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AbstratOne of the entral onepts of nonlinear physis is the soliton. It is about loalizedstrutures in onservative systems whih exhibit partile-like harateristis. Over the lastyears, the analysis of similar loalized strutures existing in dissipative systems, so-alleddissipative solitons, has developed into one of the ore issues of researh on the formationof strutures in spatially extended dissipative systems. An analytially exat desriptionof these strongly nonlinear strutures is impossible in general. Nevertheless, well-aeptedmodels have been developed that explain the formation of dissipative solitons. However,the magnitude of theoretial works faes a muh smaller number of experiments. Inaddition, the latter are often not aessible to a detailed theoretial analysis.In this work, spatial dissipative solitons are analyzed in a oneptually simple optialsystem whih has proven its suitability for the experimental and theoretial analysis ofstruture formation on various oasions. Solitons are observed as loalized polarizationstates in the transverse �eld distribution of a laser beam whih passes through an optiallynonlinear system.In ontrast to previous experimental observations of dissipative solitons, for the �rst timea sequene of higher-order solitons whih di�er in their inner struture is observed in thepresent system. The existene of suh a disrete family of solitons was predited in amultitude of theoretial works. The strutures an be seletively ignited and erased bymeans of a laser pulse. Using a novel tehnique to measure the spatially resolved statesof polarization of a light �eld, the experimental observations ould be diretly omparedto numerial simulations of a well-established mirosopi model of the system. A verygood agreement between the experimental �ndings and numerial simulations has beenahieved.A main part of this work is devoted to the identi�ation and haraterization of themehanisms that lead to the formation of stable solitons. It turns out that the stabilityproperties of the solitons are losely linked with the dynamis of swithing fronts thatonnet two stable spatially extended states of the system. These bistable extendedstates result from a polarization instability and are equivalent or nearly equivalent dueto the type of that bifuration. The swithing front onstitutes a ontinuous onnetion



between the two states whih di�er in their polarization properties.The dynamis of swithing fronts is determined by two main e�ets. On the one hand,a motion of fronts in the two-dimensional plane is observed that originates from theurvature of the fronts. For the �rst time, this urvature-driven motion is experimentallyanalyzed in a quantitative way by the example of irular domains. The obtained growthlaw is in agreement with general theoretial preditions and numerial simulations. Onthe other hand, fronts move due to an inequality of the involved extended states whihan be introdued by a well-ontrolled parameter. If a irular domain is appropriatelyprepared, the ompensation of these two e�ets an lead to signi�antly redued frontveloities. In suh a situation, solitons an emerge due to the short-range interation offronts whih lead to a stabilization of the irular domain. This interation is mediatedby osillatory tails of the front, whih emerge due to a nearby modulational instabilityin the system onsidered here. Solitons are observed both on a homogeneous and on aweakly modulated bakground.The dissipative solitons are interpreted as a spatially loalized exursion of the systemfrom one extended state towards the viinity of the other one. The region of existene ofthe individual solitons is experimentally and numerially determined with respet to themost important parameters, and large regions of oexistene of solitons of di�erent orderare obtained. By means of a numerial analysis, the onnetion of the di�erent solitonsis shown in the ontext of the global bifuration senario.The interations of the solitons exhibits the typial partile-like properties, and a mul-titude of stable on�gurations of solitons of the same and of di�erent order is observed.Furthermore, strutures are observed that are interpreted as tightly bound states of soli-tons.



KurzfassungEines der zentralen Konzepte in der nihtlinearen Physik ist das Soliton. Hierbei han-delt es sih um lokalisierte Strukturen in konservativen Systemen, die einen teilhenartigenCharakter besitzen. In den letzten Jahren hat sih die Untersuhung �ahnliher lokalisierterStrukturen in dissipativen Systemen, so genannter dissipativer Solitonen, zu einem derKernthemen des gro�en Forshungsgebiets entwikelt, das sih mit der Strukturbildungin r�aumlih ausgedehnten dissipativen Systemen besh�aftigt. Eine analytish exakteBeshreibung dieser stark nihtlinearen Strukturen ist im Allgemeinen unm�oglih. Es wur-den jedoh inzwishen wohlakzeptierte Modellvorstellungen entwikelt, welhe die Meha-nismen der Entstehung von dissipativen Solitonen erkl�aren. Der Vielzahl theoretisherArbeiten steht allerdings eine deutlih geringere Zahl an Experimenten gegen�uber. Diesesind dar�uber hinaus niht immer einer detaillierten theoretishen Analyse zug�anglih.In dieser Arbeit werden r�aumlihe dissipative Solitonen in einem konzeptionell einfahenoptishen System untersuht, das sih shon vielfah zur experimentellen und theore-tishen Untersuhung von Strukturbildungsph�anomenen bew�ahrt hat. Die Solitonen wer-den als lokalisierte Polarisationszust�ande in der transversalen Feldverteilung eines Laser-strahls beobahtet, der ein optish nihtlineares System durhl�auft.Im Gegensatz zu bisherigen experimentellen Beobahtungen dissipativer Solitonen wirdim hier untersuhten System zum ersten Mal eine Sequenz von Solitonen h�oherer Ordnungbeobahtet, die sih in ihrer inneren Struktur untersheiden. Die Existenz einer solhendiskreten Familie von Solitonen war in einer Vielzahl theoretisher Arbeiten vorherge-sagt worden. Die Strukturen lassen sih mit Hilfe eines Laserpulses gezielt erzeugen undvernihten. Mittels einer neuartigen experimentellen Tehnik zur r�aumlih aufgel�ostenUntersuhung von Polarisationszust�anden eines Lihtfeldes konnten die experimentellenBefunde direkt mit den Resultaten numerisher Simulationen eines wohletablierten mik-roskopishen Modells des Systems verglihen werden. Es wird ein hohes Ma� an �Uberein-stimmung zwishen Experiment und Theorie beobahtet.Ein Shwerpunkt der Arbeit liegt in der Identi�kation und Charakterisierung der Meha-nismen, die zur Bildung der Solitonen beitragen. Es zeigt sih, dass die Stabilit�atsei-genshaften der Solitonen eng mit der Dynamik von Shaltfronten verkn�upft sind, die



zwei stabile r�aumlih ausgedehnte Zust�ande des Systems verbinden. Diese bistabilen aus-gedehnten Zust�ande entstehen durh eine Polarisationsinstabilit�at und sind aufgrund desTyps der Bifurkation �aquivalent oder nahezu �aquivalent. Die Shaltfront stellt eine kon-tinuierlihe Verbindung dieser beiden in ihren Polarisationseigenshaften untershiedlihenZust�ande dar.Die Dynamik von Shaltfronten wird im Wesentlihen durh zwei E�ekte bestimmt. Zumeinen wird eine Bewegung der Fronten in der zweidimensionalen Ebene beobahtet, dieihre Ursahe in der Kr�ummung der Fronten hat. Diese kr�ummungsgetriebene Bewegungwird am Beispiel kreisrunder Dom�anen zum ersten Mal experimentell quantitativ un-tersuht. Das beobahtete Wahstumsgesetz zeigt eine �Ubereinstimmung mit generellentheoretishen Vorhersagen und numerishen Simulationen. Zum anderen bewegen sih dieFronten aufgrund einer Niht�aquivalenz der beiden beteiligten ausgedehnten Zust�ande,die durh einen gut kontrollierbaren Parameter eingef�uhrt werden kann. Bei geeigneterPr�aparation einer runden Dom�ane k�onnen die genannten E�ekte gegenl�au�g sein, was zudeutlih reduzierten Frontgeshwindigkeiten f�uhrt. In einer solhen Situation k�onnen Soli-tonen durh die kurzreihweitige Wehselwirkung von Fronten entstehen, die zu einer Sta-bilisierung der Dom�ane f�uhrt. Diese Wehselwirkung wird �uber oszillatorishe Ausl�auferder Fronten vermittelt, wie sie im hier untersuhten System durh die N�ahe einer Modu-lationsinstabilit�at entstehen. Solitonen werden sowohl auf homogenem als auh auf einemshwah modulierten Hintergrund beobahtet.Die dissipativen Solitonen werden als r�aumlih lokalisierte Exkursion des Systems voneinem ausgedehnten Zustand in die N�ahe des anderen Zustands interpretiert. Der Exis-tenzbereih der einzelnen Strukturen wird hinsihtlih der wihtigsten Parameter experi-mentell und numerish untersuht, und es �nden sih gro�e Bereihe, in denen Solitonenuntershiedliher Ordnung koexistieren k�onnen. Mit Hilfe einer numerishe Analyse wirdder Zusammenhang der einzelnen Solitonen im Rahmen des zu Grunde liegenden globalenBifurkationsszenarios gezeigt.Bei der Wehselwirkung der Solitonen zeigen sih die typishen Teilheneigenshaften,und es wird eine Vielzahl von stabilen Kon�gurationen von Solitonen gleiher oder unter-shiedliher Ordnung beobahtet. Dar�uber hinaus werden Strukturen beobahtet, die alsstark gebundene Zust�ande von Solitonen interpretiert werden.
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Chapter 1IntrodutionThe formation of self-organized strutures in spatially extended dissipative nonlinear sys-tems that are driven far from the thermodynamial equilibrium is a universal phenomenonthat is observed in many disiplines of siene inluding biology, hemistry and physis[CH93℄. In suh systems, strutures are formed due to the interation between a nonlinearproess and spatial oupling. In many ases, regular strutures that extend over the wholeonsidered area emerge from a homogeneous state if the system is driven beyond a er-tain threshold. These modulational instabilities leading to simple periodi patterns withsmall amplitudes an often be treated by perturbative methods and are well-understoodin many ases [CH93℄.Another lass of strutures that have gained a lot of interest in reent years are dissipa-tive solitary strutures [Rie99, AA05℄. These strutures extend only over a small areaand exhibit a kind of partile-like behavior. In analogy to the solitons in onservativesystems, whih are loalized wave phenomena with similar properties, the solitary statesin dissipative systems are often alled `dissipative solitons'. Prominent examples are ur-rent density �laments in gas disharges and semiondutors [BP95℄ as well as loalizedexitations, so-alled osillons, that are observed in a thin layer of vertially osillatinggranular media [UMS96℄ or uid [LAF96℄.The dissipative soliton is an attrator of the dynamis of the onsidered system, andin ontrast to solitons in onservative systems, its amplitude and size are �xed by theparameters and do not depend on the initial onditions [KO94℄. It has been shown indi�erent model systems, however, that the dissipative soliton is not neessarily unique,but that a sequene of higher-order solitons might exist that di�er in their inner struture[RK90, PMEL98, OSF99℄. An analytial desription of dissipative solitons is ompliatedin general, sine they are high-amplitude, thus strongly nonlinear, strutures that annotbe treated by perturbative methods.



2 IntrodutionMuh progress in the �eld of dissipative solitons has been made in optis, where loalizedlight spots are observed in the transverse plane of a laser beam that passes throughan optially nonlinear system. As a main advantage of optial systems, the interationbetween light and matter is well-understood in many ases, and a theoretial desriptionof the nonlinear system an be derived from �rst priniples.Di�erent approahes have been proposed in order to understand the mehanisms that leadto the formation of dissipative solitons. They desribe solitons in systems that displaybistability between two extended homogeneous or patterned states. In most ases, solitonsare predited to our in systems where a homogeneous and a patterned state oexist dueto a subritial bifuration [TF88, FT90, TML94, FS96℄. Also, most of experimentallyobserved solitons were found in suh a situation [SFAL00, SKTT97, BTB+02℄.Another approah desribes the ourrene of solitons as a result of the motion and inter-ation of fronts that onnet two homogeneous states of a system [RK90℄. An interestingsituation arises if the two extended states are equivalent or nearly equivalent. In thissituation, the front veloities are expeted to be low, whih should favor the existene ofsolitons. Indeed, systems with two equivalent extended states are frequently enounteredin nonlinear optis, and the formation of solitons has been widely studied in theoretialmodels desribing these systems [Lon97, SSM98a, PMEL98, GMT00, TSW98℄. Only inone ase, however, solitons were observed experimentally [TSW98℄.The subjet of this thesis is the experimental and theoretial investigation of the formationof spatial solitons in an optial system that exhibits a pithfork bifuration. This systemis a modi�ation of the well-known single-mirror feedbak sheme [Fir90, DF91, DF92℄,whih onsists of a laser beam that passes through an optially nonlinear medium and isfed bak into the medium by a mirror after having propagated over a ertain distane.In this work, sodium vapor is used as the nonlinear medium. The single-mirror feedbaksystem with sodium vapor has proven to be one of the most versatile struture-formingexperiments in many preeding works [LA98, LAA+99, AL01, SFAL00℄. Its signi�ane asa model system for the analysis of spatial strutures is partiularly enhaned by the avail-ability of a well-established mirosopi model for the light-matter interation [MDLM86℄,whih enables an extensive theoretial treatment of the experimental system. In thepresent setup of the experiment, a polarization instability has been observed whih hasbeen interpreted as a symmetry-breaking pithfork bifuration [YOKO84, GWKL+00℄.In this work, speial emphasis is laid on the identi�ation and haraterization of themehanisms that lead to the formation of stable solitons. It will turn out, that frontmotion plays a entral role. In this ontext, the predition of reent theoretial worksthat the extension of one-dimensional models to two spatial dimensions is not trivial, willbe taken into aount [GCOM01℄. Experimental results in two-dimensional systems have



3been limited to a rough qualitative desription yet [TSW98, TZWW99℄. The lak of aquantitative experimental desription is going to be addressed in this work.It will turn out that not only the fundamental single-peaked soliton an be observed, butalso a set of stable higher-order solitons exists, whose existene has been predited in manytheoretial works. The family of solitons will be haraterized with respet to their basiproperties and to their regions of existene in parameter spae. A numerial treatment ofthe system will give further insight into its bifuration struture. Following the detailedharaterization of the soliton family, an overview of the interation properties of solitonsas well as of more omplex strutures will onlude the work.





Chapter 2Dissipative optial solitons
2.1 The soliton oneptThe onept of solitons is one of the entral issues of nonlinear physis. In a ratherstrit de�nition, a soliton is a large-amplitude oherent pulse or very stable solitary wave,the exat solution of a wave equation, whose shape and speed are not altered by a ol-lision with other solitary waves 1. Solitons in that sense an be obtained as loalizedsolutions of integrable systems that are desribed by onservative nonlinear partial dif-ferential equations, the most prominent ones being the Korteweg-de Vries equation, thenonlinear Shr�odinger equation, and the Sine-Gordon equation [Rem99℄. In many otherases, exat soliton solutions annot be obtained. However, the qualitative phenomenonof a soliton representing a balane between the e�et of dispersion and that of nonlinearity1is quite ommon. Hene, these solitary waves are often also referred to as solitons.A more phenomenologial de�nition assoiates the term soliton with any solution of anonlinear equation (or system) whih (i) represents a wave of permanent form; (ii) isloalised, so that it deays or approahes a onstant at in�nity; (iii) an interat stronglywith other solitons and retain its identity2.As an extension of the solitons in onservative systems, loalized strutures in dissipativenonlinear systems are alled `autosolitons' [KO94℄ or `dissipative solitons' [AA05℄. Anautosoliton is a steady solitary intrinsi state (eigenstate) of a nonequilibrium system3.Similarly to the onservative ase, the dissipative soliton originates from an equilibriumbetween a nonlinear e�et and a proess that inhibits loalization. In ontrast to theonservative ase, a loalized struture in a dissipative system requires a ontinuous en-1in [Rem99℄, page 112in [DJ96℄, page 153in [KO94℄, page 2



6 Dissipative optial solitonsergy ow into the system, and, in partiular into the loalized struture, in order to keepit "alive"4. Hene, a seond balane, namely that between the energy input and output,has to be ful�lled. As a result, the parameters of autosolitons [...℄ depend entirely onthe parameters of the system, and do not depend on the properties of the initial perturba-tion whih gave rise to this partiular autosoliton in the �rst plae5. Hene, autosolitons[...℄ may be viewed as attrators haraterized by a ertain range of attration. [...℄ Anautosoliton orresponds to an attrator in the on�guration spae - that is, in a spaeeah point whereof is assoiated with ertain funtions whih desribe one of the possibledistributions of the system with respet to oordinates. A system may be haraterizedby several attrators in this omplex on�guration spae, and may therefore host autosoli-tons of di�erent types and shapes. [...℄ Aordingly, the initial perturbation must bringthe system into the range of that attrator whih orresponds to the autosoliton of thedesired type, whih will then form spontaneously after the initial perturbation is swithedo�6. This is in strong ontrast to the onservative soliton, where ontinuous families ofsolutions are formed.Dissipative solitons have found onsiderable interest in a vast variety of systems [Rie99,AA05℄. Among these are hydrodynami systems [LAF96℄, granular media [UMS96℄, gasdisharges [SSBP98℄ and nonlinear optis. The fat that dissipative solitons are observedin physially ompletely di�erent systems suggests that the underlying mehanisms havelarge similarities.In the following setion, a short review will be given on the �eld of dissipative optialsolitons. The qualitative mehanisms and theoretial desriptions that have served as agood model for the understanding of the formation of solitons as well as the experimentalsystems that have given evidene of the existene of solitons are presented in terms oftheir relevane for the oneption of this work.2.2 Dissipative optial solitonsHistorially, optial solitons were onsidered in onservative systems. One type of onser-vative soliton is a soliton that is loalized in time (`temporal soliton'). A typial exampleis a light pulse that is propagating along an optial �ber. Normally suh a wave paketwould spread during propagation due to the dispersion of the medium. This spreadingis ounterated by the ation of a nonlinearity (in the simplest ase, a fousing Kerrnonlinearity, where the refrative index of the material inreases linearly with inreasing4in [AA05℄, prefae5in [KO94℄, page 26in [KO94℄, page 3



2.2 Dissipative optial solitons 7light intensity), whih leads to a self-phase modulation of the pulse. In terms of appli-ations, these temporally on�ned light pulses are interesting for the improvement of thebandwidth of long transmission lines of optial data ommuniation networks.The other type of soliton in the onservative limit is the spatial soliton, whih is a lightbeam that is spatially on�ned in the transverse diretion during the propagation in bulkmedia [KA03℄. Here, the fousing nonlinearity ompensates for the di�rative spreadingthat would normally our. Sine the �rst observation of suh a spatial soliton [BA74℄a wide �eld has evolved. Espeially due to the availability of new media in the lastten years, many types of (far more general) spatial solitons have been disovered andare widely disussed in terms of their appliation in all-optial information systems. Aomprehensive overview on onservative optial solitons an be found e.g. in [KA03℄.The onventional spatial soliton propagates in an essentially lossless medium. A di�erenttype of spatial solitons with its own harateristi features is observed in the dissipativeregime, where gain and losses play an essential role in the formation of transverse stru-tures. The basi idea in the development of the �eld of dissipative optial solitons wasto trap the spatial optial soliton between two mirrors, i.e. in an optial avity, �lledwith a nonlinear medium. These `avity solitons' are self-loalized due to the nonlinearityof the medium like lassial spatial solitons. However, the losses that generally appearin optial avities need to be ompensated by either gain within the nonlinear mediumor an external pump �eld. Atually, even one of the avity mirrors an be ompletelyremoved in suh a situation. The solitons arising in suh single-mirror feedbak shemesare often alled `feedbak solitons'. Due to the need of an energy balane, the dissipativesoliton has a �xed shape and amplitude for the given parameters, being an attrator ofthe dynamis. Nevertheless, a disrete sequene of di�erent dissipative solitons mightexist. This is in strong ontrast to the onservative ase, where ontinuous families ofsolitons are observed. Dissipative spatial solitons are interesting in terms of informationproessing for two reasons: one the one hand they an be ignited and erased by meansof a short light pulse, whih makes them a andidate for an all-optial memory. On theother hand, their position in the transverse plane an be manipulated, e.g. by externalgradients, whih enables data bu�ering in a shift register.2.2.1 Mehanisms leading to soliton formationFrom a theoretial point of view, the phenomenon of self-loalization of dissipative spatialstrutures has been treated using di�erent approahes. They are based on the assumptionof a bistability of two spatially extended states. Those states might be homogeneousstates or patterns. The two most prominent ases will be presented in the following.However, these two approahes are not mutually ontraditive, though their relation is



8 Dissipative optial solitons

stress parameter h

st
at

e 
va

ria
bl

e

0

1

stable homogeneous

unstable pattern

stable pattern

st
at

e 
va

ria
bl

e
spatial coordinate x

a) b)

unstable
homogeneous

Figure 2.1: Solitons in the presene of a subritial modulational instability. a) Shematibifuration diagram. b) Soliton (full line) as a onstituent of an extended pattern (dashed line).not ompletely understood. An overview of the �eld an be found in various reviewartiles and books [FW02, Lug03, PMW03, MT04, DHV04, AA05℄.Solitons in the presene of a subritial modulational instabilityThe �rst approah desribes the formation of solitons in a situation where a homogeneousstate beomes unstable against the formation of patterns [TF88, FT90℄. If the bifurationis subritial, there is a range of the stress parameter where the homogeneous solutionand the pattern oexist (see shemati bifuration diagram in Fig. 2.1a). Depending onthe initial onditions, the system typially approahes one or the other solution in suh abistable situation. However, in a spatially extended system, both solutions an oexist atthe same time. And this �nally leads to the observation of solitons. The soliton typiallyis very similar to a single onstituent of the patterned solution that is embedded into thehomogeneous solution (see Fig. 2.1b). Hene, starting from the homogeneous solution,the system is loally swithed to the patterned solution. This ignition an be ahieved bya loal inrease of the ontrol parameter beyond the point where the homogeneous statebeomes unstable. In optis, this is ahieved by means of a short light pulse. Using an(out of phase) light pulse that lowers the ontrol parameter, a soliton an similarly beerased.Solitons in nonlinear optis that exist in the presene of a subritial modulational instabil-ity have been reported to our in generi equations of the Swift-Hohenberg type [TML94℄,in avities �lled with a Kerr medium [SFM+94℄, optial parametri osillators [TM99,



2.2 Dissipative optial solitons 9Lon97, SSM97℄, semiondutor miroresonators [BLP+97, MPL97, STB+98, TSB+99b℄,avities �lled with a saturable absorber [FS96, BLS96℄ and in single-mirror feedbak ar-rangements using sodium vapor [SFAL00℄ or an eletrooptial devie [NOTT95℄ as thenonlinearity (to name just the pioneering works). In many ases where solitons are pre-dited, the subritial modulational instability is aompanied by a situation of nasentoptial bistability between homogeneous solutions. This situation is haraterized by alarge dependeny of the homogeneous solution on the ontrol parameter. In fat, most ofthe experimentally observed solitons are observed in suh a situation (see below).One or more solitons an be ignited at arbitrary positions, whih makes the system highlymultistable. A single soliton is often surrounded by small-amplitude osillatory tails. Ifthe distane between two solitons is small enough, they an interat via these osillatorytails. As a result, one or more preferred distanes between solitons are observed [BLS96,TSB+99a, SFAL00, GNKT03, BRB05℄. If the system is swithed to the patterned stateover a larger area, i.e. a luster of densely paked solitons, this struture is alled `loalizedpattern' [TML94, CRT00b℄.Solitons move in the presene of spatial (amplitude and/or phase) gradients [RK90, FS96,STB+98, SJMO05, BRB05℄. On the one hand, this is welome in terms of possible ap-pliations. Solitons an be arranged by will using external gradients. On the other hand,spatial gradients are omnipresent in experimental systems due to the always limited sizeof the driving �eld and inhomogeneities within the experimental system.The existene of a disrete soliton family, whose members di�er in the number of radialosillations, is studied in a model of semiondutor miroresonators [MPL97℄. The familyof solitons oexists with multiple simple periodi patterns. The solitons are surroundedby osillating tails.Fronts and solitons in the presene of optial bistabilityThe seond approah leading to the formation of solitons is onneted to the very generalphenomenon of moving domain boundaries that separate two di�erent states of the on-sidered system. The motion of domain boundaries is onsidered, e.g. in reation-di�usionsystems, hydrodynamial systems, population dynamis, baterial growth and many othersystems. A review on these systems an be found in [vS03℄.Front motion has been widely disussed in terms of thermodynamial �rst order phasetransitions. Typially a system is onsidered that is prepared in an unstable state whihthen relaxes to a thermodynamial equilibrium. In suh systems, the motion of domainwalls is well-understood [GMS83℄. Generally, growth laws that desribe the evolution ofthe size R(t) / tx of a domain an be obtained. The growth oeÆient x depends on thephysial system that is onsidered.
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Systems that do not reah a thermodynamial equilibrium after a transient has passed anbe divided into systems where a potential similar to a free energy an be derived (potentialsystems) and systems where suh a potential annot be obtained (nonpotential systems).In both ases, the analysis of suh systems is muh more ompliated, and there is onlya partial understanding of the involved mehanisms [Mer92, CM95, JR97, GSMT98℄.Muh e�ort has been made in models desribing nonlinear optial systems. These willbe disussed below. In some ases, qualitative results an be transferred from the ase ofsystems that reah a thermal equilibrium.In potential systems, an interfae onneting two states will generally move. In a one-dimensional system, the diretion of motion is given by the relative stability of the twostates. The less stable (often alled metastable) state is invaded by the more stable state.The veloity of the front is determined by the energy di�erene of the two states. If thetwo states are energetially equivalent (at the Maxwell point �M), the front will not move.In nonpotential systems, the relative stability of the two states annot be related toan energy di�erene. However, still many phenomena are qualitatively similar to thepotential dynamis. A Maxwell point an be de�ned as the unique parameter valuewhere a front is at rest [Pom86℄. If two-dimensional systems are onsidered, a furtheranalysis relies on the dynamis of urved domain walls (see below).A mehanism based on front motion that leads to the formation of so-alled `di�rativeautosolitons' in optial systems was onsidered �rst in the pioneering works of Rosanov[RK90, Ros91, Ros02℄. A model of an externally driven ring resonator that is �lled
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Figure 2.3: Solitons in the presene of optial bistability. a) Front motion (dotted line) andstabilization of solitons (full line) due to loking fronts. b) Seond order soliton. ) dark solitonwith a nonlinear medium whih is modelled as a two-level system is onsidered. Thisdissipative system shows bistability between two homogeneous states that di�er fromeah other in their intensity and show an S-shaped harateristi urve (see shematiurve in Fig.2.2). In a spatially extended system, those two states an be onnetedby a `swithing front' within the bistability range. In a one-dimensional system, theswithing front will generally move due to the nonequivalene of the two homogeneousstates (dotted line in Fig. 2.3a). If two swithing fronts approah eah other, they willtypially annihilate and leave the system in the homogeneous state that is more stablefor the given parameters. However, in optial systems, di�erent points in the transverseplane are oupled via di�ration. Due to this di�ration, the swithing front will typiallybe surrounded by osillatory tails. Solitons an emerge if, in a one-dimensional piture,two swithing fronts approah and start to interat via the nonmonotoni tails. Due tothis interation, the motion of the fronts may stop and lead to a stable loalized struture(full line in Fig. 2.3a). This `loking' mehanism is most probable for low front veloities,i.e. near the Maxwell point of the system (Fig. 2.2). Hene, the driving intensity rangewhere stable solitons are observed inludes the Maxwell value. The osillatory tails ofteninlude more than one osillation period. Hene, the loking proess an take plae atdi�erent spatial separations of the fronts, whih leads to the observation of so alled`exited' or `higher-order' solitons (see seond-order soliton in Fig. 2.3b). Together withthe single peaked fundamental soliton that has been disussed up to now, a disrete familyof solitons emerges. The stability regions of the higher order-solitons are still loatedaround the Maxwell point. However, they are smaller due to the deay of the osillatory



12 Dissipative optial solitonstails with inreasing distane from the front. There are two types of solitons in systemsthat have two nonequivalent homogeneous solutions. A bright soliton is haraterized bya high-intensity peak on a low-intensity bakground, while a dark soliton is a dark spotsurrounded by an intense light �eld (Fig. 2.3). Those two types of solitons have di�erentproperties due to the nonequivalene of the two homogeneous states.Dissipative solitons are also predited to our in bistable ative systems like lasers witha saturable absorber. A review on those strutures an be found in [Ros02℄. These lasersolitons are often haraterized by a point in the transverse plane where the intensityvanishes and the phase has a singularity. The phase variation along a losed path aroundthis point is given by multiples of 2�. These `topologially harged' solitons show adi�erent interation behavior than their unharged ounterparts but will not be onsideredfurther.In more reent theoretial papers by Coullet et al. [CRT00b, CRT00a, CRT04℄, also thesolitons that exist in the presene of a subritial modulational instability (whih weredisussed in the preeding setion) have been interpreted in terms of front dynamis.A front that onnets the homogeneous state with the patterned state is onsidered .Within the bistable range, also this front will generally move. However, due to the high-amplitude osillations within the pattern, the addition or removal of a single onstituentof the pattern requires a ertain amount of energy. As a result, a loking phenomenon isobserved [Pom86℄. There is a �nite range of the ontrol parameter, where single solitonsand lusters of solitons (that an also be interpreted as loalized patterns) are stable.Around this loking range, single onstituents are added or removed from the luster. Instrit terms, the results of Coullet apply only in one spatial dimension. However, to aertain extent, they are also valid in two-dimensional systems. The resulting sequeneof n-peaked loalized states has been numerially on�rmed in 1D and extended to twodimensional systems in [MFOH02℄. These results show that a relation between one andthe other interpretation of solitons exists.2.2.2 Fronts, domains and solitons in the presene of two (nearly)equivalent statesAn interesting situation that has attrated a lot of interest in reent years is the situa-tion where two (nearly) equivalent homogeneous states exist due to a symmetry-breakingpithfork bifuration (see Fig. 2.4a). Depending on the onsidered system, the two statesdi�er in their phase or polarization properties. However, they are equivalent from an `en-ergeti' point of view. As a result of this equivalene, the system is always at the Maxwellpoint independently of the ontrol parameter. Hene, straight fronts that onnet thetwo states will not move. It an be expeted that soliton formation is simpli�ed in suh
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Figure 2.4: Solitons in the presene of a pithfork bifuration. a) shemati bifuration dia-gram. b) `positive soliton'. ) `negative soliton'a situation.Pithfork bifurations are frequently enountered in di�erent theoretial models on-neted to transverse nonlinear optis. This inludes unspei� model equations like theSwift-Hohenberg equation [SMS97, OF96, SSM98b℄ and the parametrially driven om-plex Ginzburg-Landau equation[GCOM01, TM98, GCOSM04℄. Another lass of widelystudied prototype systems are mean �eld models of a degenerate optial parametrial os-illator [THS97, Lon97, SSM98a, OSF99, OSSB00, OSF01, TMLB+00, GCSM+03℄, alsonon-mean-�eld models have been studied [BRT00℄. In these models, a pithfork bifura-tion of the signal �eld is observed whih is due to a phase indetermination. The bifura-tion leads to two equivalent solutions that di�er in phase by �. A similar phenomenonis observed in intra-avity seond harmoni generation [PMEL98℄. Another system thatexhibits a pithfork bifuration is a avity that is �lled with a vetorial generalizationof a Kerr medium [GMT00, GCSM+03℄. Here, bistability is due to a polarization insta-bility that leads to two equivalent homogeneous states that di�er in the heliity of thepolarization.Though a front onneting two equivalent states will not move in one-dimensional models[THS97℄, this is not true in two-dimensional systems. In a two-dimensional system, afront typially has a ertain urvature � = 1=R. The urvature of a front will lead to amotion of the front, where the veloity inreases with the urvature. This mehanism isoften interpreted to be similar to a line-tension whih is the two-dimensional equivalentof a surfae-tension. Curvature-driven front motion is desribed in [SSM98a, SSM98b,OSF99, OSF01, GMT00, GCOM01, GAGW+03, GCOSM04, BRT00, TMLB+00℄. In



14 Dissipative optial solitonsmany systems [OSF99, GMT00, GCOM01, GAGW+03, GCOSM04℄, the normal veloityof the front is given by its loal urvature: v = ��, where  is a oeÆient thatdepends on the parameters. Often the dynamis of a large irular domain of radius R ofone solution embedded into the other one is onsidered. The resulting dynamis is givenby dR(t)=dt = �=R and a growth law is obtained : R(t) / t0:5. It has been shown thatthis exponent, originally valid for systems that reah a thermodynamial equilibrium withnononserved order parameters [GMS83℄, applies to a very general lass of systems outof the thermodynami equilibrium [GCOM01℄. It has been argued that di�erent growthexponents that have been reported [BRT00, TMLB+00℄ are non-asymptoti [GCOM01,Gom03℄. Depending on the sign of , a irular domain will either ontrat and disappear( > 0) or expand ( < 0), whih leads to the observation of labyrinthine patterns[SSM98a, GMT00, GAGW+03℄.In many ases, a ontrating irular domain will disappear due to the pronounedurvature-driven motion. This ontration might be stopped by the interation of osilla-tory tails that surround the front, whih are omnipresent in optis due to the di�rativespatial oupling. As a result of this interation, solitons are observed in parameter re-gions where urvature e�ets are small (small  [GMT00℄) or spatial osillations are verypronouned. Another proposal [Cou02, GCOSM04℄ to stabilize solitons is to ompensatefor the urvature-driven ontration by the introdution of a small asymmetry of the un-derlying pithfork bifuration. Due to the resulting imbalane of the homogeneous states,the preferred state will have a tendeny to expand, whih might slow down or even stopthe urvature-driven motion at a ertain domain radius. The domain dynamis shouldthen be governed by dR(t)=dt = �=R + i, where i depends on the asymmetry of thebifuration and denotes the veloity of a straight front.The fundamental soliton in systems with pithfork bifuration are often referred to as `darkring avity solitons', whih is due to the appearane of the soliton in the total intensitydistribution of the light �eld. In many of the studied ases the fundamental soliton isaompanied by higher order solitons [SSM98a, PMEL98, OSF99, OSF01, GAGW+03℄.A type of soliton whose stability relies purely on urvature e�ets has been preditedand named `stable droplet' [GCOM01, GAGW+03, GCOSM04℄. Due to the symmetryproperties of the system, every soliton is aompanied by an inverse ounterpart withequal properties. Only the roles of bakground and target state are interhanged. Hene,one might all them `positive' (Fig. 2.4b) and `negative' (Fig. 2.4) solitons in ontrastto the bright and dark solitons in systems with nonequivalent homogeneous states thatdi�er from eah other signi�antly.Up to now, the disussion has been restrited to systems where the state variable of afront onneting the two equivalent states vanishes at a ertain point (`Ising front'). In



2.2 Dissipative optial solitons 15reent years, a phenomenon alled `nonequilibrium Ising-Bloh transition' has gained a lotof interest. If the state variable of the onsidered system is omplex-valued, a front thatonnets two equivalent solutions does not neessarily inlude a point where both, realand imaginary part vanish, but might have a hirality (`Bloh front') [CLHL90, MPL+01℄.While an Ising front is at rest if the two states it onnets are equivalent, a Bloh front willmove into a diretion that is determined by the hirality of the front. A riterion for theonset of a transition from an Ising to a Bloh front was formulated and demonstrated in amodel of intraavity seond-harmoni generation in [MPL+01℄. An Ising-Bloh transitionwas also found in optial parametri osillation [VPAR02℄ and the ontrol and steering ofdomain walls has been disussed [PASRV04℄.2.2.3 Experiments on fronts and solitons in nonlinear optisThough the large amount of theoretial studies has shown that the ourrene of spatialdissipative solitons is a quite general phenomenon in nonlinear optis, the number ofexperiments that have given evidene of the existene of these strutures is rather limited.The next setion is dediated to giving a short overview of these experiments.Laser with saturable absorberTaranenko et al. desribe the existene of a loalized state in a laser avity with saturableabsorber [BTV92, TSW97℄. Due to a global oupling mehanism only one loalized stateexists at a time. If another loalized state is ignited, the �rst one disappears. The motionof a loalized state in an external gradient is demonstrated. The solitons are interpretedto be due to the bistability between two homogeneous states.Semiondutor miroresonatorsIn passive resonators onsisting of multiple quantum wells enlosed in a Bragg resonator,the existene of bright and dark solitons has been demonstrated [TGKW00, TGKW01,TW02℄. Depending on the parameters, solitons exist either on a homogeneous or a pat-terned bakground. In both ases, the stability of the solitons is interpreted to be dueto the loking of fronts. In addition, the individual swithing of single onstituents of ahexagonal pattern is demonstrated. Ignition and erasure of loalized strutures by meansof a oherent addressing beam is shown. Even inoherent swithing is possible. How-ever, the erasure proess relies on thermal e�ets that are undesired. The aspet ratio ofthe experiments was quite limited. Hene, the observed strutures are slightly boundarydependent.



16 Dissipative optial solitonsThe generation of avity solitons in broad-area vertial-avity surfae-emitting lasers (VC-SELs) is very appealing for possible appliations. Due to the large aspet ratio of thesedevies, a large number of avity solitons ould be obtained in priniple. However, in-homogeneities within the devies ompliate the observation of avity solitons. The �rstproof of avity solitons in VCSELs desribed the ontrolled ignition and erasure of twoavity solitons [BTB+02℄. They are observed in a devie that is eletrially pumped loseto but below the lasing threshold. A holding beam is injeted, and swithing is providedby oherent superposition with a foused addressing beam. The observed avity solitonsare interpreted to be related to a subritial modulational instability. They exhibit in-dependene and mobility despite the imperfetion of the devies [HBF+04℄. Currentlypromising attempts are being made towards the realization of a `avity soliton laser' thatdoes not require external optial driving [Ak06℄.Single-mirror feedbak with sodium vaporSh�apers et al. analyzed solitons in a single-mirror feedbak arrangement using sodiumvapor as the nonlinear medium [SFAL00, SAL01, Sh01, SAL02, SAL03℄. The experi-mental setup is similar to the one that is onsidered in this work. However, due to thevariability of the nonlinearity of sodium vapor, the solitons observed by Sh�apers areentirely di�erent from the ones reported here, as will be shown. The sodium vapor is irra-diated by irularly polarized light and is exposed to an external oblique magneti �eld.Under these onditions, a nonmonotoni response of the vapor is observed when the inputintensity is inreased [SAL02℄. Loalized states appear in parameter regions where a sub-ritial modulational instability leading from a homogenous state to hexagonal patternsis observed. At the same time, the system is in the situation of nasent optial bista-bility. Due to the nonlinear properties of the sodium vapor, robust inoherent swithingof solitons by means of a irularly polarized addressing beam is possible [SAL02℄. Inneighboring parameter ranges, solitons are spontaneously generated. Solitons arrange inlusters that inorporate several preferred distanes between the single entities [SFAL00℄.The shape of the solitons oinides well with a single onstituent of the oexisting hexag-onal patterns, whose wave number orresponds well with the di�erent preferred distanesbetween the solitons [SAL03℄. The solitons are shown to be stable due to a self-induedlens that warrants positive loalized feedbak [SFAL00, SAL03℄. External gradients asthey are indued by the Gaussian input beam lead to a motion of the solitons whih ometo rest at a ertain distane from the beam enter. By imprinting arti�ial gradients onthe system, proof-of onept is given to appliations like an all-optial memory and abu�er register [SAL01℄.



2.2 Dissipative optial solitons 17Single-mirror feedbak in an eletroopti systemAn intensively analyzed system exhibiting loalized strutures uses an eletroopti devieas the nonlinearity [KST96, SKTT97, KTT98, RDBA00, Res05, BCF+06℄. This LiquidCrystal Light Valve (LCLV) is omposed of a liquid rystal layer, a dieletri mirror anda photoondutor that is sandwihed between two transparent eletrodes [NOTT95℄. Itats as a onverter from spatial intensity distributions to spatial phase modulations.In the experiment, the input light �eld is �rst reeted at the `read side' of the devie,thereby being modulated in phase. Then the light �eld propagates along a ertain distaneand is then direted onto the `write side', thereby losing a feedbak loop. This setup anbe interpreted as a realization of the single-mirror feedbak sheme [Fir90, DF91, DF92℄that is also the basis of the experiment presented in this work.Solitons appear as intensity peaks on a homogeneous bakground. They are interpretedas a onstituent of a oexisting hexagonal pattern. Swithing of individual solitons and alarge variety of ontrol and foring mehanisms whih use parameter gradients or �lteringtehniques have been demonstrated [RBB+02, GKNT02, GNKT03, GZD+05℄.In a reent experiment, the bistability of two di�erent loalized strutures has been re-ported [BPR+04℄. In addition to the standard single peaked soliton a stable triangularloalized state is observed. These solitons are interpreted to our as pathes of two dif-ferent patterns evolving from two oexisting branhes. In another experiment, the spon-taneous nuleation of loalized peaks is shown in a situation where bistability betweentwo patterns that have di�erent amplitudes is present [BRR05℄.Cler et al. [CNP+04℄ study the dynamis of fronts in a LCLV in the situation wherethe harateristi urve is S-shaped and onnets two nearly homogenous, bright anddark, states. Qualitative evidene is given that a two-dimensional bright domain shrinksbelow a kind of Maxwell point and inreases above that point. However, the dynamis isinuened by urvature e�ets. To minimize these e�ets, a quasi one-dimensional systemis prepared and the front veloity is determined, delivering the Maxwell point.Intraavity four-wave mixingThe only optial experiment that onsiders the ase of two equivalent homogeneous statesthat emerge from a pithfork bifuration is a degenerate intraavity four-wave mixing ex-periment that uses a photorefrative rystal (BaTiO3) as the nonlinear medium. As thefour-wave-mixing proess is phase sensitive, the two homogeneous states di�er in phaseand are separated by a phase di�erene of �. The authors of the �rst paper onsider-ing this experiment [TSW98, WVS+99℄ desribe the appearane of domain boundariesonneting these two homogenous states. Depending on the detuning of the resonator,



18 Dissipative optial solitonsdi�erent spatial strutures are observed experimentally and numerially. For small de-tuning, domain dynamis is observed and the domains shrink and disappear. At largedetunings, the domains grow. Asymptotially this leads to the formation of labyrinthinepatterns. At intermediate detunings, the shrinkage of domains leads to the formationof stable loalized spots that are interpreted as spatial solitons. The temporal evolutionof the boundary length of arbitrarily shaped domains is haraterized and domain on-tration as well as time-independent solitary solutions are presented [TZWW99℄. Thestabilization of solitons is interpreted to be due to the loking of osillatory tails. Theoverall hange of the properties of the system with the ontrol parameter on�rms thepreditions in [SSM98a, SSM98b℄ and shows similarities to the situation in [GMT00℄.In reent experiments, the dynamis of domain walls was studied. Speial emphasis waslaid on the haraterization of an Ising-Bloh transition. Larionova et al. [LPEM+04℄ gaveevidene of the existene of Ising and Bloh fronts and showed that a relation between theurvature, the type and the veloity of a front exists. An experiment by Esteban-Martinet al. [EMTG+05℄ shows a ontrolled Ising-Bloh transition in a quasi one-dimensionalsystem where urvature e�ets are suppressed by means of a Fourier �ltering tehnique.In this experiment, domain walls an be injeted, erased and positioned in a ontrolledmanner by means of an addressing beam [EMTRV05℄.2.3 The single-mirror feedbak arrangement withsodium vapor2.3.1 Motivation of this workIn the past years, knowledge of spatial dissipative solitons has rapidly inreased. Nev-ertheless there are some very entral questions that remain open from the experimentalpoint of view. Despite of the large number of theoretial works that predit the existeneof a disrete family of dissipative solitons, only the fundamental soliton has been observedexperimentally. The �rst goal of this work is to prove the existene of suh a soliton fam-ily experimentally. It an be expeted, that the ourrene of a soliton family is moreprobable in systems that an be desribed in the framework of loking fronts that existin the presene of two (nearly) homogeneous solutions than in systems where solitons areobserved in the presene of a subritial modulational instability. An espeially promisingsituation is the one where front veloities are low over a wide range of parameters. Asit has been desribed, suh a situation is quite naturally given in systems that displaya pithfork bifuration to two equivalent states. A straight front should rest in suh asituation. In two-dimensional systems, the urvature of the front is expeted to have an
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inuene on the front dynamis. However, urvature-driven dynamis has not been ex-perimentally analyzed in detail yet. Therefor, a omprehensive haraterization of frontdynamis in two-dimensional systems, inluding the phenomenon of loking fronts, is theseond main goal of this work.Though in priniple optial systems with pithfork bifuration are promising andidatesfor the analysis of front motion and soliton formation, their experimental realization isoften not pratiable. Up to now, only the desribed four-wave mixing experiment hasgiven evidene of a (fundamental) soliton and domain dynamis in general. Thus, moreexperimental work on systems with pithfork bifuration would be desirable.In this setion, the basi onept of an experiment will be presented whih seems to be anappealing andidate for a systemati analysis of the open questions. First, the theoretialonept behind the single-mirror feedbak arrangement will be illustrated. Afterwards,the hoie of the nonlinear medium and modi�ations of the standard sheme will beeluidated, and an overview of the previous results obtained in this experiment will begiven.2.3.2 Basi oneptThe single mirror feedbak arrangement was introdued by d'Alessandro and Firth [Fir90℄as a model system for optial pattern formation whose theoretial desription is on-eptually simple. Originally designed for the observation of simple periodi patterns



20 Dissipative optial solitons[DF91, DF92℄, it has developed to a workhorse for the investigation of optial strutures.Espeially the most systemati experiments on dissipative solitons were onduted in re-alizations of the single-mirror feedbak on�guration (see previous setion). The basisheme of the single-mirror feedbak arrangement is depited in Fig. 2.5. It onsists of athin slie of an optially nonlinear medium and a plane feedbak mirror at a distane d.A light �eld that is assumed to be a plane wave is injeted into the medium. The portionof light that is transmitted by the medium then propagates towards the feedbak mirrorand is fed bak into the medium after having propagated over the distane 2d.Dissipative spatial strutures originate from the interplay of a nonlinearity with some kindof spatial oupling. The main advantage of the single-mirror feedbak arrangement thatleads to a signi�ant simpli�ation of the theoretial desription is the spatial separationof nonlinear interation and spatial oupling. The thikness of the medium in the diretionof light propagation L is assumed to be small. Under this assumption, the di�ration oflight within the medium an be negleted, and only the nonlinear interation betweenlight �eld and medium has to be taken into aount. Contrary to the situation withinthe medium, no nonlinearities our during the propagation of the light �eld towards themirror and bak. Here only di�ration has to be taken into aount.A further simpli�ation is given by the assumption of instantaneous feedbak whih ne-glets the delay indued by the �nite speed of light. This assumption is ful�lled by thehoie of a nonlinear medium that relaxes on a signi�antly slower timesale than theround trip time. Furthermore, a di�usive spatial oupling within the medium is assumedthat washes out the standing wave pattern that is indued by the interferene of theforward and bakwards propagating light �elds.D'Alessandro and Firth analyze a single-mirror feedbak arrangement with a Kerr-typenonlinearity. This is a medium without absorption whose refrative index varies linearlywith inreasing light intensity. In the following, a fousing nonlinearity is assumed, wherethe refrative index inreases with the light intensity. If the input intensity is inreased,at a ertain threshold intensity a spatially extended pattern with hexagonal symmetryemerges spontaneously. The ourrene of periodi patterns in a single-mirror feedbakarrangement an be explained by means of the Talbot e�et [Tal36℄. This linear optiale�et desribes the periodial onversion of a light �eld that is transversally modulatedin phase into a light �eld that is amplitude modulated and bak due to di�ration. Thedistane where the light �eld is reovered in its original state is alled Talbot length andis given by zT = 4�k0q2 ; (2.1)where k0 is the wave number of the light �eld in the diretion of propagation and q the wave



2.3 The single-mirror feedbak arrangement with sodium vapor 21number of the transverse modulation. After a propagation distane of tT=4, a onversionbetween phase and amplitude modulation is aomplished, whereas the modulations inplanes that are separated by zT=2 are transversally shifted in phase by a half wavelength.In the single-mirror feedbak arrangement, utuations within the medium indue broad-band spatial modulations of the refrative index. The light �eld that is transmitted bythe medium will be modulated in phase. During the following propagation, due to theTalbot e�et, the phase modulation will by transferred into an amplitude modulation.For ertain Fourier omponents of the transverse spatial modulation, the orrespondingpropagation distane mathes 2d. If the spatial phase of the intensity modulation of thatFourier omponent mathes the one of the orresponding original modulation of the re-frative index, the latter an grow due to the nonlinearity of the medium. Thus, startingfrom an in�nitesimal utuation within the medium, this mehanism leads to a growth ofa marosopi transverse refrative index pro�le. Due to the di�usive damping within themedium, the struture that evolves will have the lowest resonant wave number. The shapeof the evolving pattern annot be predited by the Talbot e�et. It will be determinedby the nonlinear interation of the evolving Fourier modes.If di�erent nonlinearities are onsidered, the onditions for a positive feedbak are hanged.The orresponding wave numbers are given byq2n = �(n� 1) + l4� 2�k0d with n 2 N : (2.2)If purely dispersive media are onsidered positive feedbak for a fousing medium is pro-vided for l = 1, while a defousing medium (refrative index dereases with inreasingintensity) requires l = 3. In the ase of absorptive media, a saturable absorber (absorp-tion oeÆient dereases with inreasing intensity) gets positive feedbak for l = 4, whilea limiting absorber (absorption oeÆient inreases with inreasing intensity) requiresl = 2. In general, nonlinear media exhibit a mixed nonlinearity. Therefor the Talbote�et gives only a rough estimate of the length sale to be observed.2.3.3 Sodium vapor as the nonlinear mediumThe single-mirror feedbak arrangement does not only represent a oneptually simplestruture-forming system from the theoretial point of view. Also the setup of experimentsthat an be taken as a realization of a single-mirror feedbak sheme is omparativelysimple. Over the last �fteen years, single-mirror arrangements using very di�erent typesof nonlinear media have been realized [Hon93, TBWS93, TNT93, PRA93, GMP94, AL94,DSS+98℄. Eah of them has its advantages, like e.g. low threshold intensities, nearly
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Figure 2.6: Kastler diagram of the sodium D1 transition.
Kerr-type nonlinearity or onvenient timesales. In this work, sodium vapor is used asthe nonlinear medium.The nonlinearity of sodium vapor is signi�antly di�erent from the Kerr-type media dis-ussed in the preeding setion. It is provided by optial pumping [Kas50℄. The nonlin-earity has both a dispersive as well as an absorptive harater. The dominating e�etis hosen by the parameters. From the experimental side, the use of sodium vapor hasthe big advantage that atomi vapors an be prepared with a high optial quality. Fur-thermore, the nonlinear optial properties of the vapor an be manipulated in variousways by well-ontrolled external parameters. From the theoretial side, the use of sodiumvapor o�ers the advantage that a well-established mirosopi model for the light-matterinteration exists that has been derived by the density matrix formalism from quantummehanis [MDLM86℄. For the D1 lines of alkali metal vapors the orresponding equationsredue to a simple form and allow for an analytial and numerial treatment.The sodium vapor is prepared in a bu�er gas atmosphere of nitrogen, whih leads toa homogeneous broadening of the D1 line that is signi�antly larger than the hyper�nesplitting and the Doppler broadening. Under these onditions, the D1 transition anbe treated as a homogeneously broadened J = 12 ! J 0 = 12 transition. This approahhas proven suessful in many preeding works that onsider transverse e�ets [LA98,LAA+99, AL01, LAAB98, Ak96, Gah96, Aum99, Sh01, GW02, Hun06℄.Optial pumping [Kas50℄ is illustrated in a Kastler diagram of the transition in Fig. 2.6.Without the presene of a light �eld, the Zeeman substates will be equally populated.



2.3 The single-mirror feedbak arrangement with sodium vapor 23If a �+ polarized light �eld is applied, it will ouple only to the Zeeman substate withmJ = �12 due to seletion rules. Transitions to the mJ = 12 exited state will take plae.From this state, the system relaxes into both substates of the ground state (though notwith equal probabilities). As a net e�et, a population di�erene between the Zeemansubstates is indued. The normalized population di�erene (ranging from -1 to +1) isalled orientation w. This orientation determines the nonlinear optial properties of thevapor, i.e. its nonlinear suseptibility � for �+ (+) and �� (-) polarized light:��(w) = �lin(1� w) (2.3)Here, �lin is the linear suseptibility. For any nonvanishing orientation, the suseptibilitiesfor the irularly polarized light �elds di�er from eah other. Sine the ollision-induedrelaxation rate  of the Zeeman substates of the ground state towards the thermal equi-librium is small, optial pumping is very eÆient and an ompletely empty the substatethat ouples to the light �eld at very low light intensities. In this situation, the vaporbeomes transparent for the light �eld, i.e. the nonlinearity of the vapor is saturable. Itis known, however, that spatial strutures do not appear in a saturated medium [Ak96℄.Therefor a mehanism has to be indued that prevents the medium from being saturated.In many preeding works, an external transverse magneti �eld has been used, whihindues transitions between the Zeeman sublevels and ats like a damping mehanism[ALHL95, SFAL00, HAL04℄. Another possibility is the introdution of a seond irularpolarization omponent with opposite heliity (�� light). It will ouple to the substateof the ground state with mJ = 12 only and provide optial pumping into the opposite di-retion (see Fig. 2.6). In the single-mirror feedbak arrangement, the seond polarizationomponent an be inluded in the input �eld by the use of either elliptially or linearlypolarized light. If the light �eld is hosen to be linearly polarized, it ontains equal por-tions of �+ and �� light. No net pumping ours in this situation, the orientation stayszero. However, a so-alled polarization instability an take plae, where the linear po-larization beomes unstable against the generation of new polarization omponents. Insuh a situation, square patterns were observed at threshold [ABL+97℄. If an elliptiallypolarized light �eld is used, the system loses its symmetry due to the preferene of oneirular polarization omponent and a transition to hexagons is observed [ABL+97℄.A seond irular polarization omponent an also be introdued into the system by pla-ing a polarization-hanging element in the feedbak loop of the single-mirror feedbakarrangement. In an experiment with linear input polarization and a quarter-wave-platein the feedbak loop, eightfold quasipatterns were observed [AAGWL02℄. If a iru-larly polarized input is used in ombination with a quarter-wave plate in the feedbakloop, seondary bifurations leading from hexagonal patterns to twelvefold quasipatterns



24 Dissipative optial solitons

w>0 w>>0

linear rotated
linear

linear   +      s+

slow axis

fast
axis

x

Figure 2.7: Mehanism of the polarization instability. See text for explanation.
[HGWA+99℄ and superlattie [GWHAL03℄ patterns are observed.2.3.4 Single-mirror feedbak with �=8 retardation plateAlready in 1984, a single-mirror feedbak arrangement with sodium vapor and a �=8retardation plate in the feedbak loop has been analyzed by Yabuzaki et al. [YOKO84℄.In this work, the transverse spatial dimensions have been negleted. Reently, this systemhas been reonsidered by Gro�e Westho� et al. [GWKL+00℄ with respet to transversee�ets. These experiments provide the basis of the experiment in this work.Both works onsider a linear input polarization. After the beam is transmitted throughthe ell, it passes the �=8 plate, propagates towards the feedbak mirror and is reetedbak into the medium, again passing �=8 plate. The double transmission of the �=8 plateis equivalent to a single pass through a quarter-wave plate. Hene, as long as the linearpolarization is not aligned with one of the optial axes of the wave plate, the light �eldthat is fed bak into the medium will be elliptially polarized. The imbalane of theirularly polarized omponents of that light �eld will lead to optial pumping within themedium.Yabuzaki et al. studied the observation of optial bistability due to a symmetry-breakingpithfork bifuration. The mehanism that leads to the polarization instability is depitedin Fig. 2.7. For simpliity, a pure dispersive nonlinearity of the sodium vapor is assumed.The slow optial axis of the wave plate is assumed to be aligned with the diretion of



2.3 The single-mirror feedbak arrangement with sodium vapor 25polarization of the linearly polarized input light �eld. Hene, no optial pumping oursif the orientation is zero. If, however, a small perturbation of the orientation is assumed(a positive perturbation is onsidered here), the irularly polarized omponents of theinput light �eld experiene a nonlinear phase shift that is of opposite sign for the di�erentheliities. In the piture of linear polarizations, the polarization vetor of the light �eldthat is transmitted by the vapor is rotated by a (positive) angle �. At this point, the ationof the quarter-wave plate omes into play. Sine the polarization vetor is not alignedwith the optial axis of the wave plate anymore, the light �eld that is reeted into themedium will be elliptially polarized. This light �eld an be divided into a omponentof linearly polarized light (whih does not lead to optial pumping within the medium)and a omponent of irularly polarized light. In the ase onsidered here, an exess of�+ light is produed, whih leads to an optial pumping proess that enhanes the initialperturbation of the orientation distribution. The orientation as well as the polarizationrotation angle inreases further. In the same manner, a negative perturbation of theorientation is ampli�ed, whih results in a marosopi negative orientation and a negativepolarization rotation angle �. The mehanism is ompletely symmetrial to the ase withpositive orientation.At j�j = 45Æ, the feedbak �eld is purely irular, whih results in an optimal optialpumping. If the polarization angle exeeds rotation angle of j�j = 45Æ, optial pumpingis redued again whih leads to a saturation of the polarization rotation.If the input power is inreased from zero, the linear input polarization beomes unstabledue to the desribed mehanism at a ertain threshold, whih is essentially given by thelosses within the medium. The bifuration of the system leads to the observation of twoequivalent states with positive and negative orientation. A similar bifuration diagram isshown in Fig. 2.4a. The observed bifuration has been interpreted as a pithfork bifur-ation [YOKO84, GWKL+00℄. In priniple, both branhes should be hosen with equalprobabilities if the threshold is rossed. In the experiment, the perfet symmetry-breakingbifuration is observed only in a lose approximation. This is due to the strutural instabil-ity of this type of bifuration. A disturbed pithfork bifuration is observed if the optialaxis of the wave plate is not perfetly aligned with the input polarization [YOKO84℄. Inthis situation, one of the two states is preferred and is always hosen by the system ifthe input power is inreased from zero. The branh an be hanged by rotating the waveplate bak and forth about an angle of 90Æ. Also a hange of branhes by means of airularly polarized seond laser beam that overompensates the optial pumping proessis theoretially onsidered [YOKO84℄.If transverse spatial e�ets are onsidered, it turns out that the pithfork bifuration leadsto two spatially homogeneous solutions. If the input power is inreased by two orders of



26 Dissipative optial solitonsmagnitude, a modulational instability is observed on both branhes of the pithfork bifur-ation [GWKL+00℄. At a ertain threshold power, the system displays hexagonal patternswhih are again equivalent and di�er only in the sign of the orientation distribution. Theappearane of hexagons is due to the broken inversion symmetry of the system when thepithfork bifuration has already ourred. In swith-on experiments, where the inputpower is inreased from zero to a value above the threshold for pattern formation, typ-ially one of the hexagonal patterns is observed. In some ases, a pattern is observedwhih onsists of a polarization front that onnets two domains of opposite elliptialpolarization.Gro�e Westho� et al. also analyze the situation where the fast axis of the wave plate isaligned with the input polarization. In this ase, the input polarization is stable, sineutuations of the orientation experiene negative feedbak. The inversion symmetry ofthe system is maintained. Also in this situation, a modulational instability is observedthat leads to the observation of triangular or rhombi patterns. The experimental �ndingsare well reprodued by an analytial as well as a numerial treatment of the mirosopimodel.In onlusion, the single-mirror feedbak sheme with sodium vapor and �=8 wave plateseems to be appropriate for a systemati analysis of the open questions that were givenin the beginning of this subsetion. The previous works [YOKO84, GWKL+00℄ as well aspreliminary numerial simulations [GW03℄ have indiated that this system ful�lls manyof the prerequisites that are expeted to play a fundamental role in the formation of suhstrutures. First, the system displays a symmetry-breaking pithfork bifuration to twoequivalent homogeneous states. An imperfetion of this bifuration that is onsidereduseful for the modi�ation of front dynamis an be introdued in a well-ontrolled way.Furthermore, it has been shown in previous works that the possibility to use an inoherentaddressing beam in the sodium system results in robust swithing between bistable states.This should simplify the preparation of domains and solitons. The ourrene of a mod-ulational instability within the aessible parameters range is a further phenomenon thatmay help to provide front loking due to spatial osillations. In addition, the observedexperimental phenomena an be ompared to theoretial results that an be obtainedthanks to the availability of a well-established mirosopi model.



Chapter 3Experimental setup
3.1 OverviewAn overview of the experimental setup is shown in Fig. 3.1. It onsists of three buildingbloks that have to meet ertain requirements resulting from the aim of the experiment:� Beam preparationFor the observation of solitary strutures, it is neessary to have two laser beams.The 'holding beam' ontains most of the input power and drives the nonlinearitiesof the vapor in a spatially extended region, whereas the 'addressing beam' is usedto inrease the laser power loally to ignite and erase solitary strutures. Bothbeams need to be ontrolled in their power, polarization, frequeny and beam pro�leindividually.� Single-mirror feedbak arrangementThe single-mirror feedbak arrangement is the enter part of this experiment. Itonsists of a nonlinear medium, in this ase sodium vapor in a nitrogen bu�er gas
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Figure 3.1: Overview of the experimental setup.



28 Experimental setupatmosphere, a �/8 retardation plate and a plane feedbak mirror. The sodium vaporneeds to be prepared in a way that the assumptions made in the derivation of themirosopi model are ful�lled as exatly as possible.� Analysis setupThe light that is transmitted by the feedbak mirror is used for the analysis of thestrutures emerging from the single-mirror feedbak arrangement. The polarizationof the light �eld will play an important role in understanding the mehanisms in-volved. Camera systems in general are not sensitive to polarization. Therefor thelight �eld has to be analyzed in its polarization properties before imaging it ontoameras. The apabilities of the imaging system have to be adapted to the phe-nomenon to be observed. For the observation of stationary strutures the imageshave to have a high resolution in spae and intensity levels, while for the observa-tion of dynamial proesses an imaging system with a high temporal resolution isrequired.The di�erent parts of the setup will be disussed below. Many parts of the experimentalsetup have already been used and desribed in previous works [Ak96, Aum99, Sh01,GW02, Hun06℄. These parts will be only briey desribed.3.2 Beam preparation3.2.1 Light soureThe preparation of the laser beams used in the experiment is shown shematially inFig. 3.2. The laser beam is reated by a w dye laser (Spetra-Physis 380D) usingRhodamine 6G solved in ethylene glyol as the dye. It is pumped by a diode-pumpedfrequeny-doubled solid state laser (Spetra-Physis Millennia Xs) operating at 532 nm.In the �rst experimental sessions an argon ion laser (Spetra-Physis 2030T-15) operatingon the 514 nm line has been used. From a pump input power of 6 to 6.5 W the dye laserprodues an output power of up to 950 mW at the desired wavelength.The frequeny of the dye laser an be ontinuously tuned in the viinity of the sodium D1line (�=589.6 nm). The laser is equipped with an ative ontrol loop (Stabilok, Spetra-Physis 388), whih stabilizes the laser frequeny to the slope of a transmission peakof a temperature stabilized referene Fabry-Perot interferometer (FPI). By means of thisstabilization, short-term frequeny utuations are redued to �5 MHz within one seond.A seond temperature stabilized FPI with a larger free spetral range is used to detetand orret frequeny jumps of one or more free spetral ranges of the referene FPI.
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Figure 3.2: Shemati view of the beam preparation setup. L: lens, LP: linear polarizer,FR: Faraday rotator, �/2: half-wave plate, �/4: quarter-wave plate, PBS: polarizing beamsplitter, EOM: eletro-optial modulator, AOM: aousto-optial modulator, FC: �ber oupler,PC: polarization ontroller, SMI: sanning Mihelson interferometer, D: photodetetor, SC:sodium ell.The stabilization fails if the frequeny jump is larger than the free spetral range of theseond FPI. Suh frequeny jumps, as well as frequeny drifts on large time sales, anbe deteted by a frequeny measurement.The dye laser is very sensitive to light fed bak into the resonator by bak reetions.In this experiment there is a high amount of light travelling bakwards due to the feed-bak mirror in the single-mirror feedbak arrangement. To avoid the resulting frequenyand power utuations of the dye laser an optial diode onsisting of a Faraday rotatorpreeded (LP1) and followed (LP2) by a linear polarizer is inserted into the beam path(spei�ed suppression: -38 dB).The laser frequeny is measured with a wavemeter, whih is a modi�ed sanning Mihelsoninterferometer (SMI). A small fration of light is oupled out of the laser beam by means



30 Experimental setupof a half-wave plate and a polarizing beam splitter. It is oupled into a single mode �berand led to the SMI. This devie determines the unknown laser frequeny by omparingit to the known frequeny of a HeNe laser. Relative hanges in the dye laser frequenyan be deteted with an auray of about 200 MHz [Ohl87℄. The absolute auray islower due to dependenies of the measurement on the beam parameters inside the SMI.By alibrating the SMI with a small signal absorption pro�le of the sodium D1 line, anabsolute auray of about 1 GHz is ahieved.3.2.2 Preparation of the holding beamThe holding beam is the intense laser beam, whih is needed for the observation of dissi-pative strutures in this experiment. Its power needs to be adjusted and the beam pro�leand polarization have to be prepared.Input powerThe laser beam oming from the laser system is foused onto the rystal of an eletro-optial modulator (EOM) by lens L1. The EOM (Gs�anger LM020P) is used to ontrolthe power of the holding beam Pin. The last mirror before the beam is injeted into thesodium ell transmits about 0.1 % of the laser power onto a photodiode. By alibrationwith a bolometer (Spetra-Physis 407) that is plaed diretly in front of the sodium ell,the input power an be determined with an absolute auray of 10 %. Changes of theinput power are deteted with an auray whih is estimated to be of the order of 1 mW.The maximum holding beam power in front of the ell is 350 mW.Beam pro�leThe intensity pro�le of the holding beam is ontrolled by spatial �ltering by means of asingle mode optial �ber (Thorlabs SN3224). In the �ber, light an only propagate inthe LP0;1 mode whih resembles the TEM0;0 mode. The output �ber oupler ontainsa mirosope objetive (f=16.85 mm), that is movable in three diretions in spae. Itis adjusted to produe a ollimated beam with a beam radius of 1.5 mm. This beam isexpanded by means of a telesope onsisting of two plano-onvex lenses L2 (f=150 mm)and L3 (f=200 mm). The resulting beam that is injeted into the sodium ell has a beamradius of 1.89 mm. The beam waist is hosen to be positioned within the sodium ellwith an auray of 50 m. This is small ompared to the Rayleigh length of the beam(zR � 20m).



3.2 Beam preparation 31PolarizationThe laser beam is linearly polarized when it leaves the output fae of the EOM. The singlemode �ber is not polarization maintaining, but it maintains the degree of polarization.The output polarization an be adjusted by means of a polarization ontroller [Lef80℄.This devie onsists of a sequene of a single, a double and a single loop of the �ber.Due to bending-indued birefringene of the �ber [URE80℄ this sequene is equivalent toa sequene of a quarter-wave, a half-wave and a quarter-wave retarder. By means of thispolarization ontroller the output beam is preadjusted to be linearly polarized with theaxis of polarization aligned with the diretion perpendiular to the optial table and withthe linear polarizer LP3. That polarizer (B. Halle Nah. PGT 2.12) is the last optialelement before the beam is injeted into the ell. The extintion ratio of the polarizer isspei�ed to be better than 10�6.3.2.3 Preparation of the addressing beamInput powerA variable fration of light is oupled out of the holding beam by means of a half-waveplate and a polarizing beam splitter (PBS2) to build the addressing beam. The beamis foused into an aousto-optial modulator (AOM, NEC OD-8813A) to allow for fastswithing. The rise time of the transmitted intensity lies below 200 ns whih is fastenough ompared to the typial timesale of the dynamial phenomena in the experiment(� 20�s).Holding and addressing beam propagate individually over a ertain distane and are bothoupled into an optial �ber. Therefor it is impossible to keep the relative phase betweenthese two beams onstant. Without an other ation taken, the result of the reuni�ationof the two beams in the sodium ell is an interferene pattern utuating in time. Thisbehavior strongly perturbs the proess of igniting and erasing loalized strutures in theexperiment. But due to the nonlinearity of the sodium vapor the addressing beam doesnot have to be oherent with the holding beam. Therefor the frequeny of the addressingbeam is shifted by means of the AOM. If the �rst order of di�ration of the AOM is usedas the addressing beam, its frequeny is shifted by �� = 140 MHz.Beam pro�leAs in the holding beam, a single mode optial �ber is used to ontrol the transverseintensity pro�le of the addressing beam. A homogeneous Gaussian pro�le allows for agood fousability of the beam. The output oupler onsists of a lens that an be moved
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dFigure 3.3: Shemati view of the single-mirror feedbak arrangement.
in three diretions in spae. Its distane from the �ber in ombination with lens L6determines the radius of the beam in the sodium ell. It an be adjusted from 180 µm to1.5 mm. The position of the addressing beam in the ell is adjusted by means of mirrorM1 whih superimposes addressing and holding beam in the sodium ell. Both beamsinlude an angle of approx. 1Æ.PolarizationThe polarization of the addressing beam is adjusted analog to the holding beam. A �berpolarization ontroller is used to generate a linearly polarized beam whose polarizationaxis is aligned with linear polarizer LP4. The addressing beam needs to be irularlypolarized in this experiment. This is ahieved by inserting a quarter-wave retardationplate behind LP4. The heliity of the irular polarization an then be hosen by adjustingthe rotation angle of the quarter-wave plate to �45Æ with respet to the axis of linearpolarization introdued by LP4.3.3 Single-mirror feedbak arrangementThe single mirror feedbak arrangement onsists of the sodium ell, an eighth-wave retar-dation plate and a feedbak mirror (see Fig. 3.3).The ore piee of the experiment is the sodium ell. It onsists of a Duran glass tube oflength 7 m and diameter 12 mm. This tube an be evauated and �lled with nitrogenas the bu�er gas. A bu�er gas pressure of 300 hPa has proven to be appropriate to ful�llthe requirements of the mirosopi model. It has therefor been used throughout theexperiments.



3.4 Analysis setup 33The enter part of the tube (length L = 15mm) is surrounded by a opper blok that isheated by four DC driven heat modules. A piee of solid sodium is plaed in this heatedarea of the tube. It is ontained in a tantalum shuttle to simplify handling.The outer parts of the tube are onneted to a water ooling loop. This reates a steeptemperature gradient within the gas, whih limits the area of high sodium partile densitiesto the heated zone. In the presene of a bu�er gas, a deposition of sodium partiles on theell windows that lose the ends of the tube is prevented. The ell windows were hosento be thiker (5 mm) than in previous experiments in order to redue stress-induedbirefringene and depolarization. They are antireetion oated to redue interferenes.The ell temperature is measured inside the opper blok near the tube. Heating theell to a temperature of 280ÆC to 360ÆC results in a sodium partile density in the rangeof 1019m�3 to 1020m�3. The dependene of the partile density on the temperature hasbeen determined experimentally by the measurement of a small signal absorption pro�les[Aum99℄.The sodium ell is surrounded by three pairs of Helmholtz oils, that produe a homoge-neous magneti �eld in the heated area of the ell. A magneti �eld signi�antly inuenesthe optial pumping proess in sodium vapor. This has been used as a parameter in previ-ous works [ALHL95, SFAL00, HAL04℄. In this work, the magneti �eld is kept �xed. It isadjusted to ompensate for the earth magneti �eld. Additionally, a stati magneti �eldis applied, that is oriented parallel to the diretion of the laser beam. The magneti �eldomponent in the diretion of the laser beam is adjusted to jBzj = 200� 400�T, whihis large ompared to the residual transverse magneti �eld omponents jBx;yj < 1�T.The �=8 plate in the feedbak loop (VLOC WM30.0-0.125-589-C) is antireetion oatedand �xed in a rotation mount. The rotation angle an be determined with an aurayof �2 0. This auray applies for all rotation mounts in the setup.The feedbak mirror is plane and has a reetivity of R=0.99. The substrate is wedgedwith an angle of 2Æ to minimize interferenes. It is kept in a three-point mount, all of whihare adjustable by means of a mirometer srew. Additionally, the ontrols of the two tiltaxes are equipped with piezoeletri transduers whih allow for a preise alignment ofthe feedbak mirror tilt. The mirror distane d is hosen to be approx. 10 m.3.4 Analysis setupThe light that is transmitted by the feedbak mirror is used for the analysis of the system.The distribution of the light �eld that is transmitted by the sodium ell is imaged ontoharge-oupled devie (CCD) ameras. These are only sensitive to light intensities andnot to the polarization of light. However, the polarization properties of the light �eld
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Figure 3.4: Shemati view of the analysis setup.
hange during the transmission through the sodium ell and this gives important infor-mation about the state of the nonlinear medium. Therefor the analysis setup onsists ofa polarization analysis unit and an imaging unit.3.4.1 Polarization analysisTo analyze the polarization of the light �eld that is transmitted by the sodium ell, itis important to ompensate for the e�et the �=8 plate in the feedbak loop has on thepolarization. This is aomplished by inserting a seond eighth-wave plate behind thefeedbak mirror. Its optial axes are oriented perpendiular to the optial axes of the�rst �=8 plate. After transmission through this seond �=8 plate the state of polarizationbehind the sodium ell is reestablished.A very simple way to gain information on the polarization of the light �eld is the use ofa linear polarizer that is installed into a rotation mount. The transmitted light �eld is aprojetion onto a linear polarization omponent, whose axis is hosen by the optial axisof the polarizer. By rotating the linear polarizer arbitrary linear polarization omponentsan be analyzed. Alternatively the linear polarizer is kept at a hosen referene axis anda half-wave retardation plate in a rotation mount is inserted in front of the polarizer.To measure the irularly polarized omponents of the light �eld, a quarter-wave plate isinserted in front of the linear polarizer. Its fast axis inludes an angle of �45Æ with thereferene axis to measure the right and left irularly polarized omponents of the light�eld.In order to gain full information on the polarization of a light �eld a spatially resolvedmeasurement of the Stokes parameters an be aomplished by ombining four of thedesribed measurements. The Stokes parameters S1, S2 and S3 haraterize the state of



3.4 Analysis setup 35polarization of an eletromagneti �eld. The �rst parameter S1 gives the relative frationof radiation that is linearly polarized with respet to a hosen referene axis. It an bedetermined by measuring the intensities in the two linear polarization omponents parallel(Ik) and orthogonal (I?) to the referene axis. S2 gives the relative fration of linearlypolarized light that is polarized at an angle of 45Æ with respet to the referene axis, whihis measured at a rotation angle of 22.5Æ of the �/2 plate. S3 gives the relative fration ofirularly polarized light. Here the �/2 plate is replaed by a �/4 plate and its fast axisinludes an angle of 45Æ with the referene axis. The normalized Stokes parameters anbe alulated from the measured intensities:S1 = Ik � I?Ik + I? (3.1)S2 = 2 � I45Ik + I? � 1 (3.2)S3 = 2 � IirIk + I? � 1: (3.3)The total degree of polarization of the light �eld is given by the frational polarization:Dpol =qS21 + S22 + S23From the measured Stokes parameters the elliptiity � and the orientation of the mainaxis � of the polarization ellipsoid an be alulated:S1 = os(2�) � os(2�) (3.4)S2 = os(2�) � sin(2�) (3.5)S3 = sin(2�): (3.6)3.4.2 Imaging systemThe imaging system reords the near and far �eld intensity distribution of the light �eldomponent that is transmitted by the sodium vapor and the polarization analyzer.The near �eld, whih is the light �eld transmitted by the sodium ell, is imaged ontoa amera (CCD 1) by means of a lens (L7). The hoie of the CCD amera to imagethe near �eld depends on the phenomenon to observe. Most of the images in this workshow stationary or quasistationary states. These are imaged onto a digital CCD amera(Vossk�uhler CCD-1300LN). This amera has a high spatial resolution (1024�1024 pixels),



36 Experimental setupa high dynami range (12 bit) and an exposure time of 100 µs. The high dynami rangeis essential for the measurement of Stokes parameters.A videosamplingmethod is used for imaging dynamial proesses [Bru94, MB95, MSA+99℄.This method is apable of imaging proesses that are either periodi themselves or anbe periodially reprodued. In this work, the dynamial proesses are the response of thesystem to a perturbation indued by the addressing beam. A trigger signal is derivedfrom the signal that is periodially driving the AOM, thereby repeatedly triggering thedynamial proess. The CCD amera has a trigger input with programmable exposuredelay. By repeatedly apturing an image with inreasing exposure delay, a sequene ofthe dynamial proess is obtained. The amera (Proxitroni HF4 S 5N) is equipped witha gated photomultiplier that allows for short exposure times. Throughout this work theexposure time is hosen to be 1 µs. The delay inrement between two subsequent imagesis typially in the order of 10{100 µs.The far �eld is the optial Fourier transform of the light �eld that is transmitted by thesodium vapor. It is present in the bak foal plane of lens L8 and is imaged onto ameraCCD 2 by means of lens L9. Sine the (often very intense) zero order of refration isinsigni�ant in the analysis of spatial strutures it is bloked by an opaque obstale toinrease the dynami range that is available for reording higher spetral omponents.



Chapter 4Experimental results
4.1 Symmetry-breaking pithfork bifurationYabuzaki et al. [YOKO84℄ and Gro�e Westho� et al. [GWKL+00℄ have desribed the o-urrene of a symmetry-breaking pithfork bifuration for the system under onsiderationhere. In this setion these results will be reprodued, haraterized and enhaned for theexperimental parameters used in this work.In the input power range onsidered here, the system does not exhibit any struturedstate, the intensity pro�le transmitted by the vapor is always homogeneous.Figure 4.1 shows the polarization rotation angle � of the light �eld transmitted throughthe sodium ell in dependeny on the input power of the holding beam. The slow axisof the �/8-plate is aligned with the holding beam polarization. The polarization rotationangle � is determined by adjusting a linear polarizer in the polarization analysis suh thatthe transmitted intensity is minimal. For very low input powers (Pin . 1:3mW) the mainaxis of polarization is not rotated (� � 0 Æ). Inreasing the input power beyond 1.3 mWresults in a pronouned hange of �, and the polarization axis starts to rotate lokwise.The rotation of the polarization plane is ontinuous, intensity jumps are not observed atthe detetor. Above an input power of Pin � 5mW the rotation of the polarization planesaturates up to a saturation angle � = �65 Æ at Pin = 25mW.A seond steady state solution, whih is expeted from the previous works [YOKO84,GWKL+00℄ an be prepared in the following manner: The holding beam is bloked. Thena �+ polarized ignition beam is injeted into the ell and indues a positive orientationwithin the sodium vapor. If the holding beam is unbloked and afterwards the ignitionbeam is turned o�, the main axis of polarization is rotated ounterlokwise with respetto the input polarization at an angle of � = 65 Æ. If the input power is redued downto 10 mW, � slightly dereases. Reduing the input power further, the redution of �
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Figure 4.1: Rotation of the main axis of polarization in dependeny on the input power.The slow axis of the �/8-plate is aligned with the input polarization (� = 0 Æ 0 0). Parameters:d = 105mm, � = 16:8GHz, T = 342:5 ÆC.beomes more pronouned, and the rotation angle dereases ontinuously down to 10 Æat Pin = 1:34mW. At this point, there is a jump in the power transmitted through theanalyzer. An adjustment of the analyzer shows that the main axis of rotation has jumpedto a slightly negative angle of rotation. This solution belongs to the solution branhdesribed �rst. The system hanges from a bistable to a monostable situation.The observed behavior orresponds to a weakly perturbed pithfork bifuration [Ni95℄and has been aordingly interpreted by Yabuzaki and Gro�e Westho�. In the following,the power at whih � starts to hange rapidly will be alled ritial power. The power atwhih the seond solution sets in will be alled bistability power. In the ase of a perfetpithfork bifuration, the two powers oinide. Due to the strutural instability of thepithfork bifuration [Str94℄ this is not expeted to be observed in an experiment in itspure form.The degree of perturbation is very low, however. If the holding beam is bloked again,the vapor relaxes to its equilibrium situation where the orientation is zero. If the holdingbeam is swithed on to a power above the bistability power, the system spontaneouslyhooses one of the two stable branhes. If this experiment is repeated, a swithing to bothbranhes is observed.Rotating the slow axis of the �/8-plate by an angle � with respet to the input polarization
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Figure 4.2: Rotation of the main axis of polarization in dependeny on the input power forpositive wave plate rotation angles �. Parameters: See Fig. 4.1 exept a) � = 0 Æ 30 0, b) � = 5 Æ 0 0.introdues a perturbation of the pithfork bifuration. If � exeeds �10 0, swithing toonly one branh is observed in swith-on experiments. This branh will be alled thefavored branh. The branh that is not observed in swith-on experiments will be alledthe disfavored one.Fig. 4.2a shows the bifuration diagram for a small positive wave plate rotation angle(� = 30 0), whih is measured in a similar way to Fig. 4.1. The ritial power is less de�nedbeause the polarization softly starts to rotate when the input power is inreased. Thebranh that exhibits a negative (positive) polarization rotation is the favored (disfavored)one for positive wave plate rotation angles �. The bistability power inreases to 1.46 mW.The degree of imperfetion of the pithfork bifuration is signi�antly inreased.In Fig. 4.2b, the bifuration diagram for a larger positive wave plate rotation angle isshown (� = 5 Æ). The bistability point is at 2.1 mW, and the disfavored branh is separatedfrom the input polarization diretion by at least � = 25 Æ. There is a signi�ant di�erenein the absolute value of the saturation angles of the polarization rotation j�j. At Pin =25mW, it is � = 63:3 Æ for the favored branh and � = �69:0 Æ for the disfavored branh.If the diretion of rotation of the �/8-plate is hanged, the asymmetri behavior of thesystem is reversed. This is shown in Fig. 4.3 for two di�erent negative rotation angles�. The branh with positive polarization rotation angles � now is ontinuously onnetedwith the zero solution, i.e. it is the favored branh. The branh haraterized by negative� values is disfavored. It an now be reahed by means of a �� polarized ignition beam.For � = �30 0 (Fig. 4.3a) the imperfetion of the bifuration is weak, and the measuredvalues orrespond well to those of (Fig. 4.2a) with reversed signs for �. The bistabilitypower is 1.53 mW. If the wave plate rotation angle is inreased (see Fig. 4.3b), the degree



40 Experimental results

0 5 10 15 20 25
input power Pin (mW)

−50

0

50

po
la

riz
at

io
n 

ro
ta

tio
n 

an
gl

e 
ξ 

(°
)a)

0 5 10 15 20 25
input power Pin (mW)

−50

0

50

po
la

riz
at

io
n 

ro
ta

tio
n 

an
gl

e 
ξ 

(°
)b)

Figure 4.3: Rotation of the main axis of polarization in dependeny on the input power forpositive wave plate rotation angles �. Parameters: See Fig. 4.1 exept a) � = 0 Æ � 30 0, b)� = �5 Æ 0 0.of imperfetion inreases similarly to Fig. 4.2b. The bistability power is 1.95 mW. Themaximum rotation angles amount to � = 62:2 Æ for the favored branh and � = �69:8 Æfor the disfavored branh.Figure 4.4a shows the bistability power in dependeny on the rotation angle � of the�/8-plate. It is measured by bringing the system onto the disfavored branh at maximuminput power and then reduing the power stepwise until there is a jump in the intensitytransmitted by the linear polarizer. This indiates that the disfavored branh has dis-appeared and the system has jumped to the favored branh. Above the urve built upby the measured points, the system is bistable. For � = 0 Æ, the threshold for the onsetof bistability is lowest. If j�j is inreased, the threshold power inreases monotonially.Above angles of 30 Æ the laser power neessary for a bistability of the system inreasesdrastially. Above angles of j�j = 35 Æ, no bistability is observed in the given input powerrange.The polarization rotation angle of the unstrutured states in dependeny on the wave platerotation angle � is shown in Fig. 4.4b. The measurement is started at a wave plate rotationangle � = �90 Æ, whih due to the � periodiity of the wave plate is equivalent to � = 90 Æ.At this point, the input polarization stays stable. If � is inreased, the polarization axisstarts to rotate in positive diretion. At � � 21 Æ, � reahes a maximum of 67 Æ. Itthen slightly dereases, and at � = 27 Æ, a disontinuous jump of the polarization axisis deteted. The branh with positive polarization rotation disappears, and the systemjumps to a stable homogeneous state with negative polarization rotation.If the system is prepared in the initial state � = 90 Æ and � is dereased, the polarization
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Figure 4.4: a) Threshold input power for the existene of two stable homogeneous states. b)Rotation of the main axis of polarization in dependeny on the wave plate rotation angle �.Parameters: d = 105mm, � = 16:8GHz, a) T = 346:3 ÆC, b) T = 346:8 ÆC, Pin = 6:8mW.axis rotates towards negative angles. The maximum rotation angle of � = �69 Æ is ob-served at � = �27 Æ, and the state loses stability at � = �28 Æ. In a good approximation,the diagram is point-symmetri with respet to the origin.The desribed behavior provides another way to hange between the two stable stateswithout the use of the ignition beam. In order to hange from the state with positive(negative) polarization rotation to the state with negative (positive) polarization rotation,� is inreased (dereased) until the branh loses its stability and then rotated bak to thedesired position within the bistable region.
4.2 Modulational instabilityAt input powers that lie beyond the level disussed in the previous setion (Pin � 25mW),the system does not signi�antly hange its properties over a wide power range. Dependingon the rotation angle of the wave plate, there are one or two stable unstrutured states.The intensity distribution is smooth and the Gaussian shape of the input beam is notdistorted. The whole beam an be suppressed well in the polarization analysis by settingthe linear polarizer to an angle � + 90 Æ, i.e. the polarization is homogeneous over thewhole beam (see Fig. 4.5a).
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Figure 4.5: Modulational instability. Intensities in the near �eld images are equally saled,far �eld images are individually intensi�ed for ontrast enhanement. Color table leading fromblak to white via red will be used for intensity images throughout this work. Parameters:d = 112mm, � = 15:1GHz, T = 359:5 ÆC, � = 0 Æ.4.2.1 Hexagonal patternsThe system is prepared to be on the branh that exhibits a positive polarization rotationfor the ase of a (nearly) perfet pithfork bifuration (� = 0 Æ). The linear polarizer isadjusted to suppress the unstrutured beam.A hange in the properties of the system ours at input powers above typially 150 mW.If the input power is inreased beyond that level, inhomogeneities our in the light �eldtransmitted by the linear polarizer. The unstrutured state beomes unstable, and theinstability is onneted to the generation of new polarization omponents.The upper row of Fig. 4.5 shows the near �eld intensity distributions that are transmittedby the linear polarizer for inreasing input power. The lower row shows the orrespondingfar �eld images (with suppressed zero order). At Pin = 152:0mW, there is no modulation,the unstrutured state is stable. Correspondingly, there are no higher Fourier omponents.If the input power is inreased to 182 mW, modulations of the near �eld our thathave no de�ned symmetry. However, the far �eld image (Fig 4.5g) indiates that themodulations have a well-de�ned length sale (q = 16:3 rad mm�1). There is a band ofexited wavevetors, that lie on a irle around the (suppressed) zero order.If the input power is inreased further, the modulations beome more intense, and thenear �eld images show bright spots on a dark bakground that are arranged in a hexag-onal order. With inreasing input power, the number of onstituents inreases, i.e. thepatterned area grows. The hexagonal symmetry also beomes manifest in the far �eld(Fig. 4.5h,i,j), where six well-de�ned spots are present.



4.2 Modulational instability 43The same phenomenon is observed, if the system is prepared to be in the state withnegative polarization rotation.4.2.2 Patterns in dependeny on the wave plate rotation angleAs desribed in setion 4.1, the bifuration senario at low input powers hanges in de-pendeny on the wave plate rotation angle �. Depending on �, there is either a (nearly)perfet pithfork bifuration (� = 0 Æ), a perturbed pithfork bifuration (j�j . 35 Æ) ormonostability (j�j & 35 Æ). For all angles � a modulational instability on all unstruturedbranhes that exist at this position is observed within the available laser power range.Fig. 4.6 shows an overview of the dominating patterns that evolve beyond the thresholdfor pattern formation in dependeny on �. The �rst two olumns show the evolving nearand far �eld patterns on the branh that exhibits a rotation of the polarization planein positive diretion. Again, the linear polarizer in the analysis is adjusted to suppressthe unstrutured bakground. For � = 0 Æ, a hexagonal pattern is observed as desribedin setion 4.2.1. Hexagons are also dominantly observed, if the wave plate is rotated inpositive diretion. In this ase, the disussed branh is the disfavored one. Hexagonalpatterns persist, until the branh disappears at � � 40 Æ. In tendeny, the number of on-stituents of the pattern, i.e. the patterned area dereases with inreasing �. The oppositeis true, if � is dereased. This is the situation where the disussed branh is the favoredone. Hexagons dominate pattern formation up to an angle of � � �40 Æ. At � � �60 Æ,hexagons still appear, but the dominant pattern is a rhombi pattern. In the far �eld,it onsists of four intensity peaks that have the same wave number (q = 16:7 rad mm�1)and enlose angles of 55Æ and 125Æ. The near �eld shows a rhombi pattern with D2symmetry.A very peuliar pattern an be observed at wave plate rotation angles around � � �90 Æ.While rhombi patterns an also be observed, the dominant pattern is omposed of sixFourier modes arranged in a hexagonal symmetry. However, the near �eld image showsthat the pattern is not a simple hexagon (irular intensity maxima arranged in a hexag-onal order) nor is it a honeyomb pattern (intensity minima arranged in hexagonal order,'negative hexagons'). Due to the triangular shape of its onstituents, the pattern hasbeen interpreted as a triangular pattern [GWKL+00℄.A similar behavior is observed, if the system is prepared in the state with negative po-larization rotation � < 0. This state is favored for � > 0, and therefor the transition totriangular patterns via a rhombi pattern is observed for positive angles �. Of ourse, the�rst and last row of Fig. 4.6 show the very same state. Again, the system proves to besymmetri with respet to � � 0 Æ.
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Figure 4.6: Dominant patterns in dependeny on the wave plate rotation angle �. Firstand seond olumn: Near and far �eld images of patterns emerging from the unstruturedbranh with positive polarization rotation. Third and fourth olumn: Near and far �eld imagesof patterns emerging from the unstrutured branh with negative polarization rotation. Thelinear polarizer is adjusted to suppress the unstrutured bakground. Parameters: d = 112mm,� = 15:1GHz, T = 359:5 ÆC, Pin = 244:0mW.
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Figure 4.7: Determination of the threshold for pattern formation. Parameters: d = 120mm,� = 17:8GHz, T = 347:0 ÆC, � = 0 Æ.4.2.3 Threshold for pattern formationThe previous setion has shown that the size of the patterned area (weakly) depends on� for a onstant input power. It is known that the size of a pattern in a Gaussian beam isamongst others determined by the distane to the threshold of pattern formation, whihis also learly visible in Fig. 4.5. This suggests, that the threshold for pattern formationdepends on the rotation angle of the wave plate �.To obtain a more exat measurement of the pattern formation threshold, the far �eldCCD amera was removed and the far �eld with removed low spatial frequenies wasfoused onto a photodetetor.Fig. 4.7 shows a typial diagram of 5 up- and down sans of the input power. The intensityin the higher spatial modes is near zero well below the threshold. The fat that there isa slight inrease in the intensity with inreasing input power is related to residual straylight that annot be totally eliminated as well as to the observation that the metal �lmbloking the low spatial frequenies is not totally opaque.At Pin � 150mW, the intensity in the Fourier spetrum starts to inrease signi�antly.Within the experimental resolution, there is no observation of a jump in the intensityurve. Thus the inrease of the Fourier mode intensity is ontinuous. In that region, alsothe inrease of the slope of the urve is ontinuous. After the threshold has passed, theslope of the urve doesn't hange further, and in a good approximation, there is a linear
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Figure 4.8: Bifuration diagram. �: threshold for bistability; N: threshold for pattern formationfor � < 0; H: threshold for pattern formation for � > 0. Parameters: see Fig. 4.7.dependeny of the Fourier mode intensity on the input power.The smoothness of the urve an be interpreted by onsidering spatial noise that is alwayspresent in the system. Near but below the threshold for pattern formation, spatial utu-ations that have the ritial wave number of the pattern that is about to evolve are onlyweakly damped. This spetral omponent persists in the system with a ertain amplitudethat is de�ned by the distane to the threshold point in the system without noise. Thisphenomenon is generally referred to as a 'noisy preursor' of the pattern. Bifurationsof this type are also often disussed in experiments onsidering the lasing threshold ofsemiondutor lasers. Following the usual approah, the threshold of the bifuration isde�ned by the intersetion point of two linear approximations of the urve well below andabove the threshold as indiated in Fig. 4.7.This bifuration behavior is observed for all of the disussed patterns and all angles �,respetively. Typially, the transition to hexagonal patterns in a system with brokeninversion symmetry is expeted to be subritial [CH93℄. This behavior is not observedhere. Numerial simulations show, however, that a very small hysteresis yle exists (seesetion 5.2.3). It is interpreted to be overed by utuations in the experiment.Figure 4.8 shows the threshold for pattern formation in dependeny on �. The regionwhere the system is bistable is indiated by squares onneted by an line. Above theurve the system is bistable, below it is monostable. As stated in the beginning of this



4.3 Fronts and domain dynamis in a bistable situation 47setion, the system remains basially unhanged onerning this property above an inputpower of 25 mW. The threshold for pattern formation on the branh exhibiting a positivepolarization rotation is nearly onstant within the monostable range, i.e. where trian-gles and rhombs are the dominating patterns. In the bistable region, hexagons are thedominating pattern. For negative �, the unstrutured state the modulational instabilityoriginates from is the favored one. In ase of positive �, it is the disfavored one. Obvi-ously the threshold for pattern formation inreases the more disfavored the underlyingunstrutured state is. A similar behavior is observed with reversed angles � if the branhexhibiting a negative polarization rotation is onsidered. Within the bistable range, themodulational instability is a seondary bifuration. Remarkably, its threshold power isseparated from the threshold of the pithfork bifuration by two orders of magnitude.4.3 Fronts and domain dynamis in a bistable situa-tionIt has been shown in the previous setion, that the system exhibits a bistable behaviorwithin a large parameter region. In a spatially extended system, in priniple, the o-existene of both states emerging from the pithfork bifuration is possible. However,this phenomenon is rarely observed, if the system is running freely without an externalperturbation. A spontaneously appearing struture where the two states oexist has beenobserved by Gro�e Westho� [GWKL+00℄ and will be overed in the �rst subsetion. Thefollowing subsetions will investigate the behavior of the system under the inuene oflarge-amplitude perturbations that an be introdued by means of the addressing beam.4.3.1 Spontaneous appearane of polarization fronts at high in-put powersIf the input power is swithed from a value below the onset of bistability to a value abovethe bistability threshold, the system spontaneously hooses the branh that is favored inthat situation. This behavior is also observed, if the target input power is beyond thethreshold for pattern formation. In this ase, the favored hexagonal pattern is observed.If the system is prepared to have nearly equivalent states (� � 0), the system typiallyhooses one of the hexagonal patterns. However, in subsequent swith-on experimentssometimes another type of pattern { that has already been desribed in [GWKL+00℄{is observed (see Fig. 4.9). It onsists of two di�erent domains. If the linear polarizer isadjusted to suppress a polarization rotation angle � = 70Æ, the upper left part of the beamis bright while the lower right part is dark (Fig. 4.9a). If, on the other hand, the polarizer
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a) b) c)

Figure 4.9: Polarization front a) linear polarizer adjusted for suppression of state with pos-itive polarization rotation; b) linear polarizer adjusted for suppression of state with negativepolarization rotation; ) total intensity. Parameters: d = 120mm, � = 16:4GHz, T = 329:2 ÆC,Pin = 216mW, � = 1 Æ 400.is adjusted to suppress � = �70Æ, the lower right part is bright and the upper left part isdark. The beam is divided into two di�erent states of polarization both of whih originatefrom the pithfork bifuration. The boundary is interpreted as a polarization front thatontinuously onnets the two polarization states. It is visible as a dark line in the totalintensity distribution (Fig.4.9). This is due to the higher absorption that is present ifthe orientation of the vapor is small. Hene, the orientation of the vapor rosses zero atthe domain boundary whih is an important information with respet to the lassi�ationof the front (see setion 5.3.1). Both spatially extended states exhibit a stripe patternthat is oriented parallel to the polarization front. A slight modulation along the stripesan only be antiipated. It is interpreted as a remains of the hexagonal symmetry ofthe oexisting hexagonal patterns that is suppressed by the perturbation indued by thefront. However, the modulational instability seems to play a role in the stabilization ofthis pattern, sine it only exists at or above the threshold for pattern formation. Belowthis threshold, the front moves towards the border of the Gaussian beam and disappears.A further haraterization of stable fronts will be given in setion 4.6.1.4.3.2 Domain dynamis: basi observationThe system is prepared in a state with negative polarization rotation in a situation whereboth unstrutured states are nearly equivalent (� � 0 Æ). Then the addressing beam,whih is �+ polarized, is swithed on. It is positioned in the enter of the holding beamand has a radius of approx. 1.5 mm. By optial pumping, it loally reates a transitionfrom the state with negative polarization rotation to the state with positive polarizationrotation. A domain of one of the bistable unstrutured states embedded into a bakground
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 0 ms  0.45 ms  0.9 ms  1.35 ms  1.8 ms

 2.25 ms  2.7 ms  3.15 ms  3.6 ms  4.05 ms

Figure 4.10: Video sampling sequene of a ontrating domain. The bakground state issuppressed by means of the linear polarizer. Parameters: d = 120mm, � = 17:6GHz, T =340:7 ÆC, Pin = 90:0mW, � = 0 Æ.of the other state is reated. As long as the addressing beam is swithed on, the domainremains unhanged after an equilibrium has been reahed.If the addressing beam is swithed o�, the system beomes dynami. The domain shrinksand �nally disappears within a time period that an not be resolved by standard videoequipment. However, this dynami behavior an be analyzed by means of the videosampling tehnique. Therefor the aousto-opti modulator that is used for swithing theaddressing beam is driven with a square pulse signal having a repetition rate of 100 Hz.This square signal serves as the periodi signal needed for the appliation of the videosampling method. The falling edge of the square pulse, i.e. the point in time where theaddressing beam is swithed o�, is taken as the beginning of the sampling sequene. Theinrement by whih the exposure of the amera is delayed in onseutive images is hosenin a way to apture a smooth sequene of 50-100 images that overs the essential timesaleof the proess (typially 10-100 �s).Figure 4.10 shows an exerpt of suh a sampling sequene. It shows that the initialdomain is of a irular shape and has some slight radial osillations. Immediately afterthe addressing beam is turned o�, the domain starts to ontrat symmetrially, i.e. theirular shape is maintained. The ontinuous shrinkage of the domain �nally leads to thedisappearane of the domain within a time period of 4 ms. The initial bakground stateis reovered.From eah image of the video sampling sequene, a domain radius an be determined.It is de�ned as the half width at half maximum (HWHM) of a radially averaged pro�le
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Figure 4.11: Contration of a irular domain. a) domain radius against time; b) squareddomain radius against time and linear �t. Parameters: see Fig. 4.10.of the intensity distribution entered at the enter of the domain. The domain radius independeny on time of the desribed sequene is shown in Fig.4.11a.From general onsiderations (f. setion 2.2.2), the ontration or expansion of a irulardomain of a homogeneous state embedded in a bakground of another equivalent homoge-neous state is not unexpeted. It is attributed to the urvature of the domain boundary.Theoretial onsiderations predit that the front dynamis of a irular domain of onehomogeneous solution embedded into a bakground of another equivalent homogeneoussolution is governed by the following equation for the domain radius R:dRdt = �RIt desribes a urvature-driven dynamis, where the oeÆient  determines the strengthand diretion of motion of the irularly shaped front onneting the two homogeneousstates. For  > 0, the domain will ontrat and disappear. If  < 0, the domain willexpand. Setting R(0) = R0, an equation for the temporal evolution of the domain radiusan be derived: R(t) =qR02 � 2t (4.1)The domain ontrats or expands following a pt law. In a plot, where R2 is plottedagainst t, the halve negative slope of a linear �t through the experimental values will give



4.3 Fronts and domain dynamis in a bistable situation 51. The representation of the experimental time series is shown in Fig. 4.11b. Apparentlythe dynamis of the domain is desribed very well by the assumption of a urvature-drivendynamis. The linear �t yields a oeÆient  = 0:283mm2ms�1.As already shown, the most important parameters in this experiment are the input powerPin and the wave plate rotation angle � that determines the degree of imperfetion of thepithfork bifuration. In the following two setions, the dynamis of irular domains isstudied under variation of these parameters.4.3.3 Variation of input powerThe system is bistable over a wide range of input powers, as shown in setion 4.2.3. Ata ertain point, the two unstrutured states beome unstable against pattern formation.However, the bistable behavior persists. Within the whole power range where bistabilityis present, domains an be ignited. This applies for domains where a domain of the statethat exhibits a positive polarization rotation is embedded in a bakground that has anegative polarization rotation (positive domains) as well as for the opposite ase (negativedomains).Fig. 4.12 shows the temporal evolution of a irular domain under variation of the inputpower of the holding beam. Within the whole power range, only ontrating domainsare observed. The urves show that up to an input power of approximately 150 mW thedynamis an very well be desribed in the framework of urvature-driven ontration asdisussed in the previous subsetion. All data points lie on a straight line in a very goodapproximation, and therefor the oeÆient  an be determined easily.Above an input power of 150 mW, there is a qualitative hange in the dynamial behaviorof the domains. While the monotoni ontration of the domain persists, the time seriesshow that the urve is not a straight line anymore, but it beomes modulated. Thedegree of modulation obviously seems to depend on the input power. Also, there seemto be ertain �xed radii, where the dynamis slows down. However, a linear �t throughthe data points an still approximate the time sale of the ontration. Fig. 4.12 showsthe temporal evolution of negative domains. The experiment was repeated with positivedomains and yields qualitatively similar results.The oeÆients  resulting from the linear �ts of the urves in dependeny on the inputpower are plotted in Fig. 4.13. Squares indiate the oeÆients belonging to positivedomains, while irles represent negative domains. For ompletely equivalent states, theoeÆients for positive and negative domains are expeted to oinide. In the experiment,there is a ertain deviation between the dynamis of positive and negative domains. Thismight, on the one hand, be attributed to a slight parameter drift whih slightly hangesthe overall behavior of the system. On the other hand, systemati imperfetions like
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Figure 4.12: Contration sequenes of negative domains under variation of the input powerPin. Parameters: d = 112mm, � = 17:5GHz, T = 354:7 ÆC, � = 0 Æ
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Figure 4.13: CoeÆient  in dependeny on input power Pin for positive (�) and negative (Æ)domains. Parameters: see Fig. 4.12.depolarization of the light �eld may play a role. However, the qualitative behavior ofpositive and negative domains is very similar. Therefor the dynamis will be disussedtogether.The urves show a monotoni derease of  with inreasing input power, i.e. the dynamisof the domains slows down. The deeleration is relatively weak up to an input power ofapprox. 180 mW. Above this input power,  dereases drastially. This pronounedslowdown seems to be related to the strength of the modulations within the ontrationurves.A hint to the origin of these modulations an be derived from Fig. 4.14. It shows theimages of the domain at the starting point (t=0) of the ontration sequene for vary-ing input power. The appearane of this initial domain signi�antly hanges within theonsidered power range. For low input powers, the domain is very smooth and there arevirtually no radial osillations. With inreasing input power, the edges of the domainbeome sharper, and a ertain amount of radial osillations within the domain appears.The appearane of osillatory tails near domain boundaries is a well-known phenomenon(see setion 2.2.2). Here, the domain boundary has a irular shape, and onsequentlyalso the osillations obey a irular symmetry. These osillations beome more and morepronouned with inreasing input power. At the highest input powers, even a modulationof the bakground state is observed. The modulations seem to orrespond to a ertain
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Figure 4.14: Images of the initial domain immediately after swith-o� of the addressing beamfor di�erent input powers Pin. Parameters: see Fig. 4.12.spatial frequeny. As shown in setion 4.2.3, the homogenous states beome modulation-ally unstable in the onsidered power range. It an be onjetured, that the modulationalinstability an failitate the appearane of spatial modulations with a ertain length saleeven below the threshold for pattern formation.Figure 4.15 shows the temporal evolution of a domain at high input powers in an overlay ofthree video sampling sequenes at equal parameters. The ontration urve shows a largeamount of modulations. In fat, the modulations result in two plateaus where the slope ofthe urve nearly vanishes. The insets in the �gure show images of the domains at the radiiof the plateaus. These strutures display pronouned radial osillations and seem to bea metastable on�guration. The interation of osillatory tails of domain boundaries hasoften been onsidered to warrant the stabilization of domains in one-dimensional systems.The osillations show a loking phenomenon. The extension of suh a loking phenomenonto two spatial dimensions is nontrivial. However, it seems to play a ertain role here inthe hange of the behavior of the system. If the input power is inreased beyond a ertainlevel, stable strutures are observed that will be disussed in setion 4.4.4.3.4 Variation of wave plate rotation angleBy varying the rotation angle of the wave plate � and thereby the imperfetion of thepithfork bifuration, a domain that is ignited is either in the favored or in the disfavoredstate. This has a signi�ant inuene on its dynamis. A series of ontration urves ofpositive domains taken under variation of � is shown in Fig. 4.16. The input power wasadjusted to be well below the appearane of the loking phenomenon desribed above.For � < 0 (� > 0) the domain is in the favored (disfavored) state. Throughout the wholemeasurement, the parameters of the ignition beam have been kept onstant. As a �rstobservation, the initial domain radius resulting from the ignition depends signi�antly on�. The size of the initial domain inreases with inreasing preferene of the domain.If the domain is in the disfavored state, it always ontrats. With inreasing �, the
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Figure 4.15: Contration sequene of a domain at high input power. Insets show the imagesorresponding to the loking regions. Parameters: d = 112mm, � = 15:8GHz, T = 346:0 ÆC,Pin = 189:9mW, � = 0 Æ.initial domain size as well as the duration until the domain disappears gets smaller. Thedynamis seems to be well approximated by a linear �t in the R2 vs. t diagram. If thedomain is prepared to be in the favored state, the behavior of the system hanges. Forsmall angles j�j, the initial domain size as well as the time until the disappearane of thedomain inreases. The ontration slows down signi�antly for � < �5Æ. Still, the basitime sale of the dynamis an be desribed by a linear �t in the diagram. However,there seem to be systemati deviations. At angles � < �9Æ the behavior of the systemhanges qualitatively. The domain no longer ontrats but expands until the whole beamis swithed to the unstrutured favored state. Obviously the introdution of a preferenefor the domain an ompensate the urvature-driven ontration. As the system does notreover its initial state after the dynamis has ome to an end, the expansion of domainsannot be overed by the desribed video sampling method.Figure 4.17a shows the oeÆients resulting from a linear �t of the time traes of thesquared radius for positive (squares) and negative (irles) domains. Qualitatively thedynamis of positive and negative domains is the same. In both ases the dynamis slowsdown with inreasing preferene of the domain until at approx. 10Æ,  vanishes and thedomain expands. The urves interset at approx. 2Æ. This might be indued by theslight asymmetry that has already been observed in setion 4.3.3. The measurement an
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Figure 4.16: Contration sequenes of positive domains under variation of the wave platerotation angle �. Parameters: d = 110mm, � = 15:5GHz, T = 340:0 ÆC, Pin = 92mW.
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Figure 4.17: a) CoeÆient  in dependeny on wave plate rotation angle � for positive (�) andnegative (Æ) domains. Parameters: see Fig. 4.16. b) Dependeny of the ontration oeÆient on the initial domain radius for � = �7 Æ (+), � = 0 Æ (Æ) and � = 7 Æ (N). Parameters:d = 112mm, � = 15:8GHz, T = 346:0 ÆC, Pin = 90:4mW.only give a rough qualitative piture of the dynamis, sine both the initial radius of thedomain varied and the linear �t seem to be inappropriate in the ase where the dynamisis very slow. This is further illustrated by Fig. 4.17b, where  is shown in dependenyon the initial domain radius for three di�erent angles �. If the two unstrutured statesare equivalent (� = 0, irles),  does not signi�antly depend on the initial radius of thedomain. Consequently, a desription of the dynamis following equation 4.1 seems to besuÆient.In the ase � 6= 0,  depends on the initial onditions. Nevertheless, the dynamis anbe approximated by equation 4.1 for small j�j. However, the onsideration of a re�nedmodel for the dynamis seems to be neessary.From theoretial onsiderations, the inlusion of a small imperfetion into a system withsimilar homogeneous states leads to the following equation desribing the dynamis of thedomain: dRdt = �R + i (4.2)Here, i desribes the front veloity of a straight front. It is indued by favoring one ofthe homogeneous states over the other one. Hene, i should depend on the degree of im-perfetion. In the present experiment, it should depend on the wave plate rotation angle(i = i(�)). Compared to equation 4.3.2, the above equation allows for a muh largervariety of solutions that are disussed in [Cou02, GCOSM04℄. In the present experiment, seems to be positive. In this ase, the ontration of the domain an be ounterated



58 Experimental resultsby a positive i. The equation has a �xed point Rrit = i , where urvature-driven on-tration and the expansion due to a preferene of the domain state ompensate. However,the �xed point is not stable. This orresponds niely to the experimental observations.Separation of variables of equation 4.2 leads to the following equation for ontratingdomains (R < Rrit): �Ri � i2 ln( � iR) + t = whih is transendent and therefor annot be resolved to an expliit form R(t). Instead,it is resolved to the inverse funtion t(R):t(R) = + Ri + i2 ln( � iR)Setting t(0) = t0 yieldst(R) = t0 �  ln i2 + Ri + i2 ln( � iR) (4.3)= t0 + 1i (R + i ln (1� iR)): (4.4)This funtion an, in priniple, be �tted to experimental data giving the three parameters,i and t0. However, in many ases the experimental data is noisy and limited to a ertainrange of radii. Thus, i and  an ompensate to a eratin extent and the �t does notgive reasonable results. This problem an be irumvented by a multiple measurementof the domain dynamis at equal parameters for varying initial onditions. For a givenangle �, the dynamis of a positive domain is measured 10-15 times, eah time varyingthe size of the initial domain. The measured array of urves is then �tted to equation 4.4by means of a nonlinear least-squares �t with shared parameters i and .The outome of suh a measurement is shown in Fig. 4.18. It shows the array of urvesmeasured at � = �5Æ (a), � = 0Æ (b) and � = 5Æ (). The experimental data points of atime series are indiated by squares of a single olor. The orresponding line representsthe best �t obtained from the shared parameter least squares method. These urves mathniely the experimental data. Obviously the experiment an be desribed by a dynamisfollowing equation 4.4. The �gure shows that the overall dynamis is slowed down withinreasing preferene of the domain state.By measuring ontration urves at di�erent angles �, the dependeny of the oeÆientsi and  on the imperfetion of the pithfork bifuration an be analyzed. Figure 4.19ashows the dependeny of i on the imperfetion of the pithfork bifuration. If the domainis disfavored, i is negative, i.e. it enhanes the tendeny of the domain to ontrat. This
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Figure 4.18: Contration sequenes of positive domains under variation of the initial domainradius. Squares indiate data points, line represents best �t. a) � = �5Æ, b) � = 0Æ, ) � = 5Æ.Parameters: see Fig. 4.17b.
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Figure 4.19: CoeÆients i (a) and  (b) under variation of wave plate rotation angle �.Parameters: see Fig. 4.17b.tendeny is ounterated, if the domain is in the favored state (� < 0). In the aseof equivalent states (� � 0), i vanishes. This is the behavior that is expeted fromtheoretial onsiderations. In the ase of small angles �, the dependeny of i on � an beapproximated by a linear interpolation i = 0i�+, resulting in a oeÆient 0i = 0:029 mmmsÆwith  = 0:03mmms .The oeÆient desribing the strength of the urvature-driven motion of the front also seems to depend on the imperfetion of the pithfork bifuration. In tendeny, thedynamis slows down with inreasing preferene of the domain. However, in the onsideredrange, it always remains positive.4.3.5 Overview and the transition to stable solitonsThe dynamis of a domain is dependent on both input power Pin and the imperfetionof the underlying bifuration, whih is determined by the wave plate rotation angle �.In order to get a full piture of the mehanisms that �nally lead to the observation ofstable domain on�gurations, the parameter spae spanned by those two parameters isinvestigated. For a wide range of input powers (40� 240mW) and a wide range of waveplate rotation angles (-15Æ to 20Æ) the dynamis of a positive domain having an initialradius R0 � 0:9mm has been reorded. It is analyzed by determining the ontrationoeÆient  in a plot, where the squared domain radius is plotted against the time.Due to the appearane of the loking phenomenon at higher input powers, an analysisonsidering the re�ned model does not yield reasonable results. In the parameter ranges
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Figure 4.20: Transition from unstable domains to stable solitons. CoeÆient  in dependenyon the wave plate rotation � and input power Pin. White rosses indiate the minimum powerfor the existene of stable solitons. Parameters: d = 120mm, � = 17:7GHz, T = 346:1 ÆC.where pronouned loking or large imperfetion of the bifuration is present, the oeÆient only gives an estimate of a mean timesale of the overall dynamis of the domain.Figure 4.20 shows  enoded into a greysale value in dependeny on the input powerand �. White enodes a fast ontration, while blak enodes a dynamis that reahesa stable situation at some point in time ( � 0). For the positive domains onsideredhere, negative (positive) values of � indiate that the domain is the favored (disfavored)state. Firstly, the diagram reprodues the phenomena that have been disussed in theprevious setions. Making a vertial ut at � = 0 in the plot, the dynamis of the domainslows down with inreasing input power as disussed in setion 4.3.3. Apparently thisphenomenon also persists in the ase of an imperfet bifuration (� 6= 0). In tendeny,the graph beomes darker with inreasing input power at every angle �. On the otherhand, the dynamis slows down if the domain is in the favored state, while it aeleratesif it is in the disfavored state. This behavior already disussed in the previous setionapparently applies for all input powers onsidered here. The graph shows, that both e�etsseem to apply simultaneously. As a result, domains being in the disfavored state observedat low input powers (lower right orner) exhibit a relatively fast dynamis. The dynamisslows down with inreasing input power and inreasing preferene of the domain state.Aordingly, the diagram beomes darker towards the upper left orner. In addition,
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Figure 4.21: Swithing sequene of two solitary strutures of di�erent order. Polarizationanalyzer aligned for suppression of the bakground beam in the detetion branh: a) bakgroundbeam; b) ignition of a soliton with irularly polarized addressing beam; ) stable soliton withaddressing beam swithed o�; d) erasure of soliton with addressing beam of opposite irularpolarization; e) bakground beam. Parameters (�rst olumn): d = 120mm, a-e) � = 16:2GHz;T = 321:8 ÆC, Pin = 219mW, � = 4Æ300 f)-j) � = 14:6GHz, T = 327:3 ÆC, Pin = 165mW,� = 7Æ000.the loking of domains indued by spatial osillations leads to a further slowdown of thedynamis at ertain domain radii.As a matter of fat, in the upper left orner, the dynamis ompletely stops at a ertaindomain radius, and stable strutures that will be interpreted as solitons in the next setionare observed. The threshold for the formation of stable strutures is indiated by whiterosses within the diagram. It will be disussed further in setion 4.4.4.
4.4 Disrete family of solitonsIn the previous setion, the dynamial properties of unstable domains have been har-aterized, and the mehanisms that modify this dynamis have been identi�ed. In thefollowing setion, stable loalized strutures will be presented whih evolve due to aninterplay of these mehanisms in adjaent parameter regions.



4.4 Disrete family of solitons 634.4.1 Preparation of solitonsA fundamental property of spatial solitons is the possibility to ignite and erase them bymeans of large perturbations, i.e. they exist in bistability with a state where no soliton ispresent. In many systems, solitons also appear spontaneously, but this behavior is not ob-served in the present experiment. An ignition and erasure proedure of a soliton is shownin Fig. 4.21a-e. The system is prepared in the state with positive polarization rotation.The �/8-plate is oriented to inline a positive angle with the input polarization, thereforthis state is the disfavored one. The analyzer is adjusted suh that this bakground is sup-pressed (Fig. 4.21a). Then the ��-polarized addressing beam is swithed on and induesloally a transition to a state with negative polarization rotation. This results in a hightransmission through the analyzer (Fig. 4.21b). If the addressing beam is swithed o�,a stable solitary struture survives that onsists of a bright ring (Fig. 4.21). Swithingon { at the position of the solitary struture { the addressing beam with �+-polarizationresults in an extintion of the solitary struture (Fig. 4.21d). After the erasure proedurethe system reovers its initial state (Fig. 4.21e).If � is inreased, another stable struture an be ignited in the same manner (see Figs. 4.21f-j). It onsist of a entral peak surrounded by a ring that is larger than the one desribedbefore. These strutures resemble the metastable domains in the loking region disussedin the previous setion (see Fig.4.15). For the parameters hosen here they are stable.Similar strutures an be ignited by means of a �+-polarized beam, if the system is �rstbrought into a state with negative polarization rotation and the sign of � is reversed.4.4.2 Family of solitonsIf the diameter of the addressing beam is enlarged, two other types of stable solitarystrutures an be ignited for the same or similar parameters (see below). This sequeneof strutures represents the �rst experimental observation of a disrete family of solitons,whih has been predited in many theoretial works for many years (see hapter 2). Anoverview of the types of observed solitons onerning their polarization properties is givenin Fig.4.22.Basi propertiesThe �rst row shows the solitons with the linear polarizer oriented to suppress the bak-ground (as in all pitures before). The solitons di�er in size and in the number of radialosillations. Their order will be denoted by numbering them from 1-4. Depending on thesize of the addressing beam, the irular domain, whih is initially ignited, will shrink or
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Figure 4.22: Disrete family of solitons. Parameters (�rst olumn): see Fig.4.21a-e. Parame-ters (2nd-4th olumn): see Fig.4.21f-j.



4.4 Disrete family of solitons 65expand until one of the stable solitary strutures is reahed. Thus, these stable states areattrators of the dynamis of the system.Solitons 1-3 persist for time periods of some seonds to minutes depending on the pa-rameters. This is very long ompared to the typial timesale of the system being of theorder of miroseonds. Soliton 4 is muh more diÆult to prepare and has been rarelyobserved. It typially persists for some seonds, whih is enough to identify it as a stablestruture. It has a tendeny to drift o� the beam enter. Frequently, soliton 4 is observedonly as a metastable struture that drifts to the boundaries of the beam and then deaysor expands.The seond row of Fig. 4.22 shows the situation when the linear polarizer is adjustedorthogonal with respet to the position used in the images in the �rst row. So it isoptimized for the transmission of the bakground. From these pitures, the size andposition of the solitons with respet to the bakground beam is visible. While the �rstthree solitons are oriented in the beam enter, the fourth one is not. Rows one andthree are omplementary. However, even the total intensity distributions without anypolarization analysis elements are modulated (see row four). This is due to the amount ofabsorption that is still present despite the relatively large detuning of the holding beam.This view of the soliton family resembles the intensity distributions of the solitons thatwere theoretially predited to our in the presene of a pithfork bifuration whih havebeen alled `dark ring avity solitons'. However, in the present system, the orientation isthe state variable, and hene the intensity does not vanish within the dark rings.In row three of Fig.4.22, the linear polarizer is optimized to suppress the state of thepithfork bifuration that does not serve as the bakground state for the solitons. Itis obvious that the polarization of the solitons (aside from the osillations) is near thatpolarization state. The image of soliton 1 leads to the onjeture that this struture isa single-peaked struture and therewith the fundamental soliton of this family. This willbe proven in the next setion.Rows �ve and six show the omponents of irular polarization. There is a slight modula-tion of the Gaussian bakground, however it is very limited. In tendeny, the modulationsfor �+ and �� light are omplementary. This is expeted for a nonzero orientation of thevapor.From the shown possibilities to display the solitons, the images with suppressed bak-ground (row one) have the largest ontrast. Therefor they have been hosen as the stan-dard in this work.
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Figure 4.23: Spatially resolved Stokes parameters of a �rst order soliton. Parameters: d =112mm, � = 16:7GHz, T = 360:4 ÆC, Pin = 180:7mW, � = �14Æ030.Measurement of Stokes parametersA very powerful method to haraterize the polarization of a light �eld is the spatiallyresolved measurement of its Stokes parameters. It gives the full information about thepolarization state as desribed in setion 3.4.The measurement of the Stokes parameters an be performed only if the system is verystationary. This is due to to the need to exhange elements in the polarization analysisbetween taking the four required images. A full measurement takes up to two minutes.So only a subset of strutures an be overed by this measurement. This exludes alldynamial strutures like the unstable domains disussed in setion 4.3. Also patternformation is exluded, though the patterns are stable in priniple. However, they moveon a timesale of hundrets of miroseonds to milliseonds. This drift is attributed to thenoise that is present in the system. The solitons are stable on a muh longer timesale.Nevertheless they exhibit a ertain jitter, whih an be attributed to noise as well. Toimprove image quality in the measurement, the single images have been shifted by up to10 pixels in order to perfetly overlay the strutures.The result of a measurement of the spatially resolved Stokes parameters of a �rst ordersoliton is given in Fig. 4.23. The Stokes parameter S1 haraterizes the tendeny of thelight �eld to be linearly polarized in the diretion of the input polarization (S1=1) orthe orthogonal diretion (S1=-1). Figure 4.23a shows the spatially resolved parameterS1 and a vertial ut through the enter of the struture. It is a bright ring that lookssimilar to the pitures with suppressed bakground disussed in the previous subsetion.The absolute value of S1 is lose to one in a large region of the image. The light �eldis obviously linearly polarized to a very high level. As expeted, the sodium vapor has



4.4 Disrete family of solitons 67a large inuene on the input light �eld, sine S1 is lose to one only in a very smallregion. Figure 4.23b shows the parameter S2 that desribes a tendeny of the light �eldto be linearly polarized at an angle of 45Æ (S2=1) or -45Æ (S2=-1) with respet to theinput polarization. It shows niely the osillations of the bakground �eld. S3 gives thetendeny of the light �eld to be �� polarized (S3=1) or �+ polarized (S3=-1). The amountof irular polarization is a measure for the strength of nonlinear absorption present in thesystem. An orientation of the vapor leads to a di�erene in the absorption oeÆients forirularly polarized light of di�erent heliity (see setion 5.1). Thus, a linearly polarizedinput �eld beomes elliptial. Figure 4.23 shows that the amount of irular polarizationis rather small for the parameters used throughout this work. This is also reeted bythe elliptiity of the light �eld that does not exeed j15Æj (Fig. 4.23d). It an bee seen,however, that the elliptiity hanges its sign at the position of the soliton. This gives ahint that also the orientation of the vapor hanges its sign at the position of the soliton.The dispersive part of the nonlinearity that leads to a rotation of a linearly polarizedlight �eld seems to play the dominant role in this experiment. Hene, it seems espeiallypromising to determine the angle of the main axis of polarization with respet to theinput polarization. While a diret measurement of the orientation is not possible, thepolarization rotation angle is proportional to the orientation of the sodium vapor (seesetion 5.1). Hene, the spatially resolved measurement of the Stokes parameters of thelight �eld transmitted by the vapor an provide an indiret measure of its orientation andthus to the state variable of the mirosopi model.Fig. 4.23e shows the spatially resolved measurement of the angle of the main axis of po-larization with respet to the input polarization. The state serving as the bakgroundexhibits a negative polarization rotation angle of � � �85Æ It an be identi�ed as oneof the two states emerging from the pithfork bifuration. In the region of the solitonthe polarization state hanges drastially. Obviously soliton 1 is a single-peaked stru-ture and an now be identi�ed as the fundamental soliton. The enter of the solitonexhibits a polarization rotation angle of � � +80Æ. This angle orresponds niely to theseond state emerging from the pithfork bifuration, whih will be alled the target state.Thus, the soliton is interpreted as a high-amplitude loalized exursion from one (nearly)homogeneous state towards the viinity of the other one and bak.Fig. 4.23f shows the frational polarization of the light �eld. In this experiment, onlyfully polarized light should our sine spontaneous emission is suppressed by the hoieof the bu�er gas. As a result, the measured frational polarization is near one in largeareas of Fig. 4.23f. Of ourse some noise is present espeially in the outer regions where allmeasured intensities are low. However, there is a systemati deviation that is onneted tothe existene of the solitary struture. At some radius around the struture the frational



68 Experimental resultspolarization signi�antly deviates from one. This is attributed to the jittering of thestruture whih in the presene of the steep gradients an lead to an apparent breakdownof the frational polarization.The spatially resolved measurement of the polarization rotation angle � seems to be apromising method to haraterize the solitons. Figure 4.24 shows the �rst three membersof the family of solitons together with the two (nearly) homogeneous states that serve asthe bakground and target state. Eah sub�gure shows a three-dimensional surfae plotof �. At the front side of the plots of the solitons, two orthogonal uts through the enterof the struture are shown. In order to redue spatial noise espeially in the outer partsof the plot, a two-dimensional adaptive noise-removal �lter1 has been applied to the �distribution. Some lighting has been added in order to emphasize small-sale osillationsthat annot be distinguished by the olor table gradients in the printout.The state that serves as the bakground of the solitons is shown in Fig. 4.24a. It exhibitsa mean polarization rotation � = �89:5 Æ and is nearly homogeneous. Slight modulationsare visible in the beam enter. The measurement was onduted at an input power nearthe threshold for pattern formation. The rudiment of the evolving pattern is visiblehere, beause it is pinned due to the boundary onditions of the Gaussian beam. Thepolarization rotation angle does not hange even in the outermost parts of the plot wherelight intensities are signi�antly lower. Obviously the large intensity gradient of the light�eld does not lead to the appearane of large gradients within the orientation distribution.This an be understood from the following aspets: Due to the low threshold of thepithfork bifuration orientation an be generated even at low intensities. Furthermorethe thermal di�usion of the sodium atoms leads to an orientation even in the areas wherethere is virtually no light. The only losses in these areas leading to a depolarization of thevapor are the very small ground state relaxation mehanism indued by partile-partileollisions, ollisions of sodium atoms with the ell walls at a distane of 6 mm and smallmagneti stray �elds.The seond state emerging from the pithfork bifuration whih serves as the target stateof the solitons is shown in Fig. 4.24e). Its mean polarization rotation is � = 60:2 ÆThe di�erene ompared to the bakground state is a result of the imperfetion of thepithfork bifuration that is introdued by rotation of the wave plate. The target stateis the favored state and thus it exhibits a smaller polarization rotation. It also has aslightly lower threshold for pattern formation as an be onluded from the slightly largeramplitude of the osillations in the beam enter.The 3D plot of the already disussed fundamental soliton is shown in Fig. 4.24b. The1Funtion wiener2 from the image proessing toolbox of MATLAB 7.0 using a neighborhood of 20x20pixels to estimate the loal image mean and standard deviation
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Figure 4.24: First to third order positive solitons (b-d) and orresponding (nearly) unstru-tured states (a,e). Spatially resolved polarization rotation angle � obtained from a measurementof the Stokes parameters of the light �eld. Parameters: see Fig. 4.23, exept: d) � = �15Æ210.



70 Experimental results�gure illustrates niely the shape of the single-peaked struture. In the surfae plot as wellas in the uts the ring-shaped osillations of the bakground around the struture beomeapparent. At exatly the same parameters, soliton 2 an be ignited whih is shown inFig. 4.24. The width of the whole struture is larger than the �rst order soliton. It alsohas a irular shape, but it has a dip in the enter. In a radial ut, the system undergoesone spatial osillation around the target state before returning to the bakground state.The struture is surrounded by ring-shape osillations that have the same appearane asthe ones of soliton 1.If the wave plate rotation angle is slightly dereased, the third member of the solitonfamily an be ignited (Fig.4.24d). It is a irular struture onsisting of a entral peakwhih is surrounded by a ring. Here the system undergoes two spatial osillation periodsbefore returning to the bakground. These osillations are less pronouned than in soliton2.All solitons shown in Fig.4.24 are large-amplitude strutures that exhibit a positive po-larization rotation (and thereby positive orientation) existing on a bakground of a statewith negative polarization rotation (and orientation). Hene, they will be alled positivesolitons in the following.As an analogon, a soliton exhibiting a negative polarization rotation existing on a bak-ground with positive polarization rotation is alled negative soliton. These strutures anbe obtained if the wave plate rotation angle is reversed. This interhanges the role of thetwo (nearly) homogeneous states. Of ourse, the heliity of the ignition beam has to behanged also. The family of negative solitons together with their bakground and targetstates are shown in Fig.4.25.The family of negative solitons exhibits the same properties already disussed for thefamily of positive solitons with reversed polarization rotation angles �. This is the expetedresult beause of the symmetry properties of the system. It has to be emphasized that thedesribed behaviour is signi�antly di�erent from the phenomenon of `bright' and `dark'solitons that is ommonly disussed in systems where bakground and target state arenot (nearly) equivalent.From the given results, a �rst interpretation of the nature of the soliton families an bederived. It appears that all members of the soliton family represent a loalized exur-sion from the bakground state into the viinity of the target state and bak, i.e. thesoliton represents a homolini onnetion of the bakground state with itself (see, e.g.,[CRT00b℄). In the one-dimensional ase this situation is haraterized by the existene oftwo swithing fronts whih are loked, while in the two-dimensional ase a irular front isinterating with itself. Sine osillations around the states that serve as bakground andtarget seem to play an important role here, it an be assumed that the loking proess
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Figure 4.25: First to third order negative solitons (b-d) and orresponding (nearly) unstru-tured states (a,e). Spatially resolved polarization rotation angle � obtained from a measurementof the Stokes parameters of the light �eld. Parameters: see Fig. 4.23, exept: a)-,e) � = 11Æ590;d) � = 13Æ390.



72 Experimental resultsis heavily supported by the presene of the modulational instability whih exists on bothbranhes, i.e. in the states of positive or negative rotation of the polarization. Lokingshould then be possible at di�erent spatial separations of the fronts due to the periodiityof the modulated states. The existene of a disrete family of solitons appears to be thenatural onsequene.4.4.3 Length salesA quantitative analysis of the sizes and modulation length sales of the solitons givesfurther insight into the mehanisms leading to the formation of a disrete family of solitons.As disussed in the previous subsetion, a radially averaged pro�le of eah soliton an bederived from the measurement of the spatially resolved polarization rotation angle (the �distribution without noise �ltering has been used here). These radial pro�les are shownin Fig. 4.26a. For a better omparison, the pro�les of the family of negative solitons havebeen reversed: Solid lines show the pro�le of positive solitons, while dashed lines representthe inverse pro�le of negative solitons.Firstly, it is notied that there are virtually no di�erenes between the pro�les of positiveand of negative solitons of the same order. One more, this niely illustrates the symmetryproperties of the system. The radial pro�le of a soliton an be divided into three parts.Starting from the middle, at �rst there are potentially osillations around the target state.This, of ourse, does not apply to the fundamental soliton. In the ase of S2, there is a halfosillation leading from a minimum to a maximum at 0.23 mm. In the ase of S3, there isa full osillation period starting from a maximum and leading bak to a maximum at 0.43mm. It an be notied that the osillation period is approximately the same. As stated inthe desription of Figs. 4.24 and 4.25, the experiment was performed near the thresholdfor pattern formation, where no lear pattern has yet evolved. In order to ompare thelength sale of the modulational instability with the osillation period found within thesolitons, a hexagonal pattern at higher input powers was observed and analyzed. It isknown that the length sale might slightly hange with inreasing power. However, it anbe taken as a good estimate of the length sale. The light grey vertial lines in Fig.4.26aindiate multiples of the half wavelength of the hexagonal pattern (�=2 = 0:218mm).The length sale of the modulational instability mathes quite well the osillation periodthat is observed within the target state.The seond remarkable feature of the radial pro�le of the solitons is the polarization frontleading from the target state towards the bakground state, whih is haraterized by ahange of sign of �. The polarization rotation angle � = 0 an serve as a good measurefor the width of the strutures, as it is similar to the width at half maximum in a goodapproximation. From any soliton order to the next, the width of the solitons inreases
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Figure 4.26: Radially averaged pro�les of positive (straight lines) and inverted negative (dashedlines) solitons of �rst (blak), seond(red) and third (blue) order. a) full pro�les; b) polarizationfront starting from the outermost maximum of eah soliton; ) osillatory tails starting from the�rst minimum of the solitons. Parameters: see Figs. 4.23, 4.24, 4.25.
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Figure 4.27: Double logarithmi plot of struture sizes against mirror distane d. Parameters:d = 105mm, � = 16:0GHz, T = 331:0 ÆC, Pin = 331mW, � = 1Æ (105 mm)�11Æ (180 mm).in disrete equal steps. These equal steps are well onneted to the length sale of themodulational instability (see vertial lines). However, the whole front (leading from thelast maximum at positive angles to the �rst minimum at negative angles), is slightlylarger than one osillation period of the modulational instability. In order to haraterizethe front further, Fig. 4.26b shows the radial pro�le of the solitons starting at the lastmaximum of the respetive soliton. It turns out that the shape of the front seems tobe �xed and independent from the order of the soliton. Its size amounts to 0.50 mm.This orresponds to the distane between the onstituents of a hexagonal pattern, that isonneted to the length sale of the pattern by d = � � 2p3 = 0:50mm.The third remarkable feature of the solitons is the ourrene of modulations around thebakground state, whih are generally referred to as osillatory tails. These osillatorytails, starting from the end of the front, are depited in Fig. 4.26. The amplitude of theosillation dereases signi�antly with inreasing distane from the soliton. Nevertheless,a lear osillation period is observed in all urves. Just as in the ase of the modulationsaround the target state, it is onneted to the length sale of the modulational instability.The above onsiderations suggest that the length sale of the solitons is onneted tothe length sale of the modulational instability, whih an ommonly be derived fromthe Talbot e�et as disussed in setion 2.3.2. It is mainly given by the distane of thefeedbak mirror d. The wavelength of the pattern is expeted to sale like �p / pd. A



4.4 Disrete family of solitons 75similar saling behavior should then be observed for patterns and solitons, if the mirrordistane is varied. Fig. 4.27 shows the sizes of solitons S1 and S2 ompared to the lengthsale of the hexagonal patterns that serve as bakground and target state in a doublelogarithmi plot. The size of the solitons is determined from images that show the solitonwith suppressed bakground. The radius of the outer ring gives a rough measure of thewidth at half maximum as indiated in the sheme in Fig. 4.27. The size of S1 has beensaled by a fator 2 in order to show all data in one plot. The length sale of the hexagonalpatterns is determined from the distane between the onstituents saled by a fator ofp32 . For all strutures, an inrease in size is observed if the mirror distane is inreased.A linear �t in the logarithmi plot reveals the underlying power law. The slope of thelinear �t for the hexagonal patterns is given by 0:491 � 0:012 (bakground state) and0:491 � 0:017 (target state). This is in a good agreement with the expeted pd salingbehavior.In the ase of the solitons, growth exponents of 0:384� 0:047 (S1) and 0:505� 0:043 areobserved. At least for S2 a lear onnetion to saling of the underlying modulationalinstability an be veri�ed. The data of S1 shows large utuations. However, a similarityof the saling behavior an be onjetured.4.4.4 Region of existeneFigure 4.28 shows an overview of the bifuration senario and of the regions of existeneof positive and negative solitons in dependeny on the wave plate rotation angle andinput power. The blak squares separate the regions where only one homogeneous orpatterned solution exists from the one where bistability is observed. Triangles faing up-and downwards indiate the threshold for pattern formation as disussed in setion 4.2.3.The regions of existene of the solitons are measured in the following manner: A solitonis ignited for a given input power. Then � is inreased and dereased until the solitoneither deays and disappears or expands and swithes the whole beam to the favoredstate. Typially there are transformations onerning the order of the soliton when � isvaried, whih is disregarded in this measurement and will be disussed below.The margin of the region of existene of positive solitons is indiated by the blue openirles. All data points in the diagram are onneted by straight lines to guide the eyeand inrease larity. The region of existene of negative solitons is indiated by red fullirles. It an be easily seen from the diagram that the system behaves very symmetriwith respet to � = 0. This has already been shown in the previous setions, and here itbeomes lear that the same is true for the region of existene of the solitons. Thereforthey will not be individually disussed.The minimum threshold power P � 125mW for the existene of solitons ours, if the
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Figure 4.28: Overview of the bifuration senario and the region of existene of positive andnegative solitons. �: threshold for bistability; threshold for pattern formation of the positive(N) and negative (H) branh of the pithfork bifuration; regions of existene of positive (Æ) andnegative (�) solitons. Parameters: see Fig. 4.7.slow axis of the �=8-plate and the input polarization inlude some �nite angle � whihdisfavors the polarization state of the bakground and favors the polarization state of thesoliton. About the same threshold is obtained for the angle -�, of ourse, with the roles ofthe two polarization states being interhanged. When the input power is inreased aboveP, then there is a �nite range of angles �, where solitons exist. If j�j dereased belowa ritial angle, the soliton beomes unstable and disappears. If j�j is inreased beyondthe border of the existene region, the soliton beomes unstable and expands and thewhole beam swithes to the favored branh. In a ertain power range, solitons an existbelow the threshold for pattern formation. Above a seond threshold P 0 � 200mW, therange of �, where solitons exist, inludes �=0. In that ase the two polarization states areompletely equivalent. At this power level they are both modulationally unstable. Abovethis seond threshold there is a �nite range of angles � where positive and negative solitonsan exist for the same parameters. For very high input powers, solitons an even be stable



4.4 Disrete family of solitons 77if the polarization state of the bakground is the favored one and the polarization stateof the soliton is the disfavored one.The presented experimental results lead to a �rst interpretation of the mehanism thatleads to the formation of stable solitons. In setion 4.3 it was shown that in the aseof the existene of two equivalent states irular domains shrink and �nally disappear.The edge of the domain, however, may be pinned by spatial modulations, and pinning ismore probable, when strong modulations are present, of ourse. Obviously robust pinningours here when the input power Pin exeeds P 0.If the two homogeneous states are not ompletely equivalent, i.e. in the ase � 6= 0, theurvature-driven shrinkage of a droplet is ounterated, if the droplet is in the preferredstate. For large values of j�j the shrinkage an even be overompensated and then thedroplet expands. For a given �, there is a ritial radius of the droplet where the twoe�ets are in balane. However, this situation is unstable, at least in the absene ofspatial osillations. Nevertheless, front veloities are low near this ritial radius. Dueto the existene of the modulational instability, spatial modulations beome muh morepronouned for inreased input power. In the ase �=� the modulations ourring forPin = P are onsidered to warrant stabilization, while in the ase �=0, i.e. without othere�ets ounterating the urvature-driven dynamis, the modulations orresponding toP 0 are neessary.To re�ne this piture, a measurement was onduted that determines the region of ex-istene of the di�erent members of the family of positive solitons. The result is shownin Fig.4.29. For the given set of parameters, positive solitons of �rst, seond and thirdorder are observed. The measurement was onduted similar to the previous one. For agiven input power, soliton 1 was ignited by means of the addressing beam. Then � wasinreased until the soliton disappeared. Then � was adjusted bak to the starting posi-tion, the soliton was ignited again and � was dereased. At the point where the solitonbeomes unstable, it typially either transforms into a soliton of neighboring order or intoan elongated bound state of same order (see below in setion 4.5.2). Then the measure-ment is ontinued with the next order soliton. For the measurement of the minima of theregions, � and the laser power have been varied simultaneously. It has been heked thatthere are no unonneted regions of existene of solitons of same order.While the outline of all regions together generally reprodues the region of existene dis-ussed in Fig. 4.28, there are some interesting aspets of the single urves. The minimumpower neessary for a stable soliton is nearly the same for soliton 2 and 3 (Pin � 130mW).In the ase of soliton 1, it is signi�antly higher (Pin � 160mW). It an be onjeturedthat the stability of soliton 1 requires a larger amount of spatial osillations.The absolute values of the ritial angles � depend in a systemati way from the soliton
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Figure 4.29: Regions of existene of positive solitons of �rst(�), seond (�) and third (N) order.Parameters: d = 112mm, � = 16:3GHz, T = 360:2 ÆC.order. For the smallest struture, it is the highest (j�j = �23:3Æ). For soliton 2 it isj�j = �20:5Æ, and soliton 3 has the smallest ritial angle j�j = �17:7Æ. This an beunderstood by looking again at the domain dynamis. Small domains that have a largeurvature of the domain wall have a strong drive to ontrat. Therefor the amount ofnon-equivalene of the two states needed to ompensate this urvature-driven dynamisis high. Hene, a domain of the size of soliton 1 requires larger angles � to reah anequilibrium than the higher order solitons. This equilibrium is then stabilized by themodulations.Above the threshold the regions of existene beome broader. This is interpreted to bedue to the stronger loking of the domain walls with higher input powers. There arelarge regions where neighboring orders of solitons an exist simultaneously. For mediuminput powers there even is an area where all three regions of existene overlap. If theinput power is inreased further, the situation reverses. Smaller solitons are observed forsmall angles, while large strutures are observed for large angles. Solitons 1 and 2 an beobserved beyond � = 0.With inreasing input power, the modulations in the system due to the modulationalinstability inrease with respet to their amplitude as well as to the size of the patternedarea in the Gaussian beam (see setion 4.2.1). For high input powers, the patterns existon both branhes of the pithfork bifuration. However, their amplitude is still smallompared to the amplitude of the solitons. Figure 4.30 shows how these high-amplitudesolitons interat with the modulation of the bakground state at high input powers.
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a) b) c) d) e)

Figure 4.30: Patterns and solitons at high input power. a),e) hexagonal patterns of bakgroundand target state, b)-d) S1-S3. Parameters: see Fig. 4.29, Pin = 261mW, a)-),e) � = �5Æ,d) � = �15Æ.Image 4.30a shows the hexagonal pattern emerging from the branh of the pithforkbifuration that is used as the bakground state, while Fig. 4.30e shows the hexagonalpattern emerging from the other branh. A lear hexagonal symmetry is observed inboth situations. Figs. 4.30b-d show the solitons 1-3 in inreasing order for the sameinput power. Soliton 1 is surrounded by modulations. Its own shape, however, is radiallysymmetri. The surrounding modulations are interpreted as a highly distorted pattern.Obviously the high-amplitude soliton has a large impat on the bakground state, whilethe impat of the pattern on the soliton is negligible. Soliton 2 is larger in size and thereforthe area in the Gaussian beam where patterns an exist is mostly oupied by the soliton.No azimuthal modulation of the bakground is observed anymore. Hene, the existeneof the soliton suppresses pattern formation. The same is true for soliton 3, where nearlythe whole entral area of the beam is oupied.The interation of the solitons with the bakground under variation of the input poweris shown in Fig. 4.31. The �rst row shows images of soliton 1 taken at the enter ofits region of existene with respet to �. At low input powers, the soliton as well asthe modulations of the bakground have a perfet irular shape. With inreasing inputpower, the bakground modulation beomes more and more azimuthally modulated. Theintensity peaks of the bakground modulation all have the same distane from the soliton,i.e. they are organized on a ring. The size and the shape of the soliton itself does not hangesigni�antly. However, a very slight azimuthal modulation of the soliton is observed forhigh input powers.Solitons 2 and 3 are also perfetly irular at low input powers (see Fig. 4.31g-r). Soliton2 slightly hanges its appearane with inreasing input power. The entral peak developsa small dip in its middle. This is interpreted as an inreasing modulation depth of theosillation within the soliton. This leads to the observation of a dip when looking at thesoliton with a linear polarizer that suppresses the bakground. The evolving azimuthalmodulation of the bakground is again interpreted as a strongly distorted pattern. Soliton
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Figure 4.31: Evolution of �rst (�rst row), seond (seond row) and third (third row) ordersolitons under variation of input power Pin. Images were taken at the enter of the orrespondingexistene region (see Fig. 4.29). Parameters: see Fig. 4.29.3 is large enough to ompletely suppress pattern formation in the bakground. However,at high input powers, the inner ring of the soliton beomes slightly modulated. This leadsto the onjeture that the modulational instability of the seond branh has a growinginuene. This inuene �nally leads to the formation of loalized patterns whih will bedisussed in setion 4.6.3.4.5 Multiple solitons and bound statesHitherto, in order to haraterize the basi properties, the disussion of the solitons hasbeen limited to a single soliton existing at a ertain instane of time. Interesting situationsarise, if { by means of the addressing beam { one or more additional solitons are ignited.Indeed, the interation of multiple solitons leads to the formation of a large variety ofstable on�gurations.4.5.1 Soliton lustersAn important property of dissipative solitons is their individual addressability, whihmakes them interesting andidates for using them in all-optial memories. Figure 4.32
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a) b) c) d) e)

f) g) h) i)

Figure 4.32: Individual ignition and erasure of two solitons. a) bakground beam; b) ignitionof �rst soliton; ) stable soliton with addressing beam swithed o�; d) ignition of seond soliton;e) two stable solitons with addressing beam swithed o�; f) erasure of �rst soliton; g) seondsoliton with addressing beam swithed o�; h) erasure of seond soliton; i) bakground beam.Parameters: d = 112mm, � = 15:6GHz, T = 346:0 ÆC, Pin = 239mW, � = �3 Æ 40 '.shows a swithing sequene where two solitons are individually ignited and erased. Theaddressing beam is positioned at an o�-enter position. Starting from a hexagonal pattern(Fig. 4.32a), it is swithed on and ignites a domain similar to an S1 soliton (Fig. 4.32b).If the addressing beam is swithed o�, the domain forms a stable S1 soliton whih movestowards the beam enter (Fig. 4.32). If the addressing beam is swithed on again, aseond soliton is ignited (Fig. 4.32d). After the addressing beam is swithed o�, the twosolitons start to interat and establish a stable on�guration (Fig. 4.32e). Suh a stableon�guration of two or more solitons will be alled a soliton luster in the following. Ifthe addressing beam, its polarization now having the opposite heliity, is swithed onat the position of the left soliton (Fig. 4.32f), it is erased. The remaining soliton againmoves towards the beam enter (Fig. 4.32g). It an also be erased by means of the theaddressing beam (Fig. 4.32h), restoring the initial situation (Fig. 4.32i).A measurement of the spatially resolved polarization rotation angle of a luster of twofundamental solitons is shown in Fig 4.33a. Eah soliton persists as a single entity andremains nearly unhanged in its shape. The solitons have a distane of 0.81 mm. Thisdistane seems to be given by a loking mehanism where the opposing fronts of the twosolitons enlose their minimum distane. This beomes apparent in the ut through theenter of both solitons. The system returns to the viinity of the bakground state betweenthe solitons. The soliton luster is surrounded by peaks that have a signi�antly smaller
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Figure 4.33: Simple soliton lusters. Spatially resolved polarization rotation angle � obtainedfrom a measurement of the Stokes parameters of the light �eld. a) 2 S1 solitons; b) 2 S2solitons; ) 3 S2 solitons. Parameters: a),b) d = 112mm, � = 17:6GHz, T = 357:6 ÆC, a)Pin = 224:6mW, � = �11Æ 210, b) Pin = 207:0mW, � = �12Æ 310; ) d = 112mm, � = 15:1GHz,T = 359:5 ÆC, Pin = 252:9mW, � = �12Æ 450.
a) b) c) d) e)

f) g) h) i) j)

k) l) m) n)

Figure 4.34: Misellaneous on�gurations of soliton lusters. a) 2 S1; b),) 3 S1 in di�erenton�gurations; d) 4 S1; e) 2 S2; f) 3 S2; g) S1 + S2; h) 2 S1 + 1 S2; i) 1 S1 + 2 S2; j),k) 2 S1+ 2 S2 in di�erent on�gurations; l),m) 3 S1 + S2 in di�erent on�gurations; n) S2 + S3.



4.5 Multiple solitons and bound states 83amplitude than the solitons. These are the remnants of the modulational instability ofthe bakground state. In order to ignite more than one soliton the area where solitonsan exist in priniple has to be inreased. In a Gaussian beam this is only possible ifthe threshold for pattern formation is rossed. As a onsequene, the osillations of thebakground are not irular but are better desribed by a strongly distorted pattern asdisussed in setion 4.4.4. While the pattern itself annot be overed by a measurement ofthe Stokes parameters, the distorted pattern is pinned by the large perturbation induedby the solitons and an therefor be seen in the measurement.A soliton luster built by two seond order solitons is shown in Fig.4.33b. In priniple, thesame argument applies here. However, the shape of the single solitons is deformed. Theirle on top of the soliton beomes azimuthally modulated and exhibits three peaks, twoof whih are loated at the side opposing the other soliton. Nevertheless, the single solitonkeeps its status as a single entity. The solitons keep a distane of 1.22 mm, whereas theut through the enters shows that the system returns to the bakground state only for asingle osillation similar to the situation in Fig. 4.33a.If a third seond order soliton is ignited, the strutures arrange in the shape of an equi-lateral triangle, where the average distane between the verties is 1.24 mm. This orre-sponds niely to the two-soliton ase. Obviously the system always strives for the smallestdistane between the solitons, whih might be supported by the gradient-indued move-ment towards the beam enter.Despite the low aspet ratio, a lot of di�erent on�gurations of soliton lusters an beobserved. This repertory of lusters is shown in Fig.4.34. Here the solitons are depitedin the usual way with the linear polarizer aligned for maximum suppression of the bak-ground. The on�gurations orresponding to those that have been disussed up to noware shown in Figs. 4.34a,e,f. Clusters of �rst order solitons with inreasing number ofonstituents and varying on�gurations an be seen in Figs. 4.34a-d, while lusters on-sisting exlusively of S2 solitons are found in Figs. 4.34e,f. Frequently soliton lusters areobserved that onsist of solitons of di�erent order. Most ommonly, lusters onsistingof S1 and S2 solitons are found in many on�gurations (see Figs. 4.34g-m). Due to thelimited aspet ratio, lusters of solitons of higher order are very rarely observed. A lusterof an S2 and an S3 soliton is shown in Fig. 4.34n.From all the images a �xed distane of the outer bounds of two neighboring solitons anbe identi�ed. The order of magnitude of this distane seems to be independent of theorder of the neighboring solitons. For a detailed analysis of this issue see below.It an be seen in the pitures that the single soliton slightly hanges its shape on theside(s) that is (are) faing other solitons. In tendeny, the irular shape attens whih isleading to a slightly larger 'ontat area'. This might lead to an inreased level of stability
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a) b) c) d) e)

Figure 4.35: Bound states of solitons of �rst and seond order. a) �rst order soliton; b) boundstate of two �rst order solitons; ) seond order soliton; d) bound state of two seond ordersolitons; e) bound state of three seond order solitons. Parameters: d = 112mm, � = 16:3GHz,T = 360:2 ÆC, Pin = 247:9mW, a) � = �7Æ, b) � = �9Æ, ) � = �10Æ, d) � = �15Æ, e) � = �18Æ.for the soliton.Commonly, a single soliton in a luster an be erased by means of the addressing beam,while the other solitons persist. A reon�guration of the remaining solitons will takeplae in this ase. Sometimes, however, other solitons disappear if a neighboring solitonis erased. This is interpreted to be a result of the loss of the inreased stability that hasbeen indued by the neighboring soliton. It is possible that solitons of a spei� orderare stable in a luster for ertain parameters where the single soliton is not stable. Inthose ases, the individuality of the single soliton is limited, whih might lead to unwantedrosstalk e�ets in the framework of using spatial solitons as a medium for all-optial datastorage.4.5.2 Bound statesTypially a single soliton beomes unstable at some point, if the degree of imperfetion ofthe pithfork bifuration (j�j) is inreased. After the soliton has beome unstable, thereare three ways the system an reat: The �rst one is a transformation into another soliton,typially of higher order. The domain expands symmetrially and stops the expansion,if another loking state is reahed. If there are no stable larger soliton for the givenparameters, the domain will expand until the whole area is swithed to the target stateof the former soliton.The third observed behavior of the system is an expansion of the domain where the ro-tational symmetry is broken. Eventually the system reahes another stable on�gurationin this ase. Figure 4.35a shows a stable �rst order soliton. If j�j is inreased, the soli-ton beomes unstable and a stable struture evolves that is depited in Fig. 4.35b. Thisstruture is an elongated struture whose shorter diameter is the one of the soliton it hasevolved from, while the longer diameter is approximately given by twie the diameter of
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Figure 4.36: Bound states of two a) �rst and b) seond order solitons. Spatially resolvedpolarization rotation angle � obtained from a measurement of the Stokes parameters of the light�eld. Parameters: a) d = 112mm, � = 17:0GHz, T = 359:5 ÆC, Pin = 270:7mW, � = �5Æ 580;b) d = 112mm, � = 17:0GHz, T = 362:8 ÆC, Pin = 237:1mW, � = �16Æ 360.the single soliton. Along the long axis the struture is narrowed down in the middle. Asimilar behavior is observed if, starting from a seond order soliton (Fig. 4.35, j�j is in-reased. Again, an elongated struture evolves that is narrowed in the middle (Fig. 4.35d).In the entral part, two peaks similar to the one of the single soliton are observable whihare interonneted. If j�j is inreased even more, the struture expands along its long axisand a third stable situation is reahed whih is depited in Fig. 4.35e. It is haraterizedby three interonneted entral peaks.An interpretation of the nature of these elongated states an be derived from a measure-ment of the Stokes parameters. A state orresponding to Fig. 4.35b is shown in a 3D plotof the polarization rotation angle in Fig. 4.36a. It shows that the struture is a stable en-tity that has two peaks. Along its short axis, it has the properties of a �rst order soliton.It is interpreted as a tightly bound state onsisting of two �rst order solitons. Unlike thesoliton lusters disussed in the previous setion, the two solitons are inseparable, and thesystem does not return to the bakground state between the solitons but osillates aroundthe target state. Figure 4.36b shows a situation orresponding to Fig.4.35d. Similarlythis struture is interpreted as a tightly bound state onsisting of two solitons of seondorder.Bound states an also be reated in ways di�erent from those that were desribed above.In some parameter regions, a single soliton an be expanded to a bound state by swithingon the addressing beam at a position very lose to the soliton. For some settings of �
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f) g) h) i) j)

k) l) m) n) o)

Figure 4.37: Misellaneous on�gurations of bound states oexisting with solitons.
it even is the most stable struture and an be addressed by using an addressing beamdiameter slightly larger than the size of the single soliton. Probably addressing boundstates ould be simpli�ed by modifying the shape of the addressing beam.The bound states behave as a single entity and hene an interat with other solitonsand bound states. Many di�erent on�gurations an be observed even at the given lowaspet ratio. Some of them are depited in Fig. 4.37. The images are roughly orderedin an asending degree of omplexity. Bound soliton states an oexist with eah otherand with single solitons of the same or of a di�erent order. Typially neighboring boundstates align parallel. The mehanism that leads to the observation of a ertain distanebetween neighboring strutures as disussed in the previous subsetion seems to apply inthe same manner for the distanes between bound states and other strutures.A very interesting struture is observed in Figs. 4.37n and o. Sub�gure n shows a boundstate of an S1 with an S2 soliton, while sub�gure o shows a bound state onsisting ofone S1 soliton and two S2 solitons. However, these strutures are only observed in thepresene of other strutures and are therefor interpreted as a metastable on�guration.This observation supports the onjeture that the stability properties of single strutures
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20Figure 4.38: Histogram of the preferred distanes between solitons and bound states. Param-eters: d = 120mm, � = 16:0GHz, T = 326:5 ÆC, Pin = 310mW.an be modi�ed under the presene of other strutures. Nevertheless the solitons areseparately addressable in a wide range of parameters.4.5.3 Preferred distanes between solitons and bound statesDespite the diversity of possible on�gurations of lusters of solitons and bound states,the distane between the onstituents of these lusters does not seem to be an arbitraryquantity. For the purpose of the analysis of the distanes involved in the formation ofsoliton lusters, a series of 250 images of the system taken for similar parameters has beenevaluated. A statistial analysis of the luster on�gurations is not possible, however, sinethe solitons do not appear spontaneously but have to be ignited. Aordingly, the observedluster on�gurations depend on the parameters of the ignition beam. The ignition beamwas positioned at an outer border of the beam having a radius that lies between the onesof S1 and S2. The ignited strutures drift towards the enter, where already one ore moresolitons might be present. With every soliton added, an image was taken. This sequenewas then repeated starting from the situation where no soliton is present. Thus, the seriesof images should represent a typial distribution of strutures. However it represents onlya subset of all the possible on�gurations.Within every soliton luster, every distane between the onstituents is evaluated. Ahistogram of the observed distanes is given in Fig. 4.38. The distanes between S1solitons are indiated by green bars. Distanes between S1 and S2 solitons are shown as



88 Experimental resultsblue bars, and distanes between S2 solitons are shown in red. Apparently, some distanesbetween the solitons are preferred over others. The on�guration assoiated with the singlelasses of distanes are shematially inserted into the �gure. The smallest distane isfound around 0.4 mm. It represents the distane of the onstituents within a bound stateonsisting of two solitons. Similar distanes are observed for bound states built fromS1 and S2 solitons. The next preferred distane represents the next-neighbor distanebetween S1 solitons. This distane around 0.8 mm is observed very frequently.A rather broad distribution of distanes is found around 1.0 mm. This distribution rep-resents the distanes between S1 and S2 solitons and bound states. Larger distanesare rarely observed. This is a onsequene of the limited area around the beam enter.However, soliton lusters onsisting of S2 solitons and lusters also yield de�ned distanes.The observed distanes seem to be multiples of an elementary unit. It was shown in setion4.4.3 that the sizes of the solitons are onneted to the length sale of the modulationalinstability. Multiples of the length sale of the underlying hexagonal pattern are indiatedas white stripes in Fig. 4.38. Apparently the distanes between the solitons are alsoonneted to this length sale.4.6 Complex behaviourIf the input power is inreased far beyond the threshold for pattern formation, not only theaspet ratio, i.e. the area where nontrivial strutures exist, inreases. Also the modulationdepth of the osillations beomes more pronouned. This leads to the observation of evenmore omplex strutures than disussed up to now as well as to situations, where thesolitons ontinuously lose their radial symmetry and a transition to states that an bebetter desribed in terms of loalized patterns takes plae.4.6.1 Solitons and frontsThe existene of stable straight polarization fronts has been disussed in setion 4.3.1.They an be observed in the nearly symmetri ase (� � 0) at input powers where bothbranhes of the pithfork bifuration are modulationally unstable. It has been shown insetion 4.4.4 that solitons an be ignited in this parameter region as well. This leads tothe onjeture that it should be possible to prepare the system in a way that both typesof struture an oexist.Figure 4.39 shows the result of this experiment in a measurement of the Stokes parameters.At �rst, the system is prepared to exhibit a straight polarization front (Fig.4.39a). Thissituation orresponds to the one desribed in 4.3.1. Thanks to the Stokes parameter
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Figure 4.39: Coexistene of a front and a S1 soliton. a) spatially resolved polarization rotationangle � of a polarization front. b) stable on�guration of front and S1. Parameters: d = 112mm,� = 16:8GHz, T = 361:0 ÆC, Pin = 268:3mW, a) � = �1Æ 400, b) � = �1Æ 000.tehnique it an now be analyzed in more detail. In the left part of the plot the polarizationrotation angle is positive, while in the right part it is negative. The two states areonneted by a ontinuous steep polarization front. Due to the large amplitude of thefront, both states show modulations whih are oriented parallel to the front. It shouldbe noted that both states normally exhibit a hexagonal pattern in this parameter region.The modulation of the straight osillations in the longitudinal diretion is interpreted tobe a remnant of these hexagonal patterns.Then a �+ polarized addressing beam is swithed on and o� in the right part of the image.A soliton is ignited that starts to drift towards the beam enter. It is then stopped byinteration with the polarization front. The front starts to bend around the soliton and�nally a stable situation is ahieved (see Fig.4.39b). The soliton is sitting in front ofthe polarization front whih is bent in a way to maintain a ertain distane from thesoliton, while the soliton itself does not signi�antly hange its shape. This distane isinterpreted to be the one with the optimal loking properties. Interestingly the existeneof the soliton seems to trigger the formation of a (distorted) pattern where the singleonstituents are far more pronouned ompared to Fig.4.39a. This does not apply for thestate with positive polarization.The desribed stable on�guration is not the only one that has been observed in theexperiment. Fig. 4.40 shows that other stable on�gurations are possible. While sub�guresa) and b) show the on�gurations already disussed in a view where one state is suppressedby the linear polarizer, sub�gure ) shows that another distane between soliton and
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a) b) c) d) e)

Figure 4.40: Stable on�gurations of a front and solitons. a) front; b) front and S1 soliton;) front and S1 soliton with larger distane; d) front and 2 S1 solitons; e) front and S2 soliton.Parameters: d = 112mm, � = 15:5GHz, T = 346:0 ÆC, Pin = 285:3mW, � = �0Æ 150.front is possible, though not very ommon. It seems to be the distane where there isone osillation wavelength more between the strutures. It is also possible to ignite twofundamental solitons (see Fig. 4.40d) next to the front. In this ase, the front bends aroundboth strutures, whih themselves keep the typial distane disussed in setion 4.5.3.If the size of the addressing beam is inreased, a seond-order soliton an be ignited(Fig. 4.40e). Also here the front will bend around the soliton, while the soliton remainsunhanged. The distane between front and soliton is the same as in Fig. 4.40b.4.6.2 Observation of a ring-shaped solitary struture
a) b) c)

Figure 4.41: Preparation of a ring-shaped soliton. a) soliton 1 in front of a polarization front.b) front is losed around the soliton by means of the addressing beam. ) ring-shaped soliton.Parameters: d = 120mm, � = 16:6GHz, T = 326:3 ÆC, Pin = 311:2mW, � = �7Æ 00.For the same parameters where solitons and fronts an oexist, a new type of solitarystruture an be prepared. The proess of preparation is illustrated in Fig. 4.41. First, asoliton is ignited in front of a polarization front (Fig. 4.41a). Then, at the position of theupper orner of the front, the ignition beam is swithed on again and moved downwards.Doing so, it is possible to 'pull out' an elongated struture (see Fig. 4.41b). This is done
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Figure 4.42: Ring-shaped soliton. Spatially resolved polarization rotation angle � obtainedfrom a measurement of the Stokes parameters of the light �eld. a) bottom view; b) top view(� inverted). Parameters: d = 112mm, � = 16:2GHz, T = 359:5 ÆC, Pin = 278:7mW, � =�2Æ 100.keeping a ertain distane from the soliton. When the ignition beam approahes the lowerorner of the polarization front, the front loses ompletely around the soliton. Typiallyat the same time, the elongated struture expands to the left and swithes the left partof the beam to the state that is not suppressed by the linear polarizer. The result is afundamental soliton that is surrounded by a losed polarization front.However, this very stable struture an be interpreted in a ompletely di�erent way.This an be seen best in a 3D plot of the polarization rotation angle � obtained from ameasurement of the Stokes parameters. Figure 4.42a shows the struture in a way thatsuggests the interpretation disussed up to now. If the struture is turned upside downas it is done in Figure 4.42b, it beomes lear that the struture an also be interpretedas a soliton being of a di�erent type than the ones disussed up to now. This soliton isirular symmetri like the other solitons. In ontrast to those, the system returns to theviinity of the bakground and beyond in the enter of the struture, i.e. the entral dipis muh deeper. The uts through the enter of the struture show that this struture isbuilt up by four polarization fronts in ontrast to the domain-shaped solitons that onsistof two polarization fronts loking at di�erent positions. In a one-dimensional piture thisstruture ould be interpreted as a luster of two single solitons. In a two-dimensionalexpansion, however, the variety of possibilities is obviously larger. The struture an beonsidered as a `ring-shaped' soliton.
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a) b) c) d)

Figure 4.43: Transition to loalized patterns. a) S3 soliton; b) triangular loalized pattern;) diamond-shaped loalized pattern; d) extended hexagonal pattern. Parameters: d = 112mm,� = 16:23GHz, T = 360:2 ÆC, Pin = 273:5mW, � = �18Æ.If one makes the justi�ed assumption that the front loking mehanism involved hereis even more pronouned than in the ase of the domain-shaped solitons, the desribedstruture ould be the �rst member of a ompletely new family of solitons. However, theonstrution of an addressing beam that ould be used to ignite one of these solitons shouldbe rather ompliated, sine a nontrivial shape and nontrivial polarization propertieswould have to be realized. In ase of the desribed soliton, an alternative but omplexpreparation sheme is obviously appliable. A �rst numerial indiation of the existeneof suh a new soliton family will be given in setion 5.5.4.4.6.3 Transition to loalized patternsAt the maximum available input power a transition from the (nearly) irular symmetrisolitons to states that have an inner struture whih is not irularly symmetri takesplae. Fig. 4.43 shows a situation in whih a soliton 3 exists in a multistability withstrutures that have a similar size but that do not have a irular symmetry. Insteadthese strutures exhibit three or four intensity peaks in the inner struture that have ade�ned distane whih an be identi�ed to be similar to the distane of the onstituentsof the hexagonal pattern existing on both branhes of the pithfork bifuration. Typiallyone struture is stable at timesales in the order of seonds. Then a rapid transitionto one of the other states takes plae. Fig. 4.43b shows a struture onsisting of threeonstituents arranged in a triangle, while in Fig. 4.43 a struture onsisting of fouronstituents aligned in a diamond shape is shown. These strutures are interpreted aspathes of the hexagonal pattern that serves as the target state (Fig. 4.43d) embedded ina bakground of the hexagonal pattern that serves as the bakground state, i.e. a loalizedpattern. They ould, of ourse, also be lassi�ed as bound states onsisting of three or fourseond order solitons arranged on a hexagonal grid. However, this lassi�ation would not



4.6 Complex behaviour 93be reasonable, if the number of onstituents ould be inreased in an experiment havinga larger aspet ratio. Obviously the importane of the loking of fronts disussed up tonow beomes less signi�ant ompared to the modulational instability of the target statewhih leads to a broken irular symmetry.





Chapter 5Theoretial AnalysisBesides the given experimental reasons, a main advantage of hoosing sodium vapor asthe nonlinear medium is the availability of a good theoretial model. A mirosopimodel for the interation of light with sodium atoms an be derived from �rst priniples[MDLM86, M�ol92℄. It is obtained on the basis of the density matrix formalism fromquantum mehanis and has been suessfully adapted in many preeding works [Ak96,Aum99, Sh01, GW02, Hun06℄.In this hapter, a theoretial analysis based on this established mirosopi model of thesystem is arried out. The aim is to omplete the understanding of the mehanisms thatlead to the formation of a disrete family of solitons. Besides the systemati reprodutionand enhanement of the experimental results, a further understanding of the propertiesof the system an be obtained from an analysis of the system in situations that are eithernot or hardly aessible in the experiment.5.1 Model equations for the �=8 systemIn this work, the transition belonging to the sodium D1 line leading from the exited32P1=2 state to the 32S1=2 ground state is onsidered. The interation of the eletronangular momentum with the nulear spin leads to a hyper�ne splitting of the exited (190MHz) and ground (1772 MHz) state [HW87℄. The presene of a bu�er gas of a suÆientlyhigh pressure leads to a homogeneous pressure broadening that exeeds the hyper�nestruture of the ground state as well as the Doppler broadening. Under these onditions,the sodium D1 line an be treated as a homogeneously broadened (J = 12 ! J 0 = 12)transition [MDLM86℄. The use of nitrogen as the bu�er gas gives rise to an eÆientradiationless deay of the exited state [Tam79℄ and thus suppresses radiation trapping[Ank93℄. In this ase, the hyper�ne splitting an be taken into aount by a resaling and



96 Theoretial Analysisdoesn't need do be onsidered further [ML94, Ak96℄. Additionally, the population of theexited state an be negleted under ertain onditions [MDLM86, M�ol92, Gah96, Ak96℄whih are ful�lled in the present experiment due to the hoie of the preparation of thevapor .5.1.1 Nonlinear suseptibility of sodium vaporThe result of the given onsiderations is an equation of motion for a unit vetor, whoseomponents are proportional to the expetation values of the artesian omponents of thespin. This vetor is alled Bloh vetor ~m and is proportional to a magnetization of thesodium vapor. Taking the quantization axis parallel to the diretion of propagation ofthe forward light �eld in the z diretion, the equation of motion results inddt ~m = � ~m+D�~m + ~ez (P+ � P�)� ~m (P+ + P�)� ~m� ~
eff : (5.1)The �rst term in the equation desribes the relaxation of the Bloh vetor due to ollisionswith a rate . The seond term desribes the thermal di�usion of the sodium atoms witha di�usion onstant D. The optial pumping proess with rates P+ and P� indued by �+and �� light is desribed by the third term. The impat of the intensities of the irularomponents of the light �eld is given byP� = 316 j�j24�2~2( ��2 + 1) jE�j2 ; (5.2)where �e is the dipole matrix element of the transition, �2 is the half homogeneouslinewidth , �� is the detuning of the light �eld normalized to �2, �0 is the vauum diele-triity onstant, and ~ is Plank's onstant . The fator 3/16 aounts for the inueneof the hyper�ne struture on the optial pumping proess [ML94, Ak96℄.The saturation of the optial pumping is desribed by the fourth term of equation 5.1.The last term desribes the preession of the magnetization vetor in an e�etive magneti�eld ~
e� = (
x;
y;
z;e�)T . Here, the 
i are the Larmor frequenies orresponding to theartesian omponents of the of the external magneti �eld, while 
z;e� = 
z� ��(P+�P�)desribes an e�etive magneti �eld that takes into aount the light shift [CT62, She84℄.By the hoie of a magneti �eld whose longitudinal omponent is large with respet toits transverse omponents (j
z;e� j � 
x;
y), a redution of the equation of motion tothe z omponent of the Bloh vetor is possible [Aum99℄.��tw = � w +D�w + (P+ � P�)� w (P+ + P�): (5.3)



5.1 Model equations for the �=8 system 97The z omponent w of the Bloh vetor is proportional to the population di�erene of theZeeman substates of the ground state and is alled orientation. It determines the optialproperties of the sodium vapor for the irular light omponents ����(w) = �lin(1� w): (5.4)The linear suseptibility �lin of the vapor is given by�lin = � N j�j22�0~�2 �� + i��2 + 1 ; (5.5)where N is the partile density of the vapor.5.1.2 Single-mirror feedbak arrangementLongitudinal averaging of the orientationDuring the propagation of the light �eld through the medium di�ration is negleted.However, due to absorption, the intensities of the irular polarization omponents on-tinuously hange. The depletion of the pump �elds has been taken into aount by LeBerre et al. [BLR+95℄ by introduing a longitudinal averaging of the medium orientation�(x; y) = Z L0 w(x; y; z)dz: (5.6)Negleting di�usion in the z diretion, equation 5.1 is then transformed to [Aum99℄��(x; y)�t = � �(x; y) +D�?�(x; y) + 12�0L � (5.7)h�P+;f(x; y; 0)� P+;f(x; y; L)�� �P�;f(x; y; 0)� P�;f(x; y; L)�+ �P+;b(x; y; L)� P+;b(x; y; 0)�� �P�;b(x; y; L)� P�;b(x; y; 0)�i:Here, 2�0 is the linear absorption oeÆient, whih is given by the imaginary part ofthe linear suseptibility, 2�0 = �Im(�lin)k0. The pump rates of the �+ (+) and �� (�)polarized omponents of the beam propagating forward (+z diretion, f) and bakwards(-z diretion, b) have to be evaluated at the front (P�;f=b(0)) and exit fae P�;f=b(L) ofthe medium.



98 Theoretial AnalysisDesription of the optial �eldThe propagation of the slowly varying amplitudes of the irularly polarized omponentsof the light �eld through the medium and to the feedbak mirror and bak is desribedby the paraxial wave equation [Boy92℄2ik0 ��zE�;f(~r?; z; t) = r2?E�;f(~r?; z; t) + k20��E�;f(~r?; z; t) (5.8)for the light �eld propagating in +z diretion and� 2ik0 ��zE�;b(~r?; z; t) = r2?E�;b(~r?; z; t) + k20��E�;b(~r?; z; t) (5.9)for the light �eld propagating in -z diretion.Within the medium, di�ration is negleted, and the propagation of the optial �eldthrough the medium an be written asE�;f(L) = exp(��0L(1� i ��)(1� �))E�;f(0) (5.10)E�;b(0) = exp(��0L(1� i ��)(1� �))E�;b(L): (5.11)Equation 5.2 is used for the alulation of the orresponding pump rates from the �eldamplitudes.It has been disussed desriptively in setion 2.3.4 that a nonvanishing orientation induesa phase shift between the irularly polarized omponents of the light �eld. If the inputlight �eld is linearly polarized, this phase shift indues a rotation of the polarization axis byan angle �. It is desribed by equation 5.10. Under the assumption of a linearly polarizedinput �eld, a transformation on the basis of linear polarizations yields [GWKL+00℄� ETxETy � = e��0L(1�i ��)� os(�0L ���) � sin(�0L ���)sin(�0L ���) os(�0L ���) �� � �i sinh(�0L�)osh(�0L�) � E0: (5.12)The �rst matrix indiates the rotation of the main polarization axis of the transmittedlight �eld by an angle � = �0L ���. The rotation angle depends linearly on the orientation�, thereby allowing a diret omparison between theoretial and experimental results.To desribe the vauum propagation of the light �eld from the exit fae of the mediumto the mirror and bak, the wave equations are redued to



5.1 Model equations for the �=8 system 992ik0 ��zE�;f(~r?; z; t) = r2?E�;f(~r?; z; t) (5.13)and � 2ik0 ��zE�;b(~r?; z; t) = r2?E�;b(~r?; z; t) . (5.14)A formal integration of these equations yields:E�;b(~r?; L; t) = pR PE�;f(~r?; L; t) , (5.15)where the propagation operator P = exp ��idr2?k0 � (5.16)is de�ned by the orresponding power series. Delays that are indued by the �nite speedof light are negleted, sine the slowest timesale orresponding to these delays (� 10�9 s)are muh faster than the fastest time sales in the atomi system (� 10�6 s).The ation of the �=8 plate is taken into aount using the Jones matrix formalism.The slow axis of the �=8 plate is assumed to be parallel to the y axis for � = 0Æ. Theirularly polarized omponents E�;b(~r?; L; t) of the reeted �elds are alulated fromthe transmitted �elds E�;f(~r?; L; t) by� E+;b(~r?; L; t)E�;b(~r?; L; t) � = pRe�i dk0r2? 1p2 � �1 i1 i �| {z }I � i 00 1 �| {z }II (5.17)�� os � sin �� sin � os � �| {z }III 1p2 � �1 1�i i �| {z }IV � E+;f(~r?; L; t)E�;f(~r?; L; t) �(5.18)Here, the matries desribe� I : transformation from the basis of linear polarizations into the basis of irularpolarizations� II : the phase shift indued by the �=4 plate (double transmission of a �=8 plate)� III : the rotation angle � of the �=8 plate� IV : transformation from the basis of irular polarizations into the basis of linearpolarizationsTogether with equations 5.5, 5.2, 5.11, and 5.18, equation 5.7 is a losed equation desrib-ing the temporal evolution of the longitudinally averaged orientation �; it will be used forthe analytial and numerial analysis of the system.



100 Theoretial AnalysisNumerial simulationsThe omputational area of a size of typially 8mm x 8mm is disretized on a quadratigrid of 256 x 256 points. The integration of equation 5.7 is aomplished using a 4thorder Runge Kutta algorithm [PFTV92℄. The ourring spatial derivatives (di�usion oforientation and propagation of the light �eld) are omputed in Fourier spae [Aum99,GW02, Pes00℄.A plane wave input light �eld is realized by hoosing a salar 2P0 = P+;f(x; y; 0) =P�;f(x; y; 0). The spetral omputation of the spatial derivatives results in periodi bound-ary onditions.In order to model the experimental situation, the pump rate distribution P0(x; y) is hosenas a Gaussian distribution with a radius of 1.89 mm. As a boundary ondition, theorientation distribution is set to zero at a radius of 4 mm to model the deorientation ofthe vapor at the ell walls.The initial ondition for the orientation � is hosen depending on the foused problem.Typially, it is started from a homogeneous solution that an be determined analytially(see below). Spatial noise is added at the beginning of the alulations to shorten the tran-sients. The ation of the inoherent pumping of the addressing beam in a situation wherethe system has two homogeneous solutions is realized by hoosing a top-hat distributionwith one homogeneous solution embedded into the other one as the initial ondition.Newton methodOften it is the main interest of the study of a nonlinear dynamial system to �nd itsstationary solutions. The full alulation of the dynamis of the system via numerialsolutions is one possibility to obtain stationary solutions. On the one hand this is oftenomputationally expensive, and on the other hand numerial simulations an only on-verge towards stable stationary solitons. The knowledge of unstable stationary solutionsof the dynamis, however, an help to understand the bifuration struture of the system.The Newton method [PFTV92℄ has been proven to be a powerful method to iteratively�nd stationary solutions of a system (see e.g. [FH98, OSF01, HFOM02, MFOH02℄). Ithas been suessfully applied to the single-mirror feedbak system with sodium vapor inearlier works [Sh01, Hun06℄. The method is eÆiently appliable in situations where thesystem has a rotational symmetry in a good approximation. The rotationally symmetristationary solutions ~�(r) of the dynamis 5.7��t ~�(r) = 0 = N (~�(r)); (5.19)where the nonlinear operator N (�) is de�ned by the right-hand side of equation 5.7



5.2 Basi properties of the system 101��t� =: N (�), are then obtained iteratively from a suited initial distribution �0 by�n+1 = �n � (rN (�n))�1N (�n); (5.20)where rN is the Jaobian of the operator N . In addition to the spatial distribution ofthe stationary solution the algorithm is also apable of making a statement on its stabilityagainst rotationally symmetri perturbations. The details on the implementation of theNewton method have been disussed in [Sh01, Hun06℄. They are summarized togetherwith the hanges made in order to desribe the system under study here in appendix A.5.2 Basi properties of the system5.2.1 Stationary homogeneous solutionsThe usual �rst step taken in the theoretial analysis of a system that exhibits dissipativespatial strutures is to assume a homogeneous input of energy (in this ase a plane wavelight �eld) and to ask for stationary homogeneous solutions of the dynamis of the system.Setting all spatial and temporal derivatives zero in equation 5.7 results in an impliitequation for the stationary homogeneous solutions �h [GWKL+00℄1:�h = P0 � 2�0Le�2�0L[R sin(2�0L ���h � 2�)� (5.21)sinh(2�0L�h)�Re�2�0L osh(2�0L�h)�[sinh(2�0L�h) + sin(2�0L ���h � 2�)℄℄:This equation has the trivial solution �h = 0 in the ases where the slow axis of the waveplate is aligned with (� = 0Æ) or orthogonal (� = �90Æ) to the input polarization. Thisresult is well expeted sine no net pumping an our if the wave plate does not alterthe linear polarization of the input �eld. All other solutions are omputed numerially.Figure 5.1a shows the homogeneous solutions for � = 0Æ. A pithfork bifuration isobtained. At the bifuration point, the system hanges from one �xed point (� = 0)to three �xed points. It will be shown later that the solution � = 0 beomes unstableat this point (indiated by a dashed line). The orientation saturates around �0:17, theorresponding polarization rotation angle is �75Æ. This is in good agreement with thesituation found experimentally.Figure 5.1b indiates the hange in the bifuration senario, if the wave plate is rotated by� = �5Æ. Equation 5.21 loses its inversion symmetry and a perturbed pithfork bifuration1The original publiation [GWKL+00℄ ontained a typo that is orreted here
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Figure 5.1: Pithfork bifuration. a) perfet pithfork bifuration; b) perturbed pithforkbifuration. Parameters: d = 120mm, �� = 7:5, D = 255mm s�1,  = 200 s�1, �2 = 9:936 �109 rad s�1, L = 0:015m, R = 0:995, N = 4:65 � 1019m�3, a) � = 0 Æ, b) � = �5 Æ.is observed. Due to the struture of equation 5.21 the orientation in the bifurationsenario will reverse its sign if the wave plate rotation angle is reversed. While in theexperimental measurements both ases (positive and negative wave plate rotation angles)have been disussed in order to hek for the symmetry of the experimental system withrespet to the ase � = 0Æ, the disussion in this hapter will mostly only disuss one ofthe ases.5.2.2 Linear stability analysisWhen the stationary homogeneous solutions of the system have been found, the next stepin the analysis is to ask for their stability.A linear stability analysis with respet to sinusoidal perturbations of the homogeneoussolution of the form Æ� � e�t os(q?r?) yields a growth exponent2� = � �Dq2? � P0e�2L�0 os(2L�0�h) (5.22)�12P0Re�4L�0 osh(4L�0�h)h1 + os�dq2?k0 �+ �� sin�dq2?k0 �i+P0Re�2L�0 os(2L�0 ���h � 2�)hsin�dq2?k0 �� �� os�dq2?k0 �i(osh(2L�0�h)e�2L�0 � 1)2A realulation of the linear stability analysis yields a growth exponent slightly di�erent from the onepublished in [GWKL+00℄. The qualitative behavior of the system is maintained, while the quantitativedeviation is � 10% for the urve of marginal stability at the onsidered parameters.
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Figure 5.2: Result of a linear stability analysis. � instability regions of the homogeneous state� = 0, � instability regions of the homogeneous state with positive orientation, � instabilityregions of the homogeneous state with negative orientation. a) � = 0Æ, b) � = �5Æ Parameters:see Fig. 5.1.�P0Re�4L�0 sinh(2L�0�h) sin(2L�0 ���h � 2�)+12P0Re�4L�0h�1 + �� sin�dq2?k0 � + os�dq2?k0 �iThe urve of marginal stability of the system is desribed by the zeros of �. The resultof the linear stability analysis for the ase � = 0Æ is depited in Fig. 5.2a [GWKL+00℄.The homogeneous solution � = 0 beomes unstable against a homogeneous perturbation(q = 0) at very low pump rates (blak lines). This instability represents the pithfork bi-furation disussed above. At higher input powers, a modulational instability of the state� = 0 with �nite wave number is found. However, it is not observed, sine the pithforkbifuration ours �rst due to the lower threshold. The two homogeneous branhes emerg-ing from the pithfork bifuration exhibit equal stability properties indiated by oloredlines in Fig. 5.2a. A modulational instability is observed at pump rates whih are aroundthree orders of magnitude larger than the threshold of the pithfork bifuration. The wavenumber (q? = 15:7 rad mm�1) orresponds to the wave number of a limiting absorptiveinstability as it would be expeted from the Talbot e�et (q? =q�k0d = 15:67 rad mm�1)and orresponds quite well to the experimental �ndings. The linear stability analysis also�nds instabilities with higher wave numbers that are typial for single mirror feedbakarrangements. They have been disussed as as a possible reason for the ourrene ofomplex patterns omposed of Fourier modes with di�erent fundamental wave numbers[PSA97, VK97, BLRT98℄. However, these instabilities have not been found to play a rolein the formation of the strutures disussed here.
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Figure 5.3: Bifuration senario. � threshold for bistability, � threshold for tristability, thresh-old for pattern formation of the homogeneous state with positive (�) and negative(�) orienta-tion a) medium partile density; b) high partile density. Parameters: see Fig. 5.1, exept: a)N = 3:4 � 1019m�3, �� = 12:8.If the pithfork bifuration is perturbed, the degeneray of the two branhes is abolished.Aordingly the stability properties are hanged. Fig. 5.2b shows the result of a linearstability analysis at a wave plate rotation angle � = �5Æ. The threshold for pattern forma-tion is lower than for the symmetri ase if the favored branh (here: branh with positiveorientation) is onsidered. For the disfavored branh, it is higher (negative orientation).Figure 5.3 shows an overview of the bifuration struture in parameter spae for mediumpartile densities N . The full straight line indiates the threshold for bistability. Thebistable region broadens quikly with inreasing input power and then saturates at aertain level of wave plate rotation angles.The threshold of the modulational instability ourring on the branh with positive ori-entation inreases monotonially with inreasing wave plate rotation angle, i.e. the morefavored the state is, the lower is the threshold for pattern formation. The same is obviouslytrue for the threshold for pattern formation of the branh with negative orientation.The bifuration diagram qualitatively reprodues the experimental observations (ompareto Fig. 4.8). However, the dependeny of the threshold of the modulational instability onthe wave plate rotation angle � is signi�antly lower in the experiment.If the partile density is inreased, the width of the bistable region inreases (Fig. 5.3b).At a ertain point, the maximum wave plate rotation angle of � = �90Æ is rossed.In this ase, three stable homogeneous solutions are obtained around � = 90Æ. Thistristable situation has been found already in [GWKL+00℄. However, it is not observedin the experiment and for this reason won't be disussed further here. Nevertheless ithas proven to be bene�ial to assume a high partile density in order to systematially



5.2 Basi properties of the system 105reprodue the experimental �ndings around the wave plate rotation angle � = �0Æ. Forthis reason a high partile density has been assumed in the following alulations.5.2.3 Numerial simulations of patternsThe linear stability analysis an predit the ritial wave number of a modulational in-stability. However, in a system with rotational and translational symmetry, the shape ofthe observed pattern annot be predited due to the degeneray of all wave vetors withthe ritial wave number in the two-dimensional plane. This degeneray is then abolishedby the nonlinear interation of the wave vetors leading to the formation of a (typially)simple, periodi pattern omposed of few Fourier modes [CH93℄.The patterns that evolve above the threshold of the modulational instability an be ob-tained via numerial simulations. For the present system, this issue has been disussedin [GWKL+00℄ and will therefor be disussed only briey.PatternsIf the system is onsidered at wave plate rotation angles � � 0Æ, two homogeneous so-lutions exist before the modulational instability ours. If the threshold for pattern for-mation is rossed in a system with Gaussian beam input, hexagonal patterns evolve fromboth homogeneous solutions (see �rst two rows of Fig. 5.4). Both patterns are ompletelyidential exept for the sign of the orientation. In Fourier spae, the patterns are repre-sented by six intensity peaks that have an equal wave number (q = 15:5 rad mm�1) andinlude an angle of 60Æ. Sub�gures ) and g) show the intensity distributions of the light�elds that are transmitted by the sodium vapor. This light �eld is projeted onto a stateof linear polarization where the bakground is suppressed. Like in the experiment, theresult is a hexagonal pattern of intensity peaks (ompare to Fig. 4.6). In�nitely extendedhexagonal patterns are observed on both branhes of the pithfork bifuration, if a planewave input is assumed. The resulting orientation distributions are given in Figs. 4.6d,h.The observation of hexagons is expeted, sine the homogeneous solutions have a non-vanishing orientation, due to whih the inversion symmetry of equation 5.7 is stronglybroken. In suh a situation, general onsiderations predit the ourrene of hexagonalpatterns at threshold [CH93℄.If the system is onsidered at � � 90Æ, the input polarization is stable. Hene, thehomogeneous orientation below threshold is zero, and the inversion symmetry of equation5.7 is maintained. In this situation, triangular and rhombi patterns an be observedwhih are depited in the 3rd and 4th row of Fig. 5.4.The triangular patterns are haraterized by six intensity peaks in Fourier spae like the
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-0.25 0 0.25Figure 5.4: Numerial simulation of patterns. 1st row: hexagons with positive orientation, 2ndrow: hexagons with negative orientation, 3rd row: triangular patterns, 4th row: rhombi pat-terns. 1st olumn: orientation distribution in a Gaussian beam, 2nd olumn: Fourier transformof 1st row, 3rd olumn: transmitted light �eld with bakground suppressed by linear polarizer,4th olumn: orientation distribution in plane wave simulations. Color table applies to 1st and4th olumn. Parameters: see Fig. 5.1, �rst three olumns: w0 = 1:89mm, a)-h) � = 0 Æ, i)-p)� = 90 Æ, a)-) P0 = 200000 s�1, d) P0 = 130000 s�1, e)-g) P0 = 200000 s�1, h) P0 = 130000 s�1,i)-k) P0 = 150000 s�1, l) P0 = 120000 s�1, m)-o) P0 = 280000 s�1, p) P0 = 100000 s�1.
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Figure 5.5: Numerial simulation of the threshold behavior of the modulational instability. a)san over a wide rage of pump rates P0. b) inrease (Æ) and derease (4) of pump rate P0 aroundthe threshold point. Parameters: see Fig. 5.1, � = 0 Æ.hexagons. However, in the triangular pattern, the phase di�erene between the threeFourier modes is �=2. This is in ontrast to hexagonal patterns, where the phase sum ofthe three modes amounts to zero (positive hexagons) or � (negative hexagons).The rhombi patterns are omposed of four Fourier omponents (sub�gure n) enlosingangles of 54Æ and 126Æ, the wave number being q = 15:1 rad mm�1. Triangular patternsare the dominant pattern for � = 90Æ. In order to obtain rhombi patterns, they wereseeded in the simulations. Triangles as well as rhombi patterns exist also if the inversionsymmetry is not exatly maintained. Nevertheless they have never been observed in theparameter range that will be onsidered in the following.Threshold behaviorA linear stability analysis an only give the threshold pump rate, at whih the homoge-neous state beomes unstable against a perturbation with a ertain wave number. How-ever, if a pattern has evolved and the pump rate is redued again, the threshold at whihthe pattern disappears is generally not equal to the swith-on threshold.In this work, the modulational instability leading to hexagonal patterns around � = 0Æ isonsidered. Typially a bifuration to a hexagonal pattern is subritial, the swith-o�threshold of the pattern being lower than the swith-on threshold. However, this behavioris not observed in the experiment.The result of a simulation sanning the pump rate aross the threshold for pattern forma-tion is shown in Fig. 5.5. It shows the modulation depth of the orientation distribution



108 Theoretial Analysis(minimum to maximum) in dependeny on the pump rate. If the pump rate is sannedover a wide rage (Fig. 5.5a), the modulation depth jumps from zero to a ertain �nitevalue at a pump rate of P0 = 116500 s�1. This pump rates oinides with the minimum ofthe instability balloon from the linear stability analysis within the onsidered resolution.After the threshold is rossed, the pattern amplitude inreases with inreasing pump rate.Figure 5.5b shows a �ner san around the threshold for pattern formation. Red irlesindiate the data points of a san where the pump rate is inreased, while the blue trian-gles indiate the result of a simulation where the pump rate is stepwise redued. A smallregion of bistability is observed, hene the bifuration is subritial. However, the bistablerange is very small (�P � 500 s�1). A similar bistability range is found if a Gaussianbeam input is onsidered. It an be onluded that this small range of bistability annotbe resolved in the experiment due to the omnipresent utuations. The subritiality ofthe bifuration an in a good approximation be negleted in the further desription of thesystem.5.3 Fronts, irular domains and the stabilization ofsolitonsUp to now the analysis was restrited to small-amplitude strutures that develop spon-taneously from an unstrutured orientation distribution. The basi properties of suhstrutures an be understood by means of a linear or weakly nonlinear analysis.The main fous of this work, however, lies on large-amplitude strutures that do notdevelop spontaneously but have to be ignited by means of a large-amplitude perturbationfor the system. Hene, these strutures are inherently strongly nonlinear and are notaessible via linear approximations of the nonlinear system.At �rst, the properties of fronts and irular domains that inorporate two homogeneoussolutions of the system will be studied in analogy to the experimental analysis.5.3.1 Straight frontsBasi propertiesIn numerial simulations with a plane wave input, a stable resting straight front is foundabove the threshold for bistability for the ase of equivalent homogeneous states (� = 0Æ).It onnets the two equivalent homogeneous states (Fig. 5.6) and is surrounded by smallspatial osillations oriented parallel to the front axis that deay with inreasing distaneto the front.
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Figure 5.6: Straight orientation front in simulations with a) plane wave and b) Gaussian beaminput. Parameters: see Fig. 5.1, � = 0 Æ, a) P0 = 50000 s�1, b) P0 = 170000 s�1, w0 = 1:89mm.A lassi�ation of the observed front with respet to the Ising and Bloh types of fronts(see setion 2.2.2) is easily obtainable. The front is fully desribed by the real-valuedmagnitude orientation and it onnets two equivalent states thereby rossing the zero.This exludes a handedness of the front. Furthermore the front is resting and a symmetryoperation Z exists, that transforms the front into itself (Z : �! ��; x! �x). Followingthe argumentation in [MPL+01℄, the front an thereby be lassi�ed as an Ising front.Straight fronts an also be observed in simulations using a Gaussian input beam (seeFig. 5.6b). In ontrast to the simulations with a plane wave input it is not stable at lowinput powers that are beyond the threshold for bistability. The front will start to moveand swith the whole area to one of the two equivalent states. Stable fronts are observedonly for higher input powers. In this situation the spatial osillations surrounding thefront are quite pronouned in the beam enter. They might stabilize the front in thissituation, where the �nite size of the system normally would introdue an instability ofthe front. As desribed in setion 4.3.1, straight fronts are observed experimentally onlyat high input powers. The simulations on�rm this observation.Front dynamisIf the equivalene of the two homogeneous states onneted by the front is omitted(� 6= 0Æ), the straight front starts to move. A systemati analysis of this motion ofstraight fronts by means of the video sampling method is not possible in the experiment.Nevertheless, an analysis of this dynamis in simulations an support the experimental�ndings made onerning irular domains.
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Figure 5.7: Motion of a straight front due to the inequality of the homogeneous bistable states.Parameters: see Fig. 5.1, � = �5 Æ, P0 = 50000 s�1. Color table: see Fig. 5.6.Due to the periodi boundary onditions, there are always two fronts in numerial simula-tions. As the initial ondition, one front is loated at the outer left and right border, whilethe other one is loated in the enter (see Fig. 5.7a). When the simulation is started, theshape of the fronts rapidly smoothes out due to the spatial oupling mehanisms and thefront starts to move. The motion leads to an expansion of the favored homogeneous state(in this ase the one with positive orientation). The front stays straight while moving,hene no modulational instability of the front is observed. After 7 ms, the whole area isswithed to the preferred state.The front veloity as well as the diretion of motion of the front depends on the inequalityof the two states, whih is in aordane with general expetations (see setion 2.2.1).Fig. 5.8a shows the position of the front in dependeny on time for di�erent wave platerotation angles. The urves desribe a uniform motion of the front that an very well bedesribed by a linear �t, thereby assuming a onstant veloity of the front. For positivewave plate rotation angles, the state with negative orientation expands and vie versa.The veloity of the front in dependeny on the wave plate rotation angle is plotted inFig. 5.8b. The graph shows, that the front veloity depends linearly on the wave platerotation angle �. The slope is given by 0i = 0:022 mmmsÆ . Though the motion of a straightfront annot be diretly measured in the experiment, it has been determined indiretly(see setion 4.3.4) by �tting the dynamis of irular domains to the theoretial preditiondRdt = �R + i : (5.23)The oeÆient i desribes the motion of a straight front due to the inequality of the
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Figure 5.8: Motion of a straight front due to the inequality of the homogeneous bistable states.a) front position in dependeny on time; b) oeÆients i resulting from a linear �t of the frontdynamis. Parameters: see Fig. 5.1, P0 = 50000 s�1.two homogeneous states and was determined in dependeny on � in Fig. 4.19a. Theseresults math niely the numerial observations. The oeÆient i an now be re�ned toi = 0i�.Osillatory tails and quasi one-dimensional solitonsThe observed fronts are always surrounded by spatial osillations that deay with inreas-ing distane from the front. The modulation depth of these osillatory tails inreaseswith inreasing input power. Figure 5.9a shows uts made perpendiular to a straightfront under variation of the input power. The grey level enodes the pump rate, wherethe brightness of the line inreases with inreasing pump rate. The pump rates rangefrom P0 = 50000 s�1 to P0 = 110000 s�1, the threshold for pattern formation being atP0 = 117000 s�1. Even far below the threshold for pattern formation there are pro-nouned spatial osillations with a well-de�ned spatial frequeny (q � 16 rad mm�1) thatorresponds well to the ritial wave number of the modulational instability ourring athigher pump rates. With inreasing pump rate, their amplitude inreases. Due to theperiodi boundaries, at a ertain point the osillatory tails of the two fronts will start tointerat.The interation of the osillatory tails of two fronts will be stronger, if the fronts are loseto eah other and if the modulation depth of the tails is large. In the previous subsetion,the pump rate was hosen to be far from the threshold for pattern formation and onlythe dynamis of fronts that have a large distane from eah other was onsidered.If now high pump rates are onsidered, the motion of the two fronts approahing eah other
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Figure 5.9: a) Emergene of osillatory tails with inreasing pump rate P0. Gray levels enodepump rate from P0 = 50000 s�1 (blak) to P0 = 110000 s�1 (light gray). Quasi one-dimensionalsolitons of b) �rst, ) seond and d) third order. Color table: see Fig. 5.6. Parameters: seeFig. 5.1; a) � = 0 Æ; b)-d) � = 5 Æ; b) P0 = 80000 s�1; ) P0 = 95000 s�1; d) P0 = 110000 s�1.
might be ompletely stopped at a ertain distane. Sine the osillatory tails inorporatemultiple osillation periods, this loking an our at di�erent disrete distanes. Thesituations inorporating the smallest three distanes are shown in Fig. 5.9b-d. These stableon�gurations of two opposing straight fronts an be interpreted as the one-dimensionalequivalent to the irular solitons that will be disussed in the following setions. Themotion of fronts due to their urvature is not present here, and stable quasi-1D solitonsare observed for small angles j�j, enlosing the angle � = 0Æ. As in many other systems,the loking of osillatory tails obviously is a suÆient mehanism for the stabilization ofone-dimensional solitons. The situation beomes more omplex, if two-dimensional e�etsare onsidered.
5.3.2 Domain dynamisIn bistable systems, irular domains of one homogeneous solution that are embeddedinto a bakground of the other stable homogeneous solution are generally not stable dueto the urvature of the domain interfae. Nevertheless the analysis of the dynamis ofunstable domains will give further insight into the system itself and it will provide thekey mehanisms that �nally lead to the observation of stable solitary strutures.
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Figure 5.10: Contration sequene of a irular domain. a) Images of the orientation distri-butions. b) squared domain radius plotted against time. � data points, � linear interpolation.Parameters: see Fig. 5.1, � = 0 Æ, P0 = 50000 s�1. Color table: see Fig. 5.6.
Basi observationThe system is onsidered in a situation where two equivalent homogeneous solutions exist(� = 0Æ). The pump rate is hosen to be far below the threshold for pattern formation.In order to study the pure domain dynamis the pump �eld is hosen to be a plane wave.The initial domain is given as an orientation distribution. It is realized as a top-hatdistribution having the homogeneous solution with a positive orientation as the entraldomain of radius R0 surrounded by the homogeneous solution with negative orientation.The temporal evolution of a domain having an initial radius of R0 = 1:5mm is shownin Fig. 5.10a. The domain ontrats maintaining its irular shape and disappears after4.2 ms. Some slight radial osillations are present. However, at the given pump rate(P0 = 50000 s�1), they do not signi�antly inuene the dynamis. The squared domainradius R2 in dependeny on time is plotted in Fig.5.10b. The data points lie on a straightline in a very good approximation. Only at the very beginning of the sequene, wherethe front has an retangular shape and �rst relaxes to a smooth shape, and at the end,where strong interation of the approahing fronts is present, a slight deviation from theinterpolation line is detetable. Thereby the pt power law expeted from theory andobserved experimentally is on�rmed by the simulations.
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Figure 5.11: a) CoeÆient  in dependeny on the pump rate P0. Dashed line indiatesthreshold for pattern formation (Prit = 117500 s�1). b) Loking of ontrating domains slightlybelow (P0 = 115000 s�1, Æ) and above (P0 = 125000 s�1, 4) the threshold for pattern formation.Parameters: see Fig. 5.1, � = 0 Æ.Variation of pump rateIn the experiment, a slowdown of the dynamis of ontrating irular domains withinreasing input power is observed (see setion 4.3.3). This dependeny is also found innumerial simulations. Figure 5.11a shows the oeÆient  in dependeny on the pumprate. The obtained urve niely mathes the experimental observations qualitatively andin the order of magnitude of  (f. Fig. 4.12). For low and medium pump rates, the ptlaw is niely on�rmed.Near the threshold for pattern formation the dynamis is modi�ed. The ontrationof a domain slightly below and above the threshold for pattern formation is shown inFig. 5.11b. Below the threshold, the ontration urve beomes slightly modulated. Thissuggests the inuene of a loking proess due to the osillatory tails of the irularfront. The inuene of loking is heavily inreased if the threshold for pattern formationis rossed. The ontration is slowed down further and the the urve beomes more andmore horizontal within the loking regions. At a ertain point, the dynamis is ompletelystopped and, depending on the initial onditions and the pump rate, solitons (see setion5.4) or loalized patterns (see setion 5.5.5) are observed.Variation of wave plate rotation angleThe dynamis of irular domains is modi�ed, if the more general ase of nonequivalenthomogeneous states is onsidered, i.e. the wave plate rotation being � 6= 0Æ. It has beenshown in setion 5.3.1 that in this ase a straight front will start to move, leading to an
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Figure 5.12: Dynamis of a) small (R0 = 1:17mm) and b) large (R0 = 2:81mm) irulardomains in dependeny on the wave plate rotation angle �. Colored data points: numerialresult; blak urves: results of a shared parameter �t. Parameters: see Fig. 5.1, P0 = 50000 s�1.expansion of the favored state. This motion due to the nonequivalene of the two statesours also if irular domains are onsidered. While the motion due to the urvatureof the front always leads to a ontration and disappearane of irular domains for theparameters onsidered here, this motion an be either aelerated or slowed down by themotion due to the nonequivalene of the two homogeneous states.The dynamis of domains under variation of the wave plate rotation angle � is shown inFig. 5.12. � is varied from �10Æ (domain state is favored) to 10Æ (bakground is favored).If a small domain is onsidered (initial domain radius R0 = 1:17mm, Fig. 5.12a), italways ontrats and disappears for the given range of �. If the domain is disfavored, theontration takes plae faster than for equivalent states beause both e�ets leading to amotion of the domain wall tend to redue the domain radius. If the domain is favored,the motion due to the nonequivalene of the states ounterats the motion indued by theurvature of the front. Thus, the dynamis is signi�antly slowed down.The ontration of the domain an even be overompensated, leading to an expansion ofthe domain until the whole area is swithed to the domain state. This an be observed,if the initial domain size is inreased to R0 = 2:81mm (see Fig. 5.12b). Below an angleof � = �4Æ, the domain expands. However, a stable domain is not observed for the givenparameters.The desribed dynamis is well desribed by the theoretial expetation already disussed(equation 5.23). A shared parameter �t for the two given urve arrays yields the parame-ters i and  as desribed in setion 4.3.4. The �tted urves are given as a straight blakline below the data points in Fig. 5.12.



116 Theoretial Analysis

−15 −10 −5 0 5 10 15
wave plate rotation angle ρ (°)

−0.4

−0.2

0.0

0.2

0.4

co
ef

fic
ie

nt
 γ

i (
m

m
 m

s−
1 )

a)

−15 −10 −5 0 5 10 15
wave plate rotation angle ρ (°)

0.0

0.1

0.2

0.3

0.4

0.5

co
ef

fic
ie

nt
 γ

c 
(m

m
2  m

s−
1 )

b)

Figure 5.13: CoeÆients i (a) and  (b) in dependeny on the wave plate rotation angle �.a) �: linear motion of a straight front f. Fig. 5.8; Æ: result from a shared parameter �t of thedynamis of irular domains. b) N: result from a shared parameter �t of the dynamis of irulardomains. Crosses: result from a linear �t for the squared domain radius in dependeny on timewith R0 = 1:17mm (+) and R0 = 2:81mm (+). Parameters: see Fig. 5.1, P0 = 50000 s�1.The resulting oeÆients of the �tting proedure are given in Fig. 5.13. The motion ofthe front indued by the nonequivalene of the two states desribed by i is plotted asred irles in Fig. 5.13a. The data points lie on a straight line with vanishing i at � = 0Æin a good approximation. The values for i obtained independently from the analysis ofthe motion of straight fronts (setion 5.3.1) are given as blak squares. Both urves showa good agreement and support the validity of equation 5.23.The oeÆient  depends only weakly on � (Fig. 5.13b). It tends to derease withinreasing preferene for the domain state. At � = 0Æ, the values for  obtained fora linear �t of the squared domain radius versus time as desribed in setion 5.3.2 arereprodued (blak (R0 = 1:17mm) and red (R0 = 2:81mm) rosses).The numerial results math the experimental observations niely (ompare Fig. 5.13 toFig. 4.19). However, in the experiment, a larger dependeny of  on � is observed. Thisis possibly due to the gradients indued by the Gaussian beam.5.3.3 Stationary domainsThe desribed domain dynamis has a stationary domain solution that is not stable. Dueto this instability it annot be alulated by numerial simulations performing a timeintegration of the mirosopi model. However, stationary solutions of the dynamis anbe alulated diretly by means of the Newton method. As an initial ondition for thealgorithm, a domain whih has a very long transient in the simulations is taken. It is
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Figure 5.14: Unstable stationary domains in a radially symmetri system. a) Unstable domainsin a plane wave under variation of the wave plate rotation angle � (graysale enodes �); b)Radii of the unstable domains in a plane wave (�) and a Gaussian beam (�, w0 = 1:89mm).Parameters: see Fig. 5.1, P0 = 50000 s�1.expeted to be lose to the unstable stationary domain.The stationary domain solutions that are obtained for di�erent wave plate rotation angles� are plotted in Fig. 5.14a. The brightness of the urve inreases with j�j, ranging from� = �8Æ to � = �40Æ. The domain radius dereases with inreasing inequality of thetwo homogeneous states. This is expeted, sine the stationary domain should be givenby Rrit = i , and it has been shown experimentally and numerially, that i inreaseslinearly with � and that  is positive and only weakly dependent of �. At the given pumprate far below the threshold for pattern formation, pronouned osillations surroundingthe front are observed.The radius Rrit of the stationary unstable domain in dependeny on � is shown inFig. 5.14b. The urve shows the hyperboli-type behavior expeted from the theoretialonsiderations. If a Gaussian input light �eld is onsidered, the radius of the stationaryunstable domain is not diverging at small angles j�j. The inhomogeneous pumping andthe assumption of a vanishing orientation � seems to introdue a pinning of the stationaryfront at a radius, where the gradients of the light �eld are large. However, the domainradius still dereases monotonially with inreasing j�j.



118 Theoretial Analysis5.4 SolitonsThe ombination of all e�ets disussed in the preeding setions an lead to the formationof stable solitons in a ertain range of parameters. At �rst, the existene of a disretefamily of solitons will be presented with the help of numerial simulations of the fullmirosopi model. The basi properties of the solitons will be disussed with respet tothe experimental �ndings. Subsequently, the variation of the most important parameterspump rate P0 and wave plate rotation angle � will be onsidered using the Newton method,whih will give further insight into the bifuration struture.5.4.1 Numerial simulationsGaussian beam inputAs an initial ondition for the simulations, a domain having the orientation of the positivehomogeneous solution that is embedded in the bakground of the homogeneous solutionwith negative orientation is used. For simulation with a Gaussian beam input, the homo-geneous solutions in the beam enter have been onsidered.Depending on the size of the initial domain, four types of solitons are obtained in simula-tions with a Gaussian beam input. The enter parts (4x4 mm, original grid size 8x8 mm)of the stable orientation distributions of these solitons are depited in a three-dimensionalplot in Fig. 5.15. They show the typial disrete series of solitons that di�er in size andthe number of radial osillations around the target state. The di�erent solitons are shownfor parameters that lie in the minimum of their respetive region of existene (see below).Thus, the amount of radial osillations that is present around the target and bakgroundstates is the minimum neessary to provide a stable struture.The orientation distributions show a very good agreement with the experimental observa-tions, where the spatially resolved polarization rotation angle � was measured (ompareFig. 5.15 to Fig. 4.24). Hene, the experimental method of analyzing the Stokes parame-ters of the light �eld transmitted by the sodium ell is suitable for an indiret measurementof the orientation distribution of the vapor. In analogy to the experimental �ndings, thesolitons are interpreted as a homolini onnetion of the bakground state with itselfthat travels around the viinity of the target state for a disrete number of osillations.Of ourse, a family of negative solitons is observed if the wave plate rotation angle � isreversed.The measurement of the Stokes parameters of the light �eld is not always appliable in theexperiment. Instead, often the light �eld that is transmitted by the sodium ell has beenonsidered in a projetion onto a linearly polarized state, where the bakground is sup-pressed. The respetive light �elds that are transmitted by the orientation distributions
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e) f) g) h)

Figure 5.15: Stable solitons in numerial simulations assuming a Gaussian beam input. a)-d)Orientation distributions. e)-h) Projetion of the transmitted light �eld onto a linear polarizationstate with suppressed bakground. a),e) S1; b),f) S2; ),g) S3; d),h) S4. Parameters: seeFig. 5.1; a),e) � = �28 Æ, P0 = 138000 s�1; b),f) � = �20 Æ, P0 = 90000 s�1; ),g) � = �13 Æ,P0 = 102000 s�1; d),h) � = �10 Æ, P0 = 123000 s�1.
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 39 ms  42 ms  45 ms  48 ms  51 ms

 54 ms  57 ms  60 ms  63 ms  66 ms

Figure 5.16: Metastable S4 soliton moving towards the beam boundaries. Soliton is at rest for39 ms before. Parameters: see Fig. 5.1, � = �12 Æ, P0 = 150000 s�1. Color table: see Fig. 5.18.from Fig. 5.15a-d are shown in Fig. 5.15e-h. The number of radial osillations of the soli-tons is inreased by one with respet to the orientation distributions. The experimental�ndings are well reprodued (ompare Figs. 5.15e-h to the �rst row of Fig. 4.22).In ontrast to the experimental �ndings, the outer parts of the bakground show a slightgradient that is indued by the inhomogeneous pumping and the Dirihlet boundaryondition. It is interpreted to be more pronouned due to the position of the ell walls ata radius of 4 mm in ontrast to the experiment (6 mm). In [PGWAL05℄, an even smallergrid was used, whih lead to the instability of S4. For the parameters in Fig. 5.15 it isstable in the beam enter. However, at higher pump rates, it is only metastable (Fig. 5.16).After having rested at the beam enter for 39 ms, the soliton starts to move towards thebeam boundaries and swithes the whole beam to the target state, in aordane withthe experiment. Solitons of an order above S4 have not been found stable due to thismehanism.The mehanism that is typially observed for low order solitons whose size is small om-pared to the size of the beam is a motion towards the beam enter. If a S2 soliton is ignitedo�-enter, it will start to move until it reahes a stable �nal position that is given by thebeam enter (see Fig. 5.17). This is in aordane with the experimental observation.Plane wave inputIf a plane wave input �eld is onsidered, the existene of a soliton family is preserved.Figure 5.18 shows the �rst �ve members of the soliton family near the lowest stable pumprate. While all the higher order solitons exist also for parameters below the thresholds forpattern formation of bakground and target state, the fundamental soliton is only observed
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 0.5 ms  1 ms  1.5 ms  2 ms  2.5 ms

 3 ms  3.5 ms  4 ms  4.5 ms  5 ms

Figure 5.17: Motion towards the beam enter of a S2 soliton that was ignited o�-enter.Parameters: see Fig. 5.1, � = �15 Æ, P0 = 190000 s�1. Color table: see Fig. 5.18.

Figure 5.18: Stable solitons in numerial simulations assuming a plane wave input. a) S1; b)S2; ) S3; d) S4; e) S5. Parameters: see Fig. 5.1, a) � = �22 Æ 30 0, P0 = 142000 s�1, b) � =�21 Æ 30 0, P0 = 80000 s�1, ) � = �14 Æ 18 0, P0 = 84000 s�1, d) � = �10 Æ 36 0, P0 = 89000 s�1,e) � = �7 Æ 30 0, P0 = 110000 s�1.
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a) b) c) d) e)

Figure 5.19: Soliton family above the threshold for pattern formation. a) S1; b) S2; ) S3;d) S4; e) S5. Parameters: see Fig. 5.1, a) � = �22 Æ 30 0, P0 = 143000 s�1, b) � = �13 Æ 00 0,P0 = 130000 s�1, ) � = �8 Æ 00 0, P0 = 130000 s�1, d) � = �5 Æ 00 0, P0 = 130000 s�1, e) � =�5 Æ 00 0, P0 = 130000 s�1. Color table: see Fig. 5.18for parameters above that threshold. However, the amplitude as well as the size of theonstituents of the underlying pattern are onsiderably smaller than the fundamentalsoliton. The neessity of an inreased amount of spatial osillations for the stability hasalready been onjetured in the disussion of the existene regions in the experimentalpart (setion 4.4.4), now it has manifested in the numerial simulations.If the soliton families with a Gaussian beam input and plane wave input are ompared,it turns out that the shape of the solitons does not signi�antly depend on the boundaryonditions.Higher order solitons also exist on a patterned bakground, i.e. at pump rates where thethreshold for pattern formation is rossed (see Fig. 5.19). The irular shape of the solitonsis mostly maintained, though the interation with the symmetry-broken bakground will ofourse modify their appearane3. If the pump rate is inreased further and the amplitudeof the pattern beomes larger, the solitons lose their (approximately) radial symmetryand are transformed into loalized patterns that will be disussed in setion 5.5.5.5.4.2 Solitons in a radially symmetri systemBy means of full numerial simulations of the mirosopi model, stable states of thedynamis an be determined. However, full simulations of the system are omputationallyexpensive. For this reason, numerial simulations are not well suited for the systematianalysis of parameter dependenies. Espeially near bifuration points, the dynamis3Oasionally, a slight drift (order of magnitude mm/s) of the pattern together with the soliton wasobserved. The drift veloity, however, depends on the disretization of the omputational area. The driftmotion is direted along the asymmetry axis of the hexagonal pattern, whih, as a matter of priniple, ona quadrati grid annot have exatly equal wave numbers of the orresponding Fourier modes. Though adrift motion, in priniple, annot be exluded, it is onsidered a numerial artifat for the given reasons.
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Figure 5.20: Soliton family obtained in a radially symmetri system. a) plane wave input.b) Gaussian beam input and Dirihlet boundary onditions. � S1, � S2, � S3, � S4, � S5.Parameters: see Fig. 5.1; a) S2: � = �21 Æ 30 0, P0 = 80000 s�1; S3: � = �14 Æ 12 0, P0 =84000 s�1; S4: � = �10 Æ 36 0, P0 = 89000 s�1; b) w0 = 1:89mm; S1: � = �27 Æ 0 0, P0 =144000 s�1; S2: � = �20 Æ 0 0, P0 = 91000 s�1; S3: � = �13 Æ 0 0, P0 = 105000 s�1; S4: � =�10 Æ 0 0, P0 = 120000 s�1; S5: � = �7 Æ 30 0, P0 = 140000 s�1.beomes very slow, and numerial simulations take very long to onverge. On the otherhand, numerial simulations are not apable of determining unstable stationary solutionsof the system, whih often shed a light on the bifuration struture of a nonlinear system.Hene, an analysis of the bifuration struture leading to the formation of stable solitonswill be onduted using the Newton method whih allows for the alulation of stable andunstable domain solutions.Solitons are observed slightly below and above the threshold for pattern formation in thenumerial simulations. This impliates a large amount of spatial osillations extendingover a wide range below the threshold for pattern formation and in�nitely extended os-illations above the pattern formation threshold. Due to the boundary onditions of theNewton method, spatial osillations extending to the border of the omputational gridwill ause the method to fail to onverge. An analysis with a plane wave input is restritedto parameters below the threshold for pattern formation. For this reason, the analysisof the bifuration struture is onduted with a Gaussian beam input and the assump-tion of a vanishing orientation at a radius of 4 mm (like in the numerial simulations).This Dirihlet type boundary ondition enables an analysis even above the threshold forpattern formation.



124 Theoretial AnalysisOf ourse, the assumption of a radial symmetry of the system is a restrition that is notstritly ful�lled above the threshold of a modulational instability leading to hexagonalpatterns. But as the domain solutions that will be onsidered here are high-amplitudestrutures ompared to the small amplitude of the patterns near the threshold, the ob-tained results an still be onsidered valid above but near that threshold. This is on�rmedby spot sample full numerial simulations.The disrete family of stable solitons an be easily reprodued by taking the results of thefull numerial simulations as the initial ondition for the Newton algorithm. Figure 5.20ashows solitons S2, S3, and S4 with a plane wave input, while Figure 5.20b reprodues thefull soliton family S1-S5 with a Gaussian beam input. Both �gures show the disretenessof the sizes and the number of radial osillations of the solitons as it has been disussedbefore. The half wavelength of the modulational instability is indiated by light graystripes. The sizes of the solitons are orrelated to this length sale, however they do notmath exatly. This issue will be disussed below. The Newton method even onverges tosolitons of higher orders than 5. However, as those strutures have not been observed to bestable neither in the full simulations with a Gaussian beam input nor in the experiment,they will not be onsidered here.5.4.3 Region of existeneStarting from a stable soliton, the parameters � and P0 are varied in small steps, usingthe soliton obtained from the last step as the initial ondition of the next one. In thismanner, the soliton solution an be traked and the region of existene of a soliton anbe determined.The borders of the existene regions of the �rst �ve members of the soliton family areshown in Fig. 5.21. The solitons are stable in the area enlosed by the respetive datapoints. Near the threshold for the existene of every single soliton, the urve has a needle-like appearane, starting at a desent point with a ertain angle � and minimal pump rate.Above this threshold, a �nite width of the regions is observed that expands with inreasingpump rate.The threshold point of Soliton 1 is at the highest pump rate and the largest angle �. Withinreasing pump rate, the region of existene is shifted towards smaller angles �. Soliton2 has the lowest threshold of all solitons and a large threshold angle of � = 20:5Æ. Theregion of existene is the largest one and extends over the symmetry point � = 0Æ withinthe onsidered range of pump rates. The threshold points of the larger solitons inreasein power and derease in the angle j�j. In ontrast to the smaller solitons the regionsexpand towards larger angles j�j with inreasing input power.The numerial simulations have shown that solitons an exist below and above the thresh-



5.4 Solitons 125

−30 −20 −10 0
wave plate rotation angle ρ (°)

50

100

150

200

pu
m

p 
ra

te
 P

0 
(1

03  s
−

1 )

Figure 5.21: Regions of existene of solitons in a radially symmetri system. � S1, � S2, � S3,� S4, � S5. Threshold for pattern formation of the � bakground and � target state obtainedfrom full numerial simulations. Parameters: see Fig. 5.1, w0 = 1:89mm.
old for pattern formation. In order to put the obtained existene regions of solitons inrelation to that threshold, it has been omputed in full numerial simulations. The thresh-old of the disfavored state with negative orientation is indiated by light green squares.The line between the data points has been added to guide the eye. It an be onjeturedthat a modulational instability of the state serving as the bakground of the solitons isnot neessary for the existene of solitons. The threshold for pattern formation of thefavored state with positive orientation that is serving as the target state of the solitons isindiated by blue squares. Higher order solitons an exist even below this threshold. How-ever, the stability of the fundamental soliton seems to require a modulational instabilityof the target state, as the two thresholds oinide quite aurately.The regions of existene have a large overlap at higher pump rates. Typially adjaentorders of solitons have the largest overlap, but multistability is also possible.In the experiment, the regions of existene of the �rst three solitons have been measured(see Fig. 4.29). The numerial results math these experimental results qualitatively. Ofourse, in the experiment the threshold of the existene of a solitons annot be determinedas aurately, but the needle-type narrowing of the region of existene at that point anbe antiipated.
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Figure 5.22: Bifuration senario under variation of a) � and b) P0. � S1, � S2, � S3,� S4, � S5, - - unstable domain. Parameters: see Fig. 5.1, w0 = 1:89mm, a) P0 = 148000 s�1,b) � = �20 Æ 24 0.5.4.4 Stable and unstable domainsIn the preeding setion, only stable soliton solutions have been onsidered. However,also the unstable stationary domain solutions an be determined by means of the Newtonmethod. For low pump rates, these unstable domains have been haraterized in setion5.3.3. For a given set of parameters, one stable domain solution is obtained.If the pump rate is inreased beyond the threshold for the existene of solitons, the varietyof solutions inreases. As an example, a pump rate of P0 = 148000 s�1 is onsidered. Theradii of the stable and unstable domain solutions are plotted as a funtion of the waveplate rotation angle � in Fig. 5.22a. Stable solitons are indiated by a full olored line.For the given parameter range, �ve stable solitons are observed. They exist over a �niterange of angles �, being multistable at ertain angles. Over the range of stability theyslightly hange their size. However, the disrete steps between solitons of di�erent orderare maintained.Unstable solutions are shown as a dashed blue line. Starting from very large angles j�j,the size of the unstable domain is small and inreases with dereasing angle j�j. This hasalready been disussed in setion 5.3.3. But at a ertain point, the unstable solution istransformed into a stable solution, i.e. the fundamental soliton. A method for �ndingthe stable branh is to take the unstable solution, add a small perturbation and use theperturbed solution as the initial ondition for the algorithm. From this point, j�j has tobe inreased to trak down this stable solution. It reahes the border of the respetiveregion of existene again, being onneted to a new unstable solution. Again, the diretionof motion has to be reversed to trak down the unstable solution. This proess is then



5.4 Solitons 127repeated to �nd the other stable and unstable solutions. Obviously the stable solitons areinteronneted by unstable branhes, where the appearane of the soliton is transformedfrom one stable on�guration to another one.Of ourse, the unstable domains are not observed in the experiment. However, �gure 5.22niely illustrates the observation that typially a soliton of adjaent order is observed ifthe border of the region of existene is passed. At that point, the system beomes unstableand is attrated by the nearest stable on�guration, often being another soliton.If the wave plate rotation angle � is kept onstant and instead the pump rate P0 is inreasedfrom a value where no stable soliton is present, the bifuration struture appears to bequite di�erent. As an example, an angle � = 20:4Æ is onsidered in Fig. 5.22b. At lowpump rates, the equilibrium between urvature-driven motion and expansion due to theinequality of the unstrutured states emerging from the pithfork bifuration results inthe existene of an unstable domain of a ertain radius, f. setion 5.3.3. The radius ofthat domain dereases slowly with inreasing pump rate, whih an be interpreted as aresult of the derease of the oeÆient  with inreasing pump rate (see setion 5.3.2). Ata ertain point (P0 � 90000 s�1), the unstable domain inreases again. At the same point,a saddle-node bifuration is observed that leads to the appearane of a stable soliton(here a S2 soliton) and another unstable domain. This bifuration an also be interpretedas a strongly disturbed pithfork bifuration, see below. If the pump rate is inreasedfurther, solitons of di�erent orders appear by a asade of saddle-node bifurations. Here,the stable soliton branh S1 is onneted to two unstable branhes within the onsideredparameter range.A full piture of the bifuration struture leading to the appearane of stable solitons isobtained if the two-dimensional parameter spae spanned by � and P0 is analyzed withrespet to stable and unstable domain solutions. The obtained domain solutions of suhan analysis are then depited in a three-dimensional diagram, the radius of the domainbeing the z axis value.The result of this analysis is a surfae built up by the stationary domain solutions ofthe system. An oblique view of this surfae is shown in Fig. 5.23. Unstable domains areshown as blue dots in the diagram. Stable solitons are represented by red (S1), green(S2), magenta (S3), yan (S4), and blak (S5) dots.At low pump rates, only unstable domains are observed. The lowest onsidered pump ratereprodues the result of Fig. 5.14, i.e. a urve monotonially inreasing with inreasingangle �. If the pump rate is inreased, the urve beomes more and more modulated,whih is interpreted to be due to an inreasing amount of radial osillations. At a ertainset of parameters � and P0, the tangent of this urve beomes vertial for the �rst time.This is the point where the soliton S2 is emerging. The surfae beomes folded at that
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Figure 5.23: Oblique view of the bifuration struture. � S1, � S2, � S3, � S4, � S5, � unstabledomain. Parameters: see Fig. 5.1, w0 = 1:89mm.
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Figure 5.24: Front (a) and side (b) view of the bifuration struture. � S1, � S2, � S3, � S4,� S5, � unstable domain. Parameters: see Fig. 5.1, w0 = 1:89mm.



5.4 Solitons 129point. If the angle � is �xed at that point and the pump rate is inreased, the unstabledomain passes through a bifuration where two unstable branhes and a stable branh,i.e. the stable soliton, emerge from the unstable branh in a pithfork-type way. If theangle � is not exatly adjusted, the stable soliton and the other unstable domain appear ina disturbed pithfork-type bifuration f. Fig. 5.22b. Suh a bifuration is desribed as aodimension 2 bifuration and has been disussed widely in terms of the usp atastrophe.It explains the needle-type appearane of the regions of existene around that bifurationpoint disussed in Fig. 5.21. At di�erent ombinations of the parameters � and P0 the sametype of bifuration is observed that leads to the appearane of solitons of di�erent orders.Stable solitons are represented by surfaes whose normal vetor is faing downwards, whileunstable domains have a normal vetor pointing upwards.Two other views, eah omitting one of the two parameters, illustrate the features of thebifuration struture. If P0 is omitted, a front view on the surfae is generated (Fig. 5.24a).It shows a generalization of Fig. 5.22a. Wide osillations of the stationary solutions aroundthe hyperboli shape of the solutions obtained at low pump rates are observed, leadingto large regions of existene and multistability of solitons of di�erent orders.The radii of the solitons in inreasing order are multiples of around 0.2 mm. This orre-sponds to the half length sale of the modulational instability (� = 0:40mm). However,the size of the solitons is not �xed to a ertain value, but there is a �nite range of sizesfor eah soliton. The size of the solitons is inuened by the angle �. The loking ofradial osillations seems to provide an eÆient stabilization of the domain, even if theounterating e�ets of urvature-driven ontration and motion due to the inequality ofthe homogeneous solutions are not ompletely balaned.However, the �nite ranges of soliton radii do not have an overlap, whih an be seenfrom Fig. 5.24b. The disreteness of the steps determining the size of the solitons is stillmaintained. Obviously the size of the solitons does not signi�antly depend on the pumprate.5.4.5 Modi�ed model for front dynamisUp to now a model for the dynamis of irular domains has been onsidered that doesnot take into aount spatial osillations. It has been proven to be valid for low inputpowers. This model, however, does not allow for stable domain solutions for the situationpresent here. At high input powers, the dynamis has been shown to be modi�ed by aloking mehanism that has been attributed to the appearane of spatial osillations.Stable soliton solutions an also be obtained in the model, if the impat of radial os-illations around the domain boundary is inluded. Suh an osillatory term has beendisussed in the literature [CER87, BSC88, BP95, CEK05, BCF+06℄ and will be inluded
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Figure 5.25: Domain dynamis without (a) and with (b) osillatory term. � stable �xed points,� unstable �xed points. Parameters:  = 0:15mm2ms�1, 0i = 0:02 mmms�1 Æ , Prit = 120000 s�1,� = 0:43mm, 2 = 2mm�1, P0 = 190000 s�1, � = 14 Æ, a) 1 = 0, b) 1 = 0:15.here in a quite simple way:dRdt = �R + 0i �� 1 � 2P0Prit � 1� sin�4�� R� e�2R (5.24)It desribes an osillation with a spatial period of �=2, where � is the spatial periodof the modulational instability. It has been shown in setion 4.4.3 and in the previoussubsetion that stable soliton radii are approximately given as disrete multiples of �=2.The amplitude of the osillation is modelled to inrease linearly with inreasing pump ratestarting at Prit=2, where Prit is the threshold pump rate of the modulational instability.For pump rates lower than Prit=2 spatial osillations are assumed to vanish. Furthermorethe spatial osillations are assumed to deay exponentially with inreasing domain radiusR in order to model the vanishing interation of the domain boundaries at large distanes.All oeÆients and parameters apart from P0 and � are assumed to be onstant, whih isa very rough approximation. Nevertheless this model is suÆient to reprodue the mainharateristis of the bifuration struture disussed in the previous setion. The inueneof the osillatory term is depited in Fig. 5.25. Without spatial osillations (Fig. 5.25a),one stationary solution is obtained for � < 0Æ. However, it is not stable, sine the smallestutuations will lead to an expansion or ontration of the domain. If spatial osillationsare introdued, more than one stationary solution an be obtained (Fig. 5.25b). Someof them are still unstable (indiated by blue dots), but stable solutions are also observed
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Figure 5.26: Oblique view of the bifuration struture. � stable �xed points, � unstable �xedpoints. Parameters:  = 0:15mm2ms�1, 0i = 0:02 mmms�1 Æ , 1 = 0:15, Prit = 120000 s�1,� = 0:43mm, 2 = 2mm�1.
(blak dots). The latter are haraterized by a negative slope of the urve, whih makesthem an attrator. Those stable domain solutions are interpreted as solitons.Figure 5.26 shows a three-dimensional plot, where stable and unstable stationary solutionsof the dynamis desribed by equation 5.24 are plotted for parameters similar to thoseobtained from the numerial simulations. The resulting surfae depits �ve areas wherestable soliton solutions are found. Similar to Fig. 5.23, these stable solutions emerge froma ertain point, where the surfae beomes folded. Despite of the simpliity of the givenmodel, it an qualitatively reprodue the bifuration struture obtained from applying theNewton method. The exat shape of the surfae is, of ourse, dependent on all parametersthat are assumed to be onstant here.
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Figure 5.27: Basi on�gurations of lusters of solitons and bound states. a) 2 S1 solitons, b) 2S2 solitons, ) S1 soliton and S1 bound state, d) S1 soliton and S2 bound state, e) 4 S1 solitons,f) 4 S2 solitons. Parameters: see Fig. 5.1, w0 = 1:89mm; a) � = �14 Æ 30 0, P0 = 240000 s�1;b) � = �12 Æ 0 0, P0 = 190000 s�1; ) � = �16 Æ 30 0, P0 = 240000 s�1; d) � = �13 Æ 30 0,P0 = 240000 s�1; e) � = �14 Æ 30 0, P0 = 280000 s�1; f) � = �14 Æ 0 0, P0 = 260000 s�1.



5.5 Interation of solitons and omplex strutures 1335.5 Interation of solitons and omplex strutures5.5.1 Interation of solitonsBasi on�gurationsIn numerial simulations, many on�gurations of soliton lusters and bound states areobtained. Some of the basi on�gurations are shown in Fig. 5.27. The �rst row showslusters of two solitons of order one (a) and two (b). The orientation distributions mathniely the measurements of the Stokes parameters in the experiment (ompare to Figs. 4.33a,b). The soliton lusters are surrounded by small peaks that are interpreted to bethe remains of the hexagonal pattern that exists as the bakground state for the givenparameters. The patterned area is limited by the Gaussian beam input. While theshape of S1 is essentially maintained, S2 experienes a modulation that slightly breaksthe irular symmetry. It is interpreted to be due to the interation of the solitons andpossibly to a small interation of the solitons with the underlying pattern.Tightly bound states of solitons are also observed in the simulations. A bound state oftwo S1 solitons interating with another S1 soliton is shown in Fig. 4.33. This boundstate mathes the experimental observation. However, it has not been observed stable asa single struture in the simulations, though it is observed frequently in the experiment.This might be related to the hoie of the numerial parameters as well as to smallinhomogeneities in the experiment that favor the stability of bound states. In ontrast,bound states of solitons of higher order an be easily obtained. Figure 4.33d shows abound state of two S2 solitons in a luster with a S1 soliton.As in the experiment, the maximum number of oexisting solitons is limited due to theGaussian pump pro�le. For the parameters onsidered here, a maximum of four solitonsis observed. Figures 4.33e,f show on�gurations of four S1 and four S2 solitons. While theS1 solitons are arranged in a square on�guration, the S2 luster has a diamond shape.Analysis of two-soliton lustersIn order to obtain a systemati analysis of the interation of solitons, two solitons areonsidered in the following. A plane wave input is used, and the parameters are hosenin a way that the state serving as the bakground is homogeneous.As the initial ondition, two solitons are positioned at a ertain (enter-to-enter) distane.When the simulation is started, the two solitons generally start to move. After a ertaintime the soliton luster typially reahes a stable on�guration with a di�erent solitondistane.Clusters onsisting of two S2, S3 and S4 solitons as well as lusters of one S2 and one
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Figure 5.28: a)-d) Stable distanes between two solitons as a funtion of the initial distane. a)S2 lusters; b) S3 lusters; ) S4 lusters; d) S2 + S3 lusters. e)-h) Stable soliton lusters withdi�erent distanes. e) S2 lusters; f) S3 lusters; g) S4 lusters; h) S2 + S3 lusters. Imagesare linearly saled in order to highlight the osillatory tails, solitons are lipped.Parameters:see Fig. 5.1; a),e) � = �19 Æ 0 0, P0 = 90000 s�1; b),f) � = �14 Æ 0 0, P0 = 90000 s�1; ),g) � =�10 Æ 36 0, P0 = 90000 s�1; d),h) � = �12 Æ 0 0, P0 = 115000 s�1.



5.5 Interation of solitons and omplex strutures 135S3 soliton have been onsidered. The stable distanes of the solitons in dependeny ontheir initial distanes are shown in Fig. 5.28a-d. The interation of the solitons leadsto the observation of several disrete distanes. Within the onsidered range of initialdistanes, �ve stable on�gurations of S2 soliton lusters are observed (Fig. 5.28a). Fourstable on�gurations are found for S3 (b), S4 () and S2+S3 (d) lusters. The lusterwith the smallest distane of the S2+S3 on�guration is stable as a luster but it moveswith a onstant veloity v � 5mms�1. This is interpreted to be due to the asymmetry ofthe luster and was predited by Rosanov [RK90, Ros02℄. The luster orresponding tothe next stable distane has a veloity below v � 0:5mms�1, and the motion of lusterswith larger distanes annot be resolved within the numerial resolution.The absolute distane between the solitons within the stable lusters is dependent on theorder of the onsidered solitons. However, the step between the disrete distanes of thesolitons is of the same order of magnitude for all luster types. The step sizes �xi thatlead from one to the next stable on�guration are ompiled in table 5.1.Table 5.1: Distanes between di�erent solitons �xiCon�guration �x1 �x2 �x3 �x4 average �x[mm℄ [mm℄ [mm℄ [mm℄ [mm℄S2 + S2 0.381 0.387 0.414 0.387 0.392S3 + S3 0.387 0.405 0.395 { 0.395S4 + S4 0.392 0.400 0.398 { 0.397S2 + S3 0.345 0.387 0.391 { 0.374The steps slightly vary around an average value of �x � 0:39mm. This is very lose tothe wavelength of the modulational instability appearing at slightly higher input powers(� = 0:40mm). It has been widely disussed in the literature that the interation ofsolitons is often mediated by the osillatory tails of the single solitons whih is leadingto a loking proess and to the appearane of disrete distanes. This mehanism seemsto apply here as well. The osillatory tails have a spatial period that is onneted to themodulational instability. Though no interation potential of the solitons an be derivedhere, it is evident that in an one-dimensional piture the interation of two solitons ex-hibiting spatial osillations with a ertain spatial period will lead to a disrete set of stableon�gurations that is haraterized by a similar spatial period. Obviously this mehanismis not qualitatively di�erent if two spatial dimensions are onsidered. Figure 5.28e-h showsimages of the stable luster on�gurations, where the intensity levels have been saled inorder to display the small range of orientation that inludes the osillatory tails. Obviously



136 Theoretial Analysisthe system establishes soliton distanes that are nearly haraterized by a maximum-on-maximum on�guration of the osillatory tails on the onneting line between the solitons.The two-dimensional interation apparently modi�es this simple piture. The osillationirles are attened between the solitons, leading to slightly smaller soliton distanes thanexpeted from the simple one-dimensional model.5.5.2 Soliton patternsIn many systems, solitons are observed in a situation where a subritial bifurationleading from a homogeneous to a patterned state takes plae (see setion 2.2.1). Withinthe subritial range, solitons are interpreted as an independent single onstituents of thepattern on a homogeneous bakground. If several solitons are onsidered, they typiallyarrange to form a utout of the extended pattern.This mehanism obviously does not apply for the system onsidered here. The solitonsan not be interpreted as a onstituent of a spontaneously appearing pattern. However,solitons an be arranged to form a di�erent type of extended patterns here. In the previoussetion the interation of two solitons has been onsidered, whih lead to the observationof several disrete distanes. If many solitons are arranged on a hexagonal grid with anext-neighbor distane given by one of these disrete distanes, these solitons an form astable pattern. Hexagonal patterns onsisting of S2 solitons with a next-neighbor distaneorresponding to the �rst three stable distanes (f. table 5.1) are shown in Figs. 5.29a-. The size of the numerial grid has been adjusted in eah simulation to math theperiodi boundary onditions. These patterns obviously onnet the two homogeneousstates emerging from the pithfork bifuration. Though both branhes are stable withrespet to the modulational instability disussed previously, a large-amplitude patternonneting the two states seems to be a stable on�guration. The patterns inherentlypossess two spatial frequenies, one being the distane between the solitons and the otherbeing the osillation frequeny within the single soliton. From this point of view they anbe interpreted as superlatties [Dah87, DSS97℄.Strutures that have a large amplitude and exhibit more than one spatial frequeny aregenerally not aessible via the standard linear stability analysis. In the experimentthey are not observed spontaneously. However, with a larger aspet ratio they ould beonstruted from single solitons. Though patterns are generally not deomposable intotheir single onstituents, the presented patterns are. This is illustrated by the fat thatsingle onstituents of the pattern an be left out (Fig. 5.29d).Suh patterns an also be onstruted from solitons of order 3 (e) and 4 (f). Of oursethe distane between the onstituents have to be adjusted to math the stable distanesobtained in the preeding setion. Even other on�gurations like square patterns are
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a) b) c)

d) e) f)

g) h) i)

Figure 5.29: Patterns generated from single solitons of di�erent order. a)-) S2 hexagons withdi�erent next-neighbor distanes; d) S2 hexagon with void; e) S3 hexagon; f) S4 hexagon; g)S2 square; h) S3 square; i) S4 square. Parameters: see Fig. 5.1, P0 = 90000 s�1; a)-d),g) � =�19 Æ 0 0; e),h) � = �14 Æ 0 0; f),i) � = �10 Æ 36 0. Color table: see Fig. 5.30.stable (Figs. g-i).Due to the limited aspet ratio in the Gaussian beam, extended soliton patterns annotbe observed in the experiment. Nevertheless, the soliton lusters presented in Fig. 4.34an of ourse be interpreted as utouts from soliton patterns.
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Figure 5.30: Interation of a soliton with a straight front. a) Stable straight front; b) stableon�guration of a front and a S1 soliton. Parameters: d = 112mm, �� = 10:8, D = 268mm s�1, = 1:5 s�1, �2 = 9:72 � 109 rad s�1, L = 0:015m, R = 0:995, N = 7:21 � 1019m�3, � = 0 Æ,w0 = 1:89mm, a) P0 = 80000 s�1, b) P0 = 120000 s�1.5.5.3 Solitons and frontsIn the experiment, a stable on�guration of a soliton interating with a polarization frontis observed. This situation an be easily reprodued by alulating the orrespondingorientation distribution from the measurement of the polarization rotation angle for aertain set of parameters. The alulated orientation distribution is then used as aninitial ondition for the numerial simulations and onverges to a stable on�gurationshown in Fig.5.30. This on�guration agrees very well with the experimental one, therebyon�rming the interpretation of the polarization rotation angle as a measure for the ori-entation.5.5.4 New type of solitary struturesIf the experiment is performed at very high input powers, a new type of solitary strutureis observed (see setion 4.6.2). This ring-shaped soliton an be reprodued in numerialsimulations (see Fig.5.31a). But also other stable on�gurations are found that do nothave a dis shape but inorporate more than two domain walls in a ut through the enter.Figure 5.31b shows a wider stable loalized struture that exhibits one more osillationaround the bakground state in its entral part. It ould be interpreted as the seondmember of a soliton family. At di�erent parameters, the entral osillation even leadsbak to the target state and beyond (see Fig. 5.31), leading to an even more omplex
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Figure 5.31: New types of solitary strutures. Parameters: w0 = 1:89mm, a),b) see Fig. 5.1,P0 = 230000 s�1, � = 0 Æ 0 0; ),d) see Fig. 5.30, exept ) P0 = 150000 s�1, � = �19 Æ 30 0, d)P0 = 160000 s�1, � = �21 Æ 30 0.appearane. This on�guration onsists of six domain walls in the ut through the enter.These solitary strutures an even be observed in a stable bound state onsisting of twosstrutures sharing the outer ring (Fig. 5.31d).Apparently there are many stable strutures that an be desribed in the framework ofloalized strutures. From the given examples, it an be onjetured that more disretefamilies of solitons exist. Sine they annot be observed in the present experiment dueto the limited aspet ratio and input power, an in-depth study of the properties of theseloalized states is beyond the sope of this work. However, the (presumably more omplex)bifuration behavior of these strutures, their systemati lassi�ation and interation aswell as the question of the generalizability to a plane wave input ould be interesting tasksin future work.



140 Theoretial Analysis5.5.5 Loalized patternsIf the pump rate is inreased far beyond the threshold for pattern formation, the amplitudeof the patterns grows and beomes of the order of magnitude of the solitons, though stillbeing smaller. If in suh a situation a higher-order soliton is present, the soliton loses its(nearly) irular symmetry and omplies with the hexagonal symmetry of the patternsexisting as the bakground and target state. The result is a loalized pattern existing onthe bakground of the other pattern with inverse orientation.
a) b) c) d)

Figure 5.32: Loalized patterns in a Gaussian beam. a),b) triangular loalized pattern;),d) diamond-shaped loalized pattern. a),) orientation distributions; b),d) transmitted light�eld projeted on to a linear polarization state with suppressed bakground. Parameters: seeFig. 5.1, w0 = 1:89mm, P0 = 280000 s�1; a),b) � = �14 Æ 30 0; ),d) � = �16 Æ 30 0. a),) Colortable: see Fig. 5.31.Typial loalized patterns that result from the instability of (nearly) irular solitonsare shown in Fig. 5.32. In the orientation distribution (a,), they onsist of three orfour (distorted) elementary ells of the pattern arranged in a triangular and diamondon�guration. The orresponding intensity distributions of the transmitted light �eldwith suppressed bakground (sub�gs. b,d) reprodue the experimental �ndings (ompareto Fig. 4.43b,).
a) b) c) d) e)

Figure 5.33: Orientation distributions of loalized patterns in plane wave simulations. Param-eters: see Fig. 5.1, P0 = 200000 s�1, � = 0 Æ. Color table: see Fig. 5.31.The size of suh a loalized pattern is of ourse limited in a Gaussian beam. Larger



5.5 Interation of solitons and omplex strutures 141loalized patterns an be observed, if a plane wave input is onsidered and the simulationis started with a irular domain as the initial ondition. At the beginning of eahsimulation, strong noise is added to the system whih is then redued to zero. The domainwill �rst start to ontrat. However, then the interation with the patterns existing onboth branhes of the pithfork bifuration takes plae. As a result, di�erent on�gurationsof loalized patterns are found (see Fig. 5.33). These strutures are stable for the givenparameters, i.e. the motion of the fronts onneting the di�erent patterned branhes isompletely stopped by the modulations within the patterns.However, reent experimental and numerial results show that front motion an set inagain if even higher pump rates are onsidered. In this ase, the oeÆient  hanges itssign, whih results in an expansion of domains and leads to the formation of labyrinthinepatterns, whih will be the issue of future investigations [Sh06℄.





Chapter 6Disussion of the results
6.1 Basi properties of the systemThe observation of a symmetry-breaking pithfork bifuration is at the basis of this work.This polarization instability has been observed by Yabuzaki et al. [YOKO84℄, negletingthe transverse spatial degrees of freedom, and by Gro�e Westho� et al. [GWKL+00℄ inan experiment that takes those degrees of freedom into aount. At the bifuration point,the linear input polarization beomes unstable. As a result, two elliptially polarized spa-tially homogeneous states evolve, whose main axis of polarization is rotated into oppositediretions with respet to the input polarization. Correspondingly, the orientation of thevapor, that is zero below the bifuration point, reahes a nonzero value with positive andnegative sign for the two stable bifuration branhes.A broken symmetry an be introdued by rotating the slow axis of the wave plate withrespet to the input polarization. As a result, a perturbed pithfork bifuration is ob-served. The degree of asymmetry is determined by the rotation angle of the wave plate.If the rotation angle is taken as the ontrol parameter for an input power above thebifuration threshold, an s-shaped bifuration is observed as theoretially predited in[YOKO84℄. In the two dimensional parameter plane spanned by the input power and thewave plate rotation angle, the whole bifuration senario an be interpreted in terms ofa usp atastrophe [YOKO84℄. For the onsidered parameters, a large region within thistwo-dimensional parameter spae is haraterized by optial bistability.At input powers that are at least two orders of magnitude larger than the threshold powerof the pithfork bifuration, a modulational instability is observed on both branhes ofthe pithfork bifuration. Sine the emergene of patterns is always onneted with ahange of the polarization of the light �eld, these instabilities are interpreted as polar-ization instabilities. The hexagonal, rhombi and triangular patterns that were reported



144 Disussion of the resultsin [GWKL+00℄ are reprodued with a larger aspet ratio, whih is due to an inreasedbeam diameter. Within the region where optial bistability is present, hexagonal patternsare observed. The modulational instability is slightly subritial. However, the range ofbistability between the homogeneous state and the pattern is not resolvable within theexperimental resolution. Therefor, it an be negleted in the further disussion. Thethreshold for pattern formation depends on the rotation angle of the wave plate, i.e.the degree of imperfetion of the pithfork bifuration. If the homogeneous state underonsideration is favored by the imperfetion, the threshold is low, and it inreases withdereasing preferene.Comparison to other experimental systemsThe results of Yabuzaki and Gro�eWestho� are well reprodued in the present experiment.The aspets of the bifuration senario that were of speial interest in the sope of thiswork have been analyzed in more detail. Compared to the previous works, the symmetryof the system has been improved further in the present work.Only one other optial experiment with the aim of observing transverse strutures in asystem that exhibits a symmetry-breaking pithfork bifuration is reported in the liter-ature. It is a degenerate four-wave mixing experiment using a photorefrative rystal asthe nonlinear medium [TSW98, LPEM+04, EMTG+05℄. The two states that emerge fromthe pithfork bifuration are shifted by � in the phase of the subharmoni �eld. From anexperimental point of view, this ompliates the disrimination of the two states, sineinterferometri tehniques need to be applied. In the experiment onsidered in this work,the two states an easily be disriminated by the use of a linear polarizer. The possibilityof preparing a disturbed bifuration as well as the symmetry properties of the bifurationin general have not been disussed in the literature. It turns out that these aspets playa major role in the work presented here.6.2 Front dynamisWithin the region of optial bistability, fronts that onnet the two states emerging fromthe pithfork bifuration are observed. These fronts are heterolini onnetions and arelassi�ed as Ising fronts [MPL+01℄. In the experiment, a stable front is oasionally re-ated in the situation of a perfet pithfork bifuration, if the input power is swithed froma level below the threshold of the pithfork bifuration to a level where the modulationalinstability is present [GWKL+00℄. In numerial simulations assuming a plane wave input,the straight front is always stable in the ase of a perfet pithfork bifuration. Hene, the



6.2 Front dynamis 145instability of the front that is observed in the experiment below the threshold for patternformation is attributed to the �nite size of the experimental system.Cirular domains of one homogeneous state emerging from the pithfork bifuration em-bedded into the other one an be prepared using a irularly polarized addressing beam.The dynamis of these irular domains has been studied using a video sampling tehniquein a power region far from the modulational instability. For the ase of two equivalenthomogeneous states, the domains ontrat and disappear. The motion of the front wasidenti�ed to be urvature-driven. A power law for the temporal evolution of irulardomains is obtained that is valid over a wide range of input powers.The dynamis of domains is modi�ed if an asymmetry of the pithfork bifuration isintrodued by a rotation of the retardation plate in the feedbak loop of the system. Theontration is aelerated if the domain state is disfavored. The dynamis is slowed down,however, if the domain is the favored state. The urvature-driven ontration an even beoverompensated by the expansive motion that is introdued by the imbalane of the twohomogeneous states. In this situation, the domain expands and swithes the whole area tothe domain state. A stationary domain, where the two e�ets exatly ompensate is notobserved in the experiment. Using numerial methods, it is shown to be stationary, butunstable. For small imperfetions, the urvature-independent part of the front veloity isfound to depend linearly on the wave plate rotation angle. This is on�rmed by numerialsimulations of the motion of straight fronts with a plane wave input.If the input power is inreased, the domain dynamis is to an inreasing degree modi�edby a loking phenomenon. While the urvature-driven motion beomes less pronounedwith inreasing input power, spatial osillations that surround the domain boundariesour. These spatial osillations have a de�ned wave number that an be assoiated withthe one of the modulational instability that is observed at higher input powers. Theinteration of these weakly damped spatial osillations leads to a further slow-down ofthe domain dynamis at ertain domain radii. These radii are similar to the ones of stablesolitons that appear at higher input powers. Loking beomes very pronouned in thepresene of a modulational instability.Comparison to theoretial preditions and to other experimentsTheoretial preditions for systems with pithfork bifurationDomain dynamis in a situation with two equivalent homogeneous states has been studiedextensively in theoretial models of nonlinear optial systems. These numerial studiesindiate the ourrene of urvature-driven motion (e.g. [OSF99, GMT00, GCOM01℄).Analyti results show that the growth law desribing urvature-driven dynamis is given



146 Disussion of the resultsby a t 12 saling [GCOM01℄.In di�erent systems, a qualitative hange in the behavior of the system is observed when aontrol parameter is varied. This hange is related to a hange of sign of the oeÆient de-sribing the urvature driven motion [GMT00, GCOM01℄. For large positive oeÆients,domain oarsening is observed, whih desribes the ontration of irular domains andshortening of fronts. Near the zero, the dynamis beomes slow, and dark-ring avity soli-tons in oexistene with domain walls are observed. If the oeÆient beomes negative,a at front is modulationally unstable and domains expand until the whole area is �lledwith a labyrinthine pattern [GMT00, GAGW+03℄.The predited t 12 growth law is on�rmed by the present experiments and is observed overa wide parameter range. For low input powers, the oeÆient desribing the strength ofthe urvature-driven motion is large. Hene, domains ontrat and disappear. Withinreasing input power, the dynamis slows down and together with an inreased amountof spatial osillations, this results in the observation of solitons. A hange of sign of theoeÆient at even higher input powers was not observed, sine the front dynamis is thendominated by loking due to the modulational instability. However, labyrinthine patternshave been observed in a very similar experiment and are under urrent investigation[Sh06℄.In [GCOSM04℄, the analytial results onsidering domain dynamis are extended to situ-ations where the symmetry of the pithfork bifuration is slightly perturbed. The analysispredits an additional omponent in the veloity of the front that is urvature indepen-dent and that depends on the asymmetry parameter. This harateristi is on�rmed bythe experimental and numerial results. The obtained results also indiate a dependeneof the urvature-driven dynamis on the asymmetry parameter that is not predited bythe analytial results. The instability of the stationary domain, whih is observed in anasymmetri situation before robust loking due to the appearane of pronouned spatialosillations ours, is in agreement with the theoretial expetations [GCOSM04, Cou02℄.Experiments in a quasi one-dimensional setupIn previous experiments, the quantitative study of front motion in nonlinear optis hasbeen restrited to quasi one-dimensional systems where urvature e�ets are suppressed bythe design of the experiment. Detailed experiments have been onduted for the situationwhere an Ising-Bloh transition is observed [EMTRV05, EMTG+05℄. Suh a bifurationannot our in the present experiment, sine the state variable is one-dimensional. Inpriniple, the introdution of a transverse magneti �eld ould enable an Ising-Bloh tran-sition, sine in suh a situation the state variable beomes three-dimensional. However,preliminary theoretial studies have almost ruled out the ourrene of an Ising-Bloh



6.3 Disrete family of solitons 147transition for experimentally feasible parameters [Bab05℄.In a system where the two states onneted by the front are not equivalent [CNP+04℄,the veloity of quasi one-dimensional fronts has been determined, and the existene of aMaxwell point was learly demonstrated despite the fat that front motion is modi�ed dueto inhomogeneities of the LCLV. At higher input powers a so-alled Freederiksz transitionis observed, leading to a front motion where the front veloity in a transient stage isnot given by the energy di�erene of the two states it onnets. In a two dimensionalexperimental arrangement, urvature-driven motion was qualitatively demonstrated.Experiments in two-dimensional setupsIn two-dimensional systems with pithfork bifuration, the haraterization of front dy-namis had been limited to a qualitative desription. The ontration of arbitrarilyshaped domains as well as the redution of the length of an ondulated front towards astraight front was demonstrated in the four-wave mixing experiment [TSW98, TZWW99,WVS+99℄. In a transient stage, an arbitrarily shaped large domain redues the domainlength faster than a small one [TZWW99℄. A rough measurement shows that the front ve-loity of an arbitrary front inreases with its urvature [LPEM+04℄, whih is in aordanewith the observations in this work.The dynamis of fronts that exist as a result of random initial onditions annot be har-aterized in the present experiment due to its fast timesales in the order of miroseonds.The slow timesale in the order of seonds of a photorefrative rystal is more appropriatefor suh a study. However, by the introdution of de�ned initial onditions and the useof a video sampling method, a quantitative haraterization of the domain dynamis be-omes possible in the present experiment. The possibility to prepare a irular domain ina de�ned way by means of the addressing beam enables a re�ned study of urvature-drivenmotion, yielding a growth law.6.3 Disrete family of solitonsThe ore issue of this work is the observation of a disrete family of dissipative solitons.The solitons di�er in the number of radial osillations. Solitons are not observed to ourspontaneously, but they an be robustly swithed on and o� by means of an inoherentaddressing beam. Within the regions of multistability of solitons of di�erent order, thewidth of the addressing beam an be used to ignite a desired soliton order. Equivalentfamiles of positive and negative solitons are observed.A diret onnetion of the optial �eld that is transmitted by the vapor to the state vari-able of the mirosopi model, being its orientation, was enabled by the spatially resolved



148 Disussion of the resultsmeasurement of the Stokes parameters of that light �eld. These measurements and thenumerially obtained solitons show a very good agreement and support the interpretationof the solitons as a loalized exursion from a spatially extended state to the viinity ofanother spatially extended state and bak, i.e. a homolini onnetion of the bakgroundwith itself. The spatial osillations around the target state as well as the osillatorytails around the bakground state are haraterized by a de�ned wave number that anbe identi�ed as the wave number of the modulational instability. Hene, also the sizesof the solitons di�er in disrete steps that are roughly given by the half wavelength ofthat instability. In a Gaussian beam, solitons typially drift towards the beam enter.However, higher-order solitons whose size approahes the dimensions of the beam oftenbeome unstable towards a drift that is direted outwardly and destroys the soliton.The formation of the soliton family is strongly onneted to the desribed domain dy-namis. The existene of stable solitons is promoted by low front veloities and by a largeamount of spatial osillations. Low front veloities are observed in situations where theomnipresent urvature-driven motion is ompensated for by the introdution of a prefer-ene of the domain whih an be indued by an asymmetry of the pithfork bifuration.The amplitude of spatial osillations is determined by the input power and thus the dis-tane to the modulational instability. Even far below the threshold for pattern formation,spatial osillations with the wave number orresponding to the modulational instabilityare only weakly damped. Hene, the threshold for the existene of stable solitons is low-est in a situation, where an imperfetion of the underlying pithfork bifuration reduesthe front veloities and robust pinning an our. A numerial analysis shows that atthis point a odimension 2 bifuration, where two unstable and a stable domain solutionsemerge from an unstable one, takes plae. Above this point, a broad region of existene ofsolitons is observed. The existene regions of solitons of neighboring order typially showa large overlap in parameter spae. These results an be qualitatively reprodued by aheuristi extension of the simple front motion model whih aounts for the ourreneof spatial osillations.Exept for the fundamental one, solitons an be observed below the threshold for patternformation, i.e. in a parameter region where spatial osillations are weakly damped. Abovethe threshold for pattern formation, the modulation of bakground and target state isstill small ompared to the amplitude of the solitons. However, robust pinning oursin this situation. At a ertain power above threshold, solitons are even observed in inthe situation of equivalent states, where loking is the only mehanism that ounteratsthe urvature-driven motion. Over a wide range of input powers above the thresholdof the modulational instability the solitons maintain their irular symmetry to a verygood approximation. Not until the maximum input power available in the experiment



6.3 Disrete family of solitons 149is reahed, a transition to loalized patterns that obey the hexagonal symmetry of thepatterns takes plae.Comparison to theoretial preditions and other experimentsDisrete families of solitons in theoretial worksThe ourrene of a disrete family of loalized states is a quite general phenomenon invarious theoretial models that desribe nonlinear optial systems. Its interpretation isalways onneted to loking of fronts that onnet two spatially extended states. Thisinludes systems with two nonequivalent [RK90, Ros91, Ros02℄ or equivalent [SSM98a,PMEL98, OSF99, OSF01, GAGW+03℄ homogeneous states as well as systems where one[MPL97℄ or two [BCF+06℄ of the extended states are patterned.In one-dimensional models [RK90, Ros91℄, low front veloities are observed around theMaxwell point. Hene, it is this region where solitons our in the presene of osillatorytails. If urvature e�ets are taken into aount, the point where fronts do not moveis shifted towards an asymmetri situation [GCOSM04, Cou02℄. In a symmetri situa-tion, the urvature dynamis an only be overome by a pronouned loking phenomenon[OSF01, OSF99℄ or a hange of sign of the oeÆient desribing the urvature-drivenmotion [GMT00℄.The mehanisms that are predited to play a key role in the formation of a soliton family,being front dynamis and loking, have been demonstrated experimentally and numeri-ally. Hene, the well-aepted models formulated in literature apply well to the presentexperiment. A smooth transition between a situation where solitons exist on a homo-geneous bakground and solitons sitting on top of a (weakly) modulated bakgroundindiates that these ases are based on similar mehanisms.Due to the loking proess of fronts in the presene of osillations, solitons of di�erentorder [Ros91, Ros02℄ or multi-peaked solitons [CRT00b, MFOH02, BCF+06℄ appear in aasade of saddle-node bifurations with the stable domain solutions being onneted byunstable domains when a ontrol parameter is varied. This behavior is also found in thepresent system. In a two-dimensional parameter spae, these bifurations are found tobe folds in the surfae of stationary solutions. The orresponding regions of existene ofsolitons of di�erent order show some similarities to the ones of n-peaked solitons states in[MFOH02℄, indiating that loking is a key element in the stabilization of solitons. Alsothe (one-dimensional) interation law of fronts that onnet two di�erent patterned states[BCF+06℄ resembles some of the obtained results. However, �nding a diret onnetionbetween the two ases is not straight-forward.



150 Disussion of the resultsDegenerate four-wave mixingThe only experimental observation of a (fundamental) dark-ring avity soliton in the pres-ene of a pithfork bifuration is reported in the four-wave mixing experiment [TSW98,TZWW99, WVS+99℄. These solitons appear as a result of the shrinkage of arbitrarilyshaped large domains due to urvature-driven motion. The stability of the soliton isinterpreted to be due to the loking of osillatory tails. Sine labyrinthine patterns areobserved in nearby parameter regions (indiating a dynamis where domains expand),urvature-driven dynamis does not seem to be very pronouned, whih enables lokingof fronts, even if the osillatory tails are also not very pronouned. Higher-order solitonswere predited [SSM98a℄ but not observed in the experiment yet. A ontrolled ignition ofsolitons or domains is not demonstrated in two dimensions, but a reent publiation showsthat the ignition and positioning of a domain wall is possible in quasi one-dimensionalsystems [EMTRV05℄.In the present experiment, solitons are only observed beyond the threshold for patternformation in the ase of a perfet pithfork bifuration. This is interpreted to be due torelatively strong urvature-driven dynamis whih requires pronouned spatial osillationsto provide robust loking. The stabilization of a whole family of solitons is signi�antlysimpli�ed by the ontrolled introdution of an asymmetry to the system.LCLV systemsIn a single mirror-feedbak experiment using an LCLV the bistability of two di�erentloalized strutures is reported [BPR+04℄. The oexistene of the strutures with di�er-ent symmetries (irular and triangular) is attributed to the oexistene of two di�erentpattern-forming instabilities. Hene, the quite general mehanism of fronts loking atdi�erent positions, whih leads to the formation of a onseutive family of solitons dif-fering in size and the number of radial osillations like it has been demonstrated in thiswork, does not seem to apply to this very speial situation. Similarly, the spontaneousnuleation of loalized peaks with two di�erent amplitudes over another pattern has beeninterpreted to be due to a oexistene of three patterned solutions [BRR05℄.The experiment of Sh�apers et al.Sh�apers et al. have experimentally and theoretially analyzed solitons in a single-mirrorfeedbak arrangement using sodium vapor as the nonlinear medium [SFAL00, SAL01,SAL02, SAL03℄. Hene, the experimental setup is very similar to the one desribedin this work. Nonetheless, the solitons desribed in the two experiments are entirelydi�erent, whih is a result of the versatility of the nonlinear properties of sodium vapor.



6.4 Interation of solitons and omplex strutures 151The experiment of Sh�apers is onduted with a irularly polarized input beam, andno polarization-hanging elements are inserted into the feedbak loop. Hene, the light�eld an be treated as a salar. As a result, the inversion symmetry of the system isalways broken in the presene of a light �eld. The sodium vapor is exposed to an obliquemagneti �eld, whih makes a vetorial desription of the magnetization neessary. For theexperimental parameters used by Sh�apers, a light shift-indued level rossing is observed,whih results in a nonmonotoni, resonane-like harateristi urve [AHLL97, SAL02℄for the orientation. Solitons are observed in a situation of nasent bistability, where theharateristi urve exhibits a nearly in�nite slope. Slightly below this point, a varietyof subritial modulational instabilities leading to hexagonal patterns with di�erent wavenumbers is observed. Within the region of bistability between a homogeneous state andthese patterns, solitons are observed. The shape of the solitons orresponds very well tothe one of a single onstituent of the oexisting pattern. Depending on the parameters,solitons are either spontaneously reated or an be swithed by means of a irularlypolarized addressing beam. The robust inoherent swithing method is one of the fewsimilarities of the two systems. Conluding, the two experiments with sodium vaporan be onsidered as prime examples for the two di�erent mehanisms leading to theformation of solitons. The experiment of Sh�apers orresponds well with the piture ofa soliton being an exerpt of an extended pattern, whereas the observation of solitonspresented in this work is losely related to the loking of fronts.6.4 Interation of solitons and omplex struturesMultiple solitons an be individually ignited and erased by means of the addressing beam.Many di�erent on�gurations of solitons lusters are observed, inluding lusters of soli-tons of di�erent orders. However, the number of solitons that an oexist at a time islimited due to the small aspet ratio. In the experiment, soliton lusters arrange in theenter of the beam and display disrete preferred distanes between the single onstituents.Typially, the smallest possible distane is observed. However, numerial simulations as-suming a plane wave indiate that several disrete stable distanes are possible. They areonneted to the length sale of the osillatory tails, hene the length sale of the (weaklydamped) modulational instability.Consequently, superlattie patterns that onsist of higher order solitons with a next-neighbor distane that orresponds to these disrete distanes an be onstruted. Hexag-onal and square arrangements are stable, and even loal defets do not perturb the stabilityof the pattern signi�antly.Besides the solitons lusters, where the solitons interat only weakly, elongated strutures



152 Disussion of the resultsare observed whih are interpreted as tightly bound states of two or more single solitonsof the same order. Bound states of di�ererent soliton orders have been observed. Theinteration of these bound states with other strutures is mediated by osillatory tailssimilarly to the solitons.In a parameter region where straight polarization fronts as well as solitons are stablefor themselves, they an also oexist. Due to the interation of the two strutures, thestraight front beomes bended. This is interpreted in a way that the system tries to keepthe preferred distane between fronts to the maximum possible degree.At high input powers, near the symmetry point of the pithfork bifuration, a ring-shapedsoliton is observed. In its entral part, the system returns to the viinity of the state thatserves as the bakground. It is interpreted to be stable due to pronouned loking andis a demonstration of a struture that is essentially based on the existene of two spatialdimensions. Numerial simulations indiate the existene of a whole new family of solitonsof this type.Comparison with theoretial and experimental resultsClusters of fundamental solitons that display one or several disrete preferred distanes area very general result that has been widely disussed in theory as well as in experiments[RK90, BLS96, TSB+99a, SFAL00, GNKT03, BRB05℄. It is always onneted to theourrene of osillatory tails. Sine these osillatory tails are also present around higherorder solitons, the general mehanisms are expeted to apply (with small hanges) also tothese strutures. The predition that asymmetri lusters move slowly [RK90℄ was veri�edfor an exemplary ase in numerial simulations. However, the predited slow motion isnot observed in the experiment due to the inhomogeneous pumping.Bound states of solitons have been obtained in numerial simulations of a DOPO [SSM98a℄as a stationary struture and in a laser with saturable absorber [FRS+03℄ as a rotatingstruture. The rotation is attributed to an asymmetry of the bound state. In both ases,bound states of fundamental solitons are reported. In the present experiment, also boundstates of higher order solitons have been observed.The possibility to ompose a superlattie pattern from single higher-order solitons hasbeen previously reported in a model of a semiondutor resonator [MPL97℄. The hexag-onal pattern omposed of seond-order solitons is interpreted to be stable due to theinteration of the single solitons through osillating tails. This approah has been ex-tended in this work to di�erent geometries and next-neighbor distanes. An analytialtreatment of this type of superlattie patterns is presently not available.The oexistene of fronts and fundamental solitons has been demonstrated in di�erenttheoretial models [TSW98, GMT00, GAGW+03℄ and in the four-wave mixing experiment



6.4 Interation of solitons and omplex strutures 153[TSW98℄. However, statements on the interation of those strutures were not made.In theoretial works where two-dimensional systems are onsidered, the existene of soli-tons that are di�erent from the standard soliton family has been demonstrated. Oneexample is the stable droplet, whih is a very large stable irular domain whose stabilityis entirely based on urvature e�ets [GCOM01, GAGW+03, GCOSM04℄. An even moreompliated struture is observed, if the stable droplet is ombined with a entral dark-ring avity soliton in the region of oexistene of these strutures [GAGW+03℄. Anothertype of soliton is desribed in [OSF01℄ as a fundamental soliton having a small dip in theenter. Hene, solitons in two dimensions seem to exhibit a larger variety of possible real-izations than the one-dimensional ones and require further investigations. The observedring-shaped soliton belongs to this lass.





Chapter 7ConlusionThe existene of a disrete family of higher-order solitons that aompanies the funda-mental single-peaked soliton has been predited in a large number of theoretial works[SSM98a, PMEL98, OSF99, OSF01, GAGW+03℄. In this work, suh a soliton family wasobserved experimentally for the �rst time, and the mehanisms that lead to the formationof the solitons have been identi�ed and haraterized.The system under onsideration is a oneptually simple optial struture forming system.It an be interpreted as a realization of the well-known single-mirror feedbak arrange-ment [Fir90, DF91, DF92℄. Sodium vapor is used as the nonlinear medium, and a �=8retardation plate is plaed in the feedbak loop as a modi�ation. This system displaysa symmetry-breaking pithfork bifuration leading to two equivalent homogeneous statesthat di�er in their polarization properties [YOKO84, GWKL+00℄.Solitons that our in the presene of a pithfork bifuration have been widely disussedin literature [Lon97, SSM98a, PMEL98, GMT00, TSW98℄. Only in one ase, however, the(fundamental) soliton was also observed experimentally [TSW98℄. In the present experi-ment, the solitons orrespond to loalized exursions that lead from one polarization stateemerging from the pithfork bifuration to the viinity of the other one. The members ofthe soliton family di�er in size and in their inner struture, i.e. the number of radial os-illations. They an be robustly ignited and erased with an inoherent addressing beam.By means of a novel tehnique to measure the spatially resolved Stokes parameters ofthe transmitted light �eld, the experimental observations ould be diretly ompared tonumerial simulations of the mirosopi model of the system. A good agreement betweenthe experimental �ndings and numerial simulations has been ahieved.It turns out that the stability properties of the soliton family are strongly onneted tothe dynamis of urved fronts. In general, a irular domain that is ignited by meansof the addressing beam is unstable in the presene of a perfet pithfork bifuration.



156 ConlusionIt will ontrat and disappear due to urvature of the domain boundaries. For the �rsttime, this urvature-driven motion was aptured in a ontrolled experiment, and a growthexponent for the domain size has been determined that is in good aordane with generaltheoretial expetations [GCOM01℄ as long as the two states that are onneted by thedomain boundary an be desribed as nearly homogeneous.It was demonstrated that the dynamis of domains an be modi�ed by the introdutionof a nonequivalene of the two homogeneous states whih an be easily prepared by aontrolled perturbation of the pithfork bifuration. In aordane with general expeta-tions [GCOSM04℄, the favored state shows a tendeny to expand. If the ignited domainis prepared to be in the favored state, the tendeny to expand an ompensate for theurvature-driven motion. A stationary equilibrium exists for a unique domain radius.However, it is not stable, and the domain will either ontrat or expand.Stabilization of domains is provided by the ourrene of nonmonotoni spatial osillationsaround the domain boundary. The interation of these osillations provides a lokingmehanism that an stop the ontration of domains at ertain disrete domain radii.The ourrene of spatial osillations is related to the existene of a near modulationalinstability. The resulting stable domains, whose sizes inrease roughly in steps of thewavelength of the modulational instability are identi�ed as the members of the disretefamily of solitons.The regions of existene of the solitons have been determined experimentally and nu-merially and show a good qualitative agreement. As a result of the interplay of thedesribed mehanisms, solitons of all orders are preferably found in a situation of animperfet pithfork bifuration, where the veloity of a urved front is low. This is inontradition to many one-dimensional models, where urvature-driven motion does notexist and where the regions of existene of solitons are loated around the Maxwell point,whih in the present system is given by the situation of a perfet pithfork bifuration.Furthermore, the existene of solitons is promoted by a large amount of spatial osilla-tions. Broad regions of existene in parameter spae are found that show a large overlapbetween neighboring orders of solitons. A numerial analysis of the stable and unstablestationary domains of the system shows, that stable soliton solutions are onneted byunstable domains and that eah soliton order originates from an individual odimension 2bifuration. Higher order solitons are observed below and above the threshold for patternformation, while the fundamental one appears slightly above the threshold for patternformation. Even far above that threshold, the solitons essentially maintain their shape.At the highest available input powers, the strutures lose their irular symmetry, andloalized patterns are observed.Multiple solitons an be ignited at a ertain instane of time. A large variety of soliton



157lusters of same and of di�erent order is observed, where the onstituents essentiallymaintain their shape. The number of solitons is limited by the �nite size of the Gaussianbeam in the experiment. Di�erent disrete distanes between the solitons are observed,and numerial simulations indiate that these distanes originate from the interation ofthe osillatory tails, as it is observed in many systems. Furthermore, elongated struturesare observed that are interpreted as tightly bound solitons of same order. These boundstates are also found in lusters with solitons, and the interation behavior was found tobe similar to the soliton-soliton interation.Even more omplex situations have been desribed. In numerial simulations, higher-order solitons an be arranged on regular grids and form stable superlattie patterns.These patterns are high-amplitude and are interpreted to be strongly nonlinear, henethey annot be understood in terms of perturbative tehniques. Solitons an oexist withfronts, and their interation leads to a stable on�guration, where the soliton is embeddedinto the front. At high input powers, a ring-shaped solitary struture has been observedexperimentally that is essentially di�erent from the solitons desribed before. Numerialsimulations indiate the existene of a whole family of this intrinsially two-dimensionaltype of solitons, whih might be the issue of future work.





Appendix ADetails on the Newton methodThe use of a Newton method in order to obtain stationary solutions of a system has provensuessful in many systems [FH98, Sh01, Hun06℄. The alulation of the stationary solu-tions in this work follows the approah in [Sh01, Hun06℄, where rotationally symmetrisolutions were omputed. The algorithm has been adapted to the present model desribedin setion 5.1.2. The rotationally symmetri stationary solutions ~�(r) of the dynamis 5.7��t ~�(r) = 0 = N (~�(r)); (A.1)where the nonlinear operator N (�) is de�ned by the right-hand side of equation 5.7��t� =: N (�), are then obtained iteratively from a suited initial distribution �0 by�n+1 = �n � (rN (�n))�1N (�n); (A.2)where rN is the Jaobian of the operator N . rN an be omputed via �nite di�erenes[Sh01℄.Propagation of the light �eldThe alulation of the reeted �eld omponents is aomplished using a spetral algo-rithm in polar oordinates. It is based on the fat, that the propagation of a light �eldthat has a rotational symmetry an be easily alulated in Hankel spae by the multipli-ation of a phase fator. The (salar) paraxial wave equation in polar oordinates is givenby �E�z = � i2k�?E = � i2k �1r �E�r + �2E�r2 � : (A.3)The Hankel transform is de�ned by



160 Details on the Newton methodf̂(�) = 2� Z 10 rf(r)J0(2�r�)dr (A.4)with the symmetri bak transformationf(r) = 2� Z 10 �f̂(�)J0(2�r�)d�; (A.5)where J0 is the zero-order Bessel funtion. The representation of E(r) by means of Hankeltransforms is given by: E(r) = 2� Z 10 �Ê(�)J0(2��r)d� (A.6)1r �E�r = 2� Z 10 �Ê(�)2��r J 00(2��r)d� (A.7)�2E�r2 = 2� Z 10 �Ê(�)(2��)2J 000 (2��r)d� : (A.8)Under onsideration of the relation x2J 000 (x) + xJ 00(x) + x2J0(x) = 0, it follows:�?E(r) = 2� Z 10 �Ê(�)(�4�2�2)J0(2��r)d� : (A.9)In order to solve the paraxial wave equation (A.3), the equation�Ê(�; z)�z = i4�2�22k Ê(�; z) (A.10)needs to be solved in Fourier spae. Thus,Ê(�; z = 2d) = exp� i4�2�2dk � Ê(�; z = 0) : (A.11)The transformations of the light �eld into Hankel spae and bak are numerially aom-plished using the `Quasi Fast Hankel Transform' (QFHT) [Sie77℄ with a orreting term[AL81℄. The use of the QFHT requires a disretization of the spatial oordinates on aradial grid with exponentially inreasing steps in real and Hankel spae:rl = r0e�l �m = �0e�m l; m = 0; 1; :::; N � 1 : (A.12)where r is the disrete radial oordinate in real spae, while � represents the radial om-ponent in Hankel spae. The hoie of � determines the inrease of distanes within theexponential grid. The alulations were onduted with the disretization parameters



161N = 280, r0 = 2:05�m, �0 = 3:4mradmm�1 and � = 0:0272. The maximum oordi-nates in real and Hankel spae for this disretization are given by rmax = 4:05mm and�max = 42:2 radmm�1, respetively. In analogy to [Hun06℄, the options to have a Gaus-sian beam input and Dirihlet boundary onditions at rmax have been inluded. In thiswork, a vetorial desription of the light �eld is neessary. Hene, a seond polarizationomponent has been added.Calulation of the di�usion termThe di�usion term in equation is alulated as a Laplaian that is redued to its radialomponent. It is omputed by means of �nite di�erenes [Sh01℄:�?� = 1r ���r + �2��r2 (A.13)= 1rj �(rj+1)� �(rj�1)rj+1 � rj�1+ 2rj�1 + rj+1 � �(rj�1)rj � rj�1 + �(rj+1)rj+1 � rj � �(rj)� 1rj � rj�1 + 1rj+1 � rj��Stability of the obtained stationary solutionsA statement on the stability of the solutions obtained from the Newton method againstsmall perturbation an easily be made. Be �s(r) a stationary solution. Then onsidersmall perturbations of the form �(r) = �s(r) + e�tÆ�(r) : (A.14)Inserting this ansatz into the equation of motion _� = N (�) leads to_�+ �Æ�e�t = N (�s) +rN (�s) Æ�e�t ; (A.15)and hene �Æ� = rN (�s) Æ� : (A.16)The growth exponent � is an eigenvalue of rN (�s) orresponding to the eigenmode Æ�.The matrix rN (�s) is already omputed within the Newton method. For a stabilityanalysis, its eigenvalues and eigenvetors are determined by means of a library funtion.
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BIBLIOGRAPHY 165[BRR05℄ U. Bortolozzo, R. Rojas, and S. Residori. Spontaneous nuleation of loalizedpeaks in a multistable nonlinear system. Phys. Rev. E 72, 045201, 2005.[BRT00℄ M. Le Berre, E. Ressayre, and A. Tallet. Kinetis of domain walls in thedegenerate optial parametri osillator. J. Opt. B: Quantum Semilass.Opt. 2, 347, 2000.[Bru94℄ H.-J. Bruns. Das Video-Sampling Verfahren. Diplomarbeit, Westf�alisheWilhelms-Universit�at M�unster, 1994.[BSC88℄ D. Bensimon, B. I. Shraiman, and V. Croquette. Nonadiabati e�ets inonvetion. Phys. Rev. A 38, 5461, 1988.[BTB+02℄ S. Barland, J. R. Tredie, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudii,T. Maggipinto, L. Spinelli, G. Tissoni, T. Kn�odel, M. Miller, and R. J�ager.Cavity solitons as pixels in semiondutors. Nature 419, 699, 2002.[BTV92℄ V. Yu. Bazhenov, V. B. Taranenko, and M. V. Vasnetsov. Transverse optiale�ets in bistable ative avity with nonlinear absorber on bateriorhodopsin.Pro. SPIE 1840, 183, 1992.[CEK05℄ M. Cler, D. Esa�, and V.M. Kenkre. Patterns and loalized strutures inpopulation dynamis. Phys. Rev. E 72, 056217, 2005.[CER87℄ P. Coullet, C. Elphik, and D. Repaux. Nature of spatial haos. Phys. Rev.Lett. 58, 431, 1987.[CH93℄ M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium.Rev. Mod. Phys. 65, 851, 1993.[CLHL90℄ P. Coullet, J. Lega, B. Houhmanzadeh, and J. Lajzerowis. Breaking hi-rality in nonequilibrium systems. Phys. Rev. Lett. 65, 1352, 1990.[CM95℄ M. C. Cross and D.I. Meiron. Domain oarsening in systems far from equi-librium. Phys. Rev. Lett. 75, 2152, 1995.[CNP+04℄ M. G. Cler, T. Nagaya, A. Petrossian, S. Residori, and C. S. Riera. First-order Frederiksz transition and front propagation in a liquid rystal lightvalve with feedbak. Eur. Phys. J. D 28, 435, 2004.[Cou02℄ P. Coullet. Loalized patterns and fronts in nonequilibrium systems. Int. J.Bif. Chaos 12(11), 2445, 2002.



166 BIBLIOGRAPHY[CRT00a℄ P. Coullet, C. Riera, and C. Tresser. Qualitative theory of stable stationaryloalized strutures in one dimension. Prog. Theor. Phys. Suppl. 139, 46,2000.[CRT00b℄ P. Coullet, C. Riera, and C. Tresser. Stable stati loalized strutures in onedimension. Phys. Rev. Lett. 84, 3069, 2000.[CRT04℄ P. Coullet, C. Riera, and C. Tresser. A new approah to data storage usingloalized strutures. Chaos 14, 193, 2004.[CT62℄ C. Cohen-Tannoudji. Th�eorie quantique du yle de pompage optique. Ann.Phys. (N.Y.) 7, 423, 1962.[Dah87℄ U. Dahmen. Enylopedia of physial siene and tehnology 10, 319, 1987.[DF91℄ G. D'Alessandro and W. J. Firth. Spontaneous hexagon formation in anonlinear optial medium with feedbak mirror. Phys. Rev. Lett. 66, 2597,1991.[DF92℄ G. D'Alessandro and W. J. Firth. Hexagonal spatial pattern for a Kerr sliewith a feedbak mirror. Phys. Rev. A 46, 537, 1992.[DHV04℄ P. D. Drummond, M. Haelterman, and R. Vilasea. Optial solitons. Journalof Optis B-Quatntum and Semilassial Optis 6, 159, 2004.[DJ96℄ P. G. Drazin and R. S. Johnson. Solitons: an introdution. CambridgeUniversity Press, Cambridge, 1996.[DSS97℄ B. Dionne, M. Silber, and A. C. Skeldon. Stability results for steady, spatiallyperiodi planforms. Nonlinearity 10, 321, 1997.[DSS+98℄ C. Denz, M. Shwab, M. Sedlatshek, T. Tshudi, and T. Honda. Patterndynamis and ompetition in a photorefrative feedbak system. J. Opt. So.Am. B 15, 2057, 1998.[EMTG+05℄ A. Esteban-Mart��n, V. B. Taranenko, J. Garia, G. J. Val�arel, andE. Rold�an. Controlled observation of a nonequilibrium Ising-Bloh tran-sition in a nonlinear optial avity. Phys. Rev. Lett. 94, 223903, 2005.[EMTRV05℄ A. Esteban-Mart��n, V. B. Taranenko, E. Rold�an, and G. J. de Val�arel.Control and steering of phase domain walls. Opt. Express 13, 3631, 2005.



BIBLIOGRAPHY 167[FH98℄ W. J. Firth and G. K. Harkness. Cavity solitons. Asian J. Phys. 7, 665,1998.[Fir90℄ W. J. Firth. Spatial instabilities in a Kerr medium with single feedbakmirror. J. Mod. Opt. 37, 151, 1990.[FRS+03℄ S. V. Fedorov, N. N. Rosanov, A. N. Shatsev, N.A. Veretenov, and A. G.Vladimirov. Topologially multiharged and multihumped rotating solitonsin wide-aperture lasers with a saturable absorber. IEEE J. Quantum Ele-tron. 39, 197, 2003.[FS96℄ W. J. Firth and A. J. Sroggie. Optial bullet holes: robust ontrollableloalized states of a nonlinear avity. Phys. Rev. Lett. 76, 1623, 1996.[FT90℄ S. Fauve and O. Thual. Solitary waves generated by subritial instabilitiesin dissipative systems. Phys. Rev. Lett. 64, 282, 1990.[FW02℄ W. J. Firth and C. O. Weiss. Cavity and feedbak solitons. Opt. Photon.News 13, 54, 2002.[GAGW+03℄ D. Gomila, T. Akemann, E. Gro�e Westho�, P. Colet, and W. Lange.Seondary bifurations of hexagonal patterns in a nonlinear optial system:alkali metal vapor in a single-mirror arrangement. Phys. Rev. E 69, 036205,2004.[Gah96℄ A. Gahl. R�aumlihe Vektorinstabilit�aten in der nihtlinearen Optik: Diemagneto-optish induzierte Aufspaltung eines Laserstrahles in atomarenD�ampfen. Dissertation, Westf�alishe Wilhelms-Universit�at M�unster, 1996.[GCOM01℄ D. Gomila, P. Colet, G. L. Oppo, and M. San Miguel. Stable Droplets andGrowth Laws Close to the Modulational Instability of a Domain Wall. Phys.Rev. Lett. 87, 194101, 2001.[GCOSM04℄ D. Gomila, P. Colet, G. L. Oppo, and M. San Miguel. Stable droplets andnuleation in asymmetri bistable nonlinear optial systems. J. Opt. B:Quantum Semilass. Opt. 6, 265, 2004.[GCSM+03℄ D. Gomila, P. Colet, M. San Miguel, A. Sroggie, and G. L. Oppo. Stabledroplets and dark-ring avity solitons in nonlinear optial devies. IEEE J.Quantum Eletron. 39, 238, 2003.
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