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Abstract. The algebra S, in the title is obtained from a polynomial algebra P, in n
variables by adding commuting, left (but not two-sided) inverses of the canonical generators
of P,. Ignoring the non-Noetherian property, the algebra S,, belongs to a family of algebras
like the Weyl algebra A,, and the polynomial algebra Ps,. The group of automorphisms Gy,
of the algebra S,, is found:

Grn = Sp x T" x Inn(Sp) 2 Sy X T" X GLoo(K) X -+ X GLoo (K) =: G,

2" —1 times

where Sy, is the symmetric group, T" is the n-dimensional algebraic torus, Inn(S,) is the
group of inner automorphisms of S,, (which is huge), and GLoo (K) is the group of invertible
infinite dimensional matrices. This result may help in understanding of the structure of the
groups of automorphisms of the Weyl algebra A,, and the polynomial algebra Ps,. An analog
of the Jacobian homomorphism: Autg _ae(P2n) — K*, the so-called global determinant is
introduced for the group GJ, (notice that the algebra S,, is noncommutative and neither left
nor right Noetherian).
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2 VLADIMIR V. BAVULA

1. INTRODUCTION

Throughout, ring means an associative ring with 1; module means a left
module; N := {0,1,...} is the set of natural numbers; K is a field and K*

is its group of unmits; P, := K][x1,...,2,] is a polynomial algebra over K;
01 = aixl’ e, Op = % are the partial derivatives (K-linear derivations) of
P,.

Definition ([4]). The algebra S, of one-sided inverses of P, is an algebra
generated over a field K by 2n elements x1,...,Zn, Yn, - - ., Yn that satisfy the
defining relations:

i1 = = ynan = 1, [5,y5] = [, 7;] = [yi, y;] = 0 for all i # j,
where [a, ] := ab — ba, the commutator of elements a and b.

By the very definition, the algebra S,, is obtained from the polynomial alge-
bra P, by adding commuting, left (or right) inverses of its canonical generators.
The algebra S; is a well-known primitive algebra [7, p. 35, Ex. 2]. Over the field
C of complex numbers, the completion of the algebra S; is the Toeplitz algebra
which is the C*-algebra generated by a unilateral shift on the Hilbert space
I2(N) (note that y; = z%). The Toeplitz algebra is the universal C*-algebra
generated by a proper isometry.

Ezample ([4]). Consider a vector space V = @, Ke; and two shift operators
onV, X :e; — ey and Y :e; — e, for all i > 0, where e_; := 0. The
subalgebra of Endg (V') generated by the operators X and Y is isomorphic to
the algebra S; (X — z, Y — y). By taking the n’th tensor power V®" =
Docnn Kea of V we see that the algebra S, is isomorphic to the subalgebra of
Endg (V®") generated by the 2n shifts X1,Y7, ..., X,,Y, that act in different
directions.

It is an experimental fact ([4]) that the algebra S; has properties that are a
mixture of the properties of the polynomial algebra P» in two variable and the
first Weyl algebra A;, which is not surprising when we look at their defining
relations:

Py = K(z,y) : yz — zy = 0;

Ay = K{z,y) :yx —zy =1;

S1 = K(z,y): yz = 1.
The same is true for their higher analogs: P, = P2®"7 A, = A?” (the n’th
Weyl algebra), and S,, = SP". For example,

LKdim(S,) D 20 = cLKdim(Pay,),

gldim(S,) D n = gldim(A,), (char(K) = 0)

GK(Sn) 2 2n = GK(A,) = GK(Pan).
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THE GROUP OF AUTOMORPHISMS 3

where cl.Kdim, gldim, and GK stand for the classical Krull dimension, the
global homological dimension, and the Gelfand-Kirillov dimension respectively.
The big difference between the algebra S,, and the algebras Ps,, and A,, is that
Sy, is neither left nor right Noetherian and is not a domain either.

The algebras S,, are fundamental non-Noetherian algebras, they are univer-
sal non-Noetherian algebras of their own kind in a similar way as the polyno-
mial algebras are universal in the class of all the commutative algebras and the
Weyl algebras are universal in the class of algebras of differential operators.

The algebra S,, often appears as a subalgebra or a factor algebra of many
non-Noetherian algebras. For example, S; is a factor algebra of certain non-
Noetherian down-up algebras as was shown by Jordan [8] (see also Benkart and
Roby [5]; Kirkman, Musson, and Passman [11]; Kirkman and Kuzmanovich
[10]); and S,, is a subalgebra of the Jacobian algebra A,, (see below) [1].

The aim of this paper is to find the group G, := Autx_.is(S,) of automor-
phisms of the algebra §S,,.

e (Theorem 5.1) G, = S, X T" x Inn(S,,).
e (Lemma 7.8) G, 2 G, := Sp X T™ X GLoo(K) X - - - X GLo (K),

27 —1 times

where S, is the symmetric group, T" is the n-dimensional algebraic torus,
Inn(S,,) is the group of inner automorphisms of the algebra S,,, and GL(K)
is the group of all the invertible infinite dimensional matrices of the type
1 4+ M (K), where the algebra (without 1) of infinite dimensional matrices
Mo (K) = @Md(K) = Uy>; Ma(K) is the injective limit of matrix alge-
bras. A semidirect product Hy X Hy X - -+ X H,, of several groups means that
Hyx (Hox (- X (Hpo1 X Hp,)-++)).

The proof of Theorem 5.1 is rather long (and nontrivial) and based upon
several results proved in this paper (and in [4]) which are interesting on their
own. Let me explain briefly the logical structure of the proof. There are two
cases to consider when n = 1 and n > 1. The proofs of both cases are based
on different ideas. The case n = 1 is a kind of a degeneration of the second
case and is much more easier. The key point in finding the group G is to use
the indez of linear maps in infinite dimensional vector spaces and the fact that
each automorphism of the algebra S,, is determined by its action on the set
{z1,... 20} (or {y1,-..,yn}):

e (Theorem 3.7) (Rigidity of the group G,,) Let 0,7 € G,,. Then the
following statements are equivalent.
l.o=rT.
2. o(x1) =71(x1)y ..y 0(x0) = T(T0).
3. 0(y1) =7(W1)s-- - 0(yn) = T(Yn).

For n > 1, one of the key ideas in finding the group G,, is to use the action
of the group G,, on the set H; of all the height 1 prime ideals of the algebra
S,. The set H1 = {p1,...,pn} is finite and is found in [4]. It follows that the
group

G, =S5, X Stgn (7‘[1)
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4 VLADIMIR V. BAVULA

is the semidirect product of the symmetric group S,, and the stabilizer of the
set Hi in G,

Stg, (H1) :=={oc € Gn|olp1) =p1,...,0(pn) = Pn}

The group St¢,, (1) contains the n-dimensional torus T". Using a Membership
Criterion (Theorem 6.2) for elements of the algebra S,,, it follows that

Sta., (Hl) =T" x stg, (Hl),

where

(1) stg, (H1) ={o € Stg, (H1) | o(2:) = z; mod p;, o(y;) =y mod p;,
i=1,...,n}.
Moreover,
e (Corollary 5.5) ste, (H1) = Inn(S,).
One of the key points of the proof of Theorem 5.1 and Corollary 5.5 is the fact
that
e ([4, Cor. 3.3]): P, is the only simple, faithful S,,-module (up to iso-
morphism),
and so the algebra S,, can be seen as a subalgebra of the endomorphism algebra
E, := Endg (P,) of all the linear maps from the vector space P, to itself and
we can visualize the group G,, via the group Autg (P,) of units of the algebra
FE,, as follows:
e (Theorem 3.2) G,, = {0, | ¢ € Autg(P,) such that ¢S, =S,},
where o,(a) = pap™', a €S,.
To represent the group G,, via linear maps in an infinite dimensional space
helps not much unless we have a criterion of when a linear map belongs to the
group G, (or to the algebra S,,). Several membership criteria are proved in
Section 6 which are used at the final stage of the proof of Theorem 5.1:

e (Theorem 6.2) Let ¢ € Endg (P,,). Then ¢ € S, if and only if [z1,¢] €

P14 p1, - [T, @] € P+ Do
e (Corollary 6.7) Let F,, := ;i p;- Then

{¢ € Endg(P,) | [%i, ] € Fu, [yi,¢) € Frn, i=1,...,n}

o Sl, ifn= 1,

K+ F,, ifn>1.
The structure of the group G; = T! x GLo(K) is yet another confirmation of
“similarity” of the algebras P5, A, and S;. The groups of automorphisms of
the polynomial algebra P, and the Weyl algebra A; were found by Jung [9],
van der Kulk [14], and Dixmier [6] respectively. These two groups have almost
identical structure, they are “infinite GL-groups” in the sense that they are
generated by the torus T! and by the obvious automorphisms: = +— x + \y?,

Yy y; x> o,y — y+Art, where i € Nand A\ € K; which are sort of “elemen-
tary infinite dimensional matrices” (i.e. “infinite dimensional transvections”).
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THE GROUP OF AUTOMORPHISMS 5

The same picture as for the group G;. In prime characteristic, the group of
automorphism of the Weyl algebra 4; was found by Makar-Limanov [12] (see
also Bavula [3] for a different approach and for further developments). More
on polynomial automorphisms the reader can find in the book of van den Essen
[13].

There is an important homomorphism from the group Autg _aig(Pon) of
automorphisms of the polynomial algebra P, to the group K*, the so-called
Jacobian (map or homomorphism):

do(x;
T Autg_aig(Pon) = K*, 0+ det ( ofx )>
8xj
Note that the Jacobian homomorphism is a determinant. In this paper (Sec-
tion 8), its analog is introduced for the algebra S,, which is called the global
determinant:
det : GI, = K*, o+ det(0).

It is a group homomorphism (Corollary 8.7) which is defined as follows. By
Lemma 7.8, each element o of G, is a unique product o = 7t)\01 - 0an_1,
where 7 € Sy, tx €T, A= (A1,..., ) € K*" and 0; € GLoo(K). Then

n n

2" —1
(2) det(0) :=sgn(r) - [[ M- ] det(o;),
i=1 j=1
where sgn(7) is the parity of the permutation 7 and det(c;) is the “usual”
determinant of the element o; of the group GLo(K). It is an interesting
question of whether it is possible to extend the global determinant to the
group Gj,.

The paper is organized as follows. In Section 2, some useful results from [4]
are collected which are used later.

In Section 3, several subgroups of the group G,, are introduced, a useful
description (Theorem 3.2) of the group G,, is given, and a criterion of equality
of two elements of the group G,, is proved (Theorem 3.7).

In Section 4, the group G is found (Theorem 4.1).

In Section 5, the group G, is found (Theorem 5.1). Several corollaries are
obtained. It is proved that the groups G, and Inn(S,) have trivial center
(Corollary 5.6).

In Section 6, several Membership Criteria are proved for the algebras S,,,
P, + F,, and K + F,, (Theorem 6.2, Corollaries 6.6 and 6.7).

In Section 8, the global determinant is extended to a certain monoid S,, x
T" x M, the group of units of which is isomorphic to the group G/, (Corol-
lary 8.12.(1)). Moreover,

e (Corollary 8.12.(2)) G, ~{a € S, x T™ x M, | det(a) # 0}.
Intuitively, the pair (S, x T" x M, G’,), a monoid and its group of units, is
an infinite dimensional analog of the pair (My(K), GLy(K)). Theorem 8.6.(3)
shows that the global determinant can be computed effectively (in finitely
many steps).
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6 VLADIMIR V. BAVULA

In Section 9, the stabilizers in the group G,, of several classes of ideals of the
algebra §,, are computed. In particular, the stabilizers of all the prime ideals
of S,, are found (Corollary 9.2.(2) and Corollary 9.9).

The ideal a,, :=p1 + -+ - + Py, is a prime idempotent ideal of the algebra S,
of height n, [4].

e (Theorem 9.7) The ideal a,, is the only nonzero, prime, G,-invariant
ideal of the algebra S,,.

e (Theorem 9.10) Let p be a prime ideal of S,. Then its stabilizer
Stg,, (p) is a maximal subgroup of the group G,, if and only if n > 1
and p is of height 1, and, in this case, [Gy, : Stg,, (p)] = n.

e (Corollary 9.12) Let a be a proper ideal of S,. Then its stabilizer
Stg, (a) has finite index in the group G, if and only if a? = a.

e (Corollary 9.4) If a is a generic idempotent ideal of S,, then its stabilizer
is written via the wreath products of the symmetric groups:

t
Sta,, (a) = (Sm % [ [(Sh, 15n,)) x T" 5 Inn(S,,).
i=1

In Section 10, we classify all the algebra endomorphisms of S,, that sta-
bilize the elements x1,...,x, and show that each such endomorphism is a
monomorphism but not an isomorphism provided it is not the identity map
(Corollary 10.1). Therefore, an analogous question to the Question of Dixmier,
namely, is a monomorphism of the algebra S,, is an automorphism? has a neg-
ative answer. The original Question/Problem of Dixmier states [6]: is every
homomorphism of the Weyl algebra A, an automorphism? The Weyl algebra
A, is a simple algebra, so any homomorphism is automatically a monomor-
phism. In [6], Dixmier poses this question only for the first Weyl algebra A;.

2. PRELIMINARIES ON THE ALGEBRAS S,

In this section, we collect some results without proofs on the algebras S,
from [4] that will be used in this paper, their proofs can be found in [4].
Clearly, S, = S1(1) ® --- ® S1(n) =~ S", where S;(i) := K({(z;,vi | yizi =

1) = S; and
S, = @ Kxo‘yB,
a,BEN™

where ¢ 1= 2" - 2% a = (ay,...,qp), y° = yfl coyPn B = (B1,...,Bn)-
In particular, the algebra S, contains two polynomial subalgebras P, and
Qn = Kly1,...,yn] and is equal, as a vector space, to their tensor product
P, ® Q. Note that the Weyl algebra A,, is also the tensor product (as a vector
space) P, ® K[01,...,0,] of its two polynomial subalgebras.

When n = 1, we usually drop the subscript “1” if this does not lead to

confusion. So, §1 = K(z,y | yz = 1) = @, ;5o Kz'y’. For each natural
number d > 1, let My(K) = @Z;O KE;; be the algebra of d-dimensional
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THE GROUP OF AUTOMORPHISMS 7

matrices, where {E;;} are the matrix units, and
Moo (K) := lim My(K) = @ KEy
i,jEN
be the algebra (without 1) of infinite dimensional matrices. The algebra S,
contains the ideal F':= €, ;o K Eij, where
(3) Eij =2y — 2yt i 5> 0.
For all natural numbers 7, j, k, and [, E;jEy = ;xEu, where §;; is the

Kronecker delta function. The ideal F' is an algebra (without 1) isomorphic to
the algebra M. (K) via E;; — E;;. For all 4,5 > 0,

(4) ZCEIij = Ei+1,j5 yEZJ = Ei—l,j (E—l,j = 0),
(5) Eijx = E@j,l, Eijy = Ei,jJrl (E@,l = 0)
(6) S1=K®zKz] ®yK[y] @ F,

the direct sum of vector spaces. Then

(7) Si/F ~Klz,o Y=Ly, x> 2, yrs a2,

since yr =1, zy =1 — Fyp and Eyy € F.
The algebra S,, = ®l 1 S1(4) contains the ideal

= PO — ®F = P KEas,

a,feN?

where
n
Eop = HEOMIBi (i), Ex(i) = xfyf S+1yf+17

and F(i) == @, ,cy K Est(i). Note that EapE,, = dgyEq, for all elements
a, 8,7, p € N*, where d3, is the Kronecker delta function.
o Foa #0 and aF;, # 0 for all nonzero elements a of the algebra S,,.
o [, is the smallest (with respect to inclusion) nonzero ideal of the al-
gebra S, (i.e. F, is contained in all nonzero ideals of S, ); F,f =F,;
F,, is an essential left and right submodule of Sy ; Fy, is the socle of the
left and right S, -module S, ; F,, is the socle of the S, -bimodule S,, and
F,, is a simple S,,-bimodule.

The involution 1 on S,,. The algebra S,, admits the involution
N:Sy = Sn, Ty =Y, Yi— x4y, i=1,...,n,

i.e. it is a K-algebra anti-isomorphism (n(ab) = n(b)n(a) for all a,b € S,,) such
that n? = ids, , the identity map on S,. So, the algebra S, is self-dual (i.e. it
is isomorphic to its opposite algebra, 7 : S,, ~ S°P). The involution 1 acts on
the “matrix” ring F,, as the transposition,

(®) 1(Eap) = Epa-

Miinster Journal of Mathematics VoL. 6 (2013), 1-51



8 VLADIMIR V. BAVULA

The canonical generators x;, y; (1 < ¢,j < n) determine the ascending filtra-
tion {S, <;}ien on the algebra S, in the obvious way (i.e. by the total degree
of the generators): Sn,<i = €44 5<i Kx%y?, where |a] = a1 + - + ay,
(Sn,<iSn,<j C Sn,<its for all 4,5 > 0). Then dim(S, <;) = (*}2") for i > 0,
and so the Gelfand-Kirillov dimension GK(S,,) of the algebra S,, is equal to
2n. It is not difficult to show that the algebra S, is neither left nor right
Noetherian. Moreover, it contains infinite direct sums of left and right ideals
(see [4]).
o The algebra S, is central, prime, and catenary. Fvery nonzero ideal of
Sy, is an essential left and right submodule of S,,.
o The ideals of S,, commute (IJ = JI); and the set of ideals of S,, satisfy
the a.c.c.
e The classical Krull dimension cL. Kdim(S,,) of S,, is 2n.
o Let I be an ideal of S,,. Then the factor algebra S, /I is left (or right)
Noetherian if and only if the ideal I contains all the height one primes
of Sy,

The set of height 1 primes of S,,. Consider the ideals of the algebra S,;:
P =F®8, 1, p2=S1F®S,_2,...,pn =5,_1QF.

Then S, /p; ~ Sp—1 @ (S1/F) ~ Sp1 ® Klzg, ;') and (-, pi = [[1o, pi =

F@m. Clearly, p; € p; for all i # j.

o The set Hy of height 1 prime ideals of the algebra S, is {p1,...,pn}.
Let a, :=p1 + - 4+ p,. Then the factor algebra

(9)  Sn/an > (S1/F)® ®sz, z; Klzy, 27t .. a,x, Y = Ly

is a skew Laurent polynomial algebra in n variables, and so a,, is a prime ideal
of height and co-height n of the algebra S,,. The algebra L,, is commutative,
and so

(10) [a,b] € a,, for all a,b € S,,.

That is [S,,S,] € a,. In particular, [S;,S;] € F. Since n(a,) = a,, the
involution of the algebra S,, induces the automorphism 7 of the factor algebra
S, /a, by the rule:

1

(11) T:Ly— L, x> x5, i=1,...,n.

It follows that n(ab) — n(a)n(db) € a, for all elements a,b € S,,.

3. CERTAIN SUBGROUPS OF Autg _aiz(Sy)

Recall that G, := Autg_a1,(Sy) is the group of automorphisms of the al-
gebra S,,. In this section, a useful description of the group G,, is given (Theo-
rem 3.2), an important (rather peculiar) criterion of equality of two elements
of Gy, (Theorem 3.7) is found, and several subgroups of G,, are introduced that
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THE GROUP OF AUTOMORPHISMS 9

are building blocks of the group G,. These results are important in finding
the group G,.

Proposition 3.1 ([4]). The polynomial algebra P, is the only (up to isomor-
phism) faithful simple S,-module.

In more detail, s, P, ~ Sp /(310 Sn¥i) = @penn K1, 1:= 143" Suys;
and the action of the canonical generators of the algebra S,, on the polynomial
algebra P, is given by the rule:

z~%, if a; > 0,

and Eg, * 2% = 6yq2”,
0, if oy = 0, o ’

Xy x® =Ty k= {
where e; := (1,0,...,0),...,e, := (0,...,0,1) is the canonical basis for the
free Z-module Z" = @, Ze;. We identify the algebra S,, with its image
in the algebra Endg (P,) of all the K-linear maps from the vector space P,
to itself, i.e. S, C Endg(P,). Let Autyx(P,) be the group of units of the
algebra Endg (P,,). Autg (P,) is the group of all the invertible K-linear maps
from P, to itself. Each element ¢ € Autg(P,) yields an inner automorphism
wy : f = @fp~t of the algebra Endg (P,). Suppose that the automorphism
w,, respects the subalgebra S, that is w,(S,) = S,, then its restriction o, :
Wyls, @ pap™! is an automorphism of the algebra S,,.

The next result shows that all the automorphisms of the algebra S,, can be
obtained in this way.

Theorem 3.2. G, = {0, | ¢ € Autg(P,) such that ¢S, = S,.}, where
o,(a) = pap™t, a€S,.

Proof. Let 0 € G,,. The twisted by the automorphism ¢ module P,,, denoted
?P,, is simple and faithful. Recall that as a vector space the module ?P,
coincides with the module P, but the action of the algebra S,, is given by the
rule: a-p:=o(a) * p, where a € S,, and p € P,,. By Proposition 3.1, the S,,-
modules P, and P, are isomorphic. So, there exists an element ¢ € Autg (P,)
such that pa = o(a)y for all a € S,,, and so o(a) = pap~!, as required. O

Theorem 3.3 ([4]). The ideal a,, is the smallest ideal of the algebra S,, such
that the factor algebra S, /a, is commutative.

Lemma 3.4. o(a,) = a, for all o € G,,.

Remark. We will see that the ideal a,, is the only nonzero, prime, G, -invariant
ideal of the algebra S,, (Theorem 9.7).

Proof. For each element o € G,, the map
Sn/an = Sp/o(a,), a4+ a, — o(a) + o(ay),
is an isomorphism of algebras. By Theorem 3.3, o(a,) = a,, for all 0 € G,

since S, /a,, is a commutative algebra. O
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10 VLADIMIR V. BAVULA

The automorphism 77 € Aut(G,). The involution 7 of the algebra S,
yields the automorphism 7 € Aut(G,,) of the group G,:

(12) N:Gn— G, o nont.
Clearly, n? = e and 7j(0) = non since n* = e. By Lemma 3.4, we have the
group homomorphism (recall that L, =S, /a,):

(13) &Gy = Autg_aig(Ly), 0= (T:a+a, — o(a) + ay).

The homomorphisms 7 and £ will be used often in the study of the group G,.
We can easily find the group Autx_ais(Ly) of algebra automorphisms of the
Laurent polynomial algebra L,. We are interested in finding the image and
the kernel of the homomorphism ¢ (Corollary 5.3). We will see that the image
of £ is small (and the homomorphism ¢ is far from being surjective).

Next, several important subgroups of G,, are introduced, they are building
blocks of the group G,, (Theorem 5.1).

The group Inn(S,) of inner automorphism of S,,. Let S¥ be the group
of units of the algebra S,,. The center Z(S,) of the algebra S, is K, [4]. For
each element u € S}, let w,, : S;, = Sy, a— wau~1, be the inner automorphism
associated with the element u. Then the group of inner automorphisms of the
algebra S,

Inn(S,) ={wy |u €S} ~S; /K",
is a normal subgroup of G,,. It follows from
(14) N(wu) = Wyuy-1, v €S,
that 7(Inn(S,)) = Inn(S,,). The factor algebra S, /a, = L, is commutative,
and so {(Inn(S,)) = {e}.

The torus T". The n-dimensional algebraic torus T" := {tx | A = (A1,..., ) €
K*™} is a subgroup of G,,, where

t)\(xi) = Nz, t)\(yi) = )\Zlyi, 1=1,...,n.

The algebraic torus T" := {¢y | A € K*"} is also a subgroup of the group
Autg _a1g(Ly), where

t)(xi) = )\ixi, = 1, ...

Then 7(T") = T" and 7(ty) = t)' = ty-1, where A71 := (A\7',..., A0 0);

&(T™) = T™ and £(tn) = ta. So, the maps 77 : T® — T™ and £ : T® — T™ are
group isomorphisms. Note that

(15) ta(Bag) = \* P E, g,

where A\~ 8 = [, A%,
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THE GROUP OF AUTOMORPHISMS 11

The symmetric group S,,. The group G,, contains the symmetric group .S,
where each elements 7 of S, is identified with the automorphism of the algebra
S, given by the rule:
T(xl) = Tr(i)» T(yi) = Yr(@i)>» i= ]-7 sy T
The group S, is also a subgroup of the group Auts _aie(Ly), where
(i) = Tr), i =1,...,n
Clearly, 7(S,) = S, and 7)(7) = 7 for all 7 € S,,; £(S,,) = Sp, and &(7) = 7 for
all 7 € S,,. Note that
(16) T(Eap) = Er(a)r(8);
where 7(a) := (ar-1(1), -+ Qr-1(n))-
The groups G,, and Aut K—alg(Ln) contain the semidirect product S, x T™

since T" N S,, = {e} and
(17) Tty = tr(n)s where 7()) := ()\.,.71(1), e /\7.71(”)),
for all T € S, and t) € T". Clearly, the maps

N:S, xT" = S, x T" 7t) — Tt;l,

E:85, x T" — S, x T 7ty — Tty,
are group isomorphisms.

Lemma 3.5. S, x T" x Inn(S,,) C G,,.

Proof. We know already that Inn(S,,) and S,, x T™ are subgroups of G,,. Since
Inn(S,) C ker(§) and € : S, x T" ~ S,, x T™, we see that Inn(S,,) N (S, x T") =
{e}, and the result follows. O

Let  be an element of a ring R. The element r is called regular if Lanng(r) =
0 and r.ann,(r) = 0, where Lanng(r) := {s € R | sr = 0} is the left annihilator
of r and r.anng(r) := {s € R | rs = 0} is the right annihilator of r.

The next lemma shows that the elements x and y of the algebra S; are not
regular.

Lemma 3.6 ([4]).

1. Lanns, () = S1Eo0 = D;50 K Eio = D> Kz'(1 — xy)
and r.anng, (z) = 0. ‘

2. r.anng, (y) = FooS1 = 69120 KEy,; = 69120 K(1—xy)y*
and l.anng, (y) = 0.

It follows from Lemma 3.6 that, for each i =1,...,n,
(18)
lLanng, (z;) = S,—1 ® Lanng, (;(x;) @Sn 1E;0( @Sn 12 Eoo
Jj=0 j>0
(19)
r.anng, (y;) = S, 1 ® r.anng, ¢ (y:) @ Eo ;(1)Syp—1 = @ Eoo(1)y!Sn—1,
Jj=0 720
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12 VLADIMIR V. BAVULA

where S,_1 stands for @),_; S1(k).

For an algebra A and a subset S C A, Ceny(S) := {a € A | as = sa for
all s € S} is the centralizer of the set S in A. It is a subalgebra of A. It was
proved in [4] that

(20) Cens, (x1,...,2n) = K[z1,...,2y], Cens, (y1,...,yn) = K[y1, ..., Yn].
Let E,, := Endg_a14(Sy) be the monoid of all the K -algebra endomorphisms

of S,,. The group of units of this monoid is G,. The automorphism 77 €
Aut(G,,) can be extended to an automorphism 7 € Aut(E,) of the monoid
E,:
(21) n:E,— E,, o non "
The next (curious) result is instrumental in finding the group of automorphisms
of the algebra S,,.
Theorem 3.7. Let 0,7 € G,,. Then the following statements are equivalent.
1. o=r.
2. o(x1) =71(x1),...,0(Tn) = 7(TW)-
8. o(yr) =7(W1),- - 0(yn) = 7(Yn).
Proof. Without loss of generality we may assume that 7 = e, the identity
automorphism. Consider the following two subgroup of G,,, the stabilizers of
the sets {x1,...,2,} and {y1,...,yn}:

St(x1,...,2n) :={g € Gn | g(x1) = 21,...,9(xn) = Tn},

St(y1,-- - yn) ={g € Gn [ g(y1) =1, .-, 9(yn) = yn}.
Then

n(St(x1,...,2n)) = St(y1, -, Yn), N(St(y1,---,yn)) = St(x1,...,2n).

Therefore, the theorem (where 7 = €) is equivalent to the single statement
that St(z1,...,z,) = {e}. So, let o € St(z1,...,2,). We have to show that
oc=e. Foreachi=1,...,n, 1 =o0(y;x;) = o(y;)x; and 1 = y;z;. By taking
the difference of these equalities we see that a; := o(y;) —y; € lanng, (z;). By
(18), a; = > ;50 AijEjo(i) for some elements A;; € ). ,; S1(k), and so

o(yi) = yi + Z XijEjo(i).
=0
The element o(y;) commutes with the elements o(zy) = zk, k # i, hence all
Nij € K[z1,...,%;,..., 2], by (20). Since Ejo(i) = x] Ego(i), we can write
o(yi) = yi + piEoo (i) for some p; € P,.

We have to show that all p; = 0. Suppose that this is not the case. Then
p; # 0 for some i. We seek a contradiction. Note that =% € St(xy,...,7,),
and so 01 (y;) = vi +qiEoo(i) for some g; € P,. Recall that Eg(i) = 1 — x;9;.
Then o~ (Eoo(i)) = 1 — 2;(yi + @i FEoo(i)) = (1 — x:g:) Eoo (i), and

yi =0 o) = oy + piBoo(i) = yi + (¢i + pi(1 — 2:q:)) Eoo (4),
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and so q;+p; = x;p;q; since the map P, — P, Egg, p — pFEoo, is an isomorphism
of P,-modules as it follows from (4). This is impossible by comparing the
degrees of the polynomials on both sides of the equality. O

Theorem 3.7 states that each automorphism of the noncommutative, finitely
generated, non-Noetherian algebra S,, is uniquely determined by its action on
its commutative, finitely generated subalgebra P,. A similar result is true for
the ring D(P,,) of differential operators on the polynomial algebra P, over a
field of prime characteristic. The algebra D(P,) is a noncommutative, non-
finitely generated, non-Noetherian algebra.

Theorem 3.8 ([2], Rigidity of the group Autx_a1s(D(P,))). Let K be a field
of prime characteristic, and 0,7 € Autkx_a1g(D(Py)). Then o =7 if and only
ifo(z1) =7(x1),...,0(xn) = T(Tn).

The above theorem does not hold in characteristic zero and does not hold
in prime characteristic for the ring of differential operators on a Laurent poly-
nomial algebra [2].

4. THE GROUPS Autg _a15(S1) AND S}

In this section, the groups Autx _aiz(S1) and S} are found (Theorems 4.1
and 4.6). The case n = 1 is rather special and much more simpler than
the general case. It is a sort of a degeneration of the general case. Briefly,
the key idea in finding the group of automorphisms of the algebra S; is to use
Theorem 3.7 and some properties of the index of linear maps in the vector space
Py = K[z]. We start this section with a sketch of the proof of Theorem 4.1.
Then we prove necessary results about the index of certain elements of the
algebra Si, and using them we find the group S} of units of the algebra S;
and the group Inn(S;) of inner automorphisms of Sy; and finally we give the
proof of Theorem 4.1. The proof is constructive in the sense that for each
automorphism o of the algebra S; it gives explicitly the presentation o = t w,,
of o as the product of an inner automorphism w, and and element ¢, of the
torus T* (Corollary 4.7).

Theorem 4.1. Autg_n.(S1) = T x Inn(S;) ~ T! x GLoo (K).

Sketch of the Proof. Step 1. Let 0 € G;. By Lemma 3.5, we have to show
that ¢ € T! x Inn(S;). Using some properties of the index of linear maps of
Endg (P1) that have finite dimensional kernel and cokernel, we show that

o(x) = Ax mod F,
o(y) = A1y mod F,
for some element A € K*.
Step 2. Changing o for ty-10 we may assume that A = 1.
Step 3. Changing o for w,o for a suitable choice of a unit ¢ of the algebra

S1 we may assume that o(y) = y.
Step 4. Then, by Theorem 3.7, o = e. O

Miinster Journal of Mathematics VoL. 6 (2013), 1-51



14 VLADIMIR V. BAVULA

Remark. The multiplication in the skew product T! x GL4 (K ) is given by the
rule:

(22) tx - Pt = @t ()try,
where 5,1, € T'; ¢, € GLoo(K); and t5(¢) is defined in (15).

The index ind of linear maps and its properties. Let C = C(K) be the
family of all K-linear maps with finite dimensional kernel and cokernel.

Definition. For a linear map ¢ € C, the integer
ind(y) := dim ker(¢) — dim coker(yp)
is called the indezx of the map ¢.
Ezample. Note that S; C Endg (Py). One can easily prove that
(23) ind(z") = —i and ind(y*) =4, i > 1.

Lemma 4.2 shows that C is a multiplicative semigroup with zero element (if
the composition of two elements of C' is undefined we set their product to be
7€ero).

Lemma 4.2. Lety: M — N and ¢ : N — L be K-linear maps. If two of the
following three maps: ¥, p, and i, belong to the set C then so does the third;
and in this case,

ind(py) = ind(p) + ind ().

Proof. For an arbitrary K-linear map f : V — U, we use the following nota-
tion: ;V :=ker(f) and Uy := coker(f). The result follows from the long exact
sequence of K-linear maps (where all the maps are natural):

(24) 0= oM — pyM 5 N = Ny B Ly — Ly — 0.

In particular, taking the Euler characteristic of the long exact sequence (24)
gives the identity ind(¢) — ind(¢v) + ind(p) = 0. O

Lemma 4.3. Let

0 |4 Va V3 0
lsﬁ lsaz lW?’
0 Uy Us Us 0

be a commutative diagram of K-linear maps with exact rows. Suppose that
©1, P2, P3 € C. Then

ind(p2) = ind(p1) + ind(ps).
Proof. The Snake Lemma yields the long exact sequence:
0 — ker(¢p1) — ker(p2) — ker(ps) — coker(¢1) — coker(p2) — coker(ys) — 0
Taking its Euler characteristic gives ind(y1) — ind(p2) + ind(p3) = 0. O
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Each nonzero element u of the Laurent polynomial algebra L1 = K[z, 77!
is a unique sum u = A\gz® 4+ Agp125T1 + - + Agz?, where all \; € K, A\g # 0,
and \gz? is the leading term of the element u. The integer deg,(u) = d is
called the degree of the element u. It is an extension to L of the usual degree
of polynomials in K[z]. The next lemma explains how to compute the indices
of the elements S; \ F' using the degree function deg, and shows that the index
is a GGi-invariant concept. Note that F NC = @.

Lemma 4.4.
1. Si\ F CC (recall that S; C Endg (P1)) and, for each element a € $1 \ F,

ind(a’) == degw (a)v

wherea=a+F €$1/F =1L;.
2. ind(o(a)) = ind(a) for allc € Gy and a € S; \ F'.

Proof. 1. Let a € S; \ F and d := deg,(@). The element of the algebra S,

yta, ifd>0,
b:= )
ar™¢, ifd <0,

does not belong to the ideal F (since b = 2~% # 0), and deg,(b) = 0. By
Lemma 4.2 and (23), it suffices to prove that ind(b) = 0 since then

0 = ind(b) = d + ind(a),

that is ind(a) = —deg,(a). The element b can be written as a sum b =
A+ > o1 Ay’ + f for some elements A € K*, \; € K, and f € F. Fix a
natural number m such that f € M,,41(K) (recall that F' = U;>1 M;(K)).
Abusing notation, let K [b] be the K-subalgebra of End g (P;) generated by the
element b. Then V := @, Kz' is a K[b]-submodule of P;, and U := P;/V
is the factor module. Let b; and by be the linear maps that are determined by
the action of the element b on the vector spaces V and U respectively. Then
ind(by) = 0 since dim(V) < oo; and ind(b2) = 0 since by = A+ > .o, Ny’ is a
bijection. Applying Lemma 4.3 to the commutative diagram -

0 Vv P, U 0
A
0 Vv P, U 0

we have the result: ind(b) = ind(b1) + ind(by) = 0.

2. By Theorem 3.2, ind(c(a)) = ind(pap ') = ind(a), where 0 = 0,. O
The group of units (1 + F)* and S]. Recall that the algebra (without 1)
F =@, jen KEij is the union M (K) = Uys, Ma(K) = ligMd(K) of the
matrix algebras Mq(K) := @Do<; j<q1 K Eij, i.e. F = Muo(K).

For each d > 1, consider the (usual) determinant dety = det : 14+ M4(K) —
K, u — det(u). These determinants determine the (global) determinant,

(25) det: 14+ Moo(K)=1+F = K, uw det(u),
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16 VLADIMIR V. BAVULA

where det(u) is the common value of all determinants detq(u), d > 1. The
(global) determinant has usual properties of the determinant. In particular,
for all u,v € 1+ M (K),

det(uv) = det(u) - det(v).

It follows from this equality and the Cramer’s formula for the inverse of a
matrix that the group GLy(K) := (1 + Mso(K))* of units of the monoid
1+ My (K) is equal to

(26) GLo(K) ={u €1+ My (K) | det(u) # 0}.
Therefore,

(27) 1+ F)"={uel+F|det(u) # 0} = GLoo(K).
The kernel

SLoo(K) := {u € GLoo(K) | det(u) =1}
of the group epimorphism det : GLo(K) — K* is a normal subgroup of
GL (K).

Let V be an infinite dimensional vector space that has countable basis. A
sequence V of finite dimensional vector spacesin V, V, CV; C--- CV; C .-+,
such that V' = J,5, Vi is called a finite dimensional vector space filtration on
V. The next result reveals an invariant nature of the (global) determinant.

Lemma 4.5. Let V = {V;}i>0 be a finite dimensional vector space filtration on
the polynomial algebra Py = Klx] and a € M := 14+ M (K). Then a(V;) C V;
for all i >0, and det(aly;) = det(aly,) for all i,j > 0, where det(aly,) is the
determinant of the linear map aly, : V; — V;. Moreover, this common value of
the determinants, det(a) = dety(a), does not depend on the filtration V and,
therefore, coincides with the determinant defined in (25).

Proof. Let a € M. Then a =1+ ZZ;’:O AijEq; for some scalars \;; € K and

d € N. Note that the global determinant det(a), as defined in (25), is equal to
the usual determinant det(a|p, _,) for alli > d, where {P1 <; := Z;:o Kz'}ien
is the degree filtration on P;. Then im(a — 1) C Py <q C V. for some e € N.
Since a = 1+ (a — 1), we have a(V;) C V; and det(aly;) = det(aly,) for all
1 > e. Note that this is true for an arbitrary finite dimensional vector space
filtration V. Consider the following finite dimensional vector space filtration

Vi={V/:=Picq,i=0,....,e = 1; V] :=Vj, j>e}.
Then
det(a) = det(alp, _,) = det(aly, ) = det(a|Vj/) = det(aly;), j > e.
This completes the proof of the lemma. |
The center of a group G is denoted Z(G).
Theorem 4.6.
1. St = K* x (1+ F)* ~ K* x GLoo (K).
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2. Z(S) = K* and Z((1 4+ F)*) = {1}.
3. Inn(S1) ~ GLo (K), wy ¢ u.

Proof. 1. Note that S; D K(1+ F)* ~ K* x (14 F)* ~ K* x GLy(K) since
K*N(1+ F)* ={1}. It remains to prove the reverse inclusion. If an element
u is a unit of the algebra S; then the element w = w4+ F' is a unit of the factor
algebra L1 = $1/F, and so u = Az for some A € K* and ¢ € Z. Therefore,
either u = Az + f or u = Ay’ + f for some A € K*, f € F and i € N. The
element u € S; \ F' is a unit, hence u € Endg (P;) is an invertible linear map
(recall that S; C Endg (P1)), and so ind(u) = 0. By Lemma 4.4.(1) and (23),
i=0,and sou € K*(1+ F)*.

2. Note that Z(S7) = K*Z((1+ F)*). It suffices to show that Z((1+ F)*) =
{1}. Let z = 1+ > X\j;Ei; € Z((1 + F)*), where \;; € K. For all k # [,
1+ Ei € (14 F)* since det(1 + Ex) = 1. Now, 2(1+ Ey;) = (14 Ej)z for
all k # 1 if and only if >, \ix Ey = Zj AijEy; for all k # [ if and only if all
Aij = 0 if and only if z = 1.

3. Inn(Sy) = S3/Z(St) =~ (K* x GLoo(K))/K* ~ GL (K). O

Proof of Theorem 4.1. By Theorem 4.6.(3), T! x Inn(S;) = T! x GLo(K).

Let 0 € G1. By Lemma 3.5, in order to finish the proof of the theorem we
have to show that o € T! x Inn(S;). By Lemma 3.4, o(F) = F, and so the
map

o: L1 :Sl/F—>L1 :Sl/F, a:a—FFi—)G(CL)"FF,

is an isomorphism of the Laurent polynomial algebra L; = K[z, 1]. There-
fore, either &(y) = Ax~! or, otherwise, 7(y) = Az for some scalar A € K*.
Equivalently, either o(y) = Ay + f or o(y) = Az + f for some element f € F.
By Lemma 4.4, the second case is impossible since, by (23),

1 =ind(y) = ind(o(y)) = ind(Az + f) = —deg, (A\x) = —1.

Therefore, o(y) = Ay + f. Then txo(y) = y + g, where g := t5(f) € F since
tA(F) = F (Lemma 3.5). Fix a natural number m such that g € Mp,4+1(K).
Then the finite dimensional vector spaces

m m—+1
V= @sz cV'= @ Ka'
i=0 i=0
are y/-invariant, where 3’ := tyo(y) = y+g. Note that ¢/ x 2™ = yxamT! =

a™ since g * 2™ = 0. Note that Py = U, ker(y") and dimkerp, (y) = 1.

Since the Si-modules P; and *? Py are isomorphic, P = |J;», ker(y") and
Wi m—+1

dimkerp, (y') = 1. This implies that the elements z(, 2}, ..., 2, ,« are a
K-basis for the vector space V', where
/ / 1—2 1 .
wh =y T ™ =01, m
and the elements x{,z,..., 2], are a K-basis for the vector space V. Then
the elements
/ / / m+1 , m+2
Ty Ty ey Ty, T T2
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18 VLADIMIR V. BAVULA

are a K-basis for the vector space P;. The K-linear map
(28) 0: P =P, ol (i=0,1,...,m), 27— 27 (j >m),
belongs to the group (1 + F)* = GLy(K) and satisfies the property that
y'e =y,
the equality is in Endg (Py). This equality can be rewritten as follows:
wy-1tao(y) =y, where w,-1 € Inn(Sy).

By Theorem 3.7, 0 = ty\—1w, € T x Inn(S;), as required. O

Corollary 4.7. FEach automorphism o of the algebra S1 is a unique product
0 = tyx-1w,, where o(y) = Ay mod F and ¢ € (14 F)* = GLo(K) is defined
as in (28).

Proof. The result was established in the proof of Theorem 4.1 apart from
the uniqueness of ¢ which follows from the fact that the center of the group
(14 F)* = GLoo(K) is {1} (Theorem 4.6.(3)). O

Proposition 4.8. Fach algebra endomorphism of Sy is either a monomor-
phism or, otherwise, its image is a commutative finite dimensional algebra. In
the second case, all positive integers occur as the dimension of the image.

Proof. Recall that F is the smallest nonzero ideal of the algebra S;, and Sy /F ~
Kz, 7] (see (7)). If an algebra endomorphism o of S is not a monomorphism
then F' C ker(c), and so o(z) € S; = K*(1 4+ F)* (Theorem 4.6.(1)) since the
equalities yr = 1 and zy = 1 — Ey imply the equalities o(y)o(z) = 1 and
o(x)o(y) = 1; and im(0) = K{o(x),o(x~!)). Therefore, the image of o is a
commutative finite dimensional algebra since the algebra K (o(x),o(z™ 1)) can
be seen as a subalgebra of the matrix algebra My(K) for some d. The image
of the endomorphism S — Sy, x — 1, y — 1, is K, hence one-dimensional.
For each natural number n > 2, the image of the endomorphism

n—2
0n:S1 =S, =140,y (L+n)" 1 n::ZEMH,
=0

n—1 is a K-basis of the image of o,,.

O

has dimension n since the set 1,n,n2,....n

5. THE GROUP OF AUTOMORPHISMS OF THE ALGEBRA S,

In this section, the group G,, is found (Theorem 5.1). It is shown that the
groups G,, and Inn(S,,) have trivial center (Corollary 5.6).

By the very definition, the subset stg, (H1) of Sta,, (H1) (see (1)) is a sub-
group of Stg,, (H1).

Theorem 5.1. G, = S, x T" x Inn(S,,).
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Proof. The group G,, acts in the obvious way, (o,p;) — o(p;), on the set
Hi := {p1,...,pn} of all the height 1 prime ideals of the algebra S,. In
particular, the symmetric group S,,, which is a subgroup of G,,, permutes the
ideals p1,...,Pn, i.e. T(p;) = pr(;) for 7 € S,. The stabilizer

Sta, (H1) ={o € Gn | o(p1) =p1,-..,0(pn) = Pn}

is a normal subgroup of G,, such that G,, = S, Stg, (H1) and S,,NStq, (H1) =
{e}, and so

(29) Gn = S, x Sta, (H1).

Clearly, T" x Inn(S,) C Stg, (H1). So, in order to finish the proof of the
theorem we have to prove that the inverse inclusion holds.

Let o € Stg, (H1). We have to show that o € T" x Inn(S,,). Since o(p,) =
Pn, the automorphism o induces the automorphism

On : Sn/pn = Snfl ® Ly — Sn/pn = Snfl ®L17 a+Ppn— U(a) + Pn.

The restriction of the automorphism o, to the center Z(S,_1 ® L) = K|y,
x,,1] of the algebra S,, /p,, yields its automorphism, and so either o, (z,,) = Az,
or o, (xn) = Az, ! for some scalar A € K*. Therefore, there are two options:

(i) o(zn) = Mn + Pny 0(yn) = /\;13/11 + qn;
(11) G(xn) = )‘nyn + Pn, U(yn) = Aglxn + Gn;

for some A\, € K* and p,,q, € p,. We aim to show that the second case is
impossible. This is true for n = 1, by Theorem 4.1. So, let n > 1. Suppose
that o(z,) = Anyn +Dn, wee seek a contradiction. By symmetry of the indices,
for each i =1,...,n, there are two options:

(i) o(zi) = Nwi +pi, o(yi) = N 'y + @
(i) o(z:) = Niyi +pi, o(yi) = A\ 2 + qi;

for some \; € K* and p;,q; € p;. Since o(p1 + -+ 4+ Pr1) =p1+ -+ Pn_1
and S,,/(p1 + -+ + pn-1) = Lp_1 @ S1(n), where L, = K[xlil, . ,mfﬂl],
the automorphism o of the algebra S, induces an automorphism, say @, of the
algebra L,_1 ® S1(n) such that either &(z;) = \jz; or &(x;) = )\ixi_l for all
t=1,...,n—1. We see that 5(L,,—1) = L,—1. Let v be the restriction of the
automorphism & to the algebra L, 1. Then v ® idg, () is the automorphism
of the algebra L, 1 ® S1(n). Then ¢ := (y ® idg, () '7 is the L,_;-algebra
automorphism of the algebra L,,_1 ® S1(n) which can be uniquely extended to
a Frac(L,_1)-automorphism of the algebra Frac(L,_1) ®S1(n) over the field of
fractions Frac(L,—1) = K(z1,...,zn—1) of the algebra L,,_;. By Theorem 4.1
(or Corollary 4.7), we must have the case (i) for z,, and yy.
By symmetry of the indices, it follows from the case (i) that

(30) a(xl) = \iZ; + pi, O’(yl) = )\i_lyi +q,t=1,...,n,

for some scalars \; € K* and some elements p;, q¢; € p;.

Miinster Journal of Mathematics VoL. 6 (2013), 1-51



20 VLADIMIR V. BAVULA

Changing o for ty-10, where A = (A1,...,\,), we may assume that A\; =
<o =\, = 1, that is, 0 € stg, (H1). It follows that G,, = S, T"ste, (H1).
To finish the proof of the theorem it suffices to show that stg, (H1) C Inn(S,,)
since then, by Lemma 3.5, G,, = S,, x T" x Inn(S,,) and also

(31) sta, (H1) = Inn(S,,).

Let 0 € stg,(H1). Then o1 € stg, (H1) since stg, (H1) is a group. By
Theorem 3.2, o = o, for some element ¢ € Aut(P,) such that ¢S, p~! =S,
For each number i = 1,...,n, p; := o(z;) — x; € p; since o € stg, (H1). By
multiplying this equality on the left by ¢!, we obtain the equality z;p~! =
¢ Yx; + p;) for each i = 1,...,n. By Theorem 6.2, p~! € S,,. Repeating the
same arguments for the automorphism o~ = 0,1 € stg, (H1), we have ¢ €
Sy, that is ¢ € S}, and so o is an inner automorphism of the algebra S,,. [

Corollary 5.2. The group Out(S,) := G,/ Inn(S,,) of outer automorphisms
of the algebra S,, is isomorphic to the group S, x T™.

Proof. By Theorem 5.1, Out(S,,) = S, X T" x Inn(S,,)/ Inn(S,) ~ S, xT". O

The next corollary describes the image and the kernel of the group homo-
morphism £ : Gy, = Autg_aie(Ly), see (13).

Corollary 5.3.
1. im(&) = S, x T™.
2. ker(¢) = Inn(S,).

Proof. By Theorem 5.1, G,, = S, X T" x Inn(S,,); Inn(S,) C ker(&) since
L,, is a commutative algebra. Now, the results follow from the fact that the
homomorphism £ maps isomorphically the subgroup S, x T" of G, to the
subgroup Sy, x T™ of Autx _a1g(Ln). O

Corollary 5.4. The group G, contains an isomorphic copy of each linear
algebraic group over K. In particular, G,, contains an isomorphic copy of each
finite group.

Proof. The result is obvious since the group G,, contains the group GL (K)
and any linear algebraic group can be embedded in GLu (K). g

Corollary 5.5.

1. stg, (H1) =Inn(S,).

2. (Characterization of the inner automorphisms Inn(S,,) via the height 1
primes of S, ) An automorphism o € Gy, is an inner automorphism if and
only if o(p1) =p1,...,0(Pn) = pn and

o(xz1) = x; mod p;, o(y;)) =y modp;, i=1,...,n.

3. If o € Inn(S,,) then 0 = w, for a unique element ¢ € S¥/K* and o(x;) =

zi + pi, 0(yi) = yi + @, where p; = [p,x)e™ ! and q; = [p,yile™" for
i1=1,...,n.
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Proof. 1. See (31).
2. Statement 2 is equivalent to statement 1.
3.

i = o(z;) = x +pi & pi = (ol
oyt =a(y) =i+ @i S q = o uile 0

The inner automorphism o € Inn(S,,) can be defined in two different ways:

(i) 0 = w,, for a unique element ¢ € S} /K*; or
(ii) by the elements p; := o(x;) —x;, ¢s ;== 0(yi) —yi, i =1,...,n
Corollary 5.5.(3) explains how to pass from (i) to (ii). The reverse passage,

i.e. from (ii) to (i), is more subtle. Suppose that the elements {p;,q; | i =
1,...,n} are given. Below, it is explained how to construct the element ¢ €
S;, C E,, which is unique up to K*. By Theorem 3.2, the map ¢ : P, — 7P, is
an isomorphism of the S,-modules P,, and ? P,, (which is unique up to K* since
Ends, (P,) ~ K, [4]). The isomorphism ¢ is determined by the polynomial
v := (1) € P, which is unique up to K*:

Kv = ﬂ kerp, ( ﬂ kerp, (yi + qi)-
=1 =1
Then ¢ is the change-of-the-basis matrix
n
% — I_I(xZ +pi)* x .
i=1
Note that {z®}qenn and {o(2%) *v = [[;_, (@i + pi)® * v}aenn are two bases
for the vector space P,.
The next corollary shows that the groups G,, and Inn(S,,) have trivial center
as well as some of the subgroups of G,,.

Corollary 5.6.

Z(Gn) = {e}.

Z(T" x Inn(S,,)) = {e}.

(Inn(Sy)) = {e}.

(S D(T) {t()\ A)|)\€K*}’:T1
(Sp x Inn(S,)) = {e}

Proof. 3. To prove statement 3 we use induction on n. The case n = 1 is
true (Theorem 4.6). So, let n > 1 and we assume that the statement holds
for all n’ < n. Since Inn(S,,) ~ S% /K*, we have show that Z(S}) = K*. Let
z € Z(Sy,). Foreach i =1,...,n, let S;—1,; == @);;S1(j) and consider the
obvious algebra homomorphisms:

Gr s Lo o~

Z
A
A

Sn%Sn/pzz [x'Lv z ]®Sn 11_>K(xz)®gn 1,2-

By induction, the center of the group of units of the algebra K(z;) ® Sp—_1
is K (x;)*, hence the image of the element z under the first map (a — a + p;)
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belongs to the Laurent polynomial algebra Klz;,x; 1]. This implies that z €
L1(i) + pi, where L1(i) := (D>, Ky!) D K D(D,>, K}), and so

n n

z€[)(L1(i) +pi) €[ (K +pi) C K+ Fp.

i=1 =1

In particular, z € Z((K + F,)*) = K" since K + F,, ~ K + My (K) and
Z((K 4+ Mx(K))*) = K (see Theorem 4.6).

4. This is obvious.

2. Let z = tywy € Z(T™ x Inn(S)), where ¢y € T" and w, € Inn(S,,). For
a € N we write a > 0 if @; > 0 for all ¢ = 1,...,n. By Corollary 5.3.(2),
for all elements «, 8 € N™ such that «, 8 > 0, the elements v and v(a, 8) :=
1+ Eqp commute. Therefore, the elements ¢\ and w,(,,g) commute. By (15),
tx =e¢, and s0 z = w, € Z(T" x Inn(S)) N Inn(S,) C Z(Inn(Gy,)) = {e} (by
statement 3), hence z = e.

1. Let z € Z(G,). Then z = Ttyw, for some elements 7 € Sy, ty € T™ and
wy € Inn(G,,). The element 7 is the image of the element z under the group
epimorphism G,, — G, /T" x Inn(S,,) ~ S,. The element 7 belongs to the
center of the group S, which is equal to

Z(S)_ 52, ifn:2,
" e, ifn#£2.

Therefore, 7 = e if n # 2. If n = 2 then the element 7ty is the image of
the element z under the group epimorphism Gy — G/ Inn(Sy) ~ Sy x T2,
and so it belongs to the center of the group S X Inn(S2), and so 7 = e, by
statement 4. Therefore, in general, 7 = ¢, and so z € Z(G,) NT™ x Inn(S,,) C
Z(T" x Inn(S,,)) = {e} (by statement 2), hence z = e.

5. Let z = Tw, € Z(Sy, X Inn(S,)). Using the same arguments as in the
proof of statement 2, the elements 7 and w,(,,3) commute for all elements
a, B8 € N such that o, 8> 0. Then 7 = e, by (16), and so z = w,, € Z(S,, X
Inn(S,)) NInn(S,) € Z(Inn(S,)) = {e} (by statement 3), hence z = e. O

6. A MEMBERSHIP CRITERION FOR ELEMENTS OF THE ALGEBRA S,

This section is independent of Section 5. In this section, membership criteria
for the algebras S,,, P, + F,, and K + F,, are found in terms of commutators
(Theorem 6.2, Corollaries 6.6 and 6.7). The most difficult result of this section
is Theorem 6.2 which is used in the proof of Theorem 5.1. Corollary 6.7 is used
in the proof of Theorem 7.7. A general result of constructing algebras using
commutators is proved (Theorem 6.3) which shows that the obtained criteria
are rather special (and tight).

For each ¢ = 1,...,n, equality (6) can be written as follows

(32) S1(i) = £1() P F (i),
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where
60 = (@) DrD (Tl ) =P o,
j=1 jz1 JEL
where
. o ifj >0,
vi(i) =9 ;7
Y; if 5 <0.
So, each element a € S; (i) can be uniquely written as a sum
a = Z )\_jyf + Ao + Z /\]JZZ + Z )\klEkl(i) = Z )\jvj (Z) + Z /\klEkl(i)
jz1 ji>1 k,leN JEZ k,leN

where the coefficients are scalars. On the other hand, each element a € S;(4)
is a unique sum a = Zk,leN prztyl, where py € K. Using the formula (3)
the second presentation of the element a can be easily obtained from the first
one; and the other way round can be done using the formula (33) below.

For all 4,5 € N,

w 2 = S B g, Q>
(33) xlyj = j—i 1'—10 E.l ] ) if 7 .
Yy k=0 Lk j—i+k, W17

It suffices to prove the equality (33) in the case when i > j since then the
second case can be obtained from the first case: indeed, for i < 7,

1—1 i—1
iy = iyt = (1 B Ekk) T
k=0 k=0

To prove the first case we use induction on j. The result is obvious for 7 = 0.
So, let j > 0 and we assume that the formula (33) holds for all 5/ < j. Using
induction and the equality xy = 1 — Fyo, we have the result:

j—2
'yl = xly]_ly _ (m1—1+1 _ ZEi(jl)Jrk,k)y

k=0
j—2 Jj—1
=a""7(1— Eg) — E Eijiktier1 =27 — E :Ei—ﬂ”rkvk'
k=0 k=0

Let B,, be the set of all functions f : {1,2,...,n} — Fq := {0,1}, where
Fy := Z/2Z is the field that contains two elements. B, is a commutative
ring with respect to addition and multiplication of functions. For f,g € B,,
we write f > ¢ if and only if f(i) > ¢(i) for all ¢ = 1,...,n where 1 > 0.
Then (B, >) is a partially ordered set. For each function f € B,, let |f| :=
Sy fi=#{i| fi=1} and Sy, y == ®;_; S1,4, (i), where

N L), i fi=1,
S1.7.(0) = {F(z’), if f; = 0.
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By (32) and S,, = @.—, S1(i), we have the direct sum
(34) Sn = €P Sn.s,

feBn

and so each element a € S,, is a unique sum

(35) a = Z ar,

feBn

where ay € S, 5. The vector space L, := Q1 L1(i) = B, czn Kva, where
Vo := [[i—; Va, (i), is not an algebra but it is an algebra modulo the ideal a,,
which is canonically isomorphic to the Laurent polynomial algebra L, (via
Vo + ap < %) (L + ap)/an = Sp/a, = L. The elements {v, }aczn have
remarkable properties which are used in the proof of the Membership Criterion
for the elements of the algebra S,, (Theorem 6.2).

(36) v x 2P = P if o+ B e N,
“ 0, if o+ 8 ¢Nm,
(37) Vo ¥ P2 = 2Puy x 27, if o+ € N™.

There is an obvious (useful) criterion of when an element of the algebra S,
belongs to the ideal F;,. It is used in the proof of Theorem 6.2.

Lemma 6.1. Leta €S,. Then a € F, if and only if ax (3, P,ad) =0 for
some d € N.

Proof. (=) Trivial.
(<) Let Cp(d—1):={aeN"|aqg <d,...,a, <d} and, for each element

a € Cp(d),
a*xx® = Z sz’ = ( Z )\QBEIBQ> *

BEN™ BEN™
for some elements A\,g € K, and so a = ZBEN" ZaECn(d) AapEsa € F, since
we have the equality P, = Cp,(d — 1) @ (> i, Puzd). O

The next theorem is a criterion of when a linear map ¢ € Endg(P,) be-
longs to the algebra S, in terms of commutators. This result is tight when
we compare it with general results of that sort, see Theorem 6.3 and Corol-
lary 6.4. It is not obvious from the outset that the linear maps that satisfy the
commutator conditions of Theorem 6.2 form an algebra.

Theorem 6.2 (A Membership Criterion). Let ¢ € Endg(P,). Then the
following statements are equivalent.
1. p €8S,.

2. [x1,0] €p1,-.-, [Tn, @] € Pau-
3 xip=¢-(x; +pi)+aq,i=1,...,n, for some elements p;,q; € p;.
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Proof. (1 = 2) Let Sp—1,; = @,;S1(j). Recall that [z;,S:(i)] C F(i), by
(10), for n = 1. Then, for each i = 1,...,n,

[i,Sp] C [24,S1(1)] ® Sp—1,: C F(i) @ Sp—1,i = ps-

(2 = 3) Trivial.

(3 = 1) Suppose that a map ¢ satisfies the conditions of statement 3. The
key idea of the proof of the fact that ¢ € S,, is to use a downward induction on
a natural number s starting with s = n and ¢ := @, 41 to construct elements
ar € Sp5 (0# f € By), elements ¢; 541 €p; (i=1,...,n;s=1,...,n), and
natural numbers d,, < d,,—1 < --- < dj such that the maps ¢, := go—ZmZS af

satisfy the following conditions: for all s =1,...,n,
(38)
d,—1
Tipar1 = Pag1 - (Ti T Pi) + Gist1s Pirist1 € Sno1.i (X ( &y KEkl(i)>7
k,1=0
i1=1,...,n,

(39) ©s * < > Pula ---xis)ds) =0.

0<i1 <...<is<n

Note that ¢, 11 = ¢ and all the maps @, satisfy the assumptions of statement
3. Suppose that we have proved this fact then, for s = 1, the condition (39) is

<<p— Z af> * <Zanfl) =0.
[fI>1 i=1
Then, by Lemma 6.1, ag := ¢ — Zle ay € F,,, and so ¢ = ZfeBn ay € Sy,
as required.
For s = n, by the assumption, we can fix a natural number d,, such that
(38) holds, that is

dp—1
TiPnt1 = Ont1- (Ti +D0i) F dint1;  PiyGint1 € Sn—l,i® < @ KEkl(i)>7
k,1=0

1=1,...,n,

where ¢ = ¢p41 and ¢; n+1 = g;- We have to construct the element ay € S,y =
Ly, where f = (1,...,1) such that (39) holds. Let d,, = (dn,...,dn) € N™.

Then
pratn =3 Agaf = ( > AB%’%) « e
BeN™ BeN™
for some scalars Ag € K. Let ay := 5.y Agvs—a,- Since p; * ot = () and
Gis+1 * 2% 4n = 0, we have (using the equalities in statement 3)
@ % x0T = 2% % 2% for all v € N”,
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Using these equalities and (37), we see that
O * 2T = 2%, % 2% = 2%(p* 2 —ap xadn) =0 for all @ € N",
and so the equality (39) holds for s = n and d,,.

Suppose that s < n and we have found elements ay € S, 5 (|f] > s+ 1),
elements g; + € p; (t = s+1,...,n+1), and natural numbers d, < dp,—1 < --+ <
ds that satisfy the conditions (38) and (39). Note that (38) holds automatically
for all natural numbers larger than ds. To prove the inductive step at s, it
remains to find the maps ¢, that satisfies (38) and (39). We may increase the
number d,. For each element f € B, with |f| = s, the element ay is defined as

follows. The set {1,...,n} is the disjoint union of its two subsets {i1,...,is
and {is41,...,0n}, where f(i1) == f(is) =1 and f(isq1) =+ = f(in) =
0. For each vector v = (Vs41,...,v,) € N*7° with all v, < ds,
(40)  sy1 * (24, xls)dxfsrll cealn) = Z Ao

aeN"

= af k ((xh . .xis)dsx;/:’i’ll .. x;’:)7

where A\, € K and
(41)

ar = Z )‘avvail —a,(i1) Vo, —ds (iS)Ea'is+17Vs+l (is1) - i (in)-
aeN"?

By (38), for all elements a = (a, ..., as) € N°,

(42)  apr* (@l afs (g, @)l )

This equalities hold for any new dg which is not smaller than the old d.
Define @5 1= pgs41 — Zm:s ay and choose a new number d, which is not
smaller than the old ds and such that (38) holds for the map ¢,. Using the
equalities (42) (for all possible choices of f with |f| = s) and for the new
choice of ds together with (37), the equality (39) follows at once: the ideal
> 0<is<ocivir<n Po(@iy -+ iy, )% is annihilated both by the map @11 (due
to (39) for s +1 and ds > ds41) and by the element }° _ ay, by the choice
of ds, hence it is annihilated by the map ¢, (each element ay, where |f| = s,
annihilates this ideal). In order to prove (39) it is sufficient to show that the

map ¢, annihilates the monomials of the type u = (z;, -~ a;,) %" - 2y,
but this is obvious since
Ps x U= (P51 — Z ag) ¥ u = (ps41 —ay) xu =0,
lgl=s
by (40), since ag4(u) = 0 for all g # f. O

Theorem 6.3. Let A C B be K-algebras and M be a faithful B-module (and
so A C B C Endg(M)). Suppose that I is a left ideal of the algebra B such
that I C A. Then
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1. the set A’ := {be€ B | [b,A] C I} is a subalgebra of B. If [A, A] C I then
ACA.

2. If I is also an ideal of the algebra A, and {as}ses is a set of K-algebra
generators for A then A’ ={b€ B | [b,as] € I for all s € S}.

Proof. 1. The set A’ is a vector space over the field K, to prove that A’ is an
algebra we have to show that A’A’ C A’. Let b,c € A’. Then

[be, A] C [b, Ale + ble, A] C Ie+ bl
Cl,eJ+ecI+ICI.
If [A, A] C I then, obviously, A C A’.

2. Let A” :={be B|[bas] € Iforalls e S}. Then A’ C A”. To prove the
reverse inclusion it is enough to show that [b, as, - - as,,] € I for all products
u = as, ---as,, of the generators {as}scs. We use induction on m to prove
this fact. The case m = 1 is obvious. So, let m > 1 and we assume that the
result is true for all m’ < m. Then

b,as, -~ as,] = [bas, -+~ as,,_,]as,, +as, -+ as,,_,[b,as,,] € Tas,, +1C 1.
O

Corollary 6.4. The set S} := {¢ € Endg(P1) | [z,¢] € F,[y,¢] € F} is a
subalgebra of Endg (Py,) such that S; CS|. In fact, Sy =S}, by Theorem 6.2.

Proof. This is a direct consequence of Theorem 6.3 where A = S; = K{x,y),
M = Pi, B=Endg(Py), and I = F is an ideal of S; such that [S;,S;] C F. It
is obvious that the ideal F' of the algebra S; is a left ideal of the endomorphism
algebra Endg (P;) since an element f € Endg(P;) belongs to F' if and only if

f* Piz® = 0 for some d € N. (]
For all integers i, j € N (where E; _; :=0 and E_; ; :=0)

(43) [z,9'] = —=Eoi1, [y,2') = Ei10,

(44) [z, Eij] = Eiv1; = Eij-1, [y, Bigl = Eic1j — Eijga.

For an algebra A and an element a € A, let ad(a) := [a,] : b+ [a,b] = ab—ba
be the inner derivation of the algebra A determined by the element a. The
kernel ker ad(a) of the inner derivation ad(a) is a subalgebra of A.

Lemma 6.5.
1. N kerad(z;) = K[z1,. .., 2]
2' ﬂ?:l ker ad(yl) = K[yla sy y’n]

Proof. 1. We use induction on n. Let n = 1 and a € kerad(z;). By (11),
a = a1 + ag for unique elements ag € F and a1 = >, Ay} +p, p € K|z1].
Using the expressions for the commutators [z1,y;] and [x1, E;;] given by (43)
and (44), we deduce that a; = p and ag = 0, and so a € K[z1]. This proves the
equality in the case n = 1. Let n > 1 and we assume that the result holds for
all n’ < n. By induction, ﬂ?;ll kers, , ad(z;) = P,—1. Since S,, = S,,-1 ® $4,
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we have ' kers, ad(z;) = P,_1 ® Si(n), and finally N, kerad(z;) = P,
since kerg, () ad(z,) = K[z
2. Applying the involution 7 to statement 1 we obtain statement 2. g

Corollary 6.6.

Sla an:]-7

€ Endg (P, , 0l € Fryeooy|Xn, 0] € Fr} = ‘
{¢ € Endk (Py) | [z1, ¢] [0, ¢] } {RAJ% ifn> 1.

Proof. For n = 1, the result follows from Theorem 6.2. Let n > 1. Let L
and R denote the LHS and the RHS of the equality. Then S,, 2 L O R, by
Theorem 6.2. Let a € L, it remains to show that a € R. Foreachi=1,...,n,
let Sn—l,i = ®j7ﬁi Sl(j) and Fn—l,i = ®j7ﬁi F(j)

Note that S, = S; ® Sp—1,1 and [x1,S1] € F (see (10) for n = 1). The
inclusion [z1,a] € F), implies that a € K[z1] ® Sp—1,1 +S1 ® F,—1,1. The
conditions [z;,a] € F,, for j = 2,...,n, imply that a € K[z1]® S,,—11 + F,
(see (44)). Then a € K[z;]®S,—_1,;+ F, for all i (by symmetry of the indices),

and
n

ac (K] @Sy 1+ F,) =P+ F,

i=1

U
Corollary 6.7 (A Membership Criterion for F},).
{o € Endk(P,) | [zi, ] € Fu,[yi,¢] € Fnyi=1,...,n}
_{&, ifn=1,
K+ F,, ifn>1.
Proof. This follows from Corollary 6.6 and (43). O

Remarks. 1. The set in Corollary 6.7 is, in fact, an algebra which is not obvious
from the outset. This fact can be deduced from Theorems 6.2 and 6.3: let L
be the LHS of the equality in Corollary 6.7. Since F,, C p; for all i, L C S,
by Theorem 6.2. Then L is a subalgebra of S,, by applying Theorem 6.3 in the
casse A=B =S, and [ = F,.

2. Corollaries 6.4 and 6.7 also show that in order to have the inclusion
A C A’ in Theorem 6.3.(1), the condition [A, A] C I cannot be dropped: for
n > 1, let L be as above. By Theorem 6.2, L C S,,, and so L = {b € S, |
[b,z;) € Fp,[b,yi] € Fyi=1,...,n}, I =F, is an ideal of A = B =S§,,. Since
[Sn,Sn] € F,, and L = K + F,, 2 A, we see that in Theorem 6.3 the condition
[A, A] C I cannot be dropped and still have the inclusion A C A’.

7. THE GrOuUPSs M, AND G,

In this section, the subgroups M* and G/, of the groups S} and G, re-
spectively are introduced. It is proved that the group M has trivial center
(Corollary 7.6) and is a skew direct product of 2" — 1 copies of the group
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GLoo(K) (Theorem 7.2). An analog of the polynomial Jacobian homomor-
phism, the so-called global determinant, is introduced for the group M. In
Section 8, the global determinant is extended to the group G,.

For each nonempty subset I of the set of indices {1,...,n}, define the K-
algebra without 1,

F(1) = QF(i) = @ KEas(D) C S, Eap(D) =[] Baus, (i),

iel o,BeNT iel
where a = (a;)ier and 8 = (B;)ier- The algebra F(I) is isomorphic non-
canonically to the matrix algebra (without 1) M (K) = U~ Ma(K) when
we fix a bijection b : N™ — N. Then the matrix unit E,s(I) becomes the
usual matrix unit Eyqyp(s) of the matrix algebra M (K). The function b de-
termines the finite dimensional monomial vector space filtration V, := {V4; :=
> b(a)<i Ka%tiew on P,. The algebra (without 1) F(I) is an ideal of the
following algebra with 1,

F;:= K + F(I) C S,.

The algebra F; contains the multiplicative monoid M; :

=1+ F() ~1+
Moo (K). We define the (global) determinant on M as in (25):

(45) det = C}e;c My — K, uw— det(u).

We will see that the determinant det; ; does not depend on the bijection b. The
(global) determinant has usual properties of the determinant. In particular,
for all elements u,v € My,

det(uv) = det(u) - det(v).
The group of units M7 of the monoid My is
(46) M7 = {u € My | det(u) # 0} ~ GL(K).

It contains the normal subgroup SM} = {u € My | det(u) = 1} ~ SLoo(K)
which is the kernel of the group epimorphism det : M} — K*. The inversion
formula for u~! is, basically, the Cramer’s formula for the inverse of a matrix
of finite size. The group of units F} of the algebra F; is

F; = K*M} ~ K* x M ~ K* x GLoo (K).

Corollary 7.1. Let I be a nonempty subset of {1,...,n}. Then M} = {u €
My | det(u) # 0} ~ GLoo (K) and Z(M3}) = {1}.

Proof. This follows from Theorem 4.6. O

a subalgebra of Sy, ) and My, := 143,y F/(I), this is a multiplicative
submonoid of the algebra F,,.
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The group of units F}, of the algebra F,, is
Fr = K'™) ~ K* x M,

where M is the group of units of the monoid M,,. The algebra F,, contains all
the algebras F, the monoid M, contains all the monoids M, and the group
M, contains all the groups Mj.
Let X4,..., X,, be nonempty subsets of a group G and X3 - - - X, := {x1 - 2y, |

z; € X;} be their ordered product. We sometime write *T]" | X, for this
product in order to distinguish it from the direct product of groups. In general,
X, .-+ X, is not a subgroup of G. If each element of the product X --- X, has

a unique presentation x; - - - x,, where x; € X;, then we say that the product

is ezact and write X = [T | X,.

Theorem 7.2. M ~ GLy(K) X - -+ X GLoo (K).

2" —1 times

Proof. The theorem follows from the fact that there is a chain of normal sub-
groups of the group M:

(47) My, =M}, DM ,>---DM;,D>--DM, DM ., ={1}
such that, for each number s =1,...,n,
(48)
= th MI ns+1 and M* ns+1 — H M[ K)(Z)v
[I]|=s |I|=s

where the first product is the product of subsets in the group M, ; in arbitrary
order, and the second product is the direct product of groups (in particular,
the product of sets SetH”l:S M7 has trivial intersection with the group My, .4,
i.e. {1}). The groups M,  are constructed below, see (49). O

In their construction the following two lemmas are used repeatedly.

Lemma 7.3. Let R be a ring and I, ..., I, be ideals of the ring R such that
Lil; =0 foralli# j. Leta=1+a1+---+a, € R, whereay € I1,...,a, € I,,.
The element a is a unit of the ring R if and only if all the elements 1 + a; are
units; and, in this case, a=t = (1+a;) " *(1+a2) 1 (1 +ay)"?!

Proof. Note that the elements 1 + a; commute, and a = []"_, (1 + a;). Now,
the statement is obvious. O

Let R be aring, R* be its group of units, I be an ideal of R such that I # R,
and let (1 + I)* be the group of units of the multiplicative monoid 1+ 1.

Lemma 7.4. Let R and I be as above. Then

1. R*\N(1+1)=(1+1)".
2. (14 I)* is a normal subgroup of R*.
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Proof. 1. The inclusion R*N(1+41) D (1+41)* is obvious. To prove the reverse
inclusion, let 1+a € R*N(1+1), where a € I, and let (14+a)~! = 1+b for some
b € R. The equality 1 = (1 + a)(1 + b) can be written as b = —a(1 +b) € I,
ie. 14+a € (1+1)*. This proves the reverse inclusion.

2. Foralla € R*, a(1+1)a™! = a(R*N(1+I))a"! = aR*a 'Na(1+1)a"t =
R*N(1+4+1I)= (1+I)*. Therefore, (14 I)* is a normal subgroup of R*. [

The set F := @yrcqr,. ny /(1) is an ideal of the algebra F,, = K + F.
There is the strictly descending chain of ideals of the algebra F,,,

FOF2---DF* D DF'"=F,

where F* := @5 F(I). The subalgebra K + F* of F;, contains the multi-
plicative monoid M, s := 1 + F°. For each number s =1,...,n, let
(49) M, o= (1+F°)°
be the group of units of the monoid M, 5, and so we have the chain of normal
subgroups (47) of the group M.

For each number s = 1,...,n, consider the factor algebra (K + F*)/Fst! =
K@@‘I‘:S z][, Whel“e

Jpi= (F(I)+ F™/Ft ~ F(I)/JF(I) N Fs ~ F(I)/0 ~ F(I)

are ideals of the factor algebra such that JrJp = 0 if I # I’. By Lemma 7.3,
the group of units of the factor algebra (K + F*)/F**1 is

K- JJa+J) =K x [T+
[I|=s [I|=s

Then the group M, ¢, is the kernel of the group homomorphism

(50) M, = [[ A+ 1+ f 14 f+F

|[I|=s
Note that Mj; C My, ; (where |I| = s), and the composition of the group
homomorphisms

M; =M, = [[ O+ Jr)" = 1+ Jp)
['|=s
is an isomorphism if I’ = I and is the trivial homomorphism if I’ # I (i.e.
M3 — 1). Therefore, the image of the homomorphism (50) is isomorphic to
the direct product of groups [] ;_ M} ~ GLo (K)(Z), and (48) follows. This
completes the proof of Theorem 7.2.
For each number s = 1,...,n, let M | = Seth:S M be the product of

the sets M, |I| = s, in the group M in an arbitrary but fized order. By (48),
there is a natural bijection between the sets

(51) M = [ M7 we [T ws
[I|l=s [I|l=s
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where the RHS is the direct product of groups. So, each element v of the set

M;[S] is a unique product Hm:s vy (in the fixed order) of elements vy of the

groups Mj.

Corollary 7.5. M} = MZ,U]MZ,[Q] -“M:,,[n]
(determined by (51)),

n n
* exact *
My = =T 1T Mis w= I T s
s=1 |Is‘:5

s=1 ‘Islzs

and there is a natural bijection

n

where ur, € M7 . So, each element u of My, is a unique product u = [],_,

Hl[s‘:S ’U/IS; wh@’]"@ uIs c M?S
Proof. The result follows from (48) and (50). O

For a group G, let Z(G) denote its center. The next corollary shows that
the group M has trivial center.

Corollary 7.6. Z(M*) = {1}.
Proof. This follows from (47), (48) and the fact that Z(GLwo(K)) = {1}. O

The next theorem gives a characterization of the subgroup M,, := {w, |
u €M} ~ M, w, <> u, of Gy,. Clearly, M,, C Inn(S,,).

Theorem 7.7. The subgroup M, = {w, | u € M’} of G, is equal to {o €

Gn | o(x;) — a4y o(y)) —yi € Fpy i =1,...,n}. Moreover, for each element
oceM,,
g = H wu(h) . H wu([z) o H wu(Is) PR H wu(In)
|L]=1 [12]=2 [s]=s [n]=n

for unique elements u(ls) € M} where the orders in the products are arbitrary
but fized.

Proof. The inclusion {w,, | u € M} CW,, :={o € Gy, | o(z;)—xi, o(y;)—y; €
F,, i=1,...,n} is obvious since

wu(xl) — Ty = [u,xi]ufl S ]Fna wu(yl) —Yi = [Uayi]uil S ]Fna 1= 17 ey
To prove the reverse inclusion it suffices to show existence of the product for
each element o € W,.

Uniqueness follows from Corollaries 7.5 and 7.6 since the RHS is equal to
Wy, Where

w= [] w) [ w2)-- [ we)-- J] uln).
[I1]=1 |I2|=2 |Is|=s |I.|=n

It follows from the explicit action of the group S, x T™ on the elements x; and
y; (i = 1,...,n) and the equalities G,, = S,, X T" x Inn(S,) and Inn(S,,) =
stg, (H1), that W, = {o € Inn(S,,) | o(z;) — x4, o(y;) —y: €EFp, i =1,...,n}.
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Since Inn(S,,) = stg, (H1) and o € W, we have the inclusions (see Corol-
lary 5.5.(2))

(52)  olw) € @ + F(i) + F()F, o(y;) € yi + F(6) + F()F, i=1,...,n

It remains to prove existence of the elements u(Is). We use induction on n.
The case n = 1 is obvious (Theorem 4.1). Let n > 1 and we assume that the
statement holds for all n’ < n. Let us find the elements u(Iy), |I1] = 1, i.e.
the elements u(i), i = 1,...,n. Since o € Inn(S,) = stg, (K1), 0(32,4p5) =
Z#i p; for each number ¢ = 1,...,n. Therefore, the automorphism ¢ induces
an automorphism, say o;, of the factor algebra

Sn/ Y pj 2 L @S1(3),
J#i

where Ly ; := @);; L1(j), such that o;(z;) = x; for all j # i, and 0;(5:1(i) C
S1(7), by (52). Then

By induction, there exists an element u(:) € (1 + F(4))* such that the inner
automorphism w,(;) of the algebra S,, induces on the factor algebra S, />, p;
the automorphism o;. Let w[l] = H" 1 Wu(i), Where the order is fixed as in the
theorem, and let opy) := w[ 1] !5, Then

012] (xl) Zi, 0[2] yz —Y; € @ 1,....n.
i€l,|1]>2

Suppose that s > 1 and we have already found the elements u(I), |I] < s, that

satisfy the following conditions: for all t =2,... s,
(53) o1 (wi) — xi, op(yi) —yi € @ 1,...,n,
iel,|I|>t
where o) 1= w [;11] --wﬁ]la and wy,) 1= H|1 = Wu(I . To finish the proof of
the theorem by induction on s we have to find the elements u(ly), |Is] = s,

such that the automorphism op,q) := w[s] o[y satisfy (53) for ¢ = s+ 1, where
Wis) = Hm:s Wy(ry, the order as in the theorem.

Case (i): s < n. For each subset I of {1,...,n}, let CI denote its comple-
ment. Let |I| = s and per := ngCI ;. Then o1s(pc1) = pcr. Therefore, the
automorphism oy, induces an automorphism oy ; of the factor algebra

Sn/pcr =~ Lor ® Sy,

where Ler = @jccr L1(d) and Sy == @);¢r S1(4), such that oy r1(z;) = z;
for all j € CI, and 074 ;(S;) C Sy, by (53). Therefore,

O’[S]’](S[) :S[.
Moreover,
o5, 1(xi) — x4, 015,71 (ys) —yi € F(I) = ®F(]) CSr,i=1,...,n.
JjeI
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Since |I| = s < n, by induction on n, there is an element u(I) € M} such that
the inner automorphism w, () of the algebra S, induces the automorphism
o(g,r- The automorphism o4 1) = w[_s]la[s] satisfies the condition (53) for
t = s+ 1, where wj, = H\I\:s Wy(1), the order as in the theorem.

Case (ii): s = n. In this case, we cannot use the induction on n as we did
in the previous case. Instead, we are going to use the Membership Criterion
(Corollary 6.7) in the case n > 1. For s = n, the condition (53) states that

pi = o) (i) — i, = op)(Yi) —yi € Foy i=1,...,n.
Notice that op,j(a) = pap™" (where a € S,,) for some element ¢ € S7;. Then
pxi = (zi + pi)p and oy = (yi + ¢i)p, and so

o, 2i] = pio = 0™ 'pip = @0y, (i) € pop) (Fa) = 9Fo C Fy
since o7, ]1 (F,) = F, (as F, is the least nonzero ideal of the algebra S,) and
wF, C F,. Similarly,

[o.4i] = 4 = 0™ 10 = 9oy, (@) € o) (Fn) = Fy C Fa.

By Corollary 6.7, ¢ € (K + F,)* = K* x (1 + F,)*, and so the element ¢
can be taken from the group My, . 3 = (14 Fy,)*. Then o, = w,,, and the
automorphism oy, 1) 1= w, ' o}, = e satisfies the condition (53) for ¢ =n 41
which states that oy,,11) = e. The proof of the theorem is complete. O

The group G/, and its generators. The monoid M, is stable under the
action of the subgroup S, x T™ of G,, hence so is its group M} of units.
Therefore, GI, := S, x T" x M,, is a subgroup of G,,.

Lemma 7.8. G/, ~ S, X T" X GLoo(K) X -+ X GLs (K).

2" —1 times

Proof. Gl ~ S, x T" x (M} /Z(M})) ~ S, x T™ x M (Corollary 7.6) and the
statement follows from Theorem 7.2. O

¥, let wy : @+ uau~! be the inner automorphism of
S, determined by the element u. It follows from Lemma 7.8 that the group G,
admits the following set of generators (in the cases (i) and (ii) only nontrivial
action of automorphisms on the canonical generators is shown):

For each element v € M*

(i) for each pair ¢ # j, where 4,5 € {1,...,n},
Sij 1 X — T, Yi — Yj, Tj — T, Y = Yis
(ii) for eachi=1,...,n and A\ € K*,
t)\(i) e )\xi, Yi —r A_lyi;

(iii) for each nonempty subset I of {1,...,n}, elements k = (k;)icr, | =

(I:)ier € N¥ such that k # [, and a scalar A € K, the inner automorphism

Wy, Where

w=u(l;k,;;A) =14+ A Jalyl — af iyt
il
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(iv) for each nonempty subset I of {1,...,n} and a scalar A € K \ {—1}, the
inner automorphism w,, where

v=ov(I,\) =1 —|—)\H(1 — TiYi)-

iel

8. AN ANALOG OF THE JACOBIAN MAP - THE GLOBAL DETERMINANT

The aim of this section is to introduce an analog of the polynomial Jacobian
homomorphism, the so-called global determinant on G!, and to prove that it
is a group homomorphism from G/, to K* (Corollary 8.7).

The determinant det on the group M. By Corollary 7.5, each element
u € M is a unique ordered product (i.e. for fixed orders of the multiples in
cach set M, )

*
H Ur,, U, EMIS7

and det137b(13)(u15) 7& 0.

Definition. The scalar det(u) := [[¢_, [T, =, dets, p(r,)(ur,) € K* is called
the global determinant of the element u (we will often drop the adjective
“global”).

We are going to prove that the determinant (map):
(54) det : M} — K*, u+ det(u)

is well-defined (i.e. it does not depend on the orders of the multiples in the
product for u, and the functions b(I)), moreover, it is a group homomorphism
(Theorem 8.6).

The group GL,(K) is the semidirect product U,(K) x E,(K) of its two
subgroups: Un(K) = {AEll +F—FEq1 | A€ K*} ~ K*, ANE\1+FE—FE < /\,
where E is the n x n identity matrix, and E, (K) is the subgroup of GL, (K)
generated by the elementary matrices {E + AE;; | A € K,i # j}. The group
E,(K) is the commutant [GL,(K),GL,(K)] of the group GL,(K). Apart
from the usual definition, the determinant det : GL,,(K) — K* can be defined
as the group epimorphism det : GL,(K) — GL,(K)/[GL,(K),GL,(K)] ~
U,(K) ~ K*. Similarly, the determinant map (54) can be defined in this way
(see Theorem 8.6), and using this second presentation it is easy to prove that
the determinant map (54) is a group homomorphism.

The polynomial algebra P, is equipped with the cubic filtration C := {C,, :=
> wcc, Kz men, where Cp, := {a € N" | all ; < m}. The filtration C
is an ascending, finite dimensional filtration such that P, = J,,~,Cm and
CmC1 C Cpyy for all m,1 > 0. In the case when I = {1,...,n}, the next
result shows that the determinant det, defined in (45), does not depend on the
bijection b.
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Theorem 8.1. Let V = {V, }ien be a finite dimensional vector space filtration
on P, and a € My, 3y =14+ F,. Then a(V;) C'V; and det(aly;) = det(alv;)
for all i,7 > 0. Moreover, this common value of the determinants does not
depend on the filtration V and, therefore, coincides with the determinant in
(45) for I ={1,...,n}.

Proof. Let a € 1+ F,. Thena=1+ Za,BGCd AapEop for some Ayg € K and
d € N. Then a(C;) C C; for all i > d. Note that the global determinant in (45),
for I = {1,...,n}, is equal to the usual determinant det(alc,) for ¢ > d; then
im(a—1) C Cq C V, for some e € N. Since a = 1+ (a — 1), we have a(V;) CV;
and det(aly,) = det(aly,) for all ¢ > e. Note that this is true for an arbitrary
filtration V, where e = e(V). Consider the following finite dimensional vector
space filtration V' := {V/ 1= Cq,i =0....,e = 1; V] :=V;,j > e}. Then

det(a) = det(alc,) = det(aly, )= det(alv;) = det(aly,), j > e.

This completes the proof of the theorem. O

Corollary 8.2. For each nonempty subset I of the set {1,...,n}, the deter-
minant defined in (45) does not depend on the function b.

Proof. This is simply Theorem 8.1 where the polynomial algebra P, is replaced
by the polynomial algebra Pr := K|z;,,...,2;_ ], where I = {i1,... 45} O

Corollary 8.2 shows that the global determinant det, defined in (54), does

not depend on the choices of the functions b(/s).
Each element u € M, is a unique finite sum

u=1+> > Xas(D)Eap(I), Aap € K,
I «,BeN!

where T runs through all the nonempty subsets of the set {1,...,n}.

Definition. The size s(u) of the element u is the maximal value of all the
coordinates of the vectors o and § in the sum above for the element u with

Aaﬁ(I) 7& 0.

For all elements u,v € M, s(uv) < max{s(u),s(v)}.

Lemma 8.3. Let u € M}, and u = [[,_, 11, =5 ur, be its unique ordered
product, where ur, € M7 . Then the size s(u) of the element u is the mazimum
of the sizes s(uy,) of the elements uyp,.

Proof. Let upq := H‘IS‘:S ur,. Then u = up - - up,). The statement is obvious
if u = up; for some 7 (multiply out the elements in the product). Moreover,
by the Cramer’s formula for the inverse of a matrix, s(ul_sl) = s(uy,) for all
I, (indeed, it is obvious that s(ufl) < s(uy,) but then s(us,) = s((ul_sl)_l) <
s(ul_sl), and the claim follows). This implies that s(u[_i]l) = s(uyy)) since u[;]l =

5= u;il (in the reverse order to the original order) and ul_il € My,. Clearly,

s(ugupi1) -+ - up)) > s(ug) for all 4.
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We use a downward induction on i starting with ¢ = n to prove that if
u = uf) - up, then the statement of the lemma holds. The statement is
obvious for ¢ = n, i.e. when u = wp, = uqi,. ). Suppose that i < n,
u = up) - - - upy,) and the statement is true for all ' > 4. Suppose that the state-
ment is not true for the element u, we seek a contradiction. Then, s(uf)) <
s(u) < s(ufip1] - - upm)), by induction. On the other hand, s(ufyq)---up)) =
s(u[;]lu) < max{s(u[_i]l),s(u)} = max{s(uf),s(u)} < s(uft1)---up,), a con-
tradiction. 0

Corollary 8.4. Let u € M. Then s(u™') = s(u).

Proof. Let v = [],_, 17, )= ur,, where uy, € Mj . Then s(ul_sl) < s(ur,),
hence s(u™') = s(ITi=; [T7,=s u;') [ in the reverse order] < max{s(u;') |
I} < max{s(ur,) | Is} = s(u), by Lemma 8.3. Now, s(u™!) < s(u) =
s((u=H71) < s(u), and so s(u~t) = s(u). O

Lemma 8.5. Let u € My, where I is a nonempty subset of {1,...,n}. Then
u(C;) C C; and u(C;(I)) C C;(I) for all i > s(u) (where C;(I) is defined in the
proof ).

Proof. For I = {1,...,n}, this is simply Theorem 8.1 (see the proof of The-
orem 8.1, where if V = C the elements d and e can be set to be equal to
s(u)). The case when I # {1,...,n} follows from the previous one when we
observe that P, = Pr ® Poy, where Py := Kz, ...,z ], I = {i1,...,is},
and CT is the complement of I. Then C; = C;(I) ® C;(CI), where {C;(I)}ien
and {C;(CI)};en are the cubic filtrations for the polynomial algebras P; and
Pcr respectively. Note that ulc, = ’u,|ci(1)®ci(01) = U'|C¢(I) ® idci(CI) for all
1> s(u).

The group GLy (K) is the semidirect product U(K) X Eo(K) of its two
subgroups: U(K) = {)\EQQ +1— Eyp | A€ K*} ~ K*, AEg +1 — Egg < /\,
and E (K) is the subgroup of GLy (K) generated by the elementary matrices
{14+ AE;; | X € K,i# j}. The group Es(K) coincides with the commutant
[GLoo (K), GLoo (K)] of the group GLoo (K).

For each nonempty subset I of {1,...,n}, the group M7 is isomorphic to the
group GLo (K). Therefore, M} = U;(K) x E7(K) is the semidirect product of
its subgroups: U[(K) = {AEOQ(I) +1 —EO()(I) | NS K*} ~ K*, )\EQO(I) +1—
Eoo(I) <+ A, and Er(K) is the subgroup of M} (K') generated by the elementary
matrices {1+ AE.s(I) | A € K, «, 3 € NI a # }. The group E;(K) coincides
with the commutant [M}, M7j] of the group Mj.

For u € Uy(K) and v’ € Up/(K), uwu' = v'u as follows from

Az, ifViel:aq =0,

(0%

()\E()Q(I)—l—].—E()Q(I))*{Ea: { .
%,  otherwise.

So, the elements u and u’ are diagonal matrices in the monomial basis for P,.
By Corollary 7.5, the subgroup U,, of M* generated by the groups U;(K) is
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equal to their direct product, U, = [[;., Ur(K) ~ K*2"=1_ Consider the
group epimorphism

(55) p:U, = K*, [ ArEoo(I) + 1 = Eoo(I)) — [ Ar-

142 142
For each number s = 1,...,n, let U, 4 := Hm:s Ur(K) and U, s := U, |5 ¥
U [s41) X -+ - X Uy, ). By Corollary 7.5, for each s = 1,...,n, the set B, [ :=
H| I)=s E;(K) is an exact product of groups in arbitrary but fixed order, and
Ens = Ep [gFn s41)  * En,[n) is the exact product of sets. We will see that
the set E), s is a group.

Theorem 8.6.
1. M =U, x [Mf,M] and M} ,M*] = E,, 1.
2. MZ’S = Un,s X [MZ’S,M;,S] and [M;,yM;,s] = Ems fo'r alls=1,...,n.

3. The determinant map det (see (54)) is the composition of the group homo-
morphisms (see (55)):

det : M — M /[MY,M*] ~ U, & K*.
In particular, det(uv) = det(u) det(v) for all u,v € M.

Proof. 1. Statement 1 is a part of statement 2 when s = 1.

2. To prove statement 2 we use a downward induction on s starting with
s = n. In this case, both statements follow at once from the fact that M7, ,, =
(14 F,)* ~ GLoo(K) = U(K)X Ex(K) and Foo(K) = [GLso(K), GLoo (K)] is
the subgroup of GL, (K) generated by the elementary matrices. Suppose that
s < n and the statements hold for all s’ = s+1,...,n. By the uniqueness of the
product in Corollary 7.5, U, N E,, s = {1}. It is obvious that E, s C [M}, M|
and Mj, 2 U, E, s. Recall that the groups M, ; are normal subgroups of the
group M. It follows that the set £y, s = B, [ Ens+1 = Ep [5)[M}, o1, M, o]
is a subgroup of M, ;. Using elementary matrices and the generators for the
group U, s it is easy to verify that

(56) uEm[S]u_l CE,; forallu € U, and all s.

Note that each element u € U, s is a diagonal matrix in the monomial basis
for P,. This implies that En’[S]TUn,,H_l C Unnt1En,s- Now,

M:;,s = Un,[s]En,[s]M;7s+1 = Un,[s]En,[s]Un,s+lEn,s+1
- Un,[s]Un,s+lEn,s = Un,sEn,s;

and so M}, ; = Uy sEpns. Since By s = By, (g Fns+1 = Ep [q [M;75+17M;,s+1]
and M .., is a normal subgroup of M, we see that uB, su~t C B, for all
elements v € U, s, by (56), i.e. E, s is a normal subgroup of M, ;. Hence,
My, o = Uy s X Ep 5. Then [My; My ] C E, s since the group U, s is abelian.
The opposite inclusion is obvious. Therefore, £, s = [M; ;M .]. By induc-
tion, statement 2 holds.

3. By Corollary 7.5, each element u of the group M} is the unique prod-
uct []0_, HI I.|=s I,, Where each element uy, € Mj is a unique product
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uls()‘fs)efsa where uls()‘fs) = )\ISEOQ(IS) +1-— Eoo(Is) and ey, € E[S(K)
Then det(u) = JT{_; [];, =5 Ar.. By statement 2, the element u is a unique
product [],_, 17, )=s ur. (A1) -e, where e € E, 1, and statement 3 follows. [J

The global determinant det on the group GJ,. Recall that G], ~ S, x
T™ x MY, it is convenient to identify these two groups via the isomorphism.

Each element o of G/, is a unique product o = 7tyu, where 7 € S,,, t) € T™,
and u € M.

Definition. The scalar det(c) := sgn(7) - [[;_; Ai - det(u) € K* is called the
global determinant of the element o (we often drop the adjective “global”),
where sgn(7) is the parity of 7.

Our next goal is to prove that the determinant map
det : GI, = K*, o det(0),

is a group homomorphism (Corollary 8.7).

The group S, X T™ can be seen as a subgroup of the general linear group
GL(V), where V. = @, Kz; C P, (7(zi) = z,(;) and tx(x;) = Xix;). The
global determinant det(7ty) of the element 7ty € S, x T™ is simply the usual
determinant of the element 7ty € GL(V). So, in order to prove Corollary 8.7
it suffices to show that det(rtyu(rty)~1) = det(u) for all u € M and 7t) €
Sp, x T™. This follows from Theorem 8.6.(1) and the fact that the element 7ty
respects the groups U,, and [M},M?], and, for each element u = ]_[I;,éraf ur €
U,,, the conjugation 7tyu(rty)~! permutes the components u; € Ur(K).

Corollary 8.7. det(ab) = det(a) det(b) for all a,b € G),.

The global determinant det on the monoids M,, and S,, x T™ x M,,.
Lemma 8.5 and Theorem 8.6 give an idea of how to extend the global determi-
nant from the group M to the monoid M,,. Let u € M,, and s(u) be its size.
Then u(C;) C C; for all ¢ > s(u). If the map v € Endg(P,) is a bijection then,
by Theorem 8.8, u € M. If the map u is not a bijection then det(ulc,) = 0
for all ¢ > 0. Hence, if u,v € M,, and wv € M}, then u,v € M} (this proves
the first statement of Theorem 8.9).

Definition. We can extend the (global) determinant det to the map
det(u), ifue M,

det : M,, > K, ur— )
0, otherwise.

This common value det(u) of the determinants is called the global determi-
nant of the element u € M, (we often drop the adjective “global”).

The global determinant is a homomorphism from the monoid M,, to the
multiplicative monoid (K,-) (Theorem 8.9.(2)), and the group M of units
of the monoid M, is the set of all the elements of M,, with nonzero global
determinant (Corollary 8.10). These results are based on Theorem 8.8. We
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keep the notation of Section 5. The monoid M,, = 1 4+ F has the descending
monoid filtration

M,=1+FD1+F>> - D1+F"=1+F,.

For each element u € M, there is a unique number i such that u € (1 + F%)\
(14 F**1). The number i is called the degree of the element u, denoted deg(u).

For each nonempty subset I of {1,...,n}, let C(I) := {C;(I)}ien be the
cubic filtration for the polynomial algebra Pr := K|[z;]jer.

Theorem 8.8. M, = M, N Autg(P,) but S}, G S,y N Autg (Py).

Proof. Let u € M,, N Autx(P,). We have to show that u € M since the
inclusion M C M, N Autg(P,) is obvious. We prove this fact by a down-
ward induction on the degree i = deg(u). If ¢ = n, that is u € (1 + F,) N
Autg(P,) = (1 + F,)*, the statement is obvious. Suppose that i < n,
and the statement holds for all elements u' with deg(u’) > ¢. In particu-
lar, (1+F* ) NAutg(P,) € M. Note that u=1+37,;_; a1+ 35 ar for
unique elements ay € F(I). Let uy := 1+ ay and v’ := Hlllzi uy (in arbitrary
order). Note that s(u;) < s(u) for all I such that |I| = i. For each natural
number m > s(u), let By (1) := C(I) ® ([[;ccr 2" - Por)- By the choice of
m,

(57) ulp,, (1) = w1|B,. (1)

and so the linear map ur : Cp,(I) — Cp,(I) is an injection, hence a bijection
(since dimg (Cpp (1)) < 00) for all m > s(u). Now,

ur € (1+ F(I))NAutg(Pr) = (1+ F(I))* = Mj C MZ.
Then v’ € M, and
u(u)™t € (1+ FYnAutg(P,) C M,

therefore, u = u(u/)~1 - v/ € M.

Si, G SN Autg (P,) since the element w := []:_, (1 — ;) of the algebra S,
belongs to the set Autg(P,) \ S;. The element u is not a unit of the algebra
S, since the element u + a,, is not a unit of the algebra S, /a,. To show the
inclusion v € Autg (P,) we may assume that n = 1 since P, = @, K[z;].
The kernel of the linear map u is equal to zero since (1 — y) *xp = 0 for an
element p € K[x] implies that p =y*p=1y?xp=--- =y xp=0forall s >0
(y is a locally nilpotent map). The map u is surjective since for each element
q € K|z] there exists a natural number, say ¢, such that y* *x ¢ = 0, and so

g=1 -y xqg=u(l+y+---+y" 1) *q Therefore, u € Autg(P,). O

Theorem 8.9.

1. Ifu,v € M,, and wv € M}, then u,v € M.
2. det(uv) = det(u) det(v) for all elements u,v € M,,.

Proof. 2. The second statement follows from the first. 0
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Corollary 8.10.

1. M = {u € M, | det(u) # 0}, i.e. an element u € M, is a unit if and only
if det(u) # 0.
2. Let uw € M,,. Then the following statements are equivalent.
(a) The element u has left inverse in S, (vu =1 for some v € Sy,).
(b) The element u has right inverse in S,, (uv =1 for some v € S,).
(c) The element u is invertible in S,

(d) det(u) % 0.

Proof. 1. Trivial.
2. Statement 2 follows from statement 1 (using the facts that vu = 1 implies
det(u)det(u) = 1, and wv = 1 implies det(u) det(v) = 1). O

We can extend the global determinant to the monoid S,, x T™ x M,, by the

rule:
det : S, x T" x M,, = K, 7t u > det(rty) det(u),

where 7 € S, tx € T”, and u € M,,. It follows from Corollary 8.11 that this
is a well-defined monoid homomorphism.

We define the size s(a) of an element a = Ttyu € S,, x T" x M, as s(u).
Then s(ab) < max{s(a), s(b)} for all a,b € S,, x T" x M, and s(a™!) = s(a)
for all a € S, x T" x M, by Lemma 8.4.

Corollary 8.11.
1. Leta € S, x T" x M,,. Then u(C;) C C; for alli,j > s(a).
2. det(ab) = det(a) det(b) for all elements a,b € S,, x T™ x M,,.

Corollary 8.12.
1. The group of units of the monoid S, x T" x M, is S,, x T" x M ~ G.,.
2. Sy x T" x M = {a €S, x T" x M, | det(a) # 0}.
3. S, x T x MY = (S, x T" x M,,) N Autg (Py,).
4. Let a € S, x T™ x M,,. Then the following statements are equivalent.
(a) The element u has left inverse.
(b) The element u has right inverse.
(c) The element u is invertible.

(d) det(u) # 0.

9. STABILIZERS IN Autg_a1g(S,) OF THE PRIME OR IDEMPOTENT IDEALS OF
THE ALGEBRA S,

In this section, for each nonzero idempotent ideal a of the algebra S,, its sta-
bilizer Stg,, (a) := {0 € G,, | o(a) = a} is found (Theorem 9.3). If, in addition,
the ideal a is generic this result can be refined even further (Corollary 9.4)
where the wreath product of groups appears. The stabilizers of all the prime
ideals of the algebra S, are found (Corollary 9.2.(2) and Corollary 9.9). In
particular, when n > 1 the stabilizer of each height 1 prime of S,, is a maximal
subgroup of G,, of index n (Corollary 9.2.(1)). It is proved that the ideal a,, is
the only nonzero, prime, G,,-invariant ideal of the algebra S,, (Theorem 9.7).
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Idempotent ideals of the algebra S,,. An ideal a of a ring R is called an
idempotent ideal (resp. a proper ideal) if a? = a (resp. a # 0, R). For an ideal
a, Min(a) is the set of all the minimal primes over a. Two ideals a and b are
called incomparable if neither a C b nor b C a. The idempotent ideals of the
algebra S,, are studied in detail in [4]. Below (Theorem 9.1), we collect results
on the idempotent ideals of S,, that are used in the proofs of this section. For
the proof of Theorem 9.1 and for more information on the idempotent ideals
of S,, the interested reader is referred to [4].

Theorem 9.1 ([4, Thm. 7.2, Cor. 4.9, Thm. 4.13)).

1. Let a be a proper, idempotent ideal of the algebra S,,. Then Min(a) is a finite
nonempty set each element of which is an idempotent, prime ideal of S,.
The ideal a is a unique product and a unique intersection of incomparable,
idempotent, prime ideals of S,,. Moreover,

a= H p= ﬂ p.
pEMin(a) pEMin(a)

2. FEach nonzero, idempotent, prime ideal p of the algebra S, is equal to py :=
> ic1 Pi for some nonempty subset of {1,...,n} and vice versa; and this
presentation is unique.

3. The height of the prime ideal p; is |I|.

Corollary 9.2.

1. Stg, (pi) = Sp—1 x T" x Inn(S,,), fori=1,...,n. Moreover, if n > 1 then
the groups Stg,, (p;) are mazimal subgroups of Gy, (if n =1 then Stg, (p1) =
G1, by Theorem 9.7).

2. Let p be a nonzero, idempotent, prime ideal of the algebra S,, and h = ht(p)
be its height. Then Stg,, (p) =~ (Sp X Sp—p) X T" x Inn(S,,).

3. Stg, (H1) = T™ x Inn(S,,).

Proof. 1. Note that T" x Inn(S,,) C Stg, (p;) and Stg, (p;) NS, = {T € S, |
7(p;) = pi} ~ Syp—1. Then

Sta, (pi) = Sta,, (p:) NG = Ste, (pi) N (Sp x T™ x Inn(S,,))
= (Sta, (pi) NSy) x T" x Inn(S,,) =~ Sp—1 x T" x Inn(S,).
When n > 1, the group Stg,, (p;) is a maximal subgroup of G,, since
Sn—1 =~ Stea,, (pi)/(T" x Inn(S,)) € G,,/(T" x Inn(S,)) ~ S,

and S,—1 = {0 € S, | o(i) = i} is a maximal subgroup of S,,.

2. By Theorem 9.1.(2), p = pi; + --- + p;, for some distinct indices
i1,...,ip €{1,...,n}. Let I = {i1,...,9n} and CT be its complement. Since
T" x Inn(S,) C Stg, (p) and

Ste,(p)NS, ={ce€S,|oc(l)=1I, o(CI)=CI}~ S, X Sh_p,
the result follows using the same arguments as in the previous case.

3. Statement 3 follows from statement 1. O

Miinster Journal of Mathematics VoL. 6 (2013), 1-51



THE GROUP OF AUTOMORPHISMS 43

Let Sub,, be the set of all subsets of {1,...,n}. Sub, is a partially ordered
set with respect to “C”. Let SSub,, be the set of all subsets of Sub,. An
element { X7, ..., X} of SSub,, is called incomparable if for all i # j such that
1 <4,j < s neither X; C X; nor X; 2 X;. An empty set and one element set
are called incomparable by definition. Let Inc,, be the subset of SSub,, of all
incomparable elements of SSub,,. The symmetric group 5,, acts in the obvious
way on the set SSub,, (o - {X1,..., X} ={0(X1),...,0(Xs)}).

Theorem 9.3. Let a be a proper idempotent ideal of the algebra S,,. Then
Stg, (a) = Stg, (Min(a)) x T" x Inn(S,,),

where Stg, (Min(a)) = {o € Sy, | o(q) € Min(a) for all ¢ € Min(a)}. Moreover,
if Min(a) = {q1,...,qs} and, for each number t = 1,...,s, i = > ey, Pi for
some subset I of {1,...,n}. Then the group Stg, (Min(a)) is the stabilizer in
the group Sy, of the element {I1,...,Is} of SSub,.

Remark. Note that the group
Sts, (Min(a)) = Sts, ({I1,...,Is})

(and also the group Stg,(a)) can be effectively computed in finitely many
steps.

Proof. By Theorem 9.1.(1,2), and Corollary 9.2, T" x Inn(S,,) C Stg,, (a). Note
that Stg, (a) NS, = Stg, (Min(a)). Now,

Stg,, (a) = (Stg,, () NS,) x T" x Inn(S,) = Sts, Min(a)) x T" x Inn(S,).

By Theorem 9.1.(1), Stg, (Min(a)) = Sts, ({I1,...,1s}). O

We are going to apply Theorem 9.3 to find the stabilizers of the generic
idempotent ideals (see Corollary 9.4) but first we recall the definition of the
wreath product AVB of finite groups A and B. The set Fun(B, A) of all functions
f:B — Aisagroup: (fg)(b):= f(b)g(b) for all b € B, where g € Fun(B, A).
There is a group homomorphism

B — Aut(Fun(B, A)), by = (f = bi(f) : b+ f(b7'D)).

Then the semidirect product Fun(B, A) x B Is called the wreath product of the
groups A and B denoted A B, and so the product in A B is given by the
rule:

f1b1 . fzbg = flbl(fg)blbg, where fl, f2 (S Fun(B,A), bl,bg € B.

By Theorem 9.1.(2), each nonzero, idempotent, prime ideal p of S,, is a unique
sum p = )., p; of height 1 prime ideals. The set Supp(p) := {p; | i € I} is
called the support of p.

Definition. We say that a proper, idempotent ideal a of S, is generic if
Supp(p) N Supp(q) = & for all p,q € Min(a) such that p # q.
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Corollary 9.4. Let a be a generic idempotent ideal of the algebra S,,, the set
Min(a) of minimal primes over a is the disjoint union of nonempty subsets
Minp, (a)J---UMiny, (a), where 1 < hy < -+ < hy < n and the set Miny, (a)
contains all the minimal primes over a of height h;. Let n; := | Miny, (a)|.

Then
t

Sta,, (a) = (Sm % [[(Sh, 15n,)) x T" 5 Inn(S,,),

i=1
where m =n — 25:1 nih;.
Proof. Suppose that Min(a) = {q1,...,qs} and the sets I, ..., I; are defined
in Theorem 9.3. Since the ideal a is generic, the sets Iy, ..., I are disjoint. By
Theorem 9.3, we have to show that

t
(58) Sts, ({I1, -, Is}) = S x [ [ (S 2 )
i=1

The ideal a is generic, and so the set {1,...,n} is the disjoint union | JI_, M;
of its subsets, where M; := Ulljlzhi I;,i=1,...,t, and My is the complement
of the set Ule M;. Let S(M;) be the symmetric group corresponding to the
set M; (i.e. the set of all bijections M; — M;). Then each element o €
Sts, ({I1,...,Is}) is a unique product ¢ = ogoy --- 0, where o; € S(M;).
Moreover, og can be an arbitrary element of S(My) ~ S,,, and, for i # 0, the
element o; permutes the sets {I; | |I;| = h;} and simultaneously permutes the
elements inside each of the sets I}, i.e. o; € Sp, 1Sp,. Now, (58) is obvious. O

Corollary 9.5. For each number s = 1,...,n, let by := [];;_,(3 ;e pi),
where I runs through all the subsets of the index set {1,...,n} that contain
exactly s elements. The ideals by are the only proper, idempotent, G, -invariant
ideals of the algebra S,,.

Proof. By Theorem 5.1 and Corollary 9.2.(3), the ideals bg are G,,-invariant,
and they are proper and idempotent. The converse follows at once from the
classification of proper idempotent ideals (Theorem 9.1.(1)). O

The prime ideals of the algebra S,,. In order to prove Theorem 9.7, we
recall a classification of prime ideals for the algebra S, which is obtained in
[4]. For a subset N' = {i1,...,4s} of the set of indices {1,...,n}, let CN be
its complement, || = s, Sy := S1(i1) ® - - - ® S1 (i),

(59)  any i =F@8i(i2) @ - - @81 (i) + - +S1(i1) ® - - @81 (is-1) @ F,
Py := K|zi,,...,2;,]. Clearly, S,, = Sy®Scn. Let Ly := K|z, @
x;l] Then Spr/an =~ Lpr. Consider the epimorphism

-1
i see ey Ly

(60) TN SN = S /an = Ly, a— a+ ay.
By [4, Prop. 4.3.(2)], there is the injection
spec(Lopr) — spec(Sp), 4 — Sy ® Wa}\,(q)
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The image of this injection is denoted by
spec(Sn, V) i= {Sx ® 754 (@) | @ € spec(Lon)}-

Note that spec(S,, ) = {w{_ll’m_n}(q) | g € spec(Ly,)} ~ spec(L,) and spec(S,,

{1,...,n})={0} since 7z : K — K, A A.

The next theorem shows that all the prime ideals of the algebra S,, can be
obtained in this way.

Theorem 9.6 ([4, Thm. 4.4]).

1. spec(Sn) = [ncqa,...ny sPeC(Sn, N), the disjoint union.

2. Each prime ideal p of the algebra S,, can be uniquely written as Sy ®7r5}v(q)
for some subset N of the set {1,...,n} and some prime ideal q of the algebra
Loy

Theorem 9.7. The ideal a,, is the only nonzero, prime, G, -invariant ideal of

the algebra S, .

Proof. By Lemma 3.4 (or by Corollary 9.2.(2)), the ideal a,, is G,-invariant.
Conversely, let p be a nonzero, prime, G,-invariant ideal of the algebra S,,. By
Theorem 9.6.(2) and the fact that p is also S,-invariant, the ideal p contains
the sum p; + --- + p, = a,. Suppose that p # a,, we seek a contradiction.
In this case, the ideal p/a, of the algebra S, /a, = L,, is T"-invariant, hence

p = L,, a contradiction. O
The classical Krull dimension of the algebra S,, is 2n ([4, Thm. 4.11]). For
each natural number ¢ =0,1,...,2n, let

Hi := {p € Spec(Sy) | ht(p) = i},
Stg,(Hi) :={oc € Gy |o(p)=plorallpeH}.

G’nv ZfZ = 0)
Corollary 9.8. Stg, (H;) = { T" x Inn(S,), #i=1,
Inn(S,,), ifi=2,...,2n.

Proof. The statement is obvious for ¢ = 0 (since Ho = {0}) and for i = 1
(Corollary 9.2.(3)). So, let i > 2. Briefly, the statement follows from the fact
that in the algebra L,, there is no proper T™-invariant ideals (since any such
an ideal would have contained a monomial in z;, xi_l, i=1,...,n; but all of
them are units). Fix a presentation ¢ = m + [, where 1 <! < m < n. For
each subset N of {1,...,n} such that |CN| = m and, for each prime ideal q

of Lo of height [,
Sta, (Sv @ map(a)) = SN) x TNVHAY) & Stgionyriont ean (@) x In(S,),

where S(N) is the symmetric group on A" and TWI(A) is the torus in the group
of automorphisms of the algebra Syr. It is obvious that Inn(S,,) C Stq, (H;).
Fori=2,...,2n—1,

() Ste. (Sn ® 7)) = Inn(S,),
N,q

Miinster Journal of Mathematics VoL. 6 (2013), 1-51



46 VLADIMIR V. BAVULA

and so Stg,, (H;) = Inn(S,). For i = 2n, the statement is obvious. O

Let p be a prime ideal of the algebra S,,. When, in addition, p is an idempo-
tent ideal its stabilizer is found in Corollary 9.2.(2). The next corollary, which
is obtained in the proof of Corollary 9.8, gives the stabilizer of p when the
prime ideal p is not an idempotent ideal.

Corollary 9.9. Let p be a prime ideal of the algebra S, which is not an
idempotent ideal, i.e. p = Sy ® Wajl\/(q) for some subset N of {1,...,n}
and a nonzero prime ideal q of the Laurent polynomial algebra Lopr. Then
Stg, (p) = S(N) x TVI(N) x Stsenyxriont oy (@) x Inn(S,) (see the proof
of Corollary 9.8 for details).

Theorem 9.10.

1. Let n > 1 and let p be a prime ideal of the algebra S,,. Then the stabilizer
Ste, (p) is a mazimal subgroup of G, if and only if the ideal p has height
1, and in this case the index [G,, : Sta, (p)] = n.

2. Let n = 1 and p be a prime ideal of the algebra S,. Then the stabilizer
Ste,, (p) is not a maximal subgroup of G,.

Proof. The theorem follows from Corollary 9.2 and Corollary 9.9. g

Corollary 9.11. Stq, (Spec(S,)) = Ste, (Max(S,,)) = Inn(S,,).
Proof. By Corollary 9.8,
Inn(S,,) C Stg,, (Spec(Sy,)) C Sta, (Max(S,)) C Ste,, (Han) = Inn(S,,),

and so the result. O

The algebra S, is Z"-graded. The algebraS,, =P ¢z Sn,a is a Z"-graded
algebra, where S;, o :==S1,04; ® - ®S1,0,,, @ = (¥1,..., ),

xiSLO = Slyoxi, if 4 2 1,
Sl,i = Sl,O; if i = 0,
yliIS10 = Spoyll, ifi< -1,

S1,0 := K{(Eoo, E11,...) = K& KEyp ® KE11 @ --- is a commutative non-
Noetherian algebra (KFEy C KEy @ KEj; C --- is an ascending chain of
ideals of the algebra S; o). For each i =1,...,n, and j € N, let

. al, ifj>0,
Uj (Z) = |J| . .
y; ', ifj <0,
and, for a € Z", let vy := []}_; va, (7). Then S, o = vaSn,0 = Sn,0va, Where
Sno = @)S10(1) ®K Eoo(i), En(i), ...} = KPP D KEaall
i=1 I aenll
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where I runs through all the nonempty subsets of {1,...,n}, and E,(I) :=
Foiai(i1) - Eaa,(is) for I = {i1,...,is}. Each element a of the algebra S, o
is a unique finite sum

(61) a=ao+» Y AarBaall),

I qeNII
where ag, A\a,; € K. The set of elements {v,,vs(CI)Eqns(I)} is a K-basis for
the algebra S,,, where Eng := Eqa,,(i1) - - - Ea,p, (is) and, for the complement
CI = {j1,...,ji} of the set I, vs(CI) := vs,(j1) - vs,(ji). Each nonzero
element u of S,, is a finite linear combination of the basis elements, and each
nonzero summands is called a component of u.

Definition. The volume vol(u) of a nonzero element u of S,, is the number
of nonzero coordinates of the element u with respect to the basis {v,,vs(CI)
Eus(I)}, or, equivalently, the number of its nonzero components. We set
vol(0) = 0.

Note that vol(o(u)) = vol(u) for all o € S,, x T™.
Let G be a group and H be its subgroup. Then [G : H| denotes the index
of H in G.

Corollary 9.12. Let a be a proper ideal of the algebra S,. Then [G, :
Sta, (a)] < oo if and only if a®> = a.

Proof. (<) This implication follows from Theorem 9.3.

(=) Suppose that [G,, : Stg, (a)] < oo for a proper ideal a of S,,. Note
that T =[], T'(i). For each i =1,...,n, let T; := T'(i) N Ste, (a). Then
[TY(i) : T3] < [Gy : Stg,, (a)] < 0o, and so the group T; contains infinitely many
elements. Consider the subgroup 77 := Ty x --- x T, of T" N Stg, (a). We
have to show that a? = a. It suffices to show that the ideal a is generated
(as an ideal) by elements of volume 1. Suppose that this is not the case for
the ideal a, we seek a contradiction. Let v be the minimum of the volumes
of all the nonzero elements of the ideal a such that all their components do
not belong to a. Fix one such an element v € a with vol(u) = v. Since
T' C Stg, (a), the element u has to be of the type vga for some g € Z™ and
a nonzero element a of the algebra S, g. The element a is a unique sum as in
(61). To get a contradiction we use an induction on n. Suppose that n = 1,
and so u =vg(A+ >, _, a,E;, ;) for some scalars A and a, € K*, v > 1.

If XA # 0 then the ideal of S; generated by the element w is S;. This implies
that v = vgA and so vol(u) = 1, a contradiction.

If A =0 then uFE; ;, = a,vgE; ;, € afor all v, a contradiction.

Suppose that n > 1. Then, up to action of the symmetric group S,,, we may

assume that .
U = vg ()\ + Z aE; i, (TL))

v=1
for some scalar A € K and nonzero elements a, € S,,_1. If A # 0 and all
a, € K then the ideal of the algebra S;(n) generated by the element vg, (A +
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> _yavE; i, (n)) € Si(n) is equal to Sy(n). Then all the summands of the
element u belongs to the ideal a, a contradiction.

If A # 0 and not all the elements a, belong to the field K, say a1 ¢ K,
then the volume of the following nonzero element of a, uF; i, (n) = vg(A +
a1)E;, i, (n), is not 1 and does not exceed vol(u). Therefore, ay =--- =a; =0
and vol(uFE;,;,) = vol(u). Repeating the same argument several times we
obtain an element of the ideal a,

U,E”(k')Ejj (k =+ 1) cee Ei1i1 (n) = UB()\ =+ b)E”(k)EJJ (k + 1) . 'Eilh (n),

having volume vol(u) but b € Fy(k — 1) (up to action of the group S,). Since
the ideal of the algebra S; (k — 1) generated by its element vg, _, (A+b) is equal
to S1(k — 1), we have a contradiction.

If A = 0 then all the elements uF; ;,(n) = vga, E;, i, (n) belong to the ideal
a. Therefore, u = vgay E;, 4, (n) for some nonzero element a; € S,_; of volume
vol(u). Now, repeating the same argument as above or use induction on n, we
come to a contradiction. The proof of the corollary is complete. O

10. ENDOMORPHISMS OF THE ALGEBRA S,

In this section, we classify all the algebra endomorphisms of S,, that sta-
bilize the elements x1,...,x, and show that each such endomorphism is a
monomorphism but not an isomorphism provided it is not the identity map
(Corollary 10.1).

Let

st(z,...,xn) :={g € En | g(z1) =21,...,9(xn) = zn},
st(yr, - yn) =={g € En | 9(y1) = w1,---,9(yn) = yn}-
These monoids are the stabilizers of the sets {z1,...,z,} and {y1,...,yn} in
E, = Endg_.1s(S,). Note that
n(st(x1, ..., xn)) =st(y1, .-y Yn)s N(st(y1,...,yn)) =st(z1,...,z,).
By Theorem 3.7,

Gn N (st(z1,...,2) = Gn Nst(yr,...,yn) = {e},

i.e. if an algebra endomorphism of S,, which is not the identity map stabilizers
either the set {z1,...,2,} or {y1,...,yn} then necessarily it is not an auto-
morphism of S,,. Our next step is to describe all such endomorphisms and
to show that all of them are monomorphisms. Note that the algebra S, has
plenty of ideals (see [4]) and contains the ring of infinite dimensional matrices,
so there is no problem in producing an algebra endomorphism which is not a
monomorphism, e.g. S, = S, /(an + > iy Sn(@; — 1)S,) ~ K — S,,.

In the proof of Corollary 10.1, the following identities are used. For ¢ =
1,...,nand p € K[z1,...,z,],

(62) i, pl = 27" (P — Play=0)Eoo (),
(63) [p, Eoo(i)] = (p — plz,=0)Eoo (7).
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In more detail, it suffices to prove the identities in the case when p = z]",
m > 1. Then [y;, z]"] = mzn_l —al'y; = mzn_l(l — xyi) = x;n_lEoo(i), and
[, Eoo(i)] = 7" Eoo (i) — Eoo(i)x7" = 7" Ego (i)

Corollary 10.1.

1. The monoid st(z1,...,xy,) is an abelian monoid each nonidentity element
of which is a monomorphism of the algebra S, but not an automorphism.
Moreover, it contains precisely the following endomorphisms of S, :

Up:yiHyi‘f'piEoo(i), 1=1,...,n,

where the n-tuple p = (p1,...,0n) € K[x1,...,2,]" satisfies the following
conditions: for each pair of indices i # j,

(64) —a (pi = pig) + 27 (P — i) + Pibji — Pipi = 0,
where p; j := Pile;=0-
2. The monoid st(y1,...,yn) s an abelian monoid each nonidentity element

of which is a monomorphism of the algebra S, but not an automorphism.
Moreover, it contains precisely the following endomorphisms of S, :

Tp Y =y + Eoo(i)g, i=1,...,n,

n

where the n-tuple ¢ = (q1,-..,qn) € K[y1,...,yn]" satisfies the following

conditions: for each pair of indices i # j,
(65) —y; (4 — qiy) +vi (4 — q5.0) + 0ig5.0 — 545 =0,

where q; j = qily;=o0-
Proof. 1. In fact, at the beginning of the proof of Theorem 3.7, we proved
that each element o € st(x1,...,zy) has the form o = o, for some n-tuple p =
(p1,.--y0n) € K[21,...,2,])" (there, in proving this, we did not use the fact the
o is an automorphism). The endomorphism o, is well-defined if and only if the
elements o, (y1), ..., 0p(yn) commute (since [op(yi), op(z;)] = [op(yi), z;] =0
for all 4 # j). Let us show that the elements o,(y1),...,0p(y,) commute if
and only if the conditions (64) hold. Moreover, we will prove that for each pair

i # j the condition (64) is equivalent to the condition that the elements o, (y;)
and op,(y;) commute. Indeed, using (62) and (63), we have

0= [op(ys), 0p(y;)] = [yi + piFoo(i),y; + i Eoo(j)]
= [pi, 5] Eo0(2) + [y, pj]Eo0(j) + pi[Eoo(7), pi]Eoo(J) + pjlpi, Eoo(4)] Eoo ()
= (—; ' (pi = piy) + 27 (pj — pj.i) + Pipji — PiPig) Eoo (i) Eoo (4),

and so (64) holds, and vice versa.
Given 0y, 0, € st(xy,...,2y,). Then

opoy (Yi) = yi + (pi + i — 2ipipi) Eoo (i), i =1,...,n.
Hence, 0,0, = 0y 0y, and so the monoid st(z1, ..., z,) is abelian.

It remains to show that each endomorphism o, is a monomorphism, i.e.
ker(o,) = 0. Suppose that ker(c,) # 0 for some p, we seek a contradiction.
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Then F,, C ker(o,), since F, is the least nonzero ideal of the algebra S, [4];
but
op(Eoo(1)) =1 —21(y1 + p1Eoo(1)) = (1 — z1p1)Eoo(1) # 0,
a contradiction.
2. Note that f(st(z1,...,2,)) = st(y1,...,yn) and 7(op) = 7y, Where
n(p) = (p1), -, 1(pn)) (since n(op)(zi) = nopn(zi) = nyi + piLoo(i)) =
i + Eoo(i)n(pi))- O

For n = 1, the conditions (64) and (65) are vacuous, and so Corollary 10.1
takes a simpler form.

Corollary 10.2.
1. st(z) ={op:y— pEy | p € K[z]}.
2. st(y) = {op: 2+ Eooq | g € K[y]}.

For each i =1,...,n, let G1(4) := Autg_a1(S1(4)) and E4(4) := Endg_aig
(S1(7)). There is a natural inclusion of groups [];_; G1(i) C G,. Similarly,
there is a natural inclusion of monoids [[i; E1(i) C E, which yields the
inclusions of submonoids:

n n
Hst(mlv) C st(x1,...,2,) and Hst(yi) Cst(yr, -, Yn)-
i=1 i=1
These inclusions are not equalities as the following example shows.

Ezample. Fix an arbitrary polynomial p; from the ideal (z1 - - - ) of the poly-
nomial algebra K[z1,...,z,], and put p; := xj_lmipi for all j # 4. Then the
conditions (64) hold, and so o, € E,, where p = (p1,...,pn). An element
op € st(z1,...,z,) belongs to the submonoid ]! ; st(z;) if and only if p} €
Klz],...,p, € K[z,]. Now, it is obvious that [}, st(z;) # st(z1,...,z,).
By applying 7], we see that []"; st(y:) # st(y1, ..., yn)-
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