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1. Introduction  
1.1. Petroleum as energy source 
As the population of the world increases and developing nations become more industrialized, 

the demand for energy increases. Oil is currently the dominant energy fuel and is expected to 

remain so over the next several decades (see Figure 1.1).  Historically, the industrialized 

nations have been the major consumers of oil. However, by the year 2020, consumption in the 

developing countries is expected to increase to be nearly equal to that of the industrialized 

countries and this increase is expected to be related to the transportation sector.        

                   
 

Figure 1.1. Graph showing the history and projections of the world energy consumption in 

British thermal units (Btu). The increasing demand for petroleum (liquids) can be seen in the 

projections [1].  

 

Hence, crude oil represents an important part of the current fossil fuels energy mixture. 

However, as crude oil is extracted, refined, transported, distributed, or consumed, spills and 

other releases occur. In addition, natural seepage of crude oil from geologic formations below 

the seafloor to the overlying water column also takes place. Therefore, understanding the 

behaviour of petroleum in the environment is an important key for understanding the potential 

effect of releases of crude oil or its products on the marine environment. 

 

1.2. Sources of oil in the sea 
Three billion metric tonnes of crude oil are annually produced worldwide with approximately 

half of this total transported by sea [2]. Oil entering marine environments each year from all 
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sources (excluding biosynthesis) is estimated to be about 2.145 million metric tonnes (Table 

1.1). Oil enters marine waters from both natural and anthropogenic sources including natural 

seeps, industrial waste waters, urban and river runoff, tanker spills, losses during marine 

transportation, leakages from refineries, production facilities and marine terminals. By 

inspecting the data given in Table 1.1, it is clear that the marine input of petroleum from 

anthropogenic sources (1.918 million tonnes/year) exceeds that from natural sources (0.27 

million tonnes/year) excluding biosynthesis [3].  

  

Petroleum inputs into worldwide marine waters can be categorized into four major groups: 

natural seeps, petroleum extraction, petroleum transportation and petroleum consumption.  

 

Natural seeps of petroleum 

Natural seeps are natural phenomena in which crude oil seeps from the geologic strata 

beneath the seafloor to the overlying water column. Although natural seeps indicate the 

existence of potentially economic reserves of petroleum, they release vast amounts of crude 

oil annually and hence change the nature of the marine ecosystems around them. They are 

therefore responsible for over 60 % of the petroleum entering the marine environment 

worldwide [4].  

 

Extraction of petroleum 

The world production of oil rose from 8.5 million tonnes in 1985 to 11.7 million tonnes in 

2000 and during that time, the number of offshore oil and gas platforms have also risen [4]. 

Historically, oil and gas exploration and production of petroleum were considered to be 

among the important sources of spills. For instance, 476000 tonnes of crude oil were released 

into the Gulf of Mexico in 1979 in a blow out representing one of the largest marine spill in 

the world. However, during the past decade, the production technology and safety training of 

personnel have greatly improved which lead to a decrease in the number of blowouts and 

daily operational spills. Nowadays, accidental spills from platforms represent only about 3 % 

worldwide [4].  

 

Transportation of petroleum 

Releases from petroleum transportation can vary in size from small operational releases that 

occur regularly to major spills associated with tanker accidents such as the Exxon Valdez and 

is estimated to be less than 13 percent worldwide [4]. However, the spills arising from 
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transportation are down for several reasons, among them, the use of new technology and 

safety procedures and the application of regulations which have increased liability on 

responsible parties and forbidden the use of old vessels. Even though, the risk of spills in 

regions with less stringent safety procedures or maritime inspection practices still exists. 

 

Table 1.1. Sources of oil pollution in marine environments a 

Source Oil industry Other Total 

Transportation    

Tanker operations  0.143   

Tanker accidents 0.110   

Dry docking  0.004   

Other shipping operations   0.229  

Other shipping accidents  0.018  

   0.504 

Fixed installations     

Offshore oil production 0.045   

Coastal refineries  0.091   

Thermal loading  0.027   

   0.163 

Other sources    

Industrial waste  0.181  

Municipal waste  0.635  

Urban runoff  0.109  

River runoff  0.036  

Atmospheric fallout  0.272  

Ocean dumping  0.018 1.251 

Natural inputs  0.227 0.227 

Biosynthesis    

    Marine phytoplankton 23,582   

    Atmospheric fallout 91-93,630   

 

a Values in million metric tonnes per year. From [2]. 
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Consumption of petroleum 

“From 1985 to 2000, global oil consumption increased from 9.3 to 11.7 million tonnes per 

day, an increase of more than 25 percent” [4]. Releases taking place during the consumption 

of petroleum either from cars, boats, marine vessels, or airplanes, contribute to the vast 

majority of petroleum introduced through human activity. In addition, activities on land 

contribute to the pollution of rivers and streams, which eventually empty to the sea. It was 

also found that land-based inputs are highest near urbanized areas and refinery production and 

that the threat of pollution from urban areas is expected to rise in the future.  

 

1.3. Crude oil composition  
The chemical composition of crude oils can vary tremendously from different producing 

regions, and even from within a particular formation. Crude oils consist of complex mixtures 

of hydrocarbons and non-hydrocarbons that range from small, volatile compounds to large, 

non-volatile ones. Thousands of different chemical compounds have been identified in crude 

oils. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-

ICR MS) has recently revealed that crude oil contains heteroatom-containing (N, O, S) 

organic components having more than 20000 distinct elemental compositions [5]. In general, 

petroleum components are generally classified into four classes: saturates, alkenes, aromatics, 

resins and asphaltenes (also called SARA analysis).  

 

Saturates, which represent the predominant class of hydrocarbons in most crude oils, consist 

of straight and branched chain alkanes (also called paraffins) and cycloalkanes (also called 

naphthenes). Saturates also include biomarker terpanes and steranes, which are branched 

cycloalkanes consisting of multiple condensed five- or six-carbon rings, and sesquiterpanes 

and diamondoids, which  are smaller cyclic biomarkers, that are used for the source 

identification of lighter petroleum products [6]. 

  

Alkenes, also known as olefins, are partially unsaturated hydrocarbons containing one or 

multiple double carbon-carbon bonds. Although these compounds are rare in crude oil, they 

may be present in some petroleum products and could have been formed during the refining 

process.  

 

Aromatics in petroleum include at least one benzene-ring hydrocarbons such as benzene, 

toluene, and ethylbenzene, and o-, m-, and p-xylene isomers and other alkyl-substituted 
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benzene compounds in addition to polycyclic aromatic compounds (PAHs), polycyclic 

aromatic sulfur heterocycles (PASHs) and other heterocycles which consist of at least two 

benzene rings.   

 

Polar compounds are those compounds containing nitrogen, oxygen, or sulfur atoms. Heavy 

oils generally contain more aromatic polar compounds. In the petroleum industry, the smaller 

polar compounds are called resins and the big ones are called asphaltenes. Asphaltenes are the 

oil constituents precipitated from oils and bitumen either by natural processes or in laboratory 

by addition of excess n-pentane or n-hexane and this depends on the solution properties of 

petroleum residues in various solvents [7]. 

 

In addition, crude oils contain widely many trace metals such as V, Ni, Fe, Al, Na, Ca and Cu 

in varying concentrations. 

 

1.4. Introduction of sulfur in crude oil 
The amount of sulfur in crude oils plays an important role in determining their prices. 

Moreover, sulfur compounds are the most abundant non-hydrocarbon constituents in 

petroleum. The sulfur content is in the range 0.5-3.0 % in most crudes, but is up to 8 % in the 

vacuum residue of heavy crude oils [8]. However, the incorporation of sulfur into crude oil 

has not been clearly understood until now, although many hypotheses have been proposed. 

All are collectively termed organic sulfur compounds. These hypotheses are based on 

biosynthesis and formation during early diagenesis. 

 

Most of the sulfur present in crude oils is organically bound sulfur while elemental sulfur and 

hydrogen sulfide usually represent a very minor portion of the total sulfur [9]. Some sulfur 

may be derived from amino acids in the original contributing organic matter in sediments 

[10]. However, most primarily sulfur in oils originates from early diagenetic reactions 

between the deposited organic matter and aqueous sulfide species such as hydrogen sulfide or 

polysulfides [11]. 

 

Sulfides are produced by sulfate-reducing bacteria, such as Desulfovibrio, primarily in highly 

reducing to anoxic marine sediments. Two sinks compete for sulfide in sediments: metals and 

organic matter. High- and low-sulfur crude oils are derived from high- and low-sulfur 
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kerogens, respectively [12]. In addition, biodegradation can lead to an increase in the sulfur 

content in oils by the preferential removal of saturated hydrocarbons.  

Sulfur compounds in crude oils are distributed over a wide range of molecular structures: 

aliphatic thiols, mono- and disulfides are sometimes present [13, 14], but a large amount of 

sulfur occurs in aromatic structures, especially as alkylated thiophene benzologues [15]. 

However, Schmid et al. [16] and Sinninghe Damsté et al. [17] have described the presence of 

long chain dialkylthiacyclopentanes in oils, while Payzant et al. [18] have identified terpenoid 

sulfides in petroleum. Moreover, Sinninghe Damsté et al. [17] and Valisolalao et al. [19] have 

tentatively identified steroid and hopanoid thiophenes in petroleum. Sinninghe Damsté et al. 

[20] have also cited the presence of various highly branched isoprenoid thiophenes in 

sediments and immature oils. These compounds appear to result from the selective 

incorporation of sulfur into isoprenoid alkenes during diagenesis. A few typical structures of 

both aliphatic and aromatic sulfur compounds are presented in Figure 1.2. 

 

S
R H                   

S
R1 R2                  SR1 R2  

      Thiol                                Sulfide                           2,6-Dialkylthiane 

 

S R2R1                 S                  S  
2,5-Dialkylthiophene          Benzo[b]thiophene           Dibenzo[b,d]thiophene 

 

             

S

                                 S  
      Benzo[b]naphtho[2,1-d]thiophene                   Phenanthro[4,5-bcd]thiophene 

 

Figure 1.2. Typical organic sulfur compounds found in crude oils. 
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1.5. Processes affecting the impact of oil releases 
Clark [3] stated that 92 % of the world´s water pollution by petroleum and petroleum products 

is directly related to human activities and one eighth of this is due to tanker accidents. In 

addition, the extent of contamination is dependent upon the rate of continuous input of 

petroleum into the environment as well as upon the rate at which the environment can clean 

itself. Although between five hundred thousand and one million tons of oil were released in 

the “Gulf war” spill in 1991 [21], the quantity of dissolved organic matter in the Persian Gulf 

had returned to its initial level one year after the spill [22]. This implies that oil oxidation and 

removal take place by efficient processes. Table 1.2 gives a list of major spills. 

 

Table 1.2. List of largest oil spills ordered by tonnes. One tonne of crude oil = 7.33 barrels 

(from [23]) 

 Spill / Tanker Spill place Year Oil spilled 

 ×103 (tonnes) 

 

Gulf War oil spill 

 

Persian Gulf 

 

1991 

 

780-1,500 

Ixtoc I oil well Gulf of Mexico 1979 454-480 

Atlantic Empress / Aegean Captain Trinidad and Tobago 1979 287 

Fergena valley Uzbekistan 1992 285 

Nowruz oil field Persian Gulf 1983 260 

ABT Summer Angola 1991 260 

Castillo de Bellver South Africa 1983 252 

Amoco Cadiz France 1978 223 

Haven tanker Italy 1991 144 

Odyssey Canada 1988 132 

Sea Star Gulf of Oman 1972 115 

Torrey Canyon United Kingdom 1967 80-119 

Irenes Serenade Greece 1980 100 

Urquiola Spain 1976 100 

Prestige Galicia, Spain 2002 63 

Exxon Valdez Alaska, USA 1989 37 

Jiyeh power station oil spill Lebanon 2006 20-30 
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Studies completed in the last 20 years showed that there is no correlation between the size of 

a release and its impact. The effects of a petroleum release depend on different factors such as 

the rate of release, the nature of the petroleum and the local physical and biological character 

of the exposed ecosystem. In addition, some petroleum components can be more toxic than 

others. For instance, polycyclic aromatic hydrocarbons are known to be among the toxic 

components of petroleum, and their initial concentration is an important factor in the impact 

of a given release. Thus, toxic compounds such as PAHs or other compounds present in crude 

oil or refined products can have adverse effects on biota even at very low concentrations.  

 

Oil or petroleum products spilled on water undergo changes in physical and chemical 

properties that are called “weathering.” Weathering processes occur at different rates but 

begin immediately after oil is released into the environment. Both weathering processes and 

their rates depend more on the type of oil than on the environmental conditions. Most 

weathering processes depend on the temperature and they often become very slow as the 

temperature approaches zero. 

 

Next, an overview of the different weathering processes acting on crude oil will be illustrated. 

 

1.5.1. Spreading  
After oil is spilled in the marine environment, it begins to spread out over the sea surface as a 

single slick. The speed of spreading is dependent to a great extent upon the viscosity of the 

oil. Low viscosity oils spread more quickly than high viscosity ones. Nevertheless, slicks 

quickly spread to cover large areas of the sea surface. After a few hours, the slick begins to 

break up and starts to form narrow bands because of winds, wave action and water turbulence. 

The factors that affect the rate at which the oil spreads include the temperature, water 

currents, tidal streams and wind speeds. The spreading and breaking up of the oil is more 

rapid when the environmental conditions become more severe.  

 

1.5.2. Dispersion  
All or part of a slick can be broken up into fragments and droplets of varying sizes by the 

action of waves and turbulence at the sea surface. The small droplets remain suspended in the 

sea water while the large ones tend to rise back to the surface, where they start to reform a 

slick or to spread out as a very thin film. At this stage, the oil has a greater surface area than 
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before dispersion occurred and hence remaind suspended in the water, which promotes other 

natural processes such as dissolution, biodegradation and sedimentation to occur.  

 

The speed at which oil disperses depends to a high extent on the nature of the oil and the sea 

state. The lighter the oil and the rougher the sea is, the more rapid the dispersion of the oil is.  

 

1.5.3. Evaporation 
In the first days after an oil spill, lighter components (low molecular weight components) of 

the oil evaporate to the atmosphere [24, 25]. In general, in temperate conditions, those 

components of the oil with a boiling point under 200 ºC tend to evaporate within the first 24 

hours. Evaporation is usually limited to molecules with less than about 15 carbon atoms [25, 

26], however, under high aeration in water, as happened in the spill from the OSSA II 

pipeline on the Bolivian Altiplano in January 2000, this evaporation can extend into 

molecules with >30 carbon atoms [27].  

 

The amount and speed of evaporation is highly dependent upon the volatility of the oil. Oil 

containing a high percentage of light and volatile compounds will evaporate more than that 

containing a large amount of heavier compounds. For example, petrol, kerosene, diesel oils 

and all light products evaporate almost completely in a few days while a heavy fuel oil will 

hardly undergo evaporation (Figure 1.3). It has also been found that light crude oils lose 75 % 

of their initial volume in the first few days of an oil spill, medium crudes lose 40 % while 

heavy oils lose less than 10 % of their volume due to evaporation [4]. Moreover, the rate of 

evaporation increases as the environmental conditions become more severe as in the case of 

rougher seas, high wind speeds and high temperatures.  

 

1.5.4. Emulsification 
Emulsification of crude oils is the process whereby sea water droplets become suspended in 

the oil. The emulsion thus formed is usually very viscous and more persistent than the original 

oil and is often called chocolate mousse because of its appearance. Due to the formation of 

these emulsions, the volume of pollutant increases between three and five times. This makes 

mechanical oil removal from the water surface more difficult and slows and delays other 

processes which would allow the oil to dissipate such as microbiological degradation and 

sediment penetration [29, 30]. Oils with a high asphaltene content (greater than 0.5 %) tend to 

form stable emulsions and may persist for many months after the oil spill while those oils 
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having a low content of asphaltenes are less likely to form emulsions and are more likely to 

disperse [31, 32]. 

 

 
 

Figure 1.3. Evaporation rates of different types of oil at 15 °C (adapted from [28]).  

 

1.5.5. Dissolution  
Dissolution is responsible for the loss of a small portion of oil, but it is still considered an 

important behaviour parameter for the soluble components of oil, especially the 

monoaromatic compounds. In addition, as the size and substitution of the compounds in a 

crude oil increases, their solubility decrease. On the other hand, aliphatic compounds have 

very low solubility in comparison to that of the aromatic ones [33]. 

 

1.5.6. Sinking and sedimentation 
Oil masses that are denser than water are transported to the bottom of the sea by a process 

called sinking. In general, very few crudes are dense enough or weather sufficiently, so that 

their residues will sink in the marine environment. Sinking usually occurs when the oil 

becomes adherent to particles of sediment or organic matter. Sinking can take place when oil 

stranded on sandy shorelines becomes mixed with sand and other sediments and then is 

washed off the beach back into the sea. In addition, residues formed after the combustion of 

oil can be sufficiently dense to sink.  
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The settling of suspended sediments, onto which sorption of oil has taken place, out of the 

water column and their accumulation on the seafloor is called sedimentation. Shallow waters 

are often the most suitable ones for sedimentation. 

 

1.5.7. Tar ball formation  
The fates of persistent oil residues include the shoreline stranding resulting from spills near to 

shore and the tar ball formation resulting from releases in offshore waters.  

 

After the various physical and chemical processes that floating oil can undergo following an 

oil spill, oil can coagulate into residues called tar balls. Tar balls can be as large as pancakes, 

or as small as coins. They usually consist of a solid outer crust surrounding a softer, less 

weathered interior. Tar balls are usually problematic as they can persist in the marine 

environment for a long time, can travel hundred of miles from the original oil spill site and 

can deposit on shorelines and along shipping routes [34-36].  

 

1.5.8. Biodegradation 
Sea water contains a wide range of micro-organisms that can partially or completely degrade 

oil to water soluble compounds and eventually to carbon dioxide and water. There are many 

types of micro-organisms that tend to degrade a particular group of compounds in crude oil. 

 

Bacteria and fungi, and to a lesser extent, heterotrophic phytoplankton, utilize hydrocarbons 

as a carbon source to produce energy, while subsequently degrading the long-chained 

molecules in a metabolic process called oxidative phosphorylation, or respiration [37]. 

Moreover, there are different types of microorganisms that use other metabolic pathways such 

as nitrate reduction and sulphate reduction to degrade hydrocarbons into carbon dioxide and 

water. However, a consortium of bacterial strains usually uses multiple metabolic pathways in 

order to degrade complex hydrocarbons such as branched alkanes and multicyclic compounds 

(polycyclic aromatic and aliphatic hydrocarbons) [38].   

 

The efficiency of biodegradation is affected by several factors including the amount of 

nutrients (nitrogen and phosphorus) in the water, the temperature and the concentration of 

oxygen present. Therefore, biodegradation usually takes place at oil-water interface where 

oxygen is available. Moreover, as a result of dispersion, the surface area of the oil increases 

and hence the area available for biodegradation also increases.  
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The rates of biodegradation depend on the ability of micro-organisms to get into contact with 

hydrocarbons and on the bacterial metabolic processes taking place within the cell. Atlas et al. 

[39] and Leahy et al. [40] reported that saturated alkanes are biodegraded faster than aromatic 

compounds and that branched alkanes, multi-ring and substituted aromatics and cyclic 

compounds are biodegraded after alkanes and smaller-sized aromatics. On the other hand, 

Prince [41] showed that polar petroleum compounds containing sulfur and nitrogen are the 

most resistant ones to microbial degradation.  

 

1.5.9. Combined processes 
The processes described previously are summarised in Figure 1.4. All come into play as soon 

as oil is spilled, although their relative importance varies with time. The processes of 

spreading, evaporation, dispersion, emulsification and dissolution are most important during 

the early stages of a spill whilst photo-oxidation, sedimentation and biodegradation are more 

important later on and determine the ultimate fate of the oil. 

 

1.5.10. Photochemical degradation 
Photo-oxidation is a major factor of crude oil removal from the environment and this was 

shown in studies of the Exxon Valdez where as much as 70 % of the crude was found to be 

photooxidized in the water or in the atmosphere [42]. The oxidized products resulting from 

the photochemical transformation have a big effect on the viscosity, the mousse formation and 

the physical properties of weathered petroleum. Moreover, photo-oxidation can lead to the 

destruction of existing toxic components, to the generation of new toxic components and to 

the formation of water soluble products.  

 

Photolysis plays an important role in the mousse formation that begins some time after an oil 

spill [43]. As crude oil films are exposed to sunlight, their interfacial tension rapidly decreases 

and chocolate mousse starts to form which lead to the stabilization of the water-in-oil 

emulsions [44-46]. It has been also reported that the formation of emulsions depends on the 

amount of asphaltene present and that this amount increases upon irradiation [44, 45, 47]. In 

addition, Desmaison et al. [48] suggested that an increase in emulsion viscosity occurs due to 

the structural organization of the asphaltenes.  
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Figure 1.4. Processes acting on spilled oil (from [49]). 
 

Moreover, the oil solubility has been shown to increase by the artificial or solar irradiation of 

oil films [45, 50]. This increase range from 32 to 295 ppm for a No. 2 fuel oil [51], from 4 to 

40 ppm for light crudes [52, 53], but is much lower for highly viscous crudes [54]. This 

increased solubility is due to the formation of aliphatic and aromatic polar compounds from 

all petroleum fractions such as ketones [55], alcohols [56], hydroperoxides [57-59], sulfoxides 

[60], phenols [58, 59] and carboxylic acids [53, 58, 59]. Therefore, the photochemical 

oxidation of petroleum and petroleum products is an important process in transferring the 

organic matter from the oil phase into the water column.  

 

As most crude petroleums absorb strongly in the ultraviolet and visible regions of the solar 

spectrum, photochemical processes can also lead to the thinning of the oil slick which occur 

by the increase in the area exposed to sunlight. To exemplify, the solar spectrum and the 

absorption spectrum of a Brazilian petroleum are shown in Figure 1.5. 

 

1.5.10.1. Types of photo-oxidation reactions 
The transformation of pollutants in the aquatic environment is due to a number of different 

photochemical processes. These processes are direct photolysis and indirect or “sensitized” 

photolysis. 
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Figure 1.5. Solar spectrum and absorbance of a typical crude petroleum (from [61]). 

 

1.5.10.1.1. Direct photolysis 

A compound that absorbs light energy and as a result, its chemical structure can be altered, 

undergoes direct photolysis. Compounds containing light-absorbing entities called 

chromophores such as alkenes or aromatic rings, with unsaturated carbon/carbon bonds or 

fatty acids with carbonyl groups, as well as nitrosamines, benzidines, chlorinated organics and 

some metal complexes are susceptible to direct photolysis [62].  

 

In order to photolyse any compound in the laboratory, the "right" experimental conditions 

shoud be applied. For instance, mercury-vapor lamps and xenon arc lamps are commonly 

used in laboratory experiments to approximate sunlight. However, because the light emitted 

from these sources contains wavelengths less than 290 nm, Pyrex filters are used to filter the 

light. In addition, a cooling system is usually utilized as these light sources generate heat. 

Moreover, when the compound to be irradiated is less soluble in water, a mixture of water and 

a polar solvent such as acetonitrile or methanol can be used [63]. 

 

1.5.10.1.2. Indirect phototolysis 

Compounds unable to undergo direct photolysis due to the absence of chromophores in their 

molecules may be photolyzed indirectly via sensitized photolysis or photo-oxidation [64]. 
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During indirect photolysis, another compound present in the environment, namely the 

photosensitizer (e.g., quinones, humic acid, flavins, as well as trace metals, nitrate, nitrite, and 

hydrogen peroxide) [64], absorbs light energy and then transfers it either indirectly via 

various reactive intermediates such as oxidants or directly to the compound of interest causing 

its structural alteration. Examples of oxidants commonly found in aquatic environments are 

the peroxy radical (RO·), hydroxy radical (HO·), singlet oxygen (1O2), ozone (O3), and triplet 

diradicals [65]. In addition, many dyes, pigments and aromatic hydrocarbons may act as 

sensitizers [66]. 

 

Photosensitizers have been used in different photo-oxidation studies. For instance, 

naphthalene derivatives have sensitized the oxidation of alkyl benzenes [67] and xanthone has 

been used in the photo-oxidation of hexadecane [68]. 

 

Anthraquinone, which has been found in sea water [69], has been used as a sensitizer in 

several studies. The water soluble fraction of gasoline was readily photodegraded in the 

presence of anthraquinone giving alcohols, aldehydes and ketones [70]. The photosensitized 

oxidation of aqueous solutions of n-tetradecane and petroleum samples gave formaldehyde, 

acetaldehyde and acetone [71]. Anthraquinone has also been used in the photodegradation of 

nonylbenzene [72], monoalkylated benzenes [73], pentadecane [74], nonlinear hydrocarbons 

[75, 76] and cycloalkanes [77]. 

  

1.5.10.2. Photochemical mechanisms and oil weathering 
In order that a molecule undergoes photochemical changes, irradiation of light in the UV–

visible range must occur within the system. In marine photochemistry, the source of radiation 

is sunlight. The sun emits visible light (400-800 nm) and infrared radiation in addition to 

ultraviolet (UV) radiation consisting of UV-A (320-400 nm) and UV-B (290-320 nm). The 

intensity of UV irradiation at the Earth's surface is dependent upon the season, time of day, 

latitude, thickness of the atmosphere and the ozone layer, altitude, and cloud cover.      

      

As soon as a molecule absorbs a photon, it transfers from the low-energy ground state to a 

higher energy electronically excited state (Figure 1.6) [78]. Almost all stable molecules are 

singlets having paired electrons in their ground states. The first excited state is also a singlet, 

however, most singlet excited states are short-lived species. Therefore, they lose their excess 

electronic energy either as thermal reconversion to the ground state, with emission of heat; or 



Introduction                                                                                                                   Chapter 1 

 16

as fluorescence (emission of a photon with lower energy than that of the exciting photon) and 

return to the singlet ground state; or as internal conversion (intersystem crossing)-

transformation of the singlet to a lower energy triplet excited state with unpaired electrons.  

 

 
 

Figure 1.6. Photochemical processes (from [78]). 

 

Molecules in the triplet excited states are known to have longer lifetimes than singlets. The 

excited triplet states of these molecules (donor) can collide with a different molecule in the 

ground state (acceptor) leading to the promotion of the acceptor to an excited state and the 

return of the donor molecule to the ground state. Compounds capable of this energy transfer 

are called photosensitizers. Because oxygen is readily available in natural waters, this energy 

can be transferred to oxygen molecules generating singlet oxygen, 1O2.  This formation has 

been demonstrated in the photo-oxidation study of dimethylnaphthalenes in which the authors 

have explained the formation of the photoproducts via singlet oxygen mechanism [57]. 

 

Molecules in the triplet state also may take part in photochemically promoted electron-

transfer reactions. For instance, the superoxide radical anion, O2
-., is formed through an 

electron transfer from a photoexcited molecule to molecular oxygen. In water, O2
-. is partly 

protonated to its conjugate acid, HOO. which can undergo disproportionation to oxygen and 

hydrogen peroxide (H2O2). 
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It has been reported that H2O2 forms in various natural-waters exposed to sunlight [65]. 

Hydrogen peroxide undergoes decomposition by light and trace metals such as iron to form 

the reactive hydroxyl radical (HO.). As the hydroxyl radical is a very powerful oxidizing 

species, it reacts very rapidly with most organic compounds and also with many inorganic 

ions. Moreover, an organic free radical can be produced from the reaction of HO. and an 

organic molecule which can then react quickly with nearby organic molecules or with oxygen. 

 

Photo-oxidation via free radicals has been suggested in model studies such as the sensitized 

oxidation of alkyl benzenes [67, 73], hexadecane [68], pentadecane [74], nonlinear 

hydrocarbons [75, 76] and cycloalkanes [77]. 

 

A combination of singlet oxygen and free radical induced photo-oxidation mechanisms have 

also been proposed to explain the products in some studies such as in the photolysis of 

thiophene oxides in which the photolysis has regenerated the thiophene and eliminated atomic 

oxygen [79] which has then abstracted hydrogen and formed free radicals. 

  

1.6. Desulfurization and photo-oxidation 
Sulfur-containing compounds in petroleum are receiving recently great attention throughout 

the world as they are converted into sulfur oxides by combustion and are thus one of the main 

sources of acid rain and air pollution. Current E.U. specifications for diesel fuel mandates that 

the sulfur concentration must be less than 50 ppm, but future values will certainly be much 

tightened. The easiest way to limit the amount of sulfur dioxide emitted into the air is to limit 

the amount of sulfur in fuel. In this regard, many approaches have been attempted including 

hydrodesulfurization (HDS), photochemical and bio-desulfurization methods. However, at 

present, hydrodesulfurization is the process currently used to remove sulfur from petroleum 

fractions.   

 

1.6.1. Hydrodesulfurization 
HDS is the process that uses hydrogen gas to reduce the sulfur in petroleum fractions to 

hydrogen sulfide, which can then be easily separated from the fuel. However, HDS is costly 

as the reaction is usually operated at high temperature (300-350 °C) and pressure (50-100 

atm) in addition to the use of sophisticated and expensive catalysts such as sulfided 

Co/Mo/Al2O3 or sulfided Ni/Mo/Al2O3 [80, 81]. 
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Although HDS is the current method used for the removal of sulfur, it is highly effective only 

for certain sulfur compounds as thiols, sulfides and disulfides [82, 83]. Alkylated 

benzothiophenes and dibenzothiophenes have been found to be more resistant to HDS 

treatment than mecaptans and sulfides, with alkyl substitutions in position 1, 4 and 6 on the 

DBT ring leading to higher resistance [84-86]. 

 

1.6.2. Photochemical desulfurization 
The high cost of HDS and its failure to remove certain sulfur compounds in fuels are driving 

the search for more efficient desulfurization methods including photochemical 

desulfurization.  

 

Photochemical desulfurization is a process that removes sulfur from fossil fuels by a 

photochemical reaction. It has been proposed as an attractive alternative to HDS as it has 

several advantages over the catalytic technique:  

(1) No catalysts are needed. 

(2) No hydrogen is required.  

(3) It is easy to operate and to control the reaction. 

(4) The process is energy-saving since the reaction occurs at room temperature and under 

atmospheric pressure. 

(5) The deep desulfurization of refractory sulfur compounds such as 4-

methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) as 

well as DBT may be feasible. 

 

In the early 1990s, Moza et al. [87] reported on the photodegradation of aromatic sulfur 

compounds dissolved in n-hexane and spread as a thin liquid film on water. Irradiation by a 

medium-pressure mercury lamp brought about the oxidation of the DBT to its sulfoxide, 

which then moved into the water phase.  

 

Moreover, Hirai et al. [88] investigated the desulfurization of DBT, 4-MDBT and 4,6-

DMDBT by a combination of photochemical reaction and liquid-liquid extraction using an 

organic/water two-phase system and this process was extended for benzothiophenes and alkyl 

sulfides [89]. DBTs, dissolved in a tetradecane solution, were photodecomposed by the use of 

a high-pressure mercury lamp and were removed to the water phase as sulfate anion at 

conditions of room temperature and atmospheric pressure. The order of reactivity for the 
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DBTs was DBT < 4-MDBT < 4,6-DMDBT, thus indicating a different tendency from that 

reported for the hydrodesulfurization method. However, the desulfurization yield of 

commercial light oil, was only 22 % following 30 h irradiation. This low yield was caused 

mainly by the depression of the photoreaction of DBT by the presence of naphthalene (NAP) 

in the light oil probably because of triplet energy transfer from photoexcited DBT to ground-

state NP. In order to overcome this problem, the desulfurization was improved by introducing 

benzophenone, a triplet photosensitizer, into the light oil and hydrogen peroxide into the 

water phase [90]. Hydrogen peroxide was found to be effective, since it acts as a weak 

oxidizing agent for the photoexcited DBT and to some extent interrupts the energy transfer 

from the excited DBT to the naphthalene. In these studies, the basic idea for desulfurization 

was the photodecomposition of sulfur-containing compounds in the light oil phase, followed 

by the transfer of the resultant oxidized compounds into the aqueous phase. Thus, Shiraishi et 

al. [91] achieved a decrease in sulfur content in the light oil from 0.2 wt % to less than 0.05 

wt % by 48 hours of photoirradiation using H2O2 and benzophenone. 

 

In addition, Shiraishi and Hirai [92] applied the previous photochemical process for the 

desulfurization of a light oil in the presence of benzophenone-modified silica gel as a 

heterogeneous triplet photosensitizer. By the use of this process, the sulfur content of light oil 

was reduced from 0.18 to less than 0.05 wt % by 60 hours of photoirradiation and the 

nitrogen-containing compounds present in light oil were removed simultaneously with the 

sulfur-containing compounds.    
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2. Stand of the research     
Large amounts of crude oil and petroleum products are introduced into the environment every 

year. As already described in chapter 1, physical processes like evaporation, dissolution and 

adsorption move the compounds from the site of introduction but only microbial and 

photochemical processes alter them chemically, ultimately leading to a mineralization and 

their removal from the environment. Although the polycyclic aromatic sulfur heterocycles 

represent an important part of the aromatic fraction of crude oils and in some cases are even 

more abundant than the polycyclic aromatic hydrocarbons [93], much attention was directed 

to the photo-oxidation of PAHs. Therefore, only very little is so far known about the photo-

oxidation of polycyclic aromatic sulfur heterocycles. This chapter will give an overview about 

the photo-oxidation of PASH compounds that were described in the literature together with 

their photoproducts. 

 

2.1. Photo-oxidation of benzo[b]thiophene 
Benzo[b]thiophene (BT) was selected for the first studies since it is the simplest PASH 

possible [94]. As BT has a fairly low boiling point (221 °C), it was expected that under oil-

spill conditions, it would fairly rapidly evaporate before substantial photo-oxidation occurs, as 

Lichtenthaler et al. [95] reported that compounds of boiling point below about 250 °C are 

rapidly lost through evaporation. In addition, as a model substance for alkylated derivatives, it 

could be studied without possible complications arising from the oxidation of alkyl groups. 

The photolysis was performed by Andersson and Bobinger [94] in a two-phase system 

consisting of water and a tetradecane solution of benzo[b]thiophene as a simulated oil matrix 

using a middle-pressure mercury lamp producing light mainly above 300 nm. The products of 

the photo-oxidation of BT were benzothiophene-2,3-quinone and benzonaphtho[2,1-

d]thiophene. This four-ring heterocycle is known to result if BT is irradiated in the solid state 

[96]. However, when the sample was irradiated for a long time, this product disappeared with 

the formation of a new photoproduct, which was identified as 2-sulfobenzoic acid. This was 

in analogy with the photochemical oxidation of aromatic compounds like phenanthrene which 

are known to yield quinones [97] and as quinones are frequently used as photosensitizers, this 

product might thus have acted to increase the efficiency of photo-oxidation. Surprisingly, 

products from the oxidation of the sulfur atom, such as the sulfoxide or the sulfone were not 

observed. The photo-oxidation pathway of BT is shown in Figure 2.1. 
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Figure 2.1. Photo-oxidation pathway of benzo[b]thiophene (from [94]). 

 

Shiraishi et al. [98] have identified the acidic products of BTs and DBTs produced during a 

new photochemical desulfurization process employing high-pressure mercury lamp and two 

phase liquid-liquid extraction system. The authors reported that BT was first converted to 

benzo[b]thiophene-2,3-dione which undergoes hydrolysis, oxygenation on the sulfur atom 

and loss of CO leading in the end to the formation of 2-sulfobenzoic acid, which is in 

agreement with Andersson and Bobinger results [94]. 

 

2.2. Photo-oxidation of monomethylbenzo[b]thiophenes 
Bobinger and Andersson [99, 100] have studied the photo-oxidation of different 

monomethylated benzo[b]thiophenes. They have carried out the photochemical oxidations in 

aqueous solutions with 20 % methanol added in order to achieve a sufficiently high 

concentration of the benzo[b]thiophenes ascertaining that in preliminary experiments the 

methanol did not influence the product distribution. 

 

2.2.1. Photo-oxidation of 2-methylbenzo[b]thiophene 
The major product from the photo-oxidation of 2-methylbenzo[b]thiophene was 2-

sulfobenzoic acid with benzo[b]thiophene-2-carbaldehyde and benzo[b]thiophene-2-

carboxylic acid as minor products. Traces of benzenesulfonic acid were also found. A 

thorough search among the minor products revealed that the probable precursor of the 

aldehyde is the corresponding alcohol, 2-hydroxymethylbenzo[b]thiophene. In addition, 2,3-

diformylbenzo[b]thiophene was identified as a minor product. Since this compound contains 

one carbon atom more than the starting compound, Andersson and Bobinger [100] presumed 

that it was formed through the cleavage of a photochemical dimer. 
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2.2.2. Photo-oxidation of 3-methylbenzo[b]thiophene 
3-Formylbenzo[b]thiophene emerged as the major product from the photo-oxidation of 3-

methylbenzo[b]thiophene in the neutral fraction (Figure 2.2) with very low amounts of 

hydroxylated methylbenzo[b]thiophene. Again, 2-sulfobenzoic acid was one of the major 

products in the acidic fraction with the detection of a new product, 2-acetylbenzenesulfonic 

acid.  The minor products found were benzenesulfonic acid and benzo[b]thiophene-2,3-

dicarboxylic acid, the latter resulting from the photochemical cleavage of a putative dimer as 

was the case for 2,3-diformylbenzo[b]thiophene from 2-methylbenzo[b]thiophene. 

 

 
 

Figure 2.2. Degradation pathway of 3-methylbenzo[b]thiophene (from [99]). 

 

Shiraishi et al. [98] also obtained 2-sulfobenzoic acid, benzenesulfonic acid and 2-

acetylbenzenesulfonic acid as acidic products from the photochemical desulfurization of 3-

methyl BT in addition to traces of 3-formylbenzo[b]thiophene. 

 

2.2.3. Photo-oxidation of 4-methylbenzo[b]thiophene 
The identified products in the neutral fraction were 4-methylbenzo[b]thiophene-2,3-quinone, 

4-formylbenzo[b]thiophene, and 3-acetyl-2-formylthiophene which arised through the 

oxidative ring opening of the benzo ring and retention of the 4-methyl group, whereas those 

identified in the acidic fraction were 2-methyl-6-sulfobenzoic acid, 2-formyl-6-sulfobenzoic 

acid and 3-sulfophthalic acid. 

 

2.2.4. Photo-oxidation of 5-methylbenzo[b]thiophene 
The neutral products were dominated by 5-methylbenzo[b]thiophene-2,3-quinone with small 

amounts of thiophenecarboxylic acid and 5-formylbenzo[b]thiophene, while 5-methyl-2-
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sulfobenzoic acid, 5-methyl-2-sulfobenzaldehyde, 4-methylbenzenesulfonic acid and 4-

sulfoisophthalic acid, formed through oxidation of the 5-methyl group to a carboxylic acid, 

were among the acidic products obtained. Moreover, the acidic fraction contained thiophene-

2,3-dicarboxylic acid, showing the possibility of a benzo ring cleavage, and 5-

methylbenzo[b]thiophene-2,3-dicarboxylic acid. 

 

2.2.5. Photo-oxidation of 6-methylbenzo[b]thiophene 
The neutral products found were 6-methylbenzo[b]thiophene-2,3-quinone and 6-

formylbenzo[b]thiophene in agreement with several of the other isomers and the acidic 

products were 4-methyl-6-sulfobenzoic acid and 3-toluenesulfonic acid. 

 

2.2.6. Photo-oxidation of 7-methylbenzo[b]thiophene 
The photo-oxidation of this compound led to the formation of 7-formylbenzo[b]thiophene and 

2-acetyl-3-formylthiophene as neutral products, and 3-methyl-2-sulfobenzoic acid, 2-

toluenesulfonic acid, thiophene-2,3-dicarboxylic acid, 2-formyl-6-methylbenzenesulfonic acid 

and 3-formyl-2-sulfobenzoic acid as acidic products.  

 

2.3. Photo-oxidation of 2,3-dimethylbenzo[b]thiophene 
Shiraishi et al. [98] showed that the photochemical desulfurization of 2,3-dimethyl BT gave 

the same acidic products obtained in case of 3-methyl BT, i.e. 2-sulfobenzoic acid, 

benzenesulfonic acid and 2-acetylbenzenesulfonic acid. 

 

2.4. Photo-oxidation of dibenzo[b]thiophene 
Bobinger et al. [101] investigated the photo-oxidation of dibenzo[b]thiophene in a mixture of 

methanol/water (1:2) using a mercury middle pressure lamp. In the same time, Traulsen et al. 

[102] also studied the photodegradation of dibenzo[b]thiophene by exposing a quartz vessel 

containing a solution of dibenzo[b]thiophene dissolved in membrane-filtered natural seawater 

to sunlight. The major products were 2-sulfobenzoic acid, formed through the opening of both 

a benzene and the thiophene ring, and benzothiophene-2,3-dicarboxylic acid formed through 

the oxidation of one of the benzo rings. A photochemical decarboxylation of the latter 

compound led to the formation of benzothiophene-2- and -3-carboxylic acid. Small amounts 

of 2-hydroxybiphenyl-2´-sulfinic acid-δ-sultine and thiophenetetracarboxylic acid were found 

together with an isomer of thiophenetricarboxylic acid and an isomer of thiophene-
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dicarboxylic acid. As a consequence of the formation of sulfonic acids, it was observed that 

the pH value of the reaction solution droped to quite low values. 

 

However, during the photochemical desulfurization of DBT, only six acidic products were 

obtained including DBT sulfoxide, DBT sulfone, 2-sulfobenzoic acid, benzo[b]thiophene-2,3-

dicarboxylic acid, dibenz[1,2-c,e]oxathiin-6-oxide and dibenz[1,2-c,e]oxathiin-6,6-dioxide 

[98]. 

 

Moreover, Shemer and Linden [103] carried out the photodegradation of dibenzothiophene as 

a single compound and in a mixture with fluorene and dibenzofuran using monochromatic 

low pressure (LP, 253 nm) and polychromatic medium pressure (200-400 nm) UV sources 

with and without the addition of hydrogen peroxide in natural and laboratory water. They 

observed a synergistic effect during direct photolysis using LP-UV and H2O2 of the mixture 

as compared to the photodegradation of a single component in an aqueous solution. 

Furthermore, natural water enhanced the direct photolysis compared to laboratory buffered 

water, whereas degradation of the compounds in the natural water was inhibited using the 

UV/H2O2 process. However, the authors were obviously interested in the kinetics and 

quantum yields of the compounds without studying the products formed. 

 

2.5. Photo-oxidation of 4-methyldibenzo[b]thiophene 
As 4-MDBT and 4,6-DMDBT are known to be the most difficult compounds to be 

desulfurized [84, 85], they have attracted Shiraishi et al. [98] to study their photochemical 

desulfurization. From the desulfurization process, Shiraishi et al. obtained four photoproducts 

which are 3-methyl-2-sulfobenzoic acid, 2-sulfobenzoic acid, 4-methyldibenzo[b]thiophene 

sulfone and 7-methylbenzo[b]thiophene-2,3-dicarboxylic acid. 

 

2.6. Photo-oxidation of 4,6-dimethyldibenzo[b]thiophene 
The photo-oxidation of dibenzothiophene and 4,6-dimethyldibenzothiophene sensitized by N-

ethylquinolinium tetrafluoroborate (NMQ+ BF4
-) in oxygen-saturated acetonitrile solution was 

studied by Che et al. [104] using a 100-W mercury lamp. The oxidized products reported 

were predominantly composed of the corresponding sulfoxides and sulfones, which were 

produced via photoinduced electron transfer from the substrates to the excited singlet state of 

NMQ+.  
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In addition, the same previous products were obtained when DBT and 4,6-DMDBT were 

irradiated with visible light in O2-saturated acetonitrile solutions in the presence of either 2-

(4-methoxyphenyl)-4,6-diphenylpyrylium tetrafluoroborate or 10-methylacridine hexafluoro-

phosphate as sensitizers [105]. 

 

However, the photochemical oxidation of 4,6-DMDBT led to the production of two 

nondesulfurized photoproducts, namely 3-methyl-2-sulfobenzoic acid and 4,6-DMDBT 

sulfone [98]. 

 

2.7. Summary 
It could be concluded by investigating the photoproducts of BT, alkylated BTs, DBT and 

alkylated DBTs that there are three possible pathways for the photo-oxidation of these 

compounds. One pathway involves the oxidation of the methyl substituent(s) into an alcohol, 

an aldehyde and finally into a carboxylic group. Another pathway leads via opening of a 

benzene ring to the oxidation of the carbon atoms at the ring junction with thiophene and the 

formation of 2,3-thiophenedicarboxylic acid in case of BTs. Opening of both benzene rings in 

case of DBTs gives thiophenetetracarboxylic acid. The opening of the thiophene ring was also 

demonstrated by the detection of 2-sulfobenzoic acid in case of BT. The same product was 

obtained from DBT through the cleavage of both the benzene and thiophene rings. Finally, a 

minor pathway was also observed involving the oxidation of the sulfur atom in DBT giving 

the corresponding sulfoxide and sulfone. In addition, some products such as 2,3-

diformylbenzothiophene were detected that seem to be derived from initial photodimers. 
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3. Analytical techniques for the characterization of polar 

and non-polar photoproducts of polycyclic aromatic 

sulfur heterocycles 
The complexity of petroleum necessitates the utilization of a variety of chromatographic 

techniques to reduce its complexity by separating the sample into simpler fractions. 

Afterwards, these fractions can be photo-oxidized and the photoproducts of the most toxic 

fraction can be characterized e.g. by spectroscopic methods. Thus, this chapter gives an 

overview of the different analytical techniques applied in this work. 

 

3.1. Liquid chromatography 
3.1.1. Group separation into saturates, aromatics, resins and asphaltenes 

(SARA) 
The initial and most common step in petroleum analysis of distilled fractions is the group 

separation of petroleum fractions into saturates, aromatics, resins and asphaltenes. 

Asphaltenes, highest molecular weight matter and insoluble in the lower n-alkanes, are 

removed by precipitation [106]. Then the saturate, aromatic, and resin (polar compounds) 

fractions can be separated on chromatographic columns packed with silica and/or alumina by 

stepwise elution with solvents of increasing polarity. 

 

3.1.2. Group separation into saturates, monoaromatics and polyaromatics  
In order to separate alkylbenzenes from the polyaromatic compounds, an alumina column was 

used with different mixtures of pentane and dichloromethane. The crude oil can be separated 

into an aliphatic, a one-ring aromatic and a polyaromatic fraction in one step on alumina 

column by eluting the aliphatics with pentane, the alkylbenzenes with a 

pentane/dichloromethane (50:l) mixture and the polyaromatic compounds with 

pentane/dichloromethane (3:l) mixture [107].  

 

3.2. High performance liquid chromatography (HPLC) 
3.2.1. Separation of the aromatic fraction into PAHs and PASHs 
As the sulfur atom introduces an element of asymmetry into a PASH molecule and hence lead 

to the presence of a larger number of parent systems among PASHs than among PAHs [93], 

this characteristic can thus be exploited by using a suitable effective chromatographic phase. 
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Previous studies found that some sulfur aromatics are retained on a stationary phase 

containing palladium ions in normal-phase liquid chromatography [108]. This principle was 

improved using a bonded stationary phase which prevents slow loss (bleeding) of the Pd-

metal center by complexation with silica-bonded 2-aminocyclopentene-1-dithiocarboxylic 

acid (ACDA) [109]. By using gas chromatography with a sulfur-selective detector, it has been 

shown previously that this method can be applied to the aromatic compounds in low boiling 

materials like diesel fuel. They are completely separated into a fraction 1 which only contains 

hydrocarbons and, after an increase in eluent polarity, a fraction 2 that only contains PASHs 

[110]. Therefore, the polyaromatic fraction of crude oil was further fractionated onto Pd(II)-

ACDA stationary phase into polycyclic aromatic hydrocarbons and polycyclic aromatic sulfur 

heterocycles according to the number of condensed aromatic rings in the normal-phase mode 

[110]. 

 

3.2.2. Separation of PASHs according to the number of rings 
Cyclodextrin phases have been extensively used for a long time in the separation of 

enantiomers [111]. However, the separation of polycyclic aromatic sulfur heterocycles 

according to their number of aromatic double bonds was recently accomplished on a ß-

cyclodextrin stationary phase [112]. As cyclodextrins are cyclic oligoglucoses and as the ß-

phase consists of seven glucose units in a ring with the hydroxy groups pointing outwards, it 

is assumed that the interaction between the solutes and the phase will take place through the 

hydroxyl groups on the outer surface of the cyclodextrin when the mobile phase used is 

cyclohexane. This interaction may resemble that taking place between PAHs and diol phases 

[113]. Hence, a ß-cyclodextrin phase was used in this work for the separation of PASHs into 

two-ring fraction (benzothiophenes), three-ring fraction (dibenzothiophenes) and higher-ring 

fraction. 

 

3.3. Photo-oxidation apparatus 
In order to simulate the sunlight irradiation at the surface of the earth, a mercury middle 

pressure lamp equipped with a water cooling system (TQ150, 250 W, Heraeus, Germany) was 

used for the photo-oxidation experiments. It emits radiation in the 250-600 nm region. In 

addition, the different fractions of crude oil to be photo-oxidized were added to 100 ml water 

solution and were placed in 100 ml DURAN® glass measuring flasks to cut off all 

wavelengths below 300 nm to simulate sunlight. Moreover, all the flasks were covered to 

prevent vaporization and to maximize the photolysis yields. 



Analytical techniques                                                                                                    Chapter 3 

 28

3.4. Liquid-liquid extraction 
Liquid-liquid extraction of organic compounds has been an effective method for 

concentrating trace compounds and for removing interfering components from environmental 

samples for a long time. For extraction, the sample is distributed between pairs of immiscible 

liquids in which the analyte and its matrix have different solubilities. Thus, certain analytes in 

water can be transformed directly into an organic solvent which is not miscible with water, 

such as cyclohexane or dichloromethane. A selected solvent or mixture of two solvents may 

be used for extraction, provided the extraction is at least 80 % efficient. The distribution of a 

compound between two immiscible liquid phases can be expressed in terms of its partition 

coefficient. For some systems, the partition coefficient may be made more favorable by 

adjusting the pH to prevent ionization of acids or bases, by forming ion pairs with ionizable 

solutes, by forming hydrophobic complexes with metal ions or by adding neutral salts to the 

aqueous phase to reduce the solubility of the analyte. Solvent extraction of aqueous solutions 

by manipulating the pH is widely used to fractionate samples into neutral, basic, weakly 

acidic and strongly acidic fractions [114]. 

 

After the photo-oxidation of the aliphatic, monoaromatic, polyaromatic, PAH and PASH 

fractions in aqueous solutions, polar and non-polar photoproducts are found. In order either to 

separate the polar products from the non-polar ones to perform the toxicity tests or to try to 

identify these products by their injection on gas chromatography with flame ionization 

detector (GC-FID) or gas chromatography coupled to mass spectrometry (GC-MS), liquid-

liquid extraction was used to extract them from the aqueous solutions. First, the non-polar 

compounds were extracted into dichloromethane after making the aqueous phase basic (pH ~ 

11). Then the the water solution was acidified by adding concentrated HCl to extract the 

carboxylic acids produced from the photo-oxidation of PASHs from water solutions using 

dichloromethane. However, because of the strong acidity of sulfonic acids, also produced 

from the photo-oxidation of PASHs, no solvent was able to extract them from the aqueous 

solutions. Hence, sulfonic acids were obtained here by the evaporation of the aqueous 

solution of the photo-oxidized products of PASHs remaining after the extraction of the 

carboxylic acids on the rotary evaporator. 

 

3.5. Derivatization 
Derivatization techniques include procedures in which the analyte chemical structure is 

changed using various derivatizing agents to enhance detectability or improve separation 
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efficiency. Derivatization is also employed to improve the limit of detection of an analytical 

procedure. In addition, the separation of the analytes is often easier to achieve not only 

because the reaction is selective and the formed derivatives may be detected selectively but 

also the derivatization can neutralize the activity of polar functional groups. Among other 

advantages, derivatization often improves the thermostability of thermally labile compounds 

and increases the volatility of low volatile compounds. Therefore, in order to identify the 

polar photoproducts (carboxylic acids) of PASHs, they were first subjected to silylation and 

then injected on GC-MS. 

 

3.6. Gas chromatography 
GC-MS is currently the most frequently used technique for determining trace organic 

compounds in environmental samples. Therefore, the different fractions of crude oil, after 

their separation by liquid chromatography, were injected onto GC-FID and GC-MS for the 

screening and identification of individual compounds.  

 

3.7. Mass spectrometry 
Quadrupole mass spectrometers with their ability to provide different options, the product ion, 

the parent ion and the neutral loss mode together with the high resolution time of flight mass 

spectrometers were used for the detection and identification of unknown polar photoproducts. 

In this work, carboxylic acids were detected first by electrospray ionization mass 

spectrometry (ESI-MS) in the negative mode by a loss of 44 amu [M-CO2]- from the parent 

ions, then after silylation, were identified by GC-MS. Because of the strong acidity of 

sulfonic acids, their detection was performed by ESI-MS in the negative ion mode by a loss of 

80 amu [M-SO3]- from the parent anions. Afterwards, they were analyzed by time of flight-

mass spectrometry (TOF-MS) for the identification of the different acids as this technique 

allows the determination of the molecular formula of unknown compounds. 

 

As the polycyclic aromatic sulfur heterocycles are not only non-ionic, but also non-polar, they 

can not be ionized in ESI. Hence, after the photo-oxidation and extraction of the non-reacted 

PASHs from the aqueous solutions, they were subjected to methylation and then analysis by 

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). 
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4. Phototoxicity 
Recent environmental research has focused on the toxicity to aquatic organisms caused by the 

concurrent exposure to natural solar radiation and environmental contaminants. Exposure of 

living organisms to natural ultraviolet radiation alone, especially wavelengths in the UV-B 

range, was found to cause damage at the molecular, cellular and organismal levels [115]. 

However, the exposure of organisms to UV and specific contaminants can have more severe 

consequences [116, 117-123]. In addition, the increase in the levels of ultraviolet radiation 

reaching the earth due to ozone depletion will also increase the interactions of natural solar 

radiation and environmental contaminants and can lead to severe ecological effects [124-126]. 

 

In this chapter, an overview will be given on the types of toxicity tests, the different classes of 

pollutants, the phototoxicity types and experiments performed on different compounds and 

the toxicity-based fractionation methodology. 

 

4.1. Definition of toxicity 
Toxicity refers to the potential of a substance to produce an adverse or harmful effect on a 

living organism. A toxicant is an agent that can produce an adverse effect in a biological 

system, by either damaging its structure or function or by causing death. The adverse response 

may be expressed as abnormal mortality, reproduction or growth. 

 

4.2. Toxicity tests 
Toxicity tests determine the level of toxicity, if any, present in a chemical and the duration of 

exposure required for the toxicity to be expressed as adverse effects.  Organisms are exposed 

in test chambers to various concentrations of the chemical. The toxicity effects, such as 

mortality and changes in reproduction are evaluated by comparing those organisms exposed 

to different dilutions of the chemical with other organisms (controls) exposed only to non-

toxic dilution water. 

 

4.3. Types of toxicity tests 
4.3.1. Acute toxicity (short-term testing) 
Acute toxicity tests are short-term tests designed to measure the effects of pollutants on 

species during a short portion of their life span. The tests typically running between 48 and 96 

hours, and usually measure the effects of pollutants on the survival of a species. The results of 
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these tests are often reported as an ‘EC50’, which is the effective concentration of a test 

sample that causes a 50 % reduction in survival.  

 

4.3.2. Chronic toxicity (long-term testing) 
In chronic tests, the organism is exposed to a chemical for a long time relative to its lifetime. 

Effects on growth, reproduction and survival are then investigated. As young organisms are 

more sensitive to chemicals than older ones, the tests usually start with very young organisms 

which are exposed to a chemical for as long a period of time as is practical. The tests often 

continue until reproduction begins as reproduction is generally a sensitive endpoint. In all of 

these tests, the health of the treated organisms is compared with that of control organisms. 

Except for the presence of the chemical, both the treated and control organisms are treated the 

same. As long as the exposed organisms can survive, grow and reproduce as well as or better 

than the control group, then the chemical is not harming them. In addition, chronic tests are 

used for low-level pollutants and high-risk situations.  

 

4.4. Suitable organisms for toxicity tests 
Species or life stages that are especially sensitive to pollutants are ideal for toxicity testing. 

For example, the early developmental stages of marine organisms are more sensitive than 

their adult equivalents. Because environmental stresses affecting larval development can have 

potentially serious consequences for the population and ecosystem, these early life stages are 

very useful for identifying harmful environmental effects. It also helps if the test organism has 

a wide geographic distribution, is an important part of the ecosystem, is recreationally, 

economically, or culturally significant (or all of these), and can be collected from the field 

throughout the year or maintained under laboratory conditions.  

 

4.5. Classification of environmental pollutants 
It has been long known that chemicals affecting an organism in the same way have the same 

“mode of action”. However, it was not known which chemicals have the same mode of action, 

or even how many modes of action exist.  

 

Hermens [127] have used quantitative structure-activity relationship studies to estimate the 

acute aquatic toxicity of chemicals by classifying them into four classes. These classes are:  

inert chemicals (baseline toxicity), less inert chemicals, reactive chemicals and specifically 

acting chemicals.  
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Inert chemicals 

Chemicals that are not reactive and do not interact with specific receptors in an organism are 

called inert chemicals. They cause narcosis to the living organism, which is entirely 

dependent on the hydrophobicity of the chemical. Hence, in the absence of other modes of 

action, the toxicity of the chemical will increase with the increase in its hydrophobicity. This 

type of toxicity is called "baseline" toxicity or minimum toxicity.  

 

Less inert chemicals 

These are chemicals that possess hydrogen bond donor acidity, such as phenols and anilines 

[128]. Their mode of action is called "polar narcosis" [129] which is slightly more toxic than 

the baseline toxicity.  

 

Reactive chemicals 

Reactive chemicals act by different modes of action and thus have higher toxicity in 

comparison to baseline toxicity. This increase in their toxicity is due to that these chemicals 

react unselectively with certain chemical structures (e.g. epoxides, which react with 

sulfhydryl groups of cysteine residues of peptides), or chemicals that are metabolized into 

more toxic species [130, 131].  

 

Specifically acting chemicals 

These chemicals exhibit their toxicity by their interaction with specific receptor molecules, 

such as organic phosphorus esters [132]. 

 

In addition, recently, Verhaar et al. [133] classified the chemicals into one of the previous 

classes according to their structural characteristics. A chemical may belong to one of the 

above mentioned classes only when it can fulfil the following conditions: the compound 

should consist of carbon, hydrogen, nitrogen, oxygen, sulfur and/or halogens (excluding 

iodine), have a log Kow (Log octanol-water partitioning coefficient) that lies between 0 and 6 

and have a molecular mass of not more than 600 Daltons [134]. The classification of Verhaar 

et al. is as follows: 

 

Class 1-type compounds (Narcosis or Baseline Toxicity) 

This class includes: 

- acyclic compounds not containing halogen at ß-position from unsaturations  
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- monocyclic compounds substituted with halogens.  

- monocyclic compounds that are unsubstituted or substituted with acyclic structures 

containing only carbon and hydrogen atoms. 

- polycyclic compounds that are unsubstituted or substituted with acyclic structures 

containing only carbon and hydrogen atoms. 

- linear ethers or monocyclic mono-ethers, but not epoxides or peroxides. 

- aliphatic alcohols, but not allylic alcohols. 

- alcohols with aromatic moieties, but not phenols or benzylic alcohols. 

- ketones, but not α,ß-unsaturated ketones. 

- aliphatic secondary or tertiary amines. 

- halogenated compounds, but not α or ß halogen-substituted compounds.  

 

Class 2-type compounds (Less inert compounds) 

These compounds are: 

- non- and weakly acidic phenols;  

- anilines with one nitro substituent and/or one to three chlorine substituents, and/or 

alkyl substituents;  

- mononitroaromatics with one or two chlorine substituents and/or alkyl substituents; 

primary alkylamines and pyridines with one or two chlorine substituents.  

 

Class 3-type compounds (Unspecific reactivity) 

Compounds belonging to this class include: 

- compounds with a good leaving group at an α-position of a carbon-carbon double or 

triple bond. 

- compounds with a good leaving group at an α-position of an aromatic ring. 

- other compounds with a good leaving group at an α-position of a double or triple bond 

fragment. 

- compounds containing an epoxide or azaridine function. 

- compounds containing carbonyl, nitrile, amide, nitro or sulfone group at an α-position 

of a double or triple bond. 

- compounds with a single, double or triple nitrogen-nitrogen linkage. 

- activated nitriles , e.g. α-hydroxynitriles or allylic nitriles. 
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- acid anhydrides, lactones, acid halides, carbamoylhalides, ketenes, aldehydes, 

isocyanates, thiocyanates, isothiocyanates, disulphides, sulfonic esters, sulphuric 

esters, cyclic sulfonic/sulphuric esters, α-haloethers and ß-haloethers. 

 

Class 4-type compounds (Acting by a specific mechanism) 

Examples of these compounds are dichloro-diphenyl-trichloroethane (DDT) and analogues, 

dithiocarbamates, organotin compounds and organophosphorothionate esters.  

 

Compounds that do not belong to one of the previous four classes are termed “not possible to 

classify according to these rules”.  

 

4.6. Types of phototoxicity 
When determining the toxicity of contaminants in the environment, it is crucial to consider 

the effect of solar radiation in order to avoid an underestimation of their toxicity. The 

photomediated toxicity of environmental contaminants can be expressed through two 

mechanisms: photomodification (direct photo-oxidation) and photosensitization (indirect 

photosensitized oxidation) [135]. Photosensitization may occur when the organisms 

bioaccumulate photoactive chemicals and the toxic effects are then manifested upon exposure 

of the organisms to solar radiation [121, 136, 137]. On the other hand, phototoxicity may 

result from photomodification if the dissolved chemicals are photochemically transformed to 

oxidized compounds of higher toxicity (photoproducts) and subsequently absorbed by the 

organisms. 

 

The extent of photomodification of contaminants can be a function of several variables, 

including photo-oxidation rate [123], amount of the contaminant irradiated and the volume 

and mixing characteristics of the surface water. 

 

Generally, investigations of the photomediated toxicity of petroleum have focused on a few 

nonalkylated PAHs such as anthracene, however, other petroleum components such as 

heterocyclic aromatics may also contribute to the photomediated toxicity. In contrast to 

nonalkylated parent compounds, the alkylated forms of PAHs and other compounds are 

predominant in crude oils, refined petroleum products and their water accommodated 

fractions (WAFs).  
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4.7. Phototoxicity of single compounds 
Because the photoproducts are more water soluble than the parent compounds, they are 

available in higher concentrations to the organisms in comparison to the the parent ones. This 

presents a great toxic risk because oxidized products are known to be more reactive and 

biologically damaging than their parent compounds [123, 138].  

 

To evaluate the potential hazards of the photomodified compounds in petroleum, the toxicity 

of the photoproducts of some PAHs was determined as examples and compared sometimes 

with the toxicity of the PAH itself. 

 

McConkey et al. [139] have exposed the marine bacteria Photobacterium phosphoreum and 

the aquatic plant Lemna gibba (duckweed) to solutions of phenanthrene (PHE) and its 

primary photoproduct 9,10-phenanthrenequinone (PHEQ). They found that for both 

Photobacterium phosphoreum and Lemna gibba, PHEQ was much more toxic than PHE.  
 

This is in agreement with the results of Xie et al. [140] who also determined the toxicity of 

PHE and PHEQ, however, using Daphnia magna in presence and absence of copper and 

found that PHEQ was the more toxic of the two compounds.  

 

To stress the role of photomodification, Lampi et al. [141] have tested the toxicity of 14 PAH 

photoproducts to Daphnia magna and observed that most of them were highly toxic. The 

most toxic compounds tested were two photoproducts of benzo[a]pyrene, namely 1,6- and 

3,6-benzo[a]pyrenequinone followed by benzo[a]anthraquinone.   

 

In order to assess the photoinduced toxicity of three PAHs, Ren et al. [123] exposed Lemna 

gibba to fluoranthene (FLA), pyrene (PYR) and naphthalene (NAP) solutions after their 

irradiation with UV light. They observed that the rates of photomodification of the three 

PAHs were rapid and that the photomodified PAHs were more toxic than the parent 

compounds.  

 

Anthracene (ANT), benzo[a]pyrene (BAP), FLA, PHE, and PYR were photomodified by 

natural sunlight and the toxicity of the photoproducts were tested on the duckweed Lemna 

gibba [142]. After their photomodification in sunlight, the PAHs were incubated with the 

plants and the toxicity expressed over a period of 7 and 20 days was determined. The 
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mixtures of photomodified products derived from each PAH showed the following order of 

decreasing toxicity: PYR = FLA> PHE> ANT> BAP.  

 

Mallakin et al. [143] identified the photo-oxidation products of ANT and assessed the toxicity 

of some selected photoproducts, prevalent among these were anthraquinone (ATQ) and 

hydroxy-anthraquinones. The toxicity of eight of these photoproducts (ATQ, 1-hydroxyATQ, 

2-hydroxyATQ, 1,2-dihydroxyATQ, 1,4-dihydroxyATQ, 1,5-dihydroxyATQ, 1,8-

dihydroxyATQ, 2,6-dihydroxyATQ) with four other structurally related ones (1,3-

dihydroxyATQ, 1,2,4-trihydroxyATQ, 1,2,5,8-tetrahydroxyATQ and 1,2,10-trihydroxyATQ) 

was tested based on the growth inhibition of the duckweed Lemna gibba. All but one (2,6-

dihydroxyATQ) of the compounds tested were found to be toxic showing that the resultant 

photoproducts were more toxic than the parent compounds. 

 

In a separate experiment, Mallakin et al. [144] also demonstrated that the photo-oxidation 

products of ANT caused the inhibition of the photosynthetic activity and the electron 

transport in Lemna gibba.  

 

Huang et al. [138] investigated the photoinduced toxicity of ANT, PHE and BAP to Lemna 

gibba, in which the inhibition of growth and extent of chlorosis were the toxicity end points 

and found that the photomodified PAHs were hazardous to the duckweed.  

 

Ohe [145] studied the mutagenicity of the photoproducts of six PAHs in the presence of 

nitrite to Salmonella typhimurium. Irradiated samples of PYR, FLA, BAP and 5,6-

benzoquinoline showed high mutagenic effects on Salmonella. 

 

Ren et al. [146] applied ANT, BAP and FLA after their irradiation with UV-B light to the 

seeds of Brassica napus (Canola) and observed the toxicity effects on the germination 

efficiency, root and shoot growth and the chlorophyll content. The photomodified PAHs had a 

big impact on the root system of the plant and led to the inhibition of the root fresh weight. 

The order of toxicity of the photomodified compounds was as follows: ANT> BAP> FLA. 

 

Schirmer et al. [147] showed that the toxicity of a creosote to the rainbow trout 

(Oncorhynchus mykiss) gill cells would substantially increase through the interaction of the 
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creosote with UV irradiation. The photomodified creosote showed high cytotoxicity to the 

fish measured as impairment of the mitochondrial electron transport. 

  

4.8. Toxicity-based fractionation 
In order to identify toxic compounds in complex environmental samples, toxicity testing and 

chemical analysis have been combined in an approach known as bioassay-directed chemical 

analysis. This approach is based on the ‘‘toxicity identification evaluation’’ procedure 

developed by the US-American Environmental Protection Agency (EPA) about one decade 

ago [148]. It starts with the separation of sample extracts into fractions followed by the 

determination of their toxicity by applying bioassays. This process of separation and testing 

can be repeated until the chemical complexity of the fractions is sufficiently reduced. The 

approach was originally established to investigate waste waters. However, it has now 

extended to all kinds of samples such as air [149], sediments [150, 151], effluents [152-154], 

pore water [155] and surface water [156].  The main aim of the toxicity-based fractionation 

technique is to pinpoint the exact chemicals producing the greatest risk in the environmental 

samples.  

                       

In an attempt to identify the compounds responsible for the phototoxicity of ANT, Brack et al. 

[157] applied a toxicity-based fractionation methodology using the bacterium Vibrio fischeri. 

The trace photoproduct, ANT-1,4-dione was identified among the phototoxic fractions and 

showed a very high toxicity which dominated that of all other ANT photoproducts. In 

addition, some fractions exhibited mutagenic activity that was attributable to 1-hydroxyANT-

9,10-dione and 1,4-dihydroxyANT-9,10-dione.   

 

Contaminated samples from Hamilton harbour (Hamilton, Ontario) were profiled using a 

bioassay-directed fractionation approach [158]. The fractions obtained from HPLC were 

tested for toxicity using short-term as well as long-term assays on the bacterium Vibrio 

fischeri. The photomodified PAHs were equally as toxic as intact PAHs.  
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5. High resolution mass spectrometry 
Mass spectrometers with a resolution higher than ~10,000 m/∆m are considered to be high-

resolution instruments. This high resolution enables the determination of elemental 

compositions behind a mass signal. Time of flight (TOF) and, to a certain degree, triple 

quadrupole instruments are capable of resolutions up to about 20,000. In addition, the rapid 

development of Fourier transform ion cyclotron resonance (FT-ICR) instruments in recent 

years has offered ultra-high resolution (> 250,000) [159]. This chapter will give an overview 

about the instruments used in this work, starting with the electrospray ionization technique 

(ESI) used and then describing the mass analyzers and the data processing. 

 

5.1. Electrospray ionization  
Since its development by Yamashita and Fenn [160] in 1984, ESI has been widely used for 

the analysis of a variety of polar molecules ranging from <100 Da up to and above 200 000 

Da in molecular mass. ESI is a very soft method of ionization. The sample solution is 

introduced into the ionization source through a stainless steel capillary (75-100 µm internal 

diameter) at a flow rate of between 1 µl min-1 and 1 ml min-1, but more typically in the region 

5-300 µl min-1. A strong electric field is applied to the liquid passing the capillary by applying 

a potential difference of 3 or 4 KV between the capillary and the counter electrode. As a 

consequence of this strong electric field, a charge accumulates at the liquid surface located at 

the end of the capillary, which will then break up to form highly charged droplets. As the 

solvent in the droplets evaporates, they shrink until they reach the point at which the repelling 

coulombic forces come close to their cohesion forces. At this point, a "Coulombic explosion" 

occurs and the droplets are ripped apart. This produces smaller droplets that can repeat the 

process, ultimately producing bare analyte ions.  

 

5.2. Mass analyzers 
The main function of the mass analyzer is to separate, or resolve, the ions formed in the 

ionization source by their mass to charge ratios (m/z). All mass analyzers employ electric 

fields, sometimes in conjunction with magnetic fields, to allow the discrimination between 

ions of different mass-to-charge ratio. This discrimination can be expressed through the 

resolution concept. 
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5.2.1. Definitions 

5.2.1.1. Resolution 
The resolution (R) of a mass analyzer, or its ability to separate two peaks, is defined as the 

ratio of the mass of a peak of interest, m, to the difference in mass between this peak and the 

adjacent peak of higher mass, ∆m, i.e. R = m / ∆m.  

 

Two neighbouring peaks are assumed to be sufficiently separated when the valley separating 

their maxima has decreased to 10 % of their intensity. Hence, this is known as 10 % valley 

definition of resolution. The 10 % valley conditions are fulfilled if the peak width at 5 % 

relative height equals the mass difference of the corresponding ions, because then the 5 % 

contribution of each peak to the same point of the m/z axis adds to 10 %. 

 

It should be noted that the attributive low resolution is generally used to describe spectra 

obtained at R = 500-2000. High resolution is appropriate for R > 5000.  

 

5.2.1.2. Mass resolving power 
The resolving power (m/∆m50%), used in FT-MS, is the ratio of mass to the width of the 

corresponding mass peak at half height. 

 

5.2.1.3. Mass accuracy 
The mass accuracy of a spectrometer is defined as the difference between the measured 

accurate mass of an ion and its calculated exact mass expressed relative to the measured mass. 

It is usually reported in parts per million (ppm).  

 

Mass accuracy depends on many parameters such as resolving power, scan rate, scanning 

method, signal-to-noise ratios of the peaks, peak shapes, overlap of isotopic peaks at some 

nominal mass and mass difference between adjacent reference peaks. The experimental 

accurate mass should lie within an error range of ± 5 mmu for routine applications 

independent of the ionization method and the instrument used [161]. 
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5.2.2. Types of mass spectrometers 

5.2.2.1. Quadrupole 
A quadrupole mass filter consists of four parallel metal rods. Two opposite rods have an 

applied potential of (U+Vcos(ωt)) and the other two rods have a potential of -(U+Vcos(ωt)), 

where U is a dc voltage and Vcos(ωt) is an ac voltage. The applied voltages affect the 

trajectory of ions traveling down the flight path centered between the four rods. As an ion 

enters the quadrupole assembly in the z-direction, an attractive force is exerted on it by one of 

the rods with its charge actually opposite to the ionic charge. If the voltage applied to the rods 

is periodic, attraction and repulsion in both the x- and y-directions are alternating in time, 

because the sign of the electric force also changes periodically in time. As the applied voltage 

is composed of a dc and a radiofrequency voltages, the overall ion motion results in a stable 

trajectory causing ions of a certain m/z value or m/z range to pass the quadrupole and to be 

detected thereafter. For given dc and ac voltages, only ions of a certain mass-to-charge ratio 

pass through the quadrupole filter and all other ions are thrown out of their original path. A 

mass spectrum is obtained by monitoring the ions passing through the quadrupole filter as the 

voltages on the rods are varied.  

 

5.2.2.2. Ion trap 
The ion trap, also called quadrupole ion trap, consists of three cylindrical electrodes, two end-

caps and a ring. Each of these electrodes has hyperbolic geometry and, in the normal mode of 

use, an auxiliary oscillating potential of low amplitude is applied across the end-cap 

electrodes while an rf oscillating drive potential is applied to the ring electrode. Ions created 

within the ion trap either by injection of electrons or injection from an external source, pass 

into the analyzer, and depending upon the combination of the mass to charge ratio, the 

amplitudes of the potentials, the frequency of the drive potential and the interna1 dimensions 

of the electrode array, will have either “stable” trajectories and pass through the analyzer to 

the detector, or “unstable” trajectories and collide with the electrodes. Finally, in order of 

increasing mass to charge value, ions exit the ion trap through small holes in one of the end-

cap electrodes and pass to the detector. Mass analysis in this way takes less than one tenth of 

a second, and the resolution obtained is comparable to that of a quadrupole. 

 

The ion trap finds application in GC/MS and liquid chromatography-mass spectrometry and 

can be used with any other mass analyzers in hybrid systems.  
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5.2.2.3. Multiple quadrupoles 
In the last few years, multiple, usually triple, quadrupoles have found increasing application 

in chemical analysis. They use the collisional induced dissociation of ions to provide an 

unambiguous analysis of trace components in complex mixtures.  The first quadrupole is used 

to select one mass from the spectrum in the normal manner. The selected ions enter the 

second quadrupole which has only an rf voltage applied and where energetic collisions can 

occur with inert gas molecules. The second quadrupole drives both parents and daughters ions 

towards the third quadrupole for analysis. The dissociation spectrum that is observed depends 

upon the collision energy, on the average number of collisions and, to some extent, on the 

way the instrument is designed and constructed. Obviously there are two important factors 

that should be considered when designing such instruments: the efficiency of transmission as 

ions pass from one quadrupole to the next and the control over the ion energy.  

 

5.2.2.4. Time of flight  
Time of flight-mass spectrometry (TOF-MS) has been known since the 1950´s [162]. The 

TOF-MS analyzers allow the separation of ions of different m/z ratios due to different times 

of their passing a fixed path in the instrument [163]. In order to achieve the separation, first, a 

packet of monoenergetic ions is selected from the ion beam by modulation, then the ions enter 

the flight tube after acceleration (a flight tube, typically 2 × 0.5 m length, kept at high 

vacuum). The time for the ions to reach the detector depends on their masses. A mass 

spectrum of a packet of ions is a plot of ion signals versus time calibrated to mass. 

 

However, the use of TOF-MS analyzers has greatly increased after the development of the 

mass reflectron by Mamyrin et al. in 1973 [164]. The reflectron consists of electrostatic ion 

mirror that refocuses and reflects the ions back to the detector surface (Figure 5.1). The use of 

reflectron has led to the extension of the drift length resulting in a nearly constant flight time 

for ions with equal m/z. Hence, ions possessing high energy pass the flight tube fast, but 

spend more time in the reflectron while those having less energy pass more slowly and spend 

less time in the reflectron. Thus, ions of the same m/z arrive at the detector together. The m/z 

for a given ion can be determined from m/z = 2 eV (t / L) 2 where z is the charge on the ion, e 

is the charge of an electron in Coulomb, V is the voltage in volts, t is the flight time of the ion 

and L is the flight path length of the ion. 
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The TOF-MS technique has been widely used due to its high data acquisition speed, its high 

ion transmission and the quasi-simultaneous measurement of all masses for each ion packet 

extracted from the ion source (nanoseconds between adjacent masses). In addition, the system 

can accumulate thousands of mass spectra per second.   

 

 
Figure 5.1. The Quadrupole-TOF mass spectrometer (from [165]). 

 

The introduction of new ionization techniques to TOF-MS, such as electrospray ionization, 

has attracted a widespread interest to this technique that has been used for a rapid 

determination of low and high molecular weight compounds [166]. Electrospray TOF-MS has 

also been used with liquid chromatography [167] and capillary electrophoresis [168] for the 

identification and quantification of low and high molecular-weight species and with on-line 

liquid chromatography for the estimation of the exact masses of unknown organic compounds 

in complex mixtures [154].  

 

TOF mass analysis has brought several advantages to ESI including mass range, speed, mass 

accuracy, and mass resolution. TOF has a theoretically unlimited mass range [169]. For 

instance, instruments typically extend well beyond 200,000 m/z. In addition, the best 

resolution that can be achieved is about 30,000, but in general 10,000 is observed.  
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5.2.2.5. Fourier transform ion cyclotron resonance (FT-ICR) 
FT-ICR MS allows the determination of the elemental composition of individual components 

in unknown complex mixtures through its ultrahigh mass resolving power and mass accuracy 

[5, 170]. It reveals the heteroatom content, the degree of unsaturation (number of rings plus 

double bonds) and the carbon number distribution for numerous compound classes and types. 

Therefore, it finds more application in the field of petroleomics. For instance, it has been 

reported that negative ion ESI FT-ICR MS has resolved more than 10 000 compositionally 

distinct compounds (enabling assignment of chemical formulas) to more than 7500 species 

[171]. Therefore, a short description will be provided in order to demonstrate the operation 

principles involved in the separation of ions. 

 

Ions are generated in a cell, which can be cubic (Figure 5.2) (edge of the cell approximately 

2.5 cm), elongated (2.5 x 2.5 x 5 cm) or cylindrical (diameter and length 6 cm), located in a 

high-vacuum chamber (pressure <l x 10-6 Pa) between the poles of an electromagnet or in a 

superconducting magnet. When an ion of velocity ν enters a uniform magnetic field B 

perpendicular to its direction, it will move in a circular path by action of Lorentz force, the 

radius of which is determined by rm = (m ν )/ (z B) where z is the electric charge of an ion of 

mass m. Upon substitution with ν = rm ω, the angular frequency ωc becomes ωc = (z B)/m. 

Hence, the cyclotron angular frequency is independent of the ion’s initial velocity, but a 

function of its mass, charge and the magnetic field. By applying a transverse electric field 

alternating at the cyclotron frequency fc (ωc = 2П fc), the ions are accelerated. Such a field is 

applied by a pair of radiofrequency (rf) electrodes placed on opposite sides of the orbit. As the 

ions accelerate, the radius of their orbit increases, and the resulting overall motion is spiral. 

The accelerated ions move up and down between the top and bottom of the detection plates of 

the cell, generating image currents in the circuit connecting these plates that can be amplified 

and digitized. The signal induced in the detection plates depends on the number of ions and 

their distance from the detection plates. If several different masses are present, then one must 

apply an excitation pulse that contains components at all of the cyclotron frequencies. This is 

done by using a rapid frequency sweep (chirp), an "impulse" excitation, or a tailored 

waveform. The image currents induced in the detection plates will contain frequency 

components from all of the mass-to-charge ratios. The various frequencies and their relative 

abundances are subjected to Fourier transformation to generate an ICR frequency-domain 

spectrum, which subsequently is converted into an FT-ICR mass spectrum. 
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Figure 5.2. Schematic diagram of a cubic FT-ICR cell (from [172]). 

 

5.3. Data interpretation 
5.3.1. Nominal mass series (z*) 
It is almost impossible to make a complete analysis of each individual molecular species in a 

petroleum fraction due to the presence of an enormous number of isomers. Therefore, the 

analysis is usually accomplished by the groupings of the compound series (or compound 

types) according to the number of hydrogens relative to the number of carbons, i.e. , CnH2n+z= 

X, where n is the number of carbon atoms, z is the “hydrogen deficiency” relative to mono-

olefins or l-ring naphthenes, X represents heteroatoms such as S, N and O. For example, 

C6H6, C7H8, and C8H10 are benzene, toluene and xylenes/ ethyl benzene, respectively. They 

are classified as a z = -6 series. Another example is the z = -10S series that includes 

benzothiophenes, methyl benzothiophenes and Cn-substituted benzothiophenes, etc. By using 

the concept of compound distribution in petroleum fractions as a function of z-series, all the 

components in a crude oil can be grouped into 14 families according to their nominal 

molecular masses [173].  The nominal mass series, z*, of an ion is the remainder of its 

nominal mass divided by 14, minus 14, i.e., the modulus of (nominal mass/l4) - 14.  Each 

nominal mass yields a z* value between -1 and -14. However, several compound types are 

included in each nominal mass series, z*. For example, the z* = -6 series contains compound 

types of z = -6 (benzenes), -10S (benzothiophenes), -20 (phenylnaphthalenes), etc.  
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5.3.2. Kendrick mass defect  
In the early 1960’s, a new mass scale was intoduced by Kendrick based on the mass 

assignment of a methylene group as exactly 14 mass units, instead of 14.01565 on the 12C = 

12.00000 scale to express the organic mass spectral data [174]. The mass of an ion is 

converted from the IUPAC scale to the Kendrick mass scale as shown in equation 1 

 

Kendrick mass = IUPAC mass × (14.00000/14.01565)                 Eq. 1 

 

In order to gain information from the complex mass spectrum obtained, the Kendrick nominal 

mass (KNM) and the Kendrick mass defect (KMD) of individual ions are calculated. The 

Kendrick nominal mass is obtained by rounding the Kendrick mass to the nearest integer. The 

Kendrick mass defect can be obtained from equation 2: 

 

KMD = KNM – Kendrick exact mass                                            Eq. 2                                                

 

The Kendrick mass scale provides several advantages such as that the members of a 

homologous series (namely, compounds with the same heteroatom composition and number 

of rings plus double bonds, but different numbers of CH2 groups) have an identical Kendrick 

mass defect. In addition, the mass defect of each member in each series (same class and same 

type) will be the same, which is not the case in the IUPAC scale where all the compounds in 

each series have a different mass defect. Homologous series are separated and grouped by 

sorting nominal Kendrick masses and KMDs as described below. 

 

5.3.3. Multiple sorting 
A multiple sorting technique based on nominal mass series and KMD was used as reported in 

the literature [175]. Mass peaks with their accurate masses are first sorted by z* and separated 

into 14 groups with z* ranging from -1 to -14. Within the same z* group, the mass peaks are 

further sorted by their KMD. The pre-sorting of masses with z* before sorting according to 

KMD can be understood by observing the following example. The difference in KMD 

between C11H8O and C7H6S is only 5 millimass units. However, the z* for C11H8O and C7H6S 

is -12 and -4 respectively. Hence, the z* values are well separated to distinguish between O- 

and S-containing heterocycles. A multiple sorting algorithm for data analysis is shown in 

Figure 5.3. 
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Figure 5.3. Flow diagram of multiple sorting algorithm (from [175]). 

 

The composition of a sulfur-containing hydrocarbon can be expressed by the chemical 

formula CnH2n+zS. As z indicates of the number of rings plus double bonds present in the 
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hydrogens by 2, therefore, it is preferred in this work to use the double bond equivalent 

(DBE), which is the sum of rings (R) and double bonds (DB): DBE = R + DB, as a more 

direct measure of unsaturation. 

 

5.4. Limitations of electrospray ionization 
As the analysis of polar compounds, in general, suffers from their thermal instability, low 

volatility and inefficient ionization by traditional mass spectrometric ionization sources, 

electrospray ionization coupled to different mass analyzers offers a powerful tool for the 

identification of polar compounds. For instance, ESI coupled to high-field (9.4 T) FT-ICR MS 

has been used for the detailed characterization of heteroatomic species in crude oils and crude 

oil distillates [176] and complex environmental mixtures [177, 178]. Positive- or negative-ion 

electrospray selectively ionizes strongly basic or acidic polar heteroatomic compounds within 

the predominately hydrocarbon matrix of petroleum samples, thereby eliminating the need for 

pre-chromatographic isolation. In addition, by resolving mass differences down to ~1 mDa, 

FT-ICR MS provides unambiguous determination of molecular formulas for more than 20 

polar compounds having the same nominal mass [179]. Nevertheless, a major disadvantage of 

ESI technique is that very little (usually no) fragmentation is produced although this may be 

overcome through the use of tandem mass spectrometric techniques. 

 

However, the ionization of non-polar compounds with electrospray techniques is not very 

efficient [180, 181], hence, derivatized compounds are then desired. For PASHs, 

palladium(II) has been used as a sensitivity-enhancing reagent in standard resolution 

experiments with ESI ion trap MS [181]. However, this technique may show problems with 

samples of unknown sulfur content, because the concentration ratios of palladium(II) and 

sulfur seem crucial. In addition, instrumental parameters such as the flow rate for injection of 

the sample and the voltages must be finely tuned to suppress hydrocarbons. For such reasons, 

in this work, organic sulfur is derivatized to methylsulfonium salts to achieve selectivity 

toward sulfur aromatics in the presence of PAHs [182, 183]. The purpose of this 

derivatization is to form ions from the sulfur compounds that are efficiently ionized by ESI, 

before their introduction to the ionization source. The formation of charged ions of sulfur 

compounds, in the presence of a large number of PAHs that are not affected by the reaction, 

increases the selectivity for PASHs and lower to a great extent the problems of space charge 

effects in the ICR cell. 
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5.5. Summary 
Since electrospray ionization technique selectively ionizes acidic and basic polar compounds, 

negative ion ESI-MS and tandem ESI-MS was used in this work for the characterization of 

polar photoproducts of PASHs. In addition, accurate mass measurements of the sulfonic acids 

were acquired using electrospray ionization time of flight mass spectrometry at a mass 

resolution of 9000 in order to identify the various sulfonic acids obtained. On the other hand, 

electrospray ionization is not suitable for the ionization of non-polar compounds such as 

PASHs. Hence, methylation of the PASHs was carried out before their characterization by 

ESI FT-ICR MS. 
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6. Objectives  
Large amounts of crude oil are spilled into the environment every year. Upon sunlight 

exposure, crude oil components undergo structural modifications generally via photo-

oxidation reactions leading to the formation of photomodified products. A great concern is 

currently increasing worldwide mainly because of the toxic potential of these photoproducts 

to the aquatic life as they are highly water soluble. 

 

The objective of this work is to try to establish which class of compounds is mainly 

responsible for the highest toxicity of petroleum after sunlight irradiation and to identify the 

components of this class. 

 

In this regard, a toxicity-based fractionation methodology will be applied using the 

microcrustacean Daphnia magna, which involves the fractionation of petroleum, the photo-

oxidation of the different fractions separately and the toxicity testing of the water-soluble 

photoproducts of these fractions, in order to determine the most phototoxic class. 

 

Furthermore, the low- and high-molecular weight parent components of the most photoxic 

class will be characterized by Fourier transform ion cyclotron resonance mass spectrometry in 

order to understand their fate in the environment after photo-oxidation.  

 

Moreover, the oxygenated photoproducts belonging to this toxic class will be analyzed by 

electrospray ionization-, time of flight- and gas chromatography-mass spectrometry to try to 

identify them. 
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7. Application of toxicity-based fractionation techniques 

for the identification of the most phototoxic fraction of 

crude oil 
There is a large body of literature showing that the toxicity of certain PAHs is greatly 

enhanced when there is exposure to both PAHs and sunlight [141]. In addition to mortality, 

there are also studies showing that exposure to sunlight and PAHs caused a variety of sub-

lethal effects in marine animals [184, 185]. In addition to the work with single compounds, 

there have been also laboratory studies on the photo-toxicity of water accommodated oils or 

with sediments containing oil. Fish (Menidia beryllina) exposed for 48 h in the dark to a 

water accommodated fraction of weathered middle distillate oil (1.5 mg/l of total petroleum 

hydrocarbons) showed no toxicity, however exposure to the WAF and solar radiation (48 h) 

resulted in 30 % toxicity [186].  

 

Moreover, extensive studies of photomodification of anthracene have been performed in the 

past, but only by using the toxicity based fractionation technique, Brack et al. [157] were able 

to identify the metabolites causing the toxicity of photomodified anthracene including 

anthracene-1,4-dione, a previously unknown photoproduct of very high toxicity to Vibrio 

fischeri. They were also able to identify 1-hydroxyanthracene-9,10-dione and 1,4-

dihydroxyanthracene-9,10-dione and assigned them as genotoxic compounds. 

  

Therefore, it is important to discover the potential risk of the photoinduced toxicity of the 

different components of crude oils. Thus, identifying the phototoxic compounds present may 

be desirable to better understand the hazard posed to humans and the marine environment by 

chronic release of petroleum, especially the cumulative effects of petroleum-related toxic 

compounds, since not many compounds in the crude oil have yet been tested for their 

phototoxicity. Due to the enormous number of compounds found in crude oil, it is difficult to 

explicitly determine which compounds may be responsible for the highest observed photo-

induced toxicity. To address this complex problem, toxicity-based fractionation techniques 

will be used to isolate highly phototoxic fractions from less phototoxic ones in order to isolate 

the most toxic fraction. Fractionation can be based on several physicochemical and chemical 

properties of the analytes including polarity, hydrophobicity, molecular size, planarity and/or 

the presence of specific functional groups. Finally, when the most phototoxic fraction will be 

known, it will be subjected to chemical identification. 
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To determine the fraction of highest phototoxicity in crude oil, the phototoxicity of the 

different fractions of crude oil should be investigated. Toxicity was measured as 

immobilization (or mortality) using the small Cladoceran Daphnia magna (Figure 7.1).  

     

                    
               Figure 7.1. The toxicity test organism Daphnia magna (from [187]). 

 

7.1. Daphnia magna as toxicity test organism 
Daphnia was chosen for this study because it has been used for many years as a “standard” 

aquatic test species. Except for fish and algae, acute tests with Daphnia are among the most 

frequently performed studies in aquatic toxicology [188-190]. In addition, Daphnia tests are 

currently the only type of freshwater invertebrate bioassay that are formally endorsed by 

international organizations such as US EPA, the EEC (European Economic Community) and 

the OECD (Organization for Economic Cooperation and Development), and that are required 

by virtually every country for regulatory testing. Moreover, the choice of Daphnia magna for 

use as a standard test species was strongly influenced by the following factors: 

- It can alternate the production of asexuel and sexuel (epphipial) eggs under certain 

environmental conditions, which allows the maintenance and testing of clones.  

- It can be cultured in the laboratory. 

- It represents the zooplankton community, a major element of the freshwater food 

chain. 

- As a species of worldwide occurrence, the ecological relevance of the test results is 

recognized. 

 

Compound 
 eye Antenna 

Foregut 

Food string 
Heart 

Carapace 
Brood chamber 

Midgut 

Abdominal  
processes 

Rostrum 
Antennule 
Labrum 

Thoracic appendage 
Postabdominal claw 

Anus 
Postabdomen 

Digestive 
cecum 

Shell gland 



Toxicity-based fractionation                                                                                          Chapter 7 

 52

- It is assumed to be relatively sensitive compared with other freshwater invertebrates.    

                          

7.2. Culture of Daphnia magna  
A successful culture of Daphnia magna depends on suitable water quality and nutrition. In 

other words, the composition of the medium and its temperature should allow normal 

development of the animals. In addition, in order to avoid exposing the daphnids to an 

additional shock at the beginning of the toxicity tests, these should not be conducted under 

conditions differing from those under which the animals were cultured. Thus, a synthetic 

medium is usually chosen as its composition is known and it is known not to contain any 

contaminants. That is why the OECD Test Guideline 202, Part II (1996 draft), has 

recommended the use of a fully defined medium to provide continuous culture of daphnids 

without any signs of reduced viability or reproduction [188]. Therefore, Elendt M4, reported 

among the adequate synthetic Daphnia media, was used in this work for culturing Daphnia 

(Standard Fresh Water) [188, 191]. The chemical composition of the culture medium is 

represented in Table 7.1. 

 

Table 7.1. The chemical composition of Daphnia magna culture medium (Elendt M4) 

Constituent Concentration 

(mg/l) 

Constituent Concentration 

(mg/l) 

 

CaCl2.2H2O 

 

293.8 

 

MnCl2. 4 H2O 

 

0.361 

MgSO4. 7 H2O 123.3 CoCl2. 6 H2O 0.01 

K2HPO4 0.0184 NaMoO4. 2 H2O 0.063 

NaNO3 0.0274 NaCl 0.016 

NaHCO3 64.8 CuCl2. 2 H2O 0.0165 

Na2SiO3. 9 H2O 1.0 ZnCl2 0.013 

H3BO3 2.86 Na2SeO3 0.0022 

KCl 5.8 NH4VO3 0.0006 

LiCl 0.31 FeSO4. 7 H2O 0.996 

RbCl 0.071 KH2PO4 0.0143 

SrCl2. 6 H2O 0.15 Cyanocobalamin 0.001 

KI 0.0033 Biotin 0.0008 

Na2EDTA. 2 H2O 2.5 Thiaminehydrochloride  0.075 
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Culturing Daphnia has started after the hatching of ephippia from the Daphtoxkit F magna. 

Ephippia are dormant eggs protected by a chitinous capsule that can be stored for long periods 

of time without losing their viability. In order to hatch the eggs into neonates, the contents of 

the vial of ephippia was poured into a microsieve and rinsed with tap water to eliminate all 

traces of the storage medium. The eggs are then transferred into a Petri dish containing 20 ml 

of Standard Fresh Water, preaerated by air bubling. Finally, the Petri dish was covered and 

incubated at 20 °C for 3 days under continuous illumination of 6000 lux. The neonates 

produced were then cultured to be used for toxicity tests. 

 

Daphnia typically live 40 to 56 days, varying according to species and environmental 

conditions. Each brood typically holds 6-10 eggs, which turn into embryos and are released 

within few days. Juveniles reach sexual maturity in 6 to 10 days. A healthy population of 

Daphnia consists mostly of females that have been produced asexually. 

 

The culture can become stressed if the population density gets too high or if there is a food 

shortage, poor water quality or extreme temperatures. Under stressful conditions, Daphnia 

produce more male embryos and begin to reproduce sexually. The resulting resting eggs will 

not hatch until they have gone through a certain sequence of environmental changes, 

including several freeze/thaw cycles. So, in order to maintain a steady supply of Daphnia, 

stressful conditions should be avoided. In addition, an optimal culture growth is obtained 

under the following conditions: at pH 7-8.6, temperature between 20 and 25 °C, dissolved 

oxygen > 6 mg/l, water hardness between 160 to 180 mg CaCO3/l and by using a lighting 

cycle of 16 hours light and 8 hours darkness.  

 

7.3. Toxicity tests using Daphnia magna 
Toxicity tests were performed according to the OECD guidelines for testing of chemicals 

using the neonates (not older than 24 h) obtained from the culture [188]. The bioassays are 

conducted in disposable multiwell test plates with 30 test wells (see Figure 7.2). Each plate is 

provided with 4 wells for the controls and 4 wells (A, B, C, D) for each toxicant 

concentration. Additionally, the plates are provided on the left side with a column of "rinsing 

wells" to prevent dilution of the toxicant during the transfer of the neonates from the culture 

vessel to the test wells. The wells are labelled vertically as rows X (for the controls) and 1 to 5 

for the toxicant dilutions. Each well of the test plates has to be filled with 10 ml toxicant 

solution (or Standard Fresh Water in the control column). Twenty actively swimming 
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neonates (2 hours pre-fed with dry algae) are transferred from the culture vessel with a 

micropipette into each rinsing well and then exactly 5 neonates are transferred from the 

rinsing wells into each of the 4 wells of each column. This transfer was also performed in the 

order of increasing toxicant concentrations. The Multiwell plate is then covered and incubated 

in darkness at 20 °C. After 24 h and 48 h incubation, the number of dead and immobilized test 

organisms is then determined. An organism is defined to be immobile if it was not able to 

swim within 15 sec after gentle agitation of the liquid [192]. 

          

                                      
 

               Figure 7.2. Multiwell test plate used in Daphnia toxicity tests. 

 

7.3.1. Toxicity of crude oil 

7.3.1.1. Photo-oxidation of Egyptian crude oil by sunlight and mercury lamp 
1.01 mg of an Egyptian crude oil was added to 100 ml distilled water in a measuring flask, 

stirred for half an hour and then the flask was irradiated by sunlight for 37 hours. The 

irradiation experiment took place in July 2005 on the roof surface of the Institute of Inorganic 

and Analytical Chemistry where there were nearly no clouds. Another 1.01 mg of crude oil 

was added to 100 ml distilled water, stirred for half an hour and then the measuring flask was 

irradiated this time by the mercury lamp (described in section 3.3) for 37 hours. 

 

7.3.1.2. Preparation of non-irradiated crude oil sample 
1.01 mg of the Egyptian crude oil was added to 100 ml distilled water, stirred for half an hour, 

the flask was then wrapped in an aluminium foil and kept in the dark for 37 hours. 
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7.3.1.3. Toxicity measurements of sunlight-, lamp-irradiated and non-

irradiated crude oil 
10 ml of the solution, resulting from the photo-oxidation of the crude oil after 37 hours 

sunlight irradiation, was placed in each of the four wells (A, B, C, D) in row 1 of the 

multiwell plate. The Daphnia from the culture maintained in the laboratory were used, where 

twenty neonates (less than 24 hr old) were transferred from the culture to the rinsing well 

(containing Standard Fresh Water) at the left side of row 1. Five neonates were then 

transferred from the rinsing well into each of the four wells in row 1 containing the photo-

oxidized sun-irradiated crude oil solution. The previous procedure was performed, using the 

photo-oxidized lamp-irradiated crude oil solution which was placed in row 2 of the multiwell 

plate. The same previous procedure was repeated again, but this time using the solution of the 

crude oil kept in dark in row 3. Finally, the multiwell plate was then covered and incubated in 

darkness at 20°C. After 24 and 48 h incubation, the number of dead and immobilized 

organisms was determined. A negative control consisting of the same test conditions and test 

organisms but with Standard Fresh Water instead of the toxicant solution, was maintained 

concurrently with the toxicity tests. 

 

As can be seen in Figure 7.3, the non-irradiated crude oil was the least toxic with no 

observable effect on Daphnia after 24 hours and exerting 35 % toxicity after 48 hours. Both 

sunlight- and lamp-irradiated crude oil solutions were similar in their toxicity effects on 

daphnids where the % immobility was 50 % for both of them after 48 hours. This indicates 

that the lamp gives a simulated sunlight irradiation and that it can be used for further photo-

oxidation experiments. 

 

The next step will be the fractionation of the crude oil into fractions and their photo-oxidation 

with the mercury lamp followed by the toxicity determination of each photo-oxidized 

fraction. 
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Figure 7.3. Toxicity of non-irradiated (kept in dark), sun-irradiated and lamp-irradiated 

Egyptian crude oil on Daphnia magna after 24 and 48 hours.  

 

7.3.2. Toxicity of photo-oxidized aliphatic, monoaromatic and polyaromatic 

fractions 

7.3.2.1. Fractionation of crude oil into aliphatic, monoaromatic and 

polyaromatic fractions 
A chromatographic column (90 mm x 8 mm) was packed with 5 g alumina (activated at 450 

°C for 12 h, 2 % water added then stored at 155 °C).  The oil sample (90 mg) was fractionated 

using n-pentane (20 ml) to elute the saturated hydrocarbon fraction, n-

pentane/dichloromethane (50:1, v/v, 15 ml) to elute monoaromatics and n-

pentane/dichloromethane (3:1, v/v, 30 ml) to elute polyaromatics [107]. Afterwards, the 

fractions were analyzed by GC-FID. The GC-FID chromatograms of the aliphatic, 

monoaromatic and polyaromatic fractions are given in Figure 7.4, 7.5 and 7.6 respectively. 
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Figure 7.4. GC-FID chromatogram of the aliphatic fraction of the Egyptian crude oil (Pr: 

Pristane, Ph: Phytane). 

 

 
 

Figure 7.5. GC-FID chromatogram of the monoaromatic fraction of the Egyptian crude oil. 

 

 
Figure 7.6. GC-FID chromatogram of the polyaromatic fraction of the Egyptian crude oil 

(NAP = naphthalene, PHE = phenanthrene). 
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7.3.2.2. Toxicity measurements of photo-oxidized aliphatic, monoaromatic and 

polyaromatic fractions 
0.97 mg of aliphatic, monoaromatic and polyaromatic fractions of crude oil were dissolved in 

150 µl of tetradecane and added to 100 ml distilled water separately. Each one of these 

solutions was photo-oxidized by the mercury lamp for 37 hours. After photo-oxidation, each 

solution was placed in a separatory funnel in order to separate the tetradecane layer from the 

water layer, as tetradecane was found to cause the death of Daphnia because they get trapped 

in it. A dilution series (100 % - 50 % - 25 % - 12.5 % - 6.25 %) of each fraction was prepared 

by serial dilution 1:1 of the water layer with Standard Fresh Water. 

 

The toxicity effects of the aliphatic, monoaromatic and polyaromatic fractions of crude oil are 

shown in Figure 7.7, 7.8 and 7.9 respectively. By comparing the three figures, it is clear that 

the highest concentration (0.97 mg/ 100 ml) was the most lethal, causing immobilization or 

mortality of all the daphnids in both the monoaromatic and polyaromatic fractions and of 90% 

of them in the aliphatic fraction after 48 hours. In addition, it can be seen that in all fractions, 

there was an increase in the immobililization of Daphnia with increasing concentration 

starting from the concentration of 0.06 mg/ 100 ml being the least toxic one. Hence, it appears 

that the polyaromatic fraction exhibited the highest toxicity among the other fractions.  
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Figure 7.7. Toxicity of aliphatic fraction of Egyptian crude oil after 37 hours photo-oxidation. 
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Figure 7.8. Toxicity of monoaromatic fraction of Egyptian crude oil after 37 hours photo-

oxidation. 
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Figure 7.9. Toxicity of polyaromatic fraction of Egyptian crude oil after 37 hours photo-

oxidation. 
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7.3.3. Toxicity of photo-oxidized PAHs and PASHs 

7.3.3.1. Fractionation of polyaromatic fraction into PAHs and PASHs 
In order to reduce the chemical complexity of the polyaromatic fraction, HPLC fractionation 

was used. The stationary phase, a Pd(II)-containing complex based on 2-amino-1-

cyclopentene-1-dithiocarboxylate (Pd-ACDA) covalently bonded to silica gel was used for 

ligand exchange chromatography so that the polyaromatic fraction is separated into PAHs and 

PASHs. Hence, about 250 µl (10 mg) of the polyaromatic fraction were injected on the Pd(II)-

bonded silica gel. The first fraction (PAHs) was eluted with cyclohexane: dichloromethane 

(7:3 v/v) for 12 minutes and the second fraction (PASHs) was eluted after addition of 1 % 

isopropanol to the previous mobile phase (Figure 7.10). The flow rate maintained throughout 

the whole separation was 3 ml/min. Afterwards, both fractions were injected on GC-FID and 

GC-MS for their investigation and their GC-MS chromatograms are given in Figures 7.11 and 

7.12. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10. Fractionation on Pd(II)-bonded phase of the polyaromatic fraction of the 

Egyptian crude oil.  
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Figure 7.11. GC-MS chromatogram of PAH fraction (C0-C4 naphthalenes (NAP) and C0-C3 

phenanthrenes (PHE)). 

 

 
 

Figure 7.12. GC-MS chromatogram of PASH fraction (C1-C4 benzothiophenes (BTs) and C0-

C4 dibenzothiophenes (DBTs)). 
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7.3.3.2. Toxicity measurements of photo-oxidized PAHs and PASHs 
1.01 and 1.55 mg of PAHs and PASHs were dissolved in 150 µL tetradecane and added to 

100 ml distilled water separately. After the irradiation of each solution by the mercury lamp 

for 37 hours, the tetradecane layer from each solution was separated from the water layer in a 

separatory funnel and the aqueous solutions were then used for the determination of their 

toxicity. 

 

The toxicity of the PAH fraction of crude oil is shown in Figure 7.13. The highest 

concentration (1.55 mg/ 100 ml) is the most lethal one causing 60 % and 90 % immobility 

after 24 and 48 hours respectively, whereas the concentration of 1.01 mg/ 100 ml resulted in 

25 % and 70 % immobility after 24 and 48 hours respectively. On the other hand, PASH 

fraction of crude oil caused greater effects on Daphnia (Figure 7.14). All the daphnids were 

killed within 48 hours when subjected to a 1.55 mg/ 100 ml solution. These results clearly 

show that the PASH fraction of crude oil is more toxic than the PAH one and hence was 

subjected to further fractionation. 

 

0

10

20

30

40

50

60

70

80

90

100

1.01 1.55

Concentration (mg/ 100 ml)

%
 T

ox
ic

ity

24 hours
48 hours

 
Figure 7.13. Toxicity of PAH fraction after 37 hours irradiation. 
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Figure 7.14. Toxicity of PASH fraction after 37 hours irradiation. 

 

7.3.4. Toxicity of photo-oxidized PASH subfractions I and II 

7.3.4.1. Fractionation of PASHs into three subfractions 
The PASH fraction was further fractionated using a ß-cyclodextrin column which was 

reported to separate the PASHs according to the number of condensed aromatic rings [112]. 

100 µl (1 mg) of PASHs were injected on two ß-cyclodextrin columns (150 mm x 4.6 mm) 

connected in series and three subfractions were obtained by using 0.5 % t-butyl methyl ether 

in cyclohexane as mobile phase with a flow rate of 1 ml/min. The column oven temperature 

was maintained at 50°C. UV-visible detection was performed at 254 nm. The retention times 

for the fractions were as follows: subfraction (1): 2.5-5.9 min, subfraction (2): 5.9-9.1 min 

and subfraction (3): 9.1-25 min (Figure 7.15). The three subfractions were then analyzed by 

GC-MS. 

 

After the investigation of the three subfractions eluted from ß-cyclodextrin column on GC-

MS, it appeared that subfraction 1 and 2 contained the benzothiophenes (two-ring 

compounds) while subfraction 3 contained the dibenzothiophenes (three-ring) and higher ring 

compounds. Thus, subfraction 1 and 2 were combined as subfraction I, which was 
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concentrated and tested for its phototoxicity with fraction 3, designated now as subfraction II 

(Figure 7.16). 

 

 
 

Figure 7.15. Fractionation of the PASH fraction of the Egyptian crude oil on ß-cyclodextrin 

column. 

 

 
 

Figure 7.16. GC-FID chromatogram of subfraction I and II. 
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7.3.4.2. Toxicity measurements of photo-oxidized PASH subfractions I and II 
0.20 and 0.38 mg of PASH subfraction I and II were dissolved in 100 µl tetradecane and 

added to 100 ml distilled water each separately. The solutions were irradiated for 37 hours 

and then the tetradecane layer was separated from each solution using a separatory funnel. 

Afterwards, the water layer was used for the toxicity tests. Unexpectedly, both subfractions 

showed almost the same phototoxic effect on Daphnia as can be seen in Figure 7.17 and 7.18. 

Although the toxicity test of both subfractions was repeated, it gave the same identical results. 
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Figure 7.17. Toxicity of subfraction I of PASHs after 37 hours irradiation. 

 

As can be seen from Figure 7.17 and 7.18 both subfractions I and II showed nearly the same 

toxicity effect. Since these results did not determine which photo-oxidized PASH fraction is 

more toxic than the other, another separation protocol was conducted, namely the separation 

of PASH photoproducts, based on their polarity properties, into polar and non-polar 

photoproducts in an attempt to find the most phototoxic compounds in the PASH fraction. 
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Figure 7.18. Toxicity of subfraction II of PASHs after 37 hours irradiation. 

 

7.3.5. Toxicity of polar and non-polar photoproducts of PASHs after 37 

hours irradiation 

7.3.5.1. Separation of the photo-oxidized fraction of PASHs into polar and 

non-polar compounds after 37 hours irradiation 
0.40, 0.88 and 1.20 mg of PASHs were dissolved in 1 ml pentane, added to 100 ml distilled 

water and then photo-oxidized for 37 hours. After the photo-oxidation, the non-polar products 

from each solution were extracted in pentane in a separatory funnel, whereas the polar 

products remained in water. The pentane layer containing the non-polar products, for each 

concentration, was added to 100 ml water and the pentane was then removed by rotary 

evaporator resulting in the non-polar products in water. Any traces of pentane in the original 

water layer were removed by rotary evaporator. The water solutions containing the polar and 

non-polar products for each PASH concentration were used lately for the toxicity tests of the 

photoproducts.  
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7.3.5.2. Toxicity measurements of polar and non-polar photoproducts of 

PASHs after 37 hours irradiation 
After the separation of polar and non-polar photoproducts of each solution of the three 

concentrations (0.40, 0.88 and 1.20 mg) in 100 ml distilled water, the toxicity tests were 

performed using these solutions (Figure 7.19 and 7.20). 

 

As can be seen in Figure 7.19, the non-polar photoproducts exhibited 5 % and 5 %; 65 % and 

100 %; and 95 % and 100 % mortality to Daphnia exposed to 0.40, 0.88 and 1.20 mg/ml after 

24 and 48 hours respectively. However, the same concentrations of the polar products gave 

only 0 % and 0 %; 55 % and 90 %; and 70 % and 95 % mortality after 24 and 48 hours 

respectively (Figure 7.20) which show that the non-polar products may be somewhat more 

toxic than the polar ones. 

 

Although the previous observations indicated that the toxicity of non-polar photoproducts is 

higher than that of polar ones after short-term (37 hours) photolysis, the photo-oxidation of 

the PASH fraction was continued for 10 days and the toxicity of the polar and non-polar 

products were investigated to ensure that possible long-term effects were not overlooked by 

early termination of the photo-oxidation. 
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Figure 7.19. Toxicity of non-polar products of PASHs after 37 hours photo-oxidation. 
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Figure 7.20. Toxicity of polar products of PASHs after 37 hours photo-oxidation. 

 

7.3.6. Toxicity of polar and non-polar photoproducts of PASHs after 10 

days irradiation 

7.3.6.1. Separation of photo-oxidized fraction of PASHs into polar and non-

polar compounds after 10 days irradiation 
After the dissolution of 0.30, 0.41 and 0.88 mg of PASHs in 1 ml pentane and added to 100 

ml distilled water separately, the solutions were photo-oxidized for 10 days. After the photo-

oxidation, the same procedure for the separation of polar and non-polar photoproducts as in 

section (7.3.5.1) was followed. 

 

7.3.6.2. Toxicity measurements of polar and non-polar photoproducts of 

PASHs after 10 days irradiation 
The toxicity of polar and non-polar photoproducts of 0.30, 0.41 and 0.88 mg PASHs were 

determined after their separation in water following the same procedure previously mentioned 

in section 7.3 and they are illustrated in Figure 7.21 and 7.22 respectively. 

 

By comparing Figure 7.21 and 7.22, it is obvious that the toxicity of the polar products has 

increased and exceeded that of the non-polar ones for all the tested concentrations. In case of 
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the polar photoproducts, 100 % mortality was observed for daphnids exposed to 0.41 and 0.88 

mg/ 100 ml after 24 and 48 hours whereas as for the non-polar photoproducts, 100 % 

mortality was observed for the same concentrations but only after 48 hours. Hence, a 

significant increase in mortality occurred among daphnids exposed to 0.40 and 0.88 mg/ 100 

ml of polar photoproducts after 10 days photo-oxidation. Thus, mortality increased from 0 % 

and 90 % (after 48 hours) after 37 hours irradiation (Figure 7.20) to 100 % and 100 % for 

0.41 and 0.88 mg/ 100 ml solutions after 10 days photo-oxidation.  

 

Based on the last results, it is evident that by increasing the time of photo-oxidation, it leads 

to an increase in the amount of polar photoproducts formed and consequently to an increase in 

their toxicity effects on Daphnia relative to the non-polar photoproducts.  
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Figure 7.21. Toxicity of non-polar photoproducts of PASHs after 10 days photo-oxidation. 
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Figure 7.22. Toxicity of polar photoproducts of PASHs after 10 days photo-oxidation. 

 

7.4. Summary 
A toxicity-based fractionation method for identifying the most phototoxic fraction of 

petroleum has been developed by application of a Daphnia biotest for acute toxicity. 

Moreover, special toxicity patterns of fractions and subfractions of crude oil have been 

obtained and the polar photoproducts of the polycyclic aromatic sulfur heterocycles were 

found to be the most significant toxicants. This may be due to that the polar photoproducts of 

PASHs are more water soluble than the non-polar ones, their concentrations in the water 

could be higher, resulting in increased bioavailability. Furthermore, these oxygenated 

compounds are still sufficiently lipophilic to partition into biological membranes [193]. This 

combination of good bioavailability and high bioconcentration potential indicate that polar 

photoproducts present a real risk when they are present in the environment. The extent of this 

risk is currently unknown, however, because the photoproducts have never been included in 

environmental surveillance programs. These toxic photoproducts will be the focus of our 

subsequent instrumental analyses and chemical identification in addition to the polycyclic 

aromatic sulfur heterocycles. 
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8. Characterization of polar photoproducts of PASHs 
It was demonstrated that photo-oxidation is responsible for the stabilization of water in oil 

emulsions "chocolate mousse" [46] and the increase of the oil solubility in water [45, 50]. 

These phenomena are due to the formation of a variety of oxygenated compounds including 

aliphatic and aromatic ketones, aldehydes, sulfoxides, carboxylic acids, fatty acids, esters, 

hydroperoxides, quinones and aliphatic and aromatic alcohols [53, 56-60, 194, 195]. 

 

In the present work, it is aimed to identify the polar photoproducts of polycyclic aromatic 

sulfur heterocycles which were found to be causing the highest toxicity of crude oil.  

 

8.1. Experimental section 
8.1.1. Crude oil fractionation 
About 1 g of an Egyptian crude oil (1 % sulfur) was fractionated by column chromatography 

into saturates and aromatics. A gravity-fed chromatographic column (200 mm x 28 mm) was 

packed with 20 g silica gel and 35 g alumina. Before using silica and alumina, they were 

activated at 180 °C for 16 hours separately. The saturate fraction was collected using 120 ml 

n-heptane as eluent and the aromatic one was eluted by 360 ml of a mixture of n-heptane and 

toluene (2:1). The aromatic fraction was then subjected to a class separation into the PAHs 

and the PASHs using ligand exchange chromatography on a stationary phase containing a 

Pd(II) complex as described below.  

 

8.1.2. Ligand exchange chromatography  
The Pd(II)-containing complex based on 2-amino-1-cyclopentene-1-dithiocarboxylate 

covalently bonded to silica gel was used for the fractionation of the aromatic fraction of the 

Egyptian crude oil into PAHs and PASHs as already described in section 7.3.3.1.  

 

8.1.3. Photo-oxidation of the PASH fraction 
About 32 mg of the PASHs fraction were dissolved in 2 ml cyclohexane and floated as a film 

on 50 ml distilled water saturated with oxygen and irradiated for one month with the mercury 

lamp. Traces of anthraquinone were added as photosensitizer to the PASH solution prior to 

photo-oxidation.  
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8.1.4. Extraction of polar photoproducts 
The aqueous solution containing the photoproducts of PASHs was acidified to pH 1 using 

concentrated hydrochloric acid and the polar photoproducts 1 (PP1) were extracted with 5×10 

ml dichloromethane. The PP1 extract was dried over anhydrous sodium sulphate, 

concentrated by rotary evaporator to 2 ml and dried under a stream of nitrogen. The residual 

aqueous solution, remaining after the extraction of PP1, was completely dried by rotary 

evaporator to give the polar photoproducts 2 (PP2). 

 

8.1.5. Derivatization of polar photoproducts 1 
The PP1 were dissolved in the smallest volume of a mixture of chloroform/ methanol (1:1 

v/v) and then derivatized to their trimethylsilyl (TMS) derivatives by their reaction with N-

methyl-N-(trimethylsilyl)-trifluoroacetamide at 70 °C for 30 min and then were subjected to 

GC-MS analysis, using the quadrupole GC-MS consisting of an Agilent 6890 GC and a 

Waters Micromass (Manchester, U.K.) QuattroMicro mass spectrometer, and tandem mass 

spectrometry (ESI-MS/MS) operated in the electrospray negative mode.  

 

8.1.6. Identification of polar photoproducts 1 
The PP1 were identified by comparison of their gas chromatographic retention times and mass 

spectra with those of authentic standards after their derivatization to trimethylsilyl derivatives 

or by comparison of their mass spectra with reference mass spectra (NIST mass spectra data-

base). The standard compounds used were cyclohexylacetic acid, cyclohexanecarboxylic acid, 

octanoic acid, decanoic acid, tetradecanoic acid and benzoic acid.  

 

8.1.7. Analysis of polar photoproducts 2 
The PP2 after drying were subjected to electrospray tandem mass spectrometry (ESI-MS/MS) 

analyses performed on a Quattro LCZ triple quadripole mass spectrometer (Waters-

Micromass, Manchester, UK) in the electrospray positive and negative ion mode. 

Determination of the elemental compositions of PP2 was performed on a MicroTof mass 

spectrometer (Bruker Daltonics, Bremen). 

 

The detailed analysis scheme is presented in Figure 8.1.  
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Figure 8.1. Analysis scheme of polar photoproducts of PASHs. 

 

8.2. Results and discussion 
8.2.1. Characterization of polar photoproducts 1 

8.2.1.1. Derivatization 
In order to analyze polar and thermolabile compounds by GC and GC-MS, they shoud be first 

derivatized. Derivatization usually improves the gas chromatographic properties of the 

compounds as it minimizes the undesirable and non-specific column adsorption and gives 

better peak shapes. As the chemical structure of the substance is changed after derivatization 

and, subsequently, the fragmentation pattern, high mass ions could be obtained and could be 
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then easily separated from  the interferences either from the fragment ions of contaminants or 

from those due to column bleeding [196].  

 

In addition, the introduction of groups with high electron affinity, such as halogen atoms, 

through derivatization can also enhance the detectability of a compound by GC-MS.  

Moreover, derivatization can be used to favour the formation of high stability fragments that 

can be used to monitor a common and characteristic fragment ion [197]. 

 

In order to accomplish a successfull derivatization reaction, the following requirements are 

needed: 

• a single derivative should be formed for each compound,  

• the derivatization reaction should be simple and rapid and should occur under mild 

conditions, 

• the derivative should be formed with a high and reproducible yield and should be 

stable in the reaction medium. 

 

8.2.1.2. Silylation 
Silylation is one of the most widely used derivatization procedures for GC-MS analyses 

[198]. An alkylsilyl group replaces an active proton in -OH, -SH or -NH groups leading to the 

elimination of hydrogen bonding and the formation of a silyl derivative. The order of 

increasing reactivity towards silylation is as follows: alcohols > phenols > carboxylic acids > 

amines > amides.  

 

Trimethylsilylation is the most common silylation procedure currently used. In addition to the 

high thermal and chemical stability and high volatility of trimethylsilyl (TMS) derivatives, 

trimethylsilyl groups increase the total ion current and, hence, the sensitivity using positive 

ion mass spectra [199]. A variety of trimethylsilylating reagents with different properties 

(such as volatility, reactivity, selectivity, by-product formation, etc.) are nowadays used 

including trimethylhalosilanes, TMS-amines, TMS-esters and TMS-amides in which N-

methyl-N-trimethylsilyl-trifluoroacetamide is the most volatile TMS-amide available [198]. 

Moreover, in order to derivatize sterically hindered functions or to enhance reaction rates, 

catalysts such as trimethylchlorosilane, trimethylsilylimidazole, trimethyliodosilane or 

potassium acetate have been added to the previous reagents to increase their silylating power 



Polar photoproducts                                                                                                       Chapter 8 

 75

[200]. Furthermore, as all the above derivatization reagents can be injected directly into the 

GC-MS system, the time needed for the sample preparation is usually short. 

 

8.2.1.3. Identification of polar photoproducts 1 
PP1 can be divided into several classes of compounds based on their functional groups. They 

will be discussed here according to that pattern: 

 

Carboxylic acids 

In order to identify the polar photoproducts 1 of PASHs, after their extraction from water, 

they were dried and subjected to electrospray mass spectrometry in the negative mode.  An 

electrospray tandem mass spectrometry analysis in the negative mode with a neutral loss of 44 

amu corresponding to the loss of CO2, which is characteristic of carboxylic acids, was 

produced from the parent peaks [201]. Figure 8.2 shows the negative ESI-MS/MS spectra of 

the photoproducts that have lost CO2. As can be deduced from Figure 8.2, a large number of 

carboxylic acids were found among the PP1. Since the instrument used does not have a high 

enough resolution to deduce the elemental compositions from the masses recorded, additional 

information about the structure of the compounds is then required. Therefore, the acids were 

derivatized as trimethylsilyl derivatives and then analyzed by QuattroMicro GC-MS. The 

resulting gas chromatogram in Figure 8.3 displays many peaks, some of which may be 

derived from carboxylic acids and some from other polar products. The carboxylic acids can 

be selectively detected by recording the single ion chromatogram of m/z 132 (Figure 8.4).This 

mass is generated by the fragment [CH2=C(OH)-O-SiMe3]+ which is characteristic of 

McLafferty reaarangement in fatty acid trimethylsilyl esters. A series of regularly spaced 

peaks can be seen which were identified as the fatty acids from butanoic to hexadecanoic 

acid.  
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Figure 8.2. Negative ion ESI-MS/MS spectrum after the loss of m/z 44 from carboxylic acids. 

 

 

 

 
Figure 8.3. GC-MS chromatogram of carboxylic acids trimethylsilyl derivatives. 
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Figure 8.4. Mass chromatogram of m/z 132 of carboxylic acid trimethylsilyl derivatives. 

 

The identification of the fatty acids was based on the following considerations, illustrated for 

the compound eluting at 7.25 min (Figure 8.4 and 8.5). The mass spectrum showed 

predominant ions at m/z 73, 75, 117, 132, 145 in addition to the ions 157, 173, 187, 201 and 

216. The ion at m/z 201 represents the molecular ion less 15 mass units, a common fragment 

observed with TMS-derivatized compounds, suggesting the loss of a methyl group from TMS 

substituent. In general, electron ionization (EI) mass spectra of trimethylsilyl ethers or esters 

is characterized by the presence of the [M-15]+ ion formed by loss of a methyl group bonded 

to silicon, which is usually used for the  determination of the molecular mass. Moreover, it is 

commonly known that during the EI fragmentation process, many rearrangements may occur 

that are useful for the deduction of structures of unknown spectra [202]. Hence, in addition to 

M+ and [M-15]+, m/z 73 [Si(CH3)3]+ and m/z 75 [Si(CH3)2OH]+ are prominent in nearly all 

TMS spectra [198].  

 

It was reported that the TMS ester group undergoes α-cleavage, β-cleavage with γ-hydrogen 

rearrangement and migration of a δ- or ε-hydrogen, with reciprocal hydrogen transfer and 

subsequent γ-cleavage [203] (Scheme 8.1). For instance, the peak at m/z 117 may arise from 

α-cleavage (ion a+) or from the loss of a methyl radical by the ion b.+ (m/z 132) resulting from 
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β-cleavage (ion c+) (Scheme 8.1). The fragment ion at m/z 129 was formed by the loss of 

methane from the ion d+ (m/z 145) resulting from γ-cleavage. The formation of the highly 

stable ion e+ (m/z 129) occurred through the movement of an electron pair from one of the Si–

CH3 bonds, with a concerted six centered movement of an electron pair from the H–O bond 

(Scheme 8.1). However, the transfer of a proton from the protonated carbonyl group to the 

oxygen of the trimethylsilyloxy group and the subsequent four-membered hydrogen 

rearrangement with charge retention were suggested as another formation pathway [202, 204].  

 

 
Figure 8.5. Total ion current partial expanded GC-MS chromatogram of carboxylic acids 

trimethylsilyl derivatives. Identifications are listed in Table 8.1. 

3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 0

100 

%

5.36

4.68

4.48 
4.37 4.22 5.215.05 5.25

5.67

6.33 
5.87

0
8.00 10.00 12.00 14.00 16.00 18.00 20.00 

100 

% 

13.54

12.7311.47 

7.25 7.56 
8.97 8.13 

8.75 

9.76

9.32 
10.53 

10.20 
10.72 

12.20 

13.25

17.3615.21

14.50

13.93

16.20 16.46

Retention time (min)



Polar photoproducts                                                                                                       Chapter 8 

 79

 
 

Scheme 8.1. Proposed fragmentation of silylated carboxylic acids (from [204]). 

 

The mass spectrum of the compound at 7.25 min coincided with that of the trimethylsilyl ester 

of octanoic acid in the NIST library and the retention time and the mass spectrum were 

identical with those of an authentic sample. The other alkanoic acids in Figure 8.4 were 

identified in a similar manner.  

 

It should be noted that the peaks obtained at 12.10, 12.73 and 13.54 min (Figure 8.5) 

correspond to phthalates that may be originating from plasticizers and not from the photo-

oxidation of PASHs.  

 

 

 

 

 

H2C C

OH

O

SiMe3

H2C C

OH

O

SiMe2

O

SiMe3

C

O

H

HCH2C

O

C

O

HCH2C

H

Si

CH3

CH3

CH3

O

C

O

HCH2C

SiMe2

O

C

O

HCH2C

SiMe2H

H3C

R O SiMe2C

O

R C O O S iM e 3 O C O S iM e 3
CH3 α-cleavage 

+ .
+ + - 

. 

+ 

+ 

+ 

+ 

+ 

CH4- 

CH4- 

McLafferty 
Rearrangement 
 

γ-cleavage 

c+, m/z 117 

e+, m/z 129 

d+, m/z 145 

a+, m/z 117 [M-15]+ 

b+, m/z 132 

CH3- 
. 

. 

..



Polar photoproducts                                                                                                       Chapter 8 

 80

Hydroxycarboxylic acids 

EI mass spectra of the compound at 8.75 min (Figure 8.5) showed fragment ions at m/z 103, 

117, 129, 132, 145, 147, 171, 204, 217, 245, 261 and 276. The mass 103 [CH2=O-SiMe3]+
, 

which is formed through the cleavage of the alkyl chain,  indicates the presence of a hydroxyl 

group. The m/z 261 and 276 represent the [M-15]+ and [M]+ respectively and the presence of 

m/z 103 together with the ions 129, 132 and 145 reveals the presence of a hydroxyl group and 

a carboxylic group respectively. In addition, the formation of the well known fragment ion g+ 

at m/z 147 confirms the presence of more than one functional group (more than one silyl 

residue) [198], and the mechanism of its formation involves the loss of a methyl radical from 

one silyl group and subsequent rearrangement through a cyclic oxonium ion such as f+ 

(Scheme 8.2) [204].   

 

It is well known that through the interaction between the two functionalities in EI mass 

spectra of hydroxycarboxylic acid TMS derivatives, the ions [M-31]+ and [M-105]+ are 

formed (Scheme 8.3) [204]. Hence, this explains the formation of m/z 171 = [M-105]+ and 

m/z 245 = [M-31]+ . Their formation pathways involve a hydrogen atom transfer from the 

primary carbon bearing the TMS ether group to the ionized ester group. A molecule of 

methane is then lost from the resulting ion h+. (according to the mechanisms proposed in 

Scheme 8.1) to give after cyclization the radical ion i+. which lose a methyl radical to yield the 

ion j+ at [M-31] +. A molecule of trimethylsilanol and a methyl radical are easily lost from the 

ion h+. to give the ion k+ corresponding to [M-105]+ (Scheme 8.3). 

 

In addition to the fragmentations described above, the EI mass spectra of dicarboxylic acid 

and hydroxycarboxylic acid TMS derivatives show abundant ions at m/z 204 and 217. The 

ion 217 is important as it is independent of the chain length and is usually unaffected by the 

ionizing energy used [205]. The fragment ions at m/z 204 and 217 result from pathways 

similar to those described above as can be seen in Scheme 8.4 [204]. Due to the presence of 

all the above mentioned fragments and by comparison with the NIST data base, the compound 

at 8.75 min can be suggested to be a hydroxyhexanoic acid. 
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Scheme 8.2. Formation pathway of ion g+ (at m/z 147) (from [204]). 
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Scheme 8.3. Proposed formation pathways of ions [M-31] +and [M-105]+ (from [204]). 
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Scheme 8.4. Proposed formation pathways of ions n+ (at m/z 217) and m+. (at m/z 204) 

involving trimethylsilyl transfer (from [204]). 
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Dicarboxylic acids 

Based on the previously mentioned mechanisms, the compound eluting at 9.41 min (Figure 

8.5), whose mass spectra contained m/z 275 as [M-15]+ and each of m/z 73, 117, 147, 159, 

172, 204 and 217 was identified as 1,6-hexanedioic acid. The mass fragment 159 corresponds 

to the [M-131]+ which usually appears in the EI mass spectra of dicarboxylic acid TMS 

derivatives and is formed through the interaction between the two functionalities (Scheme 

8.5). It is similar to the peak at [M-73]+ (corresponding to the loss of the ester group plus C-2) 

which was observed in the case of dicarboxylic acid dimethyl esters [206].   

 

 
 

Scheme 8.5. Proposed formation pathway of ion [M-131]+ (from [204]). 

 

The MS profile of the compound at 11.57 min (Figure 8.5) contained the key fragment ions 

m/z 73, 117, 147, and 204, which are associated with two TMS derivatized carboxylic groups 

(m/z 73, 117, 147, and 204) and a succinyl moiety (m/z 172, 217, and 262, [M-15]+) 

associated with alkylsuccinic acid derivatives from n-alkanes [207]. An [M-15]+ ion with 2 

mass units less than that predicted for a straight-chain alkylsuccinate was observed, 

suggesting a compound with one degree of unsaturation such as an alkene, or a cyclic alkane. 

A comparison of the mass spectrum with the database suggests that the compound may be 

cyclohexylsuccinic acid. The compound underwent a McLafferty rearrangement to give the 

ion at m/z 262 [202]. In this rearrangement, a bond cleavage between the cyclohexyl and 

succinic acid portions takes place, with transfer of a single proton from the cyclohexyl portion 

onto the nearest carbonyl group in the succinic acid portion. The resulting ion at m/z 262 has 

the same chemical composition as the di-TMS ester of succinic acid. This McLafferty 

rearrangement ion lose HOSi(CH3)3 (90 amu) to give the resulting ions at m/z 172. The ion at 

m/z 217 is 45 amu (CO2H) smaller than the McLafferty rearrangement ion. The mechanism 

may involve a long-range migration of a TMS group [202]. 
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Diols 

A compound appearing at 5.21 min (Figure 8.5) had the important fragments m/z 73, 103, 

147, 177, 205 and was identified as 1,3-propane diol. The mass 103, [CH2=O-SiMe3]+ 

previously mentioned, is commonly observed in TMS ether and diol spectra. However, diols 

are differentiated by the presence of m/z 147, [(CH3)3Si-O=Si(CH3)2]+ [208]. In studies of 

TMS derivatives of terminal aliphatic diols ion m/z 147 has been shown to arise both from 

loss of CH2O from m/z 177 and by a cyclic mechanism proceeding through [M-15]+ [209]. 

On the other hand, in a study of related homologues (TMSO(CH2)nOTMS, n = 3 to 8), it was 

reported that both m/z 177 (Scheme 8.6) and 147 were derived from [M-15]+, suggesting the 

presence of a cyclic oxonium ion form of [M-15]+ as intermediate [210]. 

 

 
 

Scheme 8.6. Proposed formation pathway of ion [(CH3)3Si-O=Si(CH3)2]+ m/z 147 (from 

[209]). 

 

Aromatic acids 

In addition to aliphatic products identified, aromatic compounds were also found, among 

them, the compound eluting at 7.10 min (Figure 8.5). It had the following fragment ions 73, 

75, 77, 105, 135, 179 and 194 as [M]+ and was identified as benzoic acid. It was demonstrated 

that the intense m/z 135 peak in the mass spectrum of trimethylsilyl benzoate arose by 

elimination of carbon dioxide from the [M-CH3]+ species as shown in Scheme 8.7 [211]. 
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Scheme 8.7. Proposed formation pathway of m/z 135 (from [211]). 

 

Likewise, many of the polar photoproducts obtained were identified and they are listed in 

Table 8.1.  

 

By observing the polar photoproducts obtained, we can deduce that the first possible 

photodegradation pathway of PASHs is the oxidation of the terminal methyl group in the 

alkyl chain to CH2OH, which is further oxidized to –CHO and –COOH followed by the 

cleavage of the alkyl chain. The identification of various aliphatic and aromatic acids and 

alcohols indicate that the alkyl side chains were susceptible to photo-oxidation. These results 

are in accordance with the work of Ehrhardt and Petrick [73] who investigated the photo-

oxidation of 1-phenyl-n-tridecane among several other homologous of monoalkylated 

benzenes and identified 1-phenyl-1-tridecanone, 1-phenyl-tridecanol, 1-phenylethanone and 

benzaldehyde in addition to n-undecene-1, n-dodecane and n-decanal as photoproducts. 

Rontani et al. [72] also reported the formation of 1-phenyl-1-nonanone, 1-phenyl-1-nonanol, 

1-phenylethanone, benzaldehyde, n-octane and nonanal resulting from the photo-oxidation of 

n-nonylbenzene on seawater, which shows that these results are fiting with the results of 

Ehrhardt and Petrick [73].  
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Table 8.1. Retention time (tR) in Figure 8.5 and important fragment ions of carboxylic acids 

and alcohols as their trimethylsilyl derivatives by GC-MS analysis 

Compound tR Important mass spectral fragment ions 

Butanoic acid 3.43 73, 117, 129, 145, 160 

Pentanoic acid 4.37 73, 117, 129, 132, 145, 159, 174 

Cyclohexanol 4.67 73, 101, 113, 129, 143, 157, 172 

1,3-Propanediol 5.21 73, 103, 115, 130, 133, 147, 163, 177, 205 

Cyclopentane carboxylic acid 5.24 73, 96, 117, 129, 142, 153, 171, 186 

Hexanoic acid 5.36 73, 101, 117, 132, 145, 159, 173, 188 

Heptanoic acid 6.33 73, 117, 132, 145, 159, 173, 187, 202 

Cyclohexanecarboxylic acid 6.66 73, 117, 129, 145, 185, 200 

Benzoic acid 7.10 73, 77, 105, 135, 179, 194 

Octanoic acid 7.25 73, 117, 132, 157, 173,  201, 216 

1,2-Cyclohexanediol 7.34 73, 81, 101, 117, 129, 142, 147, 155, 170, 245 

Glycerol 7.43 73, 103, 117, 133, 147, 177, 191, 205, 218, 293 

Cyclohexylacetic acid  7.56 73, 117, 132, 199, 214 

2-Methyl benzoic acid 8.05 73, 77, 91, 119, 149, 193, 208 

Nonanoic acid 8.13 73, 117, 132, 145, 171, 187, 215, 230 

Hydroxyhexanoic acid 8.75 73, 103, 117, 129, 147, 171, 186, 245, 261, 276 

Decanoic acid 8.97 73, 117, 132, 145, 185, 201, 229, 244 

1,6-Hexanedioic acid 9.41 73, 83, 111, 117, 129, 147,159, 172, 185, 275 

2-Hydroxybenzoic acid 9.48 73, 91, 117, 147, 179, 193, 209, 221, 249, 267 

Undecanoic acid 9.76 73, 89, 117, 132, 145, 185, 201, 243, 258 

Dodecanoic acid 10.53 73, 99, 117, 132, 145, 159, 201, 257, 273 

1,2-Benzenedicarboxylic acid 10.91 73, 91, 117, 147, 163, 207, 221, 235, 295, 310 

Cyclohexyl succinic acid 11.57 73, 129, 147, 172, 217, 262, 329  

Tetradecanoic acid 11.95 73, 95, 117, 132, 145, 285, 300 

Hexadecanoic acid 13.25 73, 117, 132, 145, 187, 201, 269, 285, 313, 328 
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8.2.1.4. Identification of novel non-condensed cyclohexyl compounds 
Two peaks seem to represent acids containing the cyclohexyl group were observed among the 

aliphatic acids obtained. The trimethylsilyl ester at 6.66 min (Figure 8.4) has the molecular 

mass 200, corresponding to a carboxylic acid of the composition C7H12O2. There is therefore 

one double bond or one ring in the compound. Since unsaturated aliphatic chains are very rare 

in crude oils, either cyclohexanecarboxylic acid or methylcyclopentanecarboxylic acid would 

suggest itself. The retention time and the mass spectrum of this compound corresponded to 

those of the standard cyclohexanecarboxylic acid (Figure 8.6). 

 
 

Figure 8.6. Mass spectral profiles of cyclohexanecarboxylic acid (a) found in the polar 

photoproducts and (b) as authentic standard (analyzed as TMS esters). 

 

The acid represented by the peak at 7.56 min (Figure 8.4) has a molar mass of 214, 14 mass 

units more than cyclohexanecarboxylic acid. It may be cyclohexylacetic acid, a 

methylcyclohexanecarboxylic acid or an ethylcyclopentanecarboxylic acid. The retention time 

and the mass spectrum were identical with those of the authentic standard cyclohexylacetic 

acid (Figure 8.7). 

 

The presence of the cyclohexyl group, in cyclohexanecarboxylic acid and cyclohexane acetic 

acid, among the aliphatic acids is significant since it indicates that polycyclic aromatic 

compounds in the crude oil contain this structural element in the side chain. High resolution 

mass spectrometry has established the profuse presence of aromatic compounds containing 

one or several saturated rings. MS does not distinguish between fused (e.g. cyclohexano) and 

substituted (e.g. cyclohexyl) rings but the photoproducts found here can only be derived from 

the latter. 
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Figure 8.7. Mass spectral profiles of cyclohexylacetic acid (a) found in the polar 

photoproducts and (b) as authentic standard (analyzed as TMS esters). 

 

Cyclohexylsubstituted aromatics do not seem to have been identified in crudes yet but 

cyclohexyltetralins have been shown to possess structural details that make them possible 

constituents of the unresolved complex mixture of petroleum [212]. The identification of the 

cyclohexyl containing acids among the photoproducts thus gives us new structural insights 

into the polycyclic aromatic compounds in crude oil. 

 

8.2.2. Characterization of polar photoproducts 2 (PP2) 
After the extraction of PP1, the aqueous phase remaining was evaporated and the PP2 were 

obtained in order to be analyzed by ESI-MS in the negative ion mode. First, the fragmentor 

voltage of the instrument was optimized using two standard compounds, p-toluene sulfonic 

acid and 2-sulfobenzoic acid, in order to achieve significant fragmentation of the quasi-

molecular [M-H]- ion. Among the structurally important ions observed in the characterization 

of these standards by ESI-MS were those due to the loss of SO3
- ion. This is in agreement with 

Alonso and Barcelo [213] who have found that the SO3
- ion was observed in all sulfonic 

compounds, so that m/z 80 could be used as a diagnostic tool to indicate the presence of 

sulfonated aromatic compounds in any sample. Then the PP2 were then analyzed by ESI-

MS/MS in which the parent peaks were subjected to the loss of m/z 80 fragment and Figure 

8.8 shows the resulting mass spectrum of the daughter ions.  
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Figure 8.8. Negative ion ESI-MS/MS spectrum of precursor ions of SO3

- of presumably all 

sulfonic acids. 

 

Since the resolution of the instrument used is not high enough to deduce the elemental 

compositions of the sulfonic acids from the masses recorded, the PP2 were analyzed by the 

MicroTof MS in order to identify the various sulfonic acids. Accurate masses of the 

deprotonated sulfonic acid molecules were determined in the negative ionization mode and 

these were entered into the Elemental Composition program to calculate possible elemental 

compositions with a maximum deviation of ± 5 mDa from the measured mass. Parameter 

settings for all calculations were C: 0-10, H: 0-13, O: 0-7 and S: 0-1. The resulting elemental 

compositions were searched against the Merck Index and the NIST databases assuming the 

presence of a SO3
- group. The double bond equivalent parameter was also used as an 

identification criterion in order to gain information about the aromaticity of the structure, 

whenever possible.  

 

Selected examples  

The m/z value of a deprotonated unknown compound was found to be 156.9953. The only 

elemental composition possible assuming the presence of a SO3
- group and a benzene ring 

was C6H5O3S1. This corresponded to a benzene sulfonic acid. In a similar way, the m/z value 

of deprotonated unknown compounds was 171.0110 and 200.9852. Only one possibility 

resulted for each mass: C7H7O3S1 and C7H5O5S1 which indicated the presence of toluene 

sulfonic acid and sulfobenzoic acid respectively. The exact mass of an unknown compound 

was 185.0277. This elemental composition was found in the database, resulting in two 

possible isomers: a dimethylbenzene sulfonic acid or an ethylbenzene sulfonic acid. The 
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molecular weight of unknown compounds with their corresponding possible structure(s) 

identified are given in Table 8.2.   

 

The sulfonic acids were also subjected to positive ESI-MS (Figure 8.9). The observed mass 

spectrum exhibited for instance the presence of significant peaks at m/z 69 [C5H9]+, 71 

[C5H11]+ and 85 [C6H13]+. Less significant peaks were present at m/z 55 [C4H7]+, 57 [C4H9]+ 

and 67 [C5H7]+ (Figure 8.9). These peaks represent two alkylation series with peaks separated 

by m/z 14. These series represent [CnH2n-1]+ and [CnH2n+1]+ starting at [C4H7]+at m/z 55 and 

[C4H9]+at m/z 57 respectively. In addition to the previously mentioned series of peaks, 

clusters of peaks separated by m/z 2, which corresponds to successive losses of H2 (i.e. 

addition of a ring or double bond) were also observed. It is assumed that these series were 

formed during the cleavage of the side alkyl chain. This is consistent with the previous studies 

of Ehrhardt and Petrick [73] who observed the formation of n-undecene-1 and n-dodecane 

from the photo-oxidation of 1-phenyl-n-tridecane as well as the formation of n-propene-1, n-

nonene-1, n-decene-1, n-undecene-1 and n-dodecene-1 from the sensitized photo-oxidation of 

n-pentadecane [74]. Moreover, 1,3-pentadiene and n-butane were obtained as photoproducts 

from the photolysis of anthracene [214] and n-butylcyclohexane [215] respectively. 

 
Figure 8.9. Positive ion ESI spectrum of sulfonic acids. 
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Table 8.2. Possible structures of sulfonic acids identified from the MicroTof mass spectra                                

Molecular 

weight 

Molecular 

formula 

 

Possible structures 

 

136 

 

C4H8SO3 

 

CH3-CH=CH-CH2-SO3H 

 

CH2=CH-(CH2)2-SO3H 

 

138 

 

C4H10SO3 

 

C3H6SO4 

 

CH3-CH2-CH2-CH2-SO3H 

 

OHC-CH2-CH2-SO3H 

 

152 

 

C4H8SO4 

 

OHC-CH2-CH2-CH2-SO3H 

 

154 

 

C3H6SO5 

 

HOOC-(CH2)2- SO3H 

 

158 

 

C6H6SO3 
SO3H  

 

164 

 

C6H12SO3 

SO3H

CH3

             SO3H  

 

168 

 

C4H8SO5 

 

HOOC-(CH2)3- SO3H 

 

172 

 

C7H8SO3 
SO3H

CH3

 
 

 

186 

 

C8H10SO3 
SO3H

CH3CH2

   SO3H

CH3 CH3
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202 

 

C7H6SO5 
SO3H

COOH

 
 

 

 

208 

 

 

C7H12SO5 

SO3H

CH3

COOH

       SO3H

COOH
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C8H8SO5 
SO3H

CH2COOH

       SO3H

COOHCH3

 

 

 

222 

 

 

C8H14SO5 

SO3H

CH3

CH2COOH
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COOH
CH3CH2

 
 

 

SO3H
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          SO3H

CH2COOH
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SO3H
CH3

COCH3
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The second possible photodegradation pathway of PASHs is the oxidation of the aromatic 

ring. For instance, the ring oxidation was observed by Moza et al. [216] in a study of the 

photo-oxidation of naphthalene and phenanthrene as a liquid film on water. They have 

detected 3-phenyl-2-propenal and 2-carboxybenzaldehyde from naphthalene and 2-biphenyl 

carboxylic acid and 2-biphenyl aldehyde as photoproducts from phenanthrene. Furthermore, 

Lehto et al. [214] have studied the photodegradation of anthracene and benz[a]anthracene and 

detected 1(3H)-isobenzofuranone and 4-ethoxybenzaldehyde among the photoproducts of 

anthracene and 1(3H)-isobenzofuranone among those of benz[a]anthracene.  

 

However, in the photo-oxidation studies of benzothiophene [94], monomethyl- and 

dimethylbenzothiophenes [99, 100] and dibenzothiophene [101, 102], thiophene dicarboxylic, 

tricarboxylic and tetracarboxylic acids were found as products from the benzo ring oxidation 

besides different sulfonic acids such as sulfobenzoic acids produced from the thiophene ring 

oxidation. As the PASHs were photo-oxidized for a long time (one month), it is assumed that 

the oxidized PASH compounds produced have undergone further photo-oxidation and were 

further photodegraded through the third photodegradation pathway, namely the oxidation of 

the thiophene ring. This is confirmed through the identification of a variety of aliphatic and 

aromatic sulfonic acids detected in the polar photoproducts in addition to the released sulfur 

atom, detected as sulfate ion (appearing as a peak with high intensity in negative ESI-MS at 

m/z 97 corresponding to [HSO4]- [217]), which provides convincing evidence of the 

thiophene ring cleavage.  

 

Moreover, the presence of a variety of aliphatic sulfonic acids may be explained based on the 

photo-oxidation studies of sulfides. It is known that the photo-oxidation reactions of dialkyl, 

alkylphenyl and diaryl sulfides with singlet oxygen (1O2), generated by the photosensitized 

conversion of triplet oxygen to 1O2, yield the corresponding sulfoxide and sulfone [218]. 

However, Banchereau et al. [219] have photo-oxidized dimethylsulfide and dibutylsulfide in 

aqueous acetonitrile and reported the production of the corresponding sulfonic acid and 

sulphuric acid with the intermediate formation of the corresponding sulfoxide followed by the 

sulfone. In addition, methanoic and butanoic acids were also produced and were suggested to 

be formed by the oxidation of the corresponding alkyl radicals. 

 

 

 



Polar photoproducts                                                                                                       Chapter 8 

 96

8.3. Summary 
The production of many aliphatic and aromatic acids and alcohols in addition to various 

aliphatic and aromatic sulfonic acids reveal that the PASHs undergo three types of 

photodegradation pathways, including the oxidation of the alkyl chain, the oxidation of the 

benzo ring and the oxidation of the thiophene ring. The pathways discussed here which are 

independent of the aromatic ring structure, except those concerning the thiophene ring 

oxidation, should be equally relevant and hence applicable to polycyclic aromatic 

hydrocarbons.  
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9. Characterization of PASHs after photo-oxidation  
Despite the fact that much attention was directed to the photo-oxidation of PAHs, only very 

little is so far known about the photo-oxidation of PASHs [94, 98-105] although they 

frequently constitute 10-30 % of the PAHs and that they are more readily bioconcentrated 

than sulfur-free PAHs [220] in addition to their important use as environmental source 

markers [221-223]. In the present work, we attempt to simulate the photo-oxidation of the 

PASH fraction of crude oil and to investigate the changes in the distributions of non-oxidized 

low- and high-molecular weight sulfur compounds that can take place in the marine 

environment after an oil spill using GC-MS and FT-ICR MS. 

 

9.1. Characterization of PASHs after 10 days photo-oxidation by 

GC-MS 
9.1.1. Experimental section 

9.1.1.1. Crude oil fractionation 
About 1 g of an Egyptian crude oil (1 % sulfur) was fractionated by column chromatography 

into saturates and aromatics as described in section (8.1.1). The saturate fraction was collected 

using 120 ml n-heptane as eluent and the aromatic one was eluted by 360 ml of a mixture of 

n-heptane and toluene (2:1).  

 

9.1.1.2. Standard compounds 
Most of the reference compounds used except a few were synthesized in our laboratory [224].  

 

9.1.1.3. Fractionation of the aromatic fraction into PAHs and PASHs 
The aromatic fraction of the Egyptian crude oil was separated into PAHs and PASHs by 

following the same procedure described in section (7.3.3.1). 

  

9.1.1.4. Photo-oxidation of the PASH fraction  
After the separation of the PASH fraction, about 15 mg was dissolved in 5 ml cyclohexane 

and added to 100 ml distilled water and was irradiated for 10 days by the mercury middle 

pressure lamp. A dark control containing 10 mg of the PASH fraction was prepared the same 

way but kept in dark. 
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9.1.1.5. Liquid-liquid extraction 
After photo-oxidation, the polar photoproducts of the PASH fraction were separated from the 

non-polar ones by liquid-liquid extraction. In a separatory funnel, the photo-oxidized solution 

was made alkaline by adding sodium carbonate (till pH = 11) then the non-polar 

photoproducts were extracted using 60 ml dichloromethane (15 ml x 4). The solvent was then 

evaporated on a rotary evaporator till 3 ml and was then injected on GC-FID and GC-MS. 

The same procedure was also followed for the dark control and the PASH fraction was 

injected on GC-FID and GC-MS. The detailed analysis scheme is presented in Figure 9.1. 

 

 
 

Figure 9.1. Analysis scheme of non-polar photoproducts of PASHs. 
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9.1.2. Results and discussion  

9.1.2.1. The dark control 
The GC-MS chromatogram (Figure 7.12 in chapter 7) of PASHs showed a mixture of 

substituted benzothiophenes and dibenzothiophenes. These sulfur aromatic heterocycles are 

mainly represented by isomers of mono-(MBT), di-(DMBT), tri-(TMBT) and 

tetramethylbenzothiophenes (TeMBT) as well as dibenzothiophene (DBT), mono-(MDBT), 

di-(DMDBT), tri-(TMDBT) and tetramethyldibenzothiophenes (TeMDBT). Identification of 

the benzothiophenes and dibenzothiophenes was based on comparison of their GC retention 

times with authentic standards synthesized in our laboratory and with published data [225, 

226]. 

 

Benzothiophenes 

Four characteristic groups of peaks found in the GC-MS chromatogram (Figure 9.2) 

correspond to MBT, DMBT, TMBT and TeMBT. By the close inspection of Figure 9.2, it is 

clear that the TMBTs have the highest abundance among the benzothiophenes. A closer 

inspection of the benzothiophenes distribution pattern (Figure 9.3) reveals that 3- + 4-MBT is 

more abundant than 2-MBT (see Table 9.1), 2,3-DMBT is the most abundant compound 

among the DMBTs and that 2,3,7-TMBT is the most abundant one among the TMBTs. 

  

Figure 9.2. GC-MS chromatogram of benzothiophenes in the Egyptian crude oil. 
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Figure 9.3. GC-MS chromatograms of benzothiophenes (m/z 148, 162, 176 and 190, from the 

top) of the Egyptian crude oil. 

 

Table 9.1. List of benzothiophenes identified in the Egyptian crude oil 

Peak Compound 

1 2-Methylbenzothiophene 

2 3- + 4-Methylbenzothiophene 

3 2,7-Dimethylbenzothiophene 

4 2,6- + 3,7- + 4,7-Dimethylbenzothiophenes 

5 4,6-Dimethylbenzothiophene 

6 3,5-Dimethylbenzothiophene 

7 2,3-Dimethylbenzothiophene 

8 2,3,7-Trimethylbenzothiophene 

9 2,3,5-Trimethylbenzothiophene 
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Dibenzothiophenes 

Figure 9.4 shows the GC-MS chromatogram of dibenzothiophenes. Here, five characteristic 

groups of peaks can be observed, which can be attributed to DBT, MDBT, DMDBT, TMDBT 

and TeMDBT. Moreover, a close inspection of DBTs (Figure 9.5) shows that the abundance 

of the monomethyldibenzothiophenes is decreasing in the following order: 4-MDBT> 2- + 3-

MDBT>1-MDBT (see Table 9.2). In addition, the 3,6-DMDBT and 2,4,6-TMDBT are the 

most abundant compounds present among the dimethyldibenzothiophenes and 

trimethyldibenzothiophenes, respectively.  

 

 
 

Figure 9.4. GC-MS chromatogram of dibenzothiophenes in the Egyptian crude oil. 
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Figure 9.5. GC-MS chromatograms of dibenzothiophenes (m/z 184, 198, 212, 226 and 240, 

from the top) in the Egyptian crude oil. 

 

 

 

 

 

 

 

15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0

Time (min)

0 
20 
40 
60 
80 

10
0 

20 
40 
60 
80 

100 0 
20 
40 
60 
80 

100 

R
el

at
iv

e 
A

bu
nd

an
ce

 

0 
20 
40 
60 
80 

100 0 
20 
40 
60 
80 

100 
1 

2 
3 

4 

5 

6 

7 

8 

9 

10 

12 

11 

13 
14 

15 

17 16 

  
 



PASHs after photo-oxidation                                                                                        Chapter 9 

 103

Table 9.2. List of dibenzothiophenes identified in the Egyptian crude oil 

Peak Compound 

1 Dibenzothiophene 

2 4-Methyldibenzothiophene 

3  2- + 3-Methyldibenzothiophenes 

4 1-Methyldibenzothiophene 

5 4-Ethyldibenzothiophene 

6 4,6-Dimethyldibenzothiophene 

7 2,4- + 2,6-Dimethyldibenzothiophenes + 2-Ethyldibenzothiophene 

8 3,6-Dimethyldibenzothiophene 

9 2,7- + 2,8- + 3,7-Dimethyldibenzothiophenes 

10 1,4- + 1,6- + 1,8-Dimethyldibenzothiophenes 

11 1,3- + 3,4- + 1,7-Dimethyldibenzothiophenes 

12 2,4,6-Trimethyldibenzothiophene 

13 2,4,7- + 2,4,8-Trimethyldibenzothiophenes 

14 1,4,8-Trimethyldibenzothiophene 

15 1,4,7-Trimethyldibenzothiophene 

16 1,3,7-Trimethyldibenzothiophene 

17 3,4,7-Trimethyldibenzothiophene 

 

9.1.2.2. PASHs after 10 days photo-oxidation 
The first impression that emerges from examining the GC-MS chromatograms of the PASH 

fraction in the dark control and that after 10 days photo-oxidation (Figure 9.6) is the obvious 

photodegradation of benzothiophenes in comparison to dibenzothiophenes. A closer 

inspection of the benzothiophenes distribution pattern after 10 days photo-oxidation is given 

in Figure 9.7. When the chromatogram of benzothiophenes from the dark control is compared 

with that after 10 days photo-oxidation, it is apparent that the photo-oxidation has nearly 

removed the 2-MBT and 3- + 4-MBT (peaks 1 and 2). For the dimethylbenzothiophenes, 

there has been some degradation of 2,3-DMBT and 2,6- + 3,7- + 4,7-DMBT as indicated by 

the relative reduction in the heights of the peaks 7 and 4, respectively. In case of 

trimethylbenzothiophenes, 2,3,5-TMBT was the most susceptible one to photodegradation 

followed by 2,3,7-TMBT and the compound A which can be easily recognized from the 

reduced peak heights of these compounds in the chromatogram after 10 days photo-oxidation 

in comparison with that of the dark control. A significant decrease in the peak heights of the 
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tetramethylbenzothiophene compounds B and C after 10 days photo-oxidation was also 

observed relative to those in the dark control. 

 
 

Figure 9.6. GC-MS chromatograms of the PASH fraction in the dark control (a) and after 10 

days photo-oxidation (b). 

 

The distribution pattern of the dibenzothiophenes after 10 days photo-oxidation is shown in 

Figure 9.8. It can be seen that very little changes have occurred to the dibenzothiophenes after 

10 days photo-oxidation in comparison to the dark control. Moreover, the most pronounced 

photodegradation effect could be clearly seen in the trimethyldibenzothiophenes, namely in 

2,4,6-TMDBT and 2,4,7- + 2,4,8-TMDBT (peak 12 and 13 respectively). 
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Figure 9.7. GC-MS chromatogram showing the benzothiophenes in the dark control (a) and 

after 10 days photo-oxidation (b). Numbered compounds are listed in Table 9.1.   

 
Figure 9.8. GC-MS chromatogram showing the dibenzothiophenes in the dark control (a) and 

after 10 days photo-oxidation (b). Numbered compounds are listed in Table 9.2.     
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Hence, by comparing the chromatograms of benzothiophenes and dibenzothiophenes in the 

dark control with those after 10 days photo-oxidation, it could be deduced that 

benzothiophenes are more susceptible to photo-oxidation than dibenzothiophenes. Moreover, 

it was observed that the alkylated benzothiophenes and dibenzothiophenes were more easily 

photodegradable than their parent compounds. This is in agreement with Ehrhardt et al. [227] 

and Prince et al. [228] who also showed that alkyl substituted polynuclear aromatic 

hydrocarbons are photo-oxidized more rapidly than the unsubstituted parent compounds. It 

can be also seen from the chromatograms of BTs and DBTs that increasing their alkylation 

renders them more susceptible to photodegradation. These results are also consistent with 

those of Ganjali at al. [195] who showed that increasing the alkyl substitution of naphthalene, 

phenanthrene and dibenzothiophene increased their sensitivity to photo-oxidation and lead to 

the photodegradation of 50 % of the trimethylated compounds. 

 

9.2. Characterization of PASHs after 2 and 10 days photo-

oxidation by FT-ICR MS  
9.2.1. Experimental section 

9.2.1.1. Crude oil fractionation 
About 1 g of an Egyptian crude oil (1 % sulfur) was fractionated by column chromatography 

into saturates and aromatics. The saturate fraction was collected using 120 ml n-heptane as 

eluent and the aromatic one was eluted by 360 ml of a mixture of n-heptane and toluene (2:1) 

as described in section 8.1.1. The detailed analysis scheme is presented in Figure 9.9. 

 

9.2.1.2. Photo-oxidation of the aromatic fraction 
After the separation of the Egyptian crude oil into aliphatic and aromatic fractions, about 69 

and 103 mg of aromatic fraction was dissolved in 2 and 5 ml cyclohexane and added to 100 

ml distilled water and was irradiated, each one separately, for 2 days and 10 days, respectively 

by the mercury middle pressure lamp. A dark control containing 50 mg of the aromatic 

fraction was prepared in the same way but kept in dark. 

 

9.2.1.3. Liquid-liquid extraction 
After photo-oxidation for 2 and 10 days, the polar photoproducts of the aromatic fraction 

were separated from the non-polar ones by liquid-liquid extraction. In a separatory funnel, the 

photo-oxidized solution was made alkaline by adding sodium carbonate (till pH = 11) then the 
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non-polar photoproducts were extracted using 60 ml dichloromethane (15 ml x 4). The 

solvent was then evaporated on a rotary evaporator till 1 ml, and was further evaporated by a 

stream of nitrogen till dryness.  

 

 
 

Figure 9.9. Analysis scheme of non-polar photoproducts of PASHs. 

 

9.2.1.4. Sulfur selective methylation  
To about 36 mg of the non-polar products of the aromatic fraction extracted after 2 and 10 

days photo-oxidation, an excess of methyl iodide (50 µl) and silver tetrafluoroborate (40 mg) 

was added in 3 ml of 1,2-dichloroethane. The mixture was stirred for 48 h at room 

temperature to ensure the complete methylation of all sulfur compounds in the sample. Then, 

the filtrate was collected and the solvent was evaporated by a stream of nitrogen to obtain 

methyl thiophenium salts [182, 229]. The same methylation procedure was performed on the 

dark control.    
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9.2.1.5. High resolution mass spectrometry 
Mass spectra were acquired using an APEX III Fourier transform ion cyclotron resonance 

mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped with a 7 T actively 

shielded super conducting magnet and an Agilent ESI source. The samples were introduced in 

a 1:1 (v/v) solution of dichloromethane/acetonitrile and injected in the infusion mode with a 

flow rate of 2 µl/min detecting positive ions. The spray voltage was maintained at 4.5 kV. 

After ionization, the ions were accumulated for 0.5 s in the octapol before transfer to the 

cyclotron cell. For a better signal-to-noise ratio, at least 64 scans were accumulated. Internal 

and external calibrations were done using a mixture of the Agilent electrospray calibration 

solution of masses 622.02896 and 922.00980 with the addition of indolacrylic acid of masses 

397.11589 [2M+Na]+
 and 584.17923 [3M+Na]+

 covering the whole range of masses in the 

samples. All the measurements by FT-ICR mass spectrometer were performed in 

collaboration with Max-Planck-Institute of coal research, Mülheim, Germany. Figure 9.10 

shows the high resolution mass spectra of PASHs in the dark control and after 2 and 10 days 

photo-oxidation. 

 
 

Figure 9.10. High resolution mass spectra of PASHs (from top to bottom): in the dark control, 

after 2 days photo-oxidation and after 10 days photo-oxidation. 
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9.2.1.6. Data analysis 
All the data obtained from the mass spectrometer were imported into an Excel spreadsheet. 

Each signal in the mass spectrum corresponds to the methylated form of parent masses. In 

order to assign elemental composition of components present in crude oils, all the masses 

measured as [M+CH3]+
 were converted to neutral masses by subtracting 15.02293 from the 

measured masses. Then IUPAC masses were converted to the Kendrick mass scale [174] and 

Kendrick masses were further sorted according to the procedure explained in Chapter 5. 

 

9.2.2. Results and discussion 

9.2.2.1. Characterization of monosulfur PASHs 
9.2.2.1.1. Monosulfur PASHs in the dark control 

The monosulfur PASHs of the aromatic fraction show a DBE value between 1 and 14 (Figure 

9.11), which permits up to 5 condensed aromatic rings. The Egyptian oil clearly exhibits a 

wide alkyl carbon distribution as well as a high average number of alkyl carbons. The mass 

range for all monosulfur compounds in this oil goes from ca 172 Da to 940 Da.  

 

It is important to note that for the lowest DBEs, practically only one parent ring system is 

likely (crude oils rarely contain appreciable amounts of alkenes so that the DBE is essentially 

made up of the number of rings and the number of aromatic double bonds), but for higher 

DBEs, several parent ring systems are a possibility. At DBE > 9, the number of possible 

parent systems becomes very large and a lack of published data on such high-boiling 

materials makes comparison difficult. 

 

The first and second row in the Kendrick plot represent compounds having DBE value of 1 

and 2 which are the tetrahydrothiophenes and dihydrothiophenes (see Table 9.3 for a 

description of the parent structures for the homologous series). The lowest mass recorded for 

tetrahydrothiophenes and dihydrothiophenes is 172 and 212, respectively, while the highest 

one for each is 578 and 660, respectively. These compounds have a relatively low abundance, 

as can be seen from the size of the circles in the Kendrick plot. The intensity of the mass 

spectrometric signals or the abundance of the compounds is represented in the Kendrick plot 

by the size of the circles. 
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Figure 9.11. Kendrick plots of monosulfur PASHs (from top to bottom) in dark control, after 

2 days photo-oxidation and after 10 days photo-oxidation. 
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Compounds with DBE value of 3, 4 and 5 are the thiophenes, naphthenothiophenes and 

cycloalkenothiophenes respectively. The mass range for each series reaches up to 728, 796 

and 836 Da respectively. 

 

A major group of compounds appear at DBE = 6 as expected for benzothiophenes. Such 

compounds are among the most common sulfur species in crude oils. This series contains 

from 11 to 29 CH2 groups in the side chains. The strong presence of benzothiophenes together 

with thiophenes, naphthenothiophenes and cycloalkenothiophenes illustrates that these 

compounds are the most abundant ones in this crude oil.  

 

The next higher compound types of appreciable abundance having DBE equal to 7 are the 

phenylthiophenes together with the probability of other structures that contain non-condensed 

thiophenes. Compound classes with DBE = 8 include indenothiophenes and indanyl-

thiophenes as well as benzothiophene with two naphthenic ring. Indenothiophenes can be 

regarded as bridged phenylthiophenes and indanylthiophenes are substituted thiophenes. Such 

compounds occur here in the mass range from 200 to 914 Da. Compounds of DBE 7 and 8 are 

observed as having fairly strong abundance in comparison to the remaining compounds 

having DBE values from 9 to 13. 

 

DBE 9 most likely represent dibenzothiophenes (or benzothiophenes with 3 naphthenic rings) 

of KNM between 198 and 940 Da, indicating the presence of C1- to C54-dibenzothiophenes. 

They have a lower abundance compared to benzothiophenes. It should be noted that from 

mass spectrometric data alone, it is not possible to distinguish between dibenzothiophenes and 

the three isomeric naphthothiophenes, however, in crude oils naphthothiophenes are generally 

found in much lower quantities than dibenzothiophenes. 

 

As the DBE increases, the probability of finding isomeric parent compounds increases to a 

greater extent. For instance, the next higher series (DBE = 10) might consist of acenaphtheno-

thiophenes, benzothiophenes with a phenyl group as a substituent or dibenzothiophenes with a 

naphtheno ring. The compounds here have a KNM between 210 to 854 Da. DBE = 11 fits 

with phenanthrothiophenes, which are a class of compounds frequently found in fossil 

material. This series starts at a mass 306 and goes up to 852 Da.  
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Table 9.3. Parent structures for S1 homologous series, maximizing the number of aromatic 

rings 

Parent structure Name DBE 

S  

 

Tetrahydrothiophene 

 

1 

S  

 

Dihydrothiophene 

 

2 

S  

 

Thiophene 

 

3 

S  

 

Naphthenothiophene 

 

4 

S  

 

Cyclopentenothiophene 

 

5 

S  

 

Benzothiophene 

 

6 

S  

 

2-Phenylthiophene 

 

7 

S  

 

Indenothiophene 

 

8 

S  

 

Dibenzothiophene 

 

9 

S  

 

 

Acenaphthenothiophene 

 

 

10 
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S  

 

 

Phenanthrothiophene 

 

 

11 

S  

 

 

Benzonaphthothiophene 

 

 

12 

S

 

 

 

Phenanthronaphthenothiophene

 

 

13 

S

 
 

 

 

Pyrenothiophene 

 

 

14 

 

The next higher homologues are the benzonaphthothiophenes (DBE = 12) which are often 

identified in crude oils. The KNM of the compounds goes here from 374 to 836 Da. Here 

alkyl chains are found with 10 to 43 carbon atoms. DBE = 13 can correspond to 

benzonaphthothiophenes with one naphtheno ring or dibenzothiophenes with one phenyl 

group as a substituent as well as several other parent systems. The lower KNM for a 

compound in this row is 414 Da while the highest one is 820 Da. Figure 9.11 indicates that 

from DBE = 10 to DBE = 13, the compounds in the different series have very low abundance. 

 

The last class of compounds in this Kendrick plot is the class of pyrenothiophenes at DBE = 

14. There are only relatively few points in Figure 9.11 that correspond to such ring systems. 

  

It is noteworthy that the highest mass increases gradually starting from DBE 1 compounds 

having KNM equal to 578 Da till DBE = 9 class having KNM equal to 940 Da then it starts to 

decrease from the dibenzothiophene series till it reaches 762 Da in case of DBE 14. In this 

crude oil, the highest DBE value found for S1 compounds was 14 and the highest mass was 

940 Da.  
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9.2.2.1.2. Monosulfur PASHs after 2 days photo-oxidation 

By comparing the PASH distribution pattern after 2 days photo-oxidation with that of the dark 

control (Figure 9.11), it is obvious that photodegradation has a big impact on the high 

molecular weight compounds in the different classes with the preferential loss of long alkyl 

side chains (Table 9.4). A shift toward lower masses of high mass components (> 660 Da) is 

clearly evident.  

 

Figure 9.11 shows that photo-oxidation of the crude oil after 2 days exhibited the complete 

depletion of two classes of compounds, namely DBE = 1 (tetrahydrothiophenes) and DBE = 

14 (i.e. pyrenothiophenes). 

 

Table 9.4. Depletion of monosulfur PASHs after 2 and 10 days photo-oxidation   

Series Photodegraded 

compounds after 2 

days (*) 

Photodegraded compounds 

after 10 days (*) 

Tetrahydrothiophenes All compounds depleted after 2 days photo-

oxidation 

Dihydrothiophenes C27-C41 All compounds 

Thiophenes C36-C46 All compounds 

Naphthenothiophenes C35-C49 All compounds 

Cycloalkenothiophenes C36-C51 All compounds 

Benzothiophenes C35-C55 C26-C55 

Phenylthiophenes C42-C54 C27-C54 

Indenothiophenes C36-C53 C25-C53 

Dibenzothiophenes C37-C54 C25-C54 

Acenaphthenothiophenes C35-C46 C25-C46 

Phenanthrothiophenes C33-C46 C24-C46 

Benzonaphthothiophenes C38-C43 C19-C43 

Phenanthronaphthothiophenes C28-C41 C15-C41 

Pyrenothiophenes All compounds depleted after 2 days photo-

oxidation 

 

(*) Depletion is calculated relative to the dark control.  
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Interestingly, DBE 14 compounds (i.e. pyrenothiophenes) were the first condensed thiophenes 

to be completely photodegraded after two days followed by the photodegradation of the 

remaining sulfur heterocycles with variable rates. Hence, aromatic compounds are particularly 

sensitive to photo-oxidation and increasing the size of these compounds will increase their 

sensitivity to photochemical oxidation. These results are in accordance with those of Kochany 

and Maguire [230], Garrett et al. [231] and Guieysse et al. [232] who reported that 

compounds with higher molecular weight and more condensed aromatic rings have a higher 

rate of photolysis than smaller and less condensed ones. This is mostly due to the fact that the 

absorption maxima are shifted to longer wavelengths with increasing molecular size. 

Furthermore, Guieysse and Viklund [233] have studied the photodegradation of some 

polycyclic aromatic hydrocarbons and showed that the rate of their degradation was in the 

following order: benzo[a]pyrene > benzo[a]anthracene > fluoranthrene > pyrene 

> phenanthrene > fluorene. In addition, the photo-oxidation of an Arabian light crude oil for 

four weeks led to the photodegradation of about 95 % of di-and tri-n-alkylbenzothiophenes in 

the C11-C30 range [234].  

 

Tetrahydrothiophenes showed also high reactivity towards photo-oxidation as they have been 

completely photodegraded after 2 days irradiation. This is in agreement with the studies of 

Banchereau et al. [219] on the photo-oxidation reactions of sulfides, in which the sulfides 

were easily photo-oxidized in the presence of oxygen yielding the corresponding sulfoxide, 

sulfone, and sulfonic acids and sulphuric acids as final products. 

 

9.2.2.1.3. Monosulfur PASHs after 10 days photo-oxidation 

An increase in the abundance of short alkyl chain dibenzothiophenes and 

acenaphthenothiophenes and a complete depletion of their long alkyl chain compounds were 

observed in comparison to the dark control (Figure 9.11). This reveals that these homologues 

appear to be quite resistant to photo-oxidation and thus can accumulate in the environment, 

whereas other species such as dihydrothiophenes, thiophenes, naphthenothiophenes and 

cycloalkenothiophenes were completely photodegraded after 10 days. Thus, it can be deduced 

that non-condensed thiophenes are very reactive toward photo-oxidation, and therefore were 

the first sulfur compounds to be completely depleted.  

 

Furthermore, as can be seen in Figure 9.11, the most abundant classes are dibenzothiophenes 

and acenaphthenothiophenes. The relative abundance of the other homologues in this 
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Kendrick plot is in the following order: DBE 9 (dibenzothiophenes), DBE 10 (i.e. 

acenaphthenothiophenes)> DBE 6 (benzothiophenes), DBE 11 (i.e. phenanthrothiophenes)> 

DBE 7 (i.e. phenylthiophenes), DBE 8 (i.e. indenothiophenes) and DBE 12 (i.e. 

benzonaphthothiophenes)> DBE 13 (i.e. phenanthronaphthothiophenes). 

 

9.2.2.2. Characterization of disulfur PASHs  
Disulfur PASHs have been reported to be present in coal and shale oil [17, 235-240]. For 

instance, a series of C15-C24 3,6-dialkyl-1,2-dithianes and two isomers of C20 isoprenoid 1,2-

dithianes have been identified in the bitumen of a bituminous shale from the Veno del Gesso 

basin (Italy) and in immature sediments from the Peruvian upwelling region and the Veno del 

Gesso basin, respectively [236, 237]. C20 members of 5,5´-dialkyl-2,2´-bithiophenes and three 

C20 isoprenoid bithiophenes have been also tentatively identified in Rozel Point seep oil [238] 

and in Rozel Point oils [17, 238, 239]. Furthermore, the latter compounds were also found in a 

number of other oils [240]. Moreover, small amounts of C0-C2 thienothiophenes and C0-C1 

bithiophenes have been reported to be present in Rasa coal in addition to a series of C0-C6 

thienobenzo[b]thiophenes, C0-C2 thienodibenzothiophenes and C0-C2 thienonaphtho-

thiophenes [235]. However, as previously stated by Sinninghe Damste´ and de Leeuw [235], 

the full identification of disulfur compounds is nearly impossible due to the increasing 

number of possible isomers with the increase in the number of alkylation. Moreover, there are 

no published data to show how these compounds are altered in the environment after spillage 

of petroleum, as in the case of monosulfur PASHs. 

 

9.2.2.2.1. Disulfur PASHs in the dark control 

Figure 9.12 shows the distribution of disulfur compounds as a function of DBE and KNM. 

The disulfur (S2) PASHs detected were in the range 10 >DBE ≥ 5 with dominant KNM from 

400 to 800 Da (Figure 9.12). The mass range for all disulfur compounds in this oil goes from 

ca 266 Da to 840 Da.  

 

The disulfur PASHs fraction without photo-oxidation contains compounds having DBE = 5 

series, which are most likely thienothiophene homologues (two condensed thiophene rings) 

with 7-48 additional methylene groups (see Table 9.5 for a description of some examples of 

the parent structures for the homologous series). The non-photooxidized disulfur fraction 

exhibits a DBE = 6 series with carbon numbers ranging from 14 to 17, most likely 

bithiophenes with KNM range from 306 to 810 Da, representing 10-46 additional methylene 
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groups. The lowest mass recorded for compounds with DBE = 7 is 402 Da and the highest 

one is 780 Da.  

 
Figure 9.12. Kendrick plots of disulfur PASHs (from top to bottom) in dark control, after 2 

days photo-oxidation and after 10 days photo-oxidation. 
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Compounds with DBE = 8 are likely thienobenzothiophenes (i.e., addition of one thiophenic 

ring to benzothiophene) or benzodithiophene having from 16 to 42 carbon atoms.  

 

The most abundant disulfur PASHs are those having DBE 5 and 6 followed by the relatively 

abundant DBE series = 7 and 8. Low abundance species with DBE = 9, most likely 

thianthrenes, are also observed. 

 

In this crude oil, the highest DBE value found for S2 compounds is 9 and the highest mass is 

840 Da.  

 

Table 9.5. Parent structure examples for S2 compounds 

Parent Structure Name  DBE 

S

S  

 

Thieno[3,2-b]thiophene 

 

5 

S S  

 

2,2´-Bithiophene 

 

6 

S

S

 

 

Thieno[2,3-b]benzothiophene 

 

8 

S

S  

 

Benzo[1,2-b:4,3-b´]dithiophene 

 

8 

S

S

 

 

Thianthrene 

 

9 

 

9.2.2.2.2. Disulfur PASHs after 2 days photo-oxidation 

An inspection of S2 species after 2 days photo-oxidation (Figure 9.12) shows that the disulfur 

compounds range from 5 ≤ DBE < 9, with the highest abundance from 5 ≤ DBE < 8. Low 

abundance species with DBE = 8 are observed with carbon numbers of 25-31. DBE = 5, 6 and 

7 series with carbon numbers ranging from 7 to 37, 10 to 35, 9 to 40 respectively were also 
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observed. Moreover, the photo-oxidation of the disulfur PASHs for 2 days lead to the 

complete depletion of DBE = 9 series. 

 

The comparison of the disulfur PASH distribution pattern after 2 days photo-oxidation with 

that of the dark control (Figure 9.12) shows a shift of high mass components toward lower 

masses (e.g. from 840 to 686 Da for DBE 5; from 810 to 656 Da for DBE 6; from 780 to 752 

Da for DBE 7; and from 778 to 624 Da for DBE 8) as can be seen in Table 9.6. This same 

trend of photodegradation was seen in monosulfur PASHs, which is the pronounced effect of 

photodegradation on the high molecular weight compounds in the different classes leading to 

the loss of long alkyl side chains.  

 

9.2.2.2.3. Disulfur PASHs after 10 days photo-oxidation 

The disulfur PASHs after 10 days photo-oxidation (Figure 9.12) exhibits the same DBE range 

as that after 2 days photo-oxidation. As can be seen in Figure 9.12, the most abundant disulfur 

species are those having DBE 5 and 6 followed by the relatively low abundant DBE 7 and 8. 

In addition, S2 compounds having DBE 5, 6, 7 and 8 showed the following carbon numbers: 

1-27, 5-26, 9-21 and 9-18 respectively. 

 

Table 9.6. Depletion of disulfur PASHs after 2 and 10 days photo-oxidation 

DBE Photodegraded compounds 

after 2 days (*) 

Photodegraded compounds 

after 10 days (*) 

5 C38-C48 C28-C48 

6 C36-C46 C27-C46 

7 C41-C42 C22-C42 

8 C32-C42 C19-C42 

9 All compounds depleted after 2 days photo-

oxidation 

 

(*) Depletion is calculated relative to the dark control 

 

A close inspection of S2 species after 10 days photo-oxidation reveals the photodegradation 

of species from different DBE series having mass range ~ 546-686 (Table 9.6) in comparison 

with those after 2 days photo-oxidation, indicating a shift to lower carbon number with 

increasing the irradiation time. 
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The previous results indicate that the disulfur PASHs in spilled oil are following the same 

photodegradative trend as that observed in monosulfur PASHs, in which the compounds 

undergo a consistent pattern of alkyl chain loss from the high molecular weight end of the 

homologue distribution. This suggests that a measurable increase in the concentrations of the 

homologues in the lower molecular weight range, a gradual lowering in carbon number of the 

homologue maximum, and a gradual decrease of the total homologue range from the high 

molecular weight end take place.   

 

9.3. Summary 
This study emphasizes the effect of photo-oxidation on the polycyclic aromatic sulfur 

heterocycles in crude oil. By using GC-MS and FT-ICR MS measurements, qualitative 

changes in the distributions of the low- and high-molecular weight PASHs after photo-

oxidation were determined. For low-molecular weight PASHs, GC-MS indicated that 

benzothiophenes were more easily photodegradable than dibenzothiophenes. For high-

molecular weight PASHs, our FT-ICR MS measurements showed the presence of 

homologous series of long side chain monosulfur and disulfur PASHs which were 

photodegradaded in the same trend. For the monosulfur compounds, the tetrahydrothiophenes 

and the pyrenothiophenes have been preferentially photodegraded and completely depleted 

after two days photo-oxidation. However, benzothiophenes, phenylthiophenes, 

indenothiophenes, dibenzothiophenes, acenaphthenothiophenes, phenanthrothiophenes, 

benzonaphthothiophenes and phenanthronaphthothiophenes were generally more resistant to 

photodegradation than dihydrothiophenes, thiophenes, naphthenothiophenes and 

cycloalkenothiophenes which were completely degraded after 10 days photo-oxidation. For 

the disulfur compounds, DBE 9 species exhibited a particularly marked susceptibility to 

photodegradation which was manifested by their complete depletion after 2 days photo-

oxidation. In addition, DBE 5 and 6 were more susceptible to photo-oxidation than those of 

DBE 7 and 8. Moreover, a decrease in the proportion of both long alkylated monosulfur and 

disulfur PASHs concomitant with an increase in the proportion of relatively short alkylated 

ones was observed indicating that the average length of aliphatic side chains in the PASHs 

decreased due to photodegradation. Hence, a shift to lower carbon number was observed for 

both monosulfur and disulfur compounds and this shift increased with increasing the 

irradiation time.  
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10. Summary 
Liquid petroleum (crude oil and the products refined from it) plays a pervasive role in modern 

society. As the population of the world increases and developing countries become more 

industrialized, the demand for energy grows worldwide. Oil is currently the dominant energy 

source and it is expected to remain so over the next several decades. However, the worldwide 

extraction, transportation, and use of petroleum inevitably results in its release to the 

environment. Hence, oil spills have become a global problem.  

 

As soon as a crude oil is released into the marine environment, it undergoes various physical 

processes including spreading, evaporation, dissolution, emulsification, dispersion and 

sedimentation that disperse the petroleum in the environment. Processes that transform such a 

material and therefore lead to its removal, and ultimate mineralization, include oxidation 

processes through microorganisms and sunlight. Such weathering processes strongly alter the 

physical and chemical properties of a crude oil. Hence, photochemical oxidation of petroleum 

and petroleum products is an important process in transferring organic material from the oil 

phase into the water column through the formation of a variety of oxidized compounds. As 

these compounds are water-soluble and hence bioavailable, they represent a real risk as they 

could be greatly toxic to the different organisms in the marine environment. In order to assess 

this risk, which is currently unknown, the identification of the main compounds responsible 

for the phototoxicity of crude oil is then mandatory. Nevertheless, this represents a major 

difficulty due to the complexity of crude oils as they are mixtures of thousands of different 

hydrocarbons and other organic molecules containing heteroatoms.  

 

Therefore, in the present study, our goal was to determine the class of compounds responsible 

for the highest phototoxicity of petroleum and the identification of its components. First, a 

thin film of an Egyptian crude oil in aqueous solution was irradiated separately with sunlight 

and a mercury middle pressure lamp for 37 hours, placed in a cooling jacket of Duran glass to 

simulate the sunlight irradiation at the surface of the earth, and the toxicity of the photo-

oxidized solutions was tested using the microcrustacean Daphnia magna. Next to these 

solutions, a third one was held in the dark, but treated in the same manner as the irradiated 

ones and its toxicity was also tested. The sunlight and lamp photo-oxidized solutions had 

similar toxicity which was higher in both cases that that of dark control.  
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Next, to achieve our aim, we sequentially reduced the complexity of crude oil by removing 

less toxic components in order to enable the chemical identification of the remaining major 

toxicants through a toxicity-based fractionation procedure. Hence, several chromatographic 

methods have been used for the separation of crude oil into classes and subclasses followed 

by their photo-oxidation for 37 hours using the mercury middle pressure lamp and the 

determination of the toxicity of their photoproducts using Daphnia magna. It should be noted 

that the irradiated solutions were placed in closed Duran-glass vessels to prevent the 

evaporation of volatile compounds and to maximize the photolysis yield. Thus, the Egyptian 

crude oil was fractionated on open column chromatography into aliphatic, monoaromatic and 

polyaromatic fractions which were irradiated separately by the mercury lamp and their photo-

oxidized solutions were tested for their toxicity. As the polyaromatic fraction was the most 

toxic fraction, it was fractionated into polycyclic aromatic hydrocarbon fraction and 

polycyclic aromatic sulfur heterocycle fraction on a Pd(II)-bonded stationary phase using 

ligand exchange chromatography. The PAH and PASH fractions were irradiated and their 

photo-oxidized solutions were tested for their toxicity. The PASH fraction showed higher 

toxicity than the PAH one and therefore was further fractionated on a ß-cyclodextrin column 

according to the number of condensed aromatic rings into two subfractions, one containing 

the benzothiophenes and the other the dibenzothiophenes and higher ring compounds. The 

two subfractions were photo-oxidized and the toxicity of the resulting solutions was 

determined. Seeing that both subfractions had equal toxicity, another alternative separation 

protocol was looked for, namely the separation of PASH photoproducts according to their 

polarity into polar and nonpolar photoproducts by liquid-liquid extraction. Although the 

experimental observations indicated that the toxicity of non-polar photoproducts is higher 

than that of polar ones after short-term (37 hours) photolysis, the photo-oxidation of the 

PASH fraction was continued for 10 days and the toxicity of the polar and non-polar products 

were investigated to ensure that possible long-term effects were not overlooked. After 10 days 

photo-oxidation, the polar fraction had the highest toxicity and this may be due to that by 

increasing the time of irradiation and subsequently, the photo-oxidation, the amount of polar 

products increases and the amount of parent PASH compounds decreases. Thus, finally it was 

clear that our key toxicants were the polar photoproducts of the polycyclic aromatic sulfur 

heterocycles. Accordingly, the next part of this study has focused on the identification of the 

individual components of the polar photoproducts and the investigation of the changes in the 

distributions of low- and high-molecular weight sulfur compounds after photo-oxidation using 

sophisticated chemical tools. 
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In order to identify the polar photoproducts, the PASH fraction of the Egyptian crude oil was 

photo-oxidized for one month as a film on the surface of water in the presence of 

anthraquinone acting as a sensitizer. Since the PASH fraction normally occurs with other 

polycyclic aromatic hydrocarbons in crude oil that may act as photosensitizers, we have used 

the anthraquinone which was previously found in the seawater for photosensitization, as it 

was concluded from a separate experiment that the photodegradation of the PASH fraction is 

very slow when it is irradiated alone. The polar photoproducts 1 (PP1) were extracted from 

water by liquid-liquid extraction while the polar photoproducts 2 (PP2) were obtained after 

the complete evaporation of the remaining aqueous phase and both of them were subjected to 

investigation.  

 

The polar photoproducts 1 were subjected to electrospray tandem mass spectrometric (ESI-

MS/MS) analysis in the negative mode in which a large number of compounds were detected 

by recording the loss of CO2 from their molecular ions. Carboxylic acids were found among 

the PP1 and could be identified after esterification to the trimethylsilyl derivatives by gas 

chromatography-mass spectrometry. A series of regularly spaced peaks was observed which 

were identified as aliphatic fatty acids from butanoic acid to hexadecanoic acid besides 

cyclohexanecarboxylic acid and cyclohexylacetic acid. In addition, aromatic acids, 

dicarboxylic acids, hydroxyl carboxylic acids and diols were also observed. 

 

The presence of the cyclohexyl group in the cyclohexanecarboxylic acid and cyclohexylacetic 

acid indicates that polycyclic aromatic compounds in the crude oil contain this structural 

element in the side chain. Although high resolution mass spectrometry has previously 

established the profuse presence of aromatic compounds containing one or several saturated 

rings, it does not distinguish between fused (e.g. cyclohexano) and substituted (e.g. 

cyclohexyl) rings. However, these acids found here can only be derived from the latter. These 

cyclohexylsubstituted aromatics do not seem to have been identified in crudes yet which 

make them possible constituents of the unresolved complex mixture of petroleum. Therefore, 

the identification of the cyclohexyl containing acids among the photoproducts gives new 

structural insights into the polycyclic aromatic compounds in crude oil. 

 

Moreover, the polar photoproducts 2 were also subjected to ESI-MS/MS analysis in the 

negative mode in which a large number of sulfonic acids were detected by recording the loss 

of SO3
- from their molecular ions. The sulfonic acids were analyzed by the time of flight mass 
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spectrometry and their accurate masses were determined and hence their elemental 

compositions and subsequently their structures could be identified. 

 

In order to understand the fate of low- and high-molecular weight sulfur compounds and to 

simulate the changes in their distributions taking place in the marine environment after an oil 

spill, the aromatic fraction of the Egyptian crude oil containing the polycyclic aromatic sulfur 

heterocycles was irradiated as a film in aqueous solution with the mercury lamp for 2 and 10 

days and the sulfur compounds were characterized by GC-MS and Fourier transform ion 

cyclotron resonance mass spectrometry, together with the aromatic fraction of a dark control. 

GC-MS showed that the benzothiophenes were easily photodegradable than 

dibenzothiophenes. Due to the non-polar nature of sulfur heterocycles, they were first sulfur-

selectively derivatized via a methylation reaction targeting the sulfur atom and then analyzed 

by the ultra-high resolution and accuracy FT-ICR MS technique to investigate compounds up 

to 940 Da. After measurements, the data obtained from mass spectrometry were further sorted 

with multiple sorting procedures using Kendrick mass scale in order to extract useful 

information from the complex mass spectra. Series of long side chain mono- and disulfur 

compounds over a wide range could be identified and were found to undergo 

photodegradation in the same trend. However, it was clear that the reactivity of different 

classes of sulfur aromatics towards photo-oxidation depends on their parent aromatic 

structures. For the monosulfur compounds, the tetrahydrothiophenes and the 

pyrenothiophenes have been preferentially photodegraded and completely depleted after two 

days photo-oxidation. However, benzothiophenes, phenylthiophenes, indenothiophenes, 

dibenzothiophenes, acenaphthenothiophenes, phenanthrothiophenes, benzonaphthothiophenes 

and phenanthronaphthothiophenes were generally more resistant to photodegradation than 

dihydrothiophenes, thiophenes, naphthenothiophenes and cycloalkenothiophenes which were 

completely degraded after 10 days photo-oxidation. For the disulfur compounds, DBE 9 

species, i.e. thianthrenes, exhibited a particularly marked susceptibility to photodegradation 

which was manifested by their complete depletion after 2 days photo-oxidation. In addition, 

DBE 5 and 6, i.e. thieno[3,2-b]thiophene and 2,2´-bithiophene respectively, were more 

susceptible to photo-oxidation than those of DBE 7 (i.e. thieno[2,3-b]benzothiophene) and 8. 

 

Moreover, the disulfur PASHs are following the same photodegradative trend as that 

observed in monosulfur PASHs, in which the compounds undergo a consistent pattern of 

alkyl chain loss from the high molecular weight end of the homologue distribution. This was 
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observed through a decrease in the proportion of both long alkylated monosulfur and disulfur 

PASHs concomitant with an increase in the proportion of relatively short alkylated ones. 

 

Furthermore, many of the reactions discussed in this work are independent of the aromatic 

ring structure so that these product studies should be equally relevant for polycyclic aromatic 

hydrocarbons. However, because of the sulfur atom in the PASHs, some products unique to 

this compound class were formed. The photodegradation trends discussed here could be also 

applicable to polycyclic aromatic hydrocarbons as well as to polycyclic aromatic sulfur 

heterocycles after an oil spill in the environment. 
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11. Zusammenfassung 
Erdöl und seine Produkte spielen eine universelle Rolle in der heutigen Gesellschaft. Mit 

steigender Bevölkerungszahl und sich industrialisierenden Entwicklungsländern steigt der 

weltweite Energiebedarf. Öl ist die aktuelle und zumindest für die kommenden Jahrzehnte 

dominierende Energiequelle. Aufgrund der weltweiten Verwendung und des kontinuierlichen 

Transportes ereignen sich immer wieder unerwünschte Freisetzungen in die Umwelt. Somit 

haben sich Ölkatastrophen zu einem globalen Problem entwickelt. 

 

Sobald Öl ins Meer gelangt, durchläuft es verschiedene physikalische Prozesse, z.B. 

Verteilung, Verdunstung, Lösen, Dispersion und Sedimentation. Auf diese Weise werden 

Ölbestandteile in der Umwelt verteilt. Zusätzlich erfolgen Umwandlung und Abbau, bzw. 

Mineralisation durch Mikroorganismen und Sonnenlicht. Solche Verwitterungen sorgen für 

massive Veränderungen der physikalischen und chemischen Eigenschaften eines Öls. Durch 

photochemische Oxidation werden seine Bestandteile besser wasserlöslich und lassen sich aus 

der Ölphase entfernen. Die Vielzahl der oxidierten Verbindungen erlangt so eine höhere 

Bioverfügbarkeit, wodurch aufgrund ihrer Giftigkeit ein vermehrtes Risiko für die 

Meereslebewesen einhergeht. Um das bisher unbekannte Risiko abschätzen zu können, ist die 

Identifikation der phototoxischen Erdölkomponenten erforderlich. Dies ist, aufgrund der 

Vielzahl der unterschiedlichen Kohlenwasserstoffe, sowie heteroatomhaltiger Verbindungen 

mit großen Schwierigkeiten verbunden. 

 

Das Ziel dieser Arbeit war die Untersuchung der für die Phototoxizität verantwortlichen 

Substanzklasse, sowie die Identifizierung der Komponenten. Hierzu wurde ein dünner Film 

eines ägyptischen Erdöls in wässriger Lösung für 37 Stunden der Sonne, bzw. einer 

Quecksilbermitteldrucklampe zur Simulation der erdnahen Sonnenstrahlung ausgesetzt. Die 

Toxizität dieser photooxidierten Proben wurde an Kleinkrebsen der Gattung des 

Riesenwasserflohs (Daphnia magna) getestet. Zusätzlich wurden im Dunkeln gelagerte 

Blindproben auf ihre Toxizität geprüft. Die mit Sonnenlicht und Lampe bestrahlten Proben 

wiesen eine vergleichbare Giftigkeit auf, die in beiden Fällen die der Blindprobe übertraf.  

 

Um die giftigsten Substanzen identifizieren zu können, wurden gemäß der Toxizität 

fraktioniert. Es wurden verschiedene chromatographische Verfahren zur Trennung des Öls 

genutzt, gefolgt von einer 37-stündigen Photo-oxidation mittels Quecksilberlampe und 

Toxizitätsbestimmung der Produkte an Daphnia magna. Die Belichtung erfolgt in 
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geschlossenen Duranglasgefäßen. So konnte Verdunstung verhindert und eine maximale 

Photolyseausbeute erzielt werden. Die Fraktionierung des Erdöls erfolgte über eine 

Schwerkraftsäule in eine aliphatische, eine monoaromatische und eine polyaromatische 

Fraktion, die der Photo-oxidation ausgesetzt wurden. Die giftigste Fraktion der Polyaromaten 

wurde mithilfe von Ligandenaustauschchromatographie über eine Säule mit immobilisierten 

Pd(II) in eine PAH und eine PASH-Fraktion unterteilt. Diese wurden ebenfalls separat 

bestrahlt. Erneut wurde die Fraktion mit der höheren Toxizität, in diesem Fall die PASH-

Fraktion, weiter aufgetrennt. Dies erfolgte über eine ß-Cyclodextrinphase anhand der Größe 

des aromatischen Systems. Man erhielt so wiederum zwei Fraktion, eine, die die 

Benzothiophene enthielt, eine zweite, in der sich die größeren PASHs befanden. Die 

Toxizitätsprüfung nach der Photo-oxidation ergab vergleichbare Werte, so dass eine 

alternative Trennung gesucht wurde. So wurden die Oxidationsprodukte durch Flüssig-

Flüssig-Extraktion gemäß ihrer Polarität getrennt. Obwohl sich aufgrund experimenteller 

Beobachtung abschätzen lässt, dass nach kurzer Belichtungsdauer (37 Stunden) die unpolaren 

Photo-oxidationsprodukte giftiger sind als die polaren, wurde die PASH-Fraktion weitere 

zehn Tage bestrahlt, um mögliche Langzeiteffekte aufzudecken. Nach zehn Tagen konnte bei 

der polaren Fraktion die höchste Toxizität festgestellt werden, was sowohl aus der Erhöhung 

der Belichtungsdauer, als auch aus dem Anstieg der Mengen an polaren Produkten auf Kosten 

der PASH-Ausgangssubstanz hervorging. Somit konnte man erkennen, dass die giftigsten 

Substanzen aus der Photo-oxidation der PASHs der polaren Fraktion angehören. 

 

Als nächstes Ziel wurden die Identifikation einzelner Verbindungen, sowie der Einfluss der 

Massenverteilung nach der Oxidation angegangen. Hierzu wurde die PASH-Fraktion des 

ägyptischen Erdöls als dünner Film auf Wasser mit Zusatz von Anthrachinon als 

Sensibilisator für einen Monat photooxidiert. Der Zusatz erfolgte, da die Oxidation der 

isolierten PASH-Fraktion sehr langsam erfolgt, das Anthrachinon soll so den fehlenden 

Einfluss der PAHs ausgleichen, die ebenfalls als Sensibilisator agieren können. 

Die polaren Oxidationsprodukte 1 (PP1) wurden durch Flüssig-Flüssig-Extraktion isoliert, 

während die polaren Produkte 2 (PP2) nach der vollständigen Verdunstung der wässrigen 

Phase erhalten wurden. Beide wurden anschließend untersucht. 

 

Die polaren Produkte 1 wurden mit Elektrospray Tandem Massenspektrometrie (ESI-MS/MS) 

im negativen Modus untersucht. So ließ sich eine große Anzahl von Substanzen nach dem 

Verlust von CO2 erkennen. Es wurden Carbonsäuren in der PP1-Fraktion gefunden, die sich 



Zusammenfassung                                                                                                       Chapter 11                         

 128

durch Derivatisierung zu dem korrespondierenden Trimethylsilylether über GC/MS 

identifizieren ließen. Einer Reihe von regelmäßig auftretenden Signalen ließen sich die 

aliphatischen Fettsäuren von Butan- bis Hexadecansäure zuordnen, des weiteren 

Cyclohexancarbosäure, so wie Cyclohexylessigsäure. Außerdem konnten aromatische Säure, 

Dicarbonsäuren, Hydroxycarbonsäuren und Diole beobachtet werden. 

 

Die Anwesenheit der Cyclohexylgruppe lässt darauf schließen, dass dieses Strukturelement in 

der Seitenkette polycylischer aromatischer Kohlenwasserstoffe vorhanden ist. Auch wenn 

hochauflösende Massenspektrometrie die Anwesenheit zahlreicher gesättigter Systeme 

innerhalb der aromatischen Verbindungen aufzeigen konnte, ist diese nicht in der Lage 

zwischen kondensierten (z.B. Cyclohexano) und einfach gebundenen Ringen (Cyclohexyl-) 

zu unterscheiden. Die gefundenen Carbonsäure lassen sich allerdings nur durch die letztere 

Möglichkeit erklären. Da von dieser Art Substituent bisher nichts berichtet wurde, handelt es 

sich möglicherweise um einen Teil der nicht aufgelösten komplexen Mischung des 

Petroleums. Somit ist die Identifikation von cyclohexylbeinhaltenden Säuren ein weiterer 

Einblick in die Gruppe der PAHs. 

 

Des Weiteren fanden sich in der Fraktion PP2 eine große Anzahl von Sulfonsäuren, die sich 

im ESI-MS/MS durch den Verlust eines Strukturelementes SO3
- zeigten. Im 

Flugzeitmassenspektrometer wurden zusätzlich ihre akkuraten Massen bestimmt, so dass sich 

ihre Summenformel und anschließend mögliche Strukturen herleiten ließen. 

 

Um die Entwicklung von leichten sowie schweren Schwefelverbindungen zu verstehen und 

ihren Verbleib in der Umwelt nach einer Ölkatastrophe zu simulieren, wurde die gesamte 

aromatische Fraktion des Erdöls als dünner Film in wässriger Lösung zwei, bzw. zehn Tage 

mit einer Quecksilberlampe bestrahlt und die Schwefelverbindungen mit GC-MS und Fourier 

Transform Ionen Cyclotron Massenspektrometrie untersucht, zusammen mit der aromatischen 

Fraktion einer Dunkelkontrollprobe. Eine Analyse mittels GC-MS zeigte, dass 

Benzothiophene leichter photolytisch abgebaut werden als Dibenzothiophene. Aufgrund der 

unpolaren Natur dieser Verbindungen, mussten sie schwefelselektiv durch Methylierung 

derivatisiert werden, um dann mit dem extrem hochauflösenden und akkuraten FT-ICR-MS 

untersucht zu werden. 
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Nach der Messung wurden die gesammelten Daten in das Kendrik Massen System 

umgeformt, um verwertbare Informationen aus den komplexen Massenspektren zu 

bekommen. Es wurden eine Reihe von langkettigen Mono- und Dischwefelverbindungen 

gefunden, die in ähnlichem Maß dem Photoabbau unterliegen. Die Reaktivität der 

verschiedenen Klassen an Schwefelverbindung hängt so in erster Linie von der Struktur des 

aromatischen Grundgerüstes ab. Die Monoschwefelverbindungen, die Tetrahydrothiophene, 

sowie die Pyrenothiophene waren nach zwei Tagen vollständig abgebaut. Benzothiophene, 

Phenylthiophene, Indenothiophene, Dibenzothiophene, Acenaphthenothiophene, 

Phenanthrothiophene, Benzonaphthothiophene and Phenanthronaphthothiophene erwiesen 

sich generell als resistenter gegenüber den Photoabbau als Dihydrothiophene, Thiophene, 

Naphthenothiophene and Cyclopentenothiophene, die nach zehn Tagen vollständig abgebaut 

waren. Dischwefelverbindungen mit dem Doppelbindungsequivalent 9, z.B. Thianthren, 

zeigten teilweise eine große Empfindlichkeit gegenüber Photoabbau, was sich in dem 

vollständigen Abbau nach zwei Tagen zeigt. Ebenso sind die Doppelbindungsequivalente 5 

und 6, z.B. Thieno[3,2-b]thiophen and 2,2´-Bithiophen reaktiver als die Spezies mit DBE 7 

(z.B. Thieno[2,3-b]benzothiophen) und 8. 

 

Ferner zeigten die Dischwefelverbindungen das gleiche Verhalten wie die Verbindungen mit 

einem Schwefelatom, den Verlust von Alkylgruppen ausgehend von den größten molekularen 

Massen einer homologen Reihe. Dieses wird gezeigt durch ein Rückgang des Anteils großer 

Monoschwefel und Dischwefel PASHs begleitet von einer Zunahme des Anteils an PASHs 

mit relativ kurzer Alkylkette.   

 

Viele der beschriebenen Reaktionen sind nicht von dem aromatischen System abhängig, so 

dass die erhaltenen Ergebnisse auch für PAHs relevant sein können. Einige Abbaureaktionen 

der PASHs gehen auf die Anwesenheit des Schwefels zurück. Der Verlauf des Photoabbaus, 

der hier diskutiert wird, kann sowohl für PAHs, sowie für PASHs nach einem Öleintrag in die 

Umwelt angewandt werden.  
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12. Appendix 
12.1. Synthesis of Pd(II)-ACDA silica gel  
12.1.1. Synthesis of 2-amino-1-cyclopentene-dithiocarboxylic acid (ACDA) 
A mixture of cyclopentanone (12.5 g, 150 mmol), carbon disulfide (15 g, 195 mmol), and 150 

ml of aqueous ammonia (25 %) was stirred at 0 °C for 8 h [242]. The yellow solid product 

was collected, washed with ether, and dried. The crude product was recrystallized from 

ethanol. 5 g of the ammonium salt of ACDA was dissolved in 50 ml of acetic acid at 70 °C. 

Ammonia gas evolved. The resulting solution was cooled and water was added until the 

solution became turbid. The yellow solid material which separated from the solution was 

collected and recrystallized from methanol. 

 

 
 

12.1.2. Synthesis of aminopropanosilica gel 
10 g of LiChrosorb Si 100 (10 µm, dried at 130°C for 24 h) was refluxed with 12.5 ml of 3-

aminopropanotrimethoxysilane in 50 ml dry toluene. The resulting product was filtered off 

and washed successively with toluene and methanol. The obtained aminopropano silica gel 

was dried at 50 °C in oven. 

 

 

 

O NH2 S

S NH4
-

+
+ CS2   +  2 NH3  

NH2 S

SH

0 °C 

- H2O 

CH3COOH 70 °C 

2-Amino-1-cyclopentene-1-dithiocarboxylic acid 
(ACDA) 
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12.1.3. Synthesis of ACDA-functionalized silica gel 
10 g of aminopropano silica gel was added to a solution of 1.6 g of ACDA dissolved in 25 ml 

of methanol and refluxed for 5 hours [241, 242]. The apparatus was purged with nitrogen 

during the reaction. After cooling to room temperature, the ACDA-bonded silica was filtered 

off and washed with methanol. 

 

 
 

2.5 g of ACDA-bonded silica was further treated with 250 ml aqueous solution of palladium 

chloride (0.01 M) in a 500 ml conical flask in order to obtain Pd(II)-ACDA silica gel. 

 

12.2. Synthesis of Pd(II)-mercaptopropano silica gel 
Silica gel (LiChrosorb Si 100, 10µm) was dried at 130 °C for 24 h. 10 g of dried silica gel 

was refluxed in a solution of 15 ml 3-mercaptopropanotrimethoxysilane in 50 ml dry toluene 

for 5 h. The resulting bonded silica gel was filtered off and was washed with toluene and 

methanol successively. The obtained mercaptopropano silica gel (MPS) was dried at 50 °C in 

an oven. 

 

2.5 g of MPS was further treated with 250 ml aqueous palladium chloride solution (0.01 M) 

for 12 h. The palladium bonded silica phase was filtered off, washed successively with water, 

isopropanol and cyclohexane, and dried in vacuum at room temperature. 
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12.3. Instrumental parameters 
12.3.1 HPLC instrumentation 
Knauer Wellchrom 

Knauer HPLC system consists of an interface box, four channel solvent degasser, two 

Ministar K 501 analytical pumps, a mixing chamber, an electrical injection valve and a 

variable wavelength detector. Instrument control and data recording were done with 

Chromgate version 2.8 (Knauer, 14163 Berlin, Germany). 

 

HP 1050 

Hewlett-Packard 1050 HPLC system with a quaternary pump, degasser, manuel injection 

valve and a diode array detector set to record the UV spectra from 200 to 500 nm. Instrument 

control and data recording were done with Chemstation version 9.03 (Agilent, 71034 

Böblingen, Germany). 

  

12.3.2. Gas chromatographs 
GC-FID 

Gas Chromatograph : Hewlett-Packard 5890 II 

Auto sampler:              Gerstel MPS 2L 

Injector:                       Split/Splitless (60 s) 

Injector temperature: 280 °C 

Detector temperature: 300 °C 

Capillary column DB-5 MS (30m × 0.25 mm × 0.25 µm)  

Carrier gas: Hydrogen (4.8) 

Temperature program: 60 °C -1 min - 10 °C/min - 300 °C - 10 min 

Injection volume: 1µl 
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GC-MS 

Gas Chromatograph: Finnegan MAT GCQ 

Mass spectrometer: Finnegan MAT GCQ Polaris MS 

Auto sampler: CTC A200S Liquid Sampler 

Injector:       Split/Splitless (60 s) 

Injector temperature: 260 °C 

Detector temperature: 300 °C 

Capillary column: DB-5 MS (30m × 0.25 mm × 0.25 µm) 

Transfer line: 275 °C 

Carrier gas: Helium (5.8) 

Ionization conditions: EI, 70 eV, Ion source 200 °C 

Modus: Full scan (50-600 amu) 

Temperature program: 60 °C -1 min - 10 °C/min - 300 °C - 10 min 

Injection volume: 1µl 

 

The analyses on the following instruments were performed in the Mass Spectrometry 

Department, Institute of Organic Chemistry. 

 

QuattroMicro GC-MS:  

The tandem quadrupole GC-MS consists of an Agilent 6890 GC with a 30 m×0.32 mm×0.25 

µm HP 5 column (Agilent) and a Waters Micromass (Manchester, U.K.) QuattroMicro mass 

spectrometer. It was operated with EI ionization at 70 eV in full scan mode from 40 to 800 

amu and in SIM mode on m/z 132. The oven temperature was programmed as follows: 50 °C 

starting temperature, kept for 1 min, temperature ramp at 15 °C/min to 300 °C, kept for 10 

min. 

 

Quattro LCZ: 

Tandem mass spectrometric analyses were performed on a Quattro LCZ triple quadrupole 

mass spectrometer (Waters-Micromass, Manchester, UK) operated in the electrospray 

positive and negative ion mode. In order to find the optimal parameter settings for maximum 

sensitivity, the cone voltage was varied between 20-30 V. The capillary voltage was 0.9-1.5 

KeV. Argon was used as collision gas to obtain daughter ions. The system was controlled by 

MassLynx software.  
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MicroTof MS:  

Experiments for the determination of elemental compositions of sulfonic acids were 

performed on a MicroTof (Bruker Daltonics, Bremen). The mass spectrometer was operated 

in the ESI-negative ion mode at a resolution of 9000 (FWHM). The capillary voltage was set 

at 4.5 KeV. Data were acquired in the continuum mode from 50 to 3000 Da and processed 

using MassLynx v. 4 software. 

 
12.3.3. FT-ICR MS  
Mass spectra were acquired using an APEX III Fourier transform ion cyclotron resonance 

mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped with a 7 T actively 

shielded super conducting magnet and an Agilent ESI source. The samples were introduced in 

a 1:1 (v/v) solution of dichloromethane/acetonitrile and injected in the infusion mode with a 

flow rate of 2 µl/min detecting positive ions. The spray voltage was maintained at 4.5 kV. 

After ionization, the ions were accumulated for 0.5 s in the octapol before transfer to the 

cyclotron cell. For a better signal-to-noise ratio, at least 64 scans were accumulated. Internal 

and external calibrations were done using a mixture of the Agilent electrospray calibration 

solution of masses 622.02896 and 922.00980 with the addition of indolacrylic acid of masses 

397.11589 [2M+Na]+
 and 584.17923 [3M+Na]+

 covering the whole range of masses in the 

samples. All the measurements by FT-ICR mass spectrometer were performed in 

collaboration with Max-Planck-Institute of coal research, Mülheim, Germany. 
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12.4. Materials 
Acetic acid 96 % Merck 

Acetone Residue analysis Fluka 

3-Aminopropyltrimethoxysilane 97 % Aldrich 

Ammonia 25 % Grüssing 

Ammonium vanadate p.a. in house 

9,10-Anthraquinone 98 % Fluka 

Benzoic acid 98 %  Merck 

Biotin > 99 % BioChemika 

Boric acid p.a. in house 

tert-Butylmethyl ether p.a. Merck 

Calcium chloride p.a.  in house 

Carbon disulfide n.a. Aldrich 

Cobalt (II) chloride p.a. in house 

Copper (II) chloride p.a. in house 

Cyclohexane 99.8 % Fluka 

Cyclohexane carboxylic acid 98 % Aldrich 

Cyclohexyl acetic acid > 99 % Fluka 

Cyclopentanone 99 % Aldrich 

Decanoic acid 98 %  Fluka 

1,2-Dichloroethane 99.5% Fluka 

Dichloromethane 99.8 %  Riedel de Haen 

Diethyl ether p.a. in house 

Dimethylchlorosilane 98 % Janssen Chimica 

Dipotassium hydrogen phosphate p.a. in house 

Ethanol p.a. in house 

Helium  5.8 Institute supply 

Helium He GC BiP Air products 

n-Heptane 99 % Grüssing 

Hydrochloric acid 37 % Grüssing 

Isopropanol 99.8 % Fluka 

Lithium chloride p.a. in house 

Magnesium sulfate (water free) p.a. in house 

Magnesium sulfate p.a. in house 
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Manganese (II) chloride p.a. in house 

Methanol p.a.  in house 

Methyl iodide 99 %  Merck 

3-Mercaptopropyltrimethoxysilane 97 % Aldrich 

Nitrogen  Purity 4.6 Institute supply 

N-methyl-N-(trimethylsilyl)-trifluoroacetamide 97 % Acros Organics 

Octanoic acid 98 %  Merck 

Palladium (II) chloride 59 % Acros Organics 

n-pentane 99 % Acros Organics 

Potassium dihydrogen phosphate p.a. in house 

Potassium chloride p.a. in house 

Rubidium chloride p.a. in house 

Silica gel 10 µm 100°A for HPLC Merck 

Silica gel 60 for chromatography Fluka 

Silver tetrafluoroborate 98 %  Aldrich 

Sodium bicarbonate p.a.  in house 

Sodium bromide p.a. in house 

Sodium molybdate p.a. in house 

Sodium nitrate p.a. in house 

Sodium sulfate p.a. Merck 

Strontium chloride p.a. in house 

2-Sulfobenzoic acid 98 % Aldrich 

Tetradecane (olefin free) > 99 % Fluka 

Tetradecanoic acid  97 % Fluka 

Toluene 99.8 % Fluka 

p-Toluene sulfonic acid 98 % Fluka 

Zinc chloride p.a. in house  
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12.5. Abbreviations 
ACDA 2-Amino-1-cyclopentene-1-dithiocarboxylate 

ANT Anthracene 

ATQ Anthraquinone 

BAP Benzopyrene 

BT Benzothiophene 

Da Dalton 

DBE Double bond equivalent 

DBT Dibenzothiophene 

DMBT Dimethylbenzothiophene 

DMDBT Dimethyldibenzothiophene 

EC50 Effective concentration causing 50 % immobilization 

EEC European economic community 

EPA US-American environmental protection agency 

ESI  Electrospray ionization 

FLA Fluoranthene 

FT-ICR Fourier transform ion cyclotron resonance 

FWHM Full width at half maximum 

GC-FID Gas chromatography-flame ionization detector 

GC-MS Gas chromatography-mass spectrometry 

h hour 

HDS Hydrodesufurization 

HPLC High performance liquid chromatography 

IR Infrared 

ISO International organization for standardization 

KNM Kendrick nominal mass 

Log Kow Log octanol-water partitioning coefficient 

MBT Monomethylbenzothiophene 

MDBT Monomethyldibenzothiophene 

m/z Mass to charge ratio 

NAP Naphthalene 

OECD Organization for economic cooperation and development 

PAHs Polycyclic aromatic hydrocarbons 

PASHs Polycyclic aromatic sulfur heterocycles 
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PHE Phenanthrene 

PHEQ 9,10-Phenanthrenequinone 

ppm Parts per million 

PYR Pyrene 

QSAR Quantitative structure activity relationships 

R Resolution 

TIE Toxicity identification evaluation 

TeMBT Tetramethylbenzothiophene 

TeMDBT Tetramethyldibenzothiophene 

TMBT Trimethylbenzothiophene 

TMDBT Trimethyldibenzothiophene 

TOF Time of flight 

UV Ultraviolet  

V Visible  

WAF Water accommodated fraction 
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