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Abstract

We define a theory of etale (ϕ,Γ)-modules with values in a lin-
ear algebraic group G over the ring of integers of a p-adic field and
show that under certain conditions on G, there is an abstraction of
Fontaine’s method for GLn, which gives rise to a correspondence to
the theory of p-adic Galois representations with values in G.

Introduction & Summary

In the p-adic Langlands programm, we are interested in representations of
the absolute Galois group of Qp, which we denote by GQp , with values in a
finite field extension L|Qp. These are finite-dimensional L-vector spaces V ,
such that GQp acts linearly and continuously on V with respect to the p-adic
topology. By choosing an L-basis of V , we can view such a representation as a
continuous morphism of groups GQp → GLdimL(V )(L). Let OL denote the ring
of integers of L. Then it is well known that V contains an OL-lattice, which
is invariant under the GQp-action. This means that the morphism GQp →
GLdimL(V )(L) is conjugate to a continuous morphism GQp → GLdimL(V )(OL).

For L = Qp Fontaine constructed a period ring AQp , such that the multi-
plicative monoid Z•p := Zp\{0} acts on AQp with respect to the ring structure
and showed that the (abelian) category of continuous GQp-representations
finitely generated over Zp is equivalent to the category of etale (ϕ,Γ)-modules
over AQp (See Fon90, Theorem 3.4.3). This is the category of finitely gener-
ated AQp-modules M equipped with a semilinear Z•p-action, which satisfies
that the image of the action of p ∈ Z•p generates M as an AQp-module.

If such an M is free of rank n, choosing an AQp-basis of M and the
etaleness property allow us to view the Z•p-action on M as a 1-cocycle Z•p →
GLn(AQp). Since the equivalence of Fontaine preserves freeness and the rank,
the bijection of the isomorphism classes induced by the equivalence gives the
following statement.

Theorem. There are inverse bijections

D : (morcont(GQp ,GLn(Zp))/ ∼)↔ H1(Z•p,GLn(AQp)) : V,

where (morcont(GQp ,GLn(Zp))/ ∼) is the set of conjugacy classes of continu-
ous morphisms and H1(Z•p,GLn(AQp)) is the set of of cohomology classes of
the 1-cocycles denoted by C1(Z•p,GLn(AQp)).

Now let G be a linear algebraic group over Zp, i.e. an affine group
scheme of finite type over Zp. Then there is no canonical way to view a
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map f ∈ morcont(GQp ,G(Zp)) as an object of an abelian category. Here
G(Zp) ∼= lim

←
G(Zp/pnZp) carries the profinite topology. But we will see how

these maps can be seen as functors between certain tannakian categories,
such that the conjugacy classes of morcont(GQp ,G(Zp)) correspond to the
isomorphism classes on these functors induced by tensorproduct-preserving
natural isomorphisms.

We will give an abstraction of the methods of Fontaine, such that we
can give a direct correspondence for certain G as in the theorem above.
We will start by observing the case of “p-torsion” maps, so for now G is
a linear algebraic group over Fp := Z/pZ. For this we recall, that AQp
is a complete discrete valuation ring with uniformizer p and residue field
E := Fp((X)), the field of Laurent series with coefficients in Fp. Any 1-
cocycle c ∈ C1(GE,G(Esep)) gives a pure inner form of the basechange G⊗

Fp
E,

which we denote by G(c). Here GE is the absolute Galois group of E and Esep
is the separable closure of E in an algebraic closure E of E. Considering that
GQp has a closed subgroup H, such that H ∼= GE via the p-power cyclotomic
extension, we can define

j : morcont(GQp ,G(Fp))→ C1(GE,G(Esep)),

the map given by restriction H ⊂ GQp and inclusion Fp ⊂ Esep. The group
G(c) might not necessarily be a group over Fp, but there is still a way to make
G(c)(E) into a Z•p-group, if c lies in the image of j and which is dependent on
the choice of an inverse image of c under j, see part 2.2.2. Then we have the
following correspondence.

Theorem A. Let G be connected and (fi)i ⊂ morcont(GQp ,G(Fp)) be a family
of elements, such that (j(fi))i ⊂ im(j) is a set of representatives in im(j) for
the relation of cohomology. Then we have inverse bijections

D : (morcont(GQp ,G(Fp))/ ∼)↔
∐
i

H1(Z•p,G(j(fi))(E)) : V,

such that H1(Z•p,G(j(fi))(E)) corresponds to

{[f ]∼ ∈ (morcont(GQp ,G(Fp))/ ∼) | j(f) is cohomological to j(fi)}.

These bijections are natural in morphisms of linear algebraic groups up to
some twisted conjugation dependent on the choice of the (fi)i, see Lemma
2.2.18.

We will calculate the map j for certain classes of linear algebraic groups.
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Theorem B. In “many cases” (see Theorem 2.3.26 for details) the map j is
trivial up to cohomology for semisimple groups over Fp, which are split over
Fp.

In particular, if H1(GE,G(Esep)) = 1 or more general, if the map j is
trivial up to cohomology, we get a correspondence

D : (morcont(GQp ,G(Fp))/ ∼)↔ H1(Z•p,G(E)) : V,

if G is connected. Now let G be a linear algebraic group over Zp. Then we
get the following statement.

Theorem C. If G is smooth over Zp, j is trivial up to cohomology and the
base change G ⊗

Zp
Fp is connected, then we have inverse bijections

D : (morcont(GQp ,G(Zp))/ ∼)↔ H1(Z•p,G(AQp)) : V.

These bijections are natural in morphisms of such linear algebraic groups.

The condition on j is not necessary, although then we obtain a correspon-
dence as in Theorem A, but the Z•p-groups on the right hand side might not
necessarily be given by AQp-valued points of forms of G ⊗

Zp
AQp = Spec(A),

but instead by AQp-valued points of forms of the formal group Spf(Â), where

Â is the p-adic completion of A and we view Â with the p-adic topology.
We can also work with F := Eperf instead of E. Under certain conditions

on G, we will then show that the theory of etale (ϕ,Γ)-modules with values in
G over W (F) is the same as the theory of etale (ϕ,Γ)-modules with values in
G over AQp . Here W (F) denotes the ring of Witt vectors of F, which carries a
Z•p-action of rings via functoriality in F. Recall that there is a Z•p-equivariant
embedding of rings AQp ⊂ W (F).

Theorem D. Let G be smooth over Zp and the basechange G ⊗
Zp

Fp be con-

nected. The inclusion AQp ⊂ W (F) induces a bijection

H1(Z•p,G(AQp))→̃H1(Z•p,G(W (F))).

The proof of Theorem D in this work relies on Theorem C, but in the “p-
torsion” case there exists a more direct proof, which doesn’t rely on Theorem
A and in this case one can drop the assumptions that G is smooth over Fp
and connected.

In (Sch17) constructions are given for more general objects than the ones
used by Fontaine. Those objects are associated to a finite extension L|Qp
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instead of Qp. We will work in this setup to obtain the Theorems A to D for
these objects associated to L.

This paper is organized in the following way. Segments of the work des-
ignated by a single number x are called “chapters”, by two numbers x.y are
called “sections” and by three numbers x.y.z are called “parts”.

In chapter 1 we will give the constructions of the objects for which we want
to define the theory of etale (ϕ,Γ)-modules with values in G. Furthermore,
we recall the correspondence given by Fontaine and rewrite it in a way to
give a motivation for the generalisations made in the rest of the paper.

In chapter 2 we will follow the methods of Fontaine to construct the de-
sired correspondence in the “p-torsion case”, i.e. when G is a linear algebraic
group over a finite field and we observe the objects with coefficients in certain
field extensions of this finite field. We also show in this case, that the theory
of perfect and non-perfect (ϕ,Γ)-modules with values in G is the same.

In chapter 3 we will work with G being a linear algebraic group over a
ring of integers of a p-adic field. We will consider smoothness of G, so that we
can use the methods of Fontaine to succesively lift the desired correspondence
from the correspondence in the “p-torsion case”. Furthermore we also show,
that the theory of perfect and non-perfect (ϕ,Γ)-modules with values in G, if
G is smooth and has connected base change to the residue field of the p-adic
field.
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Notation

We follow the usual convention in commutative algebra that, unless specifi-
cally stated otherwise, every ring is commutative with unit and every mor-
phism of rings respects the unit.

If (E, | · |) is a non archimedean valued field, we denote its ring of integers
by OE := {x ∈ E | |x| ≤ 1} and by mE := {x ∈ E | |x| < 1} the unique max-
imal ideal in OE. We define its residue field kE := OE/mE. Furthermore we
denote the multiplicative monoid of its non zero numbers by O•E := OE\{0}.

If A is a (non commutative) ring, then A× denotes its group of units.
If E is any field, we denote by GE := Gal(Esep|E) its absolute Galois

group with respect to a fixed separable algebraic closure Esep|E.
When G is a group (or a monoid), which acts on a group M , then MG

denote the G-invariants of M . If α : M →M is an endomorphism of groups,
we denote by Mα=1 the elements in M , which are fixed by α.

If A is a ring, we denote by A − Alg the category of A-algebras and
A−Mod the category of A-modules and Grp denotes the category of groups.

If X → S and S ′ → S are (formal) schemes over a base S, then by XS′ we
denote the base change X×

S
S ′ → S ′. We further define X(S ′) := morS(S ′, X)

to be the morphisms over S. If S ′ = Spec(B) (S ′ = Spf(B)) is affine, we also
write XB := XS′ and X(B) := X(S ′). If φ : S1 → S2 is a morphism over S,
we write X(φ) : X(S2)→ X(S1) for the induced morphism.

If f : X → Y and g : X → Z are morphisms in any category, we denote
by f × g : X → Y × Z the morphism induced by the universal property
of the product. If f : X1 → Y1 and g : X2 → Y2 are morphisms in any
category, then (f, g) : X1 × X2 → Y1 × Y2 denotes the morphism induced
by functoriality of the product, i.e. (f, g) = (f ◦ prX1

) × (g ◦ prX2
), where

prXi : X1 ×X2 → Xi is the projection for i = 1, 2.

• Let L|Qp be a finite extension with uniformizer π and residue field k
with cardinality q := #k and let Cp be the completion of an algebraic
closure L of L. We normalize the absolute value | · | on Cp, so that
|π| = q−1.

• If B is an OL-Algebra, then W (B)L denotes the ring of over L ramified
Witt vectors of B, see Proposition 1.1.4.

• Let K|L be a finite extension in L with uniformizer πK . Furthermore
let K0|L with K0 ⊂ K denote an unramified extension with residue
field κ. It is W := W (κ)L ∼= OK0 , see Corollary 1.1.14.

• Let K0,∞ ⊂ L denote K0,∞ := K0L∞ the Lubin-Tate extension of L
corresponding to π adjoint to K0, see Lemma 1.1.21. Furthermore let
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and HK0 ⊂ GK0 be the absolute galoisgroup of K0,∞. We define ΓK0 :=
GK0/HK0 = Gal(K0,∞|K0) ∼= Gal(L∞|L) ∼= O×L , see Proposition 1.1.23.

• We set HK := GK ∩ HK0 ⊂ GK ⊂ GK0 and define ΓK := GK/HK ⊂
ΓK0 . Then we have HK = Gal(L|K∞) and ΓK = Gal(K∞|K), where
K∞ := KK0,∞ = KL∞. We define OK ⊂ O•L to be the submonoid
generated by ΓK and π, see Definition 1.3.13.

• In chapter 2 G will denote a linear algebraic group over k, except in
part 2.1.3, where it denotes a linear algebraic group over an arbitrary
field E, see Definition 2.1.7.

In chapter 3 G will denote a linear algebraic group over OL, except in
part 3.1.2, where it denotes a linear algebraic group over an arbitrary
complete discrete valuation ring R, see Definition 3.1.7.

• If L ⊂ F ⊂ Cp is a perfectoid field, see Definition 1.1.24, then F [

denotes its tilt, see Proposition 1.1.28.

• Let κE := κ((X)) denote the field of Laurent series with coefficients in
κ, see Definition 1.1.15, and let EK0 denote the image of the embedding
κE → C[

p as constructed before Definition 1.1.32. Let EsepK0
be the

separable closure of EK0 in C[
p. We set E := (EsepK0

)HK for the GK-action

on C[
p defined before Lemma 1.1.30, see Definition 1.1.35. Furthermore

let F := Eperf be the perfect hull of E, Esep be the separable closure
of E in C[

p and F be the algebraic closure of F in C[
p, see Proposition

1.1.29.i). Of course, it is Esep = EsepK0
.

• Let AK denote the complete discrete valuation ring with residue field
E as defined in Definition 1.2.31 and A ⊂ W (Esep)L be the π-adic
completion of the maximal unramified extension AK as constructed in
Definition 1.2.32.

• By ϕL ∈ EndOL−Alg(W (F)L) we denote the Frobenius on W (F)L, see
Definition 1.1.5. By abuse of notation, we also denote ϕL ∈ Endk−Alg(F)
to be the induced map on the residue field.

• By ρ : GK → AutOL−Alg(W (F)L) we denote the action defined in
Definition 1.2.16 and ρ : GK → Autk−Alg(F) denotes the induced
action on the residue field, see Definition 1.1.38. Furthermore let
τ : ΓK → AutOL−Alg(W (F)L) and τ : ΓK → Autk−Alg(F) denote the
actions induced by ρ and ρ, see Definition 1.2.16 and Definition 1.1.38.
We also denote τ : OK → EndOL−Alg(W (F)L) to be the extension of τ
via π 7→ ϕL, see Definition 1.3.13.
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1 Period Rings and Motivation

In this chapter, we will follow (Sch17) to construct the objects over which we
will define the theory of etale (ϕ,Γ)-modules with values in G. For this, we
will give a slightly generalized version of the constructions, which are defined
in (Sch17).

Furthermore, we will give a version of the correspondence of Galois rep-
resentations and (ϕ,Γ)-modules (Sch17, Theorem 3.3.10) in the language
of the linear algebraic group GLn, that will help us understand, where the
constructions in the next chapters are motivated from.

In the same way, we will give a version of the comparasion of perfect and
non-perfect (ϕ,Γ)-modules for GLn via (Kle16, Theorem 3.2.15).

1.1 Preliminaries and Actions in the Torsion Case

In this section, we will follow (Sch17, chapter 1.1-1.4) to give an overview of
the constructions necessary to obtain the rings, we want to work with. We
will only give a shortened construction and drop most of the technicalities
that arise, except in the places, where we want to make slight generalizations.

1.1.1 Ramified Witt Vectors

We choose L to be our base field and give an overview how to construct Witt
vectors ramified over L. For this part B will always denote an OL-Algebra.

Definition 1.1.1. Let n ≥ 0 be any integer and OL[X0, . . . , Xn] denote the
ring of polynomials in n+1 indeterminants with coefficients in OL. We define

Φn(X0, . . . , Xn) := Xqn

0 + πXqn−1

1 + · · ·+ πnXn,

which we call the n-th Witt polynomial.

By abuse of notation, we also define the following map

Φn : BN0 → B, (bn)n 7→ Φn(b0, . . . , bn)

and introduce the map

ΦB : BN0 → BN0 ,b 7→ (Φn(b))n.

Lemma 1.1.2. (Sch17, Lemma 1.1.3)

i) If π1B is not a zero divisor in B, then ΦB is injective.
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ii) If π1B ∈ B×, then ΦB is bijective.

We furthermore introduce the maps

fB : BN0 → BN0 , (b0, b1, . . . ) 7→ (b1, b2, . . . ),

which is a morphism of OL-algebras and

vB : BN0 → BN0(b0, b1, . . . ) 7→ (0, πb0, πb1, . . . ),

which is a morphism of OL-modules.

Proposition 1.1.3. (Sch17, Proposition 1.1.5)
If there exists an σ ∈ EndOL−Alg(B), such that

σ(b) ≡ bq mod πB ∀b ∈ B,

then we have the following.
It is B′ := im(ΦB) ⊂ BN0 an OL-subalgebra, such that

B′ = {(bn)n ∈ BN0 | σ(bn) ≡ bn+1 mod πn+1B ∀n ≥ 0}

and
fB(B′) ⊂ B′, vB(B′) ⊂ B′.

We introduce the polynomial OL-algebra

A := OL[X0, X1, . . . , Y0, Y1, . . . ]

in two infinite and countable sets of indeterminants. We introduce θ ∈
EndOL−Alg(A) by setting

θ(Tn) := T qn ∀n ≥ 0 and Tn ∈ {Xn, Yn}.

Then θ satisfies the condition in Proposition 1.1.3 (See Sch17, Remark 1.1.6).
We define X := (X0, X1, . . . ) ∈ AN0 and analoguesly Y. Then by Lemma

1.1.2 and Proposition 1.1.3 there exist unique elements S,P, I,F ∈ AN0 ,
satisfying the following conditions.

ΦA(S) = ΦA(X) + ΦA(Y)

ΦA(P) = ΦA(X)ΦA(Y)

ΦA(I) = −ΦA(X)

ΦA(F) = fA(ΦA(X)).
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We write S = (S0, S1, . . . ) and analoguesly for P, I,F. Then we have

Sn, Pn ∈ OL[X0, . . . , Xn, Y0, . . . , Yn],

In, Fn−1 ∈ OL[X0, . . . , Xn] (see Sch17, discussion before Lemma 1.1.7).

We define W (B)L := BN0 with a new structure of an OL-algebra in the
following way.

(an)n +S (bn)n := (Sn(a0, . . . , an, b0, . . . , bn))n

(an)n ·P (bn)n := (Pn(a0, . . . , an, b0, . . . , bn))n

0 := (0, 0, . . . )

1 := (1, 0, 0, . . . ).

For every morphism of OL-algebras φ : B1 → B2, we define

W (φ)L : W (B1)L → W (B2)L, (bn)n 7→ (φ(bn))n.

Let φB : B → OL be the map, which makes B into an OL-Algebra. The
identity on OL satisfies the condition in Proposition 1.1.3. It follows by
Lemma 1.1.2 and Proposition 1.1.3 that we can introduce the map Ω : OL →
W (OL)L, which is given in the following way. For every λ ∈ OL there exists
a unique element Ω(λ), which satisfies ΦOL(Ω(λ)) = (λ, λ, . . . ). We define

ΩB := W (φB)L ◦ Ω : OL → W (B)L.

Proposition 1.1.4. (Sch17, Proposition 1.1.8)

i) It is (W (B)L,+S, ·P,ΩB) an OL-algebra, the ring of ramified Witt vec-
tors over B.

ii) The map ΦB : W (B)L → BN0 is a morphism of OL-algebras.

iii) The construction W (·)L is an endofunctor of OL − Alg, i.e. for every
morphism of OL-algebras φ : B1 → B2, the map W (φ)L is also a
morphism of OL-algebras satisfying the usual functorial identities.

From now on, we will use the usual notation of addition and multiplication
on W (B)L as well as the usual notation of scalar multiplication of OL on
W (B)L.

Remark. The construction of W (B)L is independent of the choice of the
uniformizer π.
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Proof. We define the polynomial OL-algebra B0 := OL[{Xb}b∈B] with set of
indeterminants indexed by B. Let pr : B0 → B (resp θ : B0 → B0) be
the OL-algebra morphism given by Xb 7→ b (resp. Xb 7→ Xq

b ). As before θ
satisfies the condition of Proposition 1.1.3. It follows by Lemma 1.1.2.i) and
Proposition 1.1.4 that ΦB0 : W (B0)L → im(ΦB0) is an isomorphism of OL-
algebras. By Proposition 1.1.3 im(ΦB0) is only dependent on the ideals πnB0

and not on the elements πn for every n ≥ 1, so W (B0)L is independent on the
choice of π. It follows that W (B)L ∼= W (B0)L/ ker(W (pr)L) is independent
on the choice of π.

We consider the following maps on W (B)L.

F : W (B)L → W (B)L, (bn)n 7→ (Fn(b0, . . . , bn+1))n

and
V : W (B)L → W (B)L, (bn)n 7→ (0, b0, b1, . . . ).

Definition 1.1.5. We call F the Frobenius and V the Verschiebung on
W (B)L.

Proposition 1.1.6. (Sch17, Proposition 1.1.10)
Let a,b ∈ W (B)L. The maps F and V satisfy the following properties.

i) It is fB ◦ ΦB = ΦB ◦ F and vB ◦ ΦB = ΦB ◦ V .

ii) It is F ∈ EndOL−Alg(W (B)L).

iii) It is V ∈ EndOL−Mod(W (B)L).

iv) It is F (V (b)) = πb.

v) It is V (ab) = V (a)b.

vi) It is F (b) ≡ bq mod πW (B)L.

We define Vm(B)L := im(V m) ⊂ W (B)L for every m ≥ 0. Those are
ideals by Proposition 1.1.6.v).

Definition 1.1.7. We call Wm(B)L := W (B)L/Vm(B)L the ring of ramified
Wittvectors of length m over B.

Lemma 1.1.8. (Sch17, Lemma 1.1.15)
The map

τ : B → W (B)L, b 7→ (b, 0, 0, . . . )

is multiplicative. We call τ(b) the Teichmüller representative or Teichmüller
lift of b ∈ B.
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Definition 1.1.9. If B is a k-Algebra, then the q-Frobenius B → B, b 7→ bq

is an endomorphism of OL-algebras. If this map is bijective, we call B perfect.

Proposition 1.1.10. (Sch17, Proposition 1.1.18)
If B is a k-Algebra, we have the following.

i) Any b = (bn)n ∈ W (B)L satisfies

F (b) = (bqn)n and πb = F (V (b)) = V (F (b)) = (0, bq0, . . . ).

ii) For every m,n ≥ 0 we have Vm(B)LVn(B)L ⊂ Vm+n(B)L.

iii) For every m ≥ 1 it is

πmW (B)L ⊂ V1(B)mL = πm−1V1(B)L ⊂ πm−1W (B)L.

iv) The canonical maps

W (B)L → lim
←
W (B)L/π

mW (B)L

and
W (B)L → lim

←
W (B)L/V1(B)mL

are bijective.

Proposition 1.1.11. (Sch17, Proposition 1.1.19)
If B is a perfect k-algebra we have the following.

i) The element π1W (B)L 6= 0 is not a zero divisor in W (B)L.

ii) For any m ≥ 0, we have

Vm(B)L = πmW (B)L = V1(B)mL .

Proposition 1.1.12. (Sch17, Proposition 1.1.21 & Remark 1.2.22)
Let B|k be a field extension.

i) The ring W (B)L is an integral domain and a local ring with maxi-
mal ideal V1(B)L and residue field B. Furthermore its quotient field
Quot(W (B)L) is of characteristic 0.

ii) If B is perfect, then W (B)L is a complete discrete valuation ring with
maximal ideal πW (B)L and residue field B. Furthermore any b =
(bn)n ∈ W (B)L has the convergent expansion

b =
∑
n≥0

πnτ(bq
−n

n ).
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Lemma 1.1.13. (Sch17, Proposition 1.1.23 & Corollary 1.1.24)

Suppose that we have the following information.

i) The element π1B is not a zero divisor in B.

ii) The k-algebra B/πB is perfect.

iii) The natural map B → lim
←
B/πmB is an isomorphism.

iv) There exists an endomorphism of OL-algebras σ : B → B, such that
σ(x) ≡ xq mod πB for all x ∈ B.

Then there exists a unique morphism of OL-algebras

sB : B → W (B)L, such that ΦB ◦ sB = (σn)n.

Furthermore the morphism of OL-algebras

W (pr)L ◦ sB : B → W (B/πB)L

is an isomorphism.

Corollary 1.1.14. There exists an endomorphism of OL-algebras σ : OK0 →
OK0, such that σ(x) ≡ xq mod πOK0 for all x ∈ OK0. So we have the
isomorphism of OL-algebras

W (pr)L ◦ sOK0
: OK0 → W (κ)L

In particular, for any κ-algebra B, we can view W (B)L as an OK0-algebra.

Proof. Since K0|L is unramified, the canonical map

f : EndOL(OK0)→ Gal(κ|k), φ 7→ [x mod πOK0 → φ(x) mod πOK0 ]

is an isomorphism. So there exists a (unique) σ ∈ EndOL(OK0), such that
f(σ) = (·)q. Furthermore, since K0|L is unramified OK0/πOK0 is perfect and
OK0

∼= lim
←
OK0/π

nOK0 . Obviously, π ∈ OK0 is not a zero divisor, since OK0

is an integral domain.

From here on out, we will always identify W := W (κ)L = OK0 .

6



1.1.2 Lubin-Tate Extensions

In this part, we will construct formal group laws over L and use those to
construct field extensions over L, K0 and K.

Definition 1.1.15. Let A be a ring.

i) We define the ring of formal power series over A (in one indeterminant
X) to be the following.

A[[X]] := {
∞∑
n=0

anX
n | an ∈ A ∀n}.

We successively define A[[X1, . . . , Xm]] := A[[X1, . . . , Xm−1]][[Xm]].

ii) We define the ring of Laurent series over A (in one indeterminant X)
to be the following.

A((X)) := {
∞∑
n=m

anX
n | m ∈ Z, an ∈ A ∀n}.

Remark. If A is a field, then A[[X]] is a complete discrete valuation ring with
uniformizer X, residue field A and quotient field A((X)).

Definition 1.1.16. A commutative formal group law over OL is a formal
power series F (X, Y ) ∈ OL[[X, Y ]] in two variables with coefficients in OL,
which satisfies the following conditions.

• It is F (X, 0) = X and F (0, Y ) = Y .

• It is F (X,F (Y, Z)) = F (F (X, Y ), Z).

• It is F (X, Y ) = F (Y,X).

A morphism h : F → G between such formal group laws F and G is a
formal power series h(X) ∈ OL[[X]], such that h(0) = 0 and h(F (X, Y )) =
G(h(X), h(Y )). By morOL(F,G) we denote the set of all those morphisms
between F and G.

From this definition we see that the set of endomorphisms of a commu-
tative formal group law F over OL, which we denote by EndOL(F ), is a
(possibly non-commutative) ring with the following structure.

(h1 + h2)(X) := F (h1(X), h2(X))

(h1 · h2)(X) := h1(h2(X))
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Lemma 1.1.17. (Haz78, (A.4.7))
Let F be a commutative formal group over OL and let E|L be a complete

non archimedean field extension. By mE we denote the maximal ideal of the
ring of integers of E.

i) There exists a unique formal power series ιF (X) ∈ OL[[X]], such that

ιF (X) = −X + higher Terms and F (X, ιF (X)) = 0.

ii) For x, y ∈ mE it is x +F y := F (x, y) a well defined element in mE.
Furthermore, (mE,+F ) is an abelian group and any h ∈ EndOL(F )
induces an endomorphism of groups of (mE,+F ) by x 7→ h(x).

iii) The statement of ii) is also true for L instead of E.

Definition 1.1.18. A Frobenius power series for π is a formal power series
φ(X) ∈ OL[[X]], which satisfies the following conditions.

φ(X) = πX + higher terms ; φ(X) ≡ Xq mod πOL[[X]].

Proposition 1.1.19. (Sch17, Proposition 1.3.4)
For any Frobenius power series φ(X) for π, there exists a unique com-

mutative formal group law Fφ(X, Y ) over OL, such that φ(X) ∈ EndOL(Fφ).
We call Fφ the Lubin-Tate group law of φ.

Example. For φ = πX +Xq, we call Fφ the special Lubin-Tate group law of
π.

Proposition 1.1.20. (Sch17, Proposition 1.3.6)
For any Frobenius power series φ(X) for π, there exists a unique mor-

phism of rings
OL → EndOL(Fφ), a 7→ [a]φ(X),

such that [a]φ(X) = aX+ higher terms and [π]φ = φ. Furthermore, this
morphism is injective.

For the rest of this part, we fix a Frobenius power series φ(X) for π
and write F := Fφ for its Lubin-Tate group law. By Lemma 1.1.17.iii) and
Proposition 1.1.20 we have an action

OL × (mL,+F )→ (mL,+F ), (a, z) 7→ [a]φ(z).

So for any n ≥ 1 we obtain the OL-submodule

Fn := ker([πn]φ) = {z ∈ mL | [πn]φ(z) = 0},
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which obviously is an OK/πnOK-module and

F1 ⊂ F2 ⊂ . . . .

By adjoining Fn to L we get the tower of field extensions

L ⊂ L1 := K(F1) ⊂ · · · ⊂ Ln := K(Fn) ⊂ L∞ :=
⋃
n

Ln ⊂ L.

Lemma 1.1.21. (Sch17, Remark 1.3.8)
The extensions Ln and L∞ depend only on the choice of π and not on

the choice of φ. We call Ln the n-th Lubin-Tate extension for π and L∞ the
Lubin-Tate extension for π

Proposition 1.1.22. (Sch17, Proposition 1.3.10)
For any n ≥ 1, it is Fn a free OL/πnOL-module of rank 1, such that there

exist generators zn ∈ Fn for every n ≥ 1 satisfying

[π]φ(zn+1) = zn ∀n ≥ 1.

By (Ser79, II.§2 Corollary 3) every element in GL respects the absolute
value on L. It follows that

σ[a]φ(z) = [a]φ(σ(z)) and σ(F (z1, z2)) = F (σ(z1), σ(z2)) ∀σ ∈ GK , z, z1, z2 ∈ mL, a ∈ OL.

So for every n ≥ 1 we have a OL/πnOL-linear action of GL on Fn given by

GL × Fn → Fn, (σ, x) 7→ σ(x).

Using Proposition 1.1.22, we see that for every σ ∈ GL there exists a unique
χL,n(σ) ∈ (OL/πnOL)×, such that

σ(z) = [χL,n(σ)](z) ∀z ∈ Fn.

It is χL,n(σ) independent on the choice of φ and only dependent on the choice
of π (See Sch17, the discussion before Proposition 1.3.12).

Proposition 1.1.23. (Sch17, Proposition 1.3.12)
For any n ≥ 1 the extension Ln|L is finite Galois, and

χL,n : Gal(Ln|L)→ (OL/πnOL)×

is an isomorphism of groups. Furthermore the following holds.

i) The extension Ln|L is totally ramified of degree (q − 1)qn−1.
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ii) If zn ∈ Fn is a generator of Fn as an OL/πnOL-module, then we have
the following statements.

a) It is Ln = L(zn).

b) The element zn generates OLn as an OL-algebra.

c) The element zn is a prime element of OLn.

By passing to the projective limit with respect to n, we obtain an isomorphism

χL : Gal(L∞|L)→ O×L .

We define

K0,n := K0Ln and Kn := KLn ∀n ∈ N ∪ {∞}.

Since K0 over L is unramified K0,n|K0 satisfies the properties of Proposi-
tion 1.1.23.i) & ii) and Kn|K at least satisfies Proposition 1.1.23.ii) a)& b).
Furthermore K0,∞|K0 and K∞|K are Galois extensions. We define

HK0 := Gal(L|K0,∞) ⊂ GK0

and
ΓK0 := GK0/HK0 = Gal(K0,∞|K0) ∼= Gal(L∞|L) ∼= O×L .

Furthermore we define

HK := GK ∩HK0 = Gal(L|K∞) and ΓK := GK/HK
∼= Gal(K0,∞|K ∩K0,∞).

Since GK ⊂ GK0 is an open subgroup, so is ΓK ⊂ ΓK0
∼= O×L .

1.1.3 Perfectoid Fields and Tilting

We give the Tilting construction for a perfectoid field L ⊂ F ⊂ Cp due to
Scholze and give a small overview over the facts in this theory, that we need.

Definition 1.1.24. Let L ⊂ F ⊂ Cp be an intermediate field equiped with
the non archimedean value | · | on Cp. We say that F is perfectoid, if it
satisfies the following conditions.

• The valued field (F, | · |) is complete.

• The subgroup |F×| ⊂ R×>0 is dense.

• It is (OF/pOF )p = (OF/pOF ).
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Example. Since Cp is algebraically closed (See Sch17, Remark 1.4.1), it is
(OCp/pOCp)

p = (OCp/pOCp). Furthermore we have L∞ ⊂ Cp, but |L∞|× ⊂
R×>0 is dense by Proposition 1.1.23.i), so |C×p | ⊂ R×>0 is dense. So Cp is
perfectoid, since it is complete by definition.

We fix a perfectoid K0 ⊂ F ⊂ Cp for the rest of this part.

Remark. (Sch17, Remark 1.4.3)
Every element of the value group |F×| is a power of p.

We fix an element $ ∈ mF , such that |$| ≥ |π|. We construct the
k-algebra

OF [ := lim
←

(. . .
(·)q→ OF/$OF

(·)q→ OF/$OF
(·)q→ . . .

(·)q→ OF/$OF ).

Remark 1.1.25. (Sch17, Remark 1.4.4)
The k-algebra OF [ is perfect.

Lemma 1.1.26. (Sch17, Discussion after Remark 1.4.4)
Let α = (. . . , αn, . . . , α0) ∈ OF [ be an arbitrary element. Choose for any

n an element an ∈ OF , such that an mod $ = αn. Then

α] := lim
n
aq

n

n ∈ OF

is well defined and independent on the choice of the an.

Remark. (Sch17, Lemma 1.4.5)
The map

lim
←
(·)q

OF → OF [ , (. . . , an, . . . , a0) 7→ (. . . , an mod $OF , . . . , a0 mod $OF )

is a multiplicative bijection. In particular, the k-algebra OF [ is independent
on the choice of $.

Recall that we have the Teichmüller map τ : κ → W = OK0 . Let
φF : OK0 → OF be the map that makes OF into an OK0-algebra. We define

τF : κ
τ→ OK0

φF→ OF .

Proposition 1.1.27. (Compare to Sch09, Satz 2.2.2.iii))
The map

κ→ OF [ , a 7→ (τF (aq
−n

) mod $OF )n

is a morphism of k-algebras. In particular, we have that OF [ is a κ-algebra.
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Proposition 1.1.28. (Sch17, Lemma 1.4.6 & Proposition 1.4.7)
The map

| · |[ : OF [ → R≥0, α 7→ |α[|

is a nonarchimedean absolute value. Furthermore, it satisfies the following
properties.

i) It is |OF [ |[ = |OF |.

ii) For any α, β ∈ OF [, it is

αOF [ ⊂ βOF [ if and only if |α|[ ≤ |β|[.

iii) It is mF [ := {α ∈ OF [ | |α|[ < 1} the unique maximal ideal in OF [.

iv) Let $[ ∈ OF [ be any element, such that |$[|[ = |$|. Then the projec-
tion map sending (. . . , α0) 7→ α0 induces an isomorphism of rings

OF [/$[OF [ → OF/$OF .

In particular, we have OF [/mF [
∼= OF/mF .

In particular OF [ is an integral domain. Its quotient field F [ := Quot(OF [)
has a unique multiplicative continuation of | · |[. With it, F [ is a perfect and
complete non archimedean field extension of κ, such that OF [ is its ring of
integers and |F [|[ = |F |. We call F [ the tilt of F .

Proposition 1.1.29. i) The field C[
p is algebraically closed.

ii) The completions L̂∞ of L∞, K̂∞ of K∞ and K̂0,∞ of K0,∞ are perfec-
toid and if F1 ⊂ F2 are two perfectoid fields over L, then we have the
inclusion of valued fields

(F [
1 , | · |[) ⊂ (F [

2 , | · |[).

Proof. For i) and L̂∞ being perfectoid, see (Sch17, Lemma 1.4.10 & Proposi-
tion 1.4.12). Since KL̂∞|L̂∞ is finite, it is complete and so K̂∞ = KL̂∞. So
by (Sch17, Proposition 1.6.8.i)) K̂∞ is perfectoid. The same is analoguesly
true for K̂0,∞. The statement about the inclusions follows from the definition
of OF [ for perfectoid F and since OF1 ∩$OF2 = $OF1 .

Since every σ ∈ GL acts continuous on the valued field L, we get an
action of GL on Cp. This action is continuous for the absolute value on Cp

(See Sch17, Lemma 1.4.2).
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From this point on we consider $ := π. Since every σ ∈ GL preserves
πOCp , we obtain an action

GL×OC[p → OC[p , (σ, (. . . , an mod πOCp , . . . )) 7→ (. . . , σ(an) mod πOCp , . . . ),

which acts by continuous endomorphisms of k-algebras. This action extends
uniquely to an action on C[

p by continuous endomorphisms of k-algebras
and it preserves | · |[ by the definition of α] in Lemma 1.1.26. Furthermore
GK0 ⊂ GL even acts by continuous endomorphisms of κ-algebras.

Lemma 1.1.30. (Sch17, Lemma 1.4.13) The GL-action on the valued field
C[
p is continuous.

The field extensions K∞|K are normal and HK fixes K̂∞ and K̂[
∞, since

its acts by continuous morphisms. An analogues statement holds for K0,∞|K0

and HK0 . By (Bou66, III §2.4 Lemma 2), the projection GK → ΓK is an
open map. It follows by an easy calculation (see for example (Kle16, Lemma
2.1.21)) that we get continuous actions

ΓK × K̂[
∞ → K̂[

∞

and
ΓK0 × K̂[

0,∞ → K̂[
0,∞

by Proposition 1.1.29.ii) and since the GK-action on C[
p is continuous by

Lemma 1.1.30.
We fix a Frobenius power series φ for π and define the following OL-

module.

T := lim
←

(. . .
[π]φ(·)
→ Fn

[π]φ(·)
→ Fn−1

[π]φ(·)
→ . . .

[π]φ(·)
→ F1).

Since φ(X) ≡ Xq mod πOL[[X]], we have

yqm+1 ≡ ym mod πOK̂0,∞
∀m ≥ 1, (yn)n ∈ T.

It follows that

ι : T → OK̂[
0,∞
, (yn)n 7→ (. . . , yn mod πOK̂0,∞

, . . . , y1 mod πOK̂0,∞
, 0)

is a well defined map. By Proposition 1.1.22, we have that T is a free OK-
module of rank one and that an element (zn)n ∈ T is a generator of T as an
OL-module if and only if zn is a generator of Fn as an OL/πnOL-module for
all n. We fix such a generator t = (zn)n ∈ T .

Lemma 1.1.31. (Sch17, Lemma 1.4.14) It is |ι(t)|[ = |π|
q
q−1 < |π|.
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We set ω := ι(t). By Lemma 1.1.31 we get a morphism of κ-algebras

κ[[X]]→ OK̂[
0,∞
, f(X) 7→ f(ω).

Since ω ∈ K̂[
0,∞ is invertible this morphism extends to an embedding of fields

ι : κ((X))→ K̂[
0,∞.

Definition 1.1.32. We define the subfield EK0 := ι(κ((X))) ⊂ K̂[
0,∞.

Remark. The valued field (EK0 , |·|[) is a complete non archimedean discretely
valued field with residue field κ, uniformizer ω and its ring of integers satisfies
OEK0

∼= κ[[X]].

Lemma 1.1.33. (Compare to Sch17, Lemma 1.4.15)
For any a ∈ OK, we put [a](X) := [a]φ(X) mod πOL[[X]] ∈ κ[[X]].

i) For any γ ∈ ΓK0 we have γ(ω) = [χL(γ)](ω).

ii) The ΓK0-action on K̂[
0,∞ preserves the subfield EK0.

iii) The subfield EK0 of K̂[
0,∞ does not depend on the choice of the generator

t ∈ T .

We define EsepK0
⊂ C[

p to be the separable closure in C[
p. By Proposition

1.1.29.i) it is a separably algebraically closed extension of EK0 and the GK0-
action on C[

p preserves EsepK0
by Lemma 1.1.33.ii).

Lemma 1.1.34. Let EL ⊂ EK0 be the image of k((X)) ⊂ κ((X)) under j.
Then EsepL = EsepK0

. Furthermore by (Sch17, Lemma 1.4.15.ii)), the GL-action

on C[
p preserves EsepL .

Proof. This follows from the fact that κ((X))|k((X)) is the unique unramified
extension in k((X)) with residue field κ and so, it is separable by Lemma
1.2.26.i).

Definition 1.1.35. We define the κ-algebra

E := (EsepK0
)HK = (EsepL )HK ⊂ K̂[

∞

The last inclusion is well defined by the remark after Lemma 1.1.26 and since
K̂∞ = CHK

p by (Ax69, Theorem).

Remark. Since HK ⊂ GK is normal, the continuous GK-action on C[
p pre-

serves E and hence induces a continuous action of ΓK on E.
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Definition 1.1.36. Let E be a field of characteristic p with a fixed alge-
braiclly closed field extension C|E. We define the perfect hull of E in C to
be

Eperf := {x ∈ C | ∃n ∈ N : xp
n ∈ E}.

Remark. The subset Eperf ⊂ C is a subfield, which is algebraic over E.

Lemma 1.1.37. (Bou90, §§V.5.2 and V.7.7)

Let E be a field of characteristic p with fixed algebraic closure E. Then
Eperf ⊂ E satisfies the following conditions.

i) The field extension Eperf |E is the largest intermediate field of E|E
which is purely inseparable over E.

ii) The field extension Eperf |E is the smalles intermediate field of E|E
which is perfect. In particular, the extension E|Eperf is Galois.

iii) If Esep|E denotes the separable closure of E in E, then Esep∩Eperf = E
and E = (Eperf )sep = (Esep)perf = EsepEperf . In particular, restricting
automorphisms to Esep induces a topological isomorphism of groups
Gal(E|Eperf )→ Gal(Esep|E).

By Proposition 1.1.29.i), we can define the perfect hull of E in C[
p

F := Eperf ⊂ C[
p.

We furthermore define Esep (resp. F) to be the separable closure of E (resp.
F) in C[

p. Again by Proposition 1.1.29.i), F is an algebraically closed field
and obviously Esep = EsepL .

By Lemma 1.1.37.iii) we can identify the absolute Galois group GE of E
with the absolute Galois group GF of F.

Since the GK-action on C[
p preserves EsepL and HK ⊂ GK is normal, it

preserves F and E.

Definition 1.1.38. The continuous GK-action on F gives us a map

ρ : GK → Autκ−Alg(F).

By abuse of notation we also denote ρ : GK → Autκ−Alg(Esep) to be the map
given by restriction. We furthermore define τ : ΓK → Autκ−Alg(F) (and also
τ : ΓK → Autκ−Alg(E)) to be the map induced by ρ.
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Since ρ(HK) fixes E, the map ρ induces a map

ρ : HK → GE

by restricting to HK . Furthermore, since EL ⊂ L̂[∞, we have a restriction

ρ : HL := Gal(L|L∞)→ GEL

Theorem 1.1.39. (Sch17, Theorem 1.6.7)
The map

ρ : HL → GEL

is a topological isomorphism of groups.

Corollary 1.1.40. i) The map

ρ : HK → GE

is a topological isomorphism of groups.

ii) The extension E|EL is finite. In particular E ∼= kE((Y )) is a local field.

iii) It is EK0 = (EsepL )HK0 . In particular, if K = K0 is unramified over L,
we have E = EK0.

Proof. The first statement follows from Theorem 1.1.39 and the main theorem
of Galois theory. Furthermore, since K∞ = KL∞|L∞ is a finite extension,
it is HK ⊂ HL open and hence E|EL is finite by the main theory of Galois
theory. For the third statement, we know that EK0 |EL is a finite Galois
extension, so by the main theorem of Galois theory there exists an open and
normal H ⊂ HL, such that EK0 = (EsepL )H and HL/H ∼= Gal(EK0 |EL). By

(Ax69, Theorem) and the Remark after Lemma 1.1.26, it is (C[
p)
HK0 = K̂[

0,∞
and hence, (EsepL )H ⊂ (EsepL )HK0 and so HK0 ⊂ H ⊂ HL. Since Ln|L is totally
ramified for all n ≥ 1 and K0|L is unramified and Galois, we have

HL/HK0 = Gal(K0L∞|L∞) ∼= Gal(K0|L) ∼= Gal(κ|k).

On the other hand, since EK0 |EL is unramified, we have

HL/H ∼= Gal(EK0 |EL) ∼= Gal(κ|k)

and so HK0 ⊂ H is actually an equality.

We furthermore define

ϕL : F→ F, x 7→ xq.

Obviously, this map commutes with the automorphisms ρ(σ) for all σ ∈ GK .
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Definition 1.1.41. A topological field is a field E, which is a topological
ring, such that E× is a topological group.

We recall the following elementary fact.

Remark 1.1.42. Any field with an absolute value is a topological field.

Proof. Let (E, | · |) denote such a field. Let ε > 0.
By the triangle inequality, the addition is continuous on such a field.
Let x, y ∈ E and x′ ∈ Bδ1(x), y′ ∈ Bδ2(y), then

|xy−x′y′| = |xy−x′y+x′y−x′y′| ≤ |x−x′||y|+|x′||y−y′| < δ1|y|+δ2(|x|+δ1),

where the last inequality follows from

|x| − |x′| ≤ |x− x′| < δ1

Choose δ1 = ε
2|y| and δ2 =

ε
2

|x|+δ1 .

Let x ∈ E× and 0 6= y ∈ Bδ(x). If δ ≤ |x|
2

, then

|1
x
− 1

y
| = |x− y|

|x||y|
<

δ

|x|(|x| − δ)
≤ 2δ

|x|2
.

So choose δ := min{ |x|
2
, ε|x|

2

2
}.

In particular, all the fields we are observing in this part are topological
fields with their non archimidean value.

Lastly, we will need to use the following map.

Lemma 1.1.43. (Sch17, Lemma 1.4.18)
The map

ΘF : W (OF [)L → OF ,
∑
n≥0

τ(αn)πn →
∑
n≥0

α]nπ
n

is a well-defined surjective morphism of OL-algebras.
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1.2 Topologies and the Period Rings

In this section, we want to construct the period rings in characteristic 0 as
subrings of certain rings of ramified Witt vectors and furthermore lift the
actions from the last section onto these rings. For this, we will need to
endow the ramified Witt vectors with a topology, such that the lifted actions
become continuous for this topology on the ring of Witt vectors over the
fields we constructed in the last section.

We will follow (Sch17, chapter 1.5 & 1.7) for the general constructions
of the topologies we want. Then we will embed the ring of integers of a
two-dimensional local field with residue field κ((X)) into W (E)L. Lastly, we
will see that the maximal unramified extension of this two-dimensional local
field can be embedded into W (Esep)L and will define our ring of coefficients
as a ring of HK-invariants of this ring. These are slight generalizations of the
constructions made in (Sch17, chapters 2.1 & 3.1).

1.2.1 Weak Topologies and Actions

We will begin this part by constructing a two-dimensional local field with
residue field κ((X)). We will then construct certain topologies on this field
and on rings of ramified Witt vectors.

Definition 1.2.1. We define the OK0-algebra

AK0 := lim
←
OK0((X))/πnOK0((X)).

Remark. (Sch17, Discussion at the beginning of chapter 1.7)
We have the isomorphism of OK0-algebras

{
∑
n∈Z

anX
n | an ∈ OK0 , lim

n→−∞
an = 0} → AK0 ,

∑
n∈Z

anX
n 7→ (

∑
n∈Z

(an mod πmOK0)Xn)m.

From now on, we will often write
∑
n∈Z

anX
n for elements in AK0 . So for

f(X) =
∑
n∈Z

anX
n ∈ AK0 we define

|f(X)| := max
n
|an|.

Note that this maximum exists, since K0 is discretely valued.

Lemma 1.2.2. (Sch17, Lemma 1.7.1, Remark 1.7.2 & the following discus-
sion)
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i) The map | · | on AK0 is a non archimedean absolute value, which makes
AK0 into a complete discrete valuation ring with uniformizer π and
residue field κ((X)). The quotient field of AK0 satisfies

BK0 := Quot(AK0) = {
∑
n∈Z

anX
n | an ∈ K0, sup

n
|an| <∞, lim

n 7→−∞
|an| = 0}

and its ring of integers is AK0.

ii) If g(X) ∈ XOK0 [[X]] and g(X) ∈ A×K0
, then g induces an endomor-

phism of OK0-algebras

AK0 → AK0 , f(X) 7→ f(g(X)),

which extends to an endomorphism of the field of fractions

BK0 → BK0 , f(X) 7→ f(g(X)).

Let φ be a fixed Frobenius power series for π. Because of Lemma 1.2.2.ii)
we get an action

ΓK0 ×AK0 → AK0 , (γ, f) 7→ γf := f([χL(γ)]φ(X))

and a injective Frobenius endomorphism of OK0-algebras

ϕK0 : AK0 → AK0 , f 7→ f([π]φ(X)).

The induced map ϕK0 : κ((X)) → κ((X)) is the κ-algebra morphism given
by X 7→ Xq, since φ(X) ≡ Xq mod πOL[[X]].

Since O•L is a commutative monoid, the map ϕK0 commutes with the
action of every γ ∈ ΓK0 .

We give AK0 the topology of a topological OK-module by setting

Um := XmO[[X]] + πmAK0 ∀m ≥ 1

as a fundamental system of open neighbourhoods of 0. This is possible,
since Umax(m,n) ⊂ Um ∩ Un. Obviously, the following submodules also form a
fundamental system of open neighbourhoods of 0 for this topology.

Ul,m := X lO[[X]] + πmAK0 ∀l,m ≥ 1.

Definition 1.2.3. We call this topology the weak topology on AK0 .

Proposition 1.2.4. (Sch17, Lemma 1.7.6) The OK0-algebra AK0 is a com-
plete Hausdorff topological OK0-algebra with respect to the weak topology.
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Beware that we still need an endomorphism ϕL on AK of OL-algebras,
which is a lift of the map (·)q and not of the κ-algebra endomorphism on
κ((X)) given by X 7→ Xq. We come to this later.

The ring W (OC[p)L with the π-adic topology is not suitable for our pur-
poses, as the following Lemma indicates.

Lemma 1.2.5. (Kle16, Lemma 3.1.18)
The action

GL ×W (OC[p)L → W (OC[p)L, (σ, (xn)n) 7→ (σ(xn))n

is not continuous for the π-adic topology.

We introduce a new topology on ramified Witt vectors. Now let B be a
perfect topological κ-algebra, such that there exists a fundamental system of
open neighbourhoods of 0 given by ideals of B.

Definition 1.2.6. For any open ideal a ⊂ B and m ≥ 1 we define

Va,m := ker(W (B)L
pr→ Wm(B)L

Wm(pr)L→ Wm(B/a)L)

= {(bn)n ∈ W (B)L | bi ∈ a ∀0 ≤ i < m}.

If b ⊂ B is another open Ideal and n ≥ 1, it is Va∩b,max(m,n) ⊂ Va,m ∩ Vb,n,
so there is a structure of a topological OK0-module on W (B)L for which the
ideals Va,m form a fundamental system of open neighbourhoods of 0. We call
this topology the weak topology on W (B)L.

Remark. (Sch17, Exercise 1.5.1) or (Kle16, Bemerkung after Definition 3.1.19)
The weak topology on W (B)L is the same as the product topology on

W (B)L = BN0 induced by the topology on B. In particular, if ρ : B1 → B2

is a continuous morphism between two perfect topological κ-algebras with a
fundamental system of open neighbourhoods of 0 consisting of ideals, then
W (ρ)L : W (B1)L → W (B2)L is continuous for the weak topology.

Lemma 1.2.7. (Sch17, Remark 1.5.2 & Lemma 1.5.3)
Let G be a profinite group, which acts continuously on B by automor-

phisms of κ-algebras.

i) If the topology on B is Hausdorff (resp. complete), then the correspond-
ing on W (B)L is Hausdorff (resp. complete).

ii) The action

G×W (B)L → W (B)L, (σ, (bn)n) 7→ (σ(bn))n

is an action by automorphisms of OK0-algebras which is continuous for
the weak topology on W (B)L.
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Now let F |κ be a perfect and complete non archimedean field extension
with the absolute value denoted by | · |. We consider the topological sub-
κ-algebra OF . It has a fundamental system of open neighbourhoods of 0,
consisting of the ideals Bε(0) := {x ∈ OF | |x| < ε} ⊂ OF for any ε > 0.

Definition 1.2.8. For any open ideal a ⊂ OF and m ≥ 1, we define the
W (OF )L-submodules of W (F )L

Ua,m := Va,m + πmW (F )L = {(bn)n ∈ W (F )L | bi ∈ a ∀0 ≤ i < m}.

Then W (F )L carries the structure of a topological OL-module with respect
to this fundamental system of open neighbourhoods of 0. We call it the weak
topology on W (F )L

Remark. (Sch17, Discussion before Lemma 1.5.4)
The weak topology onW (F )L is the same as the product topology W (F )L =

FN0 induced by the topology on F given by its absolute value. In particular,
if F1|F is a field extension of valued field, which satisfies the same conditions
as F , then the topology induced by the inclusion W (F )L ⊂ W (F1)L, where
the right hand side carries the weak topology is the weak topology on the
left hand side.

Lemma 1.2.9. (Sch17, Lemma 1.5.4 & Lemma 1.5.5)
The ring W (F )L is a complete and Hausdorff topological OK0-algebra with

respect to the weak topology.

Definition 1.2.10. Let X be a topological space and A be a topological
Hausdorff group, which has an open neighbourhood of 0 consisting of sub-
groups. If (fn)n : X → Y is a sequence of continuous functions, which
converges pointwise, i.e. there exists a function f : X → A, such that

f(x) := lim
n
fn(x)

exists for all x ∈ X. We say that the fn converge uniformly against f , if for
all open subgroups H ⊂ A there exists N ∈ N such that

fn(x)f(x)−1 ∈ H

for all m ≥ N and x ∈ X.

Lemma 1.2.11. (Uniform Limit Theorem) Let X,A, (fn)n, f be as in the
last Definition. Then f is continuous, if the fn converge uniformly against
f .
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Proof. Let H ⊂ A be an open subgroup and x ∈ X. By the hypothesis
and since the fn are continuous and H is a group, there exists N ∈ N and
x ∈ U ⊂ X open such that

f(x)f(y)−1 = (f(x)fN(x)−1)(fN(x)fN(y)−1)(fN(y)f(y)−1) ∈ H

for all y ∈ U .

Remark. Let A = W (F )L. If a sequence

fn : X → W (F )L

converges uniformly against an

f : X → W (F )L

in the π-adic topology, then it converges against f in the weak topology.

Proof. First of all, if the lim
n
fn(x) exist in the π-adic topology and converge

against f(x), then the same is true for the weak topology, since if

f(x)− fn(x) ∈ πnW (F )L,

then
f(x)− fn(x) ∈ πnW (F )L + Va,n = Ua,n

for all open a ∈ W (OF )L. The same argument shows that they converge
uniformly in the weak topology, if they converge uniformly in the π-adic
topology.

Proposition 1.2.12. The group of units W (F )×L is a topological group.

Proof. By Lemma 1.1.8 and Proposition 1.1.12.ii), it is

W (F )×L
∼= τ(F×)× (1 + πW (F )L)

a isomorphism of groups, which is a homeomorphism for the subset topologies
of weak topology, since W (F )L is a topological ring. Since τ : F× → W (F )×L
is a homeomorphism onto its image and F is a topological field by Remark
1.1.42, it suffices to show that inverting on

UW := 1 + πW (F )L

is continuous. But for every c ∈ πW (F )L, the geometric series∑
n≥0

cn
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converges for the π-adic and hence for the weak topology. It follows that for
u ∈ UW with

u = 1− c for c ∈ πW (F )L

that

u−1 =
∑
n≥0

cn.

Since W (F )L is a topological ring for the weak topology, the map

UW → πW (F )L, u 7→ 1− u

is a homeomorphism for the weak topology. So we need to show that

f : πW (F )L → W (F )L, c 7→
∑
n≥0

cn

is continuous. Consider for every m ∈ N the map

fm : πW (F )L → W (F )L, c 7→
m∑
n=0

cn.

This is the composition of the maps

fm : πW (F )L
c7→(1,c,...,cm)−→

m∏
n=0

W (F )L

∑
→ W (F )L.

These are continuous, since W (F )L is a topological ring. Since W (F )L is
Hausdorff and the fm clearly converge pointwise against f , it suffices to
show that they converge uniformly. But for every c ∈ πW (F )L, it is

∑
n≥0

cn −
m∑
n=0

cn ∈ πm+1W (F )L.

for all m ≥ 0.

Now let E|κ be a complete non archimedean but not necessarily perfect
field extension. By (Neu99, II Theorem 4.8) the non archimedean value on E
extends uniquely to an algebraic closure E of E and especially to F := Eperf

and a separable closure Esep. We furthermore set F := E. Since the map
(·)p is continuous on F and F for the topology induced by the absolute value,

the completion F̂ and F̂ are still perfect.
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Definition 1.2.13. We define the weak topology onW (E)L (resp. onW (Esep)L)
to be the topology induced by the inclusion

W (E)L ⊂ W (F̂ )L (resp. W (Esep)L ⊂ W (F̂ )L),

where the right hand side is equipped with the weak topology as defined in
Definition 1.2.8.

Analoguesly, we define the weak topology on W (F )L (resp. on W (F )L)
as the topology induced by the inclusion

W (F )L ⊂ W (F̂ )L (resp. W (F )L ⊂ W (F̂ )L).

By this definition and the remark after Definition 1.2.8 we get the follow-
ing remark.

Remark. The weak topology on W (E)L (resp. on W (Esep)L) is the same
as the product topology on W (E)L = EN0 (resp. on W (Esep) = (Esep)N0),
induced by the topology on E (resp. on Esep) given by its absolute value.
In particular, the topology induced by the inclusion W (E)L ⊂ W (Esep)L,
where the right hand side carries the weak topology is the weak topology on
the left hand side.

The same statements hold for W (F )L (resp. for W (F )L).

Proposition 1.2.14. (Sch17, Proposition 1.4.27)

i) It is F̂ ⊂ K̂[
∞.

ii) It is Êsep = F̂ = C[
p.

Proposition 1.2.15. The actions

GK ×W (F)L → W (F)L, (σ, (xn)n) 7→ (ρ(σ)(xn))n

and

ΓK ×W (F)L → W (F)L, (γ, (xn)n) 7→ (τ(γ)(xn))n

define actions of OK0-algebras and are continuous for the weak topologies.
The same statements hold for E instead of F (resp. for Esep instead of

F.)

Proof. (Inspired by Sch17, Remark 2.1.14)
By Definition 1.2.13 the weak topology on W (E)L for any field extension

E|L with E ⊂ Cp is given by the weak topology on Cp. By (Bou66, III §2.4
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Lemma 2) the projection GK → ΓK is open. So by an easy calculation (see
again (Kle16, Lemma 2.1.21)) it suffices to show, that

GK ×W (C[
p)L → W (C[

p)L, (σ, (xn)n) 7→ (ρ(σ)(xn))n

is continuous for the weak topology. By Lemma 1.1.30 and Lemma 1.2.7.ii)

GK ×W (OC[p)L → W (OC[p)L, (σ, (xn)n) 7→ (ρ(σ)(xn))n

is continuous for the weak topology, but since GK(πmW (C[
p)L) = πmW (C[

p)L
this remains true for the GK-action on W (C[

p)L.

Definition 1.2.16. The continuous GK-action on W (F)L gives us a map

ρ : GK → AutOK0
−Alg(W (F)L).

By abuse of Notation we also denote ρ : GK → AutOK0
−Alg(W (Esep)L)

to be the map given by restriction. We furthermore define τ : ΓK →
AutOK0

−Alg(W (F)L) (and also τ : ΓK → AutOK0
−Alg(W (E)L)) to be the

map induced by ρ.

Furthermore, we define

ϕL : W (F)L → W (F)L, x 7→ FF(x),

where FF denotes the Frobenius on W (F)L (see Definition 1.1.5). This is an
abuse of notation, since it is a lift of the map ϕL = (·)q defined after Theorem
1.1.39. Since it is ϕL = W ((·)q)L by Proposition 1.1.10.i) ϕL is continuous
for the weak topology and commutes with the automorphisms ρ(σ) for all
σ ∈ GK .

Lastly, we will need to use that ΘCp is compatible with the actions and
topologies defined in this part.

Lemma 1.2.17. (Sch17, Lemma 1.6.1)
The map

ΘCp : W (OC[p)L → OCp

from Lemma 1.1.43 satisfies the following properties. For this, we also denote
ρ : GK → AutOK0

−Alg(W (OC[p)L) for the map induced by the action.

i) It is σ(ΘCp(a)) = ΘCp(ρ(σ)(a)) for all σ ∈ GK and a ∈ W (OC[p)L.

ii) The map ΘCp is continuous and open with respect to the weak topology
on W (OC[p)L.
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1.2.2 The Period Ring

In this part, we will construct a lift of the isomorphism ι : κ((X))→ EK0 to
an embedding j : AK0 → W (EK0)L, which is topological for the weak topolo-
gies and such that the ΓK0-action and ϕL on the right hand side preserve the
image of j, which we will denote by AK0 .

Definition 1.2.18. We define MEK0
⊂ W (EK0)L to be the maximal ideal

MEK0
:= Φ−1

0 (mEK0
).

Remark. (Sch17, Remark 2.1.2)
With respect to its weak topology, the ring W (OEK0

)L is a topologi-
cal OK0-algebra, which is Hausdorff and complete. Furthermore MEK0

⊂
W (OEK0

)L is closed and hence complete.

Lemma 1.2.19. (Sch17, Lemma 2.1.4 & Lemma 2.1.6)

i) The ideals (Θ−1
Cp (πOCp)

m)m form a fundamental system of open neigh-
bourhoods of 0 for the weak topology on W (OC[p).

ii) It is MEK0
⊂ Θ−1

Cp (πOCp).

iii) With respect to the weak topology any element α ∈MEK0
is topologically

nilpotent, i.e. lim
n
αn = 0.

Proof. We only need to prove ii). Let α = (αn)n ∈ MEK0
. Then |α]0| =

|α0|[ ≤ |ω| < |π|. On the other hand we have ΘCp(α) ≡ α]0 mod πOCp by
definition, so we obtain |ΘCp(α)| ≤ |π|.

Corollary 1.2.20. Let φ be a Frobenius power series for π and F := Fφ
denote the corresponding Lubin-Tate formal group law. Then (MEK0

,+F ) is
a OL-module via

OL ×MEK0
→MEK0

, (b, z) 7→ [b]φ(z).

Furthermore, any formal power series XOK0 [[X]] converges on MEK0
and so

for any α ∈MEK0
and f ∈ OK0 [[X]], it is f(α) ∈ W (OEK0

)L.

We consider AL := lim
←
OL((X))/πnOL((X)) ⊂ AK0 . This ring has the

same properties we established for AK0 and in particular has a weak topology.
By going through the definitions one easily sees, that the weak topology on
AL is the same topology as the topology induced by the inclusion AL ⊂ AK0 .
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Furthermore the residue field of AL is k((X)) ∼= EL. We define the maximal
ideal

MEL := Φ−1
0 (mEL) ⊂ W (OEL)L.

Just like MEK0
this maximal ideal MEL satisfies the properties of Corollary

1.2.20.

Lemma 1.2.21. (Sch17, Lemma 2.1.11)
There exists a unique endomorphism of OL-algebras

{} : MEL →MEL ,

which satisfies

Φ0 ◦ {} = Φ0 and [π]φ ◦ {} = FOEL
◦ {},

where FOEL
denotes the Frobenius on W (OEL)L.

We define

τφ : mEL
τ→MEL

{}→MEL ⊂MEK0
and ιφ := τφ ◦ ι : T →MEK0

.

Let t ∈ T be a generator as an OL-module and ω := ι(t) ∈ EK0 be the
corresponding uniformizer. We furthermore define ωφ := ιφ(t) = τφ(ω). By
Lemma 1.2.21, it is Φ0(ωφ) = ω. By Corollary 1.2.20, we obtain a map

OK0 [[X]]→ W (OEK0
)L, f(X) 7→ f(ωφ).

Since Φ0(ωφ) = ω 6= 0, the element ωφ ∈ W (EK0)×L is a unit by Proposition
1.1.12.i). It follows that we have a map

OK0((X))→ W (EK0)L

and by passing to the π-adic completion we get a map of OK0-algebras

j : AK0 = lim
←
OK0((X))/πnOK0((X))→ lim

←
W (EK0)L/π

nW (EK0)L ∼= W (EK0)L,

see Proposition 1.1.10.iv). This map is an embedding, since we can further
lift them to their quotient fields. It obviously satisfies, that the following
diagram is commutative.

AK0

j //

pr

��

W (EK0)L

Φ0

��
κ((X)) ι // EK0
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Definition 1.2.22. We define

AK0 := im(j) and AL := j(AL).

Lemma 1.2.23. (Compare to Sch17, Proposition 2.1.16.i)) The map j is a
topological embedding for the weak topologies.

Proof. We have |Φ0(ωφ)|[ = |π|
q
q−1 < 1, so the statement follows from (Sch17,

Remark 2.1.5.ii)).

The ring AL is invariant under the Frobenius and the GK0-action.

Proposition 1.2.24. (Sch17, Proposition 2.1.16)

For any f ∈ AL and γ ∈ ΓK0, we have

i) FEK0
(j(f)) = j(ϕK0(f)),

ii) γ(j(f)) = j(γf).

The second identity extends by continuity and OK0-linearity of the ΓK0-
action for every f ∈ AK0 . The first identity cannot extend forAK0 , ifK0 6= L,
since FEK0

induces the map (·)q on EK0 , but ϕK0 induces the endomorphism
of κ-algebras X 7→ Xq on κ((X)). In the next section we will see that AK0

is still invariant under the Frobenius.

Remark. (Compare to Sch17, Remark 2.1.17)
The ring AK0 does not depend on the choice of generator t ∈ T .

1.2.3 Unramified Extensions

In this part we will give a brief reminder of the theory of unramified exten-
sions and then construct our Period ring AK ⊂ W (E)L and furthermore the
completion of the maximal unramified extension A ⊂ W (Esep)L.

Definition 1.2.25. Let E be a complete, discretely valued non archimedean
field with uniformizer πE and residue field kE. A finite extension E0|E is
called unramified, if E0 has uniformizer πE and the extension of residue
fields kE0 |kE is separable. In this case we also call the extension OE0 |OE
unramified.

Lemma 1.2.26. (Sch17, Lemma 1.2.4)
For any unramified extension E0|E, we have the following.

i) The extension E0|E is separable.
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ii) If a ∈ OE0 is such that kE0 = kE(α) for the image α ∈ kE0 of a, then
E0 = E[a] and 1, a, . . . , a[E0:E]−1 is an OE-basis of OE0.

By (Sch17, Lemma 1.7.1.ii)) AL is a complete discrete valuation ring with
uniformizer π.

Example 1.2.27. The extension AK0 |AL is unramified, because an element
a ∈ OK0 , such that kK0 = kL[α] as in Lemma 1.2.26.ii) satisfies AK0 = AL[a],
since we can write any element in AK0 as∑

n∈Z

(
∑
m

b(n)
m am)Xn with bm ∈ OL

by the remark after Definition 1.2.1 and Lemma 1.2.26.ii). Since the π-adic
value is non archmidean, we can change the order of the summands in the
“powerseries” to obtain the equality∑

n∈Z

(
∑
m

b(n)
m am)Xn =

∑
m

(
∑
n∈Z

b(n)
m Xn)am.

SoAK0 |AL is finite. Furthermore, both rings have uniformizer π and κ((X))|k((X))
is separable by Lemma 1.2.26.i).

Lemma 1.2.28. (See Sch17, Lemma 1.2.5)

For finite extensions E ⊂ E0 ⊂ E1 and E ⊂ E ′0 ⊂ E1, we have the
following.

i) The extension E1|E is unramified if and only if E1|E0 and E0|E are
unramified.

ii) If E0|E is unramified, then E0E
′
0|E ′0 is unramified.

iii) If E0|E and E ′0|E are unramified, then E0E
′
0|E is unramified.

Fix a separable closure Esep of E. By Lemma 1.2.28, the union Enr of
all unramified extensions of E in Esep is a Galois extension Enr|E, which we
call the maximal unramified extension.

Proposition 1.2.29. (See Sch17, Proposition 1.2.6 & Exercise 1.2.7)

i) The residue field of Enr is a separable closure ksepE of kE in an alge-
braically closed field containing kE.
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ii) The natural maps

Gal(Enr|E)
f1→ AutOE(OEnr)

f2→ GkE ,

with
f1(σ) = σ|OEnr

and
f2(φ) = [x mod mEnr 7→ φ(x) mod mEnr

are isomorphisms and f2 ◦f1 is a topological isomorphism for the Krull
topologies.

Lemma 1.2.30. (See Sch17, Lemma 3.1.3)
Let E|EL be any finite extension contained in EsepL . There exists a unique

finite ring extension AL ⊂ AL(E) ⊂ W (EsepL ), which satisfies the following
properties.

a) The ring AL(E) is a complete discrete valuation ring with prime ele-
ment π.

b) The map Φ0 : W (EsepL )L → EsepL induces an isomorphism

AL(E)/πAL(E)→ E.

Furthermore, we have the following.

c) It is AL(E) ⊂ W (E)L and the quotient field Quot(AL(E)) is a finite
unramified extension of BL.

d) The Frobenius F on W (EsepL ) preserves AL(E).

By the uniqueness, we have that AK0 = AL(EK0) and so by Lemma
1.2.30.d) the Frobenius preserves AK0 .

Definition 1.2.31. We set

AK := AL(E),BK := Quot(AK).

We view AK ⊂ W (E)L with the subset topology of the weak topology.

We furthermore set

Anr
L :=

⋃
E

AL(E),BnrL := Quot(Anr
L ).

By Lemma 1.2.30, Proposition 1.2.29 and Corollary 1.1.40.i), we see that
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• the map Φ0 : Anr
L /πAnr

L → EsepL is an isomorphism,

• the Frobenius ϕL and GL-action ρ on W (EsepL )L preserve Anr
L and

• the GK-action on W (EsepL )L induces isomorphisms

HK→̃Gal(BnrL |BK)→̃GE.

Definition 1.2.32. We set A to be the π-adic completion of Anr
L in W (EsepL )L.

Remark 1.2.33. (See Sch17, Remark 3.1.4)

i) The π-adic topology on W (EsepL )L induces the π-adic topology on Anr
L .

ii) The map lim
←

Anr
L /π

mAnr
L → A is an isomorphism.

Since any σ ∈ GL and the Frobenius on W (EsepL )L act continuously for the
π-adic topology, the list of properties above yields that

• the map Φ0 : A/πA→ EsepL is an isomorphism,

• the Frobenius ϕL and the GL-action ρ on W (EsepL )L preserve A and HK

fixes AK .

Remark 1.2.34. (Compare to Sch17, Remark 3.1.5)

i) The GL-action on W (C[
p)L commutes with the Frobenius F .

ii) It is (W (C[
p)L)F=1 = W (k)L = OL.

Lemma 1.2.35. It is AHK = AK. In particular, the GK-action on A induces
a continuous ΓK-action on AK, which we also denote by τ .

Proof. (Inspired by Sch17, Lemma 3.1.6)
Since HK

∼= GE, we have that (A/πA)HK = (EsepL )HK = E = AK/πAK .
Considering the commutative and exact diagram

0 // AK/π
mAK

//

��

AK/π
m+1AK

//

��

AK/πAK
//

=
��

0

0 // (A/πmA)HK // (A/πm+1A)HK // (A/πA)HK

we deduce from the snake lemma and induction that (A/πmA)HK = AK/π
mAK

for all m ≥ 1. By Remark 1.2.33.ii), we see that

AHK = (lim
←

A/πmA)HK = lim
←

(A/πmA)HK = lim
←

AK/π
mAK = AK .
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1.3 Modules and Motivation

In this section, we want to give the definition of (ϕ,Γ)-modules and cite the
classical correspondence to Galois representations. We will then proceed how
this correspondence translates to a correspondence in the context of linear
algebraic groups, which will serve as the motivation for us to obtain a more
general statement.

1.3.1 Etale (ϕL,ΓK)-Modules

We begin with the definition of the weak topologies for finitely generated
modules over our period rings. Let R ∈ {AK ,W (F)L}.

Definition 1.3.1. Let M be a finitely generated R-module with projection
Rn →M . We give Rn the product topology of the weak topology on R and
M the quotient topology of the projection.

Remark. (Compare to Sch17, Exercise 2.2.3)
The topology on M from the last definition is independent on the choice

of projection. We call this topology the weak topology on M . With its weak
topology M is a topological R-module.

Lemma 1.3.2. (Compare to Sch17, Remark 2.2.5)
Let α : R → R be a continuous ring homomorphism, and let β : M → N

be any α-semilinear homomorphism between finitely generated R-modules M
and N . Then β is continuous for the weak topologies on M and N .

Definition 1.3.3. Let Γ be a topological group, which acts continuously on
R via automorphisms of OL-algebras.

i) Let V be a finitely generated OL-module. If σ : GK → AutOL(V ) is
an action, which is continuous for the π-adic topology on V , then we
call (V, σ) a continuous GK-representation over OL. A homomorphism
between two representations (V, σV ) and (W,σW ) is a linear map V →
W , which commutes with the actions. By RepOL(GK) we denote the
category of continuous GK-representations over OL.

ii) Let M be a finitely generated R-module. If α : Γ → AutOL(M) is an
action, which is semilinear for the action onR and the map Γ×M →M
induced by α is continuous for the weak topology on M and ϕM :
M → M is an ϕL-semilinear endomorphism, which commutes with
every α(γ), γ ∈ Γ, then we call (M,ϕM , α) a (ϕL,Γ)-module over R.
A homomorphism between (ϕL,Γ)-modules is an R-linear map, which
commutes with the Γ-actions and the ϕL-semilinear maps. By ΓΦR,
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we denote the category of (ϕL,Γ)-modules over R. If Γ = {1} is the
trivial group, we just write ΦR for {1}ΦR.

iii) By ΓΦet
R ⊂ ΓΦR we denote the full subcategory of (ϕL,Γ)-modules

(M,ϕM , α), such that the linearisation of ϕM

ϕlinM : R ⊗
ϕL,R

M →M,x⊗m 7→ xϕM(m)

is an isomorphism. Here R ⊗
ϕL,R

M denotes the basechange of M via

ϕL : R → R. We call an object in ΓΦet
R an etale (ϕL,Γ)-module over

R.

We will sometimes implicitly use the following fact.

Remark. (Compare to Sch17, Exercise after Proposition 2.2.7) or (See Kle16,
Proposition 2.1.18)

An object (M,ϕM) ∈ ΦR is etale, if and only if ϕM(M) ⊂ M generates
M as an R-module.

Theorem 1.3.4. (See Sch17, Theorem 3.3.10)
If K = L, then we have quasi-inverse equivalences of categories

D : RepOL(GL)↔ ΓLΦet
AL : V

(V, σ) 7→ (A ⊗
OL
V )HL

(A ⊗
AL
M)ϕ=1 ←[ (M,ϕM , α),

where A ⊗
OL

V carries the diagonal GL-action ρ ⊗ σ and the Frobenius is

given by ϕL⊗ id for the Frobenius ϕL on A. On the other side the Frobenius
ϕ on A ⊗

AL
M is given by ϕL ⊗ ϕM and the GL-action on A ⊗

AL
M is given

by the diagonal action ρ ⊗ (α ◦ prHL) for the projection prHL : GL → ΓL.
Furthermore these functors preserve elementary divisors and the rank of a
module.

Remark. The author thinks that one should be able to drop the assumption
that K = L, but since this work will be going into a different direction, we
will not prove this here. To prove this, it is advised to work through (Sch17,
chapter 2 & 3) with the setup of rings and modules we have established here,
but one has to be careful that AK might not necessarily have a description
as in Definition 1.2.1, if K|L is ramified. So some statements and proofs in
(Sch17, chapter 2 & 3) might have to be changed.
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Theorem 1.3.5. (See Kle16, Lemma 2.2.16, Proposition 2.2.25 & Proposi-
tion 3.2.16)

i) Let E|k be any field extension and OE be a complete discrete valua-
tion ring, which is an OL-algebra with uniformizer π and residue field
E. Let ϕ ∈ EndOL−Alg(OE) be a local endomorphism, which lifts the
q-Frobenius (·)q : E → E. Let F := Eperf be the perfect hull of E.
Then there exists an embedding OE ⊂ W (F )L, such that the Frobe-
nius on W (F )L induces ϕ on OE . We also denote ϕ for the Frobenius
on W (F )L. As in ii) and iii) of the last definition, we define Φet

R to
be the category of etale ϕ-modules over R, where R ∈ {OE ,W (F )L}.
Then for every (M,ϕM) ∈ Φet

W (F )L
, there exists a unique OE-submodule

ME ⊂ M , such that (ME, ϕM |ME
) ∈ Φet

OE and for every N ⊂ M with
(N,ϕM |N) ∈ Φet

OE , we have N ⊂ ME. This construction is functorial
and induces a quasi-inverse for the quasi-equivalence

W (F )L ⊗
OE
· : Φet

OE → Φet
W (F )L

.

ii) If K = L, then the functors in i) induce quasi-equivalences

W (FL)L ⊗
AL
· : ΓLΦet

AL ↔ ΓLΦet
W (FL)L

: (·)EL .

We will generalize the following statement.

Theorem 1.3.6. Let (M,ϕM) ∈ Φet
AL. If there is a ΓK-action on M , which

is semilinear for the action of AL denoted by α : ΓK → AutOL(M), such that
every α(γ), γ ∈ ΓK commutes with ϕM , then (M,ϕM , α) ∈ ΓKΦet

AL, i.e. the
map ΓK ×M → M induced by α is automatically continuous for the weak
topology on M .

Proof. For ΓK = ΓL this is (See Sch17, Theorem 2.2.8). But the proof there
works just as well for open subgroups Γ ⊂ ΓL.

To generalize the last theorem for R instead of AL, we will deduce the
general case from the special case above. To do this, we need some technical
Lemmas.

Lemma 1.3.7. Let (M,ϕM , α) ∈ ΓKΦet
AK . Then

(W (F)L ⊗
AK

M,ϕL ⊗ ϕM , τ ⊗ α) ∈ ΓKΦet
W (F)L

,

where τ ⊗ α denotes the diagonal ΓK-action. The same is true for AL and
W (FL)L instead of AK and W (F)L.
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Proof. This can be proven in the same way as (Sch17, Lemma 3.1.11).

Lemma 1.3.8. (based on Kle16, Lemma 3.2.3)
Let π∞ = 0. Let n ∈ N∪{∞} We endow W (F)L/π

nW (F)L with the weak
topology as a W (F)L-module. Then the subset topology on

AK/π
nAK ⊂ W (F)L/π

nW (F)L

is the same as the weak topology of AK/π
nAK as a AK/π

nAK.

Proof. For n = ∞ this is just by definition. So let n ∈ N. We set R := AK

and S := W (F)L. Since
prπnR = prπnS|R

is open for the weak topology and R/πnR resp. S/πnS is a topological R-
resp. S-module, it suffices to show that

prπnS(Ua,m ∩R) = prπnS(Ua,m) ∩ prπnS(R)

where m ≥ n and Ua,m is the W (OF)L-module corresponding to an open ideal
a ⊂ OF, which defines the weak topology on S. By definition, it is

Ua,m = {(a0, a1, . . . ) ∈ S | ai ∈ a for all i ∈ {0, . . . ,m− 1}}.

By (Sch17, Lemma 1.1.13.i)), we have

(an + bn)n = (an)n + (bn)n for all (an)n, (bn)n ∈ S with anbn = 0 for all n.
(∗)

Since m ≥ n and FL is perfect, we calculate for a := (a0, . . . ) and the
corresponding a(m) := (a0, . . . , am−1, 0, . . . )

prπnS(Ua,m ∩R) = {prπnS(a) | ai ∈ a for all i ∈ {0, . . . ,m− 1}, a ∈ R}
(∗)
= {a(m) + πnS | ai ∈ a, ∃b ∈ πmS : a(m) + b ∈ R}
= {a(m) + πnS | ai ∈ a, a(m) ∈ R+ πmS}
= prπnS(Ua,m) ∩ prπnS(R+ πmS) = prπnS(Ua,m) ∩ prπnS(R).

Proposition 1.3.9. Let (M,ϕM) ∈ Φet
AK (resp. (M,ϕM) ∈ Φet

W (F)L
) together

with a ΓK-semilinear action M , which commutes with ϕM . As always, we
denote this action by α. Then (M,ϕM , α) ∈ ΓKΦet

AK (resp. (M,ϕM , α) ∈
ΓKΦet

W (F)L
), if and only if (W (F)L ⊗

AK
M,ϕL ⊗ ϕM , τ ⊗ α) ∈ ΓKΦet

W (F)L
(resp.

(ME, ϕM |ME
, α|ME) ∈ ΓKΦet

AK). The same is true for AL and W (FL)L instead
of AK and W (F)L.
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Proof. By Theorem 1.3.5.i), the two cases here are linked by natural iso-
morphisms. These are topological isomorphisms for the weak topology by
Lemma 1.3.2, so the two cases are equivalent. The direction “‘nonperfect
to perfect” is Lemma 1.3.7. For the other direction, we will prove that,
if (M,ϕM , α) ∈ ΓKΦet

W (F)L
, then (ME, ϕM |ME

, α|ME) ∈ ΓKΦet
AK . By Theo-

rem 1.3.5.i) it suffices to show that α induces an action on ME and the map
Γ×ME →ME induced by α restricted to ME is continuous. For the first state-
ment, let γ ∈ ΓK . Then (α(γ)(ME), ϕM) is a finitely generated ϕL-module
over AK , since ϕM and α(γ) commute by assumption. Since τ(γ) : AK → AK

is bijective and ME is etale, we calculate

AK ·ϕM((α(γ)(ME)) = τ(γ)(AK)·α(γ)(ϕM(ME)) = α(γ)(AK ·ϕM(ME)) = α(γ)(ME),

so α(γ)(ME) is etale. By the uniqueness of Theorem 1.3.5.i), it follows that
α(γ)(ME) ⊂ME.

For the second statement, we have by the equivalence of Theorem 1.3.5.i)
and the elementary divisor theorem that there are topological isomorphisms,
such that the following diagram is commutative.

M
∼= // W (F)nL ⊕W (F)L/(π

n1)⊕ · · · ⊕W (F)L/(π
nr)

MEsepL

∼= //

⊂

OO

An
K ⊕ AK/(π

n1)⊕ · · · ⊕ AK/(π
nr)

⊂

OO

Since the weak topology is compatible with direct sums by (Sch17, Exercise
2.2.3.(3)), it suffices to prove the statement for M = W (F)L/(π

n) and ME ∼=
AK/(π

n) for n ∈ N∪{∞}. But then the weak topology on ME is the subspace
topology ME ⊂M of the weak topology on M by Lemma 1.3.8, so since α is
continuous, so is α restricted to ME. The argumentation is the same for AL

and W (FL)L.

We also the need the following property in the perfect case.

Lemma 1.3.10. It is (W (F)L, ϕL, τ) ∈ ΓKΦet
W (FL)L

, i.e. W (F)L is a finite

W (FL)L-module and the Frobenius on W (F)L has bijective linearisation as
an W (FL)L-module.

Proof. First, we show that W (F)L is a finite unramified extension of W (FL)L.
By Proposition 1.2.29.ii), there exists a finite unramified extension C of the
quotient field Quot(W (FL)L) with residue field F. By the universial property
of the maximal unramified extension (See Kle16, Satz 2.1.10.ii)) or by a
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variant of (Sch17, Lemma 3.1.2) there exists a lift of the q-Frobenius (·)q :
F → F on OC , which we denote by ϕC : OC → OC . It follows that we can
deduce from Lemma 1.1.13 that

OC ∼= W (F)L,

in particular W (F)L ⊂ W (F)L is the finite unramified extension of W (F)L
with residue field F, which is unique by Proposition 1.2.29.ii). Since F is
perfect, the Frobenius on W (F)L is surjective. So the W (FL)L-linearisation of
the Frobenius is bijective, since then the image trivially is a subset generating
W (F)L as a W (FL)L-module.

Corollary 1.3.11. If M ∈ Φet
W (F)L

, then M ∈ Φet
W (FL)L

.

Proof. In Lemma 1.3.10, we have seen that W (F)L is a finite W (FL)L-module,
so M is a finite W (FL)L-module. We only need to show that the Frobenius
ϕM on M is etale as an W (FL)L-module, but

W (FL)L · ϕM(M) = W (FL)L · ϕL(W (F)L) · ϕM(M)

= W (F)L · ϕM(M)

= M,

where the first equality comes from the semilinearity of ϕM , the second equal-
ity is Lemma 1.3.10 and the last equality is due to the hypothesis. So ϕM(M)
generates M as an W (FL)L and so M is etale over this ring.

As before, let

R ∈ {AK ,W (F)L}.

Now we can prove the generalized Theorem.

Theorem 1.3.12. Let (M,ϕM) ∈ Φet
R. If there is a ΓK-action on M , which

is semilinear for the action of R denoted by α : ΓK → AutOL(M), such that
every α(γ), γ ∈ ΓK commutes with ϕM , then (M,ϕM , α) ∈ ΓKΦet

R, i.e. the
map ΓK ×M → M induced by α is automatically continuous for the weak
topology on M .

Proof. Let M be as in the hypothesis. By Proposition 1.3.9, we can restrict
ourselves to the perfect case R = W (F)L as it is equivalent to the nonperfect
one. Now by Corollary 1.3.11, we can view M as an etale W (FL)L-module.
Again by Proposition 1.3.9, we can instead show that MEL ∈ ΓKΦet

AL . But
this is exactly Theorem 1.3.6.
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1.3.2 Motivation

In this part, we will reformulate the statements of Theorem 1.3.4 and The-
orem 1.3.5.ii) to statements for the linear algebraic group GLn over OL.
Recall that ΓK has an open embedding in O×L by Proposition 1.1.23. Let
again R ∈ {AK ,W (F)L}.

Definition 1.3.13. Let OK ⊂ O•L be the submonoid generated by ΓK and
π. Then OK

∼= ΓK × πN0 . We view OK ⊂ OL with the subset topology of
the π-adic topology. Furthermore, we extend τ : OK → EndOK−Alg(R) via
πn 7→ ϕnL for n ∈ N.

Remark. An object in M ∈ ΓKΦR is the same as a morphism of monoids
OK → EndOL(M), such that the induced OK-action on M is semilinear for
the OK-action on R and continuous on ΓK for the weak topology on M . The
object is etale, if and only if the action of π is etale.

By ΓKΦ
(n)
R ⊂ ΓKΦR, we denote the full subcategory of those modules,

which are free of rank n. Analoguesly, we define ΓKΦ
et,(n)
R and RepOL(GK)(n).

Let M be a free R-module of rank n with an OK-semilinear action. We
consider an R-basis x := (xi)1≤i≤n. Let γ ∈ OK . By γ ∗m, we denote the
action of γ on m ∈M . We define A := Aγ,x ∈Matn×n(R) to be the Matrix,
which satisfies

γ ∗ xi =
∑
j≤n

Ajixj.

Lemma 1.3.14. A module (M,ϕM) ∈ Φ
(n)
R is etale if and only if Aπ,x ∈

GLn(R) for some R-basis x = (xi)i of M , where Aπ,x is defined as above for
the semilinear map ϕM considered as an action of π.

Proof. Let 1⊗ x := (1⊗ xi)i be the corresponding R-basis of R ⊗
ϕL,R

M . Let

ϕlinM : R ⊗
ϕL,R

M → M be the linearisation of ϕM . Then Aπ,x = x[ϕ
lin
M ]1⊗x

is the Matrix that describes ϕlinM for the R-bases 1 ⊗ x on the left hand
side and x on the right hand side. So ϕlinM is an isomorphism if and only if
Aπ,x ∈ GLn(R).

Let γ ∗ B denote the canonical action of γ ∈ OK on B ∈ Matn×n(R)
given by the action τ on the entries of B. Then

(γδ)∗xi = γ∗(δ∗xi) = γ∗
∑
j≤n

(Aδ,x,jixj) =
∑
j≤n

∑
k≤n

(γ∗Aδ,x,ji·Akjxk) ∀γ, δ ∈ OK .

It follows that
Aγδ,x = Aγ,x · γ ∗ Aδ,x.
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Since any morphism of rings sends units into units and the determinant is
polynomial over Z, the canonical action of OK on Matn×n(R) restricts to
an OK-action on GLn(R) = {A ∈ Matn×n | det(A) ∈ R×}, which makes
it into an OK-group. It is continuous on ΓK for the topology on GLn(R),
which is induced by the weak topology on R. We denote the action also by
GLn(τ(γ))(B) instead of γ ∗B, if B ∈ GLn(R).

Definition 1.3.15. Set

C1(OK ,GLn(R))

:={α : OK → GLn(R) | α(γδ) = α(γ) · γ ∗ α(δ) ∀γ, δ ∈ OK , α|ΓK is continuous.}.

Lemma 1.3.16. If M is a free R-module of rank n with a semilinear OK-
action, then M ∈ ΓKΦ

et,(n)
R , if and only if

cx := [γ 7→ Aγ,x] ∈ C1(OK ,GLn(R))

for some R-basis x = (xi)i of M .

Proof. By Lemma 1.3.14 and the calculations above, it suffices to show that
cx is continuous on ΓK if and only if the ΓK-action on M is continuous. Let
the ΓK-action on M be continuous. By Lemma 1.3.2 the isomorphism

f : Rn →M, ei 7→ xi

is a topological isomorphism for the weak topologies and we have

f((Aγ,x,ji)j) = γ ∗ xi.

So γ 7→ Aγ,x is continuous if and only if γ 7→ γ ∗ xi is continuous for all
1 ≤ i ≤ n. But this holds true, since ΓK acts continuously on M . On the
other hand, let cx be continuous on ΓK . We have already seen that

αi : Γ→M,γ 7→ γ ∗ xi

is continuous for all xi in x. Let f be as above, µ : M × R → M be the
scalar multiplication and

τn : ΓK ×Rn → Rn, (γ, (ai)i) 7→ (τ(γ)(ai))i.

By semilinearity the action ΓK ×M →M is given by the continuous maps

ΓK×M
(idΓK

,f−1)
→ ΓK×Rn

prΓK
×τn
→ ΓK×Rn

(
∏
i
αi,idRn )

→ Mn×Rn→̃(M×R)n
(µ)n→ Mn

∑
→M.
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Because of Lemma 1.3.16, we call elements c ∈ C1(OK ,GLn(R)) etale
(ϕL,ΓK)-modules over R with values in GLn.

Proposition 1.3.17. Let M ∈ ΓKΦ
et,(n)
R and x = (xi)i be as in the previ-

ous Lemma. Then the construction cx as in the previous Lemma induces a
bijection

(ΓKΦ
et,(n)
R / ∼=)→ H1(OK ,GLn(R)), [M ] 7→ [cx],

which is independent on the choice of x.

Proof. Let y = (yi)i be another R-basis and X := y[idM ]x ∈ GLn(R) be the
Matrix, which describes the basechange from x to y. Then∑

j≤n

∑
k≤n

cy(γ)jiXkjxk = γ ∗ yi

= γ ∗
∑
j≤n

Xjixj

=
∑
j≤m

τ(γ)(Xji)γ ∗ xj

=
∑
j≤n

∑
k≤n

τ(γ)(Xji)cx(γ)kjxk.

Since the (xk)k are linearly independent over R it follows that

cx(γ) ·GLn(τ(γ))(X) = X · cy(γ) ∀γ ∈ OK .

Let f : M→̃N be an isomorphism of etale (ϕL,ΓK)-modules over R and let
f(x) := (f(xi))i. Then cx = cf(x), since γ ∗ f(xi) = f(γ ∗ xi) and f is linear.

Let c ∈ C1(OK ,GLn(R)), then we define for every γ ∈ OK a γ-semilinear
map on Rn via γ ∗ ei := c(γ) · ei for the standard R-basis (ei)i of Rn. This

makes Rn into an object of ΓKΦ
et,(n)
R , since it is an action by the cocycle

condition, so by Lemma 1.3.16 it is in ΓKΦ
et,(n)
R . If c1, c2 ∈ C1(OK ,GLn(R))

are cohomological, i.e. there exists B ∈ GLn(R), such that

c1(γ) ·GLn(τ(γ))(B) = B · c2(γ) ∀γ ∈ OK ,

then B induces an isomorphism Rn → Rn, where the left hand side carries
the action induced by c2 and the right hand side carries the action induced
by c1, which can be shown by a calculation as in the beginning of the proof.
This induces an inverse map, since if we start with c ∈ C1(OK ,GLn(R)) and
we take the standard R-basis (ei)i of Rn, then

γ ∗ ei =
∑
j≤n

c(γ)jiej.
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On the other hand, if we start with M ∈ ΓKΦ
et,(n)
R and R-basis x = (xi)i of

M and we make Rn into an object in ΓKΦ
et,(n)
R via cx, then the isomorphism

f : Rn →M, ei 7→ xi satisfies

f(γ ∗ ei) =
∑
j≤n

f(cx,ji(γ)ej) =
∑
j≤n

cx,ji(γ)xj = γ ∗ xi = γ ∗ f(ei) ∀i.

Since the ei are an R-basis of Rn and the action is semilinear, this identity
holds for all x ∈ Rn.

By doing an analogues construction and argument for RepOL(GK)(n), we
get a bijection

(RepOL(GK)(n))→̃morcont(GK ,GLn(OL))/ ∼ .

Then Theorem 1.3.4 and Theorem 1.3.5.ii) give us the following statements.

Theorem 1.3.18. If K = L, then we have the following.

i) There exist inverse bijections

Dn : (morcont(GL,GLn(OL))/ ∼)↔ H1(O•L,GLn(AL)) : Vn,

such that

(morcont(GL,GLn(OL))/ ∼)
Dn //

(σOL )∗
��

H1(O•L,GLn(AL))

(σAL )∗
��

(morcont(GL,GLm(OL))/ ∼)
Dm

// H1(O•L,GLm(AL))

commutes for any morphism of groups σ : GLn → GLm over OL.

ii) The inclusion AL ⊂ W (FL)L induces a bijection

H1(O•L,GLn(AL))→ H1(O•L,GLn(W (FL)L)).

Remark. The part about the commutative diagram does not directly follow
from the results we established here. We will later prove it in a more general
setting and show that the map here induced by Fontaine’s functor is the one,
we will develop later on.

In the following chapters, we want to generalize this statement for smooth
linear algebraic groups G over OL instead of just GLn.
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2 The Case of Characteristic p Coefficients

In this chapter, we will prove the correspondence for general linear algebraic
groups over k, i.e. in the “π-torsion” case. For this, we will start with
recalling some general theories and theorems that will help us. Then we
will show for a general linear algebraic group G over k that the continuous
morphisms morcont(GK ,G(k)) can be viewed as a category of functors, such
that the conjugacy classes of morphisms correspond to isomorphism classes
of these functors. Afterward we will give a generalisation of Theorem 1.3.18
in the “π-torsion” case. In the end, we will calculate some examples.

2.1 General Theories

In this section, we will give an overview of the theories of tannakian cate-
gories and forms of linear algebraic groups. We will also recall a theorem
of Steinberg, which deals with the surjectivity of a self-map of a linear al-
gebraic group over an algebraically closed field of positive characteristic and
generalize it for separably algebrically closed fields.

2.1.1 Tannakian Categories

We will follow Delignes and Milnes (Del12, chapter 1 and 2) to give an
overview of those parts in the theory of Tannakian categories that we will
need to give a “categorification” of the set of continuous morphisms from GK

to the k-valued points of a linear algebraic group over k.
Let (C,⊗, φ, ψ) be a tensorcategory as in (Del12, Definition 1.1), i.e. C

is a category, ⊗ : C × C → C is a bifunctor together with an associativity
constraint φ and a commutativity constraint ψ, which is compatible with φ
(See Del12, (1.0.1) & (1.0.2)), such that there exists an object 1 in C, called
unit object, with the property that · ⊗ 1 is an auto-equivalence of C.

Definition 2.1.1. Let (C ′,⊗′, φ′, ψ′) be another tensorcategory. For conve-
nience, we will also write ⊗ for ⊗′.

i) A tensor functor from C to C ′ is a pair (F, c), where

F : C → C ′

is a functor and
c : ⊗ ◦ (F × F )→ F ◦ ⊗

is a natural isomorphism, which satisfies the following properties.

a) For all X, Y, Z in C the following diagram is commutative.
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F (X)⊗ (F (Y )⊗ F (Z))
id⊗c //

φ′

��

F (X)⊗ F (Y ⊗ Z) c // F (X ⊗ (Y ⊗ Z))

F (φ)

��
(F (X)⊗ F (Y ))⊗ F (Z)

c⊗id
// F (X ⊗ Y )⊗ F (Z) c

// F ((X ⊗ Y )⊗ Z)

b) For all X, Y in C the following diagram is commutative.

F (X)⊗ F (Y ) c //

ψ′

��

F (X ⊗ Y )

F (ψ)

��
F (Y )⊗ F (X) c

// F (Y ⊗X)

c) For any unit object 1 in C, F (1) is a unit object in C ′.

ii) Let C ′′ be a third tensorcategory. If (F, c) is a tensor functor from C
to C ′ and (G, d) be a tensor functor from C ′ to C ′′. Then we define the
concatenation

(G, d) ◦ (F, c) := (G ◦ F,G(c) ◦ d),

where (G(c) ◦ d)X,Y is the map

(G◦F )(X)⊗(G◦F )(Y )
dF (X),F (Y )→ G(F (X)⊗F (Y ))

G(cF (X),F (Y ))→ (G◦F )(X⊗Y )

for every X, Y in C.

Remark. If (F, c), (G, d) are as in ii) in the Definition above, then (G, d)◦(F, c)
is a tensor functor.

Lemma 2.1.2. (See Del12, Proposition 1.3.(b))
Let U, V in C be two unit objects. Let u : U → U ⊗U and v : V → V ⊗V

be isomorphisms. Then there exists a unique isomorphism α = αu,v : U → V ,
such that (α⊗ α) ◦ u = v ◦ α.

By abuse of notation, we also refer to (U, u) as a unit object in C, where
U and u are as in Lemma 2.1.2.

Definition 2.1.3. Let (F, c), (G, d) be two tensor functors from C to C ′.
A tensor natural morphism between F and G is a natural transformation
λ : F → G, which satisifies the following properties.

i) For all X, Y in C, the following diagram commutes.
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F (X)⊗ F (Y ) c //

λX⊗λY
��

F (X ⊗ Y )

λX⊗Y
��

G(X)⊗G(Y )
d

// G(X ⊗ Y )

ii) For all unit objects (U, u) in C and all unit objects (U ′, u′) in C ′, the
following diagram commutes.

F (U)
αc−1◦F (u),u′ //

λU
��

U ′

id
��

G(U) αd−1◦G(u),u′
// U ′

Here, the α are as in Lemma 2.1.2.

We fix a unit object 1 in C. Let X, Y be in C, then an inner hom of X
and Y is a representing object for the contravariant functor

morC(· ⊗X, Y ) : C → Set,

if it is a representable functor. We denote such an object by Hom(X, Y ) and
by evX,Y : Hom(X, Y )⊗X → Y , we denote the morphism, which corresponds
to idHom(X,Y ). We set X∨ := Hom(X,1) and evX := evX,1. Then there is a
morphism ιX : X → (X∨)∨ corresponding to evX ◦ ψ : X ⊗X∨ → 1, if X∨

and (X∨)∨ exist.

Definition 2.1.4. We call X in C reflexive, if X∨ and (X∨)∨ exist and ιX is
an isomorphism.

Furthermore there exists a morphism

Φ : Hom(X, Y )⊗Hom(X̃, Ỹ )→ Hom(X ⊗ X̃, Y ⊗ Ỹ )

corresponding to

(Hom(X, Y )⊗Hom(X̃, Ỹ ))⊗(X⊗X̃)
∼=→ (Hom(X, Y )⊗X)⊗(Hom(X̃, Ỹ )⊗X̃)

ev⊗ev→ Y⊗Ỹ ,

where the isomorphism is given by the associativity and commutativity con-
straint, if all those objects exist.

Definition 2.1.5. The tensorcategory (C,⊗) is called rigid, if it satisfies the
following properties.
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i) For all X, Y in C, the inner hom Hom(X, Y ) exists.

ii) For all X, Y, X̃, Ỹ in C, the morphism Φ defined above is an isomor-
phism.

iii) Every X in C is reflexive.

Definition 2.1.6. If C is additive (resp. abelian), we say that the tensorcat-
egory (C,⊗) is an additive (resp. abelian) tensorcategory, if ⊗ is a bi-additive
functor.

We fix a field E. From now on, we consider that (C,⊗) is an abelian
tensorcategory, such that C is E-linear.

Definition 2.1.7. A linear algebraic group over E is an affine group scheme
of finite type over E.

Example. i) The abelian category vecE of finite dimensional vector spaces
over E is a rigid abelian tensorcategory with the usual tensorproduct
over E, sinceHom(X, Y ) = morE(X, Y ) is an inner hom by the adjoint-
ness of tensorproduct and morphisms. Furthermore, the morphisms
X → (X∨)∨ and morE(X, Y ) ⊗morE(X̃, Ỹ ) → morE(X ⊗ X̃, Y ⊗ Ỹ )
for the definition of rigidity are the obvious ones. It is EndE(1) = E.

ii) Let G be a topological group and RepE(G) be category of continuous
representations on finite dimensional vector spaces over E, i.e. (V, ρV )
is in RepE(G), if V is in vecE and ρV : G→ AutE(V ) is a morphism of
groups, such that the induced action G× V → V is continuous for the
discrete topology on V . The morphisms in RepE(G) are those E-linear
morphisms, which respect the G-actions. This is a rigid abelian tensor
category with (V, ρV ) ⊗ (W, ρW ) := (V ⊗

E
W, ρV ⊗ ρW ), since we can

equip morE(V,W ) with a G-action by conjugation of the G-actions on
V and W . Then the forgetful functor ωG : RepE(G)→ vecE is faithful
and exact. It is EndRepE(G)(1) = E.

iii) Let G be a linear algebraic group over E. By RepE(G), we denote the
category of E-linear representations over G, i.e. (V, σV ) is in RepE(G),
if V is in vecE and σV is a collection of R-linear actions

σV,R : G(R)× (V ⊗
E
R)→ (V ⊗

E
R)

for every E-algebra R, which is functorial in R. The morphisms of
RepE(G) are those E-linear morphisms f : V → W , such that f ⊗ id :
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V ⊗
E
R→ W ⊗

E
R respects the actions σV,R and σW,R for every E-algebra

R. This is an abelian rigid tensorcategory with tensorproduct similiarly
defined as in ii). The forgetful functor RepE(G) → vecE is exact and
faithful. Furthermore, it is EndRepE(G)(1) = E.

Definition 2.1.8. Let ω : C → vecE be a faithful, exact and E-linear
functor, such that (ω, c) is a tensor functor for some c as in the definiton
of a tensor functor.

i) We say that (C, (ω, c)) is a (neutral) tannakian category over E, if C it
is rigid and EndC(1) = E. We call (ω, c) a fibre functor of C.

ii) If (C, (ωC, cC)), (D, (ωD, cD)) are two tannakian categories over E and
(F, c) is a tensor functor between C and D, we say that (F, c) is a
tannakian functor between C and D, if F is E-linear and (ωD, cD) ◦
(F, c) = (ωC, cC). We set

Funtan(C,D)

to be the collection of all tannakian functors between C and D.

Remark. Our definition of neutral tannakian category differs from the one in
(Del12, Definition 2.19) in the way that the fibre functor is part of the datum
for us, where in (Del12, Definition 2.19), such a fibre functor is only required
to exist, but not part of the datum. We do this here for the definition of a
tannakian functor.

Furthermore by using tensor natural transformations as morphisms, we
can make Funtan(C,D) into a category.

Let G be a linear algebraic group and (RepE(G), (ωG, id)) be the neu-
tral tannakian category of E-linear G-representations with the forgetful fibre
functor ω := (ωG, id). By Aut⊗(ω), we denote the group of all tensor natural
automorphisms of ω.

Lemma 2.1.9. (See Del12, Proposition 2.8)
If (V, σV ) is in RepE(G) and g ∈ G(E), we write σ∗V (g) for the automor-

phism of V induced by the G(E)-action σV,E under g. The map

G(E)→ Aut⊗(ω), g 7→ (σ∗V (g))(V,σV )

is a well defined isomorphism of groups.

Proposition 2.1.10. (See Wat79, 3.4 Theorem)
A group scheme G over E is a linear algebraic group over E if and only

if there exists a closed immersion ι : G → GLn of groups over E for some
n ∈ N.
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2.1.2 Theorem of Lang-Steinberg

In this part, we recall the classical theorem of Steinberg for the so called Lang
map and give a slight generalization, so that we can also use it in the non
perfect setting for the next section. So let G be a linear algebraic group over
k. Let R be a k-algebra. By ϕR : R→ R, x 7→ xq, we denote the q-Frobenius
on R.

Definition 2.1.11. We define the Lang map on G(R) to be

ΨR : G(R)→ G(R), A 7→ A−1 ·G(ϕR)(A).

Theorem 2.1.12. (Theorem of Lang-Steinberg)(See Ste68, Theorem 10.1)

If E|k is an algebraically closed field extension and G is connected, then
ΨE is surjective.

Remark. Since Steinberg works with classical group varieties over an alge-
braically closed field, the correct assumption on G for this theorem is that
the group G(E) should be connected for the Zariski topology. But G(E) is
connected for the Zariski topology, if and only if the base change GE of G to
E is connected by (Gö10, Corollary 3.36), which says that G(E) corresponds
to the closed points of GE and that this is a very dense subset in GE, i.e.
its intersection with any closed subset X ⊂ GE is dense in X for the subset
topology of X ⊂ GE. Here, we used that for GE = Spec(A) the embedding

G(E) = morE−alg(A,E)→ GE, f 7→ ker(f)

onto the closed points is a topological embedding for the Zariski topologies,
but this is immediate by the definition of these topologies (Compare to Gö10,
Example 2.15). Now, every connected group over a field is automatically
geometrically connected (See Var19, Proposition 38.7.11), so our assumption
for this Theorem is the correct one.

We will generalize this for separably algebraically closed field extensions
E|k, which means that every algebraic and separable element over E already
lies in E.

Theorem 2.1.13. (See Sch07, Satz 2.1)

Let E|k be a separably algebraically closed field extension. Let V be a finite
dimensional E-vector space together with a ϕE-semilinear endomorphism f :
V → V , which is etale. Then there exists an E-basis (vi)i of V , such that
f(vi) = vi for all i.
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Lemma 2.1.14. If E|k is a separably algebraically closed field extension,
then for G = GLn, we have that

Ψ
(n)
E : GLn(E)→ GLn(E), A 7→ A−1 ·GLn(ϕE)(A)

is surjective for all n ∈ N.

Proof. Let B ∈ GLn(E) be arbitrary. Let (ei) denote the standard E-basis
of En. Define a ϕE-semilinear endomorphism ϕB : En → En by extending
(ei 7→ B · ei)i ϕE-semilinearly. Since B is invertible, ϕB is etale (compare
to Lemma 1.3.14). So there exists a ϕB-invariant E-basis (xi)i of En by

Theorem 2.1.13. By x
(i)
j , we denote the i-th entry of xj. Define X := (x

(i)
j )ij.

Since the (xi)i form an E-basis of En, it is X ∈ GLn(E). We calculate for
any j that

xj = ϕB(xj) =
∑
i

ϕE(x
(i)
j )(B · ei) = (

∑
i

ϕE(Xij)Bki)k.

It follows that X = B ·GLn(ϕE)(X), so B = Ψ
(n)
E (X−1).

To show the surjectivity for general connected groups, we need the fol-
lowing technical Lemma.

Lemma 2.1.15. Let Y = Spec(A) and X = Spec(B) be two schemes over
a basering C, such that there exists a closed immersion ι : X → Y , with
corresponding projection ι∗ : A→ B. Let R ⊂ S be two C-algebras. Then

X(R) = ιS(X(S)) ∩ Y (R)

via the embedding ιS : X(S)→ Y (S) induced by ι.

Proof. The inclusion X(R) ⊂ X(S)∩Y (R) follows from the inclusions R ⊂ S
and X ⊂ Y . Let f ∈ X(S) ∩ Y (R). This is a morphism f : B → S over C,
such that f ◦ ι∗ = g for a morphism g : B → R over C. So im(f) ⊂ R and
so f ∈ X(R).

We will mostly use the following special case, which is why we write it
down redundantly as its own Lemma.

Lemma 2.1.16. Let H ⊂ GLn be a closed subgroup over a ring C and let
R, S be two C-algebras with R ⊂ S. Then

H(R) = H(S) ∩GLn(R).
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Proof. It is H = Spec(C[{Xij}1≤i,j≤n]det(Xij))/I) for some ideal I ⊂ C[{Xij}1≤i,j≤n].
Then for any C-algebra T , we have

H(T ) = {A ∈ GLn(T ) | P (A) = 0 ∀P ∈ I},

so H(R) = H(S) ∩GLn(R).

Proposition 2.1.17. Let R be a k-algebra, which is an integral domain.
Then ΨR : G(R) → G(R) is surjective for all connected linear algebraic

groups G over k, if and only if Ψ
(n)
R : GLn(R)→ GLn(R) is surjective for all

n ∈ N.

Proof. All the GLn are connected, so the ’only if’ part is immediate. Let
E := Quot(R) be the quotient field of R and E|E be an algebraic closure of
E. Let G be connected. We fix an embedding G ⊂ GLn. Let A ∈ G(R) be
arbitary. By the Theorem of Lang-Steinberg there exists an B ∈ G(E), such
that ΨE(B) = A and by hypothesis, there exists an B̃ ∈ GLn(R), such that

Ψ
(n)
R (B̃) = A. By functoriality of G, it is also Ψ

(n)

E
(B̃) = A. We calculate

(Ψ
(n)

E
)−1{A} = GLn(k) · B̃,

since B0B̃ ∈ (Ψ
(n)

E
)−1{A}, if and only if

B̃−1B−1
0 ·GLn(ϕE)(B0) GLn(ϕE)(B̃) = B̃−1 ·GLn(ϕE)(B̃),

if and only if B0 = GLn(ϕE)(B0), if and only if

B0 ∈ GLn(E) ∩Matn×n(k) = GLn(k).

Since G ⊂ GLn is a natural transformation, we conclude

B ∈ (ΨE)−1{A} ⊂ (Ψ
(n)

E
)−1{A} = GLn(k) · B̃ ⊂ GLn(R).

So B ∈ G(E)∩GLn(R) = G(R) by Lemma 2.1.16. So A = ΨE(B) = ΨR(B)
by functoriality of G.

Corollary 2.1.18. If G is connected and E|k is a separably algebraically
closed field extension, then ΨE : G(E)→ G(E) is surjective.

Proof. Lemma 2.1.14 and Proposition 2.1.17.
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2.1.3 Pure Inner Forms

In this section, we recall the theory of forms of a linear algebraic group G
over a field E.

Definition 2.1.19. Let E0|E be an extension of fields. Then a linear alge-
braic group H over E is called an E0|E-Form of G, if

GE0
∼= HE0

for the basechange to E0. If E0 = Esep is the separable closure in an algebraic
closure of E, we call an Esep|E-Form just an E-Form.

Let E0|E be Galois with galoisgroup GE0|E. Let H be a E0|E-Form of G.
Choose an E0-isomorphism α : GE0→̃HE0 . For any s ∈ GE0|E we define an
E0-automorphism of GE0 denoted by

αs := [α, id⊗s] := α−1 ◦ (idH, Spec(s−1)) ◦ α ◦ (idG, Spec(s)).

Beware that Spec is contravariant, which is why we have to conjugate α with
Spec(s−1) and not with Spec(s) for the following proposition. We say that
two Forms of G are isomorphic, if they are isomorphic as groups over E.
Let F (G, E0|E) be the set of isomorphism classes of E0|E-Forms of G and
AE0 := AutE0(GE0). We make the latter into a discrete GE0|E-group by the
formula

sf := (idG, Spec(s−1)) ◦ f ◦ (idG, Spec(s)), ∀f ∈ AE0 , s ∈ GE0|E.

Proposition 2.1.20. (Compare to Ser97, III.§1 Proposition 5)
The construction above induces a well defined bijection

θE0|E : F (G, E0|E)→̃H1(GE0|E, AE0),H 7→ [s 7→ αs].

Remark 2.1.21. (Based on Spr79, Discussion on p. 11)
Let (cs)s ∈ C1(GE0|E, AE0) be a cocycle. Then θ−1

E0|E is induced by a

construction of a form G(c), for which there exists an identification of the
points G(c)(E0) = G(E0), such that

G(c)(s)(A) = cs,E0 ◦G(s)(A) ∀s ∈ GE0|E, A ∈ G(E0), (1)

where cs,E0 ∈ Aut(G(E0)) is the automorphism induced by cs via the canon-

ical isomorphism GE0(E0) ∼= G(E0). Furthermore, let F0 := Eperf
0 be the

perfect hull. Recall that F0|Eperf is galois with the same galoisgroup as
E0|E. Thus, it makes sense to say that we also have

G(c)(s)(A) = (cs,E0 , id) ◦G(s)(A) ∀s ∈ GE0|E, A ∈ G(F0), (2)
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where (cs,E0 , id) ∈ Aut(G(F0)) is the automorphism induced by (cs, idF0) ∈
AutF0(GF0) via the canonical isomorphism (GE0)F0(F0) ∼= G(F0). The con-
struction is as follows. We define an action of GE0|E on GE0 via

s 7→ (idG, Spec(s)) ◦ c−1
s .

If G = Spec(A), then this induces a GE0|E-semilinar action of Hopfalgebras
on A⊗

E
E0. We define

G(c) := Spec((A⊗
E
E0)GE0|E)

for the invariants under this action. We define the E-algebra

A(c) := (A⊗
E
E0)GE0|E .

By classical Galois descent (Compare to Sil09, II Lemma 5.8.1), we have that
the scalar multiplication induces an isomorphism of Hopfalgebras

µ : A(c) ⊗
E
E0 → A⊗

E
E0.

So G(c) is an E0|E-Form of G. Let

c∗s : A⊗
E
E0 → A⊗

E
E0

be the E0-hopfalgebra morphism, which is induced by cs for s ∈ EE0|E. Then
µ induces the following diagrams to be commutative for every s ∈ GE0|E.

A(c) ⊗
E
E0

id
A(c) ⊗s //

µ

��

A(c) ⊗
E
E0

µ

��
A⊗

E
E0

(c∗s)−1◦(idA⊗s)
// A⊗

E
E0

and

A(c) ⊗
E
F0

Spec(µ⊗idF0
)

��

id
A(c) ⊗s // A(c) ⊗

E
F0

Spec(µ⊗idF0
)

��
A⊗

E
F0

(c∗s⊗idF0
)−1◦(idA⊗s)

// A⊗
E
F0
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We will only calculate (1). The calculation for (2) goes analogously.
Let f ∈ morE−Alg(A,E0) = G(E0),

ι : A→ A⊗
E
E0, a 7→ a⊗ 1

and
ι(c) : A(c) → A(c) ⊗

E
E0, x 7→ x⊗ 1.

Then we have the following chain of corresponding elements

(f ∈ morE−Alg(A,E0))

=̂((f ⊗ idE0) ∈ morE0−Alg(A⊗
E
E0, E0))

=̂((f ⊗ idE0) ◦ µ ∈ morE0−Alg(A
(c) ⊗

E
E0, E0))

=̂((f ⊗ idE0) ◦ µ ◦ ι(c) ∈ morE−Alg(A
(c), E0)) = ((f ⊗ idE0)|A(c) ∈ morE−Alg(A

(c), E0)).

Applying G(c)(s) gives us

(s ◦ f ⊗ s)|A(c) ∈ morE−Alg(A
(c), E0).

We then have the following chain of corresponding elements.

((s ◦ f ⊗ s)|A(c) ∈ morE−Alg(A
(c), E0))

=̂((s ◦ f ⊗ s)|A(c) ⊗ idE0) ∈ morE0−Alg(A
(c) ⊗

E
E0, E0))

=̂((s ◦ f ⊗ s)|A(c) ⊗ idE0) ◦ µ−1 ∈ morE0−Alg(A⊗
E
E0, E0))

=̂((s ◦ f ⊗ s)|A(c) ⊗ idE0) ◦ µ−1 ◦ ι ∈ morE−Alg(A,E0)).

It follows that to calculate (1), we have to show the equality

((s ◦ f ⊗ s)|A(c) ⊗ idE0) ◦ µ−1 ◦ ι = ((s ◦ f)⊗ idE0) ◦ c∗s ◦ ι.

For this we note that by the definition of the GE0|E-action and A(c) it is

(c∗s)|A(c) = (idA⊗s)|A(c) ∀s ∈ GE0|E. (C)

Let a ∈ A. Since µ is bijective, it is

a⊗ 1 =
∑
i,j

a
(j)
i ⊗ x

(j)
i yj = µ(

∑
j

(
∑
i

a
(j)
i ⊗ x

(j)
i )⊗ yj)

for some
∑
i

a
(j)
i ⊗ x

(j)
i ∈ A(c) and yj ∈ E0 for every j. It follows by (C) and

the fact that c∗s is E0-linear that

c∗s(a⊗ 1) =
∑
j

c∗s(
∑
i

a
(j)
i ⊗ x

(j)
i )yj =

∑
i,j

a
(j)
i ⊗ s(x

(j)
i )yj.
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So by the multiplicativity of s ∈ GE0|E and since

µ−1(a⊗ 1) =
∑
j

(
∑
i

a
(j)
i ⊗ x

(j)
i )⊗ yj

it follows that

((s ◦ f)⊗ idE0) ◦ c∗s(a⊗ 1) =
∑
i,j

s(f(a
(j)
i )x

(j)
i )yj

= ((s ◦ f ⊗ s)|A(c) ⊗ idE0) ◦ µ−1(a⊗ 1).

This is the desired equality.

Any g ∈ G(E0) can be made into an inner automorphism of G(R), where
R is an E0-algebra with the same formula [G(R) 3 y 7→ gyg−1]. Via this
construction and the Yoneda Lemma, Φ extends to a morphism of groups

Φ : G(E0)→ AE0 .

Remark 2.1.22. Let µ : GE0 ×GE0 ×GE0 → GE0 be the map induced by the
multiplication. Then for every g ∈ G(E0), we have

Φ(g) =

GE0

prE0
× id× prE0→ Spec(E0)×GE0 × Spec(E0)

(g×idE0
,id,g−1×idE0

)
→ GE0 ×GE0 ×GE0

µ→ GE0 .

Proof. Let R be a E0-algebra and can : Spec(R)→ Spec(E0) be the canonical
morphism. Let f ∈ GE0(R). It is f = f1× can for some f1 ∈ G(R). We have
to show that

((g×idE0)◦can)·f ·((g−1×idE0)◦can) = µ◦(g×idE0 , id, g
−1×idE0)◦(prE0

× id× prE0
)◦f.

By the universial property of the product and f = f1 × can, it is

(prE0
× id× prE0

) ◦ f = can× f × can.

Again by the universtial property of the product, we have

(g×idE0 , id, g
−1×idE0)◦(can×f×can) = ((g×idE0)◦can)×f×((g−1×idE0)◦can).

Since µ induces the multiplication, we have

µ◦((g×idE0)◦can)×f×((g−1×idE0)◦can) = ((g×idE0)◦can)·f ·((g−1×idE0)◦can).
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Lemma 2.1.23. The map Φ : G(E0)→ AE0 is GE0|E-equivariant.

Proof. We have to show that

Φ(g ◦ Spec(s)) = (idG, Spec(s−1)) ◦ Φ(g) ◦ (idG, Spec(s)).

We use the identity in Remark 2.1.22 to calculate this. So first we calculate
by using the universial property of the product that

(prE0
× id× prE0

)◦(idG, Spec(s)) = (Spec(s)◦prE0
)×(idG, Spec(s))×(Spec(s)◦prE0

).

Using the fact that · ◦ Spec(s) is an endomorphism of groups on G(E0), we
calculate

(g × idE0 , id, g
−1 × idE0) ◦ ((Spec(s) ◦ prE0

)× (idG, Spec(s))× (Spec(s) ◦ prE0
))

=(g ◦ Spec(s)× Spec(s))× (idG, Spec(s))× ((g ◦ Spec(s))−1 × Spec(s)).

Let µ1 : G × G × G → G be the map induced by the multiplication on G.
Then

µ = (µ1, idE0) ◦ (prG, prG, prG)× prE0
.

Via this, we deduce

(idG, Spec(s−1)) ◦ µ = µ ◦ (idG, Spec(s−1))3,

where

(id, Spec(s−1))3 := (idG, Spec(s−1), idG, Spec(s−1), idG, Spec(s−1)).

It follows that

(id, Spec(s−1))3 ◦ (g ◦ Spec(s)× Spec(s))× (idG, Spec(s))× ((g ◦ Spec(s))−1 × Spec(s))

=(g ◦ Spec(s)× idE0)× id×((g ◦ Spec(s))−1 × idE0)

=(g ◦ Spec(s)× idE0 , id, (g ◦ Spec(s))−1 × idE0) ◦ (prE0
× id× prE0

).

So by using the identity in Remark 2.1.22 again for g ◦ Spec(s), we get the
desired identity.

We obtain a map

Φ
(p)

: H1(GE0|E,G(E0))→ H1(GE0|E, AE0).

Beware that this map is in general neither surjective nor injective.

Definition 2.1.24. We call an E0|E-Form H of G a pure inner form, if its

isomorphism class is in θ−1
E0|E(im(Φ

(p)
)).
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We close this part with the following technical Lemma that will often be
used for calculating points of schemes, in particular for pure inner forms of
some group.

Lemma 2.1.25. If X = Spec(A) is an affine scheme over an ring R, B is
an R-algebra and S ⊂ EndR−alg(B) is any subset of endomorphisms, then

X(BS) = X(B)S

for the “action” of S on X(B) induced by X(s) for any s ∈ S. In particular
for X over E, we have

X(E) = X(E0)GE0|E .

Proof. It is X(B) = morR−alg(A,B) and X(s)(f) = s ◦ f for any s ∈ S and
f ∈ X(B). It is s ◦ f = f for all s, if and only if im(f) ∈ BS.

Appendix: Smooth Schemes over an separably algebraically closed
field

The following result ties in neatly into the thematics of comparing perfect
with non perfect setups, so the author chose to include it.

Definition 2.1.26.

i) Denote by V arE the category of pairs (X,A→̃E[X1, . . . , Xn]/I), where X =
Spec(A) is a smooth, affine schemes over E together with a fixed isomorphism
of E-algebras A→̃E[X1, . . . , Xn]/I. The morphisms (X,∼=) → (Y,∼=) are
morphisms X → Y of schemes over E.

ii) Let V arclE be the category of Zariski closed embeddings ι : X(E) ⊂ An(E) :=
En for some n ∈ N, where X is a smooth, affine scheme over E and ι is
given by an closed embedding ι̃ : X → An of schemes over E. A mor-
phism (ι1 : X(E) → En) → (ι2 : Y (E) → Em) is a polynomial map
f : im(ι1)→ im(ι2), i.e. there exist polynomials P1, . . . , Pm ∈ E[X1, . . . , Xn],
such that

f(x1, . . . , xn) = (P1(x1, . . . , xn), . . . , Pm(x1, . . . , xm)).

Proposition 2.1.27. (Nonperfect Nullstellensatz)
Let X = Spec(A) ∈ V arE with the fixed isomorphism A ∼= E[X1, . . . , Xn]/I.

View X(E) = {x ∈ En | f(x) = 0 ∀f ∈ I}. Then

I(X(E)) := {P ∈ E[X1, . . . Xn] | P (x) = 0 ∀x ∈ X(E)} = I.
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Proof. Obviously I ⊂ I(X(E)). Let g ∈ I(X(E)) and ḡ ∈ A be the cor-
responding element. Define J := IE[X1, . . . , Xn+1] + 〈gXn+1 − 1)〉. Then
E[X1, . . . , Xn+1]/J ∼= Ag. Set Xg := Spec(Ag). Then we calculate

Xg(E) = {(x1, . . . , xn+1) ∈ En+1 | f(x1, . . . xn) = 0 ∀f ∈ I, g(x1, . . . , xn)xn+1 = 1} = ∅,

since g ∈ I(X(E)). But Xg(E) ⊂ Xg is dense (See Gö10, B.74, Corollary
6.32, Proposition 6.21), since Xg is smooth over E as an open subscheme of
X (See Gö10, Proposition 6.15.(5)). It follows that Aḡ = 0, so there exists
m ∈ N, such that ḡm = 0 in A. It follows that gm ∈ I, so g ∈ Rad(I) = I,
since X is reduced as a smooth scheme (See Gö10, B.74, Corollary 6.32).

We have the following functors

Definition 2.1.28.

i) Let (X, ι1 : A→̃E[X1, . . . , Xn]/I), (Y, ι2 : B→̃E[X1, . . . , Xm]/J) ∈ V arE
with a morphism f̃ : X → Y . This induces a morphism f : B → A, which
gives a unique morphism g : E[X1, . . . , Xm]/J → E[X1, . . . , Xn]/I, such that
g ◦ ι2 = ι1 ◦ f . This induces a well defined polynomial map

gpoly : im(Spec(ι−1
1 )E)→ im(Spec(ι−1

2 )E)

(x1, . . . , xn) 7→ (g(X1)(x1, . . . , xn), . . . , g(Xm)(x1, . . . , xn)),

We obtain a functor

evE : V arE → V arclE, (X, ι : A→̃E[X1, . . . , Xn]/I) 7→ (Spec(prI ◦ι−1)E : X(E)→ En),

where prI : E[X1, . . . , Xn]→ E[X1, . . . , Xn]/I is the projection.

ii) We have a contravariant functor

FI : V arclE → E − alg, (ι : X(E)→ An(E)) 7→ E[X1, . . . , Xn]/I(X(E)),

since any polynomial map f : im(ι1)→ im(ι2) with im(ιi) ⊂ Eni for i = 1, 2
defines a well defined morphism

E[X1, . . . , Xn2 ]/I(im(ι2))→ E[Y1, . . . , Yn1 ]/I(im(ι1))

by sending Xi to Pi, if f is defined by polynomials P1, . . . , Pn2 .

Lemma 2.1.29. The functors evE and FI are fully faithful.

Proof. By the nonperfect Nullstellensatz, it is Γ ∼= FI◦evE, where Γ : V arE →
E − alg is taking global sections. Beware that this isomorphism is natural
and not only pointwise, since the isomorphism Γ(X) → FI ◦ evE(X) is part
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of the datum in V arE and the morphism of FI ◦ evE(Y ) → FI ◦ evE(X)
induced by X → Y is by construction the morphism, which is induced by
the isomorphisms of the data (X,∼=), (Y,∼=). But Γ is fully faithful, so evE
is faithful and FI is full. To show that they are fully faithful, we only have
to show that FI is faithful. But if FI(f) = FI(g) for polynomial maps
f, g : im(ι1)→ im(ι2) with im(ι1) ⊂ En, then f and g are equal on

V (I(im(ι1))) := {x ∈ En | P (x) = 0 ∀P ∈ I(im(ι2))}

by construction of FI(f) and FI(g). Let x ∈ im(ι1), then P (x) = 0 ∀P ∈
I(im(ι1)) by definition of I(im(ι1)), so im(ι1) ⊂ V (I(ι1)), which means that
f = g.
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2.2 The Correspondences

In this section, we will finally construct the bijections to generalize Theorem
1.3.18 in the “π-torsion” case. In the first part, we will give a categorification
of Galois representations with values in a linear algebraic group as a category
of Tannakian Functors for certain Tannakian categories.

In the second part, we will give a correspondence for those representations
to (ϕL,ΓK)-modules with values in Forms of the linear algebraic group we
start with.

In the last part, we will give a correspondence of the nonperfect and the
perfect setting.

2.2.1 Galois Representations as Tannakian Functors

Let G be a linear algebraic group over k. We view G(k) with the discrete
topology.

Definition 2.2.1. A continuous GK-representation over k with values in G
is an element

f ∈ morcont(GK ,G(k)) := {a ∈ morGrp(GK ,G(k)) | a is continuous}.

Recall the Tannakian categories (Repk(G), ω) and (Repk(GK), ωK) over
k, where the fibre functors are the forgetful ones.

Remark. Let (C, ωC) and (D, ωD) be two neutral Tannakian categories over k.
A Tannakian functor (F, c) from (C, ωC) to (D, ωD) is a pair, where F : C → D
is a k-linear functor, such that (F, c) is a tensor functor, which satisfies
ωD ◦ (F, c) = ωC. Since ωD is faithful, c is uniquely determined by ωC and ωD.
This is why we will only write F for (F, c) in the following. For example, if
C = Repk(G),D = Repk(GK), then (F, c) = (F, id). Furthermore, since ωD
is faithful, F is already uniquely determined on the morphisms by ωC and
ωD, which is why in the following we will only write what F does on the
objects. For example, if C = Repk(G),D = Repk(GK), then F ((V, σV )) is of
the form (V, ρV ) for any (V, σV ) in Repk(G) and F (φ) = φ for all morphisms
φ ∈ Repk(G). In particular, in this case any such functor is automatically
k-linear.

Proposition 2.2.2. We have a well defined bijection

morcont(GK ,G(k))→ ob(Funtan(Repk(G), Repk(GK)))

f 7→ [(V, σV ) 7→ (V, [g 7→ σ∗V (f(g))])]

which induces a bijection from the set of conjugacy classes to the set of iso-
morphism classes.
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Proof. Via the isomorphism G(k)→ Aut⊗(ω) of Lemma 2.1.9, the statement
becomes showing that

morcont(GK ,Aut⊗(ω))↔ ob(Funtan(Repk(G), Repk(GK)))

f 7→ [Ff : (V, σV ) 7→ (V, [ρf,σV : g 7→ f(g)σV ])]

[fF : g 7→ (ρ∗F (V,σV )(g))(V,σV )]←[ F

are welldefined maps, which are inverse to each other. Here ρ∗F (V,σV ) is the

map GK → Autk(V ) induced by the GK-action on V of F (V, σV ). We only
show that the maps are welldefined, because then it is easy to see that they
are inverse to each other.

First we show that Ff is a Tannakian functor for any f ∈ morcont(GK ,Aut⊗(ω)).
We need to show that ρf,σV is an automorphism of groups, which induces an
continuous action on V for every (V, σV ) in Repk(G). Since f is a morphism
of groups, so is ρf,σV . To show that ρf,σV induces a continuous action on V ,
we need to show that the stabilizer

Gv := {g ∈ GK | ρf,σV (g)(v) = v}

is open for any v ∈ V . But we see that

ker(f) ⊂ {g ∈ G | f(g)σV = idV } ⊂ Gv

and since ker(f) is open, so is Gv as a subgroup of GK . Now let φ : (V, σV )→
(W,σW ) be a morphism in Repk(G). Since f(g) is a natural transformation
of the forgetful functor ω : Repk(G)→ veck for every g ∈ GK , the morphism
Ff (φ) = φ commutes with ρf,σV (g) and ρf,σW (g) for every g ∈ GK . So Ff is a
functor. By definition it commutes with the forgetful functors ω and ωK and
it is a Tensor functor sind f(g) is a tensor autormorphism for every g ∈ GK .

Now, we show that fF is a continuous morphism of groups for any Tensor
functor F . First of all, F (φ) = φ for φ as above and so φ commutes with
fF (g)σV and fF (g)σW , so fF (g) is a natural automorphism of ω for any g ∈
GK . Furthermore, since F is a tensor functor, it is fF (g) ∈ Aut⊗(ω). The
map fF is a morphism of groups, since F (σV ) is a morphism of groups for
any (V, σV ). Since GK is a profinite group and Aut⊗(ω) is finite by Lemma
2.1.9 and Proposition 2.1.10, it suffices to show that ker(fF ) ⊂ GK is closed

for fF to be continuous. Let G
(σV )
v be the stabilizer of v ∈ V for the action

induced by F (σV ). This is open and hence closed in GK , since F (σV ) is an
object in Repk(GK). We calculate

ker(fF ) = {g ∈ G | fF (g)σV = idV ∀σV } =
⋂
σV

(
⋂
v∈V

G(σV
v )).
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Beware that this intersection makes sense in a set theoretical way, since any⋂
v∈V

GσV
v is an element in the powerset of GK for any (V, σV ). So fF is a

continuous morphism of groups.
Lastly, we want to show that these bijections respect the equivalences on

the respective set. For this take note that any Isomorphism between Tan-
nakian functors in ob(Funtan(Repk(G), Repk(GK))) is an element in Aut⊗(ω),
by an argument as for showing that fF (g) ∈ Aut⊗(ω) for any g ∈ GK , since
such functors commute with the forgetful functors. So let τ : F → G be
such an isomorphism between two Tannakian functors F and G. Then we
calculate for any (V, σ) in Repk(G) that

τσ ◦ fG(g)σ = τσ ◦G(σ)(g) = F (σ)(g) ◦ τσ = fF (g)σ ◦ τσ.

So fF and fG are conjugated via τ . A similar calculation gives that τ : Ff →
Fτ−1◦f◦τ is an isomorphism.

Remark. Following through the proof of this Proposition, we see that one
can exchange GK by any profinite group G.

2.2.2 Galois Representations and Etale (ϕL,ΓK)-Modules

In this part, G is a linear algebraic group over k. We fix an embedding
G ⊂ GLn over k. Let

K ∈ {E,F} and f ∈ morcont(GK ,G(k)).

Let
jK : morcont(GK ,G(k))→ C1(HK ,G(Ksep))

and
j̄K : morcont(GK ,G(k))→ H1(HK ,G(Ksep))

be the maps induced by restricting to HK and the inclusion k ⊂ Ksep.

Remark. Let C be a ring and R, S be C-algebras. Let φ : R → S be a
morphism of C-Algebras and X be a scheme over C. We view A ∈ X(C) as
an element in X(R) via the map that makes R into a C-algebra. Then we
have X(φ)(A) = A. We will use this fact for C = k,R = S = Ksep, X = G
and the GK-action ρ̄(g) for g ∈ GK and the Frobenius ϕL several times in
this part.

Remark 2.2.3. The map
im(j̄E)→ im(j̄F)

induced by the inclusion Esep ⊂ F is bijective.
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Proof. Let f1, f2 ∈ morcont(GK ,G(k)). Let jE(f1), jE(f2) ∈ im(j), such that

f1(h) = B−1f2(h)G(ρ̄(h))(B)

for all h ∈ HL and some B ∈ G(F). Since f1(h), f2(h) ∈ G(k) and ϕL
commutes with the ρ̄(h), we have

f1(h) = G(ϕmL )(B)−1 · f2(h) ·G(ρ̄(h))(G(ϕmL )(B))

for all m ∈ N. It is G(EsepL ) = GLn(EsepL ) ∩ G(FL) by Lemma 2.1.16 and so
there exists an N > 0, such that

G(ϕNL )(B) ∈ G(EsepL ) and so j̄E(f1) = j̄E(f2), .

since F = (Esep)perf and ϕL = (·)q.

By Lemma 2.1.23 there are maps

Φ
(p)

: H1(HK ,G(Esep))→ H1(HK , AEsep) and Φ
(p)

: H1(HK ,G(F))→ H1(HK , AF)

and

Φ
(p)

c : C1(HK ,G(Esep))→ C1(HK , AEsep) and Φ
(p)

c : C1(HK ,G(F))→ C1(HK , AF),

where AKsep := AutKsep(GKsep) are the automorphisms of groupschemes over
Ksep. The map

AutEsep(GEsep)→ AutF(GF), f 7→ (f, idF)

is HK-equivariant, since conjugating (f, idF) with (idG, Spec(s−1)) for s ∈ HK

cancels itself out on Spec(F), so

(idG, Spec(s−1))◦(f, idF)◦(idG, Spec(s)) = ((idG, Spec(s−1))◦f◦(idG, Spec(s)), idF).

Lemma 2.2.4. The following diagram is commutative.

C1(HK ,G(Esep)) (⊂)∗ //

Φ
(p)
c

��

C1(HK ,G(F))

Φ
(p)
c

��
C1(HK , AEsep)

(cs)s 7→(cs,idF)s
// C1(HK , AF)
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Proof. Let (cs)s ∈ C1(HK ,G(Esep)). Then we need to show that (Φ(cs), idF)s
induces conjugating with cs on G(R) for every F-algebra R and s ∈ HK . So
let f ∈ G(R) and f × can ∈ GF(R) be the corresponding element, where
can : Spec(R) → Spec(F) is the canonical morphism. Then by definition of
Φ and the universial property of the fiber product, we calculate

(Φ(cs), idF) ◦ (f × can) = (Φ(cs) ◦ f)× can = (cs · f · c−1
s )× can,

which corresponds to cs · f · c−1
s ∈ G(R).

For this section, we shorten j := jE and j̄ := j̄E. For f ∈ morcont(GK ,G(k))
we define

G(f) := (GE)(Φ
(p)
c (j(f)).

This is a pure inner form of GE (over E!) and we have an identification

G(f)(Ksep) = G(Ksep), (F1)

G(f)(ρ̄(h))(A) = f(h) ·G(ρ̄(h))(A) · f(h)−1 ∀A ∈ G(f)(Ksep), h ∈ HK (F2)

G(f)(K) = G(f)(Ksep)HK (F3)

by Remark 2.1.21.(1) & (2), Lemma 2.2.4 and Lemma 2.1.25. For K = F, we
could also define

G(f),F := (GF)(Φ
(p)
c (jF(f)),

but going through the definitions and with Lemma 2.2.4 one sees that

G(f),F ∼= (G(f))F,

so working with G(f),F gives the same results as working with G(f) in this
part for the perfect setting, but in the next part, where we want to compare
the perfect with the nonperfect case, we will need to work with G(f) for both
settings.

Since G(f) is not necessarily defined over k, it is

G(f)(τ̄(γ)) : G(f)(K)→ G(f)(K)

not a well defined morphism of groups for γ ∈ OK . But because of (F1),(F2),
(F3), f is defined on GK and takes values in G(k), we can well define for
γ = prHK (gγ)π

n(γ), where gγ ∈ GK the morphism of groups

γ ∗ A := γ ∗
f
A := f(gγ)G(ρ̄(gγ)ϕ

n(γ)
L )(A)f(gγ)

−1 ∀A ∈ G(f)(K).

Since HK ⊂ GK is normal and (F2),(F3), it is γ ∗A ∈ G(f)(K) and since f(g)
takes values in G(k), it is (γδ) ∗ A = γ ∗ (δ ∗ A).

It follows, that G(f)(K) is an OK-group.
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Lemma 2.2.5. Let X be an affine scheme of finite type over a topological
ring R. Let X ⊂ An be a closed immersion into an affine space. Then the
induced topology

X(R) ⊂ Rn

is independent of the choice of embedding. Furthermore, if X ⊂ GLn is a
closed subgroup and R× is a topological group, then X(R) ⊂ GLn(R) is a
topological group with the induced topology, which is the same topology as for
a closed embedding X ⊂ An.

Proof. Let ι1 : X → An and ι2 : X → Am be two closed immersions.
Let ι1(X) = Spec(R[X1, . . . , Xn]/I1) and ι2(X) = Spec(R[X1, . . . , Xm]/I2).
Then

ι2 ◦ ι−1
1 : ι1(X)→ ι2(X)

is given by a map of R-algebras

R[X1, . . . , Xm]/I2 → R[X1, . . . , Xn]/I1

and so induces a polynomial map

(ι1(X))(R)→ (ι2(X))(R)

Since R is a topological ring, every polynomial map is continuous and by
symmetry the inverse map

(ι2(X))(R)→ (ι1(X))(R)

is also continuous.
If X ⊂ GLn is a closed subgroup, we have the closed embedding GLn ⊂

An2+1. By the first part of this Lemma, the topology on X(R) via X ⊂ An2+1

is independent of the choice of embedding X ⊂ GLn ⊂ An2+1, but the open
embedding GLn ⊂ An2

gives the same topology on GLn(R) as the embedding
GLn ⊂ An2+1. It follows that the topology on X(R) is also independent of
the choice of embedding X ⊂ GLn.

To show that X(R) is a topological group, it suffices to show that GLn(R)
is a topological group, since then X(R) ⊂ GLn(R) is a subgroup. But this
is true by the hypothesis, since multiplication on GLn(R) is polynomial and
inverting elements is given by polynomial maps and inverting elements in R×

by Cramer’s rule.

Remark. If R is one of the topological rings with a weak topology we con-
structed in this work, then we also call the topology of this Lemma the weak
topology on X(R). Those rings satisfy all conditions made in this Lemma by
Remark 1.1.42, Lemma 1.2.9 and Proposition 1.2.12.
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We view G(f)(K) as a topological group with the weak topology. Then
G(f)(K) is a topological ΓK-group via the action γ ∗ · defined above. To see
this, one first notices that the weak topology on Ksep induces the discrete
topology on k, so f is continuous for the weak topology on G(Ksep). Secondly
the action GK × G(Ksep) → G(Ksep) given by G(ρ̄(·)) is continuous for the
weak topology on G(Ksep) by Lemma 1.1.30 and Lemma 2.2.5. Lastly, one
has to check that

ι1 : G(f)(K) ⊂ G(Ksep) ⊂ GLn(Ksep)

is continuous for the weak topologies. For this last statement, view jK(f) :
HK → GLn(Ksep). By Hilbert 90, there exists B ∈ GLn(Ksep), such that

f(h) = B−1 ·G(ρ̄(h))(B) ∀h ∈ HK .

From this and (F2),(F3), it follows that

ι2 : G(f)(K)→ GLn(K), A 7→ B · ι1(A) · B−1

is a well defined embedding, which is conjugate and hence topologically iso-
morphic to ι1. Furthermore, ι2 is the embedding given by

G(f) ⊂ GL(f)
n
∼= GLn,

where “∼=” is the following isomorphism. Let

GLn,K = Spec(R), GK = Spec(S) and p : R→ S

be the projection that induces our fixed embedding G ⊂ GLn. By Remark
2.1.21 the linear algebraic group GL(f)

n is defined by

Spec((R⊗
K
Ksep)HK )

with the HK-action being induced by the action on GLn,Ksep via

h 7→ (idGLn , Spec(ρ̄(h))) ◦ (f(h)∗)
−1 ∀h ∈ HK

with f(h)∗ being the map induced by conjugation with f(h) on GLn(T ) for
all Ksep-algebras T . By (Gö10, Proposition 12.27 (1)) GL(f)

n is the quotient
of GLn,Ksep under this HK-action. Consider the map

φ : GLn,Ksep
B∗→ GLn,Ksep

prGLn→ GLn,

where B∗ is analoguesly defined as f(h)∗ above by the induced map of conju-
gation with B. Then by the following calculation φ◦a(h) = φ for all h ∈ HK
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with a(h) being the map given by the action above. By Lemma 2.1.23, we
have

B∗ ◦ (idGLn , Spec(ρ̄(h))) = (idGLn , Spec(ρ̄(h))−1) ◦G(ρ̄(h))(B)∗ ∀h ∈ HK .

Furthermore, we have

G(ρ̄(h))(B) · f(h)−1 = B ∀h ∈ HK

and
prGLn ◦(idGLn , Spec(ρ̄(h))−1) = prGLn ,

so together we get φ◦a(h) = φ. By the universal property of the the quotient
GL(f)

n , this induces a morphism of groups

φ̄ : GL(f)
n → GLn

with φ = φ̄ ◦ pr, where pr : GLn,Ksep → GL(f)
n is the projection given by the

inclusion
(R⊗

K
Ksep)HK ⊂ R⊗

K
Ksep.

Then φ̄ induces the map

GLn(Ksep) = GL(f)
n (Ksep)→ GLn(Ksep), A 7→ BAB−1,

since φ = φ̄ ◦ pr and the identification GLn(Ksep) = GL(f)
n (Ksep) is induced

by the isomorphism pr× prKsep given by classical Galois descent, where

prKsep : GLn,Ksep → Spec(Ksep)

is the projection. Furthermore φ̄ is an isomorphism, since by a similar argu-
mentation as above, we obtain that

ψ : GLn,Ksep
B−1
∗→ GLn,Ksep

pr→ GL(f)
n

induces an inverse GLn → GL(f)
n to φ̄ by the universal property of

GLn = GL(1)
n ,

where 1 ∈ morcont(GK ,G(k)) is the trivial morphism.
The closed immersion G(f) ⊂ GL(f)

n is the map induced on the respective
HK-invariants by the projection

p⊗ idKsep : R⊗
K
Ksep → S ⊗

K
Ksep.
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This is an embedding, since taking HK-invariants in this setting is exact by
the classical Galois descent. Furthermore, this embedding induces the map

j1 : G(f)(K) ⊂ G(f)(Ksep)→ GL(f)
n (Ksep) = GLn(Ksep), A 7→ ι1(A),

since

ι1 : G(f)(K) ⊂ G(f)(Ksep) = G(Ksep)→ GLn(Ksep)

and by definition we have the equality of embeddings

(G(f)
Ksep ⊂ GL

(f)
n,Ksep

∼= GLn,Ksep) = (G(f)
Ksep
∼= GKsep ⊂ GLn,Ksep),

where the isomorphisms are the ones given by classical Galois descent, which
also induce the equalities in both maps j1 and ι1 above.

Together, we obtain that

G(f) ⊂ GL(f)
n
∼= GLn

induces ι2.

Definition 2.2.6. We define

C1(OK ,G(f)(K)) := {α : OK → G(f)(K) | α(γδ) = α(γ)·(γ∗α(δ)) ∀γ, δ, α|ΓK is continuous}.

An etale (ϕL,ΓK)-module over K with values in G(f) is an element α ∈
C1(OK ,G(f)(K)).

We say, that α, β ∈ C1(OK ,G(f)(K)) are cohomologous or α ∼ β, if there
exists an A ∈ G(f)(K), such that α(γ) = A−1 · β(γ) · γ ∗

f
A for all γ ∈ OK .

We define

H1(OK ,G(f)(K)) := C1(OK ,G(f)(K))/ ∼ .

Consider the map

j̄ : morcont(GK ,G(k))→ H1(HK ,G(Esep))

and fix a family of elements {fi}i ⊂ morcont(GK ,G(k)), such that

j̄ : {fi}i → im(j̄)

is bijective. Now let f ∈ morcont(GK ,G(k)) be any element. Then there
exists an unique i and some B ∈ G(Ksep), such that

f(h) = B−1 · fi(h) ·G(ρ̄(h))(B) ∀h ∈ HK (∗)
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We define a GK-action of sets on G(fi)(Ksep) via

g.A := g .
f,fi
A := f(g) ·G(ρ̄(g))(A) · fi(g)−1

and πn.A := πn .
f,fi
A := G(ϕnL)(A) ∀A ∈ G(fi)(Ksep), g ∈ GK , n ∈ N.

Since f and fi take values in G(k) and ϕL commutes with ρ̄(g) for all g ∈ GK ,
we calculate

(g1g2).A = g1.(g2.A) ∀A ∈ G(fi)(Ksep), g1, g2 ∈ GK

g.(πn.A) = πn.(g.A) ∀A ∈ G(fi)(Ksep), g ∈ GK , n ∈ N
πn+m.A = πn.(πm.A) ∀A ∈ G(fi)(Ksep), n,m ∈ N.

(act)

By (∗), it is

B−1 ∈ G(fi)(Ksep)HK ,f := {A ∈ G(fi)(Ksep) | h.A = A ∀h ∈ HK},

since for any h ∈ HK , it is

h.(B−1) = f(h) ·G(ρ̄(h))(B−1) · fi(h)−1

= B−1 · fi(h) ·G(ρ̄(h))(B) ·G(ρ̄(h))(B−1) · fi(h)−1

= B−1.

Remark. If A0 ∈ G(fi)(Ksep)HK ,f , then

G(fi)(Ksep)HK ,f = A0G(fi)(K).

Proof. If A ∈ G(fi)(Ksep)HK ,f , then A = A0B0 for some B0 ∈ G(fi)(Ksep) and
for h ∈ HK we have

A0 ·G(fi)(ρ̄(h))(B0) = (h.A0) ·G(fi)(ρ̄(h))(B0)
(F2)
= h.(A0B0) = A0B0,

so B0 ∈ G(fi)(K) and the same calculation shows that if B0 ∈ G(fi)(K), then
A := A0B0 ∈ G(fi)(Ksep)HK ,f .

If A0 ∈ G(fi)(Ksep)HK ,f , then because of (F2), (F3) and (act) it makes
sense to define γ.A0 for γ ∈ OK and since HK ⊂ GK is normal and (F2), (F3)
it is γ.A0 ∈ G(fi)(Ksep)HK ,f . So by the last remark, we define

αf,A0(γ) := A−1
0 · γ.A0 ∈ G(fi)(K).

Lemma 2.2.7. It is

α := αf,A0 ∈ C1(OK ,G(fi)(K))

and if B ∈ G(fi)(Ksep)HK ,f is another element, then [αf,A0 ]∼ = [αf,B]∼ ∈
H1(OK ,G(fi)(K)).

68



Proof. If γ = prH(gγ)π
n(γ), we calculate

α(γδ) = A−1
0 (γδ).A0

= A−1
0 · f(gγ) · f(gδ) ·G(ρ̄(gγ)ϕ

n(γ)
L ρ̄(gδ)ϕ

n(δ)
L )(A0) · fi(gδ)−1 · fi(gγ)−1

= A−1
0 · f(gγ) ·G(ρ̄(gγ)ϕ

n(γ)
L )(A0) · fi(gγ)−1

· fi(gγ) ·G(ρ̄(gγ)ϕ
n(γ)
L )(A−1

0 · f(gδ) ·G(ρ̄(gδ)ϕ
n(δ)
L )(A0) · fi(g)−1)fi(gγ)

−1

= α(γ) · γ ∗
fi

(α(δ).

By the construction of the action (act) α|ΓK is continuous, since f, fi and ρ̄
are continuous for the weak topology on G(Ksep) and by the discussion before
Definition 2.2.6. If B ∈ G(fi)(Ksep)HK ,f , then B = A0B0 for B0 ∈ G(fi)(K),
so we calculate for γ ∈ OK that

B−1
0 αf,A(γ)γ ∗

fi
B0 = αf,B(γ).

Definition 2.2.8. We define a map

D : morcont(GK ,G(k))→
∐
i

H1(OK ,G(fi)(K)), f 7→ [αf,A0 ]∼ =: αf ,

which is independent of the choice of A0 ∈ G(fi)(Ksep)HK ,f by the last Lemma.

Definition 2.2.9. Let G,H be topological groups. We denote for two mor-
phisms of topological groups

f, f ′ ∈ morcont(G,H) := {a ∈ morGrp(G,H) | a is continuous}

the relation f ∼ f ′, if they are conjugate, i.e. there exists B ∈ H, such that

f(g) = B · f ′(g) · B−1

for every g ∈ G.

Lemma 2.2.10. If f, f ′ ∈ morcont(GK ,G(k)) are conjugate, then

D(f) = D(f ′).

Proof. It is

A−1 · f(g) · A = f ′(g)
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for some A ∈ G(k) and all g ∈ GK . Furthermore, if

f(h) = B−1 · fi(h) ·G(ρ̄(h))(B) ∀h ∈ HK ,

then
f ′(h) = (BA)−1 · fi(h) ·G(ρ̄(h))(BA)

and

A0 ∈ G(fi)(Ksep)HK ,f , if and only if A−1A0 ∈ G(fi)(Ksep)HK ,f
′
.

In that case, we calculate for γ = prH(gγ)π
n(γ) that

αf ′,A−1A0
(γ) = A−1

0 AA−1 · f(gγ) ·G(ρ̄(gγ)ϕ
n(γ)
L )(AA−1A0) · fi(gγ)

= αf,A0(γ).

Let

Ψ := ΨKsep : G(Ksep)→ G(Ksep), A 7→ A−1 ·G(ϕL)(A)

be the Langmap.

Remark. If α ∈ C1(OK ,G(fi)(K)), such that α(π) = Ψ(A) for some A ∈
G(Ksep), then for every g ∈ GK , it is

fα,A−1(g) := Aα(prHK (g)) · fi(g) ·G(ρ̄(g))(A−1) ∈ G(k).

Proof. Set B := A−1, so it is

α(π) ·G(ϕL)(B) = B. (∗)

Using that α is a cocycle, we calculate

B ·G(ϕL)(fα,B(g))
(∗)
= α(π) ·G(ϕL)(α(prHK (g)) · fi(g) ·G(ρ̄(g))(B))

= α(prHK (g)π) · fi(g) ·G(ρ̄(g)ϕL)(B)

= α(prHK (g)) · fi(g) ·G(ρ̄(g))(α(π) ·G(ϕL)(B))

(∗)
= B · fα,B(g),

so
fα,B(g) ∈ G(Ksep)ϕL=1 = G(k)

by Lemma 2.1.25.
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Lemma 2.2.11. Let α ∈ C1(OK ,G(fi)(K)), such that α(π) = Ψ(A) for some
A ∈ G(Ksep) and B := A−1. It is

fα,B ∈ morcont(GK ,G(k)),

which satisfies

fα,B(h) = B−1 · fi(h) ·G(ρ̄(h))(B) ∀h ∈ HK .

Proof. It is continuous by construction, since α, ρ̄ and fi are continuous for
the weak topology on G(Ksep) by the discussion before Definition 2.2.6 and
this weak topology induces the discrete topology on G(k). Using that α is a
cocycle and fi takes values in G(k), we calculate

fα,B(g1g2) = B−1α(prHK (g1))fi(g1)G(ρ̄(g1))(α(prHK (g2)))fi(g1)−1fi(g1)fi(g2)G(ρ̄(g1g2))(B)

= B−1α(prHK (g1))fi(g1)G(ρ̄(g1))(BB−1α(prHK (g2))fi(g2) ·G(ρ̄(g2))(B))

= fα,B(g1)G(ρ̄(g1))(fα,B(g2))

= fα,B(g1)fα,B(g2),

where the last equality follows from fα,B(g2) ∈ G(k).
The second part of the statement follows from the definition, since it is

α(1) = 1 by the cocycle condition of α.

Lemma 2.2.12. Let α ∈ C1(OK ,G(fi)(K)). If

α(π) ·G(ϕL)(B) = B

and
α(π) ·G(ϕL)(BB0) = BB0

for two different elements B ∈ G(Ksep) and BB0 ∈ G(Ksep), then

B0 ∈ G(k) and B−1
0 fα,B(g)B0 = fα,BB0 ∀g ∈ GK ,

so fα,B ∼ fα,BB0.

Proof. We calculate

BB0 ·G(ϕL)(B−1
0 B−1) = α(π) = B ·G(ϕL)(B−1),

so B0 ∈ G(Ksep)ϕL=1 = G(k) by Lemma 2.1.25.
The second part of the statement follows from this and the definitions of

those maps.
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Definition 2.2.13. We obtain maps

Vi : {[α]∼ ∈ H1(OK ,G(fi)(K)) | α(π) ∈ im(Ψ)} → (morcont(GK ,G(k))/ ∼), fα := [fα,B]∼

for every i, which is independent of the choice of B with Ψ(B−1) = α(π).

Lemma 2.2.14. If α, β ∈ C1(OK ,G(fi)(K)), such that

α(π) ·G(ϕL)(B) = B and β(γ) = A · α(γ) · γ ∗
fi
A−1β(γ),

for B ∈ G(Ksep) and A ∈ G(fi)(K), then

β(π) ·G(ϕL)(AB) = AB and fβ,AB = fα,B.

Proof. The first statement follows directly from the hypothesis. For the
second one, we calculate

fβ,AB(g) = B−1A−1Aα(prHK )fi(g)G(ρ̄(g))(A−1)fi(g)−1fi(g)G(ρ̄(g))(AB) = fα,B(g).

We can now prove the desired correspondence between galois representa-
tions with values in G and certain (ϕL,ΓK)-modules in the “π-torsion case”.

Proposition 2.2.15. The map

D : (morcont(GK ,G(k))/ ∼)→
∐
i

H1(OK ,G(fi)(K)), [f ]∼ 7→ αf

is injective and has image∐
i

{[α]∼ ∈ H1(OK ,G(fi)(K)) | α(π) ∈ im(Ψ)}.

The inverse map is given by

V :=
∐
i

Vi :
∐
i

{[α]∼ ∈ H1(OK ,G(fi)(K)) | α(π) ∈ im(Ψ)} → (morcont(GK ,G(k))/ ∼).

This bijection identifies

{[a]∼ ∈ morcont(GK ,G(k))/ ∼ | j̄K(a) = j̄K(fi)} ∼= {[α] ∈ H1(OK ,G(fi)(K)) | α(π) ∈ im(Ψ)}

for every i.
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Proof. For f ∈ morcont(GK ,G(k))/ ∼ with j(f) ∼ j(fi) andA0 ∈ G(fi)(Ksep)HK ,f ,
it is

αf,A0(π) = Ψ(A0).

If α ∈ C1(OK ,G(fi)(K)), such that

α(π)G(ϕL)(B) = B, (∗)

then fα,B ∈ morcont(GK ,G(k)) and fα,B(h) = B−1fi(h)G(ρ̄(h))(B), so we
calculate for γ = prHK (gγ)

αfα,B ,B−1(γ) = BB−1α(γ)fi(g)G(ρ̄(g))(B)G(ρ̄(g))(B−1)fi(g)−1 = α(γ)

and

αfα,B ,B−1(π) = BG(ϕL)(B−1)
(∗)
= α(π),

and since α and αfα,B ,B−1 are both 1-cocycles in C1(OK ,G(fi)(K)), they are
equal and hence it is D(V([α]∼)).

For f as in the beginning of the proof, we calculate

fαf,A0
,A−1

0
(g) = A0A

−1
0 f(g)G(ρ̄(g))(A0)fi(g)−1fi(g)G(ρ̄(g))(A−1

0 ) = f(g),

so we have V(D([f ]∼)) = [f∼] and so D is injective with inverse V on the
image ∐

i

{[α]∼ ∈ H1(OK ,G(fi)(K)) | α(π) ∈ im(Ψ)}.

Since this bijection is dependent on the choice of {fi}i, the maps D and V
are in general not “functorial”. Under certain conditions, there is still a way
to get something like functoriality. For this we first note that, if φ : G1 → G2

is a morphism of groups and f ∈ morcont(GK ,G1(k)), then

φKsep : G(f)
1 (K)→ G(φk◦f)

2 (K)

is a well defined morphism of OK-groups by (F2),(F3), which is continuous,
because it is a polynomial map.

Lemma 2.2.16. Let φ : G1 → G2 be a morphism of groupschemes over k,
such that the induced map

(φKsep)∗ : H1(HK ,G1(Esep))→ H1(HK ,G2(Esep))

is injective on im(j̄G1). Then for any choice {f (1)
i }i ⊂ morcont(GK ,G1(k)),

such that
j̄G1 : {f (1)

i }i → im(j̄G1)
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is bijective, we can complement {φk ◦ fi}i ⊂ morcont(GK ,G2(k)) to a subset

{f (2)
l }l, such that

j̄G2 : {f (2)
l }l → im(j̄G2)

is bijective. Furthermore, the following diagram is commutative.

(morcont(GK ,G1(k))/ ∼) D //

(φk)∗

��

∐
i

H1(OK ,G
(f

(1)
i )

1 (K))

(φKsep )∗
��

(morcont(GK ,G2(k))/ ∼)
D

//
∐
l

H1(OK ,G
(f

(2)
l )

2 (K)).

Proof. The first part of the statement that for any such subset {f (1)
i }i, the

subsets {φk ◦ fi}i can be complemented, follows directly from the hypothesis
that (φKsep)∗ is injective on im(j̄G1) and because the following diagram is
commutative, which is commutative since φ is a natural transformation.

morcont(GK ,G1(k))
j̄G1

//

(φk)∗
��

H1(HK ,G1(Ksep))

(φKsep )∗
��

morcont(GK ,G2(k))
j̄G2

// H1(HK ,G2(Ksep)).

For the second part of the statement about the commutative diagram, let
f ∈ morcont(GK ,G1(k)), such that there exists B ∈ G1(Ksep) with

f(h) = B · f (1)
i (h) ·G1(ρ̄(h))(B−1) ∀h ∈ HK .

Since φ is a natural transformation of groups, it follows that

φk(f(h)) = φKsep(B) · φk(f (1)
i (h) ·G2(ρ̄(h))(φKsep(B)−1) ∀h ∈ HK .

Now D([f ]∼) is given by

αf,B(γ) = B · f(gγ)G(ρ̄(g)ϕ
nγ
L )(B−1) · fi(gγ)−1 ∀ prHK (gγ)π

nγ = γ ∈ OK .

On the other hand D([φk ◦ f ]∼) is given by

αφk◦f,φKsep (γ) = φKsep(B) · φk(f(gγ))G(ρ̄(g)ϕ
nγ
L )(φKsep(B

−1)) · φk(fi(gγ))−1

for all γ as above. Again, since φ is a natural transformation of groups, it
follows that

φKsep ◦ αf,B = αφk◦f,φKsep .
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Remark. This condition on φ is rather restricitve. For example, if φ : G →
GLn is a representation in Repk(G), then φ satisfies the condition in this
Lemma, if and only if j̄G ≡ 1 is the trivial map. We will give examples of
this in the next section. The problem for the general case lies within the
fact that the map D depends on the choice of representatives {fi}i as chosen
after Definition 2.2.6. In the general case, we can still write down a diagram
that is natural up to some twisted conjugation, which depends on the choice
of those representatives, as we will see in the following Lemma.

But before that, we get the following technicallity out of the way.

Remark 2.2.17. As always in this part, let G be a linear algebraic group over
k. Let f1, f2, f3 : GK → G(k) be morphisms of groups. As before, we define
a GK-action of sets on G(Ksep) by setting

g .
fi,fj

A := fi(g)−1 ·G(ρ̄(g))(A)fj(g) ∀A ∈ G(Ksep), g ∈ GK .

Then for A,B ∈ G(Ksep) and g ∈ GK , we have

g .
f1,f2

A · g .
f2,f3

B = g .
f1,f3

(AB).

Proof. We calculate

g .
f1,f2

A · g .
f2,f3

B

=f1(g)−1 ·G(ρ̄(g))(A) · f2(g)f2(g)−1 ·G(ρ̄(g))(B)f3(g)−1

=f1(g)−1 ·G(ρ̄(g))(AB)f3(g)−1

=g .
f1,f3

(AB),

where the second equality comes from the fact aht G(ρ̄(g)) is an endomor-
phism of groups.

Lemma 2.2.18. Let φ : G1 → G2 be a morphism of groupschemes over
k. Choose some representatives {f (1)

i }i for G1 and {f (2)
l }l for G2 as in the

last Lemma. By definition of these representatives for any f
(1)
i there exists a

unique f
(2)
l and some (non-unique) Bi ∈ G2(Ksep), such that

φk ◦ f (1)
i (h) = Bi · f (2)

l (h) ·G2(ρ̄(h))(B−1
i ). (∗)

Then the following diagram is commutative and the right vertical map is
independent of the choice of Bi.
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(morcont(GK ,G1(k))/ ∼) D //

(φk)∗

��

∐
i

H1(OK ,G
(f

(1)
i )

1 (K))

∐
i

[α7→[γ 7→B−1
i ·φKsep◦α(γ)·γ.Bi]]

��

(morcont(GK ,G2(k))/ ∼)
D

//
∐
l

H1(OK ,G
(f

(2)
l )

2 (K)).

Here for γ = prHL(gγ)π
nγ ∈ OK, we have

γ.Bi := γ .
φk◦f

(1)
i ,f

(2)
l

Bi := φk ◦ f (1)
i (gγ) ·G2(ρ̄(gγ) ◦ ϕnγL )(Bi) · f (2)

l (gγ)
−1.

This is well defined by the discussion before Lemma 2.2.7.

Proof. We first show that the right vertical map is well defined. So let
α ∈ C1(OK). First we calculate for γ = prHK (gγ)π

nγ ∈ OK and h ∈ HK that

h ∗
f

(2)
l

(B−1
i · φKsep ◦ α(γ) · γ.Bi)

=f
(2)
l (h)G2(ρ̄(h))(B−1

i ) · φKsep(G1(ρ̄(h))(α(γ))) ·G2(ρ̄(h))(γ.Bi) · f (2)
l (h)−1

(∗)
=B−1

i φKsep ◦ (f
(1)
i (h)G1(ρ̄(h))(α(γ))) ·G2(ρ̄(h))(γ.Bi) · f (2)

l (h)−1

=B−1
i · φKsep ◦ α(γ) · φk ◦ f (1)

i (h) ·G2(ρ̄(h))(γ.Bi) · f (2)
l (h)−1

=B−1
i · φKsep ◦ α(γ) · γ.Bi.

The first equality comes from the fact that φ is a natural transformation, the

third one follows from the fact that α(γ) ∈ G(f
(1)
i )(K), so

f
(1)
i (h) ·G1(ρ̄(h))(α(γ)) = α(γ) · f (1)

i (h)

by (F2) and (F3). The last equality follows from the fact that

γ.Bi ∈ {A ∈ G2(Ksep) | h.A = A ∀h ∈ HK},

which is shown as in the discussion before Lemma 2.2.7. Again by (F2) and
(F3), it follows that the right vertical map sends α to a map, which takes

values in G(f
(2)
l )

2 (K).
Next we calculate for γ, δ ∈ OK that

B−1
i · φKsep(α(γδ)) · γδ.Bi

=B−1
i · φKsep(α(γ))φKsep(γ ∗

f
(1)
i

α(δ)) · γ.(δ.Bi)

=B−1
i · φKsep(α(γ)) · γ.Bi · γ .

f
(2)
l ,φk◦f

(1)
i

B−1
i · γ ∗

φk◦f
(1)
i

φKsep(α(δ)) · γ.(δ.Bi)

=B−1
i · φKsep(α(γ)) · γ.Bi · γ ∗

f
(2)
l

(B−1
i φKsep(α(δ))δ.Bi).
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The first equality comes from the fact that α is a cocycle, the second equality
is due to multiplying with 1 = γ.Bi · γ .

f
(2)
l ,φk◦f

(1)
i

B−1
i (see Remark 2.2.17) and

the fact that

φKsep(γ ∗
f

(1)
i

A) = γ ∗
φk◦f

(1)
i

φKsep(A) ∀A ∈ G1(Ksep).

The third equality follows from Remark 2.2.17. So the right vertical map
sends a continuous cocycle to a cocycle, which is continuous by an analogues
argument as in Lemma 2.2.7. So the right vertical map sends elements of

C1(OK ,G
(f

(1)
i )

1 (K)) to H1(OK ,G
(f

(2)
l )

2 (K)). So next, we have to show that this
map is independent of the choice of cohomology class, but first we show that
the map is independent of the choice of Bi. So let Ai ∈ G(Ksep) be another
element satisfying (∗). As in the remark before Lemma 2.2.7, we calculate
that

Ai = BiB0,

where B0 ∈ G(f
(2)
l )(K), so we have that

A−1
i · φKsep ◦ α(γ) · γ.Ai = B−1

0 · B−1
i · φKsep ◦ α(γ) · γ.Bi · γ ∗

f
(2)
l

B0 ∀γ ∈ OK

by Remark 2.2.17, so those maps are the same on the cohomology. Now let

α, β ∈ C1(OK ,G
(f

(1)
i )

1 (K)) be in the same cohomology class, i.e. there exists

B ∈ G(f
(1)
i )

1 (K), such that

α(γ) = B−1 · β(γ) · γ ∗
f

(1)
i

B.

Then we have

φKsep(B)Bi · f (2)
l (h) ·G2(ρ̄(h))((φKsep(B)Bi)

−1)

=φKsep(B)Bi · f (2)
l (h) ·G2(ρ̄(h))(B−1

i )φKsep(G1(ρ̄(h))(B−1))

(∗)
=φKsep(B · f (1)

i (h) ·G1(ρ̄(h))(B−1))

=φk ◦ f (1)
i (h).

Here, the first equality is due to the fact that φ is a natural transformation

and the last equality comes from the fact that B ∈ G(f
(1)
i )

1 (K) and, again,
(F2) and (F3). It follows that φKsep(B)Bi is an element satisfying (∗) and
we have for every γ ∈ OK

B−1
i · φKsep ◦ β(γ) · γ.Bi

=B−1
i φKsep(B

−1) · φKsep ◦ β(γ) · γ.(φKsep(B)Bi)

=B−1
i · φKsep ◦ α(γ) · γ.Bi.
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Here the first equality follows from the independence of the choice of the
element satisfying (∗) and the second equality is due to α and β being coho-
mological and Remark 2.2.17. Thus, the right vertical map does not depend
on the cohomology class of α and so the map is well defined. Finally, we
calculate that the diagram is commutative. So let f ∈ morcont(GK ,G1(k))

and f
(1)
i be the representative, such that there exists an A0 ∈ G(Ksep) with

f(h) = A0 · f (1)
i (h) ·G1(ρ̄(h))(A−1

0 ) ∀h ∈ HK .

It follows by (∗) and the fact that φ is a natural transformation that

φk ◦ f(h) = φKsep(A0)Bi · f (2)
l (h) ·G2(ρ̄(h))((φKsep(A0)Bi)

−1).

So we calculate

D([φk ◦ f ]∼)

=[γ 7→ B−1
i φKsep(A

−1
0 ) · γ .

φk◦f,f
(2)
l

(φKsep(A0)Bi)]∼

=[γ 7→ B−1
i φKsep(A

−1
0 ) · γ .

φk◦f,φk◦f
(1)
i

φKsep(A0) · γ.Bi]∼,

(∗∗)

where the first equality is by definition and the second one is by Remark
2.2.17. On the other hand, we have that

φKsep ◦ D([f ]∼)

=[γ 7→ φKsep(A
−1
0 ) · φKsep(γ .

f,f
(1)
i

A0)]∼

=[γ 7→ φKsep(A
−1
0 ) · γ .

φk◦f,φk◦f
(1)
i

φKsep(A0)]∼,

so the equality (∗∗) before this one gives the desired commutativity.

The welldefinedness of the map on the right in the last Lemma has the
following application.

Proposition 2.2.19. Let f ∈ morcont(GK ,G(k)). Then

C1(OK ,G(f)(K)) = {α : OK → G(f)(K) | α(γδ) = α(γ)·γ∗
f
α(δ) ∀γ, δ ∈ OK} =: C1,

i.e. such an 1-cocycle is automatically continuous for the weak topology on
G(f)(K).

Proof. Choose an embedding ι : G → GLn and a matrix B ∈ GLn(Ksep),
such that

ιk ◦ f(h) = B−1 ·GLn(ρ̄(h))(B) ∀h ∈ HK .
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This is possible by Hilbert 90. Let α ∈ C1, then as in the last Lemma, we
see that

[γ 7→ B−1 · ιKsep(α(γ)) · γ .
ιk◦f,1

B]

is a 1-cocycle OK → GLn(K), where GLn(K) is an OK-group via GLn(τ̄).
By the discussion before Definition 2.2.6, the weak topology on G(f)(K) is
the same as the topology induced by the embedding

G(f)(K)
⊂→ G(Ksep)

ιKsep→ GLn(Ksep),

where GLn(Ksep) carries the weak topology induced by the valuation on Ksep.
So by arguments as in the proof of Lemma 2.2.7, this map is continuous on
ΓK for the weak topology on GLn(K), if and only if α|ΓK is continuous for the
weak topology on G(f)(K). So we can reduce ourselves to the case that f ≡ 1
is the trivial morphism and G = GLn, but in this case the claim follows from
a variant of Lemma 1.3.16 for the π-torsion case and Theorem 1.3.12.

If we assume G to be connected, then the correspondence “reaches” all
(ϕL,ΓK)-modules.

Theorem 2.2.20. If G is connected, we have inverse bijections

D : (morcont(GK ,G(k))/ ∼)→
∐
i

H1(OK ,G(fi)(K)) : V.

This bijection identifies

{[a]∼ ∈ morcont(GK ,G(k))/ ∼ | j̄K(a) = j̄K(fi)} ∼= H1(OK ,G(fi)(K))

for every i.

Proof. This follows from Proposition 2.2.15 and Corollary 2.1.18.

2.2.3 The Perfect versus the Nonperfect Case

Let f ∈ morcont(GK ,G(k)) and G(f) again be the corresponding form of G
for j(f) over E. Since the correspondence in the last part was possible for
K ∈ {E,F}, we can calculate for connected G that

DF ◦ VE : H1(OK ,G(f)(E))→ H1(OK ,G(f)(F))

is the map given by the inclusion E ⊂ F, which is therefore bijective. But in
the “π-torsion” case, we can generalize this for general G by giving a direct
proof. This needs some preparation.
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Remark. Let G(f) ⊂ GLn be an embedding. Since E is complete as a local
field, the induced topology on

G(f)(E) ⊂ GLn(E)

is complete as well, since G(E) is closed a closed subgroup of the complete
subgroup GLn(E). The later is complete, since

GLn(E) ⊂ En2+1

is closed.

Proposition 2.2.21. (See Coh00, Propositions 4.2.10 & 4.4.45)
Let e be the ramification index of L|Qp. The p-adic logarithm

log : 1 + mL → π1−eOL ∼= OL, 1 + x 7→
∑
n≥1

(−1)n+1x
n

n

is a well defined continuous morphism of compact topological groups, which
is injective on 1 + mN

L for some N >> 0.

Proof. Using the Propositions of (Coh00), it only remains to show that∑
n≥1

(−1)n+1x
n

n
∈ π1−eOL

for every x ∈ mL and the injectivity statement. For the first statement, we
calculate for every n ∈ N, such that n = prm with (p,m) = 1 that

|xn|
|n|
≤ |π

n|
|n|

=
|πn|
|pr|

= |π|n−er ≤ |πr(1−e)| ≤ |π|1−e.

For the second statement, we have that the only elements in the kernel of log
are roots of unity by (Coh00, Propositions 4.4.45). Since [L : Qp] is finite,
there are only finitely many roots of unity in 1 +mL. Let µ ⊂ 1 +mL be this
set of roots of unity. Let ν : L→ Z be the valuation with respect to mL and
set

N := max{ν(x− 1) | x ∈ µ}+ 1.

Then µ ∩ (1 + mN
L ) = {1}, so log is injective on 1 + mN

L .

Lemma 2.2.22. Any closed subgroup H ⊂ OL is a Zp-module of finite rank
with a topological isomorphism H ∼= Zmp . In particular, it is topologically
finitely generated.
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Proof. For every a ∈ Zp, it is a = lim
n
an with an ∈ Z and so

a · h = lim
n

(anh) ∈ H ∀h ∈ H,

since H is closed and the Z-module structure of H is continuous. It follows
that H ⊂ OL is a Zp-submodule. But OL is finitely generated and free over

Zp with a topological isomorphism OL ∼= Z[L:Qp]
p . It follows that there exists

an isomorphism of Zp-modules H ∼= Zmp with m ≤ [L : Qp] by the elementary
divisor theorem (See Bos05, 2.9 Theorem 2). Again by the elementary divisor

theorem (See Bos05, 2.9 Theorem 2), the isomorphism Zmp → H ⊂ Z[L:Qp]
p is

given via multiplication with a matrix A ∈ Mat[L:Qp]×m(Zp). This is contin-
uous and hence a topological isomorphism, since Zmp is compact.

So H ∼= Zmp is topologically finitely generated, since Zp is topologically
generated by 1 ∈ Zp.

Lemma 2.2.23. Let G be topological group and H ⊂ G be a subgroup of finite
index. If H is topologically finitely generated as the topological subgroup of
G, then so is G.

Proof. Let UH := 〈h1, . . . , hn〉 ⊂ H be a finitely generated subgroup, such
that

H ⊂ UH ,

where UH ⊂ G denotes the closure of UH in G. Let g1, . . . , gm ∈ G be
representatives of G/H. Then

U := 〈g1, . . . , gm, h1, . . . , hn〉

is dense in G, since for any 1 ≤ i ≤ m we have that

Ui := 〈gi, h1, . . . , hn〉

satisfies

giH ⊂ giUH = giUH ⊂ Ui ⊂ U

by the fact that multiplication with gi is a homeomorphism from G to itself.
It follows that

G =
∐
i

giH ⊂ U.

Corollary 2.2.24. The group ΓK is topologically finitely generated.
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Proof. It is
O×L ∼= Z/(q − 1)Z× (1 + mL).

First we show

ΓK = (ΓK ∩ Z/(q − 1)Z)× (ΓK ∩ (1 + mL)). (∗)

We have to show that for x, y ∈ O×L , such that x ∈ Z/(q−1)Z and y ∈ 1+mL

it is
xy ∈ ΓK ⇔ x ∈ ΓK , y ∈ ΓK .

The direction from right to left is obvious. If xy ∈ ΓK , it follows from
x ∈ Z/(q − 1)Z that

(xy)q−1 = xq−1yq−1 = yq−1,

so yq−1 ∈ ΓK . The group 1+mL is a pro-p-group by Proposition 1.1.23.a), so
the Z-module structure extends to a Zp-module structure via taking limits
similar as in the proof of Lemma 2.2.22. It follows that

UK := ΓK ∩ (1 + mL)

is a Zp-module by an argument as in the proof of Lemma 2.2.22, since UK ⊂
1 + mL is open and hence closed. But q − 1 is a unit in Zp, so

yq−1 ∈ ΓK ⇒ y = (yq−1)
1

(q−1) ∈ ΓK .

It follows that

xy ∈ ΓK ⇒ y ∈ ΓK and x = (xy)y−1 ∈ ΓK .

By (∗) it suffices to show that UK is topologically finitely generated, but
UK ⊂ (1 + mL) is open and hence closed in the compact topological group
1 + mL. By Proposition 2.2.21 and Lemma 2.2.22, it is

1 + mN
L
∼= Zmp

for some N,m ≥ 1. We deduce via Proposition 2.2.21 that the group

UK,N := UK ∩ (1 + mN
L ) = ΓK ∩ (1 + mN

L )

is topologically isomorphic to a closed subgroup of OL and so UK,N is topo-
logically finitely generated by Lemma 2.2.22. So UK is topologically finitely
generated by Lemma 2.2.23, since UK,N ⊂ UK is of finite index. This last
statement follows from the fact that

UK/UK,N ∼= Gal(KN |K1)

by Proposition 1.1.23, where Kr = KLr for r ∈ N.
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Proposition 2.2.25. The inclusion E ⊂ F induces a bijection

ι : H1(OK ,G(f)(E))→̃H1(OK ,G(f)(F)).

Proof. By Lemma 2.1.16 and (F3) we have that for any A ∈ G(f)(F), there
is an n ∈ N, such that

G(ϕnL)(A) ∈ G(f)(E).

It is OK
∼= πN × ΓK . Since ΓK is topologically finitely generated, every

α ∈ C1(OK ,G(f)(F)) is continuous on ΓK and G(f)(E) is complete, we have
that there exists an n ∈ N, such that

G(ϕnL) ◦ α ∈ C1(OK ,G(f)(E)).

Here G(ϕnL) ◦ α is still a cocycle since G(ϕnL) commutes with the OK-action
on G(f)(F) as it is the action given by πn.

Now let α0 ∈ C1(OK ,G(f)(E)) and m ∈ N be arbitrary. Then we calculate
using that G(ϕL) = G(f)(π) and α0 is a 1-cocycle

G(ϕmL )(α0(γ)) = α0(πm)−1α0(πm)G(ϕmL )(α0(γ))

= α0(πm)−1α0(γπm)

= α0(πm)−1α0(γ) · γ ∗
f
α0(π)m.

So
α0 ∼ G(ϕmL ) ◦ α0

are cohomological and thus

C1(OK ,G(f)(F))→ H1(OK ,G(f)(E)), α 7→ [G(ϕnL) ◦ α]∼, n >> 0

is independent on the choice of n, if chosen big enough. Let

α, β ∈ C1(OK ,G(f)(F))

cohomological, so there is a B ∈ G(f)(F), such that

B−1 · α(γ) · γ ∗
f
B = β(γ) ∀γ ∈ OK .

Now choose n big enough, so that

G(ϕnL) ◦ α ∈ C1(OK ,G(f)(E)) and G(ϕnL)(B) ∈ G(f)(E).

Then

G(ϕnL)(β(γ)) = G(ϕnL)(B−1) ·G(ϕnL)(α(γ)) · γ ∗
f

((G(ϕnL)(B)) ∀γ ∈ OK ,
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so G(ϕnL) ◦ β ∈ C1(OK ,G(f)(E)) and

G(ϕnL) ◦ α ∼ G(ϕnL) ◦ β

are cohomological, so we get an induced map

φ : H1(OK ,G(f)(F))→ H1(OK ,G(f)(E)), [α]∼ 7→ [G(ϕnL) ◦ α]∼, n >> 0.

Since we can choose n = 0 for α0 ∈ C1(OK ,G(f)(E)), we have

φ(ι([α0]∼)) = [α0]∼.

On the other hand for any α ∈ C1(OK ,G(f)(F)) and any m, it is G(ϕmL )◦α ∈
C1(OK ,G(f)(F)) cohomological to α. This is shown just as for α0 above.
Thus, we obtain

ι(φ([α]∼)) = [α]∼
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2.3 Examples

In this section, we will give a few examples for the image of the map

j̄ : morcont(GK ,G(k))→ H1(HK ,G(Esep)).

Example 2.3.1. i) For G = GLn, we have j̄ ≡ 1 by Hilbert 90 (See
Ser79, chapter X §1 Proposition 3), and so we “recover” the classical
correspondence of representations and (ϕ,Γ)-modules. (In the charac-
teristic 0 case, we will see a proof that the maps defined in the last
section coincide with the maps induced by the Functor of Theorem
1.3.4 for GLn, if L = K.) The same is true for the affine space G = An

by the additive version of Hilbert 90.

ii) Since E is a local field, if GE is semisimple and simply connected, then
we also have j̄ ≡ 1, since then

H1(HK ,G(Esep)) = 1

by (Ser97, chapter III §3.1 b) on p. 139).

iii) Let G = PGLn the quotient GLn /GL1. It exists and is a linear alge-
braic group by (Mil17, 5.c) Proposition 5.18) and is smooth by (Mil17,
1.e) Proposition 1.62.b)). Then for every field extension E|k, we have
that

PGLn(E) = GLn(E)/E×

as we will prove later in Corollary 2.3.24. We will use this fact implicit-
edly many times in the following.

In this case, we also have j̄ ≡ 1, if K∞|K contains a (galois) extension
E|K, such that [E : K] = q− 1, for example if L∞∩K = L, since then
K1|K has degree q − 1, see Proposition 1.1.23.i). This is non trivial,
since

H1(HK ,PGLn(Esep)) ∼= Z/nZ

by local classfield theory, see (Ser79, chapter X §5 Proposition 9 and
Lemma 1) and (Ser67, 1.6 Proposition 4). For this, we calculate

H2(GK , k
×) ∼= Z/(q − 1)Z

via the short exact sequence

1→ k×
⊂→ L

× (·)q−1

→ L
× → 1.
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and the fact that we have an isomorphism

invK : H2(GK , L̄
×)

(inf)−1

→ H2(Ẑ, (Knr)×)
(v)∗→ H2(Ẑ,Z)

δ−1

→ H1(Ẑ,Q/Z)
φ 7→φ(1)→ Q/Z

by the exact sequence

0→ Z→ Q→ Q/Z→ 0,

where v : Knr → Z is the valuation with respect to a uniformizer
πK ∈ mK , inf is the inflation map, Ẑ ∼= Gal(Knr|K), see Proposi-
tion 1.2.29.ii) and (Ser67, 1.1 Theorem 1 & Corollary before Theorem
3). Now consider the commutative diagram, where res denotes the
restriction map

H2(Gal(E|K), E×)
inf

))

inf // H2(ΓK , K
×
∞)

inf
��

H2(GK , k
×)

res

��

(⊂)∗
// H2(GK , L

×
)

res
��

H2(HK , k
×)

(⊂)∗
// H2(HK , L

×
).

Here the maps (⊂)∗ are injective by Hilbert 90. Furthermore

inf : H2(Gal(E|K), E×)→ H2(GK , L
×

)

is injective and

invK ◦ inf : H2(Gal(E|K), E×)→ Q/Z

has image Z/(q−1)Z by (Neu15, chapter I § 6 (1.6.7) Proposition) and
(Ser67, 1.6 Proposition 4). By (Neu15, chapter I § 6 (1.6.7) Proposi-
tion) and Hilbert 90 it furthermore follows that

H2(ΓK , K
×
∞)

inf→ H2(GK , L
×

)
res→ H2(HK , L

×
)

is exact. So since

(⊂)∗ : H2(GK , k
×)→ H2(GK , L

×
) and inf : H2(Gal(E|K), E×)→ H2(GK , L

×
)

have the same image and

(⊂)∗ : H2(HK , k
×)→ H2(HK , L

×
)
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is injective it follows that

res : H2(GK , k
×)→ H2(HK , k

×)

is the trivial map 0. Now consider the following commutative diagram,
which has an exact horizontal sequence.

H1(GK ,PGLn(k))

0

))

δ //

res

��

H2(GK , k
×)

res=0
��

H1(HK ,GLn(k))
(pr)∗ //

(⊂)∗
��

H1(HK ,PGLn(k))

(⊂)∗
��

δ
// H2(HK , k

×)

H1(HK ,GLn(Esep)) (pr)∗ // H1(HK ,PGLn(Esep))

It follows by the diagonal 0 that

res : H1(GK ,PGLn(k))→ H1(HK ,PGLn(k))

has image in the image of (pr)∗ and so

j̄ : morcont(GK ,PGLn(k))
pr→ H1(GK ,PGLn(k))

(⊂)∗◦res−→ H1(HK ,PGLn(Esep))

is the trivial map since

H1(HK ,GLn(Esep)) = 0

by Hilbert 90.

iv) Let again G = PGLn. In the last example, we have seen that j̄ is triv-
ial, if K∞ contains a field extension E|K, such that [E : K] = q − 1.
We now show that this condition is necessary for the triviality of j̄,
if n >> 0 is chosen suitably. In particular, if q 6= 2 and K = L1,
then K∞|K doesn’t contain such a field by Proposition 1.1.23.i), so we
see that then j̄ is not trivial for some suitable n >> 0 by the follow-
ing argumentation. In particular, since the only cohomology class in
H1(HK ,PGLn(Esep)) that induces the isomorphism class of the trivial
E-form PGLn,E is the trivial cohomology class by (Har68, §3.3), in this
case there is a nontrivial (pure) inner form for the correspondence of
Galois representations and (ϕL,ΓK)-module.

We consider the commutative diagram
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H1(GK ,PGLn(k))
δ
(n)
1 //

res

��

H2(GK , k
×)

res

��
H1(HK ,PGLn(k))

(⊂)∗

��

H2(HK , k
×)

(⊂)∗

��
H1(HK ,PGLn(Esep))

δ2
// H2(HK , (Esep)×)

By (Ser79, chapter X §5 Proposition 9) the map δ2 is injective. Consider
the short exact sequence

0→ k×
⊂→ (Esep)× (·)q−1

→ (Esep)× → 0,

where the right arrow is indeed surjective, since the polynomials Xq−1−
a ∈ Esep[X] are separable for a 6= 0. As in the last example, we see via
Hilbert 90 that

H2(HK , k
×)

(⊂)∗→ H2(HK , (Esep)×)

is injective. If m|n, i.e. n = rm for n, r,m ≥ 1 we have an embedding
of GK-groups

φm,n : PGLm(k)→ PGLn(k), A 7→

A 0
. . .

0 A

 ,

which comes from an embedding φ̃m,n GLm(k)→ GLn(k) given by the
definition. We have the following commutative diagram of short exact
sequences.

0 // k× //

id
��

GLm(k) //

φ̃m,n
��

PGLm(k)

φm,n
��

// 0

0 // k× // GLn(k) // PGLn(k) // 0

By functoriality of the linking morphisms δ
(m)
1 , δ

(n)
2 , we obtain the com-

mutativity
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H1(GK ,PGLm(k))

(φm,n)∗

��

δ
(m)
1

))
H2(GK , k

×)

H1(GK ,PGLn(k))
δ
(n)
1

55

It follows that for m|n, we have that

im(δ
(m)
1 ) ⊂ im(δ

(n)
1 ). (div)

In the last example, we calculated that H2(GK , k
×) ∼= Z/(q − 1)Z is

finite. We write
{1, . . . , q − 1} = H2(GK , k

×).

Furthermore the union of the image of the maps δ
(n)
1 going through all

n ≥ 1 is all of H2(GK , k
×) by (Hup67, V 24.2 Hilfssatz c)). So, for

every i ∈ H2(GK , k
×), there exists an ni ≥ 1, such that i ∈ im(δ

(ni)
1 ).

Then by (div), we have that δ
(n1n2···nq−1)
1 is surjective.

The map j̄ is the one on the left (post composed with the projection
morcont(GK ,PGLn(k)) → H1(GK ,PGLn(k))) in the first diagram of

this example iv), so j̄ is trivial for some n >> 0, such that δ
(n)
1 is

surjective, if and only if

res : H2(GK , k
×)→ H2(HK , k

×)

is the trivial map. But in the last example, we calculated that the
kernel of res is the image of the inflation

inf : H2(ΓK , K
×
∞)→ H2(GK , L

×
)

intersected with H2(GK , k
×) ∼= Z/(q − 1)Z. So res is zero, if and only

if K∞ contains a field extension E|K, such that [E : K] = q − 1 by
(Ser67, 1.6 Proposition 4).

v) Let S2 be the group with 2 elements. For G = S2k
= Spec(

∏
x∈S2

k), we

have that

j̄ : morcont(GK , S2)→ morcont(HK , S2), f 7→ f|HK .

By Galoistheory this corresponds to

{L|E|K | [E : K] ≤ 2} → {L|E∞|E∞ | [E∞ : K∞] ≤ 2}, E 7→ EK∞.
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But this map is nontrivial, e.g. choose K to be the unramified extension
of L of degree 2. On the other hand S2 is commutative, so the only inner
form of G is the trival one. That means that we go through “multiple
copies” of H1(OK ,G(K)) on the right hand side of the correspondence,
although the different copies of G(K) might have different OK-actions.
Also consider that Ψ ≡ 1 in this case.

vi) Let S3 be the non commutative group with 6 elements. For G = S3k
,

we have S2k
⊂ S3k

and so j̄ is non trivial, but S3 also has trivial
center and only inner automorphisms, so we have to go through at
least one non trivial (pure) inner form for the correspondence of Galois
representations and (ϕL,ΓK)-module. Here we also have Ψ ≡ 1.

In our examples, j̄ was always trivial, when G was connected (or reduc-
tive, or semisimple) and L = K. In the proof for PGLn, we used “both
parts” of the map j̄, i.e. that it is the composition of the map induced by the
inclusion k ⊂ Esep and the restriction HK ⊂ GK . We show in the following
that this was necessary: For the rest of this section, we assume

G = PGL2 and K = L = Q3

and we show that the map induced by the inclusion k ⊂ Esep

H1(HK ,PGL2(k))→ H1(HK ,PGL2(Esep))

is non trivial. So, if one wants to go prove that j̄ is trivial for a bigger class
of linear algebraic groups, one has to use both the inclusion and restriction
part.

Lemma 2.3.2. For a totally ramified field E|E, there exist exactly two cyclic
galois extensions

E0|E with [E0 : E] = 4,

which are in Esep.

Proof. Denote by Eab ⊂ Esep the maximal abelian extension of F . By local
classfield theory, it is

Eab = EnrE∞.

So it is
Gal(Eab|E) ∼= Ẑ× Z/2Z× (1 + mE).

By Proposition 1.1.23.i), the group (1 + mE) is a pro-3-group. It follows by
Galois theory that the cyclic extensions E0|E of degree 4 correspond to the
continuous projections

Ẑ× Z/2Z→ Z/4Z
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up to having the same kernel. There are exactly two of those, namely the
map (pr, triv) and (pr, ι), where pr : Ẑ → Z/4Z is the projection, triv :
Z/2Z→ Z/4Z is the trivial map and ι : Z/2Z→ Z/4Z is the inclusion.

One of these extensions is obviously E(4)|E, where E(4) denotes the un-
ramified extension of degree 4 over E. The other extension is the following.

Proposition 2.3.3. Let E|E be a totally ramified field extension. Then
E ∼= F3((Y )). It is F9 = F3[i] for i2 = −1. We set

u :=
√

(1 + i)Y and v :=
√

(1− i)Y .

Then
E0 := E(u) = E(u, v)

is a cyclic galois extension of degree 4 over E with ramification index e = 2
and inertia index f = 2.

Proof. We calculate
uv = ±iY,

so

E(u) = E(u, v), since i =
u2

Y
− 1 ∈ E(u).

Furthermore, it is
uv 6∈ K, u2 6∈ K, v2 6∈ K.

On the other hand we have

P (T ) := (T 2 − u2)(T 2 − v2) = T 4 + Y T 2 − Y 2 ∈ E[T ],

since
u2 + v2 = −Y.

This implies that P (T ) is the minimal polynomial of u and that E(u) =
E(u, v) is its splitting field. It is b := −Y 2 not a square in E, since i 6∈ E,
but for a := Y , it is

b(a2 − 4b) = −Y 2(Y 2 + Y 2) = −2Y 4 = Y 4

a square. By (Hun00, chapter V.4 exercise 9.(b)), it follows that E(u)|E is
cyclic of degree 4. Since i ∈ E(u), it is F9 ⊂ E(u), so 2 | f , but on the other
hand it is

u2 = (1 + i)Y,

so 2 | e. Since [E(u) : E] = 4, it is e = 2 = f .
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Recall that we set K = L = Q3. Consider the exact, commutative
diagram

H1(HK ,GL2(k))
(pr)∗ // H1(HK ,PGL2(k))

δ1 //

(⊂)∗=φ1

��

H2(HK , k
×)

(⊂)∗=φ2

��
H1(HK ,PGL2(Esep))

δ2
// H2(HK , (Esep)×).

By Hilbert 90, φ2 and δ2 are injective. It follows for [f ] ∈ H1(HK ,PGL2(k))
that

φ1([f ]) = 1, if and only if [f ] ∈ im((pr)∗).

Since HL acts trivially on GL2(k), it is

H1(HL,GL2(k)) = morcont(HL,GLn(k))/ ∼ .

The same holds for PGL2.
Consider K(2)|E to be the unramified extension of degree 2 and K2|E to

be a totally ramified extension of degree 2 given by taking an uniformizer
X ∈ E and setting

Y :=
√
X, K2 := E(Y ).

Then K(2)K2 is galois with galois group S2⊕S2, where S2 denotes the group
with two elements.

Proposition 2.3.4. Let Z ⊂ GLn(k) be the center. We define a morphism
f ∈ morcont(HK ,PGL2(k)) by setting

f : HK → HK/GK(2)K2
→ PGL2(k),


(1, 0) 7→

(
0 −1

1 0

)
· Z

(0, 1) 7→

(
1 0

0 −1

)
· Z

,

where (1, 0) corresponds to the Frobenius ϕ on K(2)|E and (0, 1) corresponds
to the non trivial automorphism on K2|E. Then [f ] /∈ im((pr)∗).

Proof. Assume there exists B ∈ PGL2(k) and a continuous morphism

f̃ : HL → GL2(k),

such that pr ◦f̃(h) = B−1f(h)B for all h ∈ HL. Since there exists B̃ ∈
GL2(k) with pr(B̃) = B, we can assume that B = 1.
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It is ker(f̃) ⊂ f̃−1(Z) = ker(f) open and normal and so ker(f̃) = GE for
a finite galois extension E|E, such that K(2)K2 ⊂ E. Since Z = {id2,−id2},

we see, by making a case study, that any lift of

(
0 −1
1 0

)
· Z and any lift of(

1 0
0 −1

)
· Z generate

U := pr−1(〈
(

0 −1
1 0

)
· Z,

(
1 0
0 −1

)
· Z〉).

It follows that im(f̃) = U and so E|K(2)K2 has degree 2, since

U → 〈
(

0 −1
1 0

)
· Z,

(
1 0
0 −1

)
· Z〉

has kernel Z = S2. It is easy to see that any lift of

(
0 −1
1 0

)
· Z has order

4 and any lift of

(
1 0
0 −1

)
· Z has order 2. If E|K(2)K2 would be totally

ramified, then E|K2 is a galois extension of degree 4 with inertia degree
f = 2 and ramification index e = 2, since K(2) ⊂ E and E|K(2)K2 is totally
ramified. If E|K2 has galois group S2 ⊕ S2, then

E = K(2)Ktot

for a totally ramified extension Ktot|E of degree 4 with K2 ⊂ Ktot. Then

E ∼= K(2) ⊗
E
Ktot,

since K(2)∩Ktot = E. It follows that ϕ⊗ idKtot is an E-algebra automorphism
on E, which lifts the automorphism of K(2)K2 corresponding to (1, 0), since
K2 ⊂ Ktot. This element has order 2, but f̃(ϕ⊗ idKtot) has order 4. This is
a contradiction.

So E|K2 is cyclic. By Lemma 2.3.2 and Proposition 2.3.3, we have that
E = K2(u), where u :=

√
(1 + i)Y and i ∈ F9 with i2 = −1. Then

P (T ) := T 4 − (1 + i)2X ∈ K(2)[T ]

is the minimal polynomial of u over K(2). It is b := −(1 + i)2X not a square
in K(2), since X is a uniformizer in K(2), but for a = 0, we have that

b(a− 4b) = −4b2
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is a square in K(2), since i ∈ K(2). So E|K(2) is cyclic of degree 4 by (Hun00,
chapter V.4 exercise 9.(b)). Let

φ̃ ∈ Gal(E|K(2))

be a lift of the nontrivial element φ ∈ Gal(K2|E) via

Gal(E|K(2))→ Gal(K2|E), a 7→ a|K2 .

Since Gal(E|K(2)) is cyclic of degree 4, it is φ̃ of order 4, but f̃(φ̃) is of order
2. This is a contradiction, since f̃ : Gal(E|K(2))→ U is injective.

It follows that E|K(2)K2 is unramified, so E = K(4)K2, where K(4)|E is
the unramified extension of degree 4, which is an abelian galois extension
over EL with Galois group

Z/4Z⊕ S2,

but U is not abelian. Since U ∼= HK/GE, this is yet another contradiction,
so there can’t be such a f̃ .

Corollary 2.3.5. The map

H1(HK ,PGL2(k))→ H1(HK ,PGL2(Esep))

induced by the inclusion k ⊂ Esep is surjective and in particular not constant.

Proof. Since
H1(HK ,PGL2(Esep) ∼= Z/2Z

by (Ser79, chapter X §5 Proposition 9 and Lemma 1) and (Ser67, 1.6 Propo-
sition 4), it suffices to show that the map is not constant. But this follows
from Proposition 2.3.4 and the discussion before it.

2.3.1 Some Calculations for Semisimple Groups

Definition 2.3.6. We define

[K∞ : K]

to be the set of all degrees [E : K], where E|K is a finite extension with
E ⊂ K∞. We say that an n ≥ 1 satisfies that n divides [K∞ : K] or
n|[K∞ : K], if n divides one of the degrees [E : K] in [K∞ : K].

Let
µn := Spec(k[X]/〈Xn − 1〉)

be the groupscheme of n-the roots of unity.
The argumentation in Example 2.3.1.iii) has the following generalization.
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Proposition 2.3.7. Let k̄ ⊂ C[
p be the algebraic closure of k. Let H,G be two

linear algebraic groups over k, such that there exists a commutative diagram
of short exact sequences

1 //
m⊕
i=1

µni(k)

(⊂)∗
��

// H(k)

(⊂)∗

��

// G(k)

(⊂)∗

��

// 1

1 //
m⊕
i=1

µni(F) // H(F) // G(F) // 1

of GK-groups, where the GK-action is the one induced by the natural action

on k̄ resp. F. If the
m⊕
i=1

µni(E) lie in the center of H(E) for E ∈ {k,F},

ni|[K∞ : K] for all 1 ≤ i ≤ m and H1(HK ,H(F)) = 1, then

j̄ : morcont(GK ,G(k))→ H1(HK ,G(F))

is the trivial map.

Proof. Since char(k) = p, we can without loss of generality assume that p - ni
for alle 1 ≤ i ≤ m. Since k̄ is algebraically closed, we have a short exact
sequence of GK-groups

0→ µn(k)→ L
(·)n→ L→ 0,

if p - n. Beware that the GK-action of k as the residue field of L and as the
subfield k ⊂ C[

p coinside, since

k = lim
←
(·)q

(OLnr/πOLnr) ⊂ OC[p .

As in Example 2.3.1.iii), we calculate that

H2(GK , µn(k)) ∼= Z/nZ ⊂ Q/Z

and that
inf : H2(ΓK , K

×
∞)→ H2(GK , L

×
) ∼= Q/Z

has image containing Z/nZ, if n|[K∞ : K]. It follows that

res : H2(GK , µn(k))→ H2(HK , µn(k))

is the zero map, if n|[K∞ : K], since im(inf) ⊂ res−1({1}) already on cocycle
level by definition of these maps and since

(⊂)∗ : H2(HK , µn(k))→ H2(HK , L
×

)

is injective by Hilbert 90. We have the following commutative diagram.
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H1(GK ,G(k))

(⊂)∗

��

H1(GK ,G(k))
δ1 //

res

��

m⊕
i=1

H2(GK , µni(k))

⊕res

��

H1(HK ,G(k))

(⊂)∗

��

m⊕
i=1

H2(HK , µni(k))

⊕(⊂)∗

��

H1(HK ,G(F))
δ2

//
m⊕
i=1

H2(HK , µni(F))

Beware here that k is a topological GK-group with the discrete topology,
so the second row makes sense. Furthermore, we could pull out the

⊕
in the second column by (Neu13, (3.7) Proposition). By assumption and
the argument above the map ⊕res is the zero map and δ2 has trivial fiber
δ−1

2 ({1}) = {1}, so the map on the left column is the trivial map. But this
map is the map j̄, since (⊂)∗ commutes with the restriction res.

Remark. Recall that by Remark 2.2.3 the map

j̄E : morcont(GK ,G(k))→ H1(HK ,G(Esep))

is trivial, if and only if the map

j̄F : morcont(GK ,G(k))→ H1(HK ,G(F))

is trivial.

We will apply this Proposition to the universal covering of a simple reduc-
tive group over k. We recall some facts about the classification of reductive
groups via root data that we need for this.

Lemma 2.3.8. Let E be a field of characteristic char(E) = p > 0. Let H be
a linear algebraic group over E. Then

{A ∈ H(E) | ∃n ≥ 1 : Ap
n

= 1} = {1}.

96



Proof. Fix an embedding H ⊂ GLn. It suffices to show the statement for
GLn(E), since H(E) ⊂ GLn(E) is an embedding of groups. Let A = (aij)ij ∈
GLn(E). Since (·)p : E → E is a morphism of rings, we have

Ap
n

= (ap
n

ij ),

so Ap
n

= 1 holds, if and only if if and only if A = 1, because (·)p : E → E is
injective.

We will follow the convention that every reductive (and in particular
semisimple) group over k are connected and smooth.

Definition 2.3.9. Let E be a field. A smooth and connected linear algebraic
group H over E is called reductive (resp. semisimple), if there exists no non-
zero Zariski-closed, Zariski-connected, normal and unipotent (resp. solvable)
subgroup in H(E) for some algebraic closure E|E.

Definition 2.3.10. Let X be a free abelian group of finite rank with a finite
subset R ⊂ X and Q ⊂ X be the subgroup generated by R. If (Q⊗R, R) is
a root system (See Spr98, part 7.4.1), we will write (X,R) to be an integral
root system. Let H be a reductive group over some field E with algebraic

closure E. Let T ⊂ H(E) be a maximal torus, i.e. T ∼=
n∏
i=1

E
×

is isomorphic

as varieties over E. We define the characters of T to be

X∗(T ) := {φ : T → E
× | φ is a morphism of group varieties}.

Let (X,R) := (X∗(T ), R) be the integral root system corresponding to H(E)
(See Spr98, part 7.4.3). This is independent of the choice of T . We define
the cocenter of H or of (X,R) to be

C∗ := C∗(H) := C∗(X,R) := X/Q,

where Q is the subgroup generated by R ⊂ X.

From now on G is always a semisimple group over k.

Lemma 2.3.11. Let C ⊂ G(k) be the center. Then there exists a (non
canonical) embedding of groups

C ⊂ C∗

from the center to the cocenter.
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Proof. Let G := G(k). The group C is a group variety over k, since it is the
intersection of all Zariski-closed subsets

Cx(G) := {g ∈ G | gxg−1 = x}

for all x ∈ G. It is finite by (Spr98, 1.2.4 Proposition, 7.3.1 Proposition

& 8.1.5.ii) Theorem). Let mork−var(C, k
×

) be the maps of group varieties.
Then

mork−var(C, k
×

) = morGrp(C, k
×

)

are the morphisms of groups, since any map from a finite subset of a vari-

ety into a variety is polynomial. Furthermore k
× ⊂ Q/Z is the subgroup

lim
→
p-n

Z/nZ. It follows by Lemma 2.3.8 and the structure theorem of finite

abelian groups that there exists a non canonical isomorphism

C ∼= mork−var(C, k
×

).

Now by (Spr98, 8.1.12.(8) Exercises), there exists an embedding

mork−var(C, k
×

) ⊂ C∗.

Definition 2.3.12. Let (V,R) be a rootsystem. Denote R∨ ⊂ V ∨ :=
morR−mod(V,R) the dual to the root system R. We define the weight lat-
tice of (V,R) to be the free abelian group of finite rank

P := {v ∈ V | 〈v,R∨〉 ⊂ Z}.

Let Q ⊂ V be the subgroup generated by R. It is Q ⊂ P and we define the
fundamental group of (V,R) to be

π1(V,R) := P/Q.

Remark 2.3.13. If (X,R) is the integral root system of a semisimple group
H over some field E, we set V := X ⊗ R. Then (V,R) is a root system and
for this root system we have

Q ⊂ X ⊂ P

by (Spr98, 8.1.8.ii) Proposition & part 7.4.3) and so

C∗(H) = X/Q ⊂ P/Q = π1(V,R).
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If C ⊂ H(E) is the center, then we furthermore have

C ⊂ C∗(H) ⊂ π1(V,R)

by Lemma 2.3.11.
Beware though, that in general it is

π1(V,R) 6= π1(H(E), 1),

where π1(G(E), 1) is the kernel of the universal covering of H(E), since the
latter is dependent on the lattice X ⊂ V of characters of a maximal torus in
H(E), but the former is not.

We follow the notation of (Spr98, part 9.5.1) for the connected Dynkin
diagrams. We have the following table of fundamental groups for the the
root system corresponding to the Dynkin diagram by (Spr98, 17.1-17.8).
An−1 Bn Cn D2n D2n+1 E6 E7 E8 F4 G2

Z/nZ Z/2Z Z/2Z Z/2Z× Z/2Z Z/4Z Z/3Z Z/2Z 1 1 1

Definition 2.3.14. We say that a linear algebraic group H over some field
E is quasi-simple, if it is semisimple and H(E) doesn’t contain a non-zero
Zariski-connected, Zariski-closed and normal subgroup, where E|E is an al-
gebraic closure.

We set
Stype ∈ {An, Bn, Cn, Dn, E6, E7, E8, F4, G2}

to be a type of a connected Dynkin diagram and its corresponding root
system.

Remark 2.3.15. (See Spr98, 8.1.12.(4) Exercises & part 9.5.1)
Let H be a semisimple group over some field E with corresponding integral

root system (X,R). By Remark 2.3.15, the pair (X⊗R, R) is a root system.
Then H is quasi-simple, if and only if (X ⊗ R, R) is one of the types Stype.

Let φ : H1 → H2 be a morphism between reductive groups over some field
E, such that the induced map

φE : H1(E)→ H2(E)

is surjective and has finite kernel for an algebraic closure E|E. This is equiv-
alent to φ being surjective and having finite kernel by the discussion before
(Con15, Example A.1.12). Let (Xi, Ri) be the integral root system corre-
sponding to Hi, i = 1, 2. We set l = char(E), if char(E) > 0 or l = 1, if
char(E) = 0. By (Spr98, part 9.6.3) the isogeny φ induces a tripple (f, b, q),
where

f := f(φ) : X2 → X1
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is an embedding of groups with finite cokernel,

b := b(φ) : R1 → R2

is a bijection and
q := q(φ) : R1 → {ln |n ≥ 0}

is a map satisfying

f(b(α)) = q(α) · α, f∨(α∨) = q(α) · b(α)∨, ∀α ∈ R1,

where α∨ ∈ R∨1 is the coroot corresponding to α and

f∨ : · ◦ f : X∨1 := morGrp(X1,Z)→ morGrp(X2,Z) =: X∨2 .

A triple (f, b, q) satisfying these conditions is called an l-morphism.

Definition 2.3.16. Let E be a field

i) Let H1,H2 be two semisimple algebraic groups over E. A morphism of
groups

φ : H1 → H2

is called an isogeny, if it is surjective and has finite kernel. An isogeny is
called central, if q(φ) ≡ 1 is the trivial map. By (Con15, Theorem A.4.10),
this is equivalent to the kernel of φ being contained in some scheme theoretic
center, which we define later.

ii) A semisimple group H over E is called simply connected, if for every con-
nected H̃, we have that every central isogeny

φ : H̃→ H

is an isomorphism.

We elaborate on the scheme theoretic center.

Proposition 2.3.17. (See Mil17, 1.k) Proposition 1.92)
Let H be a linear algebraic group over a field E and let H ⊂ H be a closed

subgroup. Then the functor

CH(H)(R) := {h ∈ H(R) | hgh−1 = g ∀g ∈ H(S), ∀R-algebras S}

for every E-algebra R is represented by a closed subgroup CH(H) ⊂ H called
the centralizer of H in H. If H = H, we define the center of H to be

Z(H) := CH(H).
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Semisimple groups have universal coverings.

Proposition 2.3.18. (See Con15, Corollary A.4.11)
Let H be a semisimple group over some field E. Then up to unique iso-

morphism there exists a unique simply connected semisimple group H̃ and a
central isogeny

H̃→ H.

We call H̃ the universal cover of H. This Formation is stable under basechange
to another basefield. Furthermore, if (X,R) is the integral root system corre-
sponding to H, then the integral root system to H̃ is (P,R), where P ⊂ X⊗R
is the weight lattice as in Remark 2.3.13. In particular, if H is quasi-simple,
then so is H̃.

Proof. The statement about the weight lattice is in the proof of (Con15,
Corollary A.4.11). The statement about being quasi-simple is this statement
about the weight lattice together with Remark 2.3.15.

Proposition 2.3.19. (See Mil17, 2.e) part 2.31 & 21.e) Theorem 21.51)
If H is semisimple over some field E, then we have a central isogeny

n∏
i=1

Hi → H,

where the Hi are quasi-simple, linear algebraic groups over E.

Corollary 2.3.20. If H is semisimple over some field E, then we have a
central isogeny

n∏
i=1

Hi → H,

where the Hi are quasi-simple, simply connected linear algebraic groups over
E.

Proof. Proposition 2.3.18 and Proposition 2.3.19, where we use the fact that
the product of central isogenies is still a central isogeny.

Definition 2.3.21. Let H be a linear algebraic group over some field E.
Furthermore let Esep be the separable closure in some algebraically closed
field containing E.

i) We call H = T a torus, if HEsep
∼=

n∏
i=1

GL1,Esep .

ii) We call a torus H = T split over E, if H ∼=
n∏
i=1

GL1,E.
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iii) We call a reductive group H split over E, if there exists a maximal
torus T ⊂ H, such that T is split over E.

Remark. By the classification of reductive groups H split over E (See Con15,
Theorem A.4.6), we can deduce by the construction of the universal covering
given in the proof of (Con15, Corollary A.4.11) that if H is a semisimple
group split over E, then so is its universal covering H̃. In the situation of
Proposition 2.3.19, we have by (Bor91, 22.9 Proposition) that the dimension
of a torus T ⊂ H, which is maximal for the property of being split over E
is the sum of the dimensions of such tori Ti ⊂ Hi for all 1 ≤ i ≤ n and

furthermore that
n∏
i=1

Ti is such a torus in
n∏
i=1

Hi. Thus, if H is split over E,

then so is the product
n∏
i=1

Hi by the following argumentation. A surjective

map onto a reduced linear algebraic group over E is faithfully flat by (Mil17,
1.g) Summary 1.71). So the central isogeny is still a central isogeny after
basechange to an algebraic closure E of E. Since H is E-split, the dimension
of a maximal E-split torus is equal to a maximal torus in HE. So the same is

true for
n∏
i=1

Hi by the statements above from (Bor91, 22.9 Proposition). But

by (Gö10, Lemma 5.7 (1)) the dimension of a closed subset of a torus is equal
to the dimension of the torus, if and only if the closed subset is equal to the

torus. It follows that
n∏
i=1

Ti is a maximal torus in
n∏
i=1

Hi.

Together, we obtain that in the situation of Corollary 2.3.20, we have

that
n∏
i=1

Hi is split over E, if H is split over E.

Lemma 2.3.22. Let H be semisimple and split over E. We consider

φ :
n∏
i=1

Hi → H

as in Corollary 2.3.20. Then

ker(φ) =
m∏
j=1

µkj

is a product of roots of unity µkj .

Proof. Set

H(qs) :=
n∏
i=1

Hi
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Since φ is a central isogeny, ker(φk̄) is finite and in the scheme theoretic center
Z(H(qs)). Since H(qs) is reductive as the product of semisimple schemes, the
center Z(H(qs)) is contained in every maximal torus T ⊂ H(qs) by (Mil17,
21.b) Proposition 21.7). Since one of those T is split over E by assumption
and the Remark above, the finite kernel ker(φ) is a product of roots of unity
by the classification of diagonalizable algebraic groups via finitely generated
abelian groups, see (Mil17, 12.c) Theorem 12.8 & 12.d) Theorem 12.12).

Recall that a scheme S over some field E is called geometrically reduced, if
the basechange SF to a perfect field F containing E is reduced or equivalently
if the basechange SE0 to every field extension E0|E is reduced (See Gö10,
Proposition 5.49).

Proposition 2.3.23. (Inspired by Mil17, 3.k) Proposition 3.45)
Let π : H1 → H2 be a faithfully flat map of linear algebraic groups over

some field E. Let E0|E be some field extension, E0 be an algebraic closure
and Esep

0 ⊂ E0 be the separable closure.

i) The sequence

1→ ker(π)(E0)→ H1(E0)→ H2(E0)→ 1

is exact.

ii) If ker(π) is geometrically reduced, then

1→ ker(π)(Esep
0 )→ H1(Esep

0 )→ H2(Esep
0 )→ 1

is exact.

Proof. Set N := ker(π). By (Mil17, 5.e) Corollary 5.48), the sequence

1→ N(E0)→ H1(E0)
πa→ H2(E0)→ 1

is exact, where πa := πE0
is the map induced by π. This shows i) Since

N(R) = ker(πR : H1(R)→ H2(R))

for every E-algebra R, we only need to show that

πa : H1(Esep
0 )→ H2(Esep

0 )

is surjective, if N is geometrically reduced. Let f ∈ H2(Esep
0 ) ⊂ H2(E0). By

the exactness above the variety over E0

P := π−1
a ({f}) ⊂ H1(E0) 6= ∅
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is non empty, so let x ∈ P . Define P̃ := π−1(f) with π−1(f) being the fiber
of f under π : H1 → H2, where we view f as an element of the topological
space underlying H2. Multiplying with x yields a functorial bijection

N(R)→ P̃ (R)

for any E0-algebra R, so by the Yoneda Lemma have an isomorphism of E0-
schemes NE0

∼= P̃E0
. It follows by assumption on N that P̃ is geometrically

reduced, and since it is non empty, it is P̃ (Esep
0 ) 6= ∅ by (Gö10, Proposition

6.21). But by Definition of the fiber or Lemma 2.1.15, it is

P̃ (Esep
0 ) = P ∩H1(Esep

0 ),

so there exists an inverse image of f under πa in H1(Esep
0 ).

Remark. (See Mil17, 1.g) Summary 1.71)

If H2 is reduced, then a morphism of groups

φ : H1 → H2

is faithfully flat, if and only if φ is surjective, i.e. a surjective φ onto a reduced
group is automatically flat.

Corollary 2.3.24. We are in the situation as in the previous Proposition.
If ker(π) is geometrically reduced, then for any field extension E0|E, we have
the following exact sequence.

1→ ker(π)(E0)→ H1(E0)→ H2(E0)→ H1(GE0 , ker(π)(Esep
0 )).

If E0 is perfect, we can drop the assumption on ker(π).

Proof. For any linear algebraic group H over E0, we have

H0(GE0 ,H(Esep
0 )) = H(Esep

0 )GE0 = H(E0)

by Lemma 2.1.25 and so the statements follow from the usual cohomology
sequence (of non abelian groups) (See Ser97, I §5.4 Proposition 36) applied
to the short exact sequences in Proposition 2.3.23.

Proposition 2.3.25. Let G be a simply connected, semisimple group over
k. Then

H1(HK ,G(F)) = 1.
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Proof. Let c ∈ C1(HK ,G(F)). Since c is continuous, we can assume that
c ∈ C1(G,G(F)) for some finite galois extension F |F with Galois group G :=
Gal(F |F). We have that F is the perfect hull of Esep and G is finite. So by
Lemma 2.1.16, there exists an N ≥ 1, such that

G(ϕNL ) ◦ c ∈ C1(HK ,G(Esep)),

which is also a cocycle since ϕNL commutes with ρ̄(h) for all h ∈ HK . By
the statement about basechange in Proposition 2.3.18, GE is still simply
connected and semisimple over E. Then by Example 2.3.1.ii), it is

H1(HK ,G(Esep)) = 1.

So there exists an A ∈ G(Esep), such that

G(ϕNL )(c(h)) = A−1 ·G(ρ(h))(A).

Since F is perfect, it is

B := G(ϕ−NL )(A) ∈ G(F).

Since ϕ−NL commutes with ρ(h) for every h, we obtain

c(h) = B−1 ·G(ρ(h))(B).

So c is a coboundary.

Theorem 2.3.26. Let [K∞ : K] = [L∞ : L], e.g. K = L.
The map

j̄ : morcont(GK ,G(k))→ H1(OK ,G(F))

is trivial j̄ ≡ 1 for semisimple G split over k in the following cases.

i) If G is quasi-simple of type Stype /∈ {D2n+1, E6 | n ≥ 2}. If char(k) = 2
or 4 | q−1, we can also allow quasi-simple groups of type Stype = D2n+1

and if char(k) = 3 or 3 | q − 1, we can also allow quasi-simple groups
of type Stype = E6.

ii) If G is isomorphic to the product of groups as in i).

iii) Let

φ :
n∏
i=1

Gi → G

be as in Corollary 2.3.20. The map j̄ for G is trivial, if the Gi are
of type Stype /∈ {An−1, D2m+1, E6 | m ≥ 2, n - (q − 1)pr ∀r ≥ 1}. If
char(k) = 2 or 4 | q−1, we can also allow Gi to be of type Stype = D2m+1

and if char(k) = 3 or 3 | q − 1, we can also allow Gi to be of type
Stype = E6.
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In particular, the condition on q in i) or iii) is always satisfied, if k|Fp2, i.e.
in these cases, every quasi-simple group split over k has trivial j̄ and in iii)
only Gi for certain types Stype = An−1 might be problematic for the property
of j̄ being trivial for semisimple G split over k.

Proof. The statement ii) follows from i), since for two linear algebraic groups
G1,G2 over k, the map

j̄ : morcont(GK ,G1(k)×G2(k))→ H1(HK ,G1(F)×G2(F))

corresponds to

j̄×j̄ : morcont(GK ,G1(k))×morcont(GK ,G2(k))→ H1(HK ,G1(F))×H1(HK ,G2(F))

via the universal property of the product and the canonical isomorphism

H1(HK ,G1(F))×H1(HK ,G2(F)) ∼= H1(HK ,G1(F)×G2(F))

of (Neu13, (3.7) Proposition).
Let G be semisimple and split over k with universal covering G̃ and we

consider

φ :
n∏
i=1

Gi → G

as in Corollary 2.3.20. We set

H :=
n∏
i=1

Gi.

By Proposition 2.3.25, we have H1(HK ,
n∏
i

Gi(F)) = 1, since the product can

be pulled out of the H1 by (Neu13, (3.7) Proposition). Furthermore, we have
the following commutative diagram of short exact sequences of GK-groups

1 //
m⊕
i=1

µni(k)

(⊂)∗
��

// H(k)

(⊂)∗

��

// G(k)

(⊂)∗

��

// 1

1 //
m⊕
i=1

µni(F) // H(F) // G(F) // 1

by Proposition 2.3.23.i) and Lemma 2.3.22. By Lemma 2.3.8, we can assume
that p - ni for all i. The exact sequences above are central, i.e. the image of
the left arrow is in the center of the middle group. Since the center of H(k)
is contained in the fundamental group of its corresponding Dynkin diagram
by Remark 2.3.13, we consider the following table of fundamental groups
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An−1 Bn Cn D2n D2n+1 E6 E7 E8 F4 G2

Z/nZ Z/2Z Z/2Z Z/2Z× Z/2Z Z/4Z Z/3Z Z/2Z 1 1 1

Because of p - ni, the ni are uniquely determined by the values µni(k), since
k is algebraically closed of characteristic p. So the ni are divisors of the
exponents of the groups in the table. Making a case study gives us almost
all the statements of i) and iii) by Proposition 2.3.7, since every divisor of
q − 1 is in [L∞ : L] by Proposition 1.1.23.i).

The only case, we still need to settle is, if G is quasi-simple split over k
of type An−1. Beware that A3 = D3, which is why we excluded D3 in i) and
iii). By (Spr98, 17.1) and the uniqueness in Proposition 2.3.18, the unique
simply connected group split over E of type An−1 is SLn. It has center µn.
Furthermore the quotient SLn /µn is isomorphic to PGLn by (Mil17, 5.e)
Example 5.49). In Example 2.3.1.iii), we have already seen this case. Now
let G be split over k and arbitrary of this type. Since µm for m | n are the
only closed subgroups of µn by the classification of diagonizable algebraic
groups via finitely generated abelian groups (See Mil17, 12.c) Theorem 12.8
& 12.d) Theorem 12.12), we have a commutative diagram of short exact
central sequences

1 // µm(F) //

⊂
��

SLn(F) //

id
��

G(F) //

pr

��

1

1 // µn(F) // SLn(F) // PGLn(F) // 1

by the universal covering for G in Proposition 2.3.18 and Proposition 2.3.23.
Thus we obtain a commutative diagram

H1(HK ,G(F))

δ1

��

pr∗ // H1(HK ,PGLn(F))

δ2

��

H2(HK , µm(F))
(⊂)∗

// H2(HK , µn(F)).

Here δ1, δ2 have trivial fiber δ−1
i ({1}) = {1}, since H1(HK , SLn(F)) = 1. Let

A be an abelian group. We define for r ≥ 1 the torsion subgroup

A[r] := {a ∈ A | ra = 0}.

The map

H2(HK , µm(F))
(⊂)∗→ H2(HK , µn(F))
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is by calculations as in Example 2.3.1.iii) the inclusion

H2(HK ,F
×

)[m(p)] ⊂ H2(HK ,F
×

)[n(p)],

where n(p) ≥ 1 is the unique natural number with p - n(p) and n = n(p)pr and
m(p) analoguesly defined. It follows that

H1(HK ,G(F))
pr∗→ H1(HK ,PGLn(F))

has trivial fiber
pr−1
∗ ({1}) = {1}.

By the homomorphism theorem (See Mil17, 5.e) Remark 5.39), it is G ∼=
SLn /µm for the quotient SLn /µm, so by the universal property of the quo-
tient, we have a map π : G → PGLn as algebraic groups over k, which
induces the projection pr : G(F) → PGLn(F). It follows that j̄ is trivial for
G, since j̄ is trivial for PGLn and pr∗ has trivial fiber of 1 considering the
following commutative diagram.

morcont(GK ,G(k))

j̄

��

πk,∗ // morcont(GK ,PGLn(k))

j̄

��

H1(HK ,G(F)) pr∗
// H1(HK ,PGLn(F))

In the table of fundamental groups, we see that the only groups with expo-
nents unequal to two other than of type An−1 are Z/4Z and Z/3Z. Now if
p = 2, we have 3 | p2 − 1 and if p = 3, we have 4 | p2 − 1. Furthermore,
if p ≥ 5, we have 12 | p2 − 1, since p2 − 1 = (p + 1)(p − 1). This proves
the addendum to this Theorem for k|Fp2 by using Proposition 2.3.7 with
(p2 − 1) | (q − 1) ∈ [L∞ : L], see Proposition 1.1.23.i).
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3 The Case of Characteristic 0 Coefficients

In this chapter, we will give the correspondences analogues to the ones in the
last chapter, but for a linear algebraic group over OL with (ϕL,ΓK)-modules
over the rings

(R,Rnr) ∈ {(AK ,A), (W (F)L,W (F)L)}

instead of their residue fields

(K,Ksep) ∈ {(E,Esep), (F,F)}.

Let

G(OL) ∼= lim
←

G(OL/πnOL)

carry the profinite topology and let

G(Rnr) ∼= lim
←

G(Rnr/πnRnr)

carry the prodiscrete topology. By using the map

j̄R : morcont(GK ,G(OL))→ H1(HK ,G(Rnr)),

we can get a correspondence as in chapter 2.2.2.
In the first section, we will establish several techniques to lift some state-

ments from the characteristic p case in chapter 2 to the characteristic 0.
In the second section, we will then prove the correspondences in the char-

acteristic 0 case, which are analogues to the ones made in chapter 2.

3.1 General Theories

In this section, we will establish techniques for smooth group schemes of
finite type over a discrete valuation ring and some technique regarding the
injectivity of certain maps in the theory of general group cohomology.

3.1.1 Injectivity on H1

In this part, we will show that for some monoid M and an M -group A with
a filtration

A := A0 ⊃ A1 ⊃ A2 ⊃ . . .

the projection A→ A/A1 induces an injective map on the first cohomology,
if the filtration satisfies certain conditions.
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Definition 3.1.1. Let M be a monoid. Then an M-group is a group A
together with a morphism of monoids

f : M → EndGrp(A),

where EndGrp(A) denotes the group endomorphisms of A. If M is a topo-
logical monoid and A is a topological group, then A is called a topological
M-group, if the induced map

M × A→ A, (m, a) 7→ m ∗ a := f(m)(a)

is continuous.

Definition 3.1.2. Let A be a M -group (resp. be a topological M -group).
Then

C1(M,A) := {c : M → A | c(m1m2) = c(m1) · (m1 ∗ c(m2)) ∀m1,m2}

(resp.

C1(M,A) := {c : M → A | c(m1m2) = c(m1)·(m1∗c(m2)) ∀m1,m2, c is continuous.})

is called the set of 1-cocycles of M in A (resp. continuous 1-cocycles of M
in A). We say c1, c2 ∈ C1(M,A) are cohomological c1 ∼ c2, if there exists
a ∈ A, such that

c1(m) = a−1 · c2(m) · (m ∗ a) ∀m ∈M.

This relation is an equivalence relation and we set

H1(M,A) := C1(M,A)/ ∼ .

We fix a monoid (respectively topological monoid) M and a M -group
(respectively topological M -group) A. Beware that A is not necessarily com-
mutative.

Let c ∈ C1(M,A). By the cocycle condition (and continuity). Then we
can define the (topological) M -group

Ac := A, m ∗
c
a := c(m)(m ∗ a)c(m)−1 ∀m ∈M,a ∈ A.

We calculate

(mm′) ∗
c
a = c(m)(m ∗ c(m′))(m ∗ (m′ ∗ a))(m ∗ c(m′)−1)c(m)−1

= c(m)(m ∗ (c(m′)(m′ ∗ a)c(m′)−1))c(m)−1

= c(m)(m ∗ (m′ ∗
c
a))c(m)−1

= m ∗
c

(m′ ∗
c
a).
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So this is really an action. The action is continuous, if A is a topological
M -group, since the action is the composition of the continuous maps

M × A φ→ A× A× A
∏
→ A,

where
φ((m, a)) = (c(m),m ∗ a, c(m)−1).

Remark. Let b, c ∈ C1(M,A). Then

bc−1 ∈ C1(M,Ac).

Furthermore, it is

b ∼ c⇔ [bc−1] = 1 ∈ H1(M,Ac).

Proof. We calculate for m,m′ ∈M that

(bc−1)(mm′) = b(mm′)c(mm′)−1

= b(m)(m ∗ b(m′))(m ∗ c(m′)−1)c(m)−1

= b(m)c(m)−1c(m)(m ∗ (b(m′)c(m′)−1))c(m)−1

= bc−1(m)(m ∗
c
bc−1(m′)).

Furthermore, if
a−1b(m)(m ∗ a) = c(m) ∀m ∈M,

we equivalently have

a−1(bc−1)(m)(m ∗
c
a) = 1 ∀m ∈M.

Let f : A→ B be a morphism of (topological) M -groups. Then for every
c ∈ C1(M,A), it is

f∗(c) := f ◦ c ∈ C1(M,B)

and since

f(m ∗
c
a) = f(c(m))(m ∗ f(a))f(c(m))−1 = m ∗

f∗(c)
f(a),

the same map
f : Ac → Bf∗(c)

is a map of (topological) M -groups.

111



Lemma 3.1.3. Let f : A → B be a morphism of M-groups. Then the
induced map

H1(M,A)→ H1(M,B)

is injective, if and only if the sequence

1→ H1(M,Ac)→ H1(M,Bf∗(c))

is exact for every c ∈ C1(M,A).

Proof. Let b, c ∈ C1(M,A). Then we have by the last Remark and since f is
a morphism of groups that

f∗(b) ∼ f∗(c)⇔ [f∗(b)f∗(c)
−1] = 1⇔ [f∗(bc

−1)] = 1

and again by the last Remark that

b ∼ c⇔ [bc−1] = 1.

If follows that

(f∗(b) ∼ f∗(c)⇒ b ∼ c)⇔ ([f∗(bc
−1)] = 1⇒ [bc−1] = 1).

Now let A have a filtration of normal M -invariant subgroups

A := A0 ⊃ A1 ⊃ A2 ⊃ . . . ,

such that the canonical map A → lim
←
A/An is an isomorphism. Since the

An are normal, they are also invariant under the action twisted by a cocycle
c ∈ C1(M,A), so it makes sense to define An,c. By (Bou66, III §2.4 Lemma 2),
the projection A→ A/An is an open map. It follows by an easy calculation
(see for example (Kle16, Lemma 2.1.21)) that, if A is a topological M -group,
then A/An is a topological M -group via the induced topology and action and
the projection

pn : A→ A/An

is a morphism of topological M -groups. If c ∈ C1(M,A), we define

c̄ := pn,∗(c) ∈ C1(M,A/An).

Then we have

Ac/An,c = (A/An)c̄.
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Proposition 3.1.4. (Inspired by Ser67, 1.2 Lemma 3)
Suppose that

H1(M, (An/An+1)c̄) = 1

for every c ∈ C1(M,A) and every n ≥ 1. Then the map

H1(M,A)→ H1(M,A/A1)

induced by the projection pr : A→ A/A1 is injective.

Proof. By Lemma 3.1.3, we have to show that the sequence

1→ H1(M,Ac)→ H1(M, (A/A1)c̄),

which is induced by the projection p is exact for every c ∈ C1(M,A). So let
d ∈ H1(M,Ac), such that there exists ā1 ∈ A/A1 satisfying

p(d(m)) = ā1(m ∗̄
c
ā1) ∀m ∈M.

Let a1 ∈ A be a lift of ā and define the 1-coboundary

b1(m) := a−1
1 (m ∗

c
a1) ∀m ∈M.

Then we define
d1 := db−1

1

and we calculate

d(mm′)b1(mm′)−1 = d(m)c(m)(m ∗ d(m′))c(m)−1c(m)(m ∗ b1(m′)−1)c(m)−1b1(m)−1

= db−1
1 (m)b1(m)c(m)(m ∗ (d(m′)b1(m′)−1))(b1(m)c(m))−1

= db−1
1 (m)(m ∗

b1c
db−1

1 (m′)),

so
d1 ∈ C1(M,A1,b1c), since p(d(m)) = p(b1(m)) ∀m ∈M.

This makes sense, since

b1c(mm
′) = b1(mm′)c(mm′)

= b1(m)c(m)(m ∗ b(m′))c(m)−1c(m)(m ∗ c(m′))
= b1c(m)(m ∗ (b1c)(m)),

so b1c ∈ C1(M,A). We have
d = d1b1
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By the hypothesis, there exists ā2 ∈ A1/A2

p2(d1(m)) = ā−1
2 (m ∗

b1c
ā2).

Choose a lift a2 ∈ A1 of ā2 and define the 1-coboundary

b2(m) := a−1
2 ∗

b1c
a2.

Then

b2b1(m) = a−1
2 (m ∗

b1c
a2)a−1

1 (m ∗
c
a1)

= a−1
2 a−1

1 (m ∗
c
a1)(m ∗

c
a2)(m ∗

c
a−1

1 )a1a
−1
1 (m ∗

c
a1)

= a1a
−1
2 (m ∗

c
(a1a2)).

Furthermore, as before there is

d2 ∈ C1(M,A2,b2b1c), such that d1 = d2b2.

Successively, we find for all n ≥ 1 an an ∈ An, such that

bn = a−1
n (m ∗

bn−1···b1c
an)

and
dn ∈ C1(M,An,bn···b1c)

which satisfy
d = dnbn · · · b1

and
bn · · · b1(m) = (a1 · · · an)−1(m ∗

c
(a1 · · · an))).

Since
A ∼= lim

←
A/An,

there exists a ∈ A, such that

pn(a) = a1 · · · an−1.

Furthermore, since

dn(m) ∈ An, it is d = lim
n

(pn ◦ bn · · · b1),

so
d(m) = a−1(m ∗

c
a) ∀m ∈M.

Thus, d is a 1-coboundary.
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In this thesis, we will work with M = HK as a topological monoid and
M = N as an additive monoid, in particular with 0 ∈ N. We now explain,
what the latter case is about.

Let G be any group together with an endomorphism of groups

ψ : G→ G.

Then we can make G into an N-group by setting

fψ : N→ EndGrp(G), n 7→ ψn.

We define the Langmap associated to ψ to be the map

Ψ : G→ G, g 7→ g−1ψ(g).

Lemma 3.1.5. The following maps are inverse bijections.

C1(N, G)→ G

c 7→ c(1)

[n 7→

{
1, n = 0

g · ψ(g) · · ·ψn−1(g), n ≥ 1
] =: cg ←[ g

Furthermore, these maps induce bijections

B1(N, G) := {c ∈ C1(N, G) | c ∼ 1}↔̃ im(Ψ).

Proof. We calculate that cg is a cocycle for every g ∈ G. We have

cg(n+ 0) = cg(n) = cg(n) · 1 = cg(n) · ψn(cg(0))

for every n ∈ N. Furthermore, we have

cg(0 +m) = cg(m) = 1 · cg(m) = cg(0)ψ0(cg(m))

for every m ∈ N.
Now let n,m ∈ N with n 6= 0 6= m, then

cg(n+m) = g · ψ(g) · · ·ψn−1(g)ψn(g · ψ(g) · · ·ψm−1(g)) = cg(n)(n ∗ cg(m)).

By definition, we have
cg(1) = g

and if c ∈ C1(N, G), then we successively calculate for every n ≥ 1 that

c(n) = c(n− 1 + 1) = c(n− 1)ψn−1(c(1)) = · · · = c(1)ψ(c(1)) · · ·ψn−1(c(1)).
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If b ∈ B1(N, G), then it is

b(1) = g−1 · ψ(g) = Ψ(g).

If on the other hand
g0 := g−1ψ(g) ∈ im(Ψ),

then for all n ≥ 1, we calculate

cg0(n) = (g−1ψ(g))(ψ(g)−1ψ2(g))ψ2(g)−1 · · ·ψn−1(g)(ψn−1(g)−1ψn(g)) = g−1ψn(g),

so
cg0 ∈ B1(N, G).

Corollary 3.1.6. It is Ψ surjective, if and only if H1(N, G) = 1.

Proof. It is H1(N, G) = 1, if and only if

B1(N, G) = C1(N, G),

so by the above Lemma, if and only if

im(Ψ) = G.

3.1.2 (Formal) Groups over Discrete Valuation Rings

In this part, we will accumulate some facts about linear algebraic groups over
a complete discrete valuation ring, in particular over smooth ones. Later on,
we will recall the theory of formal schemes over such a ring.

Definition 3.1.7. Let R be an arbitrary ring. Then a linear algebraic group
over R is a group scheme G over R, such that there exists a closed immersion

G ⊂ GLn

as groups over R.

Proposition 3.1.8. (See Con17, Remark 1.1.6)
If R is a Dedekind Domain, then a group scheme over R is a linear

algebraic group, if and only if it is an affine group scheme of finite type over
R.
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For the rest of this part, R is a complete discrete valuation ring with
uniformizer $ and residue field E. We fix a linear algebraic group G over R
and an embedding G ⊂ GLn over R.

Lemma 3.1.9. It is
G(R) ∼= lim

←
G(R/$nR).

The same is true for any affine scheme X over R instead of G.

Proof. Since G = Spec(A) is affine as a closed subgroup of the affine group
GLn, it is

G(R) = morR(A,R) ∼= lim
←

morR(A,R/$nR) = lim
←
G(R/$nR)

by the universial property of the projective limit and because of

R ∼= lim
←
R/$nR.

We take the following statement as a motivation to make the constructions
that follow.

Proposition 3.1.10. (See Ser92, Part II Chapter IV.9 Corollary 1)
Let G be smooth over R of relative dimension d. Then for every n ≥ 1

ker(G(pr) : G(R/$n+1)→ G(R/$n)) ∼= Ed

carries the structure of a d-dimensional E-vector space.

Now let for any m ≥ 1

prm,m+1 : R/$m+1 → R/$m.

Consider G = GLn. Then for any m ≥ 1 the morphism

GLn(prm,m+1) : GLn(R/($m+1))→ GLn(R/($m))

has kernel

ker(GLn(prm,m+1)) ⊂ 1 +Matn×n($mR/($m+1)).

Lemma 3.1.11. We have a well defined isomorphism of groups

Φm : Matn×n(E) ∼= Matn×n((R/($m+1))/($))→ ker(GLn(prm,m+1)), A 7→ 1+$mA.
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Proof. Let A,B ∈Matn×n(R/($m+1)). Then we calculate that

Φm(A+B) = 1+$m(A+B) = 1+$mA+$mB+$2mAB = (1+$mA)(1+$mB).

This also shows that 1 + Matn×n($mR/($m+1)) ⊂ GLn(R/($m+1)), since
for any 1 + $mA ∈ 1 + Matn×n($mR/($m+1)), the element 1 − $mA is a
multiplicative inverse. It follows that

ker(GLn(prm,m+1)) = 1 +Matn×n($mR/($m+1)).

This morphism of groups induces a well defined morphism of groups

Matn×n(E) ∼= Matn×n((R/($m+1))/($))→ ker(GLn(prm,m+1)),

since for $A ∈ $R/($m+1), we have

Φm($A) = 1 +$m+1A = 1 ∈ GLn(R/($m+1)).

Lastly, it is easy to see that A 7→ 1, if and only if A ∈Matn×n($R/($m+1)),
so Φm is injective. It is surjective by construction and since

ker(GLn(prm,m+1)) = 1 +Matn×n($mR/($m+1)).

Now consider G ⊂ GLn, so that G = Spec(R[{Xij}ij][ 1
det(Xij)

]/(P1, . . . , Pn))

for some Pk ∈ R[{Xij}ij]. Since G is a group, we have

Pk(1) = 0

for 1 ∈ GLn(S), where S is any R-algebra.
We have

ker(G(prm,m+1)) ⊂ ker(GLn(prm,m+1)),

since G ⊂ GLn is a natural transformation. We set

X(m) := Φ−1
m (ker(G(prm,m+1))).

Lemma 3.1.12. It is

X(m) = T(Pk)k(1) := {A ∈Matn×n(E) |
∑
ij

∂Pk
Xij

(1) · Aij = 0 ∀k}

for all m ≥ 1. In particular

ker(G(prm,m+1))

carries the structure of a finite dimensional E-vector space via Φm.
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Proof. Consider the commutative diagram

G(R/($m+1))
G(prm,m+1)

//

⊂
��

G(R/($m))

⊂
��

GLn(R/($m+1))
GLn(prm,m+1)

// GLn(R/($m)).

It follows that

ker(G(prm,m+1)) = ker(GLn(prm,m+1)) ∩G(R/($m+1))

and so it is A ∈ X(m) if and only if Pk(1 + $mA) = 0 ∈ R/($m+1) for a lift
A ∈Matn×n(R/($m+1)) of A and every k. We consider the Taylorexpansion
of Pk at 1 ∈Matn×n(R/($m+1)).

Pk(1+$mA) = Pk(1)+$m ·
∑
i,j

∂Pk
Xij

(1) ·Aij +$2mz for some z ∈ R/($m+1).

Since $2m = 0 and Pk(1) = 0, it is Pk(1 +$mA) = 0 if and only if

∑
i,j

∂Pk
Xij

(1) · Aij ∈ $R/($m+1).

We close this part with a geometric version of Hensel’s Lemma.

Proposition 3.1.13. (Hensel’s Lemma)(See Gro67, Theorem 18.5.17 & Propo-
sition 18.5.4) and (See Gro60, Corollary 5.1.8)

If (A,m) is a local Henselian ring and X is a smooth scheme over A, then
for every n ≥ 1 the map

X(prn) : X(A)→ X(A/mn)

induced by the projection A→ A/mn is surjective.

Formal $-adic Schemes

We continue with our notation of this part, so R is a complete discrete
valuation ring with uniformizer $.
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Definition 3.1.14. Let B be an R-algebra. We view B with the $-adic
topology and assume that B is $-adically complete. Then we define the
formal ($-adic) spectrum of B to be

Spf(B) := {p ∈ Spec(B) | p ⊂ B is open.}.

We view Spf(B) ⊂ Spec(B) with the subset topology of the Zariski topology,
i.e. the subsets

Df (B) := {p ∈ Spf(B) | f /∈ p}
for every f ∈ B form a basis of the topology. We define a structure of a
locally ringed space (of R-algebras) on Spf(B) via

OSpf(B)(Df ) := B̂f ,

where B̂f denotes the $-adic completion of the localisation of B at f denoted
by Bf . This really gives the structure of a locally ringed space by (Gro60,
Propositions (10.1.3), (10.1.4) & (10.1.6))

We say a locally ringed space of R-algebras (X,OX) is a (complete) formal
($-adic) scheme over R, if it has an open covering of subspaces, which are
isomorphic formal ($-adic) spectra (Spf(B),OSpf(B)) as above.

A morphism between formal ($-adic) schemes is a morphism of locally
ringed spaces of R-algebras.

We call a formal ($-adic) scheme (X,OX) affine, if (X,OX) ∼= (Spf(B),OSpf(B)).

Remark. Normally, you would define a morphism of formal schemes to be a
morphism of locally ringed spaces of R-algebras f : X → Y , such that the
induced map f ]U : OY (U)→ OX(f−1(U)) is continuous for the $-adic topol-
ogy for every open U ⊂ Y , such that U and f−1(U) are affine. But for the
$-adic topology every morphism of R-algebras is automatically continuous.

Since we are only interested in the $-adic case, we will by abuse of nota-
tion call formal $-adic schemes over R just formal schemes.

Definition 3.1.15. We define

FSchcomp := FSchcomp$,R ⊂ (locally ringed spaces of R− algebras)

to be the full subcategory of formal schemes.

We have the following adjointness property.

Proposition 3.1.16. (See Gro60, Proposition 10.4.6)
Let X be a complete formal scheme and B be a $-adically complete R-

algebra. Then we have a bijection

morFSchcomp(X, Spf(B))→̃morR−Alg(B,OX(X)), f 7→ f ]X ,

which is natural in X and B.
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Lemma 3.1.17. If H is a Hopfalgebra over R, then the $-adic completion
Ĥ is a complete formal Hopfalgebra over R, i.e. Spf(Ĥ) is a group object
in the category FSchcomp and for any $-adically complete R-algebra S, we
have an isomorphism of groups

morR−Alg(Ĥ, S) ∼= morR−Alg(H,S),

which is natural in S.

Proof. By Proposition 3.1.16 and the gluing property of morphisms of locally
ringed spaces (See Gö10, Proposition 3.5), it suffices to show that

morR−Alg(Ĥ, S)

carries a group structure, which is natural in S, where S is a $-adically com-
plete R-algebra. Since any morphism of R-algebras is $-adically continuous,
we have a natural identification

morR−Alg(Ĥ, S) ∼= morR−Alg(H,S)

via the natural map can : H → lim
←
H/$nH = Ĥ. To prove this, let f : H →

S be a morphism of R-Algebras. Then for every n ∈ N there exists a unique
morphism of R-algebras fn : H/$nH → S/$nS with

fn ◦ pr$nH = pr$nS ◦f.

Since S is $-adically complete, there exists a unique

f̂ := lim
←
fn : Ĥ → Ŝ ∼= S,

such that f̂ ◦ can = f .

It follows that morR−Alg(Ĥ, S) carries the group structure of morR−Alg(H,S),
which is natural in S.

If G = Spec(H) is a groupscheme over R, we denote by

Ĝ := Spf(Ĥ)

the object in FSchcomp, which is a group object by the last Lemma. We call
such an object Spf(A), where A is a complete formal Hopfalgebra an affine
complete formal group over R.
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Lemma 3.1.18. Let (An, ψn : An+1 → An)n≥1 be a projective system, where
An is a Hopfalgebra over R/$nR and the ψn are morphisms of R-algebras,
such that the induced maps

morR/$nR−Alg(An, S)→ morR/$n+1R−Alg(An+1, S)

are morphisms of groups for every R/$nR-algebra S. If every ψn is surjective
and satisfies

ψ−1
n ($mAn) = $mAn+1

for every 1 ≤ m ≤ n, then
A := lim

←
An

is a complete formal Hopfalgebra over R and the projection prn : A → An
induces an isomorphism

prn : A/$nA→̃An
for every n ≥ 1.

Furthermore, if S is a $-adically complete R-algebra, then there exists
an isomorphism of groups

morR−Alg(A, S) ∼= lim
←

morR/$nR−Alg(An, S/$
nS),

which is natural in S. This projective limit is given by the projections S/$n+1S →
S/$nS. The details that this makes sense are given in the proof.

Proof. Since ψn is surjective for every n ≥ 1, the projection prm : A → Am
is surjective for any m ≥ 1. An element (an)n ∈ A is in the kernel of prm,
if an = 0 for all n ≤ m. Since ψ−1

n ($mAn) = $mAn+1 for every n ≥ m, we
have that an ∈ $mAn for every n ≥ m, so ker(prm) = $mA. It follows that
we have an isomorphism

prn : A/$nA→ An (∗)

for every n ≥ 1, so A is $-adically complete. Let S be a $-adically complete
R-algebra. Then we have natural bijections

morR−Alg(A, S) ∼= lim
←

morR−Alg(A, S/$
nS)

∼= lim
←

morR/$n−Alg(A/$
nA, S/$nS)

(∗)∼= lim
←

morR/$n−Alg(An, S/$
nS),

where the first bijection follows from the universial property of the projective
limit and the second bijection follows from the fact that every morphism of
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R-algebras f : B → C with $nC = 0 induces a unique R/$nR-algebra
morphism fn : B/$nB → C with fn ◦ pr$nB = f .

The map

morR/$n+1−Alg(An+1, S/$
n+1S)→ morR/$n+1−Alg(An+1, S/$

nS)

induced by the projection is a morphism of groups, since An+1 is a Hopfalge-
bra over R/$n+1R. Notice that ψn : An+1/$

nAn+1 → An is an isomorphism
by assumption. It follows that morR−Alg(A, S) carries the structure of a
group, which is natural in S, since

morR/$n+1R−Alg(An+1, S/$
nS)

∼= morR/$nR−Alg(An+1/$
nAn+1, S/$

nS)
·◦ψ−1

n−→ morR/$nR−Alg(An, S/$
nS)

is an isomorphism of groups by assumption, from which follows that

lim
←

morR/$n−Alg(An, S/$
nS)

carries a structure of a group, which is natural in S. We deduce that Spf(A)
is a group object in FSchcomp by Proposition 3.1.16 and the gluing property
of morphisms of locally ringed spaces (See Gö10, Proposition 3.5).

Although this next statements don’t involve formal schemes, we will use
this later on in the context of working with affine complete formal groups.

Proposition 3.1.19. (Inspired by Bri09, Lemma 3.2.6)

Let R′ := R̂nr be the $-adic completion of the maximal unramified exten-
sion of R. Then a separable closure Esep of E in an algebraically closed field
containing E is the residue field of R′ and AutR−Alg(R

′) = GE by Proposition
1.2.29. Let M be an R′-module, such that there exists an n ∈ N, such that
$nM = 0. If there is a $-adically continuous and semilinear GE-action of
R-algebras on M , then the natural map induced by scalar multiplication

R′ ⊗
R
MGE →M

is bijective.

Proof. We assumed that there exists an n ∈ N, such that $nM = 0. We
prove this statement by induction for such n. For n = 1, this is classical
Galois descent (Compare to Sil09, II Lemma 5.8.1). Now let n ≥ 1 be such
that the statement correct for all 1 ≤ m ≤ n and let M be a R′-module, such
that πn+1M = 0. We consider the short exact sequence

0→ πnM →M →M/πnM → 0.
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Since Mn := πnM satisfies πMn = 0, we know from the case n = 1 that there
is a GE-equivariant isomorphism of Esep-vector spaces Mn

∼=
⊕
i∈I
Esep, where⊕

i∈I
Esep carries the natural GE-action. It follows that

H1(GE,Mn) ∼= lim
→

N⊂G open

H1(GE/N,M
N
n ) ∼= lim

→
N⊂G open

⊕
i∈I

H1(GE/N, (E
sep)N) = 0,

where the first isomorphism is (Neu15, (1.2.5) Proposition) and the second
one is (Neu13, (3.7) Proposition). The equality H1(GE/N, (E

sep)N) = 0 is
the additive Hilbert 90. It follows that we have the following commutative
diagram of exact sequences of the canonical maps since R′ is flat over R by
(Bou72, I §2.4 Proposition 3.ii)).

0 // R′ ⊗
R
Mn

//

��

R′ ⊗
R
M

��

// R′ ⊗
R
M/Mn

//

��

0

0 // Mn
// M // M/Mn

// 0

By the inductive hypothesis, we have that the arrows left and right are iso-
morphisms, so it follows that the one in the center is an isomorphism by the
five-Lemma.

Corollary 3.1.20. Let R′ = R̂nr be as in the last Proposition. Let R′ −
ModannGE

be the category of those R′-modules M with a semilinear GE-action
on M and such that there exists n ≥ 0, such that πnM = 0. Morphisms in
R′ −ModannGE

are those R′-linear morphisms, which are compatible with the
GE-action. Then the functor

(·)GE : R′ −ModannGE
→ R−Mod

is exact.

Proof. This follows since the isomorphism in Proposition 3.1.19 is natural
and since R′ is faithfully flat over R by (Bou72, I §2.4 Proposition 3.ii)) and
(Mat86, Theorem 7.2).

3.1.3 Lifting Lang-Steinberg

In this part, we will have a first use of the results established in the last two
parts. We will show that the surjectivity of the Lang map established in
part 2.1.2 can be lifted to a surjectivity of the Lang map on the points of a
linear algebraic group over a complete discrete valuation ring with separable
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algebraically closed residue field. Let R be a complete discrete valuation ring,
which is a OL-algebra and has uniformizer π. Let E be the residue field of
R. Assume that there exists a lift

(ϕL : R→ R) ∈ EndOL−Alg(R)

of the q-Frobenius
ϕL : E → E, x 7→ xq

and that E is separably algebraically closed. Let G be a linear algebraic
group over OL. This next statement serves as motivation for the rest of the
part.

Proposition 3.1.21. (See Gre63, 3. Proposition 3)
If G is smooth and has connected special fiber Gk, then the Langmap

ΨLnr : G(OL̂nr)→ G(OL̂nr), A 7→ A−1G(ϕL)(A)

is surjective.

In (Gre61) and (Gre63), Greenberg works with Wittvectors over perfect
fields, so following his method, we would only be able to generalize this
statement in the perfect setup for a complete discrete valuationg ring with
algebraically closed residue field. But since we also want to have an analogue
result in the nonperfect case, we will need to develop a new technique. We
will need a further application of Theorem 2.1.13.

Lemma 3.1.22. Recall that we assumed that E is separably algebraically
closed. Let V be finite dimensional E-vector space, together with a ϕL-
semilinear and etale endomorphism

ϕV : V → V.

Then the map
ϕ− id : V → V, v 7→ ϕL(v)− v

is surjective.

Proof. Let (vi)i ⊂ V be a ϕV -invariant E-basis of V , see Theorem 2.1.13 for
the existence. Then for any v ∈ V with

v =
∑
i

aivi with ai ∈ E.

We calculate
ϕL(v)− v =

∑
i

(aqi − ai)vi.
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Let w ∈ V be another element and

w =
∑
i

bivi with bi ∈ E.

So to say that w ∈ im(ϕL − id), we have to find solutions for aqi − ai = bi in
E for every i. But Xq −X − bi ∈ E[X] is a separable polynomial, so there
exists such ai.

We view G := G(R) as a N-group via G(ϕL). Furthermore, we denote
the induced maps

ϕL : R/πnR→ R/πnR

and
G(ϕL) : G(R/πnR)→ G(R/πnR).

Let
prn : R→ R/πnR

and
prn,n+1 : R/πn+1R→ R/πnR

be the projections. Since ϕL ◦ prn = prn ◦ϕL, it is

Gn := ker(G(prn)) ⊂ G

a N-invariant subgroup. Assume G is smooth over OL. Then by Hensel’s
Lemma Proposition 3.1.13, we have that it is

G/Gn
∼= G(R/πnR).

Furthermore, it is
Gn/Gn+1

∼= ker(G(prn,n+1))

and by Lemma 3.1.9, it is
G ∼= lim

←
G/Gn.

First, we consider G = GLn. We viewMatn×n(E) as N-Group viaMatn×n(ϕL).

Lemma 3.1.23. For any m ≥ 1, the isomorphism

Φm : Matn×n(E) ∼= Matn×n((R/(πm+1))/(π))→ ker(GLn(prm,m+1)), A 7→ 1+πmA

of Lemma 3.1.11 is N-equivariant.

Proof. This follows from the assumption that ϕL is an OL-algebra homomor-
phism.
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Remark 3.1.24. Let c ∈ C1(N,GLn(R)). Then

c1 := GLn(pr1) ◦ c ∈ C1(N,GLn(E)),

and for m ≥ 1

cm+1 := GLn(prm+1) ◦ c ∈ C1(N,GLn(R/πm+1R))

since ϕL ◦ prr = prr ◦ϕL for all r ∈ N. Let Matn×n(E)c1 denote the N-group

Matn×n(E)c1 := Matn×n(E), n ∗
c1
A := c1(n) ·Matn×n(ϕnL)(A) · c1(n)−1.

Let ker(GLn(prm,m+1))cm+1 be as in part 3.1.1, which is the analogue defini-
tion to the one made for Matn×n(E)c1 . Then

Φm : Matn×n(E)c1 → ker(GLn(prm,m+1))cm+1

is N-equivariant, by Lemma 3.1.23 and since conjugation in Matn×n(E) with
an element of GLn(E) is additive and preserves elements in the center.

Remark 3.1.25. By Corollary 2.1.18 and Corollary 3.1.6, it is that

H1(N,GLn(E)) = 1.

So for any c̄ ∈ C1(N,GLn(E)), there exists a Matrix A ∈ GLn(E) satisfying

c̄(n) = A−1 GLn(ϕnL)(A) ∀n ∈ N.

It follows that

Matn×n(E)c̄ →Matn×n(E), B 7→ ABA−1

is an isomorphism of N-groups since

Ac̄(n)Matn×n(ϕnL)(B)c̄(n)−1A−1 = Matn×n(ϕnL)(ABA−1),

which holds because of

GLn(ϕL) = Matn×n(ϕL)|GLn(E).

Proposition 3.1.26. If G is smooth over OL and the special fiber Gk is
connected, then the Lang map

ΨR : G(R)→ G(R), A 7→ A−1G(ϕL)(A)

is surjective.
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Proof. We continue with the notation in the discussion before Lemma 3.1.23.
In particular, it is

G ∼= lim
←
G/Gn,

since G is smooth. By Corollary 3.1.6, we need to show that

H1(N, G) = 1.

But since the special fiber is connected, we have to show by Corollary 2.1.18
and Proposition 3.1.4 that for

(Gm/Gm+1)cm+1
∼= ker(G(prm,m+1))cm+1

it is
H1(N, (Gm/Gm+1)cm+1) = 1

for all c ∈ C1(N, G), m ≥ 1 and

cm+1 := G(prm+1) ◦ c ∈ C1(N, G/Gm+1).

Note that
Matn×n(ϕL) : Matn×n(E)→Matn×n(E)

is etale, since it fixes the standard E-basis. By Remark 3.1.24 the map

(Gm/Gm+1)cm+1 ⊂ ker(GLn(prm,m+1))⊂◦cm+1
∼= Matn×n(E)⊂◦c1

is an N-equivariant embedding. Here ⊂: G→ GLn means the chosen immer-
sion. By Remark 3.1.25, the right hand side of this embedding is isomorphic
to Matn×n(E) as an N-group, so by Lemma 3.1.12 this N-equivariant em-
bedding is onto an E-subvector space of Matn×n(E) with the N-action given
by Matn×n(ϕL). So it suffices to show that every N-invariant E-subvector
space V ⊂ Matn×n(E) is etale, since then H1(N, V ) = 1 by Lemma 3.1.22
and Corollary 3.1.6. Since ϕL : E → E is flat as an extension of fields, it is

E ⊗
ϕL,E

V
id⊗⊂→ E ⊗

ϕL,E
Matn×n(E)

an injective map. Consider the commutative diagram

E ⊗
ϕL,E

Matn×n(E)
Matn×n(ϕL)lin // Matn×n(E)

E ⊗
ϕL,E

V
Matn×n(ϕL)lin //

(id⊗⊂)

OO

V.

⊂

OO
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Since the upper arrow is an isomorphism and the vertical arrows are injective,
the botton arrow is injective. But the E-vector spaces on the bottom have
the same dimension, so the arrow is an isomorphism.
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3.2 The Correspondences

In this section, we will construct the bijections to generalize Theorem 1.3.18
in the characteristic 0 case. In the first part, we will show that HK-invariants
as established in Part 2.2.2 can be lifted to the characteristic 0 case.

In the second part, we will give a correspondence for those representations
to (ϕL,ΓK)-modules with values in Forms of the linear algebraic group we
start with and a correspondence of the nonperfect and the perfect setting.
For G = GLn, we then show that our correspondence is the same as the one
that is induced by Fontaine’s functor.

In the last part, we will give a discussion of the theory one can build in
the case of the quotientfields of our discrete valuation rings.

3.2.1 Lifting HK-Invariants

Let in this part G be a linear algebraic group over OL and

(R,Rnr,K) ∈ {(AL,A,E), (W (F)L,W (F)L,F)}.

It is

G(Rnr) ∼= lim
←

G(Rnr/πnRnr)

by Lemma 3.1.9. In this part, we view G(R) with the prodiscrete topology.
Let

c, d ∈ C1(HK ,G(Rnr)).

Define an action on G(Rnr) by setting

h.A := h .
c,d
A := c(h) ·G(ρ(h))(A)d(h)−1 ∀A ∈ G(Rnr), h ∈ HK .

We set

G(Rnr)c,d,HK := {A ∈ G(Rnr) | h.A = A ∀h ∈ HK}.

Let

prn : Rnr → Rnr/πnRnr, prn,n+1 : Rnr/πn+1Rnr → Rnr/πnRnr

be the projections and

cn := G(prn) ◦ c ∈ C1(HK ,G(Rnr/πnRnr)).

Let

G(Rnr/(πn))cn,dn,HL
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be defined by an analoguesly defined action on G(Rnr/(πn)). Then the pro-
jections induce maps

prn,c,d : G(Rnr/(πn+1))cn+1,dn+1,HL → G(Rnr/(πn))cn,dn,HL ,

since we have

h .
cn,dn

(G(prn)(A)) = G(prn)(h .
cn+1,dn+1

A).

Furthermore, it is

G(Rnr)c,d,HL ∼= lim
←

G(Rnr/(πn))cn,dn,HL , (∗)

since h .
c,d
A corresponds to

lim
n

(h .
cn,dn

(G(prn)(A)))

via

G(Rnr) ∼= lim
←

G(Rnr/(πn)).

We want to have

G(Rnr)c,d,HL 6= ∅

if and only for their images under the projection

G(Ksep)c1,d1,HL 6= ∅.

We show that we can also use Proposition 3.1.4, but we will make a more
direct approach, so that the reader hopefully can get a better feel for these
invariants. We view G(Rnr/(πm)) as a topological HL-group via the action
ρ. This makes sense, since ρ|HK is continuous for the π-adic topology on R,
see Lemma 1.2.7.ii). We furthermore view Matn×n(Ksep) as a topological
HL-group. We consider the case of GLn.

Lemma 3.2.1. For any m ≥ 1, the isomorphism

Φm : Matn×n(Ksep) ∼= Matn×n((Rnr/(πm+1))/(π))→ ker(GLn(prm,m+1)), A 7→ 1+πmA

of Lemma 3.1.11 is HK-equivariant.

Proof. This follows from the fact that ρ(h) is an OL-algebra homomorphism
for every h ∈ HK .

131



Remark 3.2.2. Let c ∈ C1(HK ,GLn(Rnr)) and let Matn×n(Ksep)c1 denote
the HK-group

Matn×n(Ksep)c1 := Matn×n(Ksep), h ∗
c1
A := c1(h) ·Matn×n(ρ̄(h))(A) ·c1(h)−1.

Let ker(GLn(prm,m+1))cm+1 denote the HK-group as in part 3.1.1. Then

Φm : Matn×n(Ksep)c1 → ker(GLn(prm,m+1))cm+1

is HK-equivariant, by Lemma 3.2.1 and since conjugation in Matn×n(Ksep)
with an element of GLn(Ksep) is additive and preserves elements in the center.

Remark 3.2.3. By Hilbert 90, it is that

H1(HK ,GLn(Ksep)) = 1.

So for any c̄ ∈ C1(HK ,GLn(Ksep)), there exists a Matrix A ∈ GLn(Ksep)
satisfying

c̄(h) = A−1 GLn(ρ(h))(A) ∀h ∈ N.
It follows that

Matn×n(Ksep)c̄ →Matn×n(Ksep), B 7→ ABA−1

is an isomorphism of HK-groups since

Ac̄(h)Matn×n(ρ(h))(B)c̄(n)−1A−1 = Matn×n(ρ(h))(ABA−1),

which holds because of

GLn(ρ(h)) = Matn×n(ρ(h))|GLn(Ksep) ∀h ∈ HK .

Now we consider a closed subgroup G ⊂ GLn again.

Lemma 3.2.4. It is

H1(HK , ker(G(prm,m+1))cm+1) = 1

for all m ≥ 1 and c ∈ C1(HK ,G(Rnr)).

Proof. By Remark 3.2.2 the map

ker(G(prn,n+1))cm+1 ⊂ ker(GLn(prm,m+1))⊂◦cm+1
∼= Matn×n(Ksep)⊂◦c1

is an HK-equivariant embedding. By Remark 3.2.3 the right hand side of this
embedding is isomorphic to Matn×n(Ksep) as an HK-group, so by Lemma
3.1.12, this embedding is onto a Ksep-subvector space of Matn×n(Ksep) with
the HK-action given by Matn×n(ρ(h)) for h ∈ HK . It follows that the addi-
tive Hilbert 90 gives the desired triviality of the first cohomology.
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Remark. Let c, d ∈ C1(HK ,G(Rnr/πnRnr)) for 1 ≤ n ≤ ∞, where π∞ := 0.
Then for every h ∈ HK and A,B ∈ G(Rnr/πnRnr), we have

(h .
c,d
A)h .

d,d
B = h .

c,d
(AB).

Proof. We calculate

(h .
c,d
A)h .

d,d
B = c(h)G(ρ(h))(A)d(h)−1d(h)G(ρ(h))(B)d(h−1)

= h .
c,d

(AB).

Proposition 3.2.5. If G is smooth, then prm,c,d is surjective for all m ≥ 1
and all c, d ∈ C1(HK ,G(Rnr)).

Proof. Let B ∈ G(Rnr/(πm))cm,dm,HL . By Hensel’s Lemma Proposition
3.1.13, choose

A ∈ G(Rnr/(πm+1)),

such that
G(prm,m+1)(A) = B.

Then define a cocycle

a(h) := A−1h.A ∈ ker(G(prm,m+1))dm+1 .

We calculate that this is actually a cocycle.

a(h1)dm+1(h1)G(ρ(h1))(a(h2))dm+1(h1)−1

=A−1cm+1(h1)G(ρ(h1))(A)d−1
m+1(h1)dm+1(h1)G(ρ(h1))(a(h2))dm+1(h1)−1

=A−1cm+1(h1)G(ρ(h1))(Aa(h2))dm+1(h1)−1

=A−1cm+1(h1)G(ρ(h1))(AA−1h2.A)dm+1(h1)−1

=A−1cm+1(h1)G(ρ(h1))(cm+1(h2))G(ρ(h1h2))(A)G(ρ(h1))(dm+1(h2)−1)dm+1(h1)−1

=A−1cm+1(h1h2)G(ρ(h1h2))(A)dm+1(h1h2)−1

=a(h1h2)

By Lemma 3.2.4, we get A0 ∈ ker(G(prm,m+1)), such that

A−1h.A = A0 ·G(dm+1)(h)(A−1
0 ),

where

G(dm+1)(h)(A−1
0 ) := dm+1(h) ·G(ρ(h))(A−1

0 ) · dm+1(h)−1 ∀h ∈ HK .
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It follows by the previous Remark that

h.(AA0) = AA0 and G(prm,m+1)(AA0) = B ∀h ∈ HK ,

so AA0 is an element in the inverse image of B under prm,c,d.

Corollary 3.2.6. If G is smooth, then it is

G(Rnr)c,d,HL 6= ∅,

if and only if
G(Ksep)c1,d1,HL 6= ∅.

In particular
H1(HK ,G(Rnr))→ H1(HK ,G(Ksep))

is injective.

Proof. This follows from successively lifting an Element in G(Ksep)c1,d1,HL via
the last Proposition and the correspondence in (∗) before Lemma 3.2.1. The
second claim follows from the fact that, it is

B ∈ G(Rnr)c,d,HL ,

if and only if
B · d(h) ·G(ρ(h))(B−1) = c(h) ∀h ∈ HL.

3.2.2 Galois Representations and Etale (ϕL,ΓK)-Modules

In this part, G is a smooth linear algebraic group over OL together with a
closed immersion of groups G ⊂ GLn. and

(R,Rnr,K) ∈ {(AL,A,E), (W (F)L,W (F)L,F)}.

It is
G(OL) ∼= lim

←
G(OL/πnOL)

by Lemma 3.1.9. We view it with the profinite topology. We call it the π-adic
topology on G(OL).

Remark. The π-adic topology on G(OL) is the same as the topology induced
by

G(OL) ⊂ GLn(OL)

via the π-adic topology on OL.
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Let
j̄R : morcont(GK ,G(OL))→ H1(HK ,G(Rnr))

be the map given by the restriction HK ⊂ GK and OL ⊂ Rnr.

Remark 3.2.7. The map

im(jAK )→ im(jW (F)L)

induced by inclusion
A ⊂ W (F)L

is bijective.

Proof. This follows from the injectivity statements in Corollary 3.2.6 and
Remark 2.2.3.

From here on out we view G(S), where

S ∈ {R,Rnr,K,Ksep}

with the weak topology, see Lemma 2.2.5 and the Remark following it. Let
f ∈ morcont(GK ,G(OL)) and define

G(f)
R := {A ∈ G(Rnr) | A = f(h)G(ρ(h))(A)f(h)−1 ∀h ∈ HK}.

We view G(f)
R ⊂ G(Rnr) with the subset topology. Then G(f)

R can be made
into an OK-group, which is a topological ΓK-group as in part 2.2.2 by setting
for γ = prHK (gγ)π

nγ ∈ OK , where gγ ∈ GK

γ ∗ A := γ ∗
f
A := f(gγ)G(ρ(g)ϕ

nγ
L )(A)f(gγ)

−1.

For this beware that we need that weak topology on Rnr induces the π-adic
topology on OL and Lemma 1.2.7.ii).

Since G ⊂ GLn, there exists by Hilbert 90 and Corollary 3.2.6 a B ∈
GLn(Rnr), such that

f(h) = B−1 GLn(ρ(h))(B) ∀h ∈ HK .

Then we have two embeddings

ι1 : G(f)
R ⊂ G(Rnr) ⊂ GLn(Rnr), A 7→ A

and
ι2 : G(f)

R → GLn(R), A 7→ Bι1(A)B−1.

Viewing GLn(R) and GLn(Rnr) with the with the weak topology, ι1 and

ι2 induce the same topology on G(f)
R , since the weak topology on R is the

topology induced via R ⊂ Rnr, where Rnr carries the weak topology.
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Definition 3.2.8. We define

C1(OK ,G(f)
R ) := {α : OK → G(f)

R | α(γδ) = α(γ)γ∗
f
α(δ) ∀γ, δ, α|ΓK is continuous}

and call α ∈ C1(OK ,G(f)
R ) an etale (ϕL,ΓK)-module over R with values in

G(f).

Fix a subset

{fi}i ⊂ morcont(GK ,G(OL)),

such that the map j̄AK induces a bijection

j̄AK : {fi}i → im(j̄AK ).

Recall the Langmap

Ψ := ΨRnr : G(Rnr)→ G(Rnr), A 7→ A−1G(ϕL)(A).

Analogues to the case in part 2.2.2, we can make constructions, which give
us maps

D : (morcont(GK ,G(OL))/ ∼)→
∐
i

H1(OK ,G(fi)
R )

and

V :
∐
i

{[α] ∈ H1(OK ,G(fi)
R ) | α(π) ∈ im(ΨRnr)} → (morcont(GK ,G(OL))/ ∼).

We briefly recall the construction of D, since we will need it later on. Let
f ∈ morcont(GK ,G(OL)). Then there exists a unique i, such that j̄R(f) =
j̄R(fi). This means that

G(Rnr)f,fi,HL 6= ∅.

So let A0 ∈ G(Rnr)f,fi,HL . Then we have the well defined cocycle

αf,A0(γ) := A−1
0 f(gγ)G(ρ(gγ)ϕ

nγ
L )(A0)fi(gγ)

−1 ∈ G(f)
R ,

if γ = prHK (gγ)π
nγ ∈ OK . Then

D([f ]∼) := αf := [αf,A0 ]∼.

They satisfy the following correspondence.
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Theorem 3.2.9. We have inverse bijections

D : (morcont(GK ,G(OL))/ ∼)↔̃
∐
i

{[α] ∈ H1(OK ,G(fi)
R ) | α(π) ∈ im(Ψ)} : V

and if the special fiber Gk is connected, the right hand side is
∐
i

H1(OK ,G(fi)
R ).

This bijection identifies

{[a]∼ ∈ morcont(GK ,G(OL))/ ∼ | j̄R(a) = j̄R(fi)} ∼= {[α] ∈ H1(OK ,G(fi)
R ) | α(π) ∈ im(Ψ)}.

for every i.

Proof. The first and third part of the statement works completely analogues
as in part 2.2.2. The second part is Proposition 3.1.26.

Since this bijection is dependent on the choice of {fi}i, the maps D and V
are in general not “functorial”. Under certain conditions, there is still a way
to get something like functoriality. For this we first note that, if φ : G1 → G2

is a morphism of groups and f ∈ morcont(GK ,G1(OL)), then

φRnr : G1
(f)
R → G2

(φk◦f)
R

is a well defined morphism of OK-groups by definition, which is continuous,
because it is a polynomial map.

Lemma 3.2.10. Let φ : G1 → G2, such that the induced map

(φA)∗ : H1(HK ,G1(A))→ H1(HK ,G2(A))

is injective on im(j̄G1
AL). Then for any choice {f (1)

i }i ⊂ morcont(GK ,G1(OL)),
such that

j̄G1
AL : {f (1)

i }i → im(j̄G1)

is bijective, we can complement {φOL◦fi}i ⊂ morcont(GK ,G2(OL)) to a subset

{f (2)
l }l, such that

j̄G2
AL : {f (2)

l }l → im(j̄G2)

is bijective. Furthermore, the following diagram is commutative.

(morcont(GK ,G1(OL))/ ∼) D //

(φOL )∗

��

∐
i

H1(OK ,G1
(f

(1)
i )

R )

(φRnr )∗
��

(morcont(GK ,G2(OL))/ ∼)
D

//
∐
l

H1(OK ,G2
(f

(2)
l )

R ).
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Proof. As for Lemma 2.2.16.

In this case, we also have a generalization of the previous Lemma.

Lemma 3.2.11. Let φ : G1 → G2 be a morphism of groupschemes over
OL. Choose some representatives {f (1)

i }i for G1 and {f (2)
l }l for G2 as in the

last Lemma. By definition of these representatives for any f
(1)
i there exists a

unique f
(2)
l and some (non-unique) Bi ∈ G2(Rnr), such that

φk ◦ f (1)
i (h) = Bi · f (2)

l (h) ·G2(ρ(h))(B−1
i ). (∗)

Then the following diagram is commutative and the right vertical map is
independent on the choice of Bi.

(morcont(GK ,G1(OL))/ ∼)D //

(φOL )∗

��

∐
i

H1(OK ,G
(f

(1)
i )

1,R )

∐
i

[α7→[γ 7→B−1
i ·φRnr◦α(γ)·γ.Bi]]

��

(morcont(GK ,G2(OL))/ ∼)
D

//
∐
l

H1(OK ,G
(f

(2)
l )

2,R ).

Here for γ = prHL(gγ)π
nγ ∈ OK, we have

γ.Bi := γ .
φOL◦f

(1)
i ,f

(2)
l

B := φOL ◦ f
(1)
i (gγ) ·G2(ρ(gγ) ◦ ϕnγL )(Bi) · f (2)

l (gγ)
−1.

This is well defined by arguments as in the discussion before Lemma 2.2.7.

Proof. As for Lemma 2.2.18.

Proposition 3.2.12. Let f ∈ morcont(GK ,G(OL)). Then

C1(OK ,G(f)
R ) = {α : OK → G(f)

R | α(γδ) = α(γ) · γ ∗
f
α(δ) ∀γ, δ ∈ OK},

i.e. such an 1-cocycle is automatically continuous for the weak topology on
G(f)
R .

Proof. As for Proposition 2.2.19.

We futhermore obtain the following correspondence between non-perfect
and perfect (ϕL,ΓK)-modules.

Theorem 3.2.13. The inclusion AK ⊂ W (F)L induces a bijection

{[α] ∈ H1(OK ,G(f)
AK ) | α(π) ∈ im(ΨA)}→̃{[α] ∈ H1(OK ,G(f)

W (F)L
) | α(π) ∈ im(ΨW (F)L

)}

and, if Gk is connected, it induces a bijection

H1(OK ,G(f)
AK ) →̃H1(OK ,G(f)

W (F)L
).
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Proof. Extend f to a subset {fi}i, which satisfies the condition that

j̄AK : {fi}i → im(j̄AK )

is bijective. By Remark 3.2.7 and Theorem 3.2.9, we have the bijections

VAK :{[α] ∈ H1(OK ,G(f)
AK ) | α(π) ∈ im(ΨA)}

→ {[a]∼ ∈ morcont(GK ,G(OL))/ ∼ | j̄AK (a) = j̄AK (f)}

and

DW (F)L :{[a]∼ ∈ morcont(GK ,G(OL))/ ∼ | j̄AK (a) = j̄AK (f)}
→ {[α] ∈ H1(OK ,G(f)

W (F)L
) | α(π) ∈ im(ΨW (F)L

)}.

Now one shows that

DW (F)L ◦ VAK :{[α] ∈ H1(OK ,G(f)
AK ) | α(π) ∈ im(ΨA)}

→̃{[α] ∈ H1(OK ,G(f)
W (F)L

) | α(π) ∈ im(ΨW (F)L
)}

is the map induced by the inclusion AK ⊂ W (F)L, just as one calculates that

DK ◦ VK = id

in the proof of Proposition 2.2.15. The second part is Proposition 3.1.26.

Let ARnr := AutRnr(GRnr) be the group of automorphisms of the group
scheme GRnr over Rnr. As in part 2.1.3, we obtain a HK-action of groups
ARnr by conjugating f ∈ ARnr with (idG, Spec(h−1)) for h ∈ HK . As in
Lemma 2.1.23, we obtain a HK-equivariant map

Φ : G(Rnr)→ ARnr

by sending g ∈ G(Rnr) to [G(S) 3 x 7→ gxg−1 ∈ G(S)] for all Rnr-algebras
S. Here, we view G(Rnr) as an HK-group via G(ρ(h)) for every h ∈ HK .

Let GRnr = Spec(H) for some Hopfalgebra H (of finite type) over Rnr,
then by right exactness of the tensor product, it is

GRnr/πnRnr = Spec(H/πnH)

for all n ≥ 1. Let

ARnr,n := AutRnr/πnRnr(GRnr/πnRnr).

Analoguesly to above, we obtain a HK-equivariant map

Φn : G(Rnr/πnRnr)→ ARnr,n.
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For every cocycle c ∈ C1(HK ,G(Rnr)), which is continuous for the prodis-
crete topology, we define

cn := G(prn) ◦ c ∈ C1(HK ,G(Rnr/πnRnr))

a cocycle, which is continuous for the discrete topology on G(Rnr/πnRnr).

We furthermore obtain a cocycle c
(a)
n := Φn ◦ cn ∈ C1(HK , ARnr,n), which

is continuous for the discrete topology on ARnr,n. As described in Remark

2.1.21 the cocycle c
(a)
n induces a HK-semilinear action of Hopfalgebras over

Rnr/πnRnr on H/πnH, which is continuous for the discrete topology on

H/πnH via h 7→ (idG, Spec(h)) ◦ c(a)
n (h)−1, h ∈ HK . We get a Hopfalgebra

H(cn) := (H/πnH)HK

over R/πnR for the invariants under the action defined by c
(a)
n above. Then

G(cn) := Spec(H(cn))

is an (Rnr/πnRnr)|(R/πnR)-Form of GR/πnR. This means that the multi-
plication

Rnr/πnRnr ⊗
R/πnR

H(cn) → H/πnH

is an isomorphism, so we have an identification G(cn)
Rnr/πnRnr

∼= GRnr/πnRnr .
To see this, we have by Proposition 3.1.19 that the multiplication

Rnr ⊗
R
H(cn) → H/πnH

is an isomorphism, but by right exactness of the tensor product and since
πnH(cn) = 0, we also have the isomorphism

Rnr ⊗
R
H(cn) → Rnr/πnRnr ⊗

R/πnR
H(cn), x⊗ y 7→ prπnRnr(x)⊗ y,

so we obtain that the map induced by multiplication

Rnr/πnRnr ⊗
R/πnR

H(cn) → H/πnH

is an isomorphism. As calculated for Remark 2.1.21.(1), this identification
gives and identification

G(cn)(Rnr/πnRnr) ∼= G(Rnr/πnRnr),

which satisfies

G(cn)(ρ(h))(A) = cn(h) ·G(ρ(h))(A) · cn(h)−1 ∀h ∈ HK , A ∈ G(Rnr/πnRnr).
(T )
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Proposition 3.2.14. We use the same notation as in the discussion above.
Let

ψn : H(cn+1) → H(cn)

be the map induced by the projection prn : H/πn+1H → H/πnH. Then the
projective system (H(cn), ψn)n≥1 satisfies the conditions of Lemma 3.1.18. In
particular

H(c) := lim
←
H(cn)

is a complete formal Hopfalgebra over R. We set Ĝ(c) := Spf(H(c)). We
then furthermore have that f ∈ morcont(GK ,G(OL)) seen as an element
C1(HK ,G(Rnr)) via restriction HK ⊂ GK and inclusion OL ⊂ Rnr satis-
fies

Ĝ(f)(R) ∼= G(f)
R .

Proof. By Corollary 3.1.20 the functor (·)HK is exact on those modules Rnr-
modules M with a semilinear and π-adically continuous HK-action, such that
there exists an n ≥ 1, such that πnM = 0. It follows from the surjectivity
of the projection prn : H/πn+1H → H/πnH that ψn : H(cn+1) → H(cn+1) is
surjective.

Consider for every n ≥ 1 and 1 ≤ m ≤ n the right exact sequence

H/πn+1H
πm·→ H/πn+1H → H/πmH → 0.

It follows by the exactness of (·)HK of Corollary 3.1.20 that the map

ψn+1,m : H(cn+1) → H(cm)

induced by the projection

H/πn+1H → H/πmH

has kernel

ker(ψn+1,m) = πmH(cn+1). (Kn+1,m)

By induction for n ≥ 1, we show that

ψ−1
n (πmH(cn)) = πmH(cn+1)

for every 1 ≤ m ≤ n For n = 1, we have to show that

ψ−1
1 (πH(c1)) = πH(c2).
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But ψ−1
1 (πH(c1)) = ker(ψ1), so this follows from (K2,1). Let the statement

be correct for some n− 1 ≥ 1 and every 1 ≤ m ≤ n− 1. Then for n = m we
have to show

ψ−1
n (πnH(cn)) = πnH(cn+1).

But as above we have ψ−1
n (πnH(cn)) = ker(ψn), so this follows from (Kn+1,n).

So let m < n. Then by induction hypothesis, we have the chain of equalities

ψ−1
n (πmH(cn)) = ψ−1

n (ψ−1
n−1(πmH(cn−1)))

= . . .

= ψ−1
n (ψ−1

n−1(. . . (ψ−1
m (πmH(cm))) . . . )

= ker(ψn+1,m),

so we have
ψ−1
n (πmH(cn)) = πmH(cn+1)

by (Kn+1,m).
Lastly for the conditions on the projective systems, we have to show that

for every R/πnR-algebra S, we have that ψn induces a morphism of groups

morR/πnR−Alg(H
(cn), S)→ morR/πn+1R(H(cn+1), S).

But the projection
H/πn+1H → H/πnH

respects the structure of a Hopfalgebra, since this structure is for all H/πnH
induced by the one on H. Since H(cn) carries the Hopfalgebra structure
induced by H/πnH, it follows that ψn also respects the structure of a Hop-
falgebra, so the induced map

morR/πnR−Alg(H
(cn), S)→ morR/πn+1R(H(cn+1), S)

is indeed a morphism of groups.
We have

Ĝ(f)(R) ∼= lim
←

G(fn)(R/πnR)

∼= lim
←
{A ∈ G(Rnr/πnR) | fn(h) ·G(ρ(h))(A) · fn(h)−1 ∀h ∈ HK}

∼= G(f)
R ,

where the first isomorphism is from the isomorphism in Lemma 3.1.18, the
second isomorphism is the identification (T ) before this Proposition together
with Lemma 2.1.25 and the last isomorphism is the bijection (∗) in the dis-
cussion before Lemma 3.2.1 for c = d = f , which is an isomorphism for c = d,
since the action defined there is an action of groups, if c = d.
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This Proposition says that the (ϕL,ΓK)-module side of the correspon-
dence doesn’t just take values in abstract groups, but R-valued points of
complete formal groups, which are related to the π-adic completion ĜRnr :=
Spf(Ĥ), where Ĥ is the complete formal Hopfalgebra over Rnr obtained by
π-adic completion of the Hopfalgebra H over Rnr with GRnr = Spec(H),
see Lemma 3.1.17 that this is indeed a complete formal Hopfalgebra. The
relation of H(c) of the previous Proposition to Ĥ is as follows.

Definition 3.2.15. Let R be a complete discrete valuation ring with uni-
formizer $ and A,B be two R-algebras. We define the completed tensor
product of A and B over R to be

A⊗̂
R
B := lim

←
(A⊗

R
B)/πn(A⊗

R
B)

Lemma 3.2.16. We continue the notation from above, the previous Propo-
sition and the discussion before it. Let H0 be the Hopfalgebra over R with
GR = Spec(H0), so H = H0 ⊗

R
Rnr. Let Ĥ0 be the π-adic completion of H0

and ĜR := Spf(Ĥ0). Then

Ĥ = H0⊗̂
R
Rnr ∼= Ĥ0⊗̂

R
Rnr

and
Ĥ ∼= H(c)⊗̂

R
Rnr.

We say that Ĝ(c) is an Rnr|R-Form of ĜR.

Proof. The equality
Ĥ = H0⊗̂

R
Rnr

follows by definition of the π-adic completion. Furthermore, we have by right
exactness of the tensorproduct and Ĥ0/π

nĤ0
∼= H0/π

nH0 that

lim
←

(Ĥ0 ⊗
R
Rnr)/(πn) ∼= lim

←
(H0/π

nH0 ⊗
R
Rnr) ∼= lim

←
(H0 ⊗

R
Rnr)/(πn)

By Lemma 3.1.18 the projection H(c) → H(cn) induces an isomorphism
H(c)/πnH(c) ∼= H(cn), so we have by the right exactness of the tensor product
that

(H(c) ⊗
R
Rnr)/πn(H(c) ⊗

R
Rnr) ∼= H(cn) ⊗

R
Rnr,

so it is
(H(c) ⊗

R
Rnr)/πn(H(c) ⊗

R
Rnr) ∼= H/πnH
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by Proposition 3.1.19. It follows that

Ĥ ∼= H(c)⊗̂
R
Rnr.

If f ∈ morcont(GK ,G(OL)) is the trivial morphism, we don’t have to go
to the completion of G by the following Remark.

Remark. By Lemma 2.1.25, it is

G(1)
R = G(R),

when 1 ∈ morcont(GK ,G(OL)) is the trivial map.

It follows by Hilbert 90 and Corollary 3.2.6 that we get a map, which
satisfies the properties in Theorem 1.3.18.i).

We now show that this map is the one induced by the Fontaine functor.
So let K = L. Let f ∈ morcont(GL,GLn(OL)). Then we define

ρf := (OnL, ρf : [g 7→ [v 7→ f(g) · v]])

as an element in Rep
(n)
OL(GL). On the other hand, if M ∈ ΓLΦ

et,(n)
AL is an etale

(ϕL,ΓL)-module, which is free of rank n together with an AL-basis x := (xi)i,
then by Lemma 1.3.16 we have the cocycle

αM,x(γ) := cx(γ) := Aγ,x

in C1(O•L,GLn(AL)), where A := Aγ,x ∈ GLn(AL) is the Matrix, which
satisfies

γ ∗ xi =
∑
j≤n

Ajixj.

Proposition 3.2.17. Let f ∈ morcont(GL,GLn(k)). For every morphism of
groups σ : GLn → GLm over OL and every AL-basis (xi)i of D(ρf ) there exists

an AL-basis (yk)k≤m ⊂ D(ρσOL◦f ), such that the following diagram commutes.

O•L
αD(ρf ),(xi)i

//

αD(ρσOL◦f
),(yk)k

##

GLn(AL)

σAL

��
GLm(AL)
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Furthermore, for every such basis (xi)i, there exists A0 ∈ GLn(A)f,1,HL, such
that

αD(ρf ),(xi)i = αf,A0 .

Proof. For every r ≥ 1 we observe the inverse isomorphisms

(A)r → (OrL ⊗
OL

A)

(ai)i 7→
∑
i

ei ⊗ ai

(bia)i ←[ (bi)i ⊗ a,

where ei ∈ OrL denotes the i-th standard vector. Let ρOrL be any continuous
GL representation on OrL, in the sense, that we write

ρOrL(g) ∈ GLr(k).

Then the above isomorphisms give rise to an identification

D(ρOrL) ∼= ((A)r)HL ,

where the GL-action on the right-hand side is given via

g.((ai)i) = (
∑
i

ρOrL(g)jiρ(g)(ai))j ∀g ∈ GL. (∗)

The π-action is given by

π.((ai)i) = (ϕL(ai))i.

By (Sch17, Proposition 3.3.7) we know, that the AL-bases for ((A)r)HL cor-
respond to the A-bases in (A)r, which are in the HL-invariants. By

(xi)i ⊂ ((A)r)HL

we denote the AL-basis, which corresponds to (xi)i via the above isomorphism
and write x as the corresponding element of GLn(A), i.e.

xij := (xj)i.

Define (yk)k as the corresponding A-basis to σA(x). We need to show, that
yk is HL-invariant for it to correspond to a AL-basis (yk)k as desired. For
A ∈ GLr(A), we define

g.A := (g.((Ai1)i), . . . , g.((Air)i))∀g ∈ GL and π.A := (π.((Ai1)i), . . . , π.((Air)i)).
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Using (∗), one calculates, that

g.A = ρOrL(g) ·GLr(ρ(g))(A) and π.A = GLr(ϕL)(A). (∗∗)

Since ρOrL(g) ∈ GLn(k) for all g ∈ GL, we have that

GLr(ψ)(ρOrL(g)) = ρOrL(g)

for any ψ ∈ EndOL−Alg(A). With this and since ϕL commutes with ρ(g) for
every g ∈ GL one calculates, that

(g1g2).A = g1.(g2.A),

π.(g.A) = g.(π.A),

πn+m.A = πn.(πm.A) ∀g, g1, g2 ∈ GL, A ∈ GLr(A), n,m ∈ N.

With this it makes sense to define γ.A for every γ ∈ O•L and

A ∈ GLr(A)
HL,ρOr

L := {A ∈ GLr(A) | h.A = A ∀h ∈ HL}

and it is
γ.A = (γ.((Ai1)i), . . . , γ.((Air)i))

for all such γ, where γ.((Ai1)i) denotes the O•L-action on

((A)r)HL ∼= D(ρOrL).

Finally we calculate for A ∈ GLn(A) and g ∈ GL, that

g.(σA(A)) = σA(f(g))·GLm(ρ(g))(σA(A)) = σA(f(g))·σA(GLn(ρ(g))(A)) = σA(g.A).

For the first equality, we used, that

σk = σA|GLn(k),

for the second equality, we used, that σ is a natural transformation between
GLn and GLm and for the last equality, we used, that σA is a morphism of
groups. With this, we have shown, that (yk)k is HL-invariant. Analogues, it
is

π.(σA(A)) = σA(π.A).

Let γ ∈ O•L and
Aγ := αD(ρf ),(xi)i(γ).

For the given diagram to commute we need to show, that

σA(Aγ) = αD(ρσOL◦f
),(yk)k(γ),

146



again using, that

σA|GLn(AL) = σAL .

For that, we calculate

yαD(ρf,σ),(yk)k(γ) = γ.y = γ.σA(x) = σA(γ.x) = σA(x)σA(Aγ) = yσA(Aγ).

Furthermore, because of (∗∗), we have that for A0 := x̄, it is

αD(ρf ),(xi)i = x̄−1γ.x̄ = αf,A0 .

Remark. This Proposition can also be proven for R instead of AL. Further-
more, one can generalize this for σ : G1 → G2 with finite K|L instead of
K = L, but one has to begin with f, f ′ ∈ morcont(GK ,G(OL)), such that

j̄R(f) = j̄R(f ′)

and then, instead of using bases (xi)i, (yi)i, one has to work with

X ∈ G1(Rnr)f,f
′,HK and Y ∈ G2(Rnr)σOL◦f,σOL◦f

′,HK

and instead of using

αD(ρf ),(xi)i , α(DρσOL◦f
),(xi)i ,

one has to work with with

αf,X and ασOL◦f,Y ,

so that we obtain that for every such X there exists such an Y (e.g. Y :=
σRnr(X)) giving a commutative diagram

OK

αf,X //

ασOL◦f,Y

##

G(f ′)
1 (R)

σRnr

��

G(σOL◦f
′)

2 (R)

The second part of the last Proposition together with Lemma 3.2.10 closes
the proof of Theorem 1.3.18.
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Faithfully Flat Descent

We have seen that the (ϕL,ΓK)-side of the correspondence takes values in
points of formal group schemes. But for the trivial map 1 ∈ morcont(GK ,G(OL)),
we have seen that the corresponding group were points of the linear algebraic
group G itself. We can generalize this for those f ∈ morcont(GK ,G(OL)),
which are also continuous for the discrete topology on G(OL). This needs
some statements from the general theory of faithfully flat descent, which we
will recall now. We will follow (Gö10, section (14.20)). Let Γ be a group and
S be a scheme. We define

Γ× S :=
∐
γ∈Γ

S

the scheme given by glueing along the disjoint union. The canonical map

Γ× S → S

is faithfully flat (See Gö10, Remark 14.8). Γ × S is the constant group
scheme of Γ over S. It follows that an action of Γ on an S-scheme S ′ via
S-automorphisms corresponds to a morphism

(Γ× S)×
S
S ′ → S ′,

via (γ, s′) 7→ γ · s′ on the T -valued points for a S ′-scheme T .

Definition 3.2.18. Let Γ be finite. A Galois covering with Galois group Γ
is a finite faithfully flat morphism p : S ′ → S together with an action of Γ
on S ′ via S-automorphisms, such that the morphism

σ : Γ× S ′ → S ′ ×
S
S ′,

given by (γ, s′) 7→ (s′, γs′) on the T -valued points for a S ′-scheme T is an
isomorphism.

Example 3.2.19. Let R be a complete discrete valuation ring and R0 be a
finite unramified extension of R, such that

Quot(R0)|Quot(R)

is a Galois extension. Then we have the finite Galois group

GR0|R := AutR−Alg(R0) ∼= Gal(kR0 |kR),
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where the isomorphism follows from Proposition 1.2.29.ii). It is R0 fully
faithful over R by (Bou72, I §2.4 Proposition 3.ii)) and (Mat86, Theorem
7.2). Furthermore, we have that

R0
∼= R[X]/P (X)

for some separable polynomial P (X) ∈ R[X] with #GR0|R distinct zeroes
by Lemma 1.2.26 and the Theorem of Gauß for factorial rings (See Bos05,
section 2.7 Satz 7). We deduce that

R0 ⊗
R
R0
∼=

∏
s∈GR0|R

R0

by the Chinese Remainder Theorem, so the inclusion ι : R→ R0 is a Galois
covering with Galois group GR0|R.

Definition 3.2.20. Let S ′ → S be a Galois covering with Galois group Γ
and X ′ be an S ′-scheme. Then a Γ-action on X ′ via S ′-automorphisms is
called compatible, if the following diagram commutes for every γ ∈ Γ.

X ′
γ //

��

X ′

��
S ′ γ

// S ′

Theorem 3.2.21. (See Gö10, Theorem 14.84)
Let S be an affine scheme and S ′ → S be a Galois covering with Galois

group Γ. Then the functor

(quasi-projective S-schemes)→ (quasi-projective S ′-schemes with compatible Γ-action)

X 7→ (X ×
S
S ′, (idX′ , φcan))

is an quasi equivalence of categories. Here φcan denotes the Γ-action on S ′

given by the Galois covering. Let S ′ = Spec(B) and S = Spec(A) both be
affine and X ′ = Spec(R) be an affine scheme of finite type over S ′ with an
compatible Γ-action, i.e. a Γ-action on R, which is semilinear for the Γ-
action on B given by the Galois covering. Then the descent is given by the
invariants RΓ and the natural isomorphism for the quasi equivalence is the
multiplication

B ⊗
A
RΓ → R.
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Proof. For the second part about the affine case, look into how a compatible
Γ-action gives a descent datum in the discussion before (Gö10, Theorem
14.84) and look into step (i) in the proof of (Gö10, Theorem 14.66) for the
explicit form of the descent given by a descent datum in this affine case and
that the multiplication induces an isomorphism.

Let R and Rnr be again as defined in the beginning of this part. Let
furthermore Run be the maximal unramified extension of R in W (C[

p)L.

Remark 3.2.22. The ring Rnr is the π-adic completion of Run.

Proof. This is just by definition for the case R = AL.
For R = W (F)L, let F |F be a finite extension in F . By Proposition

1.2.29.ii), there exists a finite unramified extension C of the quotient field
Quot(W (F)L) with residue field F . By the universial property of the maximal
unramified extension (See Kle16, Satz 2.1.10.ii)) or by a variant of (Sch17,
Lemma 3.1.2) there exists a lift of the q-Frobenius (·)q : F → F on OC , which
we denote by ϕC : OC → OC . It follows that we can deduce from Lemma
1.1.13 that

OC ∼= W (F )L,

in particular W (F )L ⊂ W (F)L is the finite unramified extension of W (F)L
with residue field F , which is unique by Proposition 1.2.29.ii). It follows that

W (FL)un =
⋃
F |F
finite

W (F )L.

So let x = (xn)n ∈ W (F)L. Then for every n ≥ 1 there exists a finite
extension Fn|F with Fn ⊂ F, such that xi ∈ Fn for every i ≤ n. Define a
sequence

y(n) ∈ W (Fn)L ⊂ W (FL)un

by setting

y
(n)
i :=

{
xi, if i ≤ n

0 elsewhere
.

Then in the π-adic topology, we have

lim
n
y(n) = x.

So W (FL)un ⊂ W (F)L is π-adically dense.

We obtain the following special case for our example above.
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Proposition 3.2.23. Let A be a Run-algebra of finite type with a semilinear
and discrete HK-action of R-algebras. Then the map given by multiplication

Run ⊗
R
AHK → A

is an isomorphism.

Proof. For any open normal subgroup N ⊂ HK , we define

RN := (Run)N ,

which is a finite unramified extension over R. Choose an isomorphism

f : Run[X1, . . . , Xn]/I → A.

Choose generators I = 〈P1, . . . , Pm〉. Since the HK-action is discrete, finitely
many elements are fixed by an open normal subgroup. It follows that the set
{h · f(Xi) | h ∈ HK , 1 ≤ i ≤ n} is finite. So we can choose N small enough
such that N fixes all the f(Xi), 1 ≤ i ≤ n,

Pi ∈ RN [X1, . . . , Xn] ∀1 ≤ i ≤ m (P)

and

h · f(Xj) ∈ A0 := RN [f(X1), . . . , f(Xn)] ∀h ∈ HK , 1 ≤ j ≤ n. (G)

From (P) it follows that (I ∩ RN [X1, . . . , Xn]) · Run[X1, . . . , Xn] = I, so by
right exactness of the tensor product, we have that the multiplication induces
an isomorphism

Run ⊗
RN

A0 → A.

Since Run is faithfully flat over RN by (Bou72, I §2.4 Proposition 3.ii)) and
(Mat86, Theorem 7.2), it follows that the RN -algebra A0 is of finite type
(See Gö10, Proposition 14.46). It furthermore follows that we are reduced
to show that the map induced by the multiplication

RN ⊗
R
A
HK/N
0 → A0

is an isomorphism. By (G) the RN -algebra A0 is HK-invariant and of finite
type over RN . So by Example 3.2.19 we can use Theorem 3.2.21, by which
we obtain that the multiplication induces an isomorphism as desired.
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Let G again be a linear algebraic group over OL with fixed embedding
G ⊂ GLn and GRun = Spec(H) for a Hopfalgebra (of finite type) over Run.
Let ARun := AutRun(GRun) be the group of automorphisms of the group
scheme GRun over Run. As in part 2.1.3, we obtain a HK-action of groups
ARun by conjugating f ∈ ARun with (idG, Spec(h−1)) for h ∈ HK . As in
Lemma 2.1.23, we obtain an HK-equivariant map

Φ : G(Run)→ ARun

by sending g ∈ G(Run) to [G(S) 3 x 7→ gxg−1 ∈ G(S)] for all Run-algebras
S. Here, we view G(Run) as an HK-group via G(ρ(h)) for every h ∈ HK .

For every cocycle c ∈ C1(HK ,G(Run)), which is continuous for the dis-
crete topology, we obtain a cocycle c(a) := Φ ◦ c ∈ C1(HK , ARun), which
is continuous for the discrete topology on ARun . As described in Remark
2.1.21, the cocycle c(a) induces an HK-semilinear action of Hopfalgebras
over Run on H, which continuous for the discrete topology on H via h 7→
(idG, Spec(h)) ◦ c(a)(h)−1, h ∈ HK . We get a Hopfalgebra

H(c),alg := HHK

over R for the invariants under the action defined by c(a) above. Then

G(c) := Spec(H(c),alg)

is an Run|R-Form of GR by Proposition 3.2.23. This means that the multi-
plication

Run ⊗
R
H(c),alg → H

is an isomorphism, so we have an identification G(c)
Run
∼= GRun . As calculated

for Remark 2.1.21.(1), this identification gives and identification

G(c)(Run) ∼= G(Run),

which satisfies

G(c)(ρ(h))(A) = c(h) ·G(ρ(h))(A) · c(h)−1 ∀h ∈ HK , A ∈ G(Run). (T2)

We obtain the following identification of the groups, which we have on the
(ϕL,ΓK)-side of the correspondence.

Lemma 3.2.24. We continue the notation from the discussion above. The
group G(c) is of finite type over R and for every f ∈ morcont(GK ,G(OL)),
which is also continuous for the discrete topology on G(OL), we have

G(f)(R) = {A ∈ G(Rnr) | A = f(h)G(ρ(h))(A)f(h)−1 ∀h ∈ HK} = G(f)
R .

Here we view f ∈ C1(HK ,G(Rnr)) via the restriction HK ⊂ GK and the
inclusion OL ⊂ Rnr.
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Proof. Since Run⊗
R
H(c),alg ∼= H and Run is faithfully flat over R by (Bou72,

I §2.4 Proposition 3.ii)) and (Mat86, Theorem 7.2), we have that H(c),alg is
of finite type (See Gö10, Proposition 14.46).

Since Rnr is the π-adic completion of Run by Remark 3.2.22, we have
that

G(Run) ⊂ G(Rnr) ∼= lim
←

G(Run/πnRun)

is dense for the pro discrete topology on the right hand side. Futhermore,
the topological group G(Rnr) is complete for the pro discrete topology. To
see this, one has to check the two following facts. Firstly, the pro discrete
topology is the subset topology G(Rnr) ⊂ GLn(Rnr), where the topology
on GLn(Rnr) is induced by the π-adic topology on Rnr, which is π-adically
complete. Secondly, the subset G(Rnr) ⊂ GLn(Rnr) is closed for this topol-
ogy as a subset of zeroes of polynomials with coefficients in OL. It follows
that two continuous endomorphisms on G(Rnr), which are equal on G(Run)
are already equal everywhere. In particular, we have

G(f)(ρ(h))(A) = f(h) ·G(ρ(h))(A) · f(h)−1 ∀h ∈ HK , A ∈ G(Rnr)

by (T2) and since G(f)(ρ(h)) and the map on the righthandside of this equal-
ity are continuous for the pro discrete topology of G(Rnr), since ρ(h) is a
continuous automorphism for the π-adic topology on Rnr and f is continuous
for the (pro) discrete topology of G(Rnr). Thus, the equality

G(f)(R) = {A ∈ G(Rnr) | A = f(h)G(ρ(h))(A)f(h)−1 ∀h ∈ HK}

holds by Lemma 2.1.25.

3.2.3 Thoughts on the Quotientfield Case

In the last part of this thesis, we will give a short discussion how the results
in the last part can be lifted to the case of the quotientfields of our discrete
valuation rings. We now introduce some more notation. We define

EK := Quot(AL), E := Quot(A).

and
FK := Quot(W (F)L), F := Quot(W (F )L).

We set
(S,Snr) ∈ {(EK , E), (FK ,F)}

and its ring of integers (R,Rnr), so again

(R,Rnr) ∈ {(AK ,A), (W (F)L,W (F)L)}
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As over their ring of integers, we have

GSnr|S := AutS(Snr)
∼=→ HK .

Let
ρ : GK → AutL−Alg(Snr)

be the continuation of ρ : GK → AutOL−Alg(Rnr) and analoguesly denote

ϕL ∈ EndL−alg(Snr).

Then ρ|HK coincides with the natural GEF- action via the above isomorphism.
It follows, that we get a OK-action on S denoted by τ(γ) for every γ ∈ OK .
This is the continuation of the OK-action on R.

Let G be a linear algebraic group over OL with a fixed embedding G ⊂
GLn and set for f ∈ morcont(GK ,G(OL)) the groups

G(f)
S := {A ∈ G(Snr) | A = f(h)G(ρ(h))(A)f(h)−1}.

This can be made into an OK-group as in the integral case. We denote the
action by

γ ∗
f
A for γ ∈ OK , A ∈ G(Snr).

Definition 3.2.25. We set

C1(OK ,G(f)
S ) := {c : OK → G(f)

S | c(γδ) = c(γ)γ ∗
f
c(δ) ∀γ, δ}.

We set c ∼ d to be the usual cohomology equivalence for c, d ∈ C1(OK ,G(f)
S )

C1,Int(OK ,G(f)
S ) := {c ∈ C1(OK ,G(f)

S ) | ∃c0 ∈ C1(OK ,G(f)
R ) : c ∼ c0}.

Take caution that with C1(OK ,G(f)
R ), we mean those cocycles, who are con-

tinuous on ΓK .
An element α ∈ C1,Int(OK ,G(f)

S ) is called an etale (ϕL,ΓK)–module over
S with values in G(f).

Since G ⊂ GLn, there exists by Hilbert 90 and Corollary 3.2.6 a B ∈
GLn(Rnr), such that

f(h) = B−1 GLn(ρ(h))(B) ∀h ∈ HK .

Then we have two embeddings

ι1 : G(fi)
S ⊂ G(Snr) ⊂ GLn(Snr), A 7→ A
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and
ι2 : G(fi)

S → GLn(S), A 7→ Bι1(A)B−1.

This at least gives us that the subgroups G(fi)
S can be seen as subgroups of

matrices with entries in the smaller ring R.

Definition 3.2.26. We define

morInt(GK ,G(L)) :=

{f ∈ mor(GK ,G(L)) | ∃B ∈ G(L), f ′ ∈ morcont(GK ,G(OL)) : f(g) = B−1f ′(g)B ∀g ∈ GK}.

Remark. By definition we have canonical bijections

(morcont(GK ,G(OL))/ ∼
L

)→ morInt(GK ,G(L))/ ∼

and
(C1(OK ,G(f)

R )/ ∼
S

)→ H1,Int(OK ,G(f)
S ),

where the conjugation (resp. cohomology) relations are those over the quo-
tientfield, i.e. given by conjugation (resp. OK-twisted conjugation) with

B ∈ G(L) (resp. B ∈ G(f)
S ).

Let
j̄S : morcont(GK ,G(OL))→ H1(HK ,G(Snr))

be the map induced by restriction to HK ⊂ GK and inclusion OL ⊂ Snr. We
fix a subset {fi}i ⊂ morcont(GK ,G(OL)), such that

j̄S : {fi}i → im(j̄S)

is bijective.
Warning: Since we have no comparison from H1(HK ,G(Snr)) to the

characteristic p case, it might happen here that for S = EK and for S =
FK there are different subsets {f (E)

i }i and {f (F)
i }i satisfying their respective

condition.
Let f ∈ morcont(GK ,G(OL)) and fi such that

j̄S(f) = j̄S(fi).

We define for every A ∈ G(Snr), g ∈ GK and n ≥ 1

g.A := f(g) ·G(ρ(g))(A)fi(g)−1, πn.A := G(ϕnL)(A).

We furthermore define

G(Snr)HL,f,fi := {A ∈ G(Snr) | h.A = A ∀A}.
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This is not empty because of

j̄S(f) = j̄S(fi).

We get a OK-action on G(Snr)HL,f , which we denote by γ.A. For every
f ∈ morcont(GK ,G(OL)), we choose A0 ∈ G(Snr)HL,f,fi and define

αf,A0(γ) := A−1
0 γ.A0 ∈ G(EF).

As in the integral case we see, that

αf,A0(γ) ∈ C1(OK ,G(fi)
S )

and is up to cohomology independent on the choice of A0. We get a map

D : morInt(GK ,G(L))→
∐
i

H1,Int(OK ,G(fi)
S ), f 7→ [αf,A0 ]∼ =: αf ,

which induces a map on the set of conjugacyclasses

morInt(GK ,G(L))/ ∼ .

As in the characteristic p and the integral case, we get the following results.

Proposition 3.2.27. The map

D : (morInt(GK ,G(L))/ ∼)→
∐
i

H1,Int(OK ,G(fi)
S )

is injective with image∐
i

{[α]∼ ∈ H1,Int(OK ,G(fi)
S ) | α ∈ C1(OK ,G(fi)

R ), α(π) ∈ im(ΨRnr)}.

This bijection identifies

{[a]∼ ∈ morInt(GK ,G(L))/ ∼ | a ∈ morcont(GK ,G(OL)), j̄S(a) = j̄S(fi)}
∼={[α]∼ ∈ H1,Int(OK ,G(fi)

S ) | α ∈ C1(OK ,G(fi)
R ), α(π) ∈ im(ΨRnr)}

for every i.

Lemma 3.2.28. Let φ : G1 → G2, such that the induced map

(φSnr)∗ : H1(HK ,G1(Snr))→ H1(HK ,G2(Snr))
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is injective on im(j̄G1
R ). Then for any choice {f (1)

i }i ⊂ morcont(GK ,G1(OL)),
such that

j̄G1
S : {f (1)

i }i → im(j̄G1)

is bijective, we can complement {φOL◦fi}i ⊂ morcont(GK ,G2(OL)) to a subset

{f (2)
l }l, such that

j̄G2
S : {f (2)

l }l → im(j̄G2)

is bijective. Furthermore, the following diagram is commutative.

(morInt(GK ,G1(L))/ ∼) D //

(φL)∗

��

∐
i

H1,Int(OK ,G1,S
(f

(1)
i ))

(φSnr )∗

��

(morInt(GK ,G2(L))/ ∼)
D

//
∐
l

H1,Int(OK ,G2,S
(f

(2)
l )).

In this case, we also have a generalization of the previous Lemma.

Lemma 3.2.29. Let φ : G1 → G2 be a morphism of groupschemes over
OL. Choose some representatives {f (1)

i }i for G1 and {f (2)
l }l for G2 as in the

last Lemma. By definition of these representatives for any f
(1)
i there exists a

unique f
(2)
l and some (non-unique) Bi ∈ G2(Snr), such that

φk ◦ f (1)
i (h) = Bi · f (2)

l (h) ·G2(ρ(h))(B−1
i ). (∗)

Then the following diagram is commutative and the right vertical map is
independent on the choice of Bi.

(morInt(GK ,G1(L))/ ∼) D //

(φL)∗

��

∐
i

H1,Int(OK ,G
(f

(1)
i )

1,S )

∐
i

[α7→[γ 7→B−1
i ·φSnr◦α(γ)·γ.Bi]]

��

(morInt(GK ,G2(L))/ ∼)
D

//
∐
l

H1,Int(OK ,G
(f

(2)
l )

2,S ).

Here for γ = prHL(gγ)π
nγ ∈ OK, we have

γ.Bi := γ .
φOL◦f

(1)
i ,f

(2)
l

B := φOL ◦ f
(1)
i (gγ) ·G2(ρ(gγ) ◦ ϕnγL )(Bi) · f (2)

l (gγ)
−1.

This is well defined by arguments as in the discussion before Lemma 2.2.7.
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Theorem 3.2.30. If G is smooth and Gk is connected, then

D : (morInt(GK ,G(L))/ ∼)→
∐
i

H1,Int(OK ,G(fi)
S )

is bijective. This bijection identifies

{[a]∼ ∈ morInt(GK ,G(L))/ ∼ | a ∈ morcont(GK ,G(OL)), j̄S(a) = j̄S(fi)}
∼=H1,Int(OK ,G(fi)

S )

for every i.

Furthermore, we obtain the following statement for the comparison be-
tween the nonperfect and the perfect case.

Theorem 3.2.31. Let the map

im(j̄EK )→ im(j̄FK )

induced by the inclusion E ⊂ F be bijective. Then for any f ∈ morcont(GK ,G(OK))
the inclusion

AK ⊂ W (F)L

induces a bijection between the sets

{[α]∼ ∈ H1,Int(OK ,G(f)
EK ) | α ∈ C1(OK ,G(f)

AK ), α(π) ∈ im(ΨA)}

→̃{[α]∼ ∈ H1,Int(OK ,G(f)
FK ) | α ∈ C1(OK ,G(f)

W (F)L
), α(π) ∈ im(ΨW (F)L)}

If G is smooth and Gk is connected then the inclusion induces a bijection

H1,Int(OK ,G(f)
EK )→̃H1,Int(OK ,G(f)

FK ).

Proof. As in the integral case, one uses the statements before this one together
with the assumption.
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