then (V, R) is a root system and
for this root system we have

QCcXcP
by (Spr98, 8.1.8.ii) Proposition & part 7.4.3) and so
C*(H) = X/Q c P/Q =m(V,R).
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If C C H(E) is the center, then we furthermore have
C cC*(H) cm(V,R)

by Lemma 2.3.11.
Beware though, that in general it is

7T1(V7 R) 7é 7T1<H(E)7 1)7

where 7, (G(FE), 1) is the kernel of the universal covering of H(E), since the
latter is dependent on the lattice X C V of characters of a maximal torus in

H(E), but the former is not.

We follow the notation of (Spr98, part 9.5.1) for the connected Dynkin
diagrams. We have the following table of fundamental groups for the the

root system corresponding to the Dynkin diagram by (Spr98, 17.1-17.8).
Ay [ By | Cn | Din | Dyny1 | Bs | Er | Es | By | Gy

ZInZL | Z2Z | ZJ2L | ZJ2Z x ZJ2Z | ZJAZ | Z/3Z | Z2Z |1 |1 |1
Definition 2.3.14. We say that a linear algebraic group H over some field

E is quasi-simple, if it is semisimple and H(E) doesn’t contain a non-zero
Zariski-connected, Zariski-closed and normal subgroup, where E|FE is an al-

gebraic closure.

We set
Stype S {Ana Bn7 Cn7 Dn7 Eﬁa E?a E87 F47 G2}

to be a type of a connected Dynkin diagram and its corresponding root
system.

Remark 2.3.15. (See Spr9s; 8.1.12.(4) Exercises & part 9.5.1)

Let H be a semisimple group over some field E with corresponding integral
root system (X, R). By Remark 2.3.15, the pair (X ® R, R) is a root system.
Then H is quasi-simple, if and only if (X ® R, R) is one of the types Siype.

Let ¢ : H; — Hy be a morphism between reductive groups over some field
E, such that the induced map

oz Hy(F) — Hy(F)
is surjective and has finite kernel for an algebraic closure E|E. This is equiv-
alent to ¢ being surjective and having finite kernel by the discussion before
(Conlb, Example A.1.12). Let (X;, R;) be the integral root system corre-
sponding to Hj;, i« = 1,2. We set [ = char(FE), if char(E) > 0 or [ = 1, if
char(F) = 0. By (5prog, part 9.6.3) the isogeny ¢ induces a tripple (f,b,q),
where

fI: f(qb)XQ—)Xl
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is an embedding of groups with finite cokernel,
b:= b(¢) : Rl — R2

is a bijection and
q:=q(®) : By = {I" |n > 0}

is a map satisfying
fb(a)) = qla) - a, f'(a”) = q(a) - b(a)", Va € Ry,
where o € RY is the coroot corresponding to v and
[0 f i XY i=morgy(X1,Z) = morg,, (X2, Z) =: X
A triple (f, b, q) satisfying these conditions is called an [-morphism.
Definition 2.3.16. Let E be a field

i) Let Hy, Hy be two semisimple algebraic groups over E. A morphism of
groups
¢ H, — H,

is called an isogeny, if it is surjective and has finite kernel. An isogeny is
called central, if q(¢) = 1 is the trivial map. By (Conl5, Theorem A.4.10),
this is equivalent to the kernel of ¢ being contained in some scheme theoretic
center, which we define later.

i) A semisimple group H over E' is called simply connected, if for every con-
nected H, we have that every central isogeny

¢:H—H
is an isomorphism.

We elaborate on the scheme theoretic center.

Proposition 2.3.17. (See Mil17, 1.k) Proposition 1.92)
Let H be a linear algebraic group over a field ' and let H C H be a closed
subgroup. Then the functor

Cu(H)(R) :={h € H(R) | hgh™" = g Vg € H(S), VR-algebras S}

for every E-algebra R is represented by a closed subgroup Cy(H) C H called
the centralizer of H in H. If H = H, we define the center of H to be

Z(H) := C(H).
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Semisimple groups have universal coverings.

Proposition 2.3.18. (See Conl5, Corollary A.4.11)

Let H be a semisimple group over some field E. Then up to unique iso-
morphism there exists a unique simply connected semisimple group H and a
central isogeny

H — H.
We call H the universal cover of H. This Formation is stable under basechange
to another basefield. Furthermore, if (X, R) is the integral root system corre-
sponding to H, then the integral root system to H s (P,R), where P C X ®R
15 the weight lattice as in Remark 2.3.13. In particular, if H is quasi-simple,
then so is H.

Proof. The statement about the weight lattice is in the proof of (Conlj,
Corollary A.4.11). The statement about being quasi-simple is this statement
about the weight lattice together with Remark 2.3.15. [

Proposition 2.3.19. (See Mil17, 2.¢) part 2.31 & 21.¢) Theorem 21.51)
If H is semisimple over some field E, then we have a central isogeny

ﬁHZ — H,
=1

where the H; are quasi-simple, linear algebraic groups over E.

Corollary 2.3.20. If H is semisimple over some field E, then we have a
central isogeny

[m — m,

i=1
where the H; are quasi-simple, simply connected linear algebraic groups over
E.

Proof. Proposition 2.3.18 and Proposition 2.3.19, where we use the fact that
the product of central isogenies is still a central isogeny. O]

Definition 2.3.21. Let H be a linear algebraic group over some field E.
Furthermore let E*? be the separable closure in some algebraically closed
field containing F.

1) We Cal]. H == T a tOTUS, 1f HEsep = H GLLEsep.

=1

ii) We call a torus H = T split over E, it H = [[ GL; g.

=1
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iii) We call a reductive group H split over E, if there exists a maximal
torus 1" C H, such that T' is split over F.

Remark. By the classification of reductive groups H split over £ (See Conlj,
Theorem A.4.6), we can deduce by the construction of the universal covering
given in the proof of (Conl5, Corollary A.4.11) that if H is a semisimple
group split over F, then so is its universal covering H. In the situation of
Proposition 2.3.19, we have by (Bor91, 22.9 Proposition) that the dimension
of a torus T C H, which is maximal for the property of being split over F
is the sum of the dimensions of such tori 7; C H; for all 1 < ¢ < n and

n n
furthermore that [[7; is such a torus in [[H;. Thus, if H is split over E,
i=1 i=1

then so is the product [[H; by the following argumentation. A surjective
i=1

map onto a reduced linear algebraic group over E is faithfully flat by (Mill7,

1.g) Summary 1.71). So the central isogeny is still a central isogeny after

basechange to an algebraic closure E of E. Since H is E-split, the dimension

of a maximal E-split torus is equal to a maximal torus in Hy. So the same is
true for J[H; by the statements above from (Bor01, 22.9 Proposition). But

=1
by (G610, Lemma 5.7 (1)) the dimension of a closed subset of a torus is equal
to the dimension of the torus, if and only if the closed subset is equal to the
torus. It follows that [[7; is a maximal torus in []H.
i=1 =1
Together, we obtain that in the situation of Corollary 2.3.20, we have

that [[H; is split over £, if H is split over E.
i=1

Lemma 2.3.22. Let H be semisimple and split over E. We consider

i=1

as in Corollary 2.3.20. Then
ker(¢) = H:uk]
j=1

is a product of roots of unity ;.

Proof. Set



Since ¢ is a central isogeny, ker(¢y) is finite and in the scheme theoretic center
Z(H@)). Since H(@) is reductive as the product of semisimple schemes, the
center Z(H()) is contained in every maximal torus 7" C H(® by (Mill7,
21.b) Proposition 21.7). Since one of those T is split over £ by assumption
and the Remark above, the finite kernel ker(¢) is a product of roots of unity
by the classification of diagonalizable algebraic groups via finitely generated
abelian groups, see (Mil17, 12.c) Theorem 12.8 & 12.d) Theorem 12.12). O

Recall that a scheme S over some field E is called geometrically reduced, if
the basechange Sy to a perfect field F' containing F is reduced or equivalently
if the basechange Sg, to every field extension Ey|FE is reduced (See GO10),
Proposition 5.49).

Proposition 2.3.23. (Inspired by Mil17, 3.k) Proposition 3.45)

Let m : Hy — Hy be a faithfully flat map of linear algebraic groups over
some field E. Let Ey|E be some field extension, Ey be an algebraic closure
and E;7 C Ey be the separable closure.

i) The sequence
1 — ker()(Ey) — Hy(Eo) — Hy(Ep) — 1
15 exact.
ii) If ker(m) is geometrically reduced, then
1 — ker(m)(E;?) — Hy(EG?) — Ho(EG?) — 1
18 exact.
Proof. Set N := ker(w). By (Mill7, 5.e) Corollary 5.48), the sequence
1 — N(Ey) — Hy(Ey) ™ Hy(Ep) — 1
is exact, where 7, := 75 is the map induced by 7. This shows i) Since
N(R) = ker(mgr : Hy(R) — Hy(R))
for every F-algebra R, we only need to show that
ma Hy(EQ) — Hy(E5)

is surjective, if N is geometrically reduced. Let f € Hy(E;®) C Hy(Ep). By
the exactness above the variety over Ej

Pi=r({f}) C Hi(Eo) #0
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is non empty, so let # € P. Define P := 7~ 1(f) with 7—'(f) being the fiber
of f under 7 : H; — H,, where we view f as an element of the topological
space underlying Hy. Multiplying with x yields a functorial bijection

N(R) — P(R)

for any Ey-algebra R, so by the Yoneda Lemma have an isomorphism of Ey-
schemes Ng- = NFO. It follows by assumption on N that P is geometrically
reduced, and since it is non empty, it is P(E;%) # () by (G010, Proposition
6.21). But by Definition of the fiber or Lemma 2.1.15, it is

P(Ey™) = PN HL(Ey™),

so there exists an inverse image of f under 7, in H; (E;7). O

Remark. (See Mill7, 1.g) Summary 1.71)
If H, is reduced, then a morphism of groups

¢IH1—)H2

is faithfully flat, if and only if ¢ is surjective, i.e. a surjective ¢ onto a reduced
group is automatically flat.

Corollary 2.3.24. We are in the situation as in the previous Proposition.
If ker(m) is geometrically reduced, then for any field extension Eo|E, we have
the following exact sequence.

1 — ker(m)(Ey) — Hy(Ey) — Hy(Ey) — HY(Gg,, ker(m)(E;?)).
If Ey is perfect, we can drop the assumption on ker(rw).
Proof. For any linear algebraic group H over Ejy, we have
H(G gy, H(Ep™)) = H(EG™) "% = H(E)
by Lemma 2.1.25 and so the statements follow from the usual cohomology
sequence (of non abelian groups) (See Ser97, I §5.4 Proposition 36) applied

to the short exact sequences in Proposition 2.3.23. O

Proposition 2.3.25. Let G be a simply connected, semisimple group over
k. Then

H'(Hg,G(F)) = 1.
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Proof. Let ¢ € C*(Hg,G(F)). Since ¢ is continuous, we can assume that
c € CY(G,G(F)) for some finite galois extension F|F with Galois group G :=
Gal(F|F). We have that F is the perfect hull of E*? and G is finite. So by
Lemma 2.1.16, there exists an N > 1, such that

G(SDZLV) oce Cl (HK7 G<Esep)>7

which is also a cocycle since ¢ commutes with p(h) for all h € Hg. By
the statement about basechange in Proposition 2.3.18, Gg is still simply
connected and semisimple over E. Then by Example 2.3.1.ii), it is

H'(Hg, G(E*?)) = 1.
So there exists an A € G(E**?), such that
G(er)(c(h)) = A7 - G(p(h))(A).

Since F is perfect, it is

B = G(pz")(A) € G(F).
Since ;" commutes with p(h) for every h, we obtain

e(h) = B G(p(h))(B).
So ¢ is a coboundary. O

Theorem 2.3.26. Let [Ko : K| =L : L], e.g. K = L.
The map B
7 :mor“™(Gg,G(k)) — H' (Og, G(F))
is trivial 7 = 1 for semisimple G split over k in the following cases.

i) If G is quasi-simple of type Syype & {Dan+1, B | n > 2}. If char(k) = 2
ord | q—1, we can also allow quasi-simple groups of type Syype = Dant1
and if char(k) = 3 or 3 | ¢ — 1, we can also allow quasi-simple groups
of type Siype = Es.

ii) If G is isomorphic to the product of groups as in i).
iii) Let
e
i=1
be as in Corollary 2.3.20. The map j for G is trivial, if the G; are
of type Siype & {An—1,Doms1,E6 | m > 2,n 1 (¢ —1)p" ¥Vr > 1}. If
char(k) =2 ord | g—1, we can also allow G; to be of type Siype = Dom+1

and if char(k) = 3 or 3 | ¢ — 1, we can also allow G; to be of type
Stype - E@.
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In particular, the condition on q in i) or ii1) is always satisfied, if k|Fy2, i.e.
in these cases, every quasi-simple group split over k has trivial j and in iii)
only G; for certain types Syype = An—1 might be problematic for the property
of 7 being trivial for semisimple G split over k.

Proof. The statement ii) follows from i), since for two linear algebraic groups
G1, Gy over k, the map

7 :mor“™ (G, Gy (k) x Gy(k)) — H' (Hg,G1(F) x Go(F))
corresponds to
7% : mor™ (G, Gy (k) xmor* (G, Go(k)) — H'(H, Gi(F))x H' (Hr, Go(F))
via the universal property of the product and the canonical isomorphism
H'(Hy,G1(F)) x H' (Hg, Gy(F)) & H' (Hg,G1(F) x Go(F))

of (Neul3, (3.7) Proposition). )
Let G be semisimple and split over k with universal covering G and we
consider

i=1

as in Corollary 2.3.20. We set

By Proposition 2.3.25, we have H'(H, [[G;(F)) = 1, since the product can

be pulled out of the H! by (Neul3, (3.7) Proposition). Furthermore, we have
the following commutative diagram of short exact sequences of G x-groups

%)
=
3
3
=
=S|

) —G(F) —1

by Proposition 2.3.23.i) and Lemma 2.3.22. By Lemma 2.3.8, we can assume
that p t n; for all . The exact sequences above are central, i.e. the image of
the left arrow is in the center of the middle group. Since the center of H(k)
is contained in the fundamental group of its corresponding Dynkin diagram

by Remark 2.3.13, we consider the following table of fundamental groups
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Ay | By | Cu | D | Dyny1 | Es | BEr | Es | Fy | Gy

ZInZ | LJ2Z | Z)2Z | Z)2Z x Z[2Z | ZJAZ | Z/3Z | Z/2Z |1 |1 |1

Because of p { n;, the n; are uniquely determined by the values i, (k), since
k is algebraically closed of characteristic p. So the n; are divisors of the
exponents of the groups in the table. Making a case study gives us almost
all the statements of i) and iii) by Proposition 2.3.7, since every divisor of
g —1lisin [L : L] by Proposition 1.1.23.1).

The only case, we still need to settle is, if G is quasi-simple split over k
of type A,,_1. Beware that A3 = D3, which is why we excluded Dj in i) and
iii). By (Spr98, 17.1) and the uniqueness in Proposition 2.3.18, the unique
simply connected group split over F of type A,,_1 is SL,,. It has center pu,.
Furthermore the quotient SL,, /u, is isomorphic to PGL,, by (Mill7, 5.e)
Example 5.49). In Example 2.3.1.iii), we have already seen this case. Now
let G be split over k and arbitrary of this type. Since p,, for m | n are the
only closed subgroups of pu, by the classification of diagonizable algebraic
groups via finitely generated abelian groups (See Mill7, 12.c) Theorem 12.8
& 12.d) Theorem 12.12), we have a commutative diagram of short exact
central sequences

1 —— jiy(F) — SL,(F) G(F) 1

kb

1 — pp(F) —SL,(F) — PGL,(F) —1

by the universal covering for G in Proposition 2.3.18 and Proposition 2.3.23.
Thus we obtain a commutative diagram

H'(Hg,G(F)) 2 . H'(Hy,PGL,(F))
51 52

H2<HK7PJm(F)) H2(HK7/LH(F))'

()«

Here 41, 0y have trivial fiber §; ' ({1}) = {1}, since H'(Hy,SL,(F)) = 1. Let
A be an abelian group. We define for » > 1 the torsion subgroup

Alr]:={a€ A | ra=0}.

The map
H*(Hpg, jtm(F)) < H*(Hg, jun(F))
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is by calculations as in Example 2.3.1.iii) the inclusion
H*(Hw,F)[mW) ¢ H*(Hg,F)[n],

where n?) > 1 is the unique natural number with p { n® and n = n®p" and
m®) analoguesly defined. It follows that

H'(Hg,G(F)) ™S H'(Hg,PGL,(F))

has trivial fiber
pry '({1}) = {1}.

By the homomorphism theorem (See Mill7, 5.e) Remark 5.39), it is G =
SLy, /ptm for the quotient SL,, /i, so by the universal property of the quo-
tient, we have a map 7 : G — PGL, as algebraic groups over £, which
induces the projection pr : G(F) — PGL, (F). It follows that j is trivial for
G, since j is trivial for PGL,, and pr, has trivial fiber of 1 considering the
following commutative diagram.

Tk, *

morcont(G}(’ G(k)) IIlOl"COHt(G’K7 PGLn(k))

H'(Hy,G(F)) H'(Hy,PGL,(F))

pr,
In the table of fundamental groups, we see that the only groups with expo-
nents unequal to two other than of type A,y are Z/4Z and Z/37Z. Now if
p = 2, we have 3 | p> — 1 and if p = 3, we have 4 | p?> — 1. Furthermore,
if p > 5, we have 12 | p* — 1, since p> — 1 = (p + 1)(p — 1). This proves
the addendum to this Theorem for k|F,. by using Proposition 2.3.7 with
(p*—1)| (¢ —1) € [Leo : L], see Proposition 1.1.23.1). O
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3 The Case of Characteristic 0 Coefficients

In this chapter, we will give the correspondences analogues to the ones in the
last chapter, but for a linear algebraic group over Oy, with (¢, 'k )-modules
over the rings

(R, R™) € {(Ak, A), (W(F)r, W(F)L)}
instead of their residue fields
(K, K*) € {(E,E), (F,F)}.
Let
G(Op) Z limG(O /7"O)
—
carry the profinite topology and let

G(R™) = imG(R™ /m"R™)
—

carry the prodiscrete topology. By using the map

Jr : mor“™ (G, G(OL)) — Hl(HK,G(R"r)),

we can get a correspondence as in chapter 2.2.2.

In the first section, we will establish several techniques to lift some state-
ments from the characteristic p case in chapter 2 to the characteristic 0.

In the second section, we will then prove the correspondences in the char-
acteristic 0 case, which are analogues to the ones made in chapter 2.

3.1 General Theories

In this section, we will establish techniques for smooth group schemes of
finite type over a discrete valuation ring and some technique regarding the
injectivity of certain maps in the theory of general group cohomology.

3.1.1 Injectivity on H!

In this part, we will show that for some monoid M and an M-group A with
a filtration
AZ:AQDAlDAQD...

the projection A — A/A; induces an injective map on the first cohomology,
if the filtration satisfies certain conditions.
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Definition 3.1.1. Let M be a monoid. Then an M-group is a group A
together with a morphism of monoids

f:+ M — Endg,,(A4),

where Endg,,(A) denotes the group endomorphisms of A. If M is a topo-
logical monoid and A is a topological group, then A is called a topological
M -group, if the induced map

MxA— A (m,a) »mx*a:= f(m)(a)
1S continuous.

Definition 3.1.2. Let A be a M-group (resp. be a topological M-group).
Then

CHM,A):={c: M — A| c(mimy) = c(mq) - (my * c(my)) Ymy, mo}

(resp.
CHM,A):={c: M — A|c(mimy) = c(my)-(myxc(my)) ¥my, my, c is continuous. })
is called the set of 1-cocycles of M in A (resp. continuous 1-cocycles of M

in A). We say c1,co € CY(M, A) are cohomological ¢; ~ co, if there exists
a € A, such that

1

ci(m) =a"" - ca(m) - (mx*a) Ym € M.

This relation is an equivalence relation and we set
HY(M,A) :=C"(M,A)] ~ .

We fix a monoid (respectively topological monoid) M and a M-group
(respectively topological M-group) A. Beware that A is not necessarily com-
mutative.

Let ¢ € C'(M, A). By the cocycle condition (and continuity). Then we
can define the (topological) M-group

A=A m xa = c(m)(m* a)e(m)™ Vm € M,a € A.
We calculate
(mm) *a = c(m)(m = c(m"))(m * (m' * a))(m * c(m’)"H)e(m) ™

= c(m)(m * (c(m')(m' * a)c(m’)1))c(m) ™!
= c(m)(m * (m’ * a))e(m) ™
= m * (m/ * CL).

C C
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So this is really an action. The action is continuous, if A is a topological
M-group, since the action is the composition of the continuous maps

MxA%AaxAxAl 4

where
¢((m, a)) = (c(m), m *a,c(m) ™).
Remark. Let b,c € C*(M, A). Then

be ' € O (M, A).
Furthermore, it is
b~ce bet=1€ HY(M,A,).

Proof. We calculate for m, m’ € M that

(bc™ M) (mm') = b(mm/)e(mm/) ™!
= b(m)(m * b(m')) (m * c(m') ™ )e(m)~*
= b(m)e(m) ™" e{m) (m * (b(m)e(m')~))e(m) ™
=b

¢ Hm)(m x be™H(m)).
Furthermore, if
a 'b(m)(m * a) = c¢(m) Ym € M,

we equivalently have
a (b ) (m)(mx*a) =1V¥m € M.

O

Let f: A — B be a morphism of (topological) M-groups. Then for every
ce CY M, A), it is
fu(e) i= foce C'(M, B)

and since

f(mxa) = f(c(m))(m * f(a)) f(c(m)) ™" =m e f(a),

the same map
f : AC — Bf* (c)

is a map of (topological) M-groups.
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Lemma 3.1.3. Let f : A — B be a morphism of M-groups. Then the
mduced map

H*(M,A) — H'(M, B)
18 injective, if and only if the sequence
1— H' (M, A.) — H (M, By.()
is exact for every c € C*(M, A).

Proof. Let b,c € C'(M, A). Then we have by the last Remark and since f is
a morphism of groups that

Fo®) ~ fule) & [£ () fulo) '] = 1 & [fulbe )] =1
and again by the last Remark that
b~ce b= 1.
If follows that

(fe(d) ~ fule) = b~ ) & ([fo(be )] = 1= [bc™'] =1).

Now let A have a filtration of normal M-invariant subgroups
AZ:AoDAlDAQD...,

such that the canonical map A — limA/A, is an isomorphism. Since the
+—

A, are normal, they are also invariant under the action twisted by a cocycle
c € CY(M, A), so it makes sense to define A,, .. By (Bou66, 111 §2.4 Lemma 2),
the projection A — A/A,, is an open map. It follows by an easy calculation
(see for example (I<le16, Lemma 2.1.21)) that, if A is a topological M-group,
then A/A, is a topological M-group via the induced topology and action and
the projection

pn:A— AJA,

is a morphism of topological M-groups. If ¢ € C'(M, A), we define
¢ = pu.(c) € C1(M,A/A,).

Then we have

Ac/An,c - (A/An)é
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Proposition 3.1.4. (Inspired by Ser67, 1.2 Lemma 3)
Suppose that
HY(M, (Ay/Ani1)e) = 1

for every c € CY(M, A) and every n > 1. Then the map
HY(M,A) — H' (M, A/A))
induced by the projection pr : A — AJ/A; is injective.
Proof. By Lemma 3.1.3, we have to show that the sequence
1 — HY(M,A) — H' (M, (A/A))z),

which is induced by the projection p is exact for every ¢ € C'(M, A). So let
d € HY(M, A,.), such that there exists a; € A/A; satisfying

p(d(m)) = a;(m *a;) Ym € M.
Let a; € A be a lift of @ and define the 1-coboundary
bi(m) :=a;*(m*ay) Ym € M.

Then we define
dy = albl_1

and we calculate

S0
dy € CH(M, Ayp,.), since p(d(m)) = p(b1(m)) Ym € M.

This makes sense, since



By the hypothesis, there exists ay € A;/As

po(di(m)) = a5 (m * as).

bic

Choose a lift ay € Ay of ay and define the 1-coboundary

bay(m) :=a;" * as.
bic

Then
bobi(m) = ay ' (m X az)ayt(m * a)
= a3 ay (m x ar)(m % ay) (m x 0y Jasar (m x ay)
= a1a;  (m * (a1az)).
Furthermore, as before there is
dy € CY (M, Ag o), such that d; = doby.

Successively, we find for all n > 1 an a,, € A,,, such that

bo=a,'(m, *  an)

and
d, € Cl(M, An,bn---blc)

which satisfy

and
b -bi(m) = (ar---a,) ' (m*(ay---ay))).

Since

A= 1limA/A,,
H
there exists a € A, such that
po(a) =ay - an_1.
Furthermore, since
d,(m) € A, it is d = lim(p, o b, - - - by),

S0
d(m) =a"'(m*a) Ym € M.

Thus, d is a 1-coboundary.
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In this thesis, we will work with M = Hg as a topological monoid and
M = N as an additive monoid, in particular with 0 € N. We now explain,
what the latter case is about.

Let G be any group together with an endomorphism of groups

v:G— G
Then we can make G into an N-group by setting
fo : N = Endg,,(G),n — ¢".
We define the Langmap associated to 1 to be the map
UG =G g Y(g)

Lemma 3.1.5. The following maps are inverse bijections.

C'N,G) = G
c—c(l)
[n +— Ln=0 - |=i¢c, g
g-¥(g)-¥"Hg), n=1

Furthermore, these maps induce bijections
BYN,G) :={c € CYN,G) | ¢ ~ 1}&im(¥).
Proof. We calculate that ¢, is a cocycle for every g € G. We have
¢y(n+0) = ¢ (n) = ¢y(n) - 1 = cy(n) - 1" (c,(0))
for every n € N. Furthermore, we have
g0+ m) = ¢y(m) = 1-¢,(m) = ¢, (0)4"(c,(m)

for every m € N.
Now let n,m € N with n # 0 # m, then

coln+m)=g-1p(g)-- V" g™ (g-¥(g) V" (g)) = co(n)(n x cg(m)).

By definition, we have

(1) =g
and if ¢ € CY(N, G), then we successively calculate for every n > 1 that
c(n)=cn—1+1)=cln —1Y"(c(1)) = - = c(1)(e(1)) - - "7} (e(1))-
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If b € BY(N, G), then it is

If on the other hand
g0 = g~ Y (g) € im(),
then for all n > 1, we calculate

cgo(n) = (g7 "0 (9)) (W (g) " (9)*(9) -+ " 9 (W™ (g) " (g)) = g~ ¢ (9),

SO
ce € BN, G).

[
Corollary 3.1.6. It is U surjective, if and only if H'(N,G) = 1.
Proof. Tt is H'(N, G) = 1, if and only if
BY(N,G) = C'(N,G),
so by the above Lemma, if and only if
im(¥) =G.
[

3.1.2 (Formal) Groups over Discrete Valuation Rings

In this part, we will accumulate some facts about linear algebraic groups over
a complete discrete valuation ring, in particular over smooth ones. Later on,
we will recall the theory of formal schemes over such a ring.

Definition 3.1.7. Let R be an arbitrary ring. Then a linear algebraic group
over R is a group scheme G over R, such that there exists a closed immersion

G c GL,

as groups over R.

Proposition 3.1.8. (See Conl7, Remark 1.1.6)
If R is a Dedekind Domain, then a group scheme over R is a linear
algebraic group, if and only if it is an affine group scheme of finite type over

R.
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For the rest of this part, R is a complete discrete valuation ring with
uniformizer w and residue field £. We fix a linear algebraic group G over R
and an embedding G C GL,, over R.

Lemma 3.1.9. It is
G(R) = imG(R/@"R).
pa.

The same is true for any affine scheme X over R instead of G.

Proof. Since G = Spec(A) is affine as a closed subgroup of the affine group
GL,, it is

G(R) = morg(A, R) = limmorg(A, R/w"R) = imG(R/w"R)
— —
by the universial property of the projective limit and because of
R =1limR/w"R.
«—

]

We take the following statement as a motivation to make the constructions
that follow.

Proposition 3.1.10. (See Ser92, Part II Chapter IV.9 Corollary 1)
Let G be smooth over R of relative dimension d. Then for every n > 1

ker(G(pr) : G(R/w" ™) = G(R/=")) = E*
carries the structure of a d-dimensional E-vector space.

Now let for any m > 1
Prpymes : R/@™ — R/@™.
Consider G = GL,,. Then for any m > 1 the morphism

GL, (pr ) : GL,(R/ (™)) — GL,(R/(&™))

m,m+1

has kernel

ker(GL,, (pr ) C 1+ Mat,xn(@™R/ (™).

m,m-+1

Lemma 3.1.11. We have a well defined isomorphism of groups

B, : Matyun(E) = Mat,u,(R/(@™)) /(@) = ker(GLy (P my1)), A — 14+@™A.
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Proof. Let A, B € Mat,y,(R/(@™")). Then we calculate that
®,,(A+B) = 1+@™(A+B) = 1+@w" A+w" B+w”™AB = (1+@™A)(1+=™B).

This also shows that 1+ Mat,x,(@™R/(@™")) C GL,(R/(@™)), since
for any 1+ @™A € 1+ Mat,x,(@™R/(w™")), the element 1 — w™A is a
multiplicative inverse. It follows that

ker(GL,, (pr )) =14 Mat, (@™ R/ (™).

m,m-+1

This morphism of groups induces a well defined morphism of groups
Matyn(B) 2 Matycn(R/(5"*1))/()) = ker(GLa (bt 11
since for wA € wR/(w™"!), we have
P, (wA) =1+ A =1¢eGL,(R/(@™)).

Lastly, it is easy to see that A — 1, if and only if A € Mat,x,(@R/(=™")),
so ®,, is injective. It is surjective by construction and since

ker(GLn(prm,mH)) =1+ Matnxn(me/(me)).

O]
Now consider G C GL,,, so that G = Spec(R[{X; }4] [m]/(ﬂ, ., P))
for some P, € R[{X;;};]. Since G is a group, we have
P(1)=0

for 1 € GL,(S), where S is any R-algebra.
We have

ker (G(prm,m+1 ) ) - ker<GLn (prm,m+1 ) ) )

since G C GL,, is a natural transformation. We set
X0 = @, ker(G(pry ni1)))-

Lemma 3.1.12. It is

_ P, . —
X = Tip), (1) = {A € Matoen(E) | Y X-lf (1)- Ay = 0 Vk}
ig Y

for allm > 1. In particular

ker(G (prm,erl ) )

carries the structure of a finite dimensional E-vector space via ®,,.
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Proof. Consider the commutative diagram

G(prm,m+1)

G(R/(Tm“)) G(R/l(wm))
GLn(R/(@™*)) GL,(R/(@™)).

GL” (pr'm,m+1)
It follows that

ker(G(pr )) = ker(GL,,(pr ) NG(R/(=w™))

m,m—+1 m,m—+1

and so it is A € X(™ if and only if Py(1+@™A) =0 € R/(w™"") for a lift
A € Mat,xn(R/(w™")) of A and every k. We consider the Taylorexpansion
of P, at 1 € Mat,y,(R/(=™")).

0P,
X

P(1+@™A) = Pe(1)+@™ )

1]

(1)- Ayj+w*"z for some z € R/ (™).

Since @w?™ = 0 and P,,(1) = 0, it is Px(1 + @w™A) = 0 if and only if

0Py

Xij (1) . Aij c wR/(wm+1)

]

We close this part with a geometric version of Hensel’s Lemma.

Proposition 3.1.13. (Hensel’s Lemma)(See Grot7, Theorem 18.5.17 € Propo-
sition 18.5.4) and (See Gro60, Corollary 5.1.8)

If (A,m) is a local Henselian ring and X is a smooth scheme over A, then
for every n > 1 the map

X(pr,) : X(A) - X(A/m")

induced by the projection A — A/m™ is surjective.

Formal w-adic Schemes

We continue with our notation of this part, so R is a complete discrete
valuation ring with uniformizer w.
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Definition 3.1.14. Let B be an R-algebra. We view B with the w-adic
topology and assume that B is w-adically complete. Then we define the
formal (w-adic) spectrum of B to be

Spf(B) := {p € Spec(B) | p C B is open.}.

We view Spf(B) C Spec(B) with the subset topology of the Zariski topology,
i.e. the subsets

Dy(B) :={p € Spf(B) | [ ¢ p}
for every f € B form a basis of the topology. We define a structure of a
locally ringed space (of R-algebras) on Spf(B) via

Ospi(s)(Dy) == By,

where B + denotes the w-adic completion of the localisation of B at f denoted
by By. This really gives the structure of a locally ringed space by (Gro60,
Propositions (10.1.3), (10.1.4) & (10.1.6))

We say a locally ringed space of R-algebras (X, Ox) is a (complete) formal
(ww-adic) scheme over R, if it has an open covering of subspaces, which are
isomorphic formal (w-adic) spectra (Spf(B), Ospe(p)) as above.

A morphism between formal (w-adic) schemes is a morphism of locally
ringed spaces of R-algebras.

We call a formal (co-adic) scheme (X, Ox) affine, if (X, Ox) = (Spf(B), Ospe(n))-

Remark. Normally, you would define a morphism of formal schemes to be a
morphism of locally ringed spaces of R-algebras f : X — Y, such that the
induced map f,ﬁJ : Oy (U) = Ox(f~1(U)) is continuous for the w-adic topol-
ogy for every open U C Y, such that U and f~}(U) are affine. But for the
w-adic topology every morphism of R-algebras is automatically continuous.

Since we are only interested in the w-adic case, we will by abuse of nota-
tion call formal w-adic schemes over R just formal schemes.

Definition 3.1.15. We define
FSch®™ .= FSchy C (locally ringed spaces of R — algebras)
to be the full subcategory of formal schemes.
We have the following adjointness property.

Proposition 3.1.16. (See G'ro6(, Proposition 10.4.6)
Let X be a complete formal scheme and B be a w-adically complete R-
algebra. Then we have a bijection

MOY g §checomp (Xa Spf(B));> morR—Alg(Ba OX (X))7 f — fg(a

which is natural in X and B.
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Lemma 3.1.17. If H is a Hopfalgebra over R, then the w-adic completion
Hisa complete formal Hopfalgebra over R, i.e. Spf(H ) 1s a group object
in the category FSch®™ and for any w-adically complete R-algebra S, we
have an isomorphism of groups

morR,Alg(H, S) = morg_a,(H, S),
which is natural in S.

Proof. By Proposition 3.1.16 and the gluing property of morphisms of locally
ringed spaces (See GGo10, Proposition 3.5), it suffices to show that

mOI“R_Alg(I:I, S)

carries a group structure, which is natural in S, where S is a w-adically com-
plete R-algebra. Since any morphism of R-algebras is w-adically continuous,
we have a natural identification

morR,Alg(I:[, S) = morg_ai,(H,S)

via the natural map can : H — limH/w"H = H. To prove this, let f: H —
e

S be a morphism of R-Algebras. Then for every n € N there exists a unique
morphism of R-algebras f, : H/w"H — S/w"S with

f’n OPIong = Plgng Of,
Since S is w-adically complete, there exists a unique

fo=lmf,: H— S8,

such that fo can = f.
It follows that morg_4;,(H, S) carries the group structure of morg_45,(H, S),
which is natural in S. O

If G = Spec(H) is a groupscheme over R, we denote by
G := Spf(H)

the object in F'Sch®™P which is a group object by the last Lemma. We call
such an object Spf(A), where A is a complete formal Hopfalgebra an affine
complete formal group over R.

121



Lemma 3.1.18. Let (A, ¥n 0 Ani1 — Ap)n>1 be a projective system, where
A, is a Hopfalgebra over R/w™R and the 1, are morphisms of R-algebras,
such that the induced maps

morR/w"R—Alg (An, S) — morR/w”‘HRfAlg (An+17 S)

are morphisms of groups for every R/w™R-algebra S. If every i, is surjective
and satisfies
v (@w™A,) = @™ Angr

for every 1 < m < n, then
A :=1limA,,
pu

is a complete formal Hopfalgebra over R and the projection pr, : A — A,
mduces an isomorphism
pr, : A/w" A=A,

for every n > 1.
Furthermore, if S is a w-adically complete R-algebra, then there exists
an isomorphism of groups

mor g aig(A, S) =2 lim mor g jon p—aig(An, S/@"S),

which is natural in S. This projective limit is given by the projections S/w" 1S —
S/@w"S. The details that this makes sense are given in the proof.

Proof. Since 1), is surjective for every n > 1, the projection pr,, : A — A,,
is surjective for any m > 1. An element (a,), € A is in the kernel of pr,,,
if a,, = 0 for all n < m. Since ¥, (w™A,) = @™ A, for every n > m, we
have that a, € w™A, for every n > m, so ker(pr,,) = w™A. It follows that
we have an isomorphism

pr,: A/w"A — A, (%)

for every n > 1, so A is w-adically complete. Let S be a w-adically complete
R-algebra. Then we have natural bijections

morp_a14(A, S) = limmorg_ 4,(A4, S/w"S)
> liin MOT R on— alg(A/ " A, S/w"S)

(%)
= lim morg/on—a1g(An, S/@"S),
—

where the first bijection follows from the universial property of the projective
limit and the second bijection follows from the fact that every morphism of
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R-algebras f : B — C with @"C' = 0 induces a unique R/w™R-algebra
morphism f, : B/w"B — C with f, opr_.z = f.
The map

morR/w"+1—Alg(An+17 S/wnJrlS) — morR/wn‘HfAlg(An—l-h S/w”S)

induced by the projection is a morphism of groups, since A, is a Hopfalge-
bra over R/ww" ™ R. Notice that ¢, : A, 1/@"Apny1 — A, is an isomorphism
by assumption. It follows that morg_a;,,(A,S) carries the structure of a
group, which is natural in S, since

Il'lOI'R/wnJrlR,Alg (An+1, S/w”S)
~ n n N n
= HlOI'R/wnR_Alg<An+1/w An+1, S/w S) — morR/wnR_Alg(An, S/w S)
is an isomorphism of groups by assumption, from which follows that

lim morg/en — a1y (An, S/@"S)

carries a structure of a group, which is natural in S. We deduce that Spf(A)
is a group object in F'Sch®™ by Proposition 3.1.16 and the gluing property
of morphisms of locally ringed spaces (See G610, Proposition 3.5). O

Although this next statements don’t involve formal schemes, we will use
this later on in the context of working with affine complete formal groups.

Proposition 3.1.19. (Inspired by Bri09, Lemma 3.2.6)

Let R’ := R™ be the w-adic completion of the maximal unramified exten-
sion of R. Then a separable closure E*P of E in an algebraically closed field
containing E is the residue field of R' and Autp_a14(R') = G by Proposition
1.2.29. Let M be an R'-module, such that there exists an n € N, such that
w"M = 0. If there is a w-adically continuous and semilinear G g-action of
R-algebras on M, then the natural map induced by scalar multiplication

R'® M°? — M
R
15 bijective.

Proof. We assumed that there exists an n € N, such that @"M = 0. We
prove this statement by induction for such n. For n = 1, this is classical
Galois descent (Compare to Sil09, II Lemma 5.8.1). Now let n > 1 be such
that the statement correct for all 1 < m < n and let M be a R’-module, such
that 7" M = 0. We consider the short exact sequence

0—=7n"M—M— M/7"M — 0.
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Since M,, := w" M satisfies 7M,, = 0, we know from the case n = 1 that there

is a G g-equivariant isomorphism of E*?-vector spaces M, = P E*?, where
iel

P E*? carries the natural G g-action. It follows that

i€l

HY(Gp, M,) = lim H'(Gg/N, M) = lim DH'(Gy/N, (E**)V) =0,

NCG open NCG open 3]

where the first isomorphism is (Neul5, (1.2.5) Proposition) and the second
one is (Neul3, (3.7) Proposition). The equality H'(Gg/N, (E*?)N) = 0 is
the additive Hilbert 90. It follows that we have the following commutative
diagram of exact sequences of the canonical maps since R’ is flat over R by
(Bou72, 1 §2.4 Proposition 3.ii)).

0— R ® M, ReM R ® M/M,—0
R R R
0 M, M M/M, ——0

By the inductive hypothesis, we have that the arrows left and right are iso-
morphisms, so it follows that the one in the center is an isomorphism by the
five-Lemma. O]

Corollary 3.1.20. Let R’ = R be as in the last Proposition. Let R —
Mod#™ be the category of those R'-modules M with a semilinear G g-action
on M and such that there exists n > 0, such that 7" M = 0. Morphisms in
R’ — Mod#" are those R'-linear morphisms, which are compatible with the
Gg-action. Then the functor

()9 : R — Mod%™ — R — Mod
1S exact.

Proof. This follows since the isomorphism in Proposition 3.1.19 is natural
and since R’ is faithfully flat over R by (Bou72, I §2.4 Proposition 3.ii)) and
(Mat&6, Theorem 7.2). O

3.1.3 Lifting Lang-Steinberg

In this part, we will have a first use of the results established in the last two
parts. We will show that the surjectivity of the Lang map established in
part 2.1.2 can be lifted to a surjectivity of the Lang map on the points of a
linear algebraic group over a complete discrete valuation ring with separable
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algebraically closed residue field. Let R be a complete discrete valuation ring,
which is a Op-algebra and has uniformizer 7. Let E be the residue field of
R. Assume that there exists a lift

(¢ : R— R) € Endo, —ai4(R)
of the g-Frobenius
o E— E xw— 27

and that £ is separably algebraically closed. Let G be a linear algebraic
group over Op. This next statement serves as motivation for the rest of the
part.

Proposition 3.1.21. (See Gre63, 3. Proposition 3)
If G is smooth and has connected special fiber Gy, then the Langmap

18 surjective.

In (Gre61) and (Gre63), Greenberg works with Wittvectors over perfect
fields, so following his method, we would only be able to generalize this
statement in the perfect setup for a complete discrete valuationg ring with
algebraically closed residue field. But since we also want to have an analogue
result in the nonperfect case, we will need to develop a new technique. We
will need a further application of Theorem 2.1.13.

Lemma 3.1.22. Recall that we assumed that E is separably algebraically
closed. Let V be finite dimensional E-vector space, together with a r-
semilinear and etale endomorphism

QOVZV—)V

Then the map
e—id:V = Vv pr(v) —wv

18 surjective.

Proof. Let (v;); C V be a py-invariant E-basis of V', see Theorem 2.1.13 for
the existence. Then for any v € V' with

V= Zaﬂh’ with a; € F.
i

We calculate

(PL(’U) — U= Z(af - OJZ')UZ'.



Let w € V be another element and

So to say that w € im(p, — id), we have to find solutions for a! — a; = b; in
E for every i. But X9 — X —b; € E[X] is a separable polynomial, so there
exists such a;. O

We view G := G(R) as a N-group via G(p). Furthermore, we denote
the induced maps
or: R/m™"R — R/m"R

and
G(er) : G(R/m"R) — G(R/m"R).
Let
pr,: R— R/m"R
and

Pl @ R/T"T'R — R/7"R
be the projections. Since ¢y, o pr,, = pr,, 0y, it is

G, = ker(G(pr,)) C G

a N-invariant subgroup. Assume G is smooth over Op. Then by Hensel’s
Lemma Proposition 3.1.13, we have that it is

G/G, = G(R/7"R).

Furthermore, it is
Gn/Gn+1 = ker(G(prn,n—H))

and by Lemma 3.1.9, it is
G = limG/G,,.
-

First, we consider G = GL,,. We view Mat,,»,,(E) as N-Group via Mat,, ., (¢1).
Lemma 3.1.23. For any m > 1, the isomorphism

®,, 1 Mat,xn(E) = Mat,xn,((R/(7™1)) /(7)) — ker(GL, (pr ), A 1+7™A

m,m+1
of Lemma 3.1.11 is N-equivariant.

Proof. This follows from the assumption that ¢y, is an Op-algebra homomor-
phism. 0
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Remark 3.1.24. Let ¢ € C'(N, GL,(R)). Then
c1 := GLy(pr;) o c € CYN, GL,(E)),
and for m > 1
¢mi1 = GLy(pr,,11) 0 c € CY(N,GL,(R/7™*'R))
since ¢y, o pr, = pr, opy, for all » € N. Let Mat,«,(F)., denote the N-group

Mat,un(E)e = Mat,sn(E), nx A:=ci(n) - Mat,,(p])(A) - cl(n)_l.
C1

Let ker(GLy(PT,, n11))ems, b€ as in part 3.1.1, which is the analogue defini-
tion to the one made for Mat, x,(E).,. Then

b, : Mat,xn(E)e, — ker(GLn(plrmmﬂ))Cm+1

is N-equivariant, by Lemma 3.1.23 and since conjugation in Mat,,«,(E) with
an element of GL,(F) is additive and preserves elements in the center.

Remark 3.1.25. By Corollary 2.1.18 and Corollary 3.1.6, it is that
HY(N,GL,(E)) = 1.
So for any ¢ € C'(N, GL,(E)), there exists a Matrix A € GL,,(E) satisfying
¢(n) = AP GL,(¢})(A) Vn € N.
It follows that
Mat,n(E)e — Mat,xn(E), B+ ABA™
is an isomorphism of N-groups since
Ae(n)Matnsn(97)(B)e(n) ' A™" = Matna (9] ) (ABA™Y),
which holds because of
GL.(¢1) = Mat,xn(9L)|GLu(B)-

Proposition 3.1.26. If G is smooth over O and the special fiber Gy, is
connected, then the Lang map

\IIR : G(R) — G(R), A A_lG((pL)(A)

18 surjective.
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Proof. We continue with the notation in the discussion before Lemma 3.1.23.
In particular, it is

G = limG/G,,
e
since G is smooth. By Corollary 3.1.6, we need to show that
HY(N,G) = 1.

But since the special fiber is connected, we have to show by Corollary 2.1.18
and Proposition 3.1.4 that for

(Gm/Gm+1)0m+1 = ker(G(prm,m—‘rl))Cerl

it is
Hl (N7 (Gm/Gm+1)cer+l) = 1

for all c € CY(N,G), m > 1 and

Cm+1 = G(pl”m_H) oce Cl(Na G/Gm+1)'
Note that

Mat, s (pr) : Mat,xn(E) — Mat,x,(E)
is etale, since it fixes the standard E-basis. By Remark 3.1.24 the map

(Gm/Gm+l)cm+1 - ker(GLn(prm,m+1))Cocm+1 = Matnxn(E)COq

is an N-equivariant embedding. Here C: G — GL,, means the chosen immer-
sion. By Remark 3.1.25, the right hand side of this embedding is isomorphic
to Mat,x,(E) as an N-group, so by Lemma 3.1.12 this N-equivariant em-
bedding is onto an E-subvector space of Mat,«,(F) with the N-action given
by Mat,xn(pr). So it suffices to show that every N-invariant E-subvector
space V' C Mat,x,(E) is etale, since then H'(N,V) = 1 by Lemma 3.1.22
and Corollary 3.1.6. Since ¢, : E — FE is flat as an extension of fields, it is

E ® VS E ® Matyn(E)
o, B e, B

an injective map. Consider the commutative diagram

atnxn lin
E @ Maty,,(E)-tmeten) Mat pn(E)
wr,E
(id®C) -
atnxn lin
SDLzE
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Since the upper arrow is an isomorphism and the vertical arrows are injective,
the botton arrow is injective. But the F-vector spaces on the bottom have
the same dimension, so the arrow is an isomorphism. O]
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3.2 The Correspondences

In this section, we will construct the bijections to generalize Theorem 1.3.18
in the characteristic 0 case. In the first part, we will show that H g-invariants
as established in Part 2.2.2 can be lifted to the characteristic 0 case.

In the second part, we will give a correspondence for those representations
to (¢, 'k )-modules with values in Forms of the linear algebraic group we
start with and a correspondence of the nonperfect and the perfect setting.
For G = GL,,, we then show that our correspondence is the same as the one
that is induced by Fontaine’s functor.

In the last part, we will give a discussion of the theory one can build in
the case of the quotientfields of our discrete valuation rings.

3.2.1 Lifting Hg-Invariants
Let in this part G be a linear algebraic group over O and
(R,R",K) € {(Ar, A, E), W(F),, W(F),F)}.

It is
G(R"™) =2 limG(R™ /="R"™)

by Lemma 3.1.9. In this part, we view G(R) with the prodiscrete topology.
Let
c,d € CY(Hg,G(R™)).

Define an action on G(R™) by setting

h.A = hc.dA :=c(h) - G(p(h))(A)d(h) ' VA € G(R™),h € Hg.

We set
G(R™)™1x = {A € G(R™) | h.A= AVh € Hy}.

Let
pr, : R" — R"™/7"R",pr, ,\1 : R"/ " HIRM — R /R
be the projections and
cn = G(pr,) oc € CY(Hg,G(R™ /7"R"™)).

Let
G<Rnr/<7rn))cn,dn,HL
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be defined by an analoguesly defined action on G(R™ /(7")). Then the pro-
jections induce maps

Pr,cd: G(Rnr/(ﬂ-nJrl))cnﬂ,dnﬂ,HL — G(RnT/<7Tn))C"’d"’HL7
since we have

h . (G(pr,)(A)) = G(pr,)(h A).

Cnydn Cnt1,dn+1

Furthermore, it is
G(R™)He 2 HmG(R™ /(")) (+)
<_

since h . A corresponds to
c,d

lim(h . (G(pr,)(A)))

Cn,dn
via
G(R™) = imG(R™ /(7).

We want to have

G(Rnr)c,d,HL 7& @

if and only for their images under the projection
G(Ksep)cl,dl,HL 7& @

We show that we can also use Proposition 3.1.4, but we will make a more
direct approach, so that the reader hopefully can get a better feel for these
invariants. We view G(R™ /(n™)) as a topological H-group via the action
p- This makes sense, since p g, is continuous for the 7-adic topology on R,
see Lemma 1.2.7.ii). We furthermore view Mat, ., (K*®) as a topological
Hy-group. We consider the case of GL,,.

Lemma 3.2.1. For any m > 1, the isomorphism
D, 0 Mat,xn(K5P) & Mat,,(R™ /(™)) /(7)) — ker(GL,, (Pr,, i), A 147" A
of Lemma 3.1.11 is Hg-equivariant.

Proof. This follows from the fact that p(h) is an Op-algebra homomorphism
for every h € Hg. ]
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Remark 3.2.2. Let ¢ € C'(Hy,GL,(R™)) and let Mat,x,(K*),, denote
the Hg-group

Mat s (K5P) o, i= Mat,n (KP), hx A = c1(h)-Mat,xn(p(h))(A)-ci(h)™".
Cc1

Let ker(GLn (P, mi1))ems, denote the Hy-group as in part 3.1.1. Then
D, - Mat,x,(K*P),, — kelr(Gan(prm’mH))cerl

is H-equivariant, by Lemma 3.2.1 and since conjugation in M at,, ., (IK*P)
with an element of GL,, (K*%) is additive and preserves elements in the center.

Remark 3.2.3. By Hilbert 90, it is that
H'(Hg,GL,(K*?)) = 1,

So for any ¢ € C'(Hg, GL,(K*%?)), there exists a Matrix A € GL,(K*%?)
satisfying
¢(h) = A1 GL,(p(h))(A) Vh € N.

It follows that
Mat s (K5P) e — Mat o, (K*?), B — ABA™!
is an isomorphism of Hg-groups since
Ae(h)Matyx (p(h))(B)e(n) " AT = Matyxa(p(h))(ABA™),
which holds because of
GL,(p(h)) = Mat,xn(p(h))| cL,ksery Yh € Hg.
Now we consider a closed subgroup G C GL,, again.
Lemma 3.2.4. [t is
H (i, Ker(G(pry, ir))eys) = 1
for allm > 1 and c € C'(Hg,G(R™)).
Proof. By Remark 3.2.2 the map
ker(G(pry, 1)) ey C Ker(GLn(Pryy pi1))coem iy & Matnxn (K*P)coe,

is an Hg-equivariant embedding. By Remark 3.2.3 the right hand side of this
embedding is isomorphic to Mat, x,(K*®?) as an H-group, so by Lemma
3.1.12, this embedding is onto a K*®P-subvector space of Mat,,y,, (K*®?) with
the Hy-action given by Mat,x,(p(h)) for h € Hg. It follows that the addi-
tive Hilbert 90 gives the desired triviality of the first cohomology. O
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Remark. Let ¢,d € C'(H, G(R™ /7"R")) for 1 < n < oo, where 7 := 0.
Then for every h € Hx and A, B € G(R™ /7"R"™"), we have

(h .dA)hd.dB =h .d(AB).
Proof. We calculate
(h. b B = WG (p(W)(A)() d(R)G(p(h)) (B)d(h ™)

=h (AB).

]

Proposition 3.2.5. If G is smooth, then pr,, ., is surjective for all m > 1
and all c,d € C'(Hy,G(R™)).

Proof. Let B € G(R™/(mx™))emdm:HL — By Hensel’'s Lemma Proposition
3.1.13, choose
Ae G(R™/(x™thY),

such that
G(pr,m1)(A) = B.

Then define a cocycle
&<h) =A"'hAe ker(G(prm,m+1))dm+1'

We calculate that this is actually a cocycle.

a(h1)dpmi1 (h1)G(p(h1))(a(ha))dmsr (P1) ™
=A" 11 (h)G(p(h)) (A)d, 1 (B )dm+1(hl)G(P(hl))(a(hz))dm+1(hl)_l
=A" i1 (h)G(p(h)) (Aa(he)) g (ha) ™
=A" i1 (h1)G(p(h)) (AA™ hy. A)dyyir (he) ™
( (h1))(
( (

1))
)
)
=A7 i1 (M)G(p(h)) (Cmp1 (ha)) G (p(hah2)) (A)G (p(h1)) (i1 (ho) ™) dima () ™

= A7 1 (hih)G(p(hihs) ) (A)dygr (hiha) ™!
:a(hlhg)

By Lemma 3.2.4, we get Ay € ker(G(pr,, 1)), such that
A7 h.A = Ay - GUD(B) (A,
where

G (h)(A5") := dsr () - G(p()) (A7) - dys ()™ Vh € Hi.

133



It follows by the previous Remark that
h,(AA()) = AA() and G(prm7m+1)(AA0) = BVYhe HK,

so AAj is an element in the inverse image of B under pr,, . 4

Corollary 3.2.6. If G is smooth, then it is
G(Rnr)c,d,HL 7& @)

if and only if
G(Ksep)cl,dl,HL # @

In particular

H'(Hg,G(R™)) — H'(Hy, G(K*?))
18 1njective.
Proof. This follows from successively lifting an Element in G(K*eP)c1-41.H vig

the last Proposition and the correspondence in () before Lemma 3.2.1. The
second claim follows from the fact that, it is

B c G(Rnr)c,d,HL 7

if and only if
B-d(h)-G(p(h))(B™') =c(h) Vh € Hy.

3.2.2 Galois Representations and Etale (¢, 'x)-Modules

In this part, G is a smooth linear algebraic group over O together with a
closed immersion of groups G C GL,. and

(R,R".K) € {(AL, AE), (W(F), W(F), F)}.
It is
G(OL) = hinG(OL/?TnOL)

by Lemma 3.1.9. We view it with the profinite topology. We call it the w-adic
topology on G(Op).

Remark. The m-adic topology on G(Qp) is the same as the topology induced
by
G(Or) c GL,(Oy)

via the m-adic topology on Oy,.

134



Let
Jr : mor™ (G, G(OL)) — H (Hg, G(R™))

be the map given by the restriction Hx C Gg and O C R™.
Remark 3.2.7. The map

im(ja,) — im(jw),)

induced by inclusion

ACW(F)
is bijective.
Proof. This follows from the injectivity statements in Corollary 3.2.6 and
Remark 2.2.3. O

From here on out we view G(S), where
S e {R.R"™ K, K}

with the weak topology, see Lemma 2.2.5 and the Remark following it. Let
f € mor®™(Gg,G(Op)) and define

GY == {A € G(R™) | A= f(h)G(p(h)(A)f(h)™" Vh € Hy}.

We view G%) C G(R™) with the subset topology. Then Gg) can be made
into an Qg-group, which is a topological ' x-group as in part 2.2.2 by setting
for v = pry,. (gy)7" € Ok, where g, € G

7 A=y A= fg,)Gp(g)er ) (A)f(9,)

For this beware that we need that weak topology on R™ induces the m-adic
topology on O, and Lemma 1.2.7.ii).

Since G C GL,, there exists by Hilbert 90 and Corollary 3.2.6 a B €
GL,(R"), such that

f(h) = B~ GLy(p(h))(B) Vh € Hy.
Then we have two embeddings
1 GY € G(R™) € GL,(R™), A A

and

1 GY) 5 GLL(R), A — Bu(A)B™".

Viewing GL,(R) and GL,(R"") with the with the weak topology, ¢; and

Lo induce the same topology on Gg), since the weak topology on R is the
topology induced via R C R™, where R™ carries the weak topology.
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Definition 3.2.8. We define

Cl(@K,Gg)) ={a: 0k — Gg) | a(y6) = 04(7)73’;04@) V7,0, oqr, is continuous}
and call o € C’l((D)K,G%)) an etale (oL, 'kx)-module over R with values in
G,

Fix a subset

{fi}: € mor*™ (G, G(OL)),
such that the map j,, induces a bijection
Jag  {fiti = im(ag)-
Recall the Langmap
U= Vg : G(R™) = G(R™), A A 'G(p1)(A).

Analogues to the case in part 2.2.2, we can make constructions, which give
us maps

D : (mor“™ (G, G(OL))/ ~) — HHl(@Kngi))

and

V: ]_[{ | € H (O, GY) | a(n) € im(Vgar)} — (mor (G, G(OL))/ ~).

We briefly recall the construction of D, since we will need it later on. Let
f € mor®"(Gg,G(Or)). Then there exists a unique i, such that jz(f) =
Jr(f;). This means that

G(Rnr>f:fivHL )

So let Ag € G(R")//i:He  Then we have the well defined cocycle
apa0(7) 1= A7 F(9:)G(pl92)] ) (Ao) filg) ™ € G,
if v = pry, (g,)7™ € Of. Then

D([f]~) = ay == [ay a0]~-

They satisfy the following correspondence.
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Theorem 3.2.9. We have inverse bijections

D : (mor“™(Gy, G(OL))/ ~)&] [{la) € H'(Ok, GE) | a(r) € im(V)} : V

and if the special fiber Gy, is connected, the right hand side is [ [H (O, Ggi)).

This bijection identifies Z

{la)~ € mor*"(Gic. G(O1))/ ~ |Jr(a) = jr(f)} = {lo] € H'(Ok, Gx") | a(r) € im(¥)}.
for every i.

Proof. The first and third part of the statement works completely analogues
as in part 2.2.2. The second part is Proposition 3.1.26. ]

Since this bijection is dependent on the choice of {f;};, the maps D and V
are in general not “functorial”. Under certain conditions, there is still a way
to get something like functoriality. For this we first note that, if ¢ : Gy — G,
is a morphism of groups and f € mor®™ (G, G1(OL)), then

(b’Rnr . Glg) — GQ%kOf)

is a well defined morphism of Qg-groups by definition, which is continuous,
because it is a polynomial map.

Lemma 3.2.10. Let ¢ : Gy — G, such that the induced map
(¢a)e : H'(Hk,G1(A)) — H' (Hg, Go(A))

is injective on 1m(§§i) Then for any choice {fi(l)}i C mor®(Gg,G(Oy)),
such that

- 1 . -

Jig A1 Y = ()
is bijective, we can complement {¢po, o fi}i C mor®™(Gg,Gy(OL)) to a subset

{fl(2)}l, such that
gez AR ) — m(%)

18 bijective. Furthermore, the following diagram is commutative.
cont D 1 (fz(l))
(mor™ (G, G1(Or))/ ~) —=IH (Ok, G1" )
(¢OL)* L((f)Rnr)*

(2)
(mor*"! (G, G2(01))/ ~) 5= L@, Gyl ).
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Proof. As for Lemma 2.2.16. O

In this case, we also have a generalization of the previous Lemma.

Lemma 3.2.11. Let ¢ : Gy — Go be a morphism of groupschemes over
Op. Choose some representatives {fi(l)}i for Gy and {fl(2)}l for Gy as in the

last Lemma. By definition of these representatives for any fi(l) there exists a
unique fz(2) and some (non-unique) B; € Go(R™), such that

b0 {7 (h) = B+ f;(h) - Gap()(B]). ()
Then the following diagram is commutative and the right vertical map is
independent on the choice of B;.
cont D 1 (f-(l))
(mor*™ (G, G1(Op))/ ~) — 117" (Ok, Gy )
(b0, )x lg[aH[WHBi1~¢Rnr0a(7)'v-BiH

(2)
(mOI‘cont(GK7 GQ(OL))/ N)Eﬁ ]Tlﬂl(@[(, Gé{;’z ))

Here for v = pry, (g,)7"" € Ok, we have

v.Bi =~ B = ¢o, o [ (g,) - Galp(gy) 0 0 )(By) - 17 (g,) "

poyof
This is well defined by arguments as in the discussion before Lemma 2.2.7.
Proof. As for Lemma 2.2.18. O
Proposition 3.2.12. Let f € mor®™(Gk,G(Or)). Then

CH(0x, GF') = {o: Ok = G | a(18) = a(y) -7 £ () ¥7,0 € Ok},
i.e. such an 1-cocycle is automatically continuous for the weak topology on
GY.

Proof. As for Proposition 2.2.19. m

We futhermore obtain the following correspondence between non-perfect
and perfect (¢r, 'k )-modules.

Theorem 3.2.13. The inclusion Ax C W(IF) induces a bijection

{la] € H'(0k,GY)) | a(7) € im(¥,)}>{[0] € H'(Ok, Gy, ) | a(n) € im (T, )}

and, if Gy is connected, it induces a bijection

H' (0%, GY)) SH 0k, G, )-
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Proof. Extend f to a subset {f;};, which satisfies the condition that
Jag s ik = im(ay)
is bijective. By Remark 3.2.7 and Theorem 3.2.9, we have the bijections
Vi {lo] € H'(Ox, GF) | a(r) € im(¥4)}
— {la]~ € mor*™ (G, G(O1))/ ~ | jax(a) = jar (f)}
and
Dy ), :{la]~ € mor* (G, G(OL))/ ~ | jax(a) = ja(f)}
= {lo] € H'(0x, Gyjgy),) | a(r) € im(Vyyq), )}
Now one shows that
Dy ey, © Vax {lo] € H'(Ok, Ggy) | a(m) € m(¥4)}
“{lo] € H'(Ok, Gilye), ) | a(m) € m(Py),)}
is the map induced by the inclusion Ax C W (F)., just as one calculates that
Dk o Vg =1id

in the proof of Proposition 2.2.15. The second part is Proposition 3.1.26. [J

Let Agnr := Autgnr(Ggrer) be the group of automorphisms of the group
scheme Grnr over R™. As in part 2.1.3, we obtain a Hg-action of groups
Agpnr by conjugating f € Ager with (idg, Spec(h™)) for h € Hg. As in
Lemma 2.1.23, we obtain a Hg-equivariant map

®: G(R™) = Agnr

by sending g € G(R™) to [G(S) 2 x + gxg~' € G(9)] for all R" -algebras
S. Here, we view G(R™) as an Hg-group via G(p(h)) for every h € H.

Let Grnr = Spec(H) for some Hopfalgebra H (of finite type) over R"",
then by right exactness of the tensor product, it is

Gror jengnr = Spec(H /1" H)
for all n > 1. Let
Agnr 5 i= Autgnr frngnr (Gror jrngnr).
Analoguesly to above, we obtain a Hg-equivariant map

O, : G(R™ /7"R™) — Agor .
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For every cocycle ¢ € C'(Hg,G(R"™)), which is continuous for the prodis-
crete topology, we define

cn = G(pr,)oc € C'(Hg, G(R™ /7"R"™))

a cocycle, which is continuous for the discrete topology on G(R™ /7" R"").
We furthermore obtain a cocycle cﬁf) = ®,0c¢, € CY(H i, Arnr ), which
is continuous for the discrete topology on Agnr,. As described in Remark

2.1.21 the cocycle A induces a H k-semilinear action of Hopfalgebras over
R™ /m"R™ on H/x™H, which is continuous for the discrete topology on

H/7"H via h s (idg, Spec(h)) o ¢ (h)~1, h € Hy. We get a Hopfalgebra
H) = (H/x"H)"x

over R/m"R for the invariants under the action defined by A above. Then
Glen) .= Spec(H(C”))

is an (R™ /7"R")|(R/7"R)-Form of Gg/mmr. This means that the multi-
plication

R"/7"R™ © H“) — H/z"H
R/T™R

is an isomorphism, so we have an identification G%’;Z g Gror frngnr.

To see this, we have by Proposition 3.1.19 that the multiplication
R™ @ H) — H/m"H
R

is an isomorphism, but by right exactness of the tensor product and since
7" H() =0, we also have the isomorphism

R™ @ H) - R™/a"R™ @ H) 2@y pronge(z) @y,
R R/m"R

so we obtain that the map induced by multiplication

R™/a"R™ ® H) — H/z"H
R/m™R

is an isomorphism. As calculated for Remark 2.1.21.(1), this identification
gives and identification

G(C”)(R”T/W”R”T) = G(R™/7"R™),
which satisfies

G(Cn)(p(h))(A) = Cn(h) -G(p(h))(A) . Cn(h)_l Vhe Hg, A e G(Rm/ﬁnR?)j
T
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Proposition 3.2.14. We use the same notation as in the discussion above.
Let
Uy - Hent1) _y frlen)

be the map induced by the projection pr, : H/m" " H — H/a"H. Then the
projective system (H(C"), Un)n>1 satisfies the conditions of Lemma 3.1.18. In
particular
H© :=limH )
—

1s a complete formal Hopfalgebra over R. We set GO .= Spf(H©)). We
then furthermore have that f € mor®™(Gr,G(OL)) seen as an element
C'(Hg,G(R"™)) wvia restriction Hrx C Gg and inclusion O C R™ satis-
fies

~

GV(R) = GY.

Proof. By Corollary 3.1.20 the functor (-)f¥ is exact on those modules R™'-
modules M with a semilinear and m-adically continuous H g-action, such that
there exists an n > 1, such that 7"M = 0. It follows from the surjectivity
of the projection pr, : H/7""'H — H/7"H that 1, : He+1) — H(en+1) g
surjective.

Consider for every n > 1 and 1 < m < n the right exact sequence

H/7" " H '™ H/m"""H — H/x™H — 0.
It follows by the exactness of (-)#% of Corollary 3.1.20 that the map
Vnttm - Hen+1) _y frlem)
induced by the projection
H/m""'H — H/m™H
has kernel
ker(¥ni1.m) = ™ H () (Kpt1m)
By induction for n > 1, we show that
w;l(ﬂmH(Cn)> — g (ent1)
for every 1 < m < n For n = 1, we have to show that
Y (rH ) = rH ),
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But o, H(mH)) = ker(v;), so this follows from (K5;). Let the statement
be correct for some n —1 > 1 and every 1 < m < n — 1. Then for n =m we

have to show
@ZJ;l(T[‘nH(Cn)) — 7.{_71[{((:,“_1)'

But as above we have 1, (7" H (")) = ker(1,,), so this follows from (K, 11,,).
So let m < n. Then by induction hypothesis, we have the chain of equalities

(M H ) = g (g (" H )

n n—1

=, (W (L (0 (e H ) L)
- ker(¢n+1,m)7

so we have
w;l(ﬂ-mH(Cn)) — g (ent1)

by (Kn-&-l,m)-
Lastly for the conditions on the projective systems, we have to show that
for every R/n™R-algebra S, we have that v, induces a morphism of groups

morR/ﬂnR_Alg(H(c"), S) — mOI"R/Wn+LR(H(Cn+1), S).

But the projection
H/7x""'"H — H/7m"H

respects the structure of a Hopfalgebra, since this structure is for all H/x"H
induced by the one on H. Since H(") carries the Hopfalgebra structure
induced by H/n"H, it follows that v, also respects the structure of a Hop-
falgebra, so the induced map

MOrR /rnr—atg(H), S) = morg jzniig (H+) | S)

is indeed a morphism of groups.
We have

~

GCHY(R) = 1131G<fn>(72/7r"7z)
= lim{A € G(R™/7"R) | fu(h) - G(p(h))(A) - fu(h)™" Vh € Hyc}
~ GY),

where the first isomorphism is from the isomorphism in Lemma 3.1.18, the
second isomorphism is the identification (") before this Proposition together
with Lemma 2.1.25 and the last isomorphism is the bijection (x) in the dis-
cussion before Lemma 3.2.1 for ¢ = d = f, which is an isomorphism for ¢ = d,
since the action defined there is an action of groups, if ¢ = d. ]
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This Proposition says that the (¢, 'x)-module side of the correspon-
dence doesn’t just take values in abstract groups, but R-valued points of
complete formal groups, which are related to the m-adic completion Gror =
Spf (ﬁ ), where H is the complete formal Hopfalgebra over R™ obtained by
m-adic completion of the Hopfalgebra H over R™ with Ggrnr = Spec(H),
see Lemma 3.1.17 that this is indeed a complete formal Hopfalgebra. The
relation of H(© of the previous Proposition to H is as follows.

Definition 3.2.15. Let R be a complete discrete valuation ring with uni-
formizer w and A, B be two R-algebras. We define the completed tensor
product of A and B over R to be

A®B :=1im(A® B)/7m"(A® B
GB = lim(A B)/r"(A% B)

Lemma 3.2.16. We continue the notation from above, the previous Propo-

sition and the discussion before it. Let Hy be the Hopfalgebra over R with

Gr = Spec(Hy), so H = Hy® R". Let Hy be the w-adic completion of Hy
R

and Gg := Spf(Hy). Then
H = Hi®@R™ = Hy@R™
R R

and )
H >~ HOQR™.
R

We say that G is an R™|R-Form of Gr.

Proof. The equality R
H = H,QR™
R

follows by definition of the m-adic completion. Furthermore, we have by right
exactness of the tensorproduct and Hy/n"Hy = Hy /7" H, that

lim(Fo & R™)/(x") & lim(Ho/x" Ho © ™) = lim(Hy & R™)/ (")

By Lemma 3.1.18 the projection H® — H() induces an isomorphism
H®© /m"H (©) = H(en) 50 we have by the right exactness of the tensor product
that

(H(c) ® RnT)/’]Tn(H(C) ® Rnr) ~ H(cn) ® Rnr7
R R R
so it is
(H @ R™)/x"(H') @ R") = H/7"H

143



by Proposition 3.1.19. It follows that
H= HOQR™.
R

]

If f € mor™(Gg,G(Op)) is the trivial morphism, we don’t have to go
to the completion of G by the following Remark.

Remark. By Lemma 2.1.25, it is
G’ =G(R),

when 1 € mor®™ (G, G(Op)) is the trivial map.

It follows by Hilbert 90 and Corollary 3.2.6 that we get a map, which
satisfies the properties in Theorem 1.3.18.1).

We now show that this map is the one induced by the Fontaine functor.
So let K = L. Let f € mor®™ (G, GL,(OL)). Then we define

py = (OL,ps: g [v— f(g) - v]])

as an element in Repgl) (GL). On the other hand, if M € T L@Zf;(") is an etale
(pr,I'r)-module, which is free of rank n together with an A -basis z := (z;);,
then by Lemma 1.3.16 we have the cocycle

(7)== cx(y) = Ay
in C'(03,GL,(AL)), where A := A, , € GL,(Ay) is the Matrix, which
satisfies
Y *RIT; = ZAjixj'
Jj<n

Proposition 3.2.17. Let f € mor®™ (G, GL,(k)). For every morphism of
groups o : GL,, = GL,, over Or, and every Ay -basis (z;); of D(py) there exists
an Ap-basis (Y )g<m C ]D)(paoLof), such that the following diagram commutes.

. Do) (25);
oA
Doy, o1 R .
GL,.(Af)
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Furthermore, for every such basis (x;);, there exists Ag € GL,(A)/HHL | such
that

AD(pg),(2:)s = Af Ao

Proof. For every r > 1 we observe the inverse isomorphisms

(A)" = (0, @ A)

al i Zel X a;
(bja); < (bz)z X a,

where e; € O denotes the i-th standard vector. Let por be any continuous
G, representation on 07, in the sense, that we write

por (9) € GL,(k).
Then the above isomorphisms give rise to an identification
D(po;) = ((A))",
where the G'z-action on the right-hand side is given via

= Zﬂor 9)iir(g)(ai)); Vg € Gr. (%)

The m-action is given by

m.((a:)i) = (pr(ai))i-

By (Sch17, Proposition 3.3.7) we know, that the Ay-bases for ((A)")"z cor-
respond to the A-bases in (A)”, which are in the Hp-invariants. By

(@) C (&))"

we denote the A-basis, which corresponds to (z;); via the above isomorphism
and write T as the corresponding element of GL,(A), i.e.

Eij = (T])l

Define (7x)x as the corresponding A-basis to o, (T). We need to show, that
Uk is Hp-invariant for it to correspond to a Aj-basis (yx)r as desired. For
A € GL,(A), we define

g.A = (g.((An)), .-, 0.((An))))Vg € G and 7.A = (m.((An)o), - .., 7.((A)y))-
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Using (%), one calculates, that

9-A = poy (9) - GL:(p(9))(A) and 7.4 = GL, (1) (A). (%)

Since por (9) € GL, (k) for all g € G, we have that

GL,(¥)(poy (9)) = por (9)

for any ¢ € Endp, —a;4(A). With this and since ¢, commutes with p(g) for
every g € GG, one calculates, that

(9192)-A = g1.(92-A),
7.(9.A) = g.(7.A),
7"t A =7 (7" A) Vg,91,90 € G, A€ GL.(A), n,m € N.

With this it makes sense to define v.A for every v € O} and
A€ GL.(A)"L .= {A e GL.(A) | hA= AVh € H.}
and it is
v-A=(v.((An)i), - 7-((Air)i))
for all such ~, where ~y.((A4;1);) denotes the Of-action on
((4)")" = D(po, ).
Finally we calculate for A € GL,(A) and g € G, that

9-(04(A)) = 0a(f(9))-GLm(p(9))(0a(A)) = 04(f(9))-0a(GLn(p(9))(A)) = oa(g-A).

For the first equality, we used, that

Ok = OA|GLn(k)>

for the second equality, we used, that ¢ is a natural transformation between
GL, and GL,, and for the last equality, we used, that o4 is a morphism of
groups. With this, we have shown, that (7x)x is Hp-invariant. Analogues, it
is

m.(oa(A)) = op(m.A).
Let v € O} and

Ay = angep) ). (7)-

For the given diagram to commute we need to show, that
O-A(Aﬁ/) = aD(pG@LOf)v(yT)k (fy)’
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again using, that
OA|GL,(AL) = OAr-
For that, we calculate
Yoo, @0k (V) = 1Y = 7.04(T) = 0a(1.T) = oa(T)oa(A4,) = You(A,).

Furthermore, because of (xx), we have that for Ay := z, it is
’y.[i‘ = Of Ap-

]

Remark. This Proposition can also be proven for R instead of Aj. Further-
more, one can generalize this for o : G; — Go with finite K|L instead of
K = L, but one has to begin with f, f’ € mor®“™ (G, G(Op)), such that

Jr(f) = j=(f")
and then, instead of using bases (x;);, (y;);, one has to work with
X e Gl(Rnr)f’f,7HK and Y € Gz(Rnr)UoLof’aoLof',HK

and instead of using
AD(pg), (i) a(DpaOL of)s(@i)in
one has to work with with

oy x and oo, of Y

so that we obtain that for every such X there exists such an Y (e.g. Y :=
ornr (X)) giving a commutative diagram

Ok ——G{"(R)
oRNT

C“aOLof,Y
GéUOLOf)<R)

The second part of the last Proposition together with Lemma 3.2.10 closes
the proof of Theorem 1.3.18.
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Faithfully Flat Descent

We have seen that the (¢r,['k)-side of the correspondence takes values in
points of formal group schemes. But for the trivial map 1 € mor®™ (G, G(Oy)),
we have seen that the corresponding group were points of the linear algebraic
group G itself. We can generalize this for those f € mor® (G, G(Oy)),
which are also continuous for the discrete topology on G(QOp). This needs
some statements from the general theory of faithfully flat descent, which we
will recall now. We will follow (G610, section (14.20)). Let I' be a group and

S be a scheme. We define

['xS:= HS

yerl’

the scheme given by glueing along the disjoint union. The canonical map

I'xS— S

is faithfully flat (See G610, Remark 14.8). T' x S is the constant group
scheme of I over S. It follows that an action of I" on an S-scheme S’ via
S-automorphisms corresponds to a morphism

(Tx8)x8 =9,

via (,s") — 7 - " on the T-valued points for a S’-scheme T'.

Definition 3.2.18. Let I' be finite. A Galois covering with Galois group T’
is a finite faithfully flat morphism p : S” — S together with an action of I"
on S’ via S-automorphisms, such that the morphism

o:I'x S =8 x93,
s

given by (v,s) — (s',7s") on the T-valued points for a S’-scheme T is an
isomorphism.

Example 3.2.19. Let R be a complete discrete valuation ring and Ry be a
finite unramified extension of R, such that

Quot(Ry)| Quot(R)

is a Galois extension. Then we have the finite Galois group
GRO\R = AUtR_Alg(Ro) = Gal(kRo\k‘R),
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where the isomorphism follows from Proposition 1.2.29.i). It is Ry fully
faithful over R by (Bou72, I §2.4 Proposition 3.ii)) and (Mat86, Theorem
7.2). Furthermore, we have that

Ry = R[X]/P(X)

for some separable polynomial P(X) € R[X] with #Gp,r distinct zeroes
by Lemma 1.2.26 and the Theorem of Gaufl for factorial rings (See Bos05,
section 2.7 Satz 7). We deduce that

Ro@ Ro= ] R

SEGRolR

by the Chinese Remainder Theorem, so the inclusion ¢ : R — Ry is a Galois
covering with Galois group Gg|r-

Definition 3.2.20. Let S’ — S be a Galois covering with Galois group I’
and X’ be an S’-scheme. Then a I'-action on X’ via S’-automorphisms is
called compatible, if the following diagram commutes for every v € I'.

X' 2 X'

S’ S’

v

Theorem 3.2.21. (See (i10, Theorem 14.84)
Let S be an affine scheme and S" — S be a Galois covering with Galois
group I'. Then the functor

(quasi-projective S-schemes) — (quasi-projective S'-schemes with compatible T'-action)
X = (X é S/) (idXUqbcan))

is an quasi equivalence of categories. Here ¢eqn denotes the I'-action on S’
given by the Galois covering. Let S = Spec(B) and S = Spec(A) both be
affine and X' = Spec(R) be an affine scheme of finite type over S" with an
compatible I'-action, i.e. a I'-action on R, which is semilinear for the I'-
action on B given by the Galois covering. Then the descent is given by the
invariants RY and the natural isomorphism for the quasi equivalence is the
multiplication

B® R' = R.
A
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Proof. For the second part about the affine case, look into how a compatible
[-action gives a descent datum in the discussion before (G610, Theorem
14.84) and look into step (i) in the proof of (G610, Theorem 14.66) for the
explicit form of the descent given by a descent datum in this affine case and
that the multiplication induces an isomorphism. O]

Let R and R™ be again as defined in the beginning of this part. Let
furthermore R"" be the maximal unramified extension of R in W (C})y.

Remark 3.2.22. The ring R™ is the m-adic completion of R"".

Proof. This is just by definition for the case R = Aj.

For R = W(F)., let F|F be a finite extension in F. By Proposition
1.2.29.ii), there exists a finite unramified extension C' of the quotient field
Quot (W (IF) ) with residue field . By the universial property of the maximal
unramified extension (See Klel6, Satz 2.1.10.ii)) or by a variant of (Schl7,
Lemma 3.1.2) there exists a lift of the g-Frobenius (-)? : F' — F on O¢, which
we denote by po @ Oc — O¢. It follows that we can deduce from Lemma
1.1.13 that

Oc =WI(F)L,

in particular W(F), C W(F), is the finite unramified extension of W (F),
with residue field F', which is unique by Proposition 1.2.29.ii). It follows that

W(F)" = | W(F)L.

F|F

finite

So let x = (z,), € W(F)L. Then for every n > 1 there exists a finite
extension F,|F with F,, C F, such that z; € F,, for every i < n. Define a
sequence

y™ e W(F,), Cc W(FL)"™

by setting

Yo = 0 elsewhere

Then in the 7-adic topology, we have
lim y™ = z.

So W(Fp)* ¢ W(F), is m-adically dense. O

We obtain the following special case for our example above.
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Proposition 3.2.23. Let A be a R*"-algebra of finite type with a semilinear
and discrete Hy-action of R-algebras. Then the map given by multiplication

R @ AP 5 A
R
18 an isomorphism.
Proof. For any open normal subgroup N C Hg, we define
Ry = (R™)",
which is a finite unramified extension over R. Choose an isomorphism
fiRY™MXy,..., X,]/I — A

Choose generators [ = (P, ..., P,). Since the Hg-action is discrete, finitely
many elements are fixed by an open normal subgroup. It follows that the set
{h-f(X;) | h € Hg, 1 <i<n} is finite. So we can choose N small enough
such that N fixes all the f(X;), 1 <i <mn,

P e Ry[Xq,..., Xp]VI<i<m (P)
and
h-f(X;) € Ay = Ry[f(X1),..., [(Xn)] Vh € Hk,1 < j <n. (G)

From (P) it follows that (I N Ry[X7,..., X,]) - R*[X4,...,X,] = I, so by
right exactness of the tensor product, we have that the multiplication induces
an isomorphism

RN

Since R*" is faithfully flat over Ry by (Bou72, I §2.4 Proposition 3.ii)) and
(Mat86, Theorem 7.2), it follows that the Ry-algebra Ag is of finite type
(See G010, Proposition 14.46). It furthermore follows that we are reduced
to show that the map induced by the multiplication

Ry @ AT 5 4,
R

is an isomorphism. By (G) the Ry-algebra Aj is Hg-invariant and of finite
type over Ry. So by Example 3.2.19 we can use Theorem 3.2.21, by which
we obtain that the multiplication induces an isomorphism as desired. ]
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Let G again be a linear algebraic group over O with fixed embedding
G C GL,, and Ggrun = Spec(H) for a Hopfalgebra (of finite type) over R*".
Let Agun := Autgun(Ggrun) be the group of automorphisms of the group
scheme Grun over R*". As in part 2.1.3, we obtain a Hg-action of groups
Agun by conjugating f € Agun with (idg, Spec(h™!)) for h € Hg. As in
Lemma 2.1.23, we obtain an Hg-equivariant map

O : G(R™) — Agun

by sending g € G(R"™) to [G(S) 2 x — gzrg™' € G(9)] for all R""-algebras
S. Here, we view G(R"") as an Hg-group via G(p(h)) for every h € Hg.

For every cocycle ¢ € C'(Hg, G(R"")), which is continuous for the dis-
crete topology, we obtain a cocycle ¢® := ® o ¢ € C'(Hg, Agun), which
is continuous for the discrete topology on Agun. As described in Remark
2.1.21, the cocycle ¢ induces an Hy-semilinear action of Hopfalgebras
over R*" on H, which continuous for the discrete topology on H via h —
(idg, Spec(h)) o ¢ (h)~', h € Hx. We get a Hopfalgebra

H(C)valg = HHK
over R for the invariants under the action defined by ¢(® above. Then
G© .= Spec(H(C)’“lg)

is an R""|R-Form of Gr by Proposition 3.2.23. This means that the multi-
plication
Run ® H(c),alg S H
R
is an isomorphism, so we have an identification G%}m > Grun. As calculated
for Remark 2.1.21.(1), this identification gives and identification
which satisfies

G (p())(A) = c(h) - G(p(h))(A) - c(h) "} Vh € Hi, A € G(R™).  (T))

We obtain the following identification of the groups, which we have on the
(pr, I'k)-side of the correspondence.

Lemma 3.2.24. We continue the notation from the discussion above. The
group G is of finite type over R and for every f € mor®™(Gg,G(Op)),
which is also continuous for the discrete topology on G(QOp), we have

GU(R) = {A€G(R™) | A= [(WG(p(h)(A)f(h) Vh € Hi} = G
Here we view f € CY(Hy,G(R™)) via the restriction Hx C Gg and the

mclusion O C R™.
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Proof. Since R*" @ H(©)%9 = [] and R*" is faithfully flat over R by (Bou72,
R

I §2.4 Proposition 3.ii)) and (Mat86, Theorem 7.2), we have that H(©)%9 ig
of finite type (See G610, Proposition 14.46).

Since R™ is the m-adic completion of R*" by Remark 3.2.22, we have
that

is dense for the pro discrete topology on the right hand side. Futhermore,
the topological group G(R™) is complete for the pro discrete topology. To
see this, one has to check the two following facts. Firstly, the pro discrete
topology is the subset topology G(R"™) C GL,(R"™), where the topology
on GL,(R™) is induced by the m-adic topology on R"™", which is m-adically
complete. Secondly, the subset G(R"™) C GL,(R"™) is closed for this topol-
ogy as a subset of zeroes of polynomials with coefficients in Op. It follows
that two continuous endomorphisms on G(R""), which are equal on G(R"")
are already equal everywhere. In particular, we have

G (p(h))(A) = f(h)-G(p(h))(A) - f(h)"' Vh € Hk, A€ G(R™)

by (T3) and since GY)(p(h)) and the map on the righthandside of this equal-
ity are continuous for the pro discrete topology of G(R™), since p(h) is a
continuous automorphism for the 7-adic topology on R™ and f is continuous
for the (pro) discrete topology of G(R™). Thus, the equality

GY(R) = {A € G(R™) | A= f(h)G(p(h))(A)f(h)™" Vh € H}
holds by Lemma 2.1.25. [

3.2.3 Thoughts on the Quotientfield Case

In the last part of this thesis, we will give a short discussion how the results
in the last part can be lifted to the case of the quotientfields of our discrete
valuation rings. We now introduce some more notation. We define

Ex = Quot(Ar), € := Quot(A).

and
Fi = Quot(W(F).), F := Quot(W(F).).

We set
(S’Snr) € {(EKvg)’ (fKaf)}

and its ring of integers (R, R"™"), so again

(R, R™) € {(Ax, A), (W(F)z, W(F)r)}
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As over their ring of integers, we have
ngr‘g = AutS(Sm) E) HK

Let
p GK — AutL,Alg(SnU

be the continuation of p : Gx — Aute,_a,,(R™) and analoguesly denote

o1 € BEndy_a,(S™).

Then p g, coincides with the natural Gg_- action via the above isomorphism.
It follows, that we get a Ox-action on S denoted by 7(7) for every v € Ok.
This is the continuation of the Qg-action on R.

Let G be a linear algebraic group over Oy, with a fixed embedding G C
GL,, and set for f € mor®“™(Gg,G(Op)) the groups

GY = {A e G(S™) | A= f(G(p(h))(A)f(r)'}.

This can be made into an Qg-group as in the integral case. We denote the
action by
v Afor v € Ok, A € G(S™).

Definition 3.2.25. We set

CH Ok, G :={c: 0k = GY | c(v8) = c(v)y c(0) ¥, 0}

We set ¢ ~ d to be the usual cohomology equivalence for ¢, d € C' (O, Ggf))
CLI™ (O, GY)) := {c € CY Ok, GY) | 3eo € C (0K, GY)) : ¢ ~ co}.

Take caution that with C*(Qx, Gg)), we mean those cocycles, who are con-
tinuous on I'k.

An clement a € CH™ (O, GY)) is called an etale (o1, T x)-module over
S with values in G,

Since G C GL,, there exists by Hilbert 90 and Corollary 3.2.6 a B &€
GL,(R"), such that

f(h) = B~'GL,(p(h))(B) Vh € H.
Then we have two embeddings

1 GYY C G(S™) € GL,(8™), A A
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and
Ly Gfgfi) — GL,(S), A~ By, (A)B™".

This at least gives us that the subgroups Ggf ) can be seen as subgroups of
matrices with entries in the smaller ring R.

Definition 3.2.26. We define

mor’™(Gk,G(L)) :=
{f € mor(Gg,G(L)) | 3B € G(L), f' € mor™(G,G(O)) : f(g) =B 'f(9)B Vg € Gk}.

Remark. By definition we have canonical bijections

(mor®™(Gg,G(OL))/ rz) — mor’™ (G, G(L))/ ~

and
(C'(0k,GR))/ ) = HY™(0k, GY),

where the conjugation (resp. cohomology) relations are those over the quo-
tientfield, i.e. given by conjugation (resp. Og-twisted conjugation) with
B € G(L) (resp. B € Gfgf)).
Let
Js i mor®™ (G, G(OL)) — H' (Hg, G(S™))

be the map induced by restriction to Hx C G and inclusion O € 8. We
fix a subset {f;}; C mor®™(Gg,G(OL)), such that

js A fiti = im(js)
is bijective.
Warning: Since we have no comparison from H'(Hy,G(8™)) to the
characteristic p case, it might happen here that for § = £, and for § =
Fk there are different subsets { fi(g)}i and { fi(f)},- satisfying their respective

condition.
Let f € mor“™(Gk,G(O)) and f; such that

Js(f) = js(fi)-
We define for every A € G(S§™),9 € Gx and n > 1
9-A = f(9) - G(p(9))(A) filg) ™" 7" A = G(p)(A).

We furthermore define

G(S™) el .= {A € G(S™) | h.A = A VA}.
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This is not empty because of

Js(f) = Js(fi)-

We get a Qg-action on G(S™ )2/ which we denote by v.A. For every
f € mor®™(Gg,G(Oyr)), we choose Ay € G(S")Hz:/-/i and define

aga,(y) = Aalv.Ao € G(&p).
As in the integral case we see, that
as.4,(7) € C1(0k, GF)
and is up to cohomology independent on the choice of Ag. We get a map

D : mor™ (G, G(L)) — [ [H""™(0x,G{"), f = [oga,]~ =:

which induces a map on the set of conjugacyclasses
mor’™ (G, G(L))/ ~ .
As in the characteristic p and the integral case, we get the following results.

Proposition 3.2.27. The map

D : (mor™ (G, G(L))/ ~) = [[H"""(0k, G

15 1njective with image

[T{lal~ € HY™ (0, GY) | a € CH Ok, GR), alr) € im(Trr)}.

This bijection identifies

{[a] € mor™(Gx,G(L))/ ~ | a € mor™(Gx,G(Or)), js(a) = js(fi)}
~{[a]. € H"""(Ok,GY") | @ € CY(Ok,GY"), a(n) € im(Urnr)}

for every i.
Lemma 3.2.28. Let ¢ : Gy — G, such that the induced map

(¢snr)s : H' (Hg,G1(S8™)) — H' (H, Go(S™))
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is injective on im(j5'). Then for any choice {fl-(l)}i C mor®(Gg,G1(0Oy)),
such that

G (Y = (G

is bijective, we can complement {¢o, o fi}i C mor®™ (G, Go(OL)) to a subset
{fl(2)}l, such that

- 2 . -
is? AP h = m(G®)
18 bijective. Furthermore, the following diagram is commutative.
(1)
(mor'™(Gre, Gy (L)) ~) =2~ TTH " (0, G1,s" )
(L)« l((ﬁsw)*

(2)
(mor'™(Gr, Go(L)/ ~) —5 [1H""(Ox, Gas).

In this case, we also have a generalization of the previous Lemma.

Lemma 3.2.29. Let ¢ : G; — Gy be a morphism of groupschemes over
Op. Choose some representatives {fi(l)}i for Gy and {fl(2)}l for Gy as in the

last Lemma. By definition of these representatives for any fi(l) there exists a
unique fl(Q) and some (non-unique) B; € Go(S™), such that

oo [V (h) = B+ [ (h) - Galp(m)(BT). (*)

Then the following diagram is commutative and the right vertical map is
independent on the choice of B;.

8
(mor™ (G, Ga(L))/ ~) 2 L[ (O, GV )

(2)
(mor'™ (G, G(L))/ ~) 5= LTH""(O, Gy ).

Here for v = pry, (g4)7" € O, we have

PB=a B 60,0000 Galoler) o AB) - A0
or°i i

This is well defined by arguments as in the discussion before Lemma 2.2.7.
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Theorem 3.2.30. If G is smooth and Gy, is connected, then

D : (mor™ (Gx, G(L))/ ~) = [[H""™(0x,C")

1s bijective. This bijection identifies

{la]~ € mor™ (G, G(L))/ ~ | a € mor*(Gk,G(OL)), js(a) = js(fi)}
%JHI’IM(@K, Ggfi))
for every i.

Furthermore, we obtain the following statement for the comparison be-
tween the nonperfect and the perfect case.

Theorem 3.2.31. Let the map

im(j&() - lm(jfk)

induced by the inclusion & C F be bijective. Then for any f € mor®™ (G, G(Ok))
the inclusion

Ax C W(F),

mduces a bijection between the sets

{[a]~ € HY"(0x,GY)) | a € CH Ok, GY)), a(r) € im(¥,)}
>{lo]. € HY""(0k,GY)) | a € CY(Ok, Gy, ), a(7) € im(Tywr), )}

If G is smooth and Gy, is connected then the inclusion induces a bijection
HY™ (O, GE) = HY™ (0, GY)).

Proof. Asin the integral case, one uses the statements before this one together
with the assumption. O
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