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Abstract. For a fixed closed manifold P , we construct a cobordism category of embedded
manifolds with Baas–Sullivan singularities modeled on P . Our main theorem identifies the
homotopy type of the classifying space of this cobordism category with that of the infi-
nite loop-space of a certain spectrum MTP (d), related to the spectrum MT(d) studied by
Galatius, Madsen, Tillmann, and Weiss in [6]. We obtain an analog of the Bockstein–Sullivan
exact couple that arises between the classical bordism theories MO and MOP on the level of
cobordism categories and their classifying spaces.

1. Introduction and statement of main results

Fix a closed, smooth manifold P . Following [1, 4], a manifold with Baas–
Sullivan singularities modeled on P is a smooth manifold W equipped with
the following:

(i) The boundary is equipped with a decomposition ∂W = ∂0W ∪∂1W such
that ∂(∂1W ) = ∂0W ∩ ∂1W = ∂(∂0W ) is a closed manifold.

(ii) The face ∂1W has the factorization ∂1W = β1W × P for some manifold
β1W .

We will call such manifolds P -manifolds. The face ∂0W is said to be the
boundary of W . If W is compact and ∂0W = ∅ then W is said to be a
closed P -manifold. Two closed d-dimensional P -manifolds Ma and Mb are
said to be cobordant if there is a (d+1)-dimensional P -manifold W such that
∂0W =Ma ⊔Mb.

We are interested in the cobordism theory of P -manifolds. To simplify our
presentation we will assume that all manifolds are unoriented. However, the
same constructions work in the same way for an arbitrary tangential struc-
ture, θ : B → BO. We denote by Ω∗ the graded cobordism group of unori-
ented manifolds. Using the above definitions of P -manifolds and cobordism
of P -manifolds, one can define the graded cobordism group ΩP

∗ of unoriented
P -manifolds.
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The group ΩP
∗ is related to Ω∗ by means of the well-known Bockstein–

Sullivan exact couple:

Ω∗

i

  
❆❆

❆❆
❆❆

❆❆
Ω∗

×P
oo

ΩP
∗

β1

>>⑥⑥⑥⑥⑥⑥⑥⑥

The map ×P is the homomorphism of degree dim(P ) given by multiplication
by P . The map i is given by inclusion and β1 is the degree −1 homomorphism
given by M 7→ β1M . This exact couple arises from a cofiber sequence of
spectra, ΣpMO→ MO→ MOP , whereMOP is the classifying spectrum for ΩP

∗ .
Details on the construction of this exact couple can be found in [1, 4].

Motivated by the ideas in [2], we construct a cobordism category of mani-
folds with Baas–Sullivan singularities which generalizes the cobordism category
of [6], and then determine the homotopy type of its classifying space. In [6],
Galatius et al. construct a topological category Cobd+1 whose morphisms are
(d + 1)-dimensional submanifolds W ⊆ [a, b] × R

d+∞ that intersect the walls
{a, b}×R

d+∞ orthogonally in ∂W . This category is topologized in such a way
so that there are weak homotopy equivalences

Ob(Cobd+1) ≃
⊔

M

BDiff(M),

Mor(Cobd+1) ≃
(

⊔

W

BDiff(W )
)

⊔ Ob(Cobd+1),

where M varies over diffeomorphism classes of d-dimensional closed manifolds
and W varies over diffeomorphism classes of cobordisms. Above, the space of
identity morphisms is identified with the space of objects. In [6], Galatius et al.
determine the homotopy type of the classifying space of Cobd+1, namely they
prove that there is a weak homotopy equivalence

BCobd+1 ≃ Ω∞−1
MT(d+ 1).

On the right-hand side, MT(d+ 1) is the spectrum whose (n+ d+ 1)-st space
is the Thom-space Th(U⊥

d+1,n), where U⊥
d+1,n is the orthogonal complement

to the canonical (d + 1)-plane bundle over the Grassmannian G(d + 1, n) of
(d+ 1)-dimensional vector subspaces of Rd+1+n.

Following [6], we construct an analogous cobordism category of P -manifolds.
We fix once and for all an embedding

(1) iP : P →֒ R
p+m

with p = dim(P ) and m ≫ p. We construct a topological category CobP
d+1

whose morphisms are given by (d+ 1)-dimensional embedded P -manifolds

W ⊆ [a, b]× R+ × R
d−1+∞ × R

p+m
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such that

W ∩ ({a, b} × R+ × R
d−1+∞ × R

p+m) = ∂0W,

W ∩ ([a, b]× {0} × R
d−1+∞ × R

p+m) = ∂1W,

and ∂1W has the factorziation

∂1W = β1W × iP (P ),

where β1W ⊂ [a, b]×{0}×R
d−1+∞ is a submanifold and iP (P ) ⊂ R

p+m is the
submanifold given by the embedding specified in (1). Here and throughout this
paper, R+ denotes the half-open interval [0,∞). We topologize this category
in a way similar to [6] so that there are homotopy equivalences

Ob(CobP
d+1) ≃

⊔

M

BDiffP (M),

Mor(CobP
d+1) ≃

(

⊔

W

BDiffP (W )
)

⊔ Ob(CobP
d+1),

where M varies over diffeomorphism classes of closed d-dimensional P -mani-
folds and W varies over diffeomorphism classes of (d+1)-dimensional P -mani-
fold cobordisms. For a P -manifold W , DiffP (W ) is defined to be the group of
diffeomorphisms g : W → W such that the restriction g|∂1W is equal to the
product gβ1W × IdP where gβ1W is a diffeomorphism of β1W .

The main goal of this paper is to determine the homotopy type of the
classifying space BCobP

d+1. To do so we construct a new spectrum MTP (d+1)
as follows.

From the embedding in (1) used to construct CobP
d+1, we obtain a

Pontryagin–Thom map cP : Sp+m → Th(U⊥
p,m). The natural multiplication

map given by sending a pair of vector sub-spaces to their product,

U⊥
d−p,n−m × U

⊥
p,m

µ̂ //

��

U⊥
d,n

��

G(d− p, n−m)×G(p,m)
µ

// G(d, n),

yields a map of Thom-spaces,

Th(µ̂) : Th(U⊥
d−p,n−m) ∧ Th(U⊥

p,m)→ Th(U⊥
d,n).

The composition

Th(U⊥
d−p,n−m) ∧ Sp+m Id∧cP−−−−−→ Th(U⊥

d−p,n−m) ∧ Th(U⊥
p,m)

Th(µ̂)
−−−−→ Th(U⊥

d,n)

then induces a map of spectra which we denote by τP : MT(d− p)→ MT(d).
There is another map of spectra ĵd : Σ−1MT(d) → MT(d + 1), induced by

the bundle map covering the standard embedding G(d, n) →֒ G(d + 1, n) of
Grassmannians. We define MTP (d+1) to be the cofiber of the composition of
spectrum maps,

Σ−1
MT(d− p)

Σ−1τP−−−−−→ Σ−1
MT(d)

ĵd−−→ MT(d+ 1).
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Details of this construction are covered in Section 6. We now state our main
result.

Theorem 1.1 (Main Theorem). There is a weak homotopy equivalence

BCobP
d+1 ≃ Ω∞−1

MTP (d+ 1).

The spectrum MTP (d + 1) was constructed using the Pontryagin–Thom
map for a particular embedding of our manifold P . The homotopy class of
this Pontryagin–Thom map only depends on the cobordism class of P . This
observation leads to the following corollary.

Corollary 1.2. Let P1 and P2 be smooth closed manifolds of the same dimen-

sion. Suppose that P1 and P2 are cobordant. Then there is a weak homotopy

equivalence

BCobP1

d+1 ≃ BCobP2

d+1.

We consider the functors

Cobd+1
i
−→ CobP

d+1
β1
−−→ Cobd−p,

where i is given by inclusion and β1 sends a (d + 1)-dimensional P -manifold
W to the (d− p)-dimensional manifold β1W . We have the following theorem.

Theorem 1.3. Passing to classifying spaces, the sequence of functors given

above induces a homotopy fiber sequence

BCobd+1
B(i)
−−−→ BCobP

d+1

B(β1)
−−−−→ BCobd−p.

1.4. Outline of paper. This paper is structured as follows. Sections 2 and 3
are devoted to carefully defining P -manifolds and the different mapping spaces
associated to them which include diffeomorphism groups and certain spaces
of embeddings. In Section 4, we give a rigorous definition of the cobordism
category. In Section 5, we give a recollection of sheaves and define the main
sheaf DP

d+1 whose representing space is later shown to be weakly equivalent to
BCobP

d+1. In Section 6, we construct the spectrum MTP (d + 1). Section 7 is
devoted to proving the weak homotopy equivalence |DP

d+1| ≃ Ω∞−1MTP (d+1).
In Section 8, we complete the proofs of Theorems 1.1 and 1.3. Sections 9, 10,
11 and the appendix are devoted to the proofs of technical results used earlier
in the paper.

To simplify the exposition we will only treat unoriented manifolds with
Baas–Sullivan singularities modeled on a single fixed manifold P . One could
easily adapt our proofs to derive a corresponding theorem for P -manifolds with
arbitrary tangential structure.

2. Manifolds with singularities

We begin with a definition of manifolds with Baas–Sullivan singularities
modeled on a fixed manifold P . Fix once and for all a closed, smooth mani-
fold P and let p denote the dimension of P . Throughout the paper, we will let
R+ denote the half-open interval [0,∞).
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Definition 2.1. Let M be a d-dimensional smooth manifold with corners,
equipped with the following extra structure:

(i) The boundary of M is given a decomposition ∂M = ∂0M ∪ ∂1M into a
union of (d− 1)-dimensional manifolds such that

∂0M ∩ ∂1M = ∂(∂0M) = ∂(∂1M)

is a closed (d−2)-dimensional manifold. We write ∂0,1M := ∂0M ∩ ∂1M .
(ii) There are embeddings

h0 : ∂0M × R+ →M and h1 : ∂1M × R+ →M

which satisfy:
(a) h−1

0 (∂0M) = ∂0M × {0} and h
−1
1 (∂1M) = ∂1M × {0}.

(b) h0(∂0,1M × [0,∞)) ⊂ ∂1M and h1(∂0,1M × [0,∞)) ⊂ ∂0M .
(c) h0(h1(x, t1), t0) = h1(h0(x, t0), t1) for all (x, t0, t1) ∈ ∂0,1M × R

2
+.

(iii) There is a manifold β1M and a diffeomorphism

φ1 : ∂1M
∼=
−−→ β1M × P.

We let β0,1M denote the boundary ∂(β1M) and let

φ0,1 : ∂0,1M
∼=
−−→ β0,1M × P

denote the diffeomorphism obtained by restricting φ1 to ∂0,1M = ∂(∂1M).

With the above conditions satisfied, the triple (M, (φ1, φ0,1), (h0, h1)) is
called a P -manifold. The manifold β1M is called the Bockstein, the pair of dif-
feomorphisms (φ1, φ0,1) is called the structure map, and the pair of embeddings
(h0, h1) is called the collar.

Notation 2.2. When denoting a P -manifold we will usually drop the structure
maps and collar from the notation and denote the P -manifold by its underlying
manifold. We will denote M := (M, (φ1, φ0,1), (h0, h1)).

Let M be a P -manifold as described in the above definition. By setting

∂1(∂0M) = ∂0,1M, ∂0(∂0M) = ∅, and β1(∂0M) = β0,1M,

and restricting the structure map and collar associated to M , we obtain for
∂0M the structure of a P -manifold. We call ∂0M the boundary of M . If
∂0M = ∅, then M is said to be a P -manifold without boundary. If M is
compact and ∂0M = ∅, then M is said to be a closed P -manifold.

We will need to consider maps from P -manifolds to arbitrary topological
spaces.

Definition 2.3. If M is a P -manifold and X is a topological space, then a
continuous map f : M → X is said to be a P -map if there exists a map
fβ1 : β1M → X such that the restriction of f to ∂1M factors as

(2) ∂1M
Φ
−−→ β1M × P

projβ1M

−−−−−−→ β1M
fβ1−−−→ X.

If X is a smooth manifold, then a P -map f : M → X is said to be smooth if
f is a smooth map when considering M as a smooth manifold with corners.
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We will have to consider vector bundles over P -manifolds.

Definition 2.4. Let M be a P -manifold. Let π : E →M , πβ1 : Eβ1 → β1M ,
and πP : EP → P be vector bundles and let

φ̂E : E|∂1M

∼=
−−→ (Eβ1 × EP )⊕ ǫ

1

be a vector bundle isomorphism that covers the structure map

φ1 : ∂1M
∼=
−−→ β1M × P

(the bundle on the right-hand side is assumed to be over β1M × P ). The
pair (E, φ̂E) is said to be a P -vector bundle over M . We refer to φ̂E as the
structure map.

Notation 2.5. When working with a P -vector bundle as in the previous defini-
tion, we will drop the bundle isomorphism φ̂1 : E|∂1M → (Eβ1 ×EP )⊕ ǫ

1 from
the notation and denote E := (E, φ̂1). We will always use the same Greek
letter to denote the structure map and will always use the same notational
convention to denote the auxiliary bundles Eβ1M and EP .

Example 2.6. For any P -manifold, the tangent bundle TM → M naturally
has the structure of a P -vector bundle as follows. The collar embedding h1 :
∂1M × R+ →M induces a bundle isomorphism

TM |∂1M

∼=
−−→ T∂1M ⊕ ǫ

1

which covers the identity onM . Using this bundle isomorphism, we obtain the
bundle isomorphism

(3) TM |∂1M

∼=
−−→ T∂1M ⊕ ǫ

1 dφ1⊕Idǫ1−−−−−−−→
∼=

(Tβ1M × TP )⊕ ǫ
1,

where dφ1 denotes the differential of the structure map. In this way the bundle
isomorphism (3) endows TM →M with the structure of a P -vector bundle.

Transversality will play an important role in the constructions used to prove
the main theorem.

Definition 2.7. Let U be a smooth manifold, let K ⊂ U be a submanifold,
and let M be a P -manifold. A smooth P -map f : M → U is said to be
transverse to the submanifold K if both f and the map fβ1 : β1M → U are
transverse as smooth maps to K. In this case we write f ⋔ K to indicate
transversality.

The following proposition is easy to verify.

Proposition 2.8. Let U be a manifold of dimension r, K ⊂ U a submanifold

of dimension k, and let M be a P -manifold of dimension d. Let f : M → U
be a smooth P -map transverse to K. Then the space f−1(K) is P -manifold of

dimension d+ k − r with Bockstein given by β1(f
−1(K)) = f−1

β1
(K).
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On a similar note, submersions will play an important role in the construc-
tions used in the proof of the main theorem. If U is a smooth manifold and
M is a P -manifold, a smooth P -map f :M → U is said to be a P -submersion

if both f and fβ1 are submersions when treating M as a smooth manifold. It
follows immediately from Proposition 2.8 that for x ∈ U , the space f−1(x) is
a P -manifold of dimension dim(M)− dim(U) with β1(f

−1(x)) = f−1
β1

(x).

Example 2.9. Let M be a P -manifold and let X be a smooth manifold.
Let π : M → X be a P -submersion. Denote by T πM → M the sub-vector
bundle of the tangent bundle TM given by the kernel of the differential of the
submersion π. Denote by T πβ1M → β1M the sub-bundle of Tβ1M given by
the kernel of the submersion πβ1 : β1M → X . The factorization from (2) of
the restriction of π to ∂1M implies that there is an isomorphism

T πM |∂1M

∼=
−−→ (T πβ1M × TP )⊕ ǫ

1

that covers the structure map φ1 : ∂1M
∼=
−−→ β1M × P . It follows that the

kernel bundle of any P -submersion has the structure of a P -vector bundle.

We are interested in the cobordism theory of P -manifolds. For this we make
the following definition.

Definition 2.10. Let Ma and Mb be closed P -manifolds of dimension d and
let W be a compact P -manifold of dimension d+ 1. If ∂0W = Ma ⊔Mb then
the triple (W ;Ma,Mb) is said to be a P -manifold cobordism triple. Two closed
P -manifolds Ma and Mb of the same dimension are said to be cobordant if
there exists a (d+ 1)-dimensional P -manifold W such that ∂0W =Ma ⊔Mb.

3. Mapping spaces

We will need to consider certain spaces of maps between P -manifolds.

3.1. Diffeomorphisms. For what follows, let Ma and Mb be P -manifolds.
For i = 0, 1, we denote by hai and hbi the collar embeddings associated to Ma

and Mb. We denote by φa1 and φb1 the structure maps.

Definition 3.2. A smooth map f : Ma → Mb is said to be a P -morphism if
the following conditions are satisfied:

(i) f(∂0Ma) ⊂ ∂0Mb and f(∂1Ma) ⊂ ∂1Mb.
(ii) There exists a real number ε > 0 such that

f(ha0(x, t)) = hb0(f(x), t) for (x, t) ∈ ∂0Ma × [0, ε),

f(ha1(y, s)) = hb1(f(y), s) for (y, s) ∈ ∂1Ma × [0, ε).

(iii) There exists a smooth map fβ1 : β1Ma → β1Mb such that the restriction
of f to ∂1Ma has the factorization

∂1Ma

φa
1−−→
∼=

β1Ma × P
fβ1

×IdP

−−−−−−→ β1Mb × P
(φb)−1

−−−−−→
∼=

∂1Mb.
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We denote by C∞
P (Ma,Mb) the space of P -morphisms Ma → Mb, topol-

ogized as a subspace of the space of smooth maps Ma → Mb, in the C∞-
topology. For a P -manifold M , we let C∞

P (M) denote the space C∞
P (M,M).

We will need to consider diffeomorphisms of P -manifolds as well.

Definition 3.3. A smooth map between P -manifolds f : Ma → Mb is said
to be a P -diffeomorphism if it is both a diffeomorphism as a map of smooth
manifolds and a P -morphism, i.e., it satisfies all conditions of Definition 3.2.

We denote by DiffP (Ma,Mb) the space of P -diffeomorphisms from Ma to
Mb, where DiffP (Ma,Mb) is topologized as a subspace of C∞

P (Ma,Mb). For
a P -manifold M , we let DiffP (M) denote the space DiffP (M,M) of self-P -
diffeomorphisms M → M . The space DiffP (M) has the structure of a topo-
logical group with product given by composition.

Proposition 3.4. Let Ma and Mb be two compact P -manifolds. Then

DiffP (Ma,Mb) is an open subset of C∞
P (Ma,Mb).

Proof. Denote by C∞
∂ (Ma,Mb) the space of smooth maps Ma → Mb that

satisfy conditions (i) and (ii) of Definition 3.2 but which may fail to satisfy
condition (iii). The space C∞

∂ (Ma,Mb) is topologized in the C∞-topology.
Similarly, we denote by Diff∂(Ma,Mb) the subspace of C∞

∂ (Ma,Mb) which
consists of all smooth maps f : Ma → Mb satisfying conditions (i) and (ii)
of Definition 3.2 such that f is also a diffeomorphism of smooth manifolds.
It follows from [9, Thm. 1.7] that Diff∂(Ma,Mb) ⊂ C∞

∂ (Ma,Mb) is an open
subset. It follows from

DiffP (Ma,Mb) = Diff∂(Ma,Mb) ∩ C
∞
P (Ma,Mb)

that DiffP (Ma,Mb) is an open subset of C∞
P (Ma,Mb). �

3.5. Embeddings. We will need to consider certain spaces of embeddings of
P -manifolds. Fix once and for all a smooth embedding

(4) iP : P → R
p+m

with m > p. We will use this choice of embedding in all of our constructions to
come. Here and subsequently, we will use the following notational convention.
For n ∈ N, we will denote

n̄ := n− p−m− 1.

For what follows, let X be a smooth manifold without boundary. For a
positive integer n, let

q : R+ ×X × R
n̄ × R

p+m → X × R+ × R
n̄ × R

p+m

be the “permutation” map defined by q(t, x, y, z) = (x, t, y, z).

Definition 3.6. Let M be a P -manifold with ∂0M = ∅ (we allow for M to
be noncompact). We define EP,n(M,X) to be the space of smooth embeddings

ϕ :M → X × R+ × R
n̄ × R

p+m

which satisfy the following conditions:

Münster Journal of Mathematics Vol. 8 (2015), 119–167
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(i) ϕ(∂1M) ⊂ X × {0} × R
n̄ × R

p+m.
(ii) There exists a real number ε > 0 such that if (y, s) ∈ ∂1M × [0, ε), then

ϕ(h1(y, s)) = q(ϕ(y), s).

(iii) There exists a map ϕβ1 : β1M → X × R
n̄ such that the restriction of ϕ

to ∂1M has the factorization

∂1M
φ1
−−→
∼=

β1M × P
ϕβ1

×iP
−−−−−−→ (X × R

n̄)× R
p+m.

The space EP,n(M,X) is topologized as a subspace of the space of smooth maps
from M to X ×R+×R

n̄×R
p+m in the C∞-topology. We let EP,n(M) denote

the space EP,n(M, pt.), i.e. the space of embeddings M → R+ × R
n̄ × R

p+m

that satisfy the conditions given above.

By the following proposition, we are justified in excluding the embedding (4)
from the notation.

Proposition 3.7. For any P -manifoldM with ∂0M = ∅, smooth manifold X,

and positive integer n, the homeomorphism type of the space EP,n(M,X) does
not depend on the embedding P →֒ R

p+m used to define it.

Proof. Let i′P : P →֒ R
p+m be another embedding and let EP ′,n(M,X) denote

the space of embeddings M → X×R+×R
n̄×R

p+m that satisfy all conditions
from Definition 3.6 with respect to the embedding i′P . Since m > p, there
exists an isotopy ψt : P → R

p+m through embeddings such that ψ0 = iP
and ψ1 = i′P . By the isotopy extension theorem [9, Thm. 1.3] there exists a
diffeotopy (isotopy through diffeomorphisms) Ψt : Rp+m → R

p+m such that
Ψ0 = IdRp+m and Ψt◦iP = ψt for all t ∈ [0, 1]. Denote by Φ the diffeomorphism
of X × R+ × R

n̄ × R
p+m given by the formula

Φ(x, t, y, z) = (x, t, y,Ψ1(z)) for x ∈ X , t ∈ R+, y ∈ R
n̄, z ∈ R

p+m.

We define a map

(5) EP,n(M,X)→ EP ′,n(M,X), ϕ 7→ Φ ◦ ϕ.

The inverse to (5) is given by the formula ϕ 7→ Φ−1 ◦ ϕ. Thus (5) is a homeo-
morphism. This concludes the proof. �

For each n there is a natural embedding EP,n(M) →֒ EP,n+1(M). We then
define

EP (M) := colim
n→∞

EP,n(M).

Theorem 3.8. Let M be a closed P -manifold, that is, M is compact and

∂0M = ∅. Then the space EP (M) is weakly contractible.

Proof. For each n ∈ N, denote by E∂,n(M) the space of embeddings M →
R+×R

n̄×R
p+m that satisfy conditions (i) and (ii) of Definition 3.6 but which

may fail to factor as a product on ∂1M as in condition (iii) of Definition 3.6.
We then denote E∂(M) := colimn→∞ E∂,n(M). Let

r∂1 : E∂(M)→ Emb(∂1M,R∞ × R
p+m)
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be the map defined by restricting embeddings to the boundary. Define

rβ1 : EP (M)→ Emb(β1M,R∞), ϕ 7→ ϕβ1 .

Consider the map

TiP : Emb(β1M,R∞)→ Emb(∂1M,R∞ × R
p+m)

defined by sending an embedding ϕ : β1M → R
∞ to the embedding given by

the composition

∂1M
φ1
−−→
∼=

β1M × P
ϕ×iP
−−−−→ R

∞ × R
p+m.

It follows immediately from Definition 3.6 that the diagram

(6) EP (M)

rβ1

��

// E∂(M)

r∂1

��

Emb(β1M,R∞)
TiP // Emb(∂1M,R∞ × R

p+m)

is cartesian, where the top horizontal map is the inclusion. By the main theo-
rem of [10], the restriction map r∂1 is a locally trivial fiber bundle. It follows
from this that diagram (6) is homotopy cartesian. By [7, Thm. 2.7] the spaces
E∂(M), Emb(β1M,R∞), and Emb(∂1M,R∞ ×R

p+m) are all weakly contract-
ible. This together with the fact that (6) is homotopy cartesian implies that
EP (M) is homotopy cartesian as well. This concludes the proof. �

We now define similar mapping spaces for P -manifold cobordism triples.
Let X be a smooth manifold without boundary as above. Let

q0 : [0, 1]×X × R+ × R
n̄ × R

p+m → X × [0, 1]× R+ × R
n × R

p+m,

q1 : R+ ×X × [0, 1]× R
n̄ × R

p+m → X × [0, 1]× R+ × R
n × R

p+m

be the “permutation” maps defined by

q0(t, x, s, y, z) = (x, t, s, y, z) and q1(s, x, t, y, z) = (x, t, s, y, z)

where x ∈ X , t ∈ [0, 1], s ∈ R+, y ∈ R
n, and z ∈ R

p+m.

Definition 3.9. Let (W ;Ma,Mb) be a P -manifold bordism triple and let n be
a positive integer. We define EP,n((W ;Ma,Mb), X) to be the space of smooth
embeddings

ϕ :W → X × [0, 1]× R+ × R
n̄ × R

p+m

that satisfy the following conditions:

(i) The following containments hold:

ϕ(Ma) ⊂ X × {0} × R+ × R
n̄ × R

p+m,

ϕ(Mb) ⊂ X × {1} × R+ × R
n̄ × R

p+m,

ϕ(∂1W ) ⊂ X × [0, 1]× {0} × R
n̄ × R

p+m.
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(ii) There exists a positive real number ε such that

ϕ(h0(x, t)) = q0(t, ϕ(x)) if (x, t) ∈Ma × [0, ε),

ϕ(h0(x, t)) = q0(1− t, ϕ(x)) if (x, t) ∈Mb × [0, ε),

ϕ(h1(y, s)) = q1(s, ϕ(y)) if (y, s) ∈ ∂1W × [0, ε).

(iii) There exists a map ϕβ1 : β1W → X × [0, 1] × {0} × R
n̄ such that the

restriction of ϕ to ∂1W has the factorization

∂1W
φ1
−−→
∼=

β1W × P
ϕβ1

×iP
−−−−−−→ (X × [0, 1]× {0} × R

n̄)× R
p+m.

The space EP,n((W ;Ma,Mb), X) is topologized in the C∞-topology. We let
EP,n(W ;Ma,Mb) denote the space EP,n((W ;Ma,Mb), pt.). We then set

EP (W ;Ma,Mb) := colim
n→∞

EP,n(W ;Ma,Mb).

Remark 3.10. There are analogs of Proposition 3.7 and Theorem 3.8 for the
spaces EP,n((W ;Ma,Mb), X) of embeddings of P -bordisms. They are proven
in the same way.

The terminology given in the next definition will be useful later on when we
define the cobordism category of P -manifolds and related constructions.

Definition 3.11. Let X be a smooth manifold without boundary. Let M be
a P -manifold with ∂0M = ∅ that is embedded as a submanifold of X ×R+ ×
R

n̄ × R
p+m for some n, such that the inclusion map

M →֒ X × R+ × R
n̄ × R

p+m

is an element of the space EP,n(M,X). Then M is called a P -submanifold.
Similarly, let (W ;Ma,Mb) be a P -manifold bordism triple with W embedded
as a submanifold of X × [0, 1]× R+ × R

n̄ × R
p+m such that the inclusion

W →֒ X × [0, 1]× R+ × R
n̄ × R

p+m

is an element of the space EP,n((W ;Ma,Mb), X). Then W is called a P -sub-
cobordism.

Remark 3.12 (Normal bundles). Let M ⊂ X ×R+×R
n̄×R

p+m be a closed
P -submanifold. Let π : M → X denote the restriction of the projection
X × R+ × R

n̄ × R
p+m → X onto M . It follows immediately from condition

(iii) of Definition 3.6 that π is a smooth P -map (see Definition 2.3). Denote
by N → M the normal bundle. The factorization ∂1M = β1M × iP (P ) for
β1M ⊂ X × {0} × R

n̄ and iP (P ) ⊂ R
p+m implies that the restriction of N to

∂1M has the factorization

N |∂1M = (Nβ1 ×NP )⊕ ǫ
1,

where Nβ1 → β1M and NP → iP (P ) are the normal bundles for β1M and
iP (P ), respectively. It follows that the normal bundle of a P -submanifold has
the structure of a P -vector bundle as in Definition 2.4.
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3.13. P -manifold fiber bundles. Let M be a closed P -manifold. Consider
the space EP (M). There is a continuous group action

DiffP (M)× EP (M)→ EP (M), (g, ϕ) 7→ ϕ ◦ g.

It is clear that this action is a free action. We let MP (M) denote the orbit
space EP (M)/DiffP (M). Similarly, if (W ;Ma,Mb) is a P -manifold bordism
triple, there is a continuous group action

DiffP (W ;Ma,Mb)× E(W ;Ma,Mb)→ E(W ;Ma,Mb), (g, ϕ) 7→ ϕ ◦ g

which is clearly a free action. We letMP (W ;Ma,Mb) denote the orbit space
E(W ;Ma,Mb)/DiffP (W ;Ma,Mb). We have the following theorem whose proof
we defer to Appendix A.

Theorem 3.14. The quotient maps

EP (M)→MP (M) and E(W ;Ma,Mb)→MP (W ;Ma,Mb)

are locally trivial fiber bundles.

Remark 3.15. Combining the above theorem with Theorem 3.8 (and the cor-
responding version of Theorem 3.8 of P -cobordisms), we have weak homotopy
equivalences

BDiffP (M) ≃MP (M), BDiffP (W ;Ma,Mb) ≃MP (W ;Ma,Mb),

where BDiffP (M) and BDiffP (W ;Ma,Mb) are the classifying spaces of the
topological groups DiffP (M) and DiffP (W ;Ma,Mb).

Using the Borel construction, we define

ÊP (M) := EP (M)×DiffP (M) M.

The standard projection yields a fiber bundle ÊP (M)→MP (M) with fiberM
and structure group DiffP (M). This fiber bundle comes with a natural em-
bedding

ÊP (M) →֒ MP (M)× R+ × R
∞ × R

p+m

defined by the formula (ϕ, x) 7→ ([ϕ], ϕ(x)). Now, if f : X → MP (M) is a
smooth map (when treating MP (M) as a Banach manifold) from a smooth
manifold X , then the pullback

f∗ÊP (M) =
{

(x, v) ∈ X × (R+ × R
∞ × R

p+m) | (f(x), v) ∈ ÊP (M)
}

is a smooth dim(M) + dim(X)-dimensional P -submanifold

E ⊆ X × R+ × R
∞ × R

p+m

such that the projection π : E → X is a fiber bundle with structure group
DiffP (M) and fiber M . The fiber over x, denoted by Ex, has the structure of
P -manifold diffeomorphic toM such that the inclusion map Ex →֒ R+×R

∞×
R

p+m is an element of the space EP (M). We have the following lemma.
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Lemma 3.16. Let X be a smooth manifold without boundary and let M be

a closed P -manifold. There is a one-to-one correspondence between smooth

maps X →MP (M) and closed P -submanifolds E ⊂ X × R+ × R
∞ × R

p+m,

such that the projection π : E → X is a smooth fiber bundle with fiber M and

structure group DiffP (M).

Proof. Let f : X →MP (M) be a smooth map. By the discussion above, the
pullback f∗ÊP (M) comes with a canonical embedding into X × R+ × R

∞ ×
R

p+m such that the projection onto X is a fiber bundle with structure group
DiffP (M) and fiber M . This describes one direction of the correspondence.

In the other direction, let E ⊂ X × R+ × R
∞ × R

p+m be a P -submanifold
such that the projection π : E → X onto X is a fiber bundle with fiber M and
structure group DiffP (M). We obtain a map

(7) X →MP (M), x 7→ Ex,

where Ex ⊂ {x} × R+ × R
n̄ × R

p+m is the fiber of the projection π over
x ∈ X . It follows easily that (7) is the inverse to the correspondence given by
f 7→ f∗(ÊP (M)) described above. �

We have a similar lemma for P -manifold cobordism triples which is proven
in the same way.

Lemma 3.17. LetX be a smooth manifold without boundary. Let (W ;Ma,Mb)
be a P -manifold cobordism triple. There is a one-to-one correspondence

between smooth maps X → MP (W ;Ma,Mb) and P -subcobordisms E ⊂ X ×
[0, 1]×R+ ×R

∞×R
p+m such that the projection π : E → X is a smooth fiber

bundle with fiber W and structure group DiffP (W ;Ma,Mb).

4. The cobordism category of P -manifolds

4.1. The cobordism category CobP

d+1
. Let iP : P → R

p+m be the embed-

ding specified in (4) used to construct the spaces of embeddings in the previous

section. We now give a rigorous construction of the category CobP
d+1 that was

discussed in the introduction.
An object of CobP

d+1 is a pair (M,a) where a ∈ R and

M ⊆ {a} × R+ × R
∞ × R

p+m

is a closed d-dimensional P -submanifold. The space of objects is topologized
by the identification

(8) Ob(CobP
d+1) =

⊔

M

(MP (M)× R),

where the disjoint union is taken over the diffeomorphism classes of closed
P -manifolds of dimension d.

A non-identity morphism of CobP
d+1 from (Ma, a) to (Mb, b) is a triple

(W ; a, b) with

(a, b) ∈ R
2
< := {(a, b) ∈ R

2 | a < b}
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and W ⊆ [a, b]× R+ × R
∞ × R

p+m is a (d+ 1)-dimensional, compact P -sub-
manifold such that

Ma =W ∩ ({a} × R+ × R
∞ × R

p+m)

and
Mb =W ∩ ({b} × R+ × R

∞ × R
p+m).

It follows that (W ;Ma,Mb) is a P -manifold bordism triple. The morphisms
(W1; a, b) and (W2; b, c) can be composed if

W1 ∩ ({b} × R
∞ × R+ × R

p+m) =W2 ∩ ({b} × R
∞ × R+ × R

p+m).

In this case the composition is given by (W1 ∪ W2; a, c). The collars from
condition (ii) of Definition 3.6 ensure that this union is a smooth submanifold
with a canonical smooth structure induced by the smooth structure on the
ambient space. The identity morphisms are identified with the space of objects.
The space of morphisms is topologized by the identification

(9) Mor(CobP
d+1) = Ob(CobP

d+1) ⊔
(

⊔

(W ;Ma,Mb)

(

R
2
< ×MP (W ;Ma,Mb)

)

)

.

The disjoint union (on the right) is taken over the diffeomorphism classes
of (d + 1)-dimensional P -manifold bordism triples. It follows easily from (8)
and (9) that composition and the source and target maps are continuous. Thus

CobP
d+1 defined in this way is a topological category.

5. Sheaf models

5.1. A recollection from [11] of sheaves. Let X denote the category of
smooth manifolds without boundary with morphisms given by smooth maps.
By a sheaf on X we mean a contravariant functor F from X to the category of
sets which satisfies the following condition. For any open covering {Ui | i ∈ Λ}
of some X ∈ Ob(X ), and every collection si ∈ F(Ui) satisfying

si|Ui∩Uj
= sj |Ui∩Uj

for all i, j ∈ Λ,

there is a unique s ∈ F(X) such that s|Ui
= si for all i ∈ Λ.

Definition 5.2. Let F be a sheaf on X . Two elements s0 and s1 of F(X) are
said to be concordant if there exists s ∈ F(X × R) that agrees with pr∗(s0)
in an open neighborhood of X × (−∞, 0] and agrees with pr∗(s1) in an open
neighborhood of X × [1,∞), where pr : X ×R→ X is the projection onto the
first factor.

We denote the set of concordance classes of F(X) by F [X ]. The correspon-
dence X 7→ F [X ] is clearly functorial in X .

Definition 5.3. For a sheaf F we define the representing space |F| to be the
geometric realization of the simplicial set given by the formula k 7→ F(△k

e)
where

△k
e :=

{

(x0, x1, . . . , xn) ∈ R
n+1 |

∑

xi = 1
}

is the standard extended k-simplex.
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From this definition it is easy to see that any map of sheaves F → G induces
a map |F| → |G| between the representing spaces.

Definition 5.4. Let F be a sheaf on X . Let A ⊂ X be a closed subset,
and let s be a germ near A, i.e., s ∈ colimU F(U) with U ranging over all
open sets containing A in X . Then we define F(X,A; s) to be the set of all
t ∈ F(X) whose germ near A coincides with s. Then two elements t0 and t1
are concordant relative to A and s, if they are related by a concordance whose
germ near A is the constant concordance equal to s. The set of such relative
concordance classes is denoted by F [X,A; s].

Any element z ∈ F(pt.) determines a point in |F| which we also denote
by z. For any X ∈ Ob(X ), such an element z ∈ F(pt.) determines an element,
which we give the same name, z ∈ F(X), by pulling back by the constant map.
In [11, Prop. 2.17] it is proven that there is a natural bijection of sets

(10) [(X,A), (|F|, z)] ∼= F [X,A; z].

Here the set on the left-hand side is the set of homotopy classes of maps of
pairs. The non-relative case of this isomorphism with A the empty set holds
as well. Using these observations, we define the homotopy groups of a sheaf
by setting

πn(F , z) := F [S
n, pt.; z].

By (10) we get πn(F , z) ∼= πn(|F|, z) for any choice of z ∈ F(pt.). Using this
definition of homotopy group, a map of sheaves is said to be a weak equivalence

if it induces an isomorphisms on all homotopy groups.

5.5. The sheaf DP

d+1
. In this section we define a sheaf DP

d+1 on X . It will
be seen in Section 8 that the representing space |DP

d+1| is weakly homotopy
equivalent to the classifying space BCobP

d+1.
For what follows, let ip : P → R

p+m be the embedding specified in (4) that

was used in the construction ofCobP
d+1 and the mapping spaces of Section 3.5.

For an integer n we will use the same notation

n̄ = n− p−m− 1

as was used in the previous sections. Before defining DP
d+1 we must fix some

more terminology and notation.
Let d and n be nonnegative integers and let X ∈ X . We will need to consider

(d+ 1)-dimensional, P -submanifolds

W ⊂ X × R× R+ × R
d+n̄ × R

p+m

with ∂0W = ∅, where W is not assumed to be compact. Recall that this
means the following:

(i) ∂1W is embedded in X × R × {0} × R
d+n̄ × R

p+m with a collar as in
condition (ii) of Definition 3.6.

(ii) There is the factorization ∂1W = β1W × iP (P ) where β1W ⊂ X × R ×
{0} × R

d+n̄ is a submanifold.
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In other words, the inclusion map W →֒ X × R × R+ × R
d+n̄ × R

p+m is an
element of the space EP,d+n(X × R).

Denote by

(π, f) :W → X × R

the restriction of the projection X ×R×R+ ×R
d+n̄ ×R

p+m → X ×R to W .
It follows from Definition 2.3 that

π :W → X, f :W → R and (π, f) :W → X × R

are all smooth P -maps. Notice that if K ⊂ X is a submanifold and π is
transverse to K, then

π−1(K) ⊂ K × R× R+ × R
d+n̄ × R

p+m

is a P -submanifold. We are now ready to define DP
d+1.

Definition 5.6. Let X ∈ Ob(X ). For nonnegative integers n and d we define
DP

d+1,n(X) to be the set of (d+ 1 + dim(X))-dimensional P -submanifolds

W ⊂ X × R× R+ × R
d+n̄ × R

p+m,

with ∂0W = ∅, which satisfy the following:

(i) The map π :W → X is a P -submersion.
(ii) The map (π, f) : W → X × R is a proper P -map (recall that a map is

proper if the preimage of any compact subset is compact).

Let X,Y ∈ X and let f : X → Y be a smooth map. If W ∈ DP
d+1,n(Y ),

then the pullback

f∗(W ) = {(x,w) ∈ X ×W | f(x) = π(w)}

naturally embeds inX×R×R+×R
d+n̄×Rp+m so that the projection ontoX is a

submersion, and thus the pullback f∗(W ) determines an element ofDP
d+1,n(X)

(see the discussion of pullbacks in [6, §2.2] for details). The correspondence
W 7→ f∗W yields a map DP

d+1,n(Y )→ DP
d+1,n(X). In this way, it follows that

the assignment X 7→ DP
d+1,n(X) is a contravariant functor from X to the cat-

egory of sets. It is easy to verify that this functor satisfies the sheaf condition
from Section 5.1.

To eliminate dependence on n, we define

DP
d+1 := colim

n→∞
DP

d+1,n,

where the colimit is understood to be taken in the category of sheaves on X .
Concretely, DP

d+1(X) is the set of all (d+1)-dimensional P -submanifoldsW ⊂

X×R×R+×R
d+∞×R

p+m satisfying conditions (i) and (ii) of Definition 5.6,
such that for any compact subset K ⊂ X there exists n ∈ N such that

π−1(K) ⊂ K × R× R+ × R
d+n̄ × R

p+m
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(cp. [6, Def. 3.3]). It follows from this characterization that for each nonnega-
tive integer k, the natural map colimn→∞ DP

d+1,n → DP
d+1 induces an isomor-

phism on all homotopy groups and thus there is a homotopy equivalence

|DP
d+1| ≃ colim

n→∞
|DP

d+1,n|.

The following lemma is proven in the same way as [11, Lem. 2.20].

Lemma 5.7. For all X ∈ X , every concordance class in DP
d+1,n(X) has a

representative

W ⊂ X × R× R+ × R
d+n̄ × R

p+m

such that the map f : W → R is a bundle projection. Thus there is a diffeo-

morphism W ∼= f−1(0)× R.

6. A cofiber of Thom-spectra

6.1. The spectrum MTP (d + 1). In this section we define a spectrum
MTP (d + 1) as the cofiber of a map between Σ−1MT(d − p) and MT(d + 1),
where MT(d+ 1) is the spectrum defined in [6]. We use the same notation for
Grassmannian manifolds and their canonical bundles as in [6].

Let iP : P →֒ R
p+m be the embedding from (4). Denote by G(p,m) the

Grassmannian manifold of p-dimensional vector subspaces of Rp+m. Denote
by Up,m → G(p,m) the canonical vector bundle (which has fiber dimension p)
and denote by U⊥

p,m → G(p,m) the orthogonal complement to Up,m, which has
fiber dimension m. The normal bundle NP → P associated to the embedding
iP : P →֒ R

p+m has Gauss map

(11) NP
γ̂ //

��

U⊥
p,m

��

P
γ

// G(p,m)

which induces a map of the Thom spaces, Th(γ̂) : Th(Np) → Th(U⊥
p,m). Fix

an embedding of the normal bundle NP as a tubular neighborhood,

(12) eP : NP →֒ R
p+m.

This tubular neighborhood together with Th(γ̂) yields the Pontryagin–Thom
map

(13) Sp+m cP−−→ Th(U⊥
p,m).

We now consider the standard multiplication-map

µ : G(d − p, n)×G(p,m)→ G(d, n+m)
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given by (V,W ) 7→ V ×W . The multiplication map µ is covered by a bundle
map

U⊥
d−p,n−m × U

⊥
p,m

��

µ̂ // U⊥
d,n

��

G(d− p, n−m)×G(p,m)
µ

// G(d, n)

which induces

Th(U⊥
d−p,n−m) ∧ Th(U⊥

p,m)
Th(µ̂)
−−−−→ Th(U⊥

d,n).

Putting this together with cP from (13), we define

(14) τP,n := Th(µ̂) ◦ (Id ∧ cP ) : Th(U
⊥
d−p,n−m) ∧ Sp+m → Th(U⊥

d,n).

As defined in [6], Th(U⊥
d,n) is the (d + n)-th space of the spectrum MT(d).

The structure maps in this spectrum MT(d) come from applying Th( ) to the
bundle map

U⊥
d,n ⊕ ǫ

1

��

în // U⊥
d,n+1

��

G(d, n)
in // G(d, n+ 1)

where the map in is the standard embedding and ǫ1 is the trivial line bundle.
The map from (14) yields a map of spectra

τP : MT(d− p)→ MT(d).

Here we take into account that the spectrum with (d+ p)-th space

Th(U⊥
d−p,n−m) ∧ Sp+m

is homotopy equivalent to MT(d − p). Now, consider the map G(d, n) →
G(d+1, n) given by sending a d-dimensional vector subspace V ⊂ R

p+n to the
subspace R×V ⊂ R×R

d+n. This is covered by a bundle map U⊥
d,n → U⊥

d+1,n.
This induces a map on Thom-spaces

(15) jd,n : Th(U⊥
d,n)→ Th(U⊥

d+1,n)

and in turn a map of spectra which we denote by

(16) ĵd : Σ−1
MT(d)→ MT(d+ 1).

Consider the map of spectra given by the composition

Σ−1
MT(d− p)

Σ−1τP−−−−−→ Σ−1
MT(d)

ĵd−−→ MT(d+ 1).

Finally, we define

MTP (d+ 1) := Cofiber(ĵd ◦ (Σ
−1τP )).
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The spectrum MTP (d + 1) defined above is our primary spectrum of interest
and is the spectrum that appears in the statement of Theorem 1.1 from the
introduction. Applying the infinite loop-space functor to the cofiber sequence

Σ−1
MT(d− p)→ MT(d+ 1)→ MTP (d+ 1)

yields a homotopy fiber sequence

Ω∞
MT(d+ 1)→ Ω∞

MTP (d+ 1)→ Ω∞
MT(d− p).

Remark 6.2. Since the map of spectra τP : MT(d−p)→ MT(d) is induced by
the Pontryagin–Thom construction applied to the embedding iP : P →֒ R

p+m,
it follows that the homotopy class of τP is an invariant of the cobordism class
of the manifold P . It follows that if P ′ is a manifold which is cobordant to P
then the spectrum MTP ′(d+ 1) is homotopy equivalent to MTP (d+ 1).

6.3. A filtration of MOP . We now describe how the spectrum MTP (d+ 1)
constructed in the previous section relates to the spectrum MOP , which clas-
sifies the homology theory associated to the cobordism groups of P -manifolds.
There is a direct system of spectra

(17) · · · → Σ(d−1)
MT(d− 1)→ Σd

MT(d)→ Σ(d+1)
MT(d+ 1)→ · · · ,

where the d-th map is the d-th suspension of the map defined in (16). The
direct limit is a spectrum which we denote by MTO. The following lemma is
proven in [6, p. 14]. We provide the proof here for completeness.

Lemma 6.4. There is a homotopy equivalence MTO ≃ MO.

Proof. There is a homeomorphism G(d, n)→ G(n, d) given by V 7→ V ⊥. This
map is covered by a bundle isomorphism U⊥

d,n → Un,d and thus yields maps

Th(U⊥
d,n)

⊥
−−→
∼=

Th(Un,d)
i
−→ Th(Un,∞),

where Th(Un,∞) := colimd→∞ Th(Un,d). The space Th(Un,∞) is the n-th space
of the spectrum MO, thus the above map induces a map of spectra Σd

MT(d)→
MO (or a degree d map MT(d) → MO). The space Th(Un,∞) is the n-th
space in the spectrum MO. Now, Th(Un,∞) can be built out of Th(Un,d) by
attaching cells of dimension greater than dimension n + d. This implies that
ΣdMT(d)→ MO induces an isomorphism on πk for k < d and a surjection for
k = d. This proves that MTO ≃ MO. �

Since πd−1MO ∼= Ωd−1 where Ωd−1 is the cobordism group of unoriented
(d − 1)-dimensional manifolds, the above lemma implies that π−1MT(d) ∼=
Ωd−1. For each d, the diagram

Σ(d+p)MT(d)

Σ(d+1+p)[ĵd◦(Σ
−1τP )]

��

Σ(d+p)ĵd // Σ(d+1+p)MT(d+ 1)

Σ(d+2+p)[ĵd+1◦(Σ
−1τP )]

��

Σ(d+1+p)MT(d+ 1 + p)
Σ(d+1+p) ĵd+1+p

// Σ(d+2+p)MT(d+ 2 + p)
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commutes up to homotopy. Passing to the cofibers of the vertical maps induces
a map of spectra

Σd+1+p
MTP (d+ 1 + p)→ Σd+2+p

MTP (d+ 2 + p)

for each d. These maps form a direct system similar to (17). We denote the
direct limit of this direct system by MTOP .

Lemma 6.5. There is a homotopy equivalence MTOP ≃ MOP where MOP is

the classifying spectrum for the cobordism theory ΩP
∗ for manifolds with type

P -singularities.

Proof. The spectrumMOP is given as the cofiber of the map×P : ΣpMO→ MO

which is induced by the degree p homomorphism ×P : Ω∗ → Ω∗. On the level
of spectra, this map is defined concretely as follows. The map

µ : G(n, d)×G(m, p)→ G(n+m, d+ p), (V,W ) 7→ V ×W

induces
µ′ : G(n,∞)×G(m, p)→ G(n+m,∞)

in the limit as d→∞. The map µ′ is covered by a bundle map Un,∞×Um,p →
Un+m,∞ which induces a map of Thom spaces

Th(Un,∞) ∧ Th(Um,p)→ Th(Un+m,∞).

The normal bundle NP for iP (P ) ⊂ R
p+m has Gauss map

NP

��

// Um,p

��

P // G(m, p).

We emphasize that this map is different than the map (11) where the target
space was G(p,m) with bundle U⊥

p,m. The Pontryagin–Thom map Sp+m →
Th(Um,p) associated to the Gauss map for iP (P ) yields

Th(Un,∞) ∧ Sp+m → Th(Un,∞) ∧ Th(Um,p)→ Th(Un+m,∞).

Since the spectrum with (n+m)-th space equal to Th(Un,∞)∧Sm is equivalent
to MO, the map above induces a map of spectra, ΣpMO→ MO, which defines
×P . Upon inspection, it can be seen that for all d the diagram

(18) Σd+pMT(d)

ĵd◦τP

��

// ΣpMO

×P

��

Σd+p+1MT(d+ p+ 1) // MO

commutes, where the horizontal maps are induced by the composition

Th(U⊥
d,n)

⊥
−−→
∼=

Th(Un,d)
i
−→ Th(Un,∞).

As was used in the proof of Lemma 6.4, the Thom space Th(Un,∞) can be built
out of Th(Un,d) by attaching cells of dimension greater than n+d. This implies
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that the lower and upper horizontal maps above in (18) induce isomorphisms
on πk for k < d + p and surjections on πk for k = d + p. By applying the
five lemma to the long exact sequence on homotopy groups associated to the
cofibers of the vertical maps, we see that the induced map

Σd+p+1
MTP (d+ p+ 1)→ MOP

induces an isomorphism on πk for k < d+p and a surjection on πk for k = d+p.
Taking the direct limit as d→∞, we see that MTOP ≃ MOP . �

Corollary 6.6. There is an isomorphism π−1MTP (d+1) ∼= ΩP
d , where ΩP

d is

the classical cobordism-group of d-dimensional manifolds with singularities of

type P .

6.7. Infinite loop spaces. Our main result, Theorem 1.1, establishes a weak
homotopy equivalence, BCobP

d+1 ≃ Ω∞−1MTP (d + 1). It is difficult to con-

struct a map from a space directly into the infinite loop-space Ω∞−1MTP (d+1).
It will be useful for us to construct certain auxiliary models for the homotopy
type of Ω∞−1MTP (d+ 1) which will be easier to map into. Recall the maps

Th(U⊥
d−p,n−m) ∧ Sp+m τP,n

−−−→ Th(U⊥
d,n)

jd,n
−−−→ Th(U⊥

d+1,n)

from (14) and (15).

Definition 6.8. Let n and d be nonnegative integers. Define Ωd+n
∂ Th(U⊥

d+1,n)
∧

to be the space of pairs (f̂ , f) of based maps

f̂ : Dd+n → Th(U⊥
d+1,n),

f : Sd+n−1 → Th(U⊥
d−p,n−m) ∧ Sp+m,

which make the diagram

(19) Dd+n f̃ // Th(U⊥
d+1,n)

Sd+n−1
?�

OO

f
// Th(U⊥

d−p,n−m) ∧ Sp+m

jd,n◦τP,n

OO

commute, where the left vertical map is the standard inclusion. Now, let

α : Sd+n−1 ∼=
−−→ Sd+n̄ ∧ Sp+m

be the standard identification (where n̄ = n − p − m − 1 as in the previ-

ous section). The space Ωd+n
P Th(U⊥

d+1,n)
∧ is defined to be the subspace of

Ωd+n
∂ Th(U⊥

d+1,n)
∧ consisting of all pairs (f̂ , f) for which there exists a map

f0 : Sd+n̄ → Th(U⊥
d−p,n−m)

such that f : Sd−1+n → Th(U⊥
d−p,n−m) ∧ Sp+m has the factorization

Sd+n−1 α
−−→
∼=

Sd+n̄ ∧ Sp+m f0∧Id
Sp+m

−−−−−−−−→ Th(U⊥
d−p,n−m) ∧ Sp+m.

It follows that the map f0 is uniquely determined.
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We then define

Ω∞−1
P Th(U⊥

d+1,∞)∧ := colim
n→∞

Ωd+n
P Th(U⊥

d+1,n)
∧,

Ω∞−1
∂ Th(U⊥

d+1,∞)∧ := colim
n→∞

Ωd+n
∂ Th(U⊥

d+1,n)
∧.

Proposition 6.9. The following natural embedding is a homotopy equivalence:

Ω∞−1
P Th(U⊥

d+1,∞)∧ → Ω∞−1
∂ Th(U⊥

d+1,∞)∧.

Proof. For each n, the space Ωd+n
P Th(U⊥

d+1,n)
∧ can be realized as the pullback

(20) Ωd+n
P Th(U⊥

d+1,n)
∧

r0

��

� � // Ωd+n
∂ Th(U⊥

d+1,n)
∧

r

��

Ωd+n̄Th(U⊥
d−p,n−m)

∧Id
Sp+m

// Ωd+n−1(Th(U⊥
d−p,n−m) ∧ Sp+m),

where r(f̂ , f) = f and r0(f̂ , f) = f0. The bottom horizontal map is the
standard (p+m)-fold suspension map. The top horizontal map in the diagram
is the inclusion. It will suffice to show that this upper-horizontal map is highly
connected and that its connectivity approaches infinity as n→∞.

Now, the map r is a Serre-fibration. It follows from this that the pull-
back square (20) is homotopy cartesian. The Thom-space Th(U⊥

d−p,n−m) is

(n−m− 1)-connected and so its connectivity approaches ∞ with n. The
Freudenthal suspension theorem implies that the connectivity of the bottom
horizontal map ∧ IdSp+m of (20) approaches ∞ (notice that as n increases
without bound, the integers p and m are held fixed). Since the diagram is
a homotopy pullback square, it follows from this that the connectivity of the
upper horizontal map tends to ∞ with n. This implies the proposition and
completes the proof. �

We now compare the space Ω∞−1
P Th(U⊥

d+1,∞)∧ to the infinite loop-space
Ω∞−1MTP (d+ 1). For each n there is a map

σn : Ωd+n
∂ Th(U⊥

d+1,n)
∧ → Ωd+nCofiber(jd,n ◦ τP,n)

defined by sending a pair of maps

f̂ : Dd+n → Th(U⊥
d+1,n), f : Sd+n−1 → Th(U⊥

d−p,n−m) ∧ Sp+m

which make diagram (19) commute to its induced map

Dd+n/Sd+n−1 → Cofiber(jd,n ◦ τP,n).

In the limit n→∞, the maps σn induce

(21) σ : Ω∞−1
∂ Th(U⊥

d+1,∞)∧ → Ω∞−1
MTP (d+ 1).

Proposition 6.10. The map σ of (21) is a homotopy equivalence.
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Proof. For each k, we have a commutative diagram

πk(Ω
d+n
∂ Th(U⊥

d+1,n)
∧)

��

// πk(Ω
d+n Cofiber(jd,n ◦ τP,n))

��

πk+d+n(Th(U
⊥
d+1,n),Th(U

⊥
d−p,n−m) ∧ Sp+m) // πk+d+n(Cofiber(jd,n ◦ τP,n))

where the vertical maps are given by adjunction, the top horizontal map is
induced by σn, and the bottom horizontal map σk

n is induced by sending a pair
of maps

f̂ : Dk+d+n → Th(U⊥
d+1,n), f : Sk+d+n−1 → Th(U⊥

d−p,n−m) ∧ Sp+m

which make diagram (19) commute to its induced map

Sk+d+n ∼= Dk+d+n/Sk+d+n−1 → Cofiber(jd,n ◦ τP,n).

The space Th(U⊥
d−p,n−m) ∧ Sp+m is (n+ p− 1)-connected and the map

jd,n ◦ τP,n : Th(U⊥
d−p,n−m) ∧ Sp+m → Th(U⊥

d+1,n)
∧

is at least (n − 1)-connected. It follows from [8, Prop. 4.28] that the bottom
horizontal homomorphism σk

n is an isomorphism when k ≤ n + p − d − 2.
Commutativity of the above diagram then implies that (σn)∗ is an isomorphism
when k ≤ n + p − d − 2 as well. Passing to the limit n → ∞ then yields the
result. This completes the proof of the proposition. �

Combining Propositions 6.9 and 6.10 yields:

Corollary 6.11. The natural map Ω∞−1
P Th(U⊥

d+1,∞)∧ → Ω∞−1MTP (d + 1)
is a homotopy equivalence.

7. The main theorem

This section is devoted to proving the following theorem.

Theorem 7.1. There is a homotopy equivalence |DP
d+1| ≃ Ω∞−1MTP (d+ 1).

This theorem is proven in a way similar to [6, Thm. 3.4].

7.2. Isomorphism of concordance class functors. First we prove the fol-
lowing lemma.

Lemma 7.3. For X ∈ Ob(X ) and n ∈ N, there is a natural map

Tn : DP
d+1,n[X ]→ [X,Ωd+n

P Th(U⊥
d+1,n)

∧].

Proof. Let X ∈ Ob(X ). We construct the map Tn as follows. Let

W ⊂ X × R× R+ × R
d+n̄ × R

p+m

be an element of DP
d+1,n(X). We may assume that f is transverse as a smooth

P -map to 0 ∈ R, in the sense of Definition 2.7. This means that both f and
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fβ are transverse to 0. It follows from Proposition 2.8 that f−1(0) has the
structure of a P -submanifold of X × {0} × R+ × R

d+n̄ × R
p+m. We have

M := f−1(0), ∂1M := (f |∂1W )−1(0), β1M := (f |β1W×{0})
−1(0)

and

∂1M = β1M × iP (P ).

Denote by NM and Nβ1M the normal bundles of M and β1M in

X × {0} × R+ × R
d+n̄ × R

p+m and X × {0} × {0} × R
d+n̄,

respectively. It follows from Remark 3.12 that there is a bundle isomorphism

(22) NM |∂1M

∼=
−−→ (Nβ1M ×NP )⊕ ǫ

1,

where NP → P is the normal bundle for iP (P ) ⊂ R
p+m. These normal bundles

yield Gauss maps

NM
γ̂M //

��

U⊥
d+1,n

��

M
γM

// G(d+ 1, n)

and

NβM ×NP

��

γ̂βM×γ̂P
// U⊥

d−p,n−m × U
⊥
p,m

��

µ̂ // U⊥
d,n

��

βM × P
γβM×γP

// G(d− p, n−m)×G(p,m)
µ

// G(d, n)

where µ and µ̂ are the maps defined in Section 6. These bundle maps induce
the following maps on Thom spaces:

Th(NM )
Th(γ̂M )
−−−−−−→ Th(U⊥

d+1,n)

and

Th(NβM ) ∧ Th(NP )
Th(γ̂βM )∧Th(γ̂P )
−−−−−−−−−−−−→ Th(U⊥

d−p,n−m) ∧ Th(U⊥
p,m).

There are tubular neighborhood embeddings of the normal bundles NM and
Nβ1M into

X × {0} × R+ × R
d+n̄ × R

p+m and X × {0} × {0} × R
d+n̄,

respectively, which yield collapsing maps

cM : X+ ∧D
d+n → Th(NM ),

cβ1M : X+ ∧ S
d+n̄ → Th(Nβ1M ),
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where X+ denotes the one-point compactification of X . Composing Th(γ̂M )
and Th(γ̂βM ) with the above collapsing maps yields the diagram

X+ ∧D
d+n

Th(γ̂NM
)◦cM

// Th(U⊥
d+1,n)

X+ ∧ S
d+n̄ ∧ Sp+m
?�

OO

[Th(γ̂NβM
)◦cβM ]∧Id

Sp+m

// Th(U⊥
d−p,n−p) ∧ S

p+m.

jd,n◦τP,n

OO

It follows from the bundle factorization of (22) that this diagram does indeed
commute. By adjunction this commutative diagram yields

f : X → Ωd+n
P Th(U⊥

d+1,n)
∧.

By standard Pontryagin–Thom theory (see [14, §2]) it follows that choosing a
different representative of the concordance class of W yields a map homotopic
to the one which we just produced; just run the same process on a concordance.
We then define Tn([W ]) := [f ]. It is easy to check that this definition is natural
in the variable X . �

For X ∈ X , denote by

T : DP
d+1[X ]→ [X,Ω∞−1

P Th(U⊥
d+1,∞)∧]

the map induced in the limit n → ∞ by the maps Tn constructed in the
previous lemma.

Lemma 7.4. For compact X, the map T : DP
d+1[X ]→ [X,Ω∞−1

P Th(U⊥
d+1,∞)∧]

is an isomorphism of sets.

Proof. We now make the assumption that X is compact. We construct an
inverse to

T : DP
d+1[X ]→ [X,Ω∞−1

P Th(U⊥
d+1,∞)∧]

which we will denote by H . Let

(23) X+ ∧D
d+n f̃ // Th(U⊥

d+1,n)

(X+ ∧ S
d̄−1+n̄) ∧ Sp+m

f :=f0∧Id
Sp+m

//

OO

Th(U⊥
d−p,n−m) ∧ Sp+m

jd,n◦τP,n

OO

represent an element [(f̃ , f)] ∈ [X,Ωd+n
P Th(U⊥

d+1,n)
∧].

By applying an appropriate homotopy, we may assume the following about
(f̃ , f):

(i) The maps f̃ and f are both smooth away from the preimage of the base-
point. Furthermore, both f̃ and f are transverse to G(d + 1, n) and
G(d− p, n−m) as submanifolds of U⊥

d+1,n and U⊥
d−p,n−m, respectively.
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(ii) By transversality in (i) we have a pair of submanifolds

(M,∂1M) ⊆ (X × R+ × R
d+n̄ × R

p+m, X × {0} × R
d+n̄ × R

p+m)

where

M := f̃−1(G(d + 1, n)) and ∂1M := (τP,n ◦ f)
−1(G(d, n)).

Furthermore, ∂1M factors as ∂1M = β1M × iP (P ) where

β1M := f−1
0 (G(d− p, n−m)) ⊂ X × {0} × R

d+p̄

is a closed submanifold.
(iii) There exists ε > 0 such that

M ∩ (X × [0, ε)× R
d+n̄ × R

p+m) = ∂1M × [0, ε).

The above conditions imply that M ⊂ X × R+ × R
d+n̄ × R

p+m is a closed
P -submanifold in the sense of Definition 3.11.

The submanifolds M , ∂1M , and β1M have normal bundles given by the
pullbacks,

NM = f̃∗(U⊥
d+1,n), N∂1M = (τP,n ◦ f)

∗(U⊥
d,n), Nβ1M = f∗

0 (U
⊥
d−p,n−m).

Furthermore, the normal bundle N∂1M has the factorization N∂1M = Nβ1M ×
NP , where NP is the normal bundle for P ⊂ R

p+m. We define vector bundles

T πM = f̃∗(Ud+1,n), T π∂1M = (τP,n ◦ f)
∗(Ud,n),

T πβ1M = f∗
0 (Ud−p,n−m)

over M , ∂1M , and β1M , respectively. Below we construct bundle epimor-
phisms for which these bundles are the kernels. By the definition of these
bundles and the factorization of f , it follows that there are bundle splittings

T πM |∂1M = T π∂1M ⊕ ǫ
1, T π∂1M = T πβ1M × TP,

and bundle isomorphisms

(24)
NM ⊕ T

πM ∼= ǫd+n+1, N∂1M ⊕ T
π∂1M ∼= ǫd+n,

Nβ1M ⊕ T
πβ1M ∼= ǫd+n̄.

Denote by

(iM , i∂1M ) : (M,∂1M)→ (X×R+×R
d+n̄×R

p+m, X×{0}×R
d+n̄×R

p+m)

the inclusion map and let

π0 :M → X and π∂
0 : ∂1M → X

denote the projections onto X . Pulling back the tangent bundle of X ×R+ ×
R

d+n̄ × R
p+m by (iM , i∂1M ) yields isomorphisms

i∗M (TX)⊕ ǫd+n ∼= TM ⊕NM ,

i∗∂1M
(TX)⊕ ǫd+n−1 ∼= T∂1M ⊕N∂M ,

i∗M (TX)⊕ ǫd+n ∼= π∗
0(TX)⊕ ǫd+n,

i∗∂1M
(TX)⊕ ǫd+n−1 ∼= (π∂

0 )
∗(TX)⊕ ǫd+n−1.
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Combining these isomorphisms yields

(25)
π∗
0(TX)⊕ ǫd+n ∼= TM ⊕NM ,

(π∂
0 )

∗(TX)⊕ ǫd+n−1 ∼= T∂1M ⊕N∂1M ,

both of which cover the identity onM and ∂1M . By adding T πM and T π∂1M
via Whitney-sum to both sides of the equations in (25) and using the isomor-
phisms of (24), we obtain a commutative diagram

(26) TM ⊕ ǫn+d+1 π̂0

∼=
// π∗

0TX ⊕ T
πM ⊕ ǫd+n

(T∂1M ⊕ ǫ
n+d)⊕ ǫ1

OO

π̂∂
0⊕Idǫ1

∼=
// (π∗

0TX ⊕ T
π∂1M ⊕ ǫ

d+n−1)⊕ ǫ1

OO

of bundle isomorphisms where the horizontal maps cover the identity on M
and the vertical maps cover the inclusion of ∂1M into M . Furthermore the
bundle isomorphism (coming from the bottom horizontal arrow)

π̂∂
0 : T∂1M ⊕ ǫ

n+d → π∗
0TX ⊕ T

π∂1M ⊕ ǫ
d+n−1

has the factorization

π̂∂
0 = π̂β

0 × IdTP ,

where

π̂β
0 : Tβ1M ⊕ ǫ

d+n → π∗
0TX ⊕ T

πβ1M ⊕ ǫ
d+n−1

is a bundle isomorphism which covers the identity on β1M . We will need to
use the following destabilization. We postpone the proof of the following result
to Section 10.

Claim 7.5. The bundle isomorphism pair (π̂0, π̂
∂
0 ⊕ Idǫ1) from (26) is induced

by a pair of bundle isomorphisms

TM ⊕ ǫ1
π̂1

∼=
// π∗

0TX ⊕ T
πM

(T∂1M ⊕ ǫ
1)⊕ ǫ1

OO

π̂∂
1⊕Idǫ1

∼=
// (π∗

0TX ⊕ T
π∂1M)⊕ ǫ1

OO

with factorization

π̂∂
1 = π̂β

1 × IdTP ,

where

π̂β
1 : Tβ1M ⊕ ǫ

1 → π∗
0TX ⊕ T

πβ1M

is a bundle isomorphism covering the identity on β1M . Furthermore, the

bundle map (π̂1, π̂
∂
1 ⊕ Idǫ1) is unique up to homotopy through bundle map pairs

with the factorization specified above.
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We now define spaces

W :=M × R, ∂1W := ∂1M × R and β1W := β1M × R.

We define the bundles T πW , T π∂1W , T πβ1W to be the pullbacks of the bun-
dles T πM , T π∂1M , T πβ1M , over the projections of W , ∂W , βW onto M ,
∂1M , β1M , respectively. Denote by

iW :W →֒ X × R× R+ × R
d+n̄ × R

p+m

the inclusion map. Let s0, s
∂
0 , and s

β
0 denote the projections of W , ∂1W , and

β1W onto the factor X (the reason for the notation s0 used for this projection
onto X will become clear momentarily). The result of Claim 7.5 yields bundle
isomorphisms

(27)











TW ∼= s∗0(TX)⊕ T πW,

T∂1W ∼= (s∂0 )
∗(TX)⊕ T π∂1W,

Tβ1W ∼= (sβ0 )
∗(TX)⊕ T πβ1W,

all which cover the identity. Using (27), we obtain a bundle epimorphism with
kernel T πW ,

(28) TW

��

ŝ0 // TX

��

W
s0

// X

such that the restriction (ŝ0, s0)|∂1W has the factorization

(29) T∂1W

��

pr
// Tβ1W

��

ŝ
β
0 // TX

��

∂1W
pr

// β1W
s
β
0 // X,

where (ŝβ0 , s
β
0 ) is a bundle-epimorphism covering sβ0 which is the projection

onto X .

Claim 7.6. There exists a homotopy (ŝt, st) through bundle-epimorphisms

such that:

(i) At t = 0, (ŝ0, s0) is equal to the bundle epimorphism given in (28).
(ii) The bundle epimorphism (ŝ1, s1) is integrable, i.e., Ds1 = ŝ1 and thus s1

is a submersion.

(iii) For all t, (ŝt, st) has the factorization given in (29).

Moreover, the integrable bundle-epimorphism (ŝ1, s1) is unique up to homotopy

though integrable bundle-epimorphisms.

We provide a proof of this claim in Section 9. This is essentially a relative
version of Phillips’ submersion theorem [13] adapted for P -manifolds.
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Let (ŝt, st) be the desired family of bundle epimorphisms with the above
stated properties. The map s1 is now a submersion of W onto X . In order
to obtain an element of DP

d+1[X ], we need to realize s1 as the composition of
some embedding

W →֒ X × R× R+ × R
d+n̄ × R

p+m

followed by projection onto X . Recall that W = R×M where M is a closed
P -manifold. By Theorem 3.8 it follows that for some integer n′ (possibly larger
than n) there exists a P -embedding

j :M → R+ × R
d+n̄′

× R
p+m

(by P -embedding here we mean an element of the space EP,n′+d(M), see Def-
inition 3.6). Furthermore, it follows from Theorem 3.8 again that if n′ is
large enough then any two choices of embeddings j are isotopic through P -
embeddings. Now consider the embedding

W = R×M → X × R× (R+ × R
d+n̄′

× R
p+m), (t, x) 7→ (s1(t, x), t, j(x)),

where s1(t, x) ∈ X , t ∈ R, and j(x) ∈ R+ ×R
d+n̄′

×R
p+m. Denote by W ′ the

image of the above embedding. It follows that W ′ ∈ DP
d,n′(X).

We define

H : [X,Ω∞−1
P Th(U⊥

d+1,∞)∧]→ DP
d+1[X ]

by sending [f̄ ] ∈ [X,Ω∞−1
P Th(U⊥

d+1,∞)∧] (the class that we started with from
(23)) to the concordance class containing the image of W ′ in DP

d+1(X). This
map is well defined because all choices made in the construction of W ′ were
shown to be unique up to homotopy (namely the submersion found in Claim 7.6
and the embedding constructed above). One can verify directly that T ◦H = Id.
To see that H ◦ T = Id, recall Lemma 5.7 which states that any concordance
class DP

d+1,n[X ] has a representative

W ⊂ X × R× (R+ × R
d+n̄ × R

p+m)

such that f : W → R is a bundle projection and thus W is diffeomorphic to
the product f−1(0)×R. It is easy to check that H ◦ T acts as the identity on
such elements. This concludes the proof of the lemma. �

7.7. A parametrized Pontryagin–Thom construction. Lemma 7.3 es-
tablishes a bijection DP

d+1[X ] ∼= [X,Ω∞−1
P Th(U⊥

d+1,∞)∧] for any closed mani-

fold X . In order to obtain the weak equivalence |DP
d+1| ≃ Ω∞−1

P Th(U⊥
d+1,∞)∧

we need to show that this bijection is induced by an actual natural transfor-
mation of sheaves, DP

d+1 → Maps( ,Ω∞−1
P Th(U⊥

d+1,∞)∧). We proceed in a
way very similar to [11, pp. 868–869]. We start with a definition.

Definition 7.8. Let π : Y → X be a submersion. Let iC : C →֒ Y be a
smooth submanifold and suppose that π|C is still a submersion. A vertical

tubular neighborhood for C in Y consists of an open embedding e : N → Y
of the normal bundle of iC(C) ⊂ Y , such that e ◦ s = iC (where s is the
zero-section) and π ◦ e = π ◦ iC ◦ q.
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Using this definition, we define a variant of the sheaf DP
d+1,n which we will

denote by D̂P
d+1,n(X).

Definition 7.9. For X ∈ Ob(X ) we define D̂P
d+1,n(X) to be the set of pairs

(W, e) where W ∈ DP
d+1,n(X) and

e : NW → X × R× R+ × R
d+n̄ × R

p+m

is a vertical tubular neighborhood for W with respect to the submersion
π :W → X, subject to the following extra condition. The restriction of e
to N∂1W = Nβ1W ×NP (which is the normal bundle of ∂1W in X ×R×{0}×
R

d+n̄ × R
p+m) is equal to the product eβ × eP where

eβ : NβW
→ X × R× {0} × R

d+n̄

is a vertical tubular neighborhood for β1W and eP : NP → R
p+m is the tubular

neighborhood embedding, specified in (12) that was used in our construction
of the spectrum MTP (d+ 1).

We define
D̂P

d+1 := colim
n→∞

D̂P
d+1,n,

where the colimit is taken in the category of sheaves on X . It follows easily
that D̂P

d+1 = colimn→∞(D̂P
d+1,n(X)) for any closed manifold X , and thus there

is a weak homotopy equivalence

|D̂P
d+1| ≃ colim

n→∞
|D̂P

d+1,n|.

For each n there is a forgetful map Fn : D̂P
d+1,n → DP

d+1,n defined by sending

an element (W, e) to W . Passing to the direct limit as n→∞ yields a natural
transformation

F : D̂P
d+1 → DP

d+1

which by the existence and uniqueness up to isotopy of tubular neighborhoods
induces a homotopy equivalence |D̂P

d+1| ≃ |D
P
d+1|.

Definition 7.10. For positive integers n and d, we define a sheaf ZP
d+1,n on

X by setting

ZP
d+1,n(X) := Maps(X × R,Ωd+n

P Th(U⊥
d+1,n)

∧)

for X ∈ Ob(X ). On the right-hand side, Maps( , ) simply means here the
set of maps with no topology given. These are strictly set-valued sheaves.

For each n the natural map

Ωd+n
P Th(U⊥

d+1,n)→ Ωd+n+1
P Th(U⊥

d+1,n+1)

induces the natural transformation ZP
d+1,n → Z

P
d+1,n+1. We define

ZP
d+1 := colim

n→∞
ZP

d+1,n.

For each n, the map

j0 : ZP
d+1,n → Maps(X,Ωd+n

P Th(U⊥
d+1,n)

∧)
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given by restricting a map in ZP
d+1,n(X) to X × {0} is a weak equivalence of

sheaves. In the limit n→∞, the maps j0 induce a homotopy equivalence

|ZP
d+1| ≃ Ω∞−1

P Th(U⊥
d+1,∞)∧.

The Pontryagin–Thom construction yields a map of sheaves

T̂n : D̂P
d+1,n → Z

P
d+1,n

for each n which we describe in detail. Let (W, e) be an element of D̂P
d+1,n(X).

Since (π, f) :W → X×R is a proper map, for each (x, t) ∈ X×R there exists
a positive real number denoted by λ(x, t) > 0, such that the element

(x, t, z) ∈ X × R× (R+ × R
d+n̄ × R

p+m)

lies in the complement ofW ⊂X×R×R+×R
d+n̄×Rp+m whenever |z| ≥λ(x, t)

(where |z| denotes the length of the vector z in the Euclidean metric). The
numbers λ(x, t) can be chosen to make (x, t) 7→ λ(x, t) a continuous function.
It follows that the collapsing map

X × R× R+ × R
d+n̄ × R

p+m → Th(NW )

induced by the vertical tubular embedding e extends to

X × R×Dd−1+n → Th(NW ),

where Dd−1+n is viewed as the one-point-compactification of R+ × R
d+n̄ ×

R
p+m. Putting together the above collapsing map and the functor Th( )

applied to the Gauss maps of the normal bundles NW andN∂1W = Nβ1W×NP ,
we obtain the commutative diagram

X × R×Dd+n // Th(NW ) // Th(U⊥
d+1,n)

X × R× Sd+n̄ ∧ Sm+p

OO

// Th(NβW ) ∧ Sm+p // Th(U⊥
d−p,n−m) ∧ Sm+p

jd,n◦τP,n

OO

which yields an element of ZP
d+1,n via adjunction. Let T̂ : D̂P

d+1 → Z
P
d+1 denote

the induced map in the direct limit as n→∞. The concordance class functors
associated to our newly defined sheaves fit into the commutative diagram

D̂P
d+1[ ]

T̂∗ //

∼=

��

ZP
d+1[ ]

∼=

��

DP
d+1[ ]

T // [ ,Ω∞−1
P Th(U⊥

d+1,∞)∧]

where T is the natural transformation defined in Section 7.2, the vertical maps
are induced by F and j0. The bottom row is an isomorphism whenever applied
to a compact manifold, and so, by commutativity, the top map is as well. It
follows that for each k ≥ 0, the map |T̂ | induces a bijection

|T̂ | : [Sk, |D̂P
d+1|]

∼=
−−→ [Sk,Ω∞−1

P Th(U⊥
d+1,∞)∧].
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However, these are isomorphisms of sets of homotopy classes of unbased maps
and not isomorphisms of the actual homotopy groups. In order to prove that
the map |T̂ | is a homotopy equivalence, we need the following proposition
whose proof is similar to [11, Thm. 3.8]. We give the proof in Section 11.

Proposition 7.11. The map |T̂ | induces an isomorphism on all homotopy

groups with respect to any choice of basepoint.

Proposition 7.11 together with Corollary 6.11 implies Theorem 7.1 which
states that there is a weak homotopy equivalence

|DP
d+1| ≃ Ω∞−1

MTP (d+ 1).

By Remark 6.2 we have that if P is cobordant to a closed manifold P ′ then
there is a homotopy equivalence Ω∞−1MTP (d+1) ≃ Ω∞−1MTP ′(d+1). This
implies the following corollary.

Corollary 7.12. If the closed manifolds P and P ′ are cobordant, then there

is a weak homotopy equivalence |DP
d+1| ≃ |D

P ′

d+1|.

8. The classifying space of CobP
d+1

In this section we construct a weak homotopy equivalence

|DP
d+1| ≃ BCobP

d+1.

Combining this weak equivalence with the results of the previous section im-
plies Theorem 1.1.

8.1. Category-valued sheaves. We will need to consider sheaves on X that
are valued in the category of small categories, which is denoted by CAT.

Definition 8.2. A contravariant functor F : X → CAT is said to be a CAT-
valued sheaf if for any X ∈ Ob(X ), F(X) satisfies the same gluing condition
described in Section 5.1 for set-valued sheaves, with respect to any open cover
of X .

We now recall some important facts about CAT-valued sheaves. Let F be
a CAT-valued sheaf. For each nonnegative integer k, there is an auxiliary
set-valued sheaf denoted by NkF which is defined by setting NkF(X) equal to
the k-th level of the nerve of the category F(X). The representing space |F|
naturally obtains the structure of a topological category by setting

Ob(|F|) = |N0F| and Mor(|F|) = |N1F|.

The classifying space B|F| can be constructed by taking the geometric real-
ization of the diagonal simplicial set, k 7→ NkF(△

k
e).

If C is a topological category with a smooth structure (i.e., C is a smooth
manifold or an infinite-dimensional Banach manifold like in the case with
CobP

d+1), then for X ∈ Ob(X ), the set of smooth maps C∞(X, C) has the
structure of a small category by pointwise composition. The contravariant
functor C∞( , C) defines a CAT-valued sheaf on X . As with all CAT-valued
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sheaves, the representing space |C∞( , C)| has the structure of a topological
category. In this way, the natural map

(30) |C∞( , C)| → C

defined between the geometric realization of the singular complex of a space
and the space itself (see [12]) is a continuous functor. It follows from [6] that
(30) induces a weak-homotopy equivalence

(31) B|C∞( , C)| → BC.

Note that the above construction and weak homotopy equivalence hold for the
CAT-valued sheaf Maps( , C) as well.

8.3. Cocycle sheaves. We will need to use another important construction
from [6, 11] relating to CAT-valued sheaves. For the next definition, fix once
and for all an uncountable set J . For elements X ∈ Ob(X ) we will need to
consider open covers U of X indexed by the set J . For subsets S ⊂ J , we
denote US :=

⋂

i∈S Ui.

Definition 8.4. Let F be a CAT-valued sheaf on X . For each X ∈ Ob(X ),
β̄F(X) is defined to be the set of pairs (U ,Φ) where U = {Ui | j ∈ J} is an open
cover of X indexed by J , and Φ is collection of morphisms, ϕRS ∈ N1F(US),
indexed by the pairs R ⊆ S of nonempty finite subsets of J , subject to the
following conditions:

(i) ϕRR = IdCR
for some object CR ∈ N0F(UR).

(ii) For each nonempty finite R ⊆ S, ϕRS is a morphism from CS to CR|US
.

(iii) For all triples R ⊆ S ⊆ T of finite nonempty subsets of J , we have

ϕRT = (ϕRS |UT
) ◦ ϕST .

It can be verified that for any CAT-valued sheaf F on X , the assignment
X 7→ β̄F(X) defines a set-valued sheaf on X . The sheaf β̄F is called the
cocycle-sheaf associated to F .

In [11] it is proven that for any CAT-valued sheaf F on X , there is a weak
homotopy equivalence |β̄F| ≃ B|F|, where |β̄F| is the representing space of
the set-valued sheaf β̄F and B|F| is the classifying space of the topological
category |F|. This homotopy equivalence is natural in the following sense.

Remark 8.5. Since any set may by considered a category with only identity
morphisms, a set-valued sheaf F on X may be considered a CAT-valued sheaf
by considering F(X) a category with only identity morphisms, for X ∈ X . In
this way, we may consider β̄F . For any X ∈ Ob(X ), β̄F(X) reduces to the set
of pairs (U ,Φ) where U is a cover of X (indexed by the designated uncountable
set J from Definition 8.4) and Φ is a collection of elements ϕS ∈ F(US) for
S ⊂ J , which are compatible under restrictions. Using the sheaf gluing condi-
tion, any element (U ,Φ) ∈ β̄F(X) induces a unique element ϕ ∈ F(X) such
that ϕ|US

= ϕS for all subsets S ⊂ J . This correspondence (U ,Φ) 7→ ϕ yields
a natural isomorphism

β̄F
∼=
−−→ F .
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Notation 8.6. In [6, 11], the notation βF is used for the above cocycle-sheaf
construction. Since in this paper, the Greek letter β is already used so heavily,
we denote the cocycle-sheaves by β̄F so as to not have any conflict of notation.

8.7. Sheaf models for CobP

d+1
. We will need to consider the CAT-valued

sheaf C∞( ,CobP
d+1) with composition defined pointwise. By (31) there is a

weak homotopy equivalence

B|C∞( ,CobP
d+1)| ≃ BCobP

d+1

induced by the natural map |C∞( ,CobP
d+1)| → CobP

d+1. In this section we
will define three new CAT-valued sheaves CP

d+1, C
P,⋔
d+1, and DP,⋔

d+1, along with
a zig-zag of natural transformations

C∞( ,CobP
d+1)

η
−→ CP

d+1
i
−→ CP,⋔

d+1
α
←−− DP,⋔

d+1
γ
−−→ DP

d+1

(on the right, DP
d+1 is considered a CAT-valued sheaf with only identity mor-

phisms) which induce weak homotopy equivalences

BCobP
d+1

≃
−−→ B|CP

d+1|
≃
−−→ B|CP,⋔

d+1|
≃
←−− B|DP,⋔

d+1|
≃
−−→ |DP

d+1|.

These weak equivalences together with Theorem 7.1 will imply Theorem 1.1.
The constructions of this section closely follow [6, 7].

Remark 8.8. The CAT-valued sheaves CP
d+1, C

P,⋔
d+1, and DP,⋔

d+1 correspond
directly to the CAT-valued sheaves from [6] denoted by Cd+1, C⋔

d+1, and
D⋔

d+1. In particular, these sheaves are isomorphic to the ones defined in this
section in the case that P = ∅.

Let iP : P →֒ R
p+m be the embedding used in the construction of CobP

d+1

and throughout the paper.

Notation 8.9. For X ∈ Ob(X ) and smooth functions a, b : X → R with
a(x) ≤ b(x) for all x ∈ X , we denote

X × [a, b] := {(x, u) ∈ X × R | a(x) < u < b(x)},

X × (a, b) := {(x, u) ∈ X × R | a(x) ≤ u ≤ b(x)}.

Definition 8.10. Let ε > 0 be a real number, X ∈ Ob(X ), and a, b : X → R

smooth functions with a(x) ≤ b(x) for all x ∈ X . We define CP,⋔
d+1(X ; a, b, ε) to

be the set of (d+1+dim(X))-dimensional P -submanifolds (see Definition 3.11)

W ⊂ X × (a− ε, b+ ε)× R+ × R
d+∞ × R

p+m

which satisfy the following conditions:

(i) The projection of π :W → X is a P -submersion with (d+1)-dimensional
fibers.

(ii) The projection of W onto X × (a − ε, b + ε), denoted by (π, f) : W →
X × (a− ε, b+ ε), is a proper P -map.

(iii) The restriction of (π, f) to (π, f)−1(X × (ν − ε, ν + ε)) for ν = a, b is a
P -submersion.

Münster Journal of Mathematics Vol. 8 (2015), 119–167



Cobordism category of manifolds with singularities 153

Remark 8.11. Condition (iii) of the above definition implies that the map π
is a local-trivial fiber bundle and not just a submersion. The manifold Ŵ :=
(π, f)−1(X× [a, b]) is a P -manifold of dimension d+1 with boundary given by

∂0Ŵ = (π, f)−1(X × {a}) ⊔ (π, f)−1(X × {b}).

The restriction of π to ∂0Ŵ is a fiber bundle with closed P -manifold fibers.

We eliminate dependence on ε by setting

CP,⋔
d+1(X ; a, b) := colim

ε→0
CP,⋔

d+1(X ; a, b, ε).

Definition 8.12. We define

CP,⋔
d+1(X) :=

⊔

CP,⋔
d+1(X ; a, b)

with union ranging over all pairs of smooth real-valued functions (a, b) with
a ≤ b.

This definition makes CP,⋔
d+1 into a CAT-valued sheaf.

Definition 8.13. For X ∈ X , smooth functions a, b : X → R with a(x) ≤ b(x)
for all x ∈ X , and a real number ε > 0, we define

CP
d+1(X, a, b, ε) ⊂ CP,⋔

d+1(X, a, b, ε)

to be the subset consisting of all elements W ∈ CP,⋔
d+1(X, a, b, ε) which satisfy

the further condition:

(iv) For ν = a, b and x ∈ X , let Jν be the interval ((ν−ǫ0)(x), (ν+ǫ0)(x)) ⊆ R

and let

Vν = (π, f)−1({x} × Jν) ⊂ {x} × Jν × R+ × R
d+∞ × R

p+m.

Then

Vν = {x} × Jν ×M ⊂ {x} × Jν × R+ × R
d+∞ × R

p+m

holds for some d-dimensional submanifold M ⊂ R+ × R
d+∞ × R

p+m.

It follows that the boundary ∂M =M ∩ ({x}× Ja ×R+×R
d+∞×R

p+m) has
the factorization ∂1M = β1M × iP (P ).

The above definition should be compared to [6, Def. 2.8]. We then may
define CP

d+1 in the same way as for CP,⋔
d+1 by taking the limits as ǫ0, ǫ1 → 0 and

taking the disjoint union over all pairs of real-valued functions a, b : X → R

such that a(x) ≤ b(x).

Using the topological structure on CobP
d+1 given in (8) together with Lem-

mas 3.16 and 3.17 regarding fiber bundles with P -manifold fibers, there is a
natural isomorphism

β : C∞( ,CobP
d+1)

∼=
−−→ CP

d+1,

given by sending a smooth map f : X → CobP
d+1 to the fiber bundle of P -mani-

fold cobordisms over X that f induces by pullback. By (31), this isomorphism

induces a weak homotopy equivalence BCobP
d+1 ≃ B|C

P
d+1|.
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Denote by i : CP
d+1→CP,⋔

d+1 the natural transformation induced by inclusion.
The following proposition is proven in exactly the same way as [6, Prop. 4.4].

Proposition 8.14. The inclusion map i : CP
d+1 → CP,⋔

d+1 induces a weak

homotopy equivalence

B|CP
d+1| ≃ B|C

P,⋔
d+1|.

We now define a new sheaf which can be compared directly to DP
d+1.

Definition 8.15. For X ∈ Ob(X ), we define DP,⋔
d+1(X) to be the set of pairs

(W,a) ∈ DP
d+1(X)× C∞(X,R) such that for all x ∈ X , the restriction map

f |π−1(x) : π
−1(x)→ R

is transverse to a(x) ∈ R. We say that f is fiberwise transverse to a : X → R

with respect to the submersion π. The set DP,⋔
d+1(X) is then given the structure

of a partially ordered set by declaring (W,a) ≤ (V, b) ifW = V and a(x) ≤ b(x)
for all x ∈ X . By considering the partially ordered set DP,⋔

d+1(X), a category
DP,⋔

d+1 is a CAT-valued sheaf of X .

There is a natural transformation

α : DP,⋔
d+1 → CP,⋔

d+1

which is defined in exactly the same way as the map D⋔
d+1 → C⋔

d+1 on [6, p. 17]
for the corresponding sheaves for non-singular manifolds. The following propo-
sition is proved in exactly the same way as [6, Prop. 4.4].

Proposition 8.16. The natural transformation α : DP,⋔
d+1 → CP,⋔

d+1 induces a

weak homotopy equivalence B|DP,⋔
d+1| ≃ B|C

P,⋔
d+1|.

We now compare DP,⋔
d+1 to DP

d+1. By considering DP
d+1 as a CAT-valued

sheaf with only identity morphisms, there is a forgetful functor γ : DP,⋔
d+1 →

DP
d+1 defined by sending (W,a) ∈ DP,⋔

d+1(X) to W ∈ DP
d+1(X). This induces a

natural transformation

β̄γ : β̄DP,⋔
d+1 → β̄DP

d+1
∼= DP

d+1,

where β̄DP
d+1
∼= DP

d+1 is the isomorphism from Remark 8.5. The next propo-
sition is proven in the same way as [6, Prop. 4.2].

Proposition 8.17. The map β̄γ : β̄DP,⋔
d+1 → DP

d+1 induces a weak homotopy

equivalence B|DP,⋔
d+1| ≃ |D

P
d+1|.

The last four propositions imply that there is a weak homotopy equivalence

|DP
d+1| ≃ BCobP

d+1.

Combining this with Theorem 7.1 yields the weak homotopy equivalence

BCobP
d+1 ≃ Ω∞−1

P MT(d+ 1),

thus completing the proof of Theorem 1.1.
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8.18. The Bockstein functor. Recall the cobordism category Cobd+1 from
[6]. Setting P equal to ∅, we have an isomorphism of topological categories

Cob∅

d+1
∼= Cobd+1.

We now consider the functor β1 : CobP
d+1 → Cobd−p defined by sending a

P -subcobordism

W ⊂ [a, b]× R+ × R
d+∞ × R

p+m

to the embedded (non-singular) cobordism given by β1W ⊂ [a, b]×{0}×Rd+∞.
The functor β1 is defined similarly on objects. Furthermore, the category
Cobd+1 is isomorphic to the subcategory of CobP

d+1 consisting of all subman-
ifolds

W ⊂ [a, b]× R+ × R
d+∞ × R

p+m

such that

W ∩ ([a, b]× {0} × R
d+∞ × R

p+m) = ∅.

We denote by

i : Cobd+1 → CobP
d+1

the inclusion functor. Theorem 1.3 states that the composition of functors

Cobd+1
i
−→ CobP

d+1
β1
−−→ Cobd−p

induces a homotopy fiber sequence on the level of classifying spaces,

BCobd+1
B(i)
−−−→ BCobP

d+1

B(β1)
−−−−→ BCobd−p.

We now give a proof of Theorem 1.3.

Proof of Theorem 1.3. There are versions of the functors id and β1 defined on
the sheaf level which yield a commutative diagram of natural transformations:

C∞(·,Cobd+1)
η

//

id

��

Cd+1
i //

id

��

C⋔
d+1

id

��

D⋔
d+1

id

��

αoo
γ

// Dd+1

id

��

C∞(·,CobP
d+1)

η
//

β1

��

CP
d+1

i //

β1

��

CP,⋔
d+1

β1

��

DP,⋔
d+1

β1

��

αoo
γ

// DP
d+1

β1

��

C∞(·,Cobd−p)
η

// Cd−p
i // C⋔

d−p D⋔
d−p

αoo
γ

// Dd−p.
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This diagram of natural transformations then induces a commutative diagram
of maps of spaces,

(32) BCobd+1
Bη

≃
//

Bid

��

B|Cd+1|
Bi

≃
//

Bid

��

B|C⋔
d+1|

Bid

��

B|D⋔
d+1|

Bid

��

Bα

≃
oo

Bγ

≃
// |Dd+1|

Bid

��

BCobP
d+1

Bη

≃
//

Bβ1

��

B|CP
d+1|

Bi

≃
//

Bβ1

��

B|CP,⋔
d+1|

Bβ1

��

B|DP,⋔
d+1|

β1

��

Bα

≃
oo

Bγ

≃
// |DP

d+1|

Bβ1

��

BCobd−p

Bη

≃
// B|Cd−p|

Bi

≃
// B|C⋔

d−p| B|D⋔
d−p|

Bα

≃
oo

Bγ

≃
// |Dd−p|

such that all horizontal maps are weak homotopy equivalences. Now consider
the fiber sequence of infinite loop-spaces

Ω∞−1
MT(d+ 1)→ Ω∞−1

MTP (d+ 1)→ Ω∞−1
MT(d− p)

which is induced by the cofiber sequence of spectra

Σ−1
MT(d− p)→ MT(d+ 1)→ MTP (d+ 1).

The weak homotopy equivalences constructed in the proof of Theorem 7.1 yield
a homotopy commutative diagram,

(33) |Dd+1|

|i|

��

≃ // Ω∞−1MT(d+ 1)

��

|DP
d+1|

|β1|

��

≃ // Ω∞−1MTP (d+ 1)

��

|Dd−p|
≃ // Ω∞−1MT(d− p)

where the horizontal maps are weak equivalences. Homotopy commutativity of
(33), together with the fact that the right column is a fiber sequence, implies
that

|Dd+1|
|id|
−−−→ |DP

d+1|
|β1|
−−−→ |Dd−p|

is a homotopy fiber sequence. Then, commutativity of (32) implies that

BCobd+1
B|id|
−−−−→ BCobP

d+1

B|β1|
−−−−→ BCobd−p

is a homotopy fiber sequence. This completes the proof of Theorem 1.3. �

9. The space of P -submersions

In this section we prove a result which implies Claim 7.6 used in the proof
of Lemma 7.4. Our result is a version of Phillips’ submersion theorem [13] for
P -manifolds.
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Before stating our main result, we must review some submersion theory.
Let X and Y be smooth manifolds. We denote by Sub(X,Y ) the space of sub-

mersions X → Y , topologized in the C∞-topology. We denote by Subf (X,Y )
the space of fiberwise surjective bundle maps TX → TY . We will express
elements of Subf (X,Y ) as pairs (f̂ , f) where f̂ : TX → TY is a fiberwise sur-
jective bundle map and f : X → Y is the continuous map which underlies f̂ ,
i.e., f is the unique map from X to Y such that the diagram

TX
f̂ //

��

TY

��

X
f

// Y

commutes, where the vertical maps are the bundle projections. Elements of
Subf (X,Y ) are referred to as formal submersions. Since f is uniquely deter-
mined by f̂ , there is redundancy in this notation, however it will be useful to
keep track of the underlying map. There is a map

D : Sub(X,Y )→ Subf (X,Y )

given by sending a submersion f : X→ Y to the pair (df, f) where df : TX→ Y
is the differential of f . Clearly, the map D is an embedding. Now, a smooth
manifold is said to be an open manifold if it has no compact components. The
main theorem from [13] is the following.

Theorem 9.1 (Phillips 1967). Let X be an open smooth manifold and let Y
be a smooth manifold without boundary. Then the embedding D : Sub(X,Y )→

Subf (X,Y ) is a weak homotopy equivalence.

For what follows, let W be a P -manifold and let X be a smooth manifold.
Recall from Section 2 that a smooth P -map f : W → X is said to be a
P -submersion if both f and fβ1 : β1W → X are submersions. We denote by
SubP (W,X) the space of P -submersionsW → X , topologized as a subspace of
the space of smooth maps from W to X . Below we define the space of formal

P -submersions.

Definition 9.2. We denote by SubfP (W,X) the subspace of Subf (W,X) con-
sisting of all formal submersions (f̂ , f) which satisfy the following:

(i) The underlying map f :W → X is a P -map.
(ii) There exists a fiberwise surjective bundle map f̂β1 : Tβ1W → TX such

that the restriction of the bundle map f̂ : TW → TX to the sub-bundle
T∂1W ⊂ TW |∂1W (defined over ∂1W ) has the factorization

T∂1W
dφ1
−−−→ Tβ1W × TP

proj.
−−−−→ Tβ1W

f̂β

−−→ TX,

where dφ1 is the differential of the structure map

φ1 : ∂1W
∼=
−−→ β1W × P.
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Notice that condition (ii) implies that f̂ |T∂1W : T∂1W → TX is fiberwise
surjective. Notice also that the correspondence (f̂ , f) 7→ (f̂β1 , fβ1) defines a
continuous map

β1 : SubfP (W,X)→ Subf (β1W,X).

The embedding D : Sub(W,X) → Subf (W,X) from Theorem 9.1 restricts
to an embedding

DP : SubP (W,X)→ Subf
P (W,X).

Definition 9.3. A P -manifoldW is said to be an open P -manifold if ∂0W = ∅

and both β1W and W have no compact components.

We have the following generalization of Theorem 9.1.

Theorem 9.4. Let W be an open P -manifold and let X be a smooth manifold

without boundary. Then the embedding DP : SubP (W,X)→ Subf
P (W,X) is a

weak homotopy equivalence.

The above theorem is proven in stages. We must first derive some interme-
diate results.

Lemma 9.5. The following map is a Serre-fibration:

β1 : SubfP (W,X)→ Subf (β1W,X), (f̂ , f) 7→ (f̂β1 , fβ1).

Proof. Denote by Subf (W,X)|∂1W the space of pairs (ĝ, g) where

ĝ : TW |∂1W → TX

is a fiberwise surjective bundle map and g : ∂1W → X is map which makes
the diagram

TW |∂1W
ĝ //

��

TX

��

∂1W
g

// X

commute. We have a restriction map

(34) r|∂1 : Subf (W,X)→ Subf (W,X)|∂1W , (f̂ , f) 7→ (f̂ |∂1W , f |∂1W )

which is a Serre-fibration by [13, Lem. 5.3].
From Example 2.6 we see that TW has the structure of a P -vector bundle.

The collar embedding h1 : ∂1W × R+ → W , together with the differential of
the structure map

φ1 : ∂1W
∼=
−−→ β1W × P,

induces a bundle isomorphism

(35) φ̂1 : TW |∂1W

∼=
−−→ (Tβ1W ⊕ ǫ

1)× TP,

which covers φ1 (above, ǫ1 is the one-dimensional trivial bundle over β1W ).
Using (35), we define a map

(36) TP : Subf (β1W,X)→ Subf (W,X)|∂1W
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by sending a fiberwise surjective bundle map ĝ : Tβ1W → TX to the fiberwise
surjective bundle map TW |∂1W → TX given by the composition

TW |∂1W
φ̂1−−→
∼=

(Tβ1W ⊕ ǫ
1)× TP

proj.
−−−−→ Tβ1W

ĝ
−→ TX.

It follows immediately from the definition of (36) that the diagram

SubfP (W,X)

β1

��

� � // Subf (W,X)

r|∂1
��

Subf (β1W,X)
TP // Subf (W,X)|∂1W

is a cartesian square. Since (34) is a Serre-fibration, the fact that the above
diagram is cartesian implies that β1 : Subf

P (W,X)→ Subf (β1W,X) is a Serre-
fibration as well. This concludes the proof of the lemma. �

We need to define an intermediate space which can be compared to both

SubP (W,X) and SubfP (W,X).

Definition 9.6. For a P -manifold W and smooth manifold X , denote by

Subf
P,β(W,X) the subspace of Subf

P (W,X) consisting of all formal submersions

(f̂ , f) such that f̂β1 = dfβ1 where dfβ1 denotes the differential of fβ1 .

Lemma 9.7. Let W be an open P -manifold and let X be a smooth manifold.

The inclusion Subf
P,β(W,X) →֒ Subf

P (W,X) is a weak homotopy equivalence.

Proof. We may consider Sub(βW,X) as the subspace of Subf (βW,X) which
consists of all formal submersions (ĝ, g) such that g is smooth and ĝ = dg (here
dg is the differential of g). Recall the restriction map

β1 : SubfP,β1
(W,X)→ Subf (β1W,X)

which is a Serre-fibration by Lemma 9.5. By definition we have

SubfP,β(W,X) = β−1
1 (Sub(βW,X)),

thus the diagram

SubfP,β(W,X)
� � //

β1

��

Subf
P (W,X)

β1

��

Sub(β1W,X) �
�

// Subf (β1W,X)

is cartesian. Since the right vertical map is a Serre-fibration, it follows that
the above diagram is homotopy-cartesian. Since W is an open P -manifold, it
follows that β1W is an open manifold. By Theorem 9.1 the bottom horizontal
map in the above diagram is a weak equivalence. Since it is homotopy cartesian,
it follows that the upper-horizontal map is a weak equivalence as well. This
completes the proof. �
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Proof of Theorem 9.4. The space SubP (W,X) may be realized as the subspace

of SubfP,β(W,X) which consists of all formal P -submersions (f̂ , f) such that f
is a smooth P -map and df = f̂ . To prove the theorem it will suffice to show

that the relative homotopy group πn(Sub
f
P,β(W,X), SubP (W,X)) is zero for

all n. Let

F : (Dn, Sn−1)→ (Subf
P,β(W,X), SubP (W,X))

be a map of pairs. By definition of the space SubfP,β(W,X), for all x ∈ Dn we
have

β1F (x) ∈ Sub(β1W,X) ⊂ Subf (β1W,X).

In other words, the formal submersion β1F (x) is integrable for all x ∈ Dn.
Since W is an open P -manifold, it follows automatically that ∂1W is an open
manifold, as well asW . We then may apply the relative parametric H-principle

(see [5, §6.2C] for the definition and [5, §7] for the statement of the relevant
theorem needed to apply it) to obtain a homotopy

Ft : (D
n, Sn−1)→ (Subf

P,β(W,X), SubP (W,X)) for t ∈ [0, 1]

such that:

(i) F0 = F ,
(ii) Ft|∂1W = F |∂1W for all t ∈ [0, 1], and
(iii) F1(D

n) ⊂ SubP (W,X).

This completes the proof of the theorem. �

10. Stabilization of sections of vector bundles

In this section we prove a lemma that implies Claim 7.5 used in the proof
of Lemma 7.4. This result is essentially a relative version of [11, Lem. 6].

For any space X and vector bundles V1 and V2 over X , let Iso(E1, E2)
be the space of bundle-isomorphisms covering the identity map. We have a
stabilization map

σ : Iso(E1, E2)→ Iso(E1 ⊕ ǫ
1, E2 ⊕ ǫ1), f 7→ f ⊕ Idǫ1 .

From [11, Lem. 6] we have the following result.

Lemma 10.1. Let X be a manifold and let E1, E2 → V be vector bundles of

fiber dimension k. The stabilization map

σ : Iso(E1, E2)→ Iso(E1 ⊕ ǫ1, E2 ⊕ ǫ1)

is (k − dim(X)− 1)-connected.

We will need to use a relative version of the above lemma. Let A ⊂ X be a
submanifold and let E1, E2 → X be vector bundles. For g ∈ Iso(E1|A, E

2|A),
denote by Iso(E1, E2)g the subspace of Iso(E1, E2) consisting of all bundle
isomorphisms

f : E1 ∼=
−−→ E2

such that the restriction of f to E1|A is equal to g.
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Proposition 10.2. Let A ⊂ X be a submanifold of positive codimension

and let E1, E2 → X be vector bundles of fiber dimension k and let g ∈
Iso(E1|A, E

2|A). Then the stabilization map

σ : Iso(E1, E2)g → Iso(E1 ⊕ ǫ1, E2 ⊕ ǫ1)g⊕Idǫ1

is (k − dim(X)− 1)-connected.

Proof. Consider the restriction map

r : Iso(E1, E2)→ Iso(E1|A, E
2|A), f 7→ f |A.

The space Iso(E1, E2)g is equal to the subspace r
−1(g) ⊂ Iso(E1, E2). Further-

more it follows from [13, Lem. 5.3] that the map r is a Serre-fibration. The
stabilization map induces a map of fiber sequences

Iso(E1, E2)g

��

// Iso(E1 ⊕ ǫ1, E2 ⊕ ǫ1)g⊕Id
ǫ1

��

Iso(E1, E2) //

��

Iso(E1 ⊕ ǫ1, E2 ⊕ ǫ1)

��

Iso(E1|A, E
2|A) // Iso(E1|A ⊕ ǫ

1, E2|A ⊕ ǫ
1).

By Lemma 10.1 the middle horizontal map is (k − dim(X) − 1)-connected.
Since dim(A) < dim(X), again by Lemma 10.1 the bottom horizontal map
is at least (k − dim(X))-connected. It then follows by application of the five

lemma to the long exact sequence in homotopy groups that the top horizontal
map is (k − dim(X)− 1)-connected as well. This completes the proof. �

To prove Claim 7.5 we will need a version of Lemma 10.1 adapted for P -
vector bundles over P -manifolds. For what follows, letM be a P -manifold. Let
EP → P be a vector bundle and let E1, E2 → M be P -vector bundles of the
same fiber dimension, equipped with a specified identification EP = E1

P = E2
P .

We denote by IsoEP
(E1, E2) the space of pairs (f, fβ) where

f : E1 ∼=
−−→ E2 and fβ : E1

β1

∼=
−−→ E2

β1

are bundle isomorphisms that cover the identity maps such that the diagram

E1|∂1M

φ̂E1

��

f |∂1M
// E2|∂1M

φ̂E1

��

E1
β1
× EP ⊕ ǫ

1
fβ1

×IdEP
⊕Idǫ1

// E2
β1
× EP ⊕ ǫ

1

commutes. There is a stabilization map

(37)
σEP

: IsoEP
(E1, E2)→ IsoEP

(E1 ⊕ ǫ1, E2 ⊕ ǫ1),

(f, fβ) 7→ (f ⊕ ǫ1, fβ ⊕ ǫ
1).
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The main result of this section is the following.

Theorem 10.3. Let M , EP , E
1 and E2 be as above and denote by k the fiber

dimension of E1 and E2. Suppose that the fiber dimension of EP is equal to

p = dim(P ). Then the stabilization map given in (37) is (k − dim(M) − 1)-
connected.

Proof. Consider the map

TEP
: Iso(E1

β1
, E2

β2
)→ Iso(E1|∂1M , E

2|∂1M )

defined by sending a bundle isomorphism f : E1
β1
→ E2

β1
to the bundle isomor-

phism given by the composition

E1|∂1M

∼=
−−→ (E1

β1
× EP )⊕ ǫ

1 fβ×IdEP
⊕Idǫ1

−−−−−−−−−−→ (E1
β1
× EP )⊕ ǫ

1 ∼=
−−→ E2|∂1M .

We also have the map

β1 : Iso(E1
β1
, E2

β2
)→ Iso(E1

β1
, E2

β1
), (f, fβ) 7→ fβ.

It follows immediately from the definition of the space IsoEP
(E1, E2) that the

diagram

(38) IsoEP
(E1, E2)

β1

��

� � // Iso(E1, E2)

r

��

Iso(E1
β1
, E2

β1
)

TEP // Iso(E1|∂1M , E
2|∂1M )

is cartesian, where the top horizontal map is the inclusion map and the right
vertical map r is the restriction map. By [13, Lem. 5.3] the restriction map r
is a Serre-fibration with fiber over g ∈ Iso(E1|∂1M , E

2|∂1M ) equal to the space
Iso(E1, E2)g. It follows that diagram (38) is homotopy cartesian and that the
left vertical map β1 is a Serre-fibration as well. For g ∈ Iso(E1

β1
, E2

β1
), the fiber

over the map β1 over g equals the space Iso(E1|∂1M , E
2|∂1M )TEP

(g). We then

have a map of fiber sequences

Iso(E1, E2)TEP
(g)

��

// Iso(E1 ⊕ ǫ1, E2 ⊕ ǫ1)TEP
(g)⊕Idǫ1

��

IsoEP
(E1, E2) //

��

IsoEP
(E1 ⊕ ǫ1, E2 ⊕ ǫ1)

��

Iso(E1
β1
, E2

β1
) // Iso(E1

β1
⊕ ǫ1, E2

β1
⊕ ǫ1).

By Lemma 10.1 and Proposition 10.2 the top horizontal map in the above
diagram is (k − dim(M)− 1)-connected and the degree of connectivity of the
bottom horizontal map is equal to

[(k − p− 1)− dim(β1M)− 1] = [(k − p− 1)− (dim(M)− p− 1)− 1]

= (k − dim(M)− 1)

Münster Journal of Mathematics Vol. 8 (2015), 119–167



Cobordism category of manifolds with singularities 163

as well. It then follows by application of the five lemma to the long-exact
sequence in homotopy groups associated to the above fibrations that the middle
map is (k − dim(X)− 1)-connected. �

11. Proof of Proposition 7.11

In Section 7 we proved that for all k there is an isomorphism of sets

[Sk, |DP
d+1|]

∼= [Sk,Ω∞−1
MTP (d+ 1)]

which is induced by a zig-zag

|DP
d+1|

≃
←−− |D̂P

d+1|
T
−−→ Ω∞−1

MTP (d+ 1),

where the first map is a weak homotopy equivalence. In order to prove Propo-
sition 7.11, we need to show that we have an isomorphism of homotopy groups
for any choice of base-point on any path component. In this section we resolve
this issue.

First note that since Ω∞−1MTP (d + 1) is an infinite loop-space, it has the
structure of a topological monoid. In particular, this implies that the identity
component of Ω∞−1

MTP (d+ 1) is a connected H-space. It then follows from
[8, Ex. 4A.3] that for all k ∈ N and any point x0 in the identity component
Ω∞−1

0 MTP (d + 1) ⊂ Ω∞−1MTP (d + 1), there is a bijection between the ho-

motopy group πk(Ω
∞−1MTP (d + 1), x0) and the set [Sk,Ω∞−1

0 MTP (d + 1)]
induced by the natural map defined by forgetting the base point. Now, the
monoid structure on π0(Ω

∞−1MTP (d + 1)) is a group. This implies that all
path components of Ω∞−1

MTP (d+1) are homotopy equivalent. It follows that
for all x ∈ Ω∞−1MTP (d+1) in any path component and all k ∈ N, there is an
isomorphism

πk(Ω
∞−1

MTP (d+ 1), x)
∼=
−−→ [Sk,Ω∞−1

x MTP (d+ 1)],

where Ω∞−1
x MTP (d + 1) ⊂ Ω∞−1MTP (d + 1) is the path component that

contains the element x ∈ Ω∞−1MTP (d+ 1).
We will need to show that |DP

d+1| has the structure of a monoid (with prod-

uct defined up to homotopy) and that the map |T | : |DP
d+1| → Ω∞−1MTP (d+1)

is a monoid homomorphism inducing isomorphism on π0. The method of this
section is very similar to the proof of [11, Thm. 3.8].

Proposition 11.1. The space |D̂P
d+1| has the structure of topological monoid

up to homotopy.

Proof. The monoid (up to homotopy) structure on |D̂P
d+1| is defined as follows:

Let D̂P
d+1 ×̄ D̂P

d+1 be the sheaf defined by letting (D̂P
d+1 ×̄ D̂P

d+1)(X) consist
of all pairs

((W1, e1), (W2, e2)) ∈ D̂P
d+1(X)× D̂P

d+1(X)

such that the images of e1 and e2 are disjoint in X ×R×R+ ×R
d+n̄ ×R

p+m.
There is a natural map

(39) µ : (D̂P
d+1 ×̄ D̂P

d+1)(X)→ D̂P
d+1(X)
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defined by sending a pair ((W1, e1), (W2, e2)) to the element (W1 ⊔W2, e1 ⊔ e2).
This map yields a partially defined product on D̂P

d+1(X) which is clearly asso-
ciative and commutative. The identity element is given by the empty set. The
inclusion map

j : D̂P
d+1 ×̄ D̂P

d+1 → D̂P
d+1 × D̂P

d+1

is a weak equivalence of sheaves. Roughly, given

((W1, e1), (W2, e2)) ∈ D̂P
d+1(X)× D̂P

d+1(X)

such that the images of e1 and e2 intersect, after increasing the dimension
of the ambient space, one can find an isotopy of embeddings which pulls W1

away from W2. Letting |k| be a pseudo-inverse for |j|, the product described
above yields a homotopy monoid structure on the representing space |D̂P

d+1|
with product given by

(40) |D̂P
d+1| × |D̂

P
d+1|

≃
−−→ |D̂P

d+1 × D̂P
d+1|

|k|
−−→ |D̂P

d+1 ×̄ D̂P
d+1|

|µ|
−−→ |D̂P

d+1|,

where the left-most map is some choice of homotopy equivalence. The empty-
set element in D̂P

d+1(pt.) (which induces the empty-set element in D̂P
d+1(X)

for any X by pulling back over the constant map) determines an element
e ∈ |D̂P

d+1|. This is easy to see by examining the construction of |D̂P
d+1| as

the geometric realization of the simplicial set (l 7→ D̂P
d+1(△

l)). From the fact
that the empty set is the identity for the partially defined product in (39) it
follows that e is the identity (up to homotopy) for the product defined in (40).
Associativity also follows from associativity of (39). �

Since |D̂P
d+1| has the structure of a monoid up to homotopy, it follows from

[8, Ex. 4A.3] that for each k ∈ N and any point x0 on the identity component
|D̂P

d+1|0 ⊂ |D̂
P
d+1|, there is an isomorphism

πk(|D̂
P
d+1|, x0)

∼=
−−→ [Sk, |D̂P

d+1|0]

induced by the map defined by forgetting base points. Now consider the map

|H | ◦ |T̂ | : |D̂P
d+1| → Ω∞−1

MTP (d+ 1)

from Section 7.7.

Proposition 11.2. The map |H | ◦ |T̂ | induces a monoid isomorphism

π0(|D̂
P
d+1|)

∼=
−−→ π0(Ω

∞−1
MTP (d+ 1)).

Proof. This proposition is proven by examining the Pontryagin–Thom map

T̂ : D̂P
d+1(pt.)→ Z

P
d+1(pt.)

and checking that it sends a disjoint union (W1 ⊔W2, e1 ⊔ e2) ∈ D̂P
d+1(pt.) to

a sum of “loops” in ZP
d+1(pt.). This follows the exact same argument as in the

proof of the classical Pontryagin–Thom theorem from [14]. We refer the reader
there for details. �
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Now, since π0(Ω
∞−1MTP (d+1)) is a group, it follows from Proposition 11.2

that π0(|D̂
P
d+1|) is a group as well.

From this group structure it follows that all path components of |D̂P
d+1| are

homotopy equivalent. We then have that for every x ∈ |D̂P
d+1| in any path

component and for all k ∈ N, there is an isomorphism

πk(|D̂
P
d+1|, x)

∼=
−−→ [Sk, |D̂P

d+1|x],

where |D̂P
d+1|x ⊂ |D̂

P
d+1| is the path component containing x. Consider the

commutative diagram

πk(|D̂
P
d+1|, x)

∼=

��

|H|◦|T̂ |
// πk(Ω

∞−1MTP (d+ 1), y)

∼=

��

[Sk, |D̂P
d+1|x]

|H|◦|T̂ |

∼=
// [Sk,Ω∞−1

y MTP (d+ 1)],

where y = |H | ◦ |T̂ |(x). It follows that the top horizontal map is an isomor-
phism. This concludes the proof of Proposition 7.11.

Appendix A

In this appendix we prove a result which implies Theorem 3.14. This result
is a slight modification of the main theorem from [3] and our proof is similar.

Lemma A.1. Let (W ;Ma,Mb) be a P -manifold cobordism triple. For any

positive integer n, the quotient map

q : EP,n(W ;Ma,Mb)→
EP,n(W ;Ma,Mb)

DiffP (W ;Ma,Mb)

is a locally trivial fiber bundle.

Proof. Let f ∈ EP,n(W ;Ma,Mb) and let [f ] denote the class of f in the orbit
space EP,n(W ;Ma,Mb)/DiffP (W ;Ma,Mb). By definition of the action we have

g(W ) = f(W )

for any g ∈ q−1([f ]). By definition of the space EP,n(W ;Ma,Mb) we have

f(∂1W ) ⊂ [0, 1]× {0} × R
d+n̄ × R

p+m

and there exists a real number ε > 0 such that

[0, ε)× f(∂1W ) ⊂ f(W ),

where [0, ε)× f(∂1W ) is understood to be the set of all

(t, s, x, y) ∈ [0, 1]× R+ × R
d+n̄ × R

p+m

such that (t, 0, x, y) ∈ f(∂1W ) and s ∈ [0, ε) ⊂ R+. Let

N ⊂ [0, 1]× R+ × R
d+n̄ × R

p+m
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be a geodesic neighborhood for f(W ). Denote by π : N → f(W ) the projection
map. We have

(41) N ∩ ([0, 1]× {0} × R
d+n̄ × R

p+m) = Nβ1 ×NP ,

where Nβ1 ⊂ R
d+n̄ is a geodesic neighborhood for fβ1(β1W ) ⊂ R

d+n̄ and
NP ⊂ R

p+m is a geodesic neighborhood for iP (P ) ⊂ R
p+m. We denote by

πβ1 : Nβ1W → β1W and πP : NP → P

the projection maps. Now let

z ∈ ([0, 1]× [0, ε)× R
d+n̄ × iP (P )) ∩N.

We write z = (s, t, x, y) with s ∈ [0, ε), (t, x) ∈ [0, 1]× R
d̄−1+n̄, and y ∈ iP (P )

(we permute the factors of [0, ε) and [0, 1] to make for more convenient notation
for the constructions ahead). It follows from the factorization of (41) that

(42) π(s, t, x, y) = (s, πβ1(t, x), y).

Let
U ⊂ EP,n(W ;Ma,Mb)

be an open neighborhood of f with the property that g(W ) ⊂ N for all g ∈ U .
By definition of the C∞-topology, such a subset does indeed exist. Now let
q be the quotient map from the statement of the theorem. Let Ū denote the
image q(U). For any such g ∈ q−1(Ū), we obtain a smooth mapW →W given
by the formula x 7→ f−1 ◦ π ◦ g(x). We will abuse notation and denote this
map by

f−1 ◦ π ◦ g :W →W.

It follows from (42) that for all g ∈ q−1(Ū), the map f−1◦π◦g is an element of
the mapping space C∞

P (W ;Ma,Mb) introduced in Section 3. We have a map

α : q−1(Ū)→ C∞
P (W ;Ma,Mb), g 7→ f−1 ◦ π ◦ g.

Notice that α(f) = IdW , which is of course an element of DiffP (W ;Ma,Mb).
By Proposition 3.4,

DiffP (W ;Ma,Mb) ⊂ C
∞
P (W ;Ma,Mb)

is an open subset. We may then choose a small neighborhood Ū ′ ⊂ Ū of [f ]
such that

α(q−1(Ū ′)) ⊂ DiffP (W ;Ma,Mb).

Using α, we define a map

Φ : q−1(Ū ′)→ Ū ′ ×DiffP (W ;Ma,Mb), g 7→ ([g], α(g)).

It follows easily that this map Φ is a local trivialization of the projection q.
This concludes the proof of the lemma. �
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