
Bastian Baranski

Service Level Agreements

in Spatial Data Infrastructures

2012

Geoinformatik

Service Level Agreements

in Spatial Data Infrastructures

Inaugural-Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften

im Fachbereich Geowissenschaften

der Mathematisch-Naturwissenschaftlichen Fakultät

der Westfälischen Wilhelms-Universität Münster

vorgelegt von

Bastian Baranski

aus Moers, Deutschland

2012

Dekan: Prof. Dr. Hans Kerp

Erstgutachter: Prof. Dr. Edzer Pebesma

Zweitgutachter: Prof. Dr. Achim Streit

Tag der mündlichen Prüfung: ..

Tag der Promotion: ..

Abstract

The Spatial Data Infrastructure (SDI) development is driven by public authorities,
like national mapping or environmental agencies. Most of the governmental SDI
stakeholders from state, national and regional level are mandated by legal frameworks
to promote the SDI development. One example for such a legal framework is the
Infrastructure for Spatial Information in the European Community (INSPIRE) directive
which aims at building an European SDI based on the member states’ national SDIs.
Not only SDI service providers but all kinds of Geographic Information (GI) experts will
continue to be faced with a rapidly increasing volume of available geospatial data with
a higher spatial, temporal, and thematic resolution. Furthermore, the on-demand access
to all kinds of geospatial data becomes more and more relevant for many application
domains, as for instance eGovernment applications providing citizens with basic access
to geographic information and Spatial Decision Support Systems (SDSS) facilitating
disaster management.

All these developments result in ambitious requirements regarding the reliability,
performance and scalability of SDI services and corresponding applications. Some of the
application domains may have challenging requirements regarding the service quality,
while others may have lower requirements. However, in all application domains it is
important for service providers to be aware of the minimum service quality that shall be
delivered to individual customers or in an application context. Furthermore, it is always
important for service providers to be in a position to actually deliver the expected
and promised service quality level. These and related aspects can be summarized
under the heading of Service Level Management (SLM). An integral part of SLM is the
Service Level Agreement (SLA), which is a negotiated contract that formalizes business
relationships between service providers and service consumers in order to measure,
manage and enforce certain service quality guarantees.

This thesis develops a concept for the integration of SLAs in SDIs. The selected multi-
step approach involves the development of an abstract SLA model and a web-based SLA
management architecture. The aim of the abstract SLA model is to describe the domain-
specific structure and content of SLAs that can be applied in SDIs from a conceptual
point of view. The purpose of the web-based SLA management architecture is to
enable the on-demand and online negotiation of SLAs in established SDIs without the
need of prior offline communication between service providers and service consumers.
The selected policy-based approach covers not only agreement negotiation and service
consumption, but also the complete agreement life cycle including service monitoring
and agreement evaluation. This thesis also describes an approach on how to realize
common domain-specific service quality requirements in SDIs under the terms of

v

previously negotiated SLAs by means of an Hybrid Cloud approach. The presented
Hybrid Cloud architecture helps SDI service providers to match the basic INSPIRE
service quality requirements without investing in rarely used hardware in advance.
The idea of the proposed Hybrid Cloud architecture is always to provide sufficient
computational resources in order to achieve a constant average service response time,
which should be independent of the number of users requesting a service.

The presented concepts for SLA representation and integration are implemented as a
proof-of-concept. The ’WS-Agreement Application Profile for OGC Web Services’ is a
mapping of the abstract SLA model to an extended and particular version of the Web
Services Agreement Specification (WS-Agreement). The ’Service Level Agreements
for OGC Web Services (SLA4OWS)’ framework enables SDI service providers to offer
different service quality levels and pricing models for existing SDI services. The
SLA4OWS framework utilizes Cloud Computing infrastructures to implement the
offered service levels in an economical fashion. The ’52◦North Hybrid Cloud’ is an
implementation of the proposed Hybrid Cloud architecture and can be integrated in
the SLA4OWS framework. By incorporating Amazon Elastic Compute Cloud (EC2)
resources into the local Information Technology (IT) infrastructure, the proposed
architecture offers potentially unlimited resources on-demand and nearly in real-time.

vi

Zusammenfassung

Viele öffentliche Behörden auf nationaler und regionaler Ebene sind durch rechtliche
Rahmenbedingungen dazu verpflichtet die Entwicklung von Geodateninfrastrukturen
(GDI) voranzutreiben. Ein Beispiel für einen solchen rechtlichen Rahmen ist
die Infrastructure for Spatial Information in the European Community (INSPIRE).
Bei INSPIRE handelt es sich um eine Initiative der europäischen Kommission mit
dem Ziel eine europäische GDI, basierend auf den nationalen GDI der einzelnen
Mitgliedsstaaten, aufzubauen. Auch unabhängig von rechtlichen Anforderungen
steigt der Bedarf nach allen Arten von raumbezogenen Daten, die für immer mehr
Anwendungsbereiche von großer Relevanz sind. Zu diesen Anwendungsbereichen
gehören beispielsweise Anwendungen im Bereich E-Government, die Bürgern einen
möglichst einfachen Zugang zu geografischen Basisinformationen geben sollen, aber
auch alle Geographischen Informationssysteme (GIS) die im Katastrophenmanagement
eingesetzt werden und speziellen Anforderungen gerecht werden müssen. Darüber
hinaus sind die verfügbaren raumbezogene Daten in einer immer höheren räumlichen,
zeitlichen und thematischen Auflösung verfügbar.

All diese Entwicklungen führen zu anspruchsvollen Anforderungen hinsichtlich
der Zuverlässigkeit, Leistung und Skalierbarkeit von Dienste innerhalb einer GDI
und den darauf aufbauenden Anwendungen. Einige der Anwendungsbereiche
haben beispielsweise sehr anspruchsvolle Anforderungen an die Verfügbarkeit der
zugrundeliegenden Dienste, während in anderen Anwendungsbereichen eine minimale
Dienstgüte (Quality of Service, QoS) akzeptiert werden kann. Für Dienstanbieter
ist es generell wichtig, welches QoS-Level den jeweiligen Nutzern in einem
Anwendungskontext zur Verfügung gestellt werden soll. Des Weiteren ist es für den
Dienstanbieter von großer Bedeutung wirklich in der Lage zu sein, die geforderten QoS-
Level zu jedem Zeitpunkt zur Verfügung zu stellen. Diese und weitere Aspekte werden
unter Begriff ’Service Level Management (SLM)’ zusammengefasst. Ein elementarer
Bestandteil von SLM ist das Service Level Agreement (SLA), ein ausgehandelter
Vertrag welcher die Geschäftsbeziehung zwischen einem Dienstanbieter und einem
Dienstnutzer regelt. Neben allgemeinen Informationen zum Vertrag und eventuell
anfallenden Nutzungskosten gehören zu einem SLA unter anderem die so genannte Key
Performance Indicators (KPIs) und Service Level Objectives (SLOs), welche die genau
zu erbringende QoS festlegen.

Die vorliegende Arbeit entwickelt ein Konzept für die Integration von SLAs in GDIs.
Der ausgewählten mehrstufigen Ansatz beinhaltet die Entwicklung eines abstrakten
SLA-Modells und einer web-basierten SLA-Management-Architektur. Das Ziel des
abstrakten SLA-Modells ist die konzeptionelle Beschreibung der Struktur und des

vii

Inhaltes von SLAs speziell für die ausgewählten Anwendungsbereiche. Der Zweck
der web-basierten SLA-Management-Architektur ist es, die (Online-) Aushandlung von
SLAs in bereits existierenden GDIs zu ermöglichen, ohne dass eine vorherige (Offline-)
Kommunikation zwischen Dienstanbieter und Dienstnutzer vonnöten ist. Der gewählte
Policy-basierte Ansatz deckt nicht nur die Aushandlung von SLAs und die eigentliche
Dienstnutzung ab, es wird der vollständige Lebenszyklus von SLAs unterstützt. Dazu
gehört sowohl die permanente Überwachung der angebotenen Dienste als auch die
permanente Evaluierung aller aktiven SLAs. Die vorliegende Arbeit beschreibt im
Weiteren einen Hybrid Cloud-basierten Ansatz, mit dem Dienstanbieter die QoS-
Anforderungen von INSPIRE unter Berücksichtigung aller zuvor ausgehandelten SLAs
effektiv umsetzen können. Die Idee der vorgeschlagenen Architektur ist durch eine
Kombination von lokaler Infrastruktur (Private Cloud) und externen Ressourcen (Public
Cloud) immer genügend Rechenkapazität bereitzustellen, um konstante Antwortzeiten
unabhängig von der Anzahl der Nutzer eines Dienstes zu realisieren.

Die entwickelten Konzepte zur Repräsentation und Integration von SLAs werden in der
vorliegenden Arbeit prototypisch umgesetzt. Das ’WS-Agreement Application Profile
for OGC Web Services’ bildet das abstrakte SLA-Modell auf eine konkrete Version
(Application Profile) der ’Web Services Agreement Specification (WS-Agreement)’
ab. Das ’Service Level Agreements for OGC Web Services (SLA4OWS)’ Framework
ermöglicht es Dienstanbietern unterschiedliche QoS-Level und Preismodelle für
existierende Dienste in einer GDI anbieten zu können. Die ’52◦North Hybrid Cloud’ ist
eine Open Source Implementierung der Hybrid Cloud-Architektur zur Realisierung der
QoS-Anforderungen von INSPIRE. Sie kann als integraler Bestandteil des SLA4OWS-
Framework verwendet werden, um Ressourcen von Amazon Elastic Compute Cloud
(EC2) in die lokale Infrastruktur zu integrieren. So können die angebotenen QoS-
Level nicht nur auf einer technischen Ebene sondern auch unter ökonomischen
Gesichtspunkten realisiert werden.

viii

Acknowledgements

I would like to take the opportunity and thank all the people without whom this thesis
would have been impossible.

First, I have to thank my supervisor Prof. Dr. Edzer Pebesma for considering this
thesis promising enough to give it a try and for helping me to shape my ideas and
visions in many fruitful discussions. A big thanks goes to Prof. Dr. Ulrich Streit not
only for giving my the opportunity to work at the Institute for Geoinformatics but
also for being a competent and inspiring contact person even after his retirement. In
addition, I have to thank my second supervisor Prof. Dr. Achim Streit for helping me
to bridge the gap between two disciplines by embedding me in his former division at
Jülich Supercomputing Centre (JSC).

This thesis would have been impossible without a supportive and motivating work
environment. In particular, I want to thank the members of the Sensor Web, Web-
based Geoprocessing and Simulation Lab (SWSL) working group at the Institute for
Geoinformatics for providing deep insights into various research topics and for helping
me to keep the big picture behind this thesis in mind. A special thanks goes to everyone
who was involved in the 52◦North community for providing an open-minded network
of great researchers and "coding monkeys". I would also like to thank the con terra
GmbH - especially Christian Elfers - and the GeoMobile GmbH - especially Dr. Michael
Gerhard - for giving me the opportunity and the freedom to work responsibly on this
thesis beside my regular day jobs.

I would like to highlight a few people for being there and supporting me over all the
years. I want to thank Rüdiger Gartmann and Dr. Roland Wagner for arousing my
interest in the field of Geoinformatics during my time at the Fraunhofer ISST. A special
thanks goes to Dr. Bastian Schäffer and Dr. Theodor Foerster for giving me constant
support and valuable feedback over the last years.

Finally, I have to thank people from outside research. Thanks to my parents Helga and
Rainer for their constant support and belief in me over all the years. Thanks to my
friends for their support and their sense of humor. Most of all, I have to thank Iris for
her unlimited support, patience and love.

ix

x

Publications

This thesis is based on ideas, fragments and figures that have appeared previously in
the following publications.

Journals

Díaz, L., Remke, A., Kauppinen, T., Degbelo, A., Foerster, T., Stasch, C., Rieke, M.,
Schaeffer, B., Baranski, B., Broering, A., and Wytzisk, A. (2012). Future SDI – Impulses
from Geoinformatics Research and IT Trends. International Journal of Spatial Data

Infrastructures Research (IJSDIR), Volume 7

Baranski, B., Foerster, T., Schäffer, B., and Lange, K. (2011). Matching INSPIRE Quality of
Service Requirements with Hybrid Clouds. In Wilson, J. P., Stewart Fotheringham, A.,
and O’Sullivan, D., editors, Transactions in GIS, volume 15, pages 125–142. Wiley Online
Library

Book Chapters

Schäffer, B., Baranski, B., Foerster, T., and Brauner, J. (2012). A Service-Oriented
Framework for Real-time and Distributed Geoprocessing. Geospatial Free and Open

Source Software in the 21st Century. Lecture Notes in Geoinformation and Cartography,
pages 3–20

Foerster, T., Schäffer, B., Brauner, J., and Baranski, B. (2011). Geospatial Web Services
for Distributed Processing - Applications and Scenarios. In Zhao, P. and Di, P.,
editors, Geospatial Web Services: Advances in Information Interoperability, pages 245–286.
Hershey

Baranski, B. and Schäffer, B. (2010). Towards Service Level Agreements in Spatial Data
Infrastructures. In Rajabifard, A., Crompvoets, J., Kalantari, M., and B., K., editors,
Spatially Enabling Society: Research, Emerging Trends, and Critical Assessment, pages
149–162. Leuven University Press

Schäffer, B., Baranski, B., and Foerster, T. (2010b). Towards Spatial Data Infrastructures
in the Clouds. In Painho, M., Santos, M. Y., and Pundt, H., editors, Geospatial Thinking.
Lecture Notes in Geoinformation and Cartography, pages 399–418. Springer

Conferences (Full Paper)

Baranski, B. (2012). The Service Level Agreements for OGC Web Services (SLA4OWS)
Framework. In Löwner, M., Hillen, F., and Wohlfahrt, R., editors, Geoinformatik 2012 -

xi

Mobilität und Umwelt, pages 383–388. Shaker Verlag

Foerster, T., Baranski, B., Schäffer, B., and Lange, K. (2010). Geoprocessing in Hybrid
Clouds. In Zipf, A., Behncke, K., Hillen, F., and Schaefermeyer, J., editors, Die Welt im

Netz, pages 13–19. Akademische Verlagsgesellschaft

Schäffer, B., Baranski, B., and Foerster, T. (2010a). Licensing OGC Geoprocessing
Services as a Foundation for Commercial Use in SDIs. In Second International Conference

on Advanced Geographic Information Systems, Applications and Services, pages 111–116.
IEEE Computer Society

Baranski, B., Schäffer, B., and Redweik, R. (2010b). Geoprocessing in the Clouds. In
OSGeo Journal, volume 8, pages 17–22. Open Source Geospatial Foundation (OSGeo)

Baranski, B., Deelmann, T., and Schäffer, B. (2010a). Pay-per-Use Revenue Models for
Geoprocessing Services in the Cloud. 1st International Workshop on Pervasive Web
Mapping, Geoprocessing and Services (WebMGS 2010). Como, Italy.

Chung, L., Fang, Y., Chang, Y., Chou, T., Lee, B., Yin, H., and Baranski, B. (2009). A SOA
based debris flow monitoring system. In Proceedings of the 17th International Conference

on Geoinformatics, 2009, pages 1–6. IEEE

Brauner, J., Foerster, T., Schäffer, B., and Baranski, B. (2009). Towards a Research Agenda
for Geoprocessing Services. In J. Haunert, B. K. and Milde, J., editors, Proceedings of 12th
AGILE International Conference on Geographic Information Science. Hanover, Germany:
IKG, Leibniz University of Hanover

Baranski, B. (2008). Grid Computing Enabled Web Processing Service. In Bishr, M.,
Pebesma, E., and Bartoschek, T., editors, Proceedings of the 6th Geographic Information

Days. Ifgi Prints., volume 32, pages 243–256

Conferences (Abstract)

Baranski, B. (2009). Guaranteeing Quality of Service in a Spatial Data Infrastructure by
using Service Level Agreements. Presented at GSDI 11 World Conference, Rotterdam,
The Netherlands

Professional Publications

Baranski, B. (2011). WS-Agreement Application Profile for OGC Web Services. Open
Geospatial Consortium (OGC), OGC 11-094 (Discussion Paper)

Baranski, B., Woolf, A., Shaon, A., and Kurzbach, S. (2009). OWS-6 WPS Grid
Processing Profile Engineering Report. Open Geospatial Consortium (OGC), OGC 09-
041 (Engineering Report)

xii

CONTENTS

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Objectives . 4
1.3 Questions . 5
1.4 Methodology . 5
1.5 Terminology . 7
1.6 Overview . 9

2 Research Context 11

2.1 Spatial Data Infrastructures . 11
2.2 Service Level Agreements . 13
2.3 Cloud Computing . 19
2.4 Related Work . 23
2.5 Summary . 26

3 Requirements Analysis 29

3.1 Scenario . 29
3.1.1 eGovernment . 30
3.1.2 Legal Frameworks . 31
3.1.3 Commercial Solutions . 31
3.1.4 Disaster Management . 32

3.2 Requirements . 33
3.2.1 Roles and Relationships . 33
3.2.2 Services, Resources and Quality 36
3.2.3 Pricing and Accounting . 38
3.2.4 Security and Rights Management 39
3.2.5 Infrastructure Management . 40
3.2.6 Standards and Technology . 41

3.3 Summary . 42

4 Agreement Formalization 45

4.1 Agreement Structure . 45
4.1.1 Agreement Context . 47
4.1.2 Service Description . 50
4.1.3 Service Reference . 53
4.1.4 Service Properties . 53
4.1.5 Service Level Objectives . 58
4.1.6 Business Values . 60

4.2 Agreement Monitoring . 61

xiii

CONTENTS

4.2.1 Active Monitoring . 64
4.2.2 Passive Monitoring . 73

4.3 Agreement Evaluation . 74
4.3.1 OGC URN Schema Extension . 74
4.3.2 Agreement Expression Language 81

4.4 Summary . 91

5 Service Level Management Architecture 93

5.1 Process Model . 93
5.1.1 Agreement Negotiation . 94
5.1.2 Agreement Implementation . 96
5.1.3 Agreement Execution . 96

5.2 Information Model . 97
5.2.1 Architecture Components . 97
5.2.2 Component Interaction . 102

5.3 Data Model . 111
5.3.1 WS-Agreement Application Profile 111
5.3.2 Service Interfaces . 122

5.4 Summary . 125

6 Implementation and Evaluation 127

6.1 Implementation . 127
6.1.1 Applications and Resources . 127
6.1.2 Service Level Management . 129
6.1.3 Infrastructure Management . 133

6.2 Evaluation . 143
6.2.1 Agreement Model . 144
6.2.2 Management Architecture . 145
6.2.3 Advantages and Limitations . 146

6.3 Summary . 147

7 Conclusion and Outlook 149

7.1 Research Questions . 149
7.2 Contribution . 152
7.3 Future Work . 153

Bibliography 157

Appendix

A Requirements Analysis 179

B Service Level Agreement Formalization 183

B.1 Monitoring Functions . 183
B.2 OGC URN Schema Extension . 184

B.2.1 Service Property Types . 184
B.2.2 Business Value Types . 187

B.3 Agreement Expression Language . 188

xiv

CONTENTS

B.3.1 Variables . 188
B.3.2 Functions . 201

B.4 Agreement Example . 202

C Service Level Management Architecture 209

C.1 WS-Agreement Application Profile . 209
C.1.1 XML Schema . 209
C.1.2 XML Example . 214

C.2 Service Interfaces . 242
C.3 Workflow . 244

C.3.1 Show Template . 244
C.3.2 Create Agreement . 245
C.3.3 Show Agreement . 246
C.3.4 Service Consumption . 247
C.3.5 Monitor Agreement . 247

D Implementation 249

D.1 XML Schema . 249
D.1.1 Agreement Reporter . 249
D.1.2 Infrastructure Manager . 249

D.2 Service Interfaces . 250
D.2.1 Agreement Manager . 250
D.2.2 Agreement Client . 251
D.2.3 Agreement Proxy . 251
D.2.4 Agreement Monitor . 251
D.2.5 Agreement Evaluator . 251
D.2.6 Agreement Reporter . 251
D.2.7 Infrastructure Manager . 252

Lebenslauf 255

Versicherung 257

xv

CONTENTS

xvi

LIST OF FIGURES

List of Figures

1.1 Methodology . 6

2.1 Agreement Life Cycle . 16
2.2 NIST Cloud Computing Definition . 20

3.1 Application Domains . 30
3.2 Publish-Find-Bind Pattern . 34
3.3 Publish-Find-Agree-Bind Pattern . 34

4.1 Agreement Structure . 46
4.2 Crow’s Foot Notation . 47
4.3 Exclusive Or Constraint (XOR) . 47
4.4 Agreement Context Structure . 48
4.5 Service Description Structure . 51
4.6 Service Reference Structure . 53
4.7 Service Properties Structure . 54
4.8 Service Level Objectives Structure . 58
4.9 Business Values Structure . 60
4.10 Monitoring Procedures . 63
4.11 Monitoring Structure . 63
4.12 Active Monitoring Procedure . 64
4.13 Active Monitoring Structure . 65
4.14 Active Monitoring Session Structure . 66
4.15 Active Monitoring Request Structure . 67
4.16 Active Monitoring Response Structure . 67
4.17 Passive Monitoring Structure . 73

5.1 Process Overview . 94
5.2 Agreement Negotiation Process . 95
5.3 Agreement Execution Process . 96
5.4 Architecture Overview . 98
5.5 Agreement Negotiation Workflow . 103
5.6 Agreement Monitoring Workflow . 105
5.7 Agreement Evaluation Workflow . 107
5.8 Service Consumption Workflow . 110

6.1 SLA4OWS Template Discovery . 129
6.2 SLA4OWS Agreement Creation . 130
6.3 SLA4OWS Accessing Agreement Proxy 131
6.4 SLA4OWS Service Consumption . 131
6.5 SLA4OWS Agreement Overview . 132

xvii

LIST OF FIGURES

6.6 SLA4OWS Monitoring Information . 132
6.7 Infrastructure Manager . 133
6.8 Single Server Benchmark . 135
6.9 Hybrid Cloud Architecture . 137
6.10 Private Cloud Benchmark . 141
6.11 Hybrid Cloud Benchmark . 141
6.12 Hybrid Cloud Integration . 142

xviii

LIST OF FIGURES

xix

LIST OF TABLES

List of Tables

4.1 Service Property Categories . 55

4.2 JEXL AvailabilityType . 84

4.3 JEXL ResponseType . 84

4.4 JEXL InitialResponseType . 85

4.5 JEXL TotalResponseType . 85

4.6 JEXL PixelType . 89

4.7 JEXL ObjectiveType . 90

4.8 JEXL BusinessType . 90

5.1 Agreement Manager Resources . 123

5.2 Agreement Proxy Resources . 124

6.1 Cloud Manager Configuration . 139

A.1 Requirements Overview . 179

B.1 Active Monitoring Functions . 183

B.2 Resource-Related Service Property Types 184

B.3 Runtime-Related Service Property Types 185

B.4 Usage-Related Service Property Types . 185

B.5 Data-Related Service Property Types . 185

B.6 Security-Related Service Property Types 186

B.7 Infrastructure-Related Service Property Types 186

B.8 Business Value Types . 187

B.9 JEXL ResourceOperationType . 189

B.10 JEXL ResourceFeatureType . 189

B.11 JEXL ResourceLayerType . 189

B.12 JEXL ResourceProcessType . 190

B.13 JEXL AvailabilityType . 190

B.14 JEXL ResponseType . 191

B.15 JEXL InitialResponseType . 191

B.16 JEXL TotalResponseType . 192

B.17 JEXL RequestType . 193

B.18 JEXL OperationType . 193

B.19 JEXL ObjectType . 194

B.20 JEXL PixelType . 195

B.21 JEXL AreaType . 196

B.22 JEXL ProcessType . 197

B.23 JEXL TransferType . 198

B.24 JEXL TransferInType . 199

xx

LIST OF TABLES

B.25 JEXL TransferOutType . 199
B.26 JEXL CpuType . 200
B.27 JEXL ObjectiveType . 201
B.28 JEXL BusinessType . 201
B.29 DSL Functions . 201

D.1 Additional Agreement Manager Resources 250
D.2 Additional Agreement Proxy Resources 251
D.3 Agreement Reporter Resources . 252
D.4 Infrastructure Manager Resources . 252

xxi

LIST OF TABLES

xxii

LIST OF LISTINGS

List of Listings

4.1 Agreement Context Example . 49
4.2 Service Description Example . 52
4.3 Service Reference Example . 53
4.4 Service Properties Example . 57
4.5 Service Level Objectives Example . 59
4.6 Business Values Example . 61
4.7 INSPIRE Availability Monitoring . 70
4.8 INSPIRE Performance Monitoring . 71
4.9 INSPIRE Capacity Monitoring . 72
4.10 Pixel Delivery Logging . 73
4.11 Runtime-Related Service Properties . 83
4.12 INSPIRE Availability Evaluation . 86
4.13 INSPIRE Performance Evaluation . 87
4.14 INSPIRE Capacity Evaluation . 87
4.15 Usage-Related Service Property . 88
4.16 Yearly Usage Costs . 89
4.17 Yearly Penalty . 91

5.1 Agreement Context in WS-Agreement 114
5.2 Example Agreement Responder . 115
5.3 Service Description in WS-Agreement . 115
5.4 Example Functional Service Description 116
5.5 Example Non-Functional Service Description 117
5.6 Example Service Availability Period . 118
5.7 Service Reference in WS-Agreement . 118
5.8 Example Service Reference . 119
5.9 Service Level Objectives in WS-Agreement 119
5.10 Example Service Level Objective . 120
5.11 Business Values in WS-Agreement . 120
5.12 Example Business Value . 121

6.1 Infrastructure Management Information 143

B.1 Example Abstract SLA Model . 202

C.1 XSD for Agreement Context . 209
C.2 XSD for Functional Service Description 210
C.3 XSD for Non-Functional Service Description 210
C.4 XSD for Service Availability Period . 212
C.5 XSD for Service Reference . 213

xxiii

LIST OF LISTINGS

C.6 XSD for Service Level Objectives . 213
C.7 XSD for Business Values . 214
C.8 Example Agreement Template . 214
C.9 Example Agreement Offer . 221
C.10 Example Agreement . 228
C.11 Example Agreement Properties . 235
C.12 XSD for Agreement Manager . 243
C.13 XSD for Measurements . 243

D.1 XSD for Agreement Reporter . 249
D.2 XSD for Infrastructure Manager . 250

xxiv

LIST OF ABBREVIATIONS

List of Abbreviations

AdV Arbeitsgemeinschaft der Vermessungsverwaltungen der
Länder der Bundesrepublik Deutschland

API Application Programming Interface

BNF Backus Naur Form

BPEL Business Process Execution Language

CPU Central Processing Unit

CRS Coordinate Reference System

CSW OGC Catalogue Service

DRM Digital Rights Management

DSL Domain Specific Language

EC2 Elastic Compute Cloud

EPR Endpoint Reference

EPSG European Petroleum Survey Group Geodesy

ERM Entity Relationship Model

EU European Union

GAE Google App Engine

GDI-DE Geodateninfrastruktur in Deutschland

GeoDRM Geospatial Digital Rights Management Reference Model

GeoXACML Geospatial eXtensible Access Control Markup Language

GI Geographic Information

GIS Geographic Information System

GML Geography Markup Language

GRAAP Grid Resource Allocation Agreement Protocol

HTTP Hypertext Transfer Protocol

ICT Information and Communications Technology

IETF Internet Engineering Task Force

xxv

LIST OF ABBREVIATIONS

INSPIRE Infrastructure for Spatial Information in the European
Community

IP Internet Protocol

IR Implementing Rules

ISO International Organization for Standardization

IT Information Technology

ITU International Telecommunications Union

JEXL Java EXpression Language

JSON JavaScript Object Notation

KPI Key Performance Indicator

NIST National Institute of Standards and Technology

NSDI National Spatial Data Infrastructure

OASIS Organization for the Advancement of Structured Information
Standards

OCCI Open Cloud Computing Interface

OGC Open Geospatial Consortium

OGF Open Grid Forum

OGSA Open Grid Services Architecture

ORM OGC Reference Model

OS Operating System

OSI Open Systems Interconnection

OWS OGC Web Services

PDP Policy Decision Point

PEP Policy Enforcement Point

QoS Quality of Service

RAM Random Access Memory

REST Representational State Transfer

S3 Simple Storage Service

SDI Spatial Data Infrastructure

SDSS Spatial Decision Support Systems

SLA Service Level Agreement

SLA4D-Grid Service Level Agreements for D-Grid

xxvi

LIST OF ABBREVIATIONS

SLA4OWS Service Level Agreements for OGC Web Services

SLM Service Level Management

SLO Service Level Objective

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOS Sensor Observation Service

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

VermWertGebT Gebührenordnung für das amtliche Vermessungswesen
und die amtliche Grundstückswertermittlung in Nordrhein-
Westfalen

VM Virtual Machine

W3C World Wide Web Consortium

WCS Web Coverage Service

WFS Web Feature Service

WMS Web Map Service

WPS Web Processing Service

WS-Agreement Web Services Agreement Specification

WSDL Web Services Description Language

WSRF Web Services Resource Framework

XACML eXtensible Access Control Markup Language

XML Extensible Markup Language

XSD XML Schema Document

xxvii

LIST OF ABBREVIATIONS

xxviii

Chapter 1

Introduction

This thesis develops a concept for the integration of Service Level Agreements in Spatial
Data Infrastructures. This chapter provides the motivation for the conducted research.
Based on the motivation, the concrete objectives and research questions of this thesis are
defined. The research approach selected for this thesis is described in the methodology
section. After an overview about frequently used terms and definitions, this chapter
ends with an overview of the thesis structure.

1.1 Motivation

Geographic Information System (GIS) [De Smith et al., 2007] have been under constant
development in recent years. Emerging web services concepts and technologies such
as the Service Oriented Architecture (SOA) paradigm [Papazoglou, 2003] encouraged
the evolution from classical desktop- and data-centric GIS to distributed and loosely-
coupled architectures composed of open and interoperable web services merged into
the Spatial Data Infrastructure (SDI) concept [Groot and McLaughlin, 2000]. In the
past, open standards based SDIs - for instance based on standards developed by
the Open Geospatial Consortium (OGC) – focused on the development of standards
for the retrieval, portrayal and processing of geospatial data through web services
[Kiehle et al., 2006]. The development of such open and interoperable standards for
geospatial data and services is one important key factor for the sustainable success of
the SDI concept in the Geographic Information (GI) domain [Bank, 2004]. But the SDI
concept collects not only (web service) technologies but also policies, human resources
and institutional arrangements in order to facilitate the availability of and access to
geospatial data [Nebert, 2004].

The development of SDIs is mostly driven by public authorities, like national
mapping or environmental agencies [Masser, 2005]. The applications developed
by the government and that run on such infrastructures are manifold. They
range from eGovernment applications providing citizens with basic access to
geographic information [Nogueras-Iso et al., 2004] to Spatial Decision Support Systems
(SDSS) facilitating disaster management [Rajabifard et al., 2004] not only for public
authorities but also for non-governmental organizations [DeCapua and Bhaduri, 2007].
Furthermore, most of the governmental SDI stakeholders from state, national and
regional level are mandated by legal frameworks to promote the SDI development.
One popular example for such a legal framework is the Infrastructure for Spatial

1

CHAPTER 1. INTRODUCTION

Information in the European Community (INSPIRE) directive [EU, 2007], which aims at
building an European SDI based on the member states’ national SDIs. However, the SDI
development is fostered not only by legal frameworks but also by a great potential for
enabling the market value of geospatial data as for instance shown in [Frick et al., 2002]
and [Fornefeld et al., 2003].

The current GI research agenda will continue to be faced with emerging challenges
as for instance the handling of ambiguous data quality in volunteered geographic
information [Goodchild and Glennon, 2010], the integration and analysis of real-time
data from both sensors and humans [Craglia et al., 2008], the seamless integration of
heterogeneous data from multiple sources following the Linked Open Data concept
[Ortmann et al., 2011], and shifting the classic map metaphor to the third, fourth,
and fifth dimension in order to overcome the constraints of the two-dimensional
thinking in GIS [Goodchild, 2010]. Even long-known open issues such as the
missing semantic interoperability between geospatial information especially across
different information communities [Bishr et al., 1999] are still not solved completely
[Wytzisk and Sliwinski, 2004].

Not only SDI service providers but also all kinds of GI experts will continue to be
faced with a rapidly increasing volume of available geospatial data with a higher
spatial, temporal, and thematic resolution. The on-demand access to all kinds of
geospatial data becomes more and more relevant for many application domains. The
integration of map-based models for community representations in web-sites are an
important incentive for citizens to participate in eParticipation and eGovernment
solutions [Carver, 2003]. The producers and holders of public geographical information
are obligated to realize the high economic potential of geospatial information
[Fornefeld et al., 2008] by allowing third-parties to mash up governmental data and
services to new applications for instance by means of subscription-based revenue
models [Donker, 2009]. Many of the critical problems that arise in disaster management
are inherently spatial and can be solved with spatial decision support systems
[Densham, 1991]. Emerging technologies such as the high accurate GPS-based
localization in smartphones in combination with haptic devices such as vibrating
wristbands foster the development of novel context- and location-aware mobile
assistant systems that can help elderly people or people with visual impairments to
use mainstream map services without frustration [Anastassova et al., 2010]. These are
just a few examples that show how not only the available volume of geospatial data but
also the potential number of users will continue to increase.

Along with emerging laws and provisions such as the INSPIRE directive, these
developments result in ambitious requirements regarding the reliability, performance
and scalability of geospatial services and corresponding applications. Some of the
application domains may have challenging requirements regarding the service quality,
while others may have lower requirements. For example in disaster events the utilized
geospatial services "should exhibit high levels of availability and resilience" and the
answers to urgent questions "are expected in near real-time" [Onchaga, 2005], whereas
in a user-centric approach the service delivery in eGovernment applications is focused
on the overall user satisfaction which not only depends on strong service performance
criteria but also on other "soft" factors [Alanezi et al., 2010].

2

1.1. MOTIVATION

In all application domains it is important for service providers to be aware of the
minimum service quality that shall be delivered to individual customers or in an
application context. From the service consumer perspective, in many application
domains it is important to find a service that not only implements specific functionality
and offers specific resources, but also guarantees a specific service quality level.
Furthermore, it is always important for service providers to be in a position to actually
deliver the expected and promised service quality level. This includes sufficient
available computing capacity and the ability to (automatically) manage the computing
infrastructure according to the service consumers’ expectations and the varying overall
system load. However, the permanent monitoring and reporting of service performance
helps service providers to react quickly on service quality fluctuations in order to
consequently meet the users’ expectations, which is an essential skill in future and
potential highly competitive GIS markets [Donker, 2009]. Furthermore, the permanent
monitoring and reporting of service performance enables service consumers to check
whether a service provider really provides the promised service quality level.

Scenarios in which the delivered service quality varies automatically according
to the individual service consumers’ requirements or the application context are
known as multi-channel service delivery [Patricio et al., 2009] or differentiated service
provisioning [Eggert and Heidemann, 1999]. The realization of multi-channel service
delivery can achieve cost savings by higher levels of efficiency, but constantly providing
reliable and high service quality levels also results in additional costs for service
maintenance [EC, 2004]. Therefore, in some application domains it is worthwhile for
service providers to act as value added service providers by means of revenue models
that forward infrastructure and related costs to service consumers. From the service
consumer perspective, in some application domains it may be important to perform
a benefit-cost ratio analysis of different service offerings in order to find an adequate
service level at acceptable costs.

All these aspects can be summarized under the term of ’Service Level Management
(SLM)’, which is "the disciplined, proactive methodology and procedures used to ensure
that adequate levels of service are delivered to all IT users in accordance with business
priorities and at acceptable cost" [Sturm et al., 2000]. An integral part of SLM is the
Service Level Agreement (SLA), which is a negotiated contract that formalizes business
relationships between service providers and service consumers in order to measure,
manage and enforce certain service quality levels. This thesis approaches the problem
of integrating SLAs in SDIs, which is a multi-step approach.

Firstly, it is important to create a mutual understanding about the service quality
requirements of the service consumer and the conditions under which the service
provider is able and willing to deliver the demanded service quality. Such a mutual
understanding can be established by SLA negotiation. This thesis aims at developing a
SLAmodel to document the domain-specific service quality expectations and conditions
of service delivery. This thesis also aims at developing a web-based SLA management
architecture in order to enable the on-demand and online negotiation of SLAs in SDIs
without the need of prior offline communication between service providers and service
consumers.

3

CHAPTER 1. INTRODUCTION

Secondly, when a SLA is created it is important to monitor and report whether the
service provider is really fulfilling the promised service quality levels. Therefore,
the developed SLA management architecture must cover not only the agreement
negotiation but also the whole agreement life cycle including service monitoring and
agreement reporting.

Thirdly, for service providers it is also important to be in a position to actually deliver
promised service quality levels to specific service consumers or in an application
context. Therefore, this thesis aims at describing an approach on how to realize common
domain-specific service quality requirements in SDIs under the terms of previously
created agreements. The approach shall be no replacement for advanced resource
management concepts, but it can act as a "best practice" for SDI service providers that
meets the domain-specific requirements and capabilities of many SDI service providers.

1.2 Objectives

This thesis aims at developing a concept for the integration of SLAs in SDIs. In
particular, it aims at the following objectives:

1. Evaluating the domain-specific requirements of different SDI stakeholders for the
integration of SLAs in SDIs.

2. Formalizing an abstract SLA model that documents the domain-specific service
quality requirements of service consumers and the conditions under which the
service provider is able and willing to deliver the demanded service quality.

3. Developing a web-based SLA management architecture for the seamless integration
of the abstract SLA model in SDIs.

4. Developing a concept for managing the infrastructure of SDI service providers under
the terms of previously created SLAs in order deliver promised service levels to
individual service consumers or in an application context.

The following issues are related but outside the scope of this thesis:

• Developing methods for creating and implementing multilateral SLAs.

• Developing models for describing the Quality of Service (QoS) history of web
services.

• Developing methods for realizing QoS-aware service discovery and service chaining.

• Developing methods for measuring, quantifying and ensuring data quality.

• Developing methods for managing network traffic or implementing QoS at the Open
Systems Interconnection (OSI) layers level.

• Developing methods for realizing resource reservation in distributed computing
systems.

The concepts in this thesis are developed with a focus on, but are not limited to SDI
services that are based on standards developed by the OGC.

4

1.3. QUESTIONS

1.3 Questions

Based on the motivation and the objectives, the following main research question is
addressed in this thesis:

1. How can SLAs be integrated into SDIs?

The main research question can be divided into the following sub-questions:

a) What are the domain-specific requirements for the integration of SLAs in SDIs?

Answering this research question aims at the first objective, which lays the
foundation for the conducted work in this thesis.

b) What is the domain-specific content of SLAs that can be applied in SDIs?

Answering this research question is related to the design of the abstract SLA model,
which is the second objective of this thesis.

c) How can service consumers and service providers negotiate SLAs for SDI services?

Answering this research question is related to the design of the web-based SLA
management architecture, which is the third objective of this thesis. The research
question covers related aspects such as the SLA-aware service discovery in SDIs.

d) How can the complete SLA life cycle be integrated into SDIs?

Answering this research question is also related to the design of the web-base SLA
management architecture. The research question covers related aspects such as the
monitoring and accounting of SDI services.

e) How can SDI service providers deliver promised service levels to individual customers or

in an application context?

Answering this research question aims at the fourth objective, which aims at
guidelines for SDI service providers to manage their computing infrastructure under
the terms of previously created agreements.

1.4 Methodology

To answer the research questions, this thesis presents a design, an implementation and
an evaluation of a web-based SLA management architecture for the integration of SLAs
in SDIs. The dependencies between these tasks are shown in Figure 1.1.

Design

In the design phase, the requirements for the application of the SLA concept in
SDIs are derived and generalized from an example scenario. The example scenario
covers aspects from four application domains in which SDI services are utilized for
different purposes. Therefore, the evaluated requirements cover relevant organizational,
conceptional and technical aspects reflecting specific requirements and conditions of

5

CHAPTER 1. INTRODUCTION

Figure 1.1: Methodology

6

1.5. TERMINOLOGY

different SDI stakeholders. Based on the evaluated requirements, a concept for the
integration of SLAs in SDIs is developed. The development of such a concept is a two-
fold challenge.

To integrate the SLA concept in SDIs, first of all an abstract SLA model and a web-based
SLA management architecture are developed. The abstract SLA model describes the
domain-specific structure and content of agreements. The web-based SLA management
architecture enables service providers and service consumers to create agreements,
which document the service quality requirements of the service consumers and the
conditions under which the service provider is able and willing to deliver the demanded
service quality. Furthermore, the web-based SLA management architecture realizes
the SLA enforcement and manages the complete SLA life cycle. Both the abstract
SLA model and the web-based SLA management architecture are independent of any
concrete technology. They serve as the foundation for the implementation phase.

That is followed by the development of a concept for managing the infrastructure of
SDI service providers under the terms of previously created agreements in order deliver
promised service levels to individual customers or in an application context. According
to the objectives of this thesis, the concept for managing the infrastructure does not
encompass the low-level implementation of service quality as for instance realizing
high-performance web services and high-availability databases. It rather describes a
state of the art and best-practice approach for SDI service providers to deploy reliable
and scalable SDI services in a cost-efficient manner.

Implementation

The abstract SLA model and the web-based SLA management architecture are
implemented as a proof of concept using state of the art methods and technologies.
Furthermore, several SLA documents are developed with regard to particular
characteristics of the four application domains of the example scenario.

Evaluation

Based on the implementation of the design, the proposed concept for the integration of
SLAs in SDIs is evaluated against the objectives and the requirements of this thesis. The
evaluation provides an elaboration of all relevant assets and drawbacks of the abstract
SLA model and the web-based SLA management architecture.

1.5 Terminology

For the purposes of this thesis, the following terms and definitions apply.

Agreement

A Service Level Agreement (SLA) is a negotiated contract between service
providers and service consumers about the delivery of a service. The subject of
an agreement may be any kind of service, but this thesis focuses on web services
that are based on OGC standards. An agreement may contain not only functional

7

CHAPTER 1. INTRODUCTION

but also non-functional web service characteristics such as service response time
and availability. Furthermore, an agreement may contain concrete guarantee
terms reflecting for instance promised service quality levels and service usage
limitations. For each of these guarantee terms, an agreement should define the
obligated contracting party. In some cases an agreement may be a legally binding
contract, in others it is simply a statement of good will from the service provider
(to deliver promised service quality) and the service consumer (to use the service
according to promised conditions).

Business Value

An agreement typically contains service descriptions and guarantee terms, but
also values that represent the strength of an agreement in domain-specific terms
such as service usage costs and penalties for contract violations.

Key Performance Indicator

An agreement should contain a set of measurable and exposed service
characteristics, the so-called Key Performance Indicators (KPIs). These domain-
specific service properties are key elements of an agreement and permanently
measured during agreement runtime.

Quality of Service

The International Telecommunications Union (ITU) defines the term ’quality of
service’ as "the collective effect of service performances, which determine the
degree of satisfaction of a user of the service" and notes that "the quality of
service is characterized by the combined aspects of service support performance,
service operability performance, service integrity and other factors specific to
each service" [ITU, 1994]. In the context of GI, the quality attribute not only
covers classic web service characteristics such as the service response time and
availability, but also for instance the accuracy, resolution and completeness of
geospatial information.

Service Consumer

The service consumer is an entity that creates agreements in order to obtain
guarantees from the service provider regarding the availability of certain services
and associated service levels.

Service Level Objective

An agreement should contain a set of domain-specific guarantee terms that reflect
the quality of service aspect of the agreement. The so-called Service Level
Objectives (SLOs) define concrete service quality goals by defining valid value
ranges for the KPI measurements.

Service Provider

The service provider is an entity that offers agreements in order to provide
services not only along with defined service levels but also under stated business
conditions.

8

1.6. OVERVIEW

Template

An agreement template is a document that is used by service providers to advertise
their services along specific service levels. Templates are the entry point for an
agreement negotiation process in which service providers and service consumers
clarify the expectations and the responsibilities regarding a successful delivery
of the service. Some templates are defined by service providers in a "take it or
leave it" proposition, others can be modified by service consumers before finally
committing a (potentially legally binding) contract. Templates have the same
content as an agreement, but may also contain additional information and creation
constraints to describe the range of agreements the service provider is willing to
accept.

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY and OPTIONAL in this thesis are to be
interpreted as described in [Bradner, 1997].

1.6 Overview

The remainder of this thesis is structured as follows.

Chapter 2 - Research Context

This chapter describes the context of this thesis. It introduces the concepts and
state of the art of Spatial Data Infrastructures, Service Level Agreements and
Cloud Computing. This chapter also describes related work in all of these areas.

Chapter 3 - Requirements Analysis

This chapter defines the domain-specific requirements for the integration of SLAs
in SDIs. It describes an abstract scenario that covers aspects from four application
domains in which SDI services are utilized for different purposes. Based on the
abstract scenario and the application domains, the organizational, conceptional
and technical requirements for the integration of SLAs in SDIs are derived and
generalized.

Chapter 4 - Agreement Formalization

This chapter formalizes an abstract SLA model that is independent of any specific
technology. The abstract SLA model defines the domain-specific structure and
content of SLAs that can be applied in SDIs and that are based on standards
developed by the OGC. The description of the domain-specific content covers
aspects such as functional service descriptions, service quality guarantees and
pricing models.

Chapter 5 - Service Level Management Architecture

This chapter presents the design of a web-based SLA management architecture
that allows the integration of the abstract SLA model in SDIs. The web-
based SLA management architecture covers not only agreement negotiation and

9

CHAPTER 1. INTRODUCTION

service consumption, but also the infrastructure management under the terms of
previously created agreements.

Chapter 6 - Implementation and Evaluation

This chapter presents an implementation and demonstration of the abstract
SLA model and the web-based SLA management architecture. Based on the
implementation, this chapter evaluates the presented concept for the integration
of SLAs in SDIs. The evaluation provides an elaboration of the advantages and
limitations of the concept with respect to the research questions, the objectives
and the requirements.

Chapter 7 - Conclusion and Outlook

This chapter summarizes and discusses the results of this thesis. Furthermore, this
chapter provides directions for future research.

10

Chapter 2

Research Context

This chapter describes the context of this thesis. It introduces the concepts and state of
the art of Spatial Data Infrastructures, Service Level Agreements and Cloud Computing.
This chapter also describes related work in all of these areas.

2.1 Spatial Data Infrastructures

Geographic Information System (GIS) [Goodchild, 1991] have been under constant
development in recent years. Emerging web services concepts and technologies such
as the Service Oriented Architecture (SOA) paradigm [Papazoglou, 2003] encouraged
the evolution from classical desktop- and data-centric GIS to distributed and loosely-
coupled architectures composed of open and interoperable web services merged into
the Spatial Data Infrastructure (SDI) concept [Groot and McLaughlin, 2000].

Definition

The Spatial Data Infrastructure (SDI) concept can be described as a "collection of
technologies, policies and institutional arrangements that facilitate the availability of
and access to spatial data" [Nebert, 2004].

Masser [Masser, 2005] maintains that the SDI

(...) supports ready access to geographic information. This is achieved

through the coordinated actions of nations and organizations that

promote awareness and implementation of complementary policies,

common standards and effective mechanism for the development and

availability of interoperable digital geographic data and technologies

to support decision making at all scales for multiple purposes. These

actions encompass the policies, organizational remits, data, technologies,

standards, delivery mechanisms, and financial and human resources

necessary to ensure that those working at the (national) and regional

scale are not impeded in meeting their objectives.

The most frequent organizational approach to SDIs is hierarchical, ranging from
local to state, national and regional levels [Rajabifard and Williamson, 2001]. The
developed policies and institutional arrangements are focusing on various aspects

11

CHAPTER 2. RESEARCH CONTEXT

such as the organization of human resources and leadership, the commitment of
licenses for data sharing, the definition of interoperable standards for geospatial
data access, and the negotiation of cost-sharing agreements between organizations
[Budhathoki and Nedovi-Budi, 2006].

The SDI development is particularly driven by public authorities, like national
mapping or environmental agencies [Masser, 2005]. Many countries are in the
process of establishing their SDI in order to "better manage and utilize their spatial
data assets" [Rajabifard, 1999]. The innovators in that field are for instance the
United States National Spatial Data Infrastructure (NSDI) [FGDC, 2005], the Canadian
Geospatial Data Infrastructure (CGDI) [CGDI Architecture Working Group, 2001] and
the Geodateninfrastruktur Deutschland (GDI-DE) [GDI-DE, 2010]. At the same time,
some countries are finding it necessary "to cooperate with other countries to develop
multinational SDIs to assist in regional decision-making that has an important impact
across national boundaries" [Rajabifard et al., 2000]. The most sophisticated example
from Europe is the Infrastructure for Spatial Information in the European Community
(INSPIRE) directive [EU, 2007] which aims at building an European SDI based on the
member states’ national SDIs. The INSPIRE directive is legally valid since 2007 and
the INSPIRE roadmap [EU, 2011b] specifies future deadlines and milestones for the
implementation of services and datasets through the European Union (EU) member
states.

Standardization

The development of interoperable and open standards is an important key factor for the
successful sharing of geospatial resources [Wytzisk and Sliwinski, 2004]. Considerable
progress in defining geospatial standards has been made by the Open Geospatial
Consortium (OGC)1, an international industry consortium in which more than 450
government, academic, and private sector organizations intend to collaborate. The
OGC was founded in 1994 as a non-profit organization with the mission to facilitate
the adoption of free and openly available standards for spatial data products and
services, and to accelerate the market assimilation of interoperability research through
a collaborative consortium process.

The OGC Technical Committee (TC) publishes several types of documents as for
instance Best Practices Documents, Engineering Reports and Discussion Papers. The
Best Practices Documents contain discussion of best practices related to the use and/or
implementation of an adopted OGC document. The Engineering Reports are the
primary output of OGC Interoperability Program Initiatives (testbeds, pilot projects and
interoperability experiments). The Discussion Papers present technology issues being
considered in the Working Groups of the OGC TC. The two major OGC publication
types are Abstract Specifications and Implementation Specifications. The Abstract
Specifications provide the conceptual foundation for most of the OGC specification
development activities. The Implementation Specifications are technical documents that
detail service interfaces or data encodings.

1 http://www.opengeospatial.org

12

2.2. SERVICE LEVEL AGREEMENTS

The OGC Reference Model (ORM) [OGC, 2003] provides a framework that describes
the OGC Standards Baseline. The ORM embraces approved Abstract Specifications and
Implementation Specifications as well as relevant Best Practices in order to provide
guidelines for defining SDI architectures for specific use cases. The OpenGIS Web
Services Architecture [Whiteside, 2005] describes the most fundamental aspects of
OGC Web Services (OWS) as for instance the organization of service components
into multiple tiers, and the use of open standards for service interfaces and service
communication. In the ORM the clients and services communicate through HTTP
GET and POST, using standard Extensible Markup Language (XML) encoding formats
for transferring data and messages. The OGC Web Services Common Standard
[Whiteside and Greenwood, 2010] specifies many of the aspects that are common to
all OWS as for instance the mandatory GetCapabilities operation, which allows any
client to retrieve metadata from a server.

Based on these supporting documents, fundamental Implementation Specifications are
for instance the Web Map Service (WMS) specification [de la Beaujardiere, 2006] and
the Web Feature Service (WFS) specification [Vretanos, 2010]. Over time, the OGC
standards development process reached a certain level of acceptance and maturity, so
that some Implementation Specifications became relevant for other organizations and
initiatives. The WMS specification has been approved for instance by the International
Organization for Standardization (ISO) Technical Committee 211 (ISO/TC 211) as an
official ISO specification [ISO, 2005]. Furthermore, the INSPIRE directive defines a
family of so-called Network Services that can be traced back to corresponding OGC
Implementation Specifications.

2.2 Service Level Agreements

Service Level Management (SLM) is "the disciplined, proactive methodology and
procedures used to ensure that adequate levels of service are delivered to all IT users in
accordance with business priorities and at acceptable cost" [Sturm et al., 2000]. There
are several main reasons for implementing SLM in an Information Technology (IT)
organization [Sturm et al., 2000].

• Client Satisfaction

Discussing the users’ requirements helps to understand the client’s service
requirements and act on behalf of them.

• Managing Expectations

Discussing and documenting the users’ requirements helps to avoid ever rising levels
of users’ expectations.

• Resource Regulation

Documented users’ requirements can be used as indicators for ongoing system
capacity requirements in order to avoid capacity problems.

• Internal Marketing

Established SOA government processes help to ensure consistent service levels that
can be used as a pro-active marketing tool.

13

CHAPTER 2. RESEARCH CONTEXT

• Defensive Strategy

Determine the concrete service levels that should be delivered helps to calculate
appropriate IT cost of providing these (or higher) service levels in the future.

The key element for enforcing SLM is the Service Level Agreement (SLA).

Definition

In the most basic form, a SLA is a negotiated "contract or agreement that
formalizes a business relationship, or part of the relationship, between two parties"
[Lee and Ben-Natan, 2002]. The SLA is the result of a formal negotiation between
service providers and service consumers [McConnell and Siegel, 2004], and it helps to
"identify expectations, clarify responsibilities, and facilitate communication between
a service provider and its customers" [Karten, 1998]. In the IT domain, the SLA is
an "agreement between the computing service provider and the user quantifying the
minimum acceptable service to the user" [Hiles, 2002]. Depending on the negotiation
process the SLA either can be a statement of good will from the service provider (to
deliver promised service quality) and the service consumer (to use the service according
to promised conditions) without any legally binding, or a legally binding contract that
formally defines concrete rights and obligations for the service provider and the service
consumer [Berger, 2005].

The application of SLAs is not new in the mainstream IT. They "emerged in the
early 1990s as a way for IT departments and service providers within private
(usually corporate) computer networking environments to measure and manage
the quality of service (QoS) they were delivering to their internal customers"
[Lee and Ben-Natan, 2002]. The International Telecommunications Union (ITU) defines
the term ’quality of service’ as "the collective effect of service performances, which
determine the degree of satisfaction of a user of the service" and notes that "the quality
of service is characterized by the combined aspects of service support performance,
service operability performance, service integrity and other factors specific to each
service" [ITU, 1994].

Content

The SLA typically contains the following parts that are derived from [Berger, 2005].

Agreement Context

An agreement should contain basic elements such as a the agreement scope,
details about the groups that negotiated the agreement and information about the
contract period. The agreement scope may consists of a short human-readable
description of the service and the aim of the agreement. The information about
the contracting parties may contain common contact details and for instance a
banking account. The information about the contract period may contain a fixed
start and end date, or information about an automatic contract renewal after a
specific period of time under stated conditions. In some cases an agreement must
contain legal elements as for instance information about the place of jurisdiction,

14

2.2. SERVICE LEVEL AGREEMENTS

or liability and warranty clauses.

Service Provisioning

An agreement must contain a detailed description of the service to which the
agreement pertains. Such a detailed service description shall cover all important
aspects as for instance a formalized description of the actual service that is
provided, steps that must be performed before and during service provisioning
or general technical requirements as for instance the utilized IT infrastructure. In
some cases it is useful do describe the limitations of the agreement, which may
contain service aspects that are not covered by the agreement (but can be expected
at first glance) or some restrictions for the service consumer (e.g. the number of
employees that make use of the service).

To describe the service quality, which is expected by the service consumer
and promised by the service provider, the agreement must define service level
indicators, corresponding measurement procedures and concrete service level
objectives. The Key Performance Indicators (KPIs) of an agreement define a set of
quantifiable measurements regarding specific aspects of the service quality. In the
context of web services, such KPI can be for instance the web service availability
over a specific period of time (in percent) or the average web service response time
(in milliseconds). The agreement must contain information on how to measure the
designated KPIs, always with the service user’s perspective in mind. Finally, the
agreement must contain Service Level Objectives (SLOs) that define the minimum
service quality level that will be considered acceptable by the service consumer
and that is promised by the service provider. In order for SLM to be successful, the
KPIs and SLOs of an agreement must be attainable, meaningful, understandable,
measurable, controllable, affordable and mutually accepted [Sturm et al., 2000].

An agreement may define costs for using the service. In that case, the agreement
must contain a pricing model that define fixed or variable service usage fees,
discounts or sliding scale fees. The pricing model may also contain penalties
for not meeting the stipulated service quality levels. Furthermore, the agreement
must contain information about the settlement period and the method of payment.

Agreement Management

An agreement should contain information about administrative tasks as for
instance periodically reviews of the agreement, continuous reports on service
level indicators and corresponding service level objectives, or how to arbitrate
conflicts between contracting parties.

Furthermore, it is important that all contracting parties understand their respective
roles and responsibilities in the agreement context. Therefore, each obligation in the
agreement must be attached by such a responsibility information.

LIFE CYCLE

The typical agreement life cycle is described in [Lee and Ben-Natan, 2002] and consists
of the following five phases (Figure 2.1):

15

CHAPTER 2. RESEARCH CONTEXT

Figure 2.1: Agreement Life Cycle (adapted from [Lee and Ben-Natan, 2002]).

Development

The development phase covers service and template development. When the
service development is finished and the service provider understands every
technical, organizational and financial impact of prospective service offerings,
the development of one or more templates for a particular service can start. It
is possible to define more than one template with different service quality levels
for the same service. This gives potential service consumer "the opportunity to
weigh competing priorities within his or her own company" [Sun et al., 2005]. In
general, these templates have the same structure and content as an agreement.
They are used to advertise a service offering and they are the entry point for the
negotiation phase.

Negotiation

The negotiation phase starts with template discovery in order to find an adequate
service offering that matches the individual requirements of a service consumer.
Some of the templates are defined in an "take it or leave it" proposition
[Lee and Ben-Natan, 2002], others can be modified by the service consumer before
finally committing to a potentially legally binding contract. However, the outcome
of the negotiation is an agreement, that only contains terms and conditions that
are approved by all contracting parties.

Implementation

The implementation phase implies all tasks that are necessary to provide an
individual service instance in compliance with the corresponding agreement.
The service provider must perform the initial setup of the service, install new
monitoring capabilities, prepare periodical reports, and arrange organizational
responsibilities in case of SLA violations.

Execution

The execution phase reflects the normal day-to-day business of the service
provider. This phase covers all tasks that must be performed on an ongoing basis
during the whole agreement period in order to operate the service in compliance

16

2.2. SERVICE LEVEL AGREEMENTS

with the corresponding SLA. This includes measurement of KPIs, evaluation
of SLOs, adjustment of the service setup and reporting SLA compliance to all
contracting parties.

Assessment

The assessment phase can be performed either periodically during or only once
after the agreement period. The customer-focused assessment analyzes the
service provider’s performance from the customer’s viewpoint and focuses on
SLA compliance and customer satisfaction. The provider-focused assessment aims
at "optimizing the use of the SLA by the service provider in order to improve
profitability through achieving better compliance or reducing penalty exposure by
changing the commitment contained within the SLAs" [Lee and Ben-Natan, 2002].
The assessment phase provides the input for an optimized agreement development
phase in the future.

This thesis focuses on the negotiation, implementation and execution phases.

Standardization

There are a number of organizations working on SLM and SLA standards. The
IT Infrastructure Library (ITIL) covers SLM from an organizational perspective
and provides best-practices for service design [Lloyd, 2008] and service operation
[Cannon, 2007]. The Distributed Management Task Force (DMTF) provides an extension
of the Common Information Model (CIM) [DMTF, 1999] in order to "allow the
definition and association of policies, rules, and expressions that enable common
industry communications with respect to service management" [Sturm et al., 2000].
The Internet Engineering Task Force (IETF) has issued several Request for Comments
(RFC) documents that target application management [Kalbfleisch et al., 1999] and
differentiated services [Blake et al., 1997] at the TCP/IP network level.

There is one standard - the Web Services Agreement Specification (WS-Agreement)
[Andrieux et al., 2005] - that provides not only an XML Schema document for specifying
the structure of agreement templates and agreements, but also a web service interface
for managing the complete life cycle of agreements. The goal of WS-Agreement is
to "standardize the terminology, concepts, overall agreement structure with types of
agreement terms, agreement template with creation constraints and a set of port types
and operations for creation, expiration and monitoring of agreements, including WSDL
needed to express the message exchanges and resources needed to express the state"
[Andrieux et al., 2005]. The WS-Agreement specification is currently developed by the
Grid Resource Allocation Agreement Protocol (GRAAP) Working Group (WG)2 of the
Open Grid Forum (OGF)3 and historically can be traced back to a number of approaches
for general-purpose SLA languages that provide the foundation for the WS-Agreement
specification.

The SLA language described in [Ludwig et al., 2002] provides an XML-based

2 https://forge.ogf.org/sf/projects/graap-wg
3 http://www.ogf.org

17

CHAPTER 2. RESEARCH CONTEXT

representation and a runtime system for SLAs. The presented approach includes
a description on how parameters are measured and computed from raw metrics,
how guarantees are defined with respect to those parameters and how SLA
compliance is verified. The Web Service Level Agreement (WSLA) Framework
[Keller and Ludwig, 2003] describes an approach for specifying and monitoring SLAs
for web services. The WSAL framework is developed by IBM and focuses on a
flexible, formal language to accommodate a wide variety of SLAs and the (web)
services that are required to implement the WSLA framework. The SLAng language
[Lamanna et al., 2003] also describes an XML-based representation of SLAs in order to
realize end-to-end quality of service between network services, storage services and
middleware services. An extensible an flexible XML-based SLA representation as a
foundation for automated SLA management systems is presented in [Sahai et al., 2002].
The approach of [Rodosek and Lewis, 2001] provides a user-centric language for
agreements and a method of mapping such a user-centric language to a network-centric
language in order to develop a framework for dynamic service provisioning.

However, the WS-Agreement specification was investigated and developed in several
research projects. The SLA@SOI project [Wieder et al., 2011] aimed at developing
standards for a domain-independent syntax for machine-readable SLA specification
and negotiation, systematic multi-layer SLA management, monitoring and accounting
[Kearney et al., 2010]. The focus of this project was the development of standardized
interfaces for adaptive infrastructures with harmonized access to different virtualization
technologies and the development of advanced technologies for SLA enforcement
on an infrastructure level. The Service Level Agreements for D-Grid (SLA4D-Grid)
project [Kuebert et al., 2010] aimed at designing and realizing a SLA layer for the
Germany’s national Grid Computing infrastructure D-Grid4. The SLA layer offers
individual users, whole D-Grid communities, and the providers of D-Grid resources
service usage under given guarantees, Quality of Service (QoS) requirements and pre-
defined business conditions. The European CoreGRID Research Network published a
comprehensive report that provides an overview and comparison of SLA use in six of
the European Commissions FP6 Projects [Parkin et al., 2008]. An outcome of several
research projects is the WS-Agreement for Java (WSAG4J) framework [Wäldrich, 2011],
an Open Source implementation of the WS-Agreement specification that automates
typical SLA management tasks like SLA offer validation, service level monitoring,
persistence, and accounting.

The WS-Agreement specification defines neither domain-specific (web) service
descriptions, expressions and metrics for KPIs and SLOs, nor how and where to measure
such properties. For good reasons, these domain-specific objectives are out of the scope
of the WS-Agreement specification. For this purpose, there are a number of other
approaches available.

The World Wide Web Consortium (W3C) for instance describes briefly the general
requirements for web services and gives an overview about the most relevant quality
aspects of web services [Lee et al., 2003]. The Organization for the Advancement of
Structured Information Standards (OASIS) provides the Quality Model for Web Services

4 http://www.d-grid.de

18

2.3. CLOUD COMPUTING

[Kim and Lee, 2005], a conceptual model "for Web services quality management and
quality factors in the process of developing and using Web services". The Web
Service Modeling Ontology (WSMO) Working Group5 published a comprehensive
report that provides an overview about most relevant approaches for describing non-
functional web service properties [Toma and Foxvog, 2008]. The object-oriented Quality
of Service Specification Language (QML) [Frolund and Koistinen, 1998] can be used for
QoS specification in Unified Modeling Language (UML) class models and interface
designs of distributed systems. There are a number of concrete approaches for the
integration of QoS in web services available. Some of them provide ontologies for QoS
in web services as XML Schema documents (or in other formal languages) as for instance
[Aagedal and Ecklund, 2002], [Zhou et al., 2005] and [Papaioannou et al., 2006], others
also provide an architecture for the integration of QoS information in the web service
discovery process as for instance [Tian et al., 2003], [Ran, 2003] and [Yu-jie et al., 2005].

2.3 Cloud Computing

Cloud Computing is a recent trend in mainstream IT [Driver, 2008] and several
companies such as Amazon, Google, Microsoft and Salesforce have made significant
effort in this direction. The cloud metaphor describes an approach in which the
storage and computational facilities are no longer located on single computers, but
distributed over remote facilities operated by third party providers [Foster et al., 2008].
This section gives a short introduction to Cloud Computing and briefly describes how
Cloud Computing can help SDI service providers to facilitate reliable and scalable SDI
services in an economical efficient manner.

Definition

There are various definitions for the Cloud Computing paradigm available, as for
instance presented in [Armbrust et al., 2009] and [Buyya et al., 2009]. Following the
National Institute of Standards and Technology (NIST) definition of Cloud Computing
[Mell and Grance, 2009], the Cloud Computing model is composed of five essential
characteristics, three service models and four deployment models (Figure 2.2):

Characteristics

In Cloud Computing environments, users can allocate computational resources
without requiring human interaction with a resource provider (On-Demand Self-
Service). Examples of such resources include storage, processing, memory,
network bandwidth, and virtual machines. These resources and their capabilities
are available over the network via standardized mechanisms and simple web
service interfaces (Broad Network Access). The resource providers’ physical
and virtual resources are pooled to serve multiple users and their dynamically
changing demands (Resource Pooling). From the user perspective, the availability
of resources in the cloud appears unlimited. They can be acquired from the
resource provider in large quantity at any time in order to scale applications,
services and storage depending on an application context (Rapid Elasticity).

5 http://www.wsmo.org

19

CHAPTER 2. RESEARCH CONTEXT

Figure 2.2: NIST Cloud Computing Definition (adapted from
[Brunette and Mogull, 2009])

Finally, the resource usage in Cloud Computing environments can be monitored
and reported, providing transparency for both the users and the resource
providers (Measured Service).

Service Models

Cloud Computing replaces the classic multi-tier architecture of web services
[Ramirez, 2001] and creates a new set of layers [SUN, 2009]. The Cloud Computing
characteristics can be used to give users the ability to run their web- or desktop-
based applications in the cloud without managing the hardware infrastructure
(Software as a Service, SaaS). Resource providers can offer runtime environments
in the cloud, where users can deploy their applications created using particular
programming languages and tools that are supported by the provider (Platform
as a Service, PaaS). Furthermore, resource providers can offer complete access to
virtual machines where users have total control over operating systems, storage
and deployed applications (Infrastructure as a Service, IaaS).

Deployment Models

When a resource provider makes his resources available for instance in a pay-
as-you-go manner to the general public, it is called a Public Cloud. In the case
that the Cloud Computing infrastructure is provisioned "for exclusive use by a
specific community of consumers from organizations that have shared concerns
(e.g., mission, security requirements, policy, and compliance considerations)"
[Mell and Grance, 2009], it is called a Community Cloud. When Cloud Computing
technologies are used to manage an internal data center and when such a data

20

2.3. CLOUD COMPUTING

center is not made available to the general public, it is called Private Cloud. In
a so-called Hybrid Cloud, a Private Cloud is combined with resources of a Public
Cloud in order to handle tasks that cannot be performed in the local data center for
instance due to general hardware limitations and/or temporarily heavy workload.

Historically, the Cloud Computing model overlaps with some concepts of Distributed
Computing [Attiya and Welch, 2004] and Grid Computing [Foster, 2003]. Both Grid
Computing and Cloud Computing environments establish a network infrastructure
for scaling applications by providing sufficient storage and computational resources.
Grid Computing is mostly applied by scientific communities [Hartig, 2009] for large-
scale computations as for instance executed in bioinformatics and biology, astronomy
and high-energy physics [Deelman et al., 2004]. Whereas Cloud Computing enables
especially small and medium-sized companies to deploy their web-based applications
in an instant scaleable fashion without the need to invest in large computational
infrastructures for storing large amounts of data and/or performing complex processes
[Myerson, 2009]. As a consequence, national and international Grid Computing
infrastructures as for instance the Worldwide LHC Computing Grid [Shiers, 2007]
are typically funded by the government and operated by international joint research
projects, whereas Public Cloud infrastructures are typically operated by large-
sized enterprises under economic aspects, enabling smaller companies to use their
infrastructure.

Standardization

There are a number of organizations and companies working on Cloud Computing
standards as for instance the Cloud Security Alliance (CSA)6, the Open Cloud
Consortium (OCC)7, the Distributed Management Task Force (DMTF)8, and the Open
Grid Forum (OGF). Achievements of these standardization efforts are for instance the
Open Virtualization Format (OVF) [DMTF, 2009] which defines file formats for virtual
machines and the Open Cloud Computing Interface (OCCI) family of specifications
[Nyrén et al., 2011] [Metsch and Edmonds, 2011a] [Metsch and Edmonds, 2011b] which
defines an Application Programming Interface (API) for managing Cloud Computing
environments. Several other organizations such as the Internet Engineering
Task Force (IETF) and the OASIS have developed related standards that are
essential for a successful integration of Cloud Computing technologies in real-world
applications. Such supporting standards are for instance the Web Authorization
Protocol (OAuth) [Leiba, 2012] for identity management and the complete WS-* family
of specifications for web services such as WS-Security [Nadalin et al., 2006], WS-
Policy [Bajaj et al., 2006], and WS-Agreement [Andrieux et al., 2005]. The web service
protocols for managing Amazon Simple Storage Service (S3)9 and Amazon Elastic
Compute Cloud (EC2) are de facto industry standards and reimplemented by many
projects and products as for instance Apache Deltacloud10 and Eucalyptus11.

6 https://cloudsecurityalliance.org
7 http://opencloudconsortium.org
8 http://www.dmtf.org
9 http://aws.amazon.com/s3
10 http://deltacloud.apache.org
11 http://www.eucalyptus.com

21

CHAPTER 2. RESEARCH CONTEXT

Supplementary policies and recommendation for establishing secure and trustful
Cloud Computing environments under the terms of national and regional law are
developed from several organizations and governmental agencies. The Federal
Office for Information Security (BSI) promotes IT security in Germany and describes
recommendations for setting up a solid security architecture for Cloud Computing
environments [BSI, 2012]. The EU announced the EU Data Protection Directive
[EU, 1995], a comprehensive privacy framework that aims at the protection of personal
data of EU residents. The directive does not mention Cloud Computing explicitly, but
it covers basic requirements for the cross-border movement and processing of personal
data, which is an inherent characteristic of Cloud Computing environments.

These examples show many stakeholders and considerable momentum in Cloud
Computing development. Especially in comparison to the adoption rate of standards
in the Geographic Information (GI) domain, most of the developed Cloud Computing
standards are less widespread outside the research community and therefore the
standardization process still needs to mature [BMWI, 2012].

Opportunities

The Cloud Computing characteristics and technologies can help SDI service providers
in several ways. The application of the Cloud Computing model in the internal
data center enables IT companies to increase the utilization rate of their existing
hardware significantly [Zhang et al., 2010]. By outtasking software and data to facilities
operated by third parties, service providers do not need to operate their own large-
scale hardware infrastructure anymore [Leimeister et al., 2010]. In contrast to classical
long-term outsourcing contracts, the on-demand usage together with pay-as-you-go
revenue models enable service providers to transform fixed costs into variable costs,
and to decrease up-front investments for deploying and maintaining cutting-edge IT
services [Marston et al., 2011]. Furthermore, cloud resources can be allocated nearly in
real-time and most Cloud Computing providers offer advanced mechanisms for scaling
the deployed applications automatically for instance in case of high amounts of users
requesting a service. This allows service providers to handle peak loads very efficiently,
which is hard to realize with classic service deployment models [Tu et al., 2004]. In
nearly all cases the total cost of ownership (including initial investment in hardware,
software licenses, energy, fail-safety and technical engineers) for realizing highly elastic
solutions (consume 100 server-hours today and no server-hours tomorrow) can also be
reduced significantly [Armbrust et al., 2010].

There are still a number of open issues for adopting Cloud Computing in existing
IT infrastructures, which are exemplified for instance in the so-called "Open Cloud
Manifesto" [CCUCG, 2009]. Especially the absence of standardized and widely-adopted
APIs for managing Cloud Computing infrastructures can be seen as one major
obstacle. The vendor-specific APIs bind particular solutions (software, data) to specific
vendors and therefore complicate the migration of applications between different Cloud
Computing providers (vendor lock-in, data lock-in). Besides data backup and recovery
responsibilities, the outsourcing of confidential data from data owners to third party
infrastructures is problematic especially in the GI domain [Hillmann-Köster, 2011]. In

22

2.4. RELATED WORK

most cases, Public Cloud infrastructures as a deployment platform for data are not
suitable. Private Cloud infrastructures maintained within an entity or a so-called
"Trusted Cloud" [BMWI, 2010] can help to overcome these obstacles. Other critical
obstacles to growth of Cloud Computing are for instance the service availability, data
auditability, network bottlenecks and software licenses [Armbrust et al., 2010].

2.4 Related Work

The SLM and SLA aspects have been a common product in support of services
offered by telecommunications service providers for many years, but the integration
of SLAs in SDIs has not been widely investigated yet. There is already significant
effort regarding geospatial digital rights management with a focus on authentication
and access control. The aspect of geospatial licenses is already examined with a
focus on identifying appropriate and harmonized SDI license models for data sharing.
Furthermore, the performance and scalability of SDI services is widely examined and
several approaches for integrating geospatial services and data into Grid Computing
and Cloud Computing infrastructures have been developed. None of these efforts from
different fields of application approaches neither the on-demand and online negotiation
of SLAs in SDIs without the need of prior offline communication between service
providers and service consumers, nor the automated SLAmanagement in SDIs including
agreement monitoring, agreement evaluation, agreement reporting and infrastructure
management. However, the following sections provide a brief overview about most
relevant related work.

Geospatial Rights Management

The Geospatial Digital Rights Management Reference Model (GeoDRM) [Vowles, 2006]
defines a "conceptual model for digital rights management of geospatial resources". The
GeoDRM describes roles and relationships in digital rights management, and identifies
necessary functionalities that must be provided by more detailed specifications in
this area. These necessary functionalities cover aspects such as the development of
machine-readable rights expression languages, methods for establishing trust between
partners, and authentication and authorization methods that are fundamental for license
enforcement.

The OGC Geospatial eXtensible Access Control Markup Language (GeoXACML)
specification [Matheus and Herrmann, 2011] defines a geo-specific extension to the
eXtensible Access Control Markup Language (XACML) [Moses, 2005] in order to
support geospatial data types and geospatial authorization decision functions. The
establishment and the administration of a GeoXACML-based access control system
for SDIs is demonstrated in [Herrmann, 2010]. Access control and web services
security have been addressed also in many OGC Interoperability Program Initiatives
as for instance described in [Wagner, 2006b], [Gartmann and Leinenweber, 2009] and
[Herrmann and Matheus, 2009].

Several other publications show a notable interest in this area. A more fine-
grained view on the GeoDRM roles and relationships is presented for instance in

23

CHAPTER 2. RESEARCH CONTEXT

[Wagner, 2009]. In [Schäffer et al., 2010a] a security enabled architecture is presented,
in which standard geoprocessing services can be enhanced in order to support ad hoc
license agreements directly in process, without any prior offline negotiated agreements
between service provider and service consumer. In [Gartmann and Schäffer, 2011] the
"use of OASIS SAML for license encoding, the implementation details for the use
of this license encoding for expressing access permissions to SOAP services, and
the submission and evaluation of these licenses within (OWS) service requests" is
described. In [Schäffer, 2012] a concept for the "dynamic access to and chaining of
secured Geoprocessing Web Services without a priori established rights or direct trust
relationships" is presented.

Geospatial Licenses

The SLA concept is not completely new for National Spatial Data Infrastructure
(NSDI) building activities, which cover not only technologies but also policies in
order to support the organizational collaboration. The NSDI policies typically define
requirements regarding available datasets, licenses for data sharing or minimum
performance criteria. Furthermore, policies are also developed for the regulation
of cost-sharing between different departments, agencies or countries. Examples
for such policies are for instance the "Gesetz über den Zugang zu digitalen
Geodaten (Geodatenzugangsgesetz)" [BMJ, 2009] that regulates the public access to basic
geoinformation in Germany and the GeoLizenz project [Rech, 2011] that establishes
a framework for providing harmonized license models for the public authorities in
Germany. Beyond such an organizational and legal perspective, aspects such as the
on-demand and online negotiation of SLAs in SDIs without the need of prior offline
communication between service consumers and service providers have not been widely
investigated yet.

This thesis is based on concepts that have appeared previously in other publications
and that established the foundation for the conducted research. The work presented in
[Baranski, 2009] aims at identifying and developing an abstract architecture in which
different service quality levels in SDIs can be measured and managed by attaching
SLA functionality to existing OWS. Based on this work, the approach described in
[Baranski and Schäffer, 2010] provides a more substantiated requirements analysis for
the application of the SLA concept in SDIs that are based on OGC standards. The
approach provides a classification of QoS attributes that are relevant in SDIs, and
proposes an architecture that covers the complete SLA negotiation process between
service consumers and service providers. The OGC published the WS-Agreement
Application Profile for OGCWeb Services [Baranski, 2011], a domain-specific extension
of the WS-Agreement specification that mainly consists of a set of XML Schema
Documents (XSDs) specifying the OGC-specific content of an agreement, an Uniform
Resource Name (URN) namespace for identifying OGC-specific service properties and a
Domain Specific Language (DSL) for defining and evaluating domain-specific guarantee
terms. The Service Level Agreements for OGC Web Services (SLA4OWS) framework
[Baranski, 2012] is an Open Source implementation of the WS-Agreement Application
Profile for OCG Web Services and automates typical SLM management tasks such as
service level monitoring, agreement reporting and infrastructure management. The
SLA4OWS framework enables SDI service providers to offer their services along with

24

2.4. RELATED WORK

different service levels. Furthermore, it enables service consumers to perform a cost-
benefit ratio analysis of different service offerings. The SLA4OWS framework integrates
the Amazon EC212 for realizing differentiated web services in an economic fashion.

Cloud Computing

In the GI domain, the area of Grid Computing has been addressed very early at
various levels. Many research projects investigated how to merge the SDI and the
Grid Computing concept. In [Padberg and Kiehle, 2009] the conceptual differences
between OWS and the Open Grid Services Architecture (OGSA) [Foster et al., 2006]
are examined and an integration approach to overcome the gaps between SDIs and
Grid Computing infrastructures is provided. The Globus Toolkit was integrated in
the NASA Web GIS Software Suite (NWGISS) [Di et al., 2003], OGC and OGSA web
services were orchestrated in workflows that are based on Business Process Execution
Language (BPEL) [Hobona et al., 2007] [Fleuren and Müller, 2008], and geospatial data
was processed through an OGC Web Processing Service (WPS) [Schut, 2007] in
Grid Computing infrastructures [Lanig et al., 2008] [Baranski, 2008]. The GDI-Grid
project [Maué and Kiehle, 2009] focused on solutions for the efficient integration and
processing of geospatial data in the German national Grid Computing infrastructure
D-Grid through OGC Web Services. A proof of concept was developed for "flood
simulation", "noise propagation in urban areas" and "emergency routing for relief
units". The Secure Access to Geospatial Services (SEE-GEO) project [Higgins, 2009]
investigated the means of making geospatial data securely available in the United
Kingdom (UK) National Grid Service (NGS)13 for use by the UK academic sector. Most
of conducted research focused on efficient and secure processing of huge amounts of
geospatial data in Grid Computing infrastructures through the SDI standards layer as
for instance exemplified in [Di et al., 2003] and [Woolf and Shaon, 2009].

First experiments have demonstrated that Cloud Computing can be used as an on-
demand and cost-efficient GIS hosting platform. ESRI Inc.14 allows users and developers
to access geospatial data via web applications and services that are hosted at Amazon
EC2. WeoGeo Inc.15 provides an online marketplace for the transformation, storage and
sale of geospatial data. Although scaling aspects are considered, open SDI standards
and security requirements are not addressed yet. The US Federal Geographic Data
Committee (FGDC)16 is developing "The Geospatial Platform" [FGDC, 2001], a Cloud
Computing infrastructure to promote the sharing of geospatial data, services, and
applications to support all levels of government. These examples show that especially
the commercial but also the public sector achieved considerable progress towards cost-
efficient hosting of geospatial applications, services and data based on Cloud Computing
infrastructures.

From a research perspective, the interoperability of OWS and the Cloud Computing
concept was studied in [Ludwig and Coetzee, 2010] and [Schäffer et al., 2010b]. The

12 http://aws.amazon.com/ec2
13 http://www.ngs.ac.uk
14 http://www.esri.com
15 http://www.weogeo.com
16 http://www.fgdc.gov

25

CHAPTER 2. RESEARCH CONTEXT

licensing concept presented in [Schäffer et al., 2010a] for realizing access control and
payment models in SDIs, was further developed in [Baranski et al., 2010a] to a general
framework for realizing sustainable pay-as-you-go business models for geoprocessing
services hosted in Public Clouds. Furthermore, some experiments have shown that
Cloud Computing is suitable for realizing high-available and high-scalable geospatial
services. In [Blower, 2010] an OGC WMS implementation was deployed at Google
App Engine (GAE)17. In [Baranski et al., 2010b] the performance of an OGC WPS
implementation was evaluated for GAE and Amazon EC2. The application of
Hybrid Clouds for geospatial services was first described in [Foerster et al., 2010]
based on the example of an OGC WPS implementation. The approach presented in
[Baranski et al., 2011] analyzed how the Hybrid Cloud concept can be used to realize the
challenging INSPIRE requirements regarding availability, performance and capacity.

2.5 Summary

In the past, the SDI development focused on interoperable standards for the retrieval,
portrayal and processing of geospatial data through web services. The development of
such standards was facilitated by emerging web service technologies and mandated
by legal frameworks. The most sophisticated example for such a legal framework
from Europe is the INSPIRE directive which aims at building an European SDI based
on the member states’ national SDIs. The INSPIRE guidelines and recommendations
rely on the OGC Standard Baseline, which defines several mature and widely accepted
standards for geospatial data and services. The OGC Standards Baseline not only covers
the interoperable retrieval, portrayal and processing of geospatial data through web
services. There are also several approaches for describing different quality aspects
of geospatial data or to enforce digital rights management in SDIs. The GeoDRM
approach for instance supports the on-demand and online negotiation of licenses for
authentication and authorization, but completely ignores SLM and SLAs aspects, which
have been a common product in support of services offered by telecommunications
service providers for many years.

The main reason for implementing SLM in SDIs is to deliver the accurate service quality
level for a specific use case exactly when it is needed. The key element for enforcing
SLM is the SLA, which is a negotiated contract that helps to identify service quality
expectations, clarify responsibilities, and facilitate communication between service
providers and service consumers. The basic parts of SLAs are general information
about the parties that negotiated the agreement, the KPIs that define a set of quantifiable
measurements regarding specific aspects of the service quality, and the SLOs that define
the minimum service quality level that is considered acceptable by service consumers
and that can be guaranteed by service providers. There are many standardization
approaches that aim to integrate SLAs in SOAs. One of them is the WS-Agreement
specification that provides not only an XML Schema document for specifying the
structure of agreement templates and agreements, but also a web service interface for
managing the complete life cycle of agreements. The WS-Agreement specification is
focused on the submission of jobs to a batch processing system. The WS-Agreement
specification neither defines domain-specific web service descriptions, expressions and

17 https://appengine.google.com

26

2.5. SUMMARY

metrics for KPIs and SLOs, nor defines how and where to measure such properties.
However, the WS-Agreement specification was investigated and developed in several
research projects and finally reached a certain level of maturity in terms of features,
extensibility and rate of adoption.

For service providers it is important to be in a position to actually deliver promised
service quality levels to specific service consumers or in an application context. The
Cloud Computing paradigm partially promises to fulfill such requirements. There are
various definitions for the Cloud Computing paradigm available. What all of these
definitions have in common is that a) Cloud Computing resources can be acquired in
nearly any quantity at any time in order to scale applications, services and storage
depending on an application context, and that b) Cloud Computing technologies enable
resource providers to combine their physical and virtual resources in order to serve
multiple users and their dynamically changing demands in an economical fashion.

The SDI development will continue to be faced with a rapidly increasing volume of
available geospatial data with a higher spatial, temporal, and thematic resolution.
Furthermore, not only the available volume of geospatial data but also the potential
number of users will continue to increase. Along with emerging laws and provisions
such as the INSPIRE directive, these developments result in ambitious requirements
regarding the reliability, performance and scalability of geospatial services and
corresponding applications. Therefore, the next chapter describes the domain-specific
requirements for the application of the SLA concept in SDIs.

27

CHAPTER 2. RESEARCH CONTEXT

28

Chapter 3

Requirements Analysis

This chapter describes an abstract scenario that is composed of four application
domains in which SDI services are utilized for different purposes. Based on these
application domains and their particular characteristics, the conceptual requirements
for the application of the SLA concept in SDIs are derived and generalized.

3.1 Scenario

The stakeholders in the SDI development are central or local governmental
organizations, the commercial sector, non-governmental organizations, or the academic
sector. The authors of [EU, 2011a] developed a typology that "distinguishes between
countries that are national data producer led and those that are not" [Masser, 2005].
For example in Germany, which is not national data producer led, the governments
from local, regional and national level are all generators and maintainers of public
geospatial information. The authors of [EU, 2011c] provide a comprehensive overview
about the nature and organization of the Geodateninfrastruktur in Deutschland (GDI-
DE) initiative, which is the joint setup of the national SDI for Germany. The SDI
development activities within the GDI-DE initiative are coordinated by a steering
committee comprising members from the federal government, the federal states, and
the communal head associations. The GDI-DE architecture describes not only the
mission and the organization [GDI-DE, 2010] but also the standards and the roadmap
[GDI-DE, 2010] for establishing the GDI-DE particularly with regard to the INSPIRE
directive.

The GDI-DE architecture was developed to meet the requirements of several application
domains as for instance eGovernment applications, legal frameworks, commercially
available product solutions and disaster management. Some of the application domains
may have challenging requirements regarding the service quality, while others may
have lower requirements. In some cases the usage of the service is free of charge,
in others the service provider charges a fee for using the service. For the purpose
of this thesis, it is assumed that governmental SDI service providers offer services
that are used in more than one application domain at the same time. One approach
may be to deliver the highest possible service level to all service consumers and in
every application context. This may however not be a reasonable solution in terms
of technical and economical efficiency. Therefore, in order to realize higher levels of
efficiency it is important for service providers to adjust the delivered service quality

29

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.1: Application Domains and Characteristics

and corresponding business conditions automatically according to the individual service
consumers’ requirements or the application context.

The following sections describe the GDI-DE application domains and their varying
service level characteristics and corresponding business conditions (Figure 3.1).

3.1.1 eGovernment

The term eGovernment (also known as eParticipation) is defined as the use of
Information and Communications Technology (ICT) to "move beyond the passive
information-giving to active citizen involvement in the decision-making process"
[Signore et al., 2005] in order to "improve the efficiency, acceptance, and legitimacy
of political processes" [Sanford and Rose, 2007]. An example for such an application
in the context of the GDI-DE activities is the prototypical development of an
eParticipation application that "enable Wiesbaden’s citizens to inform the city
administration about infrastructural problems" such as pot-holes or broken street
lighting [Blankenbach and Schaffert, 2009]. This web-based application is an integral
part of the municipal SDI and integrates several OGC standards. Another example is
TIM-online [Sandmann, 2005], an online platform that is provided by the Federal State
of North-Rhine Westphalia in order to provide citizens with basic access to geographic
information that is collected by the surveying and cadastre administrations.

The service delivery in eGovernment applications is focused on the overall user
satisfaction, which does not only encompass weak service performance criteria for

30

3.1. SCENARIO

realizing responsive applications but also other "soft" factors such as the design of
the website (aesthetic), ease of use of the application (intuitiveness), and security and
privacy (trust) [Alanezi et al., 2010]. Although the service quality requirements for
eGovernment applications are not that much sophisticated, for service providers it
is always important to provide reliable and responsive applications in order improve
clients’ relationships and satisfactions. The authors of [Quirchmayr et al., 2007] present
a quality model of eGovernment services (e-GSQ Model) in order to verify whether
government services meet citizens’ needs or not.

3.1.2 Legal Frameworks

The governmental SDI stakeholders from state, national and regional level are usually
mandated by legal frameworks to promote the SDI development. The GDI-DE activities
for instance implement the INSPIRE directive, which aims at building an European SDI
based on the member states’ national SDIs. The INSPIRE directive defines a list of spatial
data themes that must be collected and maintained by the EU member states. To ensure
that the national SDIs of the member states of the EU are compatible, the INSPIRE
directive also defines interoperable data encodings, standards for service interfaces and
minimum service performance criteria. The INSPIRE View Service [INSPIRE, 2011a] for
example is defined as an application profile of the OGC WMS specification and must be
available 99% of the time (availability), the maximum initial response time of a GetMap
request with 640x480 pixel must be 5 seconds (performance), and a service instance
must be able to fulfill both of these criteria if the number of served simultaneous service
requests is up to 20 per second (capacity).

Besides organizational aspects, legal frameworks such as the INSPIRE directive mostly
focus on data encodings, service standards and performance criteria. The guidelines
regarding the data encodings and service standards mostly refer to widely adopted
OGC standards. The performance criteria guidelines mostly define acceptable values
for classic web service quality attributes such as the minimum service availability (per
week, month or year), the maximum service response time (for particular requests)
and/or the ability to cope with a specific amount of traffic (a number of simultaneous
service requests). For governmental service providers it is also of great relevance to
monitor and report (to citizens or the superior governmental administration) whether
their services are compliant to the regulations or not.

3.1.3 Commercial Solutions

The INSPIRE directive generally allows to charge fees for maintaining data and
operating services, but does not define or recommend any specific pricing model. The
"Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik
Deutschland (AdV)"1 defines guidelines in order to harmonize different pricing and
accounting models for offline and online delivery of geospatial data in the federal states
of Germany [AdV, 2009]. These guidelines are aligned with the INSPIRE directive
and are the foundation for sales and distribution of products of the surveying and
cadastre administrations within the GDI-DE initiative. Examples for such commercially

1 Working Committee of the Surveying Authorities of the States of the Federal Republic of Germany

31

CHAPTER 3. REQUIREMENTS ANALYSIS

available product solutions are the Geobroker2 from the "Landesvermessung und
Geobasisinformation Brandenburg"3 and the Geoserver4 from the "Landesamt für
Vermessung und Geoinformation Schleswig-Holstein"5. These online shops charge fees
for the offline and online delivery of geospatial data, depending on the customers’
affiliation, the number of users, and the area of application.

The AdV pricing models for online data delivery charge fees for service usage and
downloaded content on a pay-per-request, pay-per-pixel or pay-per-feature basis. The
pricing models are not intended for charging runtime-related or infrastructure-related
fees. But in some scenarios, the service provider may would like to charge fees
for providing specific service quality levels. In other scenarios, the service provider
would like to forward the general costs for hosting a service to the service consumer.
Furthermore, in the AdV pricing models it is not possible to define define penalties (or
rewards) for not meeting (or fulfilling) promised service quality goals. All these aspects
are important for developing innovative business models that help SDI service providers
to promote their services in order to participate in the potential value chain of the future
GIS marketplace [Alameh, 2003].

3.1.4 Disaster Management

Emergency management can be defined as "the discipline and profession of applying
science, technology, planning, and management to deal with extreme events that can
injure or kill large numbers of people, do extensive damage to property, and disrupt
community life" [Drabek and Hoetmer, 1991]. The government agencies at all levels
have primary responsibility for emergency management that encompasses a wide range
of activities as for instance planning, mitigation, preparedness, response and recovery
[Johnson, 2000]. In dealing with these extreme events, many of the critical problems that
arise are inherently spatial [Cova, 1996] and GIS applications have become a critical tool
for analysis purposes in all phases of emergency management [Su and Jin, 2009]. GIS
applications can help for instance to identify the most critical areas that are affected
by a hazard, or to calculate routes to location considering the impact of the hazard
[Jeberson and Sasipraba, 2010]. An example for such an application in the context of the
GDI-DE activities is PEGELONLINE6, which provides data from over 500 water gauges
across Germany in near real-time through an OGC Sensor Observation Service (SOS)
[Bröring et al., 2012] and an intuitive website.

Providing the right information at the right time is reported to be crucial in
disaster management [Meissner et al., 2002] and a couple of challenges for geographic
information providers can be identified in this context [Parker, 2005]. One major
challenge in disaster management is that services in spatial decision support
systems must be highly-available and that requested information must be provided
instantaneously (with reliable response time) [Kurzbach et al., 2009]. This is hard to
realize, especially when the number of service consumers changes in disaster events

2 http://geobroker.geobasis-bb.de
3 The Land Survey Office of the State of Brandenburg in Germany
4 http://www.gdi-sh.de/geoserver.html
5 The Land Survey Office of the State of Schleswig-Holstein in Germany
6 http://www.pegelonline.wsv.de

32

3.2. REQUIREMENTS

not only rapidly but also unpredictably. The PEGELONLINE website for example has
approximately 400 users daily in times of no particular incidents, and 60000 users daily
in times of flooding and heavy rainfalls [Steinmann, 2007]. An example for a productive
running disaster management application is the Taiwan Debris FlowMonitoring System
[Yin et al., 2010], which is operated by the Taiwan Soil and Water Conservation Bureau
(SWCB)7. The Debris Flow Monitoring System is built upon several fixed and mobile
monitoring stations equipped with many different sensors. In the case of a debris flow
event in the typhoon season, not only the number of users (decision makers and citizens)
that request real-time or historical information but also the amount of raw sensor
data to be processed increases significantly. These changing conditions result in high
requirements regarding the provision of sufficient computational resources in order to
realize high-available and high-performance service delivery even in times when the
service is accessed concurrently by a high number of users.

3.2 Requirements

Based on these application domains and their particular service characteristics, this
section describes the requirements for the integration of SLAs in SDIs. An overview
about all requirements can be found in Appendix A.

3.2.1 Roles and Relationships

The activities in SDIs are the retrieval, portrayal and processing of geospatial data
through interoperable web services above organizational boundaries [Kiehle et al., 2006].
Typically SDIs implement the publish-find-bind pattern [Papazoglou, 2003], which
describes the dynamic binding between service providers and service consumers in
distributed and loosely-coupled environments [Massuthe et al., 2005]. The publish-find-
bind scenario (Figure 3.2) identifies three different actors: the service provider, the
service broker (sometimes referred to as service repository, service registry or service
directory) and the service consumer. First, the service provider publishes his service
along with additional metadata to a service broker. The service broker manages the
service registry and helps service consumers to find service providers. Second, the
service consumer performs service discovery operations on the service broker to find
an adequate service provider according to functional or non-functional requirements.
Finally, the service consumer uses the provided metadata to bind directly to a service.

The service consumption in the web-based SLA management architecture shall be
performed only under the terms of previously created agreements. Therefore, the
basic publish-find-bind pattern now must be enhanced by an additional ’agree’ phase
in which the service consumer and the service provider agree to certain SLA terms
prior the service consumption (Figure 3.3). Such an additional agree phase is not new
in the context of SDIs. The so-called ’publish-find-agree-bind’ pattern presented in
[INSPIRE, 2008b] and [Wagner, 2009] covers for instance rights management in SDIs
with a focus on restricting the access to SDI services. Aspects such as authentication,
authorization and pricing are covered, but SLM- and SLA-related aspects are missing.

7 http://en.swcb.gov.tw

33

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.2: Publish-Find-Bind Pattern

Figure 3.3: Publish-Find-Agree-Bind Pattern

34

3.2. REQUIREMENTS

The service provider hosts the offered resources (e.g. geospatial data or spatial models)
in its own organizational boundaries and operates the offered SDI services in its
own data center. Furthermore, the general trend in the mainstream IT hints into a
future where data, services and applications are hosted on external infrastructures
[Foster et al., 2008]. Therefore, data and infrastructure providers can be identified as
additional roles in SDIs. This enhanced view on SDI actors could potentially be
extended with a more fine-grained view on GeoDRM roles as for instance presented
in [Wagner, 2006a] and [Wagner, 2009]. However, the presented differentiation into
service provider, data provider and infrastructure provider is sufficient to highlight all
important aspects of SLA contracting in the context of SDIs.

Each of the previously mentioned SDI actors can offer and implement different SLAs.
The service provider offers for instance specific web service functionality, the data
provider specific data quality and the infrastructure provider specific infrastructure
reliability and capacity. Therefore, the additional agree phase encompasses that the
service provider has to perform a SLA aggregation phase before being able to offer
certain SLAs to the service consumer. Such a SLA aggregation phase is required even
if the data and infrastructure provider are just different departments in the service
providers’ own organizational boundaries, since such departments are mostly separated
in terms of responsibilities and accounting.

Therefore, for the integration of the SLA concept in SDIs, the publish-find-bind pattern
in SDIs must be enhanced by additional SLA negotiation steps. These additional SLA
negotiation steps shall not break completely the usual behavioral pattern of GI experts
when searching and invoking SDI services.

Requirement R1

The web-based SLA management architecture shall enable service consumers and

service providers to negotiate SLA prior the service consumption.

Requirement R2

The web-based SLA management architecture shall ensure that the basic publish-

find-bind pattern in SDIs remains.

Furthermore, for a complete integration of SLAs in SDIs, each performed step (service
publishing, service discovery and service consumption) must be enhanced by SLA-
specific capabilities.

Requirement R3

The service provider shall be able to publish his service along with additional SLA

related information to the service broker.

Requirement R4

The service consumer shall be able to perform service discovery operations on

the service broker to find an adequate service provider according to SLA related

requirements.

35

CHAPTER 3. REQUIREMENTS ANALYSIS

Requirement R5

The web-based SLA management architecture shall ensure that service consumption

is performed only under the terms of previously created agreements, in which service

consumers and service providers agree to certain terms and conditions.

3.2.2 Services, Resources and Quality

The most important element of an agreement is the actual description of the service.
In the SDI context, such a service description mainly consists of functional and non-
functional aspects of web services [Toma and Foxvog, 2008]. Furthermore, not only the
encoding but also the meaning and the quality of delivered geospatial resources are an
important aspect of service descriptions [Subbiah et al., 2007].

SERVICES

For a successful information integration in all application domains, it is always
important for service consumers to find an adequate service provider according to
individual functional requirements.

For the INSPIRE Network Services there are several technical guidance documents
available for INSPIRE Discovery Services [INSPIRE, 2011b], INSPIRE View Services
[INSPIRE, 2011a], INSPIRE Download Services [INSPIRE, 2009] and INSPIRE Transformation
Services [INSPIRE, 2010a]. To ensure that the SDIs of the member states of the EU are
compatible, these technical guidance documents and the "INSPIRE Network Services
Architecture" document [INSPIRE, 2008b] detail mandatory service interfaces, which
are aligned to corresponding OGC standards.

Requirement R6

The abstract SLA model shall allow to create service offerings reflecting the service

types that are standardized by the OGC and described by the INSPIRE directive.

Requirement R7

The abstract SLA model shall allow the definition of KPIs and SLOs reflecting the

functional requirements as defined by the INSPIRE directive.

Requirement R8

The web-based SLA management architecture shall allow the monitoring of KPIs

and the evaluation of SLOs reflecting the functional requirements as defined by the

INSPIRE directive.

RESOURCES

No less important for a successful information integration is the ability for service
consumers to find not only appropriate service types but also applicable and accurate
datasets [Paul and Ghosh, 2006].

The INSPIRE Data Specification documents8 define 34 spatial data themes that must be

8 http://inspire.jrc.ec.europa.eu/index.cfm/pageid/2

36

3.2. REQUIREMENTS

collected and maintained by the EU member states. The INSPIRE data specifications
are separated in three different appendixes, the first of which for instance defines the
spatial data themes "Administrative Units", "Cadastral Parcels", "Geographical Name",
"Hydrography", "Protected Sites", "Transport Networks", "Addresses", "Coordinate
Reference Systems" and "Geographical Grid Systems" [INSPIRE, 2008a].

Requirement R9

The abstract SLA model shall allow the definition of spatial data themes as defined

by the INSPIRE directive.

The INSPIRE Data Specification documents also define data quality criteria for the
spatial data themes. Therefore, the INSPIRE Data Specification on "Protected Sites"
[INSPIRE, 2010c] for instance defines the completeness and the accuracy as relevant
data quality elements that should be included in the dataset metadata. The completeness
of spatial data objects can be documented by using either the number of excess
(commission) or missing (omission) items in the dataset in relation to the number of
items that should have been present. The accuracy of spatial objects can be documented
by describing either the (absolute or external) accuracy within a dataset or the spatial
resolution of a spatial object.

Requirement R10

The abstract SLA model shall allow the definition of data quality elements as defined

by the INSPIRE directive.

The INSPIRE directive recognizes the need to be able "to gain access to and use spatial
data and spatial data services in accordance with harmonized conditions" [EU, 2007].
The INSPIRE Data Sharing document defines that "sharing agreements can assume
different forms, e.g. e-mail, license statement on a web-page, a click license, a license
agreement signed by all the parties involved. Whatever form the agreement takes, it
is legally binding and defines the conditions of use of the related spatial data sets and
services" [INSPIRE, 2010b]. The "Interministerielle Ausschuss für Geoinformation des
Bundes (IMAGI)"9 started the pilot project GeoLizenz [Rech, 2011] that should establish
a framework for providing harmonized license models for the public authorities in
Germany. The framework contains 8 different license models that follow the open data
philosophy [Ayers, 2007] and allow to grant usage rights independent of any pricing
models.

Requirement R11

The abstract SLA model shall allow the definition of license models for the provision

of access to spatial datasets as recognized by the INSPIRE directive and implemented

by the GeoLizenz license models.

In some cases it is possible to check whether spatial data is inconsistent
[Vallières et al., 2005] or complete [van Oort, 2005]. In other cases it is possible
to attach information about the uncertainty in the data capture and mapping
process [Comber and Wadsworth, 2005] or additional data provenance information

9 http://www.imagi.de/

37

CHAPTER 3. REQUIREMENTS ANALYSIS

[Wang et al., 2008] to the data. However, the automated data validation and quality
assessment processes (checking whether the delivered data is in accordance with
demanded category, quality and license) is not part of this thesis.

QUALITY

Some of the application domains and corresponding scenarios may have challenging
requirements regarding the service quality, while others may have lower requirements.
However, in all application domains it is important for service consumers (service
providers) to be aware of the service quality that can (shall) be delivered.

In Article 16 of the INSPIRE directive minimum performance criteria for all Network
Services are required. Furthermore, the INSPIRE Network Services Performance
Guidelines [INSPIRE, 2007] define such minimum performance criteria to be included
in each of the Implementing Rules (IR) of all Network Services. Although the
official performance guideline document is a ’non-paper’ (it does not represent an
official position of the European Commission), it "record(s) the consensus reached
among the Network Services Drafting team, other Drafting Teams and the European
Commission" [INSPIRE, 2007]. Furthermore, it helps other stakeholders to "better
understand the framework used for the performance criteria included of the different
Network Services Implementing Rules" [INSPIRE, 2007]. However, the performance
guidelines document analyses the QoS attributes of the W3C [Lee et al., 2003] and
selects all of them (except the scalability attribute) as applicable from the INSPIRE
perspective. After comparing and combining the W3C and other approaches such as
[Brahnmath et al., 2002], the following set of QoS attributes has been selected to guide
the definition of minimum performance criteria for all Network Services: performance,
reliability, capacity, availability, security, regulatory and interoperability of a web
service. Based on the selected set of QoS attributes, the Network Services Drafting
Team defines concrete performance criteria in the IR of all Network Services. The
INSPIRE View Services for instance must implement a maximum initial response time
of 5 seconds in normal situations and shall be available 99% of the time. Furthermore,
all INSPIRE View Services should be able to fulfill both of these criteria if the number
of served simultaneous service requests is up to 20 per second. These minimum
performance criteria must be implemented by all EU member states.

Requirement R12

The abstract SLA model shall allow the definition of KPIs and SLOs reflecting the

minimum performance criteria as defined by the INSPIRE directive.

Requirement R13

The web-based SLA management architecture shall allow the monitoring of KPIs and

the evaluation of SLOs reflecting the minimum performance criteria as defined by

the INSPIRE directive.

3.2.3 Pricing and Accounting

In some of the application domains service providers may would like to impose service
usage fees, while in others they are obligated to do so. However, in all application

38

3.2. REQUIREMENTS

domains it is important for service consumers to be able to perform a benefit-cost ratio
analysis before they bind to a service provider.

The article 14(1) of the INSPIRE directive defines that the "Member States shall ensure
that the services (...) are available to the public free of charge", but the article
14(2) of the INSPIRE directive also allows "a public authority (...) to apply charges
where such charges secure the maintenance of spatial datasets and corresponding
data services, especially in cases involving very large volumes of frequently updated
data". Furthermore, the Article 14 (4) of the INSPIRE directive defines, that "where
public authorities levy charges for the services (...), Member States shall ensure that e-
commerce services are available. Such services may be covered by disclaimers, click-
licenses or, where necessary, licenses". In the "AdV-Gebührenrichtlinie" document
[AdV, 2009] the AdV defines guidelines in order to harmonize different pricing and
accounting models for offline and online delivery of geospatial data in the federal
states of the Federal Republic of Germany. These guidelines are aligned with the
INSPIRE directive and are the foundation for sales and distribution of products of the
survey administrations within the GDI-DE initiative such as stipulated for instance
in the "Gebührenordnung für das amtliche Vermessungswesen und die amtliche
Grundstückswertermittlung in Nordrhein-Westfalen (VermWertGebT)" [NRW, 2010].
The VermWertGebT defines many different kinds of complex pricing models (e.g.
flatrate, pay per click or sliding scale fees), which could potentially be required and
implemented by all member states of the EU.

Requirement R14

The abstract SLA model shall allow the definition of complex pricing models as

described by the "AdV-Gebührenrichtlinie" and the "VermWertGebT".

Requirement R15

The web-based SLA management architecture shall allow the accounting of

service offerings aligned with complex pricing models as described by the "AdV-

Gebührenrichtlinie" and the "VermWertGebT".

The implementation of accounting and billing procedures is out of the scope of this
thesis. Nevertheless, the proposed solution for the integration of the SLA concept in
SDIs should allow service providers as well as service consumers to gather and access
all required information in order to realize accounting and billing without causing any
legal issues.

3.2.4 Security and Rights Management

The on-demand and online negotiation of SLAs can result in legally binding
electronic contracts [Gisler et al., 2000]. Therefore, an approach for the integration
of the SLA concept in SDIs shall be developed with respect to generic security
objectives as for instance confidentiality, integrity, authentication and non-repudiation
[Hafner and Breu, 2008]. Furthermore, in some application domains it is important to
implement rights management mechanisms in order to implement access control to
geospatial resources [Herrmann, 2010].

39

CHAPTER 3. REQUIREMENTS ANALYSIS

The development of Digital Rights Management (DRM) mechanisms for geospatial data
and services is not part of this thesis. Such approaches have been widely investigated
as for instance in the GeoDRM reference model [Vowles, 2006], the GeoXACML
specification [Matheus and Herrmann, 2011] and past OGC testbeds [Wagner, 2006b]
[Gartmann and Leinenweber, 2009]. The GeoXACML specification for instance defines
a geo-specific extension to the OASIS XACML specification [Moses, 2005] in order to
provide support for spatial data types and spatial authorization decision functions in
the encoding of access rights. The XACML model for an access control system can
be used in the context of GeoXACML to enforce the access restrictions on geographic
information.

Requirement R16

The abstract SLA model shall allow the integration of access rights policies that are

based on existing approaches such as GeoXACML.

Requirement R17

The web-based SLA management architecture shall allow the enforcement of access

rights policies that are based on existing approaches such as GeoXACML.

3.2.5 Infrastructure Management

In all application domains it is important for service providers and service consumers
to agree on a certain service quality level that can be realized by the service provider. In
some cases, service consumers may have specific requirements regarding the computing
capacity of the service.

Requirement R18

The abstract SLA model shall allow the definition of KPIs and SLOs reflecting

infrastructure requirements and capabilities.

Requirement R19

The web-based SLA management architecture shall allow the monitoring of KPIs

and the evaluation of SLOs reflecting infrastructure requirements and capabilities.

Furthermore, in all application domains it is important for service providers to
implement and maintain differentiated services in an economic fashion. In some of the
application domains the service provider also may wish to pass the accruing costs for
maintaining the actual service to the service consumer. That enables service providers
to offer pricing models in which service consumers have to pay more or less, depending
on whether they need for instance high availability or best effort service delivery.

Requirement R20

The abstract SLA model shall allow the definition of complex pricing models

reflecting the service infrastructure utilization.

40

3.2. REQUIREMENTS

Requirement R21

The web-based SLA management architecture shall allow the accounting of service

offerings aligned with complex pricing models reflecting the service infrastructure

utilization.

For service providers it is always important to be in a position to actually deliver
promised service quality to specific service consumers or in an application context.

Requirement R22

The abstract SLA model shall allow the definition of infrastructure management

information in order to realize differentiated services under the terms of previously

created agreements.

Requirement R23

The web-based SLA management architecture shall support strategies for realizing

differentiated services under the terms of previously created agreements.

3.2.6 Standards and Technology

Interoperable and open standards are important key factors for the successful sharing
of geospatial resources in SDIs [Wytzisk and Sliwinski, 2004]. Several potential ways
for attaching SLA functionality to OWS can be identified. A conceptual redesign
of all OWS interface specifications interferes with the huge number of existing
OGC-compliant server and client implementations. To support SLA functionality,
the modified OWS interface specifications have to be adopted by all server and
client implementations. The probability of obtaining a broader acceptance of such
a radical solution in the community’s standardization process and for instance
from government agencies appears to be very low. Therefore, the OGC Service
Architecture model [Percivall, 2002] recommends that a security architecture should
"leverage the existing OGC specifications by defining generic (...) licensing extensions"
[Schäffer and Gartmann, 2011].

Requirement R24

The abstract SLA model and the web-based SLA management architecture shall be

developed with respect to the OGC Standards Baseline. They shall not replace any

previous OGC specifications, but should depend and build on them.

In the web-based SLA management architecture, service consumers should be able to
perform a SLA-aware service discovery. To maintain and foster interoperability, the
SLA-aware service discovery and the following SLA negotiation process should be
realized independent of vendor- and implementation-specific solutions. That enables
service consumers to compare service offerings and corresponding business models of
different service providers.

Requirement R25

The development of a standardized document encoding for the abstract SLA model is

strongly recommended.

41

CHAPTER 3. REQUIREMENTS ANALYSIS

Requirement R26

The development of a standardized communication protocol for realizing SLA

negotiation and service consumption under the terms of previously created SLAs is

strongly recommended.

Such a standardized document encoding should contain definitions for describing
the agreement context, the service terms (including service descriptions and
domain-specific KPIs) and the guarantee terms (including domain-specific SLOs and
corresponding business values). Furthermore, such a standardized document encoding
should contain definitions for describing meaningful metrics in order to establish a
common understanding on how to monitor the KPIs and how to evaluate the SLOs.
All these definitions should be designed in flexible way in order to be able to integrate
new domain-specific service descriptions and KPIs.

Requirement R27

The abstract SLA model and the web-based SLA management architecture should be

designed in a flexible way in order to be applicable in other application domains.

3.3 Summary

The stakeholders in the SDI development are central or local governmental
organizations, the commercial sector, non-governmental organizations, or the academic
sector. They all use the SDI building blocks in different application domains as for
instance eGovernment applications, legal frameworks, commercially available product
solutions and disaster management. Each of these application domains has varying
service level characteristics and different business conditions. Some of the application
domains may have challenging requirements regarding the service quality, while others
may have lower requirements. In some cases the service usage is free of charge, in
others the service provider charges a fee for using the service.

Based on these application domains and their particular service level characteristics
and business conditions, this chapter describes the conceptual requirements for the
integration of SLAs in SDIs. The domain-specific requirements cover aspects such as
the functional and non-function description of geospatial services and datasets, the
definition of dynamic pricing and accounting models for the offline and online delivery
of geospatial data, the enforcement of access rights policies for geospatial data and
services, the management of (virtualized) hardware infrastructure in order to fulfill
challenging performance and availability criteria, and the general integration of the
SLA concept in the OGC Standards Baseline.

The ORM does not contain any standards or best practices for the integration of SLAs
in SDIs. Furthermore, the evaluated domain-specific requirements are not considered
by existing (web service) standards for specifying the structure of agreements and for
managing the complete agreement life cycle. Therefore, the next two chapters develop
a concept for the integration of SLAs in SDIs. The concept consists of an abstract
SLA model and a web-based SLA management architecture. The abstract SLA model
describes the domain-specific structure and content of SLAs that can be applied in SDIs

42

3.3. SUMMARY

that are based on standards developed by the OGC. The web-based SLA management
architecture covers not only the agreement negotiation and service consumption, but
also the infrastructure management under the terms of previously created agreements.

43

CHAPTER 3. REQUIREMENTS ANALYSIS

44

Chapter 4

Agreement Formalization

Based on the abstract scenario and the evaluated requirements, this chapter formalizes
an abstract SLA model that is applicable in SDIs. The aim of the abstract SLA model
is to provide an abstract representation of the agreement on a conceptual level, which
is independent of any specific data encoding format. Although the abstract SLA model
should be independent of any specific technology, most of the proposed elements and
attributes are derived from common standards as for instance the OGC Web Services
Common Standard [Whiteside and Greenwood, 2010] specification.

The abstract SLA model is composed of several complement parts. Section 4.1 describes
the domain-specific structure and content of the abstract SLA model. Section 4.2
describes how to monitor domain-specific service properties. Section 4.3 describes how
to evaluate the status of service level objectives and how to calculate certain business
values.

4.1 Agreement Structure

The structure of the abstract SLA model is derived from the agreement structure
presented in [Andrieux et al., 2005] and mainly consists of the following three parts.
The Agreement Context part contains general information such as contact details of the
contracting parties and for instance the lifetime of an agreement. The Service Terms

part contains domain-specific information about the services to which an agreement is
related (Service Description), a domain-specific reference to a concrete service instance
(Service Reference) and a set of domain-specific properties associated with the service
(Service Properties). The Guarantee Terms part specifies the service quality goals that the
contracting parties are agreeing (Service Level Objectives) and general business related
properties such as service usage costs and for instance penalty fees (Business Values).

Figure 4.1 shows the structure of the abstract SLA model as an Entity Relationship
Model (ERM) [Chen, 1976] in the Crow’s Foot Notation [Shelly et al., 1998]. This sort of
diagram allows the creation of an information model, which is an abstract description of
the entities of a system and an abstract description of how these entities relate to each
other [Westerinen et al., 2001]. Figure 4.2 shows the cardinality notation of the Crow’s
Foot Notation. In the first example, an object A must contain exactly one object B. In the
second example, an object A must contain one or many objects B. In the third example,
an object A can contain zero, or one, or many objects B. In the third example, an object

45

CHAPTER 4. AGREEMENT FORMALIZATION

Figure 4.1: Agreement Structure

46

4.1. AGREEMENT STRUCTURE

Figure 4.2: Crow’s Foot Notation (adapted from [Shelly et al., 1998]).

Figure 4.3: Exclusive Or Constraint (XOR)

A can contain zero, or one object B. Figure 4.3 shows how to define an exclusive or
(XOR) relationship between two or more entities by a dotted circle with an X through
it [Halpin, 2001]. In the example, an object A either contains one object B or one object
C, but not both.

The examples provided in this section are shown in JavaScript Object Notation (JSON)
format [Crockford, 2006], a lightweight and human-readable open standard that is
commonly used for data exchange in JavaScript [Flanagan, 1998]. Despite of the JSON
format, this section provides an abstract SLA model that is independent of any specific
data encoding format, and that can be implemented in several ways.

4.1.1 Agreement Context

An agreement is a formal contract between a service consumer and a service provider
defining mutual understandings and expectations of service functionality, service
quality and additional financial arrangements. Therefore, an agreement shall contain
general information about the contracting parties and additional contract management
information. The contracting parties and their respective roles are typically the "service

47

CHAPTER 4. AGREEMENT FORMALIZATION

Figure 4.4: Agreement Context Structure

consumer" and the "service provider" [Jin et al., 2002]. Sometimes, the roles involved
in the SLA negotiation process are referred to as the "agreement initiator" and the
"agreement responder" [Andrieux et al., 2005]. In the chosen publish-find-agree-bind
pattern (Section 3.2.1) the service consumer is always the initiator of the agreement
negotiation process. Therefore, the abstract SLA model focus solely on the terms
"service consumer" and "service provider" as the contracting parties. However, the
Agreement Context part of the abstract SLA model shall contain the following elements
(Figure 4.4):

Service Provider

The Service Provider element must contain information about the organization
operating the service, such as contact details and for instance the hours of
service. The GetCapabilities operation of an OWS returns metadata about
the organization operating an OWS [Whiteside and Greenwood, 2010]. The
ProviderName element in the GetCapabilities response document is an unique
identifier for a service provider organization. The ProviderSite element in the
GetCapabilities response document refers to the most relevant web site of
the service provider and the ServiceContact element in the GetCapabilities
response document specifies information for contacting a service provider. These
information are derived from the corresponding classes in ISO 19115 [ISO, 2003]
and contain common contact details such as the postal address, telephone or
facsimile number, electronic mail address and the hours of service. All these
elements are appropriate for providing information about the service provider
and can be used in the Agreement Context part of the abstract SLA model.

Service Consumer

The Service Consumer element shall contain information about the service
consumer such as contact details (maybe a different home and billing address) and
for instance a banking account. The metadata elements from the GetCapabilities
response document can also be used for providing information about the service
consumer in the Agreement Context part of the abstract SLA model.

48

4.1. AGREEMENT STRUCTURE

Contract Details

An agreement is naturally a temporary contract and therefore it normally has
fixed start and end dates. Sometimes it is possible to end contracts ahead
of schedule (e.g. in case of contract violations) or to automatically perform a
contract renewal after a specific period of time under the same contract terms
and conditions (e.g. after missing a contract cancellation deadline). However,
such advanced opportunities for contract renegotiation are not considered by
the abstract SLA model and the web-based SLA management architecture.
Therefore, fixed start and end dates are entirely sufficient to support the required
functionality.

An example of the Agreement Context part can be found in Listing 4.1.

Listing 4.1: Agreement Context Example

1 "Agreement Context ":
2 {
3 "Service Provider ":
4 {
5 "Name": "Institute for Geoinformatics",
6 "Site:" "http :// www.ifgi.de",
7 "Contact ":
8 {
9 "IndividualName ": "Bastian Baranski",
10 "PositionName ": "Research Associate",
11 "ContactInfo ":
12 {
13 "Phone":
14 {
15 "Voice": "+49 251 8333071" ,
16 "Facsimile ": "+49 251 8339763"
17 },
18 "Address ":
19 {
20 "DeliveryPoint ": "Weseler Strasse 253",
21 "City": "Muenster",
22 "PostalCode ": "48151" ,
23 "Country ": "Germany",
24 "ElectronicMailAddress ": "baranski@uni -muenster.de"
25 },
26 "HoursOfService ": "The hours of service are Monday to Friday from 8

AM to 16 PM.",
27 "ContactInstructions ": "Please contact the service desk via phone or

mail."
28 }
29 }
30 },
31 "Contract Detail ":
32 {
33 "Contract Period ":
34 {
35 "Start": "2010 -07 -04 T13 :00:00+02:00" ,
36 "End": "2012 -07 -09 T13 :00:00+02:00"
37 }
38 }
39 }

The presented list of elements for the Agreement Context part can potentially be
extended with a more fine-grained view on organizational processes and required
contract information. Therefore, a standardized document encoding format for
implementing the abstract SLA model should be designed in a flexible way to allow

49

CHAPTER 4. AGREEMENT FORMALIZATION

the integration of additional domain-specific information.

4.1.2 Service Description

An agreement shall contain domain-specific information about the service to which
an agreement pertains. The domain-specific service description should contain a
human-readable description of the service (to make a manual service discovery more
user-friendly) as well as a machine-readable description of the service (to allow the
implementation of interoperable server and client implementations). Therefore, the
Service Description section of the abstract SLA model shall contain the following
elements (Figure 4.5):

Title

The Service Description section must contain a short human-readable title of
the service to which an agreement pertains. The Title element of the
GetCapabilities response document defines such a human-readable title of a
specific service instance.

Abstract

The Service Description section should contain a brief narrative description of
the service to which an agreement pertains. The Abstract element of the
GetCapabilities response document defines such a human-readable narrative
description of a specific service instance.

Keywords

The Keywords element of the GetCapabilities response document is an
unordered list of one or more commonly used or formalized keywords or phrases
that can be used to describe a specific service instance, the service context or the
service capabilities.

Type

The OGC standards are documents describing service interfaces and data
encodings. To realize seamless data exchange via interoperable web services
and client implementations, it is important to know the specific OGC standard
that is supported by a service instance. The ServiceType element of the
GetCapabilities response document specifies an URN from a registry of services
and identifies an OGC service interface specification. In the GetCapabilities
response document such an URN shall comply to the structures as specified for
instance in [Cox, 2010d] and [Reed, 2004]. These URNs must be used in the Service
Description section to provide a machine-readable type identifier of the service to
which an agreement pertains.

Version

The ServiceTypeVersion element of the GetCapabilities response document
defines the concrete version of an OGC service interface specification which is
implemented by a specific service instance. This value could be used in the

50

4.1. AGREEMENT STRUCTURE

Figure 4.5: Service Description Structure

51

CHAPTER 4. AGREEMENT FORMALIZATION

Service Description section to provide a machine-readable version identifier of an
OGC service interface specification that is supported by the service to which an
agreement pertains.

Profile

In the context of OWS the term "Application Profile" (sometimes referred to
as "Application Schema") is used whenever an extension of an OGC service
interface specification or data encoding is required to match a give use case with
extended functionality that could not be covered by the original OGC service
interface specification or data encoding [Whiteside and Greenwood, 2010]. An
application profile extends and/or restricts for instance the XML elements of an
OGC standard in order to give a service provider the opportunity to gather or
deliver additional information. Such an application profile can be identified by an
URN from a registry of application profiles and contains for instance a reference
to an XML schema describing a service interface. The Profile element of the
GetCapabilities response document contains such a reference to an application
profile, which can be used in the abstract SLA model to provide additional service
information.

WSDL

The Web Services Description Language (WSDL) is an XML language
for describing the functional characteristics of a web service as for
instance the service interface, protocol bindings and network endpoints
[Christensen et al., 2001]. An OWS typically does not have a Simple Object
Access Protocol (SOAP) binding [W3C, 2007] and is therefore not described
by a WSDL document. But if an OWS supports SOAP, the WSDL element of
the GetCapabilities response document specifies a reference to such a WSDL
document, which can be used in the abstract SLA model to provide additional
machine-readable information about the service functionality.

An example of the Service Description section can be found in Listing 4.2.

Listing 4.2: Service Description Example

1 "Service Description ":
2 {
3 "Title": "INSPIRE View Service",
4 "Abstract ": "This service instance is an INSPIRE View Service

implementation .",
5 "Keywords ": "INSPIRE , View Service , OGC , WMS",
6 "Type": "urn:ogc:doc:is:wms :1.1.1"
7 }

The presented list of potential elements for the Service Description section of the abstract
SLA model can potentially be extended with a more fine-grained view on service
descriptions. Since this thesis focuses on SDIs that are based on OGC standards, the
described elements are sufficient to meet all stipulated requirements. Nevertheless, a
potential standardized document encoding for implementing the abstract SLA model
should be designed in a flexible way to allow the integration of additional domain-
specific service descriptions.

52

4.1. AGREEMENT STRUCTURE

Figure 4.6: Service Reference Structure

4.1.3 Service Reference

An agreement must contain a domain-specific reference to a concrete service instance
to which the agreement is related. The Service Reference section of the abstract SLA
model shall contain the following elements (Figure 4.6):

URL

In the context of SDIs that are based on standards developed by the OGC,
services offerings are typically referenced by web service endpoints as for instance
described in [Gudgin et al., 2006]. In most cases, a simple Hypertext Transfer
Protocol (HTTP) Uniform Resource Locator (URL) is such an appropriate service
reference.

An example of the Service Reference section can be found in Listing 4.3.

Listing 4.3: Service Reference Example

1 "Service Reference ":
2 {
3 "URL": "http :// server:port/path"
4 }

In some cases, the SDI service is protected with authentication mechanisms such as
HTTP Authentication [Franks et al., 1999]. In that case, the service consumer has to
provide additional credentials (e.g. username and password) in order to invoke a service.
Therefore, a potential standardized document encoding for implementing the abstract
SLA model should be designed in a flexible way to allow the integration of additional
information on how users can obtain required credentials in order to invoke the service.

4.1.4 Service Properties

An agreement typically defines a set of domain-specific KPIs that are used to measure
the service quality. Therefore, the Service Properties section of the abstract SLA
model should contain a list of zero, or one, or many Service Property elements
(Figure 4.7). Each of these Service Property elements in the Service Properties section
specifies which service property shall be monitored by the web-based SLA management
architecture during agreement runtime. Therefore, the Service Property element of
the abstract SLA model shall contain the following elements (Figure 4.7):

53

CHAPTER 4. AGREEMENT FORMALIZATION

Figure 4.7: Service Properties Structure

54

4.1. AGREEMENT STRUCTURE

Name

Each Service Property element can be referenced in the Service Level Objectives
and the Business Values section of the abstract SLA model. Therefore, each
Service Property element must contain a short and unique name.

Title

Each Service Property element element must contain a short human-readable
title of the service property that shall be monitored by the web-based SLA
management architecture during agreement runtime.

Abstract

Each Service Property element should contain a brief narrative description of
the service property that shall be monitored by the web-based SLA management
architecture.

Type

Each Service Property element must contain an URN from a registry of service
property types that identifies the concrete service property that shall be monitored
by the web-based SLA management architecture during agreement runtime.
Section 4.3.1 defines such an URN namespace for identifying concrete service
property types.

Table 4.1 provides an overview about all service property categories that are supported
by the abstract SLA model. Some of these categories reference service characteristics
that can be automatically monitored during agreement runtime (e.g. the web service
response time). In the case that a Service Property element is from one of these
categories, it must contain a Monitoring element. This element specifies how the
web-based SLA management architecture should measure the service property during
agreement runtime. Other categories describe aspects of the service delivery that cannot
be automatically monitored during agreement runtime (e.g. the license for sharing data).
In the case that a Service Property element is from one of these categories, it must
contain either a Value or a Reference element. These elements specify non-varying
service characteristics that are determined and guaranteed by the service provider.

Table 4.1: Service Property Categories

Category Description

Resource The resource-related service properties reference resources
that are offered by a service as for instance maps or processes.
The availability or conformance of these resources can be
automatically monitored during agreement runtime.

Table 4.1 – Continued on next page

55

CHAPTER 4. AGREEMENT FORMALIZATION

Table 4.1 – Continued from previous page

Category Description

Runtime The runtime-related service properties reference classic web
service quality characteristics as for instance the service
availability or the service response time. The values of
such characteristics can be automatically monitored during
agreement runtime.

Usage The usage-related service properties reference the service
or the infrastructure utilization by the service consumer.
The behavior of the service consumer can be automatically
recorded during agreement runtime.

Data The data-related service properties reference quality aspects
of the delivered data as for instance the data accuracy or the
license for data sharing. These data characteristics cannot
be automatically measured or validated during agreement
runtime. Therefore, such service properties define guarantees
that are provided by the service provider.

Security The security-related service properties reference security
policies that are used to enforce service access control. These
policies can be used by the web-based SLA management
architecture for instance to restrict the service access to
identified user groups.

Infrastructure The infrastructure-related service properties reference
different aspects of the service hosting environment as for
instance the available Central Processing Unit (CPU) clock
speed. These non-varying information can be attached to an
agreement in order to define infrastructure requirements of
the service consumer or to define infrastructure management
information that are used internally by the service provider.

Monitoring

In case the Service Property element is from one of the categories that
can be automatically monitored during agreement runtime, it must contain a
description of how the web-based SLA management architecture should monitor
the relevant service property. Section 4.2 describes the potential content of the
Monitoring element and the available monitoring mechanisms of the web-based
SLA management architecture.

Value

In case the Service Property element is from one of the categories that cannot be
automatically monitored during agreement runtime, it must contain a description
of the service property. The Value element provides a non-varying description
directly included in the agreement.

56

4.1. AGREEMENT STRUCTURE

Reference

In case the Service Property element is from one of the categories that cannot be
automatically monitored during agreement runtime, it must contain a description
of the service property. The Reference element provides a potentially varying
description by an URL pointing to a public accessible resource (e.g. a file on a web
server) that contains the actual description.

An example of the Service Properties section can be found in Listing 4.4.

Listing 4.4: Service Properties Example

1 "Service Properties ":
2 {
3 (...)
4 "Service Property ":
5 {
6 "Name": "availability",
7 "Title": "Service Availability",
8 "Abstract ": "The general availability of the service.",
9 "Type": "urn:ogc:def:sla:property:runtime:availability",
10 "Monitoring ":
11 {
12 (...)
13 }
14 },
15 "Service Property ":
16 {
17 "Name": "response",
18 "Title": "Response Time",
19 "Abstract ": "The response time of the service.",
20 "Type": "..." ,
21 "Monitoring ":
22 {
23 (...)
24 }
25 },
26 "Service Property ":
27 {
28 "Name": "capacity",
29 "Title": "Service Capacity",
30 "Abstract ": "The response time of the service for multiple parallel

requests.",
31 "Type": "..." ,
32 "Monitoring ":
33 {
34 (...)
35 }
36 },
37 "Service Property ":
38 {
39 "Name": "pixel",
40 "Title": "Sum of Pixels",
41 "Abstract ": "The accessed number of pixels.",
42 "Type": "..." ,
43 "Monitoring ":
44 {
45 (...)
46 }
47 },
48 (...)
49 }

The Service Properties section of the abstract SLA model allows to define more than

57

CHAPTER 4. AGREEMENT FORMALIZATION

Figure 4.8: Service Level Objectives Structure

one Service Property element for the same service property type. That allows to
define different monitoring setups for one service property and that helps to define
more complex service level objectives.

4.1.5 Service Level Objectives

Based on the defined Service Property elements of the abstract SLA model, the Service
Level Objectives section defines concrete service quality goals both contracting parties
agreed upon in the agreement. Therefore, the Service Level Objectives section should
contain a list of zero, or one, or many Service Level Objective elements (Figure 4.8).
Each Service Level Objective element defines a concrete service quality goal and
provides a description on how to evaluate whether the specific service quality goal is
fulfilled or violated. Therefore, the Service Level Objective elements of the abstract
SLA model shall contain the following elements (Figure 4.8):

Name

Each Service Level Objective element can be referenced in the Business Values
section of the abstract SLA model. Therefore, each Service Level Objective
element must contain a short and unique name.

Title

Each Service Level Objective element must contain a short human-readable
title of the concrete service level objective that shall be evaluated by the web-
based SLA management architecture.

58

4.1. AGREEMENT STRUCTURE

Abstract

Each Service Level Objective element should contain a brief narrative
description of the service level objective.

Obligated

Each Service Level Objective element must define which contracting party is
obligated to realize the service level objective (either "Service Provider" or "Service
Consumer").

Status

Each Service Level Objective element must contain a machine-readable
expression defining the evaluation process of the service level objective. The
result of the evaluation process is the status of the service level objective (either
’false’ for a guarantee violation or ’true’ for a guarantee conformance). Section 4.3
defines a DSL that can be used to define the evaluation process of the service level
objective.

An example of the Service Level Objectives section can be found in Listing 4.5.

Listing 4.5: Service Level Objectives Example

1 "Service Level Objectives ":
2 {
3 "Service Level Objective ":
4 {
5 "Name": "InspireAvailability"
6 "Title": "INSPIRE (Availability)",
7 "Abstract ": "The probability of a Network Service to be available shall

be 99% of the time.",
8 "Obligated ": "Service Provider",
9 "Status ": "..."
10 },
11 "Service Level Objective ":
12 {
13 "Name": "InspirePerformance"
14 "Title": "INSPIRE (Performance)",
15 "Abstract ": "The response time for sending the initial response to a Get

Map Request to a view service shall be maximum 5 seconds in normal
situation.",

16 "Obligated ": "Service Provider",
17 "Status ": "..."
18 },
19 "Service Level Objective ":
20 {
21 "Name": "InspireCapacity"
22 "Title": "INSPIRE (Capacity)",
23 "Abstract ": "The minimum number of served simultaneous service requests

to a view service according to the performance quality of service
shall be 20 per second.",

24 "Obligated ": "Service Provider",
25 "Status ": "..."
26 }
27 }

59

CHAPTER 4. AGREEMENT FORMALIZATION

Figure 4.9: Business Values Structure

4.1.6 Business Values

The Business Values section of the abstract SLA model defines business aspects of the
agreement as for instance service usage costs. Therefore, the Business Values section
should contain a list of zero, or one, or many Business Value elements (Figure 4.9). Each
Business Value element identifies a concrete business aspect and provides a description
on how to calculate the business value. Therefore, the Business Value element of the
abstract SLA model shall contain the following elements (Figure 4.9):

Name

Each Business Value element can be referenced by another Business Value
element of the abstract SLA model. Therefore, each Business Value element must
contain a short and unique name.

Title

Each Business Value element must contain a short human-readable title of the
business value.

Abstract

Each Business Value element should contain a brief narrative description of the
business value.

60

4.2. AGREEMENT MONITORING

Obligated

Each Business Value element must define which contracting party is charged for
the business value (either "Service Provider" or "Service Consumer").

Type

Each Business Value element must contain an URN from a registry of business
value types that identifies the concrete business value that shall be calculated by
the web-based SLA management architecture during agreement runtime. Section
4.3.1 defines such an URN namespace for identifying concrete business value
types.

Value

Each Business Value element must contain a machine-readable expression
defining the calculation process of the business value. The result of the calculation
process is for instance the service usage fee in Euro. Section 4.3 defines a DSL that
can be used to define the calculation process of the business value.

An example of the Business Values section can be found in Listing 4.6.

Listing 4.6: Business Values Example

1 "Business Values"
2 {
3 "Business Value ":
4 {
5 "Name": "CostsPerYear",
6 "Title": "Usage Costs (Year)",
7 "Abstract ": "The cost to be assessed for using the service on a yearly

basis (in Euro).",
8 "Obligated ": "Service Consumer",
9 "Type": "..." ,
10 "Value": "..."
11 },
12 "Business Value ":
13 {
14 "Name": "PenaltyPerYear",
15 "Title": "Penalty (Year)",
16 "Abstract ": "The penalty to be assessed for not meeting service level

objectives on a yearly basis (in Euro).",
17 "Obligated ": "Service Provider",
18 "Type": "..." ,
19 "Value": "..."
20 }
21 }

4.2 Agreement Monitoring

The Service Description section of the abstract SLA model contains basic domain-specific
information about the service to which an agreement pertains. The Service Properties

section of the abstract SLA provides information about the resources that are offered by
a service (Resource-Related Properties), information about classic web service quality
(Runtime-Related Properties) and information about the service usage (Usage-Related

61

CHAPTER 4. AGREEMENT FORMALIZATION

Properties). These service property categories can be assessed and measured during
agreement runtime. The gathered information are the foundation for the evaluation
of the service level objectives. Furthermore, the Service Properties section provides
information about the service hosting environment (Infrastructure-Related Properties)
or the delivered data (Data-Related Properties). These service property categories
cannot be monitored during agreement runtime, but they can be use as an agreement
management input for service providers and service consumers.

To obtain the concrete information about the service properties during agreement
runtime, the following two main methods for monitoring web services can be identified
as for instance described in [Berger, 2005] and [Dotcom-Monitor, 2012]:

• Active Monitoring

The so-called "active monitoring" process simulates end-user behavior by creating
real traffic at the web service (Figure 4.10a). To realize active monitoring, a
monitoring software continuously sends pre-defined requests to the service and
analyzes multiple metrics as for instance service availability and response time.
There are a number of benefits that can be realized with the active monitoring
approach. The proactive approach allows to permanently simulate peak traffic
and therefore to detect potential service level problems before they actually come
up at the real end-user side. Furthermore, the active monitoring approach allows
to monitor the web service from nearly every location and therefore to detect
issues that occur only when accessing the web service from outside of the service
providers’ network. The main disadvantage of the active monitoring approach is
that it does not provide information about the real service usage and therefore no
evidence whether a service really delivers aimed service level.

• Passive Monitoring

The so-called "passive monitoring" process captures and analyzes real end-user
traffic at the web service (Figure 4.10b). To capture and analyze real end-users traffic
the service provider can use enterprise management tools or common software for
analyzing web server logging files. The main advantage of the passive monitoring
approach is to monitor the service level as seen by the real end-user and to have
evidence whenever a service failed to deliver aimed service level to a specific user or
in an application context. Additionally, passive monitoring allows to record real end-
user behavior on the web service. That allows to check whether the user uses the
service within potential constraints regarding the guarantee terms (e.g. maximum
number of hourly service requests) and to realize pay-as-you-go business models
(e.g. service usage costs depending on the amount of monthly service requests).
The main disadvantages of the passive monitoring approach are that it requires real
end-user traffic and that it offers no ability to monitor issues that occur outside of
the service providers’ network. Therefore, passive monitoring reports service level
problems only after they happened.

To offer the ability to define whether a service property shall be monitored with active
or passive monitoring mechanisms, the Monitoring element shall contain either an
Active Monitoring or a Passive Monitoring element (Figure 4.11).

62

4.2. AGREEMENT MONITORING

Figure 4.10: Monitoring Procedures

(a) Active Monitoring Procedure

(b) Passive Monitoring Procedure

Figure 4.11: Monitoring Structure

63

CHAPTER 4. AGREEMENT FORMALIZATION

Figure 4.12: Active Monitoring Procedure

X X

X X X X

X

XX X X X

4.2.1 Active Monitoring

The Active Monitoring element of the abstract SLA model provides information about
how to simulate real end-user traffic at the web service. It details the pre-defined
monitoring requests and describes how often these pre-defined monitoring requests
shall be send during agreement runtime to the service. Figure 4.12 shows a graphical
representation of the active monitoring procedure. Therefore, the Active Monitoring
element of the abstract SLA model shall contain the following elements (Figure 4.13):

Start

To avoid conflicts with real user traffic, to avoid traffic peaks at the server, or to
limit the monitoring process to business hours, the Active Monitoring element
offers the ability to limit the active monitoring process to a specific time range per
day. The Start element defines the monitoring start time.

64

4.2. AGREEMENT MONITORING

Figure 4.13: Active Monitoring Structure

65

CHAPTER 4. AGREEMENT FORMALIZATION

Figure 4.14: Active Monitoring Session Structure

Stop

The Stop element defines the monitoring end time. If the end time is before the
start time, the defined time range covers a day changeover.

Period

The Period element defines the overall monitoring frequency. If the period value
is for instance set to 360000 milliseconds, a "monitoring session" starts each 6
minutes within the defined time range.

Session

The "monitoring session" means the actual process of sending pre-defined
requests to the web service in order to simulate end-user traffic and to measure
relevant service properties. The Session element provides more detailed
information about the monitoring session configuration.

Request

The active monitoring process implies the sending of one or more pre-defined
requests to the web service. The Request element provides more detailed
information about the pre-defined requests.

Response

In some cases it is important not only to measure runtime-related service
properties but also to validate the service response. The Response element
provides more detailed information about the validation process of the service
response.

MONITORING SESSION

The Session element of the abstract SLA model provides information about the
monitoring session and shall contain the following elements (Figure 4.14):

66

4.2. AGREEMENT MONITORING

Figure 4.15: Active Monitoring Request Structure

Figure 4.16: Active Monitoring Response Structure

67

CHAPTER 4. AGREEMENT FORMALIZATION

Capacity

To simulate heavy traffic at the web service (e.g. many users or an large volume
of input data), sometimes it is required to send more than one monitoring request
at the same time to the web service. The Capacity element defines the number of
parallel monitoring request.

Duration

The Duration element defines the overall duration of a single monitoring session.
If the Period element of the enclosing Active Monitoring element is for instance
set to 360000 milliseconds and the Duration element is set to 60000 milliseconds,
a monitoring session that takes 1 minute starts every 6 minutes.

Period

The Period element defines the monitoring frequency within the monitoring
session. If the Duration element is set to 60000 milliseconds, the Period element
is set to 1000 milliseconds and the Capacity element is set to 20, for 1 minute
(duration) every 1 second (frequency) all in all 20 requests (capacity) are send to
the web service at the same time.

The Session element allows to simulate constant traffic at the web service for a specific
period of time (e.g. 1200 monitoring requests uniformly distributed over 1 minute). If
the Session element is not present, the monitoring session consists only of one single
monitoring request that is send to the web service.

MONITORING REQUEST

The Request elements of the abstract SLA model provide information about the pre-
defined monitoring requests and shall contain the following elements (Figure 4.15):

Chance

The Active Monitoring element allows to define zero, or one, or many Request
elements to define different monitoring requests. The Chance element defines the
probability whether a specific request will be send to the service or not.

In the case of n defined monitoring requests with the chance values c1 . . . cn, the
probability px (in %) that request x ∈ {1, . . . , n}will be send to the service is set to

px =
cx · 100%∑n

i=1 ci
(4.1)

Resource

The Resource element defines an additional URL path that identifies a specific
resource at the server. The monitoring request will be send to the URL as specified
in the Service Reference section of the abstract SLA model plus the URL path as
defined in the Resource element.

68

4.2. AGREEMENT MONITORING

Method

The Method element identifies the action to be performed on the web service.
The HTTP standard [Fielding et al., 1999] defines several methods as for instance
"GET" (requesting a representation of the specified resource), "POST" (submits
data to specified resource) or "DELETE" (deletes the specified resource).

Header

The Header element defines HTTP header fields that shall be set when sending
the request message to the server as for instance the response content type to be
accepted ("Accept: text/xml").

Content

The Content element defines non-varying data that is included in the body of the
HTTP request. The data to be send is directly included in the Content element.

Reference

The Reference element provides and URL pointing to a public accessible resource
(e.g. a file on a web server) that defines the (potentially varying) data that is
included in the body of the HTTP request.

The Request elements allow to specify zero, or one, or many HTTP requests that shall
be used to measure corresponding service property. The structure of HTTP request
messages and a core set of HTTP header fields is defined in [Fielding et al., 1999]. In the
case that no Request element is present, by default a simple HTTP GET request is send
to the URL as specified in the Service Reference section of the abstract SLA model.

MONITORING RESPONSE

The Response element of the abstract SLA model provides information about the service
response validation process and shall contain the following elements (Figure 4.16).

Status

The Status element defines which HTTP response status codes are accepted
as valid. Typical codes are for instance 200 (standard response for successful
HTTP requests) or 201 (standard response for a successful HTTP request and a
new resource being created). If more than one HTTP response status code shall
be accepted as valid, the different status codes must be provided by a comma-
separated list.

Content

The Content element defines which HTTP response content is accepted as valid.
The actual content to be compared with the service response is directly included
in the Content element (e.g. an XML document).

69

CHAPTER 4. AGREEMENT FORMALIZATION

Reference

The Content element provides and URL pointing to a public accessible resource
(e.g. a file on a web server) that defines the (potentially varying) content to be
compared with the service response.

If one of these rules is violated, the monitoring request is recorded as ’failed’, which
has the same effect as if the service is not available. The enclosing Active Monitoring
element allows to define zero, or one, or many Response elements in order to allow
different responses to be valid. If no Response element is present, the web service
response is not evaluated. However, it is important to consider that not all services
return correct HTTP response status codes and that the validation process fails even if
the provided content differs from the service response just in one bit.

MONITORING EXAMPLES

The following examples are provided to illustrate different setups for active monitoring.

Availability Monitoring

Listing 4.7 translates the normalized testing procedures for service availability
assessment as mandated by INSPIRE to the structure of the Active Monitoring element.
It is assumed that the assessment of service availability should be executed 24 hours
a day (Line 11-12). According to INSPIRE, the service availability shall be measured
consistently with minimum 10 reference requests per hour (Line 13). Such a reference
request (GetMap) shall request images of 800x600 pixels and only one layer at a time
(Line 14-18). Furthermore, the structure of the reference request is recommended to be
based on varying BBOX parameters. The creation of dynamic and randomized service
requests helps to reduce the impact of different caching strategies (e.g. cached tiles of a
map service) on the performance measurements. To create dynamic and randomized
service requests, the abstract SLA model offers a basic set of functions that can be
accessed from within the Content element. An overview and explanation of all available
functions can be found in Appendix B.1. According to the INSPIRE evaluation and
assessment criteria, it is assumed that the service is available when it works properly
and returns HTTP status code 200 (Line 21).

Listing 4.7: INSPIRE Availability Monitoring

1 "Service Property ":
2 {
3 "Name": "availability",
4 "Title": "Service Availability",
5 "Abstract ": "The general availability of the service.",
6 "Type": "..." ,
7 "Monitoring ":
8 {
9 "ActiveMonitoring ":
10 {
11 "Start": "00:00:00" ,
12 "Stop": "24:00:00" ,
13 "Period ": 360000 ,
14 "Request ":
15 {
16 "Method ": "GET",

70

4.2. AGREEMENT MONITORING

17 "Content ": "service=WMS&version =1.3.0& request=GetMap&layers=topp:
tasmania_state_boundaries&styles =&bbox=${__random (142.0 ,144.0)},
${__random (-46.0 , -44.0)},${__random (150.0 ,152.0)},${__random
(-38.0 , -36.0)}&width =800& height =600& srs=EPSG :4326& format=image/
png"

18 },
19 "Response ":
20 {
21 "Status ": "200"
22 }
23 }
24 }
25 }

Performance Monitoring

Listing 4.8 translates the normalized testing procedures for service performance
assessment as mandated by INSPIRE to the proposed structure of the Active Monitoring
element. The INSPIRE evaluation and assessment criteria regarding the performance
measurement are identical to the availability assessment from the previous example.
But the service property type does not reference the service availability but the service
response time. Section 4.3.1 describes how to identify and reference different service
property types in the Service Property element.

Listing 4.8: INSPIRE Performance Monitoring

1 "Service Property ":
2 {
3 "Name": "response",
4 "Title": "Response Time",
5 "Abstract ": "The response time of the service.",
6 "Type": "..." ,
7 "Monitoring ":
8 {
9 "ActiveMonitoring ":
10 {
11 "Start": "00:00:00" ,
12 "Stop": "24:00:00" ,
13 "Period ": 360000 ,
14 "Request ":
15 {
16 "Method ": "GET",
17 "Content ": "service=WMS&version =1.3.0& request=GetMap&layers=topp:

tasmania_state_boundaries&styles =&bbox=${__random (142.0 ,144.0)},
${__random (-46.0 , -44.0)},${__random (150.0 ,152.0)},${__random
(-38.0 , -36.0)}&width =800& height =600& srs=EPSG :4326& format=image/
png"

18 },
19 "Response ":
20 {
21 "Status ": "200"
22 }
23 }
24 }
25 }

Capacity Monitoring

Listing 4.9 translates the normalized testing procedures for service capacity
measurement as mandated by INSPIRE to the proposed structure of the

71

CHAPTER 4. AGREEMENT FORMALIZATION

Active Monitoring element. The service capacity is defined as "the minimum number
of served simultaneous service requests to a view service according to the performance
quality (requirements)" [INSPIRE, 2011a] and therefore the service property type also
references the service response time. According to INSPIRE, the service capacity shall
be measured consistently based on sample reference request packages. The amount of
request per package shall be 20 per second (Line 16) and shall be issued every second
(Line 18) during a measurement time frame of 1 minute (Line 17). Furthermore, the
sample reference request package shall be composed of 10% GetCapabilities requests
(Line 20-25) and 90% GetMap requests (Line 26-31) with the same constraints as defined
for the performance measurement. This active monitoring setup produces relevant
traffic at the service. One monitoring session produces 1200 service requests uniformly
distributed over 1 minute. According to INSPIRE, the service capacity assessment shall
be performed "at regular intervals" which is not clearly specified. Therefore, to avoid
conflicts with real user traffic it is assumed that the assessment of service capacity can
be executed hourly after business hours from 20:00 to 04:00 every day (Line 11-12).

Listing 4.9: INSPIRE Capacity Monitoring

1 "Service Property ":
2 {
3 "Name": "capacity",
4 "Title": "Service Capacity",
5 "Abstract ": "The response time of the service for multiple parallel

requests.",
6 "Type": "..." ,
7 "Monitoring ":
8 {
9 "ActiveMonitoring ":
10 {
11 "Start": "20:00:00" ,
12 "Stop": "04:00:00" ,
13 "Period ": 3600000 ,
14 "Session ":
15 {
16 "Capacity ": 20,
17 "Duration ": 60000 ,
18 "Period :": 1000
19 },
20 "Request ":
21 {
22 "Chance ": 10,
23 "Method ": "GET",
24 "Content ": "service=WMS&version =1.3.0& request=GetCapabilities"
25 },
26 "Request ":
27 {
28 "Chance ": 90,
29 "Method ": "GET",
30 "Content ": "service=WMS&version =1.3.0& request=GetMap&layers=topp:

tasmania_state_boundaries&styles =&bbox=${__random (142.0 ,144.0)},
${__random (-46.0 , -44.0)},${__random (150.0 ,152.0)},${__random
(-38.0 , -36.0)}&width =800& height =600& srs=EPSG :4326& format=image/
png"

31 },
32 "Response ":
33 {
34 "Status ": "200"
35 }
36 }
37 }
38 }

72

4.2. AGREEMENT MONITORING

Figure 4.17: Passive Monitoring Structure

The previous examples show that it is possible to monitor one service property (e.g.
the service response time) with different monitoring setups. Therefore, it is possible
to define different service level objectives that are linked to the same service property
(e.g. the INSPIRE performance and the INSPIRE capacity requirements). Section 4.3.2
describes how to define concrete service level objectives in the abstract SLA model. The
example agreement that can be found in Appendix B.4 provides more service properties
that illustrate different setups for active monitoring.

4.2.2 Passive Monitoring

The Passive Monitoring element of the abstract SLAmodel provides information about
how to access the captured information about the real end-users traffic at the web
service. But the available information and the format of these recordings always depend
on implementation-specific web service hosting environments and deployed enterprise
monitoring tools. Therefore, the abstract SLA model could not define a fixed and
detailed way to describe the access to these type of information.

For the purpose of this thesis it is assumed that the original service is accessed
by real end-users through an HTTP proxy [Fielding et al., 1999]. Such a proxy can
intercept all the communication between client and server. Therefore, it is possible to
protocol common resource-, runtime- and usage-related service properties for passive
monitoring. Section 5.2.1 describes how the assumed HTTP proxy works and whether
a “transparent proxy” or a “non-transparent proxy” is required in the web-based SLA
management architecture. Therefore, the Passive Monitoring element of the abstract
SLA model shall contain the following elements (Figure 4.17):

Request

The Request element of the Passive Monitoring element has the same structure
and content as the Request element of the Active Monitoring element. It
provides more detailed information about how and where to receive the recorded
information.

The following example is provided to illustrate the access to the recorded number of
delivered pixel. Section 5.2.2 describes the passive monitoring workflow in the web-
based SLA management architecture. Section 5.3.2 describes the service interface of the
HTTP proxy and the encoding of requested information. The example agreement that
can be found in Appendix B.4 provides more service properties that illustrate different
setups for passive monitoring.

73

CHAPTER 4. AGREEMENT FORMALIZATION

Listing 4.10: Pixel Delivery Logging

1 "Service Property ":
2 {
3 "Name": "pixel",
4 "Title": "Sum of Pixels",
5 "Abstract ": "The accessed number of pixels.",
6 "Type": "..." ,
7 "Monitoring ":
8 {
9 "PassiveMonitoring ":
10 {
11 "Request ":
12 {
13 "GET":
14 {
15 "Resource ": "/usage/pixel"
16 "Method ": "GET"
17 }
18 }
19 }
20 }
21 }

4.3 Agreement Evaluation

This section describes how to evaluate the status of an agreement during agreement
runtime. Section 4.3.1 describes an OGC URN Schema Extension that can be used to
identify service property types and business value types. Section 4.3.2 defines a DSL for
evaluating service level objectives and calculating business values.

4.3.1 OGC URN Schema Extension

An URN is a Uniform Resource Identifier (URI) that uses the URI scheme defined in
[Moats, 1997]. The syntax of an URN can be described in Backus Naur Form (BNF)
[Backus et al., 1963] as follows.

<URN> ::= "urn:" <NID> ":" <NSS>

The <NID> token is the namespace identifier and the <NSS> token is a namespace specific
string. The OGC has an officially registered URN namespace [Reed, 2002] that is defined
in [Reed, 2008]. The OGC namespace specifies "a family of identifiers for resources of
interest in the context of OGC Web Services, mostly concerning resources provided
or defined by OGC" [Whiteside, 2006]. The namespace identifier is "ogc" and the
namespace specific string has the following form.

<URN> ::= "urn:ogc:" <OGCresource> ":" <ResourceSpecificString>

The <OGCresource> token defines one resource category out of the following top-level
categories. The "specification" category identifies all published OGC specifications
and related supporting schemas. The "doc" category identifies OGC documents and
elements within OGC documents. The "service" category identifies access to an
OWS. The "tc" category identifies work products of the various OGC working groups

74

4.3. AGREEMENT EVALUATION

and committees. The "def" category references "definitions of coordinate reference
systems, coordinate (transformation) operations, and components thereof, that are
specified or recognized by the OGC in a formal OGC document" [Reed, 2004]. The
structure and the content of <ResourceSpecificString> token is conform to the syntax
requirements of [Moats, 1997] and depends on the resource category. The rules for
constructing a <ResourceSpecificString> token for the top-level categories are defined
in [Cox, 2010b], [Cox, 2009] and [Cox, 2010a]. The procedures used by the OGC Naming
Authority for the assignment and registration of new <OGCresource> token names and
the specific registration values assigned for each resource category are described in
[Cox, 2010c].

The following examples are provided to illustrate the different resource categories and
corresponding resource specific strings.

Example

This URN identifies the Geography Markup Language (GML) Encoding
Specification Version 3.00.

urn:ogc:specification:gml:doc-is(02-023r4):3.00

Example

This URN identifies theWMS Implementation Specification Version 1.3 document.

urn:ogc:doc:IS:WMS:1.3

Example

This URN specifies the service type for an OGC Catalogue service.

urn:ogc:service:CatalogueService:2.0:HTTP

Example

This URN identifies the minutes of the plenary session of the 50th OGC Technical
Committee Meeting in Southampton, UK.

urn:ogc:tc:plenary:doc-minutes:20040620

Example

This URN references the definition of the Coordinate Reference System (CRS) with
the code 26986 that is specified in Version 6.3 of the European Petroleum Survey
Group Geodesy (EPSG) database.

urn:ogc:def:crs:EPSG:6.3:26986

The use of the "def" category "may be expanded in the future to accommodate the needs
of new OGC standards" [Reed, 2004]. Therefore, the following sections define an OGC
URN Schema Extension in order to identify service property types and business value
types in the abstract SLA model.

75

CHAPTER 4. AGREEMENT FORMALIZATION

SERVICE PROPERTIES

The Service Properties section of the abstract SLA model contains a list of zero, or one, or
many Service Property elements. Each Service Property element contains an unique
identifier of the service property type that shall be monitored by the web-based SLA
management architecture during agreement runtime.

The syntax of the OGC URN Schema Extension can be described in BNF as follows.

<URN> ::= "urn:ogc:def:sla:" <Section> ":" <Category> ":" <Indicator> [":" <
Parameter>]

The <Section> token defines whether the URN is about identifying a service property
or a business value types. The "property" section identifies service property types. The
structure of the <Category> token, the <Indicator> token and the optional <Parameter>
token are conform to the syntax requirements of [Moats, 1997]. Their content depends
on the specific service property category. The following paragraphs provide an
overview of selected service property categories and corresponding service property
types.

Resource-Related Properties

The web-based SLA management architecture should be able to check whether a service
really delivers promised resources. Depending on the service type, such a resource can
be for instance an optional service operation, an available layer, an available featureset
or an offered geospatial process. To enable service providers and service consumer to
agree on delivered resources, the abstract SLA model defines the following resource-
related service property types.

If the <Category> token is "resource", the <Indicator> token must be "operation" or
"layer". The "operation" indicator represents information about about the (optional)
operations implemented by the service instance. The "layer" indicator represents
information about the maps offered by the service instance. In all cases the <Parameter>
token remains empty.

The following examples illustrate the definition of URNs for identifying resource-related
service properties.

Example

This URN identifies the operations implemented by the service instance.

urn:ogc:def:sla:property:resource:operation

Example

This URN identifies the maps offered by the service instance..

urn:ogc:def:sla:property:resource:layer

76

4.3. AGREEMENT EVALUATION

Runtime-Related Properties

To give service providers and service consumer the ability to negotiate general runtime-
related service quality levels, the abstract SLA model must allow the definition of the
following common QoS attributes for web services.

If the <Category> token is "runtime", the <Indicator> token must be one of "availability"
or "response". The "availability" indicator represents information about the probability
whether a web service is up and running over a specific period of time. The "response"
indicator represents information about the time required to complete a service request.
In all cases the <Parameter> token remains empty.

The following examples illustrate the definition of URNs for identifying runtime-related
service properties.

Example

This URN identifies the probability whether a web service is up and running.

urn:ogc:def:sla:property:runtime:availability

Example

This URN identifies the initial response time of a service.

urn:ogc:def:sla:property:runtime:response

Usage-Related Properties

Monitoring the service consumer behaviour is important for realizing pay-as-you-go
pricing models (e.g. service usage costs depending on the monthly service requests)
and for defining preconditions under which a service quality guarantee persists (e.g. a
maximum response time until the number of hourly service requests does not exceed a
specific threshold).

If the <Category> token is "usage", the <Indicator> token must be one of "request",
"operation" or "pixel". The "request" indicator represents information about the
accumulated number of service requests over a specific period of time. The "operation"
indicator represents information about the accumulated number of service operation
calls over a specific period of time . The "pixel" indicator represents information about
the accumulated number of delivered pixels over a specific period of time. In all cases
the <Parameter> token remains empty.

The following examples illustrate the definition of URNs for identifying usage-related
service properties.

Example

This URN identifies the accumulated number of service requests.

urn:ogc:def:sla:property:usage:request

77

CHAPTER 4. AGREEMENT FORMALIZATION

Example

This URN identifies the accumulated number of service operation calls.

urn:ogc:def:sla:property:usage:operation

Example

This URN identifies the accumulated number of delivered pixels.

urn:ogc:def:sla:property:usage:pixel

Data-Related Properties

In some application domains it is important for service consumers to be aware of
the delivered data quality and how, where, when and why content was produced
(data provenance) [Groth, 2012]. In the context of GI science, the quality aspect of
geospatial data has been widely examined, mostly with a focus on data accuracy and
its fitness-for-use in an application context [Subbiah et al., 2007]. Further common
quality aspects are for instance the resolution, the scale and the completeness of
geospatial data [van Oort, 2005]. The ability to share, enrich and combine geospatial
data is one important key to the success of SDIs and therefore the abstract SLA model
shall enable service providers to define the limitations for the application of delivered
data. Furthermore, the authors of [Van Loenen et al., 2012] compare existing licensing
frameworks for geospatial data with a focus on the Creative Commons Framework1,
which had a "great influence on any licensing models for geographic data and is often
used as a basis for harmonising initiatives".

If the <Category> token is "data", the <Indicator> token must be one of "accuracy",
"completeness" or "license". The "accuracy" indicator represents information about the
rate of excess or missing items in the delivered data. In that case, the <Parameter>
token must be one of "commission" or "omission". The "completeness" indicator
represents information about absolute or external accuracy of delivered data. In that
case, the <Parameter> token must be one of "absolute", "external" or "resolution".
The "license" indicator represents information about the conditions for sharing and
modifying delivered data. In that case, the <Parameter> token remains empty.

The following examples illustrate the definition of URNs for identifying data-related
service properties.

Example

This URN identifies the spatial resolution of the underlying data source.

urn:ogc:def:sla:property:data:accuracy:resolution

Example

This URN identifies the license for data sharing and reuse in another application
context.

urn:ogc:def:sla:property:data:license

1 http://creativecommons.org

78

4.3. AGREEMENT EVALUATION

Security-Related Properties

For many use cases it is important to implement rights management mechanisms in
order to implement access control to geospatial resources.

If the <Category> token is "security", the <Indicator> token must be "license". The
"license" indicator represents access rights policies in order to enforce the access
restrictions on geographic information. In that case, the <Parameter> token must be
"geoxacml" or any other supported license format.

The following example illustrates the definition of URNs for identifying security-related
service properties.

Example

This URN identifies access rights policies in GeoXACML format.

urn:ogc:def:sla:property:security:license:geoxacml

Infrastructure-Related Properties

The importance of making compute resources available in a pay-as-you-go manner
[Armbrust et al., 2009], and the importance of the ability to allocate compute resource
on a short-term basis as needed and release them as needed [Armbrust et al., 2010]
becomes evident in the Cloud Computing paradigm [Buyya et al., 2009]. To allow
service providers to offer different hosting opportunities with particular infrastructure
and to allow service consumers to define their compute resources requirements, the
abstract SLA model defines the following infrastructure-related service property types.

If the <Category> token is "infrastructure", the <Indicator> token must be one of
"provider", "vm" or "compute". The "provider" indicator represents information about
the actual infrastructure provider. In that case, the <Parameter> token must be one
of "name" or "region". The "name" parameter defines which infrastructure provider
is responsible for hosting the service. The "region" parameter represents information
about the region for the service to use. The "vm" indicator represents information about
a virtualized compute resource. In that case, the <Parameter> token must be one of
"name" or "persistence". The "name" parameter defines which Virtual Machine (VM)
should represent the compute resource and the "persistence" parameter defines whether
a VM is persistent or not. Finally, the "compute" indicator represents information
about the hardware resources of a compute resource. In that case, the <Parameter>
token must be one of "architecture", "cores", "speed" or "memory". The "architecture"
parameter defines the CPU architecture of a compute resource. The "core" parameter
defines the numbers of available CPU cores at a compute resource and the "speed"
parameter defines the CPU clock speed of each available CPU core. Finally, the
"memory" parameter defines the available Random Access Memory (RAM) of the
compute resource.

The following examples illustrate the definition of URNs for identifying infrastructure-
related service properties.

79

CHAPTER 4. AGREEMENT FORMALIZATION

Example

This URN identifies an infrastructure provider.

urn:ogc:def:sla:property:infrastructure:provider:name

Example

This URN identifies a VM from a repository of registered VMs.

urn:ogc:def:sla:property:infrastructure:vm:name

Example

This URN identifies defines the available RAM of a compute resource.

urn:ogc:def:sla:property:infrastructure:compute:memory

The presented URN examples are an excerpt from all possible URNs. Appendix B.2.1
provides a comprehensive dictionary of all URNs that can be used in the abstract SLA
model to identify most relevant service property types. Furthermore, the presented
<Category> and <Indicator> tokens are not complete. Other categories of service
property types such as data-, transaction-, security- and business-related service
properties are described only partially or completely missing. The assessment of
spatial data accuracy and spatial data completeness [Joksić Dušan, 2004] for instance
includes automated and especially non-automated on-screen validation procedures
[Victorian Spatial Council, 2009]. Even if there are legal requirements regarding the
quality of spatial data as for instance described in the INSPIRE Data Specification on
Protected Sites [INSPIRE, 2010c], these requirements neither specify test nor reference
data sets [van Oort, 2005] for an automatic testing procedure. Therefore, these
categories are currently not covered completely by the abstract SLA model and the web-
based SLAmanagement architecture. To accommodate the needs of specific applications
and use cases, by introducing new categories (<Category>) and corresponding indicators
(<Indicator>) the dictionary can be extended with a more fine-grained view on web
service quality, data quality, infrastructure management.

BUSINESS VALUES

The Business Values section of the abstract SLA model contains a list of zero, or one,
or many Business Value elements. Each Business Value element contains an unique
identifier of the business value type that should be calculated by the web-based SLA
management architecture at specific time points during agreement runtime.

The syntax of the OGC URN Schema Extension can be described in BNF as follows.

<URN> ::= "urn:ogc:def:sla:" <Section> ":" <Category> ":" <Interval>

The <Section> token defines whether the URN is about identifying a service property
or a business value type. The "business" section identifies business value types. The
structure of the <Category> token and the <Interval> token are conform to the syntax
requirements of [Moats, 1997]. Their content depends on the specific business value
category.

80

4.3. AGREEMENT EVALUATION

For business contracts it is important to be able to define (dynamic) service usage costs,
to describe penalties for not meeting a service level objective, or to offer a reward for
meeting a service level objective. If the <Category> token is "cost", the <Interval>
token defines the assessment interval and must be one of "day", "week", "month" or
"business". If the <Category> token is "penalty", the <Interval> token defines the
assessment interval and must be one of "day", "week", "month" or "business". If the
<Category> token is "reward", the <Interval> token defines the assessment interval
and must be one of "day", "week", "month" or "business".

The following example illustrates the definition of URNs for identifying business values.

Example

This URN identifies monthly service usage costs.

urn:ogc:def:sla:business:cost:month

This example illustrates the definition of URNs for identifying a business value. In
contrast to the service properties, it is not allowed to define multiple business values
with the same type. Appendix B.2.2 provides a comprehensive dictionary of all URNs
that can be used in the abstract SLA model to identify the business value types that
shall be calculated by the web-based SLA management architecture at specific time
points during agreement runtime. To accommodate the needs of specific applications
and use cases, by introducing new categories (<Category>) and corresponding indicators
(<Indicator>) the dictionary can be extended with a more fine-grained view on business
processes.

4.3.2 Agreement Expression Language

The authors of [van Deursen et al., 2000] propose the following DSL definition.

A domain-specific language (DSL) is a programming language or

executable specification language that offers, through appropriate

notations and abstractions, expressive power focused on, and usually

restricted to, a particular problem domain.

The reason for developing a DSL instead of using a general-purpose programming
language is that a DSL can offer more appropriate or established domain-specific
notations, constructs and abstractions. [Mernik et al., 2005]. Due to the fact that a DSL
is tailored to a particular application domain and typically does not offer many features
that can be found in general-purpose programming languages, the DSL remains small
and simple. Therefore, domain experts themselves normally can "understand, validate,
modify, and often even develop DSL programs" [Deursen et al., 2000] in order to express
the solution to a domain-specific problem in a more natural way and from a real world
point of view [Hudak, 1998].

This section develops a DSL for describing service level objectives and business values
in the abstract SLA model. The development of such an Agreement Expression Language

must consider the following requirements:

81

CHAPTER 4. AGREEMENT FORMALIZATION

• Depending on the specific Service Property elements that are defined in the
abstract SLA model, the DSL must provide access to all gathered information related
to these service properties (e.g. the measured response time of a service gathered by
active monitoring).

• The DSL shall allow the definition of service level objectives reflecting complex
functional as well as non-functional requirements (e.g. guaranteed service response
time for a give number of service requests per month).

• The DSL shall allow the definition of pricing models reflecting different business use
cases (e.g. fixed or usage-based cost).

The proposed DSL for the abstract SLA model is based on Java EXpression Language
(JEXL)2, an expression language inspired by Apache Velocity3 and the Unified
Expression Language [Lubke et al., 2005] defined in JavaServer Pages (JSP) Version
2.1 [SUN, 2006] and the JavaServer Pages Standard Tag Library (JSTL) Version 1.2
[SUN, 2012]. The JEXL syntax supports basic language elements such as comments,
variables, method calls and basic literals such as numbers, strings, arrays and access to
maps. The JEXL grammar allows the definition of mathematical and boolean operators
to control the program workflow via conditional statements. Whenever a JEXL script
made up of one ore more statements is interpreted, the last evaluated expression
is returned. When evaluating simple expressions or complex scripts, JEXL offers a
context that contains a set of use case specific variables. These variables internally
are representatives of concrete Java objects and JEXL allows to call any method on a
Java object through these variables using the same syntax. Furthermore, JEXL allows
to access methods that follow the JavaBean [Hamilton, 1997] naming convention for
properties, i.e. setters and getters. However, more detailed information about the JEXL
syntax and some JEXL examples can be found at the JEXL project homepage.

The following sections describe selected variables and methods that are available
in the JEXL context of the Service Level Objective and Business Value elements.
Appendix B.3 provides a complete overview about all variables and methods that can be
accessed in the abstract SLA model. However, the variables and methods in this JEXL
context define a DSL that is designed to evaluate the status of service level objectives
(either ’fulfilled’ or ’violated’) and to calculate business related values (e.g. monthly
service usage costs).

SERVICE LEVEL OBJECTIVES

The Service Property elements in the abstract SLA model either provide useful
management information for the web-based SLA management architecture or define
what specific service properties shall be monitored during agreement runtime. Based on
acquired monitoring information, the status of all Service Level Objective elements
in the abstract SLA model is evaluated on a regular basis during agreement runtime.
The previous section defines several service property categories and corresponding
service property types that cause monitoring processes during agreement runtime. Each
Service Property element in abstract SLA model, that is from one of these categories,

2 http://commons.apache.org/jexl
3 http://velocity.apache.org

82

4.3. AGREEMENT EVALUATION

results in a corresponding JEXL context variable that provides access to the gathered
monitoring information. The name of the JEXL context variable is identical with the
name of the Service Property element and the methods of the JEXL context variable
depend on the type of the Service Property element.

The previous sections exemplified for instance the following runtime-related service
properties (Figure 4.11):

Listing 4.11: Runtime-Related Service Properties

1 "Service Properties ":
2 {
3 (...) ,
4 "Service Property ":
5 {
6 "Name": "availability",
7 (...)
8 "Type": "urn:ogc:def:sla:property:runtime:availability",
9 (...)
10 },
11 "Service Property ":
12 {
13 "Name": "response",
14 (...)
15 "Type": "urn:ogc:def:sla:property:runtime:response",
16 (...)
17 }
18 },
19 "Service Property ":
20 {
21 "Name": "capacity",
22 (...)
23 "Type": "urn:ogc:def:sla:property:runtime:response",
24 (...)
25 },
26 (...)
27 }

The first service property identifies the service availability. The second and the third
service property identifies the service response time, but with different monitoring
configurations (Listing 4.7 - 4.9).

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:runtime:availability

result in a JEXL context variable from type AvailabilityType that has the following
variables and methods (Table 4.2).

83

CHAPTER 4. AGREEMENT FORMALIZATION

Table 4.2: JEXL AvailabilityType

AvailabilityType a

float day

Returns the measured service availability for the current

day in percent (where 0.0 means 0% and 1.0 means 100%).

float week

Returns the measured service availability for the current

calendar week in percent (where 0.0 means 0% and 1.0 means

100%).

float month

Returns the measured service availability for the current

calendar month in percent (where 0.0 means 0% and 1.0 means

100%).

float year

Returns the measured service availability for the current

calendar year in percent (where 0.0 means 0% and 1.0 means

100%).

a This table shows selected variables and methods of the AvailabilityType. A complete
overview of all variables and methods can be found in Appendix B.3.

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:runtime:response

result in a JEXL context variable from type ResponseType that has the following
variables and methods (Table 4.3 - 4.5).

Table 4.3: JEXL ResponseType

ResponseType a

InitialResponseType initial

Returns an object of type InitialResponseType that

provides information about the measured initial response time

of the service.

TotalResponseType total

Returns an object of type TotalResponseType that provides

information about the measured total response time of the

service.

a This table shows selected variables and methods of the ResponseType. A complete overview
of all variables and methods can be found in Appendix B.3.

84

4.3. AGREEMENT EVALUATION

Table 4.4: JEXL InitialResponseType

InitialResponseType a

int[] day

Returns an array of all response time measurements for

the current day. Each element in the array represents the

measured initial response time of a successful request in

milliseconds.

int[] week

Returns an array of all response time measurements for

the current calendar week. Each element in the array

represents the measured initial response time of a successful

request in milliseconds.

int[] month

Returns an array of all response time measurements for

the current calendar month. Each element in the array

represents the measured initial response time of a successful

request in milliseconds.

int[] year

Returns an array of all response time measurements for

the current calendar year. Each element in the array

represents the measured initial response time of a successful

request in milliseconds.

a This table shows selected variables and methods of the InitialResponseType. A complete
overview of all variables and methods can be found in Appendix B.3.

Table 4.5: JEXL TotalResponseType

TotalResponseType a

int[] day

Returns an array of all response time measurements for

the current day. Each element in the array represents the

measured total response time of a successful request in

milliseconds.

int[] week

Returns an array of all response time measurements for

the current calendar week. Each element in the array

represents the measured total response time of a successful

request in milliseconds.

Table 4.5 – Continued on next page

85

CHAPTER 4. AGREEMENT FORMALIZATION

Table 4.5 – Continued from previous page

TotalResponseType a

int[] month

Returns an array of all response time measurements for

the current calendar month. Each element in the array

represents the measured total response time of a successful

request in milliseconds.

int[] year

Returns an array of all response time measurements for

the current calendar year. Each element in the array

represents the measured total response time of a successful

request in milliseconds.

a This table shows selected variables and methods of the TotalResponseType. A complete
overview of all variables and methods can be found in Appendix B.3.

The following examples are provided to illustrate the utilization of JEXL context
variables from type AvailabilityType and ResponseType for evaluating service level
objectives that reflect INSPIRE service quality requirements.

Availability Evaluation

Listing 4.12 translates the INSPIRE service availability requirements into the Agreement
Expression Language. Based on the availability measurements, the example checks
whether the probability of the service to be available is greater or equal 99% per week,
month and year. The measured availability can be accessed through the "availability"
context variable, which was injected by the Service Property element with the same
name. The result of the boolean function (either true or false) defines the current
status of the service level objective (either ’fulfilled’ or ’violated’).

Listing 4.12: INSPIRE Availability Evaluation

1 "Service Level Objective ":
2 {
3 "Name": "InspireAvailability"
4 "Title": "INSPIRE (Availability)",
5 "Abstract ": "The probability of a Network Service to be available shall be

99% of the time.",
6 "Obligated ": "Service Provider",
7 "Status ": "
8 (availability.week >= 0.99) and (availability.month >= 0.99) and (

availability.year >= 0.99)
9 "
10 }

Performance Evaluation

Listing 4.13 translates the INSPIRE service performance requirements into the
Agreement Expression Language. Based on the actual response time measurements,
the example script checks for each measurement whether the time between sending the

86

4.3. AGREEMENT EVALUATION

service request and receiving the service response is smaller or equal 5000 milliseconds.
If 90% ore more measurements are below that limit, the service level objective is fulfilled
(the script returns true). Otherwise, the service level objective is violated (the script
returns false).

Listing 4.13: INSPIRE Performance Evaluation

1 "Service Level Objective ":
2 {
3 "Name": "InspirePerformance"
4 "Title": "INSPIRE (Performance)",
5 "Abstract ": "The response time for sending the initial response to a Get

Map Request to a view service shall be maximum 5 seconds in normal
situation.",

6 "Obligated ": "Service Provider",
7 "Status ": "
8 fulfilled = 0;
9 for (item : response.initial.week) {
10 if (item lt 5000)
11 {
12 fulfilled = fulfilled + 1;
13 }
14 }
15 percent = fulfilled / (size(response.initial.week) / 100.0);
16 percent gt 90.0;
17 "
18 }

Capacity Evaluation

Listing 4.14 translates the INSPIRE service capacity requirements into the Agreement
Expression Language. The script is nearly identical to the previous script, but the
JEXL context variable for accessing the performance measurements is different. The
example still checks for each measurement whether the initial service response time is
smaller or equal 5000 milliseconds and if 90% ore more measurements are below that
limit, but it accesses the actual measurements through the ’capacity’ variable (coming
from the ’capacity’ service property) instead of the ’response’ variable (coming from the
’response’ service property). The variable ’response’ (Listing 4.8) references the service
response time of a single GetMap request. The variable ’capacity’ (Listing 4.9) references
the measured service response time of a package of 20 parallel requests, composed of
10% GetCapabilities and 90% GetMap requests.

Listing 4.14: INSPIRE Capacity Evaluation

1 "Service Level Objective ":
2 {
3 "Name": "InspireCapacity"
4 "Title": "INSPIRE (Capacity)",
5 "Abstract ": "The minimum number of served simultaneous service requests to

a view service according to the performance quality of service shall
be 20 per second.",

6 "Obligated ": "Service Provider",
7 "Status ": "
8 fulfilled = 0;
9 for (item : capacity.initial.week) {
10 if (item lt 5000)
11 {
12 fulfilled = fulfilled + 1;
13 }

87

CHAPTER 4. AGREEMENT FORMALIZATION

14 }
15 percent = fulfilled / (size(capacity.initial.week) / 100.0);
16 percent gt 90.0;
17 "
18 }

The last two examples showed successfully how to define service level objectives that
reference to the same service property with different monitoring setups. Therefore, it
is possible to create an agreement that contains different service level objectives based
one single service property.

A more detailed overview about all service property categories and corresponding JEXL
context variables can be found in Appendix B.3.1. The example agreement that can be
found in Appendix B.4 provides more examples that illustrate the usage of JEXL context
variables for evaluating the status of service level objectives.

BUSINESS VALUES

The Business Value elements in the abstract SLA model define custom business values
that shall be calculated at specific time points during agreement runtime. The Type
element of a Business Value element defines what kind of business value shall be
calculated (e.g. monthly usage costs) and the Value element defines a concrete pricing
model in the proposed Agreement Expression Language.

The previous sections exemplified for instance the following usage-related service
property (Figure 4.15).

Listing 4.15: Usage-Related Service Property

1 "Service Properties ":
2 {
3 (...)
4 "Service Property ":
5 {
6 "Name": "pixel",
7 (...)
8 "Type": "urn:ogc:def:sla:property:usage:pixel",
9 (...)
10 }
11 (...)
12 }

The service property identifies the accumulated amount of pixels delivered by a service
with a specific monitoring configuration (Listing 4.10).

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:usage:pixel

result in a JEXL context variable from type PixelType that has the following variables
and methods (Table 4.6).

88

4.3. AGREEMENT EVALUATION

Table 4.6: JEXL PixelType

PixelType a

long day

Returns the accumulated amount of delivered pixel of

all layers and for the current day.

long week

Returns the accumulated amount of delivered pixel of

all layers and for the current calendar week.

long month

Returns the accumulated amount of delivered pixel of

all layers and for the current calendar month.

long year

Returns the accumulated amount of delivered pixel of

all layers and for the current calendar year.

a This table shows selected variables and methods of the PixelType. A complete overview of
all variables and methods can be found in Appendix B.3.

The following example is provided to illustrate the utilization of JEXL context variables
from type PixelType for realizing dynamic and usage-based pricing models as for
instance mandated by the AdV. The AdV for instance defines three different pricing
models for the online delivery of "Geobasisdaten" (e.g. topographical data). The pay-
as-you-go pricing model defines yearly usage costs based on the delivered pixels. Each
delivered 1 million pixel (MPx) costs 1 Euro. Furthermore, the pay-as-you-go pricing
model defines different discount levels that depend on the total amount of delivered
pixels. If the total amount of delivered pixels per year is in the range from 1.000 to
10.000 MPx, the discount factor is for instance 50%.

Listing 4.16: Yearly Usage Costs

1 "Business Value":
2 {
3 "Name": "CostsPerYear",
4 "Title": "Usage Costs (Year)",
5 "Abstract ": "The cost to be assessed for using the service on a yearly

basis (in Euro).",
6 "Obligated ": "Service Consumer",
7 "Type": "urn:ogc:def:sla:business:cost:year",
8 "Value": "
9 factor;
10 if (pixel.year lt (1000000 * 1000))
11 {
12 factor = 1.0;
13 } else
14 if (pixel.year lt (1000000 * 10000))
15 {
16 factor = 0.5;
17 } else
18 if (pixel.year lt (1000000 * 100000))
19 {
20 factor = 0.25;
21 } else

89

CHAPTER 4. AGREEMENT FORMALIZATION

22 if (pixel.year lt (1000000 * 1000000))
23 {
24 factor = 0.125;
25 } else
26 {
27 factor = 0.0625;
28 }
29 (factor * (pixel.year / 1000000));
30 "
31 }

To define penalties (rewards) for violating (fulfilling) service level objectives, each
Service Level Objective element in the abstract SLAmodel results in a corresponding
JEXL context variable from type ObjectiveType that provides access to the status of the
corresponding service level objective. The name of the JEXL context variable is identical
with the name of the Service Level Objective element and an overview about all
methods of JEXL context variables from type ObjectiveType can be found in Table B.27.

Table 4.7: JEXL ObjectiveType

ObjectiveType a

Boolean status

Returns true if the corresponding service level objective is

fulfilled and false if the corresponding service level objective
is violated.

a This table shows selected variables and methods of the ObjectiveType. A complete
overview of all variables and methods can be found in Appendix B.3.

To calculate discounts (extra charges) proportionately to actual usage costs, each
Business Value element in the abstract SLA model results in a corresponding JEXL
context variable from type BusinessType that provides access to a previously calculated
custom business value. The name of the JEXL context variable is identical with the
name of the Business Value element and an overview about all methods of such JEXL
context variables from type BusinessType can be found in Table B.28.

Table 4.8: JEXL BusinessType

BusinessType a

float value

Returns the value of the corresponding business value

(normally the rate in Euro).

a This table shows selected variables and methods of the BusinessType. A complete overview
of all variables and methods can be found in Appendix B.3.

The following example is provided to illustrate the definition of penalties (discounts) in
the case that one or more service level objectives are violated. The ’InspireAvailability’
variable is from type ObjectiveType and provides access to the status of the service level

90

4.4. SUMMARY

objective that reflects the INSPIRE service availability requirements. The ’CostsPerYear’
variable is from type BusinessType and provides access to the business value that
reflects the AdV pricing model. The aimed penalty reflects a 20% discount on the yearly
service usage costs when the INSPIRE service availability requirement is not fulfilled.

Listing 4.17: Yearly Penalty

1 "Business Value":
2 {
3 "Name": "PenaltyPerYear",
4 "Title": "Penalty (Year)",
5 "Abstract ": "The penalty to be assessed for not meeting service level

objectives on a yearly basis (in Euro).",
6 "Obligated ": "Service Provider",
7 "Type": "urn:ogc:def:sla:business:penalty:year",
8 "Value": "
9 if (InspireAvailability.status == true)
10 {
11 factor = 0;
12 }
13 else
14 {
15 factor = 0.25;
16 }
17 (factor * CostsPerYear.value);
18 "
19 }

The example agreement in Appendix B.4 provides more examples that illustrate the
usage of JEXL context variables for calculating custom business values. The example
pricing models do not cover any value added tax calculations as for instance required
by local laws and regulations. They are simplified versions of real-world pricing models
as for instance mandated by the AdV and the VermWertGebT.

However, the examples (Listing 4.12 - Listing 4.16) show that the JEXL context
variables hide information about the actual process of measurement. The measurements
provided by the ’response’ variable are gathered with active monitoring, whereas
the measurements provided by the ’pixel’ variable are recorded service consumer
behavior. That abstract representation of service level measurements prevents service
level objectives to be too complex and to care about implementation-specific details.

4.4 Summary

This chapter formalizes an abstract SLA model that is applicable in SDIs. The aim of
the abstract SLA model is to provide an abstract representation of agreements on a
conceptual level that is independent of any specific data encoding format. The abstract
SLA model is composed of a description of the structure and the content of the domain-
specific agreements, an OGC URN Schema Extension for identifying domain-specific
service property types and business value types, and a DSL for describing service level
objectives and business values.

The abstract SLA model contains general information about the agreement and the
contracting parties (Agreement Context), domain-specific information about the services
to which an agreement is related (Service Description), a domain-specific reference to

91

CHAPTER 4. AGREEMENT FORMALIZATION

an actual service (Service Reference), and a set of domain-specific service properties
that are used to measure the service quality and that should be monitored during
agreement runtime (Service Properties). Furthermore, the abstract SLA model specifies
service quality goals that the contracting parties are agreeing (Service Level Objectives)
and general business related properties such as usage costs and penalty fees (Business
Values).

The OGC URN Schema Extension allows to identify domain-specific service property
types and business value types. Furthermore, it classifies the service property types and
business value types into different categories. Some of these categories reference service
characteristics that can be automatically monitored during agreement runtime (e.g. the
web service response time), whilst other categories specify service characteristics that
are guaranteed by the service provider and that cannot be automatically monitored
during agreement runtime (e.g. the license for data sharing). In the case that a service
property is from one of the categories that can be automatically monitored during
agreement runtime, the abstract SLA model allows to use the following two methods for
monitoring web services. The active monitoring process simulates end-user behavior
by creating real traffic at the web service. The passive monitoring process captures
and analyzes real end-user traffic at the web service. However, the abstract SLA model
allows to configure the active and passive monitoring process for each defined service
property.

The DSL is tailored to the selected application domains and provides access to all
gathered monitoring information. Based on the measurements, the DSL allows to define
complex service level objectives reflecting functional and non-functional requirements
(e.g. guaranteed service response time for a maximum number of service requests per
month). Furthermore, the DSL allows to define complex pricing models reflecting
different business use cases (e.g. fixed or usage-based cost).

The next chapter presents the design of a web-based SLA management architecture that
allows to integrate the abstract SLA model in SDIs.

92

Chapter 5

Service Level Management Architecture

This chapter describes a web-based SLA management architecture. The purpose of
this architecture is to enable the on-demand and online negotiation of SLAs in SDIs
without the need of prior offline communication between service providers and service
consumers.

The design of the web-based SLA management architecture is inspired by
policy-based management systems [Flegkas et al., 2003]. The IETF describes
such a policy-based architecture for admission control [Armbrust et al., 2010] and
identifies appropriate terms and components that describe such architectures
[Westerinen et al., 2001]. The application of policy-based management architectures
for geospatial services has already been investigated in the context of SDIs. The
work presented in [Gartmann and Leinenweber, 2009], [Herrmann and Matheus, 2009],
[Schäffer et al., 2010a] and [Gartmann and Schäffer, 2011] focused on role-based access
control and corresponding license models as for instance XACML. This thesis relies on
these previous efforts, but the proposed web-based SLA management architecture uses
a more fine grained license model and covers all the SLA-related aspects that have not
been addressed yet.

This chapter describes the web-based SLA management architecture in three different
steps. The process model provides a general overview about the processes and tasks
that are required for SLAs management in SDIs. The information model identifies
all managed objects on a conceptual level and describes how these objects relate to
each other independent from any specific implementation or protocol. The data model

specifies concrete data structures and includes implementation- and protocol-specific
details for realizing the design that is described by the information model. The purpose
of this multi-stage approach is to design a complex system without being confronted
with and distracted by technical limitations in the very beginning. Such a clear
distinction allows to replace for instance one communication protocol by another one
without the need to change the underlying (abstract) data model or even the actual
(concrete) document encoding.

5.1 Process Model

The purpose of a process model is to provide "a task oriented view on a system"
[Humphrey and Kellner, 1989] and to describe the "behavior of participants in a

93

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

Figure 5.1: Process Overview

specific business interaction" [Peltz, 2003]. It provides a first overview about "the
control- and data-flow among the atomic services" [Rao et al., 2004] and "describes
system logic and processes that programmers use to develop necessary code modules"
[Shelly et al., 1998]. This section provides process models for all phases of the agreement
life cycle that are covered by the web-based SLA management architecture: agreement
negotiation, agreement implementation and agreement execution (Figure 5.1).

5.1.1 Agreement Negotiation

The agreement negotiation phase starts with the fact that service providers offer one
or more templates and that service consumers have to select one template in order to
create an agreement. Each of these templates can be defined in such a way that it is
a "take it or leave it proposition" [Lee and Ben-Natan, 2002] or that it can be modified
and detailed by the service consumers. In the first case, the service providers do not
offer the possibility for service consumers to adjust a template to their personal needs
(Figure 5.2a). Therefore, the service providers clearly define the service level they are
willing to deliver and indicate that service consumers can directly create legally binding
contracts without intermediate steps. In the second case, service consumers are able to
modify the terms of a template in order to adjust a template to their personal needs
(Figure 5.2b). Based on such a configured template, a service consumer must make an
agreement offer to the service provider in order to create an agreement. The service
provider either can accept or reject an agreement offer. In the case of acceptance, the
agreement offer directly leads to a potentially legally binding contract.

94

5.1. PROCESS MODEL

Figure 5.2: Agreement Negotiation Process

(a) Negotiation Process 1

(b) Negotiation Process 2

95

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

Figure 5.3: Agreement Execution Process

5.1.2 Agreement Implementation

The agreement implementation phase contains all activities that must be performed
by the service provider in order to provide the service in compliance with the created
agreement. This provisioning process covers aspects such as the initial technical setup
of the service on a per instance basis, the installation of monitoring capabilities, and the
configuration of reporting mechanisms [Lee and Ben-Natan, 2002].

5.1.3 Agreement Execution

The agreement execution phase is the "the normal day-to-day operation and associated
activities related to the service being delivered" [Lee and Ben-Natan, 2002]. These
activities cover agreement monitoring, agreement evaluation, agreement reporting,
infrastructure management and service consumption (Figure 5.3).

The agreement monitoring phase covers the KPI measurement of all agreements on
an ongoing basis. The agreement evaluation phase also covers the SLO evaluation
against the KPI measurements of an agreement. Furthermore, the business values
of an agreement are calculated in order to provide the input for accounting. The
agreement reporting phase covers the reporting of all events that (potentially) result
in SLO violations. The infrastructure management phase covers the same aspects that
must be performed in the agreement implementation phase. Depending on the overall
system load and the status of all active agreements, a service provider must manage the
infrastructure in order to provide all services in compliance with the active agreements.
The service consumption phase covers the actual service execution by the service

96

5.2. INFORMATION MODEL

consumer. This phase contains all activities that must be performed in order to achieve
a satisfying user experience regarding the underlying agreement. Furthermore, the
service provider must enforce that only service consumers holding a valid agreement
are able to execute a service. However, all these activities in the agreement execution
phase can be performed in parallel on an ongoing basis during the complete agreement
runtime.

5.2 Information Model

This section introduces the information model of the web-based SLA management
architecture. The purpose of an information model is to provide an abstract
representation of the objects in a managed environment [Westerinen et al., 2001]. An
information model defines the relationships between managed objects at a conceptual
level [Pras and Schoenwaelder, 2003] and should be "independent of any specific
repository, software usage, protocol, or platform" [Westerinen et al., 2001]. The purpose
of subsequent data models is to define mappings of abstract information models to
concrete implementations [Moore et al., 2001].

Chapter 4 already describes an information model for templates, agreements and related
documents. The following sections provide an overview about all server components of
the web-based SLA management architecture.

5.2.1 Architecture Components

Figure 5.4 provides an overview about all components of the web-based SLA
management architecture. The components and their arrangements are described as
component diagrams in UML [OMG, 2011b] [OMG, 2011a]. Component diagrams are
primarily used to "show the structural relationships between the components of a
system" [Bell, 2004a].

At first glance, the service consumer and the service provider can be identified.
The service provider maintains the original SDI service and the service consumer
uses as desktop- or web-based GIS client to access the service directly. In some
scenarios, the client can also be another service or software that utilizes the service
for instance to complete a more complex workflow. In the diagram, such a client is
represented by the ’Client’ component and the original service is represented by the
’Service’ component. These components are not affected directly by the web-based SLA
management architecture and they don’t need to be changed in order to integrate SLAs
in SDIs.

To realize the publish-find-agree-bin pattern (Section 3.2.1), the following steps are
carried out:

1. The original service must be protected by an internet firewall. A firewall blocks
undesired incoming connections from the internet [Freed, 2000]. In combination
with other efforts such as the deployment of an additional proxy component (Step 2)
that helps to prevent service consumption without permission. In the context of this

97

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

Figure 5.4: Architecture Overview

98

5.2. INFORMATION MODEL

thesis, a grant for service consumption is the existence of a previously negotiated
and still active agreement for the service consumer and the particular service.

2. The development and deployment of a SOA for realizing agreement negotiation
between service consumer and service provider. The components of the SOA must
enable service providers to offer templates for their services. Furthermore, the
components must enable service consumers to perform template discovery and to
create agreements for particular services.

To realize the complete agreement life cycle, the following steps are carried out:

3. The development and deployment of components for realizing agreement execution.
The agreement execution phase covers aspects such as agreement monitoring,
agreement evaluation and agreement reporting.

4. The development and deployment of components for realizing agreement
implementation. The agreement implementation phase includes all mechanisms that
enable service providers to manage their infrastructure with respect to previously
created agreements in order to realize promised service levels.

The following sections detail all components that are essential for the web-based SLA
management architecture. Basic components such as the original SDI client and the
original SDI service are not further explained. Other components such as e-commerce
systems for electronic bill payment are also out of scope of this thesis.

AGREEMENT MANAGER

The Agreement Manager component of the web-based SLA management architecture is
responsible for the management of templates, agreements and monitoring information.
In the concept of policy-based management systems, the Agreement Manager realizes
the ’Policy Repository’. A policy repository is "a specific data store that holds policy
rules, their conditions and actions, and related policy data" [Westerinen et al., 2001].
Therefore, the Agreement Manager must provide an interface for service providers
to manage templates in order to promote their service offerings, and an interface for
service consumers to perform template discovery in order to find a service offering
according to their personal functional or non-functional requirements. Furthermore,
the Agreement Manager must provide an agreement management interface for all
contracting parties and the other components of the web-based SLA management
architecture. The agreement management tasks include agreement negotiation,
agreement monitoring and agreement revision. Beyond basic agreement management
functionality, the Agreement Manager must provide also an interface to manage related
agreement data as for instance historical monitoring data that can be used for evaluating
the service level objectives of an agreement.

AGREEMENT CLIENT

The Agreement Client component of the web-based SLA management architecture
enables service consumers to obtain agreements for specific services, to get a detailed
overview about the elements in an agreement and to keep track of the agreement status
during the whole agreement life cycle. The Agreement Client wraps the Agreement

99

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

Manager functionality and provides an easy to use graphical interface for human
users. The Agreement Client does not offer any additional features. All required
functionality can directly be accessed through the Agreement Manager. Therefore, the
Agreement Client component is optional but strongly recommended for the web-based
SLA management architecture.

AGREEMENT PROXY

The Agreement Proxy component of the web-based SLA management architecture
acts as a proxy for the original service. A ’proxy’ is a "an intermediary program
which acts as both a server and a client for the purpose of making requests on behalf
of other clients" [Fielding et al., 1999] and a ’non-transparent proxy’ is a proxy that
"modifies the request or response in order to provide some added service to the user
agent" [Fielding et al., 1999]. Whenever a service consumer makes a service request, the
Agreement Proxy forwards the request to the target service and returns the response of
the target service back to the service consumer. In some cases, the response of the target
service must be modified before it is returned to the service consumer. For example,
many GetCapabilities response documents contain URLs pointing to the original
service. Service consumers and client applications normally reuse these information
for accessing the service afterwards. Therefore, such URLs must be replaced with
URLs pointing to the Agreement Proxy in order to enable subsequent request-response
workflows. The Agreement Proxy receives requests as if it is the target server and
service consumers are not aware that they are not communicating directly with the
target service. Therefore, the Agreement Proxy must implement all operations and
protocols of the target service. Since the Agreement Proxy acts as an intermediary of
the target service, the Agreement Proxy act as a ’gateway’ as for instance described in
[Fielding et al., 1999].

In the concept of policy-based management systems, the Agreement Proxy is the
Policy Enforcement Point (PEP) and the Policy Decision Point (PDP) of the web-based
SLA management architecture combined in one single component. In policy-based
management systems, the PDP is "a logical entity that makes policy decisions" that
are requested by the PEP, which is a "logical entity that enforces policy decisions"
[Yavatkar et al., 2000]. Whenever a service consumer makes a service request under
the terms of a previously created agreement, the Agreement Proxy determines whether
all agreement constraints are fulfilled or not. Obviously, the agreement runtime is such
a constraint. If all agreement constraints are fulfilled, the Agreement Proxy forwards
the service request to the target service. If one ore more constraints are violated, the
Agreement Proxy refuses the service request.

Both aspects, the response rewriting and the agreement enforcement are following
the interceptor concept [Hansen, 2007] that has already been applied successfully for
dynamic rights management in geoprocessing workflows [Schäffer, 2012].

AGREEMENT MONITOR

The Agreement Monitor component of the web-based SLA management architecture
keeps track of all created agreements and calculates the values of all relevant service

100

5.2. INFORMATION MODEL

properties from an agreement. To receive raw monitoring data, the Agreement Monitor
relies on active and passive monitoring mechanisms (Section 4.10). In some cases, the
raw monitoring data must be processed in order to calculate high-level service metrics
as for instance the yearly service availability based on previous monitoring requests.
Finally, the Agreement Monitor updates monitoring information for an agreement at
the Agreement Manager.

AGREEMENT EVALUATOR

The Agreement Evaluator component of the web-based SLA management architecture
keeps track of all created agreements and evaluates whether the service level objectives
of an agreement are fulfilled or violated. Based on the monitoring information that are
captured by the Agreement Monitor, the Agreement Evaluator evaluates the status of all
service level objectives that are defined in an agreement. Based on the same monitoring
information and the previously evaluated status of the service level objectives, the
Agreement Evaluator also calculates the business values of an agreement. Finally, the
Agreement Evaluator updates the service level objectives and the business values of an
agreement at the Agreement Manager.

AGREEMENT REPORTER

The Agreement Reporter component of the web-based SLA management architecture
keeps track of all created agreements and reports the agreement status to all contracting
parties. The Agreement Reporter identifies (potential) agreement violations in order
to help service providers to eliminate critical infrastructure bottlenecks (in advance).
Furthermore, the Agreement Reporter can send the agreement for instance to an
accounting system at certain times as defined by the business values of an agreement.

INFRASTRUCTURE MANAGER

The Infrastructure Manager component of the web-based SLAmanagement architecture
keeps track of all created agreements and dynamically schedules the infrastructure
of the service provider according to the functional and non-functional requirements
defined in all active agreements. If the infrastructure of the service provider relies on
Cloud Computing, the Infrastructure Manager can, for instance, dynamically start and
stop virtual machines in order to realize service offerings at exactly the right time.

Furthermore, the Infrastructure Manager records information about the infrastructure
utilization and the overall system load. The information about the infrastructure
utilization can be accessed by the Agreement Monitor to update the passive monitoring
information for an agreement at the Agreement Manager. The information about the
current and expected system load can be used to check whether the infrastructure of
the service provider is capable to realize additional services offerings. The information
about the current and expected system load can help the Agreement Manager to decide
whether an agreement offer can be accepted or not.

In the remainder of this thesis, the Infrastructure Manager is outlined on a conceptual
level as an abstract component and not detailed furthermore. Section 6.1.3 provides
an example of how SDI service providers can match the basic INSPIRE service quality

101

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

requirements without investing in rarely used hardware by means of an Hybrid Cloud
approach.

5.2.2 Component Interaction

This section describes the relationships between the components of the web-based SLA
management architecture. The interactions between these components are described
as sequence diagrams in UML. Sequence diagrams are primarily used to describe the
interactions between managed objects in the sequential order that those interactions
occur [Bell, 2004b]. They define communication patterns for a concrete implementation
of a managed environment.

AGREEMENT NEGOTIATION

The agreement negotiation phase consists of the following steps (Figure 5.5):

1. Template Discovery

First, the service consumer performs a template discovery at the Agreement
Manager. Therefore, the service consumer sends a search query to the Agreement
Manager, which may contain information about functional and non-functional
requirements of the service consumer. The template discovery results in a list of
zero, or one, or many templates that match the service consumers’ requirements.

If no template matches the specific requirements, the service consumer either can
modify and resend the originally query to the Agreement Manager in order to find
an adequate template, or can contact another service provider. If more than one
template matches the specific requirements, the service provider must select exactly
one of these templates in order to proceed. When the service consumer decides to
proceed with a template, the next step is the agreement creation.

In order to create an agreement, the service consumer must send an agreement offer
to the Agreement Manager. Such an agreement offer is technically identical to the
template. In some cases, the service consumer must complete a template in order
to create a valid agreement offer. Maybe the service consumer must specify the
contract period or accept some end user license agreements. In most cases, the
service consumer has to provide additional management information such as contact
and bank account details.

2. Agreement Creation

When the Agreement Manager receives an agreement offer, several steps must be
taken in order to validate the agreement offer, and to decide whether to accept or
reject the agreement offer. First of all, the Agreement Manager checks whether the
agreement offer is formally valid or not. The formal validation process checks if all
required document elements are present, if the agreement offer matches the template
and if the information provided by the service consumer are within the (optional)
creation constraints (e.g. minimum contract period). After the formal validation
process, the Agreement Manager checks whether the infrastructure of the service

102

5.2. INFORMATION MODEL

Figure 5.5: Agreement Negotiation Workflow

103

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

provider is capable to deliver the demanded services in the desired service quality
for the intended contract period.

If the formal validation process fails or if the infrastructure of the service provider is
too busy to realize the demanded service levels, the Agreement Manager rejects the
agreement offer and sends a rejection notification back to the service consumer. The
rejection notification should contain detailed information about the reasons for the
rejection of the agreement offer. These information can help the service consumer to
modify and resend the agreement offer in order to successfully create an agreement.
If the validation process and the system check succeed, the Agreement Manager
creates an agreement in the local database and notifies the Infrastructure Manager
about the existence of a new agreement. The agreement is enhanced by additional
management information and then returned as a copy to the service consumer. The
returned agreement must contain information about how to access the service and
how to assess the status of the agreement during agreement runtime.

From now on, the agreement is a (potentially legally) binding contract for both
contracting parties and the agreement life cycle continues with the agreement
implementation and executions phases.

AGREEMENT IMPLEMENTATION

The Infrastructure Manager keeps track of all created agreements and initially
configures the services so that they are provided in compliance with the created
agreements. This initial provisioning process covers many different aspects such as
the technical setup of the service, the installation of monitoring capabilities, and the
configuration of reporting mechanisms.

Several approaches haven been developed to realize reliable and high-performance
services, databases, networks or complete computer clusters. Implementing HTTP
load balancing [Bourke, 2001] may be suited for simple application scenarios and
stateless web services. Advanced failover mechanisms for databases and application
states [Chouk, 2003] as well as complete computer clusters [Vogels et al., 1998] are also
available for many enterprise products. However, this thesis does not develop advanced
mechanisms in order to realize high-available and high-performance web services.

AGREEMENT EXECUTION

The agreement execution phase consists of the agreement monitoring and the
agreement evaluation sub-tasks that can be executed in parallel.

Agreement Monitoring

The Agreement Monitor keeps track of all created agreements and for each active
agreement, the agreement monitoring task consists of the following steps (Figure 5.6):

• Service Monitoring

For each resource-, runtime- and usage-related service property of an agreement,
the Agreement Monitor determines the raw and atomic monitoring values for the

104

5.2. INFORMATION MODEL

Figure 5.6: Agreement Monitoring Workflow

105

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

specific service property type at certain times of the day. If the agreement contains
for instance a service property that represents the service availability, the Agreement
Monitor determines whether the service is currently available (true) or not (false).
These raw and atomic measurements can be used later by the Agreement Evaluator
to calculate high-level service property values. The Agreement Evaluator can
take for instance the atomic results of all availability measurements of the current
calendar week (which is basically a list of boolean values) to calculate the average
service availability for the current calendar week in percent (the percentage of true
values in comparison to the total number of measurements).

Depending on the service property type and depending on the monitoring setup,
the Agreement Monitor can use active or passive monitoring mechanisms to
obtain the raw and atomic monitoring values (Section 4.2). If a service property
defines an active monitoring setup, the Agreement Monitor sends one or more
monitoring requests to the Agreement Proxy that offers the service entry point, and
subsequently derives the raw and atomic monitoring values directly from the service
response behavior. If a service property defines a passive monitoring setup, the
Agreement Monitor requests the required information directly from the Agreement
Proxy. For the agreement evaluation process it technically makes no difference
whether the measurements are captured by means of active or passive monitoring
mechanisms. Nevertheless, for the meaning and the interpretation of the service
level objectives it is important to know whether the measurements come from real
or simulated user traffic.

• Infrastructure Monitoring

The raw and atomic monitoring values for the infrastructure-related service
properties cannot be determined by active monitoring mechanisms. If the agreement
for instance contains a service property that represents the computing resources
that the service consumer actually consumed (e.g. the consumed CPU hours
per accounting period), the Agreement Monitor requests the required information
directly from the Infrastructure Manager.

However, the monitoring setup of each service property defines the points in time
when the Agreement Monitor collects the raw monitoring data. The monitoring setup
also defines the content of the monitoring requests, the number of parallel requests or
whether the service response should be analyzed and validated.

Finally, for each agreement the collected rawmonitoring data is stored at the Agreement
Manager. Therefore, the monitoring data can be reused by the Agreement Evaluator in
order to evaluate service level objectives or to calculate business values. Furthermore,
all contracting parties are able to review the collected raw monitoring data directly at
the Agreement Manager or at the Agreement Client.

Agreement Evaluation

The Agreement Evaluator keeps track of all created agreements and for each active
agreement, the agreement evaluation task consists of the following steps (Figure 5.7):

106

5.2. INFORMATION MODEL

Figure 5.7: Agreement Evaluation Workflow

107

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

1. Service Property Calculation

For each resource-, runtime-, usage- and infrastructure-related service property of
an agreement, the Agreement Evaluator gathers all available measurements at the
Agreement Manager and calculates the corresponding high-level service property
values. Based on these values, the Agreement Evaluator creates the JEXL context
variables that can be accessed from within the service level objectives and business
values.

2. Service Level Objective Evaluation

For each Service Level Objective element of an agreement, the Agreement
Evaluator reads the script from the Status element and creates a JEXL context that
contains all the previously created JEXL context variables. The Agreement Evaluator
executes the script within the scope of the context in order to determine the current
status of the service level objective.

3. Business Value Calculation

For each Business Value element of an agreement, the Agreement Evaluator reads
the script from the Value element and creates a JEXL context that contains all the
previously created JEXL context variables. The Agreement Evaluator executes the
script within the scope of the context in order to determine the current value of the
business value.

Finally, for each agreement the evaluated service level objectives and the calculated
business values are updated at the Agreement Manager. The high-level service property
values are not stored permanently for two reasons. On the one hand, they are instantly
outdated after they are calculated. On the other hand, they can be recalculated from the
raw measurements at any time in the future.

Agreement Reporting

The Agreement Reporter keeps track of all agreements and informs the contracting
parties of an agreement about the overall agreement status, service property
measurements, and the status of service level objectives and business values. These
information are important for service consumers to understand whether the actual
service is delivered with promised service quality or not. For service providers
it is important to be aware of (potential) service quality bottlenecks. Without
frequent reports, "the agreement is left merely as a statement of good intentions"
[Sturm et al., 2000]. The reports might be delivered via mail to the service consumer and
the service provider. In other use cases, the reports might be send to other (software)
components in order to initiate other automated processes. The reports can be used for
instance to optimize the infrastructure management process or to start an accounting
process.

Infrastructure Management

The infrastructure management task basically consists of the same steps as the
agreement implementation phase, but these steps must be performed permanently
during agreement runtime. The Infrastructure Manager keeps track of all active

108

5.2. INFORMATION MODEL

agreements. Depending on the current and expected system load (e.g. user traffic
or other workload indicators), the service provider (manually) or the Infrastructure
Manager (automatically) must react on service quality fluctuations in order to avoid
infrastructure bottlenecks.

Service Consumption

The service consumption phase consists of the following steps (Figure 5.8):

1. Service Execution

First, the service consumer typically inserts the service reference, which is provided
by the created agreement, into a GIS client in order to access the SDI service. This
service reference points to the Agreement Proxy and not to the original service,
which is protected by a firewall that only allows the Agreement Proxy to access the
original SDI service. The service reference to the Agreement Proxy is unique for the
created agreement, for the underlying original SDI service, and maybe unique for a
specific user or a group of users. However, the GIS client is not aware that service
requests are send to the service under the terms of a previously created agreement
and therefore sends standards-compliant OWS service requests to the Agreement
Proxy.

2. Agreement Enforcement

For each service request, the Agreement Proxy checks whether the agreement,
which is identified by the unique service reference, is formally valid or not. This
formal validation process checks for instance whether the service execution is within
the contract period or not. If the formal validation process fails, the Agreement
Proxy sends an Exception Report message [Whiteside and Greenwood, 2010] back
to the service consumer. The service exception should contain detailed information
about the reasons for the exception. These information can help service consumers
to find potential errors in their workflows or to obtain a new agreement for the
targeted service. In the case the formal validation process succeeds, the Agreement
Proxy checks whether the actual service request is valid.

The service request validation process checks for instance whether the service
consumer is allowed to make the specific service request or not. Limiting constraints
can be for instance a maximum number of allowed service requests per month or a
maximum amount of data that can be transferred to the service per month. If the
service request validation process fails, the Agreement Proxy sends an Exception
Report message [Whiteside and Greenwood, 2010] back to the service consumer. If
the service request validation process succeeds, the Agreement Proxy continues to
execute the served request at the original SDI service.

3. Request Forwarding

If all preliminary checks succeed, the Agreement Proxy requests the Infrastructure
Manager how to contact the original SDI service. Afterwards, the Agreement Proxy
calls the original SDI service on behalf of the service consumer (proxy). In some
cases, the response of the original service must be modified (non-transparent proxy)
before it can be returned back to the service consumer. However, the service

109

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

Figure 5.8: Service Consumption Workflow

110

5.3. DATA MODEL

consumer is not aware that service requests are checked, that the Agreement Proxy
is a gateway and not the original service, and that the service response may be
modified.

During the service consumption phase, the Agreement Proxy measures and records all
kinds of service properties as for instance the service response time or the number of
delivered pixel. These measurements are stored locally at the Agreement Proxy, so that
these measurements can be reused later for instance by the Agreement Monitor for
passive monitoring.

5.3 Data Model

This section introduces the data model for the web-based SLAmanagement architecture.
A data model is a mapping of an information model into a form that is specific
to a concrete implementation [Shelly et al., 1998]. It is intended for developers and
includes implementation- and protocol-specific details [Pras and Schoenwaelder, 2003].
Although information models and data models normally serve different purposes,
in some cases it is not possible to precisely define "what kind of details should
be expressed in an information model and which ones belong in a data model"
[Pras and Schoenwaelder, 2003]. One example in the context of this thesis is the
utilization of the JEXL language in the abstract SLA model, which normally should
contain no concrete implementation- and protocol-specific details.

This section introduces a mapping of the abstract SLA model to an extended and
particular version of the WS-Agreement specification. Furthermore, this section
describes the service interfaces of the Agreement Manager and the Agreement
Proxy. From a standardization perspective, these components are the most
relevant components in the web-based SLA management architecture. They ensure
interoperable template discovery and service consumption across service provider
boundaries. The Agreement Manager and the Agreement Proxy are the only
components that are directly accessible for service consumers. All other components
need not necessarily be standardized. They are only executed internally and can be
realized by vendor specific solutions. Appendix D.2 describes example service interfaces
for those internally used components.

5.3.1 WS-Agreement Application Profile

The WS-Agreement specification [Andrieux et al., 2005] defines an XML-based SLA
template format and a SOAP-based web service protocol for establishing agreements
between two parties. This section describes the WS-Agreement Application Profile for
OGC Web Services, which has been presented first in [Baranski, 2011]. The application
profile defines a mapping of the abstract SLA model to an extended version of the WS-
Agreement specification as a concrete implementation.

WS-AGREEMENT SPECIFICATION

TheWS-Agreement specification mainly consists of two parts. First, an XML Schema for
specifying the structure of templates and agreements. Second, a web service interface

111

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

for managing the life cycle of an agreement.

Agreement Structure

In the WS-Agreement specification an agreement is composed of several distinct parts.

Agreement Context

The Agreement Context part contains general metadata about the entire agreement
as for instance domain-specific information about the participants in the
agreement and the agreement’s lifetime.

Service Terms

The Service Terms part contains a set of terms, each expressing the defined
consensus or obligations of the participants in the agreement. It contains
information to identify the service to which an agreement pertains and to which
the guarantee terms can apply. The Service Description Terms section provides a
domain-specific description of the service to which an agreement pertains. The
Service Reference section points to the service to which an agreement pertains.
The Service Properties section is used to define domain-specific measurable and
exposed properties associated with a service. These service properties are used
for expressing the domain-specific service level objectives in the Guarantee Terms

part of an agreement.

Guarantee Terms

The Guarantee Terms part contains information about the service quality
associated with the service described by the Service Terms part. The Service Level
Objective section is expressed over the service properties and defines an assurance
on service quality. The Business Value List defines an optional list of business
values associated with a service level objective.

In WS-Agreement the general structure of a template is the same as that of an
agreement. But a template may also contain an additional Creation Constraints part that
contains constraints on possible values of the Service Terms and the Guarantee Terms for
creating an agreement.

Service Interface

The WS-Agreement specification defines a web service interface for creating,
representing and monitoring agreements. The web service interface is based on the
Web Services Resource Framework (WSRF) [Czajkowski et al., 2004], a SOAP-based web
service interface that allows the modeling of stateful resources with web services.
The WS-Agreement specification defines the following main port types and resource
properties. The AgreementFactory port type offers a CreateAgreement operation for
creating agreements. The Template resource property of the AgreementFactory port
type represents a sequence of zero or more templates of agreement offers that can be
accepted by the AgreementFactory operations in order to create an agreement. The
Agreement port type offers different resource properties providing static information
about an agreement. The Name resource property exposes the name of an agreement.

112

5.3. DATA MODEL

The AgreementId resource property exposes an unique identifier of an agreement. The
Context resource property exposes the context information of the entire agreement.
The Terms resource property exposes the service and guarantee terms of an agreement.
The AgreementState port type offers different resource properties providing runtime
information about an agreement. The AgreementState resource property exposes
the overall agreement state. The ServiceTermState resource property exposes a
service runtime state for each service description term of an agreement. The
GuaranteeTermState resource property exposes a state of fulfillment for each guarantee
term of an agreement.

The overall agreement compliance can be observed at agreement runtime by monitoring
different types of states. The agreement states can be observed via the AgreementState
resource property and the primary agreement states are "Pending", "Observed",
"Rejected", "Completed" and "Terminated". The "Pending" state means that an agreement
offer has been made, but it has been neither accepted nor rejected. The "Observed" state
means that an agreement offer has been made and accepted. The "Rejected" state means
that an agreement offer has been made and rejected. The "Complete" state means that
an agreement offer has been received and accepted, and that all activities pertaining to
the agreement are finished. The "Terminated" state means that an agreement offer has
been terminated by the agreement initiator and that the obligation no longer exists. The
service runtime states could be observed via the ServiceTermState resource property
and primary service runtime states are "Not Ready", "Ready" and "Completed". The
"Not Ready" state means that a service cannot be used. The "Ready" state means that
a service is ready for use by a client. The "Completed" state means that a service
cannot be used any more and any service provider activity is finished. The guarantee
states could be observed via the GuaranteeTermState resource property and primary
guarantee states are "Fulfilled", "Violated" and "NotDetermined". The "Fulfilled" state
means that currently the specific guarantee is fulfilled. The "Violated" state means that
currently the specific guarantee is violated. The "NotDetermined" state is the initial
state of a guarantee term and it means that no activity regarding this guarantee has
happened yet that allows evaluating whether the guarantee is met or not. However,
the different state types defined by the WS-Agreement specification are independent of
domain-specific service descriptions, service properties and guarantee terms. They can
be applied as they are in a broad range of usage domains, but also be extended for other
application scenarios.

APPLICATION PROFILE

The most current XML Schema of WS-Agreement is available in the schema
repository of the OGF1. The WS-Agreement specification defines neither domain-
specific expressions and metrics for service descriptions and service properties, nor how
and where to measure such properties. Furthermore, the WS-Agreement specification
does not define a specific condition expression language for defining and evaluating
domain-specific guarantee terms. Therefore, the XSD of WS-Agreement contains
various type="xs:anyType" attributes and <xs:any/> elements in order to allow the
definition of any domain-specific content in XML documents that can be conform to

1 http://schemas.ggf.org/graap/2007/03/ws-agreement

113

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

the WS-Agreement specification.

The WS-Agreement Application Profile for OGC Web Services describes a domain-
specific extension of WS-Agreement and mainly consists of the following three parts:

• A set of XSD for specifying the domain-specific content of an agreement.

• An URN namespace for identifying domain-specific service properties and business
values.

• A DSL for defining and evaluating domain-specific guarantee terms.

Section 4.3.1 already defines an OGC URN Schema Extension for identifying domain-
specific service properties and business values in the abstract SLA model. The
URN namespace can be reused without any modifications in the application profile.
Section 4.3.2 already defines a DSL for evaluating the status of service level objectives
and calculating business values in the abstract SLA model. The defined Agreement
Expression Language can also be reused without any modifications in the application
profile.

Based on the abstract SLA model, the following sections introduce a set of XSD for
specifying the domain-specific content in WS-Agreement. Example XML documents
implementing these XSDs can be found in Appendix C.1.2.

Agreement Context

The AgreementInitiator and the AgreementResponder elements in the Agreement

Context part of the WS-Agreement specification should help to identify and contact
the corresponding parties, which may have obligations in an agreement. The XSD of
the WS-Agreement specification defines the following XML elements for the agreement
initiator and the agreement responder (Listing 5.1).

Listing 5.1: Agreement Context in WS-Agreement

1 <xs:complexType name=" AgreementContextType">
2 (...)
3 <xs:element minOccurs ="0" name=" AgreementInitiator" type="xs:anyType"/>
4 <xs:element minOccurs ="0" name=" AgreementResponder" type="xs:anyType"/>
5 (...)
6 </xs:complexType >

The type="xs:anyType" attribute allows to define any domain-specific content in the
AgreementInitiator and the AgreementResponder element. Section 4.1.1 defines the
general structure and content for describing the service provider and the service
consumer in the Agreement Context part of the abstract SLA model. These information
are derived from the metadata that is delivered by the GetCapabilities operation of
all OWS. They can be reused without any modifications to define the domain-specific
content of the AgreementInitiator and the AgreementResponder element in the WS-
Agreement specification. An example XML document that can be embedded for instance
in the AgreementResponder element can be found in Listing 5.2.

114

5.3. DATA MODEL

Listing 5.2: Example Agreement Responder

1 <wsag:AgreementResponder >
2 <wsag -ogc:Contact >
3 <wsag -ogc:Name >Institute for Geoinformatics </wsag -ogc:Name >
4 <wsag -ogc:Site xmlns:xlin="http ://www.w3.org /1999/ xlink" xlin:href="http

:// www.ifgi.de"/>
5 <wsag -ogc:Contact >
6 <ows:IndividualName >Bastian Baranski </ows:IndividualName >
7 <ows:PositionName >Research Associate </ows:PositionName >
8 <ows:ContactInfo >
9 <ows:Phone >
10 <ows:Voice >+49 251 8333071 </ ows:Voice >
11 <ows:Facsimile >+49 251 8339763 </ ows:Facsimile >
12 </ows:Phone >
13 <ows:Address >
14 <ows:DeliveryPoint >Weseler Strasse 253</ows:DeliveryPoint >
15 <ows:City >Muenster </ows:City >
16 <ows:PostalCode >48151 </ ows:PostalCode >
17 <ows:Country >Germany </ows:Country >
18 <ows:ElectronicMailAddress >baranski@uni -muenster.de </ows:

ElectronicMailAddress >
19 </ows:Address >
20 <ows:HoursOfService >The hours of service are Monday to Friday from 8

AM to 16 PM.</ows:HoursOfService >
21 <ows:ContactInstructions >Please contact the service desk via phone

or mail.</ows:ContactInstructions >
22 </ows:ContactInfo >
23 </wsag -ogc:Contact >
24 </wsag -ogc:Contact >
25 </wsag:AgreementResponder >

The XSD specifying the domain-specific content in the AgreementInitiator and the
AgreementResponder element can be found in Appendix C.1.1.

Service Description Terms

The Service Description Terms section is fundamental for agreements in WS-Agreement
because the agreement is about the service(s) that are described by the list of zero, or
one, or more ServiceDescriptionTerm elements in the Service Description Terms section.
The XSD of theWS-Agreement specification defines the following XML elements for the
Service Description Terms section (Listing 5.3).

Listing 5.3: Service Description in WS-Agreement

1 <xs:complexType name=" TermCompositorType">
2 <xs:sequence >
3 <xs:choice maxOccurs =" unbounded">
4 (...)
5 <xs:element name=" ServiceDescriptionTerm" type="wsag:

ServiceDescriptionTermType "/>
6 (...)
7 </xs:choice >
8 </xs:sequence >
9 </xs:complexType >
10 <xs:complexType abstract ="true" name=" TermType">
11 <xs:attribute name="Name" type="xs:string" use=" required" />
12 </xs:complexType >
13 <xs:complexType abstract ="true" name=" ServiceTermType">
14 <xs:complexContent >
15 <xs:extension base="wsag:TermType">
16 <xs:attribute name=" ServiceName" type="xs:string" use=" required" />
17 </xs:extension >
18 </xs:complexContent >
19 </xs:complexType >

115

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

20 <xs:complexType name=" ServiceDescriptionTermType">
21 <xs:complexContent >
22 <xs:extension base="wsag:ServiceTermType">
23 <xs:sequence >
24 <xs:any namespace ="## other" processContents =" strict"/>
25 </xs:sequence >
26 </xs:extension >
27 </xs:complexContent >
28 </xs:complexType >

The <xs:any/> element allows to define any domain-specific content in the
ServiceDescriptionTerm element. To map the Service Description section, the Service

Properties section, and the Contract Period section of the abstract SLA model to WS-
Agreement, the WS-Agreement Application Profile for OGCWeb Services defines three
different types of ServiceDescriptionTerm elements.

• The Functional Service Description describes what kind of service (functionality) is
offered by the service provider.

• The Non-Functional Service Description defines the service level that is guaranteed
by the service provider and what service properties shall be monitored during
agreement runtime.

• The Contract Period defines the start and the end date of the service offering.

These service description types allow the parties, which may have obligations in the
agreement, to identify all relevant service aspects that must be fulfilled and monitored
during the agreement life cycle.

Functional Service Description

Section 4.1.2 defines the general structure and content for describing the Service

Description section of the abstract SLA model. These information are derived from
the metadata that is delivered by the GetCapabilities operation of all OWS. They can
be reused without any modifications to provide the domain-specific functional service
description in the Service Description Terms section in WS-Agreement.

An example XML document that can be embedded in the ServiceDescriptionTerm
element is shown in Listing 5.4.

Listing 5.4: Example Functional Service Description

1 <wsag:ServiceDescriptionTerm wsag:Name=" SERVICE_DESCRIPTION_SDT" wsag:
ServiceName =" INSPIRE_VIEW_SERVICE">

2 <wsag -ogc:ServiceDescription >
3 <wsag -ogc:Title >INSPIRE View Service </wsag -ogc:Title >
4 <wsag -ogc:Abstract >This service instance is an INSPIRE View Service

implementation .</wsag -ogc:Abstract >
5 <wsag -ogc:Keywords >INSPIRE , View Service , OGC , WMS </wsag -ogc:Keywords >
6 <wsag -ogc:Type >urn:ogc:doc:is:wms :1.1.1 </wsag -ogc:Type >
7 </wsag -ogc:ServiceDescription >
8 </wsag:ServiceDescriptionTerm >

The XSD specifying the domain-specific functional service description for the Service

Description Terms section can be found in Appendix C.1.1.

116

5.3. DATA MODEL

Non-Functional Service Description

Section 4.1.4 defines the general structure and content for describing the Service

Properties section in the abstract SLA model. These information can be reused without
any modifications to provide the domain-specific non-functional service description in
the Service Description Terms section in the WS-Agreement specification.

An example XML document that can be embedded in the ServiceDescriptionTerm
element can be found in Listing 5.5.

Listing 5.5: Example Non-Functional Service Description

1 <wsag:ServiceDescriptionTerm wsag:Name=" SERVICE_PROPERTIES_SDT" wsag:
ServiceName =" INSPIRE_VIEW_SERVICE">

2 <wsag -ogc:ServiceProperties >
3 <!-- RESOURCE -RELATED PROPERTIES -->
4 <wsag -ogc:Property >
5 <wsag -ogc:Name >operations </wsag -ogc:Name >
6 <wsag -ogc:Title >Supported Operations </wsag -ogc:Title >
7 <wsag -ogc:Abstract >The operations that are supported by the service.</

wsag -ogc:Abstract >
8 <wsag -ogc:Type >urn:ogc:def:sla:property:resource:operation </wsag -ogc:

Type >
9 <wsag -ogc:Monitoring >
10 <wsag -ogc:ActiveMonitoring >
11 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >
12 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
13 <wsag -ogc:Period >360000 </ wsag -ogc:Period >
14 </wsag -ogc:ActiveMonitoring >
15 </wsag -ogc:Monitoring >
16 </wsag -ogc:Property >
17 <!-- RUNTIME -RELATED PROPERTIES -->
18 <wsag -ogc:Property >
19 <wsag -ogc:Name >availability </wsag -ogc:Name >
20 <wsag -ogc:Title >Service Availability </wsag -ogc:Title >
21 <wsag -ogc:Abstract >The general availability of the service.</wsag -ogc:

Abstract >
22 <wsag -ogc:Type >urn:ogc:def:sla:property:runtime:availability </wsag -ogc

:Type >
23 <wsag -ogc:Monitoring >
24 <wsag -ogc:ActiveMonitoring >
25 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >
26 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
27 <wsag -ogc:Period >360000 </ wsag -ogc:Period >
28 <wsag -ogc:Request >
29 <wsag -ogc:Method >GET </wsag -ogc:Method >
30 <wsag -ogc:Content >service=WMS&version =1.3.0& amp;request=

GetMap&layers=topp:tasmania_state_boundaries&styles
=&bbox=${__random (142.0 ,144.0)},${__random (-46.0 , -44.0)
},${__random (150.0 ,152.0)},${__random (-38.0 , -36.0)}&
width =800& amp;height =600& amp;srs=EPSG :4326& amp;format=image/
png </wsag -ogc:Content >

31 </wsag -ogc:Request >
32 <wsag -ogc:Response >
33 <wsag -ogc:Status >200</wsag -ogc:Status >
34 </wsag -ogc:Response >
35 </wsag -ogc:ActiveMonitoring >
36 </wsag -ogc:Monitoring >
37 </wsag -ogc:Property >
38 (...)
39 </wsag -ogc:ServiceProperties >
40 </wsag:ServiceDescriptionTerm >

The OGC URN Schema Extension described in Section 4.3.1 can be used in the Type
element to identify which specific service property shall be monitored by the web-

117

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

based SLA management architecture during agreement runtime. The Value element
defines concrete service levels that are guaranteed by the service provider. The XSD
specifying the domain-specific functional service description for the Service Description
Terms section can be found in Appendix C.1.1.

Contract Period

Section 4.1.1 defines the general structure and content for describing the Agreement

Context section in the abstract SLA model. Beside the information about the service
provider and the service consumer, the Agreement Context section of the abstract SLA
model contains information about the contract period. These information can be reused
without any modifications to provide the contract period information in the Service

Description Terms section in WS-Agreement.

An example XML document that can be embedded in the ServiceDescriptionTerm
element can be found in Listing 5.6.

Listing 5.6: Example Service Availability Period

1 <wsag:ServiceDescriptionTerm wsag:Name=" CONTRACT_RUNTIME_SDT" wsag:
ServiceName =" INSPIRE_VIEW_SERVICE">

2 <res -sla:TimeConstraint >
3 <res -sla:StartTime >2010 -07 -04 T13 :00:00+02:00 </res -sla:StartTime >
4 <res -sla:EndTime >2012 -07 -09 T13 :00:00+02:00 </res -sla:EndTime >
5 </res -sla:TimeConstraint >
6 </wsag:ServiceDescriptionTerm >

The XSD specifying the domain-specific contract period for the Service Description

Terms section can be found in Appendix C.1.1.

Service Reference

The ServiceReference element of the WS-Agreement specification points to a service
for instance by providing an Endpoint Reference (EPR) that identifies a web service. The
XSD of the WS-Agreement specification defines the following XML elements for such a
domain-specific service reference (Listing 5.7).

Listing 5.7: Service Reference in WS-Agreement

1 <xs:complexType name=" TermCompositorType">
2 <xs:sequence >
3 <xs:choice maxOccurs =" unbounded">
4 (...)
5 <xs:element name=" ServiceReference" type="wsag:ServiceReferenceType "/>
6 (...)
7 </xs:choice >
8 </xs:sequence >
9 </xs:complexType >
10 <xs:complexType name=" ServiceReferenceType">
11 <xs:complexContent >
12 <xs:extension base="wsag:ServiceTermType">
13 <xs:sequence >
14 <xs:any namespace ="## other" processContents =" strict"/>
15 </xs:sequence >
16 </xs:extension >
17 </xs:complexContent >
18 </xs:complexType >

118

5.3. DATA MODEL

The <xs:any/> element allows the definition of any domain-specific information
in ServiceDescriptionTerm elements. Section 4.1.3 defines the structure and the
content for the service reference in the abstract SLA model. These information
can be used without any modifications to define the domain-specific content of the
ServiceReference element in WS-Agreement.

An example XML document that can be embedded in the ServiceReference element
can be found in Listing 5.8.

Listing 5.8: Example Service Reference

1 <wsag:ServiceReference wsag:Name=" SERVICE_REFERENCE" wsag:ServiceName ="
INSPIRE_VIEW_SERVICE">

2 <wsag -ogc:ServiceReference >
3 <wsag -ogc:URL >http :// localhost :8088/sla -proxy/DefaultWMS </wsag -ogc:URL >
4 </wsag -ogc:ServiceReference >
5 </wsag:ServiceReference >

The XSD specifying the service reference for the Service Reference section can be found
in Appendix C.1.1.

Service Properties

The Service Properties section of the WS-Agreement specification does not allow to
define domain-specific content. The WS-Agreement Application Profile for OGC Web
Services already defines domain-specific non-functional service properties in the Service
Description Term section and domain-specific custom service levels in the Service Level
Objective section. Therefore, the Service Properties section is ignored by the WS-
Agreement Application Profile for OGC Web Services.

Service Level Objective

The ServiceLevelObjective element of the WS-Agreement specification defines a
domain-specific and machine-readable condition that must be met to fulfill a service
quality guarantee. The XSD of the WS-Agreement specification defines the following
XML elements for the Service Level Objective section (Listing 5.9).

Listing 5.9: Service Level Objectives in WS-Agreement

1 <xs:complexType name=" GuaranteeTermType">
2 <xs:complexContent >
3 <xs:extension base="wsag:TermType">
4 <xs:sequence >
5 (...)
6 <xs:element ref="wsag:ServiceLevelObjective "/>
7 (...)
8 </xs:sequence >
9 (...)
10 </xs:extension >
11 </xs:complexContent >
12 </xs:complexType >
13 <xs:element name=" ServiceLevelObjective" type="wsag:

ServiceLevelObjectiveType "/>

119

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

14 <xs:complexType name=" ServiceLevelObjectiveType">
15 <xs:choice >
16 <xs:element name=" KPITarget" type="wsag:KPITargetType "/>
17 <xs:element name=" CustomServiceLevel" type="xs:anyType"/>
18 </xs:choice >
19 </xs:complexType >
20 <xs:complexType name=" KPITargetType">
21 <xs:sequence >
22 <xs:element name=" KPIName" type="xs:string"/>
23 <xs:element name=" CustomServiceLevel" type="xs:anyType" />
24 </xs:sequence >
25 </xs:complexType >

The type="xs:anyType" attribute allows the definition of any domain-specific
information in the CustomServiceLevel element. Section 4.1.5 defines the structure and
the content for Service Level Objective elements in the abstract SLA model. These
information can be reused without any modifications to define the domain-specific
content of the CustomServiceLevel element in the WS-Agreement specification.

An example XML document that can be embedded in the CustomServiceLevel element
can be found in Listing 5.10.

Listing 5.10: Example Service Level Objective

1 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RUNTIME_AVAILABILITY" wsag:
Obligated =" ServiceProvider">

2 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
3 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
4 <wsag:ServiceLevelObjective >
5 <wsag:CustomServiceLevel >
6 <wsag -ogc:CustomServiceLevel >
7 <wsag -ogc:Name >InspireAvailability </wsag -ogc:Name >
8 <wsag -ogc:Title >INSPIRE (Availability)</wsag -ogc:Title >
9 <wsag -ogc:Abstract >The probability of a Network Service to be

available shall be 99% of the time.</wsag -ogc:Abstract >
10 <wsag -ogc:Status >
11 (availability.week >= 0.99) and (availability.month >= 0.99) and (

availability.year >= 0.99)
12 </wsag -ogc:Status >
13 </wsag -ogc:CustomServiceLevel >
14 </wsag:CustomServiceLevel >
15 </wsag:ServiceLevelObjective >
16 <wsag:BusinessValueList/>
17 </wsag:GuaranteeTerm >

The Agreement Expression Language described in Section 4.3.2 can be used in the
Status element to define the process for evaluating the status of a service quality
assurance. The XSD specifying domain-specific custom service levels for the Service

Level Objective section can be found in Appendix C.1.1.

Business Value List

The BusinessValueList element of the WS-Agreement specification defines a list of
domain-specific and machine-readable business value aspects of an agreement. The
XSD of the WS-Agreement specification defines the following XML elements for the
Business Value List section (Listing 5.11).

120

5.3. DATA MODEL

Listing 5.11: Business Values in WS-Agreement

1 <xs:complexType name=" GuaranteeTermType">
2 <xs:complexContent >
3 <xs:extension base="wsag:TermType">
4 <xs:sequence >
5 (...)
6 <xs:element name=" BusinessValueList" type="wsag:

BusinessValueListType "/>
7 </xs:sequence >
8 (...)
9 </xs:extension >
10 </xs:complexContent >
11 </xs:complexType >
12 <xs:complexType name=" BusinessValueListType">
13 <xs:sequence >
14 <xs:element minOccurs ="0" name=" Importance" type="xs:integer"/>
15 <xs:element maxOccurs =" unbounded" minOccurs ="0" name=" Penalty" type="

wsag:CompensationType "/>
16 <xs:element maxOccurs =" unbounded" minOccurs ="0" name=" Reward" type="wsag

:CompensationType "/>
17 <xs:element minOccurs ="0" name=" Preference" type="wsag:PreferenceType "/>
18 <xs:element maxOccurs =" unbounded" minOccurs ="0" name="

CustomBusinessValue" type="xs:anyType"/>
19 </xs:sequence >
20 </xs:complexType >

The type="xs:anyType" attribute allows the definition of any domain-specific
information in the CustomBusinessValue element. Section 4.1 defines the structure
and the content for business values in the abstract SLA model. These information
can be reused without any modifications to define the domain-specific content of the
CustomBusinessValue element in the WS-Agreement specification.

An example XML document that can be embedded in the CustomBusinessValue element
can be found in Listing 5.12.

Listing 5.12: Example Business Value

1 <wsag:GuaranteeTerm wsag:Name=" COSTS_PER_YEAR" wsag:Obligated ="
ServiceProvider">

2 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
3 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
4 <wsag:ServiceLevelObjective/>
5 <wsag:BusinessValueList >
6 <wsag:CustomBusinessValue >
7 <wsag -ogc:CustomBusinessValue >
8 <wsag -ogc:Name >CostsPerYear </wsag -ogc:Name >
9 <wsag -ogc:Title >Usage Costs (Year)</wsag -ogc:Title >
10 <wsag -ogc:Abstract >The cost to be assessed for using the service on

a yearly basis (in Euro).</wsag -ogc:Abstract >
11 <wsag -ogc:Type >urn:ogc:def:sla:business:cost:year </wsag -ogc:Type >
12 <wsag -ogc:Value >
13 factor;
14 if (pixel.year lt (1000000 * 1000))
15 {
16 factor = 1.0;
17 } else
18 if (pixel.year lt (1000000 * 10000))
19 {
20 factor = 0.5;
21 } else
22 if (pixel.year lt (1000000 * 100000))
23 {
24 factor = 0.25;
25 } else

121

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

26 if (pixel.year lt (1000000 * 1000000))
27 {
28 factor = 0.125;
29 } else
30 {
31 factor = 0.0625;
32 }
33 (factor * (pixel.year / 1000000));
34 </wsag -ogc:Value >
35 </wsag -ogc:CustomBusinessValue >
36 </wsag:CustomBusinessValue >
37 </wsag:BusinessValueList >
38 </wsag:GuaranteeTerm >

The OGC URN Schema Extension described in Section 4.3.1 can be used in the Type
element to identify which specific business value should be calculated by the web-based
SLA management architecture during agreement runtime. The DSL described in Section
4.3.2 can be used in the Status element to define the process for calculating the specific
business value. The XSD specifying domain-specific business values for the Business

Value List section can be found in Appendix C.1.1.

5.3.2 Service Interfaces

This section defines the service interfaces of the Agreement Manager and the
Agreement Proxy. These components are the only components in the web-based SLA
management architecture that must be public accessible for potential service consumers
and their respective SLA clients and GIS applications. Appendix D.2 proposes service
interfaces for all other components that must not be standardized and that can be
realized by implementations specific for each service provider.

The interfaces of the Agreement Manager and the Agreement Proxy are designed
in Representational State Transfer (REST) architectural style [Fielding, 2000]. The
fundamental principle behind the REST approach is that everything is a resource that
can be identified by an URI. The REST concept makes use of the HTTP protocol in
order to manipulate the content (representation) of a resource. The GET operation
reads the representation of a resource. The POST operation creates a new sub-
resource and returns an URI that represents the new resource. The PUT operation
creates or updates the representation of a resource. The DELETE operation completely
deletes a resource. However, the claim of the REST concept is that following those
constraints and architectural principles [Hansen, 2007] will result in "an architecture
that works well in the areas of scalability, mashup-ability, usability, and accessibility"
[Wilde and Pautasso, 2011].

The WS-Agreement specification already defines a SOAP interface for managing the
agreement life cycle, including creation, expiration, and monitoring of agreement states.
In some cases REST offers better flexibility and control, but "when it comes to enterprise
applications though, the reliability and better defined security features of WS-* make
SOAP a probably more appropriate solution" [Kübert et al., 2011]. For the purpose of
this thesis, the identified components are designed along a simplified version of the
RESTful design of the WS-Agreement specification presented in [Kübert et al., 2011].
The major reason for this choice is that REST promises a light-weight solution for

122

5.3. DATA MODEL

SLA management in SDIs. The SOAP protocol seems to produce some relevant
organizational and performance overhead [Mulligan and Gracanin, 2009]. Furthermore,
compared to the SOAP protocol, the REST concept seems to be to a greater degree in
line with the existing OGC Standards Baseline.

AGREEMENT MANAGER

Table 5.1 describes the service interface of the Agreement Manager component.

Table 5.1: Agreement Manager Resources

Resource a Description

/templates With the GET method, this URI returns a list of all
available templates. The output format is defined by
the TemplateList element (Listing C.12).

/template/{id} With the GET method, this URI returns a
representation of the template with the unique
identifier {id}. The output format is defined by the
template format as defined in the WS-Agreement
Application Profile for OGC Web Services. An
example XML document can be found in Listing C.8.

/agreements With the GET method, this URI returns a list of all
available agreements. The output format is defined
by the AgreementList element (Listing C.12).

With the POST method, this URI allows the creation
of a new agreement. The input format is defined
by the agreement offer format as defined in the
WS-Agreement specification. An example XML
document can be found in Listing C.9.

/agreement/{id} With the GET method, this URI returns a
representation of the agreement with the unique
identifier {id}. The output format is defined by the
agreement format as defined in the WS-Agreement
Application Profile for OGC Web Services. An
example XML document can be found in Listing
C.10.

/agreement/{id}/state With the GET method, this URI returns the state
of the agreement with the unique identifier {id}.
The output format is defined by the agreement
properties format as defined in the WS-Agreement
specification. An example XML document can be
found in Listing C.11.

Table 5.1 – Continued on next page

123

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

Table 5.1 – Continued from previous page

Resource a Description

With the POST method, this URI allows the creation
of a resource holding state for the agreement with
with the unique identifier {id}. The input format
is defined by the agreement properties format as
defined in the WS-Agreement specification. An
example XML document can be found in Listing
C.11.

With the PUT method, this URI allows the update of
a resource holding state for the agreement with the
unique identifier {id}. The input format is defined
by the agreement properties format as defined in
the WS-Agreement specification. An example XML
document can be found in Listing C.11.

a In case of successful or invalid requests, all resources produce HTTP Status Codes as
defined in [Fielding et al., 1999] (e.g. 201 CREATED after a new agreement beeing created or
400 BAD REQUEST for malformed request syntax).

The XSD in Listing C.12 defines the XML output format of the Agreement Manager
component. Appendix C.3 describes an example template discovery, agreement creation
and agreement monitoring workflow based on the presented Agreement Manager
service interface.

AGREEMENT PROXY

Table 5.2 describes the service interface of the Agreement Proxy component.

Table 5.2: Agreement Proxy Resources

Resource a Description

/{service}/{agreement} This URI, which can be found in the Service Reference
section of an agreement, references the service with
the unique name {service} and the corresponding
agreement with the unique identifier {id}.

The URI is the main entry point for service
consumers and intercepts all types of requests.
When a request arrives, the Agreement Proxy checks
whether the service consumer is allowed to execute
the service with the unique name {service} under
the terms of the previously created agreement with
the unique identifier {id}. If the check succeeds, the
request is forwarded to the targeted service in order
to execute the service consumer request.

Table 5.2 – Continued on next page

124

5.4. SUMMARY

Table 5.2 – Continued from previous page

Resource Description

a In case of successful or invalid requests, all resources produce HTTP Status Codes as
defined in [Fielding et al., 1999] (e.g. 201 CREATED after a new agreement beeing created or
400 BAD REQUEST for malformed request syntax).

The XSD in Listing C.13 defines the XML output format of the Agreement Proxy
component. Appendix C.3 describes an example service consumption task based on
the presented Agreement Proxy service interface.

5.4 Summary

This chapter presents the design of a web-based SLA management architecture. The
purpose of this architecture is to enabled the on-demand and online negotiation of SLAs
in SDIs without the need of prior offline communication between service providers and
service consumers. The web-based SLA management architecture is developed in three
different steps.

First, the process model provides a general overview about the processes and tasks that
are required for a full integration of SLAs in SDIs. The web-based SLA management
architecture covers three phases of the agreement life cycle: agreement negotiation,
agreement implementation and agreement execution.

Second, the information model identifies all managed objects of the web-based SLA
management architecture on a conceptual level and describes how these objects relate
to each other independent of any specific implementation or protocol. The design of
the web-based SLA management architecture is inspired by policy-based management
systems. The main components of such architectures are the Policy Repository, the
Policy Enforcement Point (PEP) and the Policy Decision Point (PDP). The Agreement
Manager component implements the Policy Repository. The component is responsible
for the management of templates, agreements and monitoring information. The
Agreement Proxy component implements the PEP and the PDP. The component acts as
a proxy for the original SDI service and enforces agreement terms whenever a service
consumer makes a service request under the terms of a previously created agreement.
The other components such as the Agreement Evaluator and the Infrastructure Manager
realize automated agreement and infrastructure management.

Third, the data model specifies concrete data structures and includes implementation-
and protocol-specific details for realizing the information model. The data model mainly
consists of the WS-Agreement Application Profile for OGC Web Services, and the
service interfaces of the Agreement Manager and the Agreement Proxy. The WS-
Agreement Application Profile for OGC Web Services is a mapping of the abstract
SLA model to an extended and particular version of the WS-Agreement specification.
The application profile consists of a set of XSD that specifies the domain-specific
content of an agreement, the OGC URN Schema Extension for identifying domain-
specific service properties and business values, and the DSL for defining and evaluating

125

CHAPTER 5. SERVICE LEVEL MANAGEMENT ARCHITECTURE

domain-specific guarantee terms. The Agreement Manager and the Agreement Proxy
are the only components in the web-based SLA management architecture that must
be public accessible for potential service consumers, their respective SLA clients, and
GIS applications. The interfaces of the Agreement Manager and the Agreement Proxy
are designed in REST architectural style, which promises a light-weight solution for
the management of SLAs and is in line with the OGC Standards Baseline. The other
components such as the Agreement Evaluator and the Infrastructure Manager‚ must
not be standardized and can be realized by implementations specific for each service
provider.

The next chapter presents and evaluates the abstract SLA model and the web-based SLA
management architecture by means of a prototypical implementation.

126

Chapter 6

Implementation and Evaluation

This chapter presents an implementation and demonstration of the abstract SLA model
and the web-based SLA management architecture. Based on the implementation, this
chapter evaluates the presented concept for the integration of SLAs in SDIs with respect
to the objectives and the requirements of this thesis.

6.1 Implementation

The implementation of the abstract SLA model and the web-based SLA management
architecture mainly consist of the SLA4OWS framework, which implements the WS-
Agreement Application Profile for OGC Web Services. Section 6.1.1 describes the
SLA4OWS framework and other components that are used to demonstrate the concepts
of this thesis. Section 6.1.2 describes how service consumers can search for templates,
create agreements and observe the status of agreements. Section 6.1.3 provides an
example that demonstrate how SDI service providers can manage their infrastructure by
means of an Hybrid Cloud in order to match the INSPIRE service quality requirements.

6.1.1 Applications and Resources

The following technologies, applications and resources are used to implement and
demonstrate the abstract SLA model and the web-based SLA management framework.

SLA4OWS

The Service Level Agreements for OGC Web Services (SLA4OWS) framework
[Baranski, 2012] is an Open Source framework for the integration of SLAs in SDIs
that are based on standards developed by the OGC. The SLA4OWS framework enables
service providers to offer different service quality levels and pricing models for their
existing services. The SLA4OWS framework utilizes Cloud Computing infrastructures
to implement the offered service levels in an economical fashion. The standards and
technologies that have been chosen to implement the SLA4OWS framework do not
require changes to other OGC standards or compliant implementations.

The SLA4OWS framework mainly consists of two components. The server implements
the WS-Agreement Application Profile for OGC Web Services. The client provides a
web-based user interface for template discovery, agreement negotiation and agreement

127

CHAPTER 6. IMPLEMENTATION AND EVALUATION

monitoring. The SLA4OWS framework is based on common Java technologies and
provides a pluggable framework for agreement negotiation, web service monitoring and
service hosting in Cloud Computing environments. All INSPIRE-related web service
properties and the on-demand hosting of SDI services at Amazon EC2 are supported by
default. The source code and documentation of the SLA4OWS framework can be found
at the project homepage1.

The SLA4OWS framework was originally developed and evaluated in the SLA4D-
Grid project. For the purpose of this thesis, the list of templates that are supported
by default was extended by additional templates reflecting the requirements of the
four application domains of the abstract scenario. Furthermore, the infrastructure
management capabilities have been extended in order to demonstrate how service
providers can deliver domain-specific service quality levels.

52◦NORTHWPS

The 52◦North WPS [Foerster, 2006] is an Open Source implementation of the OGCWPS
specification. The 52◦NorthWPS implementation is based on common Java technologies
and provides a pluggable framework for algorithms, data handling and processing
frameworks. The source code and documentation of the 52◦North WPS can be found at
the project homepage2.

For the purpose of this thesis, the list of processes that are supported by default
was extended by additional processes such as processes for INSPIRE Coordinate
Transformation. Furthermore, the processing framework was extended in order to
support the distributed and parallel process execution in Grid Computing environments
that are featured with the UNICORE (Uniform Interface to Computing Resources)
middleware [Romberg, 1999].

GEOSERVER

The Geoserver is an Open Source reference implementation of the OGC Web Map
Service (WMS), OGC Web Feature Service (WFS) and OGC Web Coverage Service
(WCS) specifications. The Geoserver implementation is based on common Java
technologies and support many database engines and file formats by default. The
OpenLayers JavaScript library for displaying maps in web browsers is integrated as
a default preview engine. The source code and documentation of the Geoserver can be
found at the project homepage3.

UDIG

The uDig is an Open Source desktop GIS for data access, editing and viewing. The uDig
stand-alone application is built with the Eclipse Rich Client Platform (RCP) technology
and can easily be extended with RCP plugins. The source code and documentation of
uDig can be found at the project homepage4.

1 http://www.sla4ows.org
2 http://52north.org/wps
3 http://geoserver.org
4 http://udig.refractions.net

128

6.1. IMPLEMENTATION

Figure 6.1: Template Discovery

6.1.2 Service Level Management

This section exemplifies a template discovery, agreement creation, service consumption
and agreement monitoring workflow from the service consumers’ perspective. The
workflow description demonstrates the web-based user interface of the SLA4OWS
framework. An example workflow that directly interacts with the service interface of
the Agreement Manager and the Agreement Proxy can be found in Appendix C.3.

TEMPLATE DISCOVERY

To search for services and corresponding templates, the potential service consumer
must login to the Agreement Client. The Agreement Client of the SLA4OWS framework
is able to integrate multiple Agreement Manager instances at the same time. That
enables service consumers to review the service offerings of different service providers
at one place. After the service consumer successfully logged in, the Agreement Client
presents an overview about all available templates (Figure 6.1). The service consumer is
able to look at the template details (e.g. service level objectives and business values) or
to search for templates that cover specific service characteristics (e.g. service types or
delivered data).

AGREEMENT NEGOTIATION

When the service consumer decides to select a template, the next step is the agreement
creation. In order to create an agreement, the service consumer must specify the
contract period and accept the end use license agreements (Figure 6.2). The user details,
which are extracted from the user database of the Agreement Client, can be modified
and extended for instance to provide additional management information such as bank

129

CHAPTER 6. IMPLEMENTATION AND EVALUATION

Figure 6.2: Agreement Negotiation

account details. When the service provider finally initiates the agreement creation, the
Agreement Client creates an agreement at the Agreement Manager for the particular
template. Instantly, all background processes that are essential for the agreement
implementation and the agreement execution are started. In case of a successful
agreement creation, the service consumer receives a confirmation about the created
agreement.

SERVICE CONSUMPTION

The provided agreement creation confirmation contains an URL pointing to the
Agreement Proxy component. The URL comes from the ServiceReference element in
the WS-Agreement Application Profile for OGC Web Services and enables the service
consumption under the terms of the previously created agreement. The Agreement
Proxy acts as a proxy and sends all incoming requests to the actual SDI service on
behalf of the requesting SDI client. Since the Agreement Proxy is implemented as a
non-transparent proxy, the provided URL can be used by any OGC compliant GIS client
for the retrieval, portrayal and processing of geospatial data (Figure 6.3 and 6.4).

AGREEMENT MONITORING

The Agreement Client provides an overview about all created agreements of the service
consumer (Figure 6.5). The list overview provides basic agreement information as for
instance the service type and the status of service level objectives. By default, the
provided URL is public accessible and can be used not only by the service consumer who
created the agreement. Some use cases may require more restrictive and limiting access
rules. Therefore, the Agreement Client provides basic mechanisms to protect the service

130

6.1. IMPLEMENTATION

Figure 6.3: Accessing Agreement Proxy

Figure 6.4: Service Consumption

131

CHAPTER 6. IMPLEMENTATION AND EVALUATION

Figure 6.5: Agreement Overview

Figure 6.6: Monitoring Information

132

6.1. IMPLEMENTATION

Figure 6.7: Infrastructure Manager

3

4 5

1

2

access against unauthorized access for instance by means of HTTP Authentication.
Furthermore, service consumers are able to renew the agreement-specific service
reference in order to invalidate previous URLs, which may be in circulation. The
Agreement Client also provides a detailed overview about the monitoring history, which
is the basis for the evaluation of the service level objectives of an agreement. Figure 6.6
shows for example the measured service response time for the service requests that are
defined to evaluate the agreement against the INSPIRE Capacity requirements.

6.1.3 Infrastructure Management

The description of the web-based SLA management architecture (Chapter 5) covers the
agreement negotiation, the agreement implementation and the agreement execution
phases. The complete agreement life cycle and the service consumption have been
described explicitly, but the actual infrastructure management was only touched
slightly.

Figure 6.7 shows the service consumption from a simplified point of view. When the
service consumer makes a successful agreement offer (1), the Agreement Manager
notifies the Infrastructure Manager about the created agreement (2). After having
created an agreement, the service consumer can access the service through the URL
that is provided by the ServiceReference element of the created agreement (3). The
URL points to the Agreement Proxy, which requests the particular agreement from the
Agreement Manager for each incoming request (4). If the agreement and the service
request are valid, the Agreement Proxy queries infrastructure-related information from
the Infrastructure Manager (5). Based on these infrastructure-related information, the
Agreement Proxy forwards the incoming request to the targeted service and returns the
potentially altered response to the service consumer.

So the question now is what happens at the Infrastructure Manager when being
notified about new agreements? How can the Infrastructure Manager schedule the

133

CHAPTER 6. IMPLEMENTATION AND EVALUATION

infrastructure of the SDI service provider in order to deliver specific service quality
levels and realize certain revenue models? What kind of information are returned
exactly from the Infrastructure Manager? How can these information be used to
forward the request to the targeted service?

The following sections provide an example of how SDI service providers can match
the INSPIRE service quality requirements without investing in rarely used hardware
in advance by means of an Hybrid Cloud approach. The presented approach considers
only stateless SDI services and neglects completely the transfer of big data in distributed
infrastructures. Despite these limitations, the presented Hybrid Cloud approach can
be an easy to follow and efficient "best practice" to setup scalable and reliable SDI
services in order to meet the domain-specific requirements and at the same time also
the technical skills of many SDI service providers.

INSPIRE SERVICE QUALITY

The characteristics and benefits of the Hybrid Cloud approach are presented by means
of an INSPIRE Coordinate Transformation Service, which is defined as an application
profile of the OGC WPS specification. First implementations of such a service interface
are presented in [Kubik and Kopanczyk, 2009] and [Lehto, 2009]. Following the INSPIRE
service quality requirements, an INSPIRE Coordinate Transformation Service must be
available 99% of the time (availability), the initial response time must be 0.5 seconds per
1 MB of input data (performance) and a service instance must be able to fulfill both of
these criteria even if the number of served simultaneous requests is up to 5 per second
(capacity).

From a service provider perspective, the INSPIRE service quality requirements are
very challenging in terms of their implementation. This section introduces the design
and the implementation of a Hybrid Cloud architecture that enables SDI service
providers to match INSPIRE service quality requirements without investing in rarely
used hardware in advance. The proposed Hybrid Cloud was developed by the 52◦North
Geoprocessing Community5 and presented to the public at the 2011 Esri International
User Conference (UC) [Baranski et al., 2011]. The content of this section is based on
ideas, fragments and figures that have appeared previously in [Foerster et al., 2010] and
[Baranski et al., 2011].

Single Server

To understand the limitations of classic service deployments, the scalability of the
52◦North WPS implementation was investigated. The 52◦North WPS implementation
was developed and evaluated in many research projects. The implementation can
be seen as a good representative of other well-engineered SDI Open Source software
in terms of standard compliance, feature completeness and resource consumption
[Garnett, 2011]. For the purpose of the conducted experiment, the 52◦North
WPS implementation was enhanced by a process that realizes INSPIRE Coordinate
Transformation. The WPS was installed on a single-core machine (2.4 GHz, 4 GB
RAM) and the web application container (Apache Tomcat 5.5) was configured to use

5 http://52north.org/communities/geoprocessing

134

6.1. IMPLEMENTATION

Figure 6.8: Single Server Benchmark

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60
A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
s
)

R
e
q
u
e
s
t
s

(
i
n

1
0
s
)

Requests
Average Response Time

local memory as much as possible, accept incoming HTTP connections as many as
possible and create local threads as many as possible. No clustering, load balancing or
other advanced distributed computing mechanism were used to make use of multi-core
processor or other servers in the network. In the conducted experiment, a randomized
Execute request (quite simple in terms of submitted geometry) was sent to the service.
Figure 6.8 visualizes the average service response time compared to the number of
served simultaneous requests.

The benchmark shows that the average response time of all requests increased
significantly according to the number of served simultaneous requests. The average
response time increased from 2.7 seconds (2 requests in 10 seconds) up to 61.3 seconds
(40 requests in 10 seconds). This behavior is not surprising. The pure processing time at
the server for a single Execute request was approximately 2.5 seconds plus the overhead
for receiving the input data and sending the response data. During this time period the
average CPU load of the single-core machine was near by 100%most of the time. When 5
requests within 10 seconds were sent to the service uniformly distributed over time, the
server was still able to handle all requests one after another without interfering. When
more than 5 requests within 10 seconds were sent to the service, the server had to queue
arriving requests, or had to pause and restart already processing requests. However,
in the conducted experiment the single server was not able to handle more than 5
requests within 10 seconds without increasing the average response time significantly.
The average response time increased faster than the number of requests due to a lot
of computational overhead (pausing and restarting processes, memory allocation and
copying). Furthermore, in nearly all conducted experiments the web services threw
internal server errors during peak load (especially XML parsing errors caused by Out of
Memory exceptions). Sometimes the whole server crashed under overload and further
requests could not be processed anymore.

The observed performance behavior can be improved by using more powerful hardware

135

CHAPTER 6. IMPLEMENTATION AND EVALUATION

or by distributing the workload to more than one server. But these improvements
merely shift the general barrier of scalability to another level and in most of the real-
world scenarios the additional hardware will have very low utilization rates as for
instance shown in [Odlyzko, 1998].

The idea of the proposed Hybrid Cloud architecture is always to provide sufficient
computational resources to achieve a constant average service response time,
independent of the number of users requesting a service. By incorporating external
third-party resources into the local IT infrastructure, the proposed architecture offers
potentially unlimited resources on-demand and nearly in real-time. The proposed
Hybrid Cloud approach combines the limited hardware resources of a local IT
infrastructure (local servers) and potentially unlimited resources at a Public Cloud
provider (virtualized servers) in order to realize scalable SDI service in a technical and
economical efficient manner.

The following sections describe the architecture and the implementation of the
proposed Hybrid Cloud approach. The scalability of the Hybrid Cloud implementation
is evaluated against the benchmark of the single server scenario.

ARCHITECTURE

The Hybrid Cloud architecture is composed of the following components (Figure 6.9):

Proxy

The Proxy component is the main entry point for all clients (users, applications,
or other services) and it controls the access to the whole (local and third-party)
infrastructure. It receives all incoming requests, forwards them to the Load
Balancer at the Gateway, and returns the delivered response as if it was itself
the origin.

The Gateway is an organizational unit containing a Load Balancer, a Virtual Machine
Repository, a Cloud Controller and a Cloud Manager.

Load Balancer

The Load Balancer component receives all forwarded requests from the Proxy
and distributes them across all available service instances independent of whether
they are in the local or third-party infrastructure.

Virtual Machine Repository

The Virtual Machine Repository component realizes a local storage containing
one or more VM images. Each VM image belongs to an offered service and
contains a guest operating system, all required software components and related
configurations. In the proposed Hybrid Cloud architecture two different types of
VM images exists. One image type is dedicated for use in the local infrastructure.
The other image type is dedicated for use at the Public Cloud. Therefore, to offer
a service through the Hybrid Cloud, for each service two image types must be
provided at the VM Repository.

136

6.1. IMPLEMENTATION

Figure 6.9: Hybrid Cloud Architecture

137

CHAPTER 6. IMPLEMENTATION AND EVALUATION

Cloud Controller

The Cloud Controller component manages the virtualized local infrastructure by
providing an interface for starting and stopping VM instance on the local servers.
Therefore, on each of the local servers a host operating system together with a
Hypervisor must be installed. The only task for the Hypervisor is to run the guest
Operating System (OS).

Cloud Manager

The Cloud Manager component monitors the CPU load on each running VM in
the architecture. If the overall CPU load of the system goes beyond a configured
threshold, the Cloud Manager starts a new VM instance and adds the new running
VM to the Internet Protocol (IP) pool of the Load Balancer. In the ideal case, the
VM is started via the Cloud Controller at the local infrastructure. In the case that
all local servers are busy, the VM is started at the Public Cloud. If the overall CPU
load of the system goes below a configured threshold, the Cloud Manager stops
the running VM instance with the lowest CPU load (with a priority for running
VM instances at the Public Cloud in order to reduce external costs). Before the
Cloud Manager stops a running VM, the VM is removed from the IP pool of the
Load Balancer.

Each time a new VM instance is added/removed from the IP pool of the Load Balancer,
the Load Balancer must be restarted for technical reasons to notice the new resources.
To avoid connection interruptions between the Proxy and the requesting clients (in the
case the Load Balancer is not available for a short period of time), the Proxy component
re-sends the forwarded requests to the Load Balancer until they could be processed
successfully.

IMPLEMENTATION

The Hybrid Cloud architecture was implemented as a proof of concept. Most of the
components have been realized by means of common Open Source software packages.
The Proxy component was realized through an Apache HTTP Server6 combined with
the mod_proxy7 module. The Apache HTTP Server was configured to act as a reverse
proxy and therefore appeared to requesting clients just like an ordinary web server. The
Load Balancer was realized through the nginx8 web server that was also configured to
act as a reverse proxy. The Kernel-based Virtual Machine (KVM)9 hypervisor was used
to realize virtualization in the local infrastructure and Amazon EC2 was selected to be
the Public Cloud provider. Therefore, the Virtual Machine Repository must contain a
KVM image and an AmazonMachine Image (AMI) image for each of the offered services.
Eucalyptus is a software package for implementing Hybrid Cloud infrastructures using
the Amazon Web Services (AWS) API. The Cloud Controller component used the
Eucalyptus Cloud Controller (CLC), the Eucalyptus Storage Controller (SC) and the

6 http://httpd.apache.org
7 http://httpd.apache.org/docs/2.4/mod/mod_proxy.html
8 http://wiki.nginx.org/Main
9 http://www.linux-kvm.org

138

6.1. IMPLEMENTATION

Eucalyptus Cluster Controller (CC) to manage the virtualized local infrastructure.
The local servers run an Ubuntu 9.10 operating system, a KVM hypervisor and the
Eucalyptus Node Controller (NC) to offer a cloud abstraction layer at each local server.

The Cloud Manager component was developed from scratch to suit the INSPIRE service
quality requirements. It was implemented in Java and is publicly available as Open
Source in the 52◦North source repository10. The Cloud Manager is the core component
of the proposed Hybrid Cloud solution and provides the scalability of the system either
by starting/stopping VM instances in the local infrastructure or at the Public Cloud. The
Cloud Manager configuration affects the dynamic behavior and therefore the scalability
of the overall system (e.g. how fast new VM instances are available in case of high user
demands). Since the resources at the Public Cloud are allocated based on a pay-as-you-
go manner, the configuration also affects the financial efficiency of the proposed Hybrid
Cloud (e.g. how much the service provider has to pay for a more dynamic scalability).

Table 6.1 shows the default configuration parameters of the Cloud Manager.

Table 6.1: Cloud Manager Configuration

Parameter Value Description

Breach Duration 15s This parameter describes the period
after which VM instances are stopped
when the lower threshold is reached.

Period 5s This parameter describes the interval
for monitoring the CPU load of each
running VM.

Upper Threshold 20% This parameter describes the upper
CPU load threshold that is relevant
for starting new VM instances.

Lower Threshold 10% This parameter describes the lower
CPU load threshold that is relevant
for stopping running VM instances.

Statistics "average" This parameter describes how
the monitored CPU load history
influences the calculation whether
the upper/lower threshold is reached.
Possible values are “minimum”,
“maximum” and “average”.

Maximum Cloud Instances 6 This parameter describes how many
Amazon EC2 instances can be started
by the Cloud Manager.

10 https://svn.52north.org/svn/studentscorner/CloudFramework

139

CHAPTER 6. IMPLEMENTATION AND EVALUATION

BENCHMARK

There are several Open Source tools available for performing web server benchmarks
or load testing as for instance Apache JMeter11 or ApacheBench12. To exactly control
the amount of workload that was sent to a web service in a specific period of time
(the number of parallel requests) and to control the logged benchmark indicators, a
simple benchmark tool tailored to the particular requirements of the intended INSPIRE
scenario was developed. The tailored benchmark tool was implemented in Java and
it is also publicly available as Open Source in the 52◦North source repository13. The
benchmark tool sends a specific number of requests per sequence to a web service and
slightly increases/decreases the number of requests per sequence over time.

In the performed benchmarks the Private Cloud consisted of up to 4 virtual machine
instances, based on 2 servers with multi-core processors containing 2 cores each. The
underlying virtualized hardware acquired at Amazon EC2 is unknown and only the
family of instance types is known. In all benchmarks where the Public Cloud was
activated, the Hybrid Cloud was configured to start up to 6 instances at Amazon EC2
from the "Small Instance" family. To get representative results, all of the experiments
were repeated several times with both the same and slightly different benchmark
configurations. Relevant deviations from normal behavior are described explicitly.

Private Cloud

The benchmark for the Private Cloud was performed without allowing the Cloud
Manager to acquire additional resources at Amazon EC2. Therefore, the scalability of a
Cloud-managed internal data center is reviewed. The visualized average response time
of a request sent to the Private Cloud in comparison to the local hardware utilization
rate is depicted in Figure 6.10.

The benchmark shows that the average response time of all requests that were sent to
the INSPIRE Coordinate Transformation Service that was deployed in the Private Cloud
still increased according to the number of served simultaneous requests. The average
response time increased from 1.6 seconds (4 requests in 10 seconds) up to 5.9 seconds
(40 requests in 10 seconds). Compared to the benchmark results of the Single Server
deployment, this is a significant improvement. Even in times of peak load, the average
response time is at maximum by a factor 3.6 higher than in idle times, compared to
a maximum of 22.7 times higher than in idle times for the Single Server deployment.
Furthermore, in none of the conducted experiments the web services threw internal
server errors or crashed.

Hybrid Cloud

The benchmark for the complete Hybrid Cloud was performed with allowing the Cloud
Manager to use all 4 local instances (Private Cloud) and to acquire up to 6 additional
VM instances at Amazon EC2 (Public Cloud). Therefore, the scalability of the complete
Hybrid Cloud architecture is reviewed. The average response time of a request sent to

11 http://jmeter.apache.org
12 http://httpd.apache.org/docs/2.0/programs/ab.html
13 https://svn.52north.org/svn/studentscorner/Cloud/monitoring-app

140

6.1. IMPLEMENTATION

Figure 6.10: Private Cloud Benchmark

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60
A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
s
)

R
e
q
u
e
s
t
s

(
i
n

1
0
s
)

Sequence

Requests
Average Response Time

 0
 2
 4
 6
 8

 10
 12

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

I
n
s
t
a
n
c
e
s

Sequence

Amazon EC2
Local

Figure 6.11: Hybrid Cloud Benchmark

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
s
)

R
e
q
u
e
s
t
s

(
i
n

1
0
s
)

Sequence

Requests
Average Response Time

 0
 2
 4
 6
 8

 10
 12
 14

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

I
n
s
t
a
n
c
e
s

Sequence

Amazon EC2
Local

141

CHAPTER 6. IMPLEMENTATION AND EVALUATION

Figure 6.12: Hybrid Cloud Integration

4

5 6

7

1

2

3

the Hybrid Cloud in comparison to the local and third-party hardware utilization rate
is shown in Figure 6.11.

The benchmark shows that the average response time of all requests sent to the INSPIRE
Coordinate Transformation Service deployed in the Hybrid Cloud still slightly increases
but stays nearly constant independent of the number of served simultaneous requests.
The average response time increased from 1.7 seconds (4 requests in 10 seconds) up to 3.3
seconds (40 requests in 10 seconds). Compared to the benchmark results of the Single
Server deployment and also compared to the benchmark results of the Private Cloud
deployment, this is again a significant improvement. Even in times of peak load, the
average response time is maximum 1.9 times higher than in idle times (compared to 22.7
times for the Single Server deployment and 3.6 times for the Private Cloud deployment).
Furthermore, in none of the conducted experiments the web services threw internal
server errors or crashed.

INTEGRATION

The presented Hybrid Cloud architecture and implementation can be used as a
standalone solution for realizing reliable and scalable web services. Figure 6.12
shows how the Hybrid Cloud can be integrated in the web-based SLA management
architecture in order to provide particular service levels under the terms of previously
created agreements.

When the service consumer makes a successful agreement offer (1), the Agreement
Manager notifies the Infrastructure Manager about the created agreement (2). The
Infrastructure Manager immediately sends all infrastructure-related information of the
agreement to the Hybrid Cloud (3). The abstract SLA model and the derived WS-
Agreement Application Profile for OGCWeb Services enable service providers to define
such non-varying infrastructure management information in the Service Properties

section. Listing 6.1 shows how to define infrastructure management information such

142

6.2. EVALUATION

as the (internal) name of the infrastructure provider and the (internal) name of the VM
image template that provides the designated service. The Cloud Manager component
of the Hybrid Cloud transforms these information to the internal Cloud Manager
configuration parameters (Table 6.1) and schedules all activities that are required to
deliver the service in the intended service quality.

Listing 6.1: Infrastructure Management Information

1 "Service Properties ":
2 {
3 (...)
4 "Service Property ":
5 {
6 "Name": "provider",
7 "Title": "Infrastructure Provider",
8 "Abstract ": "The name of the infrastructure provider.",
9 "Type": "urn:ogc:def:sla:property:infrastructure:provider:name",
10 "Value": "MyHybridCloud"
11 },
12 "Service Property ":
13 {
14 "Name": "image",
15 "Title": "template",
16 "Abstract ": "The name of the VM template.",
17 "Type": "urn:ogc:def:sla:property:infrastructure:vm:name",
18 "Value": "MyImage"
19 }
20 }

After having created an agreement, the service consumer can access the requested
service through the URL that is provided by the Service Reference element of the
created agreement (4). The URL points to the Agreement Proxy, which requests the
created agreement from the Agreement Manager for each incoming service request (5).
If the agreement and the service request are valid, the Agreement Proxy requests an
IP address from the Infrastructure Manager in order to forward the incoming request
to the actual service and to return the (altered) response to the service consumer (7).
In the meantime, the Cloud Manager started one or more VM instances in order to
fulfill the service quality guarantees from the previously created agreement. Therefore,
the Infrastructure Manager receives the requested IP address from the IP pool that is
managed by the Cloud Manager for the specific service instance (6).

6.2 Evaluation

The main goal of this thesis was to develop a concept for the integration of SLAs in
SDIs with a multi-step approach. First, an abstract SLA model was developed in order
to document the service quality expectations and the conditions of service delivery.
Second, a web-based SLA management architecture was developed in order to enable
the on-demand and online negotiation of SLAs in SDIs without the need of prior offline
communication between service providers and service consumers. Third, an Hybrid
Cloud architecture was developed as a best practice for service providers to match the
INSPIRE service quality requirements.

The general applicability of the presented concepts has been validated by the
prototypical implementation of the SLA4OWS framework (Section 6.1.1) and the Hybrid

143

CHAPTER 6. IMPLEMENTATION AND EVALUATION

Cloud (Section 6.1.3). The following sections evaluate the abstract SLA model and the
web-based SLA management architecture against the objectives (Section 1.2) and the
requirements (Section 3.2) of this thesis. Furthermore, the general advantages and the
limitations of the concepts are described in order to assess the general fitness for use of
the presented concepts in other real world applications.

6.2.1 Agreement Model

The abstract SLA model (Chapter 4) is composed of a description of the domain-specific
structure and content of agreements (Section 4.1), an OGC URN Schema Extension
to identify particular service properties and business values (Section 4.3.1), and an
Agreement Expression Language for evaluating the status of service level objectives
and for calculating business values (Section 4.3.2).

The Service Description section of the abstract SLA model provides domain-specific
information about the services to which an agreement is related. The content
and structure of the Service Description section reuse many elements from the OGC
Standards Baseline and therefore allow to describe service offerings reflecting common
SDI service types as for instance standardized by the OGC and described by the INSPIRE
directive (R6). The Service Properties section of the abstract SLA model provides a
set of domain-specific and exposed properties associated with the service. The OGC
URN Schema Extension allows to define service properties that can be automatically
monitored during agreement runtime and that reflect available service operations (R7)
and spatial data themes (R9), measured web service performance (R12), and logged
service usage (R14) and infrastructure utilization (R20). Furthermore, the OGC URN
Schema Extension allows to define other import aspects of the service delivery such as
data quality (R10) and data licenses (R11), access rights policies (R16), and infrastructure
management information (R18, R22). The context variables in the Agreement Expression
Language correspond to these service property categories. They provide access either
to the raw monitoring data or to pre-processed high-level service metrics. That allows
to define concrete service level objectives in the Service Level Objectives section of
the abstract SLA model reflecting the functional and non-functional service aspects.
Furthermore, that allows to define complex pricing models in the Business Values section
of the abstract SLA model reflecting the service usage and the infrastructure utilization.

In order to facilitate interoperability and create an incentive for adopting the proposed
concepts, a standardized document encoding format for the abstract SLA model should
be developed (R25) with respect to existing OGC standards (R24). Furthermore,
the standardized document encoding format for the abstract SLA model should be
developed in a flexible way in order to be applicable in other application domains
and use cases (R27). The developed WS-Agreement Application Profile for OGC Web
Services (Section 5.3.1) provides such a standardized document encoding format that
incorporates many elements from the OGC Standards Baseline. Furthermore, the
approach for identifying service properties and business values by means of the OGC
URN Schema Extension and the Agreement Expression Language can easily be extended
in order to match the requirements of future application domains and use cases.

144

6.2. EVALUATION

6.2.2 Management Architecture

The design of the web-based SLA management architecture (Chapter 5) follows the
model of policy-based management systems. The Agreement Manager implements the
Policy Repository, which allows service providers to advertise their services along with
SLA metadata (R3), and service consumers to perform service discovery operations
in order to find an adequate service according to individual functional and non-
functional requirements (R4). Furthermore, the Agreement Manager provides additional
functionality for the on-demand and online negotiation of SLAs without the need of
prior offline communication between service providers and service consumers (R1).
The selected policy-based approach and the design of the Agreement Proxy ensure that
the general publish-find-bind pattern in SDIs remains (R2) and that existing SDI client
and server implementations don’t need to be modified (R24). The Agreement Proxy
acts as a (non-transparent) proxy for the original SDI service and implements the PEP
and the PDP in one single component. The Agreement Proxy makes sure that service
consumption is performed only under the terms of previously created agreements (R5).
Furthermore, the Agreement Proxy is responsible for the enforcement of access rights
policies once they are defined in an agreement (R17).

In addition to these components that are elementary for policy-based systems, the
web-based SLA management architecture identifies several other components for
realizing the agreement life cycle. The Agreement Monitor keeps track of all created
agreements and calculates the values of all relevant service properties from an
agreement. Depending on the service property type, which is defined through the
OGC URN Schema Extension, the Agreement Monitor uses active or passive monitoring
mechanisms to receive the raw monitoring data and calculate derived high-level service
metrics. The Agreement Evaluator keeps track of all created agreements and evaluates
the service level objectives and calculates the business values of an agreement. Based on
the monitoring information of the Agreement Monitor, the Agreement Evaluator creates
a set of context variables corresponding to the service properties of an agreement,
and executes the particular Agreement Expression Language script within this context
in order to evaluate service level objectives or to calculate business values. This
mechanism realizes the monitoring of KPIs and the evaluation of SLOs reflecting the
functional (R8) and non-functional (R13) requirements as for instance defined by the
INSPIRE directive. Furthermore, this mechanism realizes the monitoring of KPIs and
the evaluation of SLOs reflecting infrastructure requirements of service consumers
and infrastructure capabilities of service providers (R19). This mechanism also allows
the accounting of complex pricing models reflecting the service usage (R15) and the
infrastructure utilization (R21). Finally, the Infrastructure Manager is able to forward
infrastructure management information for instance to the Hybrid Cloud in order to
offer differentiated services under the terms of previously created agreements (R23).

The WS-Agreement Application Profile for OGC Web Services and the standardized
interfaces of the Agreement Manager and the Agreement Proxy (Section 5.3.2)
ensure the interoperable agreement negotiation and service consumption above
service providers’ boundaries (R26). The interfaces of internal components for
agreement monitoring, agreement evaluation, agreement reporting and infrastructure
management don’t need to be standardized since they are not accessed directly by

145

CHAPTER 6. IMPLEMENTATION AND EVALUATION

service consumers. Any service provider is free to develop proprietary solutions for
internal agreement management tasks. The REST communication protocol developed
for the web-based SLA model is quite simple in terms of methods and resources
implemented. It can easily be extended in order to match the requirements of future
application domains and use cases (R27).

6.2.3 Advantages and Limitations

The following paragraphs provide an overview of the main advantages and limitations
of the presented concepts and implementations.

ADVANTAGES OF THE APPROACH

The abstract SLA model and the WS-Agreement Application Profile for OGC Web
Services are straightforward approaches for defining SLA templates. The SLA4OWS
framework implements the web-based SLA management architecture and can easily
be deployed in the service providers’ infrastructure in order to attach SLA templates
to existing and already productive running SDI services. The SLA4OWS framework
instantly enables service providers to monitor and report the status of their services.
The SLA4OWS framework also enables service providers to promote sustainable
business models for their services, and service consumers to search for services that
match their individual functional and non-functional requirements. These advantages
are outstanding in particular with regard to the fact that service providers and
service consumers don’t have to make any modifications to their server and client
implementations.

The WS-Agreement Application Profile for OGC Web Services and the SLA4OWS
framework can easily be extended with new features. The OGC URN Schema
Extension can be extended in order to identify and define service characteristics that
are currently not covered by this thesis. The pluggable SLA4OWS framework also can
easily be extended in order to use these service characteristics for active and passive
monitoring, evaluation of service level objectives, and calculation of business values.
The functionality that is provided by the agreement execution language is quite simple
but sufficient to realize even complex service level objectives and business values.

The Hybrid Cloud is realized with common Open Source software and can easily be
deployed and maintained. The combination of local infrastructure (Private Cloud) and
resources of third-party providers (Public Cloud) enables SDI service providers to realize
particular service quality levels for individual users or in an application context under
the terms of previously created agreements in an economical fashion. The availability of
information about the infrastructure utilization in the Agreement Expression Language
allows to realize sustainable business models by means of revenue models that forward
infrastructure costs to service consumers.

LIMITATIONS OF THE APPROACH

The abstract SLA model and the WS-Agreement Application Profile for OGC Web
Services are designed to match the domain-specific requirements of the abstract
scenario in which SDI services are utilized for different purposes at the same time. On a

146

6.3. SUMMARY

conceptual level, they are both highly specialized for their specific purpose and partially
ignore aspects that might be important in other concrete use cases. With the current
model it is not possible, for instance, to define human-related service characteristics
or more complex monitoring functions. In some cases an agreement shall define for
instance the time period for free phone support, in others it may be important to define
an increasing/decreasing number of monitoring requests over time in order to simulate
changing user behavior, or to check whether a monitoring response is an empty (white)
image or not. These limitations can be removed by enhancing the abstract SLA model
and the web-based SLA management architecture. As mentioned earlier, the OGC URN
Schema Extension and the XML Schema of the WS-Agreement Application Profile for
OGC Web Services can easily be extended with such new definitions. Furthermore,
the open and pluggable architecture of the SLA4OWS framework allows to easily adopt
these and other use case specific developments.

On a conceptual and implementation level, the Agreement Proxy component is a
performance bottleneck that limits the capacity and scalability of the overall system.
The Agreement Proxy must handle the complete user traffic, which can be very large in
terms of number of requests and delivered geospatial data. Furthermore, the Agreement
Proxy must implement the PEP and PDP mechanisms, which can also be time-
consuming and which are not to be neglected. Advanced methods and technologies
such as multithreading programming [Prasad, 1996] and native programming languages
[Prechelt, 2000] can be used to improve the general performance not only of the
Agreement Proxy but also of all other components of the SLA4OWS framework. The
general scalability of the Agreement Proxy component can be increased by means of
classic load balancing mechanisms over many parallel Agreement Proxy instances.

6.3 Summary

This chapter presents an implementation of the abstract SLA model and the web-based
SLA management architecture. Based on the implementation, this chapter evaluates
the advantages and limitations of the concept for the integration of SLAs in SDIs with
respect to the objectives and the requirements of this thesis.

The abstract SLA model allows to describe any type of OGC service and to define
common SDI service quality requirements. Furthermore, it is possible to define
complex pricing models in order to charge the service consumer for service usage
or infrastructure utilization. The web-based SLA management architecture enhance
the general publish-find-bind pattern in SDIs with an additional ’agree’ phase. The
’agree’ phase allows to publish services along with additional SLA related information,
to create SLAs for specific services and to perform service consumption under the
terms of previously created agreements. Furthermore, the web-based SLA management
architecture permanently monitors the service health and evaluates the overall status
of all available SLAs. The data encodings and service interfaces chosen for the abstract
SLA model and the web-based SLA management architecture can easily be extended in
order to match the requirements in future application scenarios.

The SLA4OWS framework implements the WS-Agreement Application Profile for OGC

147

CHAPTER 6. IMPLEMENTATION AND EVALUATION

Web Services and enables SDI service providers to offer different service quality
levels and pricing models for their existing SDI services. The chosen standards
and technologies do not require changes to other OGC standards or compliant
implementations. The SLA4OWS framework utilizes Cloud Computing infrastructures
to implement offered service levels in an economical fashion. The 52◦North Hybrid
Cloud helps SDI service providers to match basic INSPIRE service quality requirements
without investing in rarely used hardware in advance by means of an Hybrid
Cloud approach. The idea of the Hybrid Cloud approach is always to provide
sufficient computational resources to achieve a constant average service response
time independent of the number of users requesting a service. By incorporating
resources from Amazon EC2 into the local IT infrastructure, the architecture offers
potentially unlimited resources on-demand and nearly in real-time. The Hybrid Cloud
combines the limited hardware resources of a local IT infrastructure (local servers)
and potentially unlimited resources of‚ a Public Cloud provider (virtualized servers) in
order to realize scalable SDI services in a technical and economical efficient manner.
Both implementations are based on common Open Source software and can easily
be deployed and maintained. The implementations can easily be extended with
new features, such as the monitoring of unregarded service characteristics and the
connection to existing accounting systems.

The next chapter summarizes the conducted research, highlights the contribution of this
thesis and provides directions for future research.

148

Chapter 7

Conclusion and Outlook

This chapter provides the answers to the research questions and describes the major
contribution of this thesis. Furthermore, directions for future research are provided.

7.1 Research Questions

The main research question of this thesis has been divided into several sub-questions,
which are answered in the following.

a) What are the domain-specific requirements for the integration of SLAs in SDIs?

This research question aims at the evaluation of the domain-specific requirements
of different SDI stakeholders for the integration of SLAs in SDIs.

The major stakeholders in the SDI development are central or local governmental
organizations, the commercial sector, non-governmental organizations, or the
academic sector. For the purpose of this thesis, it is assumed that governmental
SDI service providers offer SDI services that are used in more than one application
domain at the same time. These application domains can be for instance
eGovernment applications, legal frameworks, commercially available product
solutions and disaster management. Some of the application domains may have
challenging requirements regarding the service quality, while others may have
lower requirements. In all application domains it is important for service providers
to be aware of the minimum service quality that shall be delivered to individual
customers or in an application context. At the same time it is also important for
service providers to actually be in a position to adjust the delivered service quality
automatically according to the individual service consumers’ requirements or the
application context. All these aspects can be summarized under the heading of SLM
and SLA, which is an integral part of SLM.

Section 3.1 describes four different application domains and their particular service
level characteristics and business conditions. Section 3.2 derives the requirements
for the integration of SLAs in SDIs from these application domains. The domain-
specific requirements cover aspects such as the functional and non-function
description of geospatial services and datasets, the definition of dynamic pricing
and accounting models for the offline and online delivery of geospatial data,

149

CHAPTER 7. CONCLUSION AND OUTLOOK

the enforcement of access rights policies for geospatial data and services, the
management of (virtualized) hardware infrastructure, and the general integration
of the SLA concept in the OGC Standard Baseline.

The transformation of these domain-specific requirements into an abstract SLA
model is part of the next research question.

b) What is the domain-specific content of SLAs that can be applied in SDIs?

This research question aims at the development of the abstract SLA model
and the WS-Agreement Application Profile for OGC Web Services, which is an
implementation of the abstract SLA model.

Chapter 4 formalizes an abstract SLA model that is applicable in SDIs. The aim of
the abstract SLA model is to provide an abstract representation of the agreement
on a conceptual level, which is independent of any specific data encoding format.
Section 4.1 describes general information about the agreement and the contracting
parties, domain-specific information about the services to which an agreement is
related, a domain-specific reference to an actual service, and a set of domain-specific
service properties that are used to measure the service quality and that should
be monitored during agreement runtime. Furthermore, the agreement specifies
domain-specific service quality goals that the contracting parties are agreeing and
general business related properties such as usage costs and penalty fees. Section 4.2
describes how to monitor domain-specific service properties. Section 4.3 describes
how to evaluate the status of service level objectives and how to calculate certain
business values. All these agreement details are structured in accordance with the
evaluated requirements.

Section 5.3.1 describes theWS-Agreement Application Profile for OGCWeb Services,
a mapping of the abstract SLA model into an extended and particular version of
the WS-Agreement specification. The WS-Agreement Application Profile for OGC
Web Services mainly consists of a set of XSD that specifies the domain-specific
content of an agreement, an URN namespace for identifying domain-specific service
properties and business values, and a DSL for defining and evaluating domain-
specific guarantee terms.

The conceptual and technical development of an abstract SLA model is one
important aspect. The actual integration of SLAs in the SDI workflow is part of
the next research question.

c) How can service consumers and service providers negotiate SLAs for SDI services?

This research question aims at the development of the web-based SLA management
architecture and the SLA4OWS framework, which is an implementation of the web-
based SLA management architecture.

Chapter 5 presents the design of a web-based SLA management architecture
that is inspired by policy-based management systems. The main components

150

7.1. RESEARCH QUESTIONS

of the architecture are the Agreement Manager and the Agreement Proxy. The
Agreement Manager is responsible for the management of templates, agreements
and monitoring information. The optional Agreement Client enables service
consumers to easily obtain agreements for specific services, to get a detailed
overview about the elements in an agreement and to keep track of the agreement
status during the whole agreement life cycle. The Agreement Proxy acts as a
proxy for the original service and determines whether all agreement constraints
are fulfilled or not. If all agreement constraints are fulfilled, the Agreement Proxy
forwards service requests to the target service and returns the service response back
to the service consumer. The Agreement Manager enhances the classic publish-
find-bind pattern by an additional ’agree’ phase in which the service consumer
and the service provider agree to certain SLA terms prior the service consumption.
The Agreement Proxy enforces that service consumption is performed only under
the terms of previously created agreements. The Agreement Manager and the
Agreement Proxy are the only components in the web-based SLA management
architecture that are public accessible for potential service consumers and their
respective SLA clients and GIS applications. Therefore, standard service interfaces
for the Agreement Manager and the Agreement Proxy are proposed in order to
maintain and foster interoperability.

Section 6.1.1 presents the SLA4OWS framework. The SLA4OWS framework is an
Open Source implementation of the WS-Agreement Application Profile for OGC
Web Services, including standardized document encodings and service interfaces.
The chosen standards and technologies do not require changes to other OGC
standards or compliant implementations. The provided solution can easily be
integrated in any SDI environment in order to provide agreement negotiation for
existing SDI services.

The web-based SLA management architecture must also be able to handle the
agreement implementation and agreement execution phases, which are part of the
next research question.

d) How can the complete SLA life cycle be integrated into SDIs?

This research question is also related to the development of the web-based SLA
management architecture.

The web-based SLA management architecture also contains components for
agreement implementation and agreement execution. The Agreement Monitor
keeps track of all created agreements, monitors the service to which an agreement
is related, and calculates all relevant service property values of an agreement. The
Agreement Evaluator keeps track of all created agreements and evaluates whether
the service level objectives of an agreement are fulfilled or violated. The Agreement
Reporter keeps track of all created agreements and reports the agreement status to
all contracting parties. These components are not public accessible for potential
service consumers. They must not be standardized and they can be realized by
implementations specific for each service provider.

151

CHAPTER 7. CONCLUSION AND OUTLOOK

The SLA4OWS framework also provides components that are required for
agreement implementation and agreement execution. The standard service property
types and monitoring mechanism, which are described in the abstract SLA model
and the web-based SLA management architecture, are supported by default. The
provided software solution can easily be integrated in any SDI environment in
order to provide agreement implementation and agreement execution for previously
created agreements.

For service providers it is important to be in a position to actually deliver particular
service quality levels to specific service consumers or in an application context,
which is part of the next research question.

e) How can SDI service providers deliver promised service levels to individual customers or

in an application context?

This research question aims at the development of guidelines for SDI service
providers to manage their computing infrastructure under the terms of previously
created SLAs in order to deliver promised service levels to individual service
consumers or in an application context.

The web-based SLA management architecture contains components that help
service provider to actually adjust the delivered service quality automatically
according to the agreement terms under which a service request is performed. The
Infrastructure Manager keeps track of all created agreements and can dynamically
schedule the infrastructure of the service provider according to the functional and
non-functional requirements defined in all agreements.

Section 6.1.3 presents a Hybrid Cloud architecture that offers potentially unlimited
resources on-demand and nearly in real-time by incorporating external third-party
resources into the local IT infrastructure. The idea of the proposed Hybrid Cloud
architecture is to keep track of all created agreements and always to provide
sufficient computational resources to achieve a constant average service response
time, which should be independent of the number of users requesting a service.

The Hybrid Cloud was implemented as a proof of concept by means of common
Open Source software packages. The main controller of the Hybrid Cloud, which
receives all created agreements from the Infrastructure Manager and adjusts the
elasticity of the Cloud solution accordingly, was developed from scratch to suit the
INSPIRE service quality requirements.

7.2 Contribution

This thesis contributes mainly to research on SDI governance. In particular, the ideas
and concepts presented in this thesis can be seen as best-practices and recommendations
for SDI service providers to offer SLAs for existing SDI services.

152

7.3. FUTURE WORK

The requirements evaluation (Chapter 3) fosters the understanding what can and should
be part of SLAs that can be applied in SDIs, which is a common question in many
SDI building activities. The requirements analysis enables both service consumers and
service providers to manage the expectations what service quality should and actually
can be delivered to specific users or in an application context.

The abstract SLAmodel (Chapter 4) and theWS-Agreement Application Profile for OGC
Web Services (Section 5.3.1) provide an SLA formalization not only on a conceptual but
also on a technical level. Based on the requirements analysis, the proposed document
encoding format and the proposed mandatory public service interfaces provide an
interoperable and extendable foundation for integrating SLAs in SDIs.

The web-based SLA management architecture (Section 5) helps SDI service providers
to identify what kind of processes and software components are required to actually
offer the online and on-demand SLA negotiation for their services, and to ensure
an appropriate service delivery under the terms of previously negotiated SLAs. The
chosen policy-based approach shows that it is possible to extend SDI services with
SLA capabilities without the need to change other OGC standards or compliant
implementations.

The SLA4OWS framework (Section 6.1.1) can help SDI service providers to setup an
environment that instantaneously extends already deployed and productive running
SDI services with SLAs capabilities. The Hybrid Cloud (Section 6.1.3) provides a solution
to always provide sufficient computational resources to realize the challenging INSPIRE
performance and capacity requirements, which is a challenging task for many SDI
service providers. The Hybrid Cloud allows to run services in the local IT infrastructure
or to transfer the service hosting step-by-step to third-party facilities. The developments
established in this thesis are validated in the SLA4D-Grid project and are public available
through the 52◦North Geoprocessing Community as Open Source software.

The general discussion about the content and the availability of SLAs in SDIs is not
completely new, but the presented concepts provide a reliable solution for the online
and on-demand negotiation and enforcement of SLAs SDIs for the first time. Therefore,
all these aspects are a substantial step towards an infrastructure that is prepared for
future SDI application domains including potential highly competitive GIS markets, not
only on a technological but also on an economical level.

7.3 Future Work

Based on the results of this thesis, the following items are identified as future work:

• Improve Data Models and Service Interfaces

The abstract SLA model and the corresponding WS-Agreement Application Profile
for OGC Web Services are derived from the requirements analysis that is based
on four selected applications domains and their particular characteristics regarding
service level objectives and business models. However, there are several other
important application domains in which SDI services are utilized for different

153

CHAPTER 7. CONCLUSION AND OUTLOOK

purposes and which may have different requirements that are not met yet. The
developed mechanisms for identifying service properties through the OGC URN
Schema Extension and for defining service level objectives by means of the
Agreement Expression Language are designed in a way that they can easily
be extended in order to match the requirements of other application scenarios.
Therefore, one of the next steps should be to extend the URN dictionary for
identifying service property types, and to revise the Agreement Expression
Language for defining service level objectives and business values. Especially the
integration of advanced concepts for ensuring data quality and providing data
provenance information seems to be very promising and valuable for the application
of the developed SLA concept in all application domains where the data applicability
is from a very fundamental importance.

Furthermore, the abstract SLA model and the web-based SLA management
architecture are developed with a focus on, but are not limited to SDI services that
are based on standards developed by the OGC. The development of templates and
agreements for other vendor-specific services and applications such as the ArcGIS
for Server1 platform seems to be very promising in order to promote the acceptance
and to foster the rate of adoption of the developed concepts.

• Harmonize Concepts for Service Level Agreements and Rights Management

There have been several approaches developed in the past to implement digital
rights mechanisms in SDIs. Some of them take place on a standardization level
as for instance the GeoDRM architecture for the management of digital rights in
the area of geospatial data and services, the GeoXACML specification for deploying
access control for protecting access to distributed geographic information, and the
interoperability experiments that have been accomplished in past OGC testbeds.
Other approaches present advanced and beyond state of art concepts for allowing the
dynamic access to and chaining of secured geoprocessing services without a-priori
established rights or direct trust relationships in contradiction to classic role-based
access control schemes, as for instance presented in [Schäffer, 2012].

The security-related service properties of the abstract SLA model already allow to
integrate policies such as those in the GeoXACML format. These policies can be used
by the web-based SLA management architecture for instance to restrict the service
access to specific service operations or geospatial resources. Beside authentication
and authorization, both the abstract SLAmodel and the web-based SLAmanagement
architecture do not define how to realize important security-related aspects such
as intrusion detection, message integrity, privacy and non-repudiation. Some of
the existing and previously mentioned approaches target these issues by using
the advanced security mechanisms provided for instance by WS-Security. These
solutions mostly rely on SOAP, which cannot easily be integrated in the JSON-
based and RESTful WS-Agreement Application Profile for OGC Web Services. As
mentioned earlier in this thesis, the abstract SLA model and the web-based SLA
management architecture are independent of any specific data encoding format and
can be implemented in several ways. Therefore, one of the next steps should be to
merge the aforementioned concepts with the proposed solution for the integration
of SLAs in SDIs, and to adopt mechanisms and technologies from mainstream IT in

1 http://www.esri.com/software/arcgis/arcgisserver

154

7.3. FUTURE WORK

order to extend the proposed solution for the integration of SLAs in SDIs with the
missing security-related features.

• Workflow Composition of Service Level Agreements

This thesis provides a solution for the negotiation, implementation and execution
of agreements regarding single SDI services. However, many SDI application
domains and use cases often require the functionality of multiple SDI services
composed in cross-enterprise workflows. In this respect, the BPEL specification
is the de-facto standard in the mainstream IT for describing workflows based on
web services using an XML encoding. It also has been adopted successfully in the
SDI domain as for instance shown in [Schäffer, 2009]. Consequently, in addition
to just composing SDI services that fulfill functional requirements, the actual end-
users will need to assure that services are compatible also with regards to offered
service levels and business values. In the mainstream IT, the workflow composition
of SLAs has already been addressed for instance in [Dyachuk and Deters, 2007] and
[Blake and Cummings, 2007]. Therefore, to improve the proposed solution for the
integration of SLAs in SDIs, consequently the implications of multilateral agreement
creation in the SDI domain need to be investigated, and the presented concepts
for the integration of SLAs in SDIs need to be adjusted in order to implement the
agreement negotiation, the agreement implementation and the agreement execution
in cross-enterprise workflows.

To promote the acceptance and to foster the rate of adoption of the WS-Agreement
Application Profile for OGC Web Services, which already has been published as an
OGC Discussion Paper in the OGC Geoprocessing Domain Working Group (DWG), it is
recommended to proceed with the standardization efforts and to pursue for instance
a publication as an OGC Best Practice or OGC Implementation Specification. The
opportunities regarding a successful standardization process heavily depend on the
overall acceptance of the proposed concepts in the standardization community, which
can be evaluated for instance in future OGC interoperability experiments. Furthermore,
it is recommended to harmonize the outcomes of this thesis with other OGC activities
that may benefit from it and that are also related to service and data quality, service
metadata, geoprocessing and geospatial rights management. Examples for such
harmonization activities are for instance the integration of SLA metadata directly in the
OGC Catalogue Service (CSW) and to consider infrastructure management information
in the WPS service interface for process execution.

155

CHAPTER 7. CONCLUSION AND OUTLOOK

156

BIBLIOGRAPHY

Bibliography

[Aagedal and Ecklund, 2002] Aagedal, J. and Ecklund, E. (2002). Modelling QoS:
Towards a UML Profile. In Proceedings of the 5th International Conference on The

Unified Modeling Language, UML ’02, pages 275–289, London, UK, UK. Springer-
Verlag.

[AdV, 2009] AdV (2009). Richtlinie über Gebühren für die Bereitstellung und
Nutzung von Geobasisdaten der Vermessungsverwaltungen der Länder der
Bundesrepublik Deutschland (AdV-Gebührenrichtlinie). Arbeitsgemeinschaft der
Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (AdV).

[Alameh, 2003] Alameh, N. (2003). Service Chaining of Interoperable Geographic
Information Web Service. IEEE Internet Computing, 7(5):22–29.

[Alanezi et al., 2010] Alanezi, M., Kamil, A., and Basri, S. (2010). A proposed instrument
dimensions for measuring e-government service quality. International Journal of u-
and e- Service, Science and Technology, Vol. 3, No. 4:1–18.

[Anastassova et al., 2010] Anastassova, M., Magnusson, C., Pielot, M., Randall, G., and
Claassen, G. B., editors (2010). Proceedings of the Workshop on Using Audio and Haptics

for Delivering Spatial Information via Mobile Devices at MobileHCI 2010, Lisbon,

Portugal, MobileHCI ’10, New York, NY, USA. ACM. 12th International Conference
on Human Computer Interaction with Mobile Devices and Services.

[Andrieux et al., 2005] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H.,
Nakata, T., Pruyne, J., Rofrano, J., Tuecke, S., and Xu, M. (2005). Web Services
Agreement Specification (WS-Agreement). Open Grid Forum (OGF), GFD-R-P.107.

[Armbrust et al., 2010] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M. (2010).
A view of cloud computing. Commun. ACM, 53(4):50–58.

[Armbrust et al., 2009] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H.,
Konwinski, A., Lee, G., Patterson, D. A., Rabkin, A., and Zaharia, M. (2009). Above
the Clouds: A Berkeley View of Cloud Computing. Technical Report UCB/EECS-
2009-28, Electrical Engineering and Computer Sciences University of California at
Berkeley.

[Attiya and Welch, 2004] Attiya, H. and Welch, J. (2004). Distributed Computing:

Fundamentals, Simulations, and Advanced Topics. Wiley Series on Parallel and
Distributed Computing. Wiley.

[Ayers, 2007] Ayers, D. (2007). Evolving the Link. IEEE Internet Computing, 11(3):94–95.

157

BIBLIOGRAPHY

[Backus et al., 1963] Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Perlis,
A. J., Rutishauser, H., Samelson, K., Vauquois, B., Wegstein, J. H., van Wijngaarden,
A., and Woodger, M. (1963). Revised report on the algorithm language ALGOL 60.
Commun. ACM, 6:1–17.

[Bajaj et al., 2006] Bajaj, S., Box, D., Chappell, D., Curbera, F., Daniels, G., Hallam-Baker,
P., Hondo, M., Kaler, C., Langworthy, D., Nadalin, A., Nagaratnam, N., Prafullchandra,
H., von Riegen, C., Roth, D., Schlimmer, J., Sharp, C., Shewchuk, J., Vedamuthu, A.,
Yalçinalp, U., and Orchard, D. (2006). Web Services Policy 1.2 - Framework (WS-
Policy). Technical report, World Wide Web Consortium (W3C).

[Bank, 2004] Bank, E. (2004). Importance of Open Spatial Data Infrastructure for Data
Sharing. In Altan, O., editor, Proceedings of the ISPRS Congress Istanbul 2004, volume
XXXV, Part B4 of Commission IV Papers, pages 271–276.

[Baranski, 2008] Baranski, B. (2008). Grid Computing Enabled Web Processing Service.
In Bishr, M., Pebesma, E., and Bartoschek, T., editors, Proceedings of the 6th

Geographic Information Days. Ifgi Prints., volume 32, pages 243–256.

[Baranski, 2009] Baranski, B. (2009). Guaranteeing Quality of Service in a Spatial Data
Infrastructure by using Service Level Agreements. Presented at GSDI 11 World
Conference, Rotterdam, The Netherlands.

[Baranski, 2011] Baranski, B. (2011). WS-Agreement Application Profile for OGC Web
Services. Open Geospatial Consortium (OGC), OGC 11-094 (Discussion Paper).

[Baranski, 2012] Baranski, B. (2012). The Service Level Agreements for OGC Web
Services (SLA4OWS) Framework. In Löwner, M., Hillen, F., andWohlfahrt, R., editors,
Geoinformatik 2012 - Mobilität und Umwelt, pages 383–388. Shaker Verlag.

[Baranski et al., 2010a] Baranski, B., Deelmann, T., and Schäffer, B. (2010a). Pay-per-
Use Revenue Models for Geoprocessing Services in the Cloud. 1st International
Workshop on Pervasive Web Mapping, Geoprocessing and Services (WebMGS 2010).
Como, Italy.

[Baranski et al., 2011] Baranski, B., Foerster, T., Schäffer, B., and Lange, K. (2011).
Matching INSPIRE Quality of Service Requirements with Hybrid Clouds. In Wilson,
J. P., Stewart Fotheringham, A., and O’Sullivan, D., editors, Transactions in GIS,
volume 15, pages 125–142. Wiley Online Library.

[Baranski and Schäffer, 2010] Baranski, B. and Schäffer, B. (2010). Towards Service
Level Agreements in Spatial Data Infrastructures. In Rajabifard, A., Crompvoets,
J., Kalantari, M., and B., K., editors, Spatially Enabling Society: Research, Emerging

Trends, and Critical Assessment, pages 149–162. Leuven University Press.

[Baranski et al., 2010b] Baranski, B., Schäffer, B., and Redweik, R. (2010b).
Geoprocessing in the Clouds. In OSGeo Journal, volume 8, pages 17–22. Open
Source Geospatial Foundation (OSGeo).

[Baranski et al., 2009] Baranski, B., Woolf, A., Shaon, A., and Kurzbach, S. (2009). OWS-
6 WPS Grid Processing Profile Engineering Report. Open Geospatial Consortium
(OGC), OGC 09-041 (Engineering Report).

158

BIBLIOGRAPHY

[Battré, 2009] Battré, D. (2009). Time Constraint Profile, Version 1.0. Technical report,
Open Grid Forum (OGF).

[Bell, 2004a] Bell, D. (2004a). IBM Developer Works. UML basics: The component
diagram. Online. Visited 2012-03-29,
http://www.ibm.com/developerworks/rational/library/dec04/bell/.

[Bell, 2004b] Bell, D. (2004b). IBM Developer Works. UML basics: The sequence
diagram. Online. Visited 2012-01-06,
http://www.ibm.com/developerworks/rational/library/3101.html.

[Berger, 2005] Berger, T. (2005). Konzeption und Management von Service-Level-

Agreements für IT-Dienstleistungen. PhD thesis, TU Darmstadt, Darmstadt.

[Bishr et al., 1999] Bishr, Y., Pundt, H., Kuhn, W., and Radwan, M. (1999). Probing
the Concept of Information Communities - A First Step Toward Semantic
Interoperability. Interoperating Geographic Information Systems, 495:203–215.

[Blake and Cummings, 2007] Blake, M. and Cummings, D. (2007). Workflow
Composition of Service Level Agreements. In Services Computing, 2007. SCC 2007.

IEEE International Conference on, pages 138 –145.

[Blake et al., 1997] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and Weiss, W.
(1997). An Architecture for Differentiated Services. Internet Engineering Task Force
(IETF), RFC 2475 (Informational).

[Blankenbach and Schaffert, 2009] Blankenbach, J. and Schaffert, M. (2009). A SDI and
Web 2.0 based Approach to Support E-Participation in Municipal Administration and
Planning Strategies. In Facing the Challenges. Proceedings of the FIG Congress 2010.

Sydney, Australia.

[Blower, 2010] Blower, J. D. (2010). GIS in the Cloud: Implementing a Web Map
Service on Google App Engine. In Proceedings of the 1st International Conference

and Exhibition on Computing for Geospatial Research & Application, COM.Geo
’10, pages 34:1–34:4, New York, NY, USA. ACM.

[BMJ, 2009] BMJ (2009). Gesetz über den Zugang zu digitalen Geodaten
(Geodatenzugangsgesetz - GeoZG). Bundesministerium der Justiz (BMJ). 10. Februar
2009 (BGBl. I S. 278).

[BMWI, 2010] BMWI (2010). Sichere Internet-Dienste - Sicheres Cloud Computing
für Mittelstand und öffentlichen Sektor (Trusted Cloud). Bundesministerium
für Wirtschaft und Technologie (BMWi). Ein Technologiewettbewerb des
Bundesministeriums für Wirtschaft und Technologie.

[BMWI, 2012] BMWI (2012). Das Normungs- und Standardisierungsumfeld von Cloud
Computing. Bundesministerium für Wirtschaft und Technologie (BMWi). Ein
Technologiewettbewerb des Bundesministeriums für Wirtschaft und Technologie.

[Bourke, 2001] Bourke, T. (2001). Server Load Balancing. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA.

159

BIBLIOGRAPHY

[Bradner, 1997] Bradner, S. (1997). Key words for use in RFCs to Indicate Requirement
Levels. Internet Engineering Task Force (IETF), RFC 2119 (Best Current Practice).

[Brahnmath et al., 2002] Brahnmath, G. J., Rajeev, R. R., Olson, A. M., Auguston, M.,
Bryant, B. R., and Burt, C. C. (2002). A Quality of Service Catalog for Software
Components. In Proceedings of the Southeastern Software Engineering Conference.

[Brauner et al., 2009] Brauner, J., Foerster, T., Schäffer, B., and Baranski, B. (2009).
Towards a Research Agenda for Geoprocessing Services. In J. Haunert, B. K. and
Milde, J., editors, Proceedings of 12th AGILE International Conference on Geographic

Information Science. Hanover, Germany: IKG, Leibniz University of Hanover.

[Brunette and Mogull, 2009] Brunette, G. and Mogull, R. (2009). Security Guidance for
Critical Areas of Focus in Cloud Computing V2. 1. CSA (Cloud Security Alliance),

USA., 1.

[Bröring et al., 2012] Bröring, A., Stasch, C., and Echterhoff, J. (2012). OGC Sensor
Observation Service Interface Standard. Open Geospatial Consortium (OGC), OGC
12-006 (Implementation Specification).

[BSI, 2012] BSI (2012). Sicherheitsempfehlungen für Cloud Computing Anbieter -
Mindestanforderungen in der Informationssicherheit. Bundesamt für Sicherheit in
der Informationstechnik (BSI). Eckpunktepapier.

[Budhathoki and Nedovi-Budi, 2006] Budhathoki, N. R. and Nedovi-Budi, Z. (2006).
Expanding the Spatial Data Infrastructure Knowledge Base. In Onsrud, H., editor,
Research and Theory in Advancing Spatial Data Infrastructure Concepts, pages 7–31.
ESRI Press.

[Buyya et al., 2009] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I.
(2009). Cloud computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation Computer Systems,
25(6):599–616.

[Cannon, 2007] Cannon, D. L. (2007). ITIL Service Operation. TSO The Stationery Office.

[Carver, 2003] Carver, S. (2003). The Future of Participatory Approaches Using
Geographic Information: developing a research agenda for the 21st Century. Urban
& Regional Information Systems Association, 15(APA 1):61–71.

[CCUCG, 2009] CCUCG (2009). Cloud Computing Use Cases - A White Paper. October,
2. Cloud Computing Use Case Discussion Group.

[CGDI Architecture Working Group, 2001] CGDI Architecture Working Group (2001).
Canadian Geospatial Data Infrastructure, architecture description. Natural Resources
Canada.

[Chen, 1976] Chen, P. P.-S. (1976). The Entity-Relationship Model - Toward a Unified
View of Data. ACM Trans. Database Syst., 1:9–36.

[Chouk, 2003] Chouk, M. (2003). Master-slave replication, failover and distributed

recovery in PostgreSQL database. McGill University.

160

BIBLIOGRAPHY

[Christensen et al., 2001] Christensen, E., Curbera, F., Meredith, G., and Weerawarana,
S. (2001). Web Service Definition Language (WSDL). Technical report, World Wide
Web Consortium (W3C).

[Chung et al., 2009] Chung, L., Fang, Y., Chang, Y., Chou, T., Lee, B., Yin, H., and
Baranski, B. (2009). A SOA based debris flow monitoring system. In Proceedings

of the 17th International Conference on Geoinformatics, 2009, pages 1–6. IEEE.

[Comber and Wadsworth, 2005] Comber, A. and Wadsworth, R. Fisher, P. (2005).
Reasoning Methods for Handling Uncertain Information in Land Cover Mapping.
In Devillers, R. and Jeansoulin, R., editors, Fundamentals of Spatial Data Quality,
chapter 7, pages 123–139. Hermes Science/Lavoisier.

[Cova, 1996] Cova, T. (1996). GIS in emergency management. In Longley, P., Goodchild,
M., Maguire, D., and Rhind, D., editors, Geographical Information Systems Principles

Techniques Applications, volume 2, chapter 60, pages 845–858. Wiley.

[Cox, 2009] Cox, S. (2009). Name type specification - documents. Open Geospatial
Consortium (OGC), OGC 09-047r3 (OpenGIS Policy).

[Cox, 2010a] Cox, S. (2010a). Name type specification - definitions - part 1 - basic name.
Open Geospatial Consortium (OGC), OGC 09-048r3 (OpenGIS Policy).

[Cox, 2010b] Cox, S. (2010b). Name type specification - specification elements. Open
Geospatial Consortium (OGC), OGC 10-103 (OpenGIS Policy).

[Cox, 2010c] Cox, S. (2010c). OGC Naming Authority - Policies and Procedures. Open
Geospatial Consortium (OGC), OGC 09-046r2 (OpenGIS Policy).

[Cox, 2010d] Cox, S. (2010d). OGC Naming Authority: Procedures. Open Geospatial
Consortium (OGC), OGC 09-046r2 (OpenGIS Policy).

[Craglia et al., 2008] Craglia, M., Goodchild, M. F., Annoni, A., Camara, G., Gould, M.,
Kuhn, W., Mark, D., Masser, I., and Maguire, D. (2008). Next-Generation Digital Earth.
International Journal of Spatial Data Infrastructure Research, 3(3):146–167.

[Crockford, 2006] Crockford, D. (2006). The application/json Media Type for JavaScript
Object Notation (JSON). Internet Engineering Task Force (IETF), RFC 4627
(Informational).

[Czajkowski et al., 2004] Czajkowski, K., Ferguson, D. F., Foster, I., Frey, J., Graham, S.,
Sedukhin, I., Snelling, D., Tuecke, S., and Vambenepe, W. (2004). The WS-Resource
Framework Version 1.0. OASIS Standard, Organization for the Advancement of
Structured Information Standards (OASIS).

[de la Beaujardiere, 2006] de la Beaujardiere, J. (2006). OpenGIS Web Map Server
Implementation Specification. Open Geospatial Consortium (OGC), OGC 06-042
(Implementation Specification).

[De Smith et al., 2007] De Smith, M., J, G., M F, L., and P, A. (2007). Geospatial Analysis:
A Comprehensive Guide to Principles, Techniques and Software Tools, volume 1.
Troubador.

161

BIBLIOGRAPHY

[DeCapua and Bhaduri, 2007] DeCapua, C. and Bhaduri, B. (2007). Applications of
Geospatial Technology in International Disasters and During Hurricane Katrina.
Technical report, Oak Ridge National Laboratory.

[Deelman et al., 2004] Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S.,
Su, M.-H., Vahi, K., and Livny, M. (2004). Pegasus: Mapping Scientific Workflows
onto the Grid. In Dikaiakos, M. D., editor, European Across Grids Conference, volume
3165 of Lecture Notes in Computer Science, pages 11–20. Springer.

[Densham, 1991] Densham, P. (1991). Spatial Decision Support Systems. Geographical
Information Systems, 1:403–412.

[Deursen et al., 2000] Deursen, A., Klint, P., and Visser, J. M. (2000). Domain-Specific
Languages. Technical report, Amsterdam, The Netherlands, The Netherlands.

[Di et al., 2003] Di, L., Chen, A., Yang, W., and Zhao, P. (2003). The Integration of Grid
Technology with OGC Web Services (OWS) in NWGISS for NASA EOS Data. In in

NWGISS for NASA EOS Data, in GGF8 & HPDC12 2003, pages 24–27. Science Press.

[DMTF, 1999] DMTF (1999). Common Information Model (CIM) Specification.
Distributed Management Task Force (DMTF).

[DMTF, 2009] DMTF (2009). Open Virtualization Format Specification. Distributed
Management Task Force (DMTF).

[Donker, 2009] Donker, F. (2009). Public Sector Geo Web Services: Which Business
Model Will Pay for a Free Lunch? In van Loenen, B., Besemer, J., and Zevenbergen,
J., editors, SDI Convergence. Research, Emerging Trends, and Critical Assessment.
Nederlandse Commissie voor Geodesie.

[Dotcom-Monitor, 2012] Dotcom-Monitor (2012). Active vs. Passive Web Performance
Monitoring. Online. Visited 2012-02-28, http://www.dotcom-monitor.com/release-
active-vs-passive-web-performance-monitoring.asp.

[Drabek and Hoetmer, 1991] Drabek, T. and Hoetmer, G. (1991). Emergency

management: principles and practice for local government. Municipal management
series. International City Management Association.

[Driver, 2008] Driver, M. (2008). Gartner Says Cloud Application Infrastructure
Technologies Need Seven Years to Mature. Gartner Press Release.

[Dyachuk and Deters, 2007] Dyachuk, D. and Deters, R. (2007). Service Level
Agreement Aware Workflow Scheduling. In IEEE SCC, pages 715–716. IEEE
Computer Society.

[Díaz et al., 2012] Díaz, L., Remke, A., Kauppinen, T., Degbelo, A., Foerster, T., Stasch,
C., Rieke, M., Schaeffer, B., Baranski, B., Broering, A., and Wytzisk, A. (2012). Future
SDI – Impulses from Geoinformatics Research and IT Trends. International Journal
of Spatial Data Infrastructures Research (IJSDIR), Volume 7.

[EC, 2004] EC (2004). Multi-channel delivery of eGovernment services. Technical
report, European Commission. Interchange of Data between Administrations
Programme.

162

BIBLIOGRAPHY

[Eggert and Heidemann, 1999] Eggert, L. and Heidemann, J. (1999). Application-Level
Differentiated Services for Web Servers. World Wide Web, 2(3):133–142.

[EU, 1995] EU (1995). Directive 95/46/EC of the European Parliament and of the Council
of 24 October 1995 on the protection of individuals with regard to the processing of
personal data and on the free movement of such data. Official Journal of the European

Union, pages 0031–0050.

[EU, 2007] EU (2007). DIRECTIVE 2007/2/EC OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL: establishing an Infrastructure for Spatial Information in the
European Community (INSPIRE). Official Journal of the European Union.

[EU, 2011a] EU (2011a). INSPIRE & NSDI SoP. D4.2 - Summary report regarding the
results of the European Assessment of 34 NSDI (first year). State of Play: Report
from the Europen Union, Spatial Applications Division K.U. Leuven.

[EU, 2011b] EU (2011b). INSPIRE Roadmap. Online. Visited 2012-06-09,
http://inspire.jrc.ec.europa.eu/index.cfm/pageid/44.

[EU, 2011c] EU (2011c). Spatial Data Infrastructures in Germany: State of Play 2011.
State of Play: Report from the Europen Union, Spatial Applications Division K.U.
Leuven.

[FGDC, 2001] FGDC (2001). Building the Business Case for the Geospatial Platform - The

Value Proposition. Federal Geographic Data Committee (FGDC).

[FGDC, 2005] FGDC (2005). The National Spatial Data Infrastructure.
The Federal Geographic Data Committee (FGDC). Online Available:
http://www.fgdc.gov/nsdi/library/factsheets/documents/nsdi.pdf [Accessed 3
June 2012].

[Fielding et al., 1999] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach,
P., and Berners-Lee, T. (1999). Hypertext Transfer Protocol – HTTP/1.1. Internet
Engineering Task Force (IETF), RFC 2616 (Standards Track).

[Fielding, 2000] Fielding, R. T. (2000). Architectural Styles and the Design of Network-

based Software Architectures. PhD thesis, University of California, Irvine, California.

[Flanagan, 1998] Flanagan, D. (1998). JavaScript: The Definitive Guide. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 3rd edition.

[Flegkas et al., 2003] Flegkas, P., Flegkas, P., Trimintzios, P., Trimintzios, P., Pavlou, G.,
Pavlou, G., Liotta, A., and Liotta, A. (2003). Design and Implementation of a Policy-
Based Resource Management Architecture. In IEEE/IFIP Integrated Management

Symposium (IM 2003, pages 215–229. Kluwer.

[Fleuren and Müller, 2008] Fleuren, T. and Müller, P. (2008). BPEL Workflows
Combining Standard OGC Web Services and Grid-enabled OGC Web Services. In
Proceedings of the 2008 34th Euromicro Conference Software Engineering and Advanced

Applications, SEAA ’08, pages 337–344, Washington, DC, USA. IEEE Computer
Society.

163

BIBLIOGRAPHY

[Foerster, 2006] Foerster, T. (2006). An open software framework for Web Service-based
geo-processes. In FOSS4G2006 - Free And Open Source Software for Geoinformatics,
volume 8, pages 17–22. Open Source Geospatial Foundation (OSGeo). Presented
at Free and Open Source Software for Geospatial (FOSS4G) Conference, Sydney,
Australia.

[Foerster et al., 2010] Foerster, T., Baranski, B., Schäffer, B., and Lange, K. (2010).
Geoprocessing in Hybrid Clouds. In Zipf, A., Behncke, K., Hillen, F.,
and Schaefermeyer, J., editors, Die Welt im Netz, pages 13–19. Akademische
Verlagsgesellschaft.

[Foerster et al., 2011] Foerster, T., Schäffer, B., Brauner, J., and Baranski, B. (2011).
Geospatial Web Services for Distributed Processing - Applications and Scenarios.
In Zhao, P. and Di, P., editors, Geospatial Web Services: Advances in Information

Interoperability, pages 245–286. Hershey.

[Fornefeld et al., 2008] Fornefeld, M., Boele-Keimer, G., Recher, S., and Fanning,
M. (2008). Assessment of the Re-use of Public Sector Information (PSI) in
the Geographical information, Meteorological Information and Legal Information
Sectors. Final Report. Technical report, MICUS Management Consulting GmbH,
Düsseldorf, Germany.

[Fornefeld et al., 2003] Fornefeld, M., Oefinger, P., and Rausch, U. (2003). The Market for
Geospatial Information: Potentials for Employment, Innovation and Value Added.
Technical report, MICUS Management Consulting GmbH, Düsseldorf, Germany.

[Foster, 2003] Foster, I. (2003). The Grid: A New Infrastructure for 21st Century Science,
pages 51–63. John Wiley & Sons, Ltd.

[Foster et al., 2006] Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw,
A., Horn, B., Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J., and Von Reich,
J. (2006). The Open Grid Services Architecture, Version 1.5. Open Grid Forum (OGF),
GFD-I.080.

[Foster et al., 2008] Foster, I., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud Computing and
Grid Computing 360-Degree Compared.

[Franks et al., 1999] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P.,
Luotonen, A., and Stewart, L. (1999). HTTP Authentication: Basic and Digest Access
Authentication. Internet Engineering Task Force (IETF), RFC 2617 (Standards Track).

[Freed, 2000] Freed, N. (2000). Behavior of and Requirements for Internet Firewalls.
Internet Engineering Task Force (IETF), RFC 2979 (Informational).

[Frick et al., 2002] Frick, R., Keller, M., Vettori, A., Meier, J., and Spahni, D. (2002).
Analyse Geodatenmarkt Schweiz. Technical report, Institut für Wirtschaft und
Verwaltung (IWV). Bern, 31. Oktober 2002.

[Frolund and Koistinen, 1998] Frolund, S. and Koistinen, J. (1998). Quality of Service
Specification in Distributed Object Systems Design. In Proceedings of the 4th USENIX

Conference on Object-Oriented Technology and Systems (COOTS), Santa Fe, New
Mexico.

164

BIBLIOGRAPHY

[Garnett, 2011] Garnett, J. (2011). Web Processing Service Shootout - Execute Process
Posse Panel Discussion. In FOSS4G 2011 - Free And Open Source Software for

Geoinformatics, volume 8, pages 17–22. Open Source Geospatial Foundation (OSGeo).
Presented at Free and Open Source Software for Geospatial (FOSS4G) Conference,
Sydney, Australia.

[Gartmann and Leinenweber, 2009] Gartmann, R. and Leinenweber, L. (2009). OWS-
6 Security Engineering Report. Open Geospatial Consortium (OGC), OGC 09-035
(Engineering Report).

[Gartmann and Schäffer, 2011] Gartmann, R. and Schäffer, B. (2011). License-Based
Access Control. Open Geospatial Consortium (OGC), OGC 11-018 (Discussion Paper).

[GDI-DE, 2010] GDI-DE (2010). Architektur der Geodateninfrastruktur Deutschland,

Version 2.0. Lenkungsgremium GDI-DE. Arbeitskreis Architektur der GDI-DE und
Koordinierungsstelle GDI-DE.

[Gisler et al., 2000] Gisler, M., Stanoevska-Slabeva, K., and Greunz, M. (2000). Legal
Aspects of Electronic Contracts. CAiSE 2000 Workshop: Infrastructure for Dynamic
Business-to-Business Service Outsourcing (ISDO 2000).

[Goodchild, 1991] Goodchild, M. F. (1991). Geographic Information Systems. Progress

in Human Geography, 15(2):192–200.

[Goodchild, 2010] Goodchild, M. F. (2010). Twenty years of progress: GIScience in 2010.
Journal of Spatial Information Science, 1(1):3–20.

[Goodchild and Glennon, 2010] Goodchild, M. F. and Glennon, J. A. (2010).
Crowdsourcing geographic information for disaster response: a research frontier.
International Journal of Digital Earth, 3(3):231–241.

[Groot and McLaughlin, 2000] Groot, R. and McLaughlin, J. D. (2000). Geospatial Data

Infrastructure: Concepts, Cases, and Good Practice. Oxford ; New York : Oxford
University Press. Includes bibliographical references and index.

[Groth, 2012] Groth, P. (2012). Feedback Welcome: An Overview of the Provenance
(PROV) family of specs. Online. Visised 2012-09-17,
http://www.w3.org/blog/SW/2012/01/11/feedback-welcome-an-overview-of-the-
provenance-prov-family-of-specs/.

[Gudgin et al., 2006] Gudgin, M., Hadley, M., and Rogers, T. (2006). Web Services
Addressing - Core. Technical report, World Wide Web Consortium (W3C).

[Hafner and Breu, 2008] Hafner, M. and Breu, R. (2008). Security Engineering for Service-
Oriented Architectures. Springer Publishing Company, Incorporated.

[Halpin, 2001] Halpin, T. (2001). Information Modeling and Relational Databases:

From Conceptual Analysis to Logical Design (The Morgan Kaufmann Series in Data

Management Systems). Morgan Kaufmann.

[Hamilton, 1997] Hamilton, G. (1997). JavaBeans Specification, Version 1.01. Online.
Visited 2012-02-08,
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html.

165

BIBLIOGRAPHY

[Hansen, 2007] Hansen, M. D. (2007). SOA Using Java Web Services. Prentice Hall.

[Hartig, 2009] Hartig, K. (2009). Cloud Computing Journal. What is Cloud Computing?
Online. Visited 2012-05-10,
http://cloudcomputing.sys-con.com/node/579826.

[Herrmann, 2010] Herrmann, J. (2010). Access Control Systems for Spatial Data
Infrastructures and their Administration. In Proceedings of the 1st International

Conference and Exhibition on Computing for Geospatial Research and Application,
COM.Geo ’10, pages 47:1–47:2, New York, NY, USA. ACM.

[Herrmann and Matheus, 2009] Herrmann, J. and Matheus, A. (2009). OWS-6
GeoXACML Engineering Report. Open Geospatial Consortium (OGC), OGC 09-036r2
(Engineering Report).

[Higgins, 2009] Higgins, C.;Sinnott, R. M. J. A. A. (2009). Spatial Data e-Infrastructure.
In Proceedings of International Conference on e-Social Science, Cologne, Germany, May

2009. N/A.

[Hiles, 2002] Hiles, A. (2002). The Complete Guide to IT Service Level Agreements:

Aligning IT Services to Business Needs. Service Level Management Series. Rothstein
Associates Incorporated.

[Hillmann-Köster, 2011] Hillmann-Köster, B. (2011). Arbeiten in der Cloud // Working
in the Cloud. gis.TRENDS+MARKETS: The Geomatics News Magazine, 1:42–49.

[Hobona et al., 2007] Hobona, G., Fairbairn, D., and P., J. (2007). Workflow Enactment of
Grid-Enabled Geospatial Web Services. In Proceedings of the UK e-Science All Hands

Meeting. National e-Science Centre.

[Hudak, 1998] Hudak, P. (1998). Domain Specific Languages. In Handbook of

Programming Languages, Vol. III: Little Languages and Tools, chapter 3, pages 39–60.
MacMillan, Indianapolis.

[Humphrey and Kellner, 1989] Humphrey, W. S. and Kellner, M. I. (1989). Software
process modeling: principles of entity process models. In Proceedings of the 11th

international conference on Software engineering, ICSE ’89, pages 331–342, New York,
NY, USA. ACM.

[INSPIRE, 2007] INSPIRE (2007). INSPIRE Network Services Performance Guidelines.
Technical report, INSPIRE Infrastructure for Spatial Information in Europe, INSPIRE
Consolidation Team.

[INSPIRE, 2008a] INSPIRE (2008a). Definition of Annex Themes and Scope, Version 3.0.
Technical report, INSPIRE Infrastructure for Spatial Information in Europe, Drafting
Team "Data Specifications".

[INSPIRE, 2008b] INSPIRE (2008b). Network Services Architecture, Version 3.0.
Technical report, INSPIRE Infrastructure for Spatial Information in Europe, Network
Services Drafting Team.

166

BIBLIOGRAPHY

[INSPIRE, 2009] INSPIRE (2009). Draft Technical Guidance for INSPIRE Download
Services, Version 2.0. Technical report, INSPIRE Infrastructure for Spatial
Information in Europe, Drafting Team "Network Services".

[INSPIRE, 2010a] INSPIRE (2010a). Draft Technical Guidance for INSPIRE Coordinate
Transformation Services, Version 2.1. Technical report, INSPIRE Infrastructure for
Spatial Information in Europe, Drafting Team "Network Services".

[INSPIRE, 2010b] INSPIRE (2010b). Guidance on the "Regulation on access to spatial
data sets and services of the Member States by Community institutions and bodies
under harmonised conditions". Technical report, INSPIRE Infrastructure for Spatial
Information in Europe, DT Data and Service Sharing.

[INSPIRE, 2010c] INSPIRE (2010c). INSPIRE Data Specification on Protected Sites -
Guidelines. Technical report, INSPIRE Infrastructure for Spatial Information in
Europe, INSPIRE Thematic Working Group Protected Sites.

[INSPIRE, 2011a] INSPIRE (2011a). Technical Guidance for the implementation of
INSPIRE View Services, Version 3.1. Technical report, INSPIRE Infrastructure for
Spatial Information in Europe, IOC Task Force for Network Services.

[INSPIRE, 2011b] INSPIRE (2011b). Technical Guidance to implement INSPIRE
Discovery Services, Version 3.1. Technical report, INSPIRE Infrastructure for Spatial
Information in Europe, IOC Task Force "Network Services".

[ISO, 2003] ISO (2003). ISO 19115:2003 Geographic information – Metadata. Technical
report, International Organization for Standardization (TC 211).

[ISO, 2005] ISO (2005). ISO ISO 19128:2005 Geographic information – Web map server
interface. Technical report, International Organization for Standardization (TC 211).

[ITU, 1994] ITU (1994). ITU-T Recommendation E.800: Telephone Network and ISDN

Quality of Service, Network Management and Traffic Engineering : Terms and

Definitions of Traffic Engineering. International Telecommunication Union (ITU).

[Jeberson and Sasipraba, 2010] Jeberson, R. and Sasipraba, T. (2010). Disaster

Management System based on GIS Web Services, page 252–261. IEEE.

[Jin et al., 2002] Jin, L., Machiraju, V., and Sahai, A. (2002). Analysis on Service Level
Agreement of Web Services. HP LABORATORIES.

[Johnson, 2000] Johnson, R. (2000). GIS Technology for Disasters and Emergency

Management. ESRI White Paper.

[Joksić Dušan, 2004] Joksić Dušan, B. B. (2004). Elements of spatial data quality as
information technology support for sustainable development planning. Spatium,
Issue 11:pp. 77–83.

[Kalbfleisch et al., 1999] Kalbfleisch, C., Krupczak, C., Presuhn, R., and Saperia, J. (1999).
Application Management MIB. Internet Engineering Task Force (IETF), RFC 2564
(Proposed Standard).

167

BIBLIOGRAPHY

[Karten, 1998] Karten, N. (1998). How to establish service level agreements. Naomi Karten
Associates.

[Kearney et al., 2010] Kearney, K. T., Torelli, F., and Kotsokalis, C. (2010). SLA: An
abstract syntax for Service Level Agreements. In GRID, pages 217–224. IEEE.

[Keller and Ludwig, 2003] Keller, E. and Ludwig, H. (2003). The WSLA Framework:
Specifying and Monitoring Service Level Agreements for Web Services. Journal of

Network and Systems Management, 11:2003.

[Kiehle et al., 2006] Kiehle, C., Greve, K., and Heier, C. (2006). Standardized
Geoprocessing - Taking Spatial Data Infrastructures One Step Further. In 9th AGILE

International Conference on Geographic Information Science, Visegrad, Hungary.

[Kim and Lee, 2005] Kim, E. and Lee, Y. (2005). OASIS Web Services Quality Model
TC. Technical report, Organization for the Advancement of Structured Information
Standards (OASIS).

[Kübert et al., 2011] Kübert, R., Katsaros, G., and Wang, T. (2011). A RESTful
implementation of the WS-agreement specification. In Proceedings of the Second

International Workshop on RESTful Design, WS-REST ’11, pages 67–72, New York,
NY, USA. ACM.

[Kubik and Kopanczyk, 2009] Kubik, T. and Kopanczyk, B. (2009). Implementing WPS
as an Coordinate Transformation Service. GSDI 11 World Conference.

[Kuebert et al., 2010] Kuebert, R., Tenschert, A., Wä andldrich, O., Ziegler, W., and
Battre, D. (2010). A service level agreement layer for the D-Grid infrastructure. In
eChallenges, 2010, pages 1 –9.

[Kurzbach et al., 2009] Kurzbach, S., Braune, S., Pasche, E., and Smith, M. (2009).
Angewandte Geoinformatik 2010. Beiträge zum 22. AGIT-Symposium Salzburg, chapter
Operative Hochwasservorhersage-Dienste im Geodateninfrastruktur-Grid, page
881–886. Wichmann.

[Lamanna et al., 2003] Lamanna, D. D., Skene, J., and Emmerich, W. (2003). SLAng: A
Language for Defining Service Level Agreements. In Proceedings of the The Ninth

IEEE Workshop on Future Trends of Distributed Computing Systems, FTDCS ’03, pages
100–, Washington, DC, USA. IEEE Computer Society.

[Lanig et al., 2008] Lanig, S., Schilling, A., Stollberg, B., and Zipf, A. (2008). Towards
Standards-Based Processing of Digital Elevation Models for Grid Computing through
Web Processing Service (WPS). Computational Science and Its Applications. Lecture

Notes in Computer Science., 5073/2008:191–203.

[Lee and Ben-Natan, 2002] Lee, J. and Ben-Natan, R. (2002). Integrating Service Level

Agreements: Optimizing Your OSS for SLA Delivery. John Wiley & Sons, Inc., New
York, NY, USA.

[Lee et al., 2003] Lee, K., Jeon, J., Lee, W., Jeong, S.-H., and Park, S.-W. (2003). QoS for
Web Services: Requirements and Possible Approaches. Technical report, WorldWide
Web Consortium (W3C).

168

BIBLIOGRAPHY

[Lehto, 2009] Lehto, L. (2009). Real-Time content transformations in the European
Spatial Data Infrastructure. GSDI 11 World Conference.

[Leiba, 2012] Leiba, B. (2012). OAuth Web Authorization Protocol. IEEE Internet

Computing, 16:74–77.

[Leimeister et al., 2010] Leimeister, S., Riedl, C., Böhm, M., and Krcmar, H. (2010). The
Business Perspective of Cloud Computing: Actors, Roles, and Value Networks. In
Proceedings of 18th European Conference on Information Systems (ECIS 2010), Pretoria,
South Africa.

[Lloyd, 2008] Lloyd, V. (2008). ITIL Service Design. TSO The Stationery Office, Norwich.

[Lubke et al., 2005] Lubke, R., Ball, J., and Delisle, P. (2005). Unified Expression
Language. Online. Visised 2012-02-23,
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html.

[Ludwig and Coetzee, 2010] Ludwig, B. and Coetzee, S. (2010). A Comparison of
Platforms as a Service (PaaS) Clouds with a detailed Reference to Security and
Geoprocessing Services. 1st International Workshop on Pervasive Web Mapping,
Geoprocessing and Services (WebMGS 2010). Como, Italy.

[Ludwig et al., 2002] Ludwig, H., Keller, A., Dan, A., and King, R. (2002). A Service
Level Agreement Language for Dynamic Electronic Services. In Proceedings of the

Fourth IEEE International Workshop on Advanced Issues of E-Commerce and Web-Based

Information Systems (WECWIS’02), WECWIS ’02, pages 25–, Washington, DC, USA.
IEEE Computer Society.

[Marston et al., 2011] Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., and Ghalsasi, A.
(2011). Cloud computing - The business perspective. Decis. Support Syst., 51(1):176–
189.

[Masser, 2005] Masser, I. (2005). GIS Worlds: Creating Spatial Data Infrastructures. ESRI
Press, Redlands, California.

[Massuthe et al., 2005] Massuthe, P., Reisig, W., and Schmidt, K. (2005). An
Operating Guideline Approach to the SOA. Annals of Mathematics, Computing &

Teleinformatics, 1(3):35–43.

[Matheus and Herrmann, 2011] Matheus, A. and Herrmann, J. (2011). Geospatial
eXtensible Access Control Markup Language (GeoXACML). Open Geospatial
Consortium (OGC), OGC 11-017 (Abstract Specification).

[Maué and Kiehle, 2009] Maué, P. and Kiehle, C. (2009). Grid Technologies for
Geospatial Applications – An Overview. GIS.Science, 3:65–67.

[McConnell and Siegel, 2004] McConnell, J. and Siegel, E. (2004). Practical Service level
Management: Delivering High-Quality Web-Based Services. Cisco Press.

[McElhearn, 2004] McElhearn, K. (2004). The Mac OS X Command Line: Unix Under the

Hood. SYBEX Inc., Alameda, CA, USA.

169

BIBLIOGRAPHY

[Meissner et al., 2002] Meissner, A., Luckenbach, T., Risse, T., Kirste, T., and Kirchner,
H. (2002). Design Challenges for an Integrated Disaster Management Communication
and Information System. In The First IEEE Workshop on Disaster Recovery Networks.

[Mell and Grance, 2009] Mell, P. and Grance, T. (2009). The NIST Definition of Cloud
Computing. National Institute of Standards and Technology. Information Technology

Laboratory, 15(6):10–7.

[Mernik et al., 2005] Mernik, M., Heering, J., and Sloane, A. M. (2005). When and How
to develop domain-specific languages. ACM Comput. Surv., 37:316–344.

[Metsch and Edmonds, 2011a] Metsch, T. and Edmonds, A. (2011a). Open Cloud
Computing Interface - Infrastructure. Open Grid Forum (OGF), GFD-P-R.184.

[Metsch and Edmonds, 2011b] Metsch, T. and Edmonds, A. (2011b). Open Cloud
Computing Interface - RESTful HTTP Rendering. Open Grid Forum (OGF), GFD-
P-R.185.

[Moats, 1997] Moats, R. (1997). URN Syntax. Internet Engineering Task Force (IETF),
RFC 2141 (Standards Track).

[Moore et al., 2001] Moore, B., Ellesson, E., Strassner, J., and Westerinen, A. (2001).
Policy Core Information Model – Version 1 Specification. RFC 3060 (Proposed
Standard). Updated by RFC 3460.

[Moses, 2005] Moses, T. (2005). eXtensible Access Control Markup Language TC
v2.0 (XACML). Technical report, Organization for the Advancement of Structured
Information Standards (OASIS).

[Mulligan and Gracanin, 2009] Mulligan, G. and Gracanin, D. (2009). A comparison
of SOAP and REST implementations of a service based interaction independence
middleware framework. Architecture, pages 1423–1432.

[Myerson, 2009] Myerson, J. (2009). IBM Developer Works. Cloud Computing versus
Grid Computing. Online. Visited 2012-05-10,
http://www.ibm.com/developerworks/web/library/wa-cloudgrid/.

[Nadalin et al., 2006] Nadalin, A., Kaler, C., Monzillo, R., and Hallam-Baker, P. (2006).
Web Services Security: SOAP Message Security 1.1. OASIS Standard, Organization
for the Advancement of Structured Information Standards (OASIS).

[Nebert, 2004] Nebert, D. D. (2004). Developing Spatial Data Infrastructures: The SDI

Cookbook. GSDI.

[Nogueras-Iso et al., 2004] Nogueras-Iso, J., Latre-Abadia, M. A., Muro-Medrano, P. R.,
and Zarazaga-Soria, F. J. (2004). Building e-Government Services over Spatial Data
Infrastructures. In Traunmüller, R., editor, Electronic Government and the Information

Systems Perspective, volume 3183 of Lecture Notes in Computer Science, pages 387–391.
Springer.

170

BIBLIOGRAPHY

[NRW, 2010] NRW (2010). Gebührenordnung für das amtliche Vermessungswesen und
die amtliche Grundstückswertermittlung in Nordrhein-Westfalen (VermWertGebT).
Gesetz- und Verordnungsblatt (GV. NRW.) Ausgabe 2010 Nr. 23 vom 16.7.2010 Seite
389 bis 406, Ministerium für Inneres und Kommunales des Landes Nordrhein-
Westfalen.

[Nyrén et al., 2011] Nyrén, R., Edmonds, A., Papaspyrou, A., and Metsch, T. (2011).
Open Cloud Computing Interface - Core. Open Grid Forum (OGF), GFD-P-R.183.

[Odlyzko, 1998] Odlyzko, A. (1998). The Economics of the Internet: Utility, Utilization,
Pricing, and Quality of Service. Technical report, AT&T Labs - Research.

[OGC, 2003] OGC (2003). OGC Reference Model (ORM). Open Geospatial Consortium
(OGC), OGC 08-062r4.

[OMG, 2011a] OMG (2011a). Unified Modeling Language (OMG UML), Infrastructure,
V2.4.1. Technical report, Object Management Group.

[OMG, 2011b] OMG (2011b). Unified Modeling Language (OMG UML), Superstructure,
V2.4.1. Technical report, Object Management Group.

[Onchaga, 2005] Onchaga, R. (2005). On Quality-Aware Composition of Geographic
Information Services for Disaster Management. In Van Oosterom, P., Zlatanova,
S., and Fendel, E., editors, Geo-Information for Disaster Management, pages 751–766.
Springer.

[Ortmann et al., 2011] Ortmann, J., Limbu, M., Wang, D., and Kauppinen, T. (2011).
Crowdsourcing Linked Open Data for Disaster Management. In Proceedings of Terra

Cognita 2011, The 10th International Semantic Web Conference (ISWC2011), Bonn,
Germany.

[Padberg and Kiehle, 2009] Padberg, A. and Kiehle, C. (2009). Towards a grid-enabled
SDI: Matching the paradigms of OGC Web Services and Grid Computing. GSDI 11

World Conference, (Special Issue GSDI-11).

[Papaioannou et al., 2006] Papaioannou, I. V., Tsesmetzis, D. T., Roussaki, I. G., and
Anagnostou, M. E. (2006). A QoS Ontology Language for Web-Services. In
Proceedings of the 20th International Conference on Advanced Information Networking

and Applications - Volume 01, AINA ’06, pages 101–106, Washington, DC, USA. IEEE
Computer Society.

[Papazoglou, 2003] Papazoglou, M. P. (2003). Service -Oriented Computing: Concepts,
Characteristics and Directions. International Conference on Web Information Systems

Engineering, 0:3–12.

[Parker, 2005] Parker, C. (2005). Disaster Management: The Challenges for a National
Geographic Information Provider. In Van Oosterom, P., Zlatanova, S., and Fendel, E.,
editors, Geo-Information for Disaster Management, pages 191–214. Springer.

[Parkin et al., 2008] Parkin, M., Badia, R. M., and Martrat, J. (2008). A Comparison of
SLA Use in Six of the European Commissions FP6 Projects. CoreGRID Technical

Report, TR-0129.

171

BIBLIOGRAPHY

[Patricio et al., 2009] Patricio, L., Falcao, C., and Fisk, R. (2009). Requirements
engineering for multi-channel services: the SEB method and its application to a
multi-channel bank. Requirements Engineering, 14(3):209–227.

[Paul and Ghosh, 2006] Paul, M. and Ghosh, S. K. (2006). An Approach for Service
Oriented Discovery and Retrieval of Spatial Data. In Proceedings of the 2006

International Workshop on Service-Oriented Software Engineering, SOSE ’06, pages 88–
94, New York, NY, USA. ACM.

[Peltz, 2003] Peltz, C. (2003). Web Services Orchestration and Choreography. Computer,
36:46–52.

[Percivall, 2002] Percivall, G. (2002). ISO 19119 and OGC Service Architecture.

[Pras and Schoenwaelder, 2003] Pras, A. and Schoenwaelder, J. (2003). On the Difference
between Information Models and Data Models. Internet Engineering Task Force
(IETF), RFC 3444 (Informational).

[Prasad, 1996] Prasad, S. (1996). Multithreading Programming Techniques. McGraw-Hill,
Inc., New York, NY, USA.

[Prechelt, 2000] Prechelt, L. (2000). An Empirical Comparison of Seven Programming
Languages. Computer, 33(10):23–29.

[Quirchmayr et al., 2007] Quirchmayr, G., Funilkul, S., and Chutimaskul, W. (2007). A
Quality Model of e-Government Services Based on the ISO/IEC 9126 Standard. In
Proceedings of International Legal Informatics Symposium (IRIS), Salzburg, Austria.

[Rajabifard, 1999] Rajabifard, A. (1999). The Nature of Regional Spatial Data
Infrastructures. In The 27th Annual Conference of AURISA Fairmont Resort, Blue

Mountains, NSW, pages 22–26.

[Rajabifard et al., 2004] Rajabifard, A., Mansourian, A., Williamson, I., Valadan, Z., and
Mohammad, J. (2004). Developing Spatial Data Infrastructure to Facilitate Disaster
Management. Proceedings GEOMATICS 83 Conference.

[Rajabifard and Williamson, 2001] Rajabifard, A. and Williamson, I. P. (2001). Spatial
Data Infrastructures: Concept, SDI Hierarchy and Future Directions. Culture,
80(80):1–10.

[Rajabifard et al., 2000] Rajabifard, A., Williamson, I. P., Holland, P., and Johnstone, G.
(2000). From Local to Global SDI initiatives : a pyramid of building blocks. Proceedings
of the 4th GSDI Conference, page 13–15.

[Ramirez, 2001] Ramirez, A. (2001). LINUX Journal. Three-Tier Architecture. Online.
Visited 2012-05-10,
http://www.linuxjournal.com/article/3508.

[Ran, 2003] Ran, S. (2003). A model for web services discovery with QoS. SIGecom Exch.,
4(1):1–10.

172

BIBLIOGRAPHY

[Rao et al., 2004] Rao, J., Kungas, P., and Matskin, M. (2004). Logic-based web services
composition: From service description to process model. In In Intl. Conference on

Web Services (ICWS, pages 446–453. IEEE.

[Rech, 2011] Rech, M. (2011). Mit der Lizenz zum Wirken. gis.BUSINESS, 07:14–15.

[Reed, 2002] Reed, C. (2002). Uniform Resource Names (URN) Namespace Definition
Mechanisms. Internet Engineering Task Force (IETF), RFC 3406 (Best Current
Practice).

[Reed, 2004] Reed, C. (2004). A URN namespace for the Open Geospatial Consortium
(OGC). Open Geospatial Consortium (OGC), OGC 07-107r3 (Best Practices).

[Reed, 2008] Reed, C. (2008). A Uniform Resource Name (URN) Namespace for the Open
Geospatial Consortium (OGC). Internet Engineering Task Force (IETF), RFC 5165
(Informational).

[Rodosek and Lewis, 2001] Rodosek, G. D. and Lewis, L. (2001). Dynamic Service
Provisioning: A User-Centric Approach. In DSOM, pages 37–48.

[Romberg, 1999] Romberg, M. (1999). The UNICORE Architecture: Seamless Access
to Distributed Resources. In Proceedings of the 8th IEEE International Symposium

on High Performance Distributed Computing, HPDC ’99, pages 44–, Washington, DC,
USA. IEEE Computer Society.

[Sahai et al., 2002] Sahai, A., Durante, A., and Machiraju, V. (2002). Towards Automated
SLA Management for Web Services. Technical Report HPL-2001-310R1, HP
Laboratories, Palo Alto, California.

[Sandmann, 2005] Sandmann, S. (2005). TIM-online - A part of the eGovernment
strategy by the Federal State North-Rhine Westphalia. Proceedings of the 8th AGILE

International Conference on Geographic Information Science.

[Sanford and Rose, 2007] Sanford, C. and Rose, J. (2007). Characterizing eParticipation.
International Journal of Information Management, 27:406–421.

[Schut, 2007] Schut, P. (2007). OpenGIS Web Processing Service. Open Geospatial
Consortium (OGC), OGC 05-007r7 (OpenGIS Standard).

[Schäffer, 2009] Schäffer, B. (2009). OWS-6 Geoprocessing Workflow Architecture
Engineering Report. Open Geospatial Consortium (OGC), OGC 09-053r5
(Engineering Report).

[Schäffer, 2012] Schäffer, B. (2012). Dynamic Rights Management in Cross-Domain

Geoprocessing Workflows. Dissertations in Geographic Information Science. Ios Pr
Inc.

[Schäffer et al., 2010a] Schäffer, B., Baranski, B., and Foerster, T. (2010a). Licensing OGC
Geoprocessing Services as a Foundation for Commercial Use in SDIs. In Second

International Conference on Advanced Geographic Information Systems, Applications

and Services, pages 111–116. IEEE Computer Society.

173

BIBLIOGRAPHY

[Schäffer et al., 2010b] Schäffer, B., Baranski, B., and Foerster, T. (2010b). Towards
Spatial Data Infrastructures in the Clouds. In Painho, M., Santos, M. Y., and Pundt, H.,
editors, Geospatial Thinking. Lecture Notes in Geoinformation and Cartography, pages
399–418. Springer.

[Schäffer et al., 2012] Schäffer, B., Baranski, B., Foerster, T., and Brauner, J. (2012).
A Service-Oriented Framework for Real-time and Distributed Geoprocessing.
Geospatial Free and Open Source Software in the 21st Century. Lecture Notes in

Geoinformation and Cartography, pages 3–20.

[Schäffer and Gartmann, 2011] Schäffer, B. and Gartmann, R. (2011). Security and
Licensing for Geospatial Web Services. In Zhao, P. and Di, P., editors, Geospatial
Web Services: Advances in Information Interoperability, pages 64–95. Hershey.

[Shelly et al., 1998] Shelly, G. B., Cashman, T. J., and Rosenblatt, H. J. (1998). Systems

Analysis and Design. International Thomson Publishing, 3rd edition.

[Shiers, 2007] Shiers, J. (2007). The Worldwide LHC Computing Grid (worldwide LCG).
Computer Physics Communications, 177(1-2):219–223.

[Signore et al., 2005] Signore, O., Chesi, F., and Pallotti, M. (2005). E-Government:
Challenges and Opportunities. In Proceedings of the CMG Italy - XIX Annual

Conference.

[Steinmann, 2007] Steinmann, F. (2007). Pegel-Online und BS-Elbe.
eGovernmentlösungen für Umweltdaten. Presentation at eGovernment Symposium,
Bern, Switzerland.

[Sturm et al., 2000] Sturm, R., Morris, W., and Jander, M. (2000). Foundations of Service
Level Management. SAMS Publishing.

[Su and Jin, 2009] Su, Y. and Jin, Z. (2009). Building Service Oriented Applications for
Disaster Management - An Earthquake Assessment Example. In Proceedings of the

2009 Fourth International Conference on Cooperation and Promotion of Information

Resources in Science and Technology, COINFO ’09, pages 3–8, Washington, DC, USA.
IEEE Computer Society.

[Subbiah et al., 2007] Subbiah, G., Alam, A., Khan, L., and Thuraisingham, B. (2007).
Geospatial Data Qualities as Web Services Performance Metrics. In Proceedings of the

15th International Symposium on Advances in Geographic Information Systems (ACM

GIS 200), pages 1–4, New York, NY, USA. ACM.

[SUN, 2006] SUN (2006). JavaServer Pages Specification, Version 2.1. Online. Visited
2012-02-08,
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html.

[SUN, 2009] SUN (2009). Take your business to a Higher Level - Sun cloud
computing technology scales your infrastructure to take advantage of new business
opportunities. Online. Visited 2012-05-12,
http://www.progression.com/casestudies/studies/Sun_Cloud_Computing.pdf.

174

BIBLIOGRAPHY

[SUN, 2012] SUN (2012). JavaServer Pages Standard Tag Library (JSTL), Version 1.2.
Online. Visited 2012-02-06,
http://www.oracle.com/technetwork/java/index-jsp-135995.html.

[Sun et al., 2005] Sun, W., Xu, Y., and Liu, F. (2005). The role of XML in service
level agreements management. Services Systems and Services Management, 2005.

Proceedings of ICSSSM ’05. 2005 International Conference on, 2:1118–1120 Vol. 2.

[Tian et al., 2003] Tian, M., Gramm, A., Naumowicz, T., Ritter, H., and Schiller, J.
(2003). A Concept for QoS Integration in Web Services. In Proceedings of the

Fourth international conference on Web information systems engineering workshops,
WISEW’03, pages 149–155, Washington, DC, USA. IEEE Computer Society.

[Toma and Foxvog, 2008] Toma, I. and Foxvog, D. (2008). Non-Functional Properties
in Web services. Web Service Modeling Ontology (WSMO) Working Group (WG)

Deliverable, D28.4 V0.1.

[Tu et al., 2004] Tu, S., Flanagin, M., Wu, Y., Abdelguerfi, M., Normand, E., Mahadevan,
V., Ratcliff, J., and Shaw, K. (2004). Design Strategies to Improve Performance of
GIS Web Services. In Proceedings of the International Conference on Information

Technology: Coding and Computing (ITCC’04) Volume 2, ITCC ’04, pages 444–,
Washington, DC, USA. IEEE Computer Society.

[Vallières et al., 2005] Vallières, S., Brodeur, J., and Pilon, D. (2005). Spatial Integrity
Constraints: A Tool for Improving the Internal Quality of Spatial Data. In Devillers,
R. and Jeansoulin, R., editors, Fundamentals of Spatial Data Quality, chapter 9, pages
161–178. Hermes Science/Lavoisier.

[van Deursen et al., 2000] van Deursen, A., Klint, P., and Visser, J. (2000). Domain-
Specific Languages: An Annotated Bibliography. SIGPLAN Not., 35:26–36.

[Van Loenen et al., 2012] Van Loenen, B., Janssen, K., andWelle Donker, F. (2012). Quest
for a Global Standard for Geo-data Licenses. In Spatially Enabling Government,

Industry and Citizens: Research and Development Perspectives. GSDI Association Press.

[van Oort, 2005] van Oort, P. (2005). Spatial data quality: from description to application.
Publications on Geodesy. NCG, Nederlandse Commissie voor Geodesie, Netherlands
Geodetic Commission.

[Victorian Spatial Council, 2009] Victorian Spatial Council (2009). Spatial Information
Data Quality Guidelines - Part of Victoria’s Spatial Information Management
Framework. Technical report, Victorian Spatial Council, Department of
Sustainability and Environment.

[Vogels et al., 1998] Vogels, W., Dumitriu, D., Birman, K. P., Gamache, R., Massa, M.,
Short, R., Vert, J., Barrera, J., and Gray, J. (1998). The Design and Architecture of the
Microsoft Cluster Service - A Practical Approach to High-Availability and Scalability.
In FTCS, pages 422–431. IEEE Computer Society.

[Vowles, 2006] Vowles, G. (2006). Geospatial Digital Rights Management Reference
Model (GeoDRM RM). Open Geospatial Consortium (OGC), OGC 06-004r3 (Abstract
Specification).

175

BIBLIOGRAPHY

[Vretanos, 2010] Vretanos, P. (2010). OpenGIS Web Feature Service 2.0 Interface
Standard. Open Geospatial Consortium (OGC), OGC 09-025r1 and ISO/DIS 19142
(Implementation Specification).

[W3C, 2007] W3C (2007). SOAP Version 1.2 Part 0: Primer (Second Edition). online.
World Wide Web Consortium (W3C). W3C Recommendation.

[Wagner, 2006a] Wagner, R. (2006a). A Roaming-enabled SDI (rSDI): Balancing
Interests, Opportunities, Investments and Risks. GSDI 9 World Conference.

[Wagner, 2006b] Wagner, R. (2006b). OWS-3 GeoDRM Thread Activity and
Interoperability Program Report: Access Control & Terms of Use (ToU) “Click-
through” IPR Management. Open Geospatial Consortium (OGC), OGC 05-111r2
(Discussion Paper).

[Wagner, 2009] Wagner, R. (2009). OpenGIS GeoRM Role Model. Open Geospatial
Consortium (OGC), OGC 09-123 (Discussion Paper).

[Wang et al., 2008] Wang, S., Padmanabhan, A., Myers, J. D., Tang, W., and Liu, Y. (2008).
Towards Provenance-aware Geographic Information Systems. In Proceedings of the

16th ACM SIGSPATIAL international conference on Advances in geographic information

systems, GIS ’08, pages 70:1–70:4, New York, NY, USA. ACM.

[Westerinen et al., 2001] Westerinen, A., Schnizlein, J., Strassner, J., Scherling, M.,
Quinn, B., Herzog, S., Huynh, A., Carlson, M., Perry, J., and Waldbusser, S. (2001).
Terminology for Policy-Based Management. Internet Engineering Task Force (IETF),
RFC 3198 (Informational).

[Whiteside, 2005] Whiteside, A. (2005). OpenGIS Web Services Architecture
Description. Open Geospatial Consortium (OGC), OGC 05-042r2 (Best Practices
Paper).

[Whiteside, 2006] Whiteside, A. (2006). Definition identifier URNs in OGC namespace.
Open Geospatial Consortium (OGC), OGC 06-023r1 (Best Practices).

[Whiteside and Greenwood, 2010] Whiteside, A. and Greenwood, J. (2010). OGC Web
Services Common Standard. Open Geospatial Consortium (OGC), OGC 06-121r9
(Implementation Standard).

[Wieder et al., 2011] Wieder, P., Butler, J., Theilmann, W., and Yahyapour, R. (2011).
Service Level Agreements for Cloud Computing. Springer.

[Wilde and Pautasso, 2011] Wilde, E. and Pautasso, C. (2011). Rest: From Research to

Practice. Springer.

[Woolf and Shaon, 2009] Woolf, A. and Shaon, A. (2009). An approach to encapsulation
of Grid processing within an OGC Web Processing Service. Workshop on Grid
Technologies for Geospatial Applications. Presented at The 12th AGILE International
Conference on Geographic Information Science, Hannover, Germany.

[Wytzisk and Sliwinski, 2004] Wytzisk, A. and Sliwinski, A. (2004). Quo Vadis SDI? In
Proceedings of the 7th AGILE Conference on Geographic Information Science, pages 43–
49.

176

BIBLIOGRAPHY

[Wäldrich, 2011] Wäldrich, O. (2011). Orchestration of Resources in Distributed,

Heterogeneous Grid Environments Using Dynamic Service Level Agreements. PhD
thesis, Fraunhofer Institute for Scientific Computing and Algorithms, Irvine,
California.

[Yavatkar et al., 2000] Yavatkar, R., Pendarakis, D., and Guerin, R. (2000). A Framework
for Policy-based Admission Control. Internet Engineering Task Force (IETF), RFC
2753 (Informational).

[Yin et al., 2010] Yin, H.-Y., Huang, C.-J., Fang, Y.-M., Lee, B.-J., and Chou, T.-Y.
(2010). The Present Development of Debris Flow Monitoring Technology in Taiwan.
Proceedings of the International Symposium in Pacific Rim (INTERPRAEVENT 2010),

Taipei, Taiwan, pages 992–1000.

[Yu-jie et al., 2005] Yu-jie, M., Jian, C., Shen-sheng, Z., and Jian-hong, Z. (2005).
Interactive Web Service Choice-Making Based on Extended QoS Model. In
Proceedings of the The Fifth International Conference on Computer and Information

Technology, CIT ’05, pages 1130–1134, Washington, DC, USA. IEEE Computer Society.

[Zhang et al., 2010] Zhang, S., Zhang, S., Chen, X., and Huo, X. (2010). Cloud Computing
Research and Development Trend. 2010 Second International Conference on Future

Networks, pages 93–97.

[Zhou et al., 2005] Zhou, C., Chia, L.-T., and Lee, B.-S. (2005). QoS Measurement Issues
with DAML-QoS Ontology. In Proceedings of the IEEE International Conference

on e-Business Engineering, ICEBE ’05, pages 395–403, Washington, DC, USA. IEEE
Computer Society.

177

BIBLIOGRAPHY

178

Appendix A

Requirements Analysis

Table A.1 provides an overview about all evaluated requirements.

Table A.1: Requirements Overview

Requirement Description

Roles and Relationships

R1 The web-based SLA management architecture shall enable service
consumers and service providers to negotiate SLA prior the
service consumption.

R2 The web-based SLA management architecture shall ensure that
the basic publish-find-bind pattern in SDIs remains.

R3 The service provider shall be able to publish his service along with
additional SLA related information to the service broker.

R4 The service consumer shall be able to perform service discovery
operations on the service broker to find an adequate service
provider according to SLA related requirements.

R5 The web-based SLA management architecture shall ensure that
service consumption is performed only under the terms of
previously created agreements, in which service consumers and
service providers agree to certain terms and conditions.

Services, Resources and Quality

R6 The abstract SLA model shall allow to create service offerings
reflecting the service types that are standardized by the OGC and
described by the INSPIRE directive.

R7 The abstract SLA model shall allow the definition of KPIs and
SLOs reflecting the functional requirements as defined by the
INSPIRE directive.

Table A.1 – Continued on next page

179

APPENDIX A. REQUIREMENTS ANALYSIS

Table A.1 – Continued from previous page

Requirement Description

R8 The web-based SLA management architecture shall allow the
monitoring of KPIs and the evaluation of SLOs reflecting the
functional requirements as defined by the INSPIRE directive.

R9 The abstract SLA model shall allow the definition of spatial data
themes as defined by the INSPIRE directive.

R10 The abstract SLA model shall allow the definition of data quality
elements as defined by the INSPIRE directive.

R11 The abstract SLA model shall allow the definition of license
models for the provision of access to spatial datasets as recognized
by the INSPIRE directive and implemented by the GeoLizenz
license models.

R12 The abstract SLA model shall allow the definition of KPIs and
SLOs reflecting the minimum performance criteria as defined by
the INSPIRE directive.

R13 The web-based SLA management architecture shall allow the
monitoring of KPIs and the evaluation of SLOs reflecting
the minimum performance criteria as defined by the INSPIRE
directive.

Pricing and Accounting

R14 The abstract SLA model shall allow the definition of complex
pricing models as described by the "AdV-Gebührenrichtlinie" and
the "VermWertGebT".

R15 The web-based SLA management architecture shall allow the
accounting of service offerings aligned with complex pricing
models as described by the "AdV-Gebührenrichtlinie" and the
"VermWertGebT".

Security and Rights Management

R16 The abstract SLA model shall allow the integration of access
rights policies that are based on existing approaches such as
GeoXACML.

R17 The web-based SLA management architecture shall allow the
enforcement of access rights policies that are based on existing
approaches such as GeoXACML.

Infrastructure Management

R18 The abstract SLA model shall allow the definition of KPIs and
SLOs reflecting infrastructure requirements and capabilities.

Table A.1 – Continued on next page

180

Table A.1 – Continued from previous page

Requirement Description

R19 The web-based SLA management architecture shall allow the
monitoring of KPIs and the evaluation of SLOs reflecting
infrastructure requirements and capabilities.

R20 The abstract SLA model shall allow the definition of complex
pricing models reflecting the service infrastructure utilization.

R21 The web-based SLA management architecture shall allow the
accounting of service offerings aligned with complex pricing
models reflecting the service infrastructure utilization.

R22 The abstract SLAmodel shall allow the definition of infrastructure
management information in order to realize differentiated
services under the terms of previously created agreements.

R23 The web-based SLA management architecture shall support
strategies for realizing differentiated services under the terms of
previously created agreements.

Standards and Technology

R24 The abstract SLA model and the web-based SLA management
architecture shall be developed with respect to the OGC Standards
Baseline. They shall not replace any previous OGC specifications,
but should depend and build on them.

R25 The development of a standardized document encoding for the
abstract SLA model is strongly recommended.

R26 The development of a standardized communication protocol for
realizing SLA negotiation and service consumption under the
terms of previously created SLAs is strongly recommended.

R27 The abstract SLA model and the web-based SLA management
architecture should be designed in a flexible way in order to be
applicable in other application domains.

181

APPENDIX A. REQUIREMENTS ANALYSIS

182

Appendix B

Service Level Agreement Formalization

This chapter provides additional information about the abstract SLA model.

B.1 Monitoring Functions

The abstract SLA model offers a basic set of functions that can be accessed from within
the Agreement Expression Language scripts in order to create varying monitoring
requests. The basic set of functions is aligned to the functions that are available in
Apache JMeter1. The structure of the functions looks like

${__functionName(var1, var2, varN)}

where __functionName matches the name of a function and var1 to varN reference the
input arguments that are passed to the function. Table B.1 provides an overview about
the functions that are supported in the abstract SLA model by default.

Table B.1: Active Monitoring Functions

${__random(min, max)}

This function returns a random floating point number that is between the min and
max floating point parameters.

Example

The following function can be used to create varying BBOX parameters for a
GetMap request.

${__random(142.0, 144.0)}

${__random(str1, str2, strN)}

This function returns a random string from the set of one or more string parameters.

Table B.1 – Continued on next page

1 http://jmeter.apache.org

183

APPENDIX B. SERVICE LEVEL AGREEMENT FORMALIZATION

Table B.1 – Continued from previous page

Example

The following function can be used to query varying layers in a GetMap
request.

${__random("topp:tasmania_cities", "topp:tasmania_roads", "topp:
tasmania_state_boundaries")}

The basic set of functions can be extended in order to accommodate the needs of further
applications and use cases.

B.2 OGC URN Schema Extension

The abstract SLA model defines an OGC URN Schema Extension in order to identify
service property types and business value types. The following sections provide a
comprehensive dictionary of all URNs that can be used in the abstract SLA model.

B.2.1 Service Property Types

Table B.2 - Table B.7 provide an overview and explanation of all URNs that can be used
to identify domain-specific service properties in the Service Properties section of the
abstract SLA model. All URNs are structured in accordance with the OGC URN Schema
described in [Reed, 2008] and have the form

urn:ogc:def:sla:property:{URN}

where the URN token must be one of the following URNs.

Table B.2: Resource-Related Service Property Types

URN Description

resource:operation The standardized operations implemented
by the service instance.

resource:feature The objects provided by the service
instance.

resource:layer The layers provided by the service instance.

resource:process The processes provided by the service
instance.

184

B.2. OGC URN SCHEMA EXTENSION

Table B.3: Runtime-Related Service Property Types

URN Description

runtime:availability The probability whether the service is up
and running.

runtime:response The response time of the service (the time
between sending the request and receiving
the response).

Table B.4: Usage-Related Service Property Types

URN Description

usage:request The total number of times the service
consumer accessed the service.

usage:operation The total number of times the service
consumer calls a standardized operation at
the web service.

usage:object The total number of geometric objects
delivered to the service consumer.

usage:pixel The total number of pixels delivered to the
service consumer.

usage:area The total covered area delivered to the
service consumer.

usage:process The total number of times the service
consumer executes a process at the web
service.

usage:transfer The total amount of transferred data from
and to the web service.

usage:cpu The total amount of CPU utilization caused
by service consumption.

Table B.5: Data-Related Service Property Types

URN Description

data:completeness:commission The number of excess items in the delivered
dataset in relation to the number of items
that should have been present.

Table B.5 – Continued on next page

185

APPENDIX B. SERVICE LEVEL AGREEMENT FORMALIZATION

Table B.5 – Continued from previous page

URN Description

data:completeness:omission The number of missing items in the
delivered dataset in relation to the number
of items that should have been present.

data:accuracy:absolute A number that indicates the absolute
accuracy of the data set.

data:accuracy:external A number that indicates the external
accuracy of the data set.

data:accuracy:resolution A number that indicates the spatial
resolution of delivered geometry.

data:license An identifier of the license for data sharing
and reuse in another application context.

Table B.6: Security-Related Service Property Types

URN Description

security:license:geoxacml The access rights policies defined in the
GeoXACML format.

Table B.7: Infrastructure-Related Service Property Types

URN Description

infrastructure:provider:name The unique name of the
infrastructures provider.

infrastructure:provider:region The unique name of the region
where the service provider is
located.

infrastructure:vm:name The unique name of the VM
template that provides the service
deployment.

infrastructure:compute:architecture The CPU architecture of the
compute resource which hosts the
service.

infrastructure:compute:cores The number of available CPU cores
at the compute resource which
hosts the service.

Table B.7 – Continued on next page

186

B.2. OGC URN SCHEMA EXTENSION

Table B.7 – Continued from previous page

URN Description

infrastructure:compute:speed The CPU clock speed for each
available CPU core.

infrastructure:compute:memory The available RAM of the compute
resource which hosts the service.

This comprehensive dictionary of URNs for identifying domain-specific service
properties can be extended in order to accommodate the needs of further application
domains and use cases. For the purpose of this thesis the provided list of URNs is quite
sufficient to meet all requirements.

B.2.2 Business Value Types

Table B.8 provides an overview and explanation of all URNs that can be used to identify
domain-specific business values in the Business Values section of the abstract SLA
model. All URNs are structured in accordance with the OGC URN Schema described
in [Reed, 2008] and have the form

urn:ogc:def:sla:business:{URN}

where the URN token must be one of the following URNs.

Table B.8: Business Value Types

URN Description

cost:day The cost to be assessed for using the service
on a daily basis.

cost:week The cost to be assessed for using the service
on a weekly basis.

cost:month The cost to be assessed for using the service
on a monthly basis.

cost:year The cost to be assessed for using the service
on a yearly basis.

penalty:day The penalty to be assessed for not meeting
service level objectives on a daily basis.

penalty:week The penalty to be assessed for not meeting
service level objectives on a weekly basis.

penalty:month The penalty to be assessed for not meeting
service level objectives on a monthly basis.

Table B.8 – Continued on next page

187

APPENDIX B. SERVICE LEVEL AGREEMENT FORMALIZATION

Table B.8 – Continued from previous page

URN Description

penalty:year The penalty to be assessed for not meeting
service level objectives on a yearly basis.

reward:day The reward to be assessed for meeting
service level objectives on a daily basis.

reward:week The reward to be assessed for meeting
service level objectives on a weekly basis.

reward:month The reward to be assessed for meeting
service level objectives on a monthly basis.

reward:year The reward to be assessed for meeting
service level objectives on a yearly basis.

This comprehensive dictionary of URNs for identifying domain-specific business values
can be extended in order to accommodate the needs of further application domains and
use cases. For the purpose of this thesis the provided list of URNs is quite sufficient to
meet all requirements.

B.3 Agreement Expression Language

The abstract SLA model defines a DSL in order to define service level objectives and
business values. The following sections provide a comprehensive dictionary of all
context variables and functions that can be used in the abstract SLA model.

B.3.1 Variables

All resource-, runtime- and infrastructure-related Service Property elements lead to
custom JEXL context variables that can be used to access monitoring information that
are collected during agreement runtime. Furthermore, all Service Level Objective
elements and all Business Value elements lead also to JEXL context variables that can
be used to access agreement status information and to create nested pricing models.

SERVICE PROPERTIES

The following sections describe the JEXL context variable types that result from
resource-, runtime- and infrastructure-related service properties in the Service Properties
section of the abstract SLA model.

Resource-Related Variables

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:resource:operation

188

B.3. AGREEMENT EXPRESSION LANGUAGE

result in a JEXL context variable from type ResourceOperationType that has the
following variables and methods (Table B.9).

Table B.9: JEXL ResourceOperationType

ResourceOperationType

String[] name

Returns an array of all available OWS operations.

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:resource:feature

result in a JEXL context variable from type ResourceFeatureType that has the following
variables and methods (Table B.10).

Table B.10: JEXL ResourceFeatureType

ResourceFeatureType

String[] name

Returns an array of all available objects (names of

feature type instances).

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:resource:layer

result in a JEXL context variable from type ResourceLayerType that has the following
variables and methods (Table B.11).

Table B.11: JEXL ResourceLayerType

ResourceLayerType

String[] name

Returns an array of all available layers (names of

layers).

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:resource:process

189

APPENDIX B. SERVICE LEVEL AGREEMENT FORMALIZATION

result in a JEXL context variable from type ResourceProcessType that has the following
variables and methods (Table B.12).

Table B.12: JEXL ResourceProcessType

ResourceProcessType

String[] name

Returns an array of all available processes (names

of processes).

Runtime-Related Variables

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:runtime:availability

result in a JEXL context variable from type AvailabilityType that has the following
variables and methods (Table B.13).

Table B.13: JEXL AvailabilityType

AvailabilityType

float day

Returns the measured service availability for the

current day in percent (where 0.0 means 0% and 1.0

means 100%).

float week

Returns the measured service availability for the

current calendar week in percent (where 0.0 means 0%

and 1.0 means 100%).

float month

Returns the measured service availability for the

current calendar month in percent (where 0.0 means 0%

and 1.0 means 100%).

float year

Returns the measured service availability for the

current calendar year in percent (where 0.0 means 0% and

1.0 means 100%).

float total

Returns the measured service availability for the

complete agreement runtime in percent (where 0.0 means

0% and 1.0 means 100%).

190

B.3. AGREEMENT EXPRESSION LANGUAGE

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:runtime:response

result in a JEXL context variable from type ResponseType that has the following
variables and methods (Table B.14).

Table B.14: JEXL ResponseType

ResponseType

InitialResponseType initial

Returns an object of type InitialResponseType
that provides information about the measured initial

response time of the service.

TotalResponseType total

Returns an object of type TotalResponseType that

provides information about the measured total response

time of the service.

Table B.15: JEXL InitialResponseType

InitialResponseType

int[] day

Returns an array of all response time measurements for

the current day. Each element in the array represents the

measured initial response time of a successful request in

milliseconds.

int[] week

Returns an array of all response time measurements

for the current calendar week. Each element in the

array represents the measured initial response time of a

successful request in milliseconds.

int[] month

Returns an array of all response time measurements

for the current calendar month. Each element in the

array represents the measured initial response time of a

successful request in milliseconds.

Table B.15 – Continued on next page

191

APPENDIX B. SERVICE LEVEL AGREEMENT FORMALIZATION

Table B.15 – Continued from previous page

InitialResponseType

int[] year

Returns an array of all response time measurements

for the current calendar year. Each element in the

array represents the measured initial response time of a

successful request in milliseconds.

int[] total

Returns an array of all response time measurements for

the complete agreement runtime. Each element in the

array represents the measured initial response time of a

successful request in milliseconds.

Table B.16: JEXL TotalResponseType

TotalResponseType

int[] day

Returns an array of all response time measurements for

the current day. Each element in the array represents the

measured total response time of a successful request in

milliseconds.

int[] week

Returns an array of all response time measurements

for the current calendar week. Each element in the

array represents the measured total response time of a

successful request in milliseconds.

int[] month

Returns an array of all response time measurements

for the current calendar month. Each element in the

array represents the measured total response time of a

successful request in milliseconds.

int[] year

Returns an array of all response time measurements

for the current calendar year. Each element in the

array represents the measured total response time of a

successful request in milliseconds.

int[] total

Returns an array of all response time measurements for

the complete agreement runtime. Each element in the

array represents the measured total response time of a

successful request in milliseconds.

192

B.3. AGREEMENT EXPRESSION LANGUAGE

Usage-Related Variables

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:usage:request

result in a JEXL context variable from type RequestType that has the following variables
and methods (Table B.17).

Table B.17: JEXL RequestType

RequestType

long day

Returns the logged number of service requests for

the current day.

long week

Returns the logged number of service requests for

the current calendar week.

long month

Returns the logged number of service requests for

the current calendar month.

long year

Returns the logged number of service requests for

the current calendar year.

long total

Returns the logged number of service requests for

the complete agreement runtime.

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:usage:operation

result in a JEXL context variable from type OperationType that has the following
variables and methods (Table B.18).

Table B.18: JEXL OperationType

OperationType

long daya

Returns the logged number of OWS operation calls

for the current day.

Table B.18 – Continued on next page

193

APPENDIX B. SERVICE LEVEL AGREEMENT FORMALIZATION

Table B.18 – Continued from previous page

OperationType

long weeka

Returns the logged number of OWS operation calls

for the current calendar week.

long montha

Returns the logged number of OWS operation calls

for the current calendar month.

long yeara

Returns the logged number of OWS operation calls

for the current calendar year.

long totala

Returns the logged number of OWS operation calls

for the complete agreement runtime.

Map<String,
OperationType>

operation

Returns a map containing objects of type OperationType
that provide information about the logged number of

operation calls for a specific OWS operation. The string

key of the map is the name of the OWS operation. If there

are no information available for a designated operation

the map returns null.

a In cases of vendor-specific and non-standard operation calls, this number may differ from
the total number of service requests.

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:usage:object

result in a JEXL context variable from type ObjectType that has the following variables
and methods (Table B.19).

Table B.19: JEXL ObjectType

ObjectType

long day

Returns the accumulated amount of delivered objects for

the current day.

long week

Returns the accumulated amount of delivered objects for

the current calendar week.

Table B.19 – Continued on next page

194

B.3. AGREEMENT EXPRESSION LANGUAGE

Table B.19 – Continued from previous page

ObjectType

long month

Returns the accumulated amount of delivered objects for

the current calendar month.

long year

Returns the accumulated amount of delivered objects for

the current calendar year.

long total

Returns the accumulated amount of delivered objects for

the complete agreement runtime.

Map<String, ObjectType> feature

Returns a map containing objects of type ObjectType
that provide information about the accumulated amount

of delivered objects for a specific feature type that

was queried. The string key of the map is the name

of a feature type instance. If there are no information

available for a designated feature type the map returns

null.

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:usage:pixel

result in a JEXL context variable from type PixelType that has the following variables
and methods (Table B.20).

Table B.20: JEXL PixelType

PixelType

long day

Returns the accumulated amount of delivered pixel

of all layers and for the current day.

long week

Returns the accumulated amount of delivered pixel

of all layers and for the current calendar week.

long month

Returns the accumulated amount of delivered pixel

of all layers and for the current calendar month.

Table B.20 – Continued on next page

195

APPENDIX B. SERVICE LEVEL AGREEMENT FORMALIZATION

Table B.20 – Continued from previous page

PixelType

long year

Returns the accumulated amount of delivered pixel

of all layers and for the current calendar year.

long total

Returns the accumulated amount of delivered pixel

of all layers and for the complete agreement runtime.

Map<String, PixelType> layer

Returns a map containing objects of type PixelType that
provide information about the accumulated amount of

delivered pixel for a specific layer. The string key of the

map is the name of a layer. If there are no information

available for a designated layer the map returns null.

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:usage:area

result in a JEXL context variable from type AreaType that has the following variables
and methods (Table B.21).

Table B.21: JEXL AreaType

AreaType

float day

Returns the accumulated area that is requested for

the current day in square kilometer (km2).

float week

Returns the accumulated area that is requested for

the current calendar week in square kilometer (km2).

float month

Returns the accumulated area that is requested for

the current calendar month in square kilometer (km2).

float year

Returns the accumulated area that is requested for

the current calendar year in square kilometer (km2).

Table B.21 – Continued on next page

196

B.3. AGREEMENT EXPRESSION LANGUAGE

Table B.21 – Continued from previous page

AreaType

float total

Returns the accumulated area that is requested for

the complete agreement runtime in square kilometer

(km2).

Map<String, AreaType> layer

Returns a map containing objects of type AreaType
that provide information about the accumulated area that

is requested for a specific layer. The string key of the

map is the name of a layer. If the service does not support

layers, this method returns null.

Map<String, AreaType> feature

Returns a map containing objects of type AreaType
that provide information about the accumulated area that

is requested for a specific feature type that was queried.

The string key of the map is the name of a feature type

instance. If the service does not support vector data, this

method returns null.

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:usage:process

result in a JEXL context variable from type ProcessType that has the following variables
and methods (Table B.22).

Table B.22: JEXL ProcessType

ProcessType

long day

Returns the logged number of process executions

for the current day.

long week

Returns the logged number of process executions

for the current calendar week.

long month

Returns the logged number of process executions

for the current calendar month.

Table B.22 – Continued on next page

197

APPENDIX B. SERVICE LEVEL AGREEMENT FORMALIZATION

Table B.22 – Continued from previous page

ProcessType

long year

Returns the logged number of process executions

for the current calendar year.

long total

Returns the logged number of process executions

for the complete agreement runtime.

Map<String, ProcessType> process

Returns a map containing objects of type ProcessType
that provide information about the logged number of

process executions for a specific process. The string key

of the map is the name of the process. If there are no

information available for a designated process the map

returns null.

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:usage:transfer

result in a JEXL context variable from type TransferType that has the following
variables and methods (Table B.23).

Table B.23: JEXL TransferType

TransferType

TransferInType in

Returns an object of type TransferInType that

provides information about the logged amount of data

that was transferred to the service.

TransferOutType out

Returns an object of type TransferOutType that

provides information about the logged amount of data

that was delivered by the service.

198

B.3. AGREEMENT EXPRESSION LANGUAGE

Table B.24: JEXL TransferInType

TransferInType

long day

Returns the accumulated amount of data that was

transferred to the service for the current day in megabyte

(MB).

long week

Returns the accumulated amount of data that was

transferred to the service for the current calendar week

in megabyte (MB).

long month

Returns the accumulated amount of data that was

transferred to the service for the current calendar month

in megabyte (MB).

long year

Returns the accumulated amount of data that was

transferred to the service for the current calendar year in

megabyte (MB).

long total

Returns the accumulated amount of data that was

transferred to the service for the complete agreement

runtime in megabyte (MB).

Table B.25: JEXL TransferOutType

TransferOutType

long day

Returns the accumulated amount of data that was

delivered by the service for the current day in megabyte

(MB).

long week

Returns the accumulated amount of data that was

delivered by the service for the current calendar week in

megabyte (MB).

long month

Returns the accumulated amount of data that was

delivered by the service for the current calendar month

in megabyte (MB).

Table B.25 – Continued on next page

199

APPENDIX B. SERVICE LEVEL AGREEMENT FORMALIZATION

Table B.25 – Continued from previous page

TransferOutType

long year

Returns the accumulated amount of data that was

delivered by the service for the current calendar year in

megabyte (MB).

long total

Returns the accumulated amount of data that was

delivered by the service for the complete agreement

runtime in megabyte (MB).

All service properties in the Service Properties section of the abstract SLA model with
type

urn:ogc:def:sla:property:usage:cpu

result in a JEXL context variable from type CpuType that has the following variables and
methods (Table B.26).

Table B.26: JEXL CpuType

CpuType

long day

Returns the CPU utilization for the current day

(e.g. in clock ticks or seconds).

long week

Returns the CPU utilization for the current calendar

week (e.g. in clock ticks or seconds).

long month

Returns the CPU utilization for the current calendar

month (e.g. in clock ticks or seconds).

long year

Returns the CPU utilization for the current calendar year

(e.g. in clock ticks or seconds).

long total

Returns the CPU utilization for the complete agreement

runtime (e.g. in clock ticks or seconds).

BUSINESS VALUES

All service level objectives in the abstract SLA model result in a JEXL context variable
from type ObjectiveType that has the following variables and methods (Table B.27).

200

B.3. AGREEMENT EXPRESSION LANGUAGE

Table B.27: JEXL ObjectiveType

ObjectiveType

Boolean status

Returns true if the corresponding service level objective is

fulfilled and false if the corresponding service level objective
is violated.

All business values in the abstract SLA model result in a JEXL context variable from
type BusinessType that has the following variables and methods (Table B.28).

Table B.28: JEXL BusinessType

BusinessType

float value

Returns the value of the corresponding business value

(normally the rate in Euro).

The list of variable types can be extended in order to accommodate the needs of further
application domains and use cases. For the purpose of this thesis the provided list of
variable types is quite sufficient to meet all requirements.

B.3.2 Functions

Beside the custom context variables, the JEXL language provides some basic functions.
Table B.29 provides an overview about the functions that are supported by default. A
more detailed overview can be found at the JEXL homepage.

Table B.29: DSL Functions

empty

This function returns true if the expression following is either null, an empty
string, an array of length zero, a collection of size zero, or an empty map.

size

This function returns the length of an Array, the size of a List, the size of a Map,
the size of a Set, or the length of a string.

The list of functions can be extended in order to accommodate the needs of further
application domains and use cases. For the purpose of this thesis the provided list of
functions is quite sufficient to meet all requirements.

201

APPENDIX B. SERVICE LEVEL AGREEMENT FORMALIZATION

B.4 Agreement Example

Listing B.1 shows an example abstract SLA model in JSON format.

Listing B.1: Example Abstract SLA Model

1 {
2 /* ## */
3 /* AGREEMENT CONTEXT */
4 /* ## */
5 "Agreement Context ":
6 {
7 "Service Provider ":
8 {
9 "Name": "Institute for Geoinformatics",
10 "Site:" "http :// www.ifgi.de",
11 "Contact ":
12 {
13 "IndividualName ": "Bastian Baranski",
14 "PositionName ": "Research Associate",
15 "ContactInfo ":
16 {
17 "Phone":
18 {
19 "Voice": "+49 251 8333071" ,
20 "Facsimile ": "+49 251 8339763"
21 },
22 "Address ":
23 {
24 "DeliveryPoint ": "Weseler Strasse 253",
25 "City": "Muenster",
26 "PostalCode ": "48151" ,
27 "Country ": "Germany",
28 "ElectronicMailAddress ": "baranski@uni -muenster.de"
29 },
30 "HoursOfService ": "The hours of service are Monday to Friday from

8 AM to 16 PM.",
31 "ContactInstructions ": "Please contact the service desk via phone

or mail."
32 }
33 }
34 },
35 "Service Consumer ":
36 {
37 "Name": null ,
38 "Site:" null ,
39 "Contact ":
40 {
41 "IndividualName ": "Bastian Baranski",
42 "PositionName ": null ,
43 "ContactInfo ":
44 {
45 "Phone":
46 {
47 "Voice": "+49 251 8333071" ,
48 "Facsimile ": null
49 },
50 "Address ":
51 {
52 "DeliveryPoint ": "Weseler Strasse 253",
53 "City": "Muenster",
54 "PostalCode ": "48151" ,
55 "Country ": "Germany",
56 "ElectronicMailAddress ": "bastian.baranski@uni -muenster.de"
57 },
58 "HoursOfService ": null ,
59 "ContactInstructions ": null
60 }
61 }
62 },

202

B.4. AGREEMENT EXAMPLE

63 "Contract Detail ":
64 {
65 "Contract Period ":
66 {
67 "Start": "2010 -07 -04 T13 :00:00+02:00" ,
68 "End": "2012 -07 -09 T13 :00:00+02:00"
69 }
70 }
71 },
72 "Service Terms":
73 {
74 /* ## */
75 /* SERVICE DESCRIPTION */
76 /* ## */
77 "Service Description ":
78 {
79 "Title": "INSPIRE View Service",
80 "Abstract ": "This service instance is an INSPIRE View Service

implementation .",
81 "Keywords ": "INSPIRE , View Service , OGC , WMS"
82 "Type": "urn:ogc:doc:is:wms :1.1.1" ,
83 },
84 /* ## */
85 /* SERVICE REFERENCE */
86 /* ## */
87 "Servie Reference ":
88 {
89 "URL": "http :// server:port/path"
90 },
91 /* ## */
92 /* SERVICE PROPERTIES */
93 /* ## */
94 "Service Properties ":
95 {
96 /* RESOURCE -RELATED PROPERTIES */
97 "Service Property ":
98 {
99 "Name": "operations",
100 "Title": "Supported Operations",
101 "Abstract ": "The operations that are supported by the service.",
102 "Type": "urn:ogc:def:sla:property:resource:operation",
103 "Monitoring ":
104 {
105 "ActiveMonitoring ":
106 {
107 "Start": "00:00:00" ,
108 "Stop": "24:00:00" ,
109 "Period ": 360000 ,
110 }
111 }
112 },
113 /* RUNTIME -RELATED PROPERTIES */
114 "Service Property ":
115 {
116 "Name": "availability",
117 "Title": "Service Availability",
118 "Abstract ": "The general availability of the service.",
119 "Type": "urn:ogc:def:sla:property:runtime:availability",
120 "Monitoring ":
121 {
122 "ActiveMonitoring ":
123 {
124 "Start": "00:00:00" ,
125 "Stop": "24:00:00" ,
126 "Period ": 360000 ,
127 "Request ":
128 {
129 "Method ": "GET",
130 "Content ": "service=WMS&version =1.3.0& request=GetMap&layers=

topp:tasmania_state_boundaries&styles =&bbox=${__random
(142.0 ,144.0)},${__random (-46.0 , -44.0)},${__random
(150.0 ,152.0)},${__random (-38.0 , -36.0)}&width =800& height
=600& srs=EPSG :4326& format=image/png"

203

APPENDIX B. SERVICE LEVEL AGREEMENT FORMALIZATION

131 },
132 "Response ":
133 {
134 "Status ": "200",
135 }
136 }
137 }
138 },
139 "Service Property ":
140 {
141 "Name": "response",
142 "Title": "Response Time",
143 "Abstract ": "The response time of the service.",
144 "Type": "urn:ogc:def:sla:property:runtime:response",
145 "Monitoring ":
146 {
147 "ActiveMonitoring ":
148 {
149 "Start": "00:00:00" ,
150 "Stop": "24:00:00" ,
151 "Period ": 360000 ,
152 "Request ":
153 {
154 "Method ": "GET",
155 "Content ": "service=WMS&version =1.3.0& request=GetMap&layers=

topp:tasmania_state_boundaries&styles =&bbox=${__random
(142.0 ,144.0)},${__random (-46.0 , -44.0)},${__random
(150.0 ,152.0)},${__random (-38.0 , -36.0)}&width =800& height
=600& srs=EPSG :4326& format=image/png"

156 },
157 "Response ":
158 {
159 "Status ": "200",
160 }
161 }
162 }
163 },
164 "Service Property ":
165 {
166 "Name": "capacity",
167 "Title": "Service Capacity",
168 "Abstract ": "The response time of the service for multiple parallel

requests.",
169 "Type": "urn:ogc:def:sla:property:runtime:response",
170 "Monitoring ":
171 {
172 "ActiveMonitoring ":
173 {
174 "Start": "20:00:00" ,
175 "Stop": "04:00:00" ,
176 "Period ": 3600000 ,
177 "Session ":
178 {
179 "Capacity ": 20,
180 "Duration ": 60000 ,
181 "Period :": 1000
182 },
183 "Request ":
184 {
185 "Chance ": 10,
186 "Method ": "GET",
187 "Content ": "service=WMS&version =1.3.0& request=GetCapabilities"
188 },
189 "Request ":
190 {
191 "Chance ": 90,
192 "Method ": "GET",
193 "Content ": "service=WMS&version =1.3.0& request=GetMap&layers=

topp:tasmania_state_boundaries&styles =&bbox=${__random
(142.0 ,144.0)},${__random (-46.0 , -44.0)},${__random
(150.0 ,152.0)},${__random (-38.0 , -36.0)}&width =800& height
=600& srs=EPSG :4326& format=image/png"

194 },

204

B.4. AGREEMENT EXAMPLE

195 "Response ":
196 {
197 "Status ": "200",
198 }
199 }
200 }
201 },
202 /* USAGE -RELATED PROPERTIES */
203 "Service Property ":
204 {
205 "Name": "pixel",
206 "Title": "Sum of Pixels",
207 "Abstract ": "The accessed number of pixels.",
208 "Type": "urn:ogc:def:sla:property:usage:pixel",
209 "Monitoring ":
210 {
211 "PassiveMonitoring ":
212 {
213 "Request ":
214 {
215 "GET":
216 {
217 "Resource ": "/state/urn:ogc:def:sla:property:usage:pixel"
218 "Method ": "GET"
219 }
220 }
221 }
222 }
223 },
224 /* DATA -RELATED PROPERTIES */
225 "Service Property ":
226 {
227 "Name": "license",
228 "Title": "Data License",
229 "Abstract ": "..." ,
230 "Type": "urn:ogc:def:sla:property:data:license:",
231 "Value": "http :// www.geolizenz.org/modules/geolizenz/docs /1.1/

GeoLizenz_V1 -1
_Ia_kommerziell_Weiterverarbeitung_oeffentliche_Netzwerke_110831
.pdf"

232 },
233 /* SECURITY -RELATED PROPERTIES */
234 "Service Property ":
235 {
236 "Name": "license",
237 "Title": "Data License",
238 "Abstract ": "..." ,
239 "Type": "urn:ogc:def:sla:property:data:license:",
240 "Value":
241 "
242 "
243 },
244 /* INFRASTRUCTURE -RELATED PROPERTIES */
245 "Service Property ":
246 {
247 "Name": "provider",
248 "Title": "Infrastructure Provider",
249 "Abstract ": "The name of the infrastructures provider.",
250 "Type": "urn:ogc:def:sla:property:infrastructure:provider:name",
251 "Value": "default"
252 },
253 "Service Property ":
254 {
255 "Name": "image",
256 "Title": "Virtual Machine",
257 "Abstract ": "The name of the Virtual Machine (VM) template.",
258 "Type": "urn:ogc:def:sla:property:infrastructure:vm:name",
259 "Value": "ami -59 f9c62d"
260 }
261 }
262 },
263 "Guarantee Terms ":
264 {

205

APPENDIX B. SERVICE LEVEL AGREEMENT FORMALIZATION

265 /* ## */
266 /* THE SERVICE LEVEL OBJECTIVES SECTION */
267 /* ## */
268 "Service Level Objectives ":
269 {
270 /* INSPIRE OPERATIONS REQUIREMENTS */
271 "Service Level Objective ":
272 {
273 "Name": "InspireOperations"
274 "Title": "INSPIRE (Operations)",
275 "Abstract ": "The following operations shall be implemented for an

INSPIRE View service: GetCapabilities , GetMap.",
276 "Obligated ": "Service Provider",
277 "Status ": "
278 isGetCapabilities = false;
279 isGetMap = false;
280 for (item : operations.name)
281 {
282 if (item.equalsIgnoreCase(’GetCapabilities ’))
283 {
284 isGetCapabilities = true;
285 }
286 if (item.equalsIgnoreCase(’GetMap ’))
287 {
288 isGetMap = true;
289 }
290 }
291 (isGetCapabilities and isGetMap);
292 "
293 },
294 /* INSPIRE QUALITY OF SERVICE REQUIREMENTS */
295 "Service Level Objective ":
296 {
297 "Name": "InspireAvailability"
298 "Title": "INSPIRE (Availability)",
299 "Abstract ": "The probability of a Network Service to be available

shall be 99% of the time.",
300 "Obligated ": "Service Provider",
301 "Status ": "
302 (availability.week >= 0.99) and (availability.month >= 0.99) and (

availability.year >= 0.99)
303 "
304 },
305 "Service Level Objective ":
306 {
307 "Name": "InspirePerformance"
308 "Title": "INSPIRE (Performance)",
309 "Abstract ": "The response time for sending the initial response to a

Get Map Request to a view service shall be maximum 5 seconds in
normal situation .",

310 "Obligated ": "Service Provider",
311 "Status ": "
312 fulfilled = 0;
313 for (item : response.initial.week) {
314 if (item lt 5000)
315 {
316 fulfilled = fulfilled + 1;
317 }
318 }
319 percent = fulfilled / (size(response.initial.week) / 100.0);
320 percent gt 90.0;
321 "
322 },
323 "Service Level Objective ":
324 {
325 "Name": "InspireCapacity"
326 "Title": "INSPIRE (Capacity)",
327 "Abstract ": "The minimum number of served simultaneous service

requests to a view service according to the performance quality
of service shall be 20 per second.",

328 "Obligated ": "Service Provider",
329 "Status ": "
330 fulfilled = 0;

206

B.4. AGREEMENT EXAMPLE

331 for (item : capacity.initial.week) {
332 if (item lt 5000)
333 {
334 fulfilled = fulfilled + 1;
335 }
336 }
337 percent = fulfilled / (size(capacity.initial.week) / 100.0);
338 percent gt 90.0;
339 "
340 }
341 },
342 /* ## */
343 /* THE BUSINESS VALUES SECTION */
344 /* ## */
345 "Business Values"
346 {
347 /* AdV PRICING MODEL FOR ONLINE DATA DELIVERY */
348 "Business Value ":
349 {
350 "Name": "CostsPerYear",
351 "Title": "Usage Costs (Year)",
352 "Abstract ": "The cost to be assessed for using the service on a

yearly basis (in Euro).",
353 "Obligated ": "Service Consumer",
354 "Type": "urn:ogc:def:sla:business:cost:year",
355 "Value": "
356 factor;
357 if (pixel.year lt (1000000 * 1000))
358 {
359 factor = 1.0;
360 } else
361 if (pixel.year lt (1000000 * 10000))
362 {
363 factor = 0.5;
364 } else
365 if (pixel.year lt (1000000 * 100000))
366 {
367 factor = 0.25;
368 } else
369 if (pixel.year lt (1000000 * 1000000))
370 {
371 factor = 0.125;
372 } else
373 {
374 factor = 0.0625;
375 }
376 (factor * (pixel.year / 1000000));
377 "
378 },
379 /* EXAMPLE DISCOUNT FOR NOT MEETING A SERVICE LEVEL OBJECTIVE */
380 "Business Value ":
381 {
382 "Name": "PenaltyPerYear",
383 "Title": "Penalty (Year)",
384 "Abstract ": "The penalty to be assessed for not meeting service

level objectives on a yearly basis (in Euro).",
385 "Obligated ": "Service Provider",
386 "Type": "urn:ogc:def:sla:business:penalty:year",
387 "Value": "
388 if (InspireAvailability.status == true)
389 {
390 factor = 0;
391 }
392 else
393 {
394 factor = 0.25;
395 }
396 (factor * CostsPerYear.value);
397 "
398 }
399 }
400 }
401 }

207

APPENDIX B. SERVICE LEVEL AGREEMENT FORMALIZATION

208

Appendix C

Service Level Management Architecture

This chapter provides additional information about the web-based SLA management
architecture.

C.1 WS-Agreement Application Profile

The WS-Agreement Application Profile for OGC Web Services describes a domain-
specific extension of the WS-Agreement specification.

C.1.1 XML Schema

This section describes the XSDs for defining the domain-specific content in the WS-
Agreement Application Profile for OGC Web Services.

AGREEMENT CONTEXT

The XSD in Listing C.1 defines the domain-specific structure and content for the
AgreementInitiator and AgreementResponder elements in WS-Agreement.

Listing C.1: XSD for Agreement Context

1 <?xml version ="1.0" encoding ="utf -8" standalone ="yes"?>
2 <xs:schema xmlns:wsag -ogc="http ://www.ifgi.org/namespaces/wsag/ogc" xmlns:

ows="http ://www.opengis.net/ows /2.0" xmlns:xs="http :// www.w3.org /2001/
XMLSchema" targetNamespace ="http ://www.ifgi.org/namespaces/wsag/ogc"
elementFormDefault =" qualified">

3 <!-- ## -->
4 <!-- IMPORT SCHEMA -->
5 <!-- ## -->
6 <xs:import schemaLocation ="ows/ows19115subset.xsd" namespace =" http ://www.

opengis.net/ows /2.0"/ >
7 <!-- ## -->
8 <!-- ELEMENT DEFINITIONS -->
9 <!-- ## -->
10 <xs:element name=" Contact" type="wsag -ogc:ContactType "/>
11 <!-- ## -->
12 <!-- CONTACT TYPE -->
13 <!-- ## -->
14 <xs:complexType name=" ContactType">
15 <xs:sequence >
16 <xs:element minOccurs ="1" maxOccurs ="1" name="Name" type="xs:string"/>
17 <xs:element minOccurs ="0" maxOccurs ="1" name="Site" type="ows:

OnlineResourceType "/>

209

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

18 <xs:element minOccurs ="1" maxOccurs ="1" name=" Contact" type="ows:
ResponsiblePartySubsetType "/>

19 </xs:sequence >
20 </xs:complexType >
21 </xs:schema >

The imported XSD encodes the parts of ISO 19115 [ISO, 2003] that are used in
the ServiceIdentification and ServiceProvider elements of the GetCapabilities
operation response document of all OWS. The most current OGC schemas are available
in the official schema repository of the OGC 1.

SERVICE DESCRIPTION TERMS

The XSD in Listing C.2 defines the domain-specific structure and content of functional
service descriptions for the ServiceDescriptionTerm element in WS-Agreement.

Listing C.2: XSD for Functional Service Description

1 <?xml version ="1.0" encoding ="utf -8" standalone ="yes"?>
2 <xs:schema xmlns:wsag -ogc="http ://www.ifgi.org/namespaces/wsag/ogc" xmlns:

res -sla="http :// schemas.wsag4j.org /2009/07/ wsag4j -scheduling -extensions"
xmlns:xs="http ://www.w3.org /2001/ XMLSchema" targetNamespace ="http ://www

.ifgi.org/namespaces/wsag/ogc" elementFormDefault =" qualified">
3 <!-- ## -->
4 <!-- ELEMENT DEFINITIONS -->
5 <!-- ## -->
6 <xs:element name=" ServiceDescription" type="wsag -ogc:

ServiceDescriptionType "/>
7 <!-- ## -->
8 <!-- SERVICE DESCRIPTION TYPE -->
9 <!-- ## -->
10 <xs:complexType name=" ServiceDescriptionType">
11 <xs:sequence >
12 <xs:element minOccurs ="1" maxOccurs ="1" name=" Title" type="xs:string

"/>
13 <xs:element minOccurs ="0" maxOccurs ="1" name=" Abstract" type="xs:

string"/>
14 <xs:element minOccurs ="0" maxOccurs ="1" name=" Keywords" type="xs:

string"/>
15 <xs:element minOccurs ="1" maxOccurs ="1" name="Type" type="xs:anyURI"/>
16 <xs:element minOccurs ="0" maxOccurs ="1" name=" Version" type="xs:string

"/>
17 <xs:element minOccurs ="0" maxOccurs ="1" name=" Profile" type="xs:anyURI

"/>
18 <xs:element minOccurs ="0" maxOccurs ="1" name="WSDL" type="xs:string"/>
19 </xs:sequence >
20 </xs:complexType >
21 </xs:schema >

The XSD in Listing C.3 defines the domain-specific structure and content of non-
functional service descriptions for the ServiceDescriptionTerm element in WS-
Agreement.

Listing C.3: XSD for Non-Functional Service Description

1 <?xml version ="1.0" encoding ="utf -8" standalone ="yes"?>
2 <xs:schema xmlns:wsag -ogc="http ://www.ifgi.org/namespaces/wsag/ogc" xmlns:

res -sla="http :// schemas.wsag4j.org /2009/07/ wsag4j -scheduling -extensions"

1 http://schemas.opengis.net

210

C.1. WS-AGREEMENT APPLICATION PROFILE

xmlns:xs="http ://www.w3.org /2001/ XMLSchema" targetNamespace ="http ://www
.ifgi.org/namespaces/wsag/ogc" elementFormDefault =" qualified">

3 <!-- ## -->
4 <!-- ELEMENT DEFINITIONS -->
5 <!-- ## -->
6 <xs:element name=" ServiceProperties" type="wsag -ogc:ServicePropertiesType

"/>
7 <xs:element name=" Property" type="wsag -ogc:PropertyType "/>
8 <xs:element name=" Monitoring" type="wsag -ogc:MonitoringType "/>
9 <xs:element name=" ActiveMonitoring" type="wsag -ogc:ActiveMonitoringType "/>
10 <xs:element name=" PassiveMonitoring" type="wsag -ogc:PassiveMonitoringType

"/>
11 <xs:element name=" Session" type="wsag -ogc:ActiveMonitoringSessionType "/>
12 <xs:element name=" Request" type="wsag -ogc:ActiveMonitoringRequestType "/>
13 <xs:element name=" Response" type="wsag -ogc:ActiveMonitoringResponseType "/>
14 <!-- ## -->
15 <!-- SERVICE PROPERTIES TYPE -->
16 <!-- ## -->
17 <xs:complexType name=" ServicePropertiesType">
18 <xs:sequence >
19 <xs:element minOccurs ="0" maxOccurs =" unbounded" ref="wsag -ogc:Property

"/>
20 </xs:sequence >
21 </xs:complexType >
22 <!-- ## -->
23 <!-- PROPERTY TYPE -->
24 <!-- ## -->
25 <xs:complexType name=" PropertyType">
26 <xs:sequence >
27 <xs:element minOccurs ="1" maxOccurs ="1" name="Name" type="xs:string"/>
28 <xs:element minOccurs ="1" maxOccurs ="1" name=" Title" type="xs:string

"/>
29 <xs:element minOccurs ="0" maxOccurs ="1" name=" Abstract" type="xs:

string"/>
30 <xs:element minOccurs ="1" maxOccurs ="1" name="Type" type="xs:string"/>
31 <xs:element minOccurs ="0" maxOccurs ="1" name=" Value" type="xs:string

"/>
32 <xs:element minOccurs ="0" maxOccurs ="1" name=" Reference" type="xs:

string"/>
33 <xs:element minOccurs ="0" maxOccurs ="1" ref="wsag -ogc:Monitoring "/>
34 </xs:sequence >
35 </xs:complexType >
36 <!-- ## -->
37 <!-- MONITORING TYPE -->
38 <!-- ## -->
39 <xs:complexType name=" MonitoringType">
40 <xs:choice minOccurs ="1" maxOccurs ="1">
41 <xs:element ref="wsag -ogc:ActiveMonitoring "/>
42 <xs:element ref="wsag -ogc:PassiveMonitoring "/>
43 </xs:choice >
44 </xs:complexType >
45 <!-- ## -->
46 <!-- ACTIVE MONITORING TYPE -->
47 <!-- ## -->
48 <xs:complexType name=" ActiveMonitoringType">
49 <xs:sequence >
50 <xs:element minOccurs ="1" maxOccurs ="1" name="Start" type="xs:time"/>
51 <xs:element minOccurs ="1" maxOccurs ="1" name="Stop" type="xs:time"/>
52 <xs:element minOccurs ="1" maxOccurs ="1" name=" Period" type="xs:int"/>
53 <xs:element minOccurs ="0" maxOccurs ="1" ref="wsag -ogc:Session"/>
54 <xs:element minOccurs ="0" maxOccurs =" unbounded" ref="wsag -ogc:Request

"/>
55 <xs:element minOccurs ="0" maxOccurs ="1" ref="wsag -ogc:Response"/>
56 </xs:sequence >
57 </xs:complexType >
58 <!-- ## -->
59 <!-- ACTIVE MONITORING TYPE -->
60 <!-- ## -->
61 <xs:complexType name=" PassiveMonitoringType">
62 <xs:sequence >
63 <xs:element minOccurs ="1" maxOccurs ="1" ref="wsag -ogc:Request"/>
64 </xs:sequence >
65 </xs:complexType >

211

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

66 <!-- ## -->
67 <!-- SESSION TYPE -->
68 <!-- ## -->
69 <xs:complexType name=" ActiveMonitoringSessionType">
70 <xs:sequence >
71 <xs:element minOccurs ="1" maxOccurs ="1" name=" Capacity" type="xs:int

"/>
72 <xs:element minOccurs ="1" maxOccurs ="1" name=" Duration" type="xs:int

"/>
73 <xs:element minOccurs ="1" maxOccurs ="1" name=" Period" type="xs:int"/>
74 </xs:sequence >
75 </xs:complexType >
76 <!-- ## -->
77 <!-- REQUEST TYPE -->
78 <!-- ## -->
79 <xs:complexType name=" ActiveMonitoringRequestType">
80 <xs:sequence >
81 <xs:element minOccurs ="0" maxOccurs ="1" name=" Chance" type="xs:int"/>
82 <xs:element minOccurs ="0" maxOccurs ="1" name=" Resource" type="xs:

string"/>
83 <xs:element minOccurs ="1" maxOccurs ="1" name=" Method" type="xs:string

"/>
84 <xs:element minOccurs ="0" maxOccurs =" unbounded" name=" Header" type="xs

:string"/>
85 <xs:element minOccurs ="0" maxOccurs ="1" name=" Content" type="xs:string

"/>
86 </xs:sequence >
87 </xs:complexType >
88 <!-- ## -->
89 <!-- RESPONSE TYPE -->
90 <!-- ## -->
91 <xs:complexType name=" ActiveMonitoringResponseType">
92 <xs:sequence >
93 <xs:element minOccurs ="0" maxOccurs ="1" name=" Status" type="xs:string

"/>
94 <xs:element minOccurs ="0" maxOccurs ="1" name=" Content" type="xs:string

"/>
95 </xs:sequence >
96 </xs:complexType >
97 </xs:schema >

The XSD in Listing C.4 defines the domain-specific structure and content of the contract
period for the ServiceDescriptionTerm element in WS-Agreement.

Listing C.4: XSD for Service Availability Period

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="yes"?>
2 <xs:schema xmlns:res -sla="http :// schemas.wsag4j.org /2009/07/ wsag4j -

scheduling -extensions" xmlns:xs="http ://www.w3.org /2001/ XMLSchema"
targetNamespace ="http :// schemas.wsag4j.org /2009/07/ wsag4j -scheduling -
extensions" elementFormDefault =" qualified" attributeFormDefault ="
qualified">

3 <!-- ## -->
4 <!-- ELEMENT DEFINITIONS -->
5 <!-- ## -->
6 <xs:element name=" TimeConstraint" type="res -sla:TimeConstraintType "/>
7 <!-- ## -->
8 <!-- TIME CONSTRAINT TYPE -->
9 <!-- ## -->
10 <xs:complexType name=" TimeConstraintType">
11 <xs:sequence >
12 <xs:element name=" StartTime" type="xs:dateTime" minOccurs ="0"

maxOccurs ="1"/>
13 <xs:element name=" EndTime" type="xs:dateTime" minOccurs ="0" maxOccurs

="1"/>
14 <xs:element name=" Duration" type="xs:int" minOccurs ="0" maxOccurs

="1"/>
15 </xs:sequence >
16 </xs:complexType >

212

C.1. WS-AGREEMENT APPLICATION PROFILE

17 </xs:schema >

This XSD is originally published in [Battré, 2009], a profile that describes "a minimal set
of terms that allow expressing constraints about the time during which a service must
be delivered".

SERVICE REFERENCE

The XSD in Listing C.5 defines the domain-specific structure and content of service
references for the ServiceReference element in WS-Agreement.

Listing C.5: XSD for Service Reference

1 <?xml version ="1.0" encoding ="utf -8" standalone ="yes"?>
2 <xs:schema xmlns:wsag -ogc="http ://www.ifgi.org/namespaces/wsag/ogc" xmlns:xs

="http ://www.w3.org /2001/ XMLSchema" targetNamespace ="http ://www.ifgi.org
/namespaces/wsag/ogc" elementFormDefault =" qualified">

3 <!-- ## -->
4 <!-- ELEMENT DEFINITIONS -->
5 <!-- ## -->
6 <xs:element name=" ServiceReference" type="wsag -ogc:ServiceReferenceType "/>
7 <!-- ## -->
8 <!-- SERVICE REFERENCE TYPE -->
9 <!-- ## -->
10 <xs:complexType name=" ServiceReferenceType">
11 <xs:sequence >
12 <xs:element minOccurs ="1" maxOccurs ="1" name="URL" type="xs:anyURI"/>
13 </xs:sequence >
14 </xs:complexType >
15 </xs:schema >

SERVICE LEVEL OBJECTIVES

The XSD in Listing C.6 defines the domain-specific structure and content of custom
service levels for the CustomServiceLevel element in WS-Agreement.

Listing C.6: XSD for Service Level Objectives

1 <?xml version ="1.0" encoding ="utf -8" standalone ="yes"?>
2 <xs:schema xmlns:wsag -ogc="http ://www.ifgi.org/namespaces/wsag/ogc" xmlns:xs

="http ://www.w3.org /2001/ XMLSchema" targetNamespace ="http ://www.ifgi.org
/namespaces/wsag/ogc" elementFormDefault =" qualified">

3 <!-- ## -->
4 <!-- ELEMENT DEFINITIONS -->
5 <!-- ## -->
6 <xs:element name=" CustomServiceLevel" type="wsag -ogc:

CustomServiceLevelType "/>
7 <!-- ## -->
8 <!-- CUSTOM SERVICE LEVEL TYPE -->
9 <!-- ## -->
10 <xs:complexType name=" CustomServiceLevelType">
11 <xs:sequence >
12 <xs:element minOccurs ="1" maxOccurs ="1" name="Name" type="xs:string"/>
13 <xs:element minOccurs ="1" maxOccurs ="1" name=" Title" type="xs:string

"/>
14 <xs:element minOccurs ="0" maxOccurs ="1" name=" Abstract" type="xs:

string"/>
15 <xs:element minOccurs ="1" maxOccurs ="1" name=" Obligated" type="xs:

string"/>

213

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

16 <xs:element minOccurs ="1" maxOccurs ="1" name=" Status" type="xs:string
"/>

17 </xs:sequence >
18 </xs:complexType >
19 </xs:schema >

BUSINESS VALUES

The XSD in Listing C.7 defines the domain-specific structure and content of custom
business values for the CustomBusinessValue element in WS-Agreement.

Listing C.7: XSD for Business Values

1 <?xml version ="1.0" encoding ="utf -8" standalone ="yes"?>
2 <xs:schema xmlns:wsag -ogc="http ://www.ifgi.org/namespaces/wsag/ogc" xmlns:xs

="http ://www.w3.org /2001/ XMLSchema" targetNamespace ="http ://www.ifgi.org
/namespaces/wsag/ogc" elementFormDefault =" qualified">

3 <!-- ## -->
4 <!-- ELEMENT DEFINITIONS -->
5 <!-- ## -->
6 <xs:element name=" CustomBusinessValue" type="wsag -ogc:

CustomBusinessValueType "/>
7 <!-- ## -->
8 <!-- CUSTOM BUSINESS VALUE TYPE -->
9 <!-- ## -->
10 <xs:complexType name=" CustomBusinessValueType">
11 <xs:sequence >
12 <xs:element minOccurs ="1" maxOccurs ="1" name="Name" type="xs:string"/>
13 <xs:element minOccurs ="1" maxOccurs ="1" name=" Title" type="xs:string

"/>
14 <xs:element minOccurs ="1" maxOccurs ="1" name=" Abstract" type="xs:

string"/>
15 <xs:element minOccurs ="1" maxOccurs ="1" name=" Obligated" type="xs:

string"/>
16 <xs:element minOccurs ="1" maxOccurs ="1" name="Type" type="xs:string"/>
17 <xs:element minOccurs ="1" maxOccurs ="1" name=" Value" type="xs:string

"/>
18 </xs:sequence >
19 </xs:complexType >
20 </xs:schema >

C.1.2 XML Example

This section provides example XML documents implementing the XSDs of the WS-
Agreement Application Profile for OGC Web Services.

AGREEMENT TEMPLATE

The XML in Listing C.8 shows an example template document.

Listing C.8: Example Agreement Template

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="yes"?>
2 <wsag:Template xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws -agreement

" xmlns:wsag -ogc="http ://www.ifgi.org/namespaces/wsag/ogc" xmlns:ows="
http ://www.opengis.net/ows /2.0" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions" xmlns:xs="http ://www.w3.org /2001/
XMLSchema" xmlns:wsrf="http :// docs.oasis -open.org/wsrf/bf -2" xmlns:

214

C.1. WS-AGREEMENT APPLICATION PROFILE

addressing ="http :// www.w3.org /2005/08/ addressing" wsag:TemplateId ="
WSAG_DEFAULT_TEMPLATE">

3 <wsag:Name >INSPIRE_VIEW_SERVICE_TEMPLATE </wsag:Name >
4 <!-- ## -->
5 <!-- AGREEMENT CONTEXT -->
6 <!-- ## -->
7 <wsag:Context >
8 <wsag:ServiceProvider >AgreementResponder </wsag:ServiceProvider >
9 <wsag:AgreementResponder >
10 <wsag -ogc:Contact >
11 <wsag -ogc:Name >Institute for Geoinformatics </wsag -ogc:Name >
12 <wsag -ogc:Site xmlns:xlin="http ://www.w3.org /1999/ xlink" xlin:href="

http ://www.ifgi.de"/>
13 <wsag -ogc:Contact >
14 <ows:IndividualName >Bastian Baranski </ows:IndividualName >
15 <ows:PositionName >Research Associate </ows:PositionName >
16 <ows:ContactInfo >
17 <ows:Phone >
18 <ows:Voice >+49 251 8333071 </ ows:Voice >
19 <ows:Facsimile >+49 251 8339763 </ ows:Facsimile >
20 </ows:Phone >
21 <ows:Address >
22 <ows:DeliveryPoint >Weseler Strasse 253</ows:DeliveryPoint >
23 <ows:City >Muenster </ows:City >
24 <ows:PostalCode >48151 </ ows:PostalCode >
25 <ows:Country >Germany </ows:Country >
26 <ows:ElectronicMailAddress >baranski@uni -muenster.de </ows:

ElectronicMailAddress >
27 </ows:Address >
28 <ows:HoursOfService >The hours of service are Monday to Friday

from 8 AM to 16 PM.</ows:HoursOfService >
29 <ows:ContactInstructions >Please contact the service desk via

phone or mail.</ows:ContactInstructions >
30 </ows:ContactInfo >
31 </wsag -ogc:Contact >
32 </wsag -ogc:Contact >
33 </wsag:AgreementResponder >
34 <wsag:TemplateId >WSAG_DEFAULT_TEMPLATE_8 </wsag:TemplateId >
35 <wsag:TemplateName >INSPIRE_VIEW_SERVICE_TEMPLATE </wsag:TemplateName >
36 </wsag:Context >
37 <wsag:Terms >
38 <wsag:All >
39 <!-- ## -->
40 <!-- FUNCTIONAL SERVICE DESCRIPTION -->
41 <!-- ## -->
42 <wsag:ServiceDescriptionTerm wsag:Name=" SERVICE_DESCRIPTION_SDT" wsag:

ServiceName =" INSPIRE_VIEW_SERVICE">
43 <wsag -ogc:ServiceDescription >
44 <wsag -ogc:Title >INSPIRE View Service </wsag -ogc:Title >
45 <wsag -ogc:Abstract >This service instance is an INSPIRE View

Service implementation .</wsag -ogc:Abstract >
46 <wsag -ogc:Keywords >INSPIRE , View Service , OGC , WMS </wsag -ogc:

Keywords >
47 <wsag -ogc:Type >urn:ogc:doc:is:wms :1.1.1 </wsag -ogc:Type >
48 </wsag -ogc:ServiceDescription >
49 </wsag:ServiceDescriptionTerm >
50 <!-- ## -->
51 <!-- NON -FUNCTIONAL SERVICE DESCRIPTION -->
52 <!-- ## -->
53 <wsag:ServiceDescriptionTerm wsag:Name=" SERVICE_PROPERTIES_SDT" wsag:

ServiceName =" INSPIRE_VIEW_SERVICE">
54 <wsag -ogc:ServiceProperties >
55 <!-- RESOURCE -RELATED PROPERTIES -->
56 <wsag -ogc:Property >
57 <wsag -ogc:Name >operations </wsag -ogc:Name >
58 <wsag -ogc:Title >Supported Operations </wsag -ogc:Title >
59 <wsag -ogc:Abstract >The operations that are supported by the

service.</wsag -ogc:Abstract >
60 <wsag -ogc:Type >urn:ogc:def:sla:property:resource:operation </wsag

-ogc:Type >
61 <wsag -ogc:Monitoring >
62 <wsag -ogc:ActiveMonitoring >
63 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >

215

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

64 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
65 <wsag -ogc:Period >360000 </ wsag -ogc:Period >
66 </wsag -ogc:ActiveMonitoring >
67 </wsag -ogc:Monitoring >
68 </wsag -ogc:Property >
69 <!-- RUNTIME -RELATED PROPERTIES -->
70 <wsag -ogc:Property >
71 <wsag -ogc:Name >availability </wsag -ogc:Name >
72 <wsag -ogc:Title >Service Availability </wsag -ogc:Title >
73 <wsag -ogc:Abstract >The general availability of the service.</

wsag -ogc:Abstract >
74 <wsag -ogc:Type >urn:ogc:def:sla:property:runtime:availability </

wsag -ogc:Type >
75 <wsag -ogc:Monitoring >
76 <wsag -ogc:ActiveMonitoring >
77 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >
78 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
79 <wsag -ogc:Period >360000 </ wsag -ogc:Period >
80 <wsag -ogc:Request >
81 <wsag -ogc:Method >GET </wsag -ogc:Method >
82 <wsag -ogc:Content >service=WMS&version =1.3.0& amp;

request=GetMap&layers=topp:
tasmania_state_boundaries&styles =&bbox=${
__random (142.0 ,144.0)},${__random (-46.0 , -44.0)},${
__random (150.0 ,152.0)},${__random (-38.0 , -36.0)}&
width =800& amp;height =600& amp;srs=EPSG :4326& amp;format=
image/png </wsag -ogc:Content >

83 </wsag -ogc:Request >
84 <wsag -ogc:Response >
85 <wsag -ogc:Status >200</wsag -ogc:Status >
86 </wsag -ogc:Response >
87 </wsag -ogc:ActiveMonitoring >
88 </wsag -ogc:Monitoring >
89 </wsag -ogc:Property >
90 <wsag -ogc:Property >
91 <wsag -ogc:Name >response </wsag -ogc:Name >
92 <wsag -ogc:Title >Response Time </wsag -ogc:Title >
93 <wsag -ogc:Abstract >The response time of the service.</wsag -ogc:

Abstract >
94 <wsag -ogc:Type >urn:ogc:def:sla:property:runtime:response </wsag -

ogc:Type >
95 <wsag -ogc:Monitoring >
96 <wsag -ogc:ActiveMonitoring >
97 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >
98 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
99 <wsag -ogc:Period >360000 </ wsag -ogc:Period >
100 <wsag -ogc:Request >
101 <wsag -ogc:Method >GET </wsag -ogc:Method >
102 <wsag -ogc:Content >service=WMS&version =1.3.0& amp;

request=GetMap&layers=topp:
tasmania_state_boundaries&styles =&bbox=${
__random (142.0 ,144.0)},${__random (-46.0 , -44.0)},${
__random (150.0 ,152.0)},${__random (-38.0 , -36.0)}&
width =800& amp;height =600& amp;srs=EPSG :4326& amp;format=
image/png </wsag -ogc:Content >

103 </wsag -ogc:Request >
104 <wsag -ogc:Response >
105 <wsag -ogc:Status >200</wsag -ogc:Status >
106 </wsag -ogc:Response >
107 </wsag -ogc:ActiveMonitoring >
108 </wsag -ogc:Monitoring >
109 </wsag -ogc:Property >
110 <wsag -ogc:Property >
111 <wsag -ogc:Name >capacity </wsag -ogc:Name >
112 <wsag -ogc:Title >Service Capacity </wsag -ogc:Title >
113 <wsag -ogc:Abstract >The response time of the service for multiple

parallel requests.</wsag -ogc:Abstract >
114 <wsag -ogc:Type >urn:ogc:def:sla:property:runtime:response </wsag -

ogc:Type >
115 <wsag -ogc:Monitoring >
116 <wsag -ogc:ActiveMonitoring >
117 <wsag -ogc:Start >20:00:00 </ wsag -ogc:Start >
118 <wsag -ogc:Stop >04:00:00 </ wsag -ogc:Stop >

216

C.1. WS-AGREEMENT APPLICATION PROFILE

119 <wsag -ogc:Period >3600000 </wsag -ogc:Period >
120 <wsag -ogc:Session >
121 <wsag -ogc:Capacity >20</wsag -ogc:Capacity >
122 <wsag -ogc:Duration >60000 </wsag -ogc:Duration >
123 <wsag -ogc:Period >1000 </wsag -ogc:Period >
124 </wsag -ogc:Session >
125 <wsag -ogc:Request >
126 <wsag -ogc:Chance >10</wsag -ogc:Chance >
127 <wsag -ogc:Method >GET </wsag -ogc:Method >
128 <wsag -ogc:Content >service=WMS&version =1.3.0& amp;

request=GetCapabilities </wsag -ogc:Content >
129 </wsag -ogc:Request >
130 <wsag -ogc:Request >
131 <wsag -ogc:Chance >90</wsag -ogc:Chance >
132 <wsag -ogc:Method >GET </wsag -ogc:Method >
133 <wsag -ogc:Content >service=WMS&version =1.3.0& amp;

request=GetMap&layers=topp:
tasmania_state_boundaries&styles =&bbox=${
__random (142.0 ,144.0)},${__random (-46.0 , -44.0)},${
__random (150.0 ,152.0)},${__random (-38.0 , -36.0)}&
width =800& amp;height =600& amp;srs=EPSG :4326& amp;format=
image/png </wsag -ogc:Content >

134 </wsag -ogc:Request >
135 <wsag -ogc:Response >
136 <wsag -ogc:Status >200</wsag -ogc:Status >
137 </wsag -ogc:Response >
138 </wsag -ogc:ActiveMonitoring >
139 </wsag -ogc:Monitoring >
140 </wsag -ogc:Property >
141 <!-- USAGE -RELATED PROPERTIES -->
142 <wsag -ogc:Property >
143 <wsag -ogc:Name >pixel </wsag -ogc:Name >
144 <wsag -ogc:Title >Sum of Pixels </wsag -ogc:Title >
145 <wsag -ogc:Abstract >The accessed number of pixels.</wsag -ogc:

Abstract >
146 <wsag -ogc:Type >urn:ogc:def:sla:property:usage:pixel </wsag -ogc:

Type >
147 <wsag -ogc:Monitoring >
148 <wsag -ogc:PassiveMonitoring >
149 <wsag -ogc:Request >
150 <wsag -ogc:Resource >/ state/urn:ogc:def:sla:property:usage:

pixel </wsag -ogc:Resource >
151 <wsag -ogc:Method >GET </wsag -ogc:Method >
152 </wsag -ogc:Request >
153 </wsag -ogc:PassiveMonitoring >
154 </wsag -ogc:Monitoring >
155 </wsag -ogc:Property >
156 <!-- INFRASTRUCTURE -RELATED PROPERTIES -->
157 <wsag -ogc:Property >
158 <wsag -ogc:Name >provider </wsag -ogc:Name >
159 <wsag -ogc:Title >Infrastructure Provider </wsag -ogc:Title >
160 <wsag -ogc:Abstract >The name of the infrastructure provider.</

wsag -ogc:Abstract >
161 <wsag -ogc:Type >urn:ogc:def:sla:property:infrastructure:provider:

name </wsag -ogc:Type >
162 <wsag -ogc:Value >default </wsag -ogc:Value >
163 </wsag -ogc:Property >
164 <wsag -ogc:Property >
165 <wsag -ogc:Name >image </wsag -ogc:Name >
166 <wsag -ogc:Title >Virtual Machine </wsag -ogc:Title >
167 <wsag -ogc:Abstract >The name of the Virtual Machine (VM) template

.</wsag -ogc:Abstract >
168 <wsag -ogc:Type >urn:ogc:def:sla:property:infrastructure:vm:name </

wsag -ogc:Type >
169 <wsag -ogc:Value >ami -59f9c62d </wsag -ogc:Value >
170 </wsag -ogc:Property >
171 </wsag -ogc:ServiceProperties >
172 </wsag:ServiceDescriptionTerm >
173 <!-- ## -->
174 <!-- CONTRACT PERIOD -->
175 <!-- ## -->
176 <wsag:ServiceDescriptionTerm wsag:Name=" CONTRACT_PERIOD_SDT" wsag:

ServiceName =" INSPIRE_VIEW_SERVICE">

217

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

177 <res -sla:TimeConstraint >
178 <res -sla:StartTime >2010 -07 -04 T13 :00:00+02:00 </res -sla:StartTime >
179 <res -sla:EndTime >2012 -07 -09 T13 :00:00+02:00 </res -sla:EndTime >
180 </res -sla:TimeConstraint >
181 </wsag:ServiceDescriptionTerm >
182 <!-- ## -->
183 <!-- SERVICE REFERENCE -->
184 <!-- ## -->
185 <wsag:ServiceReference wsag:Name=" SERVICE_REFERENCE" wsag:ServiceName

=" INSPIRE_VIEW_SERVICE">
186 <wsag -ogc:ServiceReference >
187 <wsag -ogc:URL >http :// localhost :8088/sla -proxy/DefaultWMS </wsag -ogc

:URL >
188 </wsag -ogc:ServiceReference >
189 </wsag:ServiceReference >
190 <!-- ## -->
191 <!-- SERVICE PROPERTIES -->
192 <!-- ## -->
193 <wsag:ServiceProperties wsag:Name=" SERVICE_PROPERTIES" wsag:

ServiceName =" INSPIRE_VIEW_SERVICE">
194 <wsag:VariableSet >
195 <wsag:Variable wsag:Name=" SERVICE_PROPERTIES_STATE" wsag:Metric ="

xs:string">
196 <wsag:Location >declare namespace ws=’http :// schemas.ggf.org/

graap /2007/03/ws -agreement ’; declare namespace wsag -ogc=’http
:// www.ifgi.org/namespaces/wsag/ogc ’; declare namespace wsag
=’http :// schemas.ggf.org/graap /2007/03/ws-agreement ’;/ws:
AgreementProperties/ws:ServiceTermState[@termName=’
SERVICE_PROPERTIES_SDT ’]/ws:State/text() </wsag:Location >

197 </wsag:Variable >
198 </wsag:VariableSet >
199 </wsag:ServiceProperties >
200 <!-- ## -->
201 <!-- GUARANTEE TERMS -->
202 <!-- ## -->
203 <!-- INSPIRE OPERATIONS REQUIREMENTS -->
204 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RESOURCE_OPERATIONS" wsag:

Obligated =" ServiceProvider">
205 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
206 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
207 <wsag:ServiceLevelObjective >
208 <wsag:CustomServiceLevel >
209 <wsag -ogc:CustomServiceLevel >
210 <wsag -ogc:Name >InspireOperations </wsag -ogc:Name >
211 <wsag -ogc:Title >INSPIRE (Operations)</wsag -ogc:Title >
212 <wsag -ogc:Abstract >The following operations shall be

implemented for an INSPIRE View service: GetCapabilities ,
GetMap.</wsag -ogc:Abstract >

213 <wsag -ogc:Status >
214 isGetCapabilities = false;
215 isGetMap = false;
216 for (item : operations.name)
217 {
218 if (item.equalsIgnoreCase(’GetCapabilities ’))
219 {
220 isGetCapabilities = true;
221 }
222 if (item.equalsIgnoreCase(’GetMap ’))
223 {
224 isGetMap = true;
225 }
226 }
227 (isGetCapabilities and isGetMap);
228 </wsag -ogc:Status >
229 </wsag -ogc:CustomServiceLevel >
230 </wsag:CustomServiceLevel >
231 </wsag:ServiceLevelObjective >
232 <wsag:BusinessValueList/>
233 </wsag:GuaranteeTerm >
234 <!-- INSPIRE QUALITY OF SERVICE REQUIREMENTS -->
235 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RUNTIME_AVAILABILITY" wsag:

Obligated =" ServiceProvider">

218

C.1. WS-AGREEMENT APPLICATION PROFILE

236 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
237 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
238 <wsag:ServiceLevelObjective >
239 <wsag:CustomServiceLevel >
240 <wsag -ogc:CustomServiceLevel >
241 <wsag -ogc:Name >InspireAvailability </wsag -ogc:Name >
242 <wsag -ogc:Title >INSPIRE (Availability)</wsag -ogc:Title >
243 <wsag -ogc:Abstract >The probability of a Network Service to be

available shall be 99% of the time.</wsag -ogc:Abstract >
244 <wsag -ogc:Status >
245 (availability.week >= 0.99) and (availability.month >= 0.99)

and (availability.year >= 0.99)
246 </wsag -ogc:Status >
247 </wsag -ogc:CustomServiceLevel >
248 </wsag:CustomServiceLevel >
249 </wsag:ServiceLevelObjective >
250 <wsag:BusinessValueList/>
251 </wsag:GuaranteeTerm >
252 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RUNTIME_RESPONSE" wsag:

Obligated =" ServiceProvider">
253 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
254 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
255 <wsag:ServiceLevelObjective >
256 <wsag:CustomServiceLevel >
257 <wsag -ogc:CustomServiceLevel >
258 <wsag -ogc:Name >InspirePerformance </wsag -ogc:Name >
259 <wsag -ogc:Title >INSPIRE (Performance) </wsag -ogc:Title >
260 <wsag -ogc:Abstract >The response time for sending the initial

response to a Get Map Request to a view service shall be
maximum 5 seconds in normal situation.</wsag -ogc:Abstract >

261 <wsag -ogc:Status >
262 fulfilled = 0;
263 for (item : response.initial.week) {
264 if (item lt 5000)
265 {
266 fulfilled = fulfilled + 1;
267 }
268 }
269 percent = fulfilled / (size(response.initial.week) / 100.0);
270 percent gt 90.0;
271 </wsag -ogc:Status >
272 </wsag -ogc:CustomServiceLevel >
273 </wsag:CustomServiceLevel >
274 </wsag:ServiceLevelObjective >
275 <wsag:BusinessValueList/>
276 </wsag:GuaranteeTerm >
277 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RUNTIME_CAPACITY" wsag:

Obligated =" ServiceProvider">
278 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
279 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
280 <wsag:ServiceLevelObjective >
281 <wsag:CustomServiceLevel >
282 <wsag -ogc:CustomServiceLevel >
283 <wsag -ogc:Name >InspireCapacity </wsag -ogc:Name >
284 <wsag -ogc:Title >INSPIRE (Capacity)</wsag -ogc:Title >
285 <wsag -ogc:Abstract >The minimum number of served simultaneous

service requests to a view service according to the
performance quality of service shall be 20 per second.</
wsag -ogc:Abstract >

286 <wsag -ogc:Status >
287 fulfilled = 0;
288 for (item : capacity.initial.week) {
289 if (item lt 5000)
290 {
291 fulfilled = fulfilled + 1;
292 }
293 }
294 percent = fulfilled / (size(capacity.initial.week) / 100.0);
295 percent gt 90.0;
296 </wsag -ogc:Status >

219

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

297 </wsag -ogc:CustomServiceLevel >
298 </wsag:CustomServiceLevel >
299 </wsag:ServiceLevelObjective >
300 <wsag:BusinessValueList/>
301 </wsag:GuaranteeTerm >
302 <!-- AdV PRICING MODEL FOR ONLINE DATA DELIVERY -->
303 <wsag:GuaranteeTerm wsag:Name=" COSTS_PER_YEAR" wsag:Obligated ="

ServiceProvider">
304 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
305 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
306 <wsag:ServiceLevelObjective/>
307 <wsag:BusinessValueList >
308 <wsag:CustomBusinessValue >
309 <wsag -ogc:CustomBusinessValue >
310 <wsag -ogc:Name >CostsPerYear </wsag -ogc:Name >
311 <wsag -ogc:Title >Usage Costs (Year)</wsag -ogc:Title >
312 <wsag -ogc:Abstract >The cost to be assessed for using the

service on a yearly basis (in Euro).</wsag -ogc:Abstract >
313 <wsag -ogc:Type >urn:ogc:def:sla:business:cost:year </wsag -ogc:

Type >
314 <wsag -ogc:Value >
315 factor;
316 if (pixel.year lt (1000000 * 1000))
317 {
318 factor = 1.0;
319 } else
320 if (pixel.year lt (1000000 * 10000))
321 {
322 factor = 0.5;
323 } else
324 if (pixel.year lt (1000000 * 100000))
325 {
326 factor = 0.25;
327 } else
328 if (pixel.year lt (1000000 * 1000000))
329 {
330 factor = 0.125;
331 } else
332 {
333 factor = 0.0625;
334 }
335 (factor * (pixel.year / 1000000.0));
336 </wsag -ogc:Value >
337 </wsag -ogc:CustomBusinessValue >
338 </wsag:CustomBusinessValue >
339 </wsag:BusinessValueList >
340 </wsag:GuaranteeTerm >
341 <!-- EXAMPLE DISCOUNT FOR NOT MEETING A SERVICE LEVEL OBJECTIVE -->
342 <wsag:GuaranteeTerm wsag:Name=" PENALTY_PER_YEAR" wsag:Obligated ="

ServiceProvider">
343 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
344 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
345 <wsag:ServiceLevelObjective/>
346 <wsag:BusinessValueList >
347 <wsag:CustomBusinessValue >
348 <wsag -ogc:CustomBusinessValue >
349 <wsag -ogc:Name >PenaltyPerYear </wsag -ogc:Name >
350 <wsag -ogc:Title >Penalty (Year)</wsag -ogc:Title >
351 <wsag -ogc:Abstract >The penalty to be assessed for not meeting

service level objectives on a yearly basis (in Euro).</
wsag -ogc:Abstract >

352 <wsag -ogc:Type >urn:ogc:def:sla:business:penalty:year </wsag -ogc
:Type >

353 <wsag -ogc:Value >
354 factor;
355 if (InspireAvailability.status == true)
356 {
357 factor = 0;
358 }
359 else
360 {

220

C.1. WS-AGREEMENT APPLICATION PROFILE

361 factor = 0.25;
362 }
363 (factor * CostsPerYear.value);
364 </wsag -ogc:Value >
365 </wsag -ogc:CustomBusinessValue >
366 </wsag:CustomBusinessValue >
367 </wsag:BusinessValueList >
368 </wsag:GuaranteeTerm >
369 </wsag:All >
370 </wsag:Terms >
371 </wsag:Template >

AGREEMENT OFFER

The XML in Listing C.9 shows an example agreement offer document.

Listing C.9: Example Agreement Offer

1 <ws:AgreementOffer ws:AgreementId =" b7f8fc14 -17e3 -499b-9845 -975 e7f41542e"
xmlns:ws="http :// schemas.ggf.org/graap /2007/03/ws -agreement">

2 <wsag:Context xmlns:wsrf="http :// docs.oasis -open.org/wsrf/bf -2" xmlns:wsag
="http :// schemas.ggf.org/graap /2007/03/ws -agreement" xmlns:ows="http
:// www.opengis.net/ows /2.0" xmlns:xs="http ://www.w3.org /2001/ XMLSchema
" xmlns:wsag -ogc="http ://www.ifgi.org/namespaces/wsag/ogc" xmlns:
addressing ="http :// www.w3.org /2005/08/ addressing" xmlns:res -sla="http
:// schemas.wsag4j.org /2009/07/ wsag4j -scheduling -extensions">

3 <wsag:AgreementInitiator >
4 <wsag -ogc:Contact >
5 <wsag -ogc:Name >Instititute for Geoinformatics </wsag -ogc:Name >
6 <wsag -ogc:Site xlin:href="http ://www.ifgi.de" xmlns:xlin="http ://www

.w3.org /1999/ xlink"/>
7 <wsag -ogc:Contact >
8 <ows:IndividualName >Kristof Lange </ows:IndividualName >
9 <ows:PositionName >Student Assistance </ows:PositionName >
10 <ows:ContactInfo >
11 <ows:Phone >
12 <ows:Voice >+49 251 833307 </ ows:Voice >
13 <ows:Facsimile >+49 251 8339763 </ ows:Facsimile >
14 </ows:Phone >
15 <ows:Address >
16 <ows:DeliveryPoint >Weseler Strasse 253</ows:DeliveryPoint >
17 <ows:City >Muenster </ows:City >
18 <ows:PostalCode >48151 </ ows:PostalCode >
19 <ows:Country >Germany </ows:Country >
20 <ows:ElectronicMailAddress >kristof.lange@uni -muenster.de </ows:

ElectronicMailAddress >
21 </ows:Address >
22 <ows:OnlineResource xlin:href="http ://www.ifgi.de" xmlns:xlin="

http ://www.w3.org /1999/ xlink"/>
23 </ows:ContactInfo >
24 </wsag -ogc:Contact >
25 </wsag -ogc:Contact >
26 </wsag:AgreementInitiator >
27 <wsag:ServiceProvider >AgreementResponder </wsag:ServiceProvider >
28 <wsag:AgreementResponder >
29 <wsag -ogc:Contact >
30 <wsag -ogc:Name >Institute for Geoinformatics </wsag -ogc:Name >
31 <wsag -ogc:Site xlin:href="http ://www.ifgi.de" xmlns:xlin="http ://www

.w3.org /1999/ xlink"/>
32 <wsag -ogc:Contact >
33 <ows:IndividualName >Bastian Baranski </ows:IndividualName >
34 <ows:PositionName >Research Associate </ows:PositionName >
35 <ows:ContactInfo >
36 <ows:Phone >
37 <ows:Voice >+49 251 8333071 </ ows:Voice >
38 <ows:Facsimile >+49 251 8339763 </ ows:Facsimile >
39 </ows:Phone >

221

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

40 <ows:Address >
41 <ows:DeliveryPoint >Weseler Strasse 253</ows:DeliveryPoint >
42 <ows:City >Muenster </ows:City >
43 <ows:PostalCode >48151 </ ows:PostalCode >
44 <ows:Country >Germany </ows:Country >
45 <ows:ElectronicMailAddress >baranski@uni -muenster.de </ows:

ElectronicMailAddress >
46 </ows:Address >
47 <ows:HoursOfService >The hours of service are Monday to Friday

from 8 AM to 16 PM.</ows:HoursOfService >
48 <ows:ContactInstructions >Please contact the service desk via

phone or mail.</ows:ContactInstructions >
49 </ows:ContactInfo >
50 </wsag -ogc:Contact >
51 </wsag -ogc:Contact >
52 </wsag:AgreementResponder >
53 <wsag:TemplateId >WSAG_DEFAULT_TEMPLATE_8 </wsag:TemplateId >
54 <wsag:TemplateName >INSPIRE_VIEW_SERVICE_TEMPLATE </wsag:TemplateName >
55 </wsag:Context >
56 <ws:Terms >
57 <ws:All >
58 <wsag:ServiceDescriptionTerm wsag:Name=" SERVICE_DESCRIPTION_SDT" wsag:

ServiceName =" INSPIRE_VIEW_SERVICE" xmlns:wsrf="http :// docs.oasis -
open.org/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap
/2007/03/ws-agreement" xmlns:ows="http ://www.opengis.net/ows /2.0"
xmlns:xs="http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http
:// www.ifgi.org/namespaces/wsag/ogc" xmlns:addressing ="http ://www.
w3.org /2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.
org /2009/07/ wsag4j -scheduling -extensions">

59 <wsag -ogc:ServiceDescription >
60 <wsag -ogc:Title >INSPIRE View Service </wsag -ogc:Title >
61 <wsag -ogc:Abstract >This service instance is an INSPIRE View

Service implementation .</wsag -ogc:Abstract >
62 <wsag -ogc:Keywords >INSPIRE , View Service , OGC , WMS </wsag -ogc:

Keywords >
63 <wsag -ogc:Type >urn:ogc:doc:is:wms :1.1.1 </wsag -ogc:Type >
64 </wsag -ogc:ServiceDescription >
65 </wsag:ServiceDescriptionTerm >
66 <wsag:ServiceDescriptionTerm wsag:Name=" SERVICE_PROPERTIES_SDT" wsag:

ServiceName =" INSPIRE_VIEW_SERVICE" xmlns:wsrf="http :// docs.oasis -
open.org/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap
/2007/03/ws-agreement" xmlns:ows="http ://www.opengis.net/ows /2.0"
xmlns:xs="http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http
:// www.ifgi.org/namespaces/wsag/ogc" xmlns:addressing ="http ://www.
w3.org /2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.
org /2009/07/ wsag4j -scheduling -extensions">

67 <wsag -ogc:ServiceProperties >
68 <!--RESOURCE -RELATED PROPERTIES -->
69 <wsag -ogc:Property >
70 <wsag -ogc:Name >operations </wsag -ogc:Name >
71 <wsag -ogc:Title >Supported Operations </wsag -ogc:Title >
72 <wsag -ogc:Abstract >The operations that are supported by the

service.</wsag -ogc:Abstract >
73 <wsag -ogc:Type >urn:ogc:def:sla:property:resource:operation </wsag

-ogc:Type >
74 <wsag -ogc:Monitoring >
75 <wsag -ogc:ActiveMonitoring >
76 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >
77 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
78 <wsag -ogc:Period >360000 </ wsag -ogc:Period >
79 </wsag -ogc:ActiveMonitoring >
80 </wsag -ogc:Monitoring >
81 </wsag -ogc:Property >
82 <!--RUNTIME -RELATED PROPERTIES -->
83 <wsag -ogc:Property >
84 <wsag -ogc:Name >availability </wsag -ogc:Name >
85 <wsag -ogc:Title >Service Availability </wsag -ogc:Title >
86 <wsag -ogc:Abstract >The general availability of the service.</

wsag -ogc:Abstract >
87 <wsag -ogc:Type >urn:ogc:def:sla:property:runtime:availability </

wsag -ogc:Type >
88 <wsag -ogc:Monitoring >
89 <wsag -ogc:ActiveMonitoring >

222

C.1. WS-AGREEMENT APPLICATION PROFILE

90 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >
91 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
92 <wsag -ogc:Period >360000 </wsag -ogc:Period >
93 <wsag -ogc:Request >
94 <wsag -ogc:Method >GET </wsag -ogc:Method >
95 <wsag -ogc:Content ><![CDATA[service=WMS&version =1.3.0&

request=GetMap&layers=topp:tasmania_state_boundaries&
styles =&bbox=${__random (142.0 ,144.0)},${__random
(-46.0 , -44.0)},${__random (150.0 ,152.0)},${__random
(-38.0 , -36.0)}&width =800& height =600& srs=EPSG :4326&
format=image/png]]></wsag -ogc:Content >

96 </wsag -ogc:Request >
97 <wsag -ogc:Response >
98 <wsag -ogc:Status >200</wsag -ogc:Status >
99 </wsag -ogc:Response >
100 </wsag -ogc:ActiveMonitoring >
101 </wsag -ogc:Monitoring >
102 </wsag -ogc:Property >
103 <wsag -ogc:Property >
104 <wsag -ogc:Name >response </wsag -ogc:Name >
105 <wsag -ogc:Title >Response Time </wsag -ogc:Title >
106 <wsag -ogc:Abstract >The response time of the service.</wsag -ogc:

Abstract >
107 <wsag -ogc:Type >urn:ogc:def:sla:property:runtime:response </wsag -

ogc:Type >
108 <wsag -ogc:Monitoring >
109 <wsag -ogc:ActiveMonitoring >
110 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >
111 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
112 <wsag -ogc:Period >360000 </wsag -ogc:Period >
113 <wsag -ogc:Request >
114 <wsag -ogc:Method >GET </wsag -ogc:Method >
115 <wsag -ogc:Content ><![CDATA[service=WMS&version =1.3.0&

request=GetMap&layers=topp:tasmania_state_boundaries&
styles =&bbox=${__random (142.0 ,144.0)},${__random
(-46.0 , -44.0)},${__random (150.0 ,152.0)},${__random
(-38.0 , -36.0)}&width =800& height =600& srs=EPSG :4326&
format=image/png]]></wsag -ogc:Content >

116 </wsag -ogc:Request >
117 <wsag -ogc:Response >
118 <wsag -ogc:Status >200</wsag -ogc:Status >
119 </wsag -ogc:Response >
120 </wsag -ogc:ActiveMonitoring >
121 </wsag -ogc:Monitoring >
122 </wsag -ogc:Property >
123 <wsag -ogc:Property >
124 <wsag -ogc:Name >capacity </wsag -ogc:Name >
125 <wsag -ogc:Title >Service Capacity </wsag -ogc:Title >
126 <wsag -ogc:Abstract >The response time of the service for multiple

parallel requests.</wsag -ogc:Abstract >
127 <wsag -ogc:Type >urn:ogc:def:sla:property:runtime:response </wsag -

ogc:Type >
128 <wsag -ogc:Monitoring >
129 <wsag -ogc:ActiveMonitoring >
130 <wsag -ogc:Start >20:00:00 </ wsag -ogc:Start >
131 <wsag -ogc:Stop >04:00:00 </ wsag -ogc:Stop >
132 <wsag -ogc:Period >3600000 </wsag -ogc:Period >
133 <wsag -ogc:Session >
134 <wsag -ogc:Capacity >20</wsag -ogc:Capacity >
135 <wsag -ogc:Duration >60000 </wsag -ogc:Duration >
136 <wsag -ogc:Period >1000 </wsag -ogc:Period >
137 </wsag -ogc:Session >
138 <wsag -ogc:Request >
139 <wsag -ogc:Chance >10</wsag -ogc:Chance >
140 <wsag -ogc:Method >GET </wsag -ogc:Method >
141 <wsag -ogc:Content >service=WMS&version =1.3.0& amp;

request=GetCapabilities </wsag -ogc:Content >
142 </wsag -ogc:Request >
143 <wsag -ogc:Request >
144 <wsag -ogc:Chance >90</wsag -ogc:Chance >
145 <wsag -ogc:Method >GET </wsag -ogc:Method >
146 <wsag -ogc:Content ><![CDATA[service=WMS&version =1.3.0&

request=GetMap&layers=topp:tasmania_state_boundaries&

223

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

styles =&bbox=${__random (142.0 ,144.0)},${__random
(-46.0 , -44.0)},${__random (150.0 ,152.0)},${__random
(-38.0 , -36.0)}&width =800& height =600& srs=EPSG :4326&
format=image/png]]></wsag -ogc:Content >

147 </wsag -ogc:Request >
148 <wsag -ogc:Response >
149 <wsag -ogc:Status >200</wsag -ogc:Status >
150 </wsag -ogc:Response >
151 </wsag -ogc:ActiveMonitoring >
152 </wsag -ogc:Monitoring >
153 </wsag -ogc:Property >
154 <!--USAGE -RELATED PROPERTIES -->
155 <wsag -ogc:Property >
156 <wsag -ogc:Name >pixel </wsag -ogc:Name >
157 <wsag -ogc:Title >Sum of Pixels </wsag -ogc:Title >
158 <wsag -ogc:Abstract >The accessed number of pixels.</wsag -ogc:

Abstract >
159 <wsag -ogc:Type >urn:ogc:def:sla:property:usage:pixel </wsag -ogc:

Type >
160 <wsag -ogc:Monitoring >
161 <wsag -ogc:PassiveMonitoring >
162 <wsag -ogc:Request >
163 <wsag -ogc:Resource >/ state/urn:ogc:def:sla:property:usage:

pixel </wsag -ogc:Resource >
164 <wsag -ogc:Method >GET </wsag -ogc:Method >
165 </wsag -ogc:Request >
166 </wsag -ogc:PassiveMonitoring >
167 </wsag -ogc:Monitoring >
168 </wsag -ogc:Property >
169 <!--INFRASTRUCTURE -RELATED PROPERTIES -->
170 <wsag -ogc:Property >
171 <wsag -ogc:Name >provider </wsag -ogc:Name >
172 <wsag -ogc:Title >Infrastructure Provider </wsag -ogc:Title >
173 <wsag -ogc:Abstract >The name of the infrastructure provider.</

wsag -ogc:Abstract >
174 <wsag -ogc:Type >urn:ogc:def:sla:property:infrastructure:provider:

name </wsag -ogc:Type >
175 <wsag -ogc:Value >default </wsag -ogc:Value >
176 </wsag -ogc:Property >
177 <wsag -ogc:Property >
178 <wsag -ogc:Name >image </wsag -ogc:Name >
179 <wsag -ogc:Title >Virtual Machine </wsag -ogc:Title >
180 <wsag -ogc:Abstract >The name of the Virtual Machine (VM) template

.</wsag -ogc:Abstract >
181 <wsag -ogc:Type >urn:ogc:def:sla:property:infrastructure:vm:name </

wsag -ogc:Type >
182 <wsag -ogc:Value >ami -59f9c62d </wsag -ogc:Value >
183 </wsag -ogc:Property >
184 </wsag -ogc:ServiceProperties >
185 </wsag:ServiceDescriptionTerm >
186 <ws:ServiceDescriptionTerm ws:Name=" TIME_CONSTRAINT_SDT" ws:

ServiceName =" INSPIRE_VIEW_SERVICE">
187 <wsag:TimeConstraint xmlns:wsag="http :// schemas.wsag4j.org /2009/07/

wsag4j -scheduling -extensions">
188 <wsag:StartTime >2011 -05 -27 T11 :00:00 </ wsag:StartTime >
189 <wsag:EndTime >2013 -05 -27 T11 :00:00 </ wsag:EndTime >
190 </wsag:TimeConstraint >
191 </ws:ServiceDescriptionTerm >
192 <wsag:ServiceProperties wsag:Name=" SERVICE_PROPERTIES" wsag:

ServiceName =" INSPIRE_VIEW_SERVICE" xmlns:wsrf="http :// docs.oasis -
open.org/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap
/2007/03/ws-agreement" xmlns:ows="http ://www.opengis.net/ows /2.0"
xmlns:xs="http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http
:// www.ifgi.org/namespaces/wsag/ogc" xmlns:addressing ="http ://www.
w3.org /2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.
org /2009/07/ wsag4j -scheduling -extensions">

193 <wsag:VariableSet >
194 <wsag:Variable wsag:Name=" SERVICE_PROPERTIES_STATE" wsag:Metric ="

xs:string">
195 <wsag:Location >declare namespace ws=’http :// schemas.ggf.org/

graap /2007/03/ws -agreement ’; declare namespace wsag -ogc=’http
:// www.ifgi.org/namespaces/wsag/ogc ’; declare namespace wsag
=’http :// schemas.ggf.org/graap /2007/03/ws-agreement ’;/ws:

224

C.1. WS-AGREEMENT APPLICATION PROFILE

AgreementProperties/ws:ServiceTermState[@termName=’
SERVICE_PROPERTIES_SDT ’]/ws:State/text() </wsag:Location >

196 </wsag:Variable >
197 </wsag:VariableSet >
198 </wsag:ServiceProperties >
199 <wsag:ServiceReference wsag:Name=" SERVICE_REFERENCE" wsag:ServiceName

=" INSPIRE_VIEW_SERVICE" xmlns:wsrf="http :// docs.oasis -open.org/
wsrf/bf -2" xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http :// www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

200 <wsag -ogc:ServiceReference >
201 <wsag -ogc:URL >http :// localhost :8088/sla -proxy/DefaultWMS </wsag -ogc

:URL >
202 </wsag -ogc:ServiceReference >
203 </wsag:ServiceReference >
204 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RESOURCE_OPERATIONS" wsag:

Obligated =" ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org
/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http :// www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

205 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
206 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
207 <wsag:ServiceLevelObjective >
208 <wsag:CustomServiceLevel >
209 <wsag -ogc:CustomServiceLevel >
210 <wsag -ogc:Name >InspireOperations </wsag -ogc:Name >
211 <wsag -ogc:Title >INSPIRE (Operations)</wsag -ogc:Title >
212 <wsag -ogc:Abstract >The following operations shall be

implemented for an INSPIRE View service: GetCapabilities ,
GetMap.</wsag -ogc:Abstract >

213 <wsag -ogc:Status >isGetCapabilities = false;
214 isGetMap = false;
215 for (item : operations.name)
216 {
217 if (item.equalsIgnoreCase(’GetCapabilities ’))
218 {
219 isGetCapabilities = true;
220 }
221 if (item.equalsIgnoreCase(’GetMap ’))
222 {
223 isGetMap = true;
224 }
225 }
226 (isGetCapabilities and isGetMap);</wsag -ogc:Status >
227 </wsag -ogc:CustomServiceLevel >
228 </wsag:CustomServiceLevel >
229 </wsag:ServiceLevelObjective >
230 <wsag:BusinessValueList/>
231 </wsag:GuaranteeTerm >
232 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RUNTIME_AVAILABILITY" wsag:

Obligated =" ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org
/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http :// www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

233 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
234 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
235 <wsag:ServiceLevelObjective >
236 <wsag:CustomServiceLevel >
237 <wsag -ogc:CustomServiceLevel >
238 <wsag -ogc:Name >InspireAvailability </wsag -ogc:Name >
239 <wsag -ogc:Title >INSPIRE (Availability)</wsag -ogc:Title >
240 <wsag -ogc:Abstract >The probability of a Network Service to be

225

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

available shall be 99% of the time.</wsag -ogc:Abstract >
241 <wsag -ogc:Status >(availability.week >= 0.99) and (availability

.month >= 0.99) and (availability.year >= 0.99) </wsag -ogc:
Status >

242 </wsag -ogc:CustomServiceLevel >
243 </wsag:CustomServiceLevel >
244 </wsag:ServiceLevelObjective >
245 <wsag:BusinessValueList/>
246 </wsag:GuaranteeTerm >
247 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RUNTIME_RESPONSE" wsag:

Obligated =" ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org
/wsrf/bf -2" xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http ://www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

248 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
249 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
250 <wsag:ServiceLevelObjective >
251 <wsag:CustomServiceLevel >
252 <wsag -ogc:CustomServiceLevel >
253 <wsag -ogc:Name >InspirePerformance </wsag -ogc:Name >
254 <wsag -ogc:Title >INSPIRE (Performance) </wsag -ogc:Title >
255 <wsag -ogc:Abstract >The response time for sending the initial

response to a Get Map Request to a view service shall be
maximum 5 seconds in normal situation .</wsag -ogc:Abstract >

256 <wsag -ogc:Status >fulfilled = 0;
257 for (item : response.initial.week) {
258 if (item lt 5000)
259 {
260 fulfilled = fulfilled + 1;
261 }
262 }
263 percent = fulfilled / (size(response.initial.week) / 100.0);
264 percent gt 90.0; </wsag -ogc:Status >
265 </wsag -ogc:CustomServiceLevel >
266 </wsag:CustomServiceLevel >
267 </wsag:ServiceLevelObjective >
268 <wsag:BusinessValueList/>
269 </wsag:GuaranteeTerm >
270 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RUNTIME_CAPACITY" wsag:

Obligated =" ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org
/wsrf/bf -2" xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http ://www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

271 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
272 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
273 <wsag:ServiceLevelObjective >
274 <wsag:CustomServiceLevel >
275 <wsag -ogc:CustomServiceLevel >
276 <wsag -ogc:Name >InspireCapacity </wsag -ogc:Name >
277 <wsag -ogc:Title >INSPIRE (Capacity)</wsag -ogc:Title >
278 <wsag -ogc:Abstract >The minimum number of served simultaneous

service requests to a view service according to the
performance quality of service shall be 20 per second.</
wsag -ogc:Abstract >

279 <wsag -ogc:Status >fulfilled = 0;
280 for (item : capacity.initial.week) {
281 if (item lt 5000)
282 {
283 fulfilled = fulfilled + 1;
284 }
285 }
286 percent = fulfilled / (size(capacity.initial.week) / 100.0);
287 percent gt 90.0; </wsag -ogc:Status >
288 </wsag -ogc:CustomServiceLevel >
289 </wsag:CustomServiceLevel >

226

C.1. WS-AGREEMENT APPLICATION PROFILE

290 </wsag:ServiceLevelObjective >
291 <wsag:BusinessValueList/>
292 </wsag:GuaranteeTerm >
293 <wsag:GuaranteeTerm wsag:Name=" COSTS_PER_YEAR" wsag:Obligated ="

ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org/wsrf/bf -2"
xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws-agreement"

xmlns:ows="http :// www.opengis.net/ows /2.0" xmlns:xs="http ://www.w3
.org /2001/ XMLSchema" xmlns:wsag -ogc="http :// www.ifgi.org/
namespaces/wsag/ogc" xmlns:addressing ="http :// www.w3.org /2005/08/
addressing" xmlns:res -sla="http :// schemas.wsag4j.org /2009/07/
wsag4j -scheduling -extensions">

294 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
295 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
296 <wsag:ServiceLevelObjective/>
297 <wsag:BusinessValueList >
298 <wsag:CustomBusinessValue >
299 <wsag -ogc:CustomBusinessValue >
300 <wsag -ogc:Name >CostsPerYear </wsag -ogc:Name >
301 <wsag -ogc:Title >Usage Costs (Year)</wsag -ogc:Title >
302 <wsag -ogc:Abstract >The cost to be assessed for using the

service on a yearly basis (in Euro).</wsag -ogc:Abstract >
303 <wsag -ogc:Type >urn:ogc:def:sla:business:cost:year </wsag -ogc:

Type >
304 <wsag -ogc:Value >factor;
305 if (pixel.year lt (1000000 * 1000))
306 {
307 factor = 1.0;
308 } else
309 if (pixel.year lt (1000000 * 10000))
310 {
311 factor = 0.5;
312 } else
313 if (pixel.year lt (1000000 * 100000))
314 {
315 factor = 0.25;
316 } else
317 if (pixel.year lt (1000000 * 1000000))
318 {
319 factor = 0.125;
320 } else
321 {
322 factor = 0.0625;
323 }
324 (factor * (pixel.year / 1000000.0));</wsag -ogc:Value >
325 </wsag -ogc:CustomBusinessValue >
326 </wsag:CustomBusinessValue >
327 </wsag:BusinessValueList >
328 </wsag:GuaranteeTerm >
329 <wsag:GuaranteeTerm wsag:Name=" PENALTY_PER_YEAR" wsag:Obligated ="

ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org/wsrf/bf -2"
xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws-agreement"

xmlns:ows="http :// www.opengis.net/ows /2.0" xmlns:xs="http ://www.w3
.org /2001/ XMLSchema" xmlns:wsag -ogc="http :// www.ifgi.org/
namespaces/wsag/ogc" xmlns:addressing ="http :// www.w3.org /2005/08/
addressing" xmlns:res -sla="http :// schemas.wsag4j.org /2009/07/
wsag4j -scheduling -extensions">

330 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
331 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
332 <wsag:ServiceLevelObjective/>
333 <wsag:BusinessValueList >
334 <wsag:CustomBusinessValue >
335 <wsag -ogc:CustomBusinessValue >
336 <wsag -ogc:Name >PenaltyPerYear </wsag -ogc:Name >
337 <wsag -ogc:Title >Penalty (Year)</wsag -ogc:Title >
338 <wsag -ogc:Abstract >The penalty to be assessed for not meeting

service level objectives on a yearly basis (in Euro).</
wsag -ogc:Abstract >

339 <wsag -ogc:Type >urn:ogc:def:sla:business:penalty:year </wsag -ogc
:Type >

340 <wsag -ogc:Value >factor;
341 if (InspireAvailability.status == true)

227

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

342 {
343 factor = 0;
344 }
345 else
346 {
347 factor = 0.25;
348 }
349 (factor * CostsPerYear.value);</wsag -ogc:Value >
350 </wsag -ogc:CustomBusinessValue >
351 </wsag:CustomBusinessValue >
352 </wsag:BusinessValueList >
353 </wsag:GuaranteeTerm >
354 </ws:All >
355 </ws:Terms >
356 </ws:AgreementOffer >

AGREEMENT

The XML in Listing C.10 shows an example agreement document.

Listing C.10: Example Agreement

1 <ws:AgreementOffer ws:AgreementId =" b7f8fc14 -17e3 -499b-9845 -975 e7f41542e"
xmlns:ws="http :// schemas.ggf.org/graap /2007/03/ws -agreement">

2 <wsag:Context xmlns:wsrf="http :// docs.oasis -open.org/wsrf/bf -2" xmlns:wsag
="http :// schemas.ggf.org/graap /2007/03/ws-agreement" xmlns:ows="http
:// www.opengis.net/ows /2.0" xmlns:xs="http ://www.w3.org /2001/ XMLSchema
" xmlns:wsag -ogc="http :// www.ifgi.org/namespaces/wsag/ogc" xmlns:
addressing ="http :// www.w3.org /2005/08/ addressing" xmlns:res -sla="http
:// schemas.wsag4j.org /2009/07/ wsag4j -scheduling -extensions">

3 <wsag:AgreementInitiator >
4 <wsag -ogc:Contact >
5 <wsag -ogc:Name >Instititute for Geoinformatics </wsag -ogc:Name >
6 <wsag -ogc:Site xlin:href="http ://www.ifgi.de" xmlns:xlin="http ://www

.w3.org /1999/ xlink"/>
7 <wsag -ogc:Contact >
8 <ows:IndividualName >Kristof Lange </ows:IndividualName >
9 <ows:PositionName >Student Assistance </ows:PositionName >
10 <ows:ContactInfo >
11 <ows:Phone >
12 <ows:Voice >+49 251 833307 </ ows:Voice >
13 <ows:Facsimile >+49 251 8339763 </ ows:Facsimile >
14 </ows:Phone >
15 <ows:Address >
16 <ows:DeliveryPoint >Weseler Strasse 253</ows:DeliveryPoint >
17 <ows:City >Muenster </ows:City >
18 <ows:PostalCode >48151 </ ows:PostalCode >
19 <ows:Country >Germany </ows:Country >
20 <ows:ElectronicMailAddress >kristof.lange@uni -muenster.de </ows:

ElectronicMailAddress >
21 </ows:Address >
22 <ows:OnlineResource xlin:href="http ://www.ifgi.de" xmlns:xlin="

http ://www.w3.org /1999/ xlink"/>
23 </ows:ContactInfo >
24 </wsag -ogc:Contact >
25 </wsag -ogc:Contact >
26 </wsag:AgreementInitiator >
27 <wsag:ServiceProvider >AgreementResponder </wsag:ServiceProvider >
28 <wsag:AgreementResponder >
29 <wsag -ogc:Contact >
30 <wsag -ogc:Name >Institute for Geoinformatics </wsag -ogc:Name >
31 <wsag -ogc:Site xlin:href="http ://www.ifgi.de" xmlns:xlin="http ://www

.w3.org /1999/ xlink"/>
32 <wsag -ogc:Contact >
33 <ows:IndividualName >Bastian Baranski </ows:IndividualName >
34 <ows:PositionName >Research Associate </ows:PositionName >
35 <ows:ContactInfo >

228

C.1. WS-AGREEMENT APPLICATION PROFILE

36 <ows:Phone >
37 <ows:Voice >+49 251 8333071 </ ows:Voice >
38 <ows:Facsimile >+49 251 8339763 </ ows:Facsimile >
39 </ows:Phone >
40 <ows:Address >
41 <ows:DeliveryPoint >Weseler Strasse 253</ows:DeliveryPoint >
42 <ows:City >Muenster </ows:City >
43 <ows:PostalCode >48151 </ ows:PostalCode >
44 <ows:Country >Germany </ows:Country >
45 <ows:ElectronicMailAddress >baranski@uni -muenster.de </ows:

ElectronicMailAddress >
46 </ows:Address >
47 <ows:HoursOfService >The hours of service are Monday to Friday

from 8 AM to 16 PM.</ows:HoursOfService >
48 <ows:ContactInstructions >Please contact the service desk via

phone or mail.</ows:ContactInstructions >
49 </ows:ContactInfo >
50 </wsag -ogc:Contact >
51 </wsag -ogc:Contact >
52 </wsag:AgreementResponder >
53 <wsag:TemplateId >WSAG_DEFAULT_TEMPLATE_8 </wsag:TemplateId >
54 <wsag:TemplateName >INSPIRE_VIEW_SERVICE_TEMPLATE </wsag:TemplateName >
55 </wsag:Context >
56 <ws:Terms >
57 <ws:All >
58 <wsag:ServiceDescriptionTerm wsag:Name=" SERVICE_DESCRIPTION_SDT" wsag:

ServiceName =" INSPIRE_VIEW_SERVICE" xmlns:wsrf="http :// docs.oasis -
open.org/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap
/2007/03/ws-agreement" xmlns:ows="http ://www.opengis.net/ows /2.0"
xmlns:xs="http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http
:// www.ifgi.org/namespaces/wsag/ogc" xmlns:addressing ="http :// www.
w3.org /2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.
org /2009/07/ wsag4j -scheduling -extensions">

59 <wsag -ogc:ServiceDescription >
60 <wsag -ogc:Title >INSPIRE View Service </wsag -ogc:Title >
61 <wsag -ogc:Abstract >This service instance is an INSPIRE View

Service implementation .</wsag -ogc:Abstract >
62 <wsag -ogc:Keywords >INSPIRE , View Service , OGC , WMS </wsag -ogc:

Keywords >
63 <wsag -ogc:Type >urn:ogc:doc:is:wms :1.1.1 </wsag -ogc:Type >
64 </wsag -ogc:ServiceDescription >
65 </wsag:ServiceDescriptionTerm >
66 <wsag:ServiceDescriptionTerm wsag:Name=" SERVICE_PROPERTIES_SDT" wsag:

ServiceName =" INSPIRE_VIEW_SERVICE" xmlns:wsrf="http :// docs.oasis -
open.org/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap
/2007/03/ws-agreement" xmlns:ows="http ://www.opengis.net/ows /2.0"
xmlns:xs="http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http
:// www.ifgi.org/namespaces/wsag/ogc" xmlns:addressing ="http :// www.
w3.org /2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.
org /2009/07/ wsag4j -scheduling -extensions">

67 <wsag -ogc:ServiceProperties >
68 <!--RESOURCE -RELATED PROPERTIES -->
69 <wsag -ogc:Property >
70 <wsag -ogc:Name >operations </wsag -ogc:Name >
71 <wsag -ogc:Title >Supported Operations </wsag -ogc:Title >
72 <wsag -ogc:Abstract >The operations that are supported by the

service.</wsag -ogc:Abstract >
73 <wsag -ogc:Type >urn:ogc:def:sla:property:resource:operation </wsag

-ogc:Type >
74 <wsag -ogc:Monitoring >
75 <wsag -ogc:ActiveMonitoring >
76 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >
77 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
78 <wsag -ogc:Period >360000 </wsag -ogc:Period >
79 </wsag -ogc:ActiveMonitoring >
80 </wsag -ogc:Monitoring >
81 </wsag -ogc:Property >
82 <!--RUNTIME -RELATED PROPERTIES -->
83 <wsag -ogc:Property >
84 <wsag -ogc:Name >availability </wsag -ogc:Name >
85 <wsag -ogc:Title >Service Availability </wsag -ogc:Title >
86 <wsag -ogc:Abstract >The general availability of the service.</

wsag -ogc:Abstract >

229

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

87 <wsag -ogc:Type >urn:ogc:def:sla:property:runtime:availability </
wsag -ogc:Type >

88 <wsag -ogc:Monitoring >
89 <wsag -ogc:ActiveMonitoring >
90 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >
91 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
92 <wsag -ogc:Period >360000 </ wsag -ogc:Period >
93 <wsag -ogc:Request >
94 <wsag -ogc:Method >GET </wsag -ogc:Method >
95 <wsag -ogc:Content ><![CDATA[service=WMS&version =1.3.0&

request=GetMap&layers=topp:tasmania_state_boundaries&
styles =&bbox=${__random (142.0 ,144.0)},${__random
(-46.0 , -44.0)},${__random (150.0 ,152.0)},${__random
(-38.0 , -36.0)}&width =800& height =600& srs=EPSG :4326&
format=image/png]]></wsag -ogc:Content >

96 </wsag -ogc:Request >
97 <wsag -ogc:Response >
98 <wsag -ogc:Status >200</wsag -ogc:Status >
99 </wsag -ogc:Response >
100 </wsag -ogc:ActiveMonitoring >
101 </wsag -ogc:Monitoring >
102 </wsag -ogc:Property >
103 <wsag -ogc:Property >
104 <wsag -ogc:Name >response </wsag -ogc:Name >
105 <wsag -ogc:Title >Response Time </wsag -ogc:Title >
106 <wsag -ogc:Abstract >The response time of the service.</wsag -ogc:

Abstract >
107 <wsag -ogc:Type >urn:ogc:def:sla:property:runtime:response </wsag -

ogc:Type >
108 <wsag -ogc:Monitoring >
109 <wsag -ogc:ActiveMonitoring >
110 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >
111 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
112 <wsag -ogc:Period >360000 </ wsag -ogc:Period >
113 <wsag -ogc:Request >
114 <wsag -ogc:Method >GET </wsag -ogc:Method >
115 <wsag -ogc:Content ><![CDATA[service=WMS&version =1.3.0&

request=GetMap&layers=topp:tasmania_state_boundaries&
styles =&bbox=${__random (142.0 ,144.0)},${__random
(-46.0 , -44.0)},${__random (150.0 ,152.0)},${__random
(-38.0 , -36.0)}&width =800& height =600& srs=EPSG :4326&
format=image/png]]></wsag -ogc:Content >

116 </wsag -ogc:Request >
117 <wsag -ogc:Response >
118 <wsag -ogc:Status >200</wsag -ogc:Status >
119 </wsag -ogc:Response >
120 </wsag -ogc:ActiveMonitoring >
121 </wsag -ogc:Monitoring >
122 </wsag -ogc:Property >
123 <wsag -ogc:Property >
124 <wsag -ogc:Name >capacity </wsag -ogc:Name >
125 <wsag -ogc:Title >Service Capacity </wsag -ogc:Title >
126 <wsag -ogc:Abstract >The response time of the service for multiple

parallel requests.</wsag -ogc:Abstract >
127 <wsag -ogc:Type >urn:ogc:def:sla:property:runtime:response </wsag -

ogc:Type >
128 <wsag -ogc:Monitoring >
129 <wsag -ogc:ActiveMonitoring >
130 <wsag -ogc:Start >20:00:00 </ wsag -ogc:Start >
131 <wsag -ogc:Stop >04:00:00 </ wsag -ogc:Stop >
132 <wsag -ogc:Period >3600000 </wsag -ogc:Period >
133 <wsag -ogc:Session >
134 <wsag -ogc:Capacity >20</wsag -ogc:Capacity >
135 <wsag -ogc:Duration >60000 </wsag -ogc:Duration >
136 <wsag -ogc:Period >1000 </wsag -ogc:Period >
137 </wsag -ogc:Session >
138 <wsag -ogc:Request >
139 <wsag -ogc:Chance >10</wsag -ogc:Chance >
140 <wsag -ogc:Method >GET </wsag -ogc:Method >
141 <wsag -ogc:Content >service=WMS&version =1.3.0& amp;

request=GetCapabilities </wsag -ogc:Content >
142 </wsag -ogc:Request >
143 <wsag -ogc:Request >

230

C.1. WS-AGREEMENT APPLICATION PROFILE

144 <wsag -ogc:Chance >90</wsag -ogc:Chance >
145 <wsag -ogc:Method >GET </wsag -ogc:Method >
146 <wsag -ogc:Content ><![CDATA[service=WMS&version =1.3.0&

request=GetMap&layers=topp:tasmania_state_boundaries&
styles =&bbox=${__random (142.0 ,144.0)},${__random
(-46.0 , -44.0)},${__random (150.0 ,152.0)},${__random
(-38.0 , -36.0)}&width =800& height =600& srs=EPSG :4326&
format=image/png]]></wsag -ogc:Content >

147 </wsag -ogc:Request >
148 <wsag -ogc:Response >
149 <wsag -ogc:Status >200</wsag -ogc:Status >
150 </wsag -ogc:Response >
151 </wsag -ogc:ActiveMonitoring >
152 </wsag -ogc:Monitoring >
153 </wsag -ogc:Property >
154 <!--USAGE -RELATED PROPERTIES -->
155 <wsag -ogc:Property >
156 <wsag -ogc:Name >pixel </wsag -ogc:Name >
157 <wsag -ogc:Title >Sum of Pixels </wsag -ogc:Title >
158 <wsag -ogc:Abstract >The accessed number of pixels.</wsag -ogc:

Abstract >
159 <wsag -ogc:Type >urn:ogc:def:sla:property:usage:pixel </wsag -ogc:

Type >
160 <wsag -ogc:Monitoring >
161 <wsag -ogc:PassiveMonitoring >
162 <wsag -ogc:Request >
163 <wsag -ogc:Resource >/ state/urn:ogc:def:sla:property:usage:

pixel </wsag -ogc:Resource >
164 <wsag -ogc:Method >GET </wsag -ogc:Method >
165 </wsag -ogc:Request >
166 </wsag -ogc:PassiveMonitoring >
167 </wsag -ogc:Monitoring >
168 </wsag -ogc:Property >
169 <!--INFRASTRUCTURE -RELATED PROPERTIES -->
170 <wsag -ogc:Property >
171 <wsag -ogc:Name >provider </wsag -ogc:Name >
172 <wsag -ogc:Title >Infrastructure Provider </wsag -ogc:Title >
173 <wsag -ogc:Abstract >The name of the infrastructure provider.</

wsag -ogc:Abstract >
174 <wsag -ogc:Type >urn:ogc:def:sla:property:infrastructure:provider:

name </wsag -ogc:Type >
175 <wsag -ogc:Value >default </wsag -ogc:Value >
176 </wsag -ogc:Property >
177 <wsag -ogc:Property >
178 <wsag -ogc:Name >image </wsag -ogc:Name >
179 <wsag -ogc:Title >Virtual Machine </wsag -ogc:Title >
180 <wsag -ogc:Abstract >The name of the Virtual Machine (VM) template

.</wsag -ogc:Abstract >
181 <wsag -ogc:Type >urn:ogc:def:sla:property:infrastructure:vm:name </

wsag -ogc:Type >
182 <wsag -ogc:Value >ami -59f9c62d </wsag -ogc:Value >
183 </wsag -ogc:Property >
184 </wsag -ogc:ServiceProperties >
185 </wsag:ServiceDescriptionTerm >
186 <ws:ServiceDescriptionTerm ws:Name=" TIME_CONSTRAINT_SDT" ws:

ServiceName =" INSPIRE_VIEW_SERVICE">
187 <wsag:TimeConstraint xmlns:wsag="http :// schemas.wsag4j.org /2009/07/

wsag4j -scheduling -extensions">
188 <wsag:StartTime >2011 -05 -27 T11 :00:00 </ wsag:StartTime >
189 <wsag:EndTime >2013 -05 -27 T11 :00:00 </ wsag:EndTime >
190 </wsag:TimeConstraint >
191 </ws:ServiceDescriptionTerm >
192 <wsag:ServiceProperties wsag:Name=" SERVICE_PROPERTIES" wsag:

ServiceName =" INSPIRE_VIEW_SERVICE" xmlns:wsrf="http :// docs.oasis -
open.org/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap
/2007/03/ws-agreement" xmlns:ows="http ://www.opengis.net/ows /2.0"
xmlns:xs="http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http
:// www.ifgi.org/namespaces/wsag/ogc" xmlns:addressing ="http :// www.
w3.org /2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.
org /2009/07/ wsag4j -scheduling -extensions">

193 <wsag:VariableSet >
194 <wsag:Variable wsag:Name=" SERVICE_PROPERTIES_STATE" wsag:Metric ="

xs:string">

231

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

195 <wsag:Location >declare namespace ws=’http :// schemas.ggf.org/
graap /2007/03/ws -agreement ’; declare namespace wsag -ogc=’http
:// www.ifgi.org/namespaces/wsag/ogc ’; declare namespace wsag
=’http :// schemas.ggf.org/graap /2007/03/ws-agreement ’;/ws:
AgreementProperties/ws:ServiceTermState[@termName=’
SERVICE_PROPERTIES_SDT ’]/ws:State/text() </wsag:Location >

196 </wsag:Variable >
197 </wsag:VariableSet >
198 </wsag:ServiceProperties >
199 <wsag:ServiceReference wsag:Name=" SERVICE_REFERENCE" wsag:ServiceName

=" INSPIRE_VIEW_SERVICE" xmlns:wsrf="http :// docs.oasis -open.org/
wsrf/bf -2" xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http ://www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

200 <wsag -ogc:ServiceReference >
201 <wsag -ogc:URL >http :// localhost :8088/sla -proxy/DefaultWMS </wsag -ogc

:URL >
202 </wsag -ogc:ServiceReference >
203 </wsag:ServiceReference >
204 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RESOURCE_OPERATIONS" wsag:

Obligated =" ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org
/wsrf/bf -2" xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http ://www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

205 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
206 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
207 <wsag:ServiceLevelObjective >
208 <wsag:CustomServiceLevel >
209 <wsag -ogc:CustomServiceLevel >
210 <wsag -ogc:Name >InspireOperations </wsag -ogc:Name >
211 <wsag -ogc:Title >INSPIRE (Operations)</wsag -ogc:Title >
212 <wsag -ogc:Abstract >The following operations shall be

implemented for an INSPIRE View service: GetCapabilities ,
GetMap.</wsag -ogc:Abstract >

213 <wsag -ogc:Status >isGetCapabilities = false;
214 isGetMap = false;
215 for (item : operations.name)
216 {
217 if (item.equalsIgnoreCase(’GetCapabilities ’))
218 {
219 isGetCapabilities = true;
220 }
221 if (item.equalsIgnoreCase(’GetMap ’))
222 {
223 isGetMap = true;
224 }
225 }
226 (isGetCapabilities and isGetMap);</wsag -ogc:Status >
227 </wsag -ogc:CustomServiceLevel >
228 </wsag:CustomServiceLevel >
229 </wsag:ServiceLevelObjective >
230 <wsag:BusinessValueList/>
231 </wsag:GuaranteeTerm >
232 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RUNTIME_AVAILABILITY" wsag:

Obligated =" ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org
/wsrf/bf -2" xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http ://www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

233 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
234 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
235 <wsag:ServiceLevelObjective >
236 <wsag:CustomServiceLevel >

232

C.1. WS-AGREEMENT APPLICATION PROFILE

237 <wsag -ogc:CustomServiceLevel >
238 <wsag -ogc:Name >InspireAvailability </wsag -ogc:Name >
239 <wsag -ogc:Title >INSPIRE (Availability)</wsag -ogc:Title >
240 <wsag -ogc:Abstract >The probability of a Network Service to be

available shall be 99% of the time.</wsag -ogc:Abstract >
241 <wsag -ogc:Status >(availability.week >= 0.99) and (availability

.month >= 0.99) and (availability.year >= 0.99) </wsag -ogc:
Status >

242 </wsag -ogc:CustomServiceLevel >
243 </wsag:CustomServiceLevel >
244 </wsag:ServiceLevelObjective >
245 <wsag:BusinessValueList/>
246 </wsag:GuaranteeTerm >
247 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RUNTIME_RESPONSE" wsag:

Obligated =" ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org
/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http :// www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

248 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
249 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
250 <wsag:ServiceLevelObjective >
251 <wsag:CustomServiceLevel >
252 <wsag -ogc:CustomServiceLevel >
253 <wsag -ogc:Name >InspirePerformance </wsag -ogc:Name >
254 <wsag -ogc:Title >INSPIRE (Performance) </wsag -ogc:Title >
255 <wsag -ogc:Abstract >The response time for sending the initial

response to a Get Map Request to a view service shall be
maximum 5 seconds in normal situation.</wsag -ogc:Abstract >

256 <wsag -ogc:Status >fulfilled = 0;
257 for (item : response.initial.week) {
258 if (item lt 5000)
259 {
260 fulfilled = fulfilled + 1;
261 }
262 }
263 percent = fulfilled / (size(response.initial.week) / 100.0);
264 percent gt 90.0; </wsag -ogc:Status >
265 </wsag -ogc:CustomServiceLevel >
266 </wsag:CustomServiceLevel >
267 </wsag:ServiceLevelObjective >
268 <wsag:BusinessValueList/>
269 </wsag:GuaranteeTerm >
270 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RUNTIME_CAPACITY" wsag:

Obligated =" ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org
/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http :// www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

271 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
272 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
273 <wsag:ServiceLevelObjective >
274 <wsag:CustomServiceLevel >
275 <wsag -ogc:CustomServiceLevel >
276 <wsag -ogc:Name >InspireCapacity </wsag -ogc:Name >
277 <wsag -ogc:Title >INSPIRE (Capacity)</wsag -ogc:Title >
278 <wsag -ogc:Abstract >The minimum number of served simultaneous

service requests to a view service according to the
performance quality of service shall be 20 per second.</
wsag -ogc:Abstract >

279 <wsag -ogc:Status >fulfilled = 0;
280 for (item : capacity.initial.week) {
281 if (item lt 5000)
282 {
283 fulfilled = fulfilled + 1;
284 }
285 }

233

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

286 percent = fulfilled / (size(capacity.initial.week) / 100.0);
287 percent gt 90.0; </wsag -ogc:Status >
288 </wsag -ogc:CustomServiceLevel >
289 </wsag:CustomServiceLevel >
290 </wsag:ServiceLevelObjective >
291 <wsag:BusinessValueList/>
292 </wsag:GuaranteeTerm >
293 <wsag:GuaranteeTerm wsag:Name=" COSTS_PER_YEAR" wsag:Obligated ="

ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org/wsrf/bf -2"
xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws-agreement"

xmlns:ows="http :// www.opengis.net/ows /2.0" xmlns:xs="http ://www.w3
.org /2001/ XMLSchema" xmlns:wsag -ogc="http :// www.ifgi.org/
namespaces/wsag/ogc" xmlns:addressing ="http :// www.w3.org /2005/08/
addressing" xmlns:res -sla="http :// schemas.wsag4j.org /2009/07/
wsag4j -scheduling -extensions">

294 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
295 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
296 <wsag:ServiceLevelObjective/>
297 <wsag:BusinessValueList >
298 <wsag:CustomBusinessValue >
299 <wsag -ogc:CustomBusinessValue >
300 <wsag -ogc:Name >CostsPerYear </wsag -ogc:Name >
301 <wsag -ogc:Title >Usage Costs (Year)</wsag -ogc:Title >
302 <wsag -ogc:Abstract >The cost to be assessed for using the

service on a yearly basis (in Euro).</wsag -ogc:Abstract >
303 <wsag -ogc:Type >urn:ogc:def:sla:business:cost:year </wsag -ogc:

Type >
304 <wsag -ogc:Value >factor;
305 if (pixel.year lt (1000000 * 1000))
306 {
307 factor = 1.0;
308 } else
309 if (pixel.year lt (1000000 * 10000))
310 {
311 factor = 0.5;
312 } else
313 if (pixel.year lt (1000000 * 100000))
314 {
315 factor = 0.25;
316 } else
317 if (pixel.year lt (1000000 * 1000000))
318 {
319 factor = 0.125;
320 } else
321 {
322 factor = 0.0625;
323 }
324 (factor * (pixel.year / 1000000.0));</wsag -ogc:Value >
325 </wsag -ogc:CustomBusinessValue >
326 </wsag:CustomBusinessValue >
327 </wsag:BusinessValueList >
328 </wsag:GuaranteeTerm >
329 <wsag:GuaranteeTerm wsag:Name=" PENALTY_PER_YEAR" wsag:Obligated ="

ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org/wsrf/bf -2"
xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws-agreement"

xmlns:ows="http :// www.opengis.net/ows /2.0" xmlns:xs="http ://www.w3
.org /2001/ XMLSchema" xmlns:wsag -ogc="http :// www.ifgi.org/
namespaces/wsag/ogc" xmlns:addressing ="http :// www.w3.org /2005/08/
addressing" xmlns:res -sla="http :// schemas.wsag4j.org /2009/07/
wsag4j -scheduling -extensions">

330 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
331 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
332 <wsag:ServiceLevelObjective/>
333 <wsag:BusinessValueList >
334 <wsag:CustomBusinessValue >
335 <wsag -ogc:CustomBusinessValue >
336 <wsag -ogc:Name >PenaltyPerYear </wsag -ogc:Name >
337 <wsag -ogc:Title >Penalty (Year)</wsag -ogc:Title >
338 <wsag -ogc:Abstract >The penalty to be assessed for not meeting

service level objectives on a yearly basis (in Euro).</
wsag -ogc:Abstract >

234

C.1. WS-AGREEMENT APPLICATION PROFILE

339 <wsag -ogc:Type >urn:ogc:def:sla:business:penalty:year </wsag -ogc
:Type >

340 <wsag -ogc:Value >factor;
341 if (InspireAvailability.status == true)
342 {
343 factor = 0;
344 }
345 else
346 {
347 factor = 0.25;
348 }
349 (factor * CostsPerYear.value);</wsag -ogc:Value >
350 </wsag -ogc:CustomBusinessValue >
351 </wsag:CustomBusinessValue >
352 </wsag:BusinessValueList >
353 </wsag:GuaranteeTerm >
354 </ws:All >
355 </ws:Terms >
356 </ws:AgreementOffer >

AGREEMENT PROPERTIES

The XML in Listing C.11 shows an example agreement properties document.

Listing C.11: Example Agreement Properties

1 <ws:AgreementProperties xmlns:ws="http :// schemas.ggf.org/graap /2007/03/ws-
agreement">

2 <ws:Name xsi:nil="true" xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -
instance"/>

3 <ws:AgreementId >246 fc372 -5aeb -4f76 -a718 -775 e944d1698 </ws:AgreementId >
4 <wsag:Context xmlns:wsrf="http :// docs.oasis -open.org/wsrf/bf -2" xmlns:wsag

="http :// schemas.ggf.org/graap /2007/03/ws -agreement" xmlns:ows="http
:// www.opengis.net/ows /2.0" xmlns:xs="http ://www.w3.org /2001/ XMLSchema
" xmlns:wsag -ogc="http ://www.ifgi.org/namespaces/wsag/ogc" xmlns:
addressing ="http :// www.w3.org /2005/08/ addressing" xmlns:res -sla="http
:// schemas.wsag4j.org /2009/07/ wsag4j -scheduling -extensions">

5 <wsag:AgreementInitiator >
6 <wsag -ogc:Contact >
7 <wsag -ogc:Name >Instititute for Geoinformatics </wsag -ogc:Name >
8 <wsag -ogc:Site xlin:href="http ://www.ifgi.de" xmlns:xlin="http ://www

.w3.org /1999/ xlink"/>
9 <wsag -ogc:Contact >
10 <ows:IndividualName >Kristof Lange </ows:IndividualName >
11 <ows:PositionName >Student Assistance </ows:PositionName >
12 <ows:ContactInfo >
13 <ows:Phone >
14 <ows:Voice >+49 251 833307 </ ows:Voice >
15 <ows:Facsimile >+49 251 8339763 </ ows:Facsimile >
16 </ows:Phone >
17 <ows:Address >
18 <ows:DeliveryPoint >Weseler Strasse 253</ows:DeliveryPoint >
19 <ows:City >Muenster </ows:City >
20 <ows:PostalCode >48151 </ ows:PostalCode >
21 <ows:Country >Germany </ows:Country >
22 <ows:ElectronicMailAddress >kristof.lange@uni -muenster.de </ows:

ElectronicMailAddress >
23 </ows:Address >
24 <ows:OnlineResource xlin:href="http ://www.ifgi.de" xmlns:xlin="

http ://www.w3.org /1999/ xlink"/>
25 </ows:ContactInfo >
26 </wsag -ogc:Contact >
27 </wsag -ogc:Contact >
28 </wsag:AgreementInitiator >
29 <wsag:ServiceProvider >AgreementResponder </wsag:ServiceProvider >
30 <wsag:AgreementResponder >
31 <wsag -ogc:Contact >

235

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

32 <wsag -ogc:Name >Institute for Geoinformatics </wsag -ogc:Name >
33 <wsag -ogc:Site xlin:href="http ://www.ifgi.de" xmlns:xlin="http ://www

.w3.org /1999/ xlink"/>
34 <wsag -ogc:Contact >
35 <ows:IndividualName >Bastian Baranski </ows:IndividualName >
36 <ows:PositionName >Research Associate </ows:PositionName >
37 <ows:ContactInfo >
38 <ows:Phone >
39 <ows:Voice >+49 251 8333071 </ ows:Voice >
40 <ows:Facsimile >+49 251 8339763 </ ows:Facsimile >
41 </ows:Phone >
42 <ows:Address >
43 <ows:DeliveryPoint >Weseler Strasse 253</ows:DeliveryPoint >
44 <ows:City >Muenster </ows:City >
45 <ows:PostalCode >48151 </ ows:PostalCode >
46 <ows:Country >Germany </ows:Country >
47 <ows:ElectronicMailAddress >baranski@uni -muenster.de </ows:

ElectronicMailAddress >
48 </ows:Address >
49 <ows:HoursOfService >The hours of service are Monday to Friday

from 8 AM to 16 PM.</ows:HoursOfService >
50 <ows:ContactInstructions >Please contact the service desk via

phone or mail.</ows:ContactInstructions >
51 </ows:ContactInfo >
52 </wsag -ogc:Contact >
53 </wsag -ogc:Contact >
54 </wsag:AgreementResponder >
55 <wsag:TemplateId >WSAG_DEFAULT_TEMPLATE_8 </wsag:TemplateId >
56 <wsag:TemplateName >INSPIRE_VIEW_SERVICE_TEMPLATE </wsag:TemplateName >
57 </wsag:Context >
58 <ws:Terms >
59 <ws:All >
60 <wsag:ServiceDescriptionTerm wsag:Name=" SERVICE_DESCRIPTION_SDT" wsag:

ServiceName =" INSPIRE_VIEW_SERVICE" xmlns:wsrf="http :// docs.oasis -
open.org/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap
/2007/03/ws-agreement" xmlns:ows="http ://www.opengis.net/ows /2.0"
xmlns:xs="http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http
:// www.ifgi.org/namespaces/wsag/ogc" xmlns:addressing ="http ://www.
w3.org /2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.
org /2009/07/ wsag4j -scheduling -extensions">

61 <wsag -ogc:ServiceDescription >
62 <wsag -ogc:Title >INSPIRE View Service </wsag -ogc:Title >
63 <wsag -ogc:Abstract >This service instance is an INSPIRE View

Service implementation .</wsag -ogc:Abstract >
64 <wsag -ogc:Keywords >INSPIRE , View Service , OGC , WMS </wsag -ogc:

Keywords >
65 <wsag -ogc:Type >urn:ogc:doc:is:wms :1.1.1 </wsag -ogc:Type >
66 </wsag -ogc:ServiceDescription >
67 </wsag:ServiceDescriptionTerm >
68 <wsag:ServiceDescriptionTerm wsag:Name=" SERVICE_PROPERTIES_SDT" wsag:

ServiceName =" INSPIRE_VIEW_SERVICE" xmlns:wsrf="http :// docs.oasis -
open.org/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap
/2007/03/ws-agreement" xmlns:ows="http ://www.opengis.net/ows /2.0"
xmlns:xs="http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http
:// www.ifgi.org/namespaces/wsag/ogc" xmlns:addressing ="http ://www.
w3.org /2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.
org /2009/07/ wsag4j -scheduling -extensions">

69 <wsag -ogc:ServiceProperties >
70 <!--RESOURCE -RELATED PROPERTIES -->
71 <wsag -ogc:Property >
72 <wsag -ogc:Name >operations </wsag -ogc:Name >
73 <wsag -ogc:Title >Supported Operations </wsag -ogc:Title >
74 <wsag -ogc:Abstract >The operations that are supported by the

service.</wsag -ogc:Abstract >
75 <wsag -ogc:Type >urn:ogc:def:sla:property:resource:operation </wsag

-ogc:Type >
76 <wsag -ogc:Monitoring >
77 <wsag -ogc:ActiveMonitoring >
78 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >
79 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
80 <wsag -ogc:Period >360000 </ wsag -ogc:Period >
81 </wsag -ogc:ActiveMonitoring >
82 </wsag -ogc:Monitoring >

236

C.1. WS-AGREEMENT APPLICATION PROFILE

83 </wsag -ogc:Property >
84 <!--RUNTIME -RELATED PROPERTIES -->
85 <wsag -ogc:Property >
86 <wsag -ogc:Name >availability </wsag -ogc:Name >
87 <wsag -ogc:Title >Service Availability </wsag -ogc:Title >
88 <wsag -ogc:Abstract >The general availability of the service.</

wsag -ogc:Abstract >
89 <wsag -ogc:Type >urn:ogc:def:sla:property:runtime:availability </

wsag -ogc:Type >
90 <wsag -ogc:Monitoring >
91 <wsag -ogc:ActiveMonitoring >
92 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >
93 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
94 <wsag -ogc:Period >360000 </wsag -ogc:Period >
95 <wsag -ogc:Request >
96 <wsag -ogc:Method >GET </wsag -ogc:Method >
97 <wsag -ogc:Content ><![CDATA[service=WMS&version =1.3.0&

request=GetMap&layers=topp:tasmania_state_boundaries&
styles =&bbox=${__random (142.0 ,144.0)},${__random
(-46.0 , -44.0)},${__random (150.0 ,152.0)},${__random
(-38.0 , -36.0)}&width =800& height =600& srs=EPSG :4326&
format=image/png]]></wsag -ogc:Content >

98 </wsag -ogc:Request >
99 <wsag -ogc:Response >
100 <wsag -ogc:Status >200</wsag -ogc:Status >
101 </wsag -ogc:Response >
102 </wsag -ogc:ActiveMonitoring >
103 </wsag -ogc:Monitoring >
104 </wsag -ogc:Property >
105 <wsag -ogc:Property >
106 <wsag -ogc:Name >response </wsag -ogc:Name >
107 <wsag -ogc:Title >Response Time </wsag -ogc:Title >
108 <wsag -ogc:Abstract >The response time of the service.</wsag -ogc:

Abstract >
109 <wsag -ogc:Type >urn:ogc:def:sla:property:runtime:response </wsag -

ogc:Type >
110 <wsag -ogc:Monitoring >
111 <wsag -ogc:ActiveMonitoring >
112 <wsag -ogc:Start >00:00:00 </ wsag -ogc:Start >
113 <wsag -ogc:Stop >23:59:59 </ wsag -ogc:Stop >
114 <wsag -ogc:Period >360000 </wsag -ogc:Period >
115 <wsag -ogc:Request >
116 <wsag -ogc:Method >GET </wsag -ogc:Method >
117 <wsag -ogc:Content ><![CDATA[service=WMS&version =1.3.0&

request=GetMap&layers=topp:tasmania_state_boundaries&
styles =&bbox=${__random (142.0 ,144.0)},${__random
(-46.0 , -44.0)},${__random (150.0 ,152.0)},${__random
(-38.0 , -36.0)}&width =800& height =600& srs=EPSG :4326&
format=image/png]]></wsag -ogc:Content >

118 </wsag -ogc:Request >
119 <wsag -ogc:Response >
120 <wsag -ogc:Status >200</wsag -ogc:Status >
121 </wsag -ogc:Response >
122 </wsag -ogc:ActiveMonitoring >
123 </wsag -ogc:Monitoring >
124 </wsag -ogc:Property >
125 <wsag -ogc:Property >
126 <wsag -ogc:Name >capacity </wsag -ogc:Name >
127 <wsag -ogc:Title >Service Capacity </wsag -ogc:Title >
128 <wsag -ogc:Abstract >The response time of the service for multiple

parallel requests.</wsag -ogc:Abstract >
129 <wsag -ogc:Type >urn:ogc:def:sla:property:runtime:response </wsag -

ogc:Type >
130 <wsag -ogc:Monitoring >
131 <wsag -ogc:ActiveMonitoring >
132 <wsag -ogc:Start >20:00:00 </ wsag -ogc:Start >
133 <wsag -ogc:Stop >04:00:00 </ wsag -ogc:Stop >
134 <wsag -ogc:Period >3600000 </wsag -ogc:Period >
135 <wsag -ogc:Session >
136 <wsag -ogc:Capacity >20</wsag -ogc:Capacity >
137 <wsag -ogc:Duration >60000 </wsag -ogc:Duration >
138 <wsag -ogc:Period >1000 </wsag -ogc:Period >
139 </wsag -ogc:Session >

237

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

140 <wsag -ogc:Request >
141 <wsag -ogc:Chance >10</wsag -ogc:Chance >
142 <wsag -ogc:Method >GET </wsag -ogc:Method >
143 <wsag -ogc:Content >service=WMS&version =1.3.0& amp;

request=GetCapabilities </wsag -ogc:Content >
144 </wsag -ogc:Request >
145 <wsag -ogc:Request >
146 <wsag -ogc:Chance >90</wsag -ogc:Chance >
147 <wsag -ogc:Method >GET </wsag -ogc:Method >
148 <wsag -ogc:Content ><![CDATA[service=WMS&version =1.3.0&

request=GetMap&layers=topp:tasmania_state_boundaries&
styles =&bbox=${__random (142.0 ,144.0)},${__random
(-46.0 , -44.0)},${__random (150.0 ,152.0)},${__random
(-38.0 , -36.0)}&width =800& height =600& srs=EPSG :4326&
format=image/png]]></wsag -ogc:Content >

149 </wsag -ogc:Request >
150 <wsag -ogc:Response >
151 <wsag -ogc:Status >200</wsag -ogc:Status >
152 </wsag -ogc:Response >
153 </wsag -ogc:ActiveMonitoring >
154 </wsag -ogc:Monitoring >
155 </wsag -ogc:Property >
156 <!--USAGE -RELATED PROPERTIES -->
157 <wsag -ogc:Property >
158 <wsag -ogc:Name >pixel </wsag -ogc:Name >
159 <wsag -ogc:Title >Sum of Pixels </wsag -ogc:Title >
160 <wsag -ogc:Abstract >The accessed number of pixels.</wsag -ogc:

Abstract >
161 <wsag -ogc:Type >urn:ogc:def:sla:property:usage:pixel </wsag -ogc:

Type >
162 <wsag -ogc:Monitoring >
163 <wsag -ogc:PassiveMonitoring >
164 <wsag -ogc:Request >
165 <wsag -ogc:Resource >/ state/urn:ogc:def:sla:property:usage:

pixel </wsag -ogc:Resource >
166 <wsag -ogc:Method >GET </wsag -ogc:Method >
167 </wsag -ogc:Request >
168 </wsag -ogc:PassiveMonitoring >
169 </wsag -ogc:Monitoring >
170 </wsag -ogc:Property >
171 <!--INFRASTRUCTURE -RELATED PROPERTIES -->
172 <wsag -ogc:Property >
173 <wsag -ogc:Name >provider </wsag -ogc:Name >
174 <wsag -ogc:Title >Infrastructure Provider </wsag -ogc:Title >
175 <wsag -ogc:Abstract >The name of the infrastructure provider.</

wsag -ogc:Abstract >
176 <wsag -ogc:Type >urn:ogc:def:sla:property:infrastructure:provider:

name </wsag -ogc:Type >
177 <wsag -ogc:Value >default </wsag -ogc:Value >
178 </wsag -ogc:Property >
179 <wsag -ogc:Property >
180 <wsag -ogc:Name >image </wsag -ogc:Name >
181 <wsag -ogc:Title >Virtual Machine </wsag -ogc:Title >
182 <wsag -ogc:Abstract >The name of the Virtual Machine (VM) template

.</wsag -ogc:Abstract >
183 <wsag -ogc:Type >urn:ogc:def:sla:property:infrastructure:vm:name </

wsag -ogc:Type >
184 <wsag -ogc:Value >ami -59f9c62d </wsag -ogc:Value >
185 </wsag -ogc:Property >
186 </wsag -ogc:ServiceProperties >
187 </wsag:ServiceDescriptionTerm >
188 <ws:ServiceDescriptionTerm ws:Name=" TIME_CONSTRAINT_SDT" ws:

ServiceName =" INSPIRE_VIEW_SERVICE">
189 <wsag:TimeConstraint xmlns:wsag="http :// schemas.wsag4j.org /2009/07/

wsag4j -scheduling -extensions">
190 <wsag:StartTime >2011 -05 -27 T11 :00:00 </ wsag:StartTime >
191 <wsag:EndTime >2013 -05 -27 T11 :00:00 </ wsag:EndTime >
192 </wsag:TimeConstraint >
193 </ws:ServiceDescriptionTerm >
194 <wsag:ServiceProperties wsag:Name=" SERVICE_PROPERTIES" wsag:

ServiceName =" INSPIRE_VIEW_SERVICE" xmlns:wsrf="http :// docs.oasis -
open.org/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap
/2007/03/ws-agreement" xmlns:ows="http ://www.opengis.net/ows /2.0"

238

C.1. WS-AGREEMENT APPLICATION PROFILE

xmlns:xs="http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http
:// www.ifgi.org/namespaces/wsag/ogc" xmlns:addressing ="http :// www.
w3.org /2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.
org /2009/07/ wsag4j -scheduling -extensions">

195 <wsag:VariableSet >
196 <wsag:Variable wsag:Name=" SERVICE_PROPERTIES_STATE" wsag:Metric ="

xs:string">
197 <wsag:Location >declare namespace ws=’http :// schemas.ggf.org/

graap /2007/03/ws -agreement ’; declare namespace wsag -ogc=’http
:// www.ifgi.org/namespaces/wsag/ogc ’; declare namespace wsag
=’http :// schemas.ggf.org/graap /2007/03/ws-agreement ’;/ws:
AgreementProperties/ws:ServiceTermState[@termName=’
SERVICE_PROPERTIES_SDT ’]/ws:State/text() </wsag:Location >

198 </wsag:Variable >
199 </wsag:VariableSet >
200 </wsag:ServiceProperties >
201 <ws:ServiceReference >
202 <wsag -ogc:ServiceReference xmlns:wsag -ogc="http ://www.ifgi.org/

namespaces/wsag/ogc">
203 <wsag -ogc:URL >http :// localhost :8088/sla -proxy/DefaultWMS /246 fc372

-5aeb -4f76 -a718 -775 e944d1698 </wsag -ogc:URL >
204 </wsag -ogc:ServiceReference >
205 </ws:ServiceReference >
206 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RESOURCE_OPERATIONS" wsag:

Obligated =" ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org
/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http :// www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

207 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
208 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
209 <wsag:ServiceLevelObjective >
210 <wsag:CustomServiceLevel >
211 <wsag -ogc:CustomServiceLevel >
212 <wsag -ogc:Name >InspireOperations </wsag -ogc:Name >
213 <wsag -ogc:Title >INSPIRE (Operations)</wsag -ogc:Title >
214 <wsag -ogc:Abstract >The following operations shall be

implemented for an INSPIRE View service: GetCapabilities ,
GetMap.</wsag -ogc:Abstract >

215 <wsag -ogc:Status >isGetCapabilities = false;
216 isGetMap = false;
217 for (item : operations.name)
218 {
219 if (item.equalsIgnoreCase(’GetCapabilities ’))
220 {
221 isGetCapabilities = true;
222 }
223 if (item.equalsIgnoreCase(’GetMap ’))
224 {
225 isGetMap = true;
226 }
227 }
228 (isGetCapabilities and isGetMap);</wsag -ogc:Status >
229 </wsag -ogc:CustomServiceLevel >
230 </wsag:CustomServiceLevel >
231 </wsag:ServiceLevelObjective >
232 <wsag:BusinessValueList/>
233 </wsag:GuaranteeTerm >
234 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RUNTIME_AVAILABILITY" wsag:

Obligated =" ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org
/wsrf/bf -2" xmlns:wsag ="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http :// www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

235 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
236 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
237 <wsag:ServiceLevelObjective >

239

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

238 <wsag:CustomServiceLevel >
239 <wsag -ogc:CustomServiceLevel >
240 <wsag -ogc:Name >InspireAvailability </wsag -ogc:Name >
241 <wsag -ogc:Title >INSPIRE (Availability)</wsag -ogc:Title >
242 <wsag -ogc:Abstract >The probability of a Network Service to be

available shall be 99% of the time.</wsag -ogc:Abstract >
243 <wsag -ogc:Status >(availability.week >= 0.99) and (availability

.month >= 0.99) and (availability.year >= 0.99) </wsag -ogc:
Status >

244 </wsag -ogc:CustomServiceLevel >
245 </wsag:CustomServiceLevel >
246 </wsag:ServiceLevelObjective >
247 <wsag:BusinessValueList/>
248 </wsag:GuaranteeTerm >
249 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RUNTIME_RESPONSE" wsag:

Obligated =" ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org
/wsrf/bf -2" xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http ://www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

250 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
251 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
252 <wsag:ServiceLevelObjective >
253 <wsag:CustomServiceLevel >
254 <wsag -ogc:CustomServiceLevel >
255 <wsag -ogc:Name >InspirePerformance </wsag -ogc:Name >
256 <wsag -ogc:Title >INSPIRE (Performance) </wsag -ogc:Title >
257 <wsag -ogc:Abstract >The response time for sending the initial

response to a Get Map Request to a view service shall be
maximum 5 seconds in normal situation .</wsag -ogc:Abstract >

258 <wsag -ogc:Status >fulfilled = 0;
259 for (item : response.initial.week) {
260 if (item lt 5000)
261 {
262 fulfilled = fulfilled + 1;
263 }
264 }
265 percent = fulfilled / (size(response.initial.week) / 100.0);
266 percent gt 90.0; </wsag -ogc:Status >
267 </wsag -ogc:CustomServiceLevel >
268 </wsag:CustomServiceLevel >
269 </wsag:ServiceLevelObjective >
270 <wsag:BusinessValueList/>
271 </wsag:GuaranteeTerm >
272 <wsag:GuaranteeTerm wsag:Name=" GUARANTEE_RUNTIME_CAPACITY" wsag:

Obligated =" ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org
/wsrf/bf -2" xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws -
agreement" xmlns:ows="http ://www.opengis.net/ows /2.0" xmlns:xs="
http ://www.w3.org /2001/ XMLSchema" xmlns:wsag -ogc="http ://www.ifgi.
org/namespaces/wsag/ogc" xmlns:addressing ="http ://www.w3.org
/2005/08/ addressing" xmlns:res -sla="http :// schemas.wsag4j.org
/2009/07/ wsag4j -scheduling -extensions">

273 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
274 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
275 <wsag:ServiceLevelObjective >
276 <wsag:CustomServiceLevel >
277 <wsag -ogc:CustomServiceLevel >
278 <wsag -ogc:Name >InspireCapacity </wsag -ogc:Name >
279 <wsag -ogc:Title >INSPIRE (Capacity)</wsag -ogc:Title >
280 <wsag -ogc:Abstract >The minimum number of served simultaneous

service requests to a view service according to the
performance quality of service shall be 20 per second.</
wsag -ogc:Abstract >

281 <wsag -ogc:Status >fulfilled = 0;
282 for (item : capacity.initial.week) {
283 if (item lt 5000)
284 {
285 fulfilled = fulfilled + 1;
286 }

240

C.1. WS-AGREEMENT APPLICATION PROFILE

287 }
288 percent = fulfilled / (size(capacity.initial.week) / 100.0);
289 percent gt 90.0; </wsag -ogc:Status >
290 </wsag -ogc:CustomServiceLevel >
291 </wsag:CustomServiceLevel >
292 </wsag:ServiceLevelObjective >
293 <wsag:BusinessValueList/>
294 </wsag:GuaranteeTerm >
295 <wsag:GuaranteeTerm wsag:Name=" COSTS_PER_YEAR" wsag:Obligated ="

ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org/wsrf/bf -2"
xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws-agreement"

xmlns:ows="http :// www.opengis.net/ows /2.0" xmlns:xs="http ://www.w3
.org /2001/ XMLSchema" xmlns:wsag -ogc="http :// www.ifgi.org/
namespaces/wsag/ogc" xmlns:addressing ="http :// www.w3.org /2005/08/
addressing" xmlns:res -sla="http :// schemas.wsag4j.org /2009/07/
wsag4j -scheduling -extensions">

296 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
297 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
298 <wsag:ServiceLevelObjective/>
299 <wsag:BusinessValueList >
300 <wsag:CustomBusinessValue >
301 <wsag -ogc:CustomBusinessValue >
302 <wsag -ogc:Name >CostsPerYear </wsag -ogc:Name >
303 <wsag -ogc:Title >Usage Costs (Year)</wsag -ogc:Title >
304 <wsag -ogc:Abstract >The cost to be assessed for using the

service on a yearly basis (in Euro).</wsag -ogc:Abstract >
305 <wsag -ogc:Type >urn:ogc:def:sla:business:cost:year </wsag -ogc:

Type >
306 <wsag -ogc:Value >factor;
307 if (pixel.year lt (1000000 * 1000))
308 {
309 factor = 1.0;
310 } else
311 if (pixel.year lt (1000000 * 10000))
312 {
313 factor = 0.5;
314 } else
315 if (pixel.year lt (1000000 * 100000))
316 {
317 factor = 0.25;
318 } else
319 if (pixel.year lt (1000000 * 1000000))
320 {
321 factor = 0.125;
322 } else
323 {
324 factor = 0.0625;
325 }
326 (factor * (pixel.year / 1000000.0));</wsag -ogc:Value >
327 </wsag -ogc:CustomBusinessValue >
328 </wsag:CustomBusinessValue >
329 </wsag:BusinessValueList >
330 </wsag:GuaranteeTerm >
331 <wsag:GuaranteeTerm wsag:Name=" PENALTY_PER_YEAR" wsag:Obligated ="

ServiceProvider" xmlns:wsrf="http :// docs.oasis -open.org/wsrf/bf -2"
xmlns:wsag="http :// schemas.ggf.org/graap /2007/03/ws-agreement"

xmlns:ows="http :// www.opengis.net/ows /2.0" xmlns:xs="http ://www.w3
.org /2001/ XMLSchema" xmlns:wsag -ogc="http :// www.ifgi.org/
namespaces/wsag/ogc" xmlns:addressing ="http :// www.w3.org /2005/08/
addressing" xmlns:res -sla="http :// schemas.wsag4j.org /2009/07/
wsag4j -scheduling -extensions">

332 <wsag:ServiceScope wsag:ServiceName =" INSPIRE_VIEW_SERVICE "/>
333 <wsag:QualifyingCondition >SERVICE_PROPERTIES_STATE eq ’Ready ’</wsag:

QualifyingCondition >
334 <wsag:ServiceLevelObjective/>
335 <wsag:BusinessValueList >
336 <wsag:CustomBusinessValue >
337 <wsag -ogc:CustomBusinessValue >
338 <wsag -ogc:Name >PenaltyPerYear </wsag -ogc:Name >
339 <wsag -ogc:Title >Penalty (Year)</wsag -ogc:Title >
340 <wsag -ogc:Abstract >The penalty to be assessed for not meeting

service level objectives on a yearly basis (in Euro).</

241

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

wsag -ogc:Abstract >
341 <wsag -ogc:Type >urn:ogc:def:sla:business:penalty:year </wsag -ogc

:Type >
342 <wsag -ogc:Value >factor;
343 if (InspireAvailability.status == true)
344 {
345 factor = 0;
346 }
347 else
348 {
349 factor = 0.25;
350 }
351 (factor * CostsPerYear.value);</wsag -ogc:Value >
352 </wsag -ogc:CustomBusinessValue >
353 </wsag:CustomBusinessValue >
354 </wsag:BusinessValueList >
355 </wsag:GuaranteeTerm >
356 </ws:All >
357 </ws:Terms >
358 <ws:AgreementState >
359 <ws:State >Observed </ws:State >
360 </ws:AgreementState >
361 <ws:ServiceTermState ws:termName =" SERVICE_DESCRIPTION_SDT">
362 <ws:State >Ready </ws:State >
363 </ws:ServiceTermState >
364 <ws:ServiceTermState ws:termName =" SERVICE_PROPERTIES_SDT">
365 <ws:State >Ready </ws:State >
366 </ws:ServiceTermState >
367 <ws:ServiceTermState ws:termName =" TIME_CONSTRAINT_SDT">
368 <ws:State >Ready </ws:State >
369 </ws:ServiceTermState >
370 <ws:GuaranteeTermState ws:termName =" GUARANTEE_RESOURCE_OPERATIONS">
371 <ws:State >Fulfilled </ws:State >
372 </ws:GuaranteeTermState >
373 <ws:GuaranteeTermState ws:termName =" GUARANTEE_RUNTIME_AVAILABILITY">
374 <ws:State >Fulfilled </ws:State >
375 </ws:GuaranteeTermState >
376 <ws:GuaranteeTermState ws:termName =" GUARANTEE_RUNTIME_RESPONSE">
377 <ws:State >Violated </ws:State >
378 </ws:GuaranteeTermState >
379 <ws:GuaranteeTermState ws:termName =" GUARANTEE_RUNTIME_CAPACITY">
380 <ws:State >Fulfilled </ws:State >
381 </ws:GuaranteeTermState >
382 <ws:GuaranteeTermState ws:termName =" COSTS_PER_YEAR">
383 <ws:State >Fulfilled </ws:State >
384 <ogc:CustomBusinessValue xmlns:ogc=" http :// www.ifgi.org/namespaces/wsag/

ogc">
385 <ogc:Name >CostsPerYear </ogc:Name >
386 <ogc:Type >urn:ogc:def:sla:business:cost:year </ogc:Type >
387 <ogc:Value >0.001234 </ ogc:Value >
388 </ogc:CustomBusinessValue >
389 </ws:GuaranteeTermState >
390 <ws:GuaranteeTermState ws:termName =" PENALTY_PER_YEAR">
391 <ws:State >Fulfilled </ws:State >
392 <ogc:CustomBusinessValue xmlns:ogc=" http :// www.ifgi.org/namespaces/wsag/

ogc">
393 <ogc:Name >PenaltyPerYear </ogc:Name >
394 <ogc:Type >urn:ogc:def:sla:business:penalty:year </ogc:Type >
395 <ogc:Value >0.0 </ ogc:Value >
396 </ogc:CustomBusinessValue >
397 </ws:GuaranteeTermState >
398 </ws:AgreementProperties >

C.2 Service Interfaces

The XSDs in Listing C.12 and C.13 define the XML input and output format of the
Agreement Manager component.

242

C.2. SERVICE INTERFACES

Listing C.12: XSD for Agreement Manager

1 <?xml version ="1.0" encoding ="utf -8" standalone ="yes"?>
2 <xs:schema xmlns:wsag -rest="http :// www.ifgi.org/namespaces/wsag/rest" xmlns:

xs="http :// www.w3.org /2001/ XMLSchema" targetNamespace ="http ://www.ifgi.
org/namespaces/wsag/rest" elementFormDefault =" qualified">

3 <!-- ## -->
4 <!-- ELEMENT DEFINITIONS -->
5 <!-- ## -->
6 <xs:element name=" TemplateList" type="wsag -rest:TemplateListType "/>
7 <xs:element name=" AgreementList" type="wsag -rest:AgreementListType "/>
8 <!-- ## -->
9 <!-- TEMPLATE LIST TYPE -->
10 <!-- ## -->
11 <xs:complexType name=" TemplateListType">
12 <xs:sequence >
13 <xs:element name=" TemplateURI" minOccurs ="0" maxOccurs =" unbounded"

type="xs:string"/>
14 </xs:sequence >
15 </xs:complexType >
16 <!-- ## -->
17 <!-- AGREEMENT LIST TAPE -->
18 <!-- ## -->
19 <xs:complexType name=" AgreementListType">
20 <xs:sequence >
21 <xs:element name=" AgreementURI" minOccurs ="0" maxOccurs =" unbounded"

type="xs:string"/>
22 </xs:sequence >
23 </xs:complexType >
24 </xs:schema >

Listing C.13: XSD for Measurements

1 <?xml version ="1.0" encoding ="utf -8" standalone ="yes"?>
2 <xs:schema xmlns:wsag -rest="http :// www.ifgi.org/namespaces/wsag/rest" xmlns:

wsag -ogc="http ://www.ifgi.org/namespaces/wsag/ogc" xmlns:xs="http :// www.
w3.org /2001/ XMLSchema" targetNamespace ="http :// www.ifgi.org/namespaces/
wsag/rest" elementFormDefault =" qualified">

3 <!-- ## -->
4 <!-- IMPORT SCHEMA -->
5 <!-- ## -->
6 <xs:import namespace ="http ://www.ifgi.org/namespaces/wsag/ogc"

schemaLocation ="../../../../ wsag -ogc -xml/src/main/xsd/ogc -service -
properties.xsd"/>

7 <!-- ## -->
8 <!-- ELEMENT DEFINITIONS -->
9 <!-- ## -->
10 <xs:element name=" MeasurementList" type="wsag -rest:MeasurementListType "/>
11 <xs:element name=" MeasurementHistoryList" type="wsag -rest:

MeasurementHistoryListType "/>
12 <xs:element name=" Measurement" type="wsag -rest:MeasurementType "/>
13 <!-- ## -->
14 <!-- MEASUREMENT LIST TYPE -->
15 <!-- ## -->
16 <xs:complexType name=" MeasurementListType">
17 <xs:sequence >
18 <xs:element name=" MeasurementURI" minOccurs ="0" maxOccurs =" unbounded"

type="xs:string"/>
19 </xs:sequence >
20 </xs:complexType >
21 <!-- ## -->
22 <!-- MEASUREMENT HISTORY LIST TYPE -->
23 <!-- ## -->
24 <xs:complexType name=" MeasurementHistoryListType">
25 <xs:sequence >
26 <xs:element ref="wsag -rest:Measurement" minOccurs ="0" maxOccurs ="

unbounded"/>
27 </xs:sequence >
28 </xs:complexType >

243

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

29 <!-- ## -->
30 <!-- MEASUREMENT TYPE -->
31 <!-- ## -->
32 <xs:complexType name=" MeasurementType">
33 <xs:sequence >
34 <xs:element minOccurs ="1" maxOccurs ="1" ref="wsag -ogc:

ServiceProperties "/>
35 </xs:sequence >
36 <xs:attribute name=" timestamp" type="xs:dateTime"/>
37 </xs:complexType >
38 </xs:schema >

The XSD in Listing C.13 imports the XSD for the Non-Functional Service Description

section of the WS-Agreement Application Profile for OGC Web Services as defined in
Listing C.3.

C.3 Workflow

This section exemplifies a template discovery, agreement creation, service consumption
and agreement monitoring workflow from the service consumer perspective. The
workflow description is based on the default setup of the SLA4OWS framework. The
default setup contains an example agreement template and offers relevant services at
port 8088. The curl command[McElhearn, 2004] used for the workflow description is a
command line tool that is part of most UNIX and Mac OS systems. The command can
be used to download anything that can be referenced by an URL.

C.3.1 Show Template

To show all available templates, use the following command.

1 curl -v -X GET -H"Accept: application/xml" http :// localhost :8088/sla -manager
/templates

The response should look like this.

1 * About to connect () to localhost port 8088 (#0)
2 * Trying ::1... connected
3 > GET /sla -manager/templates HTTP /1.1
4 > User -Agent: curl /7.23.1 (x86_64 -apple -darwin11 .2.0) libcurl /7.23.1 OpenSSL

/1.0.0c zlib /1.2.5 libidn /1.19
5 > Host: localhost :8088
6 > Accept: application/xml
7 >
8 < HTTP /1.1 200 OK
9 < Content -Type: application/xml
10 < Content -Length: 194
11 < Server: Jetty (6.1.26)
12 <
13 * Connection #0 to host localhost left intact
14 <rest:TemplateList xmlns:rest="http ://www.ifgi.org/namespaces/wsag/rest">
15 <rest:TemplateURI >http :// localhost :8088/sla -manager/template/

WSAG_DEFAULT_TEMPLATE </rest:TemplateURI >
16 </rest:TemplateList >
17 * Closing connection #0

244

C.3. WORKFLOW

To show template details, use the following command.

1 curl -v -X GET -H"Accept: application/xml" http :// localhost :8088/sla -manager
/template/WSAG_DEFAULT_TEMPLATE

The response should look like this.

1 * About to connect () to localhost port 8088 (#0)
2 * Trying ::1... connected
3 > GET /sla -manager/template/WSAG_DEFAULT_TEMPLATE HTTP /1.1
4 > User -Agent: curl /7.23.1 (x86_64 -apple -darwin11 .2.0) libcurl /7.23.1 OpenSSL

/1.0.0c zlib /1.2.5 libidn /1.19
5 > Host: localhost :8088
6 > Accept: application/xml
7 >
8 < HTTP /1.1 200 OK
9 < Content -Type: application/xml
10 < Content -Length: 17111
11 < Server: Jetty (6.1.26)
12 <
13 <wsag:Template wsag:TemplateId =" WSAG_DEFAULT_TEMPLATE" (...) >
14 (...)
15 </wsag:Template >
16 * Closing connection #0

An example template can be found in Appendix C.1.2.

C.3.2 Create Agreement

To make an agreement offer, use the following command.

1 curl -v -X POST -d @agreement -offer.xml -H"Content -Type: application/xml" -H
"Accept: application/xml" http :// localhost :8088/sla -manager/agreements

The response should look like this.

1 * About to connect () to localhost port 8088 (#0)
2 * Trying ::1... connected
3 > POST /sla -manager/agreements HTTP /1.1
4 > User -Agent: curl /7.23.1 (x86_64 -apple -darwin11 .2.0) libcurl /7.23.1 OpenSSL

/1.0.0c zlib /1.2.5 libidn /1.19
5 > Host: localhost :8088
6 > Content -Type: application/xml
7 > Accept: application/xml
8 > Content -Length: 19923
9 > Expect: 100- continue
10 >
11 < HTTP /1.1 100 Continue
12 < HTTP /1.1 201 Created
13 < Location: http :// localhost :8088/sla -manager/agreement/e97c0b24 -3fca -493e-8

d24 -6 ce5f3fdbe6a
14 < Content -Length: 0
15 < Server: Jetty (6.1.26)
16 <
17 * Connection #0 to host localhost left intact
18 * Closing connection #0

An example agreement offer can be found in Appendix C.1.2.

245

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

C.3.3 Show Agreement

To show all available agreements, use the following command.

1 curl -v -X GET -H"Accept: application/xml" http :// localhost :8088/sla -manager
/agreements

The response should look like this.

1 * About to connect () to localhost port 8088 (#0)
2 * Trying ::1... connected
3 > GET /sla -manager/agreements HTTP /1.1
4 > User -Agent: curl /7.23.1 (x86_64 -apple -darwin11 .2.0) libcurl /7.23.1 OpenSSL

/1.0.0c zlib /1.2.5 libidn /1.19
5 > Host: localhost :8088
6 > Accept: application/xml
7 >
8 < HTTP /1.1 200 OK
9 < Content -Type: application/xml
10 < Content -Length: 333
11 < Server: Jetty (6.1.26)
12 <
13 * Connection #0 to host localhost left intact
14 <rest:AgreementList xmlns:rest="http :// www.ifgi.org/namespaces/wsag/rest">
15 <rest:AgreementURI >http :// localhost :8088/sla -manager/agreement/e97c0b24 -3

fca -493e-8d24 -6 ce5f3fdbe6a </rest:AgreementURI >
16 </rest:AgreementList >
17 * Closing connection #0

To show agreement details, use the following command.

1 curl -v -X GET -H"Accept: application/xml" http :// localhost :8088/sla -manager
/agreement/e97c0b24 -3fca -493e-8d24 -6 ce5f3fdbe6a

The response should look like this.

1 * About to connect () to localhost port 8088 (#0)
2 * Trying ::1... connected
3 > GET /sla -manager/agreement/e97c0b24 -3fca -493e-8d24 -6 ce5f3fdbe6a HTTP /1.1
4 > User -Agent: curl /7.23.1 (x86_64 -apple -darwin11 .2.0) libcurl /7.23.1 OpenSSL

/1.0.0c zlib /1.2.5 libidn /1.19
5 > Host: localhost :8088
6 > Accept: application/xml
7 >
8 < HTTP /1.1 200 OK
9 < Content -Type: application/xml
10 < Content -Length: 19804
11 < Server: Jetty (6.1.26)
12 <
13 <ws:Agreement ws:AgreementId ="e97c0b24 -3fca -493e-8d24 -6 ce5f3fdbe6a" (...) >
14 (...)
15 </ws:Agreement >
16 * Closing connection #0

An example agreement can be found in Appendix C.1.2.

246

C.3. WORKFLOW

C.3.4 Service Consumption

To execute a service through the Agreement Proxy, use the following command.

1 curl -v -X GET "http :// localhost :8088/sla -proxy/DefaultWMS/e97c0b24 -3fca -493
e-8d24 -6 ce5f3fdbe6a?service=wms&version =1.1.0& request=GetCapabilities"

The response should look like this.

1 * About to connect () to localhost port 8088 (#0)
2 * Trying ::1... connected
3 > POST /sla -manager/agreements HTTP /1.1
4 > User -Agent: curl /7.23.1 (x86_64 -apple -darwin11 .2.0) libcurl /7.23.1 OpenSSL

/1.0.0c zlib /1.2.5 libidn /1.19
5 > Host: localhost :8088
6 > Content -Type: application/xml
7 > Accept: application/xml
8 > Content -Length: 19923
9 > Expect: 100- continue
10 >
11 < HTTP /1.1 100 Continue
12 < HTTP /1.1 201 Created
13 < Location: http :// localhost :8088/sla -manager/agreement/e97c0b24 -3fca -493e-8

d24 -6 ce5f3fdbe6a
14 < Content -Length: 0
15 < Server: Jetty (6.1.26)
16 <
17 <?xml version ="1.0" encoding ="UTF -8"?>
18 <!DOCTYPE WMT_MS_Capabilities SYSTEM "http :// localhost :8080/ geoserver/

schemas/wms /1.1.1/ WMS_MS_Capabilities.dtd">
19 <WMT_MS_Capabilities version ="1.1.1" (...) >
20 (...)
21 </WMT_MS_Capabilities >
22 * Closing connection #0

C.3.5 Monitor Agreement

To show the agreement state, use the following command.

1 curl -v -X GET -H"Accept: application/xml" http :// localhost :8088/sla -manager
/agreement/e97c0b24 -3fca -493e-8d24 -6 ce5f3fdbe6a/state

The response should look like this.

1 * About to connect () to localhost port 8088 (#0)
2 * Trying 127.0.0.1... connected
3 > GET /sla -manager/agreement/ff129050 -7f62 -482f-9947 -5 a2ecc12aa71/state HTTP

/1.1
4 > User -Agent: curl /7.23.1 (x86_64 -apple -darwin11 .2.0) libcurl /7.23.1 OpenSSL

/1.0.0c zlib /1.2.5 libidn /1.19
5 > Host: localhost :8088
6 > Accept: application/xml
7 >
8 < HTTP /1.1 200 OK
9 < Content -Type: application/xml
10 < Content -Length: 21528
11 < Server: Jetty (6.1.26)
12 <
13 <ws:AgreementProperties (...) >

247

APPENDIX C. SERVICE LEVEL MANAGEMENT ARCHITECTURE

14 (...)
15 </ws:AgreementProperties >
16 * Closing connection #0

An example agreement properties document can be found in Appendix C.1.2.

248

Appendix D

Implementation

This chapter provides implementation-specific information about the web-based SLA
management architecture as realized by the SLA4OWS framework.

D.1 XML Schema

This section describes the XSDs for defining the domain-specific content in the web-
based SLA management architecture as realized by the SLA4OWS framework.

D.1.1 Agreement Reporter

The XSD in Listing D.1 defines the XML output format of the Agreement Reporter
component.

Listing D.1: XSD for Agreement Reporter

1 <?xml version ="1.0" encoding ="utf -8" standalone ="yes"?>
2 <xs:schema targetNamespace ="http :// www.ifgi.org/namespaces/sla/reporter"

xmlns:sla -reporter ="http ://www.ifgi.org/namespaces/sla/reporter" xmlns:
wsag -rest="http ://www.ifgi.org/namespaces/wsag/rest" xmlns:xs="http ://
www.w3.org /2001/ XMLSchema" elementFormDefault =" qualified">

3 <!-- ## -->
4 <!-- ELEMENT DEFINITIONS -->
5 <!-- ## -->
6 <xs:element name=" ReportList" type="sla -reporter:ReportListType "/>
7 <!-- ## -->
8 <!-- REPORT LIST TYPE -->
9 <!-- ## -->
10 <xs:complexType name=" ReportListType">
11 <xs:sequence >
12 <xs:element name=" ReportURI" minOccurs ="0" maxOccurs =" unbounded" type

="xs:string"/>
13 </xs:sequence >
14 </xs:complexType >
15 </xs:schema >

D.1.2 Infrastructure Manager

The XSD in Listing D.2 defines the XML output format of the Infrastructure Manager
component.

249

APPENDIX D. IMPLEMENTATION

Listing D.2: XSD for Infrastructure Manager

1 <?xml version ="1.0" encoding ="utf -8" standalone ="yes"?>
2 <xs:schema targetNamespace ="http :// www.ifgi.org/namespaces/sla/

infrastructure" xmlns:sla -infrastructure =" http :// www.ifgi.org/namespaces
/sla/infrastructure" xmlns:wsag -rest="http ://www.ifgi.org/namespaces/
wsag/rest" xmlns:xs="http :// www.w3.org /2001/ XMLSchema"
elementFormDefault =" qualified">

3 <!-- ## -->
4 <!-- ELEMENT DEFINITIONS -->
5 <!-- ## -->
6 <xs:element name=" ScheduleList" type="sla -infrastructure:ScheduleListType

"/>
7 <!-- ## -->
8 <!-- SCHEDULE LIST TYPE -->
9 <!-- ## -->
10 <xs:complexType name=" ScheduleListType">
11 <xs:sequence >
12 <xs:element name=" ScheduleURI" minOccurs ="0" maxOccurs =" unbounded"

type="xs:string"/>
13 </xs:sequence >
14 </xs:complexType >
15 </xs:schema >

D.2 Service Interfaces

This section describes the service interfaces that are implemented in the SLA4OWS
framework.

D.2.1 Agreement Manager

Table D.1 describes all resources and methods of the Agreement Manager component
that are supported by the SLA4OWS framework in addition to standardized interface.

Table D.1: Additional Agreement Manager Resources

Resource a Description

/measurements/{id} With the POST method, this URI allows the creation
of a new measurement for an agreement with the
unique identifier {id}. The input format is defined
by the ServiceProperties element as defined in
Listing C.3.

/measurement/{id} With the GET method, this URI returns a
representation of the measurements for an
agreement with the unique identifier {id}. The
output format is defined by the MeasurementList
element as defined in Listing C.3.

a In case of successful or invalid requests, all resources produce HTTP Status Codes as
defined in [Fielding et al., 1999] (e.g. 201 CREATED after a new resources being created or
400 BAD REQUEST for malformed request syntax).

250

D.2. SERVICE INTERFACES

D.2.2 Agreement Client

The SLA4OWS framework provides a web-based client that enables service consumers
to search for templates, and to create and monitor agreements.

D.2.3 Agreement Proxy

Table D.2 describes all resources and methods of the Agreement Proxy component that
are supported by the SLA4OWS framework in addition to standardized interface.

Table D.2: Additional Agreement Proxy Resources

Resource a Description

/{service}/{agreement}/state/{urn} This URI references the passive
monitoring information for the
service with the unique name
{service} and the corresponding
agreement with the unique
identifier {id}.

With the GET method, this URI
returns the passive monitoring
measurements for the service
property from type {urn}. A
comprehensive dictionary of all
available service property types
can be found in Appendix B.2.1.
The output format is defined
by the MeasurementHistoryList
element (Listing C.13).

a In case of successful or invalid requests, all resources produce HTTP Status Codes as
defined in [Fielding et al., 1999] (e.g. 201 CREATED after a new resources being created or
400 BAD REQUEST for malformed request syntax).

D.2.4 Agreement Monitor

The Agreement Monitor permanently runs as a background process and does not have
a public accessible service interface.

D.2.5 Agreement Evaluator

The Agreement Evaluator permanently runs as a background process and does not have
a public accessible service interface.

D.2.6 Agreement Reporter

Table D.3 describes all resources and methods of the Agreement Reporter component
that are supported by the SLA4OWS framework.

251

APPENDIX D. IMPLEMENTATION

Table D.3: Agreement Reporter Resources

Resource a Description

/reports With the GET method, this URI returns a list of all
available reports. The output format is defined by
the ReportList element (Listing D.1).

With the POST method, this URI allows the creation
of a new report. The input format is defined by
the Agreement Properties format as defined in the
WS-Agreement specification. An example XML
document can be found in Listing C.11.

/report/{id} With the GET method, this URI returns a
representation of the report with the unique
identifier {id}. The output format is defined by
the Agreement Properties format as defined in the
WS-Agreement specification. An example XML
document can be found in Listing C.11.

a In case of successful or invalid requests, all resources produce HTTP Status Codes as
defined in [Fielding et al., 1999] (e.g. 201 CREATED after a new resources beeing created or
400 BAD REQUEST for malformed request syntax).

D.2.7 Infrastructure Manager

Table D.4 describes all resources and methods of the Infrastructure Manager component
that are supported by the SLA4OWS framework.

Table D.4: Infrastructure Manager Resources

Resource a Description

/schedules With the GET method, this URI returns a list of all
available schedules. The output format is defined by
the ScheduleList element (Listing D.2).

With the POST method, this URI allows the creation
of a new schedule. The input format is defined
by the Agreement Properties format as defined in
the WS-Agreement specification. An example XML
document can be found in Listing C.11.

/schedule/{id} With the GET method, this URI returns a
representation of the schedule with the unique
identifier {id}. The output format is defined by
the Agreement Properties format as defined in the
WS-Agreement specification. An example XML
document can be found in Listing C.11.

Table D.4 – Continued on next page

252

D.2. SERVICE INTERFACES

Table D.4 – Continued from previous page

Resource a Description

a In case of successful or invalid requests, all resources produce HTTP Status Codes as
defined in [Fielding et al., 1999] (e.g. 201 CREATED after a new resources beeing created or
400 BAD REQUEST for malformed request syntax).

253

APPENDIX D. IMPLEMENTATION

254

Versicherung

Hiermit versichere ich, dass ich bisher noch keinen Promotionsversuch unternommen
habe.

Moers, den

Bastian Baranski

Hiermit versichere ich, dass ich die vorgelegte Dissertation selbst und ohne unerlaubte
Hilfe angefertigt, alle in Anspruch genommenen Quellen und Hilfsmittel in der
Dissertation angegeben habe und die Dissertation nicht bereits anderweitig als
Prüfungsarbeit vorgelegen hat.

Moers, den

Bastian Baranski

Hiermit erkläre ich, nicht wegen einer Straftat rechtskräftig verurteilt worden zu sein,
zu der ich meine wissenschaftliche Qualifikation missbraucht habe.

Moers, den

Bastian Baranski

