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Abstract

This thesis investigates collapsing sequences of Riemannian manifolds which satisfy a
uniform lower Ricci curvature bound. It is shown that in this situation there exists a
sequence of rescaling factors (scales) such that for a set of good base points of large
measure the pointed rescaled manifolds subconverge to a product of a Euclidean and a
compact space. Moreover, all possible Euclidean factors have the same dimension and
all possible compact factors satisfy the same diameter bounds. Further, the dimension
of the compact factor does not depend on the choice of the base point (along a fixed
subsequence).
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Introduction

In recent years, the focus of Riemannian geometry turned from investigating a single
Riemannian manifold to examining classes of Riemannian manifolds. In [Gro81|, Gro-
mov introduced the notion of Gromouv-Hausdorff convergence. For the class of (compact
or pointed) Riemannian manifolds of a fixed dimension satisfying a uniform lower Ricci
curvature bound, Gromov’s Pre-compactness Theorem asserts that each sequence of such
manifolds has a convergent subsequence. Notice that the limit need not be a manifold,
but is a length space. Examining the limit and the manifolds close to it can give insights
about the topological information that is different in the limit.

If such a sequence of manifolds has even a uniform lower sectional curvature bound, this
bound carries over to the possibly non-smooth Alexandrov limit. If the limit is actually a
smooth manifold, by Yamaguchi’s Fibration Theorem, [Yam91]|, the manifolds fibre over
the limit in the following way: If M; is a sequence of n-dimensional manifolds with a
uniform lower sectional curvature bound and a uniform upper diameter bound converging
to a compact manifold N of lower dimension, then for sufficiently large ¢ € N there are
fibrations M; — N which are close to Riemannian submersions. Moreover, up to a finite
covering, each fibre is the total space of a fibration over a torus.

For proving the latter, a crucial argument is the following: Consider the pre-image
of some ball under the fibration M; — N. After rescaling the metric up, this pre-image
converges to a product of a Euclidean and a compact space. In fact, it is possible to
replace the rescaling factors by larger ones such that the limit again has the form of
such a product, but the Euclidean factor has higher dimension. This can be iterated
until, finally, the compact factor vanishes. Such scaling factors are called typical scales.
Similar techniques have been used by e.g. Shioya and Yamaguchi in [SY00] and Kapovitch,
Petrunin and Tuschmann in [KPT10].

If a sequence of manifolds only satisfies a uniform lower Ricci curvature bound, Yam-
aguchi’s Fibration Theorem might fail. This was proven by Anderson in [And92]. However,
in recent years Cheeger and Colding obtained deep structure results for limits of such se-
quences, [CC97, CC00a, CCOOb|, by using measured Gromov-Hausdorff convergence: After
renormalizing the measure of the manifolds and passing to a subsequence, the manifolds
converge to a metric measure space such that the (renormalised) measures converge to the
limit measure. The uniform lower Ricci curvature bound carries over to the limit in the
sense that the limit measure still satisfies the Bishop-Gromov Theorem.

Another difficulty occurring with only a lower Ricci curvature bound is the following:
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Unlike for lower section curvature bounds, tangent cones of the limit space need not be
metric cones. In fact, in the case of a collapsing sequence, the tangent cones at some point
may depend on the choice of the rescaling sequence, cf. [CC97]. However, Colding and
Naber |[CN12] proved that any limit of a sequence of manifolds with uniform lower Ricci
curvature bound contains a connected subset of full measure such that for each point in
this subset the tangent cone is unique and a Euclidean space of a fixed dimension k£ € N.
This k is called the dimension of the limit space. Notice that this dimension is at most
the Hausdorfl-dimension of the space. In particular, k < n.

If a collapsing sequence of manifolds M; satisfies the lower Ricci curvature bound — ¢,
where g; — 0, and if this sequence converges to a Euclidean space, then the Rescaling The-
orem of Kapovitch and Wilking in [KW11]| already provides the existence of one sequence
of typical scales. For this sequence, the blow-ups of the manifold split into products of this
Euclidean space and a compact factor. The main theorem of this thesis generalises this
statement by allowing arbitrary limit spaces and a uniform lower Ricci curvature bound.

Main Theorem. Let (M;,p;)ien be a collapsing sequence of pointed complete connected n-
dimensional Riemannian manifolds which satisfy the uniform lower Ricci curvature bound
Ricpy, > —(n — 1) and converge to a limit (X,p) of dimension k < n in the measured
Gromov-Hausdorff sense. Then for every ¢ € (0,1) there exist a subset of good points

G1(pi) C B1(p;) satisfying
vol(G1(p;)) > (1 —¢) - vol(B1(pi)),

a sequence \; — 0o and a constant D > 0 such that the following holds: For any choice of
base points q; € G1(p;) and every sublimit (Y, q) of (A\iM;, ¢;)ien there is a compact metric
space K of dimension Il < n — k with % < diam(K) < D such that Y splits isometrically
as a product

Y = RF XK.

Moreover, for any base points q;,q, € Gi(pi) such that, after passing to a subsequence,
both (\iM;, q;) — (R* xK,-) and (\;M;,q}) — (R¥ xK',-) as before, dim(K) = dim(K").

Note that the theorem does not prove that all possible compact spaces need to have
the same dimension, but that the dimension only depends on the regarded subsequence
and not on the choice of the base points.

Furthermore, observe that dim(K) < n—k might occur in the situation of the theorem:
Consider the sequence of flat tori M; := S x §1(3) x Sl(i%) where S(r) denotes a circle
of radius r > 0. In this example, it is easy to imagine the last two factors ‘collapsing to a
point’ in the limit, although the very last factor collapses faster than central one. Hence,
M; converges to S'. For \; = i, the rescaled manifolds \;M; converge to R xS!. Using
the notation of the main theorem, one hasn =3, k=1landl=1<2=n—k.

This example also illustrates Yamaguchi’s fibration theorem and typical scales: As a
product, M; obviously fibres over the first factor S! with fibre F; := () x S 1(%2), which
is a torus. For the scales )\11 =1, )\? =42 and )\g’ = 43 one gets convergence )\}Mi — R xS,
A2M; — R? xSt and A3 M; — R®.
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Now turn to the proof of the main theorem. Let (M;,p;);en be a collapsing sequence
as in the main theorem and let (X, p) denote its limit. First will be proven that for points
q; € M; and a small radius r > 0 the conclusion of the main theorem holds correspondingly
on B, (g;) for a subset of good points G,(¢;) and a sequence of scales \; — oo, i.e. a ‘local’
version of the main theorem will be established.

Recall that the set of good points G,(¢;) € B-(¢;) and the scales \; — oo have to
satisfy the following: Any point z; € G,(¢;) needs to have the property that each sublimit
of (\jM;, z;) is the product of R* with a compact metric space where the compact spaces
(essentially) all have the same dimension. This is achieved in two steps.

First, let GL(¢;) C B,(q;) denote the set of all points x; such that all sublimits of
(i M;, ;) split off an R*-factor where p1; — oo is an arbitrary sequence. In particular
(once \; — oo is constructed), for any x; € G1L(g;), any limit of the sequence (\;M;, z;)
splits off an R¥-factor. That these sets G1(g;) have large volume inside B, (g;) is obtained
by generalising results of Cheeger, Colding [CC00a] and Kapovitch, Wilking [KW11] in-
volving modified distance functions coming from splitting theorems. For more details, see
section 2.1.

Next, define scales \; — oo and another subset G2(g;) C B, (g;) of large volume as the
set of points x; such that (A\;M;, x;) has small distance to a product of R* and a compact
metric space of diameter 1. The existence of such \; — 0o and G2(g;) is obtained by using
the Rescaling Theorem of Kapovitch and Wilking in [KW11|. For further explanations,
see section 2.2.

These scales \; — oo together with the intersection G, (g;) = GL(g:;) N G%(g;) give the
splitting result in the local version of the main theorem.

In order to finish the local version, prove that two such limits have the same dimension.
First, the following special case is investigated: Suppose that two points x;,y; € Gr(q;)
are connected by an integral curve of a vector field whose flow is measure preserving and
bi-Lipschitz (on a set of large enough volume). In this situation, via Gromov-Hausdorff
convergence one obtains a bi-Lipschitz map between subsets of positive volume inside of
the limit spaces of (\;M;, ;) and (\;M;, y;), respectively. In particular, these limits need
to have the same dimension.

For the general situation, recall that the flow of any divergence-free vector field is
measure preserving. Moreover, using (slight generalisations of) results [KW11], it is bi-
Lipschitz if its derivative is small—in some L,-norm, o > 1, and taking some average
value (in volume sense). In fact every two points of the set G2(¢;) are connected by the
curve of such a vector field (or are at least sufficiently close to its start and end point).
For more details, see section 2.3.

For verifying the main theorem, i.e. defining G1(p;) and \; — oo, fix r > 0 and finitely
many sequences (g;);en such that the union of the subsets of good points G,(¢;) C B,(g;)
has sufficiently large volume in Bj(p;). Define G1(p;) as the union of these G, (g;). Now
difficulties arise since each sequence (g;);en provides its own sequence of scales \; — oo
and these sequences might be pairwise different, but the main theorem requires only a
single sequence of scales. This problem can be solved if, given two such sequences (q})ieN
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and (¢?);eny and their corresponding scales A} — oo and A\? — oo, the local version of
the main theorem still holds for (¢?);ey and A} — oo (instead of A? — 00). Indeed, this
is achieved by a clever choice of the finitely many (g;);en utilizing the Holder continuity
result of Colding and Naber [CN12|. For more intuitive details on this approach, see the
introduction to chapter 3.

This thesis is structured as follows: Since Gromov-Hausdorff convergence is a main
tool, chapter 1 gives an introduction into this topic. The subsequent chapters deal with
the proof of the main theorem: chapter 2 proves the above mentioned local version of the
main theorem: If points ¢; and some small » > 0 satisfy that the rescaled (%MZ, qi) are
sufficiently close to R, then the statement of the main theorem holds on the ball B, (qi)
analogously. As explained before, using finitely many of such sequences ¢; and taking
the union of the obtained subsets Gy (¢;) C By(g;) will be used in chapter 3 to prove the
main theorem. The appendix covers (in greater detail) Gromov-Hausdorff convergence
(Appendix A), the behaviour of geometric notions under rescaling of metrics (Appendix B)
and, for the purpose of estimating volumes, the Bishop-Gromov Theorem and closely
related statements (Appendix C).
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Chapter 1

Foundations

The purpose of this chapter is to introduce the so called Gromov-Hausdorff convergence of
metric spaces. Beforehand, some notation and other results needed throughout this thesis
are provided.

1.1 Bishop-Gromov volume comparison

Theorem 1.1 (Bishop-Gromov Theorem, [Pet06, Chapter 9, Lemma 1.6]). Let M be a
complete n-dimensional Riemannian manifold with Ricyy > (n—1) -k for some k € R and
let p e M. Then the map
VOlM(Br (p))
Vi(r)
is monotonically decreasing with limit 1 as r — 0, where V.'(r) is the volume of an r-ball
in the n-dimensional space form of sectional curvature .
In particular, for R > r > 0,

Vi (R)
1y (B < £ -volys (Br(p)).
Vo M( R(p)) = VHn(T') VO M( (p))
This factor is independent of M and denoted by
_ VIR)
Cpg(n,k,m, R) := V()

In the following, this theorem will always be applied using the notion Cpg(n, K, r, R).
As a function of radii or curvature bound, Cpg has the following properties. For more
information and the proof of this lemma, see Appendix C.

Lemma 1.2. Letn €N, -1 <k <0, R>r>0,c>1andy >0. Then
a) Cpg(n,—1,r,cr) < Cpa(n,—1, R, cR),
b) OBG’(nv’ia r, R) S CBG(nvlvra R) and

¢) limy_yoo Cpg(n, —1,z,2 4 1) = "~ 1Y,
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1.2 Rescaling of metrics

Throughout this thesis, an important tool is rescaling of manifolds: For any Riemannian
manifold (M, g) let aM denote the Riemannian manifold (M, a?g), where a > 0. Basic
properties of this rescaling are straight-forward; for an overview, see Appendix B. Among
others, the following statement is proven there.

Often, functions will be given on some manifold M but needed on the rescaled manifold
aM. In this case, it is useful to ‘rescale’ these functions by the same factor. In fact, given
those functions, some specific terms using their gradients and Hessians will be used. The
following lemma states how these terms behave under rescaling. First, the notion of the
average integral needs to be introduced.

Definition 1.3. For a Riemannian manifold M, a measurable subset U C M and an
integrable function f: U — R let

denote the average integral.

Lemma 1.4. Let (M,g) be a Riemannian manifold, o > 0 and g = on:q For smooth
fio M - R, 1 <i <k letfi=a- fi, = (fihci<k and [ = (fihi<i<k = of,
respectively. Furthermore, let
k k
V() = 19(VIfi, VIf) = 655 and $f(f) =D || Hessy(f)]l5-
ij=1 i=1

Then, using the analogous definitions for g,

VoD =081 and vh(F) =~ -u (D).

In particular, forr >0 andp € M,

][ Y&(f) dVanr = ][ YO(f)dVay and
BM(p) BY (p)

][ S (P2 dVars = — - ()2 dVay .
BeM (p)

2
[0 BM (p)

r/o

1.3 Gromov-Hausdorff convergence

For the proofs of all the statements given in the remaining chapter and more information
on Gromov-Hausdorff convergence, see Appendix A.

In order to define Gromov-Hausdorff convergence of proper metric spaces, Gromov-
Hausdorff distance of compact metric spaces is needed.
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Definition 1.5. For bounded subsets A and B of a metric space (X,d), the Hausdorff
distance of A and B is defined as

d4(A,B) :=inf{e > 0| AC BX(B) and B C BX(A)}.

For base points a € A, b € B the pointed Hausdorff distance of (A,a) and (B,b) is given
by

d4((A,a),(B,b)) == d%4(A, B) + d(a,b).

For compact metric spaces (X, dx), (Y, dy) the Gromov-Hausdor(f distance of X and Y is
defined as

den(X,Y) == inf{d%(X,Y) | d admissible metric on X I[ Y},

and the pointed Gromov-Hausdorff distance between the pointed compact metric spaces
(X,dx,x0) and (Y, dy,yo) is defined as

dan((X,z0), (Y, y0)) := inf{d%((X, z0), (Y,10)) | d admissible metric on X II Y}

where a metric d on the disjoint union X II'Y is called admissible if d|x.x = dx and
diyxy = dy.

Using this, Gromov-Hausdorff convergence for non-compact proper metric spaces can
be defined. A metric space is called proper if all closed balls are compact. In the following,
for a metric space (X,dx), p € X and r > 0, the open and closed ball, respectively, of
radius 7 around p will be denoted by B, (p) and B,(p), respectively.

Definition 1.6. Let (X,dx,p) and (X;,dx;,p;), ¢ € N, be pointed proper metric spaces.
The sequence (X, p;) converges to (X,p) (in the pointed Gromov-Hausdorff sense) if for
all > 0,

dGH((Bi(i(pi)vpi)v (Bi((p)?p)) —0asi— o0
where the balls are equipped with the restricted metric. If (X;,p;) converges to (X,p),
this is denoted by (X, p;) — (X,p) and (X, p) is called the (pointed Gromov-Hausdorff)
limit of (X, p;).
Frequently, a sequence (X;,p;) does not converge itself but has a converging subse-
quence. The limit of such a subsequence is called sublimit of (X;,p;), and (X, p;) is said
to subconverge to this limit.

From now on, assume all metric spaces to be proper. Recall that a metric space (X, dx)
is called length space if

d(z,y) = inf{L(c) | ¢ continuous curve from z to y}

for any x,y € X, where L(c) denotes the length of c.
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Proposition 1.7. Let (X,dx,p), (Y,dy,q) and (X;,dx,,pi), i € N, be pointed length
spaces. Assume X and'Y to be complete. If (X;,p;) — (X,p) and (X;,p;) = (Y,q), then
there exists a pointed isometry between (X, p) and (Y, q).

Notation. Following common practice, the compactness of the balls and the dependence
on the base point will be suppressed, and the pointed distance

deu((BX (p),p), (BY (), q))
will be denoted by
den(B;Y (p), BY (q))-

(p), BY, (q)) < ¢ for some & > 0, this will be denoted by

Moreover, if dgu(B:Y 1/e

1/e
den((X,p), (Y.q)) <e.

Proposition 1.8. Let (X,dx,p), (Y,dy,q) and (X;,dx,,pi), i € N, be pointed metric
spaces.

a) If X and Y are compact with dgu((X,p), (Y,q)) < 5, then there are maps
f:X=>Y and g:Y =X

with f(p) = q and g(q) = p such that the following holds for all x,z1,x2 € X and
Y,Y1,Y2 € Y:
|dX(.fC1,x2) - dY(f(‘rl)a f(xZ))‘ <kg, dX(g © f(l?),.fl?) <g,
|dy (y1,92) — dx(9(y1), 9(3))| <&, dy(fog(y),y) <e.

<

Such (f,g) are called (e-)Gromov-Hausdorff approximations or e-approximations
between (X, p) and (Y, q).

b) If the X; and X are length spaces, the following are equivalent:

(ii) There is a sequence €; — 0 and e;-approzimations (fi, g;) between the balls
g _
(11i) There is a sequence ; — 0 such that dgu((Xi,pi), (X,p)) < ¢&; for alli.
From now on, for converging length spaces (X, p;) — (X,p), such g;-approximations
(fi, gi) as in Proposition 1.8 b)(ii) will be implicitly fixed.
Definition 1.9. Let (X;,p;) — (X,p) be converging length spaces. For ¢; € Bl)jigi (pi)
and g € X, q; converges to q, denoted by ¢; — ¢, if fi(q;) converges to ¢ (in X).

Given (X;,p;) — (X, p) as above, p; — p due to f;(p;) = p. Moreover, for each z € X
there exists such a sequence p? satisfying pf — x, namely p? := g;(z). From now on, let
pf = gi(x) denote this sequence.
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Remark. For (X;,p;) — (X,p) and = € X, one has (X;,pf) — (X, z) as well.

The following three lemmata state several properties of Gromov-Hausdorff distance
and convergence: The first lemma deals with several conditions ensuring convergence, the
second one provides estimates for the distance of balls. The last lemma is used to construct
maps between limit spaces given maps between two convergent sequences.

As for Riemannian manifolds, for a metric space (X,d) let aX denote the rescaled
metric space (X, ad).

Lemma 1.10. Let (X,dx,p) and (X;,dx,,pi), i € N, be pointed length spaces.
a) If (Xi,pi) — (X,p) and g : R™Y — R>Y satisfies lim,_,0 g(z) = 0, then there exists
ei = 0 with de(By), (pi): By . (p)) < g(ed).

b) Let C > 0 and q; € X; such that dx,(pi,q;) < C. If (Xi,pi) — (X,p), then there
exists ¢ € X such that (X;,q;) subconverges to (X, q).

c) If (Xi,pi) = (X,p) and o; — « for some o > 0, then (o; X;,pi) — (aX,p).
Lemma 1.11. Let (X,dx,p) and (Y,dy,q) be pointed metric spaces.
a) LetY be compact. Then dap(BX(p), BX>*Y ((p,q))) < diam(Y') for all r > 0.
b) If X andY are length spaces and R > r > 0, then
den(BY (p), By (¢)) < 16 - dan(Bj (p), B (a))-

In particular: If dgu((X,p), (Y,q)) < e for an e > 0, then dgu((X,p), (Y,q)) < €
for all e’ > 16¢.

Lemma 1.12. Let (X,dx), (Y,dy), (Xi,dx;) and (Yi,dy,), i € N, be compact length
spaces such that X; — X and Y; = Y. Moreover, let a > 0, K; C X; be compact subsets
and f; : K; = Y; be a-bi-Lipschitz. After passing to a subsequence, the following holds:

a) There exist compact subsets K C X and K' C'Y which are Gromov-Hausdorff
limits of K; and f;(K;), respectively, and an «-bi-Lipschitz map f : K — K' with
f(K)=K'.

b) For any compact subset L C K C X there exist compact subsets L; C K; such that
L; — L and f;(L;) = f(L) in the Gromov-Hausdorff sense.

For manifolds, the following theorem by Gromov states that in some cases at least a
(Gromov-Hausdorff) sublimit exists.

Theorem 1.13 (Gromov’s Pre-compactness Theorem, [Pet06, Cor. 1.11]). For n > 2,
k € R and D > 0, the following classes are pre-compact, i.e. every sequence in the class
has a convergent subsequence whose limit lies in the closure of this class:

a) The collection of closed Riemannian manifolds with Ric > (n—1)-x and diam < D.

b) The collection of pointed complete Riemannian manifolds with Ric > (n — 1) - k.
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1.3.1 Ultralimits

Since sequences of pointed metric spaces do not necessarily converge in the pointed
Gromov-Hausdorff sense, the notions of ultrafilters and ultralimits are useful: The ul-
tralimit of a sequence of pointed metric spaces is always a sublimit of this sequence in the
pointed Gromov Hausdorff sense. In order to compare (Gromov-Hausdorff) sublimits of
two different sequences of metric spaces, it is useful to know which subsequences (of either
sequence) converge to the given sublimits. This will be investigated in the lemma below.

Definition and Lemma 1.14. A non-principal ultrafilter on N is a finitely additive
probability measure w on N such that all subsets S C N are w-measurable with value
w(S) € 40,1} and w(S) =0 if S is finite.

Let w be a non-principal ultrafilter on N. For every bounded sequence (a;);en there
exists a unique real number [ € R such that

w{i eN|la; =1 <e})=1

for every € > 0. Let limy, a; := [ denote this real number.
Let w be a non-principal ultrafilter on N, (X;,dx,,p;), ¢ € N, be pointed metric spaces
and
Xo = {[(zs)ien] | ©i € X; and sup,ey dx;, (xi, p;) < 0o}

where

(®i)ien ~ (Yi)ien if and only if  lim,, dx, (x4, y;) = 0.
Furthermore, let dy,([(z;)ien], [(¥i)ien]) = lim, dx,(2;,y;). Then (X,,d,) is a metric
space, called ultralimit of (X;,dx,,p;) and denoted by lim,,(X;, dx,, pi)-

Remark. As is customary for Gromov-Hausdorff convergence, the dependence on the
metric often will be suppressed. Then X|, is said to be the ultralimit of (Xj, p;).

Essentially, the subsequent lemma states the following: Given two sequences of metric
spaces and a non-principal ultrafilter, by passing to the same subsequence of indices for
both sequences, the ultralimits (of the original sequences) can be realised as (sub)limits
in the pointed Gromov-Hausdorff sense. Conversely, if two sequences of metric spaces
are convergent after passing to the same subsequence of indices, there is a non-principal
ultrafilter realising the limits of the converging subsequences as ultralimits.

Thus, in the following chapters, instead of investigating common subsequences of in-
dices, often ultralimits are used.

Lemma 1.15. Let (X;,dx;,pi) and (Y;,dy,,q:), i € N, be pointed length spaces.

a) Let w be a non-principal ultrafilter on N. Then limy,(X;,p;) is a sublimit in the
pointed Gromov-Hausdorff sense. Concretely, there exists a subsequence (ij)jen such

that both
(Xi;,pi;) = limy(Xi,pi)  and (Y, qi;) — limy(Yi,q)  as j — oo

in the pointed Gromov-Hausdorff sense.
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b) The sublimit of a sequence of pointed length spaces in the pointed Gromov-Hausdorff
sense is the ultralimit with respect to a non-principal ultrafilter. To be more precise:
If (X,dx,p) and (Y,dy,q) are pointed length spaces and (ij)jen is a subsequence
such that both

(Xijvpij) - (X7p) and (Y:ij?qij) - (K Q) as .] — 00

in the pointed Gromov-Hausdorff sense, then there exists a non-principal ultrafilter
w on N such that there are isometries

1.3.2 Measured Gromov-Hausdorff convergence

Let (M;, pi)ien be a sequence of pointed complete connected n-dimensional Riemannian
manifolds which satisfy the uniform lower Ricci curvature bound Ricy;, > —(n — 1), If
volas, (B1(pi)) — 0 as ¢ — oo, this sequence is said to be collapsing.

In this situation, renormalised limit measures are used, cf. [CC97, section 1|: Let
(M;, pi)ien be a collapsing sequence as above. Then (M;,p;) subconverges to a metric
space (X,p) such that a ‘renormalisation’ of the measures volys, converges to a limit
measure volx. In fact, the following is true.

Theorem 1.16 (|CC97, Theorem 1.6, Theorem 1.10]). Let (M;,p;i)ien be a sequence of

pointed complete connected n-dimensional Riemannian manifolds satisfying the uniform

lower Ricci curvature bound Ricy, > —(n — 1). Then (M;,p;) subconverges to a metric

space (X, p) in the pointed Gromov-Hausdorff sense and there exists a Radon measure volx
on X such that for allz € X, x; =& x and r > 0,

volyy, (B (i)

volar, (B (p))

Moreover, for any R>r >0 and x € X,

volx (B (z))

volx (B (2)

— volx (BX(x)) as i — co.

< CBG(”? _17 r, R)

This volx is called (renormalised) limit measure.

Observe that the limit measure of a sequence (M;,p;) depends on the choice of the
base points and the considered subsequence, cf. again [CC97, section 1]. Moreover, observe
the following: Gromov’s Pre-compactness Theorem ensures subconvergence (for pointed
Riemannian manifolds of the same dimension with a lower Ricci curvature bound), but
the above theorem guarantees more, namely subconvergence (for the same class) includ-
ing convergence of the (renormalised) measures. Throughout this thesis, only measured
Gromov-Hausdorff convergence will be used, i.e. whenever a sequence (M;, p;)ien converges
to a limit space (X, p), this limit is equipped with a measure voly as in the above theorem.

The following propositions provide informations about sets whose measures converge.
For more information and the proofs, see section A.4.
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Proposition 1.17. Let (M;,p;)ien be a sequence of pointed complete connected n-dimen-
sional Riemannian manifolds converging to a metric space (X, p) in the pointed Gromouv-
Hausdorff sense and let e; — 0 and

(fis95) € Appr., (B, (pi);pi), (B, (), )
be as in Corollary A.27. For x € X, let pf denote g;(z).

a) Let A; C M; be compact with A; C Bgr(p;) for some R > 0. After passing to a
subsequence, there exists A C X with A; — A and p;(A;) — volx(A).

b) Let 0 < R<1, x1,...,7, € B 1(p) and

Then u;(A;) — volx (A).

Proposition 1.18. Let (M;,p;)ien be a sequence of pointed complete connected n-di-
mensional Riemannian manifolds which satisfy the uniform lower Ricci curvature bound
Ricps, > —(n — 1), let x4, y; € M; with dy,(zi,y:) < 2 and assume (M;, ;) and (M;,y;),
respectively, to converge to metric spaces (X, ) and (Y, yso), respectively. Moreover,
let r >0, K; C B,Mi (x;) be compact and f; : K; — M; be a-bi-Lipschitz and measure
preserving for some o > 0.

After passing to a subsequence, there exist a compact subset K C BX(x4.), an a-bi-
Lipschitz map f : K — Y and a constant C' > 0 such that voly (f(A)) = C - volx(A) for
any measurable subset A C K.

1.3.3 Generic points

Let the complete pointed metric space (X, p) be the pointed Gromov-Hausdorff limit of a
sequence of pointed connected n-dimensional Riemannian manifolds (M, p;) with uniform
lower Ricci curvature bound Ricyy, > —(n—1). As introduced in [CC97, p. 408], a tangent
cone at x € X is a Gromov-Hausdorff limit of (A\;X,x) where A\; — oo as i — co. In
general, this limit depends on the choice of x € X and the sequence A\; — co. If the limit
is independent of the choice of \; — oo, it is denoted by C,X. If C, X = R*, this point
x is called k-regular and the set of all k-regular points is denoted by Rj. Furthermore,
R = U, Rk denotes the set of all regular points.

Moreover, Cheeger and Colding proved that there are points such that non-unique
tangent cones of different dimensions occur, cf. [CC97, Example 8.80]. In particular,
there are points that are not regular. However, they proved that for any renormalised
limit measure the complement X \ R has measure 0, i.e. almost all points are regular,
cf. [CC97, Theorem 2.1|. Even more, it was conjectured that there is some k such that
R \ Rk has measure 0 as well, i.e. almost all points are k-regular. This conjecture was
proven by Colding and Naber in [CN12].
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Theorem 1.19 (|[CN12, Theorem 1.18 and p. 1185]). Let (M;,pi)ien be a sequence of
pointed complete connected n-dimensional Riemannian manifolds which satisfy the uniform
lower Ricci curvature bound Ricps, > —(n — 1) and converge to a limit (X,p). Then there
is k = k(X) € N such that Ry, has full measure and is connected.

This k is called the dimension of X, a k-regular point is called generic and Xgen := Ry,

denotes the set of all generic points.

Note that k < n if the sequence is collapsing.






Chapter 2

Local construction

For a collapsing sequence of pointed complete connected n-dimensional Riemannian mani-
folds (M;, p;) satisfying the uniform lower Ricci curvature bound Ricys, > —(n — 1) and
converging to a limit space (X, p) of dimension k& = dim(X ), the main proposition of this
chapter provides a condition on points ¢; € M; such that on balls around these points
with sufficiently small radius a ‘local version’ of the main theorem holds: In fact, the
statement of the main theorem holds on B,(g;) if the rescaled manifolds (11, q;) are
sufficiently close to the Euclidean space. Applying this result to finitely many sequences
of such points ¢; and radii r will prove the main theorem in chapter 3.

This local result follows from generalising several theorems of Cheeger and Colding in
[CC96, CCO0a| and Kapovitch and Wilking in [KW11]|. Those results make statements
assuming a sequence of manifolds to converge to a Euclidean space RF. The generalisations
do not assume such a convergence but that the manifolds are sufficiently close to R¥, and
then make similar statements as the mentioned theorems.

In the situation of a sequence (M;,p;) converging to a limit (X,p) as in the main
proposition, there is no reason why the manifolds should already be sufficiently close to
R*. On the other hand, there is hope that this is true after rescaling all manifolds with
(the same) factor: For a generic point x € X, the rescaled limit space (AX, z) converges to
R* as A — oo. In particular, (AX, z) is close to R* for sufficiently large A > 0. Moreover,
given any sequence of points x; € M; converging to x € X, the equally rescaled manifolds
(AM;, z;) converge to (AX, x). Hence, the (AM;, z;) are close to R¥ for sufficiently large
and <.

So, one can expect to be able to use the above explained generalisations for the rescaled
manifolds. In fact, those (generalised) theorems make statements about balls of radius
1. Applied to the rescaled manifolds AM;, this corresponds to balls of radius % in the
unscaled manifolds M;. Thus, in the following, instead of A the notation % will be used,
where r > 0 is sufficiently small, and statements about balls of radius r will be obtained.
This leads to the following local version of the main theorem, where the choice of notation
¢ and é—while seemingly artificial—will turn out to be helpful when proving the main
theorem by applying the ‘local version’.

11
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Proposition 2.1. Let (M;, p;)ien be a collapsing sequence of pointed complete connected n-
dimensional Riemannian manifolds which satisfy the uniform lower Ricci curvature bound
Ricpy, > —(n — 1) and converge to a limit (X, p) of dimension k < n. Given & € (0,1),
there exists 6 = S(é; n,k) > 0 such that for any 0 < r < 6 and q; € M; with

dGH((T_lMia %)7 (Rk, O)) < 5
there are a family of subsets of good points G,(q;) C By(g;) with
vol(Gr(gi)) = (1 — &) - vol(Br(g;))
and a sequence A; — oo such that the following holds:

a) For every choice of base points x; € Gy(q;) and all sublimits (Y,-) of (\;M;, x;) there
exists a compact metric space K of dimension | < n—k satisfying % < diam(K) <1
such that'Y splits isometrically as a product

Y 2 RF xK.

b) If v}, 2?2 € G, (q;) are base points such that, after passing to a subsequence,
(i, ) = (R* XK, )
for 1 < j <2 as before, then dim(K;) = dim(K3).

The idea of the proof is to construct two families of sets G}(q;) and G?(g;), where r is
sufficiently small, with the following properties: For any choice of points x; € G}(g;) and
for any rescaling sequence \; — oo, every (sub)limit of the sequence (\;M;, z;) splits off
an R¥-factor. The second family of sets G2(g;) is constructed together with a rescaling
sequence \; — oo such that for all large enough i and any point x; € G?(g;) each single
rescaled manifold (\;M;, x;) is close to the product of R* and a compact space, where this
compact space depends on the choice of the regarded ¢ and the base point x;. After fixing
this sequence A; — oo, the intersection of those two sets gives the result.

2.1 Construction of Gl(g;)

This section deals with finding families of subsets G (¢;) € B!(g;) such that all blow-ups
of M; with base points from G1(g;) split off an R*-factor. Recall that a blow-up is the
limit of the sequence of rescaled manifolds w; M; for a sequence of scales u; — oo. Thus,
the natural question is under which condition such a splitting can be guaranteed.

By modifying certain distance functions, Cheeger and Colding obtained harmonic func-
tions which were used to prove the following splitting theorem.

Theorem 2.2 ([CC96, Theorem 6.64]). Let (M;, p;)ien be a sequence of pointed n-dimen-
sional Riemannian manifolds and let R; — oo and €; — 0 be sequences of positive real
numbers such that B%i (pi) has Ricci curvature at least —(n—1)-&;. Assume (Bg" (i), pi)
to converge to some pointed metric space (Y,y) in the pointed Gromov-Hausdorff sense. If
Y contains a line, then Y splits isometrically as Y = R x X.
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Assuming that the limit space already is the Euclidean space R" (of the same dimension
as the manifolds of the convergent sequence), Colding proved convergence of the volume
of balls of radius 1 in the manifolds to the volume of the 1-ball in R™ by using n of such
function (for every manifold), cf. [Col97, Lemma 2.1]. Using both the observations there
and the proof of the above splitting theorem, Cheeger and Colding obtained the following
statement which is stated as noted in [KW11, Theorem 1.3].

Theorem 2.3 ([CCO00a, section 1]). Let (M;, p;) — (R*,0) be a sequence of pointed n-
dimensional Riemannian manifolds which satisfy the uniform lower Ricci curvature bound
Ricyy, > —%. Then there exist harmonic functions by, ..., bf€ : Ba(pi) — R and a constant

C(n) > 0 such that
a) |Vb§.\ < C(n) for alli and j and
b) Fi, o) 2ogimr |V, V) = S| + 320, || Hess b |2 dVag, — 0 as i — oo,

Moreover, the maps ® = (bi,...,b%) : Ba(p;) — R* provide &;-Gromov-Hausdorff approz-
imations between Bi(p;) and B1(0) with ¢; — 0.

Conversely, Kapovitch and Wilking proved the following in [KW11]: If there exist k
functions with analogous properties on balls with radius r; — oo, then the sublimit splits
off an R¥-factor.

Theorem 2.4 (Product Lemma, [KW11, Lemma 2.1]). Let (M;,p;)ien be a pointed se-
quence of n-dimensional manifolds with Ricy, > — €; for a sequence e; — 0 and let r; — oo
such that By (p;) is compact for all i € N. Assume for every i € N and 1 < j < k there
are harmonic functions b; : By, (pi) — R which are L-Lipschitz and fulfil

k

k
]Z > [(V0E, Vb)) — 6l + > || Hess bl |> dVay, — 0 for all R > 0.
Br(pi) j =1 j=1

Then (By,(pi), pi) subconverges in the pointed Gromov-Hausdorff sense to a metric product
(RF X X, pso) for some metric space X. Moreover, (b,.. ., bi) converges to the projection
onto the Euclidean factor.

The above theorems will be generalised to the following statements: If all manifolds are
sufficiently close to R¥, then there exist harmonic functions similarly to Theorem 2.3 such
that the average integral does not converge to zero but only is bounded, cf. Lemma 2.5.
Consequently, an adaptation of the Product Lemma will be established: Under the follow-
ing weaker hypothesis, the same conclusion holds, cf. Lemma 2.7: Only the average integral
about the norms of the Hessian vanishes when passing to the limit whereas the average
integrals about the scalar products of the gradients are bounded by a small constant.

First, maps similar to those in Theorem 2.3 will be constructed. A crucial step of the
proof will be the rescaling of maps.
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Lemma 2.5. Given n € N, there exists L = L(n) > 0 such that the following holds:
For arbitrary € > 0, R >0, k <n and g : RT — RT with lim,_,o g( ) = 0 there exists
6 =0(¢,9,Ryn, k) € (0,1) such that the following holds for every § < §: For every pointed
complete connected n-dimensional Riemannian manifold (M, p) with Ricyy > —(n—1) -2
and

den((M,p), (R*,0)) < g(d)
there exist harmonic functions fi,..., fx : BM(p) — R such that |V fj| < L and

k k
Fo SUTHTA) =55+ 3 [ Hess()[P Vs <.

R ) ji= =1
Proof. Let L := C(n) be the constant of Theorem 2.3. The proof is done by contradiction:
Assume the statement is false and let &, R, k and g be contradlctlng For every ¢ € N, let
b; := ———— € (0,1) and choose the contradicting &; < &; and (M;, p;) with

Vi(n—1)
Rica, > ~(n—1)-62> —~ and  dar((M, pi), (B*,0)) < 9(6;)

1

such that for all harmonic Lipschitz maps f},..., f{ : BMi(p;) — R with |ijl| <L,

k k
][ Z VfZ,Vfl — ;] —l—E:HHess(f]’:)H2 dVa, > é.

=1

Since g(8;) — 0 as i — oo, by Proposition 1.8 b), one has (M;, p;) — (R*,0), and so
( }3 M;, pi) — (R¥,0) as well. By Theorem 2.3, there exist harmonic functions

~ ~ —1p7,
f{a?fl?:Bf% Ml(pz)%R
with \Vfﬂ < L satisfying

k k
]l g Z Vfl,Vfl (%ﬂ—i—ZHHess(ﬁ)HQ dVg-1p, — 0 as i — oo.
=1 j=1
In particular, for f]’. =R- f;. : Bgi — R, one has |Vf]’f| < L and
k

k
]€3M' Z \(Vf;,Vfli) — 1] —i—ZHHess(f]’f)H2 AV,

r'(Pi) ji=1 j=1

i o 1 & _
= v, YNGR =0l + - S I Hes(FIR Vg
Pi) ji=1

1 j=1
1 k L k _
< (14 53) (F s D2 HOFLTR) = ol + 3 [ Hess(IP Vv, )
By (ps) g,l=1 j=1
— 0 as 1 — o0,

cf. Lemma 1.4. This is a contradiction. O
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In order to generalise the Product Lemma, the following result of Cheeger and Colding
is used. Again, the theorem is stated using the notation of [KW11, Theorem 1.5].

Theorem 2.6 (Segment Inequality, [CC96, Theorem 2.11]). Given any dimension n € N
and radius ro > 0, there exists T = T(n,r9) such that the following holds: Let M be
an n-dimensional Riemannian manifold which satisfies the lower Ricci curvature bound
Ricps > —(n—1) and g : M — R be a non-negative function. Then for r < r,

d(z1,22)
][ / 9(1or (D) dEdV(z1, 29) < 77 ][ o(q) dVig),
By (p)x By (p) JO Bar(p)

where ., -, denotes a minimising geodesic from z1 to za.

The following lemma is a generalisation of the Product Lemma where the average
integral of scalar products of the gradients does not have to vanish, but only needs to be
bounded.

Lemma 2.7. Let (M;);en be a sequence of connected n-dimensional Riemannian manifolds
which satisfy the uniform lower Ricci curvature bound Ricys, > —(n—1)-&; where ¢; — 0.
Let r; — oo and q; € M; be points such that the balls By, (q;) are compact. Furthermore,
let k < n and assume that for every 1 < j < k there is a harmonic L-Lipschitz map
b; : By, (¢i) — R satisfying

k
][ S| Hess()|2dV =0 and
Br(a:) 5

k
][ SV, Vb)) — 6l dV < 107
(a:) g,l=1

for all v < ;. Then each sublimit of (By,(¢;),q:) is isometric to a product (R* x X, guo)
for some metric space X and some point gso € R¥ x X .

Proof. Let (Y,y) be an arbitrary sublimit of (B,,(¢;),q;). Without loss of generality,
assume convergence (By,(¢i), ;) — (Y,y). The concept of the proof is the following: For
well chosen ¢; and cé-l = (Vb;,Vb%)(q}), one gets fBl(Qi) |<Vb§-,be> - cé-l\ dV— 0. In
the second step, the corresponding statement for balls of arbitrary radius will be shown.
Finally, after passing to a subsequence such that every (Cé-g)ieN converges to some limit c;;
and defining hj; via the identity ((hjl)lgj,lgk)Q = ((le)1§j7l§k)_1a the linear combinations
d} = Zle hﬂbf satisfy the hypothesis of the Product Lemma, and thus, prove the claim.

a) Fix 1 < 4,1 < k. This step provides C;z € R satisfying

][ [(Vb5, Vbj) — ¢&y| dV — 0.
Bi(q:)
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First, fix R > 0 and let i9 € N be large enough such that for all ¢ > ig, both r; > 2R
and Ricy, > —(n—1)-¢; > —(n—1)-2¢; — 0. Let i > ig. Given p,q € Br(q:)
such that ¢ is not in the cut locus of p (recall that the set of these points has full
measure), let v, : [0,1] — M; denote a minimising geodesic connecting p and q.
Then the Segment Inequality provides 7 = 7(n, R) such that

1
][ / (1| Hess(0)|| + || Hess(B)I1) (1p(£)) dt dVig)
Br(qi)xBr(g:) Y0

<+ R. (|| Hess(b%)[| + || Hess(0})|) dV
Bar(g:)

—0asi1— o0

using that, by applying the hypothesis to r = 2R < r; for ¢ > i,

. ) 2
(£ (ess(e)) ]+ | Hess(ep]) av)
Bar(qi)
<[ (i Hess(b)] + [ Hess(t))? v
Bar(gi)

<9 ][ | Hess(b)||2 + || Hess(b{) |2 dV
Bor(q;

k
<4 ][ S || Hess(b) 12 4V
Bar(ai) j—1
— 0 as 1 — oo.

Now prove the statement for radius 1: Suppose there exists € > 0 such that for every
N > iy there is ¢ > N with

1
][ / (|| Hess(b)| + || Hess()[) (1auq(t)) dt dV(q) > ¢
Bi(g;) /0O

for all ¢; € By/2(gi). For such an i, estimating the average value on the 1-ball by the
1 : ‘ , . — 1

o.ne on the 3-ball using vol(By/2(gi)) > c1(n) - vol(B1(g;)) for c1(n) : =

gives

1
/ [ ess )1+ Hess ) v d V1)
Bi1(g:)xB1(g:) Y0

M . 1 ess(b? ess(b} i i
vol(B1(q;)) ][Bl/Z(Qi)XBl(Qi)~/O (I8 (bJ)H + | BesstE N (ga(t)) dt 41 0
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1
> ei(n) - ][ / (1| Hess(b)|| + || Hess(B)I1) (vauq (1)) dt dV(ds, 4)
Bl/Q(qz)XBl(qz) 0

> f eV
31/2((11)
=ci(n)-e>0,
and this is a contradiction. Thus, for i > o, there exists §; € By /2(g;) with

1
f / (|| Hess(®) | + || Hess(b)) (1a.q(t)) dt dV(q) — 0.
Bi(q:) /0

Using [|94,.4(7) Il = d(Gi, q) < 3 due to g € Bi(g;) and §; € By 2(qi),

d Z
‘<£|t Vb; (7q1q(t vbl Vaiq(T >‘

);
= [(Hess(b5) * a.q(7), VL) (Yauq(7))]
< || Hess(b5) - 4, (Tl (Vaiq (7)) - IO} (74,4 (7))
< HeSS( D aia (1)) 1930 (TNl (g (7)) - L
|| Hess(b5)[|(74,4(7))

for each i € N. Thus, for ¢} oK = (Vb, Vb)) (Gi),

][ (VB VB () — ciy| dVig)
Bi(q:)

(Vb%, Vb}) 0, th)qu
]ilm‘/ dt|tT 7> V01 © Yaiq(t) (9)

</ [ | 8500, Vi) | dr avia)

Y, d A
:]{91(%)/0 ‘<£|t:TVb;‘(7qzq( ))s Vb (3,4 (t)))

(T a0, 5 VH O] dr a0

3L 1 ; .
=5 [ Hess(E)] + [ Hess(b)]) 2 (r) dr Vi)
Bi(g:) /0O
— 0 as 1 — co.

b) First, let R > 0 be arbitrary and prove

][ [(Vb5, Vbj) — ¢&y| dV — 0.
Br(a:)
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For R > 1, %m < Cpg(n,—¢i,1,R) < Cpae(n,—1,1,R) =: ca(n, R)y for i

large enough. Thus, as in a),

1
f 0 Hess (81 + [ Hess @) ) & ) dt V(.0
Bi(gi)xBr(gi) 70

vol(Br(q:))
= Vol(Bi (41))

1
< eo(n, R) ][ / (1| Hess(b)|| + || Hess(B)|1) © 1pa(£) dt dVip, q)
Br(qi)xBgr(q:) /0

— 0 as ¢t — oco.

1
- ][ / (|| Hess(b?)| + || Hess()1[) o vpq(t) didVi(p, 4)
Br(qi)xBgr(gq;) /0

If R <1, using % < Cpg(n,—1,R,1) =: c3(n, R) for sufficiently large 1,

1
f / (Il Hess(81) | + || Hess(b)) o vpq(t) dt dVip,q)
B1(gi)xBr(g;) /0

<cs(n, R) ][

Bi1(gi)xB1(q:
— 0 as 1 — oco.

1
/ (Il Hess(b5)| + || Hess(b})|) © vpq(t) dtdV(p, q)
) Jo

Similarly to a), a ¢; € B1(g;) is required satisfying both
g = |<Vb§,Vb§>(q‘i) - ;l| —0asi— oo and

1
Fo [ Hess )+ Hess ) ) a6)) Vi) = 0 s i oc.
Br(gi) 40

Assume no such ¢ exists, i.e. there are € > 0 and ¢’ > 0 such that for any N € N
there is an ¢ > N such that each ¢; € Bi(q;) satisfies [(Vb}, Vb))(g:) — ¢ > € or
1 ; ; .
JCBR(qi) Jo ([ Hess(0%)[| + || Hess(b})[) (vgiq (1)) dt dV(g) > &', Assume the first condi-
tion is satisfied for infinitely many ¢. Then the corresponding subsequence is bounded
from below by e which is a contradiction to the sequence (of the average values of
these terms) converging to 0. So the second condition must hold for infinitely many
i. Then the corresponding subsequence is bounded from below by &’ in contradiction
to the sequence converging to 0. This proves the existence of such a ¢;.

For this ¢g;, as in the first step,
Fo VBT @ - il dvig)
Br(a:)

1
d b i iy (A i
: / ‘E - (Vb5, Vby) O’quq(t)‘ + ‘<Vbj’Vbl>(Qi) — ¢y dr dV(q)
BR(Qi) 0 t=T1



2.1 Construction of GL(g;) 19

<(+R): ]{9 / (Il Hess(5%)]] + || Hess(5) ) © g (¢) dt dVig) + &

— 0 as 1 — co.

Thus, eél(q) = ((Vb;-, Vb)) — cé-l)(q) satisfies

][ |5§-l\dV—>0asi—>oo.
Br(g:

c¢) Define a linear combination of the b;- that satisfies the hypothesis of the Product
Lemma after passing to a subsequence:

As the b} are L-Lipschitz, c§-l = (Vb}, Vbi)(G;) € [—L? L?] is a bounded sequence,
and thus, has a convergent subsequence. Pass to the subsequence such that all
(Cé-l)z‘eN converge and denote the limits by ¢;j; := lim; o0 C;"l € [-L? L?. Then

. i —n?
leji =l = lim |y — 05| < 10
since
[ :][ [0 = {Vb5, Vi) + (Vb5 Vbi) — 05l 4V
R4

i

ﬁ][ |c;'.l—<Vb§,Vb;‘>|dv+][ [(Vb5, Vbj) — 65| dV
Br(a:) Br(a:)

where the first summand converges to 0 and the second satisfies
][ [(Vb}, Vbj) — 65 dvg][ | (VbE, Vb)) — 6 dV < 107"
Br(a:) Br(a:) j =1

Hence, the matrix C' := (cji)1<ji<k is invertible, symmetric and positive definite.
In particular, its inverse C~! is diagonalisable with positive eigenvalues. Let C’Bl
denote the diagonal matrix and S the invertible matrix with C~! = S- CBl g7t
define C’Bl/ % as the diagonal matrix whose entries are the square roots of the diagonal
entries of Op'. Then H := (hj;)j = S- 0_1/2 S—1 satisfies H?> = C~1. Now define
d;- = Zle hjlbf. Obviously, these are Lipschitz and harmonic. Furthermore, they
satisfy Vd; = Zle hlebi, and thus,

k k
<Vd31>Vd;‘2> = Z hjlll hj212 <Vb;17Vb%g> = Z hj1l1 hj212 (01112 + 6;1l2)
I Ja=1 I Ja=1
k

J— . . . . Z‘
- 6]1]2 + Z h]lll h]2l2 €lyly
l1,la=1
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due to

k k k k
Z by hjaty ity = Z hj Z Clylyiyg, = Z hj (C- H)lljz

I la=1 Lh=1 lo=1 Lh=1
=(H -C- H)j1j2 = 0jyjo-

Thus,
k .
][ Z ‘<Vd;1’Vd}2> - 5j1jz‘ dVv
Br(4:) j, j2—1
:][ ’ Z gt jaty 51112 dv
(@) j) jo=1 " 1y la=1
k
= Z hjlllhj?l?][ ‘ €12 ’ av
J1,72,01,l2=1 Br(q:)
— 0 as 1 — oo.
Similarly,

k
. .12
| Hess(d!)|? = H S hy; - Hess(b])
=1

k
= > hjihj, - (Hess(b, ), Hess(b},))

l1,l2=1
k
< D hyhg, - || Hess(b,)| - || Hess(bj, )|
l1,la=1
k
<5 Z jta ity - ([ Hess(b],)|* + || Hess (b}, )[1*)
11,
Z | Hess (b)) ||?

for b := max{h?.l | 1 <j,1 <k}. Finally,

][ Z | Hess(d})[|* dV
Br (Iz

<k-h- ]l ZHHess(b;‘)H?dv

rlh =1
— 0 as 1 — oco.
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Therefore, the hypothesis of the Product Lemma is satisfied, and, after passing to
a subsequence, (B,.(g;),q;) converges to (RF x X, (0, ¢)) for some metric space X
and ¢oo € X. Since (By,(¢;),q;) converges to (Y,y), this proves that Y is isometric
to RF x X. O

Applying the previous two lemmata proves that for sufficiently small balls there is a
subset good base points of arbitrarily good volume such that all sublimits of sequences
with respect to those base points split off an R*-factor. In order to verify this, the following
statement, which in its first form was proven by Stein in [Ste93, p. 13|, is needed in order
to estimate the volume of a set where the so called p-maximum function is bounded from
above. This statement will be useful later on as well. Again, the notation of [KW11,
Lemma 1.4b)] is used.

Theorem 2.8 (Weak type 1-1 inequality). Let M be an n-dimensional Riemannian man-
ifold satisfying the lower Ricci curvature bound Ricyy > —(n — 1). For a non-negative
function f: M — R and p > 0, define the p-maximum function of f as

Mx, f(p) i= sup ]{9 "
r\P

r<p

Especially, put Mx f(p) = Mxsa f(p).
Then there is Ci.1(n) > 0 such that for any non-negative function f € L'(M) and
c>0,

C1-
vol({w € M | Mx,, f(x) > ¢}) < 12(”)/ FdVas.
M

Using this, the first set needed for Proposition 2.1 can be constructed.
Lemma 2.9. Let (M;,pi)ien be a collapsing sequence of pointed complete connected n-
dimensional Riemannian manifolds which satisfy the uniform lower Ricci curvature bound
Ricp; > —(n — 1) and converge to a limit (X,p) of dimension k < n. For every & € (0,1)
there exists 91 = 61(&;m, k) > 0 such that for all 0 < r < 61 and q; € M; with

dan((r™" M, ). (R*,0)) < &,
there is a family of subsets of good points G(q;) C By(q;) satisfying
volag, (G1(@)) = (1 — &) - volay,(B(gs) and  G(g;) € Gy

where

G; = {gi € M; | for all \; = oo and all sublimits (Y,-) of (\iM;, q;)
there exists X such that Y = R* x X isometrically}.
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Proof. This follows from Lemma 2.5 and Lemma 2.7 for well chosen § > 0: For the
constant C’l 1(n) from Theorem 2.8, deﬁne C(n) := Ci1(n) - 107 . Cpa(n,—1,1,2), and
let 61 = 61(2;n, k) be the constant 5( oo ids 25, k) and L(n) be as in Lemma 2.5. Let

0<r§51andqi€MiW1th

dGH((T_lMiv QZ)a (Rka 0)) < 31.

Then there exist harmonic and L-Lipschitz functions f; . Br M R satisfying
, A N
. Vv (f') +vu(f) dVieiy, < 57—

]{3; Mi(g,) ' C(n)

where
k

Z (VLVf) =63l and ¢u(f'): ZH Hess(f}) )12

Define

Gii={q € Bl Mi(q;) | Mx; M (g () + du () (@) < 107}

where the 1-maximum function is taken with respect to the metric d,-1,;, = %dMi. Using
Theorem 2.8, the volume of this set can be estimated by

7“71 .
vol,—1a, (B "(4i) \ Gi)

Cl_l(n) i ;
T ./B;_Wi(%) Uy (fY) + Yu(f) dVe-1y,
C(n) Z. i
= Cpaln,—1,1,2) B;*Mi(q”W(f )+ u(f1) dV, -1,
C(n) ¢ rIM
= Cpalm—1,1,2) Oy OB @)
5

-1
< . —1.1.2) -vol._1., (B" M; ;
- CBG(”,*l,l,Q) OBG(”; B ) VOl 1M1( 1 (q ))

. —1 .
=& -vol,—1 (B] Mi(g)).

Hence, regarding G}(¢;) := G; as a subset of M;,

vola (Gr(as) _  voloua(Go) )
Mi - r—1M; - :
volar, (B (i) vol—1pg,(BY (i)

It remains to prove GL(g;) € Gyi: Let x; € GL(g;) and \; — oo be arbitrary. Define
ri :=Ai-1r — oo and let 0 < p < r;. Since Bﬁ‘;Mi (x;) = B;_lMi(xi) C Bg_lMi(qi), the
maps

fi=ri- fi BYMi(z;) - R
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are well defined, harmonic and L-Lipschitz and satisfy (cf. Lemma 1.4)
v (') Vi
]iQiMi (z:)

=f _ by (f*) AV,
]i;/rliMi(%) ) M

< Mxf M (o (F) + (1)) (a2)
<10

and
][B)\il\{i () Ql)H(fz) dV)\iMi
'f'rlM- QJZ)H(fZ) dVr—lMi
Bﬁ/’"i (i)

M, M (o (F) + o (F) (25)

0"’
2

T3

IA g
Sl = e

_ 3

< — 0 as 7 — oo.

By Lemma 2.7, any sublimit of (A;M;, ;) has the form (R¥ x X, -) for some metric space
X. Thus, G(¢:) C Gi. O

2.2  Construction of G2(¢;) and );

The aim of this section is to find a rescaling sequence \; — oo and a family of subsets
G?(q;) C B,(g;) with the following two properties: On the one hand, every single rescaled
manifold \;M; (with a base point from G2(¢;)) is close to a product of R* and a compact
metric space. On the other hand, the sublimits of sequences (\;M;, x;) with base points
r; € G%(g;) have the same dimension (depending not on the base points but only on the
choice of the subsequence).

Before motivating the procedure, the notion of time-dependent vector fields needs to be
introduced. A time-dependent vector field is a generalisation of a vector field on manifolds:
In principle, if X : I x M — T M is a time-dependent vector field and t € I a fixed time,
then X! := X(¢,-) : M — TM is a vector field in the usual sense. Since the notions of
integral curves and flows require an additional time parameter, transferring these notion
to time-dependent vector field is not completely trivial. Therefore, the following definition
introduces all these concepts. Recall that, given a vector field in the usual sense, its flow is
a l-parameter family. The subsequent proposition states a corresponding property for time
dependent flows. Both the definition and the proposition are essentially (up to different
notation) taken from [Lee03, p. 451 f.|.
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Definition 2.10. Let (M, g) be a Riemannian manifold and I C R be an interval.

a)

A continuous map X : [ x M — T'M is called a time-dependent vector field if
X} :=X'(p) .= X(t,p) € TyM
for all (t,p) € I x M, i.e. X' is a vector field for all ¢ € I.

A time-dependent vector field X : I x M — T M is called piecewise constant in time
if there exist disjoint sub-intervals I = I1 II...II I,, such that for all 1 < i < n and
all s,t € I;, X* = X*.

For arbitrary s € I and for I —s:={r—s |7 €I}, acurve c: I —s — M is called
s-integral curve of X if
d(t) = Xj&r)t

for all t € I — s. A O-integral curve is also called integral curve of X.

There exists an open set

QC st x(I—s)x M

sel

and a map ® : Q — M such that for any (s,p) € I x M the set
QP = {tel—s| (s t,p) €Q}

is an open interval which contains 0, and for any fixed (s,p) € I x M the map
c: QP — M defined by ¢(t) := ®(s,t,p) is the unique maximal s-integral curve of
X with starting point p. Using the notation ¢ := ®(s,t, ), this is equivalent to ¢
being a maximal solution of

d

il S(p) = X3 and ¢ =1id.
dt‘t:tosot(p) o, ©0

(p)
Such a & is called flow of X.

A time-dependent vector field X has compact support if there exists a compact set
K C M such that for all t € I the vector fields X! have support K. In this case, the
flow ® exists for all times.

Proposition 2.11. For a time-dependent vector field X : I x M — TM and its flow
O :Q — M, denote i := ®(s,t,-) as before and let p € M and s,t,u be times such that
(s,t,p) € Q and (s +t,u, i (p)) € Q. Then (s,t +u,p) € Q and

st o pi(p) = @5 u(p).

s+t

In particular, if defined, ¢7" is the inverse of 5.
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In order to prove that two blow-ups have the same dimension, the following will be
established and used: Let X; : [0,1] x M; — TM; be time-dependent vector fields with
fol (M2, (|| V. XH[3/2) (c;(t)))?/3 dt < & for all i € N where & > 0 and the ¢; are (0-)integral
curves. Moreover, let the X; be divergence free, i.e. the flows are measure preserving. Then
any blow-ups coming from the sequences with base points ¢;(0) and ¢;(1), respectively, have
the same dimension, i.e. if A\; — oo with

(AiM;, ¢i(0)) = (Yo,90) and  (A\iMi, ¢i(1)) = (Yi,51),

then dim(Yp) = dim(Y7). This will be proven in section 2.3.

Since Gromov-Hausdorff convergence is preserved by shifting base points a little bit,
the same statement is true if the base points ¢;(0) and ¢;(1), respectively, are replaced by
points x; and y;, respectively, where \; - d(¢;(0),x;) < C and A; - d(c;(1),y;) < C for some
C > 0 (independent of 7). This motivates the following definition.

Definition 2.12. Let M be a complete connected n-dimensional Riemannian manifold
and r,C,& > 0. A point ¢ € M has the C(M,r, C, &)-property if the following holds:
There is a subset B,.(¢)" € B,(q) such that for all x,y € B,(q)’ there exists a time-
dependent vector field X : [0, 1] x M — T'M which is piecewise constant in time and has
compact support and an integral curve ¢ : [0,1] — M satisfying the following conditions:

a) The vector field X! is divergence free on Bior(c(t)) forall 0 <t <1,
b) d(z,c(0)) < C, d(y,c(1)) < C and
0) Jo (Mo (|| V- X1[3/2) (c(£)))?/3 dt < .

In order to construct the subset G2(g;), the following statement is used: There is a
rescaling factor such that, if a manifold is sufficiently close to R¥, the rescaled manifold
is close to a product. This statement will be proven by contradiction using the following
theorem of Kapovitch and Wilking where the first part is the first part of the original
theorem and the second is taken from its proof.

Theorem 2.13 (Rescaling Theorem [KW11, Theorem 5.1]). Let (M;, p;)ien be a sequence
of n-dimensional Riemannian manifolds and let r; — oo and p; — 0 be sequences of
positive real numbers such that B%i (pi) has curvature larger than —u; and B,{\:[i (pi) is
compact. Suppose that (M;,p;) converges to (R¥,0) for some k < n. After passing to a
subsequence, there is a compact metric space K with diam(K) = 10*”2, a family of subsets

G1(pi) € Bi(p:) with % — 1 and a sequence \; — oo such that the following holds:

a) For all g; € G1(p;), the isometry type of the limit of any convergent subsequence of
(NiM;, qi) is given by the metric product RF x K.

b) There exists a sequence & — 0 such that p; has the C(M;,1,C;, &;)-property where
C; = (‘3\—”.

i
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Lemma 2.14. Foré € (0,1), R > 0,7 > 0 and k < n there is 6= S(é,R,n;n, k) > 0 such
that for all pointed n-dimensional Riemannian manifolds (M, p) with lower Ricci curvature
bound Ricpy > —(n — 1) - 62 satisfying that Bl/g(p) is compact and

dan((M,p), (R, 0)) <
there is a factor A > 0 such that the following holds:
a) There are a subset of good points G1(p) C Bi(p) satisfying
volpr(Gi(p)) = (1 — &) - vola (Bi(p))

and a compact metric space K of diameter 1 such that for all ¢ € G1(p) there is a
point § € R¥ x K with
k ~
dan(ByM (q), B “¥(9) <n.

n n2
b) The base point p has the C(M, 1,2 '%\0 , €)-property.

Proof. The proof is done by contradiction (using the Rescaling Theorem).
Assume that the statement is false and choose the contradicting 0 < ¢ < 1, R > 0,
n > 0and k < n. Thus, for § = %, where i € N, there is (M;, p;) with lower Ricci curvature
bound Ricyy, > —”Z.—El > _% — 0 satisfying that B;(p;) is compact and
1
dan((M;, pi), (RF,0)) < n
such that for any \; > 0 statement a) or statement b) is not satisfied.
By Proposition 1.8 b), (M;,p;) — (R¥,0). Using the Rescaling Theorem and after

passing to a subsequence, there exist a subset of good points G1(p;) C Bi(p;) such that

vol(G1(pi))

— 1 asi— oo,
vol(Bi(pi))

there exists \; — oo and a compact metric space K with diameter 10~ such that

a’) for all ¢; € G1(p;) and all sublimits (Y, -) of (S\ZMZ, q;) there exists ¢ € K such that

(Y’ ) = (Rk XK, (07 q/))v
b’) for all z;,y; € G1(pi) there is a time-dependent, piecewise constant in time vector
field X; with compact support and an integral curve ¢; such that the vector field X!
is divergence free on Big(c;(t)) for all 0 < ¢ < 1, d(z;,¢;(0)) < %, d(yi, ci(1)) < &

Ai
and [} (Mx(||[V.X!|3/2)(ci(£)))%/3 dt — 0 as i — oo.

Choose these G1(p;), let \; := 107 . N — oo and K := 10" . K. In particular, this

satisfies diam(K) = 1. Assume infinitely many ¢ contradict the statement a). Without

loss of generality, let ¢ be large enough such that % > 1—&. Pass to the subsequence
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of those contradicting ¢ and choose points ¢; € G1(p;) which contradict the statement a).
After passing to a subsequence and using the Rescaling Theorem, (\;M;, ¢;) is converging
to (R* x K, §) for some point § € {0} x K. In particular,

. . k -
den(ByM (q:), BE *K(q)) <7

for i large enough, and a) is satisfied by i. This is a contradiction. Hence, only finitely
many ¢ contradict statement a).

Without loss of generality, assume that all ¢ satisfy a). Therefore, by assumption, b)
is not satisfied by any i. Let x;,y; € G1(p;) be contradicting and choose X; and ¢; as in
the Rescaling Theorem. In particular, X! is divergence free on Byo(c;(t)) for all 0 <¢ < 1

and both d(z;,¢;(0)) < 9% and d(y;,ci(1)) < 9%. Moreover, for i large enough,
fol (Mx(||V.XE3/2)(ci(t)))?/? dt < &. This is a contradiction. O

Now rescaling the sequence M; such that each element is close enough to R* and
applying the previous result, one obtains factors A; which basically are the sought-after
rescaling sequence. However, the lemma does provide A; for every i, but does not give
any hint about whether or not A\; — oo as ¢ — co. In order to prove \; — oo, the fact is
needed that spaces of different dimensions are not close. This in turn follows from the fact
that sequences of limit spaces do not increase dimension. For this, the following lemma
is needed which states that, given a converging sequence of proper length spaces, there
exists a rescaling such that the rescaled sequence converges to a tangent cone.

Lemma 2.15. Let (X;,pi) — (X,p) be a converging sequence of proper length spaces.
Then there exists p; — oo such that for all \j — oo with \; < p;, (\iXi,pi) subconverges
to a tangent cone of (X,p).

Proof. For ¢; — 0 such that dey((X;, i), (X,p)) < &, let p; := 5;1/2. For fixed r > 0,
let ¢ be large enough such that r < 5;3/2. Then i < % and

deu(B)Y, (pi), B, (p)) < 16 - dau(ByY, (pi), B, () <162 — 0 as i — o0

by Lemma 1.11 b). After passing to a subsequence, (u; X, p) converges to a tangent cone
(Y,q). Then

den(BE X (pi), BY (1)) < pi - dan(Byy, (pi), By, (0) + den(BFX (p), BY (4)) = 0,

and this proves that (u; X;,p;) subconverges to (Y, q).

Now let \; — oo with \; < p; and define a; := % € [0,1]. After passing to a further
subsequence, there is a < 1 such that a; — . By Lemma 1.10 ¢), both (A, X, p) — (Y, q)
and (\;M;,p;) — (aY,q). In particular, (\;X;,p;) subconverges to a tangent cone of
(X, p)- O

Let X" denote the class of all pointed metric spaces that can occur as Gromov-
Hausdorff limit of a sequence of pointed complete connected n-dimensional Riemannian
manifolds M; with lower Ricci curvature bound Ricpy, > —(n — 1).
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Lemma 2.16. Let (X;,p;) — (X,p) be converging spaces in X™ with dim(X;) = k < n
and dim(X) =1<n. Thenl < k.

Proof. In order to estimate dim(X), take a generic point € Xge, and construct a tangent
cone RU™X) " The idea of this construction is to consider sequences of manifolds M;;
converging to X;. For large ¢, these are sufficiently close to X, and applying Lemma 2.5
and Lemma 2.7 will give the claim. So, let (M;;,pi;) = (X4, pi) as j — oc.

Without loss of generality, let p € X be generic: Take any x € Xgen. For pf — x, then
(X5, p7) = (X, z) as well.

Choose a monotonically increasing sequence p; — oo such that (p; X, p?) — (R%,0)
as in Lemma 2.15. In particular, Ricy,n,; > —(n—1)- ,uz-_Q. Since the rescaled spaces
1;X; are k-dimensional as well, without loss of generality, assume (X,p) = (R!,0) and
Ricpr,; > —(n — 1) - §; for some monotonically decreasing sequence ¢; — 0.

Choose €; — 0 as in Lemma 1.10 a) such that

dan(B}.,(p:). BY.,(0)) < 5.
Without loss of generality,
deu(B)," (i) By, (p0)) < %
for al j € N. Hence,
don(B))" (piy), BY..(0) < &
Define g : RT™ — R™ by

g(w) =

g U <z< (51;1,
1 iffL’Z(sl,

let C1.1(n) be the constant of Theorem 2.8, ¢ = ¢(n) := 2 Ci.1(n) - Cpg(n, —1,%,1) and

X a2 .
choose § = o(12 g,1;n,1) as in Lemma 2.5. Let i be large enough such that ¢; < ¢ and

c 9

let j > J(i). Then Ricys,; > —(n — 1) - ¢; and, since g(d;) = &,

M; !
dor(B)f2 5 0ig), By (0)) < g(55).

Hence, there is a constant L = L(n) and harmonic L-Lipschitz maps f,ij : B{w “(pij) — R,

1 < h <, such that

l

l
P 30 WVELVED) = Ghunal + Y [ Hess(DI? dVag, <
B, " (pij) h1,ho=1 h=1

10—

In order to simplify notation, let

l

l
Fi= 3" (VST V1T~ nny| + > | Hess(f7)]%.

hi,ha=1 h=1
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Since
M, ij —n?
VOl({p € Bl/g (ng) ‘ MXl/Q(F ) > 10 })
< Cl 1(n2) ./]M” F’L] dV
10 Bl/? (pij)
S 01-1(73) ‘/]W” FZ] dV
10— B, i (pij)
C’l_l(n) 107712 M
10" 2.C — - vol(By 7 (pij))
: l—l(n)' CBG(n7_17§71)
1 M,
< 5 'VOI(B1/2] (pij))7
the set

Giji=A{p € By3 (pij) | Mxo(FY)(p) <107}

is compact with vol(Gy;) > 2 5 -vol(B 1/;7 (pij)). Applying Proposition 1.17 a), the sequence

(Gij)jen subconverges to a set G; C B1/2(pz) with positive volume, in particular, the
intersection with (X;)gen is nonempty. Without loss of generality, assume that (Gij;);en
itself converges to G; and choose g;; € G5 converging to a ¢; € (X;)gen-

Since (M;j, qij) — (Xi,¢:), there exists ,ué» — 00 (as j — o0) as in Lemma 2.15 such
that (H;Mija%'j) — (R*,0) as j — oo.

On the other hand, the maps

JFi'.: Zf’LJ. JM (qij)—HR

are harmonic and L-Lipschitz. Furthermore, for arbitrary » > 0 and j large enough such
that 2r <y,

l

s, 30 HOR R = el Vg
ij hi,ho=1
l

- ][ ST VSV~ Gl dVag, < 107
B Y. (qi5)

J ..
'r/,u,;. hi,ha=1

and

l
][W ZHHess ||2dV
By h1
l

E ][N ( ZHHess )2 dVag, — 0 as j — oo,
qU
L 1
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By Lemma 2.7, there exists a metric space Z and a point z € R! xZ such that

(M?Mij,qij) — (Rl XZ, Z) as _] — 0

In particular, R*¥ 2 R! xZ, and thus, k > [. O

Lemma 2.17. For all k < n there is g = eo(n,k) € (0, 155) such that the following is
true: If (X,p), (R¥ xK,q) € X™ for a compact metric space K with diam(K) = 1 and
dim(X) = k, then
k
der(BY) ., (), B$/5§K(Q)) > €0
Proof. The proof is done by contradiction to Lemma 2.16: Assume the statement is false

and let k£ < n be contradicting. For every ¢ € N, i > 100, choose (M;;, pi;) — (X, p;) and
(Nij, qi;) — (RF xK;, ¢;) as j — oo with diam(K;) = 1, dim(X;) = k and

| =

den((Xi,pi), (RY xKi, ;) < =

~

In particular, (X;, p;), (R¥ x K, ¢;) € &A™
For every ¢ € N there is J(i) € N such that

for all 7 > J(i). Define inductively j; := J(1) and ji41 = max{J(i),j;—1 + 1}. In
particular, j; — oo as ¢ — oo and

By Theorem 1.16, after passing to a subsequence, (M;j,, pij;) converges to some (X, p) as
i — o0o. In particular, (X,p) € X". By Lemma 1.11 b), for arbitrary » > 0 and i > r
. M;;,
der(B;Y (pi), Br ' (pig;)
. Mi;.
<16 - dgu(B;" (p:), B; ' (pij,))
16

< — —0asi— oo.
)

This implies
der(BY (pi), B (p))
_ M. M, .
< deu(BXi(pi), Br " (pij,)) + den(Br 7 (piz,), B (p)) — 0 as i — oc.

Hence, (X;,pi) — (X, p), where, as seen before, (X, p) € X". With analogous argumenta-
tion, after passing to a further subsequence, (R¥ x K, ¢;) — (R* x K, q) for some compact
metric space K with diam(K) =1 and (R* x K, q) € X™.
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On the other hand, for » > 0 and ¢ > r,

k .
den(BY *%i(g;), BX (p))
< dgu(BY *i(g;), By (1)) + dau(BYi (pi), By (p))
<16 - deu(BE i (g;), BX (9i) + dan(BYi (p;), BX (p)) — 0 as i — oo

Hence, (]R]’C xKi,q) — (X,p). In particular, X = R* xK and dim(X) > k. This is a
contradiction to dim(X) < k by Lemma 2.16. O

Using this lemma, the sought-after rescaling sequence and family of sets can finally be
constructed.

Lemma 2.18. Let (M;,pi)ien be a collapsing sequence of pointed complete connected n-
dimensional Riemannian manifolds which satisfy the uniform lower Ricci curvature bound
Ricpy; > —(n —1) and converge to a limit (X,p) of dimension k < n. For every & € (0,1)
there exists 65 = (52(5 n,k) > 0 such that for all0 < r < 59 and q; € M; with

dGH((r_lMia %)7 (Rk, 0)) < d2

there are a family of subsets of good points G*(q;) C By(q;) with

vol(G7 (i) > (1 - &) - vol(B:(a:))
and a sequence \;j — oo which satisfy:

a) For each z; € G?(q;) there is a compact metric space K; with diameter 1 and a point
z; € {0} x K; such that

€0

dGH(B)\ M( i) BR i 1(7;)) < 200

1/e0 1/e0

for eg = eo(n, k) as in Lemma 2.17.

n n2
b) The points q; have the C(M;,r,2 /{? , €)-property.

Proof. For carefully chosen do, this is a direct consequence of rescaling the manifolds with
a factor = where 0 < r < Jy and applying Lemma 2.14 to the rescaled manifolds: For

g€ (0,1), let &y = d2(&;n, k) be the (2 n, k) of Lemma 2.14.
Let 0 <r < 52 and g; € M; with

’a 7200’

den((r~'M;, q;), (R¥,0)) < do.
Because of Ricy, > —(n — 1),

Ric,-1p, > —(n—1)-1? > —(n—1) - 62.
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TflMZ‘
1/82

~ ~ -1 .
Lemma 2.14, there exist A; > 0, a subset G1(¢;) C B} Mi(g;) with

Since M; is complete, %Ml is complete as well, and thus, B (¢;) is compact. Due to

vol(Gi(a:)) = (1 —2) - vol(B] Mi(gy))

and a compact metric space K; with diam(K;) = 1 such that for every z; € él(qi) there
is #; € {0} x K; with

Xir—1M; R* XK,/ ~
dGH(Bl/ZO (ZEi)aBl/gO (mz)) < %

and for all x;,y; € él(qi) there are a time-dependent vector field X; with compact
support which is piecewise constant in time and an integral curve ¢; such that both

2 n TL2 . .
d,—1p7,(2,¢i(0)) < % and d,—1,(y,¢i(1)) < %, the vector field X! is divergence

free on BglMi (ci(t)) for all 0 < ¢ <1 as well as
1
,,,71 f N
/0 (M M (17X %) (e:(1)))2/% dit < .

Define \; := % and regard G2(¢;) :== G1(qi) C B{ilM"(qi) = BMi(g;) as a subset of
M;. Then ~
VOlMi(G%<qi)) . VOlrflMi(Gl (q,)) >1_ é

volMi(BvMi(q@‘)) vol, -1y, (BI_IMi(Qi)) B

Moreover, given z;,y; € G2(¢;), fix the corresponding X; and ¢;. Then X! has compact
support and is divergence free on B%;; (ci(t)) forall 0 <t <1,

97 . 10" 9".10" 9" . 10"

du, (z,¢(0) <7 5 N, and  dp,(y,ci(1)) < y

and
/ I(szr<||v.Xt||3/2><ci<t>>>2/3 dt < 2.
0

Assume that the sequence (\;);en is bounded. After passing to a subsequence, A; — «
and (\;M;, z;) — (aX, q) for some ¢ € X. Since

don(BYM (@), By, (@) < %,
one has
don(BSX (0), By, 2 (3:)) < =0
for all ¢ large enough in contradiction to Lemma 2.17. Hence, \; — oc. O

This concludes the construction of G}(g;), G2(g;) and ;.
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2.3 The C-property and the dimension of blow-ups

In order to prove that the blow-ups with base points z; and y;, respectively, have the
same dimension, a crucial argument is that the flow of a time-dependent vector field as
in the definition of the C-property is bi-Lipschitz on some small set. This result and the
implication about dimensions are proven in this section.

For the proof it is important to know under which conditions large subsets of two balls
intersect. The following lemmata deal with this question.

Lemma 2.19. Let (X,d,vol) be a metric measure space and A’ CAC X, BB CBCX
measurable with

vol(A") > (1 — &) - vol(A),
vol(B") > (1 — &) - vol(B),
vol(AN B) > 2¢ - max{vol(A), vol(B)}

for some & > 0. Then vol(A’ N B’) > 0, in particular, A’ N B' # (.

Proof. By hypothesis, vol((4 N B) \ 4') < vol(A\ A’) < &-vol(A) < 5 -vol(AN B).
Analogously, vol((AN B) \ B') < 5 - vol(AN B). Thus,

vol((ANB)\ (A NB")) <vol((AnB)\ A") + vol((AN B) \ B')
< vol(AN B).

Therefore, vol(A’ N B’) = vol(AN B) —vol((AN B)\ (A’ nB")) > 0. O

Lemma 2.20. Let (M,g) be a complete connected n-dimensional Riemannian manifold
with lower Ricci curvature bound Ricyr > —(n—1). Given 0 < &€ < % and s > 0, there exist
do(n,&,s),00(n,&,s) > 0 such that (dp(n), %—%) is non-empty and for § € (dp(n), ﬁ—%),
points p,q € M with distance d := d(p,q) < do and R := % +dd < %,

vol(Bgr(p) N Br(q)) > 2¢ - max{vol(Bgr(p)), vol(Br(q))}.

Moreover, this §g can be chosen to be monotonically increasing in dy.

Proof. Let p,q € M be arbitrary, v : [0,d] — M be a shortest geodesic connecting p and
q and m := ’y(g) be the midpoint of this geodesic, i.e. d(p, m) = d(qg,m) = %.
First, let r > 0 be arbitrary. Observe B,(m) C Bg/a4,(p) N Byj24+.(q). Moreover,

Bgijotr(P) € Bajasrtdpm)(m) S Bayr(m). Then, by the Bishop-Gromov Theorem,

VOI(Bd/Z—H"(p) de/Q—i—r(Q)) > VOI(BT(m)) > 1
vol(Bg/a4r(p)) ~ vol(Bgir(m)) = Cpg(n,—1,r,d+71)’

Now let Cy := % > 1 and 7 :=7(n,&,s) = min{é?é?ol)), %} For 0 < d < 27, define

So(n,,d) :=inf{§' > 0| V5> 5 : fns(5d) < Co} € [0, 00



34 2 Local construction

where for § > 0 and r > 0,

1
fn,(S(r) := Cpa (TL, -1, (1 + 5) : T)'
In fact, this 0g(n,&,d) is finite and monotonically increasing in d as will be proven next:
Assume 6p(n, €,d) = oo, i.e. there exist d,, — oo such that f, 5, (dmd) > Cp. Then,
applying Lemma 1.2,
1
F 5 (6md) = C (n, =1,0md, (1 + )bl
m
= Cpg(n,—1,6md, 6pnd + d)

(n—1)d

—e as m — oo,

and this implies e(”_i)d > Cy. On the other hand, e D4 < ¢2(n=D7 < . This is a
contradiction. Thus, dg(n,&,d) < oo.
0

Now let di < d2 and 6 > dp(n, &, dz). Since f, s is monotonically increasing in 7,
Co > fns(0d2) > frns(ddy),

i.e. § > 0g(n,&,dy), and this proves the monotonicity of dg(n,&,-).

Hence, So(n, g,d) decreases for decreasing d whereas é — % increases. Therefore, there
exists do = do(n, &, s) < 27 such that dp(n,&,d) < é — % for d < dp. Let

6o = 0o(n,2,8) := do(n, &,do(n, &,s)) = max{do(n,&,d) | 0 < d < do}

1

where the monotonicity of dy is used in the last equality. For d < dy and 8y < & < sdo ~ %,

let
R::g+5d:<%+6)‘d<(l—ki—l)'do:é.

2 2 sdg 2
Then
vol(Bgr(p) N Br(q)) 1 1 1 )
> = — = 2¢. O
Vl(Ba(p) = Cpoln,—1,6d,d+0d)  fag(6d) ~ Co -

The next lemma will only be needed in chapter 3 but is already given here since its
statement and the proof are similar to the previous one.

Lemma 2.21. Let (M,g) be a complete connected n-dimensional Riemannian manifold
with lower Ricci curvature bound Ricyr > —(n—1). For all 0 < & < % and R > 0 there is
do = do(n,&, R) > 0 such that for all p,q € M with d(p,q) < do,

vol(Br(p) N Br(q)) > 2¢ - max{vol(Br(p)), vol(Br(q))}-
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Proof. Similarly to the proof of Lemma 2.20, for arbitrary points p,q € M with distance
d :=d(p,q) < 2R, observe

vol(Br(p) N B
vol(Br(p)

R(Q)) > 1 .
) = Cpg(n,—1,R— 4, R+ 9)

Since Cpg(n,—1,R — g,R + g — 1 as d — 0, there is dy = dy(n,é, R) € (0,2R) such
that Cpg(n, —1,R— ¢, R+ ¢
d(p,q) < do,

)
) < i for all d < dp. In particular, for points p,q € M with

vol(Bgr(p) N Br(q)) > 2¢ - max{vol(Bgr(p)), vol(Br(q))}. O

An important notion for investigating the C-property is the distortion of a function
which describes how much a function changes the distance of two points. In particular,
it will be important to know how much a flow changes the distance of two points up to
some fixed time.

Definition 2.22. For a map f : M — N between Riemannian manifolds the distortion
of f is the function dt/ : M x M — [0,00) defined by

dt! (p,q) := |dn (f(p), £(q)) — dar(p, q)-

If ® is the flow of a time-dependent vector field on M, ¢t € [0,1] and p,q € M, denote
o := D(0,t,-) and let

dt(t)(p, q) := max{dt*" (p,q) | 0 < 7 < t},

and for r > 0, let

dt-(t)(p, q) := min{r, di(t)(p, q)}.

The subsequent lemma generalises [KW11, Lemma 3.7] and can be proven completely
analogously to it.

Lemma 2.23. For & € (1,2) there exist C = C(n,a) and C = C(n, &) such that the
following holds for any 0 < R < 1: Let M be an n-dimensional Riemannian manifold with
Ricpyy > —(n—1) and X : [0,1] x M — TM be a time dependent, piecewise constant in
time vector field with compact support and flow ®, ¢f = ®(s,t,-) and ¢ : [0,1] — M be
an integral curve of X such that X' is divergence free on Bior(c(t)) for all t € [0, 1].

Let & := fol(MXR(HV.XtH)) oc(t)dt. Then for anyr < £,

][ dt,(1)(p, q) dV(p,q) < Cr - &.
By (c(s))x Br(c(0))

Furthermore, there is a subset B,(c(0)) C B,(¢(0)) with ¢(0) € B, (c(0))" such that

vol(B,(¢(0))") > (1 — C&) - vol(B,(c(0))).
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Finally, for any t € [0,1],
w7 (Br(c(0))") C Bar(c(t))
and

vol(B,(c(t))) < C - vol(B,(c(0))).

Proof. The proof can be done completely analogously to the one of [KW11, Lemma 3.7]

by replacing {5 in the induction by -~ where m = 2 - gﬂ > 0. Again, the constants C

and C can be made explicit in terms of the constant appearing in the Bishop-Gromov
Theorem. O

The following lemma states that the flow of a time dependent vector field as in the
definition of the C-property is Lipschitz on certain small sets.

Lemma 2.24. Given a € (1,2), there exist Cy = Cy(n, ) and C}) = Cy(n,a) such that
for0<é< ﬁ and 0 < R <1 there is 7o = 7o(n,&,a, R) < 20% satisfying the following:

Let M be an n-dimensional Riemannian manifold with lower Ricci curvature bound
Ricpy > —(n—1), X : [0,1] x M — TM a time dependent, piecewise constant in time
vector field with compact support and flow ®, o5 := ®(s,t,-), oy = @Y, ¢ : [0,1] = M
an integral curve of X such that X' is divergence free on Biggr(c(t)) for all t € [0,1] and
Jo (MaR([[V.X[372) (e(£))%/% dt < .

Let p := ¢(0) and 0 < r < 7. Then there exists a subset B.(p)” C B,(p) containing
p with vol(B,(p)") > (1 — C4V/E) - vol(B,(p)) such that ¢y is a-bi-Lipschitz on By.(p)" for
any t € [0, 1].
Proof. Define & := 2 € (1,3) C (1,2) and fix the following constants:

e Let C = C(n,a) be the C(n,a&) and C = C(n,a) be the C(n,d) appearing in

Lemma 2.23.

e Let C = C(n) > 0 be the constant of [KW11, formula (6)] satisfying
M, Mo ()] () < Cm) - (Mg (£2) (@)
for any f € L3?(M) and 0 < p < 1.
e Let Cy = Cy(n, ) :=C-C.
o Let €)= Ch(n,a):=C? + \/g

Fix 0 < € < min {ﬁ, 1} and 0 < R < 1. First, observe

1 1
g = / (Mxa(|[V. X)) (c(t)) dt < / Mg (M ([[V. X)) (e(t)) dt
0 0
1
<C. / Mo ([[V. X1[/2)2/3 (c(1)) dt
~ 0

N

< CE.
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In particular, C& < Cpé < 5 By Lemma 2.23, for all r < 10,
][ dt-(1)dV<Cr-g <Coé-r
r(p)xBr(p)

and there is a subset B,(p)’ C B,(p) containing p with

vol(B,(p)') > (1 — Cy&) - vol(B,(p)) > (1 — C&) - vol(B,(c(0)))
and ¢¢(By(p)") C Bar(c(t)) for all ¢t € [0,1]. Furthermore, for r <

10’

vol(B,(p)) vol( ( ))

Ll ey o o)

10’ 10 vol(B;(p)’)
1 « C

Lo E) 1-CF

N 1 «
20 - ( 7_1a 777)
<2C - Cgaln 10° 10

< CBG(TL, _17 T, 0[7") '

Moreover,

1
][ - / Mxg(|V.XE) o i) didV(z)
p

1
| wimor [ MV o ) avie) d
o vol( B (p)’

l

C(t ) X "N (z x
/ vol - (p)’ ]ém(c( ))M r(IV.X"[)(z) dV(x) di

<

B p),) /%(Br(p), Mcp(IV. X ) (&) dViw) dt

IN

~

e | Og% | Mxa(V-X ) Vi) de

IN

1
<20 / <MXQR<HV.Xt|r3/2>>2/3<c<t>> i
0
<C?.Ce.
Define

By(p)" = {x € By(p |/ Mg (|V.X!) o i) di < C - VE}.
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Observe p € B,.(p)” due to ¢:(p) = ¢(t) and fol MXR("V~Xt]]) o ct) dt < Gz < & VE
Furthermore,
.oy Jo Mxr(| VX)) 0 0i(z) dt dV(x)
C -z

vol(B,(p)") > (1 ) -vol(B,(p))

C?.Ce ,
> (1= s el e))
> (1— C2VE) - (1 — Coé) - vol (B, (p))
> (1— (C2VE + Co2)) - vol (B, (p))

> (1 - Gy V&) - vol(By(p))

using C’(’):CAQ—I—\/%:CA’Q—I—CO- ﬁ > C2? + Cyv/e.

Moreover, points in B;(p)” have the following property: Fix t € [0,1], a € B,(p)” and
let @ := ¢¢(a). In particular, fol Mxg(||[V. X)) 0 ¢i(a) dt < C -V and, by Lemma 2.23,
for any p < £ there are subsets B,(a)’ C B,(a) and B,(a)’ C B,(a) such that

vol(B,(a)) > (1 - Cov2) -vol(B(a)) and  (By(a))  Bay(a),
vol(B,(@)') = (1~ Cov2) -vol(B, (@) and ¢! ,(B,(@))  Bapla)

where CovVé < Cy - & < %
Let dy = do(n,é,a,R) and §y = dp(n,&, o, R), respectively, denote the constants
do(n, CoVe, %) and dy(n, CoVe, l—lg), respectively, of Lemma 2.20. This dy < % can be

chosen small enough such that §y < % — a%rl = % — % < % Define
d, R
7o = To(n, &, a, R) := i < 200"

From now on, assume r < 7y and let b € B,.(p)” be another point. In particular,

d := d(a,b) < 2r < %0 < dy. For arbitrary 6y < § < 1, let p := (3 + 6)d < £&. By

Lemma 2.19 and Lemma 2.20, there exists a point z € B,(a)’ N B,(b)’. Thus,
d(ei(a), pi(b)) < d(pi(a), p1(2)) + d(i(2), @1 (b))
<2-ap
— & (26 +1)d.

Since § > 6o was arbitrary and (209 + 1) - @ < «, this proves

d(@t<a)7 Sot(b)) Sa- d(av b)

For a = ¢y(a) and b = ¢ (b) as before, d(a,b) = d(p¢(a), p¢(b)) < a - 2r < dy and the
same argumentation as before gives

d(a’v b) = d((pt—t(d)a Sot—t(l;)) <a- d(dv 6) =oa- d(@t(G’)v (Pt(b))

Thus, ¢; is a-bi-Lipschitz on B,(p)” for r < 7. O
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If a sequence of manifolds satisfies the previous lemma and the rescaled manifolds
endowed with the end points of the integral curve as base points converge, the limits have
the same dimension.

Lemma 2.25. Let (M;);en be a sequence of n-dimensional Riemannian manifolds which
satisfy the uniform lower Ricci curvature bound Ricp, > —(n —1). For every i € N,
let further X; : [0,1] x M — TM be a time dependent, piecewise constant in time vec-
tor field with compact support and flow ®;, ¢! := ®;(0,t,-), ¢; : [0,1] = M; be an in-
tegral curve of X; such that X! is divergence free on Bior(ci(t)) for all t € [0,1] and
o (Mx2p (| V.XEP72) (ei(1)))?/3 dt < & for some 0 < 7 <1 and & > 0.

Assume ;= ¢;(0) and y} = ¢;(1) satisfy d(z},y.) < 2 and let \; — oo such that
(NiM;, ) = (X, 200) and (MM, yl) = (Y, yoo) as i@ — co. Then dim(X) = dim(Y).

Proof. The proof consists of three steps: First, for arbitrary radius r > 0, construct a
bi-Lipschitz map between subsets of BX (x) and BY (yso), cf. Figure 2.1. Next, observe
that these subsets have positive volume. In particular, they intersect the set of generic
points. Finally, repeating the argument for the limit spaces proves the claim.

Choose any a € (1,2). Without loss of generality, let ¢ € N be large enough such
that » < \; - 7o where 7y = 7o(«) is the constant from Lemma 2.24. Furthermore, let

Bi\fj\l(a;;)” - Bi\fz\z(m’;) and ¢} : Bi\ﬁ\l(m;)" — Bé\f/)\l(y;) be as in Lemma 2.24. Since
(yi) which is

¢} is a-bi-Lipschitz, it can be extended to a map ¢} : Bi‘;[;\(x;)” — Bi\{i/)\l
a-bi-Lipschitz as well.
In order to regard ap} as a map \;M; — \;M; instead of a map M; — M;, let GG; denote

this closure B%S\Z («})" regarded as a subset of Bﬁ‘iMi (x}) € \iM;. Correspondingly, define
fi : Gi = BAMi(y!) by fi(q) = }(q), cf. Figure 2.1. By definition, this map is a-bi-
Lipschitz and measure preserving.

By Lemma 1.12, there exists a compact set S, C BX(s,) which is the sublimit of the
G; and an a-bi-Lipschitz homeomorphism f, : S, — f.(S,) such that f,(S,) is a sublimit
of the f;(G;), cf. again Figure 2.1.

Now find a point zg € S, such that both ¢ and f,(z¢) are generic: By Proposition 1.18,

Ul Ul Ul
BY @y = G X s,

7Mi ~ D\: . )
B, i) = BYMi(y)) —— B, (yoo)

Figure 2.1: Sets and maps used to construct f, : S, — Bar(Yoo)-
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there exists a constant C' > 0 such that

VOlY(fr(ST N Xgen) N Ygen)

= VOIY(fr(Sr N Xgen))
=C- Vle(ST N Xgen)
=C- VO])((ST) > 0.

Hence, there exists g € S, N Xgen with image fr(29) € Ygen. By similar arguments
as before, the a-bi-Lipschitz maps Af, : (AS,,z0) = (Afr(S;),y0) which are defined by
Afr(z) := fr(z) (sub)converge to an a-bi-Lipschitz map f : Soc — SL, as A — oo.
Since z¢ and f(x¢) are generic, one has Sso C RI™X) and Sl C RA™(Y), Furthermore,
vol(S) > 0. This implies

dim(X) = dim(Y"). O

2.4 Proof of the main proposition

Now Proposition 2.1 can be proven: The idea is to intersect the sets constructed in
Lemma 2.9 and Lemma 2.18. For fixed base points x; in the intersection and the \;
of Lemma 2.18, the (\;M;, z;) are both close to products (R¥ x K;,-) and converging to
a product (Rk xY,-) where the K; are compact with diameter 1 and Y is some metric
space. The following (technical) lemmata show that this space Y in fact is compact.
Subsequently, the main proposition can be proven.

A map f: (X,dx) — (Y,dy) between two metric spaces is called e-isometry, where
e >0, if |dy (f(p), f(q)) — dx(p,q)| < ¢ for all p,q € X.

Lemma 2.26. Let R > 7 >0, >0, k€N, f: Sg:= SE(0) = BE(0)\ BE" (0) be
a contmuous e-isometry with € < 2 - (R —r) and define pr : B%k (0) \ ng_r(O) — Sgr by
pr(p) == IIPH -p. Then prof : Sg — Sg is surjective.

Proof. Denote the distance function on R* by d and distinguish the two cases of r = 0
and r > 0: First, let r =0, i.e. f(Sgr) C Sk and pr = id. Assume that there exists a point
p € Sk \ f(Sg) and define j : Sk \ {p} — R*~! as the stereographic projection. Then the
composition j o f : Sp — R¥1 is continuous and, by the theorem of Borsuk-Ulam, there
exist £q € Sg such that jo f(q) = jo f(—¢q). Since j is a homeomorphism, f(q) = f(—q),
and hence, € > |d(f(q), f(—q)) — d(q, —¢)| = 2R. This is a contradiction. Therefore, f is
surjective.
Now let r > 0 be arbitrary. For any p,q € B}%k(O) \B}%Z(O),

ld(prof(p),prof(q)) —d(p,q)|
<ld(prof(p),prof(q)) —d(f(p), f(q)) !+!d( (p), f(q)) — d(p, q)|

<d(prof(p), f(p)) +d(prof(q), f(q)) +
<2r+e.

Thus, prof is a continuous 2r + e-isometry and, by the first part, surjective. O
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The following lemma states that, if two products R*¥ x X and R*¥ xY are sufficiently
close and X is compact, then Y is compact as well with similar diameter as X.

Lemma 2.27. Let (X,dx) and (Y,dy) be complete length spaces, X be compact, xg € X,
Yo € Y and define
rady (yo) := sup{dy (y,y0) | y € Y}.

Let k € N, R > diam(X) and € > 0. Then the following is true:
a) If diam(X) + 4 < 28 and dgu(BE *X((0,20)), BE Y ((0,5))) < §, then
min{ R, rady (y0) }*> < diam(X)? + 2 - diam(X) + 4&(R + ¢).

b) If diam(X) =0 and dGH(B}%k XX((O,J:O)),B%k “Y((0,90))) < &, then Y is compact
with diam(Y) < 2R.

c) If diam(X) =1, R > 100 and dGH(B;I,%k XX((O,SCO)),BEL?c “Y((0,30))) < Too7, then
Y is compact with ¢ < diam(Y") < 5¢ for some constant ¢ > 0.

d) If 1000 - diam(X) < R < L - diam(Y"), then
dan(BE *X((0,20)), BE *Y((0,40))) > 20 - diam(X).

Proof.  a) The idea is to map both the set Sk x {yo} and the point (0,y) to RF xX
via e-approximations, to take the projection onto the Euclidean factor and to find
an upper and lower estimate for the distance of the obtained set and point. Finally,
comparison of this upper and lower bound gives the result.

As in Proposition 1.8, let (f,g) be e-approximations between B%k *X((0,20)) and
—mk .
Bl Y ((0,50)) with f((0,z0)) = (0,y0) and g((0,y0)) = (0,zo). Let

d:=diam(X) and §:=min{R, rady(yo)}.
For each n € N, n > 1, choose y, € Y such that ¢ — % < Oy = dy (yn,yo) < 6. (If
rady (yo) > R, choose 3, € OBr(0) which is nonempty since Y is a length space;

otherwise, by definition, there exists a sequence g, satisfying dy (¢n,yo) > J — %)
In particular, J, is convergent with limit §.

Let Sg := GBB%IC(O) CR* and S := g(Sg x {y}) € R¥ xX, cf. Figure 2.2. Then

N
= dgk v ((0,9n), Sk X {yo}) — €
< dgk XX(g(O,yn),S)

= min {\/de (Prx(9(0,yn)), Prex(p))® + dx (prx (9(0, yn)), prx(p))? | p € S}

< \/de(erk(g(O’yn)),erk(S))Q+d2
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BE Y ((0,40)) BE *X((0,20))
Ul Ul
OBE" (0) x {yo} = Sr x {vo} 9(Sr x {yo}) =S

Figure 2.2: Definition of S.

proves the lower bound

g (b (90, ), pri(9)) = \/ (VRZ 02 — )2 — 2.

In order to find the upper bound, choose a number m € N, m > 1, with % <e
and let A be a spherical triangulation of Sk such that the set of vertices I' of A
is a finite %—net in Sk and each two vertices of a simplex have (spherical) distance
at most % (Notice that their Euclidean distance is at most % as well.) Define
I =T x {yo} and h := prgxog : I' — R¥ and extend h to a continuous map
H:Sgpx{y} — ng(()) \ B%k—(aws o) (0) by mapping each (spherical) simplex of A
with vertices ~; continuously to the corresponding (Euclidean) simplex in R* with
vertices h(7;), cf. Figure 2.3. Since I' is finite, H is continuous.

Then h(I') defines an (1 + ¢)-net in H(Sg x {yo}): Since each two vertices of a
simplex in A have (Euclidean) distance at most %, their images have distance at
most -+ + e. Hence, each points € H(Sg X {yo}) is contained in a Euclidean
simplex whose vertices have pairwise distance at most % + £. Recall that, since the
simplex is Euclidean, x has distance at most % + € to each of these vertices. Let
h(7y) denote one of those vertices. In particular, z € By /y4-(h(7)), and this proves

H(Sk > {yo}) € U{Bijm+(v) | 7' € HIT)}.

Furthermore, H is a (5¢+d)-isometry: Let p,q € Sg be arbitrary. Choose points
Yp, Vg € I' such that dgk(p,vp) < % and dgr(q,74) < % By construction,

de(H(p,?JO)»h(’vayo)) < + ¢,

1
m
and thus,

|dgr (H (p,y0), H(q,90)) — dgr .y (P, 90), (4, 90))]

< |dgr (H (P, y0), H(q:y0)) — dgr (h(p, Y0)s (g, o))
+ |dge (A (p, Y0), B (Vg Y0)) — dgr o x (9(7p, 90), 9(7g> ¥0))|
+ dgr  x (9(7p: ¥0): 9(Vg: Y0)) — dgr ey ((Vp2 ¥0), (g5 Y0)|
+ \de (’Yp77q) — dgk (p,q)|
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_ h = prpx og
P=Ix{y} —— h(I)
Ml I
Sr % {yo} H(Sr x {yo}) CR*
Ul Ul

Ay, - ym) = A(n); -+, hl(ym))

Figure 2.3: Definition of H.

< dpi(H(p, yo), M(Vp, y0)) + dpe (H(q,y0), M(7g, ¥0))
+ (de (erk °g ('7p7 yO)» prrrxog ('an yO))2
1/2
+dx(prx og (Y, %), Prx © g (Yg: %0))?) /

— Rk (erk ©g (’Ypa Y0)s Prrkog (’an Y0))
+e

+ de (p, ’Yp) + d]Rk (97 ’Yq)

1 1
<2 (— +s) +dx(prx g (Y, ¥0),Prx 0 g (Vg %0)) +€+2- —

m

4
< —+3e+d
m

< b5e+d.

m
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Finally, verify H(Sg x {y0}) € Br(0) \ Br—(a+3:)(0): Let p € S be arbitrary and

choose v, € I" such that d(p,v,) < % Then

digr ((p, Y0, Prgic(0, 20))
= dpr (Prgx (9(Vp; ¥0)), Prrr(9(0,%0)))

=/ x (90, 90), 900,40))* = dx (brx © g (35, 30); Prx 09 (0, 30))?

> \/(de xY((’Ypyyo), (0,90)) — €)2 — d?

= V(R_€)2_d27

and hence,
de (H(p7 yO)a 0)
dig: (h(p, Y0), Prgx (0, 0)) — dgr (H (p, 90), h(7p, %0))
2
_v2_72_ (=2
(R—¢)?—d <m + 6)

> ((R—¢) —d) — 2
=R (d+3¢).

v

v
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Figure 2.4: Points used to estimate dgr (prgx(g(0,yn)), prx(S)).

Then the image of H intersects each segment o from the origin to a point in dBr(0):
By Lemma 2.26, since 2(d+3¢)+(5e +d) < 3(d+4¢) < 2R, the segment o intersects
OBRr(0) in a point contained in proH (Sr x {yo}) where pr is the radial projection
to the sphere defined as in Lemma 2.26. Since the projection is radial, o intersects

H(Sr x {yo}) as well.

Let p be this intersecting point for the segment through prgx (9(0,yy)), cf. Figure 2.4.
Since h(I' x {yo}) is a (Z +¢)-net in H(Sg), there exists a point ¢ € h(I') such that
dgr (p,q) < 2 +e. Thus, using prpx(S) = prgx og(Sg x {yo}) 2 A(I') > ¢ and that
the segment from pryi(g(0,yn)) to p is part of a segment connecting the origin and
the boundary of the R-ball,

dr (PrRe(9(0, yn)), Prex(S)) < dgr (Prex(9(0,yn)), @)
< dyi (Pree(9(0,yn)), p) + dgr(p, q)

§R+<%+€>.

Now m — oo proves

VVRET 02— )2 — @ < dge (pras(9(0, yn)), prge(9)) < R+,

and thus,

5n§\/( (R+e)??+d?+¢e)?—R?

= \/2R5+d2 +2e242v/(Re +€2)2 + (£d)2
<Vd>+2ed+4e(R+e).

Since this is true for all n and 6, — ¢ as n — oo, this proves the claim.

Let € := %. Then diam(X) +4¢e = %, and by a),

24
min{ R, rady (y0)}* < 4e-(R+¢) = 3 R? < R?.

Thus, rady (yp) < R, and this implies diam(Y) < 2-rady (yo) < 2R.
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c) Let e:
Re =

WlR' Then diam(X) +4e <1+ % < R- 7% and a) can be applied. Since

=2.10"2and e < 2-107%,

gl i

min{ R, rady (yo)}* < diam(X)? 4 2 e diam(X) + 4&(R + ¢)
< diam(X)? +4-107* - diam(X) +8-1072 +4-1075.

Using diam(X) =1,

min{ R, rady (y0)}> <1+2-1072+107* + 1078
< 1.05°
< R%.
In particular, diam(Y) < 2-rady(yo) < 2-1.05 = %.
On the other hand, by permuting X and Y,

i _ (dian;(X))Q < radx (z0)?

= min{ R, rad x (z9)}*
< diam(Y)? +4-107* - diam(Y) +8-1072 +16 - 1075,

and this implies diam(Y) > 2f =: c.

d) Assume dGH(B;%k XX((O,JUO)),B%IC Y ((0,0))) < 20d for d := diam(X) and define
€ :=40d. By choice of R,

In particular, diam(X) +4e =161-d < % ‘R < %. Furthermore,

2rady (yo) > diam(Y') > 2R.

By a),
R? = min{ R, 1"ady(y0)}2
<d*+2ed+4e(R+e)
R? 2R? 4R 26R 166481 _,
<4y T .
- 10‘3+25-103jL 25 25 106 <t
This is a contradiction. O

Using these results, the main proposition of this chapter finally can be proven.
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Proposition 2.1. Let (M;, p;)ien be a collapsing sequence of pointed complete connected n-
dimensional Riemannian manifolds which satisfy the uniform lower Ricci curvature bound
Ricpy, > —(n — 1) and converge to a limit (X, p) of dimension k < n. Given & € (0,1),
there exists 6 = S(é; n,k) > 0 such that for any 0 < r < 6 and q; € M; with

dan((r™"M;, q;), (R¥,0)) <
there are a family of subsets of good points Gy(q;) C By(q;) with
vol(Gr(gi)) > (1 — &) - vol(B,(g;))
and a sequence \; — 0o such that the following holds:

a) For every choice of base points x; € Gy(q;) and all sublimits (Y,-) of (\iM;, x;) there
exists a compact metric space K of dimension | < n —k satisfying % < diam(K) <1
such that'Y splits isometrically as a product

Y 2 RF xK.

b) If acll,x? € G,(qi) are base points such that, after passing to a subsequence,
()‘ZMlvxz) - (Rk XKJ: )
for 1 < j <2 as before, then dim(K;) = dim(K>).
Proof. Given & € (0,1), let
61 = (é;m,k) > 0 be the 1 (g, n, k:) of Lemma 2.9,

by = Sg(é; n,k) > 0 be the b9 (%, n, k> of Lemma 2.18

and define

=

o 1 A A
d=90(&n,k):= 6 min{dy, do} > 0.
Furthermore, let g9 = g(n, k) € (0, 135) be as in Lemma 2.17. Let 0 < r < 6 and g; € M;
with )
dGH((rilMia QZ)a (Rka 0)) <.

In particular, by Lemma 1.11 b),
den((r™ Mi,q;), (R*,0) < b1 and  dep((r™' Mi, ;). (R*,0)) < b

The remaining proof splits into several steps: First, define the family of subsets
G,(¢;) € By(¢;) and the rescaling sequence \; — oo and verify the volume estimate.
Secondly, check that sublimits of the rescaled sequences split into a product of R* and a
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compact factor with the claimed diameter bound. Finally, prove that each two sublimits
coming from the same subsequence have the same dimension.
By Lemma 2.9, there is a family of subsets

Gy (a) C Br(a:)

with vol(GL(g:)) > (1 — %) - B,(q;) such that for arbitrary pu; — co and z; € G(g;) each
sublimit of (u;M;,x;) splits off an R*-factor. Furthermore, Lemma 2.18 gives a sequence
A; — 0o and a family of subsets

G2(q:) € Br(ai)

satisfying vol(G2(g;)) > (1—5)-vol(B,(g;)) such that for all z; € G2(g;) there is a compact
metric space K; with diam(K;) =1 and Z; € {0} x K; satisfying

M k L
don(Byfey (i), By o™ (7)) < 5o

n n2 a
and ¢; has the C(M;,r, 2 )1\? , 5 )-property.
Fix this \; — oo and define G..(¢;) := G(¢;) N G%(¢;) € B,(g;). Clearly,

vol(Gr(gi)) > (1 — &) - vol(B,(q;))-

Let z; € G,(¢;) and (Y,y) be a sublimit of (\;M;, ;). Using z; € G(g;), there are a
metric space Y’ and 3/ € {0} x Y’ such that (Y,y) = (R¥ xY”,3/). On the other hand,
since z; € G2(q;),

€0

i M; RF XK / ~
dGH(Bl/EO (561)731/80 (7;)) < 200

for some compact metric space K; with diameter 1 and #; € {0} x K;. Hence, by the
triangle inequality and for ¢ large enough,

RF xY'/ 1 RF X K; / ~ €0
dGH(Bl/ao (y )’Bl/ao (1’1)) < m
By Lemma 2.27 ¢), there exists a constant ¢ > 0 such that Y’ is compact as well with
¢ < diam(Y”’) < 5¢, and after rescaling with 2 this finishes the first part of the claim.
So let z;,y; € Gr(¢;) and K7 and Ky be compact metric spaces such that, after passing
to a subsequence,

()\lMl,ﬂjZ) — (Rk XKl,.’Eoo) and ()\ZMZ,yZ) — (Rk XKQ,yOO).

Because of x;,y; € G2(g;), there is a time-dependent, piecewise constant in time vector
field X; with compact support and an integral curve ¢; such that the vector field Xf is
divergence free on Bio,(ci(t)) for all 0 < ¢ <1,

cg\:z) and  d(y;,ci(1)) < cg\:l)

d(.%'i, Ci<0)) <
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for ¢(n) = 9™ - 10" and
! 3
| O (1902 ) e < 5.
0

Let 2 := ¢;(0) and y, := ¢;(1). Since dy,n;, (24, 2}) < e(n) and dy,ar (vi, y)) < c(n),
there exists z € R* x K (cf. Lemma 1.10 b)), such that, after passing to a subsequence

()\ZMZ,I';) — (Rk XKl,xgo).
After passing to a further subsequence,

(NiM;, yf) = (R* x K, yl,)
for some 3. € R¥ x K. Then Lemma 2.25 implies

dim(K;) = dim(R* x K1) — k = dim(R* xK3) — k = dim(K>). O



Chapter 3

(zlobal construction

Based on the ‘local’ version (Proposition 2.1) established in the last chapter, the proof of
the following main result can now be given.

Theorem 3.1. Let (M;, p;)ien be a collapsing sequence of pointed complete connected n-
dimensional Riemannian manifolds which satisfy the uniform lower Ricci curvature bound
Ricps, > —(n — 1) and converge to a limit (X,p) of dimension k < n. Fore € (0,1) there
exist a family of subsets of good points G1(p;) C Bi(p;) satisfying

vol(G1(pi)) = (1 —¢€) - vol(Bi(ps)),

a sequence A\; — o0 and a constant D > 0 such that for every choice of base points
qi € G1(p;) and every sublimit (Y,q) of (\;M;,q;) there is a compact metric space K of
dimension | < n —k with % < diam(K) < D such that' Y splits isometrically as a product

Y 2R xK.
Moreover, for sequences qz-l, ql~2 € G1(p;) such that, after passing to a subsequence,
(MM, ) = (RF x K, )
for 1 < j <2 as before, dim(K7) = dim(K3).

The idea of the proof is to take (finitely many) sequences (¢;)icn satisfying the hy-
pothesis of Proposition 2.1 for some r > 0 and to define G (p;) as the union of the G, (g;)
obtained from Proposition 2.1. Instantly, the following question occurs:

(1) Why do sequences (g;);en satisfying the hypothesis of Proposition 2.1 exist?

It will turn out that sequences p; — x, where x € X is a generic point, are candidates
for these (g;)ien: If 2 € X is generic, then (1X, ) is close to (R¥,0) for sufficiently small
r > 0 and so is (%MZ, p?) for sufficiently large i € N. In fact, decreasing r only improves
the situation.

49
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Now assume that z,x’ are two such generic points, let 7 > 0 be small enough and
Ai — oo and A, — oo, respectively, be the sequences given by Proposition 2.1. These
sequences might be different, but Theorem 3.1 calls for one single rescaling sequence. This
gives rise to the following question:

(2) Does Proposition 2.1 still hold for (pf/)ieN if X} — oo is replaced by A\; — 00?

In order to answer this question, first consider the special case of \; = 2)}: Obviously, if
¢ € Go(p¥) and (R¥ xK,-) is a sublimit of (\,M;,¢;), then (R* x2K,) is a sublimit of
(MM, ¢;) = (2X: M, ¢;). Conversely, every sublimit of (\;M;, ¢;) has the form (R* x2K, -)
for a sublimit (R¥ xK,-) of (M,M;,¢;). Tt turns out that such a correspondence holds

whenever the sequence (%)z en 18 bounded. In this way, A, indeed can be replaced by \;
if one allows weaker diameter bounds for the compact factors of the sublimits. Therefore,

the question (2) can be reformulated in the following way:

(2’) Under which condition is the quotient (%)ieN of two such rescaling sequences
bounded?

In fact, one can prove the following: If the subsets G, (p¥) and G, (p¥ ) have non-empty

intersection, then (%)Z ey 18 bounded. An obvious approach for comparing points where
these subsets do not intersect is to connect the points by a curve consisting of generic
points only and to cover this curve by balls B, (y;) such that for every two subsequent
points y; and y;41 (and sufficiently large i € N) the subsets intersect. If this can be done
N,
Tz)z'eN :
Usually, such covers are constructed by using a compactness argument: Let r¥ denote the
minimal radius such that all 7 < r¥ and p! satisfy the hypothesis of Proposition 2.1. If
this r¥ is continuous in y, there exists r > 0 that can be used at each point of the (compact
image of the) curve. Unfortunately, there is no reason for this ¥ to depend continuously
on y. It will turn out that a similar approach to compare A; and A, can be performed
if z and 2’ lie in the interior of a minimising geodesic such that all the points of this
geodesic lying between x and z’ are generic. The Holder continuity result of Colding and
Naber [CN12, Theorem 1.2] then allows a cover similar to the one described above. The
subsequent question

using only finitely many y;, an inductive argument proves the boundedness of (

(3) Does there exists a minimising geodesic such that z, 2’ lie in its interior?

can be answered affirmatively for a set of full measure (in X x X) by applying further
results of [CN12].

This chapter is subdivided into several sections answering the above questions: First,
section 3.1 investigates generic points € X and answers question (1) by applying Propo-
sition 2.1 to the sequence p¥ — x. Both questions (2) and (2’) are dealt with in section 3.2,
which discusses the comparison of the different \;. Afterwards, section 3.3 treats question
(3) by proving that the necessary conditions for performing the comparison are given on
a set of full measure. Finally, section 3.4 deals with the proof of Theorem 3.1.



3.1 Application to gemeric points 51

3.1 Application to generic points

A very important property of generic points is that, after rescaling, the manifolds with
base points converging to a generic point are in some sense close to the Euclidean space.

Lemma 3.2. Let (X,p) be the limit of a collapsing sequence of pointed complete con-
nected n-dimensional Riemannian manifolds which satisfy the uniform lower Ricci curva-
ture bound —(n — 1), k = dim(X) < n, © € Xgen and p} — x. For fized R > 0 and € > 0
there exists A\g = Ao(z, R, €) such that for all A > Ao,

den(BY"(x), BE (0)) <e.

Proof. Since z is a generic point, all tangent cones at z equal R¥, i.e. A\X,z) — (Rk ,0)
for A — oo. In particular, the R-balls converge and for sufficiently large A the distance of
these balls is bounded from above by . This proves that there exists

Xo() :=min{A > 1|V > A : dau(BE (), BE (0)) < &} < 0. 0

Notation. From now on, for given £ < n and & € (0,1), let § = S(é;n, k) be as in
Proposition 2.1. For r > 0, define

. " 5
X, (25m, k) = {x € Xyon | den(B],3 ™ (2), B 5(0)) < 5}.

Lemma 3.3. Let (M;,pi)ien be a collapsing sequence of pointed complete connected n-
dimensional Riemannian manifolds which satisfy the uniform lower Ricci curvature bound
Ricps, > —(n — 1) and converge to a limit (X, p) of dimension k <n and let € € (0,1).

a) For x € Xgen there is 0 < r* = r(&,a;n,k) < 6 such that x € X.(&;n,k) for any
0<r<ret,

b) For0<r <6, x€X(&n,k) and p? — x there is ig € N such that for i > iy there
are a subset of good points G,(p¥) C By (p}) with

vol(Gr(p7)) = (1 =€) - vol(B:(py))
and a sequence \; — 0o satisfying the following:

(i) For any choice of base points x; € G(p7) and all sublimits (Y,-) of (\iM;, z;)
there exists a compact metric space K of dimension | < n — k and diameter
% < diam(K) <1 such that Y splits isometrically as a product

YV 2R xK.
(ii) If x}, 22 € G (pF) are base points such that, after passing to a subsequence,
(M, z]) — (R* xK;, )
for 1 < j <2 as before, then dim(K;) = dim(K3).
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Moreover, if w is a fived ultrafilter on N, there exists | € N such that the following
holds: Given q; € G, (p}), the ultralimit of (\iM;,q;) is a product R* xK such that
K is compact with

<diam(K) <1 and dim(K)=1.

| =

Proof.  a) Let \g = Ag(&;n, k) be the A\o(z, %, %) appearing in Lemma 3.2 such that for
all A > Ao,

don(Bs (), BY5(0) <

J
2
Then r* := r(&,z;n, k) := min {5, )\—O} > 0 proves the claim.

b) Let z € X,.(¢;n, k) be arbitrary, i.e.

don(B] ;¥ (w), B} 5(0)) <

Since (%M,,pf) — (%X,a:), there is ig € N such that for all i > i,

den(B) M %), B; 3 () <

In particular, by the triangle inequality,

dau(B" M < 7), B <o>>

1/6 1/6
r- r r k
< don(B], " (07), By 3 X (2)) + don(B} 3 (), BE(0))
8 5 .
< 42
- 2 2 =9
Now Proposition 2.1 and Lemma 1.15 imply the claim. O

Notation. For 0 < r < § and z € X,(&;n, k), let X,fx(r) and G%(p¥) be as in Lemma 3.3,
i.e. for ¢; € G5(p¥) the sublimits of (/\fz(r) M;, ¢;) are isometric to products (R* x K, -)
where the K are compact metric spaces with diam(K) € [%, 1]. Moreover, for z € Xgen,
let 7%(&;n, k) be as in Lemma 3.3, i.e. © € X.(&;n,k) for all 0 < r < r*(&;n, k).

Furthermore, for a non-principal ultrafilter w on N, let li’x(r) be as in Lemma 3.3,
i.e. for ¢; € GE(p®), limy, (X" (1) Mi, ¢;) = (R¥ x K, -) and dim(K) = 15" (r) for some K as
above.

All notations will be used throughout the remaining chapter without referring to
Lemma 3.3 explicitly. Occasionally, if they are fixed, the dependences on n, k and &
will be suppressed.
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3.2 Comparison of rescaling sequences

Throughout this section, let k¥ < n and & € (0, %) be fixed and use the notation introduced
in section 3.1.

Similar to chapter 2, investigate the set of all points such that all blow-ups split off
an R¥-factor. The following lemma states that for each two rescaling sequences whose
limit spaces are some products containing a compact set, the quotient of these rescaling
sequences is bounded. Especially, this holds in the situation of Lemma 3.3.

Lemma 3.4. Let (M;,p;)ien be a collapsing sequence of pointed complete connected n-
dimensional Riemannian manifolds which satisfy the uniform lower Ricci curvature bound
Ricps, > —(n — 1) and converge to a limit (X,p) of dimension k < n. As in Lemma 2.9,
define
G, = {qi € M; | for all \j — oo and all sublimits (Y,-) of (\iM;, q;)
there exists X such that Y = R¥ x X isometrically}.

a) Let ¢; € G; be arbitrary. For 1 < 5 < 2, let /\g — oo and Kj be compact with
. 2
(M M;, q;) — (R¥ xKj,-) as i — oo. Then the sequence (%)z’eN is bounded.

b) For1<j<2 letr; >0, x; €A, p{ = p;’ and /\g = /\f’xj (rj). Moreover, assume

1 2 22
Gy, (p;) NGy (p;) # 0. Then the sequence ()Tll)ieN

15 bounded.
Proof.  a) The proof is done by contradiction: Without loss of generality, assume )\g >0

for 1 < j <2 and all i € N. Obviously, the sequence (;—?)Z N 18 bounded from below

2
by 0. Assume the sequence is not bounded from above, i.e. % — oo and, without
loss of generality, A} < A? for all i € N.
There exists \; — oo satisfying )\Zl <A< )\12 such that

(NiM;, ;) — (RF XN, y)

for some unbounded metric space N: Let p; — oo be as in Lemma 2.15 such that
(WA} M;, ;) subconverges to a tangent cone of (RF x K1, x1) for any pi — oo with
i < pi;. Define

A2
f; := min {,ui, )\’1} — oo and N := -\ = oo
i
Without loss of generality, assume p; > 1. Thus, )\11 <N < )\22. Furthermore,
using ¢; € Gj, there exists a metric space N and a point ¢ € R* x N such that
(MM, q;) — (R¥ XN, ¢) and this is a tangent cone of (R* x K71, z1). Hence, for some
sequence o — 00,

(RF xo; K1, 1) = (RF XN, q).



54

8 Global construction

Assume this N is compact and let N’ := —L— . N and §; :=

= Tam(N) - ;. Then

1
diam (V)
(RY x iK1, 1) = (RF XN, q),
and, for sufficiently large i,

k . k ’ _
der(Biy P51 (21), BR N (¢)) < 1074

By Lemma 2.27 ¢), the sequence (diam(3; K1));en is bounded. This is a contradiction
to B; — oco. Hence, N is unbounded.

Now let D := diam(K3) and fix R > 1000D. Since N is unbounded, 2R < diam(N)

and, by Lemma 2.27 d), dGH(B;%k XN(q),B;l%k *K2(25)) > 20D. Thus, for i large
enough,

M A2 M, k k
dGH(B;%ZMZ(Qi):BRZ (¢1)) > den(By “N(q), By *"*(x2))
. . k
- dGH(B?{MZ(Qi)vB;l% “N(q))

A2 M, k
—deu(By (@), By *?(x2))
> 10D.

Since the maps h; : (0,00) — (0, 00) defined by

M A2 M,
hi(pi) = der(By ™ (), By " (41))

are continuous with h; (A7) = 0 and h;();) > 10D, by the intermediate value theorem,
there is a maximal A} < A\, < \; < A? such that h;(\}) = 5D. Since ¢; € Gj, after
passing to a subsequence,

(NiM;, qi) — (R* xY,y)
for some metric space Y. In particular,
X M; A2M; k k
dan(By (@), By (@) = dan(B, " (y), By "2 (22))
as i — oo. Hence, dGH(BELR%k Y (), B]Ek *K2(25)) = 5D. By Lemma 1.11 a),
dan(BY *52(z9), BE' (0)) < diam(K,) = D.
Thus,
k k
dan(By " (y), B (0))
k k k k
< den(By *Y(y), By *"*(x2)) + den(B, ***(z2), By (0))

R
<6D < 2
T
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and

k k
den(By *Y (y), Bi (0))
k k
> den(BE Y (y), By *X2(22)) — dau(By “¥2(x2), BY (0))
>4D.

By Lemma 2.27 b), Y is compact. Moreover,
diam(Y) > deu(BE %Y (y), BE' (0)) > 4D > D,

in particular, Y is not a point.
2

Next, prove % — o0o: Assume the quotient is bounded. Hence, after passing to a

%
2
2

subsequence, ;\\( — aand a > 1 due to A; < A2, Then, applying Lemma 1.10,
2 AP K ~ (pk

(A7 Mi, qi) = (y : /\iMiaQi) — (R* xaY,y) = (R" x Ky, z2).
7

In particular, diam(Y") < « - diam(Y) = diam(K3) = D, and this is a contradiction.

2
Thus, i—% — 00. Analogously to the previous argumentation, there exists some

maximal ), < \; < A? such that h;()\;) = 5D. This is a contradiction to the
maximal choice of \..

. ~ ~ 2
b) By construction, G, (p!) C Gi. Let ¢; € Gy, (p}) N Gry(p?) € G; and o = %
Assume a; — oo and choose a subsequence (i;);en such that a;; > j for all j € N.
After passing to a further subsequence, there are compact metric spaces K1 and Ko
such that ()\?J_‘Mijl,qij) — (R¥ xK,,,-) for 1 <m < 2. By a), the sequence (@vi;)jen
is bounded. This is a contradiction to a;; — oo. O

The following lemma gives a statement about the limit of such a bounded sequence of
quotients.

Lemma 3.5. Let (M;,pi)ien be a collapsing sequence of pointed complete connected n-
dimensional Riemannian manifolds which satisfy the uniform lower Ricci curvature bound
Ricps, > —(n—1) and let A\;, p; > 0 such that (%)ieN is bounded. If

(A\iM;,pi) = (RF xL,pr) and  (uMi,pi) — (RF <M, pyy)

for some bounded metric spaces L and M, then

i diam(L)

E — m asi— oo and dim(L) = dim(M).
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) Ad; .
Proof. Let a be any accumulation point of (ﬁ and (—J be the corresponding

i )ieN Hij )jEN
converging subsequence. By Lemma 1.10 c),

i
(Ai; Mi;,pi;) = (ﬁ ' Mz'jMz‘j,pij) — (a (R x M), par) = (R* x (aM), ) as j — oo.
ij
Since this sequence converges to (Rk xL,pr) as well, there is an isometry
(R* x (aM), par) = (R* XL, pr).

Thus, dim(L) = dim(M) and diam(L) = a - diam(M). Hence, all accumulation points of
the bounded sequence (%)iEN equal ifrf((]%, in particular, (%)l ¢y 1S convergent. O

Next, the question will be answered under which condition the quotient of rescaling
sequences belonging to two points in A,. is bounded. The first approach in order to prove
this is the special case of their good subsets to intersect. In the general case, the idea is to
connect the points by a curve which itself is contained in X} and can be covered by finitely
many balls such that subsequent subsets of good points intersect. In fact, this cannot be
expected to be possible for the same r > 0. However, it turns out that the quotient of
the rescaling sequences is bounded if the points are connected by a minimising geodesic
contained in some X, of a possibly different 7’. Making all of this precise is the subject
of the following lemma.

Lemma 3.6. Let (M;,p;)ien be a collapsing sequence of pointed complete connected n-
dimensional Riemannian manifolds which satisfy the uniform lower Ricci curvature bound
Ricp, > —(n — 1) and converge to a limit (X,p) of dimension k < n.

a) Let ry > 0, Ty € Xy, and p;™ — Ty, for 1 <m < 2. If Gy (pf*) N Gry(p7?) # 0
for all i € N, then

Z1
<t oy

1
5 )\iz(rg)
for almost all i € N and %' (r1) = 12(rq).

b) Let x € Xgen, pf — x and r* > R > r > 0. Then there is m = m(n,&,r, R) € N

such that \r
5—m < ’L (T)
- )\f(R

for almost all i € N and I%(r) = I7(R).

< 5™

~—

¢) Let~:[0,1] = X be a minimising geodesic with im(y) C X, for some 0 < r < 4. Let
x =7(0) and y = (). Then there is m = m(n,&,l,r) € N such that
i (r

i(r)

>
~—

>

for almost all i € N and I%(r) = I%(r).
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d) Let z,y € X, and v : [0,1] — X be a minimising geodesic with im(y) C X, for some

' <r <o, z=v(0) and y = y(l). Then there is m = m(n,&,l,r,r") € N such that

.(7“
/(r

>
8

>
ST
~

5—m S S 5m

~—

for almost all i € N and I%(r) = I&(r).

Proof. The proof of the first part will be straightforward. The second part will be proven
by applying the first part to a sequence of radii r; such that the subsets G, (p]) and

Gri (pz Jrl) intersect. Similarly, the third part will be proven by subdividing the geodesics
by points y; such that the distance of two successive points is small enough to enforce
that G, (p!”) and G,(p{’*") intersect. The fourth part will turn out to be an immediate

(2

consequence of the other ones.

2)

Without loss of generality, all A7 (ry,) are positive, where 1 < m < 2. Define

AN ()

= 0
A2 (r2) ~

a; .

and let ¢; € Gy, (p;*) N Gy, (p;?) be arbitrary.

By Lemma 3.4, (a;);en is bounded. Let a be an arbitrary accumulation point and
(ai;)jen be the subsequence converging to a. Since ¢;; € G, (pfjl), after passing to
a subsequence,

(/\fjl(rl)Mij,qi].) — (RFxKy,-) as j — oo

for some compact metric space Ky with + < diam(K;) < 1. As qi; € Gpy (psz) as
well, after passing to a further subsequence,

(AZQ(T’Q) Mij7Qi]-) — (Rk XKQ, ) as ] — o0

and K satisfies ¢ < diam(K>) < 1. By Lemma 3.5,

Ea

o (r)  diam(K,) 11
= lim 9 = 5
“T SR N () diam(Ky) 59

and {71 (ry) = [Z2(ra).

Since (a;)ien is a bounded sequence and all accumulation points are contained in
[%, 5], only finitely many a; are not contained in [%, 5].

Since Cpg(n,—1, R, R) is monotonically increasing for decreasing 8 < 1, there
exists 8 = (n, &, R) < 1 with Cgg(n,—1,8R, R) < % — 1. Fix this S.

Since Cpa(n, —1, Bp, p) is monotonically increasing for increasing p, all p < R satisfy
Cpa(n,—1,8p,p) < % — 1 as well.



58

8 Global construction

Let m = m(n,&,r, R) € N be maximal with r < 8™ - R and define rj := 3/ - R for
0 <j<mand ry, :=r. In particular,

Tm:TS/Bm’R:/B'Tm—l‘
Then both
1
ng(n, —1,7“j+1,7“j) = ng(n, —1,ﬁ . ’I"j,’l"j) < g -1

for 0 <j <m and

ng(n, _17Tm7rm—l) < CBG(')’L, —l,ﬁ . Tm—lvrm—l) <

0| =
|
—_

Moreover, x € er forall0 <j<mduetor; <R 7",
Assume Gy, (pf) NGy, (pf) = 0 for some 0 < k < m and i € N. This implies

GT]' (pf) - BTj+1 (pf) \ GT]'+1 (p?)?
in particular,

(1 —2) - vol(By; (p}))

<

ol(Gy,; (p}))

ol(By,,, (pi) \ Gr, i, (P))

-vol(By,,, (p))

- Cpg(n, =1, 1541, 15) - vol(By, (p))-

<

(VAN VAN VAN VAN
m>

om>

Hence, 1 — & <& Cpg(n, —1,7j41,7;) <1 — ¢, and this is a contradiction.
Thus, Gy, (pf) NGy, (pf) # 0 for all 0 < j < m and i € N. By a),

< i)

1
— <5
57 A(rje1) —

for almost all 7 and I%(r;) = I (rj4+1). Inductively,

lo(r) = 15(rm) = 15 (ro) = I5(R).

Then .
Ne(R) _ Xe(ro) T ()
M) T M) AL 3G

proves the claim.

Let dyp = dp(n,&,r) be as in Lemma 2.21 and mo = mo(n,é,l,7) € N be the minimal
natural number with
l < my - do.
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For 0 < j <mgp—1,let t; := j-do and tp,, := [ > (mg—l)-do = tme—1- In
particular, for 0 < 57 <mg —1,

tit1 —tj = do
and
tmo—tmo_l:l—(mo—l)-doSmo-do—(mo—l)-dozdo.

Hence, these t; define a sequence 0 = to < t1 < --- < tp, = [ with pairwise
tj+1 — tj < dp.

For 0 < j < 'my, define y; := v(t;) € &,. Now fix 0 < j < mo. By Lemma 2.21 and
Lemma 2.19,

Gr(p?j) N Gr(pi'/jﬂ) # 0.

»
Then a) implies /\L\;igg) € [%,5] for almost all i € N and I/ (r) = 1% (r). In

particular, (¥ (r) = I£’(r) = 1 (r) = 1&(r) and

mo—1 )
A2 (r) 10-[ A (r) _
S0 = T G € 50,5
Yj+1 )
j=0 )‘ij (T)
for almost all 7 € N.

d) Let my :=my :=m(n,&,r',r) be as in b) and my = mo(n,&,1,7’) as in ¢). Then

X . X)L
7 5 My 5mz ) 5 My 5my d 7 5 mo 5m0
xS Sy BT and Sy € B8
for almost all 7 and IZ(r) = I*(r") = (') = I%(r). Finally, taking the product
m =m(n, &1l r,r") :=mg-mg-m, proves the claim. O

3.3 Generic points and geodesics

Throughout this section, fix a collapsing sequence (M;,p;)ien of pointed complete con-
nected n-dimensional Riemannian manifolds which satisfy the uniform lower Ricci curva-
ture bound Ricy;, > —(n — 1) and converge to a limit (X, p) of dimension k < n and use
the notation introduced in section 3.1. Moreover, minimising geodesics are assumed to be
parametrised by arc length.

By Lemma 3.6, rescaling sequences corresponding to two different points can be com-
pared if those points are connected by a geodesic lying in some X,.. It remains to check
for which points this is the case. It will turn out that, if the strict interior of a minimising
geodesic (i.e. the interior bounded away from the endpoints) is generic, then it is already
contained in X, for sufficiently small > 0. In fact, nearly all pairs of points lie in the
interior of such a geodesic such that the part of the geodesic connecting these points is
generic.
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Notation. Define

G = {(z,y) € Xgen X Xgen | I minimising geod. v : [0,1] = X,0 < t, <t, <I[:
r=(tz),y = W(ty)> im('ﬂ[tx,ty]) - Xgen}a

and for & € Xgen denote the image under the projection to the second factor by
Go = {y € Xgen | (7,y) € G}
Finally, define

G’ := {2z € Xgen | G, has full measure in X }.

Lemma 3.7. The set G’ has full measure in X.
Proof. First, prove that G has full measure in X x X. Let
S1:={(z,y) € Xgen X Xgen | 3 minimising geodesic ¢ : [0,d] - X :
T = 0(0)7 Y= C(d), 1m(c) - Xgen}
Sy :={(z,y) € X x X | 3 minimising geodesic v : [0,]] = X,0 < t, <t, <I:
r=(ta),y =(ty)}
and define S := S; N S2. By |[CN12, Theorem 1.20 (1)],
volx x volx (X x X \ S1) =0,
and by [CN12, Theorem A.4 (3)],
VOIX X Vle(Xgen X Xgen \Sg) = 0.
In particular, using that voly (X \ Xgen) = 0, cf. Theorem 1.19, this proves
volx x volx (X x X\ S) = 0.

] = X be geodesics

Next, prove S C G: Let (z,y) € S, ¢ : [0,d] = Xgen and v : [0,
= v(ty). In particular,

and 0 < t, < t, < [ with x = ¢(0) = ~(t;) and y = ¢(d)
d=d(z,y) =ty —t, <.
Define 7 : [0,1] — X by

o)) if 7€ [0,t,] U [ty, 1],
W) = {C(T —ty) if T € [ty ty],

cf. Figure 3.1.
Obviously, this 4 is continuous. Moreover, it is a minimising geodesic: For arbitrary
0<7 <7<l dx(3(m),5(m2)) = 72 — 71 needs to be proven:
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Figure 3.1: Construction of 4.

If 71,72 are both contained in [0,t;] U [t,,[] or both contained in [t;,t,], this is true
since v and ¢ are minimising. So let 0 <7 <1, <12 <t,. Then

dx (7(11),3(72)) < dx (7(11),(tz2)) + dx (c(0), c(72 — tz))
Stpy—T1+ 70—ty =72 —T71.

Assume dx ((71),5(72)) < 72 — 71. In particular,

ty — 11 = dx(v(11),7(ty))
<dx(v(11),7(2)) + dx (¥(72),v(ty))
= dx (3(11), ¥(12)) + dx (c(m2 — tz), c(ty — tz))
t

< =T+ (ty —tz — (12 — 1))

:ty—Tl,

and this is a contradiction. The case t, < 7 <t, < 75 <[ can be done analogously. Then
4 verifies (z,y) € G, and this proves

VOIX X Vle(X X X\g) = 0.

Using X x X \ G = U,ex{z} x (X \ Ga),

Ozvolxxx(XXX\g):/

X

volx (X \ Gg) dV(x) = /X\g' volx (X \ Gg) dV(x).

Since volx (X \ G;) > 0 for all x € X \ ', this proves that X \ G’ has measure 0. O

So far it was seen that almost all points can be connected by a geodesic lying in Xgen
which can be extended at both ends. By applying the following theorem of Colding and
Naber, which describes the Holder continuity of the geometry of small balls with the same
radius, to this situation, one obtains that the interior of the regarded geodesics not only
lies in Xgen, but in &} for some r > 0.

Theorem 3.8 (|CN12, Theorem 1.1, Theorem 1.2|). For n € N there are a(n), C(n)
and ro(n) such that the following holds: Let M be a complete n-dimensional Riemannian
manifold with Ricyr > —(n — 1) or the limit space of a sequence of such manifolds, let
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v :[0,1] = M a minimising geodesic (parametrised by arc-length) and fiz B € (0,1). For
O<r<rfland Bl <s <t < (1—p)I,

dan(B} (4(s)), BY (v(t))) < gl s — )20,

Lemma 3.9. Let & € (0, %), v :[0,1] = X be a minimising geodesic and 0 < s < t <l
such that (54 is contained in Xgen. Then there is 0 < ' =1(&1,s,t;n, k) < 5 such that

forall0 <r <7/,
im(s,q) € A

Proof. Define 8 = (1, s,t) := % -min{s,l —t} > 0. Then ¢,s € (8, (1 — B)l) due to
Blgg<s<t:l—(l—t)§(1—26)l<(1—6)l.

Furthermore, let a(n),C(n),r9(n) be as in Theorem 3.8 and define

.52
d=d(&l, s, t;n k) = awfl fé(i)

Let m = m(s,t) be the natural number such that (m —1)d <t — s < md and define

Tj ::S+jd

for 0 < j < m. By definition, 19 = s and 7,,, = s + md > t. Hence,

m

[s,t] € | J(m5 — d, 75 + ).
§=0
For every 0 < j < m, choose \j = \;(¢,[,s,t;n,k) > 1 as in Lemma 3.2 such that
k 5
ch(Bfﬁ(v(Tj)),BES(O)) <5
for all A > \; and define ' = 1/(&,1,s,t;n,k) := min{g,/\%,...,ﬁ,g -ro(n) - Bl}. Let
0 <r <7 and 7 € [s,t] be arbitrary. Choose 0 < j < m with |7 — 7;| < d. Recall that by
definition of d,
82
_ e o gaty _ BL07
|7 — 5] <d 200’
and so, using Theorem 3.8,

don(B] 3 (+(r)), BY5(0))

1 — k
< - dan(BE (7)), B (273)) + dan(B] ;X ((73)), BE(0))
1 C'(n) T a(n) 8
< .2\ L — e
—r Bl 7 =7l + 2
<. O



3.4 Proof of the main theorem 63

3.4 Proof of the main theorem

In order to prove Theorem 3.1, the following technical result is needed which gives an
estimate for the number of balls a point can be contained in if the base points of these
balls form an e-net.

Lemma 3.10. Let X be an n-dimensional Riemannian manifold with lower Ricci curva-
ture bound Ric > (n—1) -k or the (pointed) Gromov-Hausdor(f limit of a sequence of such
manifolds. Then each point is contained in maximal Cpg(n,k,r,r + 2R) balls with radii
R whose base points have pairwise distance at least 2r.

Proof. This result is an immediate consequence of the Bishop-Gromov Theorem: Let
P1s---,Pm € X be points with pairwise distance at least 2r and ¢ € ;" Br(pi).
On the one hand, since d(p;, p;) > 2r, one has

B, (pi) N By (p;) =0
for any 7 # j. On the other hand, for § € B, (p;),

and so By(p;) C Br+r(q). Hence,

Furthermore, for any 1 <1i < m,

Br1+r(q) € Bry Rtd(gp)(Pi) € Briar(pi).

Together, using the Bishop-Gromov Theorem,

> vol(ITiZ, Br(pi)) i vol(Br(pi))

vol(Brsr(q) 4= vol(Brin(q))

vol(By(pi))
< vol(By12r(pi))
vol(By(pi))
Cpa(n, k,r,7 + 2R) - vol(B,(p;))
B m
- Cpg(n,k,r, 7+ 2R)’

[

1

NE

1

<.
Il

Thus, m < Cpg(n,k,r,r + 2R). O

It remains to prove the main theorem. Again, the notation introduced in section 3.1
and section 3.3 is used.



64 3 Global construction

Proof of Theorem 3.1. The idea of the proof is the following: First, fix a bound ¢ € (0, %)
and choose a radius R such that Xr(é;n, k) has sufficiently large volume. Inside of this
set of points, choose a point z and a finite R-net of points z; such that (zo,z;) € G and
take the union of the subsets G R(pfj ). This has the required properties.

Let € € (0,1) be arbitrary and define

For arbitrary r > 0, define
X'(r) :={z € Bi_r(p) N Xgen | r* > r}.

For r1 < ry, obviously X'(rq) C X'(r1). Furthermore,

Ux'e (p) N Xgen-

r>0

Thus, there exists a radius 0 < R = R(e, X, p;n) < 1 such that

O

volx (X'(r)) > (1 - Z) volx (Bi(p) N Xgen) = 1 — =

W

for all r < R. Fix this 0 < R < 1.
By Lemma 3.7,

voly (X'(R) NG') = volx (X'(R)) > 1~

so X'(R)N @G’ is non-empty. Fix an arbitrary point g € X'(R)NG’, let X' = X'(R) NGy,
and choose a maximal number of points z1,...,z; € X’ with pairwise distance at least R.
By the maximality of the choice,

!
' C | Ba(x)).
j=1

Since, by definition of G, G, has full measure,

l
volx ( U ) > voly (X') = volx (X'(R)) > 1 —

>~ ™

On the other hand, by choice, Br(z;) C BRid(e;p) (p) € Bi(p). Thus,

(O}

VOlX Bl UBR x] —.

e
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Let pfj — x; and ig € N be large enough such that for all i > ip and 1 < j < j' <1,

and

volay, (Bu(pi) \ U1 Br(p,”)) _ volx(Bi(p) \ Uj1 Br(xy))
volys, (B1(p:)) - voly (Bi(p))

For the existence of this ig, cf. Proposition 1.17 b). Fix ¢ > ig. Then

. Yolx(B1(®) \ Uj—y Br(z))
volx (B1(p))

: VOlMi (Bl (pl))

volay, (B1(p:) U Br(p -volay, (Bi(pi))

<

| ™

By Lemma 3.10, every point of Ué‘:l Br(p;?) is contained in at most M different Br(p;”)
where

R 17R 1 17 €
= N = - —_—, < _- -
M = M(en, k) = Cpe (n =1, 5. =) < Ca (n—15.5) = o
Therefore,
! 3
ZvolM Br(p;?) < M -voly, (| Br(0}”)) < o2+ volu, (B (p2)).
j=1
Thus,
l l
voly, (| Brl(p U Gr(p;”)) < voluy, ( U Br(p;")\ Gr(p;")))
j=1 = j=1
!
<Y ol (Br(p;”) \ Gr(p;"))
j=1
l
< & - volyy, (Br(p;”))
j=1
€
< < - voluy,(Bi(p:)).
Hence,

l
volar, (Bi(pi) \ | Gr(p")) < (5 + 3) - vola (Ba(pi)) = & volar, (B ().
j=1
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Now define l
Gi(pi) == U Gr(p;’) and X :=A(R).
7j=1

By construction,
volag, (G1(pi)) = (1 =€) - volay, (Bi(pi))-

From now on, let \;” denote A’ (R).
Fix 1 < j < 1. By construction, (zo,z;) € G and zg,z; € Xg. Thus, there exists a

minimising geodesic v; : [0,{;] = X and 0 < s; < t; < l; such that Vils, is contained

it5]
in Xeen, 7j(sj) = wo and ;(t;) = x;. By Lemma 3.9, there is r; > 0 such that for all
0<r<rl Vi|[s;.1;] 18 contained in & Let r; = min{r}, R}. By Lemma 3.6 d), there is
m;j = m(n, &, dx(zo,z;),rj, R) satisfying

Zo

57 < TJ < 5™
(2
for almost all i € N and I20(R) = ./ (R). From now on, let i € N be large enough such
that the above estimate holds for all 1 < j < [.
Given ¢; € G1(p;), let (Y, q) be an arbitrary sublimit of (A\; M;, ¢;), i.e. for a subsequence
(is)seNa
(NieMi,, gi,) = (Y, q) as s — oo.

For a further subsequence (is, )¢en there is some 1 < j <1 with ¢;,, € G R(pfsjt) for all
t and

(A7 Mi,, . qi,,) — (RF XK, ) as t — oo

1sy

for a compact metric space K satisfying diam(K) € (5, 1].
On the other hand,

)‘ist zj
T “Aio Mig, s Gy, | = (Moo, M,y qi,,) = (Y,q) as t — oo,

Tsy

Aig .. .
and by Lemma 1.10 ¢), /\z‘jt converges to some « and Y is isometric to the product

~ 1St .
R* x K for K := oK. In particular, 5™ < a < 5™. Thus, for D := pmax{m;[1<j<i}+1

diam(K) € [, D]. Moreover, for any non-principal ultrafilter w,

dim(K) = dim(K) = I/ (R) = I*°(R).

In particular, for any two sublimits (R* x K7, ) and (R¥ x K3, -) coming from the same
subsequence of indices, let w be a non-principal ultrafilter as in Lemma 1.15 such that
these sublimits are ultralimits with respect to w. Then dim(K;) = dim(K>). O



Appendix A

Gromov-Hausdorff convergence

Gromov-Hausdorff distance is an often used tool for measuring how far two compact
metric spaces are from being isometric. This distance, which was introduced by Gromov
in [Gro81|, leads to the notion of Gromov-Hausdorff convergence which can be extended
to non-compact metric spaces and allows to draw conclusions about the properties of the
spaces ‘near’ to the limit space, if the limit space is well understood.

Many textbooks such as [BBIO1, sections 7.3-7.5], [Pet06, section 10.1] and [BH99,
p. 70ff.] give a (more or less) detailed introduction to the distance of compact metric
spaces. Some even more detailed proofs can be found in [Ronl0]. Since the literature on
convergence of non-compact metric spaces usually is less comprehensive, this chapter treats
the latter in detail. For the sake of completeness, it also contains a detailed introduction
to the compact case, which is built on the literature cited above.

The first section deals with Gromov-Hausdorff distance of compact metric spaces.
In addition, so called Gromov-Hausdorff approximations are introduced and the relation
between those two terms is described. For both terms, a pointed and a non-pointed
version is introduced, and it will be proven that these terms result in the same notion of
convergence.

The second section deals with convergence of non-compact metric spaces, the major
part of this chapter, and consists of four parts: First, for compact length spaces it will be
proven that this notion of convergence coincides with the one for compact spaces. Secondly,
several properties of pointed Gromov-Hausdorff convergence will be verified. After that,
a convergence notion for points will be introduced and studied. Finally, convergence of
(Lipschitz) maps will be investigated.

The third section deals with ultralimits, a more general tool to create ‘limit spaces’, and
states some properties of those. In particular, a strong correspondence between ultralimits
and subsequences converging in the pointed Gromov-Hausdorff sense will be established.

The fourth and final section reminds of the definition of measured Gromov-Hausdorff
convergence as explained in [CCI7].
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A.1 The compact case

Given a metric space, an interesting question is whether it is possible to assign each two
subsets a distance such that this distance in turn defines a metric. In [Hau65, Chapter VIII
§6], Hausdorff answered this question by describing what nowadays is called the Hausdorff
distance: For two subsets of a metric space, this is the minimal radius such that each
subset is contained in the ball (with this radius) of the other subset. This was extended
by Gromov in [Gro81, section 6] to describe how far two compact metric spaces are from
being isometric by mapping two such spaces isometrically into a third one and measuring
the Hausdorff distance of the images. This is the so called Gromov-Hausdorff distance.

Definition A.1. For bounded subsets A and B of a metric space (X, d), the Hausdorff
distance of A and B is defined as

d4(A,B) :=inf{e > 0| A C BX(B) and B C BX(A)}

where BX(B) :={z € X | 3b € B : d(z,b) < ¢}. For two compact metric spaces (X, dx)
and (Y, dy), the Gromov-Hausdorff distance of X and Y is defined as

dau(X,Y) := inf{d%(X,Y) | d admissible metric on X ITY},

where a metric d on the disjoint union X II'Y is called admaissible if d|x,x = dx and
diyxy = dy.

On the space of (non-empty) compact subspaces of X, this dy defines a metric, while
d gy defines a metric on the set of isometry classes of (non-empty) compact metric spaces.
This will be proven below. From now on, all metric spaces are assumed to be non-empty.
In order to compare two metric spaces with respect to some fixed base points, the pointed
Gromov-Hausdorff distance is used.

Definition A.2. Let (X,d) be a metric space, A, B C X bounded subsets and a € A,
b € B base points. The pointed Hausdorff distance of (A,a) and (B,b) is given by

d4((A,a),(B,b)) := d%4(A, B) + d(a,b)

and the pointed Gromov-Hausdorff distance between two pointed compact metric spaces
(X, z0) and (Y, 1) is defined as

dar(X,z0), (Y, y0)) := inf{d%((X, z0), (Y, 90)) | d admissible metric on X IIY}.

As in the non-pointed case, the pointed Gromov-Hausdorff distance defines a metric
on the set of isometry classes of (non-empty) pointed compact metric spaces. In order to
prove this, a notion strongly related to the one of Gromov-Hausdorff distance is used.
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Definition A.3. Let (X, dx), (Y,dy) be metric spaces, p € X, ¢ € Y and € > 0. A pair
of (not necessarily continuous) maps f: X — Y and g : Y — X is called (e-)Gromov-
Hausdorff approximations or e-approzimations if for all x,x1,22 € X and y,y1,y2 € Y,

ldx (z1,22) — dy (f(z1), f(22))] <&, dx(go f(z),z) <e,
|dy (y1,92) — dx(9(v1), 9(y2))| <e, dy(fog(y),y) <e.

The set of all such pairs is denoted by Appr.(X,Y’). In the pointed case, one restricts to
pointed maps:

Appr.((X,p), (Y, q)) :== {(f,9) € Appr.(X,Y) | f(p) = q and g(q) = p}.

Remark. In the literature, Gromov-Hausdorff approximations often are not defined as
pairs of maps but as one map f : X — Y where f has distortion less than & and
B.(f(X)) = Y. Observe that (f,g) € Appr.(X,Y) already implies that f has these
properties (for the same ¢).

In the following it will be seen that Gromov-Hausdorff distance less than e corresponds
to e-approximations (up to a factor). The next proposition shows that (up to another
factor) the definition of Gromov-Hausdorff approximations used here can be replaced by
the one described above.

Proposition A.4. Lete >0 and f : (X,dx) — (Y,dy) be a map between metric spaces
such that

|dy (f(21), f(z2)) — dx(21,22)[ < e

for all x1,29 € X. Then there exists g : f(X) — X such that (f,g) € Appr.(X, f(X)).
Moreover, if Y = B.(f(X)), then there is h: Y — X such that (f,h) € Apprs .(X,Y).

Proof. For each y € f(X) choose some g(y) € f~!(y). In particular, fog = id|f(x). For
Y1,Y2 € f(X)>

ldx (9(y1), 9(y2)) = dy (Y1, y2)| = |dx (9(y1), 9(y2)) — dy (f(g(y1)), f(9(y2)))] <,

and for z € X,
d(z,go f(z)) = |d(z,g(f(x))) —d(f(z), f(go f(z)))| <e.

Thus, (f,9) € Appr.(X, f(X)).
Now assume Y = B.(f(X)). For y € f(X), define h(y) := g(y), otherwise, choose
y' € f(X) with dy (y,vy') < € and define h(y) := 3. By construction, ho f = go f, i.e. for
allz € X,
dx(ho f(z),x) <e.

For arbitrary y € Y, using f o g =id|s(x), foh(y) = fog(y') =y for y' € f(X) N B(y)
as in the definition of A. Hence,

dy (f o h(y),y) = dy(y',y) <e.
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Finally, for arbitrary y1,y2 € Y,

dx (h(y1), h(y2)) — dY(y1,y2)\

< |dx (h(y1), h(y2)) — dy (f (h(y1)), f(R(y2)))| + |dy (f (h(y1)), f(h(y2))) — dy (y1,y2)|
<e+dy(foh(yr),y1) +dy(foh(y2),y2)

<3e. O

Next, a strong connection between existence of Gromov-Hausdorff approximations and
the Gromov-Hausdorff distance will be proven.

Proposition A.5. Let X and Y be compact metric spaces with base points p € X and
q €Y, respectively, and & > 0.

a) If den(X,Y) < e, then Appry.(X,Y) # 0.
b) If Appr.(X,Y) # 0, then dgu(X,Y) < 2e.
¢) If deu((X,p), (Y, q)) <€, then Appry.((X,p), (Y, q)) # 0.
d) If Appr.((X,p), (Y. q)) # 0, then deu((X,p), (Y, q)) < 2e.

Proof. As the proofs of a) and b), respectively, are very similar to, but slightly easier than
those of ¢) and d), respectively, only the latter two are proven here.

c) Let 0 <9 <e—deu((X,p), (Y,q)) and choose an admissible metric d with

d4((X,p), (Y, q)) < dau((X,p), (Y, q)) +6 < e.

Then d(p, q) < € on the one hand and d‘fq(X, Y) < ¢ on the other, i.e. for all z € X
there exists y, € Y that satisfies d(x,y,) < e. Analogously, for each y € Y there is
xy € X satisfying d(y,zy) < e. Define f: X - Y and g:Y — X by

f@) = {q N 9(y) = {p -
Yy otherwise, x, otherwise.
As seen above, d(f(x),z) < e for all x € X. Thus, for all z,2’' € X,
|dy (f(2), f(2")) = dx(z,2")| < d(f(z),2)) +d(f(z'),2") < 2¢.
Analogously, |dx(g(y),g9(v")) —dy (y,y’)| < 2¢ for all y, 3’ € Y. Similarly, for x € X,

dx(go f(x),z) =d(go f(z),x)
<d(g(f(z)), f(z)) + d(f(z),z)

< 2¢,
as well as dy (fog(y),y) < 2¢e for all y € Y. Thus,

(fy9) € Appry. (X, p), (Y, q)).
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d) Fix an arbitrary pair (f,g) € Appr.((X,p), (Y, q)). The definition of an admissible
metric d : (X IIY) x (X II'Y) — R requires d|xxx = dx, djyxy = dy and
d(y,z) :=d(x,y) for z € X and y € Y. Hence, it suffices to define d(z,y) for z € X
and y € Y. Then d is positive definite and symmetric by definition. Thus, in order
to prove that d is a metric, it remains to check the triangle inequality. If done so,
then d is in fact an admissible metric.

Defined: (XIIY)x (XIIY) — R via
d(a,y) := 5 +inf{dx (z,2) +dy (f(a'),y) | ¢’ € X}

for x € X and y € Y. It remains to check the triangle inequality. For xq,x9 € X
and y €Y,
d(w1,72) + d(72,y)
€ .
= dx(z1,22) + 5 + inf{dx(zq,2") + dy (f(2'),y) | 2’ € X}

= % + inf{dx (x1,22) + dx (v2,2") + dy (f(2'),y) | 2’ € X}
> o+ inf{dx (@) +dy (f(2'),9) | o' € X}
= d(xlvy)

and

d(z1,y) + d(y, z2)

= e+inf{dx (x1,2") + dy (f(2'),y) + dx(z2,2") + dy (f(2"),y) | 2’, 2" € X}
> e+inf{dx(z1,2") +dy (f(2'), f(2")) + dx (2o, 2") | 2’2" € X}

> e+inf{dx(z1,2") + (dx(2/,2") — ) + dx(z2,2") | o', 2" € X}

> inf{dx(z1,22) | 2/, 2" € X}

= d(x1,x2).

For z € X and y;,y2 € Y, the triangle inequalities d(z, y1) + d(y1,y2) > d(z,y2) and
d(y1,z) + d(x,y2) > d(y1,y2) can be proven analogously.

Using this metric d,

3

d(p.q) = 5 +inf{dx(p.a') +dy(f('),0) | o' € X} =

due to 0 < inf{dx(p,2’) + dy(f(2'),q) | 2" € X} < dx(p,p) + dy(f(p),q) = 0.
Furthermore, for x € X,

(. f(@)) = 5 +inf{dx(z.2') + dy (f(a). f(@) | o' € X} = 5
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using 2/ = z. For y € Y, this implies

3e

d(y,9(y)) < d(y, fog(y)) +d(fogy)g(y)) < 6+% =5

Thus, X C BY,(f(X)) € Bf_;,(Y) and Y C Bf_,(X), L.e. d}(X,Y) < % and

€/2 3¢e/2

den((X,p), (Y.q)) < dj((X,p), (Y,q)) = di(X,Y) + d(p.q) < 2¢. O

€/2

Using these approximations, one can prove that the pointed Gromov-Hausdorff dis-
tance defines a metric. Two pointed metric spaces (X, p) and (Y, q) are called isometric if
there exists an isometry f: X — Y with f(p) = ¢.

Proposition A.6. On the space of isometry classes of (pointed) compact metric spaces,
dg defines a metric.

Proof. In order to prove that the Gromov-Hausdorff distance indeed defines a metric,
one needs that the Hausdorff distance defines a metric. Therefore, this proof splits into
several steps: First, the Hausdorff distance will be investigated. Then it will be proven
that the Gromov-Hausdorff distance defines a pseudo-metric on the class of (pointed)
compact metric spaces, i.e. it is not definite, but satisfies all the other properties of a
metric. Finally, it will be proven that this already defines a metric up to isometry.

a) Let (X,d) be a metric space and A, B,C C X be compact. First, prove that dg is
a metric in the non-pointed case:

By definition, d%(B, A) = d%(A, B), d%(A, B) > 0 and d}(A, A) = 0. In order to
prove the triangle inequality, let 71 := d%(A, B) > 0, ro := d%(B,C) > 0 and £ > 0
be arbitrary. For a € A there exists b € B with d(a,b) < r; + e. Furthermore,
there is ¢ € C with d(b,c) < 7r2 + . Hence, d(a,c) < ri + r2 + 2¢ and this
proves A C By, 1r,+2:(C). An analogous argumentation proves C' C By, 4p,42:(A),
and therefore, d‘}{(A,C) < 7y +ry+ 2e. Since € > 0 was arbitrary, this proves
d?[(A, C)<ri+ry= d%(A, B) + d(;[(B, C)

Assume that A # B and d%(A, B) = 0. Without loss of generality, assume there
exists a € A with a ¢ B. In particular, d(a,b) > 0 for all b € B. Since B is compact,
this proves 0 < inf{d(a,b) | b € B} < d%(A, B), and this is a contradiction.

Now fix a € A, b€ B and ¢ € C. Since dg is a metric in the non-pointed case,
dji((A,a), (B,b)) = dj(A, B) + d(a,b) > 0
and equality holds if and only if A = B and a = b. Obviously, dj is symmetric and
dji((4,a), (B,b)) + dj((B,b),(C.c))
= d4(A, B) + d%(B, C) + d(a,b) + d(b, c)
> d4(A, C) + d(a,c)
= dl}iLI((Aa a), (C,c)).

Thus, dy defines a metric.
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b) From now on, the proof restricts to the case of pointed metric spaces since the
other one can be done completely analogously. Obviously, dgy is non-negative and
symmetric. It remains to prove the triangle inequality. Let (X, z), (Y,yo) and
(Z, z09) be pointed compact metric spaces. For arbitrary ¢ > 0, choose admissible
metrics dxy on X II'Y and dyz on Y II Z such that

A (X, 20), (Y, 90)) < dan((X, 20), (Y,90)) + & and
A2 ((Y,0), (Z,20)) < dau((Yy90), (Z, 20)) + ¢

Define an admissible metric dxz on X II Z by

dxz(z,z) = inf{dxy(z,y) +dyz(y,2) |y € Y}.

This actually defines a metric: Since everything else is obvious, only the triangle
inequality needs to be checked. If all regarded points are contained in X or all in Z,
there is nothing to prove. For x1,22 € X and z € Z,

dxz(x1,x2) + dxz(x2,2)

=dx(z1,22) + inf{dxy (z2,9) + dyz(y/,2) |y € Y}
= inf{dxy(z1,22) + dxy(z2,y) +dvz(y,2) |y € Y}
> inf{dxy (21,9") +dvz(y',2) |y € Y}

=dxz(x1,2)

and

dxz(z1,2) + dxz(2,72)

= inf{dxy (v1,y) + dvz(y, 2) + dyz(2,y") + dxv (y",22) | v,y €Y}
> inf{dxy (z1,y) + dy (¥, y") + dxy (", 22) | v,y € Y}

> inf{dxy (z1,9) +dxy(y,22) | y € Y}

> dx(x1,x2)

=dxz(x1,22).

For x € X and 21,29 € Z, the inequalities dxz(z1,22) + dxz(z2,2) > dxz(z1,x)
and d(z1,x) + dxz(z,22) > dxz(z1,22) can be proven analogously. With similar
arguments, one can prove that dxyz defines an admissible metric on X Y II Z
where
dxy(z,y) ifz,ye XY,
dxyz(z,y) = dxz(z,y) fz,ye XIZ,
dyz(xz,y) ifz,yeYIZ
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With those admissible metrics,

deu((X, o), (Z, 20))

< ARV (X, Z) + dxyz(xo, 20)

< dPFYHXY) +dFYA(Y, Z) + dxy z (o, yo) + dxy z(Yo, 20)
< dFY(X,Y) +diY (Y, Z) + dxy (w0, y0) + dy z(yo, 20)

< dau((X,20), (Y:0)) +dau((Y,y0), (Z, 20)) + 2e,

where in the second last inequality the fact is used that the inclusion X C B4xY (Y)
implies the inclusion X C BfXYZ(Y), where r > 0 is arbitrary. Now letting ¢ — 0
proves the triangle inequality for dgg.

It is easy to see that the distance of isometric pointed compact spaces vanishes: Let
(X,p) and (Y, q) be isometric via isometries f and g. For arbitrary ¢ > 0, then
(fy9) € Appr. ;2((X,p), (Y, q)). By Proposition A.5, dgu((X,p), (Y, q)) < e. Hence,
dau((X,p), (Y,q)) = 0.

Conversely, let (X,p) and (Y,q) be two pointed compact metric spaces satisfying
der((X,p), (Y,q)) = 0. By definition, for each n > 1 there is an admissible metric
d, on X1IY with dif (X,Y)+dn(p,q) < % Since X is compact and thus separable,
there exists a countable dense subset X’ = {z; | i € N} C X with zg = p.

Define yg := ¢. The constant sequence (yg)neN converges to ¢, and for each n,
dn(20,99) = dn(p,q) < 7.

Because of d‘;}" (X,Y) < 1, there exists some y} € Y such that d,,(z1,y}) < L. Since

Y is compact, (y,)n has a convergent subsequence (y; )ien with some limit y; € Y
Then

dnz‘(wl?yl) < dni(l‘l,y}”) + dni(y}li?yl) — 0 as 1 — oo.

The same argument for xo gives a subsequence dmj of d,, and some y2 € Y with
dnij (z2,y2) — 0 as j — oo. By a diagonal argument, there is a subsequence d; of d,
and a sequence (y;);en with yo = ¢ such that d;(z;,y;) — 0 as [ — oo for all i.

Define f : X’ — Y by f(x;) := y;. Since the d; are admissible metrics, for each I,

dy (f(zi), f(z;)) = di(f (i), f(x5)) = di(yiry;) and  dx(zi,25) = di(@i, ).
Therefore,
dy (f(:), f(z5)) — dx (@i, 25)| = |di(yi, yj) — di(@i, 25)]

< di(ys, zs) + di(z5,y;5))
—0asl— oo.

Hence, f is an isometry. Since X’ is dense, f can be extended uniquely to an
isometric embedding f : X — Y with f(p) = ¢. With a similar construction and
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using a subsequence of dj, there is an isometric embedding ¢ : Y — X with g(q) = p.
After passing to this subsequence, for each z,

di(go f(x),z) < di(g(f(z)), f(x)) + dy(f(z),z) = 0 as | — co.
Thus, f is an isometry with f(p) = ¢, i.e. (X,p) and (Y, q) are isometric. O]

The definitions of pointed and non-pointed Gromov-Hausdorff distance essentially give
the same notion of convergence. This will be proven next.

Proposition A.7. Let X and Y be compact metric spaces.
a) Foreachx € X andy €Y, dgu(X,Y) <deu((X,x),(Y,y)).
b) For any x € X there exists y € Y such that dgu((X,z),(Y,y)) < 2dcu(X,Y).
Proof. Both statements follow easily from the definitions:
a) Let z € X and y € Y be arbitrary. Then
dep(X,Y) = inf{d%(X,Y) | d admissible metric on X II Y}
< inf{d%(X,Y) +d(x,y) | d admissible metric on X ITY}
= inf{d%((X,z),(Y,y)) | d admissible metric on X II Y’}
= dan((X, z), (Y, y))-

b) Let r := deu(X,Y) > 0. For arbitrary n € N, let d,, be an admissible metric on

X 'Y satisfying
1 1
df(X,Y) < deu(X,Y) + S =

Thus, X C Bf_’;l/n(Y), i.e. there exists y, € Y such that dy(z,y,) < r++. Since Y

is compact, there exists a convergent subsequence (¥, )men Of (Yn)neny with limit
y €Y. Then

Ay ((X,2), (Yy)) = dim (X, Y) + dy,, (2,)

1
Nm

2
<2r+ — +dy(yn,,,¥)

m

and

den((X, ), (Y,y)) = inf{d?{((X,x), (Y,y)) | d admissible metric on X ITY'}
< inf{d}™ (X, z),(Y,y)) | m € N}
2
< inf{2r + — + dy (yn,,.y) | m € N}
= 2r. -
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It is easy to give an example where the inequality in Proposition A.7 a) is strict.

Example A.8. Equip the interval I := [—1,1] with the induced metric from R and fix
the points 0,1 € I. Then

dGH((Iv 0)7 (Iv 1)) e

In order to see the first inequality, assume dgg((1,0),(I,1)) < % By Proposition A.5,

there exists (f,g) € Appry((1,0),(1,1)). In particular,
1> |dr(9(1),9(=1)) — dr(1, =1)[ = [[g(=1)| = 2[ = 1
due to 0 < |g(—1)|] < 1. This is a contradiction.
Definition A.9. Let (X, dx,p) and (X;,dx,,p:), ¢ € N, be pointed compact metric spaces.
a) If dep(X;, X) — 0 as i — oo, then X; converges to X.
b) If deu((Xi,pi), (X,p)) — 0 as i — oo, then (X;,p;) converges to (X,p).

If X; converges to X, this is denoted by X; — X. If (X;,p;) converges to (X,p), this is
denoted by (X;,pi) — (X, p).

Corollary A.10. Let (X,dx) and (X;,dx,), i € N, be compact metric spaces.
a) If (Xi,x;) = (X, z) for some z; € X; and v € X, then X; — X as well.
b) If X; — X and x € X, then there exist x; € X; such that (X;,z;) — (X, x).
Recall that a metric space (X, dx) is called length space if

d(xz,y) = inf{L(c) | ¢ continuous curve from z to y}

for any x,y € X, where L(c) denotes the length of c.

Proposition A.11 (|[BBIO1, Theorem 7.5.1|). A complete compact Gromov-Hausdorff
limit of compact length spaces is a length space.

In general, the Gromov-Hausdorff distance of two subsets of the same metric space,
equipped with the induced metric, can be estimated by their Hausdorff distance. If this
metric space is a length space and the subsets are balls, this estimate can be expressed
by using the radii and the distance of the base points. This uses the property of length
spaces that r-ball around a ball of radius s coincides with the r + s ball (around the same
base point).

Lemma A.12. Let (X,d) be a length space, p € X and r,s > 0. Then

B, (Bs(p)) = Br+s(p).
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Proof. Let q € B, (Bs(p)), i.e. there exists x € By(p) with d(z,q) < r. Then
d(q,p) < d(g,x) +d(z,p) <7 +s

proves B, (Bs(p)) C Br4s(p). In fact, this inclusion holds in every metric space.

Conversely, let ¢ € By45(p). Since Bs(p) C By(Bs(p)), assume q € Brys(p) \ Bs(p)-
Let [ := d(p, q) denote the distance of p and ¢. In particular, s <[ < r+ s. Fix a shortest
geodesic 7 : [0,1] = X with v(0) = p and y(I) = ¢. Define £ := § -min{s,r +s—1} >0
and t :=s—¢e € (0,s) C[0,{]. Then

d(v(t),p) =t <s and d(y(t),q)=l—t=1l—s+e<l—s+r+s—1l=r.

Hence, v(t) € Bs(p) and q € Br(y(t)), and this verifies B,45(p) C Br(Bs(p)). O
Lemma A.13. Let (X,d) be a length space, p,q € X, r,s > 0. Then

d%(Br(p), Bs(q)) < d(p, q) + |r — 5.

Proof. Let ¢ :=d(p,q) + |r — s|. If e = 0, the claim holds due to p = ¢ and r = s. Hence,
assume ¢ > 0. Then, applying Lemma A.12,

B,(p) € Ba(p,q)++(2) € Bap,g)+|r—s|+s(@) = Be+s(q) = B:(Bs(q))-
Analogously, Bs(q) C B:(By(p)). Therefore,
di(Br(p), Bs(q)) = df(B,(p). Bs(q)) < €. O
Corollary A.14. Let (X,d) be a length space, p,q € X, r,s > 0. Then
a) deu((BY (p).p), (B (p).p)) < |r — s,
b) den((B* (p).p), (B (q),9)) < 2d(p,q).

The diameters of metric spaces with small Gromov-Hausdorff distance are almost the
same. In particular, for a convergent sequence of metric spaces, their diameters converge
to the diameter of the limit space.

Proposition A.15. For compact metric spaces (X,dx) and (Y,dy),
| diam(X) — diam(Y)| < 2dgp(X,Y).
In particular, if X; — X for compact metric spaces (X;,dx,), i € N, then

diam(X;) — diam(X).
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Proof. Let ¢ :=dgp(X,Y), 06 > 0 and d be an admissible metric on X ITY such that
d5(X,Y) <deu(X,Y) +6 = e +6.
This implies Y C Bg+5(X). Therefore, for any y1,y2 € Y there are x1,z9 € X with
d(x;,y;) < e+06 for 1 <i < 2. Hence,
dy (y1,y2) < d(y1,x1) + dx(x1,x2) + d(x2,y2) < 22 +2J + diam(X).

Thus,
diam(Y") = sup{dy (y1,y2) | y1,y2 € Y} < diam(X) + 2 +20.

Since § > 0 was arbitrary, diam(Y) < diam(X) + 2¢. The other inequality can be proven
analogously. O

Corollary A.16. If (X,d) is a compact metric space and {pt} the space consisting of
only one point, then deu(X,{pt}) = 5 - diam(X).

Proof. By Proposition A.15, diam(X) < 2-dgp(X, {pt}). Thus, only the other inequality
has to be proven.

Let § = 3 - diam(X) and define an admissible metric d on the disjoint union X II {pt}

by d(z,pt) := §. As usually, only the triangle inequality needs to be checked. For arbitrary
r1,xe € X,

d(z1,z2) + d(x2,pt) = d(21,22) + 6 > § = d(x1,pt) and

d(x1,pt) + d(pt, z2) = 26 = diam(X) > d(x1,z2).
Using this metric,

don(X, {pt}) < di(X, {pt}) = 6. s

For a metric space (X,dx), let AX denote the metric space (AX,dyx) := (X, Adx).
Rescaling of compact metric spaces behaves nicely under Gromov-Hausdorff distance. Ob-
serve BX(p) = {¢ € X | dx(q,p) <1} = {g € X | Mx(g,p) < X} = B3X(p) for any
p € X and r > 0.

Lemma A.17. Let (X,dx) and (Y,dy) be compact metric spaces.

a) For the Hausdorff-distance, d} = X - d3% (both in the standard and in the pointed
case).

b) For the Gromov-Hausdorff-distance, both dgrg(AX,\Y) = X -dgu(X,Y) and, for all
r € X and yey, dGH(()‘Xa $>, ()\Y,y)) =A- dGH((va)v (Y> y))

Proof. a) Let A,B C X. Then
d3(A,B) = inf{e > 0| A C B2 (B) and B C B} (A)}
= inf{\é > 0| AC B&X(B) and B C BX(A)}
= \-inf{>0|AC BX(B) and B C BX(A)}
= \-d¥(A,B).
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Furthermore, for a € A and b € B,

d?IX«Av a)v (B7 b)) = dr\{X(Aa B) + d)\X(a’7 b)
=\-d¥(A,B) + \-dx(a,b)
= )\dg((A,CL),(B,b))

b) By definition, an admissible metric d on AX II \Y is a metric on X IIY satlsfylng
d\X><X = dyx = A-dx and d\YXY =dyy = \-dy. Furthermore d = )\ d is
a metric if and only if d is a metric. In addition, dxxx = /\ d|XxX = dx and
diyxy = dy. Thus, d is an admissible metric on X I[I'Y. On the other hand, using

similar arguments, if d is an admissible metric on X II'Y, then d := X - d is an
admissible metric on AX IT AY.

Hence,

dea(AX,\Y) = inf{d‘f;]()\X, AY) | d admissible metric on AX ITAY'}
= inf{d}¥(AX,\Y) | X - d admissible metric on AX ITAY'}
= inf{\ - d4(A\X,\Y) | d admissible metric on X I1Y}
=\-deu(X,Y).

Analogously, dGH(()‘Xv .Z'), ()‘Y7 y)) =A- dGH((Xa 33'), (Y7 y)) [

A.2 The non-compact case

For non-compact metric spaces, the above way of defining a metric (up to isometry) does
not work: Using the Hausdorff distance as before on unbounded sets may give distance
infinity. Thus, instead of defining a notion of distance for non-compact metric spaces,
convergence is defined by using compact subspaces of these spaces only. On these, the
previous definitions can be applied.

A metric space is called proper if all closed balls are compact. Throughout the remain-
ing section, all metric spaces will assumed to be proper. Notice that proper metric spaces
are complete.

For a metric space (X,dx), p € X and 7 > 0, let B,(p) := {¢ € X | dx(p,q) < r}
denote the closed ball of radius r around p.

Definition A.18. Let (X, dx,p) and (X;,dx;,p;i), i € N, be pointed proper metric spaces.
If
den((BXi(pi),pi), (B (p),p)) — 0 as i — oo

for all » > 0, where the balls are equipped with the restricted metric, then (X;,p;) con-
verges to (X, p) (in the pointed Gromov-Hausdorff sense). If (X;,p;) converges to (X, p),
this is denoted by (X, pi) — (X,p) and (X, p) is called the (pointed Gromov-Hausdorff)
limit of (Xzypz)
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Frequently, a sequence (X, p;) does not converge itself but has a converging subse-
quence. The limit of such a subsequence is called sublimit of (X;,p;), and (X, p;) is said
to subconverge to this limit.

Naturally, the question arises under which conditions a given sequence of metric spaces
converges in the pointed Gromov-Hausdorff sense. For manifolds, the following theorem
by Gromov states that in some cases at least a (Gromov-Hausdorff) sublimit exists. In
section A.3, another, more general concept of creating and guaranteeing ‘limits’ will be
introduced. It will turn out that these limits in fact are Gromov-Hausdorff sublimits as
well.

Theorem A.19 (Gromov’s Pre-compactness Theorem, [Pet06, Cor. 1.11]). For n > 2,
k € R and D > 0, the following classes are pre-compact, i.e. every sequence in the class
has a convergent subsequence whose limit lies in the closure of this class:

a) The collection of closed Riemannian manifolds with Ric > (n—1)-x and diam < D.
b) The collection of pointed complete Riemannian manifolds with Ric > (n — 1) - k.

The section is structured as follows: In subsection A.2.1, the compability of the def-
inition of pointed Gromov-Hausdorff convergence in Definition A.1 with the notion of
convergence induced by the Gromov-Hausdorff distance of compact metric (length) spaces
is verified. Subsequently, subsection A.2.2 deals with stating and verifying several proper-
ties of pointed Gromov-Hausdorff convergence. In this context, convergence of points and
convergence of maps, respectively, are introduced in subsection A.2.3 and subsection A.2.4,
respectively.

A.2.1 Comparison with the compact case

Applied to compact length spaces, the convergence in the pointed Gromov-Hausdorff sense
coincides with the convergence of compact metric spaces in the pointed sense defined in
the previous section. Conversely, given (non-pointed) convergence as defined for compact
metric spaces and a fixed base point in the limit space, there exist base points such that
the spaces converge in the pointed Gromov-Hausdorff sense.

In order to prove this, one uses the fact that approximations can be restricted to
smaller balls. This is shown in the following lemma. Another statement of the lemma is
that base points can be changed in a certain way. This will be useful later on as well.

Lemma A.20. a) Let (X,dx) and (Y,dy) be length spaces, p,p' € X, q,¢' € Y and
R >r >0 such that BX(p') C By (p) and BY (¢') € BX(q). Moreover, let € > 0,

(f.9) € Appr.((Bz (p), p), (B (q),q))
and 6 := max{d(f(p'),q),d(p’,9(¢'))} = 0. Then

Appry. 1 5(BX (@), 0),(BY (). d)) # 0
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and

don((B;* ('), 1), (B) (¢),4)) < 8 +26.
b) For pointed length spaces (X,dx,p) and (Y,dy,q) and R > r > 0,

den((BX (p),p), (BY (4),9)) < 16 - deu((Bx (p),p), (BY(q), 0))-

Proof.  a) For simplicity, let oy := d(f(p'),q'), 6 == d(p',9(¢)), i-e. 6 = max{dy,dg},
and & :=4e+5. As B (p') C By (p), one can restrict f to BX(p'). For x € BX(p'),

dy (f(z),q') < dy(f(x), f(p) +dy (f(?),d)
< (dx(z,p') +¢) + 3¢
<r+e+dy.

Hence, f(BX(p)) € B),. s,(d). Analogously, g(B)'(¢')) € B 5 #'). Now

modify f and g in order to obtain maps f and g, respectively, whose images are
contained in BY (¢’) and B;X (p'), respectively, such that (f, ) are Z-approximations:

For y € BY,, Jr5f(q') \ BY (¢') choose a shortest geodesic ¢ : [0,1] — Y with ¢(0) = ¢’

and ¢(1) = y where 7 < | := dy(y,¢') < r +e+d;. Then dy(c(r),q’) = r, in
particular, c¢(r) € BY (¢'), and for § := c(r),

d(yu Q) = dY(ya q/) - dY(gv q/)
< (T—l—&‘—i-(s}v) —r
= E—HSf.

Using this, define f : BX(p') — BY (¢') by

/

q if v =p/,
fla)= 1 f(@) ifz#p and f(z) € BY(¢),
f(x) ifz#p and f(z) & BY (¢).

Since dy (f(p), f(0)) = dy (¢, f(p')) = d¢ < e+0f and by construction,

dy (f(x), f(x)) < e+d;

for all z € BX(p'). Similarly, define § : BY (¢) — B;X(p'). Using analogous argu-
ments proves

dx(9(y),9(y)) < e +d4

for all y € BY (¢).
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By definition, f(p/) = ¢ and §(¢') = p/, so it remains to prove that (f,g) are
g-approximations. By construction,

|dx (z1,22) — dy (f(21), f(x2))]
< ldx (w1, w2) — dy (f(1), f(w2))] + |dy (f (1), f(2)) = dy (f(21), f(22))]
<e+(dy (f(21), f(21)) + dy (f(x2), f(x2)))
< e+2(e+9y)
< g,
where x1, 5 € B¥ (p/). Analogously, |dy (y1,y2) —dx (§(y1), §(y2))| < & for arbitrary
y1,92 € BY (¢'). Furthermore, for z € BX (p),

dx(z,go f(z))

<dx(z,go f(x))+dx(go f(x),g0 f(x)) +dx(go f(x),5o f(x))
< e+(e +dy (f(2), f(z))) + (e +6,)

< 4€—|-5f + 59

=¢E.
Analogously, dy (y, f o G(y)) < & for all y € BY (¢). Hence,
(f,3) € Appr=((B (@), 0), (BY (d). d),
and by Proposition A.5,
den((B (0),9), (BY (d).4)) < 22.

b) Let § > 0 be arbitrary and ¢ := dgu((Bx (p),p), (Bk(q),q)) + 6 > 0. By Proposi-
tion A.5, ) )
Apprga((Bg(p),p), (BE(Q)7 Q)) 7é Q))

and by a),
Since § > 0 was arbitrary, this implies the claim. O

To avoid confusion, for the next two statements, let X; & X and (X;,pi) & (X, p),
respectively, denote the convergence of compact metric spaces in the sense of Definition A.1
and Definition A.2, respectively. Further, denote by (X;, p;) eyt (X, p) the convergence in
the pointed Gromov-Hausdorff sense of Definition A.18.

Proposition A.21. Let (X,dx,p) and (X;,dx,,p:i), i € N, be pointed compact length
spaces with (X;,p;) = (X,p). Then X; ¥ X, in particular, diam(X;) — diam(X).
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Proof. Assume diam(X;) is not bounded. Let r > diam(X). Without loss of generality,
assume diam(X;) > r for all i € N.

Let 0 < ¢ < r — diam(X) and choose x;,; € BXi(p;) such that dx,(vi,yi) > r — 5.
For g; := 2 - dgu((Xs, pi), (X, p)) and (fs,9:) € Appr., (Xi,pi), (X, p)),

diam(X) > dx (fi(x:), fi(yi)) > r — % — €.

Since this holds for all i € N,
. € ) €
diam(X) > r — 5> diam(X) + 7

This is a contradiction. Thus, there is an R > diam(X) such that diam(X;) < R for all
¢ € N. Then

dan(Xi, X) = dan(Byy (pi), Bi (p)) < dan((By (i), pi), (B (p),p)) — 0 as i — oo.
Hence, X; — X. Proposition A.15 implies the second part of the claim. O

Corollary A.22. Let (X,dx,p) and (X;,dx,,pi), i € N, be pointed compact length spaces.
Then (Xi,pi) 5 (X, p) if and only if (Xi,pi) "= (X, p).

Proof. The proof is done by proving both implications separately.

a) First, assume (X;,p;) & (X, p) and let 7 > 0 be arbitrary.

By Proposition A.15, diam(X;) — diam(X), i.e. without loss of generality, assume
a strict diameter bound D on all spaces X; and X. In particular, for all » > D,

(Bf,(l(pz),pl) = (Xzapl) CONVerges to (X>p) = (Bi((p)?p)
For 0 <r < D,

dGH((vi(i(pi)api)v (Bﬁ((p%p)) < 16 - dGH((B)D(i(pi)>pi)a (Bg(p)vp))
=16 - dau((Xi, pi), (X, p))
—0

GH

by Lemma A.20. Hence, (X;,p;) = (X,p).

b) Now let (X;,p;) "' (X, p). By Proposition A.21, diam(X;) — diam(X). Without
loss of generality, assume diam(X;) < 2diam(X) =: r. Thus,

den((Xi,pi), (X,p)) = deu((BYX (pi), pi), (B (p),p)) = 0. [

In particular, if X;, X are compact and p € X, then, by Corollary A.10, there exist
pi € X; such that (X;,p;) EY (X,p), and therefore, (X;, p;) =g (X,p).

From now on, let (X;,p;) — (X,p) denote convergence in the pointed Gromov-
Hausdorff sense.
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A.2.2 Properties as in the compact case

This subsection deals with several properties which are familiar from the compact case.
First of all, the Gromov-Hausdorff distance defines a metric on the set of the isometry
classes of compact metric spaces. In general, if a sequence of pointed length spaces con-
verges to a pointed space, it converges to its completion as well. Thus, those limit spaces
can always be assumed to be complete. Under this assumption, the (complete) limit of
pointed Gromov-Hausdorff convergence is unique up to isometry.

Proposition A.23. Let (X,dx,p), (Y,dy,q) and (X;,dx,,pi), i € N, be pointed length
spaces. Assume X and'Y to be complete, (X;,pi) — (X,p) and (X;,pi) — (Y,q). Then
(X,p) and (Y,q) are isometric.

Proof. For every r > 0, both BX(p) and B} (¢q) are limits of BXi(p;), and thus, there
exists a (bijective) isometry f. : BX(p) — BY(q) with f.(p) = q. Choose a countable
dense subset X’ := {xg, 1, x2,...} of X with o = p and let y}* := f,,(z;) for n € N.
For all 1 € N,
dy (yi'sq) = dy (fu(2:), fn(p)) = dx (i, p),

i.e. (y')nen is a sequence in the compact subset le/x(x_ ») (¢). By a diagonal argument,
there exists a subsequence (7, )men of the natural numbers such that for every i € N the
sequence (Y™ )men has a limit y; € BY (g). In particular, y§ = fn(p) = ¢ for all

. . . dx (zi,p) \1
n € N implies yo = ¢. For i,j € N, by construction,

dY(yz)yj) = nlgnoo dY(y;‘/Lm7y§Lm) = W}gnoo dY(fnm(l‘i)a fnm(xj)) = dX(x’Lax])v

i.e. the map f: X’ — Y defined by f(xz) = y; is an isometry with f(p) =q.

As Y is complete, there exists an extension of f to an isometry f : X — Y with
f(p) = ¢: Let x € X be arbitrary. Since X’ was chosen to be dense, there exists a
sequence (z;;);en in X' converging to x. This is a Cauchy sequence, hence, (f(ﬁﬂz'j))jeN is
a Cauchy sequence as well and has a limit y =: f(x).

This defines indeed an isometry f : X — Y: Let z,2’ € X be arbitrary and z;; and

z;,, respectively, be sequences in X’ converging to z and 2/, respectively. Then

dy (/@) £(@) = lim_dy (Flas,), f(@) = lim_dx(or,,a) = dx(@.a).

)

Thus, f is an isometry. It remains to prove that f is bijective:

Using a further subsequence n,,, and the inverse maps f;ﬂ{a, an isometry g : Y — X
can be constructed analogously. For arbitrary « € X, let (y,)ien be the sequence in the
dense subset Y/ C Y used in the construction of g converging to f(z) € Y. Then

dx(go f(x),x) = lim lim dx(f, " (k). i)
a—o0 [, j—00 @
= Jim lim  dy (yy, Frm, (27,))

= dy(f(z), f(z)) = 0.
Analogously, f o g =1id. Thus, f is bijective. O



A.2 The non-compact case 85

As in the compact case, Gromov-Hausdorff convergence preserves being a length space.

Proposition A.24. Let (X;,dx,,p:), i € N, be pointed length spaces and (X,dx,p) be a
pointed complete metric space. If (X;,p;) = (X,p), then X is a length space.

Proof. By |[BBIO1, Corollary 2.4.17|, it suffices to prove that for arbitrary z,y € X and
€ > 0 there are points z = xg, 21, ..., Tm, Tm+1 = ¥ in X with

dX($k,xk+1) <e and ZdX($k,xk+1) < dx($,y) + e

k=0
Let € > 0, 2,y € X be arbitrary and choose r > 0 such that z,y € BX(p). Since
B (pi) — BX(p), there exist & — 0 and (fi.g;) € App re, (B (pi), pi), (B (p), 1)),
cf. Proposition A.5. Choose a shortest geodesic ¢; : [0,1;] — X; with ¢;(0) = gi(z) and

ci(li) = gi(y) where l; = dx, (gi(z), gi(y))-
Let m € N such that me < l; < (m + 1)e. After passing to a subsequence, for all
1 < k < m, the sequences B
filei(ke)) € BX(p)

converge to points x; that have the required properties:

First of all, by construction, dx(fi(c;(0)),z) = dx(fiogi(z),z) < e — 0asi — oo.
Hence, fi(c;(0)) — z. Analogously, fi(ci(l;)) — y. Define g := z and 41 := .

As the fi(ci(¢)) are contained in the compact set B:X(p), after passing to a subse-
quence, f;(ci(€)) converges to some 1 € Bf( (p). After passing to a further subsequence,
fi(ci(2¢)) converges to a point z2 € B;X(p). Iterating this, there is a subsequence such
that f;(c;(0)) — xo, fi(ci(ke)) = =z for all 1 < k < m and f;(ci(l;)) = Xm41. Pass to
this subsequence.

Since the ¢; are shortest geodesics,

dx;(ci(ke),ci((k+1)€)) = L(Cijpe, (k1)) = €

for all 0 < k < m and

dx;(ci(me), gi(y)) = L(Ci|jmey,) < €-
Thus, the limits of these satisfy dx (zk, zx+1) < e. Furthermore, using ; — 0,

m—1

> dx (g wpg) = Lim > L(Ciipoetor1)2]) + LCijpme))
k=0 k=0
= ‘lim L(Ci)
11— 00

— Zlggo dx,(9i(%), 9:i(y))

= d(z,y)
<d(z,y)+e. O
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As in the compact case, in the non-compact case there is a correspondence between
(pointed) Gromov-Hausdorff convergence and approximations. In order to prove this, the
following lemma is needed.

Lemma A.25. Forallr > 0, let (&, )nen be a monotonically decreasing null sequence and
h:R>" — R>C o function with lim,_,o h(xz) = 0. Then there exists a sequence (T)nen
with limy,_yo0 1, = 00 and e)» < h(%) for almost all n € N.

Proof. Let A :={n € N |Vr > 0: ¢}, > h(1)} denote the set of all natural numbers n
for which no such ‘r,” can exist. This set is finite: Fix » > 0. Then €], > h(%) for all
n € A, but, since (€], )nen is a null sequence, this inequality only holds for finitely many
n. Hence, A is finite.

Without loss of generality, assume that for each n there is at least one » > 0 such that
en < h(7).

Let R, == {r > 0| el < h(1)} # 0 denote the set of all radii which are possible
candidates for ‘r,’. Then (Ry),en is an increasing sequence: Fix r € R,,. Since (€] )nen
is monotonically decreasing, €7, < &}, < h(%) Thus, r € Ry41-

Suppose that these sets are uniformly bounded, i.e. there exists C' > 0 such that
Unen Bn € [0,C]. Then €7 > k(L) for all n and all r > C. Consequently, for all r > C
the sequence (], )nen is bounded below by h(%) This is a contradiction to (£, )nen being
a null sequence.

Therefore, | J,,cy Ry is unbounded, i.e. for all C' > 0 there exists some N € N such
that R; Z [0,C] for all j > N. In particular, for all k& € N there is a minimal IV}, € N such
that for all j > N there is some 'r;-“ € R; with 7“;-‘ > k. There are two cases:

1. Let N — oo. For every n € N, n > Ny, there is some k € N with N, <n < Ngyq.

Fix this k and define r, := r¥ for some r* € R, satisfying 7% > k. Then, for
arbitrary k£ € N and all n > Ng, r, > k. Thus, r, — oco. Furthermore, by choice,
g < h(%)

2. Let ko € N such that N, = Ny, for all k > ko. For n < Ny, define r,, as in the first
case. For n = N +m > Ny, = Ng,4+m, choose any 7, := rfLO‘”” € R, N (ko + m,00).
Then 7, — oo and €} < h(i) O

Proposition A.26. Let (X,dx,p) and (X;,dx,,pi), i € N, be length spaces. Then the
following statements are equivalent.

a) (Xi,pi) = (X p).

b) For all functions g : R>0 — R>% with limg_ g(z) = 0 there exists r; — oo with
deu((BYX (i), pi), (B (p),p)) < 9(5.)-

¢) There exist r; — oo and g; — 0 with deu((Biy' (pi), pi), (B (p), p)) < €.



A.2 The non-compact case 87

Proof. The proof is done by proving the implications a) = b), b) = ¢) and c¢) = a). First,
let (X;,p;) — (X,p) and g : R”? — R>? with lim, ,0 g(x) = 0 be arbitrary. For fixed
r > 0, define

&l = deu((BY (pi), pi), (B (p),p)) — 0 as i — o0
and

g; ==sup{&} | j > i} — 0asi— oo
This sequence (] );en is monotonically decreasing and satisfies €] > &7. By Lemma A.25,
there exists r; — oo such that €* < g(%) for all 7 € N. In particular,
¢ = o . 1
dan((BY(pi).ps), (BY (0),p) = & < &' < g( ),

T

and this proves b). Obviously, b) implies c) via choosing ¢ := id and &; := .

T
Let deu((Bi(pi), pi), (Bix (p),p)) < & for some r; — oo and g; — 0. Fix r > 0. Let
i € N be large enough such that r < r;. By Lemma A.20,

dau((BY (pi), i), (BX (p),p)) < 16¢;,

and this implies the claim. O

Corollary A.27. Let (X,dx,p) and (X;,dx,,pi), i € N, be pointed length spaces. Then
the following statements are equivalent.

a) (Xi,pi) = (X, p).

b) There is €; — 0 such that Apprei((ijiEi (pi),pi), (Bf;ei (p),p)) £ 0 for all i.

c) There is €; = 0 such that dGH((Bl)jiEi (pi), i), (ijei (p),p)) <e; foralli.

Proof. This is a direct consequence of Proposition A.5 and Proposition A.26. O

Similarly to the compact case, the Gromov-Hausdorff distance and convergence, re-
spectively, is related to the diameters of the spaces: On the one hand, the distance of
balls in X and X x Y are bounded from above by the diameter of Y. On the other hand,
in the compact case it was proven that convergence of spaces implies convergence of the
diameters. For length spaces, an analogous statement will be established.

Proposition A.28. Let (X,dx,xo) and (Y,dy,yo) be pointed proper metric spaces. If Y
is compact, then dau((BYX (x0),20), (BX*Y ((z0,%0)), (x0,0))) < diam(Y') for all r > 0.
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Proof. 1t suffices to define an admissible metric and to estimate the Hausdorff distance
with respect to this metric.
Let 6 > 0 be arbitrary. Define an admissible metric d on (X x Y)II X by

d((z,y),2") = \/dx (z,2")2 + dy (y,y0)? + 62.

As usual, the only tricky part is to prove the triangle inequality: By the Minkowski
inequality, for z1, 2, z2, 2, € X and y1,y2 € Y,

d((x1,y1), ) + d(z, x3)

= \/dx(xhﬂf’l)Q + dy (y1,y0)? + 6% + dx (x, x5)

>/ (dx(@1,0) + dx(af, 25)? + dy (1, 90)? + 67)

\/dX (z1,25)% + dy (y1,90)% + 62)
= d((x1,y1),25).

With completely analogous argumentation, one can prove the remaining inequalities

d(.%'ll, (3:1,y1 ) + d(<x17y1)7x/2) > d(wllvx/2)7
d((z1, 1), (22,y2)) + d((22,y2), ¥5) > d((21,y1),25) and
d((xlayl);l"/l) + d(xllv (z2,92)) > d((21,y1), (72, 92))-

~—_ ~—

Fix r > 0. Let (x,y) € BX*Y ((w0,0)) be arbitrary, in particular, x € B;X (xg). Thus,

d((z,y). B (o)) < dl(z,),2) = V/dy (y,50)? + 82 < v/diam(Y)? + 62.

Hence,

BX*Y ((wo,90)) € B diam(y)2+62(Bf((xg)).

For arbitrary x € BX(x0), one has d((z,y0), (z0,y0)) = dx(x,2z0) < r, and therefore,
(z,90) € BX*Y ((x0,10)). Thus,

d(w, BXY (w0,90)) < d(a, (2, 30)) = 6

and

B (z0) € B (B (20, 0)).

Hence,

deu((BX (o), o), (B Y ((x0,%0)), (0, %0)))
< d(BX (o), B Y (w0, 0))

< max{y/diam(Y)?2 + 62,6}

diam(Y)? + §2.

Since ¢ was arbitrary, this proves the claim. O
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In order to prove the convergence of diameters, one needs the following property of
length spaces of infinite diameter: Any ball of radius r has diameter at least . Though it
is easy to see this, for the sake of completeness, the proof is given first.

Lemma A.29. Let (X,d,p) be a pointed length space and 0 < r < 3 - diam(X). Then
diam(BX (p)) > r.

Proof. Assume that d(q,p) < r for all ¢ € X. Hence, B,(p) = X, and this implies
diam(X) < 2r < diam(X), which is a contradiction.

Hence, there is ¢, € X such that [, := d(g,,p) > r. Fix a minimising geodesic
v :[0,1;] = X with 4(0) = p and ¥(l,.) = q,. Then d(p,~(r)) = r, hence, v(r) € B,(p). In
particular, diam(B,(p)) > d(p,v(r)) = r. O

Proposition A.30. Let (X,dx,p) and (X;,dx,,pi), i € N, be pointed length spaces. If
(Xi,pi) = (X,p), then diam(X;) — diam(X). (Here, both diam(X;) tending to infinity
as well as the notion oo — oo are allowed.)

Proof. Let ¢; — 0 be as in Corollary A.27 with
dGH(( 1/8( ) ) (Bl/el( )p))ggz

By Proposition A.15, | diam(Bl/iai (pi)) — dlam(ija (p))| < 2¢; — 0. Distinguish the two

cases of X being bounded and unbounded, respectively.
1. Let diam(X) < oo. Without loss of generality, assume diam(X) < 2%1 for all i € N.

Then X = Bf;g (p) and

]dlam( / (pi)) — diam(X)| = |diam(Bf§"ai (pi)) — diam(B f;a (p))| — 0,

in particular, diam(B: 1 / (pi)) — diam(X) as i — oco. Without loss of generality,
assume d1am(B1/€i (pi)) <2-diam(X) for all i € N.

Let r; := min{a%_, 3 - diam(X;)} < & - diam(X;). By Lemma A.29,

Xi (p;)) < 2-diam(X) < L

ri < diam(B;X (p;)) < diam(B;/,, - gi

Hence, diam(X;) = 3r; < 6 - diam(X), the X; are compact and Proposition A.15
implies the claim.

2. Let diam(X) = oo. Assume there is a subsequence (i;)jeny and C > 0 such that

diam(X;;) < C for all j € N. After passing to a further subsequence, C' < é
for all i € N. Then X; = ijs (p:) and diam(By_ (pi)) = diam(X;) < C. By
Lemma A.29, dlam(B)j (p)) >4 Z, and

|diam (B (py)) — diam (B, (p ))12;—(1%00.

This is a contradiction. Hence, diam(X;) — oo. O
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Gromov-Hausdorff convergence is compatible with rescaling: Given a converging se-
quence of length spaces and a converging sequence of rescaling factors, the rescaled se-
quence converges and the limit space is the original one rescaled by the limit of the rescaling
sequence. More generally, given a converging sequence of metric spaces and some bounded
sequence of rescaling factors, the sublimits of the rescaled sequence correspond exactly to
the sublimits of the rescaling sequence.

For a metric space (X, d), recall that X denotes the rescaled metric space (X, ad).

Proposition A.31. Let (X,dx,p) and (X;,dx,,pi), i € N, be pointed length spaces and
ri, T o, > 0.

a) If (X4,p;) = (X,p) and r; — r, then (BXi(p;),pi) = (B (p),p).
b) If a; — a, then (; X, p) — (aX,p).
c) If (Xi,pi) — (X,p) and a; — «, then (a; X;,p;) — (aX,p).
d) If (Xi,pi) = (X,p) and (0; X;,pi) = (Y,q), then a; — « and (Y, q) = (a X, p).
Proof.  a) By Corollary A.14,
dau((BX (pi), pi), (B (pi), pi)) < |r =i =0,
and triangle inequality implies

den(B] (i), By () < den(By (pi), BY (pi)) + dan(B (i), By () — 0.

b) Without loss of generality, let & = 1. There are two cases:

(i) Let X be compact. Define f; : X — ;X and g; : ;X — X by fi(x) := z and
gi(z) :=x for all z € X and let 0 < g; := 2+ |y — 1| - diam(X) — 0. For any
z, 7 € X,

|da1X(fl(x)7fl(x/)) - dx(ilj,x/)‘ = ’az’ - 1’ : dX($,.Q?/) < é&;.

Analogously,

|da, x (2,2") = dx (gi(2), gi(2"))| < &i.
Furthermore, dx(z,g; o fi(z)) = 0 < g; and dx(f; o gi(x),z) = 0 < ;. Thus,
(fi>gi) € Appr., ((a; X, p), (X,p)) and (; X,p) = (X, p).
(ii) Let X be non-compact and r > 0. Then, using a) and the compact case,
den((BE (0).p). (BX (0).p))
< deu((BY** (p),p), (BS:X (p), 1)) + dau((BYX (), p), (BY (p), p))
= a; - dau((B}),, (p),p), (BX (0),0)) + dou((i B (p), p), (B;* (p), D))
— 0.
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c) By the triangle inequality, for fixed r > 0,

den((BE (i), pi), (B (p), p))

< dau((BE (pi), pi), ( af (p),p))
(BEY . (0),p), (B (p),p))
(B (p), p), (B (p), p))-

By a),

dan((By ™ (p)pi), (Bor o (9),) = ai - den((B]), (p1),pi), (B;}a(p),p)) — 0,

by Corollary A.14,
a; no; X 8%
dGH((Ba T/a(p),p),(Brl (p)ap)) < |T_E'T| — 0,

and by b),
deu((BEX (p),p), (B (p). p)) — 0.

Hence, (BY%i(p;), p;) — (B2X(p), p) for every r > 0.

d) Let a be an arbitrary accumulation point of (a;);en. Hence, for a subsequence
(i)jen, both a;; — «a, and by c), (e;; X;;,pi;) — (aX,p)asj — oo. On the
other hand, (a;, X;;,pi;) — (Y, q) as j — oo. Thus, (Y, q) and (a X, p) are isometric
(cf. Proposition A.23). O

Corollary A.32. Let (X,dx,p) and (X;,dx,,pi), ¢ € N, be pointed length spaces and
(ci)ien be a bounded sequence. If (X;,pi) — (X, p), then the sublimits of (a; X, pi) corre-
spond to the (aX,p) for exactly the accumulation points o of (c;)ieN.

Proof. Let a be an accumulation point of (a;)ien and (a;)jen be the subsequence con-
verging to a. Then (X;;,p;;) — (X,p), and by Proposition A.31,

(ainijapij) - (OZX, p)

Now let (Y,y) be a sublimit of (o; Xy, p;), i.e. (oi; Xi;,pi;) — (Y, y) for some subse-
quence (ij)jen. Since (a;;)jen is a bounded sequence, there exists a convergent subse-
quence (i )ien with limit a. Thus, (e, Xi; ,pi; ) = (Y,y), and the first part implies
(cviy, X, , iy, ) — (aX,p). Hence, (Y,y) is isometric to (aX, p) for an accumulation point
a of (a)ien. d

A.2.3 Convergence of points

In the previous section, convergent sequences of pointed metric (length) spaces were stud-
ied. Given such a sequence and using the corresponding approximations, a notion for
convergence of points can be introduced.
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Definition A.33. Let (X,dx,p) and (X;,dx,,pi), i € N, be pointed length spaces. As-
sume (X;,p;) — (X,p) and let ¢, — 0 and (f;, ;) € Appr. ,((Bl/‘E (pi), i), (Bf?a (p),p))
as in Corollary A.27. Let ¢; € B / (pi) and ¢ € X. Then ¢; converges to ¢, denoted by
gi — q, if fi(q;) converges to ¢ (in X)

For (X;,p;) — (X, p) as in the definition, p; — p due to f;i(p;) = p. Moreover, for each
x € X there exists such a sequence z; satisfying z; — x, e.g. z; := g;(x).

Convergence g; — ¢ depends on the choice of the underlying Gromov-Hausdorff ap-
proximations: Convergence with respect to one pair of approximations does not necessarily
imply convergence for another, as the following example shows.

Example A.34. For i € N, let X; = X = S? be the 2-dimensional sphere, p; = p = N
the north pole and ¢; = ¢ some fixed point on the equator. Let ¢ denote the rotation of
S? by Z fixing p and define f; = g; = f}; = gh; = idge, fhiy1 =@ and gh; = ¢ 1.

Then both (f;,¢;) and (f/,g}) are pointed isometries between (X;,p;) and (X, p) sat-

isfying fi(¢i) = ¢, but f3;(q2:) = ¢ # ¢(q) = f3;11(q2i41). Hence, fi(g;)" is not convergent
at all, but subconvergent with limits ¢ and ¢(q).

In this example, after replacing the approximations, two sublimits occur: One sublimit
is the limit corresponding to the original approximations, the other one is its image under
an isometry of the limit space. Since Gromov-Hausdorff convergence distinguishes spaces
only up to isometry, concretely (X, p) = (h(X), h(p)) = (X, h(p)) for any isometry h, this
can be interpreted as follows: If ¢ is a sublimit of ¢; with respect to one Gromov-Hausdorff
approximation, then it is a sublimit for all Gromov-Hausdorff approximations.

This is a general fact as the subsequent lemma shows. In order to prove this, the
separability of a connected proper metric space is needed. Though it is easy to see that
such a space is separable, for completeness, the proof is given first.

Lemma A.35. A connected proper metric space is separable.
Proof. Let (X, p) be a connected proper metric space and let p € X be arbitrary. Then
x= U BW.
q€QN(0,00)

As a compact set, every B,(p) is separable where ¢ € Q is positive. Therefore, there exists
a countable dense subset Ag € Bqy(p). Let A := U cqn(,00) A¢- This A is countable,

and for arbitrary @ € X there is a positive ¢ € Q such that @ € By(p), i.e. there exists a
sequence x, € A; C A converging to x. Thus, A is dense in X, hence, X is separable. [J

Lemma A.36. Let (X,dx,p) and (X;,dx,,pi), i € N, be pointed length spaces. Assume
(Xispi) = (X, p) and let &;,€; — 0, r4,7; — 00 and
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Let q; € BXi

min{r;,}}

then there exists an isometry h : X — X such that h(q) = ¢'.

(pi) and q € X. If fi(q;) — q and ¢ is an accumulation point of f!(q:),

Proof. Without loss of generality, let r; = r}: Otherwise, let R; := min{r;,r}} and, by
Lemma A.20 and the construction in its proof, there are

(flagl) € Apprei((Bj)%ii(pi)api)v (Bl)gz (p)7p))
(f7.31) € Appra (Bg! (pi). pi) (B, (), )
with

fl(ql) — ¢ if and only if fi(¢;) — q,

fZ’(qz) — ¢ if and only if f{(qz) — q.
Define h;, h; : B (p) — B; (p) by
hi:= flog; and h;:= fiog..
In particular, h;(p) = h;i(p) = p. For any x,2’ € Bﬁf (p),

|dx (hi(x), hi(2')) — dx (2, 2)]

< |dx (fi(gi(x)), fi(gi(x"))) — dx,(gi(x), gi(z"))]
+ |dx, (9i(2), gi(2)) — dx(x,2')]

<éel+e —0.

Analogously, |dx (hi(z), hi(2")) — dx(z,2")| — 0. Moreover,

dx (h; o hi(z), )

=dx(fiog;o fiogz),x)

< dx,(gio fiogio fiogi(x),gi(x)) + &
< dx,(g; o fi © gi(x), gi(2)) + 2
<dx,(gi(x),g:(z)) +2¢& +¢; — 0,

and analogously, dx (h; o h;(x),x) — 0. Hence, if the h; and h; (sub)converge (in some
sense), their corresponding (sub)limits are isometries fixing p with h = h™1.

The idea for proving subconvergence is to choose a countable dense subset A C X, to
define the sublimit of all h;(a) where a € A and to extend this limit to a continuous map
on X. Doing the same simultaneously for h; gives another sublimit that turns out to be
the inverse of the first. In the end, identifying X with itself using this isometry proves the
claim.

Choose a countable dense subset A = {a,, | n € N} C X (cf. Lemma A.35) and, for 4
large enough such that dx (an,p) < r;, define 2, := h;(a,) and z% := h;(a,). Since

dx(z;,,p) = dx(hi(an), hi(p)) = dx (an, D),
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the sequence (d(z%,p))ien is bounded from above by some R > 0. Hence, 2! is contained
in B])%( (p), and therefore, has a convergent subsequence. An analogous argument proves
subconvergence for (z!);en. Thus, using a diagonal argument, there is a subsequence
(i7)jen such that for any n € N the sequences (27 ) jen and (27 ) jen, respectively, converge
to some z, € X and z, € X, respectively.

Define h(ay,) := z, and h(a,) := Z,. In particular,

dx (h(an), h(an)) = dx(an, am) = dX(B(an)a E(am))

for all n,m € N. For arbitrary z € X, choose a Cauchy sequence (ay, )ren in A converging
to x and let
h(z) := lim h(a,,) and h(z):= lim h(a,,).

k—o0 k—o0

In fact, for any k£ € N,
dX(hij (I‘), h(.’I})) < dX(hij (.I'), hi]' (ank)> + dX(hij (ank>7 h(ank)> + dX(h(ank)v h(x))
<dx(z,an,) + & +6§j +dx (hi;(an, ), h(an,)) + dx (h(an,), h(z))
— dx(x,an,) + dx(h(an,), h(x)) as j — oc.

Since this holds for every k € N and dx(x,an,) + dx(h(an,), h(x)) = 0 as k — oo,
hi,(z) — h(z) as j — oo.

Analogously, h;,(z) — h(z) as j — oo. In particular, hi; o hi; — hoh and vice versa.
Thus, A is an isometry on X with inverse h.
Now let fi(gi) — g. Then

dx (fi,(4i;), M(q)) < dx, (g, © f,(a;,). 95, © h(a)) + €,
< dx,(qi;,9i, 0 (q)) + 25,
< dx(fi;(ai), fi; 0 gi; 0 (@) + 25, +ei
< dx(fi;(gi;), @) + dx (g, hi; o h(q)) +2€;, +ei
— 0 as j — oo.

This proves lej (qi;) — h(q) as j — oo. U

The following statements allow to change the base points of a given convergent se-
quence.

Proposition A.37. Let (X,dx,p) and (X;,dx,,p:), i € N, be pointed length spaces, and
let ¢; € X; and g € X. If (X;,pi) = (X, p) and ¢; — ¢, then (X;,q;) — (X, q).

Proof. The proof is an immediate consequence of Lemma A.20 and Proposition A.26:
Choose ¢; — 0 and (f;,g:) € Apprei((Bl)jiEi(pi),pi), (Bf;ai (p),p)) as in Definition A.33
with fi(¢;) — ¢. In particular,

dx, (¢, 9i(q)) < i +dx(fi(a), fi(9i(q))) < 2¢e; +dx(fi(q:),q) — 0.
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Hence, 60; := max{dx(fi(¢),q), dx; (g, 9:(q))} — 0.
Since f;(p;) = p,

dx, (pi, ¢i) < i +dx(p,q) + dx(q, fi(¢:)) = dx(p, q).

Let r > 0 be arbitrary. Fix i large enough such that 2(r + dx(p, q)) < é and such that

dx,(pi,qi) < 2dx(p,q) or dx,(pi,q;) < r, respectively, if p # q or p = g, respectively.
In particular,

B (1) € B4y (pran ) S Bij (i), BY(0) S By, (q)(0) € By, (9)

and Appry., +5i((B§i(qi), @), (BX(q),q)) # 0 by Lemma A.20. By Proposition A.5,

i (
den((BY(4:), a:), (B (9),q)) < 8&;+26; — 0,
and Proposition A.26 implies the claim. O

Corollary A.38. Let (X,dx,p) and (X;,dx,,pi), i € N, be pointed length spaces. Let

Proof. Choose & — 0 and (fing:) € Appr. (B, (pi),po), (B (p),p) as in Corol
lary A.27. Then

dx(fi(¢),p) = dx(fi(q), fi(p)) < dx,(qi,pi) +¢ei — 0.

Hence, ¢; — p, and Proposition A.37 implies the claim. O

Corollary A.39. Let (X,dx,p) and (X;,dx,,pi), i € N, be pointed length spaces. Let
¢i € X; with dx,(pi,q;) < C for some C > 0. If (X;,p;) — (X,p), then there exists ¢ € X
such that (X5, q;) subconverges to (X,q).

Proof. Let ¢; — 0 and (fi,gi) € Apprsi((ij"ai(pi),pi),(Bf?gi(p),p)) be as in Corol-
lary A.27. For R > C there is ig > 0 such that C 4+ ¢; < R. Therefore, f;(¢;) € Br(p)
for all ¢ > 7g. Since this ball is compact, there exists a convergent subsequence with limit
q € Bg(p). After passing to this subsequence, ¢; — ¢, and Proposition A.37 implies the
claim. O

A.2.4 Convergence of maps

So far, statements about the convergence of metric spaces and points were made. But
even statements about maps between those convergent space are possible: In fact, Lip-
schitz maps (sub)converge (in some sense) to Lipschitz maps. The proof of this seems
to be rather technical, but in fact essentially only uses the same methods one can use to
prove convergence of compact subsets (without bothering Gromov’s Pre-compactness The-
orem). Therefore, a proof of the latter is given in advance after establishing the following
(technical) lemma.
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Lemma A.40. Let (X,dx,p) and (X;,dx,,pi), i € N, be pointed length spaces. Assume
(Xi,pi) — (X,p) and let ¢; — 0 and (fi, i) € Apprsi((Bl)jiEi(pi),pi), (Bf;ai(p),p)) be as
in Corollary A.27. Moreover, let A; C ijisi (pi) and A C X be compact and f!: A; — A,
g A— A; and §; — 0 satisfy

dx (fi(xi), fi(zi)) <6 and  dx,(gi(2), gi(x)) < 0;
forallz; € A; and x € A. Then A; — A.

Proof. Prove (f},4;) € Appry, 15,)(Ai, A): For z}f, a7 € Aj,

ldx (f{(x}), fi(x7)) — dx, (x}, 27)]

<|dx (fi(x}), £(@F)) = dx(fi(w), fi(@])| + ldx (filx}), fi(2?)) — dx, (a7, 27)]
< dx (f{(z}), fi(z})) + dx (f{(F), fi(x})) + &

< ;i +20;.

Analogously, |dx, (gi(z1), gi(z?)) — dx (x1,2?)| < &; +28; for all 2!, 22 € A. Moreover, for
x; € AZ‘,

dx, (g; o fi(x:),2i))

< dx, (g o fi(xi), gi o fi(xs)) + dx,(gi © fi(xs), gs o fi(ws)) + dx, (gi o filxi), i)
< 0+ (dx, (fi (@), filwi)) + &) + &

< 2(62‘ +5i)7

and analogously, dx (f/ o gj(x),z)) < 2(g; +6;) for all z € A. O

Proposition A.41. Let (X,dx,p) and (X;,dx,,pi), ¢ € N, be length spaces such that
(Xi,pi) = (X,p) and let e; — 0 and

(fis9i) € Appr, ((By), (pi),pi), (Bi) ., (), )

be as in Corollary A.27. Let K; € X; are compact with K; C Bi«fi (pi) for some R > 0.
After passing to a subsequence, there exists K C By(p) such that K; subconverges to K.

Proof. Without loss of generality, assume R < i and g; <1 for all ¢ € N.

Let z; € K; C BX “(pi) be arbitrary. Then fz(:):z) € BR+5 (p) C By (p). Hence, the
sequence ( fl(xl))zeN) is contained in a compact set, and therefore has a convergent sub-
sequent. Unfortunately, for different choices of z; different subsequences might converge.
Therefore, a diagonal argument on countable dense subsets of the K; will be used.

Let A; = {a} | n € N} C K, be a countable dense subset. As seen above, the
sequence ( fi(a}'));en, where n € N, has a convergent subsequence with limit y, € B, (p).
Moreover, this subsequence can be chosen such that, after passing to this subsequence,

dx(fi(a}),yn) < §. By a diagonal argument, there exists a common subsequence such
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that for every n € N there is y,, € Bry1(p) with dx(fi(a?),yn) < % for all i € N. Pass to
this subsequence.

Define A := {y, | n € N} as the set of all these limits and let K := A denote its
closure. In particular, K is compact.

Define maps f/ : K; - K and ¢} : K — K, in the following way: For x; € A;,
ie. z; = a} for some n € N, define f/(z;) =y, € AC K. If z; € K; \ A;, choose a] € A;
with dx, (zi,a]') < G and define f{(x;) :=y, € A C K. In particular,

dx (fi(@), fi(z:)) < dx (yn, fila])) + dx (fi(ai), fi(zi))
(

.
< ZZ + (81‘ +dxi a?,mi))
<E+<€.+i),§5.

4 tg) 27T

For x € A, i.e. x =y, for some n € N, let g/(y,) :=a' € A; C K;. For z € X \ A, choose
Yn € A with dx(z,yn) < § and define gj(z) := a € A; C K;. Then
dx,(gi(x), gi(x)) = dx,(af, gi(x)) < 2&; +dx (fi(a}),z)
< 2&i +dx(fi(ai'), yn) + dx (yn, )

)
<§5i'

Now Lemma A.40 implies the claim. O
Lemma A.42. Let (X,dx), (Y,dy), (X;,dx,) and (Yi,dy,), i € N, be compact length

spaces such that X; — X and Y; = Y. Moreover, let a > 0, K; C X; be compact subsets
and f; : K; = Y; be a-bi-Lipschitz. After passing to a subsequence, the following holds:

a) There exist compact subsets K C X and K' C'Y which are Gromov-Hausdorff
limits of K; and f;(K;), respectively, and an «-bi-Lipschitz map [ : K — K’ with
f(K)=K'.

b) For any compact subset L C K C X there exist compact subsets L; C K; such that
L; — L and f;(L;) = f(L) in the Gromov-Hausdorff sense.

Proof.  a) Pass to the subsequence of Proposition A.41. Then there are compact sets
K C X and K’ C Y such that K; - K and f;(K;) — K’'. For these, fix ; — 0,
(fiX,giX) € Apprei(Ki,K) and ( Z»Y,ng) € Apprgi(fi(Ki),K’), cf. Figure A.1.

The idea is to define f as a limit of h; := f¥ o fi0 g : K — K': For x,2' € K,

dy (hi(z), hi(')) = dy (f) o fio gX (), £ o fio g ()
<& +dy,(fio g (z), fio g (2))
<&+ dx, (g (2), g (2)))
<& +(a- (g+dx(z,2")))
=a-dx(z,2)+(a+1) &.
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Figure A.1: Sets and maps used to construct f: K — K’.

As in the proof of Proposition A.41, the h;(x) do not have to converge. Therefore,
a diagonal argument on a dense subset of X will be used to construct a limit map
which can be extended using the completeness of the limit space.

Let A = {z; | j € N} be a countable dense subset of K. Since h;(x;) € K’ for
all 1,57 € N and K’ is compact, by a diagonal argument, there is a subsequence
(in)nen such that (h;, (z;))nen converges for every j € N. Define f : A — K’ by
f(z;) = limp 00 hy, (xj). This map is a-bi-Lipschitz: For arbitrary j,I € N, with
the above estimate,

dy (£(;), flar) = Tim dy (b, (2;), hi, (21))
< lim (Oé + 1) *Eiy, “+a - dX(xj,xl)

n—oo

=oa-dx(zj,2).

Analogously, dy (f(z;), f(z1)) > L - dx(zj, z)).

Since A is a countable dense subset of K, f can be extended to an a-bi-Lipschitz
map f : K — K’ (cf. Lemma A.43) where f(z) = limj_,o f(z;,) for z € K and
xj, € A with z;, — x. In particular, for n € Nand [ € N,

dy (f(2), hi, (x))

<dy(f(z), f(x5)) +dy (f(zj,), ki, (25,)) + dy (hi, (zj,), hi, (2))
<dy(f(z), f(x5)) +dy (f(zj,), hi,(25,)) + @ dx(zj,2) + (@ +1) - &,
— dy (f(x), f(zj,)) + - dx(zj,,z) as n — oo

—0asl— oo.

Hence, f(z) = lim, o0 hy, ().
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Moreover, observe the following: Since f; is a-bi-Lipschitz, it is injective. Therefore,
the inverse f;l of f; exists on f;(K;) 2 im(g;\) and is a-bi-Lipschitz as well. Hence,
forr € K and y € K’,

dy (hi(z),y) = dy (£ o fiog¥(z),y)
< 2¢; +dy,(fi 0 g\ (), 9 (v))
<2eita-dx, (g7 (2), £ o gl ()
<2e+a- (26 +dx, (x, [ o £ o gl (1))
=2(a+1)e;+a - dx, (, hj(y))

where b, := fX o fi_1 o g¥. With analogous arguments and using a further subse-
quence (in,, )meN Of (in)nen, there exists an a-bi-Lipschitz map g : K/ — K with
9(y) = limy, 00 hénm (y) for all y € K'. In particular, for all y € K’,

dy(feog(y),y) = lim dy(hi,, (9(y)),y)
< lim 2(a+1)e,, +a-dx(g(y). b, )

=0.

Thus, fog = idgs. Hence, K’ C im(f) which proves K’ = f(K). In fact, with
analogous argumentation, one can prove g o f = idg, i.e. g is the inverse of f.
This proof is based on the first part and is done with very similar methods.

Let (f{X,9%) € Appr.,(K;, K) and (f), g) € Appr. (fi(K;), K') be as before. Then

7

L; = gZ-X (L) C K; is a compact subset of K;. The proof of the subconvergences will
be done in two steps. First, prove L; — L, then f;(L;) — f(L). For the maps
defined below, cf. Figure A.2.

(i) First, define (fX,3%) € Appry.,(Li, L) as follows: For z; € gX(L), choose
a point y € L with z; = ¢(y); for x; € L; \ g (L), choose y € L with
dx, (2,9 (y)) < . Then define fX(x;) := y. Finally, define §;¥ := ¢X. By
definition,

- ~ &
dx, (G o f;¥ (i), zi) = dx, (" o f¥ (%), ) < 3

for all x; € L;. Conversely, for x € L and by applying this inequality,

dx (fi% 0 g (x),x) = dx (¥ 0 g* (). 2)

< dx, (g% o f (97 (2))) 6" (2)) + &
< ; c &G
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X; X
Ul X ul
K’i PR >
X
Ul %X ul
L; = ng(L) — -
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L, 3 fr
T
fi(Li) «-_N_Y.——f(L)
NI Ji ol
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fi(KG) ---Y-——f(K)ZK'
NI Ji ol
Y; Y

Figure A.2: Sets and maps used to construct L; — L.

Now let z;, 2} € L; be arbitrary. Then

| (f* (i), f¥ ()
(

(7)) — dx; (% ;)
< fdx (¥ (i), fX

) — |
;) = dx, (g7 (i (1)), 9% (F¥ (=)

+ [, (g7 (FX (20)), 9% (7 (7)) — dix, (s, )|

< eitdx (g7 o f¥ (wi),20) + dx, (97 o [ (21), %)

<2¢;.

For z,2' € L,

dx, (5 (2), 5 () — dx (z,2)] < & < 2¢&;

by definition. This proves (]EZX,QZ-)() € Appry..(Li, L).

(ii) Observe that the compactness of L; and L, respectively, and the continuity of
fi and f, respectively, prove the compactness of f;(L;) and f(L), respectively.
In order to prove the subconvergence of f;(L;) to f(L), let

for z € L and
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For the subsequence (i,)nen of the first part, d;, (x) converges to 0. Then d;,
converges to 0 as well: Assume this is not the case, i.e. there is € > 0 such that
for all I € N there exists ip, € N and x,,, € X with &;, (v5,) > €. After passing
to a subsequence, there is x € X such that x,, — x as | — oo. Then

€< 5inl (Tn,)
= dY(hinl (@n,)s f(2n,))
< dy (hi,, (%n,), hiy,, () + dy (hi,,, (2), f(2)) + dy (f(2), f(2n,))
<(a-dx(zpn,,z)+ (a+1)- €ip,) + iy, () + a-dx(z,zp,)
— 0 as ! — oo.
This is a contradiction.
Construct (fY,q)) € Apprz (fi(L;), f(L)) for & := (4o + 1) g; +20; as follows:
Define f) := fo fXofi ' and g} := fi0 g o f~! (rvecall that f; ! exists on
fi(L;) C fi(K;) and that f: K — K’ is bijective).
First, let y; € L; and y € L be arbitrary. Then
dy; (3] o [ (i), i) = dvi(fio g o fi* o [ (yi), wi)
< a-dx, (g o i (7 wa))s £ (i)
< a-2¢g <&,

and completely analogously,

dY(f Ogl ( )7y) = dY(fosz Og;X Ofil(y%y) < 20&&5 < gz
For y,y € L,

v, (3 (), 37 (V) — dv (3, 9)]
<|dv, (3] (1), 3] @) —dy (£} o g (), £} o a ()]
+dy (£ o fiog o [T (W) M o fio g o fTHY)) — dy (.9
<eitdy(hio f7(y), fo [T (y) +dy(hio f7H), fo f7H(Y))
<eg;+26; <&
Finally, let y;,y, € Y;. Using the above estimates,

ldy (F (i), FY (1)) — dy, (i, v

<ldy (fY (i), f 0) — dvi (@) (FF (i), 3 (FF (i)
+ ldy, (30 (FF (i), 3 (FF 1) — dv, (wi, )]

< & +20; + dy, (3] (FF (i) i) + dvi (3 (F (), vi)

< i 4264220 = &

Thus, (f),3)) € Apprs, (fi(Li), f(L)). Since &, — 0 as n — oo, this proves
fin(Li,) = f(L) as n — oo. O
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Lemma A.43. Let (X,dx) and (Y,dy) be metric spaces where Y is complete, let A C X
and f : A — Y be a—(lii)—Lipschitz for some a > 0. Then f can be extended to an
a-(bi)-Lipschitz map f: A =Y.

Proof. Let a € A\ A be arbitrary. Then there exists a (Cauchy) sequence (a,)nen in A
converging to a. By Lipschitz continuity of f, (f(an))nen is a Cauchy sequence, and thus
has a limit @ in the complete metric space Y. If (a,)nen is another sequence with limit
a, dy (f(an), f(an)) < a-dx(an,a,) — 0, i.e. the limit a is independent of the choice of
(an)nen. Now define f(a) :=a for a € A\ A and f(a) := f(a) for a € A. For arbitrary
a,b € A and sequences a,, — a, b, — bin A,

dY(f(a)7 f(b)) = nhﬁn;o dY(f(an)a f(bn)) < lim o dX(am bn) = d(a’7 b)

n—oo

Hence, f is a-Lipschitz. Analogously, if f is a-bi-Lipschitz, f is a-bi-Lipschitz. O

A.3 Ultralimits

Since sequences of proper spaces do not necessarily converge in the pointed Gromov-
Hausdorff sense, a tool to enforce convergence can be useful. Such a tool are the so called
ultralimits since they always exist and are sublimits in the pointed Gromov-Hausdorft
sense. A basic reference from which the following definitions are taken is [BH99, section
I.5].  Another, more set theoretical, reference is [Jec06, chapter 7]. In the following,
ultralimits will be introduced and some properties will be investigated.

Definition A.44 (|[BH99, Definition 1.5.47]). A non-principal ultrafilter on N is a finitely
additive probability measure w on N such that all subsets S C N are w-measurable with
w(S) € {0,1} and w(S) =0 if S is finite.

Remark. If two sets have w-measure 1, their intersection has w-measure 1 as well: Let
w(A) = w(B) = 1. Then w(N\(ANB)) = w(N\AUN\B) < w(N\A4) + w(N\B) = 0,
hence, w(AN B) = 1.

Using Zorn’s Lemma, the existence of such a non-principal ultrafilter can be proven.
But even more is true: Given any infinite set, there exists a non-principal ultrafilter such
that the set has measure 1 with respect to this ultrafilter.

Lemma A.45. Let A C N be an infinite set. Then there exists a non-principal ultrafilter
w on N such that w(A) = 1.

Proof. Let
G:={BCN| B2 Aor N\B is finite}.

For any Bj, By € G, the intersection B N By is non-empty: This is obviously correct if
both B;j O A or both N\ B; are finite. Thus, let By O A and N\ By be finite: Then A\ By
is finite as well, hence, BN By O AN By = A\ (A\ B2) is infinite since A is infinite. In
particular, the intersection is non-empty.



A.3 Ultralimits 103

Using that G contains all sets with finite complement, it follows from [Jec06, Lemma
7.2 (iii)], [Jec06, Theorem 7.5 and the subsequent remark therein that there exists a
non-principal ultrafilter w such that w(X) =1 for all X € G. In particular, w(4) = 1. O

Given a bounded sequence of real numbers, a non-principal ultrafilter provides a kind
of ‘limit’. In fact, these ‘limits’ are accumulation points and non-principal ultrafilters pick
out convergent subsequences.

Lemma A.46 (|[BH99, Lemma 1.5.49|). Let w be a non-principal ultrafilter on N. For
every bounded sequence of real numbers (a;);en there exists a unique real number | € R
such that

w{i eN|a; =1 <e})=1

for every € > 0. Denote this | by lim,, a;.

Lemma A.47. If w is a non-principal ultrafilter on N and (a;)ien a bounded sequence of
real numbers, then limy, a; is an accumulation point of (a;)ien. Moreover, there exists a
subsequence (a;;)jen converging to lim, a; such that w({i; | j € N}) = 1.

Conversely, if (a;)ien s a bounded sequence of real numbers and a € R any accumula-
tion point, then there exists a non-principal ultrafilter w on N such that a = lim, a;.

Proof. Let (a;);en be any bounded sequence of real numbers.
First, fix a non-principal ultrafilter w, let a := lim,, a; and

A. ={ieN||a; —a| <&}

for ¢ > 0. By definition, w(A.) = 1; in particular, A, has infinitely many elements. Thus,
a is an accumulation point.

Next, prove that there exists I C N with w(I) = 1 such that the subsequence (a;);cr
converges to a. Assume this is not the case, i.e. every I C N satisfies w(l) = 0 or (a;)ier
does not converge to a. Since w(N) = 1, (a;);eny does not converge to a. Hence, there
exists € > 0 such that A. = {i € N| |a; — a| < ¢} is finite. In particular, w(A;) = 0 and
this is a contradiction.

Now let J C N be a set of indices such that w(J) = 1 and the subsequence (a;);ecs
converges to a. By Lemma A.45, there exists a non-principal ultrafilter w such that
w(J) = 1. By the first part, there exists a subsequence of indices I C N with w(I) = 1 and
a; — lim, a; as j — oo for j € I. Now w(/ NJ) =1 and both a; — a and a; — lim,, a;
as j — oo for j € I N J. This proves a = lim,, a;. O

An immediate consequence of the above lemma is the following: Given two bounded
sequences of real numbers, investigating sublimits coming from a common subsequence and
investigating the ‘limits’ with respect to the same non-principal ultrafilter is the same.

Lemma A.48. Let (a;)ien and (b;)ien be bounded sequences of real numbers.

a) If w is a non-principal ultrafilter on N, then there exists a subsequence (i;)jen such
that both a;; — limy, a; and b;; — limy, b; as j — oo.
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b) If there are a,b € R and a subsequence (ij);jen such that both a;; — a and b;; — b
as j — 0o, then there exists a non-principal ultrafilter w on N such that a = lim,, a;
and b = lim,, b;.

Proof.  a) By Lemma A.47, there are subsequences of indices I,J C N with measures

w(I)=w(J)=1 and
a; — lim, a; as j — oo for j € I and b; — lim, b; as j — oo for j € J.

In particular, I N J has w-measure 1. Hence, it is infinite and provides a common
subsequence which satisfies the claim.

b) This follows directly from the second part of Lemma A.47 since the non-principal
ultrafilter constructed there depends only on the indices of the convergent subse-
quence. O

Corollary A.49. Let (a;)ien and (b;)ien be bounded sequences of real numbers.
a) If a; < b; for all i € N, then lim,, a; < lim,, b;.
b) lim, (a; + b;) = lim,, a; + lim,, b;.

Proof. Observe that Lemma A.48 holds not only for two but finitely many sequences for
real numbers. Applying this and the corresponding statements for limits of sequences of
real numbers implies the claim. O

An ultralimit is a ‘limit space’ assigned to a (pointed) sequence of metric spaces by
using a non-principal ultrafilter. The construction of this ultralimit is related to Gromov-
Hausdorff convergence in the sense that such a limit space is a sublimit in the pointed
Gromov-Hausdorff sense. On the other hand, given any sublimit in the pointed Gromov-
Hausdorff sense, there exists a non-principal ultrafilter such that the corresponding ul-
tralimit is exactly this sublimit. This fact can be extended to a similar statement about
finitely many different sequences and corresponding sublimits coming from a common
subsequence.

Definition A.50 (|[BH99, Definition 1.5.50]). Let w be a non-principal ultrafilter on N,
(Xi,di,pi), i € N, be pointed metric spaces and

Xow == {[(xi)ien] | i € X; and sup;ey di(zi, pi) < 00}

where
(wi)ieN ~ (yi)ieN lf and only lf limw dl(.l‘z, yz) = 0

Furthermore, let dy,([(2;)ien], [(¥i)ien]) := limy, d;(z;, y;). Then (X, d,) is a metric space,
called wltralimit of (X;,d;,p;) and denoted by lim,,(X;, d;, p;)-
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Remark. Let w be a non-principal ultrafilter on N, (X;,d;, p;), i € N, be pointed metric
spaces and Y; C X;. Then the limit (Y, dy,) := lim, (Y, d;, p;) is canonically a subset of
(Xw, de) = limw(Xi, di,pi)i ObViOllSly,

{(yi)ien | i € Yi and sup, di(x;,p;) < oo}
C {(zi)ien | @i € X; and sup,; d;(x;, pi) < oo}

Since the metric is the same on both X; and Y; and since the equivalence classes are only
defined by using the ultrafilter and the metric, Y, C X,. With the same argumentation,
the metric coincides: For y;,y, € Y],

dy, ([(vi)ien)v,» [(¥)ien)y,,) = lime i (yi, y;) = dx, ([(s)ien]xo» [(¥5)ien] x.,)-

Lemma A.51 (|[BH99, Lemma 1.5.53|). The ultralimit of a sequence of metric spaces is
complete.

In order to prove the correspondence of sublimits and ultralimits, first, compact metric
spaces are investigated.

Proposition A.52. Let w be a non-principal ultrafilter on N, (X;,d;, pi), i € N, be pointed
compact metric spaces with compact ultralimit (X, dy) and p, = [(pi)ien] € Xo. Then
hmw dGH((meZ)a (Xwapw)) =0.

Proof. The statement will be proven by using e-nets: First, finite e-nets in X; will be
fixed and it will be proven that their ultralimit is a finite e-net in X,,. Then the Gromov-
Hausdorff distance of these nets will be estimated. Finally, using the triangle inequality
and € — 0 prove the claim.

Fix € > 0. For every i € N, fix a finite e-net A5 = {a},...,a}"} in the compact space
X; with a} = p;, ie. d(af,al) > eforall k # 1 and X; = U?:l B.(al). Let AZ be the

ultralimit of these A7, i.e.
A5 = {[(ai)ien) | Vi € N 31 < j; <y :a; = al’} C X,
and let p, := [(pi)ien] € AZ,. Then AZ is again a finite e-net in X,
Let [(aF)ien], [(a%)ien] € AS,. By definition,

[(a¥)ien] = [(a%)ien] if and only if lim,, d;(a¥, ali) = 0.

7 7
Since di(afi, aii) = 0 exactly for those ¢ with k; = [; and di(afi, aéi) > ¢ otherwise, this
implies
[(a¥)ien] = [(aX)ien] if and only if w({i € N | ki = 1;}) = 1.
In particular, for [(af*)ien] # [(af )ien], dx, ([(af)ien], [(af )ien]) = lim,, di(af®,af’) > &.
Furthermore, for arbitrary [(z;);en] there are a such that x; € B:(a]*). Thus,

du([(z0)ien], [(al)ien]) = lim,, d;(w;, a]') <.
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This proves that A is an e-net in X,,. It remains to prove that Af is finite: Assume

it is not. Then (J,c4- B:(p) is an open cover of X, and thus, has a finite subcover

Xy = U?:l Bc(gj) with ¢; € A;,. Hence, for any q € A\ {q1,...,qr} there exists ¢; such
that ¢ € B:(g;). This is a contradiction to d, (g, q;) > .

Let n,, < oo denote the cardinality of A and I := {i € N |n; = ny,} be those indices
such that A7 and A{, have the same cardinality. Then w(/) = 1:

Let A5, = {z1,...,2n,} and 2z, = [(agf)ieN] with 1 < jF < n; for 1 < k < n,. For
k # 1, one has 1 = w({i € N | j¥ # j!}). Thus,

1

Il
(S

(Myapore, (€N #£31)
{ieN|VI<k<l<ng:jf#ji)
(

(

{i e N|ny, <mn;})
TulJ)

Y
€ & &

where J := {i € N| n; > ny}. Assume w(J)=1. Forall 1 <j <mn, +1, let

i a{ ZGJ,
qz‘ Pi Z%J

and Zj := [(qzj)ieN] € AS. By definition, qi‘ = ¢! if and only if k # [ or i € I. Hence,
if Kk # 1, then w({i € N | ¢ =¢'}) = wN\J) =1 —w(J) = 0. Thus, % # % and
{Z1,.. ., Zn 41} € AZ, hence, n, + 1 < n,. This is a contradiction. Therefore, w(J) =0
and w(l) =w(lUJ) =1.

Similarly, for all 1 < 5 < n,, let

; a’ 1€l
pi=o "
pi i¢l

and y; 1= [(qu)iGN] € A:. Analogously, y; = y if and only if I = k. This implies
A8 ={y1,...,Yn,}- In particular, y; = p,.
For 1 <k <1 < ny, define

I ={i € 1| |dw(yk, w) — di(al, al)| < 6}

={i € I | |du(yr, 1) — di(pf,ph)| < 3}
Since dy(yp,y) = limg, di(pf,pé) by definition, w(Ié“l) =1 for any 6 > 0. Therefore,
lim,, 6} = 0 for ' := |du(ye, 1) — di(af, a})|. Thus, for e = max{6} | 1 <k <1<},

177
lim,, ; = 0 as well.
Let 7 € I be fixed and define f; : A — AS and g; : A, — A by

fi(al) == y; and g;(y;) = a
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for 1 < j < ny. In particular, fi(p;) = fi(a}) = y1 = po and gi(p,) = =
Obviously, f; o g; =idas and g; o f; = id4s. Furthermore, for 1 <k <1 < n,

|duo(fi(af), fi(a})) — di(al, af)| = |du(yn, wi) — di(af, al)| = 6 < e,
and analogously,

|di(9i(y)> 9: (1)) — dw(yr, vi)| < €,

Le. (fz:gz) € Apprsz((Aivpz)a(Aimpw)) Therefore7 dG’H((AipZ)?(Aiﬂpw)) <2¢g for any
i e 1.
For any compact metric space (Z,dyz) and e-net A C Z,

d%(Z,A) = inf{r > 0| B,(A) D Z = B.(A)} <e.

Hence, for any p € A, deu((A,p),(Z,p)) < du(Z,A) +dz(p.p) < e.
Applying this general statement, for fixed i € I and € > 0,

dG’H((Xi,pi)’ (Xwapw))
< dGH((Xiapi)v (Af,pl)) + dGH((Azgvpi)a (Ainpw)) + dGH((Aprw)’ (Xwapw))
<2e+42¢;.

In particular, lim,, dgu((X;, pi), (Xw,pw)) < 2. Since this holds for all € > 0,
lim,, dGH((Xi,pi)v (Xwapw)) =0. O

Corollary A.53. Let w be a non-principal ultrafilter on N. If the ultralimit of compact
metric spaces is compact, it is a sublimit in the pointed Gromov-Hausdorff sense which
comes from a subsequence with index set of w-measure 1.

Proof. Let (X;,d;,p;), i € N, be pointed compact metric spaces, (X, d,,) their compact
ultralimit and p,, = [(p;)ien]. By the previous proposition,

limy, dgu((Xi, pi), (Xw,pw)) =0,

and by Lemma A .47, there exists a subsequence (i;);en of natural numbers satisfying
w({i; | 7 € N}) =1 such that

dGH((Xij7pij)? (Xwapw)) — 0 as ] — 0. O
This result now gives a corresponding result for non-compact spaces.

Proposition A.54. a) Letw be a non-principal ultrafilter on N. The ultralimit of a se-
quence of pointed proper length spaces is a sublimit in the pointed Gromov-Hausdorff
sense (which comes from a subsequence with index set of w-measure 1).
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b) The sublimit of a sequence of pointed proper length spaces in the pointed Gromouv-
Hausdorff sense is the ultralimit with respect to a non-principal ultrafilter.

Proof.  a) Let (X;,d;,p;), i € N, be pointed proper length spaces, (X, d,) the corre-
sponding ultralimit and p,, := [(p;)ien] € Xw. First it will be shown that an r-ball in
the ultralimit is the ultralimit of r-balls. Then applying the corresponding statement
for compact sets proves the claim.

(i) For r > 0, let X!, C X,, denote the ultralimit of (BX(p;),d;,p;). This is a
closed subset of X,: First, observe

X, ={l(¢)ien] | ¢ € X; and d;(qi, p;) < r}.

Let (zn)nen be a sequence in X/, which converges to a limit z € X,,. Denote
zn = [(¢")ien) and z = [(¢;)ien] where ¢, ¢; € X; with d;(¢}',p;) < r for all
i,n € N and sup;cy di(gi, pi) < 0o. Moreover, dy,(zp,2) = limy, d;(¢}*,qi) — 0
as n — oo. For all n € N, d,,(zn, po,) = limy, d; (¢, pi) < r. Hence,

dy(2,pu) < li_}rn dw(z, 2n) + dw(2n,Pw) <7

and z € X/ . This proves that X is closed.
In fact, X7 = BX«(p,): First, let [(¢:)ien] € X/, C X, be arbitrary. Since

duw([(gi)ien]; [(pi)ien]) = limy, d;i(pi, qi) <7

[(g:)ien] € B (p)-
Now let [(¢;)ien] € BX“(p,) and I := {i € N | d;(p;,q;) < r}. Define

~ qi 1€ I7

4= Pi 1 §7§ I
By definition, [(gi)ien] € X{. Furthermore, [(gi)ien] = [(¢i)ien] € X Since
[(qi)ieN] S Bi(‘*’ (pw), 0<1:=1lim, di(qi,pi) <r.Ford:=r—1> 0,

w({i € N||di(g;,pi) — U] < 3})
w({z eN ‘ d; (qlapl) <Il+4d= T})
w(I).

1

Thus, for arbitrary € > 0,

w({i e N|di(gi, ) <e}) >w{i € N| g =q})
=w(l)=1.
Therefore, lim,, d;(g;,q;) = 0 and [(¢;)ien] = [(¢%)ien] € X[. Consequently,

)
BX«(p,) € X7. Since X[ is closed, this proves BX«(p,) C X”, and hence,
equality.
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(ii) For any r > 0 and ¢! := den((BXi(p:),pi), (B (po),pw)), limy, el = 0 by
Proposition A.52. By Lemma A.55, there exists r; > 0 with

1 o1

lim, — =0 and w({ieN\a’{’S—}>:1.
T T

By Lemma A.47, there is J = {i; < i2 < ...} C N such that w(J) = 1 and

ri; — 00. Let

1
Ii=Jn{ieN|e <}

r;
Then w(I) =1 and I = {ij, <ij, <...} € J. Thus, r;; — oo and

don((Bry (91,0, (B (). p)) = 2,7 < - =50
GH T‘ijl ijl 7pljl ) Tijl Pw)s Pw — ijl =~ Tijl
as I — o0o. Now Corollary A.27 proves (Xl-].l,pi].l) — (Xw,pw) in the pointed
Gromov-Hausdorff sense where w({i;, |l € N}) = 1.

b) This proof can be done completely analogously to the one of Lemma A.47. O

Lemma A.55. Let w be an ultrafilter on N and for every r > 0 let (¢} )ien be a sequence
such that limy, €] = 0. Then there exists a sequence (r;)ien of positive real numbers such
that lim, - =0 and w({i e N | &} < T—ll}) =1

Ti

Proof. For i € N, let R; := {r > 0| &/ < 1}. The idea of this proof, similar to the one of
Lemma A.25, is to find a sequence r; € R; with r; > i for a set of indices of w-measure 1.
Since the R; need to be non-empty, let I := {i € N | R; # (}. Due to lim, &} =0,

w(I):w({ieN|3r>0:a§§%})Zw({ieN\ailgl})zl,

le.w(I)=1 Let J:={i e N|-3C > 0: R; C[0,C]} be the indices of the unbounded
sets. In particular, J C I. In the following, the cases of w(J) = 0 and w(J) = 1 will be
distinguished.

In advance, observe that for sets of indices of w-measure 1 the corresponding R; cannot
have a uniform upper bound: Let A C N be any subset such that there exists C' > 0 with
UicaBi € [0,C] and let r > C. Then i € A implies r ¢ R;, i.e. &/ > 1. Thus,
w(Ad) <w({ieN|el > 1} =o0.

First, let w(J) = 1. For i € J, choose r; € R; N (i,00). For i € N\J, let r; := 1. Then

w({z’eme;i gj}) >w{ieN|reR))>w()=1.

For arbitrary € > 0, choose N € N with % <e. Forie Jwithi> N,
111
T , — N

| =

<e

~
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and
w({ieN\%ga}) > w(JN[N,0)) = 1.

Thus, lim,, % = 0 and r; has the desired properties.
Now let w(J) = 0. For i € I NJ¢, let s; := sup R; denote the least upper bound of R;
and choose r; € [%,s;] N R;. Fori € I°UJ, let s; := r; := 1. Then

w({z’eNa?ﬁé}) >w{ieN|reR}) >w(InNJ =1.

Let€>0andK€::{i€IﬂJC]S%,>€}. Then
1
C J1C il
U ric Jbsic o],
€K, €K,

and thus, by the above argumentation, w(K.) = 0. Then, using w(I N J¢) =1,
1 1
w{ieN|=—<e})=1-w({ieN|=>¢})
5; 5;

1
=l-w{ieInJ|—=>¢c})
S
=1—-w(K,) =1
Hence, lim,, S% =0 and 711 < s% this proves the claim. O

As for bounded sequences of real numbers, investigating sublimits coming from the
same subsequence is the same as investigating ultralimits.

Lemma A.56. Let (X;,dx,,pi) and (Yi,dy,,q:), i € N, be pointed proper length spaces.

a) Let w be a non-principal ultrafilter on N. Then there exists a subsequence (i;);en
such that both

(Xi;pij) = limy (X, dx,,pi)  and (Vi qi;) = lime (Y, dy;, qi)  as j — o0
in the pointed Gromov-Hausdorff sense.

b) Let (X,dx,p) and (Y,dy,q) be pointed length spaces and (i;)jen be a subsequence
such that both

(Xij7pij) - (X,p) and (Yvipq%‘) - (K Q) asj — 00

in the pointed Gromov-Hausdorff sense. Then there exists a non-principal ultrafilter
w on N such that there are isometries

Proof. Using Proposition A.54, the proof can be done completely analogously to the one
of Lemma A .48. O
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Let (M;, pi)ien be a sequence of pointed complete connected n-dimensional Riemannian
manifolds with lower Ricci curvature bound Ricpy, > —(n — 1). If vols, (Bi(pi)) — 0 as
i — o0, this sequence is said to be collapsing. Observe the following: If (M;,p;) were
converging to a limit (X, p) and given any (non-trivial) measure on X, the volume of the
Bi(p;) would not converge to the volume of Bj(p).

This phenomenon does not occur when using renormalised limit measures, cf. [CC97,
section 1|: Let (M;, p;)ien be a collapsing sequence as above. Then (M;, p;) subconverges
to a metric space (X,p) such that a ‘renormalisation’ of the measures volys, converges
to a limit measure volx. For a more detailed explanation, cf. again [CC97, section 1].
Essentially, this construction is done as follows:

For the renormalised measure

) L VOlMi(')

volay, (Bi(pi))’
after passing to a subsequence, (M;,p;) is converging to a metric space (X, p) and there
exists a continuous map V : X x Rt — R™ such that

V(g R) = lim p5(Br(g;))
1—00
for any ¢; — q and all R > 0. For 6 > 0 and A C X, let
vs(A) := inf { ZV(Zj,Tj) |7; <6 and A C U Brj(zj)} and
JEN jeN

=1 A).
lim v5(4)

(-

v(A)

This v defines an outer measure and can be extended to a unique Radon measure volx on
X. This can be summarized by the following theorem.

Theorem A.57 (|[CC97, Theorem 1.6, Theorem 1.10]). Let (M;,p;)ien be a sequence of
pointed complete connected n-dimensional Riemannian manifolds satisfying the uniform
lower Ricci curvature bound Ricy;, > —(n — 1). Then (M;,p;) subconverges to a metric
space (X, p) in the pointed Gromov-Hausdorff sense and there exists a Radon measure volx
on X such that for all x € X, x; — x and r > 0,

volyy, (B (x:))
volar, (B1" (pi)
Moreover, for any R>r >0 and x € X,

volX(Bf%((x)) < V™ (R)
voly (B (z)) — V™ (r)

— voly (BX(x)) as i — oco.

where V', (r) denotes the volume of a ball with radius r > 0 in the n-dimensional hyperbolic
space.
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Observe that the limit measure of a sequence (M;,p;) depends on the choice of the
base points and the considered subsequence, cf. again [CC97, section 1].

The following lemma states a (technical) condition on compact subsets A; C M; and
A C X which guarantees convergence of the renormalised measures p;(A;) — volx(A4).

Lemma A.58. Let (M;,pi)ien be a sequence of pointed complete connected n-dimensional
Riemannian manifolds converging to a metric space (X, p) in the measured Gromov-Haus-
dorff sense, and let €; — 0 and

(fis9i) € Appre, (B, (pi)spi), (Bi) ., (), D))

be as in Corollary A.27. For x € X, let pf denote g;(x).

Assume A; C M; and A C X to be compact subsets with A; C Br(p;) and A C Br(p)
for some R > 0. Moreover, assume that there is §; — 0 such that for all r; >0, x; € X
andpg € Bé\l_/[i (pfj), where j € N, the following is true:

a) If Ai CU,en Bfn\]/[l(pZ), then A C U, en Bi‘i’éi(ajj)'
b) If A C Ujen B (25), then A; € Uje ij;&(pg).
Then p;(A;) — volx (A).
Proof. Define
i (Ai) = inf {3 pi(By, (0]) | vy < 6] € M; and A € | By, ()}
JEN jEN

For measurable sets U;, ul(U;) = p;(U;) for any 6 > 0. The corresponding statement is
true for vs and volx. Since the A; and A are assumed to be compact, they are measurable
and these identities can be used in the following.

Fix 6 > 0. Without loss of generality, assume R + § < E% and §; < ¢ for all i € N. By
definition,

v(A) = vs(A)
= inf{z lim 44;(Br,(p;?)) |0 <r; < 6,25 € X and A C U By, (x)}.
1—00
€N

jEN

For such r; < ¢ and 2; € X, observe AN B, (x;) € Br(p) N Bs(x;) = 0 if d(p, z;) > R+90.
Hence,

v(A) = inf { Zilggom(&j(pfﬂ')) |0 <rj < 6,25 € Brys(p) and A C | ) By, (2)}.
JEN jEN
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Recall that lim; e p1;( By, (pfj)) = lim; 00 pti(Br,; (p{)) if pé — z;. In particular, this is
true for all p! € B.,(p;’). Therefore,
v(A)=inf {3 lim (B, (p])) | 0 < rj < 6,25 € Brys(p),p! € Be,(p}”)
71— 00
JjEN
and A C U By (x5)}.
jEN

pi(Br; (p])) Ve (ry)
M(BTjwi(pg)) = VI (rj+0:)

By the Bishop-Gromov Theorem, 1 > — 1 as i — oco. Thus,

v(A) =inf { Y lim p1i(By,15,(p])) | 0 < rj < 6,p] € Be(9:(Bres(p))

jeN
and A C U B, (z;)}
jEN
=inf { ) lim 1u(Bs, (1)) | 0 < 55— 6 < 6,p] € Be,(9i(Brs(p)))
jeN
and A C U B, _s,(z5)}
jeN
> Z,l_i>]c‘21f>10ilmf’ { Zui(st(pg)) |0 <s; <2§,pl € M; and A; C U By, (p])}
jeN jEN
> lim p3°(A;)
1—00
= lim 4;(A;).
1—00
Conversely,
lim 42(A;) = lim pf(A;)
11— 00 71— 00
= inf{ziligloui(Brj(pg)) |0 <r; <6,pl € M;and A; C | ] By, (p])}
jEN jEN
= inf { %11550 1i(Br; (p})) | 0 < 7j < 6,p] € Brys(p;) and A4; C UNBrj ®])}-
J€ je

For p{ € Bpis(pi) and z; = fz(pf) € Bprys+e,(p), note p{ € B:,(p;”). Thus, using again
the Bishop-Gromov Theorem,
lim 4;(4;)
11— 00
> inf { Z hm lu’i(BT’j“!‘(Si (PZ)) | 0< rj < 5a L € BR+5+Ei (p)vpg € Bei (pfj)
]EN 71— 00

and A; C U B, (p{)}
JEN
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>inf { ) lim 11;(Bs,(p)) | 0 < s; < 26,25 € X, p! € Be,(p;”)
1— 00

JjEN
and A C U B, (z5)}
jEN
1nf{2hmm 5, (077)) 10<s;<26,2z;€ X and AC UBSJ (z5)}
JeN
= 1/25(./4)
= Vle(A).
This proves lim; o p1;(A4;) = volx (A). O

The next lemma provides a condition for sets such that these satisfy the hypothesis of
Lemma A.58. This lemma will be used afterwards to prove volume convergence in several
situations.

Lemma A.59. Let (X,dx,p) and (X;,dx,,pi), i € N, be pointed length spaces. Assume
(Xi,pi) = (X,p) and let ¢; — 0 and (fi,g;) € Appr. ((Bl)ji6 (i), i), (ij6 (p),p)) be as
in Corollary A.27. For x € X, let p} denote g;(x). Moreover, let A; C BX} (pi), ACX,
fl:Ai— A gl A— A; and 6; — 0 be such that

dx (fi (i), fi(z:)) <0 and  dx,(gi(x), gi()) < 6;
for all x; € A; and x € A. Letr; >0, x; € X and pg € Bgfi(pfj), where j € N.
a) If A; € Ujen B (p]), then A C ey B rit3es 46, (%)
b) If AC U]eN BX(.CC]) then A; C U]eN BT]+361 s (pl)
Proof. First, assume 4; C ey Bﬁf@ (pg) and let y € A be arbitrary. Then ¢}(y) € A;.

Therefore, there exists j € N such that ¢(y) € BT),](_Z‘ (p7) - Bijﬁl( 7). Hence,

dx (y,zj) < ei+dx,(9i(y), gi(z;))
< ei+dx, (9i(y), 9i(v) + dx, (gi(y), p;”)
<&+ + (rj + &),

and this proves A C [J;en Bf§+2€i +6,(75) € Ujen B§+3Ei 15, (x5). Conversely, assume
A C Ujen B,ff,(:vj) and let y; € A; be arbitrary. Then f/(y;) € Bff,(mj) for some j € N,
and this implies

i p7) < sictdx (i) f1w0) + dx (1), 27) + dx (. Si(07"))
<ei+bi+rite.

X; j
Therefore, A C U]GN Brﬁ%l .5 (pl ) C UjeN Brj+3€i 5, (p]). O
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Proposition A.60. Let (M;,p;)ien be a sequence of pointed complete connected n-dimen-
sional Riemannian manifolds converging to a metric space (X, p) in the pointed Gromouv-
Hausdorff sense, and let ¢; — 0 and

(fis9i) € Appre, (B, (pi),pi), (Bi) ., (), )
be as in Corollary A.27. For x € X, let pf denote g;(z).

a) Let A; C M; be compact with A; C BR(p,;) for some R > 0. After passing to a
subsequence, there exists A C X with A; — A and p;(A;) — volx(A).

b) Let 0 < R< 1, x1,...,3; € B 5(p),

l l
Ai:= B () \ |J BR*(0]7) and A:=B{(p)\ |J B ().
. et

Then p;(A;) — volx (A).

Proof.  a) Pass to the subsequence of Proposition A.41. Then there exists A C Bgr(p)
such that A; — A. Moreover, by the proof of Proposition A.41, the hypothesis of
Lemma A.59 is satisfied. Hence, Lemma A.58 implies the claim.

b) First, let m € N as well as i, > 0 and y; € X, where 1 < k < m, be arbitrary and
prove

UB —>V01X UBrk yk)

k=1

This immediately implies the claim.

For every pair of points y,z € X, fix a shortest geodesic ¢,, (parametrised by arc
length) connecting y with z. For 1 < k < m, define pr* : X — Bfi (yx) by

k
pr(z) := .
Cykz(r) if dx(z,yx) > ri.

{Z if dX('zayk) Srka

Analogously, define prf : M; — BMi(p?*).
Let

m
K; = U BMi(p?) and K := U B (yr)
and define maps f! : K; - K and ¢} : K — K; by

fi(z) == pr¥ ofi(z) for the minimal 1 < k < m with z; € B%i (pi*),
gi(2) == pr¥ og;(z) for the minimal 1 < k < m with z € Bfi(yk).
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Let z; € K; be arbltrary and 1 < k < m be minimal with z; € BM( 7*). Then
fi(z) € Bi o (fi(p{")) € B 15, (yi) and

dx (fi(z), fi(z)) = dx (pr*(fi(z)), fi(z:)) < 2.
Similarly,
du, (95(2), 9i(2)) < &
forall z €¢ K.
By Lemma A.59 and Lemma A.58,

k=1
Now
volx (U By (ww) \ | Bix (ws)) < volx ({J (B (w) \ B (x))
k=1 k=1 k=1
ZVOIX () \ B7 (k) = 0
implies
U —> volx U Brk yk ) [l

k=1

Proposition A.61. Let (M;,pi)ien be a sequence of pointed complete connected n-di-
mensional Riemannian manifolds which satisfy the uniform lower Ricci curvature bound
Ricpy, > —(n — 1), let z,y; € M; with dar,(xi,yi) < 2 and assume (M;, z;) and (M;,y;),
respectively, to converge to metric spaces (X, Zoo) and (Y, yYoo), respectively. Moreover, let
r>0, K; C B,{V[i (x;) be compact, a > 0 and f; : K; — M; be a-bi-Lipschitz and measure
preserving with f;(x;) = y;.

After passing to a subsequence, there exist a compact subset K C BX (1), an a-bi-
Lipschitz map f : K —Y and a constant C > 0 such that voly (f(A)) = C - volx(A) for
any measurable subset A C K.

Proof. Pass to the subsequence of Lemma A.42. By Lemma A.42 a), there exist com-
pact subsets K C X and K’ C Y which are Gromov-Hausdorff limits of K; and f;(K;),
respectively, and an a-bi-Lipschitz map f: K — K’ with f(K) = K'.

By the Bishop-Gromov Theorem,

volag, (B (z:)) < volar, (B3" () PRAIC
volps, (BMi(y)) ~ volas, (B () — V4 (1)
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By an analogous argument,

1 < VOlMi(B{wi(eTi))
c(n) = volug, (BM:(yy))

< ¢(n)

for all - € N. After passing to a further subsequence, there exists cé@) < C < ¢(n) with

volar, (B (z:))

. — C.
volu, (B (i)

In particular, C' > 0.

Now let L C K be compact, hence, measurable. By Lemma A.42 b) (and its proof),
there exist compact subsets L; C K; such that L; — L and f;(L;) — f(L) satisfying the
hypothesis of Lemma A.59. By Lemma A.58,

) volag, (fi(Li))
VOl L = ].lm p
v (f(L)) i—o0 volys, (B (7))

_ i —obll)  volu(By @) _ g,
i=oo volpy, (By *(2i))  vola, (B (vi))

Finally, let A C K be any measurable set. Since volx and voly are Radon measures,

voly (f(A)) = sup{voly (L) | L C f(A) is compact}
= sup{voly (f(L) | L C A is compact}
= sup{C - volx(L) | L C A is compact}
= C -volx(A). O






Appendix B

Rescaling of metrics

Let (M, g) be an n-dimensional Riemannian manifold. For a > 0, let aM denote the
Riemannian manifold (M, a?g), i.e. all distances are rescaled by the factor a. This chapter
states how notions connected to Riemannian geometry change when the metric is rescaled,
starting with proving that distances change the claimed way.

From now on, let §j := a?g denote the rescaled metric.

Definition B.1. For a Riemannian manifold M, a measurable subset U C M and an
integrable function f: U — R let

][fde /fde

denote the average integral.
Lemma B.2. Let p € M be arbitrary.
a) For the distance function, dg = o - dg.
b) For the volume form, dVz = a" - dV.
¢) For balls, BSM (p) = BM(p) and volanr (BSM (p)) = o™ - volp (BM (p)), where r > 0.

d) For the average integral, fBQM(p) fdVan = JCBM(p) f dVar where f : BM(p) — R is
integrable. o ’

Proof. a) Let p,g € M and ¢ : [0,1] — M be a piecewise differentiable curve with
starting point ¢(0) = p and end point ¢(1) = ¢. Then, denoting by Lg(c) the length
of ¢ with respect to the metric g,

o [ raa-

119
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Thus,

ds(p, q) = inf{Lz(c) | ¢ piecewise differentiable curve from p to ¢}

= a-inf{L,(c) | c piecewise differentiable curve from p to ¢}

= Q- dg(pa Q)

b) Recall that dVj is the unique n-form on A which has value 1 for every oriented
orthonormal basis. Observe the following correspondence between orthonormal basis
with respect to the two Riemannian metrics g and §: Let p € M be arbitrary and
{ei}1<i<n be an orthonormal basis of (T, M, gp). Then

0ij = glei, e5) = glaei, aey),

i.e. {aei}lgign is an orthonormal basis with respect to g,. Reversely, {oflei}lgign
is an orthonormal basis with respect to g, for any orthonormal basis {e;}1<i<pn of
(TpM, gp).

Obviously, w(aey, ... ,ae,) = «
claim.

™. w(e,...,ey) for any n-form w. This proves the

c) Using a), for r > 0,

BY(p) ={q€ M | dy(p,q) <1}
={qe M |dz(p,q) = a-dy(p,q) <a-r}
= B3 (p).

Hence, using b),
volaar (Bay (p)) = ™ - voly (B (p)).

d) Let f: BM(p) — R be integrable. Then

1
dVorr = : / aVa
]{ggwm“f M volan (B (p)) Bg%(p)f "
1
_ . A%
am - voly (BM (p)) /BN(p)f Y
:][ fdVar. -
BM (p)

The next lemma states some facts about concepts related to curvature.
Lemma B.3. a) For the Levi-Civita connection, V%Y = V%Y.

b) For the Riemann curvature (3,1)-tensor, Ron = Rys.
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¢) For the sectional curvature, Kqpn = ﬁ - K.

d) For the Ricci curvature (2,0)-tensor, Rican = Ricy. Moreover, Rican > 25 if and
only if Ricys > k.

Proof.  a) The Levi-Civita connection is uniquely determined by the Koszul formula:
For arbitrary vector fields X, Y and Z on M,

29(a? - VY, Z) = 25(V4 Y, Z)
=Xg(V,2)+Y§(X,Z) - Z§(X,Y)
+9([X,Y], 2) — g([Y. 2], X) + 9([Z, X].Y)
=’ (Xg(Y,2)+Yg(X,Z) - Zg(X,Y)
+9(X,Y],2) — g([Y, 2], X) + 9([Z, X],Y))
=a?-29(V%Y, Z)
= 2g(a® - V%Y, Z).

b) Let X, Y and Z be vector fields on M. Then

Rani(X,Y)Z = V32 =NV Z = Vi )2
= V4V 2 — V4V Z = Vi 2
= Ru(X,Y)Z.

c) Let p e M and v,w € T,M. Then

B J(Ronr (v, w)w, v)
Kanm(v,w) = g(v,v) - g(w, w) — g(v, w)?
a?g(R(v,w)w,v)

29(v,0) - a?g(w, w) — (a?g(v,w))

(0%
- K v,w).
2 M ?

2

d) For arbitrary p € M, {e;}1<i<n is an orthonormal basis of (T,M, g,) if and only if
{aei}t1<i<n is an orthonormal basis with respect to g,. Hence, for v,w € T, M,

RiCaM(U,UJ) = g(RaM(Uaei)eivw)

M-

@
Il
,_.

g(R(v, ae;)ae;, w)

I
WAM:
X

Ricps (v, w).
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Now let Ricys > &, i.e. for any v € T,M,

Ricanr(v,v) = Ricps (v, v)

> k- g(v,v)
K ~
= ?y(v,v). O

Recall that the operator norm of a linear operator A, : T,M — T,,M is defined by
[4pllg, := sup{[|Ap - wllg, [ w € TpM, [wlg, = 1}
This is independent under rescaling.
Lemma B.4. For a linear operator Ay, : T,M — T, M, ||A|lz = || Allg-
Proof. This is a direct computation:
145llg, = sup{ |4, - vllg, | lvllg, = 13
= sup{[|4, - avllg, | [lav]g, =1}

= sup{|[4p - wllg, | lwllg, =1}
= [[4pllg,- =

The following lemma deals with the rescaling of smooth functions and their differen-
tials.

Lemma B.5. Let f, f; : M — R be smooth, f :=a- f and f; := a- f;, respectively.
a) For the gradient, Vif = %ng and g(v‘?ﬁ, ngj) =g(VIfi,VIf;).
b) For the Hessian, Hesss(f) = L Hessy(f) and || Hess;(f)|; = L | Hessy(f)ll-

¢) For the Laplacian, Agf = é Ay f. In particular, f 18 harmonic if and only if f is
harmonic.

d) Furthermore, f is L-Lipschitz if and only if f is L-Lipschitz, where L > 0.

Proof.  a) The gradient vector field VY f is uniquely determined by
dfp(v) = gp((VIf)p,v) for all p € M and v € T, M.

Thus, for p e M,v € T,M,

B (V7 )y v) = dfy0) = - dfy(0) = = (T2 )y ).

So, VIf = évgf. Hence,

GV VO f5) = 0 g (V9 fi, VO f5) = (V9 fi, VO ).
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b) Since Hessy(f)p : TpM — T, M is defined by Hessy(f),(Yp) = (V. (VI1))(p),

(VT 7)) (0) = (V4(-)p) = = (V1) D)

gives

Hess;(f) = é - Hessy(f).

Hence, using the previous lemma,

- 1 1
| Hessy(F)llg = ||~ - Hessy ()| =~ - I Hess, (/)]
(0% g «
c¢) By definition of the Laplacian, for a gy-orthonormal basis (€;)i1<i<n of T, M, where
p € M, and the g,-orthonormal basis given by e; := o - €;,

(Agf)p = tr(HeSSE(JE)p)

= ng(Hessé(f)p + €, €;)
=1

= 1 11
= Zla2 : gp(a Hessy(f)p - et &ei>
1
=—-(A .
S8y
d) Let L > 0. Then f is L-Lipschitz with respect to d if and only if for any p,q € M,
|f(p) = f(@)| < L-d(p,q),

which is equivalent to

1F(p) = f@]=a-1f(p) — f@) < a-L-dlp,q) = L-d(p,q).
This again is true if and only if f is L-Lipschitz with respect to d. O

Corollary B.6. For smooth functions f; : M — R, 1 <@ <k, let f; == a- fi. Define
f=(fih<izk and f = (fi)1<i<k = af. Furthermore, define

k k
V()= D 1g(Voi, V9fy) =8| and @ (f) = | Hessy(fi)ll7-
i=1

ij=1
Then, using the analogous definitions for g,

WP =08 and Vi) = -5 o).
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Proof. These are direct computations:

k k
V() = Y 1a(VIFL V) = 8l = D 1g(VOfi, VI f) — 65| = U (f)
i,j=1

ij=1

and

k k
Vh(F) = S I Hessy (P2 = 5 - D I Hess, (F)I2 = 5 - 0(7). 0
=1 =1



Appendix C

Bishop-Gromov volume comparison

Clearly, the volume of a ball at a given point with smaller radius has always as most the
volume of a ball with larger radius at the same point. On manifolds satisfying a lower
Ricci curvature bound, the following theorem allows an estimate in the other direction.
This estimate is independent of the regarded manifold and depends only on the dimension
and the lower Ricci curvature bound of the manifold and the radii.

Theorem C.1 (Bishop-Gromov Theorem, [Pet06, Chapter 9, Lemma 1.6]). Let M be a
complete n-dimensional Riemannian manifold with Ricpy > (n—1) -k for some k € R and
let p e M. Then the map
VOlM(Br (p))
Ve (r)

is monotonically decreasing with limit 1 as r — 0, where V.'(r) is the volume of an r-ball
i the n-dimensional space form of sectional curvature k.
In particular, for R >r > 0,

Vi(R)
Iy (B < £ -volp (B (p)).
VO M( R(p)) < V,?(?‘) Vo M( (p))
This factor is independent of M and denoted by
Vi (R)
C R) ==L
BG(na R, T, ) V,?(T)

Let Ry > rg > 0. By definition, the map
r — Cpa(n, k,r, Rp)
is monotonically decreasing and the map
R+~ Cpg(n, k,ro, R)

is monotonically increasing. Further monotonicity properties are stated by the following
lemma.

125
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Lemma C.2. Fixn € N.

a) Let R >r > 0. Then

OBG(”) 1, \/ET? \/ER) Zf k>0,

C ) ) 7R =
Ba(n, k1, R) {CBG(n, —1,v/—kr,/—KkR) if K <O.

b) For any k € R, r >0 and ¢ > 1, the map r — Cpg(n,k,r,c-r) is

monotonically decreasing if k > 0,
constant if k =0,

monotonically increasing if kK <0

with limit ™ as r — 0.

¢) For k> (<) 0 and R>1r >0, Cpg(n,k,m,R) < (>) (£)".

T

d) The map k — Cpg(n,k,r, R), where R > r > 0, is monotonically decreasing.
Proof. a) First, Ki,;, = (%)_2 - Kyn = c? - k implies % - My = M7, . Hence,

volyp (B (1)) = ¢ - vol o ppe (BE M (1)) and V(e 7) = ¢ - V4, (r). Thus,
VIR ) = VR V)

for k > 0. Analogously,

n
VI (VIsl-r) = Vsl - VEr)
for k > 0. Now the definition of Cpq implies the claim.

b) Moreover, V,*(c-r) = c"- V3 (r) implies

Vnn ) n cn/i r
Cpa(n, k,rycor) = VELC(T)T) =" VQN((r))'

Let ¢ > 1 be arbitrary and distinguish the different cases of k: First, let K > 0. Then
Ricym, = (n—1)- > (n—1)-k,
i.e., by the Bishop-Gromov Theorem, the map

M’VL
VO]MZLQK (BT 525(.)) 1
(g an(r) = C? : CBG(anla"naC : ’I“)

is monotonically decreasing with limit 1 as r — 0. Hence, Cpg(n, k,r,c 1) — " as
r—0.
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The proof for £ < 0 can be done analogously using Ricym = (n—1)-x > (n—1) K.

Finally, for k = 0,
n
Cpa(n,0,7r,c-r)=c"- gzngg =c".

c¢) Let £ > 0. Define ¢ := £ > 1 and f(t) :== Cpa(n, k,t,ct). Since f is monotonically
decreasing, for all ¢t > 0,
t) <l t)=c".
(6 < Jim £(0) = ¢
R’n

In particular, Cpg(n, k,r, R) = f(r) < " = 2.

rn

The cases k£ < 0 can be done analogously.

d) Let ko < k1. Then Ricyp = (n—1)-k1 > (n—1)- ko and, by the Bishop-Gromov
Theorem, the map

n

vol(B, "1(+) Vi (r)

T =
Vi (r) Vi (r)
is monotonically decreasing. Thus, for r < R,
V() VAR)

Va(r) — Vi(Rr)
or, equivalently,

v (R)
V() < V()

CBG(TL, ko, T, R) = — CBG(”) K1, T, R)

This proves the claim. O

The following lemma provides formulas for the antiderivative of sinh™, where n € N.
These are needed for volume computations in the hyperbolic space and will be used in the
subsequent lemma.

Lemma C.3. For m € N,

1 ) 2k )
1 2m—1 _ X . _1\ym—1—j . L inh2d
/smh () de= ST— cosh(z) { ' (-1) ( H T 1) sinh (x)}
J=0 k=j+1
and
m—1 m—1 2% + 1 )
/Sinhzm(:):) dx = — - cosh(x) - [Z( 1ym-t= < ok ) -sinh27+1(:r)]
7=0 k=j+1
m—1
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Proof. In order to prove the first part, let ag := m and bj := (—1)m~1=7. Hk D1 an
Then

m—1 .
(i 27
1 1
bm_1 =1 and bj_l = (—1)m (] ) . H ap = —bj . a,j = —2]_7_1 . bj.
Hence, (2j — 1) - bj—1 = —2j - b, in particular, by = —2b;. Thus

m—1 m—1
d , 2k .
4 (coh(@) - | (I gpoy) b))
J=0 =j+1
d m—1
= %<cosh [Z b; - sinh® (= D
i=
m—1 ' m—1
= b; - sinh? ™ (2) + Zb 27 - sinh®~1(x) - cosh?(z)
7=0 7j=1
m—1
= bg - sinh(x) + Zb -sinh®~Y(z) - (sinh?(x) 4 27 - cosh?(z))
j=1
m—1

j=1
m—1 m—1

= —2b; - sinh(x) + (27 + 1) - b; - sinh¥ 1 ( ZZ] b; - sinh? ()
j=1 Jj=1

= —2b 81nh(1:)+2(2‘771) b;_1 - sinh® 1 (z)
=2
m—1

+ 2b; - sinh(z) + 2j - bj - sinh® ! (x)
j=2

= (2m — 1) - sinh®*™~1(2).

Similarly, let ay := % and bj := (—=1)™ 17 . (T2 j1+1 ax) for the second statement.
Then
o (S o] -1 )
— ( cosh(z b - sinh® T (z)| —bg - 2
dx =
m—1

b; - sinh? (z)(sinh?(z) + (2§ + 1) - cosh?(z)) — by
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._\

m— m—1
(27 +2) - bj - sinh¥*2(z) + Z 2§ +1) - bj - sinh? (z) — by
7=0 7=0

m—1

= (2m) - by—1 - sinh?™(z) + Z 25 -bj—1 + (2§ +1) - bj) - sinh¥ ()
7j=1

= 2m - sinh®™ ()

since by,—1 = 1 and bj_1 = —b;j - aj = 2]+1 -b; for j > 1. O

Essentially, volume growth in the hyperbolic space is exponential: Consider two balls
of radii » and r + ¢, respectively. If r — oo, the quotient of the volumes of the balls
converges to e,

Lemma C.4. For arbitrary y > 0, Cpa(n, —1,z,z +y) — e DY a5 2 — oo.

Proof. For x,y > 0, observe

h nh
W = cosh(y) + sinh(y) - iih(é)) — cosh(y) + sinh(y) = ¥
and
b .
W = cosh(y) + sinh(y) - (s:?r?h((z)) — cosh(y) + sinh(y) = ¥
as well as
1
—  —~0asz — o0
sinh’(x)

where [ € N with [ > 1. First, let n = 2m for m > 1 and x > 0 be arbitrary. Then

CBG’(”? _]-a z, T+ y)
_ V(e ty) Y sinh®m () dt

Vin(z) f[f sinth_l( t) dt
_cosh(w+y) - [¥ )" (T gy) - sinh™ (2 + )]
cosh(x) [ ym—1=d. ( Zl:_jlﬂ %) -sinh2j(w)]

_cosh a:+y (Sl x+y ) 2(m—1)

cosh(z sinh(z

1- 1
1"‘2'— P(—1ymia (Hk ]+1 ) - b2 17 (1)

1+>7, ( 1)m=1-7. (Hk =j+1 2~ ) - Sinhzmllfj)(x)
—e¥ . (V)22 1 = ey

as x — 00. The case n = 2m + 1 can be proven analogously. O
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