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Lecture notes on stabilization of

contact open books

Otto van Koert

(Communicated by Linus Kramer)

Abstract. This note explains how to relate some contact geometric operations, such as
surgery, to operations on an underlying contact open book. In particular, we shall give
a simple proof of the fact that stabilizations of contact open books yield contactomorphic
manifolds.

1. Introduction

The correspondence between open books and contact structures as estab-
lished by Giroux [11] has been extremely fruitful in understanding contact
structures both in dimension 3 and in higher dimensions.

In general, this correspondence looks as follows. Given a Weinstein manifold
W and a symplectomorphism ψ of W that is the identity near ∂W , we can
endow the mapping torus of (W,ψ) with a natural contact form. The boundary
of this mapping torus is diffeomorphic to ∂W × S1, which allows us to glue in
a copy of ∂W × D2. The latter set can be given a contact form which glues
nicely to the one on the mapping torus.

Conversely, every compact coorientable contact manifold can in fact be ob-
tained by this construction. However, such supporting open books for contact
manifolds are not unique. For instance, one has a stabilization procedure,
which does not change the contact structure, but it does change the open
book. Suppose we are given a contact open book OB(W,ψ) with a Lagrangian
disk L in a page W such that ∂L is a Legendrian sphere in ∂W . We obtain a
new page W̃ by attaching a symplectic handle toW along ∂L. The monodromy
ψ can be extended as the identity on the symplectic handle. Since W̃ contains
a Lagrangian sphere formed by L and the core of the symplectic handle, we
can compose the monodromy ψ with a right-handed Dehn twist τL along this
Lagrangian sphere. This leads us to the (positive) stabilization of OB(W,ψ),
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which is given by OB(W̃ , τL ◦ ψ). According to Giroux the stabilization is
contactomorphic to the original contact manifold. This result has been used in
numerous papers, and is of particular importance for understanding fillability.
We mention the diagrammatic description of contact 5-manifolds in [7], the in-
finite order of nontrivial compositions of right-handed symplectic Dehn twists
in arbitrary higher-dimensional Liouville manifolds in [3], and the construction
of infinitely many distinct Stein fillings of certain higher-dimensional contact
manifolds in [19].

In dimension 3 the above correspondence is even better. Giroux has shown
that on a compact, orientable 3-manifold M , open books for M up to (posi-
tive) stabilization correspond bijectively to isotopy classes of contact structures
on M .

The goal of this note is to clarify some of these well-known notions and
to provide proofs for some of them. We shall discuss the relation between
contact surgery and open books: in Proposition 4.2 we will see that subcritical
handle attachment along isotropic spheres in the binding can be seen as handle
attachment to the page of the open book, whereas Theorem 4.6 shows that
Legendrian surgery along a Legendrian sphere L in a page can be seen as
composing the initial monodromy with a right-handed Dehn twist along L.
This implies the well-known assertion, made in Proposition 4.7, that a contact
open book whose monodromy is isotopic to the product of right-handed Dehn
twists is Stein fillable. We also provide a proof of the fact that stabilization does
not change the contact structure. This is the statement of Proposition 4.13.

Our proofs are elementary and work almost entirely in the contact world.
In particular, we shall not use Lefschetz fibrations, which could be used to look
at the situation from another point of view in case the contact manifold arises
as the boundary of an exact Lefschetz fibration. Such a point of view is taken
in [16, App. A]. The short idea of the proof in our setting is to interpret the
handle attachment to the page and change of monodromy as successive contact
surgeries which cancel each other. To see the latter, we use symplectic handle
cancellation.

2. Weinstein manifolds and open books

2.1. Weinstein and Stein. Let us first define the notion of Weinstein mani-
fold.

Definition 2.2. LetM be a smooth manifold, and let f : M → R be a smooth
function. A vector field X on M is called gradient-like for the function f if
LXf > 0 outside the critical points of f .

Definition 2.3. Let (W,ω) be a symplectic manifold. A proper function
f :W → [0,∞) is called ω-convex if it admits a complete gradient-like Liouville
vector field X , i.e. LXω = ω. We say (W,ω) is a Weinstein manifold if there
exists an ω-convex Morse function. Call (W,ω) of finite type if there is an
ω-convex Morse function with only finitely many critical points.
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Stabilization of contact open books 427

Remark 2.4. The ends of a Weinstein manifold of finite type are convex,
i.e. they look like the positive ends of a symplectization. Indeed, let f be
an ω-convex function with finitely many critical points and X a complete
gradient-like Liouville vector field for f .

Finite type means that all critical points are contained in the interior of
some compact set K = f−1(]−∞, c]). The boundary of K is a smooth contact
manifold since it is the level set of a regular value of f , and the Liouville
vector field is transverse by the gradient-like condition, so iXω restricts to a
contact form. Furthermore, the vector field X is non-vanishing on W −K and
complete, so we obtain the symplectomorphism

[0,∞)× ∂K →W − int(K), (t, k) 7→ FlXt (i(k)),

which shows the claim.

From now on, whenever we talk about Weinstein manifolds we mean Wein-
stein manifolds of finite type.

Remark 2.5. We shall also apply the definition of ω-convex function to general
symplectic cobordisms. In such a case the function f may not be bounded from
below. The most basic example is a symplectization (R×M,ω = d(etα)), where
the function f(t, x) = et is ω-convex for X = ∂

∂t .

Note that iXω defines a primitive of ω, so Weinstein manifolds are exact
symplectic. For the sake of completeness, let us briefly recall some related
notions.

Definition 2.6. Let (W,J) be an almost complex manifold. A smooth func-
tion f : W → R is said to be strictly plurisubharmonic if

−d(df ◦ J)(X, JX) > 0

for all nonzero vectors X .

Remark 2.7. The motivation behind this definition is that a holomorphic
curve C in (W,J) will have the property that f |C is subharmonic. In other
words, f satisfies a maximum principle on every holomorphic curve.

The most basic example of a plurisubharmonic function is f : z 7→ ‖z‖2 on
Cn. In this case the formula −d(df ◦ J)(·, J ·) yields a Riemannian metric.

We briefly want to point out a relation between Weinstein and Stein man-
ifolds, a notion in complex geometry and several complex variables. Recall
that Stein manifolds can be defined as those complex manifolds that admit a
proper holomorphic embedding into Cn. By a theorem of Grauert, a complex
manifold (W,J) is Stein if and only if it admits a strictly plurisubharmonic
function f . One implication is not difficult: given a Stein manifold embedded
in Cn, one can take the basic example f : W → R, z 7→ ‖z‖2. The converse
is much harder, see Grauert’s paper [14] or [15, Chap. IX] for an exposition of
this result.

Denote the associated symplectic form −d(df ◦ J) on W by ωf . We then
see that strictly plurisubharmonic functions on Stein manifolds are examples
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of ωf -convex functions, i.e. Stein manifolds are Weinstein. Indeed, by solving
the equation

iXωf = −df ◦ J,
we obtain a Liouville vector field that is gradient-like for f , as 0 ≤ ωf(X, JX) =
df(X).

According to a fundamental result due to Eliashberg the following converse
is also true.

Theorem 2.8 (Eliashberg). Given a Weinstein manifold (W,ω) with ω-convex
Morse function f , there is an integrable complex structure J making (W,J)
into a Stein manifold with strictly plurisubharmonic function f . Furthermore,
(W,ωf , f) is Weinstein-homotopic to (W,ω, f) with fixed function f .

In this particular theorem, a Weinstein-homotopy with a fixed Morse func-
tion f can be defined as a homotopy of the symplectic forms ωs such that
the associated gradient-like Liouville vector field is outward pointing for some
smooth family of exhaustions

⋃∞
k=1W

k
s of the manifold W .

This theorem and the related notions are explained in detail in the mono-
graph [6]. However, we are only interested in the exact symplectic structure
rather than the complex structure, we shall formulate everything using Wein-
stein and Liouville domains.

Definition 2.9. A compact Weinstein manifold or Weinstein domain (Σ, ω)
is a compact symplectic manifold with boundary K that can be a embedded
into a Weinstein manifold (W,ω) with an ω-convex function f such that Σ is
given as the preimage f−1([0, C]), and such that C is a regular level set of f .
By a Liouville domain we mean an exact, compact symplectic manifold (Σ, ω)
with globally defined Liouville vector field X that points outward along the
boundary of Σ.

Definition 2.10. We will call a boundary component of a symplectic manifold
convex if the Liouville vector field points outward and concave if the Liouville
vector field points inward.

We already mentioned in Remark 2.4 and now stress that by definition the
boundary of a Weinstein domain is automatically a contact manifold. Further-
more, a Liouville domain is a generalization of a Weinstein domain that may
not carry an ω-convex Morse function. This means that we do not obtain good
control on the topology of Liouville domains, which we do get in the case of
Weinstein domains. For example, a Weinstein domain of real dimension 2n has
the homotopy type of a CW-complex of dimension n, as explained for example
in the monograph [6, Cor. 3.4].

2.11. Contact open books.

Definition 2.12. An abstract (contact) open book (Σ, λ, ψ) consists of a
Liouville domain (Σ, dλ), and a symplectomorphism ψ : Σ → Σ with com-
pact support such that ψ∗dλ = dλ.
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Let us now show that an abstract contact open book corresponds to a con-
tact manifold with a supporting open book. By a lemma of Giroux [12] we
can assume that ψ∗λ = λ− dU . We choose the function U to be negative. For
completeness, here is the lemma and a proof.

Lemma 2.13 (Giroux). The symplectomorphism ψ can be isotoped to a sym-

plectomorphism ψ̂ that is the identity near the boundary and that satisfies

ψ̂∗λ = λ− dU.

Proof. Let us denote the 1-form ψ∗λ−λ by µ. Since dλ is non-degenerate, we
find a unique solution Y to the equation iY dλ = −µ. The flow of the vector
field Y preserves dλ, because µ is closed,

LY dλ = dιY dλ = −dµ = 0.

Since ψ is the identity near the boundary, µ and hence Y vanishes near the

boundary. If we denote the time-t flow of Y by ϕt, then we see that ψ̂ = ψ ◦ϕ1

is a symplectomorphism that is the identity near the boundary. Note that
LY µ = 0, so ϕ∗

tµ = µ for all t. We check that the difference of the pullback of
λ and λ is indeed exact. We have

(ψ ◦ ϕ1)
∗λ− λ = ϕ∗

1(µ+ λ) − λ = µ+ ϕ∗
1λ− λ.

On the other hand, we can express the difference ϕ∗
1λ− λ as

ϕ∗
1λ− λ =

∫ 1

0

d

dt
ϕ∗
tλdt =

∫ 1

0

(
ϕ∗
tLY λ

)
dt =

∫ 1

0

ϕ∗
t

(
iY dλ+ d(iY λ)

)
dt

= −µ+ d

∫ 1

0

ϕ∗
t (iY λ) dt.

Moving µ to the left-hand side, we see that µ+ ϕ∗
1λ− λ is exact, which shows

the claim of the lemma. �

Now we can define

A(Σ,ψ) := Σ× R/(x, ϕ) ∼ (ψ(x), ϕ + U(x)).

This mapping torus carries the contact form

α = λ+ dϕ.

Since ψ is the identity near the boundary of Σ, a neighborhood of the boundary
looks like ]

−1

2
, 0
]
× ∂Σ× S1,

with contact form

α = erλ∂Σ + dϕ.

Here we write λ∂Σ := i∗λ, where i : ∂Σ → Σ is the inclusion. Denote the
annulus {z ∈ C | r < |z| < R} by A(r, R). We can glue the mapping torus
A(Σ,ψ) along its boundary to

BΣ := ∂Σ×D2
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Figure 1. Functions for the contact form near the binding.

using the map

Φglue : ∂Σ×A(1/2, 1) → ]−1/2, 0]× ∂Σ× S1,
(
x; reiϕ

)
7→

(
1/2− r, x, ϕ

)
.

Pulling back the form α by Φglue, we obtain

e1/2−rλ∂Σ + dϕ

on Σ×A(1/2, 1), which can be easily extended to a contact form

β = h1(r)λ∂Σ + h2(r) dϕ

on the interior of BΣ by requiring that h1 and h2 are functions from [0, 1) to R

whose behavior is indicated in Figure 1; for us h1(r) should have exponential
drop-off and h2(r) should quadratically increase near 0 and be constant near 1.
Other profiles can also be used.

The union M := A(Σ,ψ) ∪∂ BΣ is called an abstract open book for M . Note
that the contact forms α on A(Σ,ψ) and β on BΣ glue together to a globally
defined contact form.

We shall call the resulting contact manifold, which we denote by OB(Σ, λ;ψ),
a contact open book. We shall sometimes drop the primitive λ of the symplectic
form in our later notation.

Definition 2.14. A concrete open book or just open book onM is a pair (B, ϑ),
where

(i) B is a codimension-2 submanifold of M with trivial normal bundle, and
(ii) ϑ : M − B → S1 endows M − B with the structure of a fiber bundle

over S1 such that ϑ gives the angular coordinate of the D2-factor of a
neighborhood B ×D2 of B.

The set B is called the binding of the open book. The closure of a fiber of ϑ
is called a page of the open book.

Remark 2.15. A typical example of an open book is that of a so-called fibered
knot in a 3-manifold. The adjective fibered means that the knot complement
fibers over the circle. This is equivalent to an open book. A well-known
example is the unknot in S3.
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2.15.1. Relation between abstract and concrete open books: monodromy. First
of all we observe that an abstract open book carries the structure of a concrete
open book. Indeed, the manifold OB(Σ, λ;ψ) has the structure of a fibration
over S1 away from the set B. If we disregard the contact structure for now,
we can rescale U , which is assumed to be negative, to −2π, so we may put

ϑ : OB(Σ, ψ)− ∂Σ = A(Σ,ψ) → S1 = R/2πZ, [x, t] 7→ [t].

The corresponding statement in the contact setting is in Proposition 2.18. This
needs an additional definition, which we will see in the next section. To go
from a concrete open book (B, ϑ) on M to an abstract open book, we first
need to define the monodromy.

We now describe how to do this smoothly. By part (ii) of the definition we
can choose a Riemannian metric such that the fibers of ϑ are orthogonal to
the vector field ∂ϕ on the set νM (B)−B ∼= B× (D2−{0}). Here we are using
polar coordinates (r, ϕ) on the disk factor D2. Extend this metric in any way,
and define a smooth connection by the following rule:

• The vertical spaces Vert are the tangent spaces to the fibers ϑ−1([t]).
• The horizontal spaces Hor are the orthogonal complement with respect to
the metric we just chose.

To define the smooth monodromy of a concrete open book, we consider the
loop t 7→ eit in S1. We lift the tangent vector field to this loop, given by ∂ϕ, to
a horizontal vector field XM on M . Note that this vector field XM equals ∂ϕ
near the binding B. The smooth monodromy of the open book is the time-2π
flow of this vector field XM .

In other words, the map ψ we used in the abstract open book OB(Σ, ψ) is
the monodromy. Indeed, on the mapping torus we use the obvious lift to find
[x, 0] 7→ [x, 2π] = [ψ(x), 0], which tells us that the monodromy is given by ψ.

We should also point out that there are various conventions in use at this
point. Some papers refer to ψ−1 as the monodromy, and Milnor [18] used the
word characteristic homeomorphism for a related notion, where the boundary
is not fixed.

2.15.2. Adapted open books. In order to define the notion of adapted open
book, we need to discuss the orientations involved. Suppose M is an oriented
manifold with an open book (B, ϑ). Since we regard S1 as an oriented manifold,
each page Σ gets an induced orientation such that the orientation of M −B as
a bundle over S1 matches the one coming from M . If this orientation of the
page Σ matches the orientation as a symplectic manifold, we call a symplectic
form ω on Σ positive. We shall orient the binding B as the boundary of a page
Σ using the outward normal. If, on the other hand, this orientation matches
the one coming from a contact form α, i.e. α∧dαn, then we say that α induces
a positive contact structure.

Definition 2.16. A positive contact structure ξ on an oriented manifold M
is said to be carried by an open book (B, ϑ) if ξ admits a defining contact form
α satisfying the following conditions:
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(i) α induces a positive contact structure on B, and
(ii) dα induces a positive symplectic structure on each fiber of ϑ.

A contact form α satisfying these conditions is said to be adapted to (B, ϑ).

Lemma 2.17. Suppose that B is a connected contact submanifold of a contact
manifold (M, ξ). A contact form α for (M, ξ) is adapted to an open book (B, ϑ)
if and only if the Reeb vector field Rα of α is positively transverse to the fibers
of ϑ, i.e. Rα(ϑ) > 0.

Proof. If dα is positive on each fiber of ϑ, then we can find tangent vectors
v1, . . . , v2n to the fiber Σ at a point x such that iv1∧...∧v2ndα

n > 0. Hence

ιR∧v1∧...∧v2nα ∧ dαn > 0.

Since the fibers of ϑ and the S1 direction also orient the manifold, we see that
the Reeb vector field is positively transverse to the fibers.

Conversely, if Rα is positively transverse to the fibers of ϑ, then we have
iRα

α∧dαn > 0, so in particular dα is a positive symplectic form on each fiber.
We assume B to be a contact submanifold, so we only need to check posi-

tivity. Note that∫

∂Σ

α ∧ dαn−1 =

∫

Σ

dα ∧ dαn−1 =

∫

Σ

dαn > 0.

Since the binding B was assumed to be connected, we see that (B, ϑ) is a
supporting open book. �

Proposition 2.18. An abstract contact open book OB(Σ, ψ) admits a natural
open book carrying the contact structure ξ in the above construction.

Proof. We define the binding of the abstract contact open bookM := OB(Σ, ψ)
to be the submanifold B := ∂Σ× {0}. The map ϑ from M −B to S1 can be
defined by putting ϑ(x) = ϕ if x = (p; r, ϕ) is a point in ∂Σ × D2. If x is a
point in A, then we put ϑ(x) = p(x), where p : A → S1 is the projection of
the fiber bundle, as explained in the beginning of Section 2.15.1. To see that
this gives a well-defined map, note that the definitions coincide on the overlap
of A and ∂Σ×D2.

The Reeb vector field of the abstract contact open book OB(Σ, λ;ψ) as given
by the above construction is ∂ϕ, so it is positively transverse to all pages. This
implies that the open book carries the associated contact structure. �

Here is a statement for the converse. Its proof will play a role later on.

Proposition 2.19. Suppose that (B, ϑ) is an open book on M carrying a
contact structure ξ. Then there is a Liouville domain (Σ̄, ω = dλ) and a
symplectomorphism ψ : Σ̄ → Σ̄ which is the identity near the boundary of Σ̄
such thatM ∼= OB(Σ̄, ψ). This symplectomorphism ψ represents the symplectic
monodromy, which is well-defined up to symplectic isotopy rel boundary.

To keep the argument relatively brief, we will cite the following key lemma
from [8, Prop. 3.1] and refer to that paper for a proof.
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Lemma 2.20 (Giroux [11], Dörner, Geiges and Zehmisch [8]). Suppose that
(M2n+1, ξ) is a compact cooriented contact manifold with supporting open book
(B, ϑ). Assume that α is a contact form defining ξ that is adapted to (B, ϑ).
Then, after an isotopy through adapted contact forms, there is an embedding

j : B ×D2 → νM (B)

such that j|B×{0} = Id and such that

j∗α = h1(r)αB + h2(r)dϕ,

where the functions h1 and h2 are smooth and satisfy

(i) h2(r) = r2 near r = 0 and h1(r) > 0;
(ii) hn−1

1 (h1h
′
2 − h2h

′
1) > 0 for r > 0;

(iii) h′1 < 0 for r > 0.

Proof of Proposition 2.19. Choose a smooth increasing function f : [0, r0] → R

such that f(r) = r near r = 0 and f(r) = c near r = r0, where c ∈ R>0 is
some constant. The complement of B fibers over the circle with fiber Σ, so we
have inclusion maps jϕ : Σ → ϑ−1(ϕ).

A deformed symplectic structure on the fibers. We claim that the pair
(Σ, j∗ϕd(1/f(r)

2 α)) is exact symplectic. Exactness is obvious. For r ≥ r0,
the function f(r) is constant, so symplecticity follows from condition (ii) of an
adapted contact form. For small r we use the key lemma together with the
observation that d(h1(r)/f(r)

2 αB) restricts to a symplectic form on a page if
h1(r)/f(r)

2 is strictly decreasing. The latter claim follows from a computation.

A symplectic connection. The modified symplectic form is motivated by
the symplectic monodromy, for which we need to guarantee standard behavior
near the binding B. With this modified form in place, we define a symplectic
connection by the following rule:

• The vertical bundle Vert is given by the tangent spaces to the fiber.
• The horizontal bundle Hor is given by

Hor =
{
v ∈ T (M −B) | ivd

( 1

f(r)2
α
)
= 0

}
.

We consider the loop t 7→ eit ⊂ S1 and lift its tangent vector field using
this symplectic connection. This gives us a horizontal vector field Xh. Before
considering its flow, we note that the key lemma tells us that h2(r) = r2 near
r = 0, which implies that Xh = ∂/∂ϕ near the binding B. Hence, the 2π-flow

ψ := FlXh

2π is defined and equal to the identity near the binding.
Furthermore, the Cartan formula tells us that d(1/f2 α) is preserved under

the flow of Xh,

d

dt
F lXh

t
∗d
( 1

f2
α
)
= FlXh

t
∗LXh

d
( 1

f2
α
)
= 0,

since Xh is horizontal. We conclude that ψ defines a symplectomorphism of
the exact symplectic manifold (Σ, j∗ϕd(1/f

2 α)), which is compactly supported.
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The fiber Σ is Liouville. We still need to show that Σ is a complete Liouville
manifold, meaning that the Liouville flow exists for all time, and that the
symplectic monodromy is well-defined up to a compactly supported symplectic
isotopy. For the first statement, we define a Liouville vector field X by the
equation

iXj
∗d
( 1

f(r)2
α
)
= j∗

( 1

f(r)2
α
)
.

For 0 < r ≤ r0 we obtain the following explicit formula:

X =
f(r)2h1(r)

h′1(r)f(r)
2 − 2f(r)f ′(r)h1(r)

∂

∂r
= − r

2
(1 + o(1))

∂

∂r
.

We see that dr(X) < 0 for 0 < r ≤ r0, so this Liouville vector field is outward
pointing at each subdomain

Σr1 =
{
x ∈ Σ | r(x) ≥ r1

}
.

Hence Σr1 is a Liouville domain filling (B, ξ = kerαB). From the expansion
near r = 0, we see that the flow ofX exists for all time, and hence Σ is symplec-
tomorphic to the completion of Σr1 . This implies that the symplectomorphism
type of Σ does not depend on the choices made in the construction.

The symplectic monodromy is well-defined. Finally, different horizontal lifts
Xh corresponding to different choices of h1, h2 and f give rise to symplectomor-
phisms that are symplectically isotopic rel boundary. To see this, note that any
two choices can be linearly interpolated giving a 1-parameter family of horizon-
tal vector fields Xh,s. By construction, the vector field Xh,s satisfies Xh,s = ∂ϕ
near B, so we get a 1-parameter family of symplectomorphisms ψs for (Σ, ωs)
that are compactly supported. By Moser stability for Liouville manifolds we
find symplectomorphisms ϕs : (Σ, ωs) → (Σ, ω0). The maps ϕs ◦ψs ◦ϕ−1

s form
hence a desired compactly supported symplectic isotopy. �

2.21. Basic properties of open books.

2.21.1. Order and monodromy. In general, the resulting contact manifold de-
pends on the monodromy, but there are some symmetries. For instance, if Σ
is a Liouville domain and ψ1 and ψ2 are compactly supported symplectomor-
phisms, then

OB(Σ, ψ−1
2 ◦ ψ1 ◦ ψ2) ∼= OB(Σ, ψ1).

Indeed, we can simply regard the mapping torus of the open book as three
products Σ × I glued together, and cyclically change the order of the gluing
maps. To see that this yields contactomorphic manifolds, we note that the
symplectic isotopy type of the monodromy determines the contact structure;
this follows from an application of Gray stability. Finally, the maps ψ2 and
ψ−1
2 cancel when glued together in a pair of Σ× I’s.
This observation also implies the cyclic symmetry property,

OB(Σ, ψ1 ◦ ψ2) ∼= OB(Σ, ψ2 ◦ ψ1).

Indeed, if we conjugate ψ2 ◦ ψ1 by ψ2, we get the above expression.
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2.22. Important examples of monodromies. In general, the group of sym-
plectomorphisms on a symplectic manifold is poorly understood. In fact, in
many cases, such as (D6, ω0), it is even unknown whether every symplecto-
morphism is isotopic to the identity (relative to the boundary).

There is, however, a way to construct candidates of symplectomorphisms
that are in general not isotopic to the identity. Suppose that (W,ω) is a
symplectic manifold with an embedded Lagrangian sphere L ⊂ W . By the
Weinstein neighborhood theorem, a neighborhood νW (L) is symplectomorphic
to the canonical symplectic structure on (T ∗

<εS
n, dλcan).

Hence we consider the symplectic manifold (T ∗Sn, dλcan), where λcan is the
canonical 1-form. For later computations, we first regard this manifold as a
submanifold of T ∗Rn+1 ∼= R2n+2 by using coordinates

(q, p) = (q1, . . . , qn+1, p1, . . . , pn+1) ∈ R2n+2

subject to the relations

(1) q · q =
n+1∑

i=1

q2i = 1 and q · p =
n+1∑

i=1

qipi = 0.

In these coordinates, the canonical 1-form is given by

λcan = j∗p dq = j∗
n+1∑

i=1

pidqi,

where j denotes the inclusion map of T ∗Sn → T ∗Rn+1.

Remark 2.23. In later computations we will drop the pullback j∗ from the
notation, and directly impose the relations (1).

We will now describe a so-called Dehn twist using these coordinates. Define
an auxiliary map describing the normalized geodesic flow

σt(q, p) =

(
cos t |p|−1 sin t

−|p| sin t cos t

)(
q
p

)
.

Then define

τ(q, p) =

{
σg1(|p|)(q, p) if p 6= 0,

− Id if p = 0.

Here g1 is a smooth function with the following properties:

• g1(0) = π and g′1(0) < 0.
• Fix p0 > 0. The function g1(|p|) decreases to 0 at p0 after which it is
identically 0.

Note that the conditions imply that τ is actually a smooth map. See Figure 2.
The map τ is called a (generalized) right-handed Dehn twist.

Since τ is the identity near the boundary of T ∗
≤εS

n, we can extend τ to a

symplectomorphism of (W,ω): simply extend τ to be the identity outside the
support of τ .

Münster Journal of Mathematics Vol. 10 (2017), 425–455



436 Otto van Koert

gk
kπ

p0 |p|

Figure 2. The amount of geodesic flow for a k-fold Dehn twist.

Remark 2.24. Dehn twists are of course very old, but the symplectic incarna-
tion of such a twist was only more recently observed by Arnold [2] who noted
that one can define a symplectic monodromy around a quadratic singularity.
Seidel’s results on Dehn twists, see [21, 22, 23] for some of them, gave sym-
plectic Dehn twists a prominent role in symplectic topology; for example, he
showed that Dehn twists have infinite order in the compactly supported sym-
plectic mapping class group of T ∗Sn. This is remarkable, since the compactly
supported smooth mapping class group of T ∗Sn has finite order for n even.
Giroux’ results in [11] clarified the role of Dehn twists in contact topology.
In higher-dimensional contact topology, various aspects of Dehn twists were
worked out in for example [1, 24, 3].

3. Contact surgery and symplectic handle attachment

Let (M2n+1, ξ) be a contact manifold, and let S in M be an isotropic k-
sphere with a trivialization ǫ of its conformal symplectic normal bundle. Then
we can perform contact surgery along (S, ǫ). We shall write the surgered
contact manifold as

(̃M, ξ)S,ǫ.

In the case of Legendrian surgery or in case of connected sums (k = 0), there is
no choice for the framing ǫ, and consequently, we shall drop the framing from
the notation in these cases.

We shall now describe a model for contact surgery in terms of symplectic
handle attachment. For later computations, we slightly modify Weinstein’s
original construction [25].

3.1. “Flat” Weinstein model for contact surgery. Here we shall discuss
a slightly modified version of the Weinstein model for contact surgery. Let
(M, ξ = kerα) be a contact manifold and suppose that S is an isotropic k-
sphere in (M, ξ) with trivial conformal symplectic normal bundle, trivialized
by ǫ. Using this framing ǫ and a neighborhood theorem, see [9, Thm. 6.2.2],
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we can find a strict contact embedding

ψ : (ν(S), α) →
(
R× T ∗Sk × R2(n−k), dz + p dq +

1

2
(x dy − y dx)

)
,

where we regard R× T ∗Sk × R2(n−k) as a neighborhood of {0} × Sk × {0}.
Remark 3.2. We should point out that the contactomorphism ψ depends on
the trivialization ǫ. As a result, the entire construction we shall now describe
depends on this choice. Note that this is unavoidable, since even smoothly the
result of surgery depends on the choice of framing.

A priori, we can only expect a small neighborhood of S to be contactomor-
phic to a small subset of R× T ∗Sk × R2(n−k) via a strict contactomorphism,
but we can enlarge this neighborhood by composing with the following non-
strict contactomorphism

ϕC : R× T ∗Sk × R2(n−k) → R× T ∗Sk × R2(n−k),

(z, q, p;x, y) 7→ (Cz, q, Cp;
√
Cx,

√
Cy).

Now consider the following model for contact surgery and symplectic han-
dle attachment. Consider the symplectic manifold (R2n+2, ω0). We shall use
coordinates (x, y; z, w), where there are n − k pairs of (x, y) coordinates and
k + 1 pairs of (z, w) coordinates. The symplectic form is then given by

ω0 = dx ∧ dy + dz ∧ dw.
Note that the vector field

X =
1

2
(x∂x + y∂y) + 2z∂z − w∂w

is Liouville for ω0.
Now consider the set

S−1 := {(x, y, z, w) ∈ R2n+2 | |w|2 = 1}.
The Liouville vector field X is transverse to this set, and induces the contact
form

α =
1

2
(x dy − y dx) + 2z dw + w dz.

We see that the sphere
{
(x, y, z, w) | x = y = 0, z = 0, |w|2 = 1

} ∼= Sk

describes an isotropic sphere in S−1 with trivial conformal symplectic normal
bundle. We shall think of S−1 as a neighborhood of the isotropic sphere S, in
other words S−1 can be thought of as the situation before surgery. In fact, the
set S−1 is a standard neighborhood of an isotropic sphere of dimension k with
trivial normal bundle, since we have the following contactomorphism:

ψW : R× T ∗Sk × R2(n−k) → S−1,(2)

(z, q, p, x, y) 7→ (x, y; zq + p, q).
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Here we regard the cotangent bundle T ∗Sk as a subspace of R2(k+1) by using
coordinates (q, p) ∈ R2(k+1), where q2 = 1 and q · p = 0. Note that ψW is a
strict contactomorphism,

ψ∗
W

(1
2
(x dy − y dx) + 2z dw + w dz

)

=
1

2
(x dy − y dx) + 2(zq + p)dq + q d(zq) + q dp

=
1

2
(x dy − y dx) + p dq + dz.

To see that the latter step holds, use that q dq = 0 and p dq + q dp = 0.
We can combine the above three maps to obtain a contactomorphism from

ν(S) ⊂M to S−1 in the Weinstein model

(3) ΦC := ψW ◦ ϕC ◦ ψ : ν(S) → S−1.

This map is not a strict contactomorphism, but since it multiplies the contact
form with a constant rather than an arbitrary function, we can adapt the
following lemma from [9, Lem. 5.2.4] for a gluing construction.

Lemma 3.3. For i = 0, 1, let (Mi, αi) be a (not necessarily closed) contact
type hypersurface in a symplectic manifold (Wi, ωi) with respect to the Liouville
vector field Yi. Suppose ϕ : (M0, α0) → (M1, α1) is a contactomorphism such
that ϕ∗α1 = Cα0 for some constant C. Then ϕ extends to a symplectomor-
phism between neighborhoods of M0 and M1 by sending flow lines of Y0 to flow
lines of Y1.

Furthermore, we can choose a large C in formula (3), which means that we
can get arbitrary large neighborhoods in the Weinstein model.

Remark 3.4. We can also adapt the proof of [4, Prop. 3.1] to obtain a con-
tactomorphism from ν(S) to the full Weinstein model, i.e. a surjective map to
S−1. As can be seen for volume reasons, this contactomorphism is in general
not strict or suitable for Lemma 3.3. Therefore, we shall restrict ourselves to
a contactomorphism as in formula (3).

3.4.1. Attaching a symplectic handle. Let us begin by defining a symplectic
handle. The contactomorphism ΦC identifies the neighborhood ν(S) ⊂M with
a neighborhood of the isotropic sphere in S−1. Suppose that the neighborhood
provided by ψ has size

sizeψ(ν(S)) := max
(x,y,z,w)∈ψ(ν(S))

√
x2 + y2 + z2 = ε̃.

Then by choosing C > 2/ε̃, we can ensure that the neighborhood provided
by ΦC has size larger than 1, i.e. the maximal (x, y, z) coordinates are larger
than 1.

We first define the profile for the handle. Fix a small δ > 0: this parameter
serves as a smoothing parameter. Choose smooth functions f, g : R≥0 → R

such that
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f

1 + δ

1

1− δ 1 zw 1

1

1 + δ

1 + δ

g

Figure 3. Functions for the profile of a symplectic handle.

• f is increasing on ]1− δ,∞[;
• f(w) = 1 for w ∈ [0, 1− δ], f(w) = w + δ for w > 1− δ/2;
• g is increasing on ]0, 1 + δ[;
• g(z) = z for z < 1, g(w) = 1 + δ for w > 1 + δ.

See Figure 3 for a sketch of these functions.
Define

F (x, y, z, w) := −f(w2) + g(x2 + y2 + z2).

Define a hypersurface S1 := {(x, y, z, w) | F (x, y, z, w) = 0}. This hypersurface
is of contact type, because the Liouville vector field X is transverse to S1.
Indeed,

X(F ) =
(1
2
(x2 + y2) + 2z2

)
g′ + w2f ′ > 0

for points x, y, z, w such that F (x, y, z, w) = 0, as points with g′ = 0 are
precisely those with w2 = 1, and points with f ′ = 0 are those with x2 + y2 +
z2 = 1. The hypersurface S1 is meant to describe the result of the surgery
along S. See Figure 4 for a sketch of the situation.

Remark 3.5. Instead of a profile for a symplectic handle described by the
above function F , one more commonly chooses a profile of the form

x2 + y2 + z2 − w2 = c.

The advantage is that

G = x2 + y2 + z2 − w2

defines an ω-convex Morse function with respect to the Liouville vector field X
with one critical point on the handle. The main reason for preferring F is that
it simplifies later computations. Note that topologically the two profiles are
the same. Furthermore, one can adapt the ω-convex function G to the above
profile as well. See the summary in Proposition 3.8.

In order to describe the surgery we shall use handle attachment along a
symplectic manifold (W,ω) with contact type boundary M . Define the sym-
plectic handle (Hk+1, ω0) as follows: the handle Hk+1 consists of those points
p ∈ (R2n+2, ω0) such that one of the following three conditions holds:
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S−1 = {w2 = 1}

S1

(x, y, z)

w νM (S)

Figure 4. A symplectic handle in the flat Weinstein model.

• There is a t ∈ [0, 1] such that the time-t flow of X satisfies FlXt (p) ∈
ΦC(ν(S)). This is the gluing part of the symplectic handle.

• There are t1 ≤ 0 such that FlXt1 (p) ∈ ΦC(ν(S)) and t2 ≥ 0 such that

FlXt2 (p) ∈ S1.
• p is the unique critical point of X , namely 0.

This set is illustrated in the gray region of Figure 4.
Let us now attach this symplectic handle Hk+1 to (W,ω). A neighborhood

of the boundary of (W,ω) is symplectomorphic to ([−1, 0] ×M,d(etα)); call
this symplectomorphism ψ∂ : νW (M) → [−1, 0]×M (note that we can attach a
piece of a symplectization ofM to W to ensure we have such a neighborhood).
In particular, we have a symplectomorphism

ψ∂ : νW (νM (S)) → [−1, 0]× νM (S).

We can compose this symplectomorphism with the map

Φ̃C : [−1, 0]× νM (S) → Hk+1, (t, p) 7→ FlXt (ΦC(p)).

This map is also a symplectomorphism, cp. Lemma 3.3 (or rescale the sym-
plectic form on Hk+1).

Now attach the symplectic handle

W̃ :=W ∪Hk+1/ ∼ .

Here we glue x in νW (νM (S)) ⊂W to y in Hk+1 if and only if Φ̃C ◦ψ∂(x) = y.
By Lemma 3.3 the resulting manifold W̃ is again symplectic and its boundary
is a contact manifold that is diffeomorphic to the surgered manifold (̃M, ξ)S,ǫ,
obtained by performing surgery on M along the isotropic submanifold S with
framing ǫ.

Definition 3.6. The above attaching procedure is called symplectic handle
attachment along S at the convex end ofW 2n+2, which is a 2n+1-dimensional
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S−1 = {w2 = 1}

S1

(x, y, z)

w

Figure 5. A sketch of the modifications to glue ω-convex functions.

contact manifold. We call the attachment subcritical if dimS < n, and critical
if dimS = n. The induced operation on the convex end is called contact surgery
along S. The contact surgery is called subcritical if dimS < n, and critical or
Legendrian if dimS = n.

Remark 3.7. Since we attach a symplectic handle to a cobordism by gluing
flow lines of the respective Liouville vector fields, we see that we can extend
the Liouville vector field defined in a neighborhood of the convex end of W to
the new symplectic manifold (W̃ , ω̃).

As alluded to in Remark 3.5, there is a function on a symplectic handle
that is ω0-convex for the Liouville vector field X . By slightly modifying the
ω-convex function f on W , we can glue this function to the one on the sym-
plectic handle. This is sketched in Figure 5.

Let us summarize the above discussion in the following proposition.

Proposition 3.8. Let (W,ω) be a symplectic cobordism. Suppose that i : S →
∂W is an embedded isotropic k-sphere in the convex end of W whose conformal
symplectic normal bundle is trivialized by ǫ.

Then we can attach a handle Hk+1 to W along S with framing ǫ to obtain
a symplectic cobordism (W̃ , ω̃). Furthermore, if (W,ω) admits an ω-convex

function f , then f can be extended to an ω̃-convex function f̃ on W̃ such that
f̃ has only one additional critical point.

Remark 3.9. We see that we can attach symplectic handles under rather
mild assumptions to the convex end of a symplectic manifold. The converse,
i.e. attaching handles to the concave end of a symplectic manifold, is much more
restrictive. Indeed, there are many examples of non-fillable contact manifolds,
which illustrates that concave handle attachment has additional requirements.
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3.10. Symplectic handle cancellation. The main technical tool we shall
use is Eliashberg’s symplectic cancellation theorem. A good reference is [6,
Prop. 12.22]. Here is a formulation that is suitable for our purposes.

Lemma 3.11 (Cancellation theorem). Let (W,ω) be a symplectic manifold
and f be an ω-convex function. Let p and q be non-degenerate critical points
of f and d ∈ ]f(p), f(q)[. Suppose the following:

• indexq(f) = indexp(f) + 1.
• The sphere S−

q , obtained by intersecting the stable manifold W s(q) with the

level set {x | f(x) = d}, intersects the sphere S+
p , formed by intersecting

the unstable manifold Wu(p) with {x | f(x) = d}, transversely in one
point.

Then the critical points can be cancelled by a J-convex deformation of f in a
neighborhood of [f(p), f(q)].

Given the lemma, we can perform symplectic handle cancellation in a way
similar to the one in the smooth case, see [17, Thm. 5.6]. We shall briefly
describe the particular set-up which we shall use. This will be the simplest case
of handle cancellation: it can occur after consecutive attachment of handles
with index difference 1.

Let (W 2n
1 , ω) be a symplectic manifold such that M1 ⊂ ∂W1 is a convex

end. Choose an ω-convex function f1 near the convex end and let X1 be the
associated Liouville vector field.

Remark 3.12. The reader may be confused by our change in conventions
for the dimensions. The reason shall become clear in the next section. We
are interested in a 2n+ 1-dimensional contact manifold M which has an open
book whose binding is 2n− 1-dimensional; the page of this open book is a 2n-
dimensional symplectic manifold. However, we also have cobordisms involving
M , and these involve 2n + 2-dimensional symplectic manifolds. Since all the
pieces interact with each other, this clash of dimensions is unavoidable.

Now suppose that Σ1 ⊂ M2n−1
1 is an isotropic (n − 2)-sphere with a triv-

ialization ǫ of its conformal symplectic normal bundle. Suppose furthermore
that Σ1 bounds a Legendrian (n− 1)-disk D1 in M1. Now form the symplectic
manifold (W2, ω2) by attaching a symplectic (n− 1)-handle along Σ1,

(W2, ω2) =W1 ∪Σ1,ǫ Hn−1.

The ω1-convex function f1 can be extended to an ω2-convex function f2 as
mentioned in Remark 3.7: this new ω2-convex function has one additional
critical point, corresponding to the middle of the handle. We shall denote this
critical point by p.

Note that the convex endM1 is surgered into a new convex end M2 ⊂ ∂W2.
This convex end comes with a Legendrian (n − 1)-sphere Σ2 which is formed
as follows.

First observe that there is a parallel copy D2 of the core of Hn−1 which is
a Legendrian (n− 1)-disk. More explicitly, by using the flat Weinstein model,
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M1 M2

D1

D2

M3

D1

Σ2

Σ1

Figure 6. The sequence of surgeries.

we put

ϕ : Dn−1 → Hn−1, w 7→ (x0; 0, w).

Here x0 = (1, 0) ∈ D2. We see directly that α = 1/2(x dy−y dx)+2z dw+w dz
restricts to 0 on D2 := ϕ(Dn−1). After smoothing, we can glue D1 (which is
partially removed after the handle attachment of Hn−1) to D2. This gives the
Legendrian sphere Σ2. The surgery spheres and the surgeries are illustrated in
Figure 6

Remark 3.13. To visualize the handle cancellation that is going to occur in
the next step, observe that Σ2 intersects the belt sphere of Hn−1 transversely
in one point, namely in ϕ(0).

Since Σ2 is Legendrian, the conformal symplectic normal bundle is trivial
(it has rank 0), so we can form W3 by critical n-handle attachment along Σ2

without reference to a framing,

(W3, ω3) :=W2 ∪Σ2
Hn.

As before, we can extend the ω2-convex function f2 to an ω3-convex function
f3 on W3. Denote the additional critical point of f3 by q. We shall denote
the gradient-like Liouville vector field on W3 by X3. The convex end M2 is
surgered yielding the contact manifold M3.

Now intersect a level set {f3 = d}, with d between f3(p) and f3(q), with the
stable manifold W s(q) and the unstable manifold Wu(p) to form the spheres
S−(q) and S+(p), respectively. These spheres intersect transversely in one
point, as we can see from the unique flow line of the Liouville vector field X3

from p to q. This is illustrated in Figure 7.
This means that Lemma 3.11 applies, so we can deform f3 to another

ω3-convex function g3 such that g3(x) = f3(x) on sublevel sets {f3 < c =
f1(p) − δ}. In particular, on such sublevel sets g3 coincides with f1. Further-
more, the function g3 has no critical points whenever g3(x) ≥ c. This means
that {g3(x) ≥ c} looks like a symplectization, so we conclude that the comple-
tion of W1, i.e. the manifold obtained from W1 by attaching the positive end
of a symplectization, is symplectomorphic to the completion of W3.

We summarize the conclusion in the following lemma.
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p

q

p

Figure 7. Cancellation of symplectic handles: the creation of a
unique flow line between the critical points q and p.

Lemma 3.14 (Handle cancellation in successive handle attachment). Let
(W1, ω1) and (W3, ω3) be the symplectic manifolds as formed above by succes-
sive handle attachment. Then the completion of (W1, ω1) is symplectomorphic
to the completion of (W3, ω3). In particular, M1 is contactomorphic to M3.

4. Surgery and open books

In this section we try to describe some relations between contact surgery
and open books. Let us summarize the results that will be proved below. If
an isotropic sphere S lies in the binding of an open book and if the framing is
compatible with the open book, then subcritical surgery along S can also be
described in terms of handle attachment to the pages of an open book.

On the other hand, critical contact surgery can be regarded as a change in
the monodromy of the open book, if the sphere used for the surgery lies nicely
in a page.

We apply this to show that stabilization of open books leads to contacto-
morphic contact manifolds. The basic strategy is the following. To stabilize an
open book we attach an n-handle to the 2n-dimensional page forming a new
Lagrangian sphere and change the monodromy by composing with a right-
handed Dehn twist along the newly formed Lagrangian sphere.

We shall show that the handle attachment to the page can be realized by a
subcritical handle attachment to the convex end of [−1, 0]×M and that the
change in monodromy is realized by a critical handle attachment. The latter
turns out to cancel the former, so we obtain the same contact manifold.

4.1. Subcritical surgery and open books. Let us first describe the situ-
ation for trivial monodromy, since that situation is more easily visualizable.
Let Σ be a Weinstein domain with boundary B := ∂Σ and consider the open
book

M := OB(Σ, Id).

Suppose that S is an isotropic (possibly Legendrian) sphere in B with a trivi-
alization ǫ of its conformal symplectic normal bundle. We can perform contact
surgery along (S, ǫ) giving rise to a contact manifold B̃. The associated surgery
cobordism also gives a Weinstein (and hence Stein) filling for B̃, which we will
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denote by Σ̃. Alternatively, Σ̃ can be regarded as the Weinstein domain ob-
tained from Σ by handle attachment along (S, ǫ).

Note that S also gives rise to an isotropic submanifold of M . Indeed, we
have an isotropic sphere in the binding: take SM := S × {0} ⊂ B ×D2. Since
we have the following contact form near the binding,

λ+ x dy − y dx,

we see that we also get a trivialization of the conformal symplectic normal
bundle of SM ⊂ M , given by ǫM := ǫ ⊕ 〈∂x, ∂y〉. For later use, it is useful to
give the last factor a name,

ǫD2 = 〈∂x, ∂y〉.
Contact surgery onM along (SM , ǫM ) gives the subcritically fillable contact

manifold M̃ := ∂(Σ̃×D2), as we can see from performing handle attachment
to the filling Σ ×D2 of M . On the level of open books, we see that M̃ has a
supporting open book with page Σ̃ and the identity as monodromy.

This set-up also describes the general situation, since the surgery takes place
near the binding. As a result, we have the following proposition.

Proposition 4.2. Let Σ be a Liouville domain with boundary B and let ψ be
a compactly supported symplectomorphism such that

M := OB(Σ, ψ)

is a contact open book. Suppose that SB is an isotropic (k − 1)-sphere in the
binding B with a trivialization ǫ of its conformal symplectic normal bundle
in B. Then there is a corresponding isotropic (k − 1)-sphere SM ⊂ M with
trivialization ǫ⊕ ǫD2 of its conformal symplectic normal bundle such that

OB(Σ ∪SB ,ǫ Hk, ψ ∪SB
Id) ∼= ˜OB(Σ, ψ)(SM ,ǫ⊕ǫ

D2)
.

In other words, this kind of subcritical surgery is realized by handle attach-
ment to the page of an open book without changing the monodromy.

4.3. Critical surgery and open books. Now consider a contact open book
M := OB(Σ, ψ) having a Lagrangian sphere LS in a page. We show that we
can assume that LS represents a Legendrian sphere in Σ×R, or in other words
in the contact open book M .

Lemma 4.4. Let M2n+1 = OB(Σ, ψ) be a contact manifold of dimension
greater than 3. If LS is a Lagrangian sphere in the page of a contact open
book M2n+1, then we can isotope the contact structure on M2n+1 and find
a supporting open book with symplectomorphic page and isotopic monodromy
such that LS becomes Legendrian in M2n+1.

Proof. Suppose λ is a primitive of the symplectic form ω on Σ̃. Then on a
Weinstein neighborhood of LS we can find a primitive

λcan = p dq
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of the symplectic form ω, where (q, p) are coordinates on T ∗
≤εS

n ∼= ν(LS).
Since λ− λcan is closed, we can find a function g such that

λ− λcan = dg,

because H1
dR(S

n) = 0 as n > 1. Now put

λ̃ := λ− d(ρg),

where ρ is a smooth cut-off function that is 1 in a neighborhood of LS with
support in the Weinstein neighborhood ν(LS). Note that dλ̃ = dλ is still
symplectic.

On the Lagrangian sphere LS, λ̃ vanishes, so LS lies in the kernel of the
contact form dt + λ̃, so it is Legendrian. Furthermore, the associated contact
structure is isotopic to the one we started with by Gray stability. �

Remark 4.5. In dimension 3, every curve in a page is Lagrangian, but to
realize a curve as a Legendrian one needs to perturb transversely to a page.
Hence we cannot directly formulate an analog to Lemma 4.4. On the other
hand, in dimension 3 one can always find a supporting open book such that
a Legendrian lies in a page, see [10, §4] for a discussion of the 3-dimensional
situation.

Given the Lagrangian sphere LS, we get a compactly supported symplecto-
morphism τLS

, a right-handed Dehn twist along LS. We can now change the
monodromy of the contact open book by adding Dehn twists along LS, but
we can also perform critical contact surgery along LS : we will refer to this as
Legendrian surgery. We shall now show that these operations coincide.

4.5.1. Surgery and monodromy. The goal of this section is to provide a proof of
the following folk theorem. This result is well known in dimension 3, see [10].

Theorem 4.6. Let OB(Σ, ψ) be a contact open book with Legendrian sphere LS,
that restricts to a Lagrangian sphere in Σ. Denote the contact manifold ob-
tained from OB(Σ, ψ) by Legendrian surgery along LS by ˜OB(Σ, ψ)LS

. Then
the contact manifolds

OB(Σ, ψ ◦ τLS
) ∼= ˜OB(Σ, ψ)LS

are contactomorphic.

Proof. The proof has two steps. In the first step we shall show that Legendrian
surgery on OB(Σ, ψ) along LS yields a contact manifold with a supporting open

book (B, ϑ̃r), where B is the binding and ϑ̃r the map to S1. The new sup-
porting open book has the same page as the supporting open book before the
surgery, and we can localize the monodromy. In the second step we determine
how the monodromy is changed.

Step 1: Supporting open book after surgery. A schematic of the setup is
sketched in Figure 8. The contact open book OB(Σ, ψ) gives rise to a contact
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Monodromy ψ

Binding
ν(LS)

LS
Page 0

Page −ǫ

Page ǫ

Monodromy Id

Figure 8. Pages around a Legendrian sphere.

manifold (M, ξ) with a supporting open book (B, ϑ), where B is a codimension-
2 submanifold of M and ϑ : M −B → S1 a fiber bundle over S1. We think of
LS as a Legendrian submanifold of (M, ξ) lying in the page [0] ∈ R/Z ∼= S1.
Choose a neighborhood ν(LS) of LS such that ν(LS) is contactomorphic to
a neighborhood of the zero section in R × T ∗LS , and such that ν(LS) ⊂
ϑ−1(]− ε, ε[). In particular, we can restrict the map ϑ to a map

ϑr := ϑ|ν(LS) : ν(LS) → ]− ε, ε[.

Note that ν(LS) can be identified with a neighborhood of {z = 0} in the hy-
persurface of contact type {w2 = 1} ⊂ Cn, as described before in the interlude
on the “flat” Weinstein model. Let us use the identification from Section 3.1
to choose a specific model for ϑr.

By isotoping the open book and applying Gray stability, we can assume
that the restricted map ϑr has the form

ϑr : ν(LS) → ]− ε, ε[, (z, w) 7→ z · w.
Indeed, since the Reeb vector field on {w2 = 1} is given by

RB = w∂z ,

we see that R(ϑr) > 0, so ϑr gives also a supporting open book for (M, ξ) by
Lemma 2.17.

Next perform Legendrian surgery along LS using the “flat” Weinstein model
as described in Section 3.1. This means that we remove a neighborhood
νM,δ′(LS) of LS and glue in the set S1, which is the zero set of the func-
tion F (z;w) = −f(w2) + g(z2). We claim that we still have an open book
structure after surgery, and that the topology of the page is unchanged.

We start by checking the former claim. In our set-up, the Reeb vector field
on S1 is a positive multiple of the Hamiltonian vector field of F , which is given
by

XF =
∂F

∂z
∂w − ∂F

∂w
∂z = 2g′z∂w + 2f ′w∂z .
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By our choice of the functions f and g we see that

R(z · w) = NXF (z · w) = N
(
2g′|z|2 + 2f ′|w|2

)
> 0,

so the function ϑr, now defined on S1 rather than ν(LS), also defines a suitable
open book projection on S1. Moreover, the map ϑr extends to a smooth
submersion ϑ̃ : M̃ − B → S1. To see this, we note that it coincides near
the pages ±ǫ with the original map ϑ. Indeed, at the fiber ϑ̃−1(±ǫ) we have
|z| ≥ ǫ, and the set S1 ∩ |z| ≥ ǫ equals the set S−1 ∩ |z| ≥ ǫ as we see from
the construction in Section 3.4.1 and Figure 5. The computations below make
this more explicit.

In particular, ϑ̃ defines a fiber bundle over the circle. Its fibers are all
diffeomorphic, and as ϑ̃ coincides with ϑ away from the surgery locus, say for
example for ϑ−1(ǫ) ⊂ M − ν(LS) = M̃ − S1, we conclude that the fibers of ϑ

and ϑ̃ are diffeomorphic.

Step 2: Monodromy. Let us now investigate the symplectic monodromy as
described in the proof of Proposition 2.19. We make first two observations.
First of all, the Legendrian surgery takes place away from the binding. Hence
we can choose a symplectic connection such that the horizontal lift Xh of the
tangent vector field to the loop t 7→ eit is a multiple of the Reeb vector field Rα
on the surgery locus. Secondly, the change of the monodromy can be localized
in an ε-neighborhood of page 0, and furthermore this change of monodromy
does not depend on the choice of LS, since we have described the entire set-up
with the Weinstein model. So we see that

˜OB(Σ, ψ)LS

∼= OB(Σ, ψ ◦ ψLS
),

where ψLS
is the change in monodromy. Hence we only need to see what

Legendrian surgery does to the monodromy in a single model situation to
determine ψLS

.

Monodromy before surgery. Let us first compute the monodromy from page
−ε to page ε before the surgery. We start by taking a point in the page −ε
near the surgery region, say (−ε; q, p) ∈ [−ε, ε]× T ∗Sn. Map this point with
ψW , defined in equation (2), to S−1, the flat Weinstein model before surgery.
We find

ψW (−ε, q, p) = (−εq + p, q).

The set S−1 is described by the level set of the Hamiltonian w2 = 1. The time
s-flow of this Hamiltonian, which is a positive reparametrization of the Reeb
flow, sends

(−εq + p, q) 7→ ((2s− ε)q + p, q).

Applying ψ−1
W , we find (2s− ε, q, p). To reach page ε, we need to choose s = ε,

resulting in the map
(−ε, q, p) 7→ (ε, q, p),

which is the identity on the T ∗Sn-factor. Note that this map serves as a
reference identification for the monodromy after surgery, which we will compute
now.
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Monodromy after surgery. Let us now consider the monodromy after surgery.
As before take (−ε, q, p) ∈ {−ε} × T ∗Sn. Applying the map ψW , we get
(z, w) = (−εq + p, q) ∈ S−1. We note that on page ±ε, we have |z| ≥ ε, which
is needed to perform surgery. To go to the surgered set S1, we use the flow of
the Liouville vector fields

Xa := (1 + a)z∂z − aw∂w .

For each a, this gives a map ψa : S−1 − {z = 0} → S1. We will first identify a
subset of S−1 with the flat parts of S1, i.e. those subsets of S1, where either f

′

or g′ is zero. This allows us to explicitly compute ψa. The time-t flow of Xa

sends

(z, w) 7→ (e(1+a)tz, e−atw),

so for those points mapping to the flat piece {p | f ′(p) = 0} we obtain

(4) ψa(z, w) =
( 1

|z|z, |z|
a

1+aw
)
.

Let us now consider the limit a → ∞ to enable explicit computations and
continue working with the flat pieces only. Afterwards, we will argue using
isotopies that our answer remains valid in the original set-up. The points on
the flat piece are now

ψ∞ ◦ ψW (−ε, q, p) =
( −εq + p√

ε2 + p2
,
√
ε2 + p2q

)
.

As before, we will flow with the Reeb vector field to page ε. We will use the
Hamiltonian vector field

XF = 2g′z∂w + 2f ′w∂z .

On the flat piece of S1 we are interested in, we have

XF = 2z∂w.

The time-s flow of XF sends
( −εq + p√

ε2 + p2
,
√
ε2 + p2q

)
7→

( −εq + p√
ε2 + p2

,
√
ε2 + p2q + 2s

−εq + p√
ε2 + p2

)
.

We go back with ψ−1
∞ , and compute the page number with the map ϑr, and

find

ϑr
(
ψ−1
∞ ◦ FlXF

s ◦ ψ∞ ◦ ψW (−ε, q, p)
)
= −ε+ 2s.

Putting s = ε, we find the map ψ−1
W ◦ ψ−1

∞ ◦ FlXF

ε ◦ ψ∞ ◦ ψW which acts like

{−ε} × (q, p) 7→ ψ−1
W ◦ ψ−1

∞

( −εq + p√
ε2 + p2

,
√
ε2 + p2q + 2ε

−εq + p√
ε2 + p2

)

= ψ−1
W ◦ ψ−1

∞

( −εq + p√
ε2 + p2

,
(p2 − ε2)q + 2εp√

ε2 + p2

)
.
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We need to work this out to make the identification with a Dehn twist. Since
ψ−1
∞ (z, w) = (|w|z, w|w|) and ψ

−1
W (z, w) = (z · w,w, z − (z · w)w) we find

ψ−1
W ◦ ψ−1

∞ ◦ FlXF

ε ◦ ψ∞ ◦ ψW (−ε, q, p)

=
(
ε,

(p2 − ε2)q + 2εp

ε2 + p2
,
(p2 − ε2)p− 2εp2q

ε2 + p2

)
.

We will write (−ε, q, p) 7→ (ε, τ(q, p)) for short.

Recognizing the monodromy as a Dehn twist. To interpret the monodromy
as a Dehn twist, we only need to recall the rational parametrization of the
circle. First we rewrite the previously obtained map τ ,

τ(q, p) =

(
p2−ε2

ε2+p2
2ε|p|
ε2+p2

1
|p|

− 2ε|p|
ε2+p2 |p|

p2−ε2

ε2+p2

)(
q
p

)
.

Now define g(p) such that

cos g(p) =
ε2 − p2

ε2 + p2
, sin g(p) =

2ε|p|
ε2 + p2

,

where g(p) increases from 0 near p = 0 to π as |p| → ∞. With this in mind,
we see that

τ(q, p) =

(
− cos g(|p|) sin g(|p|)/|p|
− sin g(|p|)|p| − cos g(|p|)

)(
q
p

)
.

Note that we can recognize this map as a right-handed Dehn twist σg̃(|p|) if we
define g̃(x) := π − g(x).

Isotopy to correct the map. Note that we have made two assumptions in the
above computation.

(i) We have ignored the rounding piece, meaning the set
{
(z, w) ∈ F−1(0) | f ′ 6= 0, g′ 6= 0

}
,

so the map τ is only the “monodromy” of one of the flat pieces. For
later purposes, we will denote the actual “monodromy”, which does take
the rounding piece into account, by τ̃ . As explained in Section 3.4.1, the
rounding piece has size δ.

(ii) We have used X∞ rather than Xa for some a ∈ R.

We now justify these assumptions.
(i) Note first of all that, outside the rounding piece, the map τ̃ is either equal

to τ or to the identity; we directly see that τ̃ (q, p) = τ(q, p) for small |p|, and
that τ̃ (q, p) = (q, p) for large |p|. We make the small and large more precise in
the surgery picture: they correspond to |z| < 1 + δ + 2ε and |w| > 1− δ − 2ε,
as indicated in Figure 9. On the rounding piece we will see that the flow of
XF only gives rise to a small isotopy provided ε and δ are sufficiently small.
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w

z1 + δ
1− δ

τ̃ = τ

1− δ − ǫ

1 + δ + ǫ

τ̃ = Id

Figure 9. Outside the rounding piece the map τ̃ equals τ or the identity.

We continue to work with ψ∞, but now include the rounding piece. The
inverse of ψ∞ can still be explicitly written down,

(5) ψ−1
∞ : F−1(0) → S−1, (z, w) 7→

(
|w|z, w|w|

)
.

We have ψ∗
∞XF = (Tψ∞)−1XF ◦ ψ∞, so by the inverse function theorem we

find

T (ψ−1
∞ )XF =

(
|w| Id z w

t

|w|

0 1
|w| Id−wwt

|w|3

)(
2f ′w
2g′z

)
=

(
2f ′|w|w + 2g′〈z,w〉

|w| z
2g′

|w| (z − 〈z, w〉 w
|w|2 )

)
.

Using that the norms |z| and |w| satisfy |z| ∈ [1− δ, 1 + δ] and |w| ∈ [1− δ, 1]
on the rounding piece, we can bound the norm of ψ∗

∞XF from above by
8(1 + δ)3/(1− δ) with repeated use of the triangle inequality. Next, we verify
that we still have a good bound on the flow time from page −ε to page ε on
the rounding piece. Indeed, using the triangle inequality and the bounds on
|z| and |w|, we see that the vector field is “sufficiently transverse” to the pages
for small δ,

dϑr(ψ
∗
∞XF ) = (z · dw + w · dz)(ψ∗

∞XF )

=
2

|w|
(
f ′|w|4 + 2g′

(
|z|2 +

(
1− 1

|w|2
)
〈z, w〉2

))
≥ 2(1− 5δ).

Hence the flow time is bounded from above by

2ε

2(1− 5δ)
=

ε

(1− 5δ)
.

In particular, on the rounding piece, the flow moves points at most by

8ε
(1 + δ)3

(1− δ)(1− 5δ)
.

We can choose ε and the rounding parameter δ arbitrarily small, so it follows
that τ̃ is symplectically isotopic to a right-handed Dehn twist via an isotopy
with compact support.
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(ii) From equation (4) (or rather the analogous formula for the inverse in (5))
we see that we can isotope ψa to ψ∞. Furthermore, this isotopy has compact
support, because ψ∞(z, w) = (z, w) = ψa(z, w) for |z| ≥ 1 + δ. Hence the
resulting contact manifolds obtained by surgery with the varying parameter a
are contactomorphic by Gray stability, and we obtain a compactly supported
symplectic isotopy of the “monodromy” map τ̃ .

We conclude that the symplectic monodromy after the surgery is indeed the
composition of the symplectic monodromy before surgery with a right-handed
Dehn twist. �

An immediate corollary of the above theorem is the following well-known
statement about the relation between fillability and the monodromy of an open
book.

Corollary 4.7. Let M := OB(Σ, ψ) be a contact open book with a Weinstein
page Σ and a monodromy that is the product of right-handed Dehn twists. Then
M is Stein fillable.

Proof. The contact manifold M̃ := OB(Σ, Id) is symplectically fillable with
Weinstein filling W̃ := Σ×D2. By Theorem 4.6, we see that we obtainM from
M̃ by critical surgery along Legendrian spheres. Since this can also be done
on cobordism level, we obtain a Weinstein filling for M by attaching critical
handles along Legendrian spheres to W̃ . Eliashberg’s fundamental result then
allows deformation into an honest Stein filling, [6]. �

Remark 4.8. There is also a converse due to Giroux and Pardon [13] which
asserts that every Stein-fillable contact manifold admits an open book whose
monodromy is the product of right-handed Dehn twists.

If the monodromy is the identity, i.e. the factorization into Dehn twists is
empty, then the resulting contact manifold is subcritically fillable. This means
that there is a subcritical Stein filling, i.e. a Stein filling of the form W ×D2,
whereW is some Stein domain. This latter characterization of subcritical Stein
manifolds, due to Cieliebak, is proved in [6, Chap. 14.4].

The relation between monodromy and fillability has been used effectively in
several papers, most notably in [3].

Remark 4.9. The actual Stein filling depends on the precise factorization
of the monodromy into right-handed Dehn twists. Different factorizations of
a given monodromy can give rise to distinct Stein fillings for the same con-
tact manifold which is determined by the monodromy itself rather than its
factorization into Dehn twists.

The simplest case of this phenomenon occurs for the lens space L(4, 1) with
its prequantization contact structure over the 2-sphere. This means that we are
considering the contact structure whose defining contact form has the property
that all Reeb orbits are periodic with the same period. We may alternatively
view L(4, 1) ∼= ST ∗RP 2 to understand this contact structure.
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One can construct a supporting open book whose page is a four times punc-
tured 2-sphere, and whose monodromy is given by the product of four right-
handed boundary parallel Dehn twists, one for each boundary component. This
way to construct open books for prequantization bundles is part of a general
procedure, explained in [5, §5]. The associated Stein filling is diffeomorphic to
a disk bundle over S2, which is simply-connected.

On the other hand, the lantern relation, [20, Lem. 15.15.1.9], can be used to
write the product of these four Dehn twists as the product of three right-handed
Dehn twists on the same page. The resulting filling is then the canonical Stein
filling DT ∗RP 2, which is not simply-connected.

This concept has been worked on by many authors, see [20, Chap. 12.3] for
an overview, and recently examples of this phenomenon have been found in
higher dimensions, see Oba’s results in [19].

4.10. Stabilization. Let us now consider the contact open book given by
M = OB(Σ2n, ψ) and suppose that L is an embedded Lagrangian disk Dn in
the page Σ whose boundary ∂L is a Legendrian sphere in ∂Σ.

As in the previous section we define a new contact open book by

M̃ = OB(Σ̃, ψ̃),

where Σ̃ is obtained from Σ by n-handle attachment along ∂L. The monodromy
ψ̃ restricts to the identity on the attached n-handle and coincides with ψ on Σ.
Note that Σ̃ contains a Lagrangian sphere LS spanned by the Lagrangian disk
L and the core of the n-handle.

Remark 4.11. Let us interpret the critical attachment of a handle h to the
page Σ of M as subcritical handle attachment to the symplectic cobordism
W := [0, 1]×M as in Proposition 4.2. Denote the result of this handle attach-
ment by W̃ .

We see that LS ⊂ W̃ intersects the belt sphere of the attached handle
transversely in one point, since the part of LS in the handle has the form
core× {p} ⊂ h×D2.

Definition 4.12. Let M = OB(Σ, ψ) be a contact open book with an embed-
ded Lagrangian disk L as above. The contact open book

M̃ := OB(Σ̃, ψ̃ ◦ τLS
)

is called the stabilization of OB(Σ, ψ) along L.

The following claim is a well-known statement due to Giroux.

Proposition 4.13 (Giroux). The stabilization of a contact open book OB(Σ, ψ)
along a Lagrangian disk L bounding a Legendrian sphere in ∂Σ is contacto-
morphic to the contact manifold OB(Σ, ψ).

Proof. Let M2n+1 = OB(Σ, ψ) be a contact open book and L a Lagrangian
disk Dn in a page Σ. To stabilize the open book, we first need to attach
an n-handle to Σ along ∂L to obtain a new page Σ̃. The submanifold ∂L of
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the binding corresponds to an isotropic sphere S, so on the level of contact
manifolds, the first step of stabilizing is realized by performing contact surgery
along the isotropic sphere S as in Proposition 4.2. In the language of symplectic
cobordisms, we start with a compact piece of the symplectization of M , say
[0, 1]×M , and then attach an n-handle to {1} ×M along {1} × S.

The next step of the stabilization consists of changing the monodromy; we
have a Lagrangian sphere in the new page Σ̃, which we denote by L. Note that
we can assume that L is also a Legendrian sphere in OB(Σ̃, ψ̃) by Lemma 4.4.
The stabilization is given by

MS = OB(Σ̃, ψ ◦ τL).
On the level of contact manifolds, this change of monodromy can be realized
by performing Legendrian surgery along L, as we can apply Theorem 4.6. In
cobordism language, this amounts to attaching an (n+ 1)-handle to W along
the Legendrian sphere L, as described in Section 3.

By construction of the stabilization, the Legendrian sphere L intersects the
belt sphere of the previously attached n-handle in precisely one point, see Re-
mark 4.11. This means that the interpretation of the stabilization procedure in
terms of symplectic handle attachment fits exactly the description of symplectic
handle cancellation in Section 3.10. Hence we apply the handle cancellation
lemma (Lemma 3.14) to see that the stabilization yields a contactomorphic
manifold. �
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