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1. Introduction
ALICE is the acronym for "A Large Ion Collider Experiment" [Aam08] which is the
dedicated heavy-ion experiment at the Large Hadron Collider (LHC) [Eva08] at the
European Organization for Nuclear Research (CERN). The LHC is currently the most
powerful accelerator for protons as well as for ions. On November 23rd 2009 the first
proton-proton collisions were detected in ALICE [Aam10] (see Figure 1.1). While the
first proton-proton collisions occurred with a center-of-mass energy

√
s =900 GeV the

maximum energy is
√

s = 14 TeV for proton collisions and
√

sNN =5.5 TeV for lead ion
collisions. Such high energies will provide a deeper insight into the structure of matter
than ever before. It is expected to complete the experimental verification of the standard
model of particle physics (observation of the Higgs boson), but also to discover new
phenomena which can only be explained by theoretical models beyond the standard
model (e.g. supersymmetry).

Figure 1.1: First pp collision candidate at an energy of
√

s = 900 GeV as seen on the online event display
in the ALICE counting room [Aam10].
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2 Chapter 1: Introduction

While most of the LHC experiments are concentrating on open questions in
elementary particle physics, ALICE is designed to investigate the formation of the quark-
gluon plasma (QGP). The quark-gluon plasma is an exotic state of matter that existed
presumably until about 10−5 s after the big bang. It can be created under laboratory
conditions in heavy-ion collisions. The large collision energy that will be reached for
lead nuclei at LHC allows to study the QGP with a larger volume, higher energy density,
and longer lifetime than in experiments at previous accelerators like the Super Proton
Synchrotron (SPS) at CERN or the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory (BNL).

The central topic of this work is the particle identification capability of the ALICE
Transition Radiation Detector (TRD). The TRD was designed to improve the momentum
resolution of ALICE to 5% at a momentum of 5 GeV/c, to provide electron identification,
and to serve as a trigger for electrons with momenta above 1 GeV/c. The design goal
for electron identification was to reach a pion suppression of 100 at a given electron
efficiency of 90% [TRD01]. These requirements are crucial for the background reduction
in analyses like the reconstruction of the J/ψ or ϒ via their decay into an electron positron
pair in an environment that is dominated by pions. The expected ratio between electrons
and pions coming from the primary vertex is at about 1:1000.

The signal that is produced by electrons in the Transition Radiation Detector
is different from the signal generated by other particles. For a given momentum
(p& 1.0 GeV/c) the pure amount of charge deposition caused by ionization (Bethe-Bloch
energy loss) exceeds that of hadrons and muons due to lower mass of the electron. In
addition, electrons produce transition radiation photons by traversing the TRD radiator.
These photons are absorbed in the gaseous volume of the TRD and contribute to the total
charge deposition, too. Hadrons and muons with momenta below about 100 GeV/c do
not produce transition radiation. The total charge deposition is the basis for all particle
identification methods that can be used with the Transition Radiation Detector. Besides
the total amount of charge the temporal structure of the signal is different for electrons
compared to other particles. Transition radiation photons are preferably absorbed within
the first few millimeters of the gaseous drift volume. This time information can be used
to further improve the discrimination of electrons from other particles. However, it is not
easy to disentangle the two signal components. An approach to exploit this additional
information is based on artificial neural networks. In this thesis, the potential for particle
identification (PID) using artificial neural networks with the ALICE Transition Radiation
Detector was analyzed and a framework for its application was developed.

The theoretical and experimental background is discussed in Chapters 2 – 6. The
performance of the TRD particle identification is analyzed in Chapter 7 for test beam
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data and in Chapter 8 for simulations. Chapter 9 presents three studies which are related
to the application of the TRD’s particle identification in the final setup of ALICE. The
appendix contains a short overview of kinematic variables, an overview of the ALICE
coordinate system, and tables with the analyzed test beam runs.





2. The Quark-Gluon Plasma and its
Signatures

In 1964 Gell-Mann and Zweig proposed independently that nuclear matter would consist
of quarks [GM64, Zwe64]. The interpretation of deep inelastic scattering experiments at
the Stanford Linear Accelerator Center (SLAC) verified this model [Blo69, Bre69]. The
interaction between these constituents is mediated by gluons and is described by quantum
chromodynamics (QCD). As a consequence of QCD single quarks and gluons cannot be
observed directly as free particles – they are confined to hadrons1.

1Hadrons are strongly interacting particles. They are split into two groups: the mesons and the baryons.
Mesons consist of a quark and an antiquark, while baryons are formed of three quarks. More about quarks,
gluons and QCD can be found in several works, e.g. in References [Mes06, Dem05, Per00].

    0
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Figure 2.1: Results of lattice QCD calculations for energy density ε/T 4 and pressure 3p/T 4 [Baz09]. The
energy density and the pressure are calculated for three quark flavors (two degenerated light quarks and
one heavy quark) for two different theoretical models. The Stefan-Boltzmann limit for an ideal gas is also
shown. The yellow band indicates a phase transition at a temperature region of 185 < T < 195 MeV.
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Figure 2.2: A schematic illustration of the phase diagram of strongly interacting matter. Shown are the
states of matter as a function of temperature T and baryochemical potential µB. In the orange area quarks
and gluons are confined to hadrons, the brown dot at zero temperature represents matter in atomic nuclei. In
case the temperature and the baryochemical potential is high enough an other state of matter is formed, the
quark-gluon plasma. The solid line represents a first order phase transition, while the dashed line between
hadron gas and QGP indicates a crossover transition. The brown dot between the solid and the dashed line
stands for the critical endpoint. The green area is a color superconducting phase that is predicted at low
temperature but high µB. This plot is adapted from Reference [KB04b].

QCD calculations show, that under certain conditions the quarks and gluons are
not confined anymore [Cab75]. For very high temperatures (larger than 150 −
190 MeV [Che06, Aok06]) or high net baryon densities the confinement is repealed.
This state is called quark-gluon plasma (QGP). In Figure 2.1 recent results from lattice
calculations for energy density ε/T 4 and pressure 3p/T 4 versus temperature T are shown.
The sudden rise at a temperature 185 < T < 195 MeV is interpreted as a crossover
transition from the hadron gas phase to the quark-gluon plasma phase [Baz09].

2.1 The Phase Diagram of Strongly Interacting Matter

In Figure 2.2 a schematic illustration of the phase diagram of strongly interacting matter
is presented. Shown are different states of matter as a function of temperature T and
baryochemical potential µB, which is a measure for the net baryon density. The orange
area represents a state where quarks and gluons are confined into hadrons; the brown dot
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at zero temperature represents the ground state of nuclear matter. In case the temperature
or µB increases the yellow area will be reached: the quark-gluon plasma. The type of
transition from the hadron gas phase to the plasma phase depends on the net baryon
density. For higher µB this is a first order phase transition, for smaller densities it is a
smooth crossover. However, the precise location of the critical endpoint is not yet known
and of high current interest.

Today, this concept, including a critical point and a first order phase transition,
is the most favored model of the phase diagram, but it is not the only possibility.
Theorists have shown that a first order phase transition is not needed at all and that
a pure crossover transition from hadron gas to the QGP is also consistent with QCD
calculations [dF07]. There are predictions about other exotic states of nuclear matter, like
quarkyonic matter [McL07], color superconducting phases, or the restoration of chiral
symmetry. A review of the phase diagram of strongly interacting matter was presented by
e.g. Braun-Munzinger and Wambach [BM09b].

Experimental results indicate that the nature of the quark-gluon plasma at high
temperatures is not as simple as presented here. It seems that in contrast to the picture of
quasi-free quarks and gluons (the classical model of a quark-gluon plasma), the matter is
strongly coupled and behaves more like a liquid [Gyu05] instead of a gas. This state of
nuclear matter is called strongly coupled quark-gluon plasma (sQGP).

It is assumed that a quark-gluon plasma is naturally occuring in two scenarios. First,
the early universe, until approximately 10−5 s after the big bang, the energy density (and
therefore the temperature) was too high to form confined matter [BM07]. The second
natural appearance of a QGP might be found in interior of neutron stars. In comparison
to the early universe, the temperatures here are low, but, due to the strong gravitational
forces, the baryon densities are very high.

2.2 Ultrarelativistic Heavy-Ion Collisions

The only means to create hot and dense nuclear matter under laboratory conditions are
ultrarelativistic heavy-ion collisions. In such processes nuclei of heavy elements such
as gold or lead are collided with velocities close to the speed of light, at center of mass
energies per nucleon (

√
sNN) between 17.3 GeV at the Super Proton Synchrotron (SPS)

up to 5.5 TeV at the LHC. The energy density ε0 in central collisions as estimated by the
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Figure 2.3: Schematic view of the participant-spectator model. The centrality of a collision is described
by the impact parameter b. The nucleons in the overlapping regions of the two nuclei are the participants
and form the fireball. The particles outside of the overlap are the spectators, they are affected only with
comprehensively small excitation energies by the collision. This plot is adapted from Reference [KB04b].

measured transverse energy ET exceeds the theoretical limit for confinement. The energy
density can be evaluated using the Bjørken formula [Yag05]:

ε0 =
1

πR2τ0

dET

dy

∣∣∣∣
y'0

, (2.1)

where R is the nuclear radius, τ0 the initial time for the creation of a medium in thermal
equilibrium (≈ 1 fm/c), and y is the rapidity. Results from the SPS heavy-ion program
actually indicate the creation of a new state of matter [CER00], while some publications
on results from the RHIC experiments go even further and suggest the creation of
an sQGP [Gyu05].

Due to Lorentz contraction the nuclei in ultrarelativistic heavy-ion collisions can be
envisaged as thin discs. The protons and neutrons have a small de Broglie wavelength
compared to the dimension of the nucleus. Therefore the nucleus can be treated as an
accumulation of independent nucleons. Consequently, several collision characteristics
follow from pure geometrical considerations. The centrality of a collision is described by
the impact parameter b; the smaller the impact parameter, the more central the collision.
Only protons and neutrons in the overlap region participate in the collision. These
participants form a zone of hot and dense nuclear matter, the so called fireball. The other
nucleons, spectators, are affected only with comprehensively small excitation energies by
the reaction and follow their initial paths. A schematic view of the participant-spectator
model is shown in Figure 2.3.
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Figure 2.4: Comparison of net proton rapidity distributions for different center of mass energies [Bea04].
For AGS energies the distribution corresponds to the Landau model of nuclear collisions. For higher
energies the distribution is better explained by the Bjørken-McLerran picture.

Depending on the center of mass energy the nuclei will become more transparent to
each other as was shown for AGS2, SPS and RHIC3 energies [Bea04]. In Figure 2.4
the net-proton rapidity measured at these accelerators can be found. This is consistent
with a transition from the Landau picture of nuclear collisions, where the nucleons lose
most of their kinetic energy due to nuclear stopping and form a baryon rich fireball,
to the Bjørken-McLerran model [Bea04]. Here, the nuclei will penetrate each other.
Consequently, the nuclear stopping is reduced. This results in the observed transparency.
The created fireball will have a small net-baryon density and high temperature. At the
LHC very low baryon densities but very high temperatures will be reached. Eventually
also a transition from an sQGP to a ’classical’ quark gluon plasma, where only a weak
coupling between the quarks and gluons exists might be observed.

In Figure 2.5 the space time evolution of a high-energy heavy-ion collision is plotted.
Following the Bjørken-McLerran model [Bjo83], at the beginning of the reaction – after
the initial hard processes – a zone of highly excited matter is formed. At this stage

2The Alternating Gradient Synchrotron is a hadron accelerator at BNL with an energy range in Au-
Au collisions up to

√
sNN = 4.9 GeV.

3The Relativistic Heavy Ion Collider is a hadron collider at BNL. The center-of-mass energy reaches
values of 200 GeV per nucleon-nucleon pair in Au-Au collisions.
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Figure 2.5: Space-time evolution of a central ultrarelativistic heavy-ion collision. After a non-equilibrated
phase with initial hard collisions, the system thermalizes and a quark-gluon plasma is formed. With
increasing time the system expands and therefore cools. The fireball is transformed to a phase where
regions of quark-gluon plasma and hadron gas exist in parallel. Finally the hadronization takes place and
the system freezes out. This plot is adapted from Reference [KB04a].

the fireball is in a pre-equilibrated state. The fireball expands and reaches thermal
equilibrium. In case the energy density is high enough, a quark-gluon plasma is formed.
The energy density decreases with further expansion and finally the quarks and gluons
condensate to hadrons. At this point (the chemical freeze-out) the hadron abundances
are fixed. Eventually there is also a mixed phase where regions of quark-gluon plasma
and hadron gas exist simultaneously. After the thermal freeze-out, the momenta of the
particles are fixed too, and the reaction comes to an end. The particles stream freely
towards the detectors.

2.3 Signatures of the QGP

Several signatures are considered fingerprints for the formation of a quark-gluon plasma
in ultrarelativistic heavy-ion collisions. However, each of the signatures could come from
alternative non-QGP scenarios. Only the combination of several of them is currently
regarded as evidence for the existence of a deconfined state of matter. The various signals
can be classified in the following categories:
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Figure 2.6: Schematic view of the expected invariant mass spectrum of dileptons and its sources in heavy
ion collisions [Rap00].

• changes of thermodynamical observables, such as temperature and spatial
dimension, indicating a phase transition,

• signals that point to medium effects from a deconfined phase,

• signals coming from the restoration of chiral symmetry.

Chiral symmetry breaking is the main source for the masses of the light quarks. QCD
predicts the restoration of chiral symmetry for high temperatures and densities. As long as
the matter is confined, chiral symmetry should not be restored. Hence, signals that point
to this phase transition are signals for a QGP, but the transition point is not necessarily the
same as for the deconfinement [Pei97]. An observable effect for the restoration of chiral
symmetry would be e.g. the shifting and broadening of light vector meson masses. For
more details please refer to Reference [Koc97].

In this section some of these signals are presented. The main emphasis is placed on
signatures that can be observed by or with help of the TRD. More complete overviews
of the different QGP signatures can be found in several works, e.g. References [Won94,
Yag05, Ale06].
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2.3.1 Dileptons

Leptons are appropriate probes for the exploration of hot hadronic matter or quark-gluon
plasma since they do not interact strongly. Once formed in the hot and dense phase of the
collision, their mean-free path is large compared to the dimensions of the fireball. The
probability for a further collision, which consequently leads to a loss of information, is
comprehensively small. This means that leptons trace the history of space-time evolution
of the stages of the collision in which they were produced.

Important sources of leptons are the various production mechanisms of dileptons,
such as their production in the initial hard parton collisions, the decay of hadrons into
dileptons and their thermal production in the hot medium. The relative contributions
from the different sources vary at different mass intervals in the invariant mass spectrum
of dileptons (see Figure 2.6). In the low-mass region signals from photon conversions,
Dalitz-decays of the π0 and the η, as well as dileptonic decays of light vector mesons
such as the ρ, ω and φ can be found. Decays of D mesons dominate the medium-mass
region. In the high-mass region the Drell-Yan mechanism is the most prominent source.
Here, also the invariant mass peaks from J/ψ and ϒ decays can be found. The J/ψ signal
will be discussed in more detail in Section 2.3.2.

The Drell-Yan Mechanism Lepton pairs (or ll̄ pairs) can directly be produced in the
very early state of the collision via virtual photons. These are created by the annihilation
of one nucleon’s quark with a sea antiquark of the other nucleon (see Figure 2.7). This
mechanism is called Drell-Yan process and carries information from the first hard nucleon
scatterings of the impact. The cross section of this process can be well evaluated by
using perturbative methods which opens the possibility to use the Drell-Yan dileptons as
reference for the other processes. For the Drell-Yan process in heavy-ion collisions the



2.3 Signatures of the QGP 13

nucleons can be treated as independent within the nuclei [Won94]. Thus, the number
of produced ll̄ pairs by the Drell-Yan mechanism in heavy-ion collisions depends on the
number of nucleon-nucleon collisions (Ncoll). The number of collisions can be estimated
by Glauber model [Gla70] calculations and roughly scales with A4/3 for central collisions
of two equal nuclei [Mil07]. Here, A is the atomic number of the nuclei participating the
collision. The signal from this process contributes to spectrum in a continuum, noticeably
at high invariant masses (mll > 3 GeV/c).

Open Charm and Open Beauty Another important process contributing to the
invariant mass spectrum is the semi-leptonic decay of charm or beauty mesons. In the
initial hard scatterings of a nucleon-nucleon collision the creation of heavy quark pairs,
like charm or beauty, takes place. These heavy quark pairs can form charmonia or separate
and form, together with light quarks, pairs of charmed (e.g. D+ = d̄c and D− = dc̄) or
beauty (e.g. B+ = ub̄ and B− = ūb) mesons, so called open charm or open beauty. These
mesons can decay weakly via semileptonic channels with a branching ratio of about 10%.
A typical decay is e.g. D+ → K0l+νl . This leads to correlated electron positron pairs
which populate a continuum in the intermediate mass region between the φ and the J/ψ.

Thermal Dilepton Production In the plasma phase the annihilation of a quark-
antiquark pair can lead to the production of dileptons via virtual photons (qq̄→ γ∗ →
e+e−). Virtual photons carry a mass and therefore contribute to the invariant mass
spectrum of dileptons. Since the quarks are thermalized in the plasma phase, the virtual
photons are a tool to access directly the thermodynamic information of the QGP. Thermal
photons are also expected from the hadron gas phase. However, these photons should
have smaller energies than those from the QGP phase.

Medium Modifications of Vector Mesons In the late phase of the collision, the matter
forms a hadron gas, but has not reached the thermal freeze-out point. Here, the main
sources of dileptons are pion annihilation or scattering via the channel ππ
 ρ→ γ∗→
e+e−. Since the lifetime of the ρ meson (τ ≈ 1.3 fm/c) is shorter than the expected time
between chemical and thermal freeze-out (τ ≈ 10 fm/c), most of the ρs will decay inside
the hadron gas. Any medium attribute affecting the lifetime of the meson or the thermal
distribution of the decay meson will be preserved by the dilepton pair.

In order to extract information from the dilepton spectrum it is crucial to understand
the different contributions and their yields. SPS experiments (CERES [Aga05]
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Figure 2.8: Dileptonic signal from Phenix for pp (upper plot) [Ada09b] and AuAu (lower plot) [Afa07].
The spectra are compared to the yield expected from the different contributions. While the data from proton
collisions fit well to the model, the extracted signal from heavy ion events shows a significant excess at low
dielectron masses over the expectations.
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and NA60 [Arn06]) as well as RHIC experiments (PHENIX [Afa07]) observed an
enhancement over the expected dilepton yield from hadron decays in the low-mass
region. In Figure 2.8 the results from pp and AuAu collisions in PHENIX are compared
to a cocktail of various sources. In the AuAu spectrum a clear enhancement above
the expectations is visible for the mass region between 200-750 MeV/c2 [Afa07].
The dilepton yield in pp data does not show this behavior [Ada09b] which leads
to the suggestion that this contribution originates from medium effects and not from
unconsidered hadron decays. In Figure 2.9 the dielectron yield measured by PHENIX
is compared to the expectations from hadron decays for different centrality classes. It
can be seen that the measured yield shows a large excess over the expectations in central
collisions. Figure 2.10 shows the transverse momentum (pT ) dependence of the observed
excess of dielectrons. The excess over the expectations is mainly seen at low pT . These
observations are qualitatively consistent with the interpretation that the enhancement is
caused by annihilation processes like qq̄→ γ∗→ e+e− or π+π−→ γ∗→ e+e−.



16 Chapter 2: The Quark-Gluon Plasma and its Signatures

)2 (GeV/ceem
0 0.2 0.4 0.6 0.8 1 1.2

/G
eV

) I
N

 P
H

E
N

IX
 A

C
C

E
P

TA
N

C
E

2
 (c

ee
dN

/d
m

-1310

-1210

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10
 = 200 GeVsp+p

4 10×<0.5 GeV/c 
T

0.0<p
3 10×<1.0 GeV/c 

T
0.5<p

2 10×<1.5 GeV/c 
T

1.0<p
 10×<2.0 GeV/c 

T
1.5<p

<2.5 GeV/c
T

2.0<p
-1 10×<3.0 GeV/c 

T
2.5<p

-2 10×<4.0 GeV/c 
T

3.0<p
-3 10×<5.0 GeV/c 

T
4.0<p

)2 (GeV/ceem
0 0.2 0.4 0.6 0.8 1 1.2

/G
eV

) I
N

 P
H

E
N

IX
 A

C
C

E
P

TA
N

C
E

2
 (c

ee
dN

/d
m

-1310

-1210

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

0.0-0.5

 0.5-1.0

 1.0-1.5

 1.5-2.0

 2.0-2.5

 2.5-3.0

 3.0-4.0

 4.0-5.0

)2 (GeV/ceem
0 0.2 0.4 0.6 0.8 1 1.2

/G
eV

) I
N

 P
H

E
N

IX
 A

C
C

E
P

TA
N

C
E

2
 (c

ee
dN

/d
m

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

410

510  = 200 GeVNNsmin. bias Au+Au
5 10×<0.5 GeV/c 

T
0.0<p

3 10×<1.0 GeV/c 
T

0.5<p
2 10×<1.5 GeV/c 

T
1.0<p

 10×<2.0 GeV/c 
T

1.5<p

<2.5 GeV/c
T

2.0<p
-1 10×<3.0 GeV/c 

T
2.5<p

-2 10×<4.0 GeV/c 
T

3.0<p
-3 10×<5.0 GeV/c 

T
4.0<p

)2 (GeV/ceem
0 0.2 0.4 0.6 0.8 1 1.2

/G
eV

) I
N

 P
H

E
N

IX
 A

C
C

E
P

TA
N

C
E

2
 (c

ee
dN

/d
m

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

410

510

0.0-0.5

 0.5-1.0

 1.0-1.5

 1.5-2.0

 2.0-2.5

 2.5-3.0

 3.0-4.0

 4.0-5.0

Figure 2.10: Dielectron invariant mass distributions for pp (left) and AuAu collisions (right) [Ada09a]. The
distributions are plotted for different intervals of transverse momentum pT and are compared to the expected
spectra from hadron decays.

The most favored scenario for the excess of dileptons in the low-mass region is at
the moment a medium modification in the hadron gas phase [vH06], but it seems that
there are some differences between the SPS and the RHIC scenario [Dah08]. While the
enhancement at SPS energies can be well described by some theoretical approaches, the
enhancement seen by PHENIX can not be reproduced using the same models [Bra08].

2.3.2 Quarkonium Production

The signatures, that are the most interesting ones for this thesis, are dileptonic signals
from the decay of quarkonia. This means mainly the detection of bound states of heavy
quark-antiquark pairs, like a charm-anticharm (cc̄), called charmonium, or a bottom-
antibottom (bb̄) quark pair, called bottomium, via their dielectron or dimuon decay
channel. The 13S1 ground state of the charmonium4 is the J/ψ and of the bottomium
is the ϒ meson. It is expected that clear signals from these mesons as well as from more
massive states like the ϒ′ can be found in pp and in PbPb collisions at the LHC.

4For a short review on the different charmonium states and on the nomenclature please refer to
Reference [Vol08].
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Figure 2.11: The mechanisms of charmonium suppression and enhancement in a quark-gluon plasma.
In the upper case (low energy) only small numbers of charm-anticharm pairs (red dots) are produced.
The interaction of these two quarks is screened by the other quarks and the gluons of the QGP. In the
hadronization phase the charm and the anticharm quark will each form a D meson together with another
(light) quark (gray dot) of the medium and the number of observed J/ψs will be smaller than expected.
With increasing collision energy (lower scenario) many more charm-anticharm pairs will be produced. As
in the low energy case the medium screens the quark antiquark-pairs from each other, but here, charm and
anticharm quarks from different original pairs could form J/ψs and lead to a higher number of produced
charmonia [BM07].

Heavy quark-antiquark pairs are mostly produced in hard processes in the early stage
of the collision. Therefore they are subject to the entire history of the reaction and
are excellent probes for exploring the created medium in its early states. In 1986 a
suppression of J/ψ production compared to a scenario without forming a QGP was
predicted by Matsui and Satz [Mat86]. The underlying mechanism was explained in terms
of a QCD equivalent to the Debye screening in electromagnetic plasmas. A parameter for
the screening is the Debye radius rD which is dependent on the temperature T of the
plasma. In case the temperature reaches a critical value TC, rD is smaller than the J/ψ’s
binding radius rJ/ψ, the quarks are not confined any more and the meson dissolves. The
constituents of the charmonium now move independently through the plasma. During
the hadronization phase they find new partners, light quarks, and will form charmed
mesons. The number of J/ψs is smaller than expected. An illustration of the suppression
mechanism is given in the upper example of Figure 2.11.
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for RHIC and LHC energies for different centralities at mid rapidity. While the measured charmonium
suppression is in good agreement with the model prediction at LHC an enhancement of the J/ψ yield is
expected [And07a].

The scenario, described above, takes place when the average number of cc̄ pairs
created per nucleus-nucleus collision is about one or smaller. At the LHC the creation of
about 200 charm quarks is expected per PbPb collision [BM07]. Calculations show that
for RHIC and LHC energies the formation time of the J/ψ is much longer than the plasma
formation time [And08b]. Therefore the charmonium will not be formed at all. As in the
case where only a few cc̄ pairs are produced, there are deconfined charm and anticharm
quarks moving independently through the quark-gluon plasma. But in contrast, there is
a chance that during the hadronization phase charm and anticharm quarks from different
initial pairs can recombine to form quarkonia (Fig. 2.11, lower example). This statistical
effect would lead to an enhancement instead of a suppression of the J/ψ [And07a]. While
a pure suppression could be explained by scenarios without the formation of a quark-gluon
plasma, the described enhancement can only happen in a scenario, where charm quarks
are deconfined [BM07]. This would be a clear signature of a QGP formation.

Experimental data from the NA50 experiment at SPS show a clear suppression as
expected in this energy range [Ale05]. Results from PHENIX at RHIC show also a
suppression but not as large as expected if a suppression mechanism is the only effect
that is responsible for the J/ψ yield [Ada07b]. In a comparison between the experimental
results from RHIC and theoretical calculations it is shown that this effect can be well
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described by statistical recombination of charm quarks to charmonia which would lead to
a smaller suppression or even an enhancement at higher energies [And07a].

A possible observable to decide if a J/ψ suppression or enhancement takes place is the
nuclear modification factor RJ/ψ

AA . It compares the number of J/ψ particles produced in
nucleus-nucleus collisions dNAA

J/ψ
, to the expected number in a scenario where no medium

effect affects the total yield:

RJ/ψ

AA =
dNAA

J/ψ
/d pT

Ncoll ·dN pp
J/ψ

/d pT
, (2.2)

with dN pp
J/ψ

being the number of produced J/ψs in a p-p collision and Ncoll being the
number of inelastic nucleon collisions that occurs during the AA collision. In Figure 2.12
the J/ψ yield is plotted for different centralities and is compared to model calculations
for RHIC and LHC energies. While the model describes the RHIC data very well,
the prediction for the LHC shows an enhancement for RJ/ψ

AA above one for central
collisions. At LHC a significant number of J/ψs will originate from beauty particle
decays. Therefore, B decays need to be measured first in order to estimate the number of
primary charmonia.

2.3.3 Direct Photons

Like leptons, photons do not interact strongly. Therefore, they can carry information
from all phases of the collision. Direct photons are all photons which are not produced
by hadron decays after the chemical freeze-out. They can be subdivided into prompt
photons and thermal photons. Prompt photons are produced directly in the initial hard
collisions via quark-antiquark annihilations resulting in the production of a gluon and
a photon (qq̄→ gγ, Figure 2.13 a)). The energy range where they are expected to be
measurable at ALICE starts at about 10 GeV [Ale06]. Below this energy the background
from other processes will be much too large compared to the prompt photon yield.
Quark-antiquark annihilation is also partly responsible for the thermal photon production
in a quark-gluon plasma. The difference to the prompt photon production is, that the
quarks are in thermal equilibrium and therefore the photons do not reach the same energy
range; the spectrum is softer. The other process contributing to the thermal photons
from QGP is quark-gluon Compton scattering (qg → qγ, Figure 2.13 b)). Thermal
photons can also be produced in the hadron gas phase. Typical creation processes are
pion annihilations (π+π− → ρ0γ, Figure 2.14 a))), Compton scattering (π±ρ0 → π±γ,
Figure 2.14 b))) and decays of ρ0s (ρ0 → π+π−γ Figure 2.14 c))) [Pei02]. Thermal



20 Chapter 2: The Quark-Gluon Plasma and its Signatures

γq

qg

a) b)
q

q

γ

g

Figure 2.13: Feynman graphs of the main contributions to direct photons: a) quark-antiquark annihilation
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Figure 2.14: Examples of photon production in the hadron gas phase: a) pion annihilation, b) Compton
scattering, and c) decays of ρ0 mesons.
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photons from a quark-gluon plasma phase should reach energies up to several GeV.
Simulations show thermal photons from the hadron gas phase can be found in energy
ranges between a few hundred MeV and a few GeV [Car04].

Photon production in heavy-ion collisions show many parallels to the generation
of dileptons. Many production mechanisms are identical, the only difference is that
in dileptonic signals the photon is not real but virtual. Similar to dilepton analyses,
the photon signal has to be extracted from a large background. Measurements of
direct photons in heavy ion collisions succeeded e.g. at WA98 [Agg00, Buc99] and
PHENIX [Adl05c, KB04b].

2.3.4 Jet Physics in Heavy-Ion Collisions

In 1975 cascades of particles with well defined opposite emission directions were
observed in e+e− collisions at the Stanford Linear Accelerator Center [Han75]. These
dijets are produced due to the creation of quark-antiquark pairs with large opposite (back-
to-back) momenta. Due to the confinement the quarks undergo fragmentation and create
the observed collimated spray of hadrons. In hadron collisions hard parton scatterings are
responsible for the jet production. In pp collisions the scattered partons produce dijets
exactly as in the e+e− case. In an environment where the partons traverse hot and dense
hadronic matter the particles interact with the medium. The predictions of the jet’s energy
loss is different for cold nuclear matter and for a scenario where a quark-gluon plasma
is formed [Wan92, Bai95]. Depending on the spatial position of the hard scattering, the
parton has to traverse a larger or shorter distance through the fireball. This leads to a larger
energy loss by soft gluon radiation for one of the two jets and therefore to a deviation
from the back-to-back geometry of the jets. This jet quenching can also be observed as an
overall suppression of hadrons, such as π0 or η, at larger transverse momenta compared to
non-QGP-forming cases. Particles that do not interact strongly should not be suppressed
since they are not affected by the hot hadronic matter.

Measurements at RHIC experiments at
√

s = 200 GeV AuAu collisions agree well
with the theoretical models for QGP formation. In PHENIX a clear suppression of neutral
pions [Adl06, Adl07a, Ada08] and η mesons [Adl07b] at high transverse momenta was
observed, while STAR confirmed that observation for charged pions and protons [Abe06].
To exclude other (unknown) effects caused by cold nuclear matter, collisions of deuterons
with gold nuclei were measured, where it is not expected that large volumes of quark-
gluon plasma will be formed. As expected no jet quenching was observed in this
case [Adl03, KB04b, Sah04, Ada03]. This confirms that the observed suppression in
AuAu collisions is not caused by initial state effects.
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Figure 2.15: Jet quenching at PHENIX for
√

sNN = 200 GeV [Adl06]. Shown is the suppression of high
pT π0s and ηs in AuAu collisions compared to pp events. As predicted for a QGP formation the number of
hadrons is smaller than for the non-QGP case. Particles which do not interact strongly as directly produced
photons should not be suppressed. The results agree well with the predictions for a quark-gluon plasma
formation.

A jet quenching study was also performed by PHENIX on heavy quarks measured
via single electron measurements [Ada07a]. It was expected that heavy quark jets should
show less suppression than the light quark jets [Awe08]. The energy loss of heavy quarks
via gluon bremsstrahlung should be suppressed for small forward emission angles (θ =
M/E), where M is the heavy quark mass and E is its energy [Dok01]. This effect is known
as the so called dead cone phenomenon. Actually at low pT the observed suppression of
electrons from heavy flavors is smaller than that of π0. However, in contradiction to the
expectations, at pT > 4 GeV/c the suppression factor reaches the same value as for neutral
pions. The results indicate a strong coupling of the heavy quarks to the medium [Ada07a].



3. ALICE and the LHC

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) at CERN has a circumference of about 27 km and is
with a nominal beam energy of 7 TeV for protons and 2.76 TeV per nucleon for heavy
ions the most powerful accelerator in the world [Eva08, LHC08]. For lead ions this
corresponds to an energy of 1.15 PeV per nucleus. It has been built in the old Large
Electron-Positron Collider (LEP) tunnel, between 50 and 175 m below the surface (see
Fig. 3.1). The collider consists of two beam pipes where the particles are accelerated
in opposite directions. The design luminosity for proton-proton collisions is L = 1034

cm−2s−1 and for PbPb collisions L = 1027 cm−2s−1 [Brü04]. At maximum luminosity
there will be 20 pp collisions per bunch crossing. With 2808 bunches at a time in each
beam pipe and a frequency of about 11 kHz this leads to around 600 million collisions per
second [LHC08].

Preexisting infrastructure is used as far as possible for the generation of particles
which are injected into the LHC. A schematic view of the CERN accelerator facility is
given in Figure 3.2. Lead is vaporized and ionized with a charge maximum around Pb29+

Figure 3.1: The four large experiments ATLAS, CMS, LHCb and ALICE at the Large Hadron Collider.
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in the GTS-LHC ion source [Hil05]. These ions are accelerated in LINAC3 up to an
energy of 4.2 MeV/u. The ions are stripped further to Pb54+ and accelerated at the Low
Energy Ion Ring (LEIR) to 72 MeV/u. In the Proton Synchrotron (PS) the ions get another
boost to 5.9 GeV/u before the lead is fully stripped to Pb82+. These nuclei are transferred
subsequently to the Super Proton Synchrotron (SPS) where the energy per nucleon is
increased further to 177 GeV/u. The last step is the transfer to the LHC where the ions
reach their maximum energy of 2.76 TeV [LHC08].

The Experiments

There are six experiments installed at four collision points. The largest experiments
ATLAS1 and CMS2 were built to clarify open questions of particle physics, such
as the existence and mass of the Higgs bosons or the search for supersymmetric

1A Toroidal LHC Aparatus
2Compact Muon Solenoid
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particles [ATL99, dR06]. LHCb3 studies the asymmetry between matter and antimatter
via CP-violation in decays of B-mesons. There are also two small experiments at LHC,
TOTEM4 [Ane08] and LHCf5 [Adr08]. TOTEM is located close to the CMS experiment
and will measure the total cross section of the proton-proton collisions; with LHCf (close
to ATLAS) models for the very high energy region of cosmic rays will be tested. The
focus of this thesis lies on ALICE, which is the only dedicated heavy ion experiment at
LHC. ALICE will be discussed in more detail in Section 3.2.

ATLAS is 46 m long with a diameter of 25 m and a weight of about 7,000 t [Aad08]. It
is built in a barrel design including end caps to cover all the possible emission directions
particles can have. ATLAS consists of three major detector components: the Inner
Detector, the Calorimeter and the Muon Spectrometer. The Inner Detector provides
tracking and particle identification. As in ALICE, a detector exploiting transition radiation
is used for the identification of electrons, the Transition Radiation Tracker (TRT). The
TRT design is different from the ALICE TRD’s one and is based on a drift-tube system6.
The Inner Detector is surrounded by a solenoid magnet which provides a magnetic field
of 2 T in the inner barrel. The Calorimeter is divided in the Electromagnetic Calorimeter
and the Hadron Calorimeter. This section is located between the central magnet and the
outermost component, the Muon Spectrometer.

CMS with a weight of 12,000 t is the heaviest of the LHC experiments [Ado08]. It has
a length of 21 m and a diameter of 15 m and is more compact than ATLAS. As ATLAS,
CMS is constructed in a barrel design including end caps. The central component of
CMS is the superconducting magnet. It is 11 m long, has a radius of 3 m and provides
a 4 T magnetic field. The innermost detector system is the Inner Tracking System,
consisting of a pixel detector and a silicon strip detector. Also inside of the magnet are
an electromagnetic and a hadronic calorimeter. Outside of the solenoid the muon system
provides muon identification and momentum measurement. It also works as a trigger.

ATLAS and CMS are built to measure pp events at high luminosity. I.e. they are
optimized for high event rates and low multiplicities. However, both experiments have a
heavy-ion program [ATL04, d’E07] and will complement the ALICE measurements. A
short overview of the CMS dilepton capabilities will be given in Section 9.3.1.

LHCb, in contrast to ATLAS and CMS, is not barrel-designed but specialized to detect
particles in forward direction [Alv08] with an angular coverage between 10 mrad and
300 mrad. LHCb is 21 m long, 10 m high and 13 m wide. The total weight is 5,600 t. The

3Large Hadron Collider beauty Experiment
4Total Cross Section, Elastic Scattering and Diffractive Dissociation at the LHC
5Large Hadron Collider forward Experiment
6For more information about the ATLAS TRT please refer to Reference [ATL97, Mit03].
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Vertex Locator (VELO) is the detector closest to the collision point. VELO is followed by
tracking detectors and RICHs7. An electromagnetic and a hadronic calorimeter as well as
a muon detection system complete the design of LHCb.

3.2 The ALICE Experiment

ALICE (see Figure 3.3) is the only LHC experiment designed to study heavy-ion
collisions. It is optimized to measure a broad set of observables which could indicate the
generation of a QGP. Contrary to ATLAS and CMS, ALICE is built for smaller event rates,
but is able to handle high multiplicity events (up to 8,000 charged particles per rapidity
unit). In addition, due to its lower magnetic field (B = 0.5 T) ALICE can measure and
identify charged particles down to lower pT than CMS and ATLAS. The experiment’s
dimensions are 16 m×16 m×26 m and its weight is about 10,000 t [ALI95, Aam08].
ALICE is composed of two large detector arrays, the central barrel and the muon arm.
The first covers the mid-rapidity region (−0.9 < η < 0.9), while the latter detects muons
with rapidities between -2.5 and -4. In the following section the detectors of ALICE will
be shortly presented. An overview of the pseudo-rapidity ranges of all ALICE detector
subsystems is given in Figure 3.4, a summary of their particle identification capabilities
in Figure 3.5, and the ALICE coordinate system can found in Apendix B.

3.2.1 The Central Barrel

The detectors of the central barrel are embedded in the L3 solenoid. This magnet works
at room temperature and provides a magnetic field of 0.5 T. The detector components
surround the collision point in several layers. Each of the detectors has its special tasks.
The Inner Tracking System (ITS) is specialized for vertex finding, the Time Projection
Chamber (TPC) is the main tracking and particle identification (PID) device and the
Transition Radiation Detector’s (TRD) main task is to identify and to serve as trigger for
electrons with momenta > 1 GeV/c. Together these three detectors provide a momentum
resolution of about 5% at a transverse momentum of about 100 GeV/c [Aam08]. The
Time Of Flight Detector improves the hadron identification capability, HMPID is a RICH
detector, and PHOS as well as EMCal are electromagnetic calorimeters. A detailed
overview about the TRD is given in Chapter 4, the other detectors are described here.

7Ring Imaging CHerenkov Counters for electron identification.
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Figure 3.4: Pseudo-rapidity ranges of the ALICE detector systems with a prediction for the charged
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The Inner Tracking System

The Inner Tracking System is composed of six layers high resolution silicon detectors
with about 12.5 million of readout channels in total. It is described in detail in the ITS
Design Report [ITS99]. The two innermost layers are Silicon Pixel Detectors (SPD),
followed by two layers of Silicon Drift Detectors (SDD) and the two outermost layers are
Silicon Strip Detectors (SSD). With this detector array a vertex reconstruction with an
accuracy better than 100 µm is possible. The ITS enables a reconstruction of secondary
vertices from the decay of hyperons, D mesons and B mesons in ALICE and completes
the PID capabilities to charged particles with momenta smaller than 100 MeV/c. It also
improves the momentum resolution of particles reconstructed in the TPC.

The Time Projection Chamber

ALICE’s largest detector, with an inner radius of about 85 cm and an outer radius of
250 cm, is the Time Projection Chamber [TPC00]. It has a cylindrical shape with a length
of 5 m along the beam axis and is filled with a mixture of Ne/CO2/N2 (90:10:5) [Gar04].
The TPC is the main tracking device in ALICE. Another important feature of the TPC
is its particle identification capability. For momenta between 100 MeV/c and 1 GeV/c,
the TPC is the main tool for hadron, as well as for electron, identification. For momenta
above a few GeV/c the hadron identification is good enough to separate different species
at a statistical basis [Car04]. Even at larger momenta the TPC’s dE/dx measurement
improves the electron PID capability of ALICE.

The Time Projection Chamber is designed to handle up to 20,000 charged tracks
simultaneously, which is the maximum expected multiplicity of charged particles in the
TPC acceptance for central PbPb collisions. A readout rate of 200 Hz for central heavy
ion collisions will be reached. The limiting factor in pp collisions is not the charged
particle multiplicity, but the high event rate. Although ALICE will operate at a reduced
luminosity of 1030 cm−2s−1 [Sch09], the rate of 350 kHz leads to tracks from about 10 -
20 events at a time (from past and future events) in the TPC. For a triggered event, the
tracks which do not point to the vertex of that event have to be eliminated [Aam08].

The Time of Flight Detector

The outermost detector that has the full azimuthal coverage is the Time-Of-Flight
system [TOF00, Cor02]. The TOF is a PID detector for the separation of kaons (for
momenta up to 2.5 GeV/c) and protons (up to 4 GeV/c) from pions. This is possible
since the intrinsic time resolution is at about 40 ps. The 90 TOF modules are arranged
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in 18 supermodules; the modules are gaseous detectors designed as Multi-gap Resistive-
Plate Chambers (MRPC). The basic unit is a MRPC strip with a width of 130 mm and
a length of 1220 mm. Depending on the position in z direction, 15 or 19 of these
strips are combined in a module. For an effective operation of the TOF a maximum
occupancy of 10-15% is acceptable. This requirement results in a design with more than
105 independent readout channels [Car04]. TOF will also provide a pretrigger signal for
the Transition Radiation Detector.

HMPID, PHOS, and EMCal

The High Momentum Particle Identification Detector (HMPID) is a RICH detector which
is specialized in separation of pions from kaons and kaons from protons for momenta up
to 3 GeV/c and 5 GeV/c respectively [HMP98]. In addition, light nuclei such as d, t, 3He
and α can be identified [Aam08]. The HMPID covers only about 5% of the acceptance of
the inner detectors ITS, TPC, TRD and TOF.

The Photon Spectrometer (PHOS) has an azimuthal acceptance of ∆φ = 100◦ and
covers a pseudo-rapidity −0.12 ≤ η ≤ 0.12 [PHO99]. The five modules are composed
of an electromagnetic calorimeter (made of lead-tungstate crystal) and a multi-wire
proportional chamber which identifies charged particles, Charged Particle Veto (CPV).
It is positioned at the bottom of ALICE at a distance of 4.6 m from the collision point.
The main task of PHOS is the measurement of low-pT photons as well as the measurement
of high-pt π0 and γ-jet correlations [Aam08].

The Electromagnetic Calorimeter (EMCAL) is the second electromagnetic
calorimeter in ALICE [ALI06]. It is designed as a Pb-scintillator sampling calorimeter,
has a smaller energy resolution than PHOS but exceeds its spatial coverage by a factor of
more than six (∆φ = 107◦ and |η| = 0.7). EMCAL improves ALICE’s capability of jet-
quenching measurement, the jet energy resolution, and measurement of high-pT photons
and electrons.

3.2.2 The Other Detectors

The Forward Detectors

Two Zero Degree Calorimeters (ZDC) are positioned 116 m on either side from the
interaction point [ZDC99]. They measure the energy in beam direction which is correlated
to the number of spectator nucleons. This allows to estimate the centrality of a collision.

The Photon Multiplicity Detector (PMD) measures the distribution of photons close to
the beam direction [PMD99, PMD03]. It is designed as a sandwiched-preshower detector
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and uses gas proportional counters for the read out. The gas volumes are positioned in
front of, as well as behind of the converter. Therefore the volumes closer to the collision
point can be used as veto detectors for charged particles. The PMD is installed 3.6 m
from the interaction point, opposite to the muon spectrometer, covering the region of
2.3≤ η≤ 3.5.

FMD, T0 and V0 are described in detail in their combined technical design
report [FWD04]. The Forward Multiplicity Detector (FMD) is a silicon strip detector
and extends the acceptance for charged particles together with the ITS to−3.4≤ η≤ 5.0.
T0 is a Cherenkov counter and has a time resolution of about 50 ps. It can be operated
as a trigger and also provides the signal to start the time measurement in the TOF. V0 is
a plastic scintillator. Its main task is to work as an on-line centrality trigger. The TRD
derives its main pretrigger signal from T0 and V0.

The Muon Spectrometer

The second large subsystem of ALICE besides the central barrel is the muon
spectrometer [ALI96, Muo99, Muo00]. It is designed to detect muons in the pseudo-
rapidity region−4.0 < η <−2.5. The muon spectrometer will focus on dilepton physics,
i.e. the reconstruction of quarkonia via their dimuon decay and the measurement of the
dimuon continuum up to masses of about 10 GeV/c2. The dimuon continuum in ALICE is
dominated by the semileptonic decay of D mesons and B mesons, which allows to analyse
the production of open charm and open beauty [Car04]. Heavy flavor is also measurable
in the range of −2.5 < η < −1.0. Here a muon, measured in the muon spectrometer, is
combined with an electron, identified by the TRD [Aam08].

The muon spectrometer is subdivided into four components: a dipole magnet,
absorbers, tracking chambers and trigger chambers. The magnet is positioned 7 m from
the vertex point and provides a nominal magnetic field of Bnom = 0.67 T. Absorbers are
placed inside of the L3 magnet (front absorber), in front of the trigger chambers (muon
filter) and around the beam pipe (beam shield). The front absorber is 4.13 m thick and
made of carbon and concrete which corresponds to 10 times of the interaction length λint

for hadrons. The muon filter (1.2 m of iron, ≈ 7.2λint) suppresses muons with momenta
smaller than 4 GeV/c and is installed directly in front of the trigger modules. The tracking
system is arranged in five tracking stations with two cathode pad chambers at each station.
With increasing distance to the interaction point the pad size increases. The spectrometer
reaches resolutions around 100 µm, which allows a mass resolution for the ϒ of about
100 MeV/c2. The expected dimuon spectra in the mass region of the J/ψ and the ϒ for
106 PbPb events are presented in Figure 3.6. A trigger on high-pT (di-)muons is provided
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by two tracking stations, equipped with two RPCs each. In order to achieve the necessary
transverse momentum resolution, the trigger chambers have a position resolution better
than 1 cm.

ACORDE

The ALICE Cosmic Ray Detector (ACORDE) is an array of plastic scintillators placed on
top of the L3 magnet [Aam08]. ACORDE is arranged in 60 modules with an effective
detector area of 190 cm×20 cm each. It was originally built to provide a fast cosmic
ray trigger signal for the alignment and calibration of the tracking detectors. Feasibility
studies show that ACORDE (together with the TPC, the TRD and TOF) allows to study
cosmic rays with primary energies around 1015−1017 eV [Ale06].

3.3 The AliRoot Framework

AliRoot [Alia] is the official software framework that is used within ALICE. The
ALICE computing framework is used for data simulation, event reconstruction, detector
calibration, detector alignment, visualization, and data analysis. The amount of data is
about 4 PB for reconstructed PbPb events per year [Aam08]. Therefore, the needed
computing resources in ALICE will be so large, that a single computing center will
not be able to process the data solely. Instead ALICE uses the Grid technology [Fos99]
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Figure 3.7: Schematic overview of AliRoot [Aam08]. AliRoot is based on the Root framework, the
interface to the Grid is AliEn. The central module is STEER, which connects the detector and analysis
modules to external event generators, such as HIJING or PYTHIA and to transport packages, like GEANT3.

for decentralization and distribution of computing tasks to computer centers all over the
world. The ALICE computing framework is presented in References [COM05, Aam08].

3.3.1 Overview of AliRoot

AliRoot is an Object-Oriented framework written in C++ and is based on Root [Roo].
A schematic overview is presented in Figure 3.7. AliRoot consists of independent
modules and can also access external programs such as event generators or particle
transport packages. The central module in AliRoot is STEER. It provides steering,
run management, interface classes and base classes. The code needed for simulation
and reconstruction of the different detectors is available in the corresponding detector
modules. Furthermore, AliRoot contains data analysis modules and modules that allow
access to external programs. AliEn [Sai03] complements the offline framework and
provides access to the computing Grid.

The concept of AliRoot’s data simulation and processing is shown in Figure 3.8. On
the left different steps of the simulation are shown. The first step is the generation of
particles by event generators. At this step, the Monte Carlo level, the full information
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Figure 3.8: Comparison of the simulation (left side) and the reconstruction (right side) in AliRoot [Aam08].
The simulation starts at full event information (Monte Carlo) and is processed to minimum information
(Raw data). Minimum information means that no global information of the event is available, just the local
detector responses. The reconstruction starts at minimum information and accumulates more information
with ongoing processing time, until the properties of the event are reconstructed.

of the produced particles, such as species, momentum, charge, and mother-daughter
relationship, is available. In the next step the interaction of the particles with the detectors
is calculated and stored as Hits using a transport package, e.g. GEANT3. The responses
of the detectors to the traversing particles are saved as Digits and, in a further step, the
Digits can be transformed to Raw data as produced by the ALICE data acquisition (DAQ).
At this stage the reconstruction chain starts and can be applied to simulated raw data
produced by AliRoot as well as to real raw data produced by the experiment. The first
reconstruction steps are typically the reconstruction of clusters and, in case of a tracking
detector, a first local track reconstruction. The reconstruction processes the data from a
very simple level (raw data) to a level where as much as possible of the information is
available [Car04, COM05, Aam08, Alib].

3.3.2 Simulations with AliRoot

A simulation in AliRoot can be subdivided into two parts. The first is the simulation of the
event itself, the second is the simulation of the detector response. The simulation of the
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event is done by event generators. The event generator base class AliGenerator gives
access to a large variety of generators [Aam08]:

• External generators, such as PYTHIA [Ben87] or HIJING [Wan91].

• Generators with parameterized pT and η distributions.

• Box generators of various particle types with flat momentum distributions.

• Generators which combine different generator types to a cocktail of generated
particles.

• Afterburners which allow the simulation of particle correlations [COM05].

This flexibility is needed since existing event generators differ in their predictions for
observables such as particle multiplicity, pT or rapidity distributions. In addition, they
do not reproduce open charm and open beauty, quarkonia, and high-pT observables
correctly [Car04]. The possibility of combining different generators allows the simulation
and tuning of several kinds of events. Here, especially the combination of "background"
events of external event generators and "signal" events are interesting e.g. for the
simulation of heavy flavor quarks or jet events. These events can be tuned in order to
match theoretical predictions and to compare different scenarios. Another example of the
various applications is the analysis and tuning of detector reconstruction capabilities. For
example, for the optimization of the particle identification performance of the Transition
Radiation Detector a cocktail of charged particles with fixed momenta was used. This is
presented in more detail in Section 8.1.

Following the event generation the resulting particles are further processed by
transport programs. In this step, the interactions of the particles with the detector
material and the resulting signals are simulated. In addition, the detector response
is digitized taking into account parameterized response functions of the front-end
electronics. Optionally the simulated data can be transformed into raw data, which is
the data format generated by the readout electronics. AliRoot supports three different
transport codes: GEANT3 [Bru93], GEANT4 [Ago03] and FLUKA [Fas03]. Although the
user interfaces of the transport programs are very different, AliRoot allows to simulate
the detectors with the same code, regardless of the transport program that was chosen.

Due to the fact that the transport calculation in high-multiplicity events is very time
consuming, it is also possible to use so called "fast simulations". Here, the event
generators are used in the same way as in a simulation described before. The difference
to the full simulation and reconstruction is that the particles are not transported through
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the experiment by transport packages and reconstructed afterwards. Instead, the detector
response is taken from parameterizations stored in look-up tables. A fast simulation of the
Time Projection Chamber and the Transition Radiation Detector is used in Section 9.3.2.

3.3.3 Reconstruction and Particle Identification

The reconstruction is another large part of AliRoot. The interaction of the reconstruction
with other modules of AliRoot is shown in Figure 3.9. The reconstruction can work on
both simulated and real data. Its input is usually data in raw format. In case simulated
data is used, the reconstruction can also work on Digits in order to save computing
time. The output of the reconstruction is called Event Summary Data (ESD). An ESD
file contains the information about the the event’s primary vertex, secondary vertices,
and reconstructed charged particle tracks. The particle track includes the reconstructed
track positions, reconstructed momenta, and particle identification information from each
detector as well as a combined PID [Aam08].

The steering class for the reconstruction is AliReconstruction. This class enables
the user to include or exclude detectors and to switch between different reconstruction
options. These options can be of general type for the global reconstruction or detector
specific options. In the case of the TRD the user can switch for example between
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different methods of particle identification. The reconstruction follows a given sequence.
The first step is a local reconstruction in each detector, e.g. the transformation of the
digital detector signal into clusters. The local information is then combined including
the reconstruction of the primary vertex, track reconstruction, and particle identification.
Finally also secondary vertices such as V0 (e.g. K0

s → π+π−), γ conversions, kinks in
tracks (e.g. K → µν), and cascades (e.g Ξ→ Λπ→ pππ) are reconstructed [Aam08,
COM05].

ESDs are not the only data storage container in AliRoot. For a limited number of
events additional data will be saved, the ESDfriends. ESDfriends contain information
of the detector subsystems that is not needed for the global event characterization but is
used in the local reconstruction. ESDfriends contain for instance the reconstructed local
tracks and clusters of a subdetector. The ESDfriends are used for the calibration of the
detectors. Another data storage format is the Analysis Object Data (AOD) format. Such
a data object contains only information that is needed for a physics analysis. For different
analyses, different AODs can be created for an event.

The particle identification in the Central Barrel of ALICE has to combine very
different detector responses. In case of the Time Projection Chamber the information
about the particle comes from the measurement of the deposited charge, in case of the
Time-of-Flight Detector it is the measured flight time. An approach to combine various
detector signals was presented in References [AB91, Ale06]. The probability w(i|s) to
observe a signal s of a particle of type i in a single detector is given by:

w(i|s) =
r (s|i)Ci∑
k r (s|k)Ck

. (3.1)

In this equation k represents the loop over particles that are taken into account. For the
ALICE Central Barrel these are electrons, muons, pions, kaons and protons. r (s|i) is the
intrinsic probability response of the detector. The total probability differs from this one,
since the a priori probability Ci for a particle of type i also has to be taken into account.
The total probability to be a particle of type i compared to the other types is higher if the
relative concentration type i particles is larger. While the intrinsic probability from the
detector remains the same for a given signal, the a priori probability can differ depending
on the type of analysis and the used cuts.

Equation 3.1 can be easily transformed for the combined particle identification. It
is [Ale06]:

W (i|s) =
R(s|i)Ci∑
k R(s|k)Ck

. (3.2)

Here, s is a vector of signals from the different contributing detectors and R(s|i)
is the combined response function. In ALICE the particle identification signals are
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approximately uncorrelated. Thus R(s|k) for a number of N detectors can be written
as:

R(s|k) =
N∏

j=1

r
(
s j|k
)
. (3.3)

The resulting equation is then [Ale06]:

W (i|s1,s2, ...,sN) =

Ci
N∏

j=1
r
(
s j|i
)

∑
k

Ck
N∏

j=1
r
(
s j|k
) . (3.4)

In case a detector does not contribute to the particle identification r (s|i) is identical for all
particle types. The resulting combined response function R(s|k), not the total probability,
is saved in the ESD files. Since the relative particle concentration depends on the selection
by analysis cuts and event samples, W is calculated during the physics analyses [Ale06].

3.3.4 Analysis

The analysis in ALICE is performed by so called AliAnalysisTasks. The concept of
analysis tasks provides the functionality to run locally on a desktop computer, to use a
Parallel Root Facility (PROOF) [Bal03] for parallel computing on a computer cluster, or
to run the analysis task on the Grid. The analysis tasks can be added to an analysis train.
The train collects the tasks and carries them through the data [Ale06].

The input and the output of an analysis task are defined by the class
AliAnalysisDataContainer. This container object can contain data of arbitrary type
deriving from the Root class TObject [Alia]. Usually it is of type TTree or TList. It is
possible that one task generates output in a container that is subsequently used as input
by another analysis task. The connection or chaining between tasks is performed by an
AliAnalysisManager object.

The analysis performed by an AliAnalysisTask can be subdivided into a local part
and a global part. The local part is implemented in the function Exec(). In case of parallel
computing using PROOF or the Grid, each computer node runs this part of the analysis
locally and independent from any other results. When the local part has ran over all data,
the output can be merged and a final function (Terminate()) can be called, e.g to draw
histograms or to extract fit results [Alib].



4. The Transition Radiation Detector
Transition radiation detectors (TRDs) are particularly suitable for discriminating
relativistic particles with different Lorentz factor γ. They exploit the radiation which is
emitted when a charged particle with γ & 103 [Ams08] crosses a boundary of two media
with different refractive indices. Several accelerator experiments, such as the Neutrino
Oscillation Magnetic Detector (NOMAD) at the SPS [Bas98] and ATLAS [Ake98], use
or used TRDs for the separation of electrons from pions. For the Compressed Baryonic
Matter (CBM) experiment which is planned to be installed at the future Facility for
Antiproton and Ion Research (FAIR) in Darmstadt a TRD is also discussed [And06a,
KB09]. Transition radiation detectors are not only used in accelerator experiments, but
also in space experiments, e.g. in the Alpha Magnetic Spectrometer (AMS02) which is
planned to be installed at the International Space Station (ISS) [Kir07].

In 1999 the Transition Radiation Detector for ALICE was presented in an addendum
to the ALICE proposal [ALI99]. The main goal of the TRD is the identification of
electrons with momenta larger than 1 GeV/c in the central barrel. At such large momenta
the measurement of the deposited charge in the Time Projection Chamber is not sufficient
to provide an adequate electron/pion separation. In the following section the role of
the TRD within ALICE is discussed. A short review of the theoretical background of
transition radiation and the energy loss of charged particles is given in Section 4.2. In
Section 4.3 the design and working principle is presented, and finally, in Section 4.4, the
TRD track reconstruction code is described shortly.

4.1 The TRD within ALICE

4.1.1 TRD Design Requirements

In the Technical Design Report of the ALICE Transition Radiation Detector [TRD01] the
following design goals for the TRD were defined:

Pion Rejection One of the main tasks of the TRD is the discrimination of electrons from
a large background of pions. The design goal is a pion efficiency below 1% at momenta
above 3 GeV/c at an electron efficiency of 90%. The pion efficiency is the fraction of
pions that is misidentified as electrons at a given electron efficiency. Sometimes, the pion
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Figure 4.1: Momentum Resolution using the three tracking detectors of the ALICE central barrel for central
PbPb collisions [Aam08]. Especially for tracks with high transverse momentum the momentum resolution
is improved significantly by adding the Transition Radiation Detector to the combined tracking of the Time
Projection Chamber and the Inner Tracking System.

rejection factor is used instead. It is the reciprocal value of the pion efficiency. The
electron efficiency is the fraction of electrons which are correctly identified as electrons.
Particle identification, and therefore pion rejection, is the main topic of this thesis. A
detailed overview of the working principle of the particle identification in the TRD is
presented in Chapter 6.

Momentum Resolution The required momentum resolution for the central barrel is
determined by the desired invariant mass resolution of dielectrons. In the ϒ mass
region the resolution is at about 100 MeV/c2 at a magnetic field of 0.4 T. The measured
momenta of the electron positron pair are used for the reconstruction of the invariant
mass (see Equation 9.1). Thus, such a good momentum resolution is needed in order
to be able to separate the three ϒ states from each other. In Figure 4.1 the momentum
resolution for the central barrel tracking detectors is presented. Including the TRD, the
anticipated momentum resolution is below 5% at a momentum of 90 GeV/c for central
PbPb collisions [Aam08].
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Radiation Length The thickness of the TRD in radiation lengths is required to be as
small as possible. Additional material causes a higher probability for photon conversions
and leads therefore to a larger background of secondary electrons. In addition, it enhances
the energy loss of electrons due to emission of bremsstrahlung. This leads to a smearing
towards lower invariant masses for dielectrons. For the TRD a radiation length in radial
direction of X/X0 = 23.4% will be achieved [Aam08].

Granularity The required granularity in the bending direction of the magnetic field is
determined by the desired momentum resolution. This results in a typical pad width of
0.7 cm. In z-direction, which is parallel to the beam axis, the expected multiplicity is
the decisive factor for the granularity. The Transition Radiation Detector was designed
to cope with multiplicities up to 8,000 charged particles per pseudo-rapidity unit. Using
a typical pad length of 8.8 cm this corresponds to an occupancy of 34% for all readout
pixels [TRD01].

4.1.2 Physics Performance of ALICE with the TRD

Fulfilling the design goals presented above, the TRD enables ALICE to detect and
identify electrons with momenta larger than 1 GeV/c at pseudo-rapidities between−0.9 <

η < 0.9 in a high multiplicity environment with a good efficiency. Consequently,
the Transition Radiation Detector contributes to the measurement of all the signatures
presented in Section 2.3: dielectrons in general, quarkonia, direct photons and single
electrons from heavy flavor decays.

Dielectron Measurements in the Central Barrel

Detailed simulations on quarkonia measurements using the ALICE inner barrel were
made for pp [Kra06, Kru08] and PbPb collisions [Som08]. In Figure 4.2 the expected
dielectron mass spectrum for 107 central PbPb collisions extracted with the inner barrel
detectors normalized to one event is shown. In the invariant mass spectrum without the
TRD no signal for any quarkonium is visible. Including the TRD, the background is
reduced significantly. The J/ψ, ϒ and ϒ′ particles can be identified. The main contribution
to the background are pions which can be well discriminated from electrons by the TRD.
In this analysis a parameterization for fast simulations [GO05] was used. The pion
efficiency of the TRD was assumed to be 1% at 90% electron efficiency for all momenta.
Results from test beams (see Chapter 7) and simulations (see Chapter 8) suggest that the
pion efficiency (at least at low momenta) is better by up to a factor of 5. This reduces the
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ϒ and ϒ′ are visible. This study was done using a parameterization for fast simulations [GO05]. Here, a
constant pion efficiency of 1% for the TRD is assumed for all momenta.

pion background further and improves the signal to noise ratio slightly. A closer look at
this effect is presented in Section 9.3.2.

Direct Photons and Neutral Mesons

The dedicated detectors for photon measurements in ALICE are the Photon
Spectrometer (PHOS) and the Electromagnetic Calorimeter (EMCAL). Results from
STAR show that it is also possible to measure photons using charged particle tracking
devices such as a time projection chamber [Joh03, Ada04, Wet06]. Since photons
are neutral particles, they cannot be measured directly. They are accessible via their
conversion to electron positron pairs (γZ→ e+e−Z).

electron positron pairs from γ conversions are identified through the reconstruction
of their invariant mass (which is Me+e− = 0 GeV/c2) and their vertex position (which
is displaced compared to the position of the primary vertex). In ALICE, the photon
conversion probability between the interaction point and the first half of the Time
Projection Chamber is about 6.3% [Ale06]. Conversions that happen in the second half of
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event versus the transverse momentum of the neutral pion [Mar08].

the TPC can hardly be reconstructed due to the limited track length of the electron positron
pair. Nevertheless, the photon conversion probability facilitates a photon measurement in
ALICE also with the tracking detectors of the inner barrel (ITS, TPC and TRD) [Mar07].
Although the conversion probability is small, the photon measurements with the inner
barrel can compete with the measurements using electromagnetic calorimeters in ALICE.
The inner barrel detectors have a more than three times larger acceptance than the
EMCAL and a more than 20 times larger acceptance than PHOS. In addition, neutrons
contribute to the background in the EMCAL and PHOS measurements at low transverse
momenta [Ale06]. The inner barrel detectors do not suffer from this background source.
In Section 9.1.2 the photon measurement using the inner barrel will be presented as a
method to extract reference electrons for the calibration of the TRD particle identification.
Even without the TRD this method provides high-purity electron samples in pp collisions.
However, with inclusion of the TRD possible background from non-electrons will be
further reduced.

Large contributions to the photon spectrum originate from the decay of neutral
mesons, such as π0 → γγ or η → γγ. In order to measure direct photons the photon
yields from these contributions have to be determined precisely and need to be subtracted
properly from an inclusive measurement. Simulations of pp collisions show that a



44 Chapter 4: The Transition Radiation Detector

 1

 2

 3

 4

 5
 6

 8

10

1.0 10 100 1000 10 0000.1

−1
cm

2 )

βγ = p /Mc

H 2 liquid

He gas

C
Al

Fe
Sn

Pb

−
dE

/d
x 

(M
eV

 g

Figure 4.4: Calculated mean energy loss of pions in different materials. Taken into account is only the
energy loss by ionization. The curve follows the Bethe-Bloch Formula [Ams08].

measurement of neutral pions and η mesons is possible using the inner barrel detectors
down to transverse momenta of 0.4 GeV/c [Mar08] (see Figure 4.3).

4.2 Interactions of Charged Particles with Matter

In the transition radiation detector two processes contribute to the signal that is used
for particle identification. Charged particles deposit energy in the gaseous volume of
the TRD. This process is described by the Bethe-Bloch formula. In addition, charged
particles produce under certain conditions transition radiation in the radiator material.
The generated photons are absorbed in the detector gas and contribute to the signal. In
this section the theoretical description of these processes is presented.
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4.2.1 Energy Loss of Charged Particles

The Bethe-Bloch Formula

Charged particles deposit energy in a material caused by collisions with the atoms in the
traversed material. This energy loss per unit of path length is described by the Bethe-Bloch
formula [Blu08]:

−dE
dx

=
4πNe4

mec2β2 z2
(

ln
2mec2β2γ2

I
−β

2− δ(β)
2

)
. (4.1)

Here, N is the number density of electrons in the matter, e is the elementary charge, me

represents the rest mass of the electron, and c is the speed of light in the vacuum. The
velocity of the traversing particle is given by β(= v/c), and γ(= 1/

√
(1−β2)) is the

Lorentz factor. z represents the electric charge of the particle, the mean excitation energy
of the atoms of the traversed matter is described by I. δ is a correction factor for density
effects.

This equation describes the mean value for the energy loss of charged particles caused
by ionization. The calculated energy loss of pions in different materials is shown in
Figure 4.4. For βγ . 3 the deposited energy decreases with rising velocity. This can be
described by a classical approach, since the traversing particle has less time to interact
with the atoms of the traversed material. A particle that is at the minimum of the curve is
called a minimum ionizing particle. With velocities larger than βγ = 3 relativistic effects
become important. The transverse electric field flattens and extends [Ams08] due to
Lorentz contraction and affects atoms with a larger distance to the track than at lower
velocities. The strength of the relativistic rise is given by the mean ionization energy I.
This energy rises with the atomic number Z:

I ≈ AZ. (4.2)

For xenon the mean ionization energy is 482±30 eV [Sel82]. The deposited energy
does not increase infinitely. Instead, the medium becomes polarized and screens the
electric field of the traversing particle and the energy loss is reduced [Gru93]. The curve
in Figure 4.4 reaches the so called Fermi-Plateau. This screening is described by the
density correction factor δ and depends on the traversed material and its density. A
parametrization to describe the effect of the density correction as well as summary tables
for different materials can be found in Reference [Ste84].

It has to be noted that the Bethe-Bloch formula describes only the energy loss
by ionization for muons and heavier particles correctly. Since the mass of electrons
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and positrons is the same as the mass of the collision partner a correction has to be
implemented. It can be shown that with this correction the mean of the deposited energy
for electrons and heavier particles is the same for large values of γ [Blu08].

Energy Fluctuations

The energy loss caused by ionization is a statistical process. It can happen that the energy
transfer to a single electron is that large that this electron also ionizes the medium along
its path. Such electrons are called δ electrons, or knock-on electrons.

Especially for thin layers of material the fluctuations of the deposited energy may be
very large. The energy fluctuations follow a Landau distribution. An approximation for
the Landau distribution (see Figure 4.5) is given by Reference [Gru93]:

L(λ) =
1√
2π

exp
{
−1

2
(λ+ e−λ)

}
, (4.3)

where λ is the deviation of the actual energy loss ∆E in a layer with thickness x from the
most probable energy loss ∆EMPV:

λ =
∆E−∆EMPV

ξ
, (4.4)

Here, ξ is defined as:

ξ =
2πNe4

mec2β2 z2x, (4.5)

with x as the thickness of the traversed medium.
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Bremsstrahlung

Relativistic particles lose energy not only due to ionization but also through the emission
of bremsstrahlung. The traversing particle is affected by the Coulomb field of the
traversed matter’s nuclei, and hence, decelerated. The energy loss results in the emission
of photons. Following Reference [Gru93], the energy loss due to bremsstrahlung for high
energies is given by:

−dE
dx

= 4αNA ·
Z2

A
· z2
(

1
4πε0

e2

mc2

)2

·E ln
183
Z1/3 . (4.6)

αe the fine-structure constant of the electromagnetic interaction, NA is the Avogadro
number, Z is the atomic number of the traversed material, and A is its mass number. ε0

is the electric constant, while z, m, and E are the charge, the mass, and the energy of the
decelerated particle. The energy loss caused by bremsstrahlung is proportional to E/m2.
Hence, it plays an important role for light particles, such as electrons. This radiative
energy loss exceeds the loss due to ionization at the critical energy Ec. For electrons and
Z ≥ 13 it is [Gru93]:

Ec =
550 MeV

Z
. (4.7)

4.2.2 Transition Radiation

The measurement of the deposited energy caused by ionization effects allows to identify
particles with different masses. In Figure 4.6 the measurement of the deposited charge
is plotted versus the momentum [Ams08]. This measurement was done with a time
projection chamber and illustrates the possibility of identifying various particle types
via their deposited charge. Different bands can be easily identified at least at small
momenta. With larger momenta the bands of the hadrons (and muons) overlap more
and the particles become indistinguishable. At momenta . 2 GeV/c the electron band
is clearly separated from the others, only at the crossing points no clear separation is
possible. Is the momentum above 3 GeV/c the pions and the muons start to overlap with
the electron band. The identification via ionization energy loss is not efficient anymore.
Instead, another effect has to be exploited to provide a separation at these high momenta:
the transition radiation (TR).

Ginzburg and Frank predicted in 1945 the emission of electromagnetic radiation in
the optical region when a charged particle crosses the boundary between two media with
different dielectric constants [Gin45]. Since the intensity of the radiation is very small
in the optical region, it seemed that TR could not be exploited for the identification
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(blue), kaons (yellow), and protons (pink) are compared to energy deposit measurements in the
PEP4/9-TPC [Ams08].

of individual particles [Dol93]. In 1957 Garibian showed that ultrarelativistic particles
(γ � 1) emit transition radiation in the X-ray region [Gar57]. In addition, it was predicted
that the energy loss caused by transition radiation depends on the Lorentz factor γ. This
is very interesting for particle identification since other methods, such as the detection of
Cherenkov radiation1, depend on the velocity and fail for ultrarelativistic particles.

Based on Reference [Jac98], the emission of transition radiation can be understood
phenomenologically in the following way: Deep inside of the first medium the
electromagnetic fields of the traversing particle are characterized by its velocity and the
surrounding medium. Deep in the second medium the fields are again determined by the
particle’s velocity and the surrounding medium. The velocity stays constant, but now the
characteristics of this second medium have to be taken into account. Since the dielectric
constants of the media differ, the electromagnetic fields are different. In case a particle

1Cherenkov radiation is emitted when a charged particle traverses a medium with a velocity that is
higher than the velocity of light in the medium.
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passes a boundary between these media, the electromagnetic fields must reorganize, i.e.
work needs to be done. As a consequence of this reorganization, transition radiation is
emitted.

Transition Radiation at a Single Boundary

For ultrarelativistic particles crossing a boundary, the emitted radiation intensity W
depends on the frequency and the emission angle of the photon. It is given by [Che74b]:

d2W
dωdθ

=
2αe~θ3

π

(
1

1/γ2 +θ2 +ω2
1/ω2

− 1
1/γ2 +θ2 +ω2

2/ω2

)2

, (4.8)

with θ as the emission angle of the TR photon with respect to the particle trajectory. ω

is the TR photon frequency and ω1 and ω2 are the plasma frequencies2 of the traversed
media. Solving Equation (4.8) shows that most of the photons are emitted within an angle
of θ = 1/γ [Ego00].

Following Reference [Che74b], the energy spectrum of the emitted photons is given
by:

dW
dω

=
α~
π

[(
ω2

1 +ω2
2 +2ω2/γ2

ω2
1−ω2

2

)
·
(

ln
1/γ2 +ω2

1/ω2

1/γ2 +ω2
2/ω2

)
−2
]
. (4.9)

With ω1 > ω2, this leads to a constant production yield at small energies (ω < γω2 ≈
1 keV), to a logarithmic decrease at medium energies (γω2 < ω < γω1), and to a large
intensity drop for high energies (ω > γω1). The resulting curve is shown in Figure 4.7.

The total energy emitted at a single boundary is [Che74b]:

W =
∫ ∫ (

d2W
dθdω

)
dθdω (4.10a)

=
α~
3

(ω1−ω2)
2

ω1 +ω2
γ. (4.10b)

This equation is the key formula for particle identification with transition radiation since
it shows the linear dependence of the total emitted energy on the Lorentz factor γ.

Radiators with Periodic Layers

The probability for the creation of a photon is only of the order of α (≈ 1/137) [Ego00]. A
possibility to enhance the number of transition radiation photons on a particle trajectory

2The plasma frequency is the self-oscillation of an electrically neutral medium, where the opposite
electric charges are displaced. The charges perform a spatial oscillation. The frequency of this oscillation
is the plasma frequency of the medium [Dem00].
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is to increase the number of crossed boundaries. In this case the equations get more
complicated since interference effects and absorption have to be taken into account. These
effects lead to a modulation of the spectrum for one interface and to a saturation of the
yield for high values of γ.

A typical periodic radiator consists of thin foils with constant spacing. In this case
usually air is the second material. For a radiator with N foils, foil thickness l1 and
spacing l2 the differential spectrum is [Che74b]:

d2WN

dθdω
=

d2W
dθdω

4sin2
(

l1
Z1

)
sin2 [N (l1/Z1 + l2/Z2)]

sin2 (l1/Z1 + l2/Z2)
, (4.11)

with

Z1,2 =
4c
ω

(
1
γ2 +θ

2 +
ω2

1,2

ω2

)−1

. (4.12)
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Figure 4.8: Number of detected TR photons versus Lorentz factor γ measured with the E715 TRD at
Fermilab and compared to calculations [Den84]. With rising γ the number of produced TR photons
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different values of γ. It can be seen that transition radiation is well suited to separate electrons and pions
with high momenta.

Z1 and Z2 are the formation zones for the two media, which can be understood as the
minimum distance that is required for the electromagnetic field of the particle to reach
its new equilibrium configuration [Art75]. In case the foil thickness is smaller than the
formation zone of the foil material, or the spacing between the foils is smaller than the
formation zone of air, the production of transition radiation is suppressed.

In Figure 4.7 the resulting differential production yield is plotted against the photon
energy (blue curve). At low energies the yield oscillates around the expectations for
a single interface (red curve), at higher photon energies the yield is suppressed. This
suppression originates from the formation zone’s dependence on the frequency of the
emitted photon. The higher the photon energy, the larger is the formation zone, and the
thicker the foils have to be in order to exploit the full TR yield at high photon energies.
Thick radiator foils are not practical, since the material will absorb the photons. Figure 4.7
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also shows the effective yield of an "optimized" radiator (green curve): photons with small
energies are suppressed due to absorption, photons with large energies are suppressed
because of the "formation zone effect". The maximum yield is adjusted by variation of
the foil thickness and the spacing. Since the absorption cross section σ is a function of
the atomic number (σ ∼ Z5), the radiator material should have a small Z. Typical radiator
materials for periodic radiators are lithium foils or polypropylene foils [Ego00].

Figure 4.8 shows the number of transition radiation photons as a function of γ. The
data was taken with the E715 TRD at Fermilab3 and is compared to theoretical predictions
of the transition radiation yield [Den84]. The periodic radiator consisted of 210 layers
of 17 µm of polypropylene separated by 1 mm air. It can be seen, that the expectation
from a single boundary, a linearly increasing total yield with rising γ, is not fulfilled for
particles with high Lorentz factors. However, this measurement confirms the theoretical
predictions for the transition radiation yield with periodic layers and shows that electrons
and pions can be clearly separated using transition radiation.

Irregular Radiators

The usage of periodic radiators consisting of a stack of foils is often not practicable. A
constant spacing of the foils would need, at least for a barrel design TRD, a lot of heavy
support structures. This causes additional material which increases the probability for
particle scatterings or photon conversions. Instead of foil radiators other substances with
many boundaries and low Z can be used. Typical materials are e.g. carbon fibers, different
types of foams, or a combination of both [TRD01], but there are also more exotic materials
used, such as e.g. an aluminum honeycomb structure [Che03] for measurements at very
high momenta.

The theoretical description of irregular radiators is not easy and a successful
description depends on the complexity of the radiator type. A general approach of
describing irregular radiators including absorption effects was made by Garibian et.
al. [Gar75]. The basic idea is to transform the formulas for radiators with strict periodicity
to formulas using average values for the thicknesses of the "foils"4 and gaps. In addition
the number of crossed interfaces has to be substituted with the number of effectively
crossed boundaries.

The simplest irregular radiator is one that consists of a stack of foils but with various
thicknesses or gaps. An example of such a radiator type is the aluminum honeycomb

3Fermi National Accelerator Laboratory in Batavia, Illinois
4In this context and in the following paragraphs "foil" means a layer of a given material.
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radiator of the planned ACCESS STRD5 [Che03]. Its theoretical description is discussed
in Reference [Cas03]. An example for more complex conditions is the ATLAS Transition
Radiation Tracker [ATL97]. Here, the read-out chambers (straw tubes) are embedded in
the radiator, which is in the barrel part made of carbon fibers. For a correct description
of transition radiation not only the radiator has to be taken into account, but also surfaces
of the straw tube itself. Consequently, the transition radiation production happens also
inside of the active detector volume and more than two media must be considered for the
calculations. A detailed derivation can be found in References [Gri02a, Gri02b].

For the simulation of ALICE and its detectors the software framework AliRoot [Alia]
(see also Section 3.3.1) was developed. The standard toolkit for the simulation of particles
traversing the detectors in AliRoot is GEANT3 [Bru93]. Here, the simulation of transition
radiation is not implemented. Instead of simulating the irregular ALICE TRD radiator
an approximation is used in AliRoot, by taking into account the transition radiation yield
of a regular radiator including absorption effects. The parameters for this "equivalent"
regular radiator, such as foil thickness and gap thickness, were set to reasonable values.
The total number of foils that is needed to reproduce the TR spectrum is momentum
dependent [And04a, And09a] and was tuned to reproduce measurements taken at two test
beam times in 2002 and 2004 for momenta between 1 and 10 GeV/c [Bus04, And06b].
It was shown that this parametrization reproduces the measured TR production (see
Figure 4.9).

4.3 The ALICE TRD Layout

The ALICE Transition Radiation Detector is part of the central barrel. It is composed
of 18 supermodules, which consist of 30 TRD chambers each, which corresponds to 540
chambers in total. The TRD layout is schematically presented in Figure 4.10. The 30
TRD chambers of one supermodule are arranged in 5 stacks with 6 layers. The TRD
with an inner radius of 2.9 m and an outer radius of 3.68 m is located between the TPC
and TOF. The TRD covers the full azimuthal angle and a pseudo-rapidity region of |η| <
0.84 [Aam08]. This leads to a total active detector area of 694 m2 and a total gas volume
of 25.8 m3. Each TRD chamber consists of a radiator, a drift chamber with pad readout
and an electronic part. A single TRD chamber is depicted schematically in Figure 4.11.

5The Advanced Cosmic ray Composition Experiment for Space Science is a cosmic ray space
experiment that was planned to be installed at the ISS. The Scintillator Transition Radiation Detector is
an example of a non-gaseous TRD.



54 Chapter 4: The Transition Radiation Detector

dN
/d

E
(1

/k
eV

)

E (keV)

dN
/d

E
(1

/k
eV

)

0 10 20 40 5030
TR

Sandwich

TR
TRto

t

Measurement
Simulation

TR Energy per photon (E ),
p = 2 GeV/c

TR Energy per beam electron
(E ), p = 2 GeV/c

TR

TR
tot

Simulation, incl.
cluster separation
inefficiency

(tot)

0.02

0.04

0.06

0.08

0.1

0

0.01

0.02

0.03

0.04

0.05

Figure 4.9: Measured and simulated transition radiation spectra [And06b]. The measurement (blue line)
was performed with 2 GeV/c electrons during the test beam 2004. The red line represents a simulation using
a parameterization for generating transition radiation, the black curve shows the same simulation but with a
correction for cluster reconstruction inefficiency. In a) the transition radiation energy per photon is shown,
in b) the total energy deposit is plotted [And06b].

4.3.1 The Radiator

In 2000 different radiators, made of foils, fibers, and foams, were tested at GSI6 [And01].
The conclusions from this test led to the final design of the radiator. It has a thickness
of 4.8 cm and is built in a sandwich design, composed of polypropylene fiber mats which
are surrounded by 8 mm thick carbon fiber laminated Rohacell R©HF 71. It is optimized
in order to provide a good transition radiation yield, and, in addition, a good mechanical

6Gesellschaft für Schwerionenforschung
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TRD supermoduleTRD stack

TRD chamber

Figure 4.10: The ALICE Transition Radiation Detector [Aam08]. The barrel designed TRD consists of 18
supermodules, which are positioned around the collision point, parallel to the beam axis. Each supermodule
is made of 30 single chambers which are arranged in 5 stacks with 6 layers each.

stability. Polypropylene mats provide a TR yield comparable to that of foils. Rohacell R©

is a stable material and contributes also to the transition radiation production. Together
with the carbon fiber laminate it provides mechanical rigidity, which is needed, since
the radiator is also the inner boundary of the drift chamber and the drift cathode is
glued directly on the surface of the radiator. The drift chambers are operated with an
overpressure of at most 1 mbar. In case the radiator would not be solid enough, as a
consequence, the drift electrode would be deformed which would lead to unacceptably
deformed electrical drift fields. This is discussed in detail in Reference [Zau03].

4.3.2 The Readout Chambers

The drift chamber is split into the 3 cm thick drift region and the multi-wire proportional
chamber section (or amplification region) which has a thickness of 0.7 cm. The two
regions are separated by cathode wires, with a diameter of 75 µm and a pitch of 2.5 mm.
The cathode wires have the same electrical potential as the readout pads and allow an
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Figure 4.11: The working principle of the ALICE Transition Radiation Detector [Aam08]. A particle that
traverses the TRD ionizes the chamber gas. The resulting electron clusters drift to the amplification region.
In the amplification region the clusters are accelerated to the anode wires and avalanches are formed out.
The avalanches induce charges on the pads which are read out. In case the Lorentz factor of a particle is
large enough a transition radiation photon is generated inside of the radiator. This photon is absorbed early
in the chamber gas and contributes to the signal.

independent adjustment of the drift velocity and gas gain. The anode wires are positioned
in the center of the amplification region and are staggered with respect to the cathode
wires. The positions of the anode and the cathode wires in the amplification region are
shown in Figure 4.12. The anode wires have diameters of 20 µm and the pitch between
them is 5 mm. The nominal value for the voltage of the anode wires is Ua = 1.4 kV
and for the voltage of the drift plane is Ud = −2.1 kV [TRD01]. Each readout chamber
has 144× 16 (12 for the central stack) readout pads, which results in a total number of

3.5mm
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z

x
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Anode Wire Plane

Pad Plane
5mm

2.5mm

Figure 4.12: Wire geometry of a readout chamber of the Transition Radiation Detector [TRD01].
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larger than that of pions. In case transition radiation is produced instead of the plateau a second peak can
be identified at large drift times. Transition radiation photons are dominantly absorbed within the first few
millimeters in the chamber gas and result in the TR peak.

1.18× 106 pads for the complete detector. The size of the pads depends on the chamber
position in a supermodule, typical values are 0.7× 8.8 cm2 [Aam08]. The pads are tilted
by 2◦ alternating from layer to layer, in order to improve the position resolution along the
z coordinate [TRD01]. In this coordinate system, x is perpendicular to the pad plane, y is
in direction of the pad width, and z the direction of the pad length.

The gas is a mixture of 85% xenon and 15% CO2. The gas has to be protected from
oxygen contamination. Otherwise, electrons would attach to oxygen which results in a
lower electron yield [And03]. The process of track generation is illustrated in Figure 4.11.
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A particle that traverses the chamber ionizes the gas on its track. The resulting ionization
clusters drift along the field lines of the electric field to the amplification region. Here, the
clusters are accelerated towards the anode wires and avalanches of electrons are formed.
The avalanches induce an electrical charge on the readout pads which generates the signal.
This is read out with a sampling rate of 10 MHz [Aam08] and corresponding to a time bin
width of 100 ns.

Particles with very high γ (≈ 1000) produce one or more transition radiation photons
in the radiator, which are absorbed early in the drift chamber. The absorption length for
a photon in the used gas mixture (with a pressure of 1000 mbar) with an energy of 8 keV
is about 1.07 cm [Ber09b]. The charge deposited by transition radiation photons is large
compared to that originating from ionization processes. The number of electrons that
are liberated by a minimum-ionizing particle is 275 e−/cm [TRD01], while the transition
radiation photon liberates about 460 electrons7. In Figure 4.13 the average pulse height
is plotted versus drift time for particles with momenta of 2 GeV/c. At small drift times
a peak can be seen for both particle types. This peak originates from the amplification
region and is followed by a plateau in case transition radiation does not contribute to the
signal. It can be seen that the average pulse height of electrons is about 1.4 times higher
than that of the pions. An additional peak occurs at larger drift times for the electrons
if transition radiation is produced. The position of the absorption and the amount of
deposited charge allows to identify clusters originating from transition radiation photons,
and therefore, to identify electrons. This will be discussed in more detail in Chapter 6.1.

4.3.3 Readout Electronics

An overview of the TRD readout electronics is given in Figure 4.14. It consists of
local components which are located on a readout board directly on the backside of the
chambers and a central unit which combines the information of the single chambers.
Local components are the PreAmplifier and Shaping Amplifier (PASA) and the TRAcklet
Processor (TRAP) which are combined on a Multi Chip Module (MCM) as well as the
Optical Readout Interface (ORI). Each chamber has two ORIs and 16 (12 in the central
stack) readout boards. Each readout board has 17 or 18 MCMs. The central component
is the Global Tracking Unit (GTU) [Aam08].

7From test beam measurements [And04b] the average deposited energy in keV for minimum ionizing
particles can be extrapolated to about 4.8 keV/cm. Transition radiation photons are expected to be
completely absorbed in the gas. Using the number of electrons per centimeter for a minimum-ionizing
particle, the number of liberated electrons for a transition radiation photon with an energy of 8 keV can be
estimated.
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Figure 4.14: Schematic overview of the readout electronics [Aam08].

The PASA chip [Ang06] amplifies and shapes the analog signals of 18 readout pads.
It has 18 input channels, corresponding to the 18 pads, and 21 output channels. The
channels on the boundaries (one on one side and two on the other) are not connected to
the actual TRAP but with the neighboring ones. This allows continuous charge sharing
across the boundaries of one MCM [Aam08].

The TRAP chip [Ang05] performs analog-to-digital conversion, digital filtering and
preprocessing, online tracking, data formatting and data shipping. Its ADCs converts
the charge signal from the PASAs to 10 bits at a rate of 10 MHz. The digital signal
processing is performed in two steps. During the drift time the signal is digitally filtered
and corrected. This process includes non-linearity correction, gain correction, pedestal
subtraction, tail cancellation and cross-talk correction. After the filtering process, the
data is stored in the event buffer and is shipped via the Network Interface to the ORIs
following a positive trigger decision. In parallel, the data is further processed. The hit
detection units of the Tracklet Preprocessor select clusters if they satisfy certain adjustable
conditions [Ang06]. The position of the clusters, the slope of a tracklet candidate and the
deposited charge in two time slices are calculated. A straight line fit is performed and
the fit parameters are shipped to the Tracklet Processor (see Figure 4.14). When all data
of one event is accumulated and preprocessed, the CPUs of the Tracklet Processor check
whether the tracklets fulfill some programmable constraints, such as slope, fit quality, and
electron probability [MP08]. Finally the tracklet information is stored in a 32-bit word
and is subsequently shipped via the Network Interface to the ORIs.

Each ORI collects the data (online tracklets and raw data) of a half chamber and sends
it with 2.5 Gb/s to the GTU. The GTU consists of 90 Track Matching Units (TMU). Each
TMU collects the data of one TRD stack and matches the tracklets of different layers to
form one track. Subsequently, the transverse momentum of the track can be determined.
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In case given conditions are fulfilled a positive trigger signal is sent to the Central Trigger
Processor (CTP) about 6.5 µs after the event has occured [dC03]. The trigger signal is sent
in case a given number of tracks exceeding a certain transverse momentum or a particle
with a large probability to be an electron is measured.

The readout electronics of the Transition Radiation Detector is usually in a standby
state. It needs a pre-trigger signal to wake up and be ready for the read out. This signal is
provided by V0, T0 and the Time-of-Flight Detector [Aam08].

4.4 The TRD Reconstruction Code

In the TRD part of the software, classes are implemented for the simulation of the detector,
for the reconstruction, its calibration, and alignment. In this section only those parts of
the code are discussed which affect the particle identification in the TRD.

The particle identification capability of the Transition Radiation Detector is strongly
correlated with the track reconstruction (tracking). The first step during the reconstruction
is the cluster reconstruction (clusterization) based on the digital signal coming from
the Transition Radiation Detector. This signal is not the pure signal as generated in
the detector, but the signal after the digital filtering which is performed by the readout
electronics online during the data taking (see Section 4.3.3).

4.4.1 Pad Response and Position Reconstruction

As described in Section 4.3.2 electron avalanches are accelerated in direction of the anode
wires and induce an electric charge on the readout pads. The best position resolution is
reached when the charge is distributed over two or three adjacent pads [TRD01]. The pad
response function describes the fraction of the total signal on a pad for different distances
between a point-like avalanche and the pad center. The pad response function P(y) can
be calculated by the integration of the cathode charge distribution ρ(y) [Blu08]:

P(y) =
∫ y+W/2

y−W/2
ρ
(
y′
)

dy′, (4.13)

where y is the distance between the pad center and the actual position of the track in units
of pad size. An empirical formula for the cathode charge distribution was presented by
Gatti et al. [Gat79]. It was shown by Mathieson that the distribution depends solely on
one parameter given by the chamber geometry [Mat84]. It is possible to determine the
position of a cluster due to charge sharing using the pad response function very precisely.
For the ALICE TRD the measured position resolution is better than 300 µm [Adl05b].
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Figure 4.15: Pad Response Function measured with cosmic rays in Münster. The upper plot shows the
ratio of pad charge to the total amount of charge versus the distance of the cluster to the pad center.
The lower plot shows the measured pad response function (dark dots) and a fit using the Mathieson
parametrization [Wul09].

In Figure 4.15 the measured pad response function of a TRD chamber with a pad
width of 6.95 mm is shown. Data from a run with cosmic rays taken in Münster were
used. The upper plot shows the ratio of pad charge to the total amount of charge versus
the distance of the cluster to the pad center for 106 events. The distance between cluster
and pad center is calculated assuming three pad clusters and a Gaussian shape for the pad
response function. The lower plot shows the calculated pad response function (dark dots)
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Figure 4.16: In order to improve the position resolution in direction of the long side of the pads (z direction)
the readout pads are tilted by an angle α. The direction of the tilt angle is changed in consecutive
layers [TRD01].

together with a fit of Formula (4.13) (green line) using the parametrization by Mathieson.
Usually the Mathieson parameter is fixed and given by the chamber geometry. For this
measurement a variation of the parameter reproduces the measured pad response function
with a better accuracy than its calculation with the parameter that is given by the chamber
geometry [Wul09].

The longer side of the pads in the TRD chambers is parallel to the beam axis and
perpendicular to the bending plane of the magnetic field. The pad width (y ≈ 7 mm) is
small compared to its length (z ≈ 85 mm). While most of the clusters induce charge on
two, three, or more pads in the y direction, most of the clusters in the z direction lead to an
induced signal on only one pad. Since the position resolution depends on charge sharing
on adjacent pads, one pad clusters result in a position resolution of:

σ =
w√
12

, (4.14)

where w is the pad width (or length). In order to improve the resolution in the z direction
the readout pads are tilted by an angle α with respect to the z axis. The direction of the
tilt angle is changed in consecutive layers [TRD01]. In Figure 4.16 the geometry of the
tilted pads is shown. Apart from the improved resolution in z direction, the tilted pads also
affect the position reconstruction in y direction. The reconstructed y coordinate depends
directly on the z coordinate. This has to be taken into account in the reconstruction of the
cluster position.
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Figure 4.17: The electron clusters in an environment without magnetic field drift directly to the readout
plane. In a magnetic field they are deflected in y direction. The deflection angle ψL is called Lorentz
angle [TRD01].

A further correction of the cluster position has to be made if the magnetic field in
ALICE is turned on. The generated electron clusters drift towards of the amplification
region, but are deflected by the magnetic field. The deflection is illustrated in Figure 4.17.
The deflection angle ψL is called Lorentz angle.

4.4.2 Time Response and Tail Cancellation

Although the time response function (TRF) and the tail cancellation are not part of the
reconstruction code, they will be discussed here, since they have a significant influence
on the position resolution. The time response function characterizes the time dependent
detector response. An ideal time response would be a δ-peak. Since the signal on
the readout pads is induced by ions with a mobility much smaller than the mobility of
electrons, the signal has a long tail towards longer drift times [TRD01]. In the upper part
of Figure 4.18 a simulation of the induced current is shown. The ion tail leads to a time-
dependent asymmetry in the induced charge. The resulting time response function is a
convolution of the induced charge and the response of the preamplifier/shaper (PASA, see
Section 4.3.3). It is shown in the lower part of Figure 4.18.

The long tail of the time response function leads to a significant correlation of the
signal in subsequent time bins. In addition, for inclined tracks, the reconstructed clusters
are broadened and their reconstructed position is shifted to smaller angles. The tail of
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Figure 4.18: The current induced on the readout pads (upper plot) and the electronic response (lower plot),
which is the Time Response Function [TRD01].

the time response function can be approximated by a sum of exponential functions. The
signal S(t) for t > 0 is then given by [Ang05]:

S (t) =
N∑

n=1

αne−t/τn +RN(t). (4.15)

RN(t) is a residual term which is not described by the exponential functions. Usually this
term is small and can be ignored. τn are the time constants and the αn are the amplitudes
of the exponential functions. The recursive tail cancellation filter for a time bin ti is given
by [Gut06]:

OTail(ti) = ITail(ti)−
N∑

n=1

rn(ti), (4.16)
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Figure 4.19: Time Response Function measured with an 55Fe source in black. The effect of tail cancellation
can be seen in red and blue. The blue curve shows the resulting time response for a tail cancellation with
two exponential functions. The red curve shows the time response if only the long time component is
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with
rn(ti) = λn (rn(ti−1)+αnOTail(ti−1)) , (4.17)

and
λn = e−

1
Tn t . (4.18)

ITail is the input signal for the filter and OTail is the output signal.

The time response function of the Transition Radiation Detector can be described
with two characteristic decay times Tshort and Tlong [Gut02]. In Figure 4.19 the effect
of the tail cancellation can be seen. The measurement was made with x-ray photons
of an 55Fe source, small prototype chambers (see Section 7.1.1) and a prototype of the
PASA [Adl05b]8. The black curve corresponds to the signal from the PASA without tail
cancellation, the red one suppresses only the exponential function with the larger time
constant (EXP1 TC), and the blue one shows the signal after tail cancellation with two
exponentials (EXP2 TC). The filter using one exponential shows a significant reduction of

8It has to be noted that in this measurement the number of time bins was 60 instead of 30, which is the
number that is used in the electronic readout.
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Figure 4.20: Local coordinates of a TRD supermodule. The z axis and the origin are identical to the global
coordinate system in ALICE. Local x and local y can be transformed to the global variables by rotation
using the angle α.

the ion tail. At the same time it leads to a reduction of the maximum amplitude by about
10%. An almost full tail cancellation is achieved if two exponential functions are taken
into account. However, the reduction around the maximum amplitude is about 30%. This
leads to a reduced signal-to-noise ratio.

The tail cancellation can be applied online using the digital filters implemented in the
readout electronics or offline in the reconstruction. In the current AliRoot version (v4-
17-Rev-10) the tail cancellation is done in the reconstruction using one exponential
function [Alia].

4.4.3 Track Finding in the Transition Radiation Detector

In the reconstruction code of the Transition Radiation Detector it is possible to switch
between two different track finding approaches. The first is part of the global track
reconstruction. Here, the tracks coming from the Time Projection Chamber are
propagated through the TRD in the direction of the Time-Of-Flight detector. This is
called barrel tracking, since the detectors of the barrel part of ALICE are involved. The
second one is a stand-alone tracking, which works solely on the reconstructed clusters in
the TRD and does not take into account the other detectors [Fas08].
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The barrel tracking is based on the Kalman filter method [Bil84]. It is applicable
when a "system" (in this context a particle track) is determined by a state vector xk at each
step k [Ale06]. Each state vector needs an associated covariance matrix which describes
the uncertainties of the vector elements. Given the case that xk can be described with a
deterministic transfer function f (xk−1), it is possible to make a prediction for the value
of the state vector at each step, if a "seed" as a starting point is available. If an estimate
of the state vector is available, it is combined with the prediction and the prediction is
subsequently updated. These steps are repeated for each measured state vector. With
each step the accuracy of the prediction for the state vector increases [Ale06].

In ALICE the state vector of a track is given by five parameters: y, z, sinφ(p), tanλ,
and 1/pT . y and z are the position, and φ(p) the azimuthal angle of the momentum in
local coordinates of a sub-detector, e.g. of a TRD supermodule. λ(= 90◦− θ) is the
local dip angle and pT is the transverse momentum. The local coordinate system of a
supermodule is plotted in Figure 4.20. The origin of the local coordinate system and
the z axis correspond to that of the global coordinate system. The position in the global
coordinate system can be determined easily by a rotation using the rotation angle α. The
local coordinate system allows to treat all tracks with the same tracking procedure in the
Transition Radiation Detector, independent of which supermodule is hit. For the Kalman
filter based tracking in the TRD the outermost track references of the Time Projection
Chamber are used as seeds. The measured track points are in case of the Transition
Radiation Detector so called tracklets [Fas08]. Tracklets are linear fits to the cluster
positions attached to one track in one TRD module [Ber08c].

Tracklets are also the entities which are used for particle identification. At the moment
two different methods for particle identification exist in the TRD module of AliRoot.
Depending on the chosen PID method the tracklets contain three or eight measurements
of the deposited charge divided by the tracklet length. The particle identification using
the Transition Radiation Detector will be discussed in detail in the following chapter,
Chapter 6.

The local tracking method (also called stand-alone tracking) fits a track model to the
clusters [Fas08]. In the x-z plane this is a linear parametrization, while in the x-y plane
(the bending plane of the magnetic field) a Riemann parametrization for a circle is used.
The Riemann parametrization is given by [Ber08c]:

(x− x0)
2 +(y− y0)

2 = R. (4.19)

A detailed description of the stand-alone tracking can be found in Reference [Sic09].
Both tracking methods have different advantages. The Kalman filtering allows to take

energy loss or multiple scattering into account by adjusting the track parameters. A stand-
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alone track model has to deal with constant track parameters. The barrel tracking with
variable tracking parameters lead to higher accuracy of the offline track reconstruction
compared to the stand-alone tracking [Fas08]. However, the stand-alone tracking is able
to reconstruct tracks even if no seed (or track) in the Time Projection Chamber is available.
This can be the case if a photon conversion happens in the material between the TPC and
the Transition Radiation Detector, or if the TRD is the only detector that is considered.
E.g. the reconstruction of the test beam data in 2007 was performed using the stand-alone
tracking (see also Section 7.5).



5. Artificial Neural Networks
Charged particles produce characteristic patterns when they traverse the Transition
Radiation Detector. These patterns differ for different particle types in several
ways (see Section 6.1). It is possible to distinguish these patterns with conventional
methods (Section 6.2), but the most effective procedure is the discrimination using
artificial neural networks (Section 6.3). After a short introduction, the theoretical
background of artificial neural networks, their application in high-energy physics, and
the specific implementation in Root will be presented in this chapter.

5.1 Introduction to Artificial Neural Networks

Nowadays, computers are able to process large amounts of data and perform complicated
calculations in a small amount of time. No human being is able to compete in these
tasks against a machine. However, there are some tasks which are better performed by
humans. This is the case when no strict algorithm is able to execute the given challenge
perfectly. Examples for this are the recognition of human faces, reading hand writings,
or driving a car. The essential qualification to perform these tasks successfully is the
ability of adaption. Artificial neural networks try to combine the capability of adaption
and the ability of learning with the performance of computers. This is done by simulating
a system of biological neurons.

The first concept of an artificial neuron was presented in 1943 by McCulloch and
Pitts [McC43]. It was shown that even simple types of artificial neural networks could in
principle compute any arithmetic or logical function. Their model, the McCulloch-Pitts
Neuron, is the origin of neuron models which are used today. An important invention
concerning the artificial synapses was made in 1949. Hebb proposed a specific learning
law for the synapses of a neuron [Heb49]: In case two connected neurons are active
the weight of the connection should be increased. Hebb’s learning law is the basis for
today’s learning algorithms. In 1957 Rosenblatt invented the perceptron (or feedforward
network) [Ros58] and proved that a perceptron can distinguish linearly separable classes
in a finite number of training loops, independently of the starting point. The perceptron
will be presented in more detail in Section 5.3. The last important invention that is used
in this thesis is the backpropagation algorithm. Originally it was invented by Werbos in

69
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1974 [Wer74], but it became popular through its reinvention by Rummehart, Hinton, and
Williams in 1986 [Rum86]. Backpropagation will be discussed in detail in Section 5.4.

Artificial neural networks are used in many different areas. Typical applications are
function approximation, classification, optimization, and robotics. The working scheme
of a neural network follows the same principle for all cases and all network types: an
input vector is transformed by the neural network into an output vector. The input vector
and the output vector can have different dimensionality.

Neural networks are composed of a number of small entities called neurons. These
neurons are small processors whose abilities are limited to simple calculations, e.g. the
summation of weighted input data. The connection between the neurons are the synapses.
Each synapse has its own weight. The output of the network using a given input vector
can be adjusted by changing the weights of the synapses. In order to use an artificial
neural network properly the following components are needed:

• a suitable network with a suitable topology,

• a suitable learning algorithm,

• training data,

• validation data for testing the network with unknown patterns.

The most important features of artificial neural networks are [Sch97]:

• Learning aptitude: Artificial neural networks are able to "learn" which output vector
is associated with which input vector. They are able to reproduce the correct output
vectors.

• Fault tolerance: Neural networks are fault-tolerant to the blackout of parts of the
network.

• Speed: The transformation of an input vector into an output vector can be processed
quickly. However, the training of the network may take some time.

• Robustness: Artificial neural networks are able to process noisy data.

• Generalization aptitude: They are able to assign unknown patterns to the correct
output vector.
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Figure 5.1: Schematical view of a biological neuron. A neuron consists of a cell body including a nucleus
(soma), dentrites, an axon, and synapses. The plot is adapted from Reference [Wik10]

Although artificial neural networks have been successfully applied to several tasks,
not every problem is optimal to be solved by them. Neural networks have the big
disadvantage, that they behave like black boxes. Due to their highly non-linear character
it is not possible to analyze which factor leads to a successful or non-successful
performance. Consequently, neural networks can be used as a tool but are not well
suited for an analytical approach. More about artificial neural networks can be found
in References [HN90, Sch97, Lip06].

5.2 Biological and Artificial Neurons

The human brain consists of 1010− 1012 neurons [Wil88]. Each neuron is made of a
cell body (soma) including a nucleus, dendrites, an axon, and synapses (see Figure 5.1).
The dendrites transmit the input from the synapses of other cells to the soma. The
soma collects the input and, if a threshold is exceeded, generates an output signal. The
output signal is sent to the axon. The axon branches and conducts the signal to other
neurons. This happens at the end caps of the axon branches, called synapses. They
transform the electric signal in an electrochemical one. It is propagated to other neurons
via neurotransmitters. Signal transfer is not the only task of the synapses. They are also
responsible for the signal’s amplitude. The synapses can either amplify or dampen the
signal.
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Figure 5.2: Schematical view of an artificial neuron. Input signals In are multiplied with associated weights
wi j and are transformed by an artificial neuron j into an output O j.

Artificial neurons are constructed alike the biological model (see Figure 5.2). Input
signals In are propagated to the neuron j. The signals are amplified or damped by
multiplication with an associated weight wi j. They are further processed by the neuron j
using a propagation function. A typical propagation function is the addition of weighted
signals. Other examples of propagation functions are the usage of the maximum, the mini-
mum, or a multiplication of the weighted signals. The activation function determines the
output that is transferred to the following neurons. Commonly used activation functions
are the identity function, threshold functions, sigmoid functions, or the softmax function.
Sometimes an additional threshold (called bias) is used, which can be adjusted for each
neuron. This bias results in a shift of the function with respect to the input axis. In this
work a sigmoid function including a bias is used as activation function for the hidden
layer neurons [Roo]. The output of a hidden neuron is:

O j(t +1) =
1

1+ e−(
∑

i wi jOi(t)−θ j)
. (5.1)

O j(t + 1) is the output of neuron j at time t + 1. "Time" is equivalent to a certain step
in the calculation of a network. wi j are the weights of the connections between neurons i
and j, Oi(t) is the output of neuron i at time t and θ j is the bias of neuron j. The function
is plotted in Figure 5.3.

The activation function for the output layer is the softmax function:

Ok(t +1) =
e(
∑

j w jkO j(t))∑
k e(

∑
j w jkO j(t))

. (5.2)



5.3 The Perceptron 73

Input
-4 -2 0 2 4

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

Figure 5.3: The sigmoid function.

Using the softmax function as activation function for the output layer ensures that the sum
of all output neurons is unity and allows to interpret the output of a neuron as a-posteriori
Bayesian probability [Bri90, Roo].

5.3 The Perceptron

The different network types can be subdivided into feedforward and feedback networks.
Feedforward networks have a hierarchical layer structure, consisting of an input layer,
an output layer, and any number of hidden layers. These types of networks are called
"perceptrons". The number of hidden layers depends on the complexity of the problem
and can also be zero (single layer perceptron).

The different layers of the perceptron are strictly separated. Connections between
neurons of one layer always go from the bottom to the top, from neurons of one layer to
neurons of one of the following layers. A pattern is hierarchically processed step by step
from the input layer to the output layer. In case the neurons are only connected to the
directly following layer, the network is a feedforward network of first order. In case some
of the synapses connect neurons to layers of higher hierarchical order, the network is a
feedforward network of second order.
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Figure 5.4: A multilayer perceptron with one hidden layer. The network consists of four input neurons Ii

which are connected to three hidden neurons H j. The network has two output neurons Ok. The weights wi j

belong to the connections between input neurons and hidden neurons. w jk are the weights of the synapses
between hidden layer and output layer.

A perceptron of first order with one hidden layer is plotted in Figure 5.4. An input
vector I = (I1, I2, I3, I4) is presented to the network via its input neurons and is multiplied
by the associated weights wi j

wi j =


w11 w12 w13

w21 w22 w23

w31 w32 w33

w41 w42 w43

 .

The output of the input layer is summed in the neurons of the hidden layers h j:

h j =
4∑

i=1

wi jIi. (5.3)
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h j is further processed by the activation function a j. Then the output of the hidden layer
neuron H j(I) is:

H j (I) = a j

(
4∑

i=1

wi jIi

)
. (5.4)

These outputs H j are now multiplied with weights w jk

w jk =


w11 w12

w21 w22

w31 w32


associated to the connections between the hidden layer and the output layer. This is
summed up by the output neurons:

ok =
3∑

j=1

w jkH j. (5.5)

The output of the output layer Ok is given by:

Ok = ak(ok), (5.6)

where ak is the activation function of the output layer. This is not necessarily the same as
for the hidden layers. For the output of a network Ok depending on the input vector I it
is:

Ok (I) = ak

 3∑
j=1

w jka j

(
4∑

i=1

wi jIi

) . (5.7)

Contrary to feedforward networks, feedback networks also have synapses which
connect neurons of the same layer, lead back to the same neuron, or connect neurons
of a higher layer to neurons of a lower layer. A clear separation of different layers is often
not possible anymore. An example of feedback networks are Hopfield networks [Hop82].
Feedback networks will not be discussed here, since they do not play a role in this thesis.

In order to find an optimal network it is necessary to have some experience with
networks or to make some tests. Following the theorem of Kolmogorov [HN90], there
exists an optimal network with one hidden layer and 2n + 1 hidden neurons if the input
vector is given by n values. However, there is no general rule for the determination of
the weights that are associated to this network. It can happen that it takes many training
cycles or it is not even possible to find the optimum weights. Therefore it is often a better
strategy to use a different network topology which provides a well trained network after
fewer training steps. In this thesis a neural network with two hidden layers was used. The
used network topology is presented in Section 6.3.2.
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5.4 Backpropagation

Backpropagation is an algorithm which allows to train multi-layer perceptrons of first
order which use a continuous (e.g. a sigmoidal) activation function. Backpropagation
is a gradient descent method taking into account the gradient of the error function. The
network is propagated from back to front.

5.4.1 Derivation

The following derivation is adapted from References [HN90, Ott96, Sch97]. There are
two variants of backpropagation, the offline and the online method. The offline method
adjusts the network after all patterns were presented to the network. The method described
here is the so called online backpropagation. This means that the weights in the network
are adjusted after each pattern.

In order to estimate the success of the learning an error function is needed. Each
pattern p has a target vector Tp. The target vector is the vector that should be the output of
a network. The error εp for a given pattern is the quadratic difference between the target
value of an output neuron Tp,k and the real output of the neuron Op,k:

εp =
1
2

∑
k

(
Tp,k−Op,k

)2
. (5.8)

The weights at training step s are given by ws
jk. They are adjusted at the next step s+1:

ws+1
jk = ws

jk +∆w jk. (5.9)

The size of the adjustment depends on the weight’s wi j contribution to the error εp:

∆w jk =−η
∂εp

∂w jk
. (5.10)

η is the learning parameter. It determines the speed of the training. The change of the error
depends on the variation of the output which is calculated using the activation function a.
With Equations 5.3 and 5.7 and applying the chain rule, the right side of Equation 5.10
can be written as:

∂εp

∂w jk
=

∂εp

∂a

(∑
j′

w j′kHp, j′

) ∂a

(∑
j′

w j′kHp, j′

)
∂w jk

. (5.11)
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Hp, j′ are the outputs of the hidden neurons n′j for pattern p.

First we take a look at the second part of the equation. The activation function depends
on all weights w j′k between the neurons j′ and neuron k. Using again the chain rule the
second part of the equation is:

∂a

(∑
j′

w j′kHp, j′

)
∂w jk

=

∂a

(∑
j′

w j′kHp, j′

)
∂w jkHp, j

∂w jkHp, j

∂w jk
(5.12)

= a′

∑
j′

w j′kHp, j′

Hp, j. (5.13)

a′ is the derivative of the activation function.

The first part of Equation 5.11 can be written as:

∂εp

∂a

(∑
j′

w j′kHp, j′

) =
∂

∂Op,k

1
2
(
Tp,k−Op,k

)2 (5.14)

= −
(
Tp,k−Op,k

)
, (5.15)

since the error of an output neuron k is:

εp =
1
2
(
Tp,k−Op,k

)2 (5.16)

and the activation function gives the output of neuron k Op,k:

a

∑
j′

w j′kHp, j′

= Op,k. (5.17)

For a connection between a hidden neuron and an output neuron we define:

δp,k =
(
Tp,k−Op,k

)
a′

∑
j′

w j′kHp, j′

 . (5.18)

The adjustment of the weight is then:

∆w jk = ηδp,kHp, j. (5.19)
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For a connection that leads to a hidden neuron j, δp, j has to be modified. Such a weight
contributes not only to the error of one output neuron, but to the error of all output neurons:

δp, j =
∑

k

δp,kw jk ·a′
(∑

i

wi jHh−1
p,i

)
. (5.20)

Hh−1
p,i is the output of neuron i of the underlying layer, wi j is the weight of the connection

to neuron j, and w jk are the weights of all connections to the neurons k of the following
layer.

5.4.2 Principle of Operation

Backpropagation is an iterative procedure. The input pattern is propagated from the
input neurons step-by-step towards the output layer (feed forward). In this procedure, the
activations of all neurons in the network are determined. The network output is compared
to the target vector. Based on the difference between target vector and output vector the
contribution of each neuron to the total error is calculated. The weights are adjusted
following the formulas in Section 5.4.1. The adjustment follows the steepest slope of the
error function. Starting with the output layer, the δs of each weight are determined. When
all of them are recalculated the δs of the previous layer are computed. The information
about the output is propagated from back to front (backpropagation). A complete loop
over all training patterns is called an epoch.

In this thesis backpropagation is used only with the online method, which was also
described in Section 5.4.1. Here, a randomized presentation of the patterns leads to a
noisy error function. This is often appreciated, since local minima can be avoided (see
also Section 5.4.3). In the offline method all patterns are presented to the network and
a global error is calculated. The network is adjusted only taking into account the mean
error of all patterns after each epoch.

5.4.3 Problematic Aspects of Backpropagation

Backpropagation is a very successful strategy for the training of feedforward networks.
Nevertheless, using backpropagation some aspects have to be considered (see also
References [Sch97, Lip06]):
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Initialization of the Weights

Before starting the training with backpropagation, the weights of the connections between
the neurons have to be set to different values. Generally, this is done with a randomized
initialization. In case all connections would have equal weights, the outgoing connections
of one neuron to the next would stay constant, regardless of how many epochs the training
is performed. The reason for this is that all the connections contribute in the same way to
the error and therefore are adjusted with identical values.

Learning Parameter η

The error function can be regarded as a surface with maxima and minima. The
dimensionality of the surface is that of the number of weighted connections between
the neurons of the artificial neural network. The goal of backpropagation is to find the
lowest point (minimum) of this surface. This is illustrated in Figure 5.5d). The learning
parameter η is the central variable of the backpropagation algorithm. It is crucial to
choose its size such, that it is not too small and not too large. If η is too large, the learning
is faster, but it is possible that the global minimum is not reached. If η is too small, it
could take very long to reach the minimum. It may even be possible that the minimum is
not reached at all.

Local and Global Minima It is possible that backpropagation does not reach the global
minimum but only a local one. The randomized initialization determines the starting
point. It could happen that the starting point is separated from the global minimum by a
"wall" (see Figure 5.5a)). In this case the global minimum will not be reached. In order
to prevent this, the network can be trained several times using different starting points.
Another possibility of reducing the probability of being trapped in a local minimum, is
the application of online backpropagation (as used in this thesis). Here, the error surface
is different for each pattern. This leads to a noisy error surface and potential "walls" can
be overcome.

Plateaus The size of the weight adjustment ∆wi j depends on the absolute value of the
error surface’s gradient. In case a plateau with a small slope is reached the learning gets
very slow or could even stop completely, given the gradient approaches zero. This is
illustrated in Figure 5.5b.
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Figure 5.5: Examples of error development of the backpropagation algorithm. In each diagram the error is
plotted versus the weight of one synapse. a): After two steps only a local minimum is found. The learning
parameter is too small to reach the global minimum. b): The procedure stops at a plateau after two steps.
The step size of the backpropagation algorithm depends on the gradient. In case of being zero the procedure
stops. c): The learning parameter is too large to reach the minimum. The algorithm oscillates between steps
1,3 and 2. d): The learning parameter is optimal. The global minimum is reached after two steps.

Oscillations In case the learning parameter η is too large another problem can occur.
The walls of a valley could be so close to each other that the procedure jumps from one
wall to the other and is not able to reach the minimum (see Figure 5.5c). In the worst case
the steps are so large that the valley will be left and a region is reached where only local
minima exist.
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Backpropagation with a Momentum Term

In order to circumvent some of the mentioned problems the backpropagation algorithm
can be extended. One possibility is the addition of a momentum term. The idea behind
this is that the learning parameter η can be adjusted depending on the structure of the error
surface. A relatively flat surface with a constant slope should be crossed quickly with a
large η. Close to a minimum the learning parameter should be small in order to find the
minimum. A momentum term takes into account the direction of a slope. At a plateau,
the sign of the gradient stays constant, while it would change in a valley. In case the sign
stays constant, the step width is increased by the momentum term. Given a change of the
gradient’s sign, the step width decreases [Lip06].

Backpropagation with a momentum term, also called conjugate gradient descent, can
increase the learning rate a lot. However, there are cases where the procedure fails to
increase the training speed or even does not converge at all. The momentum given by the
procedure could be so large, that the weights are adjusted into the direction of the gradient
where the error increases.

In this thesis a momentum term was not used for the training. It was found that no
improvement neither for the training speed nor for the electron/pion discrimination could
be achieved.

General Considerations on Backpropagation

As described before, backpropagation in the online mode (update of the weights after each
pattern) leads to a smeared error surface. This is welcome since it allows to circumvent
some of the problems that may occur using this algorithm in the offline mode (update
of the weights after each epoch). In order to exploit this advantage it is necessary to
present the patterns to the network in a randomized order. In case the patterns would be
presented in the same order each time, the smearing of the error is lost and the probability
for the algorithm to get stuck in a local minimum is increased. It was shown that online
backpropagation converges faster than offline [LeC98].

Besides improvements concerning the training method, before starting the training
a number of issues concerning the input could be taken into account which helps the
network to find the optimum weights faster. In order to achieve a fast convergence of
the network it is recommended to normalize the input such, that its values are between
zero and one. This allows a faster learning since the derivation of the activation function
is much steeper than for values larger than one. Further improvement can be achieved
if the mean of the input is centered around a value of 0.5. In this thesis the input was
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normalized for the training, but no improvement of the electron identification was found
by centering the input. For a fast convergence of the network it is suggested to decorrelate
the input variables. A decorrelation of the signal is not possible for the ALICE TRD
signal (see Section 6.1). Neural networks are used in this thesis, since they are able to
extract information even from correlated data. There exist several additional suggestions
for improved training speed which are discussed in Reference [LeC98]. However, they do
not play a role for the application of artificial neural networks for electron identification.

5.5 Training and Validation

In order to train an artificial neural network and to decide whether it is well suited to
solve a given problem two data sets are needed. The first one, the training data, is needed
to train the network, e.g. using the backpropagation algorithm. The number of training
patterns should be large, ideally the number should go to infinity. The network is adjusted
with the input patterns using a training algorithm. The other one, the test data, is needed
to determine the generalization ability of a trained network. Generalization ability is the
aptitude of the network to identify unknown patterns correctly.

A continuous supervision of the training is needed in order to stop it, in case the
maximum generalization capability is achieved. Generally, this is done with the test
patterns, but the result is slightly biased in positive direction, since a minimum error
for the test patterns is then used as termination condition. It is not guaranteed that the
minimum error for the test patterns indicates the best network for all possible patterns. A
better test for the generalization capacity can be performed with a third data set, which
is presented to the network after the training has finished. This allows a completely
independent (and unbiased) generalization test. In contrast to that, no conclusion on the
general performance can be obtained from a test with the patterns used for training before.
The result of the generalization test would be strongly shifted towards small errors and it
is only possible to determine the network’s identification capability for known patterns.

Another aspect which influences the performance of an artificial neural network is
the termination condition for the training. A commonly used termination condition using
the online supervision is the termination of the training in case no further improvement
(minimization of the error) can be achieved for training and test data, or in case overfitting
occurs. Overfitting means that the network is adjusted too much to the training data and its
generalization capability decreases with further training. Artificial neural networks with
many hidden neurons tend to show overfitting. Their high dimensionality allows them to
fit their weights to the smearing of the training data. Another possibility for terminating
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Figure 5.6: Error development of training data (blue) and validation data (red) versus number of epochs.
Shown are the curves for the training of one ALICE Transition Radiation Detector prototype chamber from
the test beam 2002. It can be seen that after a first fast drop the error reaches a plateau. With increasing
number of training epochs the error decreases further and converges. The error curves of training data as
well as that of test data fluctuates, which can be understood as noisiness of the error surface.

the training is to stop it after a fixed number of epochs. This allows to compare the
performance of different networks. A generalization test with the test data set here would
not lead to a biased result, since it is not used for the termination condition. Instead of the
conditions described above, the training could also be stopped if the error ε or the mean
square error reaches a certain value.

In Figure 5.6 a typical training progress is shown. The error decreases fast at the
beginning for both, training data (blue) and test data (red). After the first learning a plateau
is reached. With rising number of epochs the error decreases again until it converges
at a lower level. In case of overfitting the training curve would further decrease with
increasing number of epochs, but the test curve would stay at a certain value and then rise
again to larger values of ε.
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5.6 Artificial Neural Networks in High Energy Physics

Artificial neural networks have been and are presently used in high energy physics.
Following Reference [Den99] the applications can be subdivided into two different fields.
The first field is low level pattern recognition. This includes particle identification
tasks as well as other "simple" reconstruction tasks. The second one is physics process
determination. This is the application of artificial neural networks to the identification of
physics events. An overview (until 1999) on artificial neural networks in high energy
physics can be found in Reference [Den99]. Newer applications will be discussed
here shortly, excluding their application to particle identification in transition radiation
detectors. This will be discussed in Section 6.3.

5.6.1 Neural Networks for Reconstruction Tasks

The main background for the identification of electrons in electromagnetic calorimeters
are hadrons (mainly charged pions) with high momenta. The largest background for single
photons are photon pairs originating from neutral pion decays. An important attribute
that can be used for their discrimination is the shape of the shower. A shower induced
by a hadron spreads wider in transverse and longitudinal direction than that induced by
electrons or photons. The geometric shape, transformed into different variables, was
successfully applied for particle identification using artificial neural networks. In test
beam experiments for NA48 [Lit03] and ATLAS [Col05] as well as in simulations for
the WA80 and WA93 electromagnetic calorimeter [Ott96] the performance of particle
separation was improved compared to conventional methods.

Ring Imaging Cherenkov (RICH) detectors discriminate electrons from pions and
other hadrons based on the production of Cherenkov radiation. Particles that have a
velocity larger than the speed of light in a medium produce Cherenkov radiation. This
radiation is emitted under a characteristic angle determined by the particle’s velocity.
A Ring Imaging Cherenkov detector makes use of mirrors which reflect the radiation.
The reflected photons hit the active detector plane in a circle around a projection of the
according track. The radius of the circle depends on the particle’s velocity. For most
electrons, their velocity is very close to the speed of light in vacuum. Therefore, the ring
radius electrons is well known. The task is to match a reconstructed track to potential
photon rings and check if the ring is formed by an electron. Artificial neural networks
can be used to suppress rings which are falsely reconstructed. Examples of true and fake
rings are plotted in Figure 5.7. In simulations for the Compressed Baryonic Matter (CBM)
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Figure 5.7: Example of true and fake Cherenkov rings. This plot is taken from [Leb09].

experiment artificial neural networks were successfully applied to fake ring suppression.
They are also planned to be used in the real experiment [Hoe08, Leb09].

5.6.2 Applications in Analyses

The D0 collaboration used artificial neural networks for the direct measurement of the
top quark mass [Aba97] and the search for the hypothetical leptoquarks [Abb97] at the
Fermilab Tevatron accelerator. For the measurement of the top quark mass the decay
of tt quark pairs into a final state of four jets, one lepton, and one neutrino (tt →W+b +
W−b→ qq+b+ lνl +b) was analyzed. The leptoquark pair decay channel with two jets
and two electrons was investigated. For both procedures a set of (correlated) variables
was defined and fed to a multilayer perceptron. The top quark mass was measured with
an uncertainty of only a few percent and a lower limit for the mass of leptoquarks of
225 GeV/c2 was found.

The BABAR collaboration used an artificial neural network for the measurement of
CP-violation in B0 decays [Aub01]. The networks were trained in order to tag B0s or B0s
in events where no simple tagging criterion could be applied. The input was a combination
of the momentum and charge of the track with the largest center-of-mass momentum
and the outputs of primary networks for particle identification. The combination of
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conventional tagging criteria and neural network tagging confirmed previous CP-violation
measurements. It improved its accuracy compared to previous results.

5.7 Neural Networks in Root

Many different software packages for the application of artificial neural networks exist.
These packages allow to construct many different network types. For pattern recognition
a multilayer perceptron is well suited. The software framework Root, which is the
basis of the software used in ALICE, provides classes for the construction of multilayer
perceptrons since version v3-10. The multilayer perceptron (TMLP) module was written
by Delaere [Roo] and is based on the MLPfit package [Sch]. The classes used in the
package are TMultiLayerPerceptron, TNeuron, and TSynapse.

The main class of the TMLP module is TMultiLayerPerceptron. Using this class all
the attributes of the multilayer perceptron, such as network topology, training method, or
training parameters, can be defined and adjusted. The multilayer perceptron is connected
to a TTree. TBranches of this TTree are used as input vector and as target output vector.
The network topology is set in the constructor by a single string. The only network
structure that is supported are multilayer perceptrons of first order, i.e. all neurons of a
lower layer are (only) connected to all neurons of an upper layer. No shortcuts are allowed
and no recursive connections are available. In the string which describes the topology, the
different layers are separated by a colon. The TBranches which are connected to the input
and the output neurons are separated by commas. The hidden layers are defined by the
number of neurons only. An example for the initialization of a TMultiLayerPerceptron
with two input neurons, five neurons in one hidden layer, and one output neuron is given
here:

TMultiLayerPerceptron("in[0],in[1]:5:out",tIn).

in[0] and in[1] are two TBranches of the TTree tIn connected to the network. out is
another TBranch of the same TTree.

The default TNeuron types for the different layers are inactive1 neurons for the input
layer, sigmoid neurons for the hidden layer, and linear neurons for the output layer. In
order to get the Bayesian probabilities it is possible to change the neuron type of the
output layer by adding an exclamation mark at the end of the network topology string.
This converts the output neuron into a sigmoid TNeuron in case only one output neuron is
used. In case more output neurons are in the output layer they are converted into softmax

1"Inactive" means that the neuron just returns the input.
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neurons. In this thesis softmax neurons are used in the output layer. All TNeurons of a
lower layer are connected with the TNeurons of the next higher layer via TSynapses.

It is possible to define the training data and test data with TEventLists. The
two TEventLists contain the entries of the TTree which are used for training and
testing. They can either be connected to the network directly in the constructor or added
afterwards using a dedicated setter. In the following analyses 2/3 of the data was used as
training data and 1/3 for validation.

The TMLP module provides different training methods. In
this thesis online backpropagation is used which corresponds to the
TMultiLayerPerceptron::kStochastic training method. Using this method,
the weights of the synapses are initialized with random values. The patterns
are presented to the network in randomized order. The only variable for this
method is the learning parameter η. It can be adjusted using the function
TMultiLayerPerceptron::SetEta(Double_t eta). The training is started with

TMultiLayerPerceptron::Train(Int_t nEpoch, Option_t).

nEpoch is the number of epochs that should be trained. In addition, several options can
be added. It is possible to monitor the error development graphically and/or in a text. In
addition, it is possible to skip the random initialization of the weights at the start of the
training by adding a plus sign. This allows to save trained networks and to continue the
training later on.





6. Particle Identification with the
Transition Radiation Detector

One of the main tasks of the Transition Radiation Detector is the identification of electrons
in a very pion-rich environment. In this Chapter the principles and methods which can
be used for the electron/pion separation are discussed. The last section describes the
implementation of TRD’s particle identification in AliRoot.

6.1 Principles of PID using the TRD

The key to access the particle identification (PID) capabilities of the ALICE Transition
Radiation Detector is the information on the average pulse height and its dependence
on the drift time (shown in Figure 6.1). There are two obvious differences between the
data points for pions and for electrons. The first one is the total amount of deposited
charge. At a momentum of 2 GeV/c the amplitude of the electron signal is about 1.5 times
larger than that of pions in the amplification region and about twice as large in the region
where transition radiation photons are absorbed preferably. The total amount of deposited
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The deposited charge is plotted relative to the charge deposited by a minimum ionizing particle.

charge is used by cluster counting methods [Lud81], by truncation methods [And01], and
a likelihood method (LQ method) [Che74a]. LQ stands for likelihood on total charge.

The shapes of the average pulse height for particles which do not produce transition
radiation (hadrons and muons) are similar to that of pions. They only differ in
amplitude, due to their different charge deposit caused by their different masses (see
Equation 4.1). This also allows their discrimination from electrons similar to the
electron/pion discrimination. Above momenta of 1 GeV/c for kaons and about 1.5 GeV/c
for protons the average deposited charge is lower than that of pions (see Figure 6.2).
The difference between a kaon or proton signal compared to an electron signal is larger
than that of a pion compared to an electron signal. Consequently, the separation of
kaons and protons from electrons is expected to be better than that of pions above these
momenta. The separation of muons from electrons will be worse for momenta above
about 0.5 GeV/c. Figure 6.2 also shows that a discrimination of hadrons from other
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hadrons is possible using information of the TRD (see Section 8.3.3). However, the
separation of different hadrons is only possible with low accuracy since the expected
deposited charges differ much less from each other.

The second difference between the electron and the pion signal in their average
pulse height distributions is the transition radiation peak. At longer drift times the
electron signal does not stay flat like the signal of the pions, but increases since the
transition radiation photons are predominantly absorbed within the first few millimeters
of the drift region. Consequently, the exploitation of the signal’s time information
increases the identification capacity of the Transition Radiation Detector. Two likelihood
methods make use of the time information, the LQX method [And01] and 2-dim
LQ method [Ber08a]. LQX stands for likelihood on total charge and the local x position
(which is approximately identical with a time information) of the largest cluster. The
2-dim LQ method is based on the deposited charge in two chamber regions – the region
where transition radiation is expected, and the amplification region including a part of the
drift region. The time information has no influence on the discrimination of hadrons from
each other since they do not produce transition radiation in the momentum region below
about 100 GeV/c. All particle identification methods described above will be discussed in
the following Section 6.2.

It is not trivial to access the full information with likelihood methods, since the signal
is correlated in time within one Transition Radiation Detector module. These correlations
have to be taken into account. A successful approach to exploit the full information is
the application of artificial neural networks as was shown in References [Wil04, Adl05a].
This method will be described in detail in Section 6.3.

The signals in the detector modules which contribute to the particle identification
are assumed to be uncorrelated. Therefore, most of the particle identification methods
combine the signals using the Bayesian probability of each TRD module, analogous
to the approach in AliRoot for the combination of the PID signals of different
subdetectors (Formula 3.4). The intrinsic detector response of the Transition Radiation
Detector RT RD (s|i) for a signal vector s to be generated by a particle of type i is given by:

RT RD (s|i) =

N∏
j=1

r
(
s j|i
)

∑
k

N∏
j=1

r
(
s j|k
) . (6.1)

N is the total number of TRD modules and r
(
s j|i
)

is the response function of a single
detector module j. s represents a vector of all the signals and k is the total number of
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Figure 6.3: Truncated Mean for 4 GeV/c test beam data from 2004. On the left side the deposited charge
integrated over all 6 Transition Radiation Detector layers for electrons (red) and pions (blue) are plotted.
The pion signal has a long tail towards larger deposited charges. This leads to high contamination of
identified electrons. If only the largest 60% of clusters with the smallest deposited charges are taken into
account, the contamination decreases significantly.

particle types which are taken into account. In ALICE these are five particle species:
electrons, muons, pions, kaons and protons as well as their anti-particles. In the analyses
of test beam data (Chapter 7) only electrons and pions were taken into account.

A measure for the electron/pion discrimination performance of a detector is the pion
efficiency επ (see Section 6.4). It is the fraction of pions that is misidentified at a
fixed electron efficiency εe. The electron efficiency is the fraction of electrons that is
identified correctly. In the following analyses the electron efficiency is required to be
90%. Sometimes, instead of the pion efficiency the pion suppression is used. This is
the reciprocal of the pion efficiency. The design goal of the ALICE Transition Radiation
Detector is a pion efficiency of 1%, i.e. a pion suppression of 100.

6.2 Classical Methods of Particle Identification

6.2.1 Truncated Mean

The simplest approach for particle discrimination using the ALICE Transition Radiation
Detector is the integration of deposited charge along the particle track in all traversed
modules. The resulting distributions of integrated charge are plotted on the left side in
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Figure 6.3. The distribution for pions is shown in blue, that of electrons in red. It can
be seen that the two particle types are clearly separable by this method. However, both
distributions have a long tail towards large charge deposits. The main problem is the tail
of the pion distribution. The tail is caused by δ electrons which produce electron clusters
with high charge deposition. The idea behind the truncated mean method is to suppress
clusters from δ electrons and thus suppress the tails of the charge deposit distributions.

For detectors of the ALICE TRD type truncation methods can be performed in two
different ways. The first one uses the integrated deposited charge in all chambers. The
largest value is cut and only the values of the five other deposited charges are taken into
account. This method was used in References [App88, And01].

For the second truncated mean method a limited number of clusters is used. Clusters
with smaller deposited charge are considered, while the larger clusters are not taken into
account [Wat86, Shu05]. Here, for the Transition Radiation Detector "cluster" means
charge deposit in one time bin. On the right side of Figure 6.3 the deposited charge
distribution for electrons and pions is shown, where only the 60% smallest clusters are
taken into account. Again, the electron distribution is shown in red, the pion distribution
in blue. It can be seen that the tail of the pion distribution is not as large as in the plot
without truncation. This leads to an improvement of the electron/pion discrimination by
about a factor of 5 for the ALICE Transition Radiation Detector (see Section 7.6).

The truncated mean method is the standard method for particle identification in time
projection chambers. It is used e.g. in the ALICE TPC [Aam08]. Truncation methods
are well suited for detectors with a large homogeneous area where all clusters are of the
same size, independently of their spatial position. This is not the case for the ALICE
TRD. Due to the larger charge deposit at small drift times caused by the amplification
region, preferably clusters from this region are suppressed. Practically, this leads to a
smaller considered gas volume used for particle identification and consequently to a worse
pion rejection performance. Another effect is that clusters originating from transition
radiation are rejected. This cutting of TR shifts the electron distribution of deposited
charge to larger values, since more of the ionization clusters pass the cut. Thus, the
transition radiation improves the separation compared to a scenario without TR. However,
it seems to be paradoxical to improve the particle identification by cutting the signal that
is especially generated for it.

Results from previous experiments [Wat86, App88] as well as from test beam data
taken with ALICE TRD prototypes show that the truncated mean method has a worse
performance in electron/pion separation than likelihood methods [And01]. However, it
has to be noted that data from the test beam 2004 show comparable performance for
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truncated mean and for the likelihood method on deposited charge [Shu05]. This will be
discussed in Section 7.6.

6.2.2 Cluster Counting

The deposited charge of TR clusters is relatively large (about 460 electrons for
8 keV photons in the ALICE TRD, see Section 4.3.2) compared to that coming from
ionization (40 electrons per time bin for a minimum-ionizing particle in the ALICE
TRD [TRD01]). Thus, the signal produced by a transition radiation photon is expected
to be above a threshold which has to be chosen in a way, that the signals from ionization
are suppressed. The basic idea of the cluster counting method is to count predominantly
clusters produced by transition radiation. The cluster counting method has to deal with
two challenges. The first one is that an electron does not necessarily produce transition
radiation. The expected number of transition radiation photons is only around one per
detector module in case of the ALICE TRD [And06b]. The second one is the tail of
the Landau distribution of the deposited charge. This tail leads to a non-zero probability
for pions to produce δ electrons, which could deposit as much charge as TR photons
or even more. In 1981 Ludlam et al. showed that the cluster counting method can
discriminate electrons from pions at the same level as a likelihood method on total
deposited charge [Lud81]. The used detectors were of the same design as the ALICE
TRD modules (a multi-wire proportional chamber with a drift region), but with a shorter
drift region (10 mm).

The cluster counting method could be further improved by the implementation of an
"intelligent" threshold [O’B93]. The absorption length for photons in xenon depends on
the total energy of the photon. The larger the energy, the deeper the photon penetrates
the gas before being absorbed. Consequently, the signal of a transition radiation photon
absorbed late (i.e. at small drift times) in the chamber is larger than that of TR photons
absorbed early (i.e. at large drift times). Using a threshold which is low at large drift
times and high at small drift times suppresses clusters coming from δ electrons. The
probability for the production of δ electrons as well as the amount of charge deposited
by them does not depend on the position inside the chamber. The improvement of pion
efficiency compared to the pure cluster counting is about a factor of 1.5 [O’B93].

Another approach to improve the performance of the cluster counting method is to
exploit the deposited charge of the clusters, or the time the signal is above the threshold
(time-over-threshold) [App88]. The usage of the cluster charge allows to convolute the
probabilities for cluster production with that of the amount of deposited charge. The
time-over-threshold method bases on the fact that high energy deposition produces a
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Figure 6.4: A module of the barrel part of the ATLAS Transition Radiation Tracker [Ake98]. The active
detector parts is made of small proportional tubes (straw tubes). They are embedded into the radiator
material. This detector is optimized for cluster counting methods.

wider electronic signal. While the deposited charge of the clusters shows a performance
which is as good as the cluster counting, the time-over-threshold as a stand-alone particle
identification method is not very successful. However, time-over-threshold can be used in
combination with cluster counting and improves the cluster counting method by a factor
of about two [Ake01].

Cluster counting methods are well suited to separate electrons and pions in detectors
with many thin layers. The reason for that is the thickness of the gas layers. In thin
gas layers the "background" of deposited charge by ionization fluctuates strongly. The
distributions of deposited charge have long tails towards large charge deposits, for both,
electrons and pions. A measurement of deposited charge would be dominated by these
tails. The background of the cluster counting depends on the Poisson statistics for the
production of δ electrons, which has a smaller tail than the Landau distribution [Ams08].
The probability for the production of δ electrons is larger for electrons than for pions. The
clusters produced by transition radiation further enhance the number of clusters above a
threshold for electrons.

An example for a detector with thin gas layers is the ATLAS Transition Radiation
Tracker (TRT). It consists of many straw tubes which are thin proportional tubes with a
diameter of 4 mm [ATL97]. The Transition Radiation Tracker is built in a barrel design
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Figure 6.5: Performance of the cluster counting method in the ATLAS Transition Radiation Tracker using
an energy threshold of 6 keV [Ake98]. The distribution for electrons is red, that for pions blue. It can be
seen that with this method electrons and pions can be well discriminated.

including end-caps. In Figure 6.4 a TRT module of the barrel part is shown. The straw
tubes in this part are 144 cm long and are embedded into the radiator material. The barrel
part of the Transition Radiation Tracker consists of three rings of modules which are
arranged around each other. This guarantees that each particle coming from the vertex
has to traverse 36 straw tubes [Aad08].

In Figure 6.5 the number of clusters above a threshold of 6 keV is shown for
electrons (red) and pions (blue) for test beam data at a momentum of 20 GeV/c. The
diagram shows that the particles can be well discriminated. With the Transition Radiation
Tracker a pion suppression of about 80 can be reached at 20 GeV/c using a combination
of the number of clusters and the time-over-threshold [Mit03].

For the ALICE Transition Radiation Detector, methods which exploit the deposited
charge show a better performance for electron/pion discrimination than cluster counting
methods [ALI99]. The thicker the gas layers, the smaller are the fluctuations of charge
deposition. The measurement of deposited charge is not dominated by the δ electrons
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anymore. Although the probability for a particle to produce a δ electron along its track is
larger compared to thin layers, the measurement of the deposited charge on a longer track
compensates these fluctuations.

6.2.3 Likelihood on Total Deposited Charge (LQ)

The basic idea of likelihood methods is to interpret measured (or simulated) distributions
as probability distributions. Following the Bayesian approach, these distributions can be
used to estimate the likelihood for a measured value to be produced by different particle
species. Examples for such distributions are e.g. the deposited charge distributions of
electrons and pions. In principle the truncated mean or counted clusters can also be used
as input distributions, but these methods are often applied using simple threshold cuts. In
the following sections likelihoods on deposited charge will be discussed:

• likelihood on total deposited charge (LQ),

• combined likelihood on deposited charge and time bin with the largest charge
deposit (LQX),

• and a two dimensional likelihood on charge in two chamber sectors (2-dim LQ).

The likelihood method on total deposited charge was first used by Cherry et
al. [Che74a]. The input distribution for the likelihood on total charge are normalized
charge distributions for electrons and pions in the Transition Radiation Detector modules.
They are shown in Figure 6.6, electrons in red and pions in blue. A particle traversing
the TRD ideally deposits a charge Q j in each module j. The probability that an
electron deposits this amount charge P j (Q j|e

)
can be extracted from the deposited charge

distribution of module j. The total probability for an electron to deposit exactly the n
measured values of charge Q is then given by:

P
(
Q|e
)

=
n∏

j=1

P j (Q j|e
)

=
n∏

j=1

P
(
Q j|e

)
. (6.2)

With the assumption that the distribution is identical for all modules, it is Pj
(
Q j|e

)
=

P
(
Q j|e

)
. This is an approximation, since the deposited charge increases with the number

of traversed layers [And04a]. The differences in deposited charge between the layers are
small. Hence, the chamber position often is not taken into account. The probability for
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Figure 6.6: Deposited charge for electrons (red) and pions (blue) in one TRD module. This data was taken
during the test beam of 2002. The momentum of the particles was 2 GeV/c.

another particle to deposit the charge can be calculated analogously to Equation 6.2. For
pions it is:

P
(
Q|π
)

=
n∏

j=1

P j (Q j|π
)

=
6∏

j=1

P
(
Q j|π

)
. (6.3)

Using these probabilities it is possible to estimate the likelihood L
(
e|Q
)

that the
charges Q have been deposited by an electron. In case k particles are taken into account
for the likelihood calculation, it is:

L
(
e|Q
)

=
P
(
Q|e
)∑

k
P
(
Q|k
) , with 0≤ L≤ 1. (6.4)

In test beam data k stands for electrons or pions, in the real experiment (in AliRoot) for
electrons, muons, pions, kaons, or protons. The sum of all likelihoods equals unity:∑

k

L
(
k|Q
)

= 1. (6.5)
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The likelihood value to be a particle of type i is equivalent to the intrinsic detector
response for this particular hypothesis. It is transfered to the global particle identification
of ALICE (see Equations 3.2 and 6.1). Here, the vector of deposited charge Q represents
the signal vector s. It is:

RT RD (s|i) = L
(
i|Q
)
. (6.6)

The likelihood method on total deposited charge was applied to test beam data from
2000 [And01], 2002 [And04a, Wil04], 2004 [Bai06], and 2007 [Kli09]. It was shown that
with this method a pion efficiency around 1% is achievable for particles with momenta
of 2 GeV/c and an electron efficiency of 90%. Since this method is well known, easy to
implement, and easy to handle, the likelihood on total charge will be used in this thesis as
standard method in order to compare different particle identification aproaches.

6.2.4 Likelihood on Total Deposited Charge and Time Bin with
Maximum Charge Deposition (LQX)

A closer look at the average pulse height for electrons and pions in Figure 6.1 indicates
that the total amount of deposited charge is not the only difference between electrons and
pions. For electrons a large peak from conversion of transition radiation at large drift
times is visible.

As stated before, transition radiation photons are absorbed in the first few millimeters
of gas of the drift chamber. In addition, the amount of charge in transition radiation
clusters is large compared to clusters originating from ionization. Consequently, for
electrons the largest clusters in the drift region should be preferably found at large drift
times while for pions the distribution should be flat. A combined likelihood on the total
deposited charge Q and the time bin of the cluster with the largest charge deposit should
increase the discrimination power of the Transition Radiation Detector. The time bin is
strongly correlated with the x position.

The distributions of the time bin with the largest deposited charge in the drift region
for electrons (red) and pions (blue) is shown in Figure 6.7. Similar to the distribution of
deposited charge, these distributions are used as probability distributions. The probability
that an electron deposits the charges Q j with the largest amount of deposited charge in
time bins x j is given by:

P
(
Q,x|e

)
=

6∏
j=1

P
(
Q j|e

)
·

6∏
j=1

P
(
x j|e
)
. (6.7)
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Figure 6.7: Time bin with the largest amount of charge for electrons (red) and pions (blue) in the drift
region. The momentum was 1 GeV/c [And01].

The probability for a pion is:

P
(
Q,x|π

)
=

6∏
j=1

P
(
Q j|π

)
·

6∏
j=1

P
(
x j|π

)
. (6.8)

The likelihoods are calculated analogously to the procedure outlined in the LQ method
(Equation 6.4).

This likelihood method was also performed on test beam data mentioned above.With
the LQX method an improvement of the pion efficiency between 15 - 30% can be reached.

The LQX method provides information about the largest cluster in the drift region,
which improves the discrimination power of the TRD compared to the likelihood on total
deposited charge. However, the absolute charge deposited by the largest cluster is not
taken into account and is lost for the particle identification. A small "largest" cluster
contributes in the same way as a big one, but especially its deposited charge can be used
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Figure 6.8: Illustration of the two-dimensional likelihood method. The chamber is subdivided into two
sectors. In sector II transition radiation is preferably absorbed. The measurement of deposited charge in
sector I additionally helps to discriminate electrons from pions.

to distinguish between clusters origination from transition radiation and clusters from
ionization.

6.2.5 Two-Dimensional Likelihood on Deposited Charge (2-dim LQ)

An approach to exploit the combined time and charge information is the two-dimensional
likelihood method on deposited charge in two chamber regions (2-dim LQ) [Ber08a].
Based on the drift time, the chamber is split into two sectors (or slices). This is illustrated
in Figure 6.8. The amplification region including the first part of the drift region is located
in sector I (small drift times, green region). The region where transition radiation is
absorbed preferably is in sector II (large drift times, red region). Absorption of transition
radiation photons results in a large charge amount in this sector. The energy loss due to
ionization dominates the charge deposit in sector I.

As in the LQ method the distributions of deposited charges for electrons and pions
are taken as probability distributions. In contrast to the likelihood method on total
deposited charge with a one-dimensional probability distribution a two-dimensional
histogram is used. In Figure 6.9 the AliRoot (v4-17-Rev-12) reference distributions for
electrons (upper plot) and pions (lower plot) with a momentum of 2 GeV/c are presented.
The deposited charge in sector I is plotted on the x axis, that of sector II on the y axis.
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Figure 6.9: Two-dimensional reference histograms for electrons (upper plot) and pions (lower plot) as used
in AliRoot (v4-17-Rev-12) for particles with a momentum of 2 GeV/c. On the x axis the deposited charge
of sector I is plotted, on the y axis that of sector II. It can be seen that the pion distribution is much narrower
than the electron distribution, especially in direction of sector II.
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The probability that an electron (or pion) deposits exactly a given amount of charge in
sector I and in sector II is encoded by the color. Red indicates a high probability, blue a
small probability. It can be seen that the distribution for pions is much narrower towards
sector II than the distribution for electrons. The probability that an electron has deposited
the charges Q1 j and Q2 j in the two sectors of the six chambers is given by:

P
(
Q1,Q2|e

)
=

6∏
j=1

P
(
Q1 j,Q2 j|e

)
. (6.9)

The probability for a pion is:

P
(
Q1,Q2|π

)
=

6∏
j=1

P
(
Q1 j,Q2 j|π

)
. (6.10)

The likelihoods are analogously calculated to the procedure in the LQ method
(Equation 6.4):

Le
(
Q1,Q2|e

)
=

P
(
Q1,Q2|e

)∑
k

P
(
Q1,Q2|k

) , with 0≤ Le ≤ 1. (6.11)

Compared to the likelihood method based on the total deposited charge the two-
dimensional likelihood method shows a performance improvement by a factor of about
two (see Section 8.2.2). A factor which improves the particle identification performance
is that the measured deposited charge in the two sectors can strengthen or weaken the
hypothesis that a particle of a specific type produces the signal. A measurement of a large
amount of charge in one sector and a very low amount of charge in the second sector
could lead to other particle probabilities than the measurement of two average amounts of
charge. The integrated charge would be the same. In case only the integrated deposited
charge is taken into account a single large cluster originating from transition radiation
or δ electrons could conceal the other part of the signal and lead to a large probability
for electrons. Using the measurements of the deposited charge in two chamber regions
allows to distinguish more precisely between electrons and other particles. A large cluster
originating from transition radiation will be found with larger probability in sector II than
in sector I. The probability to find a cluster originating from δ electrons in sector I is
2/3 compared to 1/3 for sector II, since sector I is twice as large as sector II and the
probability distribution for the creation of δ electrons is flat over the whole chamber
volume. Consequently, the sector in which a large cluster is measured contributes to
the discrimination between electrons and non-electrons.
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A difficulty in using the 2-dim LQ method is in the generation of the reference
histograms due to the number of entries that are needed for adequate filling. The reason
for this is the dimensionality of the histogram. In case of a two-dimensional reference
histogram the number of entries is squared compared to a one-dimensional histogram if
a comparable quality is required. In order to circumvent local fluctuations and to get
smooth reference histograms with less entries an interpolation package was implemented
into AliRoot [Ber08d].

Up until the writing of this thesis, the two-dimensional likelihood on deposited charge
has only been used on simulated data. However, it showed good performance and became
one of the standard methods for particle identification used by the Transition Radiation
Detector in AliRoot. The 2-dim LQ method as implemented in AliRoot will be compared
to other methods of particle identification on simulated data in Chapter 8. It was discussed
to expand the two dimensional likelihood method to three dimensions [Ber07], using the
charge deposits of three chamber regions instead of two. Although first results showed
a performance improvement, this is not yet foreseen in AliRoot as a method for particle
identification due to the large number of entries to be stored for the three-dimensional
reference histograms.

6.3 Particle Identification with Artificial Neural
Networks

As discussed in Section 6.2 several methods have been used for particle identification
with a transition radiation detector. In general, the possibility of discriminating between
particles requires the production of different signals by the different particle types. This
is obviously given for the discrimination of electrons from pions (or other hadrons), since
electrons deposit more charge caused by the absorption of transition radiation photons and
by ionization of the traversed detector gas. This component of the signal, the integrated
deposited charge, is easy to access and to exploit. The one-dimensional likelihood method
on integrated deposited charge and the truncation methods use the integrated deposited
charge sufficiently. However, there are other signal components, such as the average
pulse height in each time bin or the clusters originating from transition radiation photons,
which are not that easy to exploit. The performance of likelihood methods which try
to combine these information with the measurement of the integrated charge (LQX and
2-dim LQ method) shows that the electron identification can be improved compared to
methods which exploit the integrated deposited charge only.
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Means to access this additional information are provided by artificial neural networks.
The signals in the ALICE Transition Radiation Detector are equivalent to patterns,
produced by different particle types. As described in Chapter 5 artificial neural networks
are particularly suitable for pattern recognition, especially if it is unknown how to access
the pattern differences. This is exactly given in case of particle identification with the
TRD.

6.3.1 Particle Identification Using Artificial Neural Networks with
other Transition Radiation Detectors

There have been several attempts in order to use artificial neural networks for particle
identification in transition radiation detectors. The first successful approach using neural
networks was performed by Bellotti et al. [Bel93]. In this study a transition radiation
detector with ten thin (10 mm) layers was used [Bar92]. The network was a three-layered
multilayer perceptron and used as input the deposited charge of the ten layers with a 3-bit
resolution. It was shown that the performance using the artificial neural network could be
increased by a factor of up to three compared to likelihood methods.

The Alpha Magnetic Spectrometer (AMS-02) collaboration also presented a study
on particle identification using its transition radiation detector with artificial neural
networks [Doe06] for the separation of protons from electrons. The AMS-02 transition
radiation detector consists of 20 layers of 6 mm thick straw tubes. For particle
identification with artificial neural networks two approaches were tested. In the first
approach the deposited charges in the 20 layers were used as input. Here, the performance
did not reach the proton rejection that could be achieved with a likelihood method on
deposited charge. For the second approach preprocessed variables, namely the output
of four different PID methods, were used as input for a neural network. This method
combined the output of the neural network from the first approach, a likelihood method
on deposited charge, cluster counting, and the Fisher’s discriminant. The proton rejection
was improved by about 25% compared to the second best method, which was the
likelihood on total deposited charge.

Another experiment with a transition radiation detector where a neural
network approach was tested is the future Compressed Baryonic Matter (CBM)
experiment [And06a]. A transition radiation detector with 12 layers, with a thickness of
0.7 mm each, was simulated for this study [Aki07] based on results from previous test
beams. The input for the network was the preprocessed deposited charge in each layer.
The pion rejection of the artificial neural network was comparable to the performance of
other PID methods.
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Artificial neural networks have been successfully applied to particle identification
using transition radiation detectors. The results described above show that slight
improvements can be achieved compared to other methods. The success of the artificial
neural network approaches is caused by using additional information compared to the
standard methods. The likelihood method in the study presented by Bellotti et al. has
very limited access to the deposited charge, since the readout resolution was limited to
3 bits. This leads to a rough estimate of the deposited charge in the different layers
and consequently to a limited accuracy of the likelihoods. The success of the neural
network compared to the likelihood method might be achieved due to the fact that the
correlated signal of all ten layers is taken into account. The likelihood method only
combines the particle probabilities of the single chambers alone and cannot take into
account correlations between the chambers. The successful network of the AMS-02
study combines results achieved with different analysis methods. Each analysis method
takes slightly different aspects of the pattern difference into account (deposited charge,
number of clusters, etc.). The input of the second network is highly correlated (correlation
coefficient |r| ≈ 0.7 [Doe06]) but the network is able to disentangle this information and
provide an improved particle discrimination. If no (or only little) additional information is
available for a neural network no significant improvement is achieved. This is the case for
the network used by the CBM transition radiation detector where only a transformation1

of the deposited charge in each layer is taken into account.

6.3.2 Working Principles of Artificial Neural Networks with the
ALICE Transition Radiation Detector

Compared to the ALICE TRD the transition radiation detectors discussed in the previous
section have no drift region, and consequently their signals have no temporal significant
structure. The additional information exploited with the neural networks comes from the
correlation of several layers or the combination of different PID methods. For the ALICE
TRD the correlation between the different layers is assumed to be negligible2. Instead,
the temporal structure of the signal of one layer contains the additional information that
is not accessible with standard PID methods.

In order to access the additional information two approaches can be followed. As
described before, electrons and pions create different characteristic patterns in the TRD

1The transformation is a shift of the deposited charge such that the average value for pions is at zero
which results in a faster learning [Aki07].

2This is only an approximation. Electrons can produce bremsstrahlung which leads to correlation
between the different layers.
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Figure 6.10: Illustration of the input for the artificial neural networks using the deposited charge in eight
slices of a TRD module. Analogous to the two-dimensional likelihood method on deposited charge the
chamber is divided into several slices.

modules. The pure form of these patterns are the time resolved raw ADC signals and are
used in the first approach. The second approach uses preprocessed variables. Generally,
preprocessed variables allow a faster training since the network does not have to entangle
the available information. The disadvantage of this approach is that probably not the
complete available information is used. It could be that important variables are not taken
into account, in case it is not known that they are important. The presentation of the
raw signal to the network lets the network itself "decide" which parts of the patterns are
important and which not. The first approach was applied in Reference [Wil04], and will
be analyzed in detail in this thesis. The second one was presented in Reference [Kim08].

Neural Networks Using the Deposited Charge Information

The simplest way of providing different patterns to the artificial neural network is the
presentation of the deposited charges in several time windows. This is illustrated in
Figure 6.10. The average pulse height in each time bin is again plotted for electrons (red)
and pions (blue). The grey lines subdivide the chamber into eight time slices, comparable
to the division into two slices for the 2-dim LQ method. The number of used slices is
not limited to eight. The only limitation in granularity is given by the number of time
bins originally read out by the Transition Radiation Detector. In case the number of slices
equals the number of time bins, all available information is contained in the pattern and
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Figure 6.11: Reference network as used in AliRoot v4-17-Rev12 for Layer 1 and particles of 2 GeV/c. The
input layer has eight input neurons, corresponding to the eight deposited charges which are presented to
the neural network. The output layer has five output neurons, one for each particle type that is taken into
account. The particle types are from the bottom neuron to the top neuron electron, muon, pion, kaon and
proton. The network has two hidden layers with fifteen and seven neurons respectively. The thickness of the
connecting synapses represents the absolute value of the weight that is assigned to the connection. Synapses
with a positive weight are shown in black, that with a negative weight in red.

is therefore (theoretically) available for the particle identification. It will be shown that
with increasing number of slices the discrimination power of the network increases but
saturates for high granularities.

The approaches of the use of artificial neural networks with other detectors use
correlated information across detector layers. In principle, this is also possible for the
ALICE TRD. The application of a network using the combined information of six time
slices in four ALICE TRD prototype chambers was performed with 2002 test beam data in
Reference [Gun03]. The obtained pion suppression was improved compared to likelihood
on total deposited charge by a factor of about two. Practically, taking into account all
six detector layers and a high granularity leads to a network with a large number of
connections. Consequently, the training would be slow and the needed amount of training
data would be large. In order to limit the number of input parameters the deposited charges
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in one TRD layer is presented to the network. In Figure 6.11 a reference network is plotted
as it is used in AliRoot. The network is a feed-forward network and is composed of the
input layer (on the left side), two hidden layers, and the output layer (right side). The blue
dots represent the neurons, the black lines are the synapses. The thicker the line the larger
is the weight used for that synapsis.

The topology of the network is specified by several factors. The number of
input neurons is given by the provided number of slices. As a compromise between
discrimination power and needed storage space the number of slices is limited to eight
in AliRoot. The number of output neurons is determined by the number of particle types
taken into account. This is two (electrons and pions) for test beam data and five (electrons,
muons, pions, kaons and protons) for data analyzed with AliRoot. The number of hidden
layers, as well as the number of hidden neurons is not a priori fixed by any rule (see
also Section 5.3). Instead, several tests have been performed and the topology with
two hidden layers, with fifteen and seven hidden neurons, was found to give the best
performance [Wil04]. However, it is not guaranteed that this topology of the hidden
layer(s) is the best possible one. In principle, other solutions might exist which have a
better discrimination capability.

The network is constructed in such a way that for the activations of the output
neurons Oi it is:

0≤ Oi ≤ 1. (6.12)

The sum of the k output neuron activations is unity:
k∑
i

Oi = 1. (6.13)

The output neurons represent the different particle species which are taken into account.
The activation of the different output neurons can be interpreted as likelihood [Ruc90] that
the input parameters belong to the represented particle type. Analog to Equation 6.1 the
intrinsic detector response RT RD for the neural networks, a stack of N Transition Radiation
Detector modules, and the particle type i can be calculated by:

RT RD (s|i) = L(s|i) =

N∏
j=1

Oi
(
s j
)

∑
k

N∏
j=1

Ok
(
s j
) . (6.14)

s j is the signal in layer j presented to the artificial neural network and s is the vector of
signals in all N layers. Oi is the output of the neural network for particle type i and k is
the number of particle types taken into account.
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Figure 6.12: The neural network used with preprocessed variables (plot based on Reference [Kim08]). The
network uses five input neurons (see text for explanation), one hidden neuron, and one output neuron. This
is an untrained net, therefore the connections between the neurons have all the same thickness.

In previous publications [Wil04, Adl05a] it was shown with test beam data from 2002
that this approach is very successful and improves the discrimination power compared to
the likelihood method on total deposited charge (LQ) by about a factor of three to four.
The performance in simulations is about a factor of two better than the performance of
the two-dimensional likelihood (2-dim LQ) approach. The method using artificial neural
networks with the deposited charges as input parameters is one of the standard methods
for particle identification for the TRD in AliRoot. The performance with test beam
data (see Chapter 7) as well as its discrimination power in simulations (see Chapter 8)
are the main topic of this thesis and will be discussed and analyzed in detail in this work.

Neural Networks with Preprocessed Variables

As discussed in Section 5.4 "adequate" variables should be presented to an artificial neural
network. In this approach variables which are known to be useful in classical methods for
particle identification are combined. The variables used for particle identification are:

• the number of clusters above a high threshold Np,

• the number of time bins above a low threshold Nthresh,

• the time bin with the largest amount of charge Tmax,

• the deposited charge of the second largest cluster Q2,
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• the integrated charge below the low threshold Qsum.

Np corresponds to the number of transition radiation photons and δ electrons, Nthresh

will be higher for electrons than for pions and Tmax determines the position of a possible
TR photon. Q2 can additionally help to identify electrons since the probability to produce
two large clusters (from δ electrons) is very small for pions compared to the production
probability of TR photons and δ electrons by electrons. Qsum is very similar to a
truncation. The used network consisted of only one hidden neuron and one output neuron
(see Figure 6.12). This configuration was used in order to be able to further process and
analyze the neural network output.

Even though the network topology is very simple, a network using this set of
variables was very successful in separating electrons from pions in simple Monte
Carlo simulations [Kwo08]. Adding more hidden neurons might further improve
the discrimination power. Additional output neurons could expand the identification
capability to other hadrons, as foreseen by AliRoot. Unfortunately, up until the writing
of this thesis this approach was not used on test beam data nor on AliRoot simulations
which could show its applicability under real conditions.

6.4 Pion Efficiency

6.4.1 Determination of the Pion Efficiency

The determination of the efficiency of a particle identification method in the Transition
Radiation Detector is similar for the different PID methods. For its determination two data
sets are necessary, signal data and background data. In this section only the discrimination
of electrons from pions is discussed, but the procedure is the same for other particle types.
Here, the electrons are the signal and the pions are background. The background does not
necessarily consist of one particle type only, it can also be a cocktail of several particle
types.

In order to determine the pion efficiency επ for a given electron efficiency εe of e.g.
90%, the calculated likelihoods to be an electron for electrons and pions are filled in a
histogram (see Figure 6.13). Electrons are plotted in red and pions in blue. The likelihood
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Figure 6.13: Likelihood distribution for electrons (red) and pions (blue) for four TRD layers. This
likelihood distribution was extracted from test beam data 2002 using artificial neural networks. In order
to determine the pion efficiency at 90% electron efficieny, those 90% of the electrons with the largest
electron likelihoods are integrated and a cut is made (grey line). The pion efficiency is the fraction of pions
that sits above this integration limit.

distribution for electrons is integrated. The lower limit of the integral is chosen such that
90% of the electrons are taken into account:

εe =

1∫
Le(εe=0.9)

f e (Le)

1∫
0

f e (Le)
:= 0.9, (6.15)

where f e is the likelihood distribution for electrons. The pion efficiency is given by the
rate of pions which is inside of the integration limit for electrons:

επ =

1∫
Le(εe=0.9)

f π (Le)

1∫
0

f π (Le)
. (6.16)
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Figure 6.14: Pion efficiency versus electron efficiency for simulated data with a momentum 2 GeV/c.
In order to estimate the error of the pion efficiency, the pion efficiency is plotted versus the electron
efficiency. The derivative at 90% electron efficiency is estimated using a fit with a second order ploynomial
function (red line) and enters the error.

6.4.2 Error Calculation

With the assumption, that the references (the two-dimensional charge distributions or
the trained neural networks) are ideal, an infinite number of events which can be used
to determine the pion efficiency would lead to a perfectly determined discrimination
capacity of the TRD. Unfortunately, the references are not ideal and the number of used
events is limited, too. It is not possible to determine the systematic error coming from
non-ideal references. Therefore, it is not possible to calculate the error of the detector’s
discrimination capacity, but only the statistical error of the pion efficiency calculated with
the given references. Consequently, the accuracy of the calculated pion efficiency depends
on the used number of electrons and pions. In this thesis numbers between 3 thousand
and 30 thousand tracks are used for the pion efficiency determination. The following
argumentation and the equations follow Reference [Ber08e].

The lower integration limit for the calculation of the pion efficiency can be seen as a
threshold te. First, the case that this threshold is fixed will be considered. A pion can be on
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one side of this threshold or on the other side. The error of the pion efficiency σεπ(te=const)
is binomial and it is:

σεπ(te=const) =
√

1
Nπ

επ (1− επ), (6.17)

where Nπ is the total number of pions.

In reality, the threshold varies with the electron distribution. This variation of the
threshold can also be treated as binomial. The size of the variation depends on the
influence of the electron efficiency on the pion efficiency. In Figure 6.14 the pion
efficiency is plotted versus the electron efficiency. The likelihoods are calculated with
artificial neural networks and simulated particles with a momentum of 2 GeV/c. The
variation is given by the derivative of the pion efficiency at an electron efficiency εe = 0.9.
For the error of the pion efficiency the two error components are combined:

σεπ
=
√

σ2
επ(te=const) +σ2

επ(εe)
, (6.18)

with

σεπ(εe) =
(

dεπ

dεe

)
|εe=0.9

√
1

Ne
εe (1− εe), (6.19)

and Ne as the total number of electrons. The derivative is extracted from the plot of pion
efficiency versus electron efficiency using a polynomial fit function of second order. In
Figure 6.14 it is plotted in red. It can be seen that in this case the derivative is small.
Consequently, the influence of the threshold on the error of the pion efficiency is small,
too.

6.5 AliRoot Implementation of Particle Identification
with the TRD

In AliRoot two different methods of particle identification are foreseen for the Transition
Radiation Detector. The first one is the two-dimensional likelihood method on
deposited charge in two chamber regions (see Section 6.2.5) and the second one is the
approach using artificial neural networks which exploit the deposited charge in eight
slices (Section 6.3.2). The default PID method is the neural network method. It is possible
to switch between the different methods in the macro which steers the reconstruction. The
2-dim LQ method can be activated with AliTRDReconstructor::SetOption("!nn").

The particle identification values are calculated for each tracklet separately. A tracklet
is a track segment in one Transition Radiation Detector layer and is represented in AliRoot



6.5 AliRoot Implementation of Particle Identification with the TRD 115

by the class AliTRDseedV1. For the calculation of the PID, the deposited charges have
to be calculated first. Depending on the particle identification method three (for 2-dim
LQ) or eight (for neural networks) deposited charges have to be determined per tracklet.
This happens in the function AliTRDseedV1::CookdEdx(). The deposited charges are
calculated on basis of the AliTRDclusters which belong to the track. Here, not the total
values of the cluster’s deposited charge are used. The reason for this is the following:
Each cluster belongs to one time bin. Depending on the geometrical position of the
cluster its drift time and also the spatial width of a the time bin varies. In addition, the
tracklet’s total length depends on its angle of incident. In order to take this into account a
normalization according to the tracklet’s length and the length of its clusters time bins is
applied [Ber09b].

In the Offline Conditions Database (OCDB) the references for the particle
identification are stored. For the two-dimensional likelihood method two-dimensional
histograms (TH2F) for eleven momenta and the five particle species are stored, 55
in total. For the neural networks approach TMultiLayerPerceptrons for the same
eleven momenta and the six TRD layers are stored, 66 in total. Based on the charge
deposits the PID probabilities are calculated via AliTRDCalPID::GetProbability().
AliTRDCalPID is the base class for the OCDB container of the PID references. Using
this class the references are called depending on the PID method, the momentum, and
the requested particle type (for 2-dim LQ) or the detector layer (for neural networks)
respectively. In order to correct the effect of the momentum which is mostly not exactly
identical to the ones of the stored references, the PID is calculated for two references.
These references are the ones with the next smaller and with the next larger momentum.
In case the momentum is smaller than the momentum of the smallest reference, only the
reference with the smallest momentum is taken into account. This is also true for momenta
larger than the momentum of the largest reference. The resulting particle probability Li is
then:

Li = l1 +(l2− l1)
p− p1

p2− p1
. (6.20)

l1 and l2 are the calculated probabilities from the two references, p1 and p2 are the
momenta of the references, and p is the momentum of the track. The PID responses
of one TRD track are the combination of the probabilities of the single tracklets following
Formula 6.1.

The PID response probabilities of each detector are stored for each reconstructed
track in the Event Summary Data tracks (AliESDtrack) in an array. The
array has the size of the number of particle species taken into account. In
the current AliRoot version (August 2009) five particle types are considered:
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electron, muon, pion kaon, and proton. For the Transition Radiation Detector
the information is stored in AliESDtrack::fTRDr[AliPID::kSPECIES] and can
be accessed via AliESDtrack::GetTRDpid(). In order to be able to recalculate
the response probabilities also the deposited charges are stored in the ESD
tracks (AliESDtrack::fTRDslices). Using this information and the momentum of a
track the particle probabilities can be recalculated whenever needed.



7. Particle Identification Performance
in Test Beams

An important step during the development of technical apparates like the Transition
Radiation Detector is the testing of prototypes. Several TRD prototypes with various
radiators and different gas mixtures were tested over the course of the last few years
in test beams. In this chapter the particle identification (PID) performances of the
chamber prototypes tested in 2002 and 2004 as well as a complete supermodule in its
final configuration tested in 2007 are presented. An overview of the different test beams
including technical details as well as the corresponding online logbooks can be found in
References [And, Ems10].

7.1 Test Beams for the ALICE TRD at CERN PS

The test beam measurements took place in 2002 and 2007 at the T10 and in 2004 at
the T9 beam line of the CERN PS (Proton Synchrotron) East Area [Dur97]. The beam
was a secondary beam, composed of a mixture of electrons and negative pions and was
produced by protons with an energy of 24 GeV hitting a beryllium target:

p+Be → π
+,π−,π0 +X

π
0 → γ+ γ

γ → e+ + e− (in Be target).

The momentum range that was studied reached from 1 GeV/c up to 6 GeV/c for the T10
and from 1 GeV/c up to 10 GeV/c for the T9 beam line.

7.1.1 Experimental Setup

One of the main goals of these test beam measurements was to analyze the PID
performance of the used TRD chambers. Besides the PID performance, other topics were
analyzed with very similar setups. Schematic plots of the test beam setups can be found
in Figure 7.1.

The setups for the measurements all followed the same principle. Figure 7.1 a) shows
the general setup that was used for all the test beam times. It consisted of the following
components:

117
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Figure 7.1: Setup of the test beam times [And]. a): The general concept of the setup consisted of two
scintillators (S1, S2) working as beam trigger, two silicon strip detectors (Si1, Si2) for beam position
monitoring, a Cherenkov threshold counter (Cher) and a lead glass calorimeter (Pb-Glass) for independent
particle identification, and finally the Transition Radiation Detector units (TRD). The coordinate system is
defined in the following way: x is perpendicular to the beam axis in horizontal direction, y perpendicular
to the beam axis and perpendicular to the x axis, and z is parallel to the direction of the particle beam. The
setups for the different test beam times (b): 2002, c): 2004, and d): 2007) differed in some aspects from the
general concept. The details can be found in the dedicated Sections 7.2.1, 7.3.1, and 7.5.1.
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• scintillation detectors (black),

• silicon strip detectors (green),

• a Cherenkov detector (blue),

• a Pb-glass calorimeter (blue),

• and Transition Radiation Detector modules (red).

The scintillation detectors provided a trigger signal. In case both scintillators were
hit within a time window, all the detectors were read out. In addition they could be
used to scale down the recorded amount of pions. The ratios of pions to electrons at the
PS beam lines were a function of the particle momentum. With increasing momentum
the ratio of electrons decreased to about 10%. In order to provide a similar number of
electrons and pions for the offline analysis, the scintillators were used in coincidence
with the Cherenkov counter or the lead-glass calorimeter in order to define an electron
trigger. Depending on the beam momentum different scale-down factors were used. The
scintillators were also used to monitor the beam intensity.

The silicon strip detectors had an active area of 32 mm×32 mm. They monitored the
beam profile with a resolution of 50 µm in horizontal and vertical direction. Figure 7.2
shows the measured values for Run560 (2 GeV/c). The upper plots show the beam profile
in the two silicon strip detectors, while the lower plots show the correlation between them.
It can be seen on the upper plots that in x direction both were not positioned with respect
to the center of the beam. The correlation plots can be used to exclude scattered particles
or events with more than one particle.

In order to be able to perform studies on the particle identification capabilities
of the TRD, it is necessary to have an independent PID measurement. A part of
that identification was provided by a Cherenkov threshold counter. Pions are much
heavier (mπ ≈ 140 MeV/c2) than electrons (me ≈ 511 keV/c2). In case of equal momenta
their velocities differ. In case the velocity of a charged particle exceeds the speed of
light in the traversed medium, Cherenkov light is emitted. The radiation can be exploited
with the Cherenkov detector. The refractive index n of air at a wavelength of 589 nm
is 1.000272 [Ger86]. Thus, the required velocity to produce Cherenkov radiation is
β > 0.999728. This is the case for electrons with a momentum p > 22 MeV/c and pions
with p > 6.0 GeV/c. The velocity of electrons traversing air with a momentum of 1 GeV/c
is large enough to produce Cherenkov light; that of pions with the same momentum is
below the threshold. This is illustrated in Figure 7.3. Measurements of the two Cherenkov
counters from the test beam 2002 at particle momenta of 2 GeV/c are shown. For both
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Figure 7.2: The upper plots show the signals of the two silicon strip detectors for 2 GeV/c beam data from
the test beam 2002, Si1 on the left side, Si2 on the right side. The beam profile is visible for both detectors,
but they are not centrally hit. The lower plots show the respective correlation between the x position (left)
and the y position (right). If both detectors would be perfectly aligned, the entries would lie exactly on a
diagonal starting at the origin. It can be seen that the detectors are displaced by about 5 mm in x and about
2 mm in y direction with respect to each other.
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Figure 7.3: The independent particle identification. The detector responses for 2 GeV/c test beam data of
2002 are shown. Pions are expected to produce a signal at zero in the Cherenkov detectors and in addition
a smaller signal than electrons in the Pb-glass calorimeter. On the left side the responses of the single
detectors are shown. On the right side the correlation plots each with two detectors. In order to be tagged
as an electron or a pion, a particle has to pass cuts on all three detectors.
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Cherenkov detectors a sharp peak caused by pions can be seen at zero. A second peak,
but much broader, was produced by electrons.

The second detector that was used for an independent particle identification is a lead-
glass calorimeter. Electrons hitting the Pb-glass calorimeter deposit most of their energy
in the detector by the production of electromagnetic showers. The mean free path for
hadrons is large compared to that of electrons. Consequently, pions deposit only a small
fraction of their energy. The measured energy deposit in the Pb-glass detector for 2 GeV/c
particles from the test beam 2002 is shown in Figure 7.3. Two peaks, originating from
pions and electrons, can clearly be seen.

Each PID-monitoring detector separately allows the discrimination of pions from
electrons to a certain extent. The purity was high enough to suppress pions at the trigger
level. Nevertheless, in order to study the particle identification performance very pure
samples of electrons and pions were needed. The combination of both, Cherenkov and
Pb-glass, provided particle samples with a purity of about 0.1%. Figure 7.3 shows
the correlation plots for Cherenkov and Pb-glass. It can be seen that two components
(electrons and pions) can be clearly discriminated.

7.1.2 The Extrapolation Method

The ALICE Transition Radiation Detector consists of six layers of modules. For particle
identification the responses of the single layers are assumed to be independent of each
other and can be combined using Equation 6.1. In case this is valid, and assuming an
equal PID performance of each TRD layer, the pion efficiency επ of n TRD layers at a
constant electron efficiency εe = 0.9 follows an exponential function:

επ(εe = 0.9,n) = ae−bn. (7.1)

a and b can be extracted by applying a fit to measured pion efficiencies. With this
Equation 7.1 pion efficiencies for any number of layers can be extrapolated.

In the tests of the small prototypes in 2002, four chambers, and in 2004 three
chambers were used for particle identification performance measurements. The procedure
is illustrated in Figure 7.4 for 2 GeV/c particles from the test beam in 2002. The pion
efficiencies for the first chamber, the first two chambers, the first three chambers, and all
four small prototype chambers are calculated (black dots). Equation 7.1 is fitted to the
calculated pion efficiencies and the result for six Transition Radiation Detector chambers
can be extrapolated (red dot). In addition, the result for the four small prototypes together
with the real-size chamber is plotted (blue dot). The deviation of the result from the
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Figure 7.4: Visualization of the extrapolation method. The pion efficiency using artificial neural networks
versus the number of TRD layers taken into account for 2 GeV/c particles of 2002 test beam data is shown.
Black dots are the calculated pion efficiencies for one, two, three, and four small prototype chambers. The
blue circle is the calculated pion efficiency for the small chambers together with a real-size chamber. The
red star represents the extrapolated value of pion efficiency using an exponential fit function. The real-size
chamber is not taken into account for the extrapolation.

extrapolated value for five chambers might come from different behavior of the large
chamber. The real size chamber has a different geometry and also had more noise on
the ADC channels. However, it was shown that the particle identification performance
of a single chamber is not the same for all layers, but depends on the position in a
stack [And04a]. A more detailed discussion about the validity of the extrapolation method
will follow in Section 7.4.3. Nevertheless, in the following sections the extrapolation
method is applied whenever the number of used chambers deviates from six, which is the
numbers of layers used in the final ALICE setup.
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7.2 Test Beam 2002 - Prototype Testing

7.2.1 Setup 2002

In 2002 several measurements with different setups were made. One of the goals of
this beam time was to test the performance of different radiators. In Figure 7.1 b) the
setup for the radiator tests which was also used for the particle identification performance
measurement is illustrated. Instead of one Cherenkov detector two were used for the
particle identification. Instead of two scintillators three (S1, S2, and S3) were in the
setup, but only coincidences of S1 and S3 were used as trigger.

One real size Transition Radiation Detector chamber with the final geometry that is
used in ALICE and four small prototypes of TRD chambers were tested. The small
chambers had an amplification region of 7 mm and a drift region of 30 mm, which is
identical to the TRD modules used in ALICE but with a smaller active area (25×
32 cm2) [And04c]. The readout pads were rectangular with a size of 0.75× 8 cm. The
signal was read out using an 8-bit non-linear Flash ADC with adjustable baseline and a
sampling frequency of 20 MHz. The higher sampling frequency compared to the ALICE
TRD readout leads to a larger number of time bins (60 instead of 30) but can be easily
reduced to the nominal value. The data of this beam time is analyzed using the recorded
ADC values of eight readout pads.

Measurements were taken at the SPS T10 beam line at momenta of 1, 1.5, 2, 3, 4, 5,
and 6 GeV/c. The ratio between the number of electrons and pions strongly depends on
the momentum. Therefore, part of the data was taken with a scale-down factor for pions
in order to provide comparable statistics for electrons and pions. The scale-down was
achieved by adding a threshold on the signal of one Cherenkov detector (Cherenkov 1) to
the trigger. The beam hit the chambers with an incident angle of 15◦ with respect to the
normal to the anode wire. Due to the incident angle space charge effects, which could
lead to a worse performance, could be reduced.

7.2.2 Quality Cuts

For the analysis of the pion suppression performance pure samples of electrons and
pions are needed. In 2002 three detectors (Cherenkov1, Cherenkov2, and Pb-glass) were
available providing an independent particle identification. In the following analysis only
particles that have signals above momentum dependent thresholds in all three detectors
were used as electrons. Only particles with signals below the thresholds in all detectors
were assumed to be pions. The thresholds in the Cherenkov detectors were the same for
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electrons and pions, while the threshold in the Pb-glass was different. The different values
can be found in Table C.1.1.

Particles that were used in the analysis needed to be well defined. Therefore, only
particles that hit both silicon strip detectors were used. An additional cut on the correlated
x and/or y position in both silicon strip detectors could be used to suppress scattered
particles. Since the correlation cut had no large influence on the PID performance in the
analysis of 2002 test beam data it was not taken into account.

The only cut that affected the chambers directly was a cut on the position of
the recorded pad. For each event and each chamber the pad with the largest charge
deposit (padmax) integrated over the complete drift time was searched. In order to have
the complete charge information available, the pad with the largest charge deposit and its
two neighbors were used. In case padmax was positioned on the edge and had only one
neighbor in any chamber, the complete event was suppressed, since the measured charge
was expected to be incomplete.

Data of very good quality were extracted with the described cuts. The analyzed runs,
the number of used events, and the influence of the cuts are listed in Table C.1.2.

7.2.3 Pion Efficiency

In this section the results of pion efficiency calculations are presented. All results were
obtained using the extrapolation method (see Section 7.1.2) with extrapolating from the
pion efficiencies of one, two, three, and four chambers to that of six. The real-size
chamber that was also part of the setup was not taken into account for the determination
of the pion efficiency. Results for the pion efficiency using artificial neural networks
already have been published in References [Wil04, Adl05a]. In the meantime the analysis
procedure evolved. The number of used input neurons, the error calculation, and the
neural net software were different from the current analysis. In order to be able to
compare the analyses of the different test beam times directly and to compare them to
results obtained with AliRoot simulations, the test beam data 2002 was here analyzed
again. The published results differ slightly from the results presented in this thesis. The
differences between the old analysis and the new one are discussed in Section 7.2.4.

The data used for the pion efficiency calculation was extracted from the raw data
files using the cuts described in Section 7.2.2. In addition a transformation from 60 time
bins to 30 time bins was performed in order to match the final TRD readout electronics.
The signal was scaled down by a factor of 4,000 in order to fit into an interval between
zero and one and to match the requirements for an optimal neural network input (see
Section 5.4.3). The number of events was further limited in order to provide an equal
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Figure 7.5: Total deposited charge for particles with a momentum of 2 GeV/c. Electrons are shown in red,
pions in blue.

number of electrons and pions for each run. The data set was split into two subsets again
each with equal numbers of electrons and pions. One for training the neural networks
and the other one for the determination of the pion efficiency. The training of the neural
networks as well as the building of the reference histograms likelihood on total deposited
charge was performed for each chamber separately.

Two PID methods were applied to the test beam 2002 data. The first one, the
likelihood method on total charge (LQ), is a standard method for particle identification
with transition radiation detectors. It is used in this thesis as a "standard candle" in order
to compare different PID methods. The results for LQ were compared to results obtained
with artificial neural networks for all momenta. For the neural networks ten input neurons
were used. The momentum scan of pion efficiency was done with runs cern558 – cern564.
The momenta were in a range between 1 and 6 GeV/c. The chambers were equipped with
the INV6 radiator. In order to reduce the pion/electron ratio a scale-down for pions was
implemented.

Likelihood on Total Charge (LQ)

The events that were used for likelihood on total charge were exactly the same ones that
were used for the analysis with artificial neural networks. The only difference was, that
the reference histograms were built with all the events and not with a dedicated data
sample as it was done for the training of neural networks. Using all available data
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allowed a fine binning for the reference histograms. The deposited charge distributions
for Chamber 2 and a momentum of 2 GeV/c can be found in Figure 7.5. The results of the
pion efficiencies are shown in Figure 7.6 b).

Comparison of LQ Results to LQ-like Input for Neural Networks

A nice test for the artificial neural networks is to verify whether they can reproduce the
results obtained with the likelihood on total charge. In this case the only information
available to the artificial neural network is the information which is available for the
likelihood method, i.e. the integrated deposited charge in each chamber. The performance
of the neural networks should be of the same order as the performance of LQ.

For the comparison of neural networks to LQ the number of input nodes was reduced
to one. The input was the same as for the likelihood on total charge measurement but with
the difference that two data samples, a training sample and a validation sample were used.
The results are shown in Figure 7.6 b). It can be seen that the neural networks with one
input node reproduce the results of pion efficiency with LQ for all momenta very well.

Pion Efficiency versus Input Neurons

The next check was the pion efficiency scan with artificial neural networks for different
number of input neurons. It was expected that with a larger number of input neurons
the pion suppression power improves, since more information is available for particle
identification (see Section 6.3). At some point a further increase in the number of input
neurons should not lead to a larger pion rejection, it will saturate. This analysis allows to
find the optimum number of input neurons for further analyses.

The run used for this analysis was taken at a momentum of 2 GeV/c. The input vector
for the neural network was formed based on the 30 time bins from the first data conversion.
The number of time bins that belong to one input neuron was determined by division of
the total number of time bins (ttot = 30) with the number of designated input neurons n.
The assignment of a time bin ti to the input neuron I j is given by:

I j =
tin
ttot

. (7.2)

This division is an integer division. In case the number of designated input neurons is not
a divisor of ttot the remainder was assigned to the last input neuron In. The assignment of
the time bin to the input neuron is illustrated in Figure 7.7 for seven input neurons.

The networks were trained for 10,000 epochs with a learning parameter of η = 0.001.
The networks were saved after each 100 epochs, which allowed to find the optimal number
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chambers) versus momentum. Red dots represent the results of neural networks using 10 input neurons.
The neural networks showed an improved pion efficiency by a factor of about three compared to likelihood
on total deposited charge.
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of training epochs for each number of input neurons. The results for pion efficiency versus
the number of input neurons is shown in Figure 7.6 a). The evolution of the pion efficiency
was as expected: it decreased very fast for small numbers of input neurons and saturated
with higher numbers.

For the further analysis ten input neurons were used. It can be seen that using ten input
neurons does not significantly worsen the pion efficiency compared with the maximum
possible number of 30. This result also led to the number of eight input neurons used in
AliRoot. In AliRoot simulations 24 time bins are available instead of 30 as in the test
beam data. The difference comes from additional measurements that were taken during
the test beam for each event in order to determine the signal baseline and the noise of a
chamber. The significant signal for particle identification is the same for test beams and
simulations. The temporal width (number of time bins) of ten input neurons corresponds
to that of eight input neurons used in AliRoot simulations.

Artificial Neural Networks with Ten Input Neurons

The momentum scan with neural networks was performed in a similar way as the analysis
using different numbers of input neurons. The construction of the input data, the network
topology (of the hidden and the output layers), as well as the learning parameter were
identical to the previous analysis. However, not the network with the best performance
was used for the pion efficiency, but the result was obtained after a fixed number of
training epochs. The termination condition for the training was set to a fixed number
of training epochs in order to circumvent a possible bias that might be introduced by
using the validation data set for determining the best network (see Section 5.5).

The evolution of the pion efficiency versus the number of epochs is plotted in
Figure 7.8. The pion efficiencies for the training data set are blue and for the validation
data set they are red. Each point represents 100 training epochs. It can be seen that
after a first rapid decrease the pion efficiency remained at the level of the LQ method
(after about 500 epochs). Further improvement took longer and got very slow after about
4,000 training epochs. The differences in pion efficiency between training and validation
data set is within the expected error range.

Figure 7.6 b) shows the pion efficiencies for artificial neural networks with ten input
neurons and different momenta. It can be seen that with neural networks an improvement
of the pion suppression by a factor of about three can be reached using neural networks.
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Artificial Neural Networks with Ten Randomized Input Neurons

As discussed in Section 6.3.2 the improvement of the pion efficiency compared to
likelihood on total charge is expected to be caused by the different shape of pion and
electron average pulse height distributions. Electrons produce large clusters at large drift
times, i.e. early in the drift chamber, due to absorption of transition radiation photons.

In order to test whether the performance improvement of neural networks is really
caused by the temporal difference and is not due to a simple multiple measurement of
the deposited charge in different drift chamber regions the following check was made.
In case the improved pion efficiency does not depend on the temporal structure, but
only on multiple charge measurements, the arrangement of the measured charges should
not matter. This means, the order of the measured charges should not affect the pion
efficiency. As a basis for the check of temporal dependence, the neural networks with ten
input neurons and 2 GeV/c data were used. The signal vector was presented to the network
for training and validation in randomized order. The pion efficiency of the randomized
input can also be found in Figure 7.6 b). The result was consistent with the results of
likelihood on total charge and neural networks with a single input neuron.

7.2.4 Comparison to Previous Analyses

Analyses of the pion efficiency with artificial neural networks have already been published
in References [Wil04, Adl05a]. Since those publications, the analysis procedure evolved.
The changes between the two analyses as well as the differences for the pion efficiency
results will be discussed in this section.

Changes in the Analysis Procedure

A major change in the analysis procedure was the switch of the neural network
software. The older analyses were made using the Stuttgart Neural Network
Simulator (SNNS) [SNN98]. SNNS is a program with a graphical user interface.
It provides various network types, learning algorithms, and analysis tools. AliRoot
provides (via Root) artificial neural networks as well. Since their performance is
comparable to the Stuttgart Neural Network Simulator, it was decided to use Root’s
TMultiLayerPerceptron instead of SNNS.

Another difference was the used validation data set. During the test beam 2002 also
runs without an electron trigger (cern565 - cern569) were taken. Apart from that, these
runs were taken under the same conditions as runs cern560 - cern564. The older analyses
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used the runs with electron trigger for training and the runs without as validation data.
The nominal chamber settings differed a little bit for the runs with the same momenta
(see Reference [And]). Although the differences were small, the validation data set was
taken from the same run for the current analysis as the training data, in order to minimize
systematic effects.

In References [Wil04, Adl05a] the input layer consisted of 45 input nodes. They
were organized in a 15× 3 matrix, representing three adjacent readout pads and 15
time bins. Later analyses showed that the improvement compared to ten input neurons
is not large (see Section 7.2.3). In addition, a need for particle identification methods
implemented in AliRoot is the possibility of recalculation at the Event Summary
Data (ESD) level. The data size for TRD’s particle identification should be as small
as possible but sufficiently large to optimize the PID performance.

The last difference of the two analyses concerned the error calculation. The error
of the older results was obtained using the pion efficiency variation of two data subsets.
This allowed only a rough estimate of the error instead of the calculation presented in
Section 6.4.2.

Results and Discussion

The results of pion efficiency versus the number of input neurons for Reference [Adl05a]
and the actual analysis procedure are shown in Figure 7.9 a). The pion efficiencies of
the older analysis are plotted as blue squares. The training data was run cern560 and the
validation data cern565. The results of pion efficiency versus number of input neurons
from Section 7.2.3 are represented by red open circles. In addition, results obtained with
the same networks but with run cern565 as validation data are shown (green dots). It
can be seen that the new results are practically identical, independent of the validation
data set that was used. Contrary to this consistence the old results differ for a small
number of input neurons. The reason for this is not fully understood. The difference
in pion efficiency could be due to a prematurely terminated training or an inappropriate
choice of start parameters for the synapses. However, the results of the analysis made in
Section 7.2.3 seem to be more reasonable than the old ones.

The momentum scan of pion efficiency in Reference [Adl05a] was more consistent
with the new results. The old results are plotted as blue squares. The pion efficiencies with
the Root networks using 45 input neurons and runs without electron trigger as validation
data are represented by the green dots. The performance for the Root networks using the
same runs for training and validation and 45 input neurons are shown as red open circles.
Although there were some differences, the results agreed within the error bars. However,
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software (SNNS, blue squares) and different validation data (green dots) are shown. They are compared to
the results presented in Figure 7.6. In a) the pion efficiencies versus the number of input neurons are shown,
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the trend that was expected and visible for the old results – an increasing pion efficiency
with increasing momentum – could not be confirmed with the new results but was still
also consistent within the error bars.

7.3 Test Beam 2004 - Prototype Testing

7.3.1 Setup 2004 - Measurements with Prototypes

The test beam 2004 took place at the SPS T9 beam line. This test beam had two main
goals: One was the precise measurement of transition radiation photons produced by
the ALICE TRD radiator. This was done using a small prototype chamber [And06b].
The other one was the first test of a stack of six real size TRD modules with the final
electronics [Ems10, Bai06, Wil06]. Instead of two, in the test beam time 2004 four silicon
strip detectors were available (Si1 - 4). The setups for the different measurements can be
found in Figure 7.1 c).

For the measurement of transition radiation the photon has to be separated from
the electron. The emission of transition radiation for particles with γ > 1000 is almost
collinear to the particle track (see Section 4.2.2). In the setup scheme it can be seen that
a single radiator was positioned in front of a magnet. When an electron traversed the
radiator it could produce a transition radiation photon. The magnet deflected charged
particles while photons followed their original path. The radiator was directly followed
by a pipe filled with helium. The smaller atomic number of helium compared to that of
air provided a minimum absorption probability for photons. After traversing the helium
pipe the deflected charged particles and the photons were detected in a drift chamber (a
small prototype without radiator). The deflection of the charged particles by the magnetic
field was large enough such that electrons and photons could be clearly separated in the
chamber. While the transition radiation photon was absorbed in the first drift chamber the
electrons and pions traversed it completely and crossed the subsequent three small TRD
prototype chambers. The TRD prototypes were identical to the ones used in the test beam
of 2002. The three chambers with radiator were used for PID performance studies which
are analyzed in this section. The momentum range of the analyzed runs reached from
1 GeV/c to 10 GeV/c. The stack of real size chambers was not part of this setup. It was
implemented once the magnet has been removed from the setup.
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7.3.2 Quality Cuts

In 2004 only one Cherenkov threshold counter was available. For both PID detectors,
Cherenkov counter and Pb-glass calorimeter, a low and a high threshold was implemented
in the analysis. Events with signals above both high thresholds were tagged as electrons,
particles with signals below both low thresholds were assumed to be pions. All other
events were rejected. An overview of the used PID cuts can be found in Table C.2.1. As
for the test beam 2002 an event was only recorded when a signal was registered in two of
the silicon detectors. In this analysis Si3 and Si4 were used. Again only events that hit all
chambers on pads other than an edge readout pad were used.

Two additional cuts were implemented in the analysis of pion efficiencies in 2004. It
was observed that sometimes more than one particle traversed the experimental setup
at the same time. This leads to the problem that the PID devices could not be used
to unambiguously assign the observed signal to the correct track. Thus, the particle
identification information could not be used. In the analysis all events were suppressed in
which the value of deposited charge in the whole chamber minus the deposited charge on
padmax and its neighbors was larger than a threshold value. Sometimes there were events
where only very little charge was deposited in one or more of the drift chambers. These
events containing noise were eliminated by imposing a cut at the minimum charge that
had to be deposited.

The used runs and the number of events before and after cuts can be found in
Table C.2.2.

7.3.3 Pion Efficiency

The pion efficiencies were calculated in the same way as for the 2002 test beam data. The
number of chambers used for the extrapolation of the pion efficiency was in this analysis
only three instead of four. The first chamber in the setup was used to measure transition
radiation photons directly and independently of the particle’s deposited charge due to
ionization. Consequently, chamber one was not used for the pion efficiency analysis.

The pion efficiencies for different numbers of input neurons were calculated in the
same way as for the 2002 test beam data. Figure 7.10 a) shows the results for the training
data set as well as for the validation data set. It can be seen that they were consistent
within the error bars, but the validation data set was systematically shifted towards lower
pion rejection. The reason for the better pion efficiency was on the one hand that the
results for the training data set were systematically shifted to produce better results since
this was the data that was known by the network. On the other hand, fluctuations in the
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data itself could also cause this variation. Since the data sets for each data points were
identical, the fluctuation of pion efficiency tends always towards the same direction. It is
also possible that the validation data can show better results than the training data set (see
Figure 7.13 a)), this is caused by fluctuations of the data sets.

Pion efficiencies were estimated for likelihood on total charge (LQ) and artificial
neural networks using ten input neurons. In Figure 7.10 b) the results are plotted for a
momentum range from 1 - 10 GeV/c. The results show a clear momentum dependence.
The larger the momentum, the larger the pion efficiency, and consequently the smaller
the pion rejection. As for the 2002 test beam data the pion efficiency is better for neural
networks by a factor between two and three.

7.4 Test Beam 2004 - Test of a TRD Stack

Although the test of a stack of TRD chambers was carried out at the same test beam time
as the prototype tests of 2004 (Section 7.3), its performance was investigated in a different
analysis and is therefore discussed separately in this section.
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7.4.1 Setup 2004 - Measurements with the Stack

The measurement with the stack of six Transition Radiation Detector modules was carried
out with a similar setup as the test of the small prototypes in 2004. The only difference
was that the magnet was removed and replaced by the stack. The stack consisted of six
chambers of two different types1. The chambers are now part of the ALICE TRD. One
aim of the test beam was to test the final readout electronics. Therefore, the chambers
were equipped with the TRD readout boards. Since only eight readout boards were ready
at that time, the four inner chambers (1 - 4) were equipped with one board while the first
and the last chamber (0 and 5) had two boards. The readout boards were positioned such
that a large variety of incident angles could be measured. A schematic view of the stack
with the readout boards is shown in Figure 7.11. The stack was mounted on a frame which
could be moved horizontally and vertically. With that frame it was possible to take data at
various angles of θ (in z direction) and φ (y direction). The runs that were analyzed here
were taken at angles of θ = 15◦ and φ = 5◦. The runs taken at these angles were the only
available data recorded for different momenta. The analyzed momenta were 4, 6, 8, and
10 GeV/c.

7.4.2 Pion Efficiency

Contrary to the procedure for the small prototype chambers the pion efficiencies for the
stack of six TRD chambers were not determined with the extrapolation method. The six
chambers of the stack allowed to calculate the pion efficiencies directly. In addition, a
truncated mean on deposited charge was also tested and compared to the pion efficiency
performance of likelihood on total charge and neural networks. For the following analyses
the same cuts were used as for the pion efficiency calculations of the small prototypes
described in Section 7.3.2. The used runs are listed in Table C.2.3.

Truncated Mean

The truncated mean method is a standard particle identification method for gas detectors
using specific energy loss (e.g. time projection chambers). It is presented in Section 6.2.1.
For the truncated mean all six Transition Radiation Detector chambers of the stack were
treated as one single detector without any internal signal structure. Each of the 180
clusters was treated in the same way, independently of its position in a chamber or the

1The used chamber types were L1C0 and L2C0. In a supermodule they would be positioned at layer 1
(L1C0) or layer 2 (L2C0) respectively in the central stack.
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Figure 7.12: Pion efficiency versus rate of truncated clusters for 4, 6, 8, and 10 GeV/c. For all measurement
the 5% smallest clusters were rejected. A minimum of pion efficiency is reached if about 30-40% of the
largest clusters are truncated.

position of the chamber in the stack. The clusters were arranged according to the charge
deposit. The clusters with the largest deposited charge were removed.

The first step using the truncation method was the determination of the optimal
fraction of truncated clusters. This is illustrated in Figure 7.12. The pion efficiencies
for 4 GeV/c versus the fraction of truncated clusters are plotted. A fraction of zero
truncated clusters corresponds to the integrated charge deposit over all six chambers.
The larger the fraction of truncated clusters, the better is the pion efficiency. This is
the trend up to a value between 30% and 40%. The improvement of the PID capability
is caused by the suppression of large clusters, e.g. from δ electrons. The tail of the
pion distribution towards higher charge deposit vanishes (see also Figure 6.3). For larger
truncation fractions the pion rejection power decreases again caused by the reduced signal
to noise ratio.

Results

The pion efficiency versus the number of input neurons for the stack data is shown in
Figure 7.13 a). The results for the training data are plotted in red (open circles) and the
validation data in green (dots). As for the small prototypes (2002 and 2004) the pion
efficiency decreases quickly and saturates for increasing numbers of input neurons. For
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the training data no significant improvement is visible for more than two input neurons.
The pion efficiency of the training data is significantly larger than that of the validation
data set.

The pion efficiencies for different PID methods and momenta are plotted in
Figure 7.13 b). The results for a truncated mean method, cutting the 30% largest
clusters (green triangles), likelihood on total deposited charge (blue squares), and artificial
neural networks with ten input neurons (red dots) are shown. An interesting result is
that the truncated mean method is as good as likelihood on total charge at 4 GeV/c and
6 GeV/c. For larger momenta the likelihood method discriminates electrons from pions
significantly better than truncated mean. Artificial neural networks show again the best
electron/pion separation performance. At a momentum of 4 GeV/c they are about a factor
of three better than likelihood and truncated mean. At larger momenta the discrimination
is again better for neural networks, too, but not by such a large factor.

7.4.3 Comparison with Small Prototype Chambers

The results on pion efficiency with artificial neural networks for the small prototype
chambers and the stack of six TRD modules are summarized in Figure 7.14. The results
for artificial neural networks (a)) and likelihood on total deposited charge (b)) are shown.
The results for small prototypes are plotted as red dots, the results for the stack are blue
squares. While for 4 and 6 GeV/c the results are consistent with each other, for momenta
of 8 and 10 GeV/c a clear deviation can be seen for both PID methods.

Although the real size TRD modules are much larger than the prototypes, the
geometrical size should not affect the particle identification performance. The quality
cuts which have been used in both analyses were identical. The most obvious difference
is that for the prototypes the extrapolation method was applied while for the stack the
pion efficiency is calculated directly. Figure 7.14 also shows the pion efficiency for the
real-size chambers determined by extrapolation from the first three chambers (open green
squares). The pion efficiency is about 20% lower compared to the direct calculation at all
momenta and both PID methods. For momenta of 8 and 10 GeV/c the extrapolated results
for the stack match better to the small prototype results, especially for the LQ method.
The extrapolated results for the neural networks are between the other results but are not
consistent with them within the error bars. The results for LQ indicate that not the optimal
weights were found for the neural networks used with the stack. Additional training as
well as a new training with different starting parameters did not improve the performance.
A possible explanation is that in the training procedure only a local minimum was reached,
due to problems that may occur using the backpropagation algorithm (see Section 5.4.3).
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Figure 7.14: Comparison of 2004 prototype results (red dots) on pion efficiency with results achieved with
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It is possible that the optimal weights are not accessible with the training procedure used
here.

Figure 7.15 illustrates the calculated values of neural network pion efficiency for
10 GeV/c (blue dots) as well as the fit function (black line) and the extrapolated value
from three to six chambers (red star). In case the signals in the different chambers are
independent measurements Equation 7.1 should be valid and the results should follow
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Figure 7.15: Extrapolation method for 10 GeV/c stack data. Shown is pion efficiency versus numbers of
chambers that are taken into account. For the fit only the results of the first three chambers were used. A
clear difference can be seen for the extrapolated result (red star) and the directly calculated results (blue
dots).

an exponential fit function (shown as black line). The deviation from the exponential
behavior is obvious. The reason for the difference will be discussed in the following.

Electron Contamination of the Pion Sample

One possible explanation for the difference between extrapolation and calculation could
be a contamination of the pion sample by electrons. Let us assume that a small percentage
of the particles tagged as pions would be not pions but electrons. Most of the electrons
would be correctly identified as electrons by the TRD, but since they are tagged as pions
they contribute to the "misidentified pions". The result of the pion efficiency calculation
for n TRD modules would not follow Equation 7.1, instead the equation needs to be
modified by adding a shift parameter in order to describe the pion efficiency (επ) correctly:

επ(εe = 0.9,n) = ae−bn + c, (7.3)

a and b are fit parameter representing the scale and the slope of the function, and c is
the shift corresponding to the fraction of electrons in the pion sample. The electron
contribution to the calculated pion efficiency cannot be reduced by the TRD.
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Figure 7.16: Extraction of the shift parameter by fitting the pion efficiencies to an exponential function
including a constant shift (green line). The yellow star represents the evaluated pion efficiency using the
fit function. The blue dots represent the calculated pion efficiencies versus the number of layers taken
into account. The black line is the fit function as used by the extrapolation method, the red star is the
corresponding pion efficiency.

The electron contamination of the pion sample does not play a big role as long as the
number of misidentified pions (and consequently the statistical error) is large compared
to the contamination. With increasing number of chambers taken into account, the pion
suppression increases and the electrons in the sample of misidentified pions become
dominant. In case of estimating the pion efficiency with the extrapolation method (with
the assumption of no contamination) and a reduced number of chambers (e.g. three as
for the prototype tests in 2004) a deviation for the pion efficiency compared to a direct
calculation is seen as shown in Figure 7.15.

In order to estimate the contamination of electrons to the pion sample Equation 7.3
can be fitted to the calculated pion efficiencies used for the extrapolation method (see
Figure fig:Extra10GeVCont) instead of Equation 7.1. Since the goal was to find the
shift parameter and not compare the pion efficiencies to the results of the small prototype
chambers, all of the six calculated pion efficiencies were taken into account. The extracted
shift parameter was about 2% which corresponded to the difference in pion efficiency
between the prototype chambers and the stack. The extracted shift parameters can be
found in Table 7.1. However, it is not clear whether the shift parameter in fact corresponds
to the electron contamination of the pion sample. It is also possible that other effects play
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p (GeV/c) Run Shift Parameter Cont. in Cher Cont. in Pb Combined Cont.
4.0 429 (0.36±0.23)% 5.61% 1.66% 0.09%
6.0 428 (0.58±0.29)% 7.34% 2.61% 0.19%
8.0 426 (0.91±0.71)% 5.76% 6.70% 0.39%
10.0 425 (2.05±0.69)% 9.91% 3.20% 0.32%

Table 7.1: Estimated contamination of the data samples for stack data in 2004. The shift parameter was
estimated with the extrapolation method using all six TRD layers. The electron contaminations of the
pion samples are shown for the different detectors. The combined contamination corresponds to the
multiplication of the two contaminations in the single detectors. In case the deviation of extrapolation
method (assuming no background) and the direct calculation is only caused by the contaminations, the shift
parameter should be roughly identical to the combined contamination.

a role. In order to clarify wheter misidentified electrons are the only signifiant source for
the shift parameter, an alternative estimation of the contamination was done based on the
PID detectors used in the test beam.

In Figure 7.17 the responses of Pb-glass (upper plot) and Cherenkov detector (lower
plot) from test beam 2004 for 6 GeV/c are shown. The black line represents all measured
values. The red (electrons) and the blue (pions) areas are the particles that pass the
PID cuts for both detectors. The red and blue lines show the detector response of
the respectively other PID detector, e.g. the red line in the Pb-glass plot corresponds
to all particles identified as electrons by the Cherenkov detector. It can be seen that
particles identified as pions in the Cherenkov counter have a long tail towards high energy
deposition in the Pb-glass. The contamination is at about 7.3%. Vice versa, the particles
identified by the Cherenkov counter as electrons have a smaller tail towards low energy
deposit (contamination around 2.6%). This methods allows to determine the fraction of
particles where both detectors return opposite identities. The total contamination of the
data sample with wrongly identified particles can be estimated by multiplying the two
contaminations. A combined contamination is then at about 0.2% for 6 GeV/c. The
observed value of 0.2% contamination aproximately reproduces the observed deviation
between the extrapolation and the direct calculation of pion efficiency at a momentum
of 6 GeV/c (see Figure 7.14). The contamination values for the other momenta are
of a comparable size (see Table 7.1), but are small compared to the deviation between
extrapolation and direct calculation for momenta of 8 and 10 GeV/c.

The extracted shift parameters are much larger than the contamination levels estimated
with the particle identification detectors, for all momenta. It seems that the shift
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Figure 7.17: Pb-glass (upper plot) and Cherenkov (lower plot) for a run with a nominal momentum of
6 GeV/c. The black line represents all entries, the red and blue areas show the particles tagged as electrons
and pions, respectively. The red and blue lines stand for the electrons and pions that are identified by the
other PID detector.
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Figure 7.18: Correlation matrix for particles with momenta of 10 GeV/c. The strength of correlation is
represented by the color. For electrons correlations between the last chambers are visible, for pions the
correlations are smaller. The diagonal representing correlations of the same chambers is suppressed since it
is always unity.

parameters are not identical with the contamination. The deviation between extrapolation
(assuming no background from electrons in the pion sample) and direct calculation cannot
be solely explained by contamination, at least at high momenta. Here, the difference is
much larger than contamination estimates would suggest and an alternative explanation is
needed.

Correlation Studies

An additional contribution to the observed deviation is the correlation of the signals in
different TRD layers. In case the layers are not independent, the probabilities achieved
from particle identification procedures cannot simply be multiplied with each other.
A multiplication would lead to an overestimation or an underestimation of the real
likelihood. As shown by B. Vulpescu the 2004 test beam data exhibit indeed a correlation
between the chambers for electrons, but not for pions. It was observed that the correlation
increases as a function of momentum and probably comes from bremsstrahlung [Vul05].

A measure for correlations between two quantities is the correlation coefficient. It is
defined for two data sets (x = x1,x2, ...,xn and y = y1,y2, ...,yn) by [Köh07]:

rxy :=
∑

i (xi− x̄)(yi− ȳ)√∑
i (xi− x̄)2 ·

∑
i (yi− ȳ)2

, (7.4)

where x̄ and ȳ are the mean values. The correlation coefficient can reach values
between −1 for full anti-correlation and 1 for full correlation. In order to check
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correlations between different TRD layers, the correlation coefficient is applied to the
measured charge deposits. In Figure 7.18 the correlation coefficients for all combinations
of layers is illustrated for electrons and pions at 10 GeV/c. On the left side the correlation
coefficient for electrons, on the right side that for pions is shown. The correlation for
identical chambers is not shown, since it is always unity. A correlation for electrons can
be seen. With increasing length the correlation gets stronger. It has to be noted that the
correlation coefficient is defined to measure linear correlations between quantities which
are Gaussian distributed. Non-linear correlations cannot be identified.

The square of the correlation coefficient is called coefficient of determination. The
coefficient of determination indicates the influence of the variable x on the variance of y.
For the correlation of chambers four and five at 10 GeV/c (Figure 7.18) this means that
5% of the variance of the deposited charge for electrons can be explained by linear
correlations [Sac78]. An attempt to exploit the correlation with an additional artificial
neural network which combines the outputs of the networks for the single chambers was
not successful, since the correlations are too small.

It is not obvious how large the influence of the correlations on the deviation between
extrapolation method and direct calculation is. However, the combination of electron
contamination of the pion sample with the observed correlation could be the reason for
the difference between direct calculation and extrapolation.

7.5 Test Beam 2007 - Test of Super Module III

7.5.1 Setup 2007

In 2007 the SPS T10 beam line at CERN was again used for a test beam. This time a
fully equipped supermodule was tested. The supermodule is now part of the ALICE TRD
as Supermodule III. The goal of the test beam 2007 was to test a TRD supermodule with
the full chain of data taking, i.e. taking raw data (including zero suppression and digital
filtering), converting it to AliRoot files, and finally reconstructing and analyzing it.

Another important task was to study the possibility of acquiring a first reference data
set for particle identification. Several alternatives exist for the extraction of reference data.
One possibility is to use simulations, another method makes use of photon conversions.
Both methods have advantages and disadvantages, they will be discussed in detail in
Section 9.1.1. A problem of simulations is that it cannot be assured that simulated
particles behave like real particles in the detector. Unknown detector effects could
possibly make the simulated data worthless as references for the real experiment. Photon
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conversions provide a clean sample of electrons. However, during the first months of data
taking references from conversions will not be available. An alternative are references
from test beam data. In this section the performance and problems of the test beam with
respect to particle identification will be analyzed. The analyzed beam momenta were 1,
2, 4, and 6 GeV/c. The analysis was done on fully reconstructed data. The reconstruction
was performed by A. Bercuci and M. Fasel [Ber08b] using the stand-alone TRD tracking
software [Ber08b].

7.5.2 Analysis Procedure and Quality Cuts

The analysis procedure for the test beam 2007 was different in many aspects from
the previous test beam analyses. For the analysis of the test beam data 2007 fully
reconstructed tracks in AliRoot format were used. In AliRoot it is not foreseen to have
additional beam monitoring detectors. Therefore the analysis was first split into two parts.
One part was the extraction of TRD chamber data from the AliRoot format, the second
part was that of beam monitoring data. Finally, both parts were merged and the merged
data file was used for the analysis.

The AliRoot data was reorganized into a TTree which had one entry for each found
track. To be able to merge the two separated data sets, the event number was added to
the output. Other global parameters were the number of found tracks and the number
of found clusters in each event. Further data belonging to single tracks was extracted
from the AliTRDtrack object. Each output entry contained 180 charge measurements for
180 possible AliTRDclusters (30 time bins × 6 chambers) per track and the number of
TRD modules that were hit. The number of hit detectors was determined via the different
cluster positions that belong to each track. The local geometrical position of the first
cluster was saved, in order to be able to match it to position information from the silicon
detectors. In addition, the number of clusters belonging to the track and the χ2 of the
linear track fit was observed. The second part of data extraction was made directly on
the raw data. The only information that was extracted were the hit positions in the silicon
strip detectors and the signals measured by Cherenkov detector and Pb-glass calorimeter.

The final step in data extraction was the merging of the information. At this stage
the cuts were applied. For the beam monitoring detectors the same type of cuts were
used as for the data of older test beam times. Only events were used that have exactly
one reconstructed track which hit all six detector layers. Based on this data the neural
networks were trained. The resulting pion efficiency was disappointing. Figure 7.19
illustrates the likelihood distribution for 2 GeV/c data obtained with artificial neural
networks. It can be seen that there is a large contamination of pions at electron
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Figure 7.19: Likelihood distribution of electrons (red) and pions (blue) with a nominal momentum of
2 GeV/c. A large contamination of pions at large electron likelihoods is clearly visible.

probabilities close to one as well as some electrons at small electron likelihoods. The
reason for the huge contamination will be discussed in the following section.

7.5.3 Contamination Studies

The first guess for a reason of having the large amount of misidentified pions was that
these particles actually were electrons. That would suggest that the PID detectors did not
work correctly or the cuts were not set properly. In Figure 7.20 the correlated signal for
Cherenkov counter and Pb-glss calorimeter for 2 GeV/c data is shown. It can be directly
compared to the correlation plots of 2002 (see Figure 7.3). At first sight an obvious
difference is visible. In 2007’s data it seems that a fraction of electrons deposited only
parts of their energy in the Pb-glass calorimeter. A possible explanation is that they did
not hit the Pb-glass centrally and parts of the shower signal were lost [Gra09]. However,
these events were excluded by the particle identification cuts and did not contribute to the
likelihood plot. An estimation of the pion contamination of the electron sample based on
the signal distribution of Cherenkov and Pb-glass detectors (as described in Section 7.4.3)
gave a result of about 0.1% of contamination.

An additional check whether the pions with high electron likelihood (in the following
called fake pions) were electrons can be made with the average pulse height distributions.
In case a particle was an electron and was somehow misidentified by the PID detectors,
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Figure 7.20: Correlation plot for Pb-glass and Cherenkov detector for 2 GeV/c data. Contrary to the
correlation plots of 2002’s beam time (Figure 7.3), a fraction of particles with a high Cherenkov signal
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it should nevertheless produce transition radiation in the TRD. For the analyses below all
pions with an electron likelihood larger than 0.99 were treated as fake pions. In order to
get enough events to produce an average pulse height plot with small fluctuations for the
fake pions, the cut on the silicon strip detectors was removed. The resulting average pulse
height is illustrated in Figure 7.21. The electron distribution is red, the pions (including
the fake pions) are blue, and the fake pions alone are green. The electron and the pion
distribution behave as it is expected. The electrons have the transition radiation peak. For
the fake pions the average pulse height is different from both other distributions. The
amplitude is about twice as high as for pions (similar to the distribution for electrons),
but no transition radiation peak is visible. This means that these were with a very high
probability no electrons. Otherwise they would have been electrons which did not produce
Cherenkov radiation, no shower in the Pb-glass, and no transition radiation, which is very
unlikely.

Besides the absence of a transition radiation peak but electron-like amplitude for the
fake pions, another effect is visible. In the last ten time bins, the signal for the fake
pions does not decrease as quickly as for electrons and pions. The difference is obvious
especially in the last five time bins and quantified in Figure 7.22. The probability for
the occurrence of a cluster in three different chamber regions (section 7, section 8, and
section 9) for the six TRD layers are shown. A section consists of three time bins and
is equivalent to the neural network input for one input node. Starting with section 0 and
time bin 0, sections 7− 9 are the input for the last three input neurons, equivalent to the
last nine time bins. In section 7 a clear difference is visible between pions (blue stars)
and electrons (red stars) for all chambers. Since no tail cancellation (see Section 4.4.2)
was applied to the data, this can be easily explained by the tails of the deposited charge of
the electrons which is in average higher than for pions. The probability to find a cluster
in the section 7 is about 95% for electrons and only about 80% for pions. The points for
the fake pions (open blue stars) are very close to the points of electrons. This changes
in sections 8 and 9. The probability for finding a cluster in section 8 is around 40% for
electrons, around 20% for pions, but around 65% for pions with high electron likelihood.
In section 9 electrons and pions have only 10% probability for a cluster, fake pions around
45%. A possible explanation for that would be that instead of the signal of single particles,
the signal of two combined particles is observed. In case there is a time shift between the
particles, the second particle would deposit charge in the last time bins which leads to the
observed clusters.

In case the above assumption is correct, not only the temporal signal shape should
be affected, but also the width of the signal should be different for the double particle
tracks. The width of a signal can be quantified using the number of pads that contribute
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Figure 7.22: Probability for the occurrence of clusters in time bins 22-24 (upper plot), 25-27 (middle plot),
and 28-30 (lower plot) versus TRD layer. Shown are the probabilities for electrons, pions, and pions with
electron likelihood > 0.99. Electron-like pions show a clearly larger probability for occurrence of clusters
at high time bins compared to the other particle classes.
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for all particles (black line), electrons (red line), pions (blue line), and fake pions (blue area).
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to a reconstructed cluster. In Figure 7.23 the distribution of pads that contribute to a
cluster is shown2. The most probable value for used pads per cluster is two, for all
particles (black line), electrons (red line), pions (blue line), and fake pions (blue area).
Figure 7.24 visualizes the relative probabilities for the occurrence of clusters with a given
number of pads using a double ratio R. For each class of particles the number of clusters
with a given number of pads is divided by the total number of clusters for the according
particles. The double ratio is generated by dividing by the ratio of all particles:

Ri
p =

(
ni

p

Np

)/(
ni

all
Nall

)
, (7.5)

where ni
p is the number of clusters made of i pads for particle class p and Np is the

total number of clusters for the regarded particle class. In Figure 7.24 the following can
be seen: The probability for pions to produce 2-pad clusters is higher than the average
probability of all particles to produce them. This changes for larger clusters. For pions
with large electron likelihood a clear enhancement for clusters built of more than three
pads can be seen. The probability for such large clusters is about two times higher than
the average.

The analysis of the cluster distribution in the last nine time bins and the analysis of the
cluster size indicates that the assumption of having double tracks could be an explanation
for the poor pion efficiency. The tracks have to be close to each other in space and also
in time. The reason for the occurrence of double tracks is not clear. It has been proven
that the observation does not come from a bad reconstruction. A contamination and a
resulting poor pion efficiency was also observed by another analysis directly based on the
raw ADC signals [And08a].

7.6 Comparison and Discussion of the Different Test
Beam Times

In this chapter the pion efficiency of three test beam times using different particle
identification methods was analyzed. In Figure 7.25 the results of 2002 and 2004
are summarized for artificial neural networks (a)) and likelihood on total deposited
charge (b)). The best performance was reached with 2002 data. All test beam results
shown in the plot achieved with artificial neural networks fulfill the design goal of a

2For the calculation of the cluster size first the pad with maximum charge deposition is determined.
Starting from that pad, the pads in both directions of the pad column are counted until the charge deposit of
the actual pad is below a threshold or above the value of the previous pad.
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Figure 7.25: Pion efficiencies of the different beam times for neural networks (a)) and likelihood on total
deposited charge (b)).

pion efficiency below 1% for 90% electron efficiency. The test beam results of 2002
and 2004 differ nearly by a factor of two for neural networks, but are consistent within
the error bars. This difference is also visible for the likelihood method but is not so
large. However, a clear shift towards larger pion efficiency can be observed for 2004
test beam data compared with 2002 data, for both methods. The difference between the
pion efficiencies of 2004 prototypes and the stack data of the same year are discussed in
Section 7.4.3.
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The Transition Radiation Detector’s performance for electron/pion discrimination is
strongly connected to the difference between the electron signal and the pion signal. The
ratio between the mean value of total deposited charge in a chamber by electrons and that
of pions can be found in Figure 7.26. The average ratio for all chambers used in a run is
shown for data sets of 2002 (with and without electron trigger) and of 2004 (prototypes
and stack). While the electron/pion signal ratios of the same year are consistent to each
other, the ratios of different years differ significantly. The ratio increased up to 2 GeV/c for
both cases. For data of 2002 the ratio stayed at a large level, while for 2004 it decreased for
higher momenta. An explanation for the different signal ratios is that the electrons in 2002
may have produced bremsstrahlung, but did not in the test beam in 2004. Bremsstrahlung
could be produced in one of the detectors (beam detectors or TRD chamber) which were
traversed by the beam particles and could subsequently been absorbed in the gas volume
of a TRD chamber.

In Figure 7.27 the ratios of deposited charge for electrons and pions are shown for
each chamber: in a) for the test beam in 2002, in b) for the prototype tests in 2004, and
in c) for the stack measurements in 2004. For the 2002 data it can be seen that the ratio
increases significantly with the chamber number. This increase indicates that additional
bremsstrahlung is produced at each TRD layer. It can be seen that this is not the case for
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the 2004 prototype data. Here, the ratio for all chambers is approximately identical for
all chambers. A possible source for bremsstrahlung was identified in References [Bai05,
And09b]: in 2002 the connectors for the chamber read out were hit by the particle beam.
However, it seems that bremsstrahlung produced in the connectors cannot be the only
explanation. In 2002 chamber 0 also has a significantly larger electron/pion signal ratio
than any prototype chamber in 2004. Since the connectors were installed on the backside
of the chambers in 2002, the electron/pion signal ratio for chamber 0 should be identical
to that of the chambers in 2004.

Bremsstrahlung produced in the beam monitoring detectors could be an additional
source contributing to the higher electron signal in 2002. In 2004 the beam was deflected
by a magnetic field, and neutral particles (e.g. photons) did not traverse that TRD
chambers which were analyzed here and could not contribute to the signal. However, in
case this bremsstrahlung would contribute to the charge deposit in data of 2002, it should
be visible for the stack data. For the measurements with the stack of TRD chambers
the magnet was removed. In Figure 7.27 c) it can be seen that the electron/pion signal
ratio for most of the chambers is as high as for the prototype measurements in 2004 (see
Figure 7.27 c)).

Alternative contributions to the difference of the electron/pion signal ratio might be
a different transition radiation yield for the two beam times. In 2002 and 2004 slightly
different radiators have been used. It cannot be excluded that in 2002 more transition
radiation was produced in the radiators. In case the transition radiation spectrum is hard
enough, the photons could be detected in subsequent chambers and lead to the observed
increase of the electron signal with increasing chamber number.

For the stack data a large fluctuation of the electron/pion signal ratio could be
seen. While chambers 1, 2 3 and 4 were approximately consistent with the results of
the prototype chambers in 2004, the ratio was significantly smaller for chamber 0 and
significantly larger in chamber 5. The behavior of chamber 0 and chamber 5 is not
fully understood. It seems that the transition radiation yield was smaller for chamber 0
and larger for chamber 5. For chamber 4 and chamber 5 also a smooth increase of the
electron/pion signal ratio is visible. This again indicates again absorption of radiation that
is preferably produced at high momenta, probably bremsstrahlung.

Another issue is that the improvement in pion efficiency for neural networks compared
to likelihood on total deposited charge is smaller for 2004 data. The additional charge in
2002 due to bremsstrahlung should influence both methods; neural networks should not
benefit more from the bremsstrahlung than LQ. The reason for the different improvement
is the smaller drift time in 2004 compared to 2002. This is illustrated in Figure 7.28.
The average pulse height for pions in chamber 2 is shown. It can be seen that the drift
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Figure 7.28: Average pulse height of pions at 2 GeV/c in chamber2 in 2002 (black) and 2004(blue). While
the maximum drift time is at the nominal value of 2 µs for 2002 data, the maximum drift time in 2004 is
smaller (≈1.6 µs).

time for 2002 data (black) was at the nominal value of 2 µs in the drift region, while it is
only 1.6 µs for data of 2004 (blue). The smaller drift time led to less information for the
neural network, since the information is splitted on less time bins. For likelihood on total
deposited charge a smaller drift time has only small effects. Smaller drift time results
in a larger signal per time bin. Consequently, the signal to background ratio increases.
However, this is not expected to improve the pion efficiency significantly.

In this chapter it was shown that electron/pion discrimination using artificial neural
networks improves the pion efficiency in test beams by a factor of 2 - 3 compared to
likelihood on total deposited charge. A clear difference in the ratio of charge deposit
for electrons to pions was observed, probably due to bremsstrahlung produced in 2002
in the read out connectors of the TRD chambers. Due to the observed differences it
was not possible to quantify the final pion efficiency. However it was shown that the
neural network method fulfilled the design goal in all test beams and showed the best
electron/pion discrimination of all methods.



8. Particle Identification in AliRoot
Simulations

The second analysis part of this thesis is the determination of particle identification
capabilities of the Transition Radiation Detector in AliRoot simulations. In this chapter
first some analysis tools are described as they are implemented in AliRoot. Later on the
particle identification performance of a data set with a flat momentum spectrum and in
simulated proton collisions is analyzed. Finally, the influence of contaminations of the
training data set is discussed and the results of the particle identification in simulations
are compared to test beam results. Unless stated otherwise, the data was simulated and
reconstructed using AliRoot v4-17-Rev-12.

8.1 Analysis Tools for AliRoot

For the analysis of the particle identification performance with the Transition Radiation
Detector using artificial neural networks in AliRoot simulations, three different tasks and
one helper class are used. The first task, AliTRDpidRefMaker, provides functions for
data extraction, and with the AliTRDpidRefMakerNN task neural networks can be trained
and the training performance can be monitored. AliTRDcheckPID checks the particle
identification performance of a data sample. The helper class is AliTRDpidUtil and
provides functions for determining the particle identification performance.

8.1.1 The AliTRDpidUtil Class

The central function of AliTRDpidUtil is CalculatePionEffi(TH1*,TH1*). This
function performs the calculation of the pion efficiency and its error, the estimation of
the threshold for a given nominal electron efficiency, and the resulting electron efficiency
after the calculation of the pion efficiency. The desired electron efficiency and the final
electron efficiency can differ from each other due to binning effects. The calculations are
done as described in Section 6.4. The only input that is needed are two histograms (TH1)
containing the likelihood distributions for two data sets (usually electrons and pions). The
calculated values can be accessed via dedicated getters:

• GetPionEfficiency(),

161
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Bin No. nominal value (GeV/c) Range (GeV/c)
0 0.6 < 0.7
1 0.8 0.7−0.9
2 1.0 0.9−1.25
3 1.5 1.25−1.75
4 2.0 1.75−2.5
5 3.0 2.5−3.5
6 4.0 3.5−4.5
7 5.0 4.5−5.5
8 6.0 5.5−7.0
9 8.0 7.0−9.0

10 10.0 > 9.0

Table 8.1: Default momentum bins used for the particle identification as implemented in the
AliTRDpidUtil class.

• GetError(),

• GetThreshold(),

• and GetCalcElectronEfficiency().

The desired electron efficiency can be set via SetElectronEfficiency(Float_t).

AliTRDpidUtil also provides the default momentum bins that are used for the
analysis of the pion efficiency. Eleven momentum bins with various bin widths are used.
The bin widths are not equal for the different momentum regions. The average charge
deposit of the particles, which have momenta below their point of minimum ionization,
changes with small momentum variations (see Equation 4.1 and Figure 6.2). In that
momentum region the binning has to be finer than in the region beyond this points, where
the changes of charge deposit do not vary so strongly. An overview of the binning is given
in Table 8.1.

8.1.2 The AliTRDpidRefMaker Task

For the production of reference data the AliTRDpidRefMaker task is used.
AliTRDpidRefMaker is a class which only collects the input from the available data by
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looping over all available events. The production of references is performed by the two
daughter classes AliTRDpidRefMakerLQ and AliTRDpidRefMakerNN.

Data Extraction with the AliTRDpidRefMaker

For the AliTRDpidRefMaker the identity of the used particles needs to be known.
The particle identities can be extracted from the reconstruction, from Monte Carlo
information, or using displaced vertices. In this section the focus lies on the production of
references using the Monte Carlo particle information. Displaced vertices are discussed
in Section 9.1.2. The usage of the reconstructed PID is not discussed in this thesis and
is not recommended, since the purity of the particle samples is poor. The expected pion
efficiency for the Time Projection Chamber is below 1% at momenta p < 2 GeV/c, but
gets worse (≈ 30% at 10 GeV/c) with increasing particle momentum [Ale06].

For constructing references the deposited charges have to be extracted for each track
in several slices for each traversed Transition Radiation Detector layer. The input that
is used for the data extraction can be the AliESDtrack or the AliTRDtrack object.
AliESDtracks contain the deposited charges for each track in eight slices for each
traversed Transition Radiation Detector layer. Since AliTRDtrack objects contain all the
information (charge, position, etc.) of the clusters according to a track, the number of used
slices is not fixed here. The deposited charges are the reconstructed charges normalized
to the track length and the cluster width in x direction. It is planned to expand the possible
input to AliAODtracks also. This would allow to run the AliTRDpidRefMaker on all
available data storage objects (AODs, ESDs, and ESDfriends).

The particle identification capability is momentum dependent. Therefore, it is
necessary to produce reference data for different momenta. The default is to use
11 momentum bins from 0.6 - 10 GeV/c provided by the AliTRDpidUtil class. It is
necessary to store not the global momentum of a track, but the momenta of the single
tracklets for each traversed TRD chamber. The reason for this is that particles, especially
electrons, can lose a significant part of their momentum on the way to and through the
TRD. Hence, the global momentum of a track can be very different from the local one. In
this task, there are two possibilities for the determination of the momentum of a tracklet.
The first one is using the Monte Carlo momenta of the simulation, the second one is to
use the reconstructed momenta as they are stored during the track reconstruction in the
AliESDtrack object. It is possible to set a momentum threshold in order to suppress the
amount of tracklets with small momenta.

The AliTRDpidRefMaker task is part of the Physics Working Group 1 (PWG1)
train [Otw09] which is planned to run regularly on the grid. The PWG1 train monitors
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the detector and reconstruction performances. For the Transition Radiation Detector this
includes for instance monitoring of the alignment, calibration, and tracking as well as the
performance of particle identification.

Reference Building with AliTRDpidRefMakerNN

After the extraction and merging of the data the references need to be constructed. For the
two-dimensional likelihood method it is done by the AliTRDpidRefMakerLQ task. The
reference neural networks are trained using the AliTRDpidRefMakerNN class.

The first step before training is the generation of TTrees that are used for the training
of artificial neural networks. A network is trained for each momentum bin. The data
that is stored by the AliTRDpidRefMaker task contains all momenta. The speed of
training using TMultiLayerPerceptron depends on the size of the TTree. This time,
not the speed of the training in epochs is meant, but the actual performance in computing
time. It takes a longer time to train the network if a lot of unused patterns are part of the
training tree, since the complete TTree has to be loaded and kept in the computer memory.
Therefore, the tracklets are stored in different TTrees according to their momentum. In
older versions of the AliTRDpidRefMakerNN the layer that was traversed by the tracklet
was also taken into account. The number of trained networks was larger by a factor of six.
In simulations it was shown that the particle identification performance of the artificial
neural networks does not suffer from using only one network for all TRD layers. Another
benefit is the smaller number of needed reference tracks. In case the layer dependence is
taken into account the required number would be six times larger.

The training and validation samples for each momentum bin are determined by the
function MakeTrainingLists(). For the neural networks two TEventLists have to be
built. Training list and validation list are built taking all five particle species (electrons,
muons, pion, kaons, and protons) into account. The training sample is twice as large
as the validation data set. All particle species have to be equally represented in the two
event lists, only that ensures an adequate training for all species. Since no muons and no
kaons can be obtained as references by using displaced vertices (see Section 9.1.2) they
are excluded from building the TEventLists in case their number is zero.

The neural network training is done for each momentum bin separately in the function
MakeRefs(). The momentum bin that should be trained can be set by a steering macro
using SetTrainMomBin()1. The first thing that is done by MakeRefs() is the creation
of a directory where the trained networks are stored. A directory is created with a name

1It is also possible to train all momenta at once, but this is not recommended since it takes very long. A
better solution is to train the networks for the different momentum bins separately on different computers.



8.1 Analysis Tools for AliRoot 165

Number of Epochs / 50
0 5 10 15 20 25 30 35

Pi
on

 E
ffi

ci
en

cy

0.002

0.004

0.006

0.008

0.01

0.012

Training Sample

Validation Sample

2 GeV/c

Figure 8.1: Monitoring of the training performance of simualted data with a momentum of 2 GeV/c. The
pion efficiency for training (blue) and validation data (red) is plotted versus the number of training epochs.

containing the date of the training and a subdirectory with the momentum bin. Such a
structure allows to continue the training in case the network needs more training epochs.
The number of training epochs can be set by the user with SetEpochs(). The training
method is online backpropagation with a learning parameter of η = 0.001. The default
number of training epochs is 1,000. The networks are saved after every 20 training epochs.
Storing the networks enables the user to monitor the training progress.

The training of the networks has to be supervised in order to find the best network and
to avoid overtraining. This is enabled in the AliTRDpidRefMakerNN task by the function
MonitorTraining(). For this function the saved networks are reloaded one by one and
the pion efficiencies are determined by applying training data and validation data to them.
An example of the monitoring of training for 2 GeV/c data is given in Figure 8.1. Shown
is the pion efficiency for the training patterns and the validation data set. A comparable
structure as in the training progress for test beam data can be seen (Figure 7.8). After a
fast drop the pion efficiency reaches a first plateau. With further training a second plateau
is reached. The monitoring shows no further improvement. For about 50 k patterns the
training is done after a loop of 1 k epochs. In case the monitoring implies that further
training would still improve the pion efficiency, the training is continued with another loop
of 1000 training epochs. The training usually needs more computing time for simulated
data than for test beam data. The reason is that the total number of patterns is smaller
for test beam data. In AliRoot simulations (and also in real data) five particle species
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are taken into account, compared to only two for test beams. In addition, the number of
simulated tracks is larger than the number of tracks after cuts in the discussed test beams.

After validation the neural networks are stored in the Offline Conditions Data
Base (OCDB) and can be used for particle identification.

8.1.3 The AliTRDcheckPID Task

The central part of the particle identification performance analysis, the determination
of the final pion efficiencies for 2-dim likelihood and artificial neural networks, is
done with the AliTRDcheckPID task which is part of the official AliRoot framework.
AliTRDcheckPID is also part of the Physics Working Group 1 (PWG1) train. The
AliTRDcheckPID task uses as input AliESDfriends which contain the complete
information of the tracks passing the TRD.

AliTRDcheckPID’s main purpose is to monitor the TRD PID information that is stored
in the Event Summary Data (ESDs) and to recalculate it for the 2-dim likelihood and the
artificial neural networks method. In addition some monitoring plots are produced for
each particle species and a set of momentum bins separately. The plots are:

• likelihoods to be an electron (for ESDs, 2-dim LQ, and neural networks),

• deposited charge in each detector module,

• deposited charges in three slices of each chamber,

• average pulse height (versus time bin and versus x position),

• number of tracklets for each track,

• number of clusters for each tracklet,

• momentum for each track,

• and the momentum bin.

The particle species is obtained from the Monte Carlo information of the simulation.
For real data, or in case no Monte Carlo information is available, the reconstructed particle
identity is used. In case only the reconstructed particle information is available, the
determination of pion efficiency does not work but the monitoring plots allow simple
performance checks, e.g. if the deposited charges or the average pulse heights are
as expected for the different particles. It is planned to expand the particle identity
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information to be able to run on PID information also including displaced vertices (see
Section 9.1.2). Using displaced vertices will allow to run also the pion efficiency
determination on real data.

Usually the monitoring plots are produced for the default momentum binning stored
in AliTRDpidUtil, but the number of momentum bins as well as the bin range can
be adjusted via a setter. In order to limit the number of produced histograms, one-
dimensional plots of the same kind (for the different particle species and different
momenta) are stored in two-dimensional histograms. The binning in x direction is given
by the number of particle types and momentum bins, the y axis binning depends on the
plot type.

The likelihoods to be an electron for two-dimensional likelihood on deposited charge
and artificial neural networks are calculated based on the AliTRDtracks as described
in Section 6.5. The likelihoods stored in the ESDs are extracted directly from the
AliESDtrack objects. These likelihoods are calculated during the reconstruction. Since
the default particle identification method in AliRoot is the neural network method, the
resulting likelihoods are identical in case the same Offline Conditions Data Base (OCDB)
is used. In case the OCDBs are different, the performance of the references used during
the reconstruction and the references used for the recalculation can be compared directly.
The deposited charges, average pulse heights, and number of clusters are also extracted
from the tracklets stored in the AliTRDtrack, the number of tracklets directly from
the AliTRDtrack. The momentum is either extracted from Monte Carlo information
if available, otherwise the reconstructed value is taken from the AliTRDtrack. The pion
efficiency is calculated based on the likelihoods distributions and estimated using the
AliTRDpidUtil class.

For a quick check of the particle identification performance several plots are produced
and saved automatically in the AliTRDcheckPID::PostProcess(). There are two
general performance plots:

• the pion efficiencies for 90% electron efficiency for each momentum bin

• and the according threshold in electron likelihood.

In addition monitoring plots for each particle type in the momentum bin around 2 GeV/c
are produced. These plots are shown in Figure 8.2:

• a): total deposited charge,

• b): average pulse height versus time bin,
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Figure 8.2: Monitoring plots of the AliTRDcheckPID task. The plots are shown for electrons (red),
muons (green), pions (blue), kaons (orange), and protons (purple) with a momentum of 2 GeV/c. The
plots are a) the deposited charge per tracklet, b) average pulse height versus time bin, c) corrected average
pulse height versus x position, d) number of clusters per tracklet, and e) number of tracklets per track.
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• c): average pulse height versus cluster’s x position in the TRD chamber,

• d): number of clusters per tracklet,

• and e): number of tracklets per track.

It can be seen that the total deposited charge (a)) and average pulse height in each
time bin (b)) are as expected. The temporal structure of the signal in the Transition
Radiation Detector is only an approximation of the x position of the clusters. For particle
identification instead of the time bin the x-corrected cluster position is used. In addition
the charge of the clusters is normalized to its width and with respect to the angle of
the according particle track. The average pulse height in x direction (c)) monitors the
input for the particle identification. The number of clusters per tracklet (d)) shows that
the probabilities for the particles to produce clusters are not equal. For electrons the
most probable cluster number is 23, for the other particles it is 22. The reason for the
differences are fluctuations of the deposited charge. The probability for non-electrons to
produce small clusters which may not be reconstructed is larger than for electrons. It can
be seen that there are also entries for numbers of clusters larger than 24. In case a track
crosses two pad rows the clusters on both sides are counted. This is needed for quality
checks of the track reconstruction [Ber09a]. Therefore, the number of clusters can exceed
the theoretical limit of 24. The number of tracklets per track (e)) is also not the same for
all particle species, but the differences are not large.

8.2 PID Performance in Simulations with Flat
Transverse Momentum Distribution

For the analysis of detector performances it is not useful to simulate physics events, such
as pp or PbPb collisions. Since the transverse momentum spectrum of particles drops
very steeply, a lot of events need to be simulated to evaluate the performance at high
momenta. Instead of simulating collisions, events with unrealistic momentum and particle
distributions are produced.

8.2.1 Data Production

For the determination of the particle identification performance events containing
200 particles are simulated. The mixture consists of 20 electrons, 20 muons, 20 pions,
20 kaons, and 20 protons as well as of an equivalent number of the respective anti
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particles. In order to populate also high momenta, the simulated momentum spectrum
is flat and reaches from 0.15-15 GeV/c. Since we are only interested in the Transition
Radiation Detector, only the ALICE Inner Barrel is simulated. This includes the Inner
Tracking System (ITS), the Time Projection Chamber (TPC), the Transition Radiation
Detector (TRD), and Time Of Flight (TOF). The simulated pseudo-rapidity range for the
particles is −1.5 < η < 1.5 and the magnetic field is set to 0.5 T which is the nominal
field strength of the L3 magnet. For this analysis 11,000 events were simulated. This
corresponds to 440,000 particles (plus anti particles) for each simulated particle species.

All events are fully reconstructed using the global track reconstruction. For each track
also the AliESDfriends are saved. In the AliESDfriends for the TRD, information
about tracklets and the according clusters (e.g deposited charge, time bin) produced in the
Transition Radiation Detector are available. This allows to use the maximum information
for the analysis and not just the information stored in the ESDs.

The data production was done several times and for different AliRoot versions in
order to build reference data for the neural networks using the AliTRDpidRefMaker.
The training was done as described in Section 8.1.2. The data that will be discussed
in this section was simulated and reconstructed with AliRoot v4-17-Rev-12. The
determination of the pion efficiency for 2-dim LQ and neural networks was done using
the AliTRDcheckPID task. The references for the analysis have not been rebuilt. Instead,
the default OCDB entries of the AliRoot version were used.

8.2.2 Pion Efficiency

1-dim Likelihood

Contrary to the artificial neural networks and the two-dimensional likelihood method, the
one-dimensional likelihood method is not yet implemented in AliRoot. Therefore the
extraction of likelihoods for the LQ method was not performed by the AliTRDcheckPID

task directly. Instead, a modified AliTRDcheckPID task was executed twice on the
complete data set. For the first loop, the task does not necessarily needed to be modified.
The only function of the first loop was the production of reference data for the one-
dimensional likelihood method. References for the 1-dim LQ method are the distributions
of total deposited charge. These deposited charge distributions are produced by default by
the AliTRDcheckPID task. The distributions were saved and used in the second data loop
as reference histograms. During the second loop the total deposited charges of the tracks
were compared to the references and the likelihoods were calculated using Equations 6.2
and 6.4. The resulting one-dimensional likelihood plot is shown in Figure 8.3 a). The
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Figure 8.3: Likelihood to be an electron for a) one-dimensional likelihood (LQ), b) two-dimensional
likelihood (2-dim LQ), and c) artificial neural networks. The likelihood is plotted versus different particle
classes. A particle class is given by one of the eleven default momentum bins and the particle identity.
The color represents the frequency of occurrence on a logarithmic scale. The missing entries for 1-dim
likelihood for electron and protons at the second momentum bin (0.8 GeV/c) and high electron likelihood is
caused by the fact that electrons and protons in this momentum region deposit the same amount of charge
and therefore could not be well discriminated.
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Figure 8.4: Pion efficiency versus momentum for neural networks (red triangles), 1-dim likelihood (green
dots) and 2-dim likelihood (blue circles). It can be seen that the pion efficiency depends on the complexity
of exploited information. The more information is taken into account the better is the performance.

electron likelihoods for the 11 momentum bins of the five different particle species are
shown. The color represents the number of observed particles. The missing entries
for 1-dim likelihood for electron and protons at the second momentum bin (0.8 GeV/c)
and high electron likelihood are caused by the fact that electrons and protons in this
momentum region deposit the same amount of charge. Consequently, they cannot be
well discriminated.

2-dim Likelihood and Neural Networks

The two-dimensional likelihood method and the artificial neural networks are standard
methods for particle identification in AliRoot using the TRD. The likelihoods are
monitored directly by the AliTRDcheckPID task. They are shown in Figure 8.3 for the
2-dim LQ method b) and for the neural networks c).
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Figure 8.5: Threshold for 90% electron efficiency versus momentum for neural networks (red triangles),
1-dim likelihood (green dots, and 2-dim likelihood (blue circles).

Results

The resulting pion efficiencies are shown in Figure 8.4, the thresholds for 90% electron
efficieny in Figure 8.5. The green dots represent results for the 1-dim likelihood method,
the blue circles that of the 2-dim likelihood, and the red triangles that of artificial neural
networks. A clear trend is visible: the best performance is achieved with neural networks
followed by the two-dimensional likelihood method. The one-dimensional likelihood
method has the worst electron/pion discrimination capability. The difference between
the results of neural networks and 2-dim LQ is about a factor of two, between neural
networks and 1-dim LQ about four. It can be seen that for momenta above 2 GeV/c the
trend in pion efficiencies of the different methods is identical, the pion efficiencies vary in
the same direction. For momenta below 2 GeV/c this is only true for 1-dim LQ and neural
networks. The pion efficiencies in the low momentum region for 2-dim LQ do not follow
the trend of the other two methods.

The average deposited charges for the different particles have crossing points at
low momenta for electrons and kaons (at about 0.5 GeV/c) as well as for electrons and
protons (at about 0.8 GeV/c, see Figure 6.2). The average deposited charge coming from
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a high value decreases fast with rising momentum for kaons and protons until the point
of minimum ionization is reached. This means that for kaons and protons the average
deposited charge strongly fluctuates in a small momentum range. In addition, at low
momenta only few kaons reach the TRD due to their limited life time. The 2-dim
likelihood method needs more particle tracks for reference building. The described factors
could lead to non-ideal references and could cause the worse pion efficiency of 2-dim LQ
compared to the other methods [Ber09a].

8.2.3 Hadron and Muon Efficiencies

The Transition Radiation Detector was designed to suppress pions at momenta above
1 GeV/c. However, the TRD’s particle identification capability is not limited to
discriminating electrons from pions. The deposited charges of other hadrons as well as
of muons behave similar to that of pions. They do not produce transition radiation for the
momenta discussed here2. The deposited charge depends only on the energy loss due to
ionization (Bethe-Bloch, Equation 4.1). Consequently, the TRD should not only be able
to suppress pions but also muons, kaons, and protons.

The expected performance (see Section 6.1) of the muon suppression is slightly worse
than for the pion suppression. The reason is the smaller mass of the muon which leads to
higher values of βγ at same momenta. The result is a smaller difference to the electron
charge deposition than it is for pions. The kaon suppression is expected to be better
at higher momenta, for the same reason. For small momenta, the energy deposition of
kaons is larger than that of electrons. This leads to a worse performance compared to
pions. The same is true for protons, but the effect should be even larger than for kaons. In
Figure 8.6 the muon efficiency (a)), the kaon efficiency (b)), and the proton efficiency (c))
are shown. It can be seen that the expectations are fulfilled for all particle types, momenta,
and particle identification methods.

8.3 Particle Identification in Proton-Proton Collisions

In the previous section the capability of the ALICE Transition Radiation Detector in
discriminating electrons from hadrons and muons was analyzed separately for each
particle species. It makes sense to analyze the discriminations separately for each species,
since it allows to estimate the total non-electron rejection power of the TRD for any set

2The threshold for the production of transition radiation is at γ≈ 1000 (see Section 4.2.2). This means
for instance that muons will produce transition radiation for momenta above 100 GeV/c.
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Figure 8.6: a) Muon efficiency, b) kaon efficiency, and c) proton efficiency at 90% electron efficiency
versus momentum for neural networks, 1-dim likelihood and 2-dim likelihood.
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of particle abundances. Different analyses can have different particle abundances which
enter the a-priori probabilities of the Bayesian probability estimation (see Equation 3.4).
In this section the TRD particle identification will be analyzed for particle abundances as
they are expected in proton collisions. In addition to the electron identification power also
the PID capability for the other particle species in pp collisions is discussed.

8.3.1 Simulated Proton-Proton Collisions

The electron identification power of the TRD in pp collisions was determined on a
simulated data set of about 4.5 million proton-proton events with a collision energy
of 10 TeV. The data set was part of the regular Monte Carlo data production
at Gesellschaft für Schwerionenforschung (GSI) [Mas09b]. It was produced with
AliRoot v4-16-Rev-05. In the data production the complete ALICE experiment including
all 18 TRD supermodules was simulated. The data was analyzed using a task participating
in the GSI analysis train [Mas09a].

In Figure 8.7 global parameters of the data set are monitored. The number of found
AliESDtracks per event is shown in a). The number of AliTRDtracks which are
traversing six TRD layers can be found in b) and their momentum distribution is plotted
in c). In the data set about 3 million AliTRDtracks with six tracklets are found. The total
particle abundances in the simulated pp collisions are shown in Table 8.2, the relative
abundances in Table 8.3. Pions are the dominant particle species for all momenta. At
low momenta 85% of all particles are pions. The rate of pions decreases with rising
momentum to about 65%. The particle abundances stay approximately constant for
momenta above 4 GeV/c. Kaons reach ≈ 20%, protons ≈ 15%, electrons ≈ 0.5%, and
muons 0.25%.

The electron probabilities for all tracks traversing six TRD layers are extracted
from the AliESDtrack objects. The default particle identification method for the TRD
is the neural network method and was not changed in the reconstruction. The pion
efficiency determined with artificial neural networks for the default momentum bins and
90% electron efficiency can be found in Figure 8.8. The total amount of electrons with
momenta above 3.5 GeV/c is so small that the measured pion efficiency might not be
representative. The muon, kaon, and proton efficiencies are also shown in Figure 8.8.

8.3.2 Electron Identification in Proton-Proton Collisions

Until now only the pure discrimination power of the TRD compared for electrons and one
other particle type was discussed. In the real experiment and in data analyses not just
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Figure 8.7: Results of simulation of 4.5 million 10 TeV pp collisions. a) number of ESDtracks per event,
b) number of TRDtracks traversing six chambers, and c) number of TRDtracks traversing six chambers
versus momentum.
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Momentum (GeV/c) e µ π K p Total
<0.7 9810 14072 489337 27960 35167 576346

0.7-0.9 7029 9453 526839 44831 60841 648993
0.9-1.25 5703 6433 539903 65464 71884 689387
1.25-1.75 3818 2827 365749 61351 56212 489957
1.75-2.5 1903 1034 207251 43694 39707 293589
2.5-3.5 636 318 89505 22685 19841 132985
3.5-4.5 197 115 29736 8434 7016 45498
4.5-5.5 102 40 11671 3405 2977 18195
5.5-7.0 59 41 6789 2076 1608 10573
7.0-9.0 29 10 3119 940 728 4826

>9.0 81 31 4836 1523 1233 7704

Table 8.2: Total particle abundances for AliTRDtracks traversing all six layers in 4.5 million 10 TeV
pp collisions.

Momentum (GeV/c) e µ π K p Total
<0.7 0.01702 0.02442 0.84903 0.04851 0.06102 1.00000

0.7-0.9 0.01083 0.01457 0.81178 0.06908 0.09375 1.00000
0.9-1.25 0.00827 0.00933 0.78316 0.09496 0.10427 1.00000

1.25-1.75 0.00779 0.00577 0.74649 0.12522 0.11473 1.00000
1.75-2.5 0.00648 0.00352 0.70592 0.14883 0.13525 1.00000
2.5-3.5 0.00478 0.00239 0.67305 0.17058 0.14920 1.00000
3.5-4.5 0.00433 0.00253 0.65357 0.18537 0.15420 1.00000
4.5 5.5 0.00561 0.00220 0.64144 0.18714 0.16362 1.00000
5.5-7.0 0.00558 0.00388 0.64211 0.19635 0.15209 1.00000
7.0-9.0 0.00601 0.00207 0.64629 0.19478 0.15085 1.00000

>9.0 0.01051 0.00402 0.62773 0.19769 0.16005 1.00000

Table 8.3: Relative particle abundances for AliTRDtracks traversing all six layers in 4.5 million 10 TeV
pp collisions.
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Figure 8.8: a) Pion efficiency, b) muon efficiency, c) kaon, and d) proton efficiency versus momentum for
neural networks in pp collisions.
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electrons and e.g. pions are measured. The abundances of the different particle species
depend on the type of data analysis and the selection cuts. The discrimination power of the
ALICE Transition Radiation Detector between electrons and other particles in minimum
bias pp collisions is analyzed in this section. The non-electron efficiency is the equivalent
to the pion efficiency but combined for all particle types and not for one type solely.
The non-electron efficiency for a given electron efficiency of 90% using artificial neural
networks is shown in Figure 8.9 for the default momentum bins (black dots). The non-
electron efficiency is very similar to the pion efficiency (see e.g. Figure 8.8) for momenta
above 1.5 GeV/c. This is expected since pions, muons, kaons, and protons produce similar
signals in the TRD for these momenta. For lower momenta the picture is different. Kaons
and especially protons deposit a total charge which is comparable to that of electrons.
It is not possible to discriminate them via their deposited charge. The production of
transition radiation by electrons does not reach the full yield (due to the low momentum,
see Section 4.2.2 or Figure 6.2) and therefore the discrimination due to the distribution
of charge in the TRD also fails. The result is a worse non-electron efficiency at low
momenta.

As mentioned before the number of tracks with high momenta is very low. Therefore
the data sample of 4.5 million pp collisions is not well suited to determine the particle
identification power at high momenta. Nevertheless, the data set is large enough to
estimate the relative particle abundances. Using the relative abundances and the likelihood
distributions determined with flat-momentum particle spectra (Figure 8.3 c)) it is possible
to estimate also the non-electron efficiencies for the higher momentum region.

For the determination of the non-electron efficiency two likelihood histograms have
to be created for each momentum bin, one for the electrons and one for the non-
electrons. The electron histogram is simply extracted from Figure 8.3 c). The non-
electron histogram has to be newly created. Based on a random number the non-electron
particle type is determined according to the relative abundances in pp collisions. The
likelihood distributions can be interpreted as probability distributions for a particle of
a given type to have a given likelihood. With a second random number based on the
likelihood distribution the likelihood to be an electron is determined and is filled to
the non-electron histogram. The procedure is performed until the number of entries
for the non-electrons equals the number of electrons. With the electron histogram
and the resulting non-electron histogram the pion efficiency is calculated using the
AliTRDpidUtil class.

The calculated non-electron efficiencies based on the particle abundances of
pp collisions (extracted using the flat-momentum likelihood distributions) are shown as
red stars in Figure 8.9. It can be seen that the non-electron efficiencies determined using
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the flat-momentum particle spectra has a significantly better performance than the directly
calculated pion efficiencies for most momenta. The reason for this difference could be the
different versions of AliRoot that have been used for the simulation and reconstruction of
the two data sets. AliRoot v4-16-Rev-05 is from January 2009 and v4-17-Rev-12 is from
October of the same year. In the meantime the TRD reconstruction code evolved and a lot
of features were implemented which were not available in the older version. Important
changes are [Ber09a]:

• Both charges deposited by a particle track on two different pad rows are taken into
account for the reconstructed charge deposition (pad row crossing).

• The normalization of deposited charges in a cluster was improved by taking into
account the bin width in x direction.

• The assignment of a cluster’s deposited charge to one of the eight slices used for
particle identification was changed. In older software versions the time bins were
used directly, in newer ones the cluster’s x position in the chamber is taken.

The changes described above may give rise for the deviation of the non-electron
efficiencies for different AliRoot versions. However, it cannot be excluded that the
observed deviations of non-electron efficiencies also result to some extent from the
different simulation scenarios.

8.3.3 Hadron Identification

The Transition Radiation Detector is not only able to discriminate electrons from other
particles. One of the components of the signal used for particle identification in the TRD
is the transition radiation, which is only produced (in the regarded momentum range) by
electrons. However, the charge deposit due to ionization (Bethe-Bloch equation) is also
part of the PID signal and is exploited. The average deposited charge for muons, pions,
kaons, and protons differs from each other. The difference can be large at small momenta,
but is small at momenta above 1.5 GeV/c.

Analogously to the electrons, the analysis of TRD’s identification power can be
applied to the other particle species. The results for the other particles using artificial
neural networks can be found in Figure 8.10. The non-electron efficiency (red)
together with non-muon efficiency (green), non-pion efficiency (blue), non-kaon
efficiency (orange), and non-proton efficiency (purple) (labeled as contamination) is
shown in a pp collision environment for 90% efficiencies. It can be seen that the
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Figure 8.10: Contamination versus momentum for neural networks and different particle species. The
results for electron (red stars), muon (green dots), pion (blue triangles), kaon (orange triangles), and
proton (purple squares) identification are shown.

identification power for hadrons and muons is not very good, but is also not zero. At low
momenta protons can be identified very well. With rising momenta the "contamination"
gets worse but improves again for protons and pions. For protons the reason is that they
are close to the minimum ionization even at high momenta, while the charge deposition
increases again for the other particle classes (see Figure 6.2). Pions are better identified
since their average deposited charge is relatively high compared to the other particles.
In fact the charge deposition by muons is close to that of pions, but the relative muon
abundance is so small that it does not play a role for the identification of pions. Muons
cannot be well identified since pions are the dominant particle species in the background.
The performance of kaon identification is also very poor. The reason is that its average
value for deposited charge is in between that of pions and that of protons. Therefore,
pions as well as protons can deposit similar charges as kaons and falsely be identified as
kaons.
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8.4 Contamination Studies

An important question is how clean a training sample for artificial neural networks has
to be in order to train a neural network for particle identification sufficiently well. In
simulations it is no problem to generate clean data without any contamination since
the Monte Carlo information about the particle’s identity is available. In reality this
is different. It is possible to extract relatively clean data samples from test beams or
from displaced vertices (see Section 9.1.1). However, these data samples are not totally
uncontaminated. In this section the level of contamination that could be accepted is
analyzed. After that the performance of simulated data applied to the neural networks
trained with test beam data from 2007 is determined, which has been found to be
contaminated as discussed in Section 7.5.3.

8.4.1 Simulated Contamination in Proton-Proton Collisions

For the study of influences of contaminations on the training performance
"contamination" is defined in the following way: A fraction of particles is identified
correctly, their true identity is assigned to them for the training. Another fraction of
particles is identified incorrectly. This fraction is the so called contamination. The
contamination sample is composed such that no particle identification is taken into
account and the particle abundances are given by the a-priori probabilities of pp collisions.
The contamination sample was obtained using random numbers for its generation.
An example of the final particle rates is given in Table 8.4 for 2 GeV/c data with a
contamination of 30%. The pion sample consists of about 90.1% of pions. The 90.1% of
pions are composed of 70% of correctly identified pions plus about 20% coming from the
contamination sample which consists of about 65% of pions (see Table 8.3)3.

For this analysis data was simulated with an AliRoot HEAD version from end of
March 2008 (Revision 25008). The used AliRoot version is very similar to AliRoot v4-12-
Release. Based on the calculated particle rates for different contamination levels, training
samples were created for 2 and 10 GeV/c data and contaminations of 0%, 1%, 5%, 10%,
15%, 20%, 30%, ..., 100%. The training was done for 1,000 epochs. The validation
was carried out with a data set with true particle identities. The results for non-electron
efficiency of 2 GeV/c and 10 GeV/c data and different levels of contamination is shown in
Figure 8.11. It can be seen that artificial neural networks are robust against contamination

3The numbers deviate from the abundances extracted from the pp collisions. The used abundances were
an older estimation of the expected particle rates (e:5.8%, µ:0.5%, π:65.2%, K:7.7%, and p:20.8%). It is
not necessary to use the exact particle ratios since only the effect of contamination shall be shown.
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Sample of e µ π K p Total
Electrons 0.720 0.002 0.194 0.020 0.064 1.000
Muons 0.019 0.706 0.192 0.020 0.064 1.000
Pions 0.022 0.001 0.901 0.021 0.055 1.000
Kaons 0.018 0.001 0.202 0.71.7 0.062 1.000

Protons 0.018 0.002 0.205 0.025 0.750 1.000

Table 8.4: Relative particle abundances for 2 GeV/c data and a contamination of 30%. In order to analyse
contamination effects the particle samples for the training were changed according to these numbers.
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Figure 8.11: Non-electron efficiency versus level of contamination for 2 GeV (black stars) and
10 GeV/c (red dots) particles. For details please refer to the text.
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the results obtained in 2002 (red dots), for prototypes obtained in 2004 (green circles), for a stack of real
size chambers in 2004 (blue squares), and simulated data applied to networks trained with data taken in
2007. These results obtained with simulated data fit well with the other test beam pion efficiencies.

of the training sample up to a level of 15%. Even above 15% the pion efficiency remains
below a total value 1% (2%) for 2 GeV/c (10 GeV/c) data up to contaminations of 70%.

A data set that is extracted in the real experiment may have other a-priori probabilities
for the contamination. Nevertheless, it is shown that even with a data set where the particle
identities are not totally correct, networks for particle identification can be trained with
sufficient quality. Anyway, the contamination should be as small as possible otherwise it
is not possible to determine the performance in particle identification correctly in the real
experiment.

8.4.2 Performance of Beam Time 2007 Networks on Simulated Data

In the previous section it was shown that networks trained with contaminated training
data could, up to a contamination value of 15%, perform equally well as networks trained
with non-contaminated data. In Section 7.5.3 it was discussed that the electron and pion
samples of the test beam data 2007 are most likely contaminated with double tracks. Due
to the contamination no reasonable results of the particle identification performance could
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be achieved. One of the main goals of the test beam 2007 was to check if reference data
for the real experiment could be extracted. Motivated by the contamination studies an
analysis is presented in order to fathom the possibilities of using the networks that were
trained with the test beam data of 2007. The used runs can be found in Appendix C.3.2.

For the simulation the same AliRoot version as for the contamination studies was
used (Revision 25008). Since the test beam data was not calibrated, a correction factor
had to be applied to the deposited charge of the simulated data to match the values of the
training data set. This correction value was determined by comparing the deposited charge
at the plateau of the average pulse height distributions for pions. For 1 GeV/c particle
momentum the correction factor is 0.8, for 2, 4 and 6 GeV/c it is 0.5. The difference comes
from changing the voltage of the anode wires of the TRD chambers between the 1 GeV/c
run and the other runs. The simulated data has only 24 time bins but test beam data has
30 time bins. This leads to a number of eight input neurons for simulations and ten for
test beam data. Therefore, the input vector of the simulated data was modified by adding
two components containing zero (neuron eight and neuron nine). These two components
represent the slices with largest drift time and contain mostly ion tails. For test beam data
after tail cancellation, their contents are approximately zero (see Figures 7.21 and 7.22).

The neural networks were trained with test beam data from 2007. The resulting
pion efficiencies obtained with simulated data can be found in Figure 8.12. It can be
seen that the pion efficiencies match well to the results from the test beam in 2002.
For 4 and 6 GeV/c the pion efficiencies are also consistent with the 2004 test beam
results. Even more interesting are the results shown in Figure 8.13. The result of the
simulated data applied to networks trained with (contaminated) test beam data (orange
stars) yields the same pion efficiencies as data from simulations of pp collisions applied
to networks trained with simulated data (open purple squares). In the opposite case, i.e.
for neural networks trained with simulated data and pion efficiencies calculated using
the contaminated 2007 test beam data, no reasonable results could be obtained. The
contamination with double tracks could not be completely reduced and resulted in a large
background (≈ 5%) of particles with a high electron likelihood (Le > 0.99) tagged as pions
in the validation data set.

8.5 Comparison to Test Beam Results

In Figure 8.13 all pion efficiencies determined with artificial neural networks are
summarized. It can be seen that not all the results are consistent with each other. The
best performance is achieved with simulations using AliRoot v4-17-Rev-12 with a flat-
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momentum spectrum (red triangles). The pion efficiencies of this simulation are better
at all momenta and are not consistent with the other results within errors. The result
from pp collisions (open purple squares) and the result using simulated data on test beam
2007 networks (orange stars) are more consistent with the test beam results. The best
performance of real data is achieved with data from test beam in 2002 (black dots). The
differences between the pion efficiencies may have several reasons as discussed below.

Simulation One possible reason for the observed inconsistency could be due to
deviations between simulations and reality, e.g. a false estimate of the detector material
in simulations. A known source for potential discrepancy is the generation of transition
radiation. In AliRoot (using GEANT3) it is not simulated directly but parameterized from
test beam measurements. These possible differences between simulations and reality are
currently under investigation [And09b].
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Reconstruction The test beam data obtained in 2002 and 2004 was not reconstructed
using the AliRoot reconstruction code. Instead just charges on the read out pad with
largest deposited charge and its two neighbors were used for "cluster building". The
deposited charges were assigned according to their time bin. The momentum was
assumed to be the nominal momentum of the test beam. In the TRD reconstruction
code a momentum correction is applied since especially electrons can lose a significant
part of their momentum. As a consequence other references, according to the new
momentum, have to be used for these electrons. For test beam data a momentum
correction is not possible due to the absence of a magnetic field. Nevertheless, the
test beam data are consistent with the results shown for older AliRoot (v4-12-Release
and v4-16-Rev-05) simulations and momenta above 3 GeV/c. As discussed before in
Section 8.3.2, the differences from the reconstruction point of view are larger for newer
AliRoot simulations (v4-17-Rev-12). The cluster position in x direction is corrected and
the deposited charge is corrected due to different bin width in x direction. In addition, pad
row crossing is taken into account [Ber09a].

Analysis The analysis procedures are very similar for simulations and test beam
data. However, a large difference is of course the estimation of the particle identity.
In simulation the Monte Carlo identity is available, but in test beams independent
particle identification detectors have to be used. Roughly estimated, the contamination
is < 0.3% (see Section 7.4.3). However, such contaminations should not affect the pion
efficiency calculations using the extrapolation method. Another possibility is that the
error bars are too small. It was observed that fluctuations in the data sets could cause
large differences (see Section 7.3.3). The error bars only take into account the statistical
error (see Section 6.4.2), errors coming from the non-ideal references are not considered.
Non-ideal references could be caused by problems associated with the neural network
training (see Section 5.4.2).

The reasons discussed above may explain all the differences observed. Probably all
of them contribute to a certain extent to the observations. However, the data and the
procedures outlined above do not provide a handle to clearly identify and quantify the
contributions.



9. Applications of the TRD Particle
Identification in ALICE

While the topic of the previous two chapters was the electron identification with the
Transition Radiation Detector alone, this chapter will shed more light on the TRD PID
within ALICE. It includes the generation of reference data for particle identification in
ALICE (Section 9.1), electron identification with the Transition Radiation Detector for a
trigger on electrons with a high transverse momentum (Section 9.2), and the measurement
of dielectrons with the ALICE central barrel (Section 9.3).

9.1 Reference Data for Particle Identification

Particle identification for the Transition Radiation Detector works by comparing an
obtained signal to some reference. Based on that the probabilities for the track to
originate from different particle species is calculated. For the TRD the references are
the two-dimensional histograms, used for the two-dimensional likelihood method, or
trained artificial neural networks. In order to get good estimates of the probabilities it is
crucial to build the reference histograms and to train the neural networks with high-purity
particle samples. A study of the required purity for a successful training of artificial neural
networks is presented in Section 8.4.

9.1.1 Sources of Reference Data

There exist several possible sources of reference data. All of them have advantages and
disadvantages which will be discussed in the following sections. The considered sources
are:

• test beam data with tagged electrons and pions,

• data from AliRoot simulations,

• and references from pp collisions using displaced vertices.

189
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Test Beam Data

The goal of the test beam in 2007 was to check the Transition Radiation Detector in its
final hardware configuration and to study the possibility of acquiring a first reference data
set. The analysis of the test beam data of 2007 is presented in Section 7.5.

One issue of the 2007 test beam data for PID references was the "geometry" of the
data taking. Contrary to ALICE, the particles in the test beam hit the Transition Radiation
Detector Supermodule always at the same position and with the same angle of incidence.
In addition no magnetic field was available, consequently all tracks were straight and
no Lorentz angle needed to be taken into account. For the ALICE Transition Radiation
Detector, a tracklet’s signal is normalized by the calibration procedure (electron gain, drift
time, starting time t0) [Bai08] and the reconstruction (track length, x position) [Ber09b].
This normalization allows to handle the tracklet independently of its geometric attributes,
which are e.g. the tracklet position in a TRD module, the position of the TRD module
itself, and the tracklet’s angle of incidence.

In the analysis of the test beam data it was shown that the data was contaminated.
A possible explanation for the contamination are double tracks (see Section 7.5.3). The
contamination resulted in a worse pion efficiency compared to the results from previous
test beam analyses and results from AliRoot simulations. This impurity due to double
tracks may present a larger problem than the mentioned geometric differences. In
Section 8.4.1 the influence of contaminations on the particle identification performance
for neural networks in proton-proton collisions was analyzed. The results indicated that
an impurity up to a level of about 15% showed very small influence on PID capability.

In Section 8.4.2 the neural networks trained with 2007 test beam data were applied
to simulated data. The results were comparable to the results from the different test
beams and AliRoot simulations. The limited geometric variation of the reconstructed
tracks (fixed incidence angle, fixed beam position) did not affect the particle identification
performance. The impurity of test beam data had also little influence on the pion
efficiency. The successful application of simulated data to networks trained with test
beam data indicated that test beam data can be used for training the reference networks.
However, a disadvantage of the 2007 test beam data is that it is only available for four
momenta (1.0, 2.0, 4.0, and 6.0 GeV/c) and two particle species (electrons and pions).

AliRoot Simulations

Another source for reference data are AliRoot simulations. Simulated data have several
advantages compared to test beam data. The exact experimental topology can be taken
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into account. Particle abundances and momentum distributions can be simulated as
required. In the existing test beam data only electrons and pions are available, in
simulations any kind of particle can be generated. Test beam data are only available
with fixed momenta, whereas simulations allow to produce particles with a continuous
momentum spectrum.

The big disadvantage of simulated data is that it is only a parameterization. In the
real experiment effects may occur that are not taken into account in simulations. Possible
differences to reality could arise due to geometrical reasons (e.g. wrong estimate of the
chamber material) or physical effects which are not correctly taken into account or are
ignored in the simulation. An example for a possible error source is the generation of
transition radiation in AliRoot simulations. As discussed in Section 4.2.2, the production
of transition radiation inside the radiator cannot be simulated by GEANT3 in detail.
Instead, a momentum dependent parameterization based on test beam data has been
used [And04a, And09a].

9.1.2 Reference Data from Displaced Vertices in Proton-Proton
Collisions

In the previous section test beam data and AliRoot simulations were discussed as
references for the Transition Radiation Detector. Despite their disadvantages, both
methods seem to be usable for generating reference data. Nevertheless, the extraction
of references directly from the experiment would be optimal.

A possibility to extract reference data for particle identification for the ALICE Time
Projection Chamber (TPC) was presented in Reference [Kal08]. Pairs of charged particle
tracks which do not point to the primary vertex originate from decays of neutral particles
or photon conversions. The secondary vertex which represents the decay location of an
unstable neutral particle is also called V 0, the process itself V 0 decay1. The daughter
particles can be identified with good purity via the reconstruction of the neutral mother
particle’s invariant mass. The truncated deposited charges of the daughter particles are
used to determine the parameters of the Bethe-Bloch curve (see Section 4.2.1) for the
Time Projection Chamber. For the Transition Radiation detector the situation is different,
since it is not possible to find parameters for a function which represents the detector
response. Instead of a response function, single particle tracks with a secure particle
identification have to be used to generate two-dimensional histograms or to train artificial

1The photon conversion to an electron positron pair is not a V0 decay. Nevertheless, in the following,
"V0" includes also photon conversions since they have a similar topology.
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Figure 9.1: Topology of a displaced vertex [Kal08]. A neutral particle does not produce a track in the
tracking detectors. In case the uncharged particle decays into a positively and a negatively charged particle,
two tracks can be reconstructed. Due to the magnetic field, the tracks are bent in different directions. The
reconstructed vertex of the neutral particle decay is the V0 vertex. Further attributes of a displaced vertex
are the Distance of Closest Approach (DCA) between the two reconstructed tracks and the pointing angle δ.
The pointing angle is the angle between the reconstructed momentum of the neutral particle and a straight
line between the V0 vertex and the collision point.

neural networks. Nevertheless, displaced vertices can be used to select tracks which then
can be used for the generation of reference data.

Possible V0 decay candidates for reference data extraction are the following
processes:

K0
S → π

+ +π
− (69.2±0.05)%, cτ = (2.684±0.001)cm,

Λ → p+π
− (63.9±0.5) %, cτ = (7.88 ±0.06) cm,

Λ̄ → p̄+π
+ (63.9±0.5) %, cτ = (7.88 ±0.06) cm,

γ+Z → e+ + e−+Z (≈ 6.3% in ALICE, from vertex to the first half of TPC).

The branching ratios of the decays are given in the brackets. The data was taken from
References [Ams08, Ale06].

V0 Topology and the Invariant Mass

The topology of a V0 decay (as well as for a photon conversion) is shown in Figure 9.1.
It is characterized by:
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Figure 9.2: Invariant mass of neutral kaons (blue) and background (black) as provided by the ALICE
reconstruction V0 finder [Hei09].

• a V0 vertex,

• a track of a positively charged particle,

• a track of a negatively charged particle,

• the distance of closest approach (DCA) between the two tracks,

• and the pointing angle δ between the reconstructed neutral particle momentum and
the vector from the secondary vertex to the collision vertex.

The V0 identification happens during the reconstruction with a V0 reconstructor and
is based on the quantities described above [Kal08]. In addition, a causality check is
performed. In case the secondary vertex is reconstructed far enough form the collision
point, inward detectors (e.g. an ITS layer) will not register any signal from the secondary
tracks.
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The invariant mass minv of a decayed particle can be determined by momentum
measurements of the daughter tracks and a mass hypotheses for the daughter particles.
The invariant mass is given by:

m2
inv = (E1 +E2)

2− (~p1 + ~p2)
2
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1 +2E1E2 +E2
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2
)
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E1 and E2 are the energies of the two daughter particles, ~p1 and ~p2 their momenta, and m1

and m2 their masses. It has to be noted that in case the daughter particles have different
masses (m1 6= m2) the resulting invariant mass is not the same if the mass assumptions are
assigned to the wrong tracks. minv(m1,m2) is not the same as minv(m2,m1) and allows e.g.
the discrimination of Λ and Λ̄ decays.

In Figure 9.2 the invariant masses of simulated K0
s decays are shown in blue. The

background as it is provided by the ALICE reconstruction V0 finder is plotted in black. It
can be seen that a clear peak is visible at the expected mass of about mK0 ≈ 497 MeV/c2.

Results and Contamination

The most interesting V0 process for the TRD is the photon conversion into an electron
positron pair. The probability for a photon to convert before the Transition Radiation
Detector is reached is at about 6.3%. In Reference [Wil08] a first estimate on the
feasibility of using γ conversions for the production of reference data was presented. The
following updated preliminary results are based on simulations and were produced by
M. Heide. Final results with experimental data will be published in Reference [Hei].

For the study about 5 ·107 simulated minimum bias pp events were used. The collision
energy in the simulation was 10 TeV. A track was only accepted for the study when it
produced six tracklets in the TRD, i.e. all six layers of the TRD were hit. In 2010 the
Transition Radiation Detector will consist of seven supermodules. The simulation was
made under the assumption that eight TRD Supermodules are installed in ALICE. In
Figure 9.3 the reconstructed position of true photon conversions are shown, where at least
one daughter track was reconstructed in the TRD. "True" means that the particle has the
Monte Carlo identity of a photon. The structure of the inner barrel of ALICE is clearly
visible.

The simulations differ from the expected situation for ALICE in 2010. Instead
of 10 TeV the expected collision energy in the first year will be 7 TeV. Therefore the
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Figure 9.3: Conversions in ALICE for 32 million pp collisions at 10 TeV/c [Hei09]. All conversion points
are shown where at least one track can be reconstructed in the Transition Radiation Detector. In this
simulation eight TRD Supermodules were active. Since photon conversions occur preferably in material
with a high nuclear charge Z, the layers of the ALICE Inner Tracking System as well as the inner part of
the Time Projection Chamber can be seen.

estimated yield of photons, neutral kaons, and lambda baryons will be about half of
the simulated one. In addition, only seven TRD Supermodules instead of eight will be
installed. The number of accepted particles needs to be multiplied by a factor of 7/8.

The default V0 reconstructor of AliRoot uses topological information in order to
find the displaced vertices. The background of the resulting invariant mass spectrum
is quite large [Kal08]. Background components are falsely reconstructed vertices and
reconstructed V0s of the wrong type. The background can be reduced very strongly by the
application of some cuts. The cuts for the different processes are presented in Table 9.1.

The most important cut is the one on invariant mass. Only displaced vertices with
invariant masses around the requested one are accepted. A cut on the pointing angle can
further reduce the number of falsely reconstructed V0s. The opening angle is used for
photon conversions only. It is the angle between the positive and the negative particle
track at the reconstructed secondary vertex. Electron and positron are emitted under a
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V0 type γ→ e+ + e− K0
s → π+ +π− Λ/Λ̄→ p+π−/p̄+π+

minv < 0.07 GeV/c2 mK0±0.01 GeV/c2 mΛ±0.01 GeV/c2

pointing angle < 0.03 rad < 0.03 rad < 0.03 rad
opening angle < 0.1 rad – –

opening angle in θ < 0.05 rad – –
V0 dist. > 6.0 cm < 20 cm –

PID TPC TPC + TOF TPC + TOF
(Le > 0.21) (Lπ > 0.9) (Lp > 0.5,Lπ > 0.2)

Table 9.1: Cuts used for the V0 reconstruction [Hei09].

small angle since the photon is massless. The magnetic field in ALICE is the only effect
that separates the e−e+ pair. Since the magnetic field has no influence in direction of the
polar angle θ (see Apendix B), this angular component should be the same for both tracks.
Photon conversions occur preferably in material with high nuclear charge Z (detector
material or support structure), particle decays have typical decay times. Thus, a cut on
the distance of the reconstructed V0 to the primary vertex further improves the purity of
the selected process. The last cut that is performed is a cut on the PID response of other
ALICE detectors. For the identification of photon conversions the likelihood response of
the Time Projection Chamber (TPC) is solely used. The PID cut for neutral kaon and
lambda identification is made on the combined likelihood of TPC and Time-Of-Flight.

The resulting momentum spectra for electrons from photon conversions, pions from
K0

S decays, and protons from Λ decays are plotted in Figure 9.4. The black curves
represent all particles from the corresponding decays that can be found. All correctly
found particles are plotted in a darker color, while particles of the correct type but not
originating from the displaced vertex are shown in light colors. This is background which
is not relevant, since we are interested in particles of this species in general, independently
of their origin. The background that has influence on the purity is plotted in gray. These
are all particles which are not of the requested type. About 10000 complete tracks per
momentum bin are needed for the training of the neural networks. Assuming about 109 pp
events in the first year, enough data will be available for the training of neural networks
up to a momentum of 4 GeV/c by the end of 2010 [Hei09].

Using daughter particles of neutral particle decays opens a possibility to access
reference data directly from the experiment. Reference data from V0 decays can be
obtained for electrons, pions, and protons. The situation is different for muons and
kaons. It is hard to identify muons in the ALICE Inner Barrel. They have a mass that
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Figure 9.4: Momentum spectra of particles originating from γ conversions and from V0 decays [Hei09].
The complete spectrum as obtained (black) and the intended extracted particles (dark colors: red for
electrons, blue for pions, and purple for protons) are shown. The background is plotted, too. It is split
into two components: One component is background that consists of the particles of the regarded species
which do not originate from a displaced vertex (light colors), the other component consists of all other
particles (gray). Only the gray background component influences the purity of a training sample.
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is very close to that of pions (mµ ≈ 105.7 MeV/c2, mπ± ≈ 139.6 MeV/c2). Therefore,
they cannot be discriminated by the Time Projection Chamber, the Transition Radiation
Detector, nor the Time-Of-Flight even if reference data were available. Kaons can be
identified with the inner barrel detectors. The kaon mass is above the mass of pions
(mK ≈ 493.7 MeV/c2). Unfortunately no neutral particle decay with charged kaons as
daughter particles has a large branching ratio and small background. However, the
combined particle identification using TPC, TOF, and ITS might provide a sample of
charged kaons that is pure enough to provide reference data for lower momenta. Using
the particle identity from reconstructed tracks for kaon references is currently under
investigation [Hei09].

9.2 Feasibility Study for Particle Identification with the
TRD Electron Trigger

So far, only particle identification in test beams and on fully reconstructed data has been
discussed in this thesis. In this section online particle identification using the TRAP chip
will be presented. Online electron identification is needed for the TRD trigger. It was
shown with test beam data (Chapter 7) and in simulations (Chapter 8) that artificial neural
networks provide good electron identification for the TRD. The improvement compared
to a likelihood method on total deposited charge is about a factor of three.

In this section, first a short overview of the ALICE TRD trigger concept is given.
After that a feasibility study is presented using artificial neural networks for online particle
identification.

9.2.1 The TRD Trigger Concept

In the Transition Radiation Detector’s Technical Design Report [TRD01] the TRD trigger
was defined. Its tasks are:

• finding and selecting tracks with momenta above 3 GeV/c,

• discriminating electrons from the pion background,

• and determining further information such as invariant mass of two tracks or the
multiplicity in a region.
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Parameter Symbol Granularity Range Bits
pad position ˜̂y 160 µm [-643.2 mm, 643.2 mm] 13

deflection length θ̃ 140 µm [-8 mm, 8 mm] 7
pad row 1 [0,15] 4

electron probability Pelectron 0.39% [0,1] 8

Table 9.2: Bit content of a tracklet word [dC03].

The TRD trigger allows to select events in order to enhance physics observables such
as J/ψ with large momenta, ϒ production [Wes12], dielectrons with invariant masses
between 4 and 9 GeV/c2, and jet production [Bat].

The Transition Radiation trigger consists of two components, the Local Tracking
Unit (LTU) and the Global Tracking Unit (GTU).

Local Tracking Unit

The Local Tracking Unit is composed of Multi Chip Modules (MCMs) located on each
of the readout boards. Online tracklets are generated in the LTU the (see Section 4.3.3).
Online tracklets are track segment candidates represented by a 32 bit word. The word
contains information about the y position of a track, its deflection length, the pad row, and
an associated electron probability [Gut06]. The bit content of a tracklet word is shown in
Table 9.2. An online tracklet contains an electron probability with an accuracy of 8 bit. It
is calculated locally directly on the TRAP chip (see Section 4.3.3). Compared to offline
particle identification, online PID suffers from the following differences:

• no full reconstruction,

• limited input information,

• limited time for the calculation of the electron likelihood,

• and limited output information which is shipped to the GTU.

Reconstruction Online, only a very limited tracklet reconstruction is performed. Since
the trigger is supposed to find stiff tracks with high transverse momentum, tracklets are fit
with a straight line [Gut06]. A tracklet is assumed to come from the collision point and
to cross a maximum of two pads (in the same pad row) on its path through the chamber.
It is not possible to make sophisticated corrections such as normalization to the tracklet
length, to the x width of the time bin, or to take pad row crossing into account.
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Figure 9.5: Trigger timing for the TRD [dC03].

Available Time on the TRAP Chip For the calculation of the likelihood to be an
electron only limited time is available. In Figure 9.5 the time progress of the trigger
is illustrated. The time between an interaction at the collision point and the final decision
of the Global Tracking Unit if a trigger signal should be sent is only about 6.5 µs. The
tracklet calculation including the determination of the electron likelihood needs to be
finished within 1.8 µs.

PID Input For offline particle identification using artificial neural networks, the
deposited charges in eight slices (see Section6.3.2) are taken into account. For the online
particle identification the deposited charges in only two drift time windows (Q0, Q1) can
be considered. The sizes as well as the starting points of the two windows can be freely
configured. The PID needs references to determine the electron likelihood. In the offline
particle identification references are available for eleven momentum bins. For online
PID, references can be stored in look-up tables (LUT), which are then saved locally on
the Multi Chip Modules (MCM). The maximum number of entries in all look-up tables
on an MCM is 2048. This means that one look-up table with a limited resolution has to
be used for electron identification for all momenta, which limits the accuracy for input of
online PID additionally.

PID Output of the TRAP Chip As well as the input, the output of the PID on the
TRAP chip is limited. The locally determined electron probability is shipped to the Global
Tracking Unit via tracklets. The reserved space on the tracklet for electron probability is
8 bit (see Table 9.2).
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Global Tracking Unit

The tracklet is shipped to the Global Tracking Unit. In the GTU, Track Matching
Units (TMU) combine the tracklets to tracks. Based on the tracklet information
the transverse momentum and the electron likelihood are determined. In case
certain conditions are fulfilled, a trigger signal is sent to the Central Trigger
Processor (CTP) [dC03].

9.2.2 Generation of PID Look-Up Tables

Neural networks perform very well in the discrimination of electrons from pions (see
Sections 7.6 and 8.2.2). Thus, the question arises whether artificial neural networks
can also be applied to the online particle identification. Actually, the limited time
that is available for the estimation of the electron likelihood does not allow to use an
artificial neural network in the conventional form. The calculation of the sigmoid function
which is needed to determine the output of single neurons (see Section 5.2) is too time
consuming [Ang07]. Nevertheless, neural networks can be used to create look-up tables
which are used for particle identification on the MCMs. The idea behind this is to
train neural networks using two input neurons according to the two drift time windows
available for online particle identification. Since the online PID look-up table consists
only of 2048 entries, all possible inputs can be presented to the network. The excitations
of the output neuron representing the electron likelihood are used as entries for the look-
up table.

For the training of the neural networks fully reconstructed particle tracks were used,
extracted with the AliTRDpidRefMaker task. The particles were simulated using AliRoot
v4-17-Rev-02. The momentum distribution and the particle composition were the same
as used for the determination of offline particle identification performance (five particle
species and a flat momentum distribution, see Section 8.2.1). The charge signals in the
eight windows of a tracklet that enter the offline particle identification vary in many
aspects from the two charges of tracklets generated online, as discussed previously.
Nevertheless, it might be useful to train the networks using the offline information. In case
it can be shown that neural networks trained with offline data show a good online electron
identification, the networks could be trained with data from the running experiment, using
displaced vertices (see Section 9.1.2).

First of all, the width of the two drift time windows for Q0 and Q1 had to be
determined. Seven data sets were created containing the rearranged deposited charges
of the eight offline slices. The eight deposited charges were rearranged into the two



202 Chapter 9: Applications of the TRD Particle Identification in ALICE

Number of Time Bins in the First Slice
0 2 4 6 8 10 12 14 16 18 20 22 24

Pi
on

 E
ffi

ci
en

cy

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024
Complete, Training Data

Complete, Test Data

With Gap, Training Data

With Gap, Test Data

Figure 9.6: Pion efficiency of a neural network with two input neurons versus the number of time bins taken
into account for the first slice. The seven different networks were trained for 3,000 epochs. In addition,
results are shown for networks with a gap of three time bins. It can be seen that networks with a time bin
ratio of 4:4 or 5:3 yield the best pion efficiencies. A gap does not improve the performance of the networks.

values that were used as input for the neural networks. Q0 and Q1 were built by adding
the deposited charge of different numbers of offline slices. E.g. for the first data set the
charge in the new slice 0 was just the charge taken from offline slice 0, that of slice 1 was
the sum of the other seven. In order to provide normalized data, Q0 and Q1 were divided
by the number of used slices. The neural network used for the training had two input nodes
(corresponding to Q0 and Q1) and two output nodes (one for electron likelihood and the
other one for non-electron likelihood). The topology of the hidden layers was identical
to the offline neural networks (two hidden layers with fifteen and seven neurons)2. The
data sets consisted of tracks with a momentum of 3 GeV/c. As usual, they were split
into a training data set and a validation data set. The neural networks were trained for
the seven data sets and for each layer separately. Training was terminated after 3,000
epochs. Results of the pion efficiency for six TRD layers are shown in Figure 9.6. The
pion efficiency is plotted versus the number of time bins taken into account for Q0 (e.g 12
means that the charges of 12 time bins are used for Q0 and the 12 remaining ones for Q1).
The results for the training sample as well as for the validation sample are shown. It can
be seen that the best performance could be achieved using a time bin ratio with a slightly

2The topology of the networks might not necessarily need to be so complicated. The performance
of networks with a simpler topology (one hidden layer with less neurons) is currently under
investigation [Wes12].
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smaller window for Q1. For the further analysis a ratio of 5:3 was used for the drift time
windows. In addition networks were tested with a gap of three time bins between Q0

and Q1. By using such a gap potential correlations between the two charges could be
reduced. The result also shown in Figure 9.6 indicates that no significant improvement
can be achieved with this gap.

So far, the pion efficiency performances shown in Figure 9.6 represent only the PID
performance using two time slices instead of eight, but apart from that the full offline
information. The limitation to 2048 entries in the look-up table of the TRAP chip
results in a limited binning for the input charges Q0 and Q1. This limitation might
further influence the particle identification performance. A reasonable binning for Q0

is 40 bins and for Q1 is 50 bins. Q1 has a slightly finer binning, since transition radiation
is expected to preferably contribute to Q1 (at larger drift time, see Section 6.1). The
charge distributions for electrons and pions in the six layers with the respective binning
is presented in Figure 9.7. The maximum for Q0 and Q1 in arbitrary units is at 1. The
trained networks are fed with the bin centers of the 40×50 bins. The resulting output of
the neuron representing electron likelihood is shown in Figure 9.8. Red corresponds to a
large electron likelihood, blue to a low electron likelihood.

9.2.3 Performance, Summary, and Outlook for Online Particle
Identification

For the determination of the pion efficiency the data sets were analyzed again. However,
this time, instead of using the neural networks, the likelihood distributions were produced
using the look-up tables for the extraction of the electron probability. Data sets for
all eleven default momentum bins were produced and applied to the look-up tables.
The resulting pion efficiencies are shown in Figure 9.9 for two different data sets per
momentum bin. Only one of the 3 GeV/c data set was used for the training, since only
one look-up table is available for all momenta. The 3 GeV/c data set 1 is used for training
and data set 2 for validation. The differences between the results for the other momentum
bins are caused by fluctuations of the deposited charge in the single tracks. It can be
seen that the pion efficiency is at the level of 1% for momenta of 3 GeV/c and below, and
increases for larger momenta. This behavior is expected, since it agrees with that of test
beam data and offline PID using simulations (see Figure 8.13).

The study presented here shows that even though with a smaller accuracy compared
to full offline reconstruction a particle identification performance of the order of the
TRD design goal can be achieved in simulations. The tracks used here are corrected
for track length. This correction cannot be applied online. Instead, the track length can
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Figure 9.7: Distribution of the deposited charges Q0 and Q1 for all six TRD layers. The correlation plots
are shown for electrons and pions separately.
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Figure 9.8: Resulting look-up table for the six TRD layers for normalized deposited charges in Slice 0
and Slice 1. The color represents the likelihood to be an electron. The differences in the upper right area
are caused by the low statistics in this region. Due to different starting parameters for the training and
fluctuations of deposited charge the large differences for the different layers occur. However, due to the
limited number of entries in that region (see Figure 9.7) these fluctuations do not have a large influence on
the electron identification performance.

be considered in the look-up table, since each MCM can load its own look-up table. The
values in the look-up table can be corrected for the geometrical position of the Multi Chip
Module in the experiment. The correction is made assuming straight line tracks coming
from the collision vertex. A correction for pad row crossing as well as a correction of the
time bin width is not applicable online.

It has to be noted that this is not a complete study of the online particle identification.
Nevertheless, the look-up table produced here can be used for the PID response simulation
of an MCM in AliRoot. For the implementation a scaling factor has to be applied
to the look-up table since its range of Q0 and Q1 is optimized for neural network
training. In addition, until now the digital filters (e.g. tail cancellation, see Section 4.3.3)
have not been used in the MCM simulation, but a tail cancellation is applied in the
offline reconstruction, which also has to be taken into account. First results of a study
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Figure 9.9: Pion efficiency using the look-up tables versus momentum. In each momentum bin results for
two data sets are shown. In case of a momentum of 3 GeV/c, data set 1 corresponds to the training set and
data set 2 to the validation set.

by U. Westerhoff [Wes12] indicate that the online particle identification with Multi
Chip Modules in AliRoot simulations using the look-up table generated with offline
information is about a factor of three worse than the estimate of the present study. The
online particle identification using offline information will be good enough to provide a
trigger flag for electrons with momenta larger than 3 GeV/c.

9.3 Dilepton Measurements at the LHC

An important measurement in ultrarelativistic heavy-ion collisions is the measurement of
dileptons. The invariant mass spectrum of dileptons provide information about the quark-
gluon plasma (see Section 2.3). ALICE can measure dimuons with the muon spectrometer
in a pseudo-rapidity range of 2.5 < η < 4.0 and dielectrons with the central barrel in |η|<
0.9. Besides ALICE, the other large LHC experiments (ATLAS, CMS, and LHCb) are
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Figure 9.10: The acceptance of the CMS detector systems [d’E08].

also able to measure dileptons. An overview of the plans and their potential for measuring
quarkonia is given in Reference [Lan08].

In this section, first a short excursion is made to CMS and its program for quarkonia
measurements in the dimuon channel. After that the measurement of dielectrons in
ALICE with the central barrel is discussed. The analysis follows the procedure described
by W. Sommer [Som08] and F. Kramer [Kra06]. The influence of artificial neural
networks, used for particle identification in the TRD, on the background in the invariant
mass region of the J/ψ and the ϒ is explored. Finally, the signal to background ratio is
compared to that of other PID methods.

9.3.1 Quarkonia Measurement in CMS

CMS has a wide and extensive heavy-ion program which is described in detail in [d’E07].
Because of its design with large-acceptance electromagnetic and hadronic calorimeters as
well as muon detectors, CMS has excellent capabilities to measure important observables
in heavy-ion collisions. The calorimeters allow full jet reconstruction over a large
pseudo-rapidity range, while the trigger system is able to provide high statistics on rare
probes [d’E08]. In this section the focus lies on the measurement of dimuons.

As described before, CMS is designed as a barrel detector including end caps. Its
inner tracking system covers a pseudo-rapidity range of |η| < 2.4 and provides a precise
reconstruction of secondary vertices [Ado08]. The electromagnetic calorimeter is made
of lead tungstate crystals with an acceptance of |η|< 3.0. The hadronic calorimeter covers
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Figure 9.11: Simulated invariant mass spectra of muon pairs in the J/ψ (left) and the ϒ region (right) for
5.5 TeV PbPb collisions extracted with the central barrel of CMS (|η|< 0.8). Blue are reconstructed masses
with like-sign and red are opposite-sign muon pairs. This distribution is expected after one month of data
taking. The simulations were done assuming a multiplicity of 5,000 charged particles per pseudo-rapidity
unit and no quarkonia suppression [Bed07].

|η|< 5.0 and the muon spectrometer |η|< 2.4. The pseudo-rapidity coverage of the CMS
detectors is presented in Figure 9.10. A detailed overview of the CMS detectors is given
in [Aco06, Ado08] and of the CMS physics performance in [dR06].

CMS is well suited for quarkonia measurements via the dimuon channel which
has a branching ratio of 5.93% for J/ψ → µ+µ− and of 2.48% for ϒ → µ+µ−

respectively [Ams08]. Although CMS is an experiment built for low multiplicities and
high rates, the inner tracker allows even in heavy-ion collisions the suppression of muons
originating from charged pion and kaon decays. Since the strong magnetic field and the
calorimeters deflect and/or stop particles with low transverse momenta, just muons with
momenta larger than 3.0 GeV/c reach the muon detectors [d’E07]. As a consequence,
a dimuon mass resolution of 1% can be reached at about 100 GeV/c2 and the charge of
muons can be determined for momenta up to 1 TeV/c [dR06]. However, this also implies
that J/ψs with pT below 4 GeV/c cannot be measured. The trigger increases this threshold
further for the CMS barrel part (|η|< 0.8) to 6–7 GeV/c [Bed07]. The acceptance for J/ψ

in heavy-ion collisions is about 15% for pT > 12 GeV/c for the whole detector and 5% for
the central barrel. Bottomium has such a large mass that it can be reconstructed even if
it has a negligible transverse momentum. The acceptance (convoluted with the trigger) is
about 40% at pT = 0 and decreases to 15% (5% for |η|< 0.8) for pT > 4 GeV/c [d’E07].
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System mass (MeV/c2) width (keV/c2) Br(e+e−) (%)
J/ψ 3096.916±0.011 93.2±2.1 5.94±0.06
ψ′ 3686.09±0.04 309±9 0.765±0.017
ϒ 9460.30±0.26 54.02±1.25 2.38±0.11
ϒ′ 10023.26±0.31 31.98±2.63 1.91±0.16
ϒ′′ 10355.2±0.5 20.32±1.85 seen(≈ 1.)

Table 9.3: Mass, width, and branching ratio into an electron positron pair of quarkonia [Ams08].

In a CMS research note a simulation study by M. Bedjidian and O. Kodolova on
quarkonia measurements in heavy ion collisions has been presented [Bed07]. Figure 9.11
shows the expected like-sign and opposite-sign dimuon invariant mass spectra at the mass
regions of the charmonium and the bottomium. Here, a charged particle multiplicity
(dNch/dη) of 5,000 is assumed and only events with both muons in the central barrel
region are taken into account. The mass resolution for the J/ψ is 35 MeV/c2 and the signal
to background ratio (S/B) lies at approximately 4.5. For the ϒ the values are at 56 MeV/c2

and about 0.97 respectively. This corresponds to ≈ 11,500 J/ψs and ≈ 6,400 ϒs in
a month of heavy-ion running. In addition, two excited states of the bottomium (ϒ′

and ϒ′′) can easily be identified. In case the complete muon acceptance is taken into
account (|η| < 2.5), the total number of measured quarkonia increases (NJ/ψ ≈ 140,000
and Nϒ ≈ 20,000), but the ϒ mass resolution (≈ 85 MeV/c2) and the S/B (J/ψ ≈ 1.2,
ϒ≈ 0.12) decrease.

9.3.2 Dielectron Measurements with the ALICE Central Barrel in
PbPb Collisions

ALICE has two possibilities measuring dileptons. One is the measurement of dimuons
in forward direction with the Muon Spectrometer, an alternative one uses the detectors
of the central barrel for the identification of electron positron pairs. The measurement
of dielectrons is discussed in this section. The focus of this analysis is the comparison
of identifying electrons using artificial neural networks in the TRD to the electron
identification with a likelihood on total charge (LQ).

Particle Composition of Simulated Events

For the simulation of PbPb collisions a cocktail of different particles with various
momenta has to be created. The event composition should contain the quarkonium signal
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as well as background. The signal is composed of five components: J/ψ, ψ′, ϒ, ϒ′,
and ϒ′′. Their masses, widths, and the branching ratios into an electron/positron pair are
shown in Table 9.3. The background is composed of semi-electronic decays of D and
B mesons, and hadrons falsely identified as electrons. In this analysis, a PbPb collision is
assumed to have a multiplicity of 3,000 charged particles per unit of pseudo-rapidity.

For the simulation of particles composed of heavy quarks, the AliRoot class
AliGenParam was used. AliGenParam allows to load external parameterizations. The
parameterization was taken from the AliRoot AliGenMUONlib which provides parameters
for the transverse momentum, the rapidity distribution, and the particle abundance
within a particle family. The momentum and the rapidity distribution were given by
the parameterization "Vogt PbPb 2002" provided by AliGenMUONlib [Alia]. It is also
possible to select the decays that are allowed for the generated particles. For this analysis
all decays implemented in PYTHIA were allowed.

J/ψ Family The first signal components are the decays of the charmonium ground
state (J/ψ→ e+ + e−) and its first excited state (ψ′ → e+ + e−) into dielectrons. The
expected yield of charmonia is about two orders of magnitude smaller than the total yield
of generated charm anticharm quark pairs [BM09a, And07b]. The total yield of cc̄ in
central PbPb collisions is expected to be about 115 produced pairs [Ale06]. In each
simulated PbPb collision two particles of the J/ψ family were added. The ratio between
the two particle production yields is also provided by AliGenMUONlib and is:

J/ψ ψ′

0.98 0.02

This corresponds approximately to theoretical predictions made by the Color
Evaporation Model (CEM) [Bar80]. However, not all J/ψs which are generated originate
from the direct generation of charmonia. A fraction of J/ψs is produced by decays of
B mesons. The branching ratio for the J/ψ to decay into an electron and a positron
is 5.94% (see Table 9.3). The other decay types are mostly hadronic decays and could
contribute to the background due to misidentification of the daughter particles.

ϒ Family The other signal components are the dielectronic decays of the ϒ family
particles (ϒ,ϒ′,ϒ′′ → e+ + e−). The production cross section for the ϒ family is about
fifty times smaller than for the J/ψ family [Ale06]. Therefore, in only 4.5% of the
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simulated events one ϒ was embedded. The ratio between the production yields of the
single particles and the total production yield of the ϒ family is:

ϒ ϒ′ ϒ′′

0.712 0.184 0.104

Open Charm The electron pairs originating from semielectronic decays of D and
B mesons are background components contributing to the invariant mass spectrum of
dielectrons. This background component is composed of electrons and consequently
cannot be reduced by particle identification. The number of generated charm anticharm
quark pairs is about 115 per central PbPb collision at a collision energy of

√
sNN =

5.5 TeV [Ale06]. Consequently, in each simulated event 230 charmed particles were
embedded. The fractions between the generated charmed particles (plus anti particles)
are [Alia]:

D0 D± D±s Λc

0.6 0.2 0.12 0.08

Open Beauty The number of expected beauty antibeauty quark pairs is about 4.5 for
√

sNN = 5.5 TeV PbPb collisions [Ale06]. Nine beauty particles were embedded into
each simulated event. Besides their semielectronic decay mode, B mesons can also decay
into a J/ψ with a probability of about 1% [Ams08]. This is taken into account here, since
all decays implemented in PYTHIA are allowed. The production yield for beauty particles
is:

B0 B± B±s Λb

0.4 0.41 0.12 0.07

Charmed and beauty particles can contribute to the background not only via their
semielectronic decay, but also due to misidentified pions from their hadronic decays.



212 Chapter 9: Applications of the TRD Particle Identification in ALICE

Jψ Family ϒ Family D mesons B mesons HIJING

2 0.045 230 9 21,508

Table 9.4: Input for the simulation of a PbPb collision with a charged multiplicity of 3,000 per
pseudo-rapidity unit. The numbers stand for the particles simulated per event. In case of the ϒ, one was
embedded in each 22nd event. All particles were simulated in the rapidity range of -8<y<8. The J/ψ, ϒ,
D mesons, and B mesons were allowed to decay into all possible states provided by PYTHIA.

Hadronic Background The background of hadrons was simulated with a
parameterized Heavy Ion Jet Interaction Generator (HIJING) [Wan91] provided by
the class AliGenHIJINGpara. The generator produces pions with a probability of
about 88% and kaons with about 12%. Pions are generated with an equal amount of
π+, π−, and π0, kaons with an equal amount of K+, K−, K0

S , and K0
L . The transverese

momentum distribution follows the measurement of the CDF collaboration [Abe88]. The
total amount of simulated particles was such that it matches to a multiplicity of charged
particles per pseudo-rapidity unit of dNch/dη = 3000. Fluctuations of the particle
multiplicity were not taken into account.

Others The simulations for this analysis do not reproduce the particle abundances
correctly in all details. Photon conversions have not been simulated. Electron/positron
pairs originating from photons are produced outside of the collision vertex in the detector
material of ALICE. Secondary vertex measurements can be used to suppress them
efficiently [Som08]. Protons are also not simulated here. In the momentum region
p < 3 GeV/c they can be sufficiently well identified with the Time Projection Chamber
and the Time-of-Flight system. For momenta above 3 GeV/c the suppression of protons
using the Transition Radiation Detector exceeds the suppression of pions by a factor of
about five (see Section 8.2.2). A complete overview of the simulated particles per PbPb
collision is given in Table 9.4.

Fast Simulation

In a full simulation of heavy-ion collisions the simulation of the detector responses and
the track reconstruction is very time consuming. Depending on the estimated multiplicity
more than 30000 tracks have to be taken into account. Therefore, the detector response
to particle tracks has been parameterized. A simulation using such parameterization is
called fast simulation. For the ALICE central barrel a parameterization was made by
J. F. Große-Oetringhaus [GO05]. The parameterization was made using a full simulation
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and reconstruction of HIJING events. Additionally, electrons and positrons with higher
transverse momenta were embedded into these HIJING events in order to extract the
detector response for high momentum tracks.

The parameterization for the central barrel consists of three components [GO05]:

• efficiency,

• resolution,

• and electron/pion discrimination.

Efficiency The efficiency describes the probability that a particle is detected and
reconstructed. The efficiency is not unity due to dead areas in the detector. Two-
dimensional efficiency plots are generated for the pT − θ and the pT − φ plane. An
example of the generation of an efficiency response function from the particle generation
via track reconstruction to the efficiency response is given in Figure 9.12 a)-c) for the
pT −θ plane. The one-dimensional projections of the pT , θ, and φ efficiency are shown
in Figure 9.12 d)-f).

Resolution The resolution describes the accuracy of the reconstruction. It is calculated
analogously to the efficiency for the pT − θ and the pT − φ plane. It is based on the
distribution for the difference between generated and reconstructed value of a physical
value x:

∆x = xGenerated− xReconstructed. (9.2)

A Gaussian fit reproduces well the distributions for ∆θ and ∆φ but fails for ∆pT due to
energy loss caused by bremsstrahlung. For ∆pT a Landau distribution convoluted with a
Gaussian distribution has to be used. The resolution of all values x is given by the width of
the Gaussian distribution fitted to the ∆x distribution. In Figure 9.13 a)-b) the resolution
of pT , in c)-d) that of θ, and in e)-f) that of φ is presented.

For details on the efficiency and resolution responses as well as the complete extraction
of the response functions including applied cuts please refer to Reference [GO05].

PID Response The particle identification response is split into a response for the TPC
and one for the TRD. The Time Projection Chamber and the Transition Radiation Detector
are the detectors which are expected to contribute most to the particle identification
of electrons in the transverse momentum range above 1 GeV/c. For the electron
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Figure 9.12: Efficiency response functions for the central barrel [GO05]. a) shows the number of simulated
particles in the pT − θ plane. In b) the number of reconstructed particles and in c) the reconstruction
efficiency is presented. In addition the efficiency as a function of d) pT , e) θ, and f) φ is plotted. The small
drop around θ ≈ 1.6 is caused by absorption or diversion at the central TPC electronde [TPC00]. The 18
drops for the efficiency as a function of φ originate from the dead areas of the TPC, the ALICE support
structures and the borders between the TRD supermodules.
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Figure 9.13: Resolution response functions for the central barrel [GO05]. The resolutions in a-b) pT ,
c-d) θ, and e-f) φ as a function of pT and θ are shown. The red line in a) represents the relative resolution
pT (σ/pT ). It can be seen that for the pT resolution as a function of θ the resolution is worse in case no
TRD information is available.
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Figure 9.14: Pion efficiency response functions for the TPC (green triangles) and for the TRD are depicted.
For the TRD the responses of two PID methods are shown: likelihood on total charge (blue dots) and neural
networks (red stars). The pion efficiencies are shown for 90% electron efficiency.

identification only electrons and pions are taken into account. The response functions for
the pion efficiency of TPC and TRD at 90% electron efficiency are shown in Figure 9.14.
The response function of the TPC was extracted using a likelihood method on total
deposited charge [GO05]. For the TRD two response functions are shown. One is the
pion efficiency achieved with likelihood on total deposited charge (LQ), the other one is
the response of artificial neural networks. The pion efficiencies of the TRD achieved in
simulations (see Section 8.2.2) deviate from the pion efficiencies from test beam data (see
Section 7.6). In order to be not too optimistic a compromise between the results of test
beams and simulations was made. The pion efficiencies used here are estimates based on
the available results, which are slightly better than test beam pion efficiencies.

The Invariant Mass Spectrum

For the analysis about 2.2 million PbPb events have been simulated. Only electrons
and pions with transverse momenta larger than 1 GeV/c were taken into account for the
analysis. First, it is checked if a particle traverses the central barrel within its acceptance
based on the Monte-Carlo information of its transverse momentum pT as well as of the
angles θ and φ. In case the particle traverses the central barrel, its properties are smeared
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Figure 9.15: Invariant mass spectra of dielectrons in the ALICE central barrel using fast simulations. The
spectra are normalized to one event and a bin width of 1 GeV/c2. The spectrum is shown in case only the
TPC is taken into account for electron identification (black line) as well as the spectra for a combined TPC
and TRD electron identification. For the TRD PID two different methods were applied, likelihood on total
charge (blue line) and neural networks (red line). In case only the TPC is used the electron efficiency is
90%, in case the TRD is taken also into account it is reduced to 81%. A clear peak can be seen at the
invariant mass of the J/ψ and an enhancement in the ϒ region when the TRD PID information is taken into
account.

according to the resolutions provided by the fast simulation. For the smearing of the
particles the response functions for a multiplicity of 6,000 particles per unit pseudo-
rapidity were used3. 81% of all real electrons are further processed. The decision if
an electron is used is randomized. In case the particle is a pion the experiment’s PID
response is estimated based on a random number and the PID response functions for
TPC and TRD (Figure 9.14). These random choices are separately done for both TRD
PID methods, likelihood on total charge (LQ) and neural networks (NN). Therefore not
necessarily the same electrons and pions are taken into account.

3The multiplicity in this analysis was 3,000 charged particles per pseudo-rapidity unit. Using responses
for higher multiplicities decrease the efficiencies and the resolutions of the experiment. However, it was
shown that using response functions for dNch/dη = 6,000 instead of the nominal one reduces the efficiency
only by about 1% [GO05].
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The invariant mass of electron/positron pairs is calculated with Equation 9.1.
The resulting invariant mass spectrum is shown in Figure 9.15 for different particle
identification methods. The black line represents the spectrum in case the TRD is not
taken into account and only the PID information of the Time Projection Chamber (TPC)
is used. The blue line stands for the combined PID of TPC and the likelihood method on
total deposited charge in the Transition Radiation Detector. Red is the combined PID of
TPC and artificial neural networks for the TRD. The peak originating from J/ψs is clearly
visible for both methods combining the TPC and the TRD. In the invariant mass region of
the ϒ also an enhancement is visible, but for a clear peak the number of simulated events
is too small. It can be seen that the differences in the invariant mass spectrum between
the likelihood on total charge method and the neural network method for the TRD are not
large.

In order to estimate the difference between the performance of the two methods, the
signal to background ratio (S/B) and the significance (SGN) are calculated. They are
defined as [Som08]:

S/B =
∑(

Nsignal
)∑(

Nbackground
) , (9.3)

SGN =
∑(

Nsignal
)√∑(

Nsignal
)
+
∑(

Nbackground
) . (9.4)

The signal to background ratio does not depend on the amount of data, the value for
significance increases with increasing number of events. Therefore SGN as well as
the signal is extrapolated to the expected number of PbPb events in one month of data
taking (≈ 2 ·108 events). The signal is extracted via the Monte-Carlo information within
an invariant mass window, which is chosen such that the significance has a maximum
value [Som08]. The mass window is defined with a lower mass limit (mlow) and an upper
mass limit (mhigh). The background is given by the total spectrum in the invariant mass
window minus the signal extracted via Monte-Carlo information. A summary of the S/B,
the expected SGN, and the total amount of expected particles for 2×108 PbPb events is
presented in Table 9.5.

Influence of PID Methods on the Dielectron Background in PbPb Collisions

It can be seen that the TRD’s Particle Identification method has little influence on the
measurement of J/ψs. The signal to background ratio is not reduced significantly. For
the ϒ the improvement is also not significant, but it seems that the PID method could have
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Jψ ϒ

PID method LQ NN LQ NN
S/B 1.03±0.03 1.06±0.03 0.57±0.13 0.79±0.19
SGN 489.7 494.3 45.4 50.0

Signal (4.75±0.08)×105 2,960±487
mlow (GeV/c2) 3.0 9.105
mup (GeV/c2) 3.116 9.518

Table 9.5: Signal to background, significance, and total amount of expected particles for J/ψ and U psilon
in 2× 108 PbPb events. The values are given for both Transition Radiation Detector PID methods,
likelihood on total deposited charge and neural networks. In addition the mass window that was taken
into account is presented.

a larger influence. The reason for the small influence of the PID method on the S/B is
discussed in the following.

The background for quarkonium measurements consists of a reducible background
of pions and an irreducible background of electrons. The effect of different electron
identification methods on the ratio of signal to background depends strongly on the
amount of pions. The different contributions to the background as well as the quarkonia
signals are shown in Figure 9.16 for a combined particle identification of TPC and
likelihood on total charge for the TRD. An entry is assigned to one of the background
contributions if at least one of the two particles originates from a particle containing charm
or beauty quarks or is a pion. The pion contribution to the background in the region of the
invariant mass of the J/ψ is below 10%. The improvement using different PID methods
cannot exceed the limit given by the contribution of pions to the background. In the region
of the ϒ mass the ratio of pion contribution to the background is larger. The electron/pion
discrimination by the TPC gets worse for larger momenta (see Figure 9.14). Consequently
a better TRD PID method should have a larger influence in this mass region. A trend that
supports this assumption is seen, but the statistical error is so large that a final conclusion
on the quantitative improvement cannot be made.

It has to be noted that in Reference [Som08] also a comparison of different PID
methods (LQ and 2-dim LQ) was made. The results of this study indicate that the
improvement by using advanced PID methods such as two-dimensional likelihood or
neural networks might be larger than in the present analysis. Although the analysis made
here follows that of Reference [Som08], some differences in the simulation may lead
to the observed differences in the signal to background ratio. In Reference [Som08]
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Figure 9.16: Invariant mass spectrum of dielectrons using the likelihood on total deposited charge (black
curve). The spectrum is normalized to one event and a bin width of 1 GeV/c2. The different contributions to
the spectrum are also shown. The signals originating from quarkonia are plotted in full color, contributions
to the background as lines. Only the contribution of pions can be reduced by particle identification.

quarkonia were simulated with a transverse momentum distribution following a
parameterization of the CDF collaboration [Abe88]. The CDF parameterization results
in a different pT spectrum for quarkonia compared to the parametrization used in the
present study [Kru08].

It is not clear whether this is the only reason for the observed differences. It seems
that in Reference [Som08] the background contains more contributions from misidentified
pions and less from heavy flavor electrons than in this study. However, in case of a larger
pion background, particle identification using artificial neural networks would further
improve the signal to background ratio. The larger the background due to pions (e.g.
due to higher charged particle multiplicity), the more important is a sophisticated PID
method such as the neural network method presented in this thesis.



Summary

The ALICE Transition Radiation Detector was designed as a tracking detector, as a trigger
for electrons, and for the identification of electrons. Electrons are appropriate probes for
studying the quark-gluon plasma. The design goal for the Transition Radiation Detector
was to reach a pion efficiency below 1% at an electron efficiency of 90% for momenta
above 3 GeV/c. The signal that is generated in the TRD has two components. Traversing
charged particles deposit energy in the Transition Radiation Detector due to ionization
processes described by the Bethe-Bloch formula. In addition, electrons produce transition
radiation which is absorbed in the drift region. The resulting clusters are relatively
large and contribute significantly to the total amount of deposited charge, too. Using
a likelihood method on the total amount of deposited charge (LQ), a pion suppression
which is of the order of the design goal of 100 at momenta above 3 GeV/c can be reached.
However, the total deposited charge alone does not contain the full signal information
for electron identification that is provided by the Transition Radiation Detector. The
Transition Radiation Detector signal is time resolved; the time resolution enables a
position reconstruction of electron clusters in drift direction. Transition radiation photons
are absorbed early in the gaseous volume of the TRD. Thus, the temporal (and therefore
spatial) information of large clusters is an additional indicator for particles that produced
transition radiation, i.e. electrons. Attempts to exploit this additional information are
a combined likelihood on total deposited charge and the time bin with the maximum
entry (LQX) and a two-dimensional likelihood method on deposited charge in two parts
of the drift region (2-dim LQ). The two-dimensional likelihood method improves the
electron/pion discrimination power of the TRD by about a factor of two for simulations.
However, even these more sophisticated likelihood methods do not exploit the full
information available.

In this thesis the application of artificial neural networks for particle
identification (PID) with the Transition Radiation Detector was explored. As input
for the neural network, the TRD signal of a particle track in one chamber was split into
several slices. A check to determine the optimal width of the time slices with test beam
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data resulted in using three time bins for each slice, corresponding to a time window
of 300 ns. The deposited charge in the time slices was used as input vector for the neural
network. The output of the network provides the Bayesian probabilities for each regarded
particle species (e and π for test beam data, e, µ, π, K, and p for simulations). It was
shown that artificial neural networks perform better than all other PID methods discussed
in this thesis for test beam data as well as for AliRoot simulations. The obtained
pion efficiency was below 0.5% at a momentum of 3 GeV/c for all analyzed data sets.
Compared to a likelihood method on total deposited charge (LQ) the improvement of
pion suppression was about a factor of three, compared to a two-dimensional likelihood
method (2-dim LQ) it was about a factor of two.

It was shown that artificial neural networks can be trained with no performance loss
using data that is not correctly identified up to a "contamination" of 15%. This important
result shows that for the generation of reference data the purity of a data set is not the
limiting factor for the particle identification performance of artificial neural networks.
Motivated by the results of the contamination study, simulated data were applied to
artificial neural networks trained with the contaminated test beam data of 2007. No
performance loss compared to networks trained with simulated data was observed.

The results presented in this thesis do not complete the topic of particle identification
for the TRD. Two studies that were initiated here, obtaining reference data from displaced
vertices and the online particle identification, are part of future PhD theses [Hei, Wes12].

In summary, a framework for particle identification using neural networks has been
developed in this thesis. The particle identification was analyzed starting from first results
in test beams, its implementation in the simulation framework and reconstruction code of
ALICE, and finally, its application within the actual experiment. Particle identification
using neural networks showed the best performance of all PID methods. As an outcome
of this thesis, it became the standard PID method for the ALICE Transition Radiation
Detector. This standard PID method provides an excellent electron identification for the
measurement of single electron spectra [Hei], of J/ψ [Kra10, Kru11], and of ϒ [Wes12].



Zusammenfassung

Der ALICE Übergangsstrahlungsdetektor (TRD) wurde als Spurrekonstruktionsdetektor,
als Triggerdetektor für Elektronen und für die Identifikation von Elektronen konzipiert.
Elektronen sind eine geeignete Sonde für die Erforschung des Quark-Gluon-Plasmas.
Das Konstruktionsziel für den Übergangsstrahlungsdetektor war eine Pioneneffizienz von
unter 1% bei einer gleichzeitigen Elektroneneffizienz von 90% und Impulsen von über
3 GeV/c zu erreichen. Das Signal das im TRD erzeugt wird besteht aus zwei Komponen-
ten. Geladene Teilchen, die den Übergangsstrahlungsdetektor durchqueren, deponieren
Energie durch Stoßionisation gemäß der Bethe-Bloch Formel. Zusätzlich dazu produ-
zieren Elektronen Übergangsstrahlung die im Driftbereich absorbiert wird. Die dadurch
enstandenen Ladungswolken sind relativ groß und tragen signifikant zu der gesamten de-
ponierten Ladung bei. Mit einer Likelihood-Methode basierend auf der deponierten Ge-
samtladung kann eine Pionenunterdrückung in der Größenordnung des Konstruktionsziels
von 100 bei über 3 GeV/c erreicht werden. Die deponierte Gesamtladung alleine umfasst
nicht die komplette Information, die vom Übergangsstrahlungsdetektor zur Identifiaktion
von Elektronen zur Verfügung gestellt wird. Das Signal des Übergangsstrahlungsdetek-
tors ist zeitaufgelöst; die Zeitauflösung erlaubt eine Positionsrekonstruktion der Elektro-
nenwolken im Driftbereich. Übergangsstrahlungs-Photonen werden früh im Gasvolumen
des TRDs absorbiert. Deswegen ist die Zeitinformation (and damit die Ortsinformation)
von großen Ladungswolken ein zusätzlicher Hinweis auf Teilchen die Übergangsstrah-
lung, d.h. Elektronen, erzeugen. Versuche diese zusätzliche Information auszunutzen sind
die kombinierte Likelihood-Methode basierend auf der deponierten Gesamtladung und
dem Zeit-Bin mit der höchsten deponierten Ladung (LQX), sowie eine zweidimensiona-
le Likelihood-Methode basierend auf der deponierten Ladung in zwei Zeitfenstern der
Driftregion (2-dim LQ). Die zweidimensionale Likelihood Methode verbessert Elektro-
nen/Pionen Trennung um einen Faktor von zwei in Simulationen, aber auch diese verfei-
nerten Methoden nutzen nicht die ganze verfügbare Information aus.

In dieser Arbeit wurde die Anwendung von künstlichen neuronalen Netzwerken für
die Teilchenidentifikation (PID) mit dem Übergangsstrahlungsdetektor untersucht. Als
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Eingangsgröße für das neuronale Netzwerk wurde das TRD-Signal in mehrere Abschnit-
te unterteilt. Ein Test um die optimale Breite eines Abschnittes zu bestimmen ergab eine
Breite von drei Zeit-Bins pro Abschnitt, was einem Zeitfenster von 300 ns entspricht. Die
deponierte Ladung in den Zeitfenstern wurde als Eingabe-Vektor für das neuronale Netz-
werk benutzt. Die Ausgabe des Netzwerkes lieferte die Bayes-Wahrscheinlichkeiten für
jede berücksichtigte Teilchensorte (e und π in Teststrahldaten, e, µ, π, K und p in Simu-
lationen). Es wurde gezeigt, dass die neuronalen Netzwerke besser arbeiten, sowohl mit
Teststrahl-Daten als auch in Simulationen, als alle anderen Teilchenidentifikationsmetho-
den die in dieser Arbeit untersucht wurden. Die erreichte Pioneneffizienz bei einem Im-
puls von 3 GeV/c lag unter 0.5% in allen untersuchten Datensätzen. Im Vergleich mit der
Likelihood-Methode basierend auf der deponierten Gesamtladung (LQ) wurde die Pio-
neunterdrückung um den Faktor drei, verglichen mit der zweidimensionalen Likelihood-
Methode um einen Faktor zwei verbessert.

Es wurde gezeigt, dass neuronale Netzwerke ohne Effizienzverlust mit Daten trainiert
werden können, die eine "Kontamination"von bis zu 15% an nicht korrekt identifizier-
ten Teilchen aufweisen. Dieses wichtige Ergebnis zeigt, dass für die Erzeugung von Re-
fernzdaten die Reinheit eines Datensatzes nicht der limitierende Faktor für die Güte der
Teilchenidentifikation mit neuronalen Netzwerken ist. Von den Ergebnissen der Konatmi-
nationsstudie motiviert, wurden simulierte Daten auf Netzwerke angewendet, die mit den
kontaminierten Teststrahldaten aus dem Jahr 2007 trainiert worden sind. Verglichen mit
Netzwerken, die mit simulierten Daten trainiert worden sind, wurde keine Verschlechte-
rung der Effizienz beobachtet.

Die Ergebnisse, die in dieser Arbeit präsentiert wurden, schließen das Thema der Teil-
chenidentifikation mit dem TRD nicht ab. Zwei Studien, die Extraktion von Referenzda-
ten aus verschobenen Vertizes und die Online-Teilchenidentifikation, wurden in dieser
Arbeit angeregt, die Teile von zukünftigen Doktorarbeiten sind [Hei, Wes12].

Zusammenfassend wurde in dieser Arbeit ein Framework für die Teilchenidentifi-
kation mit neuronalen Netzwerken entwickelt. Die Teichenidentifikation wurde analy-
siert, angefangen mit ersten Ergebnissen aus Teststrahldaten, über die Implementierung
in das Simulations- und Rekonstruktions-Framework von ALICE, und schließlich der
Anwendung im tatsächlichen Experiment. Teilchenidentifikation mit neuronalen Netz-
werken zeigte die beste Leistung von allen PID-Methoden. Als ein Ergebnis dieser Ar-
beit, wurde die Teilchenidentifikation mit neuronalen Netzwerken die Standardmethode
für Teilchenidentifikation mit dem ALICE Übergangsstrahlungsdetektor. Diese Standard-
PID-Methode stellt eine exzellente Elektronenidentifikation für die Messung von Spek-
tren einzelner Elektronen [Hei], von J/ψ- [Kra10, Kru11] und von ϒ-Mesonen [Wes12]
zur Verfügung.



A. Kinematic Variables in High
Energy Physics

In high energy physics it is useful to characterize a particle according to the rules of
special relativity by its four-momentum P:

P = (E,~p) = (E, px, py, pz), (A.1)

E is the particle’s energy and ~p its three-momentum in Cartesian coordinates. In this and
all following equations it is:

~≡ c≡ 1. (A.2)

For free particles with the rest mass m0 the energy-momentum relation is valid:

E2 = m2
0 +~p2. (A.3)

The absolute value of the four-momentum is called invariant mass minv. It is invariant
under Lorentz transformations and given by:

minv = P2 =−~p~p+E2. (A.4)

The invariant mass of a single particle is identical to its rest mass m0.
Using the four-momenta the Mandelstam variables s, t, and u can be defined. They are
used to describe scatterings for two on two particles. With P1 and P2 as the four-momenta
of the incoming particles and P3 and P4 as outgoing ones they are:

s = (P1 +P2)2 = (P3 +P4)2, (A.5)

t = (P1−P3)2 = (P2−P4)2, (A.6)

u = (P1−P4)2 = (P2−P3)2. (A.7)
√

s represents the total energy of a reaction in the center-of-mass system. For ion
collisions it is usually given per nucleon pair:

√
sNN .

A particle’s momentum ~p can be split into a longitudinal component pL parallel to the
beam axis and a transversal component pT perpendicular to the beam axis. For the ALICE
coordinate system (see Appendix B) they are given by:

pL = pcos(θ) = pz, (A.8)

pT = psin(θ) =
√

p2
x + p2

y , (A.9)
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where p is the absolute value of the momentum. While the transverse momentum is
invariant under Lorentz transformations in z directions, the longitudinal momentum is
not. Instead the rapidity y is used:

y =
1
2

ln
(

E + pL

E− pL

)
. (A.10)

The rapidity is additive under Lorentz transformations. Using the transverse

mass mT =
√

p2
T +m2

0, energy and longitudinal momentum can be written as:

E = mT cosh(y), (A.11)

pL = mT sinh(y). (A.12)

For E�m0 the rapidity is approximated by the pseudo-rapidity η. For the emeasurement
of the rapidity, the energy of a particle has to be determined. This requires particle
identification. The pseudo-rapidity can be determined by measuring only the emission
angle θ. Therefore it is often used instead of the rapidity. η is given by:

η =
1
2

ln
(

p+ pL

p− pL

)
(A.13)

= − ln
[

tan
(

θ

2

)]
. (A.14)



B. The ALICE Coordinate System
The ALICE coordinate system was defined as a right-handed orthogonal Cartesian
coordinate system in Reference [ALI03]. The point of origin x,y,z = 0 is at the nominal
beam interaction point. The axes, azimuthal angle φ, and the polar angle θ are defined as
follows:

• x axis - horizonztal axis perpendicular to the beam direction and pointing towards
the accelerator center.

• y axis - perpendicular to the beam direction and the x axis pointing upward.

• z axis - perpendicular to the x and y axis, parallel to the beam direction. Positive
z is from the point of origin towards Side A, negative z from the point of origin to
Side C. The muon arm is located at negative z.

z

y

x

ϑ

ϕ

r

Side A

Side C

Figure B.1: The ALICE coordinate system. Plot adapted from Reference [GO09].
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• azimuthal angle φ - increases clockwise from x (φ = 0) to y (φ = π/2) for an
observer standing at negative z and looking towards Side A.

• polar angle θ - increases from z (θ = 0) passing the xy plane (θ = π/2)
to −z (θ = π).



C. Data Tables Test Beam

C.1 Test Beam 2002

C.1.1 PID Cuts 2002

Momentum Cherenkov1 Cherenkov2 Pb-glass (π) Pb-glass (e−)
(GeV/c) (ADC counts) (ADC counts) (ADC counts) (ADC counts)

1.0 20 20 90 160
1.5 20 20 105 250
2.0 20 20 130 350
3.0 20 20 185 550
4.0 20 20 200 750
5.0 21 24 210 1000
6.0 23 28 250 1200
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C.1.2 Used Runs 2002

Run Momentum (GeV/c) # of Events # of Events for PID e−Trigger
558 1.0 56,480 7,508 yes
559 1.5 58,413 17,162 yes
560 2.0 70,940 18,902 yes
561 3.0 70,300 26,798 yes
562 4.0 59,165 24,758 yes
563 5.0 54,775 16,824 yes
564 6.0 69,391 15,444 yes
565 2.0 14,226 3,392 no
566 3.0 21,759 3,294 no
567 4.0 31,646 2,742 no
568 5.0 38,334 1,848 no
569 6.0 43,839 1,484 no
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C.2 Test Beam 2004

C.2.1 PID Cuts 2004

Momentum Cherenkov (π) Cherenkov (e−) Pb-glass (π) Pb-glass (e−)
(GeV/c) (ADC counts) (ADC counts) (ADC counts) (ADC counts)

1.0 4 50 120 160
1.5 4 50 180 220
2.0 4 50 200 280
3.0 4 50 450 450
4.0 4 50 500 500
5.0 4 50 700 700
6.0 4 50 800 800
7.0 4 50 900 900
8.0 4 50 1200 1200
9.0 4 50 1400 1450

10.0 4 50 1600 1700
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C.2.2 Used Runs for Small Prototypes Analysis 2004

Run Momentum (GeV/c) # of Events # of Events for PID
120 10.0 63,201 15,162
121 9.0 62,056 10,700
122 8.0 59,079 12,450
123 7.0 58,572 12,348
124 6.0 53,677 13,032
125 5.0 57,734 7,278
126 4.0 59,641 16,796
127 3.0 60,398 17,714
128 2.0 37,229 9,828
129 1.5 31,845 4,628
130 1.0 36,010 7,404

C.2.3 Used Runs for the Stack Analysis 2004

Run Momentum (GeV/c) # of Events # of Events for PID
425 10.0 27,718 10,424
426 8.0 23,543 8,070
428 6.0 23,329 11,402
429 4.0 22,366 15,426
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C.3 Test Beam 2007

C.3.1 PID Cuts 2007

Momentum (GeV/c) Cherenkov (π) Cherenkov (e−) Pb-glass (π) Pb-glass (e−)
(GeV/c) (ADC counts) (ADC counts) (ADC counts) (ADC counts)

1.0 350 900 575 575
2.0 350 900 900 900
4.0 350 900 1700 1750
6.0 350 900 2500 2700

C.3.2 Used Runs 2007

Run Momentum (GeV/c) # of Events # of Events for Training
374 1.0 116,625 3,588
385 2.0 117,634 3,994
387 4.0 140,061 4,926
408 6.0 154,796 4,738
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