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Introduction

Let K be a complete non-archimedean field. We consider the d-th classical
Weyl algebra A, over K (see section 1.1 for a definition) and, for some e € R?¢

endow it with the non-archimedean K-vector space norm
|f‘€ = max |aa6‘€(a7:8)

if f e Agis written in the form f = Y a,3X*YP. If we require € to be an
element of R?% such that |7! |e(=7=7) is bounded by some constant for all v € N?
then the norm is in fact an algebra norm on Ay (cf. lemma 1.2.1). The norm
is multiplicative if and only if € satisfies e;64,; > 1 for all 1 < ¢ < d (cf. lemma
1.2.4). We denote the completion of A; with respect to this norm by A,..
The elements of A, . can be written as formal power series in non-commuting

variables such that the coefficients satisfy a certain convergence condition:
Age = {Z Ao XY P Jagple®? — 0 for |a| + || — oo}

We call the elements of A, restricted power series. Different versions of com-
pleted Weyl algebras appear in the literature. One can construct the algebra
which is the union of all A;. with ey = ... = ¢4 = 1 and ¢; > 1 for all
d+1 <i < 2d and the algebra which is the union of all A;, with ¢; > 1 for
all 7. These algebras are considered in [Ber| and [MN]. The latter version is
denoted by .AL and is called the Dwork-Monsky- Washnitzer- Weyl algebra. The
algebra Ay 1,1y appears in [Nar2|. We call it the Tate- Weyl algebra.

The fact that we can define a whole family of algebra norms on the classical
Weyl algebra defined over a non-archimedean field is in sharp contrast to the
fact that the classical Weyl algebra defined over the field of complex numbers

has no algebra norm at all (see for example [Cun]).

The classical Weyl algebra A, defined over an arbitrary field has been exten-
sively studied during the last 50 years. The classical Weyl algebra A, is a
left and right Noetherian integral domain. The classical Weyl algebra A, is

simple if defined over a field of characteristic zero. In this case the Krull and



the global dimension of A, are d; the Krull dimension of A; was first deter-
mined by Gabriel and Rentschler in [GR]|. That the global dimension of A4
is d was proved by Rinehart [Rin| for d = 1 and in the general case by Roos
[Roo|. The Krull and the global dimension of A, are 2d if A, is defined over
a field of characteristic p > 0. The classical Weyl algebra A, is an Auslander
regular ring. Stafford proved that any left ideal of A; has a set of 2 generators
if Ay is defined over a field of characteristic zero [Sta]. The simple modules
over the classical Weyl algebra A; were classified by Block [Blo]. For a long
list of known and conjectured properties of the classical Weyl algebra see the

introduction of [Bav].

In our thesis we are going to consider the question of which properties of the
classical Weyl algebra over a complete non-archimedean field carry over to its

various completions.

For almost all results we will assume that the components of ¢ lie in the value
group |K*|. We take this as a general assumption for this introduction and

consider only the case where the norm on Ay, is multiplicative.

In [Nar2| Narvéaez Macarro proves division theorems for the Tate- and Dwork-
Monsky-Washnitzer-Weyl algebra under the assumption that the field K is
discretely valued. We prove a division theorem for all Weyl algebras Ay,
defined over an arbitrary complete non-archimedean field (cf. theorem 1.3.14).
It was suggested to me by L. Narvaez Macarro how to prove the division
theorem for .AIl in the case of an arbitrary complete non-archimedean field K
(cf. theorem 1.3.16). We use a technique similar to one used in [HM], [HN]
and [NR]. In [Narl] this technique is applied to the Dwork-Monsky-Washnitzer

completion of the polynomial ring — a situation very similar to AL.

The division theorems enable us to prove some of the basic properties of A, .
and .Azl. The Weyl algebras Ay . and AL are Noetherian (cf. proposition 1.4.1).
An element of A, or .AL is a unit if and only if its exponent is zero (cf.
proposition 1.4.3). We consider formal partial differentiation on elements of
Aqg. and AL and show that it respects two-sided ideals. As a consequence of

this result, together with the characterization of units, we get that A,. and



AL are simple rings if we assume the characteristic of K to be zero.

We prove that the Krull dimension and the global dimension of the completed
Weyl algebra A, are bounded below by d (cf. propositions 3.1.2 and 3.1.3).
The lower bound is given by 2d if we assume that the field K has characteristic

zero (cf. propositions 3.1.5 and 3.1.6).

In the study of the classical Weyl algebra A, it turns out to be very useful to
consider the localizations of Ay with respect to the Ore sets K[X;]\{0} resp.
K[Y;]\{0}. One might expect that the multiplicative subsets K(X;).,\{0} and
K(Y:):,\{0} of A, i.e. the sets of all non-zero restricted power series in X;
resp. Y;, are Ore sets in Ay .. However, this is not the case (cf. lemma 2.0.1)
which is equivalent to the fact that the localizations of 4;. with respect to

these sets do not exist.

Section 2 provides us with a construction of restricted skew power series rings.
We use this construction to define ring extensions Béf i and B};fa of Ag. (cf.
section 3.2). These rings will to some extent play the role of the localizations
in the case of the classical Weyl algebra. In fact, the rings Béf . resp. Bg}e
are the microlocalizations of A, . with respect to the sets K (X;).,\{0} resp.
K(Y;):,\{0} (for the notion of microlocalizations see [LvO]| or [Nag]). We set

d d
X Y;
Bi- = (DB & P B
=1 =1

With the assumption that the characteristic of K is zero we prove the following
lemma. For any maximal left ideal I C Ay. the left ideal B, I generated
by I is not the unit ideal B, (cf. lemma 3.2.1). The proof involves both
the division theorem for the Weyl algebra Ay, (cf. theorem 1.3.14) and the
division theorems for Béfé and Bg}e (cf. theorem 2.2.4). This lemma will be an
important ingredient to obtain upper bounds for the Krull dimension and the

global dimension of A, in section 4.

In analogy to the fact that the localizations of the classical Weyl algebra A
mentioned above are simple principal left and right ideal domains, the rings
Bffa and Bff6 are simple principal left and right ideal domains, too (cf. propo-
sitions 3.2.4 and 2.2.8).



Under the additional assumption that the field K is discretely valued it is
possible to define a complete and separated filtration on A;. coming from
the algebra norm. This allows us to apply the theory of filtered rings (for an
introduction to the theory of filtered rings see [LvO]). We obtain the follow-
ing. The completed Weyl algebra Ay, is Auslander regular (cf. proposition
4.3.3). We show that the Krull dimension and the global dimension of A, are
bounded above by 2d (cf. proposition 4.3.6) which, when combined with the
lower bounds computed in section 3, implies that the Krull dimension and the
global dimension of Ay, are 2d if the characteristic of K is p > 0. We prove
that the Krull dimension and the global dimension of 4,. are bounded above
by 2d — 1 if the characteristic of K is zero (cf corollary 4.3.8). Hence the Krull
dimension and the global dimension of A, . are 1. For some special cases we
also prove our conjecture that the Krull dimension and the global dimension
of Ay, are d. For example, this is true for the Tate-Weyl algebra if the residue
field k of K has characteristic zero (cf. remark 4.3.10). We prove an analog of
Staffords theorem for A; ., i.e. any left ideal of A; . has a set of 2 generators

if the characteristic of K is zero (cf. corollary 4.3.9).

In section 5 we show that the so called saturation Sg,, of the subset K (X).,\{0}
of A;. is an Ore set in A, 4 (cf. proposition 5.1). The simple Sg,¢-torsionfree

Aj s-modules are in bijection with the simple (Sg) *A; g-modules (cf. corol-
lary 5.3).

Acknowledgments. I would like to thank my thesis advisor Peter Schneider
for his guidance. I am also grateful to Luis Narvaez Macarro for discussions
about division theorems, to Jan Kohlhaase for reading preliminary versions of
this thesis and for his encouragement, to my friend Stefan Wiech for the idea

to go to Miinster, and to my friend Ralf Diepholz for his support.

1 Weyl algebras

Let K denote a field.



1.1 The classical Weyl algebra

The d-th Weyl algebra over K, here always called classical Weyl algebra
and denoted by Ay, is the algebra with 2d generators Xi,..., Xy, Y1,..., Yy
and relations

YiX; — X;Yi = 0
and
where ¢;; denotes the Kronecker delta (see [McCR| section 1.3). Note that if
objects or properties have left and right versions we restrict to the left version as

[McCR] always use right versions. The elements of A; have a unique expression

> aasXY”

a,BeNd
with coefficients a,3 € K and the notation X* = X{"-.- X7 and Y =

Y- Y. We always write elements in this form and get the following rules

as finite sums

of multiplication.

Lemma 1.1.1. We have

BY (@) vamny 5-
YAX® = ! Xy,
> ()()

yeNd
vi<ag, B

I f =3 aapXY?, g =S bapXY? and fg =3 capX°Y? then

/8/ a/l
Caﬁ = Z aa’ﬁ’ba”ﬂ"’y! (,y ’Y .

o/, 80", 8",y N
o ta —y=a

g +p —y=5

Proof. The first statement follows from [Dix| lemma 2.1. The second statement
follows from the first. O

Here we used the notation ! := ~!---~,! and (f‘y‘) = (‘fy‘ll) e (‘f{j) We write
la] == ay + ...+ aq for elements in N%. For 0 # f = > a,sX*Y? € Ay the
degree is

deg(f) = max{|a| + |6 € N: ass # 0}



or —o0 if f = 0 in agreement with the usual definition of degree of polynomials
in several variables. As K-vector spaces the classical Weyl algebra A; and
the polynomial ring in 2d variables are isomorphic. To distinguish the two
different algebra structures we write - for polynomial multiplication and * for

Weyl algebra multiplication if we want to emphasize in which ring we multiply.

Lemma 1.1.2. Let f,g € A;. Then

deg(f * g) = deg(f) + deg(g)

and

deg(f - g — fxg) < deg(f) + deg(g).

Proof. The first statement follows from [Dix| lemma 2.4.(ii). The second state-

ment follows from [Dix| lemma 2.4.(i). O

The classical Weyl algebra has the following basic algebraic properties.

Theorem 1.1.3. The classical Weyl algebra Ay is a Noetherian integral do-
main. If the field K has characteristic zero then Ay is simple, i.e. has no
two-sided ideals other than 0 and Ay.

Proof. [McCR] theorem 1.3.5 and theorem 1.3.8.(i). O

1.2 Completions

Let (K,| |) denote a complete non-archimedean field. On the d-th classical
Weyl algebra A; we have for any e € R?% the non-archimedean K-vector space
norm | |, defined by

| f|e := max |aqsle >

for f =3 ansX?Y? € Ay, where e(@F) =g .. -63%311 ---ebt ie. we have

(i) [fle =0iff f =0,



(i) fafle = lal[f]e,

(iii) |f +g|5 < maX{|f|a> |g|6}7

forall f,g € Ay and a € K.

Lemma 1.2.1. Let € be an element of R¥ such that |y!|e="=7) is bounded by
some constant C' > 0 for all v € N¢. Then

gl < CIfLIgl..
Ifsicas > 1 for all i, we have |fgl. < |f|.]gl..

Proof.

/ "
|fg|€ = nax ‘ § aangba//ﬁ//fy! (ﬁ ) <OZ ) |5(C“76)
a7ﬁ /'y fY

o, 80 By en?
o +a' — Y=«

B 48—y =p

/ "
max |aa/5/||bauﬁ,,||7! <B ) <a ) |5(O‘/+O‘”_’Y,ﬁ/+ﬁ”—’\/)
Y Y

a/76/ 7a// 71[3//7A/€Nd

IN

< sup [V max Jagle@ ) max fbasge|e )

’yENd a/76/€Nd a”,B”GNd
= C|fllgle.
If ¢ satisfies g;64,; > 1 for all 1 <4 < d we have |[y!|e(=™) < 1 for all 7,
which gives the second part. O

Remark 1.2.2. If for ezample K = Q,, we know that |y!| converges exponen-
tially to zero as |y| goes to infinity. Hence we easily find an & € R2 with all
g; < 1 such that |y!|e==7) is bounded by some constant C.

Remark 1.2.3. If g;e44; < 1 for some i, then | |_ is not submultiplicative,

for example
1= |XzY; + 1|z—: = D/zXz‘s ﬁ ‘le‘s‘XzL-: = &d+i€i-

However instead of | we can take the equivalent norm | |. defined by

B

|f12 = sup{|fgl-lg|-":0 # g € Aa}.
This norm is submultiplicative (see [BGR] §1.2.1., prop. 2, and note that the

proof is the same in the non-commutative case).
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Lemma 1.2.4. The norm | on Agq 1s multiplicative if and only if ;644 > 1

foralll <i<d.

B

Proof. The “only if” is remark 1.2.3. Let < be a total order on N2¢ compatible
with addition (see section 1.3). For 0 # f = > ansX*Y"? € A, we define the

g-exponent to be

e-exp(f) = max{(a, ) € N* |angle'™? = |f].}.
We will define this exponent again in a slightly more general situation in section
1.3. For non-zero elements f = > a,sXY"? and g = > b XY ? in Ay put
(v, 01) = e-exp(f) and (ag, f2) = e-exp(g). We have

|fg|€ < |f‘€|g‘€ = |aa1ﬁ1ba252‘€(a1+a2’51+ﬁ2)’

hence the desired equality follows if we show that the (a; + ag, 51 + (2)-th
coefficient of fg has absolute value equal to |aa,p,0a,8,|- Recall by lemma
1.1.1 the (a1 + ag, B1 + Po)-th coefficient of fg is given by the sum

/ "
Z aa’ﬁ’ba”ﬁ”'Y! (/8 ) <a ) .
Y Y

o B a", B,y eNd
o' +a” —y=a1+as
B+ B —~v=081+82

We prove now the strict inequality

3N\ (o
|aa’6’ba”/3”7!(7 y | < |a04151b04252|

for all O/a ﬁla O/Ia ﬁl/a Y€ Nd with (O/a B/) + (O/Ia ﬁl/) - (’Ya ’Y) = (ala /81) + (a2a ﬁQ)
and (o, 7', a", 3") # (a1, 1, az, Pa). Consider the following cases:

(a/’ ﬁ,) ~ (ala /61) implies |a’a/5’|8(a/ﬂ/) < |aalﬁ1‘€(alﬂl) ((alv ﬁl) = 8—6Xp<f)).
Further we have [bongr|e® 0" < |bgngu]el® ") < [by, g, [e€2%2). This gives

‘aa’ﬁ/"ba”ﬁ”‘g(alﬁl)Jr(animgniw < ‘aalﬁl||b02ﬁ2‘€(a1761)+(a2’ﬁ2)
hence g bar ! () (%))] < awpborsr| < |aays,basp, -

(', 8) < (eu,B1) implies (o, 3") = (a”,3") — (v,7) » (a2, ) and we
proceed as in the first case.

11



(ay,B3") = (a1, B1) leads to the case (a”, 8”) > (a2, B2) which is treated

above. O

Definition of completed Weyl algebras

We define the completion of Ay w.r.t. | |, (for € > 0) to be the K-Banach

space of restricted non-commutative power series
Ag. = {Z aaﬁX‘)‘Yﬁ; |aa5|5(0"6) — 0 for |a + §] — oo}

(for the commutative setting see e.g. [BGR] §6.1.5.). If we assume in addition
that |y!|e(=*~7) is bounded for varying v € N?, then this is a non-commutative
K-Banach algebra, and whenever we write in future Ag. we mean this K-
algebra, i.e. we always assume the above condition on e. If furthermore g;,64,; >
1 for all 4, then the norm is multiplicative. For ¢ = (1,...,1) we write Ay =
Ag,.1and | | =| |(17.._71) and call this the Tate-Weyl algebra. Further
we let AT = |J.., Aq. be endowed with the locally convex inductive limit
topology, the Dwork-Monsky-Washnitzer-Weyl algebra (short: DMW-
Weyl algebra) or weak completion of the Weyl algebra.

The multiplication formula of lemma 1.1.1 extends to any of the completions

of Ad.

Lemma 1.2.5. Let f = > anpXY? and g = > bopX?Y? be elements of
Age. If fg =" capXY P then

/6/ a//
CQ,B = Z aa/,@/ba”ﬁ”f}/! (7 - .

o/, Bl a8,y e N
o+ -y =a

B +p"—v=8
Proof. Define f, = Y.  ausX°Y? and equally g,. Since lim f, = f and
loe|+[8]<n

lim g, = g we have lim f,g, = fg. However the coefficients of f,g, are given

12



/6/ O/I
Caﬁ — Z aa’ﬁ’ba”ﬂ"’y! (,y ’Y .

o, B 0", 8",y e Nt
o +a — v =«
B+ -y =p
la’[+ e/ | < n

1B/ +18"1 < n

Hence taking the limit gives the above formula. O

1.3 Division theorems

We say a total order < on N x ... x N is compatible with addition, if for
a,3,7 € Nx...x N we have

o if « # 0, then # < 3+ « for all # and

o if o < 3, then a+ v < 3+ v for all ~,

where by addition on N x ... x N we mean component-wise addition.

Lemma 1.3.1. For all subsets of E C N% with E + N? = E there exists a
finite subset F' C E such that E = F + N¢,

Proof. We reproduce the proof of [Gal| lemma 1.1.8. Induction on d. Ford = 1

this is clear. Suppose the assumption is true for all numbers < d.
Let e = (e1,...,eq) € E. Foralli=1,...,dand j =0,1,2,...,e; denote
Ey; = En (N7 x {j} x N9,

Hence we have e + N? + | J,; Ey; = E. If we write N4~' = N'71 x {0} x N
we see that E;; + N?~! = E,;. By induction there is a finite set F}; generating
Ei;. The union of these sets I = J;; Fi; U {e} is a generating set for £. O

Lemma 1.3.2. A total order < on N which is compatible with addition is a

well-ordering.

Proof. Assume {a,, } e is a strictly decreasing sequence in N9, i.e.

Qp =y for all n.

13



By the compatibility with addition on N¢ we know that a,, + v # «,, for all
v € N% and all n < m. The set E =, o, + N? satisfies F + N? = E. Hence
by lemma 1.3.1 we find finitely many 3, € F say (,, = a,,, + 7Vm such that
U, 8. + N? = E. Now choose an ng such that ny > n,, for the finitely many
m. Then

Qng :ﬁm+7:anm+’7m+’77

a contradiction. O

We consider now a total order on N'*¢ which is compatible with addition
and denote its restriction to {1,...,m} x N? again by <. Such an order is
called a monomial order on {1,...,m} x N% Since (i,a) < (i,3) implies
(4,a) < (4,8) for all 1 < j < m, the order < restricts to N¢ if we define o < 3
if (i, ) < (i, B) for some 1 < i < m.

Examples of monomial orders are the lexicographical order, the inverse lexico-
graphical order, the diagonal order, and the A-order, where A : Rx... xR — R

is a certain linear form (see e.g. [Nar2]).

A further example is the following order on {1,...,m} x N% An element
(1,01, ..., 04) is said to be less than (7, o, ..., a}) if
Yo <Y,
or Zaj:Za;,Hl <k<d:og <0 =0 ,..., =0y,
or =) ,..., aq =0y, i<i.
This order has the additional property that if an element (i, a1, ..., aq) is less
than (i',aj, ..., a)) then Y a; <> al. If a monomial order has this property

we say it is compatible with the notion of degree.

Division in the polynomial algebra

Let < be a monomial order on {1,...,m} x N Let K[X] be the polynomial

ring in d variables over K. Let F' = (fi,..., fi,) be an element of the free

14



K[X]-module K[X]|™ and write f; =Y a;, X Then

supp(F) := {(i,a) € {1,...,m} x N%; a;, # 0}

is called the support of F', and if there is at least one non-zero polynomial f;
then

exp g (F7) 1= max{(i, @) € supp(F)}
is the exponent of F'. For F' = 0 we put exp(F') = —oo with the convention
that —oco < (i, ) for all (i,a) € {1,...,m} x N If the notion of exponent is
applied not to a vector but to an element f = > a,X* € K[X], we mean the

analogue definition taking as total order the restriction of < to N as explained
above. Fora € N? and (i, 8) € {1,...,m} xN? we define a+ (i, 3) := (i, a+p).

Lemma 1.3.3. If f € K[X] and F,G € K[X]™ then
o exp(fF) =exp(f) +exp(F) and
o if exp(F') # exp(G), then exp(F + G) = miix{exp(F), exp(G)},

with the usual conventions if f =0 or F' = 0.
Proof. This follows from lemma 1.3.7 if we view K[X]| as a subring of A;. O

For elements F1, ..., F, € K[X|™ with F; # 0 for 1 < j < n we introduce the

following notation

A = (N exp(F)N\NUZ A C{1,...,m} x N (1 <j<n),

R = {L..mbxNAUL A,

where by the sum N? + exp(F}) we mean the set (i;,a; + N%) if exp(F}) =
(ij, ;). Tt is important to note that {1,...,m} x N? is the disjoint union of
the sets A;. 1 < j <n, and A.

Theorem 1.3.4. Let Fy,..., F, € K[X]™ with F; #0 (1 < j <n). For all
G € K[X]™ there exist unique polynomials qq,...,q, € K[X] and a unique
element R € K[X]™ such that

(i) G:quij—i-R,

15



(14) supp(q;) + exp(F;) € A; for 1 <j <mn,

(i) supp(R) C A.

Proof. We briefly recall the arguments of [Bay| prop. 2.2. Since < is a well-
ordering (cf. lemma 1.3.2) we proceed by induction. For G = 0 the result holds
trivially. Let us assume the result holds for all F' € K[X]™ with exp(F) <
exp(G). We use the notation G = (¢1,...,0m) with ¢; = > 0;o X and F; =
( l(j), Ce ,S{)) with fi(j) = Zag}X‘)‘ and write exp(G) = (io, ap) and exp(F;) =

(i;, ;). Now consider the two cases:

exp(G) € A. Let
G — (0,...,bi0a0Xa0,...,O> IQ1F1++ann+R

be the expression for G—(0, . .., giyag X%, - - -, 0) by induction. Then we trivially

have the following expression for G:
G=gF+...4¢:F,+R+(0,...,gigae X", -..,0).

exp(G) € A; for some j. Let

bia o
G_%XOJO aij:qu1+...+ann+R
a

Ljy

be the unique expression of G — Z’@%X @0~ F; by induction. Then

150

]

bia —a
G=qFh+...+(g+ ((;)OX“O NFj+ ...+ g+ R

a:

15

is the desired decomposition of G. In both cases the uniqueness follows by

induction, or by lemma 1.3.3 as in the proof of theorem 1.3.9. O

For an element F' = (fi,..., fm) € K[X|™ with f; = > a;n X we call

deg(F) := max{deg(f1),...,deg(fn)}

16



the degree of F' and

o(F):=( Y X, Y amX®).

|| =deg(F) la|=deg(F)

the symbol of F. From now on assume that the monomial order < is com-

patible with the notion of degree.

Remark 1.3.5. We have exp(F) = exp(c(F)). Indeed, the support of o(F)
is a subset of the support of F', whence exp(F') = exp(a(F)). On the other
hand exp(F) = (i,a) implies a;, # 0 and |a| = deg(F), since the order is
compatible with the notion of degree; hence exp(f) =< exp(o(F)).

Corollary 1.3.6. Let G € K[X|™ and F; € K[X]|, F; #0 for1 <j <m. If
G = > q;F; + R is the unique decomposition for some G in the sense of the

division theorem 1.3.4 we have

deg(G) = max{deg(q; F;), deg(R)}.

Proof. By the division theorem we have
exp(q;Fy) # exp(qeFy) j#k and  exp(q;[;) # exp(R).
Obviously deg(G) < max{deg(g;Fj),deg(R)}. Suppose now
deg(G) < max{deg(q; F}), deg(R)},
hence there is a k with deg(G) < deg(gixF)). Since we have G = ) ¢;F; + R

we get o(qrply) = o(gly — G) = o(—=(3_;., 9 F; + R)). Using remark 1.3.5
and the second part of lemma 1.3.3 we get the following contradiction

exp(grFx) = exp(Y_ ;F; + R) € {exp(q;F5)(j # k), exp(R)}.
J#k
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Division in the classical Weyl algebra

Denote by A, the d-th classical Weyl algebra over K. For an element F' € A7
we have the same notion of exponent as in the case of the polynomial algebra.
Note that now we work with 2d variables, i.e. we consider a monomial order

<on {1,...,m} x N?? which is compatible with the notion of degree

Lemma 1.3.7. For f € Ay and F,G € A} we have

o exp(fF) =exp(f)+exp(F), and

o if exp(F') # exp(QG) then exp(F + G) = mjx{exp(F), exp(G)},
with the usual conventions if f =0 or F = 0.

Proof. Let f =3 ansX°YP, exp(f) = (au, 1), F = (f1,-.., fm) where f; =
S biap XY P, exp(F) = (ig, v, 32), and ff; = 3 ciapX*YP. Let us first prove

that g ,
«

Cia = a,a/ ’bia” //’7/!( ) < ) = 0
B E , B B ~ ~

N RN LY
(a/,8N)+(a’,B") = (v, v)=(a,B)

for all (i,c,5) > (o, (1) + (ig, 0, 32). This certainly implies exp(fF) =
exp(f) + exp(F). We consider the following cases:

(a/’ ﬁ,) >- (a1, /61) lmphes a/alﬁl = 0
(o, B") X (a,B4) together with

(0/75/) + (27 0//7 /I> - (777) = (Z7 «, ﬁ) ~ (ala ﬁl) + (i27 g, ﬁ2)
implies (z,a”, 3") > (ia, a2, B2), hence b;orzr = 0.
Now we show Cig,on+az,81+82 — aa151bi20¢252’ hence eXp(fF) = exp(f) + exp(F).

(al’ ﬁl) >- (alaﬁl) lmphes CLa/B/ = 0
(o, B") < (a1, B1) together with

(0/7 ﬁ/) + (Z.Zv 0/,75”) - (’77’7) = (041,51) + (i27 a9, ﬁQ)

implies (49, ", 3") > (ia, a2, B2), hence bj,qrgr = 0.
(o, B8") = (a1, B1) implies (iz, ", 5") = (v,7) = (i2, a2, B2). If v # 0 we have
|O//‘ + ‘ﬁ”| > |a2| + ‘ﬁ2| Hence bima”,ﬁ” = 0 and Cig,on+az,f1+B2 = aalﬁlbiztmﬁQ-

18



The second statement is obvious. O

Corollary 1.3.8. Let Fy,..., F, € A} such that exp(F};) # exp(F}) for all
1<j<k<mn,then 1+ ...+ F, # 0, unlessn = 1 and Fy = 0; since
exp(Fy + ...+ F,) = max{exp(Fy),...,exp(F,)}.

As in the case of a polynomial ring we set

A; = (N pexp(F))\UZ Ay C{1,...,m} x N* (1 <j<n),

A = {1 mp x NP A

Theorem 1.3.9. Let Fy,..., F, € A} such that F; # 0 (1 < j < n). For
all G € A} there exist unique elements q1,...,q, € Ag and a unique element
R € A} such that

(i) G= quJ'Fj + R,
(i) supp(q;) + exp(F;) € A; for 1 <j <n,
(iii) supp(R) C A.
Remark 1.3.10. All division theorems we consider also exist in a right ver-

ston, i.e. with G =3, q;F; + R replaced by G = 3, Fiq; + R.

Proof. We recall the arguments of [Cas| theorem 2.1. Uniqueness. Suppose
that

G=> ¢Fj+R=Y q;F;+R
are different expressions. We consider now all non-zero differences ¢; — ¢,

R — R'. For those differences we get from condition (ii) and (iii) exp((q; —

q;)Fj) = exp(q; — qj) +exp(Fj) € A, since exp(q; — ¢;) € supp(g;) Usupp(q})
and trivially exp(R — R') € A. Hence

exp((q; — q;) Fy) # exp((qr — ;) Fy) for j # k

and
exp((q; — qj)Fy) # exp(R — R).
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This implies, using corollary 1.3.8, that » (¢; — ¢})Fj + R — R’ # 0, a contra-

diction.

Ezistence. We proceed by induction on the degree of G (the degree is defined

as in the polynomial case). The case G = 0 is trivial.

Suppose the assertion holds for all elements of degree strictly less than deg(G).
Using theorem 1.3.4 one can write G = Z ¢;0(F;) + R with multiplication in
K[X,Y]. Since exp(o(F;)) = exp(F};) by remark 1.3.6 we have

supp(g;) + exp(Fj) € Aj forall 1 < j <n,
supp(R) C A,

Set
G'=G-> ¢F+R
J
where here we multiply in A;. Using for the moment the notation - for poly-

nomial multiplication and * for Weyl algebra multiplication we get

deg(G') = deg(G— (D _¢j*F;+ R)

= deg(ZqJ 0( )+ - qu*F'vLR))

= deg(Y q;-0(F)) = > _ g5 * (o(Fy) + 6(Fy)))

= deg(Z(qj -0(F~) —qj*xo(F Zq] x o (F

< max{deg(q; - o(F}) — 4; o—<F >> deg(a; = o m} < deg(C)
if 5(Fj) :== F; — o(F}). In the computation we used lemma 1.1.2 and the fact
that deg(G) = max{deg(g;jo(F})),deg(R)} by corollary 1.3.6. Now since G’
has degree strictly less than deg(G) we can decompose G’ by induction. This

gives us a decomposition for G which clearly satisfies the properties (ii) and
(iii). O

Division in the completed Weyl algebra A,

On the free A;.-module Ag}e we have the maximum norm, which will also
be denoted by | |.. Let F' = (f1,..., fm) € AJ. be an element where f; =
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3 ;0 XY P, The e-initial form of F is defined to be

e-inform(F) := ( Z a1apXYP Z Ao XY P).

‘alaﬁ|5(a’ﬁ):‘F|E |amaﬁ‘€(a’ﬁ):‘F|E

The e-exponent of F' in A7 is
e-eXpAg’LE(F) 1= exp 4 (e-inform(F7))

where e-inform(F’) is viewed as an element of the free module A7 over the

classical Weyl algebra. Again we have the exponent properties.

Lemma 1.3.11. Let ¢ € R* with gieqr; > 1, f € Age and F € A, then

o c-exp(fF) = e-exp(f) + e-exp(F) and

o if cexp(F') # c-exp(G) then e-exp(F + G) € {e-exp(F),ec-exp(G)} and
e-exp(F + G) # —oo, with the usual conventions if f =0 or F' = 0.

Proof. Let f = ZaagXaYﬁ, e-exp(f) = (a1,61), F = (f1,--., fm) where
fi = S biapX°YP e-exp(F) = (ig, g, 32), and ff; = 3. ciap XY 5.

We show |ciaple@?) < |fF|. for all (i,a,3) = (ai,31) + (iz, a2, B2), hence
e-exp(fF) = e-exp(f) + e-exp(F'). We have

(c.3) BN\ (" | s
|Cia |E “ = | (%Y ’bia” ”7!( ) ( ) |E “
5 ) abiara )

a/ /B/ a// ﬁ//

(a!,8)+(a” ) = () =(x,8)

< max Aor it E(al7ﬁl) b . E(O‘”vﬁ”)'
- (a’ﬁ’)Jr(a”75”)*(%’7)=(a,ﬁ)| a6| [Bic p |

/

(e, B') > (a1, B1) implies |aa/5/|€(°‘/’5) < |fle-

(e, B") X (a1, B1) together with

(a1, B1) + (i, a2, B2) < (i, 0, B) = (o, B) + (i,0", ") — (7,7)
implies (iz, g, B2) < (i, ", 3"), hence |bigngn | < |F]|..
The assertion e-exp(fF') = e-exp(f) + e-exp(F') follows if we prove

‘Ci2a1+a251+ﬁ2‘g(al+a2’ﬁl+ﬁ2) = |fF|z-:

21



This is the case if and only if

|Ci201+02ﬁ1+52‘ = |a0151Hbl’2a252|7

however this was already shown in the proof of lemma 1.2.4.

Now we prove the second statement of the lemma. If |F|. # |G|. we may

assume |F'|. > |G|, hence the e-exponent of F' + G is the e-exponent of F.

If |F|. = |G|. we may assume e-exp(F') > e-exp(G). In this case the e-exponent
of F' 4+ (G is the e-exponent of F. O

Remark 1.3.12. The proof of the second part of the lemma shows that we in
fact have a stronger statement. If the e-exponents of F' and G are not equal,
then the e-exponent of the sum F'+ G equals the e-exponent of the element with
the bigger e-norm if the e-norms are not equal and equals the mazimum of the

e-exponents if the e-norms are equal.

Corollary 1.3.13. Let ¢ € R2>do with €ieqri > 1, Fy,..., F, € A} with
F; # 0, and e-inform(F;) = F; for all j. Apply theorem 1.3.9 to an ele-
ment G € A and let G = > q;F; + R be the unique decomposition. Then
|G = max{|q; F}l-, |R|}.

Proof. Note first that we have e-exp(q;Fj) # e-exp(qiFy) for j # k and
e-exp(q; Fj) # e-exp(R) for all j. This is because by lemma 1.3.11

e-exp(q; Fj) = e-exp(q;) + e-exp(F}) € supp(q;) + exp(Fj) C Aj,
e-exp(R) € supp(R) C A.

Suppose that |G|. < max{|g;Fj|., |R|-}. Then there is a k with |G|, < |qxFk|.-
In combination with G =) ¢;F; + R we get

e-exp(qp F) = 5-exp(z ¢;F; + R).
J#k
Now using the second part of lemma 1.3.11 we get
e-exp(qr Fy) = 5—exp(z ¢;F; + R) € {e-exp(q; F;)(j # k), e-exp(R) },
ik

which is a contradiction. O
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We use the A-notation of the classical Weyl algebra case, now of course since

F; € A7, we use the notion of e-exponent defined above.

A, = (N 4 cexp(F))\ UL Ax C{1,...,m} x N* (1< j<n),
A = {lL...,mp xNPAUL A

Theorem 1.3.14. Assume ¢ € |K*|*? with g;64s > 1. Let Fy,..., F, € AG.
such that Fy # 0 (1 < j < n). For all G € A}, there exist unique elements
q1s- -5 qn € Aae and a unique element R € A7 such that

(ii) supp(q;) + e-exp(Fy) € A for 1 < j <mn,

(iii) supp(R) C A.
Moreover, we have |G|. = max{|q; F}|c, |R|:}

Proof. The uniqueness follows as in theorem 1.3.9 from the properties of the

g-exponent.

Existence. We may assume |G|, = 1 and |Fj|. = 1. Using the notation

F; = ( fj), .. .,fé{)) with fl-(j) = Zagi)ﬁX“Yﬁ we set

0:=  max |a§g{)ﬁ|€(o"ﬁ) <1

if the maximum is non-zero. Otherwise choose an arbitrary 0 < § < 1. Now

decompose F; = Fj>‘S + Ff‘; where

5§ ) ©))
Foo= (Y albxey? o YT all i xey?)
\aggﬁle(“’5)>5 \aﬁilﬁk(aﬁbé
_ ©) ©)

= (Y aphxevyt o > e XoYP)
jal)le(eB)=1 jal?) sletem=1
= c-inform(F;) = 5-inform(Fj>6),
<5 ) B ©)) 5
Fo= () alhxeyPoo >y al) XY,
o< o2 o3
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Starting with G = G we define a sequence G}, by the following procedure: as
above we decompose Gy = G;‘S + GE‘S and apply the division in the classical
Weyl algebra to G° and Fj>5. Hence we have

G’ = qiuF]" + Ry
J
with |g; k|- < 1, since 1 = |G7°|. = max{|q;x|<|F} |, | Rk|-} by corollary 1.3.13
and |Fj>‘5\E =1. We get

G = qu‘,ij + Ry + ék—f—l
J
if
Gryr = qu F0— qu W4 G == g+ G

J

We have |Gpyil. < max{|qj,k|€|Fj— %, |GE°.} < 6. If Giyr # 0 choose an
element 7,4, € K such that

Ghyr1 = W;;ilékﬂ
has norm 1, hence |mq| < & (mp = 1). If Gy, = 0 for some ko we put

Gr = qjr = Ry = 0 for all j and all £ > ky. In either case this gives

N+1

= Z(an%k )} +ZH7rle+ H TGNt

Jj  k=01=0 k=0 (=0

for all N € N. Setting

o k oo k
= Zquj’k and R := ZHWsz
k=0 1=0

k=0 1=0
we get the decomposition
J
It is left to show that supp(g;) +e-exp(F;) C A for 1 < j < n and supp(R) C

A. ¢ was chosen such that F;° = e-inform(F}), whence e-exp an(Fy) =
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eXpAgl(Ff‘s) and

supp(q;) + e-exp(Fy) € | Jsupp(g;e) +exp(F7°) C A, for 1< j<n
k

supp(R) C | Jsupp(Ri) € A.
k

The final assertion is proved as in corollary 1.3.13. U

Division in the DMW-Weyl algebra

Let L : R1*24 — R be a linear form with non negative and Z-linear independent
coefficients (X\g, A1, ..., Aoq) and let L : R?? — R be the linear form L(a, 3) :=
E(O,a,ﬁ) where a,3 € R% Denote by < the total order (well order) on
{1,...,m} x N2 defined by L. In the case of the Tate-Weyl algebra Aq, i.e.
e=(1,...,1), we write exp instead of e-exp. If f is an element of the DMW-
Weyl algebra AL then we define its exponent to be the exponent of f as an

element of A, via the inclusion AL C A,. For a real number s > 1 we write

Ad75 = Ad7(3A1 s*2d)-

-----

Obviously AL = U,oq Ads- Let [ = S aasXY? € Ay, then by definition
the norm on Ay is given by max |a,s|s“*#. We denote the norm by | |..
Let F'= (f1,..., fm) € A7, with f; = 3 40X Y P then max; | fi|s defines a
Banach norm on A7, however in the following we will consider the equivalent
norm given by

|F|s := max |am5\3L(i71’a’ﬁ).

Now let = (fi,..., fm) € Al™ where f; = 3> 4,03 XY ? and let (ig, g, o) =
exp(F'). We define the initial term to be

in(F) :=(0,. .., Gigagae XY™, ..., 0)
where the monomial appears at the i¢-th place.

Lemma 1.3.15. Let 0 # F € Azlm. Then there exists an so > 1 such that for
all s €]1, s

|F'—in(F)|s < v(s)|in(F)|s
with v(s) < 1.
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Proof. This is a reproduction of lemma 3.5 of [Narl|. Let F' = (f1,..., fm) €
Al with fi = 3 a0 XY ? and exp(F) = (i, o, Bo). We may assume |F| =
max |a;a3] = 1. One can find an s; > 1 such that |am5\sf(a’ﬁ) — 0 for |a| +
|B] — oo and all i = 1,...,m. Choose a constant C' such that L(a,3) <

C(|la] +10]) for all a, 5 and choose an integer N such that for || + |3] > N
we have |am5|sL(l Lef) 1 and CN > L(zo — 1, ap, Bo)-

We have to show (for suitable sy and v(s)) that for all (i, o, 5) # (io, v, Bo)
|aza5‘8 Z 1C¥,,8) < y(s)si(iofl,aonﬁo)
for all s €]1, so].

If (¢,a,8) < (%0, 0, B0) there is only a finite number of a;,3’s with this
property, hence for all s > 1 there is a v1(s) < 1 such that

|azaﬁ|3 (i—1 oz,ﬁ) E(i—l,a,ﬁ) < (S)Si(io_LaO’ﬁO).

If (¢, o, B) > (%0, @0, Bo) and || 4+ |B] < IN we can find a constant v/ < 1
with | fiag] < v/ for all (i, a, B) > (i, o, Bp). Choose a constant v, such that
V' < vy < 1. Then we have

|f’i0¢ﬁ|$ij(i_1’a’ﬁ) < Vlsf’(i_lvavﬁ) S V,S)\Om+c(|04‘+|ﬁ‘) < I/,S)‘Om"’CN L(’io—l,ao,ﬁo)

<3S

1
forall 1 <s< So @ ( )Aom"'CN L(ig,0,80) |

If (¢, , B) > (%0, 0, 30) and || 4 |B| > N we have

(i—1,,0)

|am5\3 = |ai ‘SL(Z 1aﬁ)< )L(zq,a,g)

S1

_)L(1717a718) < 1 < ESZ/(Z'Ofl,Cvo#go)

for all 1 < s < s;. We complete the lemma by taking sy := min{sy, s2} and
v(s) := max{vi(s),v2, 5 }. O

As before we use the notation

A = (N pexp(F))\UZL A C{1,...,m} x N* (1 <j<n),
A = {1,...,m}><N2d\Uj:1Aj.
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Theorem 1.3.16. Let Fy,...,F, € Azlm such that F; #0 (1 < j <mn). For
all G € Azlm there exist unique elements q,...,q, € AL and a unique element
R e A" such that

(ii) supp(q;) + exp(Fy) C A; for 1 < j <n,
(iii) supp(R) C A.

Proof. We proceed as in the proof of theorem 3.6 in [Narl|, however the de-

composition ug + v + wy is taken from [HN]. We put
Vo= V(b F) ={(q1,- -, ) € AJ|supp g; + exp(F}) C A}
A, = AJ(F,...,F,) ={R e A"|supp(R) C A}.
We endow the vector space Vi @ A, with the norm
(g1, -+ Gn, R)|s := max{[gj]s - [ In(E})]s, [ R[S}

Now we use the following notation, for ¢ = > ¢, X?Y? denote by ¢° the
operator Y. g, X “T"” where Y is replaced by the shift operator T defined by
TXYP = X°YP+l ¢ denotes the operator ¢ — ¢°.

We set FJ’ = F; —in(F;) and consider the continuous linear maps us, vs, Wy
from V & Ay into the Banach space A7 defined by

us(q1y -y qn, R) = q¢iin(F1)+...+q.in(F,)+ R
Vs(qu, - qn, R) = ¢yin(Fy) + ... + g, in(F,)
ws(qr, .- g, R) == qF{+...+q¢.F,

for all s > 1 sufficiently close to 1 (s.t. F; € A7 for j =1,...,n).

u, is a homeomorphism with ||u;'||s = 1. This follows from the con-

struction of V, @ A, and from the choice of its norm.
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vs has norm < 1 for all s > 1. We use the notation exp(F}) = (i;, a;, 3;),
in(F;) = aijajngaJ’Yﬁf, G =, qgﬁ)XaYB, and remember ¢; = q; — 3. For all

7 we have

q; iy 3, X Yi = Gittijo, X Yo — 05 ijoy 5, X Y
> () (e
Y Y

= D e, XTIY

- Z qggfijajﬂj’yl (aj) <ﬁ) Xty B8y,

e v/ \v
Hence
/s A _ @, ([ S &) ata;—yy B+8—
[ in(F)ls = 100,-.,) 430,87 X Y o 0)]s
e v\
_ @y, ' i B L(ij—1,a+a;—,64+8;—7)
rﬁl%dqaﬁ"a”“’ﬂjw(v) <7)|5

IA

max |5 . | f; o g [sEG108) . g=El00)

= |q]|s : |1n(Fj)|S . S_L(’Y(),’Yo)’

with 79 # 0. We can take R = 0, since vy does not depend on R, and get

|vs(q17"'7qn70)|s _ |Eq;1n<F])‘3
(g1, qn, 0)]s max{|q;[s| in(F})[s}
max |q; in(F;)|s
max{|q;[s| in(F})[s}
< g Lhom) -~ 9

for all (q1,...,¢n,0) # 0, hence ||vs]|s < 1.

w, has norm < 1 for all s €]1, sg] and some sq > 1. Again we take

R =0, since w, does not depend on R. We have

ws(q1s- - g0, O)ls [ 20 ai(Fy — in(F)))ls
(g1, G, 0)ls max{|q;|s| in(F})]s}
max{|q;|s|(Fj — in(F})ls}
max{|q;|s| in(£})]s}
< v(s) < 1
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for all (q1,...,qn,0) # 0 using lemma 1.3.15 and hence ||ws|s < 1.

For all s > 1 sufficiently close to 1 we apply a standard argument (cf. [BGR|
proposition 1.2.4/4) and obtain that

<q17---Qn7R) — (us+vs+ws)(q1,...qn,R) = ZQJF]+R

is an isomorphism. O

1.4 First properties of completed Weyl algebras

From now on assume ¢ € |K*|?¢ with g;6;14 > 1 for 1 < i < d or equivalently
that | |, on Ay, is multiplicative (cf. lemma 1.2.4). In this section we denote
by A either the classical Weyl algebra A, or one of its completions A, or -AIz-

By exp we denote the corresponding exponent.
Let I be a left ideal of A. We define

exp(l) = {exp(f) : 0 # f € I}.

Since exp(fg) = exp(f) + exp(g) we have exp(/) + N** = exp([). The next

proposition is a direct consequence of the division theorems in section 1.3.

Proposition 1.4.1. All Weyl algebras A are Noetherian.

Proof. The arguments of this proof can be found in [Gal| theorem 1.2.5. Let
I be a left ideal of A. By lemma 1.3.1 there is a finite set fi,..., f, € I such
that the exp(f;) generate exp(I), i.e. |J;exp(f;) + N** = exp(/). Now to any
g € I we can apply the division theorem using the above fi,..., f, and get

QIZQz'meT-

Suppose r # 0. By the division theorem we have

the decomposition

exp(r) € supp(r) C A.

JAVS

This is a contradiction since the sets Aj,z are disjoint. O

With f; and g the remainder r also lies in I, hence exp(r) € exp(!) = |,

(2
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Proposition 1.4.2. Each left ideal I C Ag. is complete and hence closed in
IC Ay

Proof. This is clear from [ST| proposition 2.1.(ii), however, we give an easy
direct proof. Let fi,..., f, be generators of I with |f;|. = 1. Let > .=, g; be
convergent in Ag. with g; € I. We write ¢, = Z?Zl gijf;- By the division
theorem 1.3.14 we have |g;|. = max{|q;f;|-}, hence |¢;;|- < |gi|. for all 7 and

J. Therefore Y ;20 g; = Z;Ll(Zon qi)f; € 1. =

Proposition 1.4.3. An element f in A is invertible if and only if the exponent

of f equals zero.

Proof. Suppose exp(f) = 0, applying the division theorem to 1 and dividing
by f gives

lL=qf +r,
with supp(r) € () (since exp(f) = 0), hence r = 0. If we assume [ to be
invertible we get 0 = exp(1) = exp(f) + exp(f "), hence exp(f) = 0. O

Now we consider the usual operator of formal partial differentiation on the
K-vector space of formal power series over K. Since this operator respects
convergence, it extends to all completed Weyl algebras we consider. For the
following lemma and corollary we do not need the assumptions e € |K*|?** and

€i€dri = 1.

Denote by Ox, (resp. dy,) the operator of formal differentiation with respect to
the variable X; (resp. Y;), i.e. for f =" ansX°Y? we define

Oxt = 3 (00 + Datay,i1,ag XY

o,ENd

aYz’f: Z (ﬁi‘i‘1)aaﬁl,---ﬂiJrl,---ﬂanYﬁ'

a,BeNd

Lemma 1.4.4. For f € A we have

fXi=Xif =0v,f and Yif — fYi=0x,/.
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Hence the operator respects two-sided ideals I of A, i.e. we have Oy, I C I and
8)(1.] clI.

Proof. This follows from [Dix| lemma 2.2. O

A simple consequence of lemma 1.4.4 is

Corollary 1.4.5. Let char K = 0, then K is the center of A.

Proof. Suppose f =" a4, X™Y™ lies in the center of A. Then we have
Xif = fXi=0vf=0 and [fY;=Yf=0x,f=0

for all 1 < i < d. Hence all coefficients except the zeroth have to be zero, i.e.

f lies in K. That elements of K lie in the center is clear. O

Proposition 1.4.6. If char K = 0, the algebra A is simple, i.e. has no proper
two-sided ideals different from 0.

Proof. Let I be a non-zero two-sided ideal of A, or AL. We choose an element
0# f = au,sXY? €I and denote by (ag, ) the exponent of f. We now
use lemma 1.4.4, which says that the operators Jy, and Oy, act on two-sided
ideals. If (o, Bo) = (01, ---, 0.4, P01 --- o) and if we apply Ox, o, times
to f and Oy, [y, times for all ¢ we get

+ +
8?(035()]0 = Za,ﬁeNd @ QTO) = 5?0) Gayao g8 XY € 1.

We have

| (a+ao (ﬁ+ﬁo) |€(a,6)

|Oz0! ﬁO! aaoﬁo| > Qa+ag B+Bo

if (o, B) # 0. This is easily seen since on the one hand we know
|aaoﬁo| > |aa+ao,/3+ﬁo|5(a’ﬁ) if (aa ﬁ) #0
by the choice of oy and ;. And on the other hand we have
lag!] > [ O‘+O‘° | and equally |Gp!| > |%|

Hence the element we obtained above has exponent zero, which by proposition
1.4.3 means that it is a unit, i.e. [ = A. O]
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Tensor products of completed Weyl algebras

As before we denote by A, the d-th classical Weyl algebra over K. We have a

canonical K-algebra isomorphism
Ag1 @ Ay —— Ay

with X; ® 1 — X;,, V;®1 +— Y,forl <i<d-—1and 1® X; — Xy,
1®Y; — Yy where Ay ; is the Weyl algebra in the 2(d — 1) variables
X, Xg-1,Y1,...,Y; 1 and Ay is the Weyl algebra in the two variables
X4, Yy, We write ® instead of ®g in the following.

Let e € R% with g;e44; > 1. We define ¢’ := (g1,...,64-1,€a11,- - - ,E24-1) and
€" = (€4, €24). On Aq_; and A; we have the norms | |, and| |, respectively.

This induces a norm on A;_; ® A; if we set for an element f € Ay 1 ® A;
|f|5’e” = inf{miax |gi|6’|hi|a”}>

where the infimum runs through all representations f = > ¢; ® h;. We have

of course also the norm | on Ay_1 ® Ay coming from Ay via the above

B

isomorphism. If we write
f= Zaaﬁxlm o 'ngilylﬁl o 'Ydﬁ—df ® ngydﬁd € Ag1® 4

in terms of the canonical K-basis (X7 - - -Xj‘jilylﬁl .. 'Ydﬁjil ®ngYdBd)a,ﬁeN2d
of Aj_1 ® Ay, this norm is simply |f|. = max |aa5|5(0‘75),

It is an easy exercise to prove that the norms | |, and | | on A4 ® Ay
coincide. Now we consider the completed Weyl algebras A, ;. and A, ..

We take their algebraic tensor product and endow it with the norm | |_,_, as

|€€

above. The canonical embedding
Ai 1 @A — Ag 10 @ Ay er

is easily seen to be dense. Since the norm | |__, is multiplicative on Ay ® A,
it is by density also multiplicative on Ag_1 .- ® A; .. We denote its completion
by -Adfl,e’@-Al,s”-
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Proposition 1.4.7. The canonical map
Adfl,e’ééAl,e” — Ad,s

1s an isometric isomorphism of K-Banach algebras.

Proof. All maps in the following diagram are isometric and dense

Ad—1,5’®A1,5” Ad,e
Ai_1,e0 @ Ay er
Ag1 ® Ay Ag.

2 Skew rings

In the study of the classical Weyl algebra A; one is soon led to a certain

extension ring namely the localization of A, with respect to some variable.

The localization of A; with respect to K[X;]\{0} is As—1(K(X3))[Y, Ox,], the
skew polynomial ring (see section 2.1 or [McCR] paragraph 1.2 for a definition)
over the (d—1)-th Weyl algebra over the field of fractions K (X;) of K[X;] with
the usual derivation dx on K[X] extended to A4—1(K(X)). The consideration
of these localizations proves to be very useful in the investigation of the Weyl

algebra.

If we consider the completed Weyl algebra Ag. the above remark motivates
the following question: Does the localization of A, exist with respect to the
multiplicative subset K(X;).,\{0}, i.e. the subset of all non-zero elements in

which only the variable X; appears? The answer is negative.
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Lemma 2.0.1. Let char K =0 and ¢ € |[K*|**. Then the localization of Ag.
with respect to K(X;):,\{0} does not exist. Equivalently, K{X;).,\{0} is not
an Ore set in Ag. (see [McCR] 2.1.6 for a definition).

Proof. By [McCR] 2.1.12 the two assertions of the lemma are equivalent, we
are going to prove the second. If K(X;).,\{0} was an Ore set in A,., then
by the Weierstrafs preparation theorem for Tate algebras (see e.g. [BGR| 5.2.2
theorem 1) K[X;]\{0} would also be an Ore set in Ag.. Hence it suffices to
show that K[X;]\{0} is not an Ore set in Ag.

Let ¢ € K with |c|eqy; < 1. We claim that the element f = Zﬁ(ch)B € Au.
has the property that (0% (f)),en is a K-linearly independent family.

Recall that 9y, (f) = >, %c”*ﬁ}/ﬂ Let a, € K with

0= iaya;i(f) = ia” Z %Cwﬁyﬁ - Z(i al,%c”*ﬁ)ifﬂ
v=0 v=0 Ié; ’ v=0 )

B

Hence Y "_, ay%c’”rﬁ = 0 for all 3. We denote by a the column vector

(ag, ..., a,) and write the above equations for 0 < § < n in matrix form

(V ;!ﬁ)!cwrﬁ)(]ﬁﬁ,vgn)a = 0.

((

However, one can show that

v+ 3)! "
( ﬁ'ﬁ) CV+6)O§B,V§71) — H k,!cn(n-i-l) 7& 0’
' k=0

det ((

hence a = 0, whence the claim.
Finally, we prove that K[X;]\{0} is not an Ore set in Ag.

We take f = > (cY;)P € Ay and X; € K[X;]\{0} and assume the Ore condi-
tion holds, i.e. there exist f' € A, and s’ € K[X;]\{0} with §'f = f'X,.

Let ' =>"_ anX{. We use the formula X f = Z:ZO(—l)V(:)ﬁ%(f)Xf‘ﬂ,
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which is a consequence of lemma 1.4.4 and get

Sf = Zaaz ( ) (Hx
= Zaaz ( ) X ”+Zaa 1708 (f
- (gaa;(_

alPYX‘I“Zaa aay

2
N
=
S

~~

g
By the above claim ) aq(—=1)%0% (f) # 0, hence f' # g. The equality

n

e-exp((f — 9)X;) = €-GXP(Z aa(—1)*0v.(f)),

a=0

leads to a contradiction, since e-exp(d ) _oaa(—1)*0%(f)) = (0,...,%*,...,0)
with some natural number at the (d+i)-th place, however, e-exp((f'—¢)X;) =
e-exp(f' — g) + e-exp(X;) = (%,...,%) + (0,...,1,...,0) where the 1 appears
at the i-th place. O

The subsequent will provide us with the construction of a ring that in the case
of completed Weyl algebras plays to some extent the role of the localization.
This ring is in fact a microlocalization, see [LvO] Chapter IV for the definition
in the situation of filtered rings and [Nag| for the definition in the language of

non-archimedean Banach algebras.

2.1 Skew polynomial rings

Let R be a unital associative ring, let ¢ : R — R be a ring endomorphism,
and 0 : R — R a o-derivation, i.e. a additive group endomorphism with

d(ab) = d(a)b+ o(a)d(b) for all a,b € R.

Let R[X,0,0] be the skew polynomial ring (see [McCR]| section 1.2 for a def-

inition). Note again that if objects or properties have left and right versions
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we restrict to the left version whereas [McCR]| always use right versions. Ev-

ery element of R[X,0,d] has a unique expression as a finite sum > a; X* (cf.

[McCR] 1.2.3).

We have the usual notion of degree of a polynomial in R[X, o, §] and if R has no
zero divisors and o is injective we have the following rule. Let f = >"" ;X"
and g = Z?:o b; X’ be in R[X,0,d] with a,,, b, non-zero, then

deg(fg) = deg(f) + deg(g).

This follows since fg has degree < m + n and since the coefficient of X™*" is

o™ (by) (see [McCR] proof of 1.2.9.(i)).

Theorem 2.1.1. (Division with remainder.) We assume that o is injective
and that R is an integral domain. Let f € R[X, 0,d] with leading coefficient a
unit. For all g € R[X,0,0] there exist unique elements q,r € R[X, o, 5] with

g=qf+r and  deg(r) < deg(f).

Proof. We proceed by induction on the degree of g. Let f = > a;X* and
g =>.b;X" with deg(f) = m and deg(g) = n. If n < m the theorem is clear.

Hence assume n > m. Then we have by induction a unique expression
g = bu(d" ™ (am)) X = qf + 1
The polynomial b, (6" ™(a,,)) ' X" ™ f is of degree n with leading coefficient

b (0™ () T o™ () = by O

Now we restrict to the case 0 = 1 and we work over a complete non-archimedean
ring R, by which we mean the following: A not necessarily commutative ring
R with identity endowed with a map | |: R — Ry satisfying the properties
(i) |a| =0 <= a=0,
(i) |a+ b < max{]al, [b]},

(iif) [ab] = |al|0],
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is called wvalued ring (see [BGR] section 1.5.1 for the definition in the commu-
tative setting). A valued ring which is complete with respect to the topology

induced by | | is called a complete non-archimedean ring.

Let R be a complete non-archimedean ring. First of all the assumption o =1

implies that the multiplication is given by the formula
Xa=aX +d(a).

This implies

X"q = zn: (Z‘) 5" (a) X'

i=0
(cf. [McCR] 1.2.8). Hence two elements of R[X,d] are multiplied in the follow-
ing way. For (3" a; X") (> 0;X7) =3 cx X* we get

) (0, )as o), 1

This is of course a finite sum, however we write it in this form for later use.

Let f =Y a; X' € R[X,d] be a skew polynomial and ¢ € R.o. We define
| f|e == max|a;|".

Obviously (R[X,d],| |.) is a normed group (see [BGR| 1.1.3 for a definition).
If f+# 0 we call

c-exp(f) = max{i : [ae’ = |f].}
the e-exponent of f. We define e-exp(f) := —oo in case f = 0.
Proposition 2.1.2. Let § be norm decreasing with constant ¢, i.e. |d(a)| < ¢|a|

for all a € R, then the norm | on R[X,0] is multiplicative, hence R[X, 0]

1s a valued ring.

B

Remark 2.1.3. Note that if 6 is norm decreasing with constant € it is not

necessarily norm decreasing in the ordinary sense.
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Proof. Let f = > a; X" and g = Y b; X7 be elements of R[X,d]. We write
fg=3 aXx"

ol = maxloet
SR 3D S R IR OE
7=0 i=k—j
< max |a]|0"" (b))
RS0t
< max |a;||b;|eFTIER
i,7,k
k<itj
= |f E|g|€

Let iy = e-exp(f) and jy = e-exp(g). The assertion |fg|. > |f|:|g|c follows if
we show
to+jo

‘Ci0+jo‘€ ‘ai0|8i0|bj0‘€j0'

This is the case if
0T T0TI0HT ()| g0t < ay, [£70|bj, |€7°
(1 Jad =) < g
for all (i, 7) # (i, Jo) with io + jo < i+ j. As above
. . _ ai52*ZO*Jo+J b.)|gtotio < a;|e'|bi|e7.
() ) < ol

Hence if ¢ > 7( the strict inequality holds. If i <1y we get 7 > jo and again we
have the strict inequality. O

2.2 Rings of restricted skew power series

Let (R,| |) be a complete non-archimedean ring, § a derivation, and € € R+.
We define R(X,0). to be the completion of the normed group (R[X,4],| |.).
We can view elements of R(X, §). as formal expressions Y ;- a; X" with a; € R
and |a;|e" — 0 for i — oo. If § is norm decreasing with respect to ¢, i.e. if
|6(a)] < ela|foralla € R, then | |_is multiplicative on R[ X, ¢] (cf. Proposition

2.1.2) and R(X,0). is a complete non-archimedean ring with coefficient wise
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addition, the multiplication given by formula (1) and multiplicative norm | |_.
We call it the ring of e-restricted skew power series over R. Whenever we
write R(X,d). in the following § will tacitly be assumed to be norm decreasing

with constant €, so that R(X,J). is a complete non-archimedean ring.

Alternative definition of complete Weyl algebras

Let € € ]Rido with g,645; > 1 for all 0 < ¢ < d. Let K be a complete non-
archimedean field. We want to inductively redefine the d-th complete Weyl
algebra A .. We use the notation e(j) := (e1,...,€j, €441, .-,€4+5). We
define Ay := K. The ring A;.(;) is by induction hypothesis non-archimedean
and complete. Hence taking 0 = 0 we can consider A;.(;)(X;41),,,, the ring
of ;4 1-restricted (skew) power series over A;.(;). This is a complete ring with

norm | _on which we have the operator 9 of formal differentiation with

|5J‘+

respect to Xj41. Forall f =3 a; X! | € Aj.;y(Xj41)e,,, We have

10501 (F)le;

max (i + 1)ai+1|5§‘+1

i—1
Jj+1

IA

max |a;|e
7

IA

max |ai‘5;‘+15d+j+1

€d+j+1|f|ej+1-

Hence the derivation ;4 is norm decreasing with respect to €44;41. Therefore

we can form

AjJrl,e(jJrl) = (Aj,E(j)<Xj+1>5j+l)<}/j+17aj+1>5d+j+1

the ring of €44 41-restricted skew power series with norm | | et The Weyl
algebra Ag. we obtain by this procedure is the same as the Weyl algebra

defined in section 1.2.

Remark 2.2.1. Note that we can add the 2d wvariables in any order ((2d)!
choices) as long as we insure that we add the variable with respect to the cor-
responding €; and that we choose 6 by the following rule. We take 6 = 0 if we
add X; (respectively Y;) and Y; (respectively X;) has not jet been added. We
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take 6 = Ox, if we want to addY; and X; has been added and we take 6 = —0Y;
if we want to add X; and Y; has been added.

Proof. For the algebra defined in this way we easily verify the relation Y; X; =
X,;Y; + 1 for all . Hence we can define a homomorphism from the completed
Weyl algebra into this algebra by sending X; to X; and Y; to Y;. The map is
injective, since writing elements as non-commutative power series is unique and
it is surjective, since the convergence condition for the coefficients of elements

is the same for both algebras. O

Division in rings of skew power series

The notion of e-exponent for elements in R[X,d] extends to elements f =

S a; X' € R(X,6)..

Lemma 2.2.2. Let f,g € R(X,6).. Then

o c-exp(fg) = e-exp(f) + e-exp(g) and

o if c-exp(f) # e-exp(g) then e-exp(f + g) € {e-exp([),e-exp(g)} and
e-exp(f +g) # —oo,

with the usual conventions if f =0 or g = 0.

Proof. Let f =5 a; X', g= > b;X’ and fg = > ¢ X"*. By the second part

of the proof of proposition 2.1.2 we know

‘Cs—GXp(f)Jre-exp(g)|56_exp(f)+€_exp(g) = ‘f g ‘87

hence e-exp(fg) > e-exp(f) + e-exp(g).

The inequality e-exp(fg) < e-exp(f) + e-exp(g) holds since there is no natural
number k > c-exp(f) + e-exp(g) with |cx|e® = |fg|.. Indeed, let us assume
k > e-exp(f) + e-exp(g). We have

] ’L - ‘
el = 1> > (k_j)aiél k4 (b)) |

§=0 i=k—j

VAN

max |a;||b;]e".
0<5<k
i+ik
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If i > e-exp(f) then |a;|e* < |f]c, hence |a;||b;|le™ < |fgl.. The inequality
i < e-exp(f) together with i + j > k > e-exp(f) + e-exp(g) gives j > e-exp(g)

and as above we obtain |a;||b;|[e7 < |fg|., hence |c|e® < | fgl..
The second statement follows as in the proof of lemma 1.3.11. O

Lemma 2.2.3. Let f,q,q,7 € R[X, 5] with g = qf +r, deg(r) < deg(f) and
deg(f) = e-exp(f). Then |g|c = max{|qf|e,|r|-}.

Proof. In proposition 2.1.2 we saw that the norm |¢f|. is given by the e-exp(q)+
e-exp(f)-th coefficient. However, deg(r) < deg(f), so this coeflicient appears

in g too, hence g has the same norm, whence the lemma. O

Definition. An element 0 # f =" a; X’ € R(X, ). is called distinguished
if Qe-exp(f) € R*.

Theorem 2.2.4. Let ¢ € |R|\{0} and assume |R|\{0} = |R*|. Let f €
R(X, ). be distinguished. For all g € R(X,0). there is a unique element
q € R(X,0). and a unique element r € R[X, ] with

g=qf +r and deg(r) < e-exp(f).

Moreover, we have |g|. = max{|qf|., |r|:}

Proof. The proof is the same as the proof of theorem 1.3.14. However, we
reproduce it for the sake of completeness. The uniqueness follows from lemma
2.2.2 (cf. the proof of theorem 1.3.9).

Existence. We may assume |f|. = |g|l. = 1. Let f = > a;X* and g = > b; X".
We put
0 1= max lage’ < 1
lajlet<1
if the maximum is non-zero and choose an arbitrary 0 < § < 1 otherwise. We
denote by f>9 the element Z‘ai|gi>5 a; X" and by f=° the element E\ailaiéé a; X
This gives a decomposition f = f>% + f=9.
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Now starting with g = gy we define a sequence g5 by the following procedure.
As above we decompose ¢ = ¢~° + ¢=% and apply theorem 2.1.1 to gk>5 and
9. Note that f7° has a unit as its leading coefficient! We get

9 = afi

with |qu]. < 1, since 1 = |gx|. = max{|q.f°z, |7k]c} by lemma 2.2.3. Hence

Ik = QS+ Tk + Gr

if

) <5 <5, <6

Gev1 = Q7" —aef + 95" = —ae fi7" + 9"
We have |Gp1)e < max{|qef=|., [¢=°|:} < 6. If Gepr # O choose Ty € RX
such that

Gk+1 = 71;&1%“

has norm 1, hence |mp1| < § (mg = 1). If gy, = 0 for some ko we put

gr = qr =1 = 0 for all £ > ky. In either case this gives

Nk N+1
9= Hﬁl(%f + i) + H TIgN+1
k=0 1=0 1=0
for all N € N. Setting

k
[L7me

0 1=0

q:=

oo k o)
Tk and ri=
= 0 =

k=0 I= k

we get the decomposition
g=af +r.

Finally, we have to show e-exp(f) > deg(r). By definition e-exp(f) = deg(f>?).

However, we have
supp(r) C | Jsupp(ri) €0, ..., deg(f>°) — 1}.
k

The final assertion is clear since |¢|. < 1. O

Proposition 2.2.5. Assume ¢ € |R*| = |R|\{0}. An element f € R(X, ).
is invertible if and only if it is distinguished with e-exp(f) = 0.
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Proof. Suppose f is distinguished with e-exp(f) = 0. Applying theorem 2.2.4
with g = 1 gives the inverse. If f = Y ;X" is invertible it is an immediate
consequence of lemma 2.2.2 that e-exp(f) = 0, i.e. |ag| > |a;|e" for all i > 0.
Let f~1 = > b, X" be the inverse. Computing the constant coefficient of ff~1
using formula (1) gives > ;> a;0'(by) = 1, hence aghy =1 — Y77, a;6°(b). The
inequality
laobo| > |ag|e’|bo| > |a;id"(bo)| for all i >0

implies |a| < 1, where a := > 77 a;6°(by). Since R is complete agbp is a unit

with inverse > ° a’. This proves that the element f is distinguished with
e-exp(f) = 0. O

Theorem 2.2.4 is a generalization of the Weierstrafk division theorem for Tate
algebras (cf. [BGR] 5.2.1 theorem 2) in which § = 0.

As we saw above the completed Weyl algebras A, . are rings of restricted skew
power series. Hence the above division theorem applies to A,;.. However since
there are always elements which are not distinguished with respect to a given
variable the theorem is not applicable to all elements of A4,;.. However in the

case of the completed Weyl algebra A, = A, . we have the following lemma.

An element f € A. is called ¥distinguished if under the identification with
K(X).,(Y,0x)e, it is distinguished. Of course, we have the similar notion of
being X-distinguished using the identification with K(Y).,(X, —0y).,.

Lemma 2.2.6. Let ¢ = (g1,69) € |[K*|*> with 169 > 1 and let 0 # [ € A.
be any element. There exists an isometric isomorphism o : A. — A. of
K-Banach algebras such that o(f) is Y-distinguished (resp. X-distinguished).

Proof. Let A denote the classical Weyl algebra in two variables X and Y. We

get a well defined homomorphism of K-algebras
oc:A— A,
if we put 0(X) =X+ cY* and o(Y) =Y with ¢ € K and p € N, since

V(X +cY") =YX + VP = XY + 14 VP = (X +cYHY + 1.
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We show now that o is continuous with respect to the e-norm on A and A,

for all p if we choose ¢ € K such that |c| = e16,". We have

lo(f)]: = ‘Zaag(X+CY“)aYﬁ|e
ap
< m%xlaaﬁll(XHY“)I?IYlf

= max|a,s|e™?
af

= |[le

The classical Weyl algebra A is dense in A. and A. is complete, hence the
continuous homomorphism o extends uniquely to a continuous homomorphism
o: A — A, with [o(f)]c < |f|e. Taking —c instead of ¢ we again get a well
defined continuous homomorphism 7 : A. — A, with |7(f)|. < |f|.. Obviously

ocoT=To0 =id, i.e. ¢ is an isomorphism. Further we have

[fle = 1m(a(f))]e < lo(f)le <1/l

hence |o(f)|e = |f|- for all f € A..

We denote by F°A. all elements of A, with | | < 1. If we choose a,b € K

with |a|™! = ¢; and |b|7! = €5 we get a homomorphism of rings

o F'A.  —— A(k) or k[X,Y],
Y aasXYP = Y agsa b PXYH

mapping to the classical Weyl algebra in the two variables X and Y over the
residue field k£ of K if €19 = 1 and mapping to the polynomial ring in the
variables X and Y over k if €169 > 1 (cf. lemma 4.2.1).

An element f € F°A. is ¥distinguished if and only if ¢(f) written as a
polynomial in Y with polynomials in X as coefficients has a constant as leading
coefficient. Indeed, for f =3 a,s XY with |f|. = 1 the polynomial o(f) is
of degree eg-exp(f) and Y Gq co-exp(r)X * is a unit if and only if |agcy-exp(s) |22 >
|G co-exp(f)|e2€T for all a > 0 (cf. proposition 2.2.5). This in turn is the case if
and only if Y aq cp-exp()@ @b~ 2P XY = ., ey ()b 2P,
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Let us take ¢ := a~!b* to define 0. Then the homomorphism ¢ o ¢ is given by
FYA, — A(k) or k[X,Y].
SN aasX°YP = Sagsa b P(X + YH)2YP
To complete the proof assume without loss of generality that f = Y a,3 XYY" €
A. with |f|. = 1. Define N := {(«a, ) : anga—2b=? # 0} C N? and let u be
in N such that ¢ > o and p > g for all (o, 3) € N. Then there is a unique

element (o, fy) € N such that pog + o is maximal. Hence
p(o(f) = aapa—b= (X +Y")Y?

is an element of degree oy + By with a constant as leading coefficient. O

Now we establish a Weierstralt preparation theorem for the completed Weyl
algebra in two variables A. = K(X). (Y, 0x)e,.

Theorem 2.2.7. Assume ¢ = (e1,e9) € |K*|? with e1e9 > 1. Let f
A. be Y-distinguished. Then there exists a unique monic polynomial pol
K(X).,[Y,0x] of degree eo-exp(f) and a unique unit u € A. such that f =

u - pol. Furthermore |pol|. = e hence pol is Y -distinguished with

ex-exp(pol) = degy (pol).

m Mm

Proof. We apply the division theorem 2.2.4 to Y2P{/) and obtain elements
g€ A and r € K(X).,[Y,0x] with

Y€2'eXp(f) — qf +r

and deg, (r) < es-exp(f). Moreover we have max{|qf]., |rl.} = 2=V,

We set pol := Ye(f) — 1 Hence pol = qf, degy(pol) = es-exp(f) and
Ipol|. = 5;2'6Xp(f ). Now we show that q is a unit. We normalize the equation
pol = qf such that |pol|. = |q|l- = |f|- = 1. As in the proof of lemma 2.2.6 we
use the map

o: F°A. — A(k) or k[X,Y].

We get ¢(pol) = p(q)e(f) where p(pol) and ¢(f) are polynomials resp. skew
polynomials in Y of the same degree with coefficients in k[ X] such that the lead-
ing coefficients are constant. This implies ¢(q) € k, hence ¢ is Y-distinguished
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with e9-exp(q) = 0, i.e. ¢ is a unit (cf. proposition 2.2.5). Hence with u := g we
obtain a decomposition pol = uf satisfying the properties of the proposition.
Assume pol’ = u'f is another such decomposition. Then pol — pol’ = (u—u') f
with degy (pol —pol’) < eg-exp(f). If pol # pol’ this contradicts the uniqueness
property of theorem 2.2.4. O

Rings of restricted skew power series over a field

Now we work over a complete non-archimedean field K instead of a complete

non-archimedean ring R.

Proposition 2.2.8. Let e € |K*| and let § be a derivation on K which is norm
decreasing with constant . Then all elements of K(X, ). are distinguished and

all left ideals are principal.

Proof. Let I be a left ideal. Let e-exp([) := {e-exp(f) : 0 # f € I}. Choose
an element f € I with e-exp(f) = mine-exp(/). By the division theorem 2.2.4,

for any g € I we have a decomposition

g=qf +r

with deg(r) < e-exp(f). Assume r # 0. With ¢ and ¢f in I we know r € I.
However e-exp(r) < deg(r) < e-exp(f), a contradiction. O

We will compute the left Krull dimension (K (X, d).). See [McCR] chapter 6
for the definition of the left Krull dimension of non-commutative rings. It is an
open question if the left and right Krull dimension of left and right Noetherian
rings coincide (cf. [McCR] 6.4.10 and 6.4.11). Here we restrict to the left Krull
dimension, which we will call Krull dimension for simplicity. However, for the

right Krull dimension we obtain the same results by symmetry.

Proposition 2.2.9. Let ¢ € |K*| and let 6 be a derivation on K which is

norm decreasing with constant €. The Krull dimension of K(X,0). is 1.
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Proof. We directly verify the definition as it can be found in [McCR]| 6.1.2.
Consider the descending chain of left ideals generated by X, X?2,.... This chain
never becomes constant (exponent lemma 2.2.2). Hence the Krull dimension

is not zero. Let

K(X,8%.2I,2L2D...

be any descending chain of left ideals. The Krull dimension of K (X ¢). is less
than or equal to 1 if we show that for almost all ¢ there are only finitely many
left ideals between I; and I;;;. Since we have to show this for all but finitely
many indices ¢ we may assume [; # 0 for all i. We have e-exp(1;) 2 e-exp([;1+1),
both of which are subsets of N. Recall that e-exp(1;) + N = N by the exponent
lemma and hence that there are only finitely many different exponents between
e-exp(/l;) and e-exp([;41). If I C J are two left ideals with e-exp([) = e-exp(J)
then I = J. To show this let f (resp. ¢g) be a generating element of I (resp.
J), f and g exist by proposition 2.2.8. Since e-exp(l) = e-exp(J) we have
e-exp(f) = e-exp(g). However, there exists an element ¢ with f = gg. By the
exponent lemma e-exp(q) = 0 i.e. ¢ is a unit (cf. proposition 2.2.5). Hence
1=J. 0

Chapter 7 of [McCR]| introduces the notion of left and right global dimension
for non-commutative rings. Although it is not true in general, we know that for
a left and right Noetherian ring R the left and right global dimensions coincide
(cf. [McCR] 7.1.11). In this case we simply speak of the global dimension of R
denoted by gld(R).

Proposition 2.2.10. Let ¢ € |K*| and let § be a derivation on K which is

norm decreasing with constant . The global dimension of K(X,0). is 1.

Proof. The ring K(X,J). is not semisimple. Indeed, as shown above it has
Krull dimension 1, whence it is not Artinian. By [McCR] 7.1.8 (a) it is therefore
enough to show that all left ideals are projective. However, K(X,d). is a
principal left ideal domain (cf. proposition 2.2.8) and hence left ideals are
module isomorphic to K (X, d).. O
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3 Dimensions of Weyl algebras

The Krull dimension as well as the global dimension of the d-th classical Weyl
algebra are equal to d if char K = 0 and are equal to 2d if char K = p > 0.
We conjecture the same to be true for the d-th completed Weyl algebra A,..
We will prove that d serves as a lower bound for both the Krull and the global
dimension. If char K = p > 0 we show that 2d is a lower bound for both
dimensions. That d is also the upper bound if char K = 0 will only be proved

for d = 1 under the additional assumption that K is discretely valued.

3.1 Lower bounds

Lemma 3.1.1. Let f € Ay and let k < d. If fY1 is an element of the left
ideal Ele A Y, then f € Zle Ay Y

Proof. We use the convention that a coeflicient is zero if it has negative in-
dices. Let f = ZaaﬁXaYﬁ and let Yy, € Zle Aqg.Y;. There exist
=Y a" XY € A, with

k
fYk-‘rl = Zfzy;

- Z > al)X°YPY,

zlozﬁ

ozﬁ =1
On the other hand we have

JYep1 = Z%ﬁXaYﬁYkﬂ Zaa B1yesBrar1—1,eny ﬁdX YP,
af aB

..........
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which will be important later.

Set b((l% = ag,)ﬁl,---,ﬁkﬂﬂ,...ﬁd and g; := Zbg%XaYﬁ. We have ¢; € Ay, since

|b((j[)3|5(aﬂ) — 0 for |a| 4+ |B| — oo. Finally,

k k
Z YY1 = Z Z bg%XaYﬁKYkH
i=1

i=1 af

k
_ (@) av/ 0
o ZZbaaﬁl7---76i_17---76k+1_17---=ﬁdX Y

i=1 af
k

- Z (Z a((j,)517,,,,5i_17._.76d)XaYﬁ

af =1
Br+1>0

k

B Z (Z ag?ﬁl7~..,,6’¢71,...,,8d)XaY6

af i=1
Bk+l >0

k
+ 2 Qi o, s )XY

af i=1
Br41=0

k
- Z<Zaz(;,)ﬁl,...,ﬁi—l,...,ﬁd)XaYﬁ = [Yin

af  i=1
Hence f = Zle g;Y;, proving the lemma. O
Proposition 3.1.2. The Krull dimension of Ay is bounded below by d.
Proof. Apply [McCR] proposition 6.5.9 to the left ideal generated by the ele-

ments Y7, ..., Yy Thisis a proper ideal and the Y; commute pairwise. Together

with the property in lemma 3.1.1 the proposition follows. O

Proposition 3.1.3. The global dimension of Ai. is bounded below by d.

Proof. We consider the same ideal as in the proof of proposition 3.1.2. To
apply [McCR] theorem 7.3.16 we need the additional property that > YA,
is a proper ideal, which is the case. The assertion follows. O
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Remark 3.1.4. To establish these lower bounds we did not need to assume
K to be discretely valued nor € to lie in |K*|*. Both these properties will be

main ingredients to obtain upper bounds.

If we assume char K = p > 0 we immediately get as in the classical case the
following strong result for the Krull dimension. Let K, denote an algebraic

closure of K.

Proposition 3.1.5. Assume char K = p > 0, then the Krull dimension of
Aq is bounded below by 2d. The Krull dimension of Ay is 2d if e € | K |**.

alg

Proof. We proceed as in the proof in the classical case as it can be found in
[McCR] 7.5.8. The elements X” and Y in A, are central. Indeed, using the
formula fX7 =377, (;)le—j% (cf. lemma 1.4.4) we see that fX! = X'f,
since (1;) is divisible by p for all 1 < j < p and all coefficients of 97, (f) are
multiples of p. Hence the Tate algebra Thgr = K(X7,.... X0 Y) ... YD)

in 2d variables is a subalgebra of Ag.. In fact, A, is a free Ty »-module of

.....

6.5.3 we get
]C(Ad,€> - K(T2d75p) Z 2d

(cf. [IBGR] remark 6.1.2 for the inequality). The final statement follows since
we know K(Ther) = 2d if € € |KJ,| (combine [BGR| remark 6.1.2 and the
proof of [BGR]| theorem 6.1.5/4). O

Proposition 3.1.6. Assume char K = p > 0, then the global dimension of
A is bounded below by 2d.

Proof. From the proof of proposition 3.1.5 above we know that A, is a free

Ty4er-module of finite rank. Hence using [McCR| theorem 7.2.6 we get
gld(Ad75) Z gld(T2d75P) Z Qd.

The fact that gld(Th4.r) > 2d follows with [McCR] theorem 7.3.16. O
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3.2 Upper bounds (d=1)

Recall that by the alternative definition of Weyl algebras (remark 2.2.1) we

have
-Ad,s = (Ad—l,éi(K<Xi>€i))<Y;7 aXi>5d+i
~ (Agor,e (K (Yi)eyy ) (Xi, =0y, )e,
with the notation & = (g1,...,&;1,8i41, -+, Edri1,Edtitl, - - -, E2q) and where

Ag_1z is the Weyl algebra in the 2(d — 1) variables X, ..., X; 1, Xit1,..., Xy
and }/17---7}/;'717}/;'+17---7Yd-

The derivation Ox, (resp. Jy,) extends to a derivation on the Weyl algebra
over the completion of the quotient field of K(X;)., (resp. K(Yj).,,,) which is
norm decreasing with constant €4, (resp. €;). Hence we can form the ring of

restricted skew power series

By = (Aa1.a (Quot (K X)) (Vi Ox, e,
resp. Byt = (Agt.a (Quot(K (¥i)e,,,))) (Xi, =0,

We denote the norms of these K-Banach algebras by | |.. In the following

we want to consider the canonical ring extension

d d
X Y;
Ade — D Bi: © D Bil. = Ba.
=1 =1

The maximum norm on By, is again denoted by | |..

Lemma 3.2.1. Assume char K = 0 and ¢ € |K*|*. Let I C Ag. be a
mazximal left ideal. Then Bg.I C Bg..

Proof. Assume the lemma to be false. Let I C Ay, be a maximal left ideal
with Byl = By.. Then 1 € By:I and 1 € Byl for 1 <i<d.

Since 1 € Bf;], there is an element f = > a,sX°Y? € I, which is a unit

in Bf;', or equivalently, which is distinguished with eqy-expgx, (f) = 0 (cf.
) d,e
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proposition 2.2.5). By definition €41~ expyx; (f) = 0 implies
d,e

csBi—1,0,8i415,84)
max 00,81, 81,0801, g £ Pt OB
,B1,.8i—1,8i41,--,04 ‘ o ¢

> max Uy g]e(@?)
047617---76i—176i+17---=ﬁd| aﬁ|

for all b; > 0. This together with the fact that f is distinguished combined
with the fact that an element in A, :(Quot(K(X;).,)) is a unit if and only

if its £-exponent is zero (cf. proposition 1.4.3) gives

max |a0,...7ai7,,,70|5(07---7a¢,-..,0)
(677

@,01,0-0i-1,0,8i41,--,04)
> Ir(lxafx|a07617~~~76i71707[3¢+17~~~76d|8( ' 1+
1

for all (av,..., 51, Qs1,- -y Qq, By oy Bict, Biv1y - - - Ba) # 0. Therefore, we
can find an ay, € N with e-expy, (f) = (0,...,ay,...,0) where ay, appears
at the i-th place. Similarly, working in Bg}e, we find an element g € [ and an
By, € N such that 5—eXpAd’E(g) = (0,...,0y,,...,0) where 3, appears at the
d + i-th place.

Let hy, ..., h, be elements in I such that e-exp(I) = |J; e-exp(h;) + N2 (cf.
lemma 1.3.1). Hence hy,...,h, generate I (cf. proof of proposition 1.4.1).

Applying theorem 1.3.14 we get an isomorphism of K-vector spaces
Age/l  —— {f € Age :supp(f) C A}.
Yo qhi+r r
We know that

A = UL 0,.. . ap,...,00+ N2 U UL,(0,...,q,,...,0) + N
C eexp(l) =U; A

Hence A € N*N\A = {(a,8) € N* : o < ay,, 3 < B}, so that A is finite
and hence {f € Ay, : supp(f) C A} is finite dimensional over K. This is
a contradiction to the fact that there are no simple finite dimensional Ag-

modules which we are going to prove now.

The fact that there are no non-zero finite dimensional left A, .-modules is true

for any simple infinite dimensional K-algebra, where K is any field. Indeed, let
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M be a non-zero left A, .-module which is finite dimensional over K. Consider
the ring S := End 4, (M). M is a right S-module via myp := ¢(m) for ¢ € S,
m € M. Hence Endg(M) is finite dimensional over K, since Endg(M) C
Endg (M) is a K-subspace. Since A is simple if char K = 0 (cf. proposition
1.4.6) Ay — Endg(M) with f +— (m +— fm) is a ring extension, hence A,

is finite dimensional over K, a contradiction. O

Now we restrict to the case d = 1. In this case we omit the subscript d, i.e.
we write A, and B. = BX @ BY. To obtain the next results we assume the
extension A. C B, to be flat. We will show in section 4 proposition 4.3.4 that
this is true at least if we further assume that K is discretely valued and that

all components of ¢ lie in |K*|.

Proposition 3.2.2. Assume A. C B. to be a flat extension of rings and let
e € |[K*|*. If char K = 0, then the Krull dimension of A, is 1.

Proof. We already know that K(A.) > 1 (cf. lemma 3.1.2). The fact that A, C
B. is flat combined with lemma 3.2.1 implies that the extension is faithfully flat
(cf. [McCR] proposition 7.2.3). Hence the map sending left ideals I C A, to

the left ideals B.I C B, preserves proper containments (cf. [Boul| proposition

1.3.5.9).

From proposition 2.2.9 we know that K(BX) = K(BY) = 1. Hence K(B.) = 1.
Indeed, the left ideals of B. are the direct sums of the left ideals of BX and
BY. Hence with lemma 6.1.14 of [McCR| we have

K(B.) = sup{K(B:"), K(B.)}.

Applying [McCR] 6.5.3.(1) we get K(A.) < K(B.) = 1. O
If the Weyl algebra is defined over a discretely valued field and the components
of € lie in |K*| we will show in section 4 that the global dimension of A, is

finite (cf. 4.3.6). To some extent this justifies the first assumption in the next

proposition.
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Proposition 3.2.3. Assume the global dimension of A. to be finite and the
extension A. C B. to be flat. Let e € |K*|??. If char K = 0, then the global

dimension of A. equals 1.

Proof. We know that 1 is a lower bound (cf. proposition 3.1.2). The extension
A. C B, is faithfully flat (cf. proof of proposition 3.2.2). Hence by [McCR|
theorem 7.2.6 the global dimension of A, is bounded above by the global
dimension of B.. However, the global dimension of B. is 1 by proposition
2.2.10. O

These results indicate that the ring extensions BX and BY, i.e. the microlo-
calizations, are the appropriate objects to consider. The localization of the
classical Weyl algebra A in two variables X and Y with respect to the multi-
plicative subset K[X]\{0} is a principal left and right ideal domain with Krull
and global dimension equal to 1. As we saw above the microlocalization BX
of the completed Weyl algebra A, shares these properties. The analogy goes
even further. Just as the localization in the classical case is a simple ring so is

the microlocalization.

Proposition 3.2.4. Assume ¢ € |K*|??. The rings BX and BY are simple,

i.e. have no proper two-sided ideals different from zero.

Proof. As in the case of the Weyl algebra we show first that formal differenti-

ation of elements f € BX with respect to Y is given by the formula
Oy (f) = fX—-XF.

Let f = > agY? and X = > bsY¥, ie. by = X and bg = 0 for all 3 > 0.
Applying the multiplication formula (1) we get

D ) 30 o (N IS
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and

proving the assertion. Let f = Y agY” be a non-zero element of a two-sided

ideal of BX. Set (3 := ey-exp(f). By the above assertion the element
05 (f) = %: Bl ag, g, Y

is an element of the two-sided ideal. On the other hand we have

> | 5-1—50

|60'a’50|€1 aﬁ+ﬁo|€1€2 for all ﬁ >0

by the definition of the exponent and because |G!| > |%| for all 5. Hence
A% (f) is a unit (cf. proposition 2.2.5). O

4 Filtration

In this section we endow the completed Weyl algebra A,., the microlocal-
izations Bd; and Bde, and B, the sum of these microlocalizations, with a
filtration. The associated graded rings turn out to be well known classical

objects.

There is an extensive theory on how a filtered ring inherits properties from the
associated graded ring (see for example [LvO]), however, for this process to
work in our situation we have to assume that the complete non-archimedean
field K is discretely valued.

4.1 Filtered rings

We briefly recall the definitions as they are used in [LvO]. Let R be an associa-
tive unital ring. We call R filtered if it is equipped with a family {F"R},cz
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of additive subgroups F"R C R such that, for any m,n € Z,

(i) F"RCF"Rifm <n,
(i) F™R-F'RC F™™MR,
(i) |(JF'R=Rand1€ F°R.
nez
The associated graded ring is the ring

grR = @ gr"R

nez

with the standard multiplication and where gr"R = F"R/F" 'R. A filtration

is said to be complete if it is Hausdorff ((,,., /"R = 0) and the natural map

R — limR/F"R
—

is bijective (i.e. every Cauchy sequence converges).

Let K be a complete discretely valued field with uniformizing element m € K
and residue field k. Let A be a K-Banach algebra (associative unital) with a
non-archimedean norm | |, satisfying |1|4 = 1, |abla = |a|a|bl4 and |K| =

|Al4. We can view A as a filtered ring if we define
FrA:={aec A:lala <|m|™} forallneZ.

This filtration is complete. Note that grA is a graded k-algebra and that we

have an isomorphism of graded k-algebras
grA ~ k[x, 771 @ gr'A,

where the graduation on the right hand side is given by the negative degree
graduation of k[7,771]. The subring F°A of A is a filtered ring using the

filtration of A and we have an isomorphism of graded k-algebras
grF°A ~ k[7] @ gr°A.

Lemma 4.1.1. Assume that the Krull dimension of F°A is bounded above
by d resp. the global dimension of F°A is bounded above by d and that F°A

is Noetherian. Then the Krull dimension resp. the global dimension of A is
bounded above by d — 1.
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Proof. We reproduce an argument of the proof of [ST| theorem 8.9. Let O
be the valuation ring of K. As the elements of K commute with all elements
of A the set Ox\{0} is an Ore set in F°A. We have the ring isomorphisms

(Oxk\{0})'F°A ~ K ®p, F'A~ A.

For all f € F°F A the element 1— f has the inverse 1+ f+ f2+...in FYA, hence
F%* A lies in the Jacobson radical of F°A. This implies that any simple left
FY A-module is Og-torsion (all a € Ok \{0} with |a| < 1 annihilate all elements
of the module). The lemma follows if we apply [McCR] proposition 6.5.3 in
the case of the Krull dimension and [McCR] corollary 7.4.3 and theorem 7.4.4

in the case of the global dimension. O

4.2 Associated graded rings

From now on let K be a complete discretely valued non-archimedean field with
uniformizing element 7 € K and residue field k. We consider the completed
Weyl algebra A, . defined over K. We endow A, with the filtration

F'Age ={f € Age:|fl: < |n|™"} forn e Z.
This filtration is complete. For € € R4 we will use the notation
d(e) == #{j : gjeas; = 1}.
Lemma 4.2.1. Let € € |K*|** with gjeqy; > 1 for all 1 < j < d. Then we
have an isomorphism of graded k-algebras

grlge ~ k7, 77" @k Age) (k) @y Polaa—aee) (k)

where Polyq_q)) (k) denotes the polynomial ring in 2(d — d(g)) variables over
k.

Proof. We may assume that ;eq,; = 1forall j = 1,...,d(¢) and that ;e4,; >
1 forall j =d(e)+1,...,d. This is easily achieved if we consider for example
the isomorphism

Age ~ A1,€1,€d+1® T ®A1,ed,e2d
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of proposition 1.4.7. We choose ¢; € K such that |¢;]7' =¢; for 1 < j < 2d

and such that ¢4 ; = cj_1 if €;e4+; = 1. We define a k-algebra homomorphism

Age) (k) @k Poly—aey (k) —— grPAqe,

Y; = CagY

where the 2d(¢) variables of the classical Weyl algebra Ay (k) are denoted by
X1, X4e), Y1, ..., Yy and the 2(d — d(e)) variables of the polynomial ring
Poly(g—q()) (k) are denoted by Xgey41,-- -, Xda, Ya@e)41, - - -, Ya. This homomor-
phism is well defined since cj_lechj = chjcj_le +1forall j=1,...,d(e)
and cqy;Y;0;X; = ¢; Xjcqq;Y; forall j=d(e)+1,...,d.

The homomorphism is bijective. Indeed, suppose Y Gas XY P € Ay (k) Q4
Poly(a—qe) (k) is send to zero. Then we have ) aqpc @) XoY8 = 0
| S aapc @ XYE|. <1 &= max|ans| <1 <= Y aasX°Y"? =0, where

c=(c1,...,coq) and P = ¢ ... P4 Hence the map is injective.

Let f =" ansX*Y? € gr%A,. be any element. Then Y ansc— (@) XY P is a

preimage of f. Hence the map is surjective.

Combining this with the isomorphism grA;. ~ k[, 7] ®;, gr® Ay completes
the proof. O

We endow ij; (resp. le/fe) (cf. section 3.2) defined over K with the complete
filtration

F'Byi = {feBf:|fl. <|r|™} forneZ

Lemma 4.2.2. Let ¢ € |[K*|** with ejeqr; > 1 for all 1 < j < d. Then we

have isomorphisms of graded k-algebras

grByL ~ (K[X\{0}) " (k[7,77"] @k Age) (k) @k Polya—a(e (k)
and  grB)L ~ (K[Yi\{0}) "' (k[7,7 "] @k Agee)(k) @k Polaa_ae (k)

where Polyq_ae)) (k) is the polynomial ring in 2(d — d(e)) variables over k.
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Proof. We choose ¢; € K such that |¢;|™" = ¢; for 1 < j < 2d and such that

Cdtj = ¢ Lif €j€d+; = 1. We have the following isomorphisms of k-algebras

KX) —— gr"Quot(K(X,).,) —— gr"Quot(K (X).,)

Z@aXf‘ s Y aact XY s Y aact X
S o X7 > bact X Y bact X

using the chosen ¢; € K. The second isomorphism is clear since the residue
field of any non-archimedean valued filed is isomorphic to the residue field of

its completion.

The first homomorphism is well defined by sending X; to ¢;X; (¢;X; being
a transcendental element of the k-algebra gr®Quot(K(X;).,)). The homo-

. L. . . Y aack X Y aack X
morphism is injective since $gigh = 0 <= [§ikgsl, <1 <
Yaa X . . . . > aa X
max |a,| < 1 <= S haxt 0. It is surjective since any element S ba X0 €
0 . > aac; T XY
gr? Quot(K (X;).,) has the preimage ==-__—"*.
B > bac; X2
We use the notation & = (£1,...,6i 1,841, Edri1sEdiitl,---,E2q) aS in

section 3.2. Note that d(é") = #{j : gjeqy; = 1,j # i}. By lemma 4.2.1 we

have an isomorphism

(Yol Ad(éz)(k}(Xz)) ®k(X) PO]Q(d 1—d(él))(k(Xz)) — gTOAd_Léi(QUOt( <XZ>51))

Zaa aﬁX a8 Zaaiaﬁc X a,B B
> 72%(15)(1)( Y — ZZbaagc‘”Xa ci(ef) Xay
a,ﬁENd 1 067
if we write « = (aq, ..., @1, ®it1, ..., 0q) and X = X+ X; 1 X9+ Xgand

with the similar convention for 3 and Y. We use the notation ¢*(*? as in the

proof of lemma 4.2.1 with ¢ = (¢1,...,Ci—1,Cit1, -+ Cdri1s Cdtitlys - C2d)-

The k-algebra gr’B;! contains the k-algebra gTOAd_léi(Qu()mi)ei)) since

isometrically

Ad—l,éi<QuOt(K<Xi>€i)) - -Ad—l,éi(QuOt(K<Xi>€i))<}/i7 aXi>5d+z Bd E"
The composition of ¢ with this inclusion is a homomorphism

Aaery(K(X2)) @nx,) Polaga1-ageny (K(X3)) —— grBy!
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We have cqy;(Yif) = capi(fY: + Ox,(f)) for all f € Ay z(Quot(K(X;)e,)).
Hence if we assume | f

s < 1 we have the following equality in grOij :

cariVif = [ asiYi + cariOx, (f)- (2)

It is easy to verify that

Zaa-aﬁxqi —1 Zaa.aﬁcinQi s
Ox, el XY P)) = ¢ 1oy, Sl i gilenB) X oY B
SO( XZ(OC,ﬁezI\:;d—l Zbaiaﬁxil )) CZ Xl(Qé,ﬁezl\;d—l ZbaiaﬁcilXilc )

g X e
for all 3> ST XY P € Agen (K(X0)) @x,) Polaga-1-ageny (k(X:). T
o, BEN-1 B

we combine this in the case g;64,; = 1 (recall that in this case ¢4 = ¢; 1) with

equation (2) we get

cariYip(f) = o(f)cariYi + 0(0x,(f))

for all f € Age)(k(X;)) ®r(x,) Pola@—1-4@)) (k(X;)). Hence by the universal
property of skew polynomial rings we get a k-algebra homomorphism
(Agen (K(X3)) @kx) Pola1—agey (R(X))[Y;, 0x,] ——  gr'ByL.
—0
> Yy = Yelfa)eanYs
One can show that

for all f € Ay_1z(Quot(K(X;)s,)). If we combine this in the case g;44; > 1
with equation (2) we get

éi<5i5d+i)71

cayiYip(f) = o(f)cariYi

for all f € Ageiy(k(X;)) ®u(x,) Pola—1-a@)) (k(X;)). Hence as above we get a
well defined homomorphism of k-algebras
(Ageery (K(X3)) ®rix,) Polyaor—agery (R(X)[Y:] ——  gr'Bge.
—B
3 foYY = Yelfa)canY:
We show now simultaneously that the two homomorphisms defined above are

isomorphism. We suppose that Y (> %){ ayh )Yf * is an element of
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(Aaee (k(Xi)) @r(x,) Polaa1-ageny (F(X:)))[Yi, Ox,] resp. (Aaeen) (F(Xi)) Qk(x,)
Poly(q_1_aei)) (k(X;)))[Y;] which is zero under the corresponding homomor-

phism. Then
Z aaiﬁiaﬁC?iXiai ~(a (o] Bi _
>0 Ebaimagcl?‘in‘iC( BXaY )by =
— 2 GaipiopCi Xi i(ap) gy B o
D e XY ) YL < 1
max |aazﬁzo¢ﬁ| < 1.

a;BiaB

Hence the map is injective.

Let f = ngYf € grOBéfé be any element. Then Egpfl(fﬁcgfi)nﬁ is a

preimage of f. Hence the map is surjective. O

Finally we endow By. = @7, Béf; oD, le/fe (cf. section 3.2) with the com-
plete filtration

F'Bye = {f € Bae : |fl- <|[n|™"} forn e Z

Corollary 4.2.3. Let ¢ € |[K*|* with ejeg; > 1 for all1 < j < d. Let A,
denote the k-algebra k[T, 771 @, Age) (k) @k Pola—a(e) (k). Then we have an

isomorphism of graded k-algebras

d

grBac ~ PEIXIN0}) A, @ EB Yo}~

i=1

Proof. The functor gr commutes with filtered direct sums, hence the corollary

follows from lemma 4.2.2. O

4.3 Permanence properties

Proposition 4.3.1. Let ¢ € |K*|* with eje4; > 1 for all 1 < j <d. Then

Ai e, Bf;', Bzfe, and By, are Noetherian rings.
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Proof. With lemma 4.2.1 we have
grlge ~ k7, 77" @) Age) (k) @ Polaa—aeey) (k) = Polaa_ae) (Aae) (k) [T, 71).

Aqe) (k) is Noetherian (cf. [McCR| 1.3.8), hence Ay (k)[7, 7] is Noetherian
(cf. [McCR] 1.4.5), hence finally Poly(g—a(e)) (Aae) (k)[7, 77']) is Noetherian (cf.
[McCR] 1.2.9). As the localization resp. the sum of localizations of a Noethe-
rian ring the rings gTBéf ¢ and grBy. are Noetherian. Applying |[LvO]| proposi-
tion 1.7.1.2 completes the proof. U

Remark 4.3.2. We already know that Ag. defined over an arbitrary non-
archimedean field K is Noetherian (cf. proposition 1.4.1). We also know that
Béf; (resp. le/fg), and By defined over any non-archimedean field K are Noethe-
rian if d = 1 (cf. proposition 2.2.8).

Now we show that the filtered rings considered above are Auslander regular

rings. See [LvO] chapter III for an introduction to Auslander regular rings.

Proposition 4.3.3. Let ¢ € |K*|* with eje4; > 1 for all 1 < j < d. Then

Aie, Bf;', Bzfe, and By . are Auslander reqular rings.

Proof. Since Ay, Béf;, B}l/fg, and B, . are complete filtered rings with Noethe-
rian associated graded rings they are Zariski rings by [LvO] I1.2.2.1. Hence by
[LvO] proposition I11.2.2.5 it suffices to show that the associated graded rings

are Auslander regular.

The classical Weyl algebra over a field is Auslander regular (cf. [LvO] example
I11.2.4.4.(b)). Combining the proof of this result with corollary [LvO] I11.2.3.6
implies that this is also true for the classical Weyl algebra defined over any

Auslander regular ring.

By lemma 4.2.1 gr A, is isomorphic to the classical Weyl algebra over

k[ﬁ-a ﬁ-ila Xd(6)+17 cee 7X2d7 Yd(6)+17 cee 7Yéd]-

This ring is Noetherian and of finite global dimension (cf. [McCR] theorem
5.3), hence by [LvO| example I11.2.4.3 Auslander regular.
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To show that grij; is Auslander regular is suffices by lemma 4.2.2 combined
with the above results to check that k(X)[Y, 0x] is Auslander regular. However,
endowed with the degree filtration this ring has a commutative polynomial ring

over a field as associated graded ring, hence k(X)[Y, Ox]| is Auslander regular.

Finally, grB.. is Auslander regular, since by lemma 4.2.3 it is the sum of

Auslander regular rings. O

Proposition 4.3.4. Let ¢ € |K*|* with ejeq; > 1 for all 1 < j < d. Then
the ring extension
Ad,e g Bd,e

1s flat. If char K = 0, then the extension s faithfully flat.

Proof. By corollary 4.2.3 grBB,. is the sum of localizations of grA,.. Local-
izations are flat extensions, hence the extension grA;. C grB,. is flat. This
together with the fact that grBy;. and gr.A,. are Noetherian (cf. proof of
proposition 4.3.1) enables us to apply proposition 1.2 of [ST| which proves the

flatness of the extension Ay C By..

If char K = 0 we combine this with lemma 3.2.1 and deduce that the extension
is faithfully flat (cf. [McCR]| proposition 7.2.3). O

Lemma 4.3.5. Let ¢ € |K*|*? with €€+ > 1 for all 1 < j < d. Then
the Krull dimension and the global dimension of the graded ring grAi. are
2d — d(e) + 1 if chark = 0 and they are 2d + 1 if chark = p > 0.

Proof. We have an isomorphism grAg. =~ Polyu_qe))(Aae (k) [T, 7). The
Krull dimension and the global dimension of Ag.)(k) are d(e) if chark = 0
and 2d(¢e) if chark = p > 0 (cf. [McCR] theorem 6.6.15 and proposition 6.6.14
resp. theorem 7.5.8 (iii) and (ii)). Forming the ring of Laurent polynomials
over the Weyl algebra A4 (k) increases the Krull dimension and the global
dimension by one (cf. [McCR| proposition 6.5.4.(ii) resp. theorem 7.5.3.(iv)).
Finally the polynomial ring in 2(d —d(¢)) variables increases the Krull and the
global dimension by 2(d —d(¢)) (cf. [McCR| proposition 6.5.4.(i) resp. theorem
7.5.3.(iii)) which proves the lemma. O
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We can apply results of filtered ring theory which say that the Krull dimension
resp. the global dimension of the graded ring serve as an upper bound for the
Krull dimension resp. global dimension of the ground ring. Hence the lemma
implies that the Krull dimension and the global dimension of 4. are bounded
above by 2d — d(e) + 1 if char k = 0 and by 2d + 1 if char k = p > 0. However,

we have a slightly stronger result.

Proposition 4.3.6. Let ¢ € |K*|** with ejeqy; > 1 for all1 < j < d. Then
the Krull dimension and the global dimension of Ay are bounded above by
2d — d(e) if char k = 0 and they are bounded above by 2d if chark =p > 0.

Proof. Note first hat grF O.Adﬁ ~ k(7] ® grOAd@. It follows from the proof of
lemma 4.2.1 that

gTFO.ACLE ~ ]{3[77'] (S Ad(a)(k) Rk POIQ(d_d(E))(k) ~ POlg(d_d(g))(Ad(g)(k?)[ﬁ']).

This ring has Krull and global dimension equal to 2d — d(¢) + 1 if chark = 0
and 2d+ 1 if char k = p > 0, which we show as in lemma 4.3.5. Applying [LvO|
proposition 1.7.1.2 and corollary 1.7.2.2 we obtain that the Krull and the global
dimension of F°A,. are bounded above by 2d —d(e) +1 resp. 2d+ 1 depending
on the characteristic of k. Applying lemma 4.1.1 completes the proof. O

Proposition 4.3.7. Let ¢ € |K*|** with ejeqy; > 1 for all1 < j < d. Then
the Krull and the global dimension of Béf;, Bg}e and Bg. are bounded above
by 2d — d(e) if chark = 0. If e;eqr; > 1 we have the stronger upper bound
2d — d(e) = 1 for Béf; and BZ”E, and if ejeqr; > 1 for all 1 < j < d this is
also an upper bound for By.. If chark = p > 0, then the Krull and the global
dimension of Béf;, Bzfe and By are bounded above by 2d — 1.

Proof. As in the proof of proposition 4.3.6, the Krull dimension resp. the global
dimension of Béfé is bounded above by the Krull dimension resp. the global

dimension of grOBfg. In the proof of lemma 4.2.2 we showed that
grPBy ~ (Ageeny(k(X3)) ®px,) Polagoi—ageiy (K(X:)))[Yi, Ox,]
if £,64.; = 1 and that

grOijé ~ (Ageeny (F(X5)) ®r(x,) Pola—1—aiy) (k(X5)))[Y]
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if e,e44; > 1. From the proof of lemma 4.3.5 we know that the Krull dimension
and the global dimension of Ay (k(X;)) ®k(x,) Polag—1-ae ) (k(X;)) are equal
to

2(d — 1) —d(&")
if chark = 0. Hence if g;eqy; = 1, i.e. if d(&') = d(e) — 1 we know that the

Krull dimension and the global dimension of gr°B,. are bounded above by
2(d—1) —d(&") +1=2d — d(e)

(cf. [McCR] proposition 6.5.4.(i) and theorem 7.5.3.(1)). If g;e4; > 1, ie. if
d(&") = d(g) we know that the Krull dimension and the global dimension of

gr°B, . are equal to
2(d—1)—d(E")+1=2d—d(e) — 1
(cf. [McCR]| proposition 6.5.4.(i) and theorem 7.5.3.(iii)). Using the fact that

K(By:) = sup{K(B;1), K(B}.)}

(cf. proof of proposition 3.2.2) completes the proof of the first part of the
theorem. If chark = p > 0 the Krull dimension and the global dimension
of Ageiy(k(Xs)) ®rxy) Polaa—1—aeiy) (k(X;)) are 2(d — 1) (cf. proof of lemma
4.3.5). Hence the Krull dimension and the global dimension of gTOBﬁ are at
most 2(d — 1) +1=2d — 1. O

As a consequence of this proposition we get an improvement of results of

proposition 4.3.6.

Corollary 4.3.8. Let ¢ € |K*|*! with ejeqr; > 1 for all1 < j < d and
assume that the characteristic of K is zero. Then the Krull dimension and
the global dimension of A4. are bounded above by 2d — 1, independent of the
characteristic of the residue field k.

Proof. We know that if char X' = 0 the map sending left ideals I C Ay, to

left ideals By.I C B,. preserves proper containments (cf. proof of proposi-
tion 3.2.2). Hence K(Age) < K(Bae) < 2d — 1 where the first inequality
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follows with [McCR| lemma 6.5.3.(1) and the second inequality follows from
proposition 4.3.7. The extension Ay, C By, is faithfully flat (cf. proposi-
tion 4.3.4) and A, is Noetherian (cf. proposition 1.4.1) with finite global di-
mension (cf. proposition 4.3.6), hence applying [McCR| theorem 7.2.6 implies
gld(Ag.) < gld(By.) <2d— 1. O

Corollary 4.3.9. Lete € |[K*|?! withejeqy; > 1 for all1 < j < d and assume
that the characteristic of K is zero. Then every left ideal of Ay has a set of

2d generators.

Proof. A, is a left Noetherian simple ring (cf. proposition 1.4.1 and propo-
sition 1.4.6). The Krull dimension is bounded above by 2d — 1 by corollary
4.3.8, hence the assertion follows with [McCR]| corollary 6.7.8.(ii). O

Remark 4.3.10. We believe that the Krull dimension and the global dimension
of Aac are equal to d if char K = 0. We proved this for d =1 in section 3 (cf.
propositions 3.2.2 and 3.2.3). For d = 1 this is obviously also a consequence
of corollary 4.3.8 combined with propositions 3.1.2 and 3.1.3 which establish
the lower bounds. The conjectured statement follows from proposition 4.5.6 for

arbitrary d in the special case where chark =0 and d = d(¢).

5 A note on simple modules

The simple left modules over the classical Weyl algebra A; in the two vari-
ables X and Y were classified by R. Block in [Blo|. The simple K[X]-torsion
Aj-modules and the simple K[X]-torsionfree A;-modules are considered sepa-
rately. The simple K|[X]-torsion Aj;-modules are given by the maximal ideals
of K[X] (cf. [Blo] proposition 4.1) and the simple K[X|-torsionfree A;-modules
are in one-to-one correspondence with the simple modules over the localiza-
tion of A; with respect to the Ore set K[X]|\{0} (cf. [Blo] lemma 2.2.1 and
corollary 2.2). Since the localization (K[X]|\{0})™'A; is a principal left ideal
domain the latter are given by similarity classes of irreducible elements (cf.
introduction of [Blo]).

66



Recall that if we consider the completed Weyl algebra A, with € = (g1,¢9) €
|K*|?* the subset K(X).,\{0} is not an Ore set (cf. lemma 2.0.1). Hence
it is not possible to imitate the above described strategy in the case of the
completed Weyl algebra with respect to the multiplicative set K (X).,\{0}.
However, if we replace K(X).,\{0} by its saturation we obtain some initial

results.

We briefly recall the notations as they are used in [LvO] chapter IV. Let R be a
separated filtered ring and let S be a multiplicatively closed subset containing
1 but not 0. For z € F"R\F" 'R we denote by o(x) the image of = in gr"R.
We put ¢(S5) ={o(s) : s € S} and define the saturation of S in R to be the
set

Ssat :={r € R:o(r) € o(S5)}.

If we assume o(S) to be a multiplicatively closed subset of gr R not containing
0 then Sg,; is a multiplicatively closed subset of R.

As in section 4 we assume that K is a discretely valued non-archimedean
field with residue field k. Let A. be the completed Weyl algebra in the two
variables X and Y and let S be the multiplicatively closed subset K (X).,\{0}.
We consider A, as a filtered ring with the filtration defined in section 4. The
subset o(S) of grA. is the multiplicatively closed set (k[7, 7] @4 k[X])\{0}.
Recall that depending on ¢ the graded ring grA. is either k7, 771 @ Ay (k)
or k[m, 77! @ k[X,Y] (cf. lemma 4.2.1). Tt is clear that o(S) is an Ore set
in grA., since k[X]\{0} is an Ore set in both A;(k) and k[X,Y]. It is also a

consequence of lemma 4.2.1 that the saturation of S is the set
Ssat = {f € A\{0} : e-inform(f) € K[X]},
where e-inform(f) denotes the e-initial form as defined on page 21.

Proposition 5.1. The set S is an Ore set in A..

Proof. Note that we use the conventions of [McCR| where an Ore set is a
multiplicatively closed set satisfying the Ore condition (cf. [McCR] 2.1.6) this
is called “second Ore condition” in [LvO]. By the proof of proposition 4.3.3 we
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know that A. a Zariski ring. Thus by definition its Rees ring is Noetherian.
Hence the assertion follows with [LvO] proposition 1V.1.19, since o(Ss) =

o(S) is an Ore set in gr.A., as was shown above. O

Let A be a unital ring which has a localization B = S~!A and assume that B
is not a field. Section 2.2 in [Blo| establishes a general relation between simple

S-torsionfree A-modules and simple B-modules.

Proposition 5.2. The map

isom. classes of 1som. classes
S=1: 8 simple S-torsionfree —_— of simple
left A-modules left B-modules

defined by M — B ®4 M =: S~IM 1is injective. If we assume in addition that

A has Krull dimension one, then the map S™! is a bijection.

Proof. For the first assertion see [Blo| lemma 2.2.1. To prove the second asser-
tion suppose N is a simple B-module. Choose 0 # n € N then anng(n) # 0
(left annihilator) and hence the left ideal I := anny(n) is non-zero. We have
an isomorphism An ~ A/I of A-modules. Now choose 0 # a € I. We have the
following inequalities of Krull dimensions K(A/I) < K(A/Aa)) < K(A) = 1.
The first inequality follows from [McCR| Lemma 6.2.4 and the second from
[McCR] Lemma 6.3.9. Hence A/I is Artinian and the A-module N has a

simple submodule. O

This applies to our situation.

Corollary 5.3. Let ¢ = (e1,e2) € |K*|? and assume that A. is defined over
a discretely valued non-archimedean field K with char K = 0. Further, let
Ssat = {f € A. : e-inform(f) € K[X]} be as above. Then we have a bijection

isom. classes of isom. classes of
St i % simple Se-torsionfree — simple left
left A.-modules St Ac-modules
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Proof. By proposition 5.1 S, is an Ore set and by corollary 4.3.8 the Krull

dimension of A, is 1. O

Remark 5.4. Note that S, A. is a subring of the ring BX defined on page 51.
Indeed, we have the inclusion A, C Bg( and any element of Seu s invertible
in BX (cf. proposition 2.2.5), hence the assertion follows from the universal

property of localizations.
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