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Abstract

In this thesis, we study transfer principles in the context of certain Henselian
valued fields, namely:

- Henselian valued fields of equicharacteristic 0,
- algebraically closed valued fields,
- algebraically maximal Kaplansky valued fields,

- and unramified mixed characteristic Henselian valued fields of perfect
residue field.

First, we compute the burden of such a valued field in terms of the burden
of its value group and its residue field. The burden is a cardinal related
to the model theoretic complexity and a notion of dimension associated to
NTP, theories. We showed for instance that the Hahn field F'%((Z[1/p])) is
inp-minimal (of burden 1), and that the ring of Witt vectors W (IF4') over
F2'¢ is not strong (of burden w). This result extends previous work due to
Chernikov and Simon and realises an important step toward the classification
of Henselian valued fields of finite burden.

Secondly, we show a transfer principle for the property that all types re-
alised in a given elementary extension are definable. It can be written as
follows: a valued field as above is stably embedded in an elementary exten-
sion if and only if its value group is stably embedded in the corresponding
extension of value groups, its residue field is stably embedded in the corre-
sponding extension of residue fields, and the extension of valued fields satisfies
a certain algebraic condition. We show for instance that all types over the
Hahn field R((Z)) are definable. Similarly, all types over the quotient field
of W (IF'8) are definable. This extends a work of Cubides and Delon and of
Cubides and Ye.

These distinct results use a common approach, which has been developed
recently. It consists of establishing first a reduction to an intermediate struc-
ture called the leading term structure, or RV-sort, and then of reducing to
the value group and residue field. This leads us to develop similar reduction
principles in the context of pure short exact sequences of abelian groups.
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Introduction

This thesis treats some model theoretical aspects of valued fields. Model
theory is a branch of mathematical logic with a focus on the study of al-
gebraic structures and their definable sets. Valued fields are such algebraic
structures, that are rich and interesting in many ways. The reader will find
below an overview on this topic and a summary of all the main results of this
text.

Classification theory.
Initiated by the work of Shelah in [66], an active area of model theory is the
study and the classification of first order theories according to their com-
plexity. The complexity of a theory is measured in terms of combinatorial
configurations that it may encode. This is of course a natural idea, that one
might find some origin in the famous theorems of Godel, where the coding
abilities of prime numbers are used - revealing at the same time the com-
plexity of the theory of arithmetic. In general, the less a theory is able to
encode complex configurations, the more it is considered as tame. A complex
hierarchy of first order theories arises, expressing their relative tameness or
complexity.

Modern classification of theories started with the study of the class of
stable theories; a very tame and undoubtedly an important class of first or-

@,+,%)

A classification of first order theories.

11
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der theories. A theory is stable if no formula encodes “i < 77 for 7, j € N (see
e.g. |72] for a precise definition). This is a class to which belong the theory
of infinite sets, algebraically closed fields and abelian groups. Many methods
and tools have been specifically developed in order to analyse types and mod-
els, and these have structurally improved our abstract understanding of this
class. Let us cite for instance Morley’s Categoricity Theorem: if a first-order
theory in a countable language is categorical in some uncountable cardinal-
ity, then it is categorical in all uncountable cardinalities. This framework has
also established deep connections between the geometry of forking indepen-
dence and properties of algebraic structures (groups and fields) definable in
the theory.

However, many natural theories do not fit in this restrictive setting such as
any ordered structure, or any ‘random structure’. After some development,
logicians have extended these tools to larger contexts, and have generalised
results to some unstable theories. Already in [66], two generalisations captur-
ing slightly wilder theories have been defined and studied, namely the class
of simple theories (no formula encodes the tree property) — to which belong
the theory of the random graph and the theory of pseudo finite fields — and
the class of NIP theories (no formula encodes “i € J”, i € N, J C N) — to
which belong the theory of real closed fields, of dense linear order, of the field
of p-adics and of algebraically closed valued fields. These two generalisations
are ‘orthogonal’ in the sense that a theory which is both simple and NIP is in
fact stable. The interest in these classes grew significantly after some tools
and methods developed for stable theories found interesting extensions to
more general contexts (e.g. see [69] and [50]). Ever since, model theory has
pushed our knowledge to less and lesser tame theories by generalising these
tools to wilder classes. In this conquest of the 'untame land’ of first order
theories, one of the latest developments concerns the class of NTPy theories
(no formula encodes the tree property of the second kind). See [16] and [14].
It appeared to be a particularly interesting generalisation of the class of NIP
and Simple theories. For instance, non-principal ultra-products of p-adics,
the densely ordered random graph, and valued fields with a generic automor-
phism are NTP,, but neither simple nor NIP. The main results of this thesis
concerns specific NTP, theories of valued fields. Before going to details, let
us mention instances of other developments in the framework of classification
theory: on one hand, there is the classes of NSOP,, theories, n € N*, which
form a proper hierarchy of generalisations of simple theories, and which is
already meaningful in the study of fields. On the other hand, the classes of
NIP,, theories (where no formula encodes “i € J”, ¢ € N*, J C N") seem to
be interesting generalisations of the class of NIP theories, highlighting the
importance of combinatorial configurations of higher dimension.
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The abstract study of these classes leads to a better understanding of
algebraic structures, as some algebraic phenomena may or not occur, de-
pending of the complexity of the theory (e.g. [48] and [17]). Of course, the
more we study these classes, the more relevant it is to classify theories. It
could be in general a difficult exercise, but many methods are known: one
can show stability (resp. NIP) by counting types over small sets (resp. co-
heirs over models). Simple theories are exactly theories with some abstract
independence relation ([50]). The situation is different when we look at a
quantitative version of these notions of complexity.

Quantitative vs Qualitative notions of complexity.

Let us explain what we mean by ‘quantitative’; or at least, let us give a quick
intuition. As we said, a theory is not stable, NIP, nor Simple if instances of a
single formula realise a certain combinatorial configuration. For example, the
formula x|y in the theory of arithmetic, or the formula x € y in the theory
of ZFC have the strong property to encode the tree property of the second
kind, demonstrating that ZFC and the theory of (N, +, x) have TP,. Even
if a theory cannot encode a given combinatorial property, it may however be
able to do so partially, and to some extent. And so rises in a certain sense a
notion of ‘rank’, or ‘dimension’. There is probably no recipe which attaches
an interesting quantitative notion of complexity to any class of the hierarchy.
In our context, one can call ‘dimension’ of a theory the maximal size of sets
of formulas ¢;(z, y;), such that a set of y;-instances, called a pattern, satisfies
the combinatorial configuration. Applied to NIP, this gives us the notion of
dp-rank, and applied to NTP,, the notion of burden, which generalises the
former. In particular, we no longer study only the intricacies of instances
of one unique formula, but interaction of instances of several formulas. A
major difference between quantitative and qualitative classifications seems to
be the following: though one can use global reasoning in the second case (e.g.
counting types), one needs however a rather good understanding of formulas
in the first case. A good understanding of formulas could be a synonym for
quantifier elimination, but in practice, one needs an even better description of
one-dimensional definable sets than the one given by quantifier elimination.
Hence, the quantitative classification of first order theories actually motivates
the search for a good description of the definable sets. This is of course an
important problem on its own, as such a description can be used for many
purposes.

Computing the burden is indubitably a very active research area (|58],
[47|, [42]). In particular, finite burden or burden equal to 1 has some relevance
([1]). A theory of burden one is called inp-minimal, or if is NIP, dp-minimal.
If it has ‘non-infinite’ burden, it is called strong, or if the theory is NIP,
strongly dependent. In model theory of valued fields, it has been shown that
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the field of p-adics is dp-minimal ([28],[5]). Later in [19], Chernikov and
Simon proved that any ultraproduct of the p-adics over an ultrafilter on the
prime numbers is inp-minimal, improving Chernikov’s earlier work in [14]).
As we will see, this computation highlighted some constraint between value
group and residue field, with some concrete applications.
Stable embeddedness and definability of types
An other important notion present in this text is the notion of stable embed-
dedness. One can formulate two (equivalent) characterisations of stability:
a theory is stable if and only if every complete type is definable if and only
if every set is stably embedded. In model theory of unstable structures, the
notion of stable embeddedness plays an important role. A subset A of an
L-structure M is said to be stably embedded if any intersection of A and of a
definable set is the intersection of A and of an A-definable set. By a duality
between parameters/variables, it is equivalent to say that all types over A
are definable over A. Understanding stably embedded definable subsets can
be a crucial step in order to understand the whole structure. For instance, in
the study of Henselian valued fields of equicharacteristic 0, the value group
and residue field are stably embedded substructures that play a primordial
role — we will discuss this fact longer in the introduction. The definition of
stably embedded subsets is of course not limited to definable sets and other
aspects concern indeed stably embedded submodels of the structure. Given
a theory T, one can ask: when is a model M stably embedded in a given
elementary extension N7 in all elementary extensions? One can also ask if
this condition is first order: is the class of pairs of model M < N, such that
M is stably embedded in NV, axiomatisable in the language of pairs? By an
observation of van den Dries (|29]), being a stably embedded submodel of a
real closed field is a first order property in the language of pairs. This was
later generalised by Marker and Steinhorn to any o-minimal theories. They
in fact prove that any o-minimal structure over which all 1-types are defin-
able has all types definable. Few other structures satisfy analogous property,
such as Presburger arithmetic and the theory of random graphs. Let us now
introduce the structures that we mainly studied in this text, namely the
valued fields.

Valued fields.
Many fields are naturally endowed with a valuation such as the field of formal
power series K ((t)) over a field K or the field of p-adics numbers Q, for a
prime p. Valued fields are rich algebraic structures and are very well studied
in the framework of algebraic number theory, algebraic geometry and also
model theory. In particular, model theorists found in the theory of valued
fields a rich source of applications. Let us mention for instance the Denef
rationality results for Poincaré series, the foundations of motivic integration



CONTENTS 15

and the Ax-Kochen-Erghov principle — bringing the study of valued fields in
the scope of model theory.

In the study of a valued field IC, the value group I' and the residue
field & play important roles, as we said. In the case that we will study,
they will be always stably embedded substructures. It is often useful
to consider a valued field as a leveled tree branching |k|-many times in
|['|-many levels. It gives a picture for the valuation of an element or of
the difference of two elements. The topology also becomes more intuitive.
However, it fails to represent the field structure, in particular the multi-
plication. Nonetheless, it appears very useful in the context of this text.
The reader will find some of these representations to support the intu-
ition. We leave here a representation of the field Q3 of 3-adics, as an example.

11+32142-323 34+322-3 32 3242.33 Qs

B>3(3%) s

ceme=—=t
b=

A {
1)
[}
[}
(]
[}
[}
(]
[}
[}
)
[}
[}
+

The Ax-Kochen-Ershov principle and ‘benign’ theories.
As usual in mathematics, one can prove relative results, and in the context
of the classification, it can take the following form: understanding the com-
plexity of a structure in term of that of a simpler substructure. The theory
of valued fields is a fruitful playground for this ‘philosophy’ with the transfer
principle of Ax-Kochen-Ershov, discovered by Ax and Kochen ([6], 7], [8])
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and independently by Ershov ([32], [33],[34],]35],|36],[37],[38]). This princi-
ple states that the theory of Henselian valued fields of equicharacteristic 0 is
completely determined by the theory of its residue field and that of its value
group. One deduces from it the celebrated transfer principle between F,((t))
and Q, for p large enough, and the approximate solution of Artin’s conjec-
ture. It has been shown that many theories are model complete relative to
the residue field and the value group, such as

1. Henselian valued fields of characteristic (0, 0),
2. algebraically closed valued fields,
3. algebraically maximal Kaplansky valued fields.

Notice that all these fields are Henselian - meaning that in these fields, a
Newton process for extracting roots is possible. Although it is an important
algebraic property — and moreover a first order one — we will rarely use explic-
itly its definition. However it will be implicitly used through the assumption
of relative quantifier elimination. It is an important model theoretic prop-
erty with a well known consequence that we discussed earlier: these valued
fields enjoy the property that their residue fields (resp. value groups) are
stably embedded and pure, in the sense that all sets definable in the residue
field (resp. value group) may be defined in the language of fields (resp. or-
dered abelian group) with parameters in the residue field (resp. value group).
In this text, we will refer to the theories listed above as benign theories of
Henselian valued fields, as they behave nicely for the point of view of model
theory. In Subsection 1.2.1, we will isolate few others important model the-
oretic properties that these theories of valued fields share and keep track of
when they are used. The goal is to implicitly work axiomatically, and to
emphasise model theoretic assumptions rather than algebraic ones.

One may be tempted to add to this list the theory of unramified Henselian
valued fields of mixed characteristics with perfect residue field. We have
indeed a result of Bélair in [12] who showed the model completeness relative
to the value group and residue field. However the theory have some specificity
— fortunately not too challenging. It will be treated in different paragraphs,
as it needs different tools and observations. See the paragraph in Subsection
1.2.1 for mixed characteristic valued fields.

These ‘benign’ Henselian valued fields are opposed to wilder fields, such
as F,((¢)), which is Henselian but where an Ax-Kochen-Ershov-like principle
does not hold. In fact, a complete axiomatisation of F,((¢)) is yet unknown:
Kuhlmann showed that a natural set of axioms is not sufficient ([53]). This

It has been improved recently by Jahnke and Ascombe, who no longer assume the
residue field to be perfect.
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is an active problem, and recent progress has been made concerning its exis-
tential theory ([2]).

We will prove two distinct transfer principles for these benign valued
fields and unramified mixed characteristic Henselian valued fields with perfect
residue field. The first concerns its complexity with respect to the burden:
What is the burden of such a valued field in terms of burden of its residue
field and value group? The second concerns stably embedded elementary
extensions of such fields: when is such a valued field stably embedded in
an elementary extension? These two distinct questions are united by the
fact that they can be approached by similar methods. We will discuss these
methods after stating all the main results.

Transfer principles for burden.

One can expect, in principle, to understand the complexity of benign theories
relatively to that of the value group and that of the residue field. A theorem
of Delon [24] is the first instance of this approach in the context of the
classification theory: a Henselian valued field of equicharacteristic 0 is NIP
if and only if both its residue field and its value group are NIP. A more
quantitative transfer in NIP Henselian valued fields was then showed by
Shelah in [67]: a Henselian valued field of equicharacteristic 0 is strongly
dependent if and only if both its residue field and its value group are strongly
dependent. Both results were generalised to NTP, theories by Chernikov in
[14]: a Henselian valued field of equicharacteristic 0 is NTPy (resp. strong,
of finite burden) if and only if both of its residue field and its value group
are NTPy(resp. strong, of finite burden). Then, there is a finer result of
Chernikov and Simon: consider a Henselian valued field of characteristic
(0,0). Assume the residue field & satisfies

k*/(k*)P is finite for every prime p. (Hy)

Then the Henselian valued field of equicaracteristic 0 and residue field k is
inp-minimal (i.e. of burden one) if and only if the residue field and the value
group are both inp-minimal. They deduced the fact cited earlier: any ultra-
product I1;,Q, of the p-adics (over an ultrafilter & on the prime numbers) is
inp-minimal. Interestingly, this result particularly echoes the original trans-
fer principle of Ax-Kochen-Ershov: the later indeed takes place in such an
ultraproduct, and a good understanding of this structure is by consequence a
long term goal. As many rank/dimension 1 version of complexity (strongly-
minimal, SU-rank 1 etc.), this notion plays an important role. Let us cite

It was later showed by Gurevich and Schmitt that any pure ordered abelian group is
NIP.

(This theorem failed in general. It has been shown that F,((t)) has TPy, while its
value group and residue field are NTP,. See [17]).
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the classification of dp-minimal fields [46], and of dp-minimal valued fields
[45]. Tt has been shown that dp-minimal ordered abelian groups (I, 4,0, <)
are exactly the non-singular ones (|45]), meaning that I'/pI" is finite for all
prime p. A natural question is then to consider the classification of valued
fields of higher burden. This naturally requires generalisations of Chernikov
and Simon’s theorem. One can ask, as they did in [19, Problem 26|, the
following question: Given a Henselian valued field K of equicharacteristic 0,
with residue field of burden n and value group of burden m. Can we compute
burden of K? We give a full answer to this question. Recall that, for us, a
‘benign’ Henselian valued field is either of equicharacteristic 0, algebraically
closed or algebraically maximal Kaplansky.

Theorem 2.3.4. Let K = (K, T, k) be a benign Henselian valued field, with
value group ' and residue field k. Then:

bdn(K) = max (bdn(k*/k*™) + bdn(nT')) .

It justifies a postior: the hypothesis in Chernikov-Simon’s theorem, and
shows that it is an optimal statement: an equicharacteristic 0 Henselian Non-
trivially valued field with inp-minimal value group and inp-minimal residue
field is inp-minimal if and only if the residue field satisfies (Hy). This answers
at the same time [19, Problem 25|.

The formula in itself as well as the proof shows a certain constrain between
the value group and residue field within the valued field. In some sense, it
behaves —in terms of complexity— like in a disjoint union structure I' U k,
rather than in a product structure I' x k. Hopefully, this should give some
indication and intuition for future research in the classification of Henselian
valued fields, where this distinction will be probably relevant.

Naturally, we can also consider a Henselian valued field with an angular
component, ¢.e. a multiplicative map which associates to every element of
the valued field a coefficient in the residue field and which coincides with the
residue map on elements of value 0. We obtain:

Theorem 2.3.3. Let K,. = (K, T, k,ac) be a benign Henselian valued field
endowed with an ac-map ac, with value group I' and residue field k. Then:
bdn(K,.) = bdn(k) 4+ bdn(T").

The study of valued fields without ac-map provide a prior: finer results,
but it is interesting to notice that the behavior changes — the complexity is
now similar to that of the product structure k x I' — and it is due to a simple
reason that we going to make clear in this text. This difference yields for
instance to the impossibility to define uniformly in p an angular component in
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the fields of p-adics (see Subsection 2.1.2), or in general, to the impossibility
to define an ac-map in certain Henselian valued fields (see remark 2.3.6).

For unramified inequal characteristic Henselian valued fields with perfect
residue field, we have the following:

Theorem 2.4.4. Let K = (K, k,T") be an unramified mized characteristic
Henselian valued field with value group T' and residue field k. We denote
by Kac., = (K, k,Tyac,,n < w) the structure K endowed with compatible
ac-maps. Assume that the residue field k is perfect. One has

bdn(K) = bdn(K,._,,) = max (X, - bdn(k), bdn(I')).

Notice that this time, there is no difference between valued fields and
valued fields endowed with ac-maps (maps with a plural, as it refers in this
context to countably many maps. See 1.2.30). Notice that the multiplication
sign between the two cardinals Xg - bdn(k) cannot be replaced by an addition
or a max, as we have to consider finite fields (of burden 0). It follows that the
ring of Witt vectors W(]F;l” ) — in fact any unramified inequal characteristic
Henselian valued field with infinite perfect residue field — is not strong. This
is perceived as a negative result.

We now describe our second type of transfer principles.

Transfer principle for definability of types.

As we said earlier, stably embedded elementary pairs of real closed fields
form an elementary class in the language of pairs ((|29])). Motivated by a
similar question, Cubides and Delon have shown in [22] that an algebraically
closed valued field K is stably embedded in an elementary extension L if
and only if the valued fields extension K < L is separated (sce Definition
3.1.1) and the small value group I' is stably embedded in the larger value
group I'y. Recently, Cubides and Ye proved in [23| a similar statement for
p-adically closed valued fields and real closed valued fields. We give in this
text a generalisation to benign Henselian valued fields. In fact, we give two
statements:

Theorem 3.1.17. Assume that T is a benign theory of Henselian valued
fields. Let I < L be an elementary pair of models of T'. The following are
equivalent:

1. K is (uniformly) stably embedded in L,

Another reason is that k£ can for example be of burden ‘N, _’. See Subsection 1.1.2.
We distinguish in this text two natural notions of stable embeddedness/definability of
types: the uniform and non-uniform one. See Definitions 1.1.42 and 1.1.46.
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2. The extension L/K is separated, the residue field of K is (uniformly)
stably embedded in the residue field of L and the value group of K is
(uniformly) stably embedded in the value group of L.

Even if in practice, we will mainly consider elementary extensions of be-
nign valued fields as the situation is simpler (see Subsection 1.1.3), we con-
sider in the second statement non-elementary extensions of valued fields, in
order to enlarge the scope of applications:

Theorem 3.1.16. Assume that 1" is a benign theory of Henselian valued
fields. Let L/KC be a separated extension of valued fields with £ = T. Assume
either

e that the value group of KC is a pure subgroup of the value group of L,
e or that the multiplicative group of the residue field kr, of L is divisible.

The following are equivalent:

1. K is stably embedded (resp. uniformly stably embedded) in L,

2. the residue field of K is stably embedded (resp. uniformly stably em-
bedded) in the residue field of L and the value group of K is stably
embedded (resp. uniformly stably embedded) in the value group of L.

In particular, the field of p-adics Q, is stably embedded in C,, the com-
pletion of its algebraic closure.

Again, with some additional observation, one can adapt these arguments
and treat the case of unramified mixed characteristic Henselian valued fields
with perfect residue field. We show indeed a similar statement for elementary
pairs:

Theorem 3.2.3. Let K be a unramified mixed characteristic Henselian val-
ued field with perfect residue field and L be an elementary extension. The
following are equivalent:

1. K is stably embedded (resp. uniformly stably embedded) in L;

2. The extension L/K is separated, the residue field of K is stably embed-
ded (resp. uniformly stably embedded) in the residue field of L and the
value group of K is stably embedded (resp. uniformly stably embedded)
in the value group of L.
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Also interesting is of course the method to prove these results. It is
largely inspired by a method used in [19], which take source from well-known
algebraic considerations. We will briefly summarise in these lines, but let us
first discuss the limits of a direct approach.

Limit of the theorem of Pas.

In the setting of Henselian valued fields of characteristic (0,0), a very im-
portant tool is the theorem of Pas: Henselian valued fields of characteristic
(0,0) endowed with an angular component eliminate field-sorted quantifiers.
From this powerful result, one deduces easily the Ax-Kochen-Ershov princi-
ple. However, it is insufficient in our context, as adding an ac-map to the
language generates more structure and for instance more opportunities to
partially encode the tree property of the second kind. This is indeed what
happens: we show that the burden of a non-principal ultraproduct of p-adics
endowed with an ac-map is equal to 2. Instead of using the theorem of Pas,
Chernikov and Simon proceed with an intermediate step: before reducing to
the residue field and value group, they consider another interpretable sort,
the RV-sort. This is a rather unusual structure, highly relevant in the study
of valued fields.

History of the RV-sort.

First traces of an intermediate structure between the valued field and the
residue field and value group, can be found in a note of Krasner [51]. This
idea has been brought to the scope of model theory by Basarab ([10]). After
successive modifications ([52]), Flenner came up with the current definition of
the RV-sort [40]. The RV-sort of a valued field K is the structure K*/(1+m)
where m is the maximal ideal of the valuation ring. We denote by rv the
natural projection. The RV-sort offers an additional point of view: let us
cite Hrushovski and Kazdan’s work in motivic integration [44], where RV-
sort are used, as opposed to Denef, Loeser and Cluckers’ work [20], [21], [27]
where ac-maps are used.

Benign theories of Henselian valued field also eliminate quantifiers rela-
tively to the RV-sort. Similarly to the value group and residue field, one sees
that the RV-sort is stably embedded and pure, and can be considered as an
autonomous structure. Its full structure is induced by the exact sequence of
abelian groups

1k —=RV-=T-=0

where k* is the multiplicative group of the residue field, and I' is the value
(ordered abelian) group. It is also possible to consider it as a one-sorted
structure (RV, -, @) where - is the group multiplication and @ is some sort of
non-associative addition, extending the addition of &k (also defined in [40]).
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One point of view, defended for instance in [40], would be to consider RV-
sorts as stand alone structures, interesting on their own (as fields and groups
are). Reduction principles to the RV-sort would be of equal importance, or
could replace classical reduction principles to value group and residue field. A
good understanding of some aspect of the RV-sort is indeed a crucial step in
all the theorems above. In algebra of valued fields, traditional proofs require a
distinction between three kind of extension: ramified (new value in the value
group), residual (new elements in the residue field) and immediate extension
(no new value and no new residue). Considering analogous statements for the
RV-sort, one would have to only distinguish immediate and non-immediate
extensions. But it is a complicated algebraic object, containing an ordered
abelian group and a field. Adapting all classical statements of the algebra of
valued fields from the point of the RV-sort requires some work, and it is not
clear that algebraists will gain to do so. But towards this idea, the reader will
find some results in this text. We produce in Appendix C an axiomatisation
of RV and show that all such RV-structures are the RV-sort of a Henselian
valued field. Overall, we chose a now common point of view — similar to
that in [19]- which consists in seeing reduction to the RV-sort simply as an
intermediate step. The strategy is indeed to reduce to the RV-sort and to
continue the process of reduction later on, from the RV-sort to the value
group and residue field. Let us mention our reduction principle down to the
RV-sort.

Reduction to the RV-sort.

We show that the RV-sort of a benign valued field (see the list above) is
as complex as the valued field itself with respect to the burden.

Theorem 2.1.2. Let IC be a benign valued field. Let M be a positive integer.
Then K is of burden M if and only if the sort RV with the induced structure
1s also of burden M. In particular, K is inp-minimal if and only if RV is
mp-manimal.

For stably embedded substructure, we got the following theorem:

Theorem 3.1.8. Let L/K be a separated extension of valued fields, and
assume that Th(L) is a benign theory of Henselian valued field. The following
are equivalent:

1. K is stably embedded (resp. uniformly stably embedded) in L (in
Th(L)),

2. RV is stably embedded (resp. uniformly stably embedded) in RV .
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We also proved similar statements for mixed characterisitic Henselian
valued fields. See Theorems 2.1.1 and 3.2.1.

These reduction principles are possible due to the fact that benign valued
fields eliminate quantifiers relatively to the RV-sort. In fact, our reduction
of burden makes a decisive use of a slightly improved statement for one-
dimensional definable set: every formula with one free variable x can be
written in the following form:

o(rv(x —ag),...,vv(z —ap_1), B)

where ¢(xg,- - ,2,-1,0) is an RV-formula. Notice that field-sorted terms
are linear in x, and that a non-improved relative quantifier elimination result
would only give polynomial field-sorted-terms). This result is due to Flenner
in the case of characteristic 0, but we had to prove it in the general case of
benign valued fields (see Theorem 1.2.19). This has some intuitive conse-
quences, allowing us for instance to picture the valued field as a tree and to
let aside algebraic consideration such as roots of polynomial. At the same
time, this dependence of a description of one dimensional definable sets adds
a layer of difficulty and an obstacle to potential generalisation, notably to
valued fields with generic automorphism.
Resplendence of relative quantifier elimination.

Quantifier elimination relative to a sort S is said to be resplendent if it
may be extended to any enrichment of the structure on S. This happens
naturally and for syntactical reasons namely when the sort S is ‘closed’,
meaning there is no function/predicate symbols from the sort S to the rest
of the structure. This is a well known fact which has been formalised in [64].
All results of relative quantifier elimination in this text will be resplendent,
and this notion will be intensively used through this text. In fact, all the
main theorems cited above are resplendent — we mean that they still hold after
enrichment of the value group and residue field or the RV-sort. This gives
natural generalisations to richer theories and avoids unnecessary repetition
(‘one may prove similarly that ... ’). Resplendency is for instance used to
extend relative results on valued fields to valued fields with ac-map. One
needs for that to notice that an ac-map is an enrichment of the RV-sort, and
to treat the reduction from the RV-sort to the value group I' and residue
field k. The situation is then much simpler as the RV-sort may be identified
with the product k£ x I'. Notice however that an ac-map is not an enrichment
of neither the value group nor the residue field; a direct reduction to the
value group and residue field would have not implied these statements. A
contrario, working resplendently allows us to ignore ‘superficial structure’
and therefore helps to simplify proofs and notations.
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Reduction to the residue field and value group.
As in [19], we see an RV-sort of a ‘benign’ valued field as an enriched
short exact sequence
1=k —=RV' -1 —=0

of abelian groups. Let us consider first ‘benign’ valued fields with an ac-
map ac : K* — k*. The situation become simpler: one sees that adding an
ac-map is equivalent to adding a spliting of the exact sequence above. By
resplendence, it remains to reduce our problems from a product £* x I" to I
and k. We were naturally lead to the following proposition and lemma:

Proposition 1.1.28. Let K and H be two structures, and consider the mul-
tisorted structure G:

G={KxHKH,7ng: KxH—Kny:KxH-— H},

called the direct product structure (where wy and Ty are the natural projec-
tions). Then G eliminates quantifiers relative to IC and H, and K and H are
orthogonal and stably embedded within G.
We have
bdn(G) = bdn(K) 4+ bdn(H).

Lemma 3.1.11. Let H; (resp. K1) be a substructure of a structure Ho (resp.
Ks). Then Hi x Ky is a substructure of Ha X Ky and we have:

o Hy x Ky is stably embedded in Ho x Ko if and only if Hy is stably
embedded in Ho and Ky is stably embedded in Ks.

o Hi x Ky is uniformly stably embedded in Hy X Ko if and only if Hy is
uniformly stably embedded in Hy and Ky is uniformly stably embedded
m ICQ.

Naturally, the question of the reduction of benign valued fields without
ac-map requires more work, as one has to really deal with the structure of
a short exact sequence 1 — k* — RV* — ' — 0. By resplendence, we can
forget the additive structure on the residue field, and the ordered structure
on the value group. As the following results are interesting in their own, we
leave the traditional notation of valued fields, and name our sequences of
abelian groups 0 - A — B — C — 0.

Theorem 2.2.2. Consider an {A}-{C}-enrichement of an exact sequence
M of abelian groups
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Assume that A is a pure subgroup of B: for all a € A, b € B if t(a) = nb,
then there is a’ € A such that a = na'. We have

bdn M = maI%((bdn(A/nA) + bdn(nC")).
ne

In particular, if A/nA is finite for alln > 1, then
bdn M = max(bdn(A), bdn(C)).

Corollary 3.1.14. Let N ={0 - A — B — C — 0} be a (possibly {A}-
{C}-enrichement of a) pure short exact sequence of abelian groups, and let
M C N be a sub-short exact sequence. Assume either

e that C'(M) is a pure subgroup of C'(N),
e or that p\'(M) is finite for all n > 1.
Then, we have:

e M is stably embedded in A if and only if A(M) is stably embedded
in A(N) and C(M) is stably embedded in C'(N),

e M is uniformly stably embedded in NV if and only if A(M) is uniformly
stably embedded in A(N') and C'(M) is uniformly stably embedded in
C(N).

Is the study of the RV-sort necessary? It is at least very convenient
and seems canonical in a certain way: the RV-sort seems to be the least
substructure within benign valued fields containing the value group and
residue field and where reduction principles apply. And as we saw, it also
has the advantage to generalise in the context of valued fields with an ac-map.

Organisation of the text

A large part of this text is dedicated to preliminaries in Chapter 1. In Section
1.1, we define pure model theoretic notions such as burden and stable em-
beddedness. In Section 1.2, we describe essential model theoretic properties
of algebraic structures: valued fields and short exact sequences of abelian
groups. It also includes important lemmas and propositions.

We prove our transfer principles for burden in Chapter 2, which is split in
four sections: in Section 2.1 we treat the reduction to the RV-sort, in Section

we will denote by pﬁ/ (M) the image of M in A/nA under a certain natural projection
map. The condition is in particular satisfied if A/nA is itself finite
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2.2 the reduction in pure short exact sequences of abelian groups, in Sec-
tion 2.3 the reduction to the value group and residue field for benign valued
fields, and in Section 2.4 the reduction to the value group and residue field for
unramified mixed characteristic Henselian valued fields with perfect residue
field.

We treat then our transfer principles for stably embedded pairs of valued
fields in Chapter 3. For some technical reason, this chapter has a slightly dif-
ferent structure. It is split in three sections: Section 3.1 treats the reduction
in the context of benign valued fields and Section 3.2 treats the reduction in
the context of unramified mixed characteristic Henselian valued fields with
perfect residue field. In both sections, we reduce first to the RV-sort. In
the first, we provide a transfer principle for stably embedded pairs of pure
short exact sequences. Then, in Section 3.3, we treat as a corollary the ele-
mentarity of the class of stably embedded elementary pairs of benign valued
fields.

The reader will also find some sparse results. For instance, we took the
opportunity to briefly study and construct non-uniformly stably embedded
pairs of random graphs in Appendix A. In Appendix B, we produce a
transfer principle for burden in Lexicographic products. We also gave an
attempt in Subsection 1.1.2 to formalise and justify a common convention
which consists of writing bdn(7") < R,_ if a theory T is strong.

Reduction diagrams and heuristic
Let us conclude this introduction with some generalities about transfer prin-
ciples. We summarise the strategy presented above by formalising the reduc-
tion in valued fields and pure short exact sequences of abelian groups. We
introduce reduction diagrams. It is nothing else than a concise way to pic-
ture relative quantifier elimination and by extension, the strategy for proving
reduction principles.

Heuristic 0.0.1. A reduction diagram of a structure M is a rooted tree such
that:

e all nodes are pure sorts of M (in some (-interpretable language) en-
dowed with their full structure;

e the root is M;

e any node admits relative resplendent quantifier elimination (in some
(-interpretable language) to the set of its children;

e any two sorts in two different branches are orthogonal.
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The idea is that one might be able to reduce certain questions on the structure
M to the set of its leaves. Every node describes then an intermediate step.
Reduction to a node would also have the advantage of being generalised to
any enrichment of structure below the node.

In this text, we compute the burden (Definition 1.1.14) of the following
examples in terms of the burden of the leaves. We also characterise stable
embeddedness (Definition 1.1.42) of elementary pairs of models in terms of
stable embeddedness of elementary pairs of structures in the leaves.

Ezxample. 1. If My, M; are arbitrary structures, both the direct product
My x M7 and the disjoint union My U M; reduce to M, and M;
(Fact 1.1.37):

MoXMl M()UM1

/NN

MO Ml M() Ml .

Y

We can of course keep going;:

(Mo X ./\/ll) U Mz

N

Mo My M,

2. Let Koo = {K,T',k,ac: K — k} be a Henselian valued field of equichar-
acteristic 0 of valued group I, residue field k£, and angular component
ac. It admits the following reduction diagrams (Theorem of Pas):

]Cac

/N

k r

3. Let M ={A, B,C,,v} be a short exact sequence of abelian groups

0— A——B—=C 0,

seen as a three-sorted structure. Assume A is a pure subgroup of B.
It admits the following reduction diagram (Fact 1.2.39):
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A

A c

To get relative quantifier elimination, one has to consider interpretable
maps from B to A/nA, n > 0. The sort A/nA are understood to be
part of the induced structure on A.

. Let £ = {K,T,k,RV(K)} be a Henselian valued field of equicharac-

teristic 0, value group I', residue field k£ and RV-sort RV (K) (definition
in Subsection 1.2.1). It admits the following reduction diagram (Fact
1.2.27 and Fact 1.2.39):

K

RV‘(K)

N

k r

It K = {K,T,k} is a Henselian valued field of equicharacteristic 0,

where moreover the residue field & is endowed with a structure (k, ", k')
of Henselian valued field of equicaracteristic 0, and I' is endowed with
a predicate for a convex subgroup A. Then by Corollary 1.2.40 (and
resplendence), we have the following reduction diagram:

RV (k) A T/A



Chapter 1

Preliminaries

1.1  On pure model theory

Notations
We will assume the reader to be familiar with basic model theory con-
cepts, and in particular with standard notations. One can refer to [72].
Symbols x,y, z,... will usually refer to tuples of variables, a,b,c,... to
parameters. Capital letters K, L, M, N,... will refer to sets, and calli-
graphic letters K, £, M, N, ... will refer to structures with respective base
sets K, L, M, N,.... If there is no ambiguity, we may respectively name a
very saturated elementary extension with blackboard bold letters K, 1L, M, . . .
Languages will be denoted will a roman character L, L', Lgings, Lr x etc.

In this chapter, we will consider any (possibly multi-sorted) first order
language L, and an arbitrary L-structure M.

1.1.1 Relative quantifier elimination and resplendence

In this text, we will use freely Rideau-Kikuchi’s terminology about enrich-
ment. We briefly recall it now. The reader can refer to |64, Annexe A] for a
more detailed exposition. In particular, we will define the notion of resplen-
dent relative quantifier elimination. The notion of resplendence will play a
certain role in this text. It seems to unnecessary weigh down statements,
but it is in fact a commodity than one should not avoid when it concerns
transfer /reduction principles. It has the advantage to give effortless gener-
alisations to richer structures, or to simplify the notation, by reducing the
language to the strict necessity for producing transfer principles.
First, let us recall two notions of relative quantifier elimination.

Definition 1.1.1. Let M be a multisorted structure in a language L, and

29
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consider ITUY a partition of the set of sorts. We denote by L|x, the language
of all function symbols and relation symbols in L involving only sorts in 3.
Then, we say that

e M eliminates II-quantifiers if every formula ¢(x) is equivalent to a
formula without quantifier in a sort in II.

e M eliminates quantifiers relatively to ¥ if the theory of M*~Mor —
obtained by naming all L|s-definable sets (without parameters) with a
new predicate— eliminates quantifiers.

As observed in [64, Annexe A|, M eliminates quantifiers relatively to ¥,
then it eliminates II-quantifiers.

Definition 1.1.2. Let M be a multi-sorted structure in a language L, and
let > be a set of sorts in L.

e a language L. containing L is said to be a Y-enrichment of L if all new
function symbols and relation symbols only involve the sorts in ¥ and
the new sorts X, in L, \ L. An expansion M, of M to L. is called a
Y-enrichment of M.

e Y is said to be closed if any relation symbol involving a sort in ¥ or
any function symbol with a domain involving a sort in ¥ only involves
sorts in 2.

Fact 1.1.3 ([64]). Let M be a multisorted structure, and consider IIUX a
partition of the set of sorts. If ¥ is a closed set of sorts, then M eliminates
[I-quantifiers if and only if M eliminates quantifiers relatively to 3.

In the context of this text, these two notions of quantifier elimination
will be often equivalent. Another consequence of closedness is the automatic
resplendence of relative quantifier elimination:

Definition 1.1.4. Let M be a multi-sorted structure in a language L, and
let 32 be a set of sorts in .. We say that M eliminates quantifiers resplen-
dently relatively to 3 if for any ¥-enrichment M, of M, Th(M,) eliminates
quantifiers relatively to ¥ U X, (where X, is the set of new sorts in M, ).

Fact 1.1.5 (|64, Proposition A.9]). Let M be a multi-sorted structure in
a language L, and assume that Th(M) eliminates quantifiers relative to a
closed set of sorts X.. Then Th(M) eliminates quantifiers resplendently rel-
atively to 3.
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Notice however that closedness does not characterise resplendence of rela-
tive quantifier elimination, as we will see later with pure short exact sequence
of abelian groups. Let us introduce the notion of stable embedded definable
sets and of pure sorts.

Definition 1.1.6. e A definable subset D of M is called stably embedded
if all definable subsets of D", n € N can be defined with parameters in
D.

e Two definable subsets D and D" of M are called orthogonal if for all
formulas

ATy vy Ty 13Xy ey Thy 1, @)

with parameters a in M, there is finitely many formulas

0i(zo, ..., xn_1,a;) and O(xf, ..., x),_,,a;), with i < k and parameters
agy - .« Ap—1, Ay, . - ., @,y in M, such that

qb(Dn, Dm, CL) = U1<k91<Dn, ai) X Qg(Dm, CLZ‘).

If S is a sort, we use the following terminology in order to say that
definable sets in S can be given by formulas with parameters in .S and func-
tion/predicate symbols contained in S.

Definition 1.1.7. A sort .S in an L-structure M is called pure or unenriched
if definable subsets of S (with parameters) are given by L|g(S)-formulas
where L|g is the language restricted to function/predicated symbols which
only involve S.

A pure sort S can be seen as an L|g-structure on its owns. In particular,
it is stably embedded. Purity of a sort S is usually a simple corollary of
quantifier elimination relative to S and closedness of S (see Fact 1.1.9).

Remark that the notion of closedness is syntactic, which is not ideal.
One may indeed use another bi-interpretable language, where the sort is no
longer closed, but where resplendent relative quantifier elimination still holds.
Here is a sightly improved version of purity which can replace the notion of
closedness. It is, in a certain sens, less dependent of the language. We will
use it at some rare occasions.

This happens for instance with the residue field k of an equicharacteristic 0 Henselian
valued field: it is closed in the traditional 3-sorted language of valued fields but it is also
natural to interpret in addition a short exact sequences of abelian groups 1 — k* —
RV* — T — 0. See Subsection 1.2.1
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Definition 1.1.8. Consider M a structure. An imaginary sort S = (9,...)
endowed with an interpretable structure in a language Lg is called pure with
control of parameters if every formula ¢;(xg,b) where zg is a tuple of S-
variables and b is a tuple of parameters in M, is equivalent to a formula
¢s(xs, mg(t(b))) where mg is the canonical projection onto S, ¢g is an Lg-
formula and t(x) is a tuple of L-terms.

The following is immediate:

Fact 1.1.9. Consider M an L-structure. If S is a closed sort and M elim-
inates quantifiers relative to S, then S endowed with its induced structure in
Lis @s pure with control of parameters. In particular, it is pure and stably

embedded.

Proposition 1.1.10. Let M be an L-structure, and S an imaginary sort
of arity n with some interpretable structure. Assume that M has quantifier
elimination and that S is a pure imaginary structure with control of param-
eters. The (multisorted) structure {M,S,ms : M™ — S} in the language
Ly :=LULgU{mg: M"™ — S} admits quantifier elimination relatively to S.

As S is by definition a closed sort in the language Lo, this is in fact a
characterisation of purity with control of parameters:

Corollary 1.1.11. An interpretable structure S is pure with control of pa-
rameters if and only if {M,S,7g : M™ — S} admits quantifier elimination
relative to S.

Proof. We use the usual back-and-forth argument. Let N be a | M|-saturated
model of the theory of M in the language Ly. Let f : (A,S54) — (B, Sp)
be an isomorphism between a substructure (A, S4) of M and a substructure
(B, Sg) of N. Assume that the restriction f|g to S is elementary. We want
to extend f to an embedding of M into N.

Step 0: We may assume that Sy, = Sy,.

Indeed, by elementarity of f|g, there exists an isomophism 1l g Sy —
fls(SM) C Sy extending f|g. The union f U f|g is a partial 1somorphlsm
as the sort S is closed. Indeed, every quantifier-free formula ¢(a,s) with
parameters in (A, S),) can be written of the form:

\/¢L ) A ps(s, ms(t(a))),

where ¢r, is an L-formula, ¢s is an Lg-formula and ¢ is a tuples of L-terms.
As A is a structure, all terms ¢(a) are elements of A. It follows that f U f|g
preserves these formulas.
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Step 1: We may assume that A = M and thus conclude the proof.

Indeed, let a € M\ A. We denote by p(x) the quantifier free type of a over A.
We want an appropriate answer for a, i.e. an element f (a) of N satisfying
the set of formulas:

{o(x, £(b), f(5)) | &(x,b,5) € p(x),b€ A, s € Sy}

By compactness, we need to show that it is finitely consistent. Consider a
formula

o(x,b,s) € p(x).

where b € A and s € S);. As S is pure with control of parameters, the
formula

dz ¢($, b7 yS)

is equivalent to an Lg(Sys)-formula 15(¢(b), ys) (with a tuple of L-terms ¢(y)).
The formula

0(y) = Yys ¥s(t(y), ys) < v ¢(z,y,ys)

is interpreted in the language L by a formula ¥X(y). As M has quantifier
elimination in the language L, we may assume that ¥(y) is quantifier-free.
We have:

M = 5(b),
M = Ps(t(b), s).

As [ respects quantifier free-formula and f|g = respects Lg(Sy)-formula, we
have

N = E(1(0)),
N = ¢s(f(E(b)), f(s)).

Of course, f(t(b)) = t(f(b)). We get: N &= Tz ¢(z, f(b), f(s)). This

concludes our proof. O

As an example, we treat the question of quantifier elimination in the field
of p-adics in a two-sorted language of valued fields. This is a well known
result, but we are not aware of a reference.

Ezample. Consider the theory T of the p-adics Q, for some p. By Macintyre’s
theorem [54], it admits quantifier elimination in the language Lajqe := LyingsU
{P,}n<. where the predicate P, interprets the n'"-powers.
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e The value group I', simply considered as a set, is not pure. Indeed, the
theory T" in the language Ly, U {I'} U {val} (no structure on I') does
not eliminate the quantifiers in the formula encoding the addition:

o(zr, yr, zr) = dz,y € K val(x) = zr A val(y) = yr A val(zy) = zr,
where xr, yr, zr are variables in I'.

e By Bélair’s theorem [12, Theorem 5.1, the structure {Q,, 0,.I",val :
Q, — Z,ac, : Q, — O,} enriched with angular components (see
Subsection 1.2.1) eliminates quantifiers in the sort for @Q,. It results
that the value group (I',+,0, <,00) —as an imaginary sort of Q, in
the ring language— is pure with control of parameters. Then, by the
theorem, 71" eliminates quantifiers relatives to I' in the language

Lo := Lasee U {F, <,+,0, OO} U {Val}

e To get full elimination of quantifiers, one only needs to eliminates quan-
tifiers in {I', <, 4,0, 00}. So the theory 7" eliminates quantifiers in the
language Lpsq. U {l', <, +, Py, 0,1, 00} U {val} where P, interprets
the set of values divisible by n.

1.1.2 Classification theory
Introduction

In [66], Shelah defined the notion of burden as an invariant cardinal ;,, and
implicitly defined the tree property of the second kind. A theory which does
not satisfy it is called NTPs,. Interest in the class of NTP, theories grew after
the success of stability theory and with the necessity of extending methods
to unstable contexts. In [16], Chernikov and Kaplan studied the forking
relation in NTP, theories, establishing notably that types over models fork
if and only if they divide. In [14], Chernikov continued the study of NTP,
theories, establishing in particular a criterion with indiscernible sequences
and the sub-multiplicativity of the burden.

We recall here a definition of burden, some of the results cited above and
give some important lemmas required for the proof of Theorem 2.3.4. We
will give a second definition ( slightly different) of the burden in order to
formalise a convention due to Adler([1]).

As an introduction, let us give first the definition of NIP theories. We
also take the occasion to give a quick intuition on how this notion captures
indeed a notion of complexity.
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Let T be a complete first-order theory in a language L, M a model of T'
and let M |= T be a monster model. We denote by S the set of sorts in L.

Definition 1.1.12. A formula ¢(z;y) has the Independence property (IP)
if there is a sequence (a;);en and (by) oy of elements in M such that for all
1 € Nand J C N, we have:

M = ¢(as, by) if and only if i € J.

When J C N varies, it gives definable sets which must intersect or avoid
each other in the points a;. Then, one sees that an IP formula is a formula
such that some instances interact in a specific way.

(M, b))

~ 0

1 )1€N

~ 0

(a;

1€EN

Definition 1.1.13. A theory 7" is NIP if no formula ¢(z;y) has the inde-
pendence property.

One may see then why NIP-ness is a notion of tameness: if such a config-
uration cannot be formed with instances of a single formula, it means that
these instances behave rather nicely. We will not use any specific properties
that NIP theories share, as our transfer principle for burden will apply to the
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more general class of NTP,-theories. But it might be useful to recall already
that the burden coincides with the dp-rank in the context of NIP-theories —
a notion that the reader might be more familiar with. Let us define now the
tree property of the second kind (TP;) and the burden.

Burden of a theory

Definition 1.1.14. Let A be a cardinal. For all i < \, ¢;(x,y;) is L-formula
where z is a common tuple of free variables, b; ; are elements of M of size |y;|
and k; is a positive natural number. Finally, let p(z) be a partial type. We
say that {¢:(x,vi), (bij)jew: kiticx is an inp-pattern of depth X in p(z) if:

1. for all i < )\, the i*® row is k;-inconsistent: any conjunction
/\f:1 ¢i(x, b; ;) with j; < -+ < ji, <w, is inconsistent.

2. all (vertical) paths are consistent: for every f : A\ — w, the set
{@i(, bi £3)) bica Up(z) is consistent.

Most of the time, we will not mention the k;’s and only say that the
rows are finitely inconsistent. In all the definitions below, T" and M are
interchangeable.

Definition 1.1.15. e Let p(x) be a partial type. The burden of p(x),
denoted by bdn(p(z)), is the cardinal defined as the supremum of the
depths of inp-patterns in p(z). If C' is a small set of parameters, we

write bdn(a/C) instead of bdn(tp(a/C)).

e The cardinal supg.g bdn({zs = xg}) where xg is a single variable from
the sort S, is called the burden of the theory T, and it is denoted
by i (T) or by bdn(T). The theory T is said to be inp-minimal if

inp
ki (T) = 1.

inp

e More generally, for A a cardinal, we denote by &7, (7) the supremum

of bdn({x = z}) where |z| = X and variables run in all sorts S € S.
We always have & _(T) > X+l _(T). In particular, if models of T" are

inp inp

infinite, £ (T) > A.

e A formula ¢(x,y) has TPy if there is an inp-pattern of the form
{p(x,y), (bi ;) j<w, ki }icw. Otherwise, we say that ¢(z,y) is NTPs.

e The theory T is said NTP, if k! (T) < oco. Equivalently, T is NTPy if

inp

and only if there is no TP, formula. (See [14, Remark 3.3|)

In [14], Chernikov proves the following:
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Fact 1.1.16 (Sub-multiplicativity). Let ai,ay € M. If there is an inp-pattern
of depth k1 X kg in tp(ajas/C), then either there is an inp-pattern of depth
k1 i tp(ay/C) or there is an inp-pattern of depth ko in tp(az/a,C).

As a corollary, for n < w, we have &7, (T') +1 < (,,(T) +1)" and then

wm,
ki (T) = K}, (T) = bdn(T) as soon as oge of these cardinal is infinite.

If the reader knows the notion of dp-rank of a theory T, usually denoted
by dp-rank(T’), let us say the following: it admits as well a similar definition
in term of depth of ict-patterns and it has been showed that a theory T is
NIP if and only if the depth of ict-pattern is bounded by some cardinal. In
this paper, the reader only needs to know that the notions of dp-rank and
burden coincide in NIP theories. If they are not familiar with the notion of

dp-rank, they may take it as a definition.

Fact 1.1.17 (|1, Proposition 10]). Let T' be an NIP theory, and p(x) a partial
type. Then dp-rank(p(z)) = bdn(p(z)).

The previous fact is only stated with partial type p(x) = {x = z}, but
the proof is the same.

Ezxample. e Any quasi-o-minimal theory is inp-minimal (see e.g. [69,
Theorem A.16]). In particular, {Z,0,+, <} is inp-minimal.

e Let L = {R, B} be the language with two binary predicates, and let
M be a set with two cross-cutting equivalence relations with infinitely
many infinite classes (for all a and b, there is infinitely many ¢ such
that aRe and bBc).

One proves easily that bdn(M) = 2. For A a cardinal, one can con-
sider A-many cross cutting equivalence relations, and shows that the
structure is of burden \.

The definition of burden of a theory, as many other notion of complexity;,
gives to unary sets an important role. But one has to notice that the notion
of unary set is syntactic, and is not preserved under bi-interpretability:
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Remark 1.1.18. For n € N, one can consider the multisorted structure
(M™, M, p;,i < n) wherep; : M™ — M, (ag,...,an_1) — a; is the projection
to the i coordinate. If we denote its theory by T™, then we clearly have
’%?np<T) = Kzlnp(Tn>

To clarify, let us introduce the following terminology:

Definition 1.1.19. Let M and N be two structures. We say that N is
interpretable on a unary set in M if there is a bijection f : N — D/ ~ where
D is a unary definable set in M, ~ is a definable equivalence relation, and
the pull-back in M of any graph of function and relation of A is definable.
The structures M and N are said bi-interpretable on unary sets if N is
interpretable on a unary set in M and M is interpretable on a unary set in

N.

We will work up to bi-interpretability on unary sets, meaning in particular
that the main results of this text will only depend on the structure that we
want to consider and not on the language.

Fact 1.1.20. Let M and N be two structures, and assume that N is inter-
pretable on a unary set in M, then bdn(N) < bdn(M). In particular, if M
and N are bi-interpretable on unary sets, then bdn(M) = bdn(N).

For example, {Z, 0,4+, <} does not interpret
(ZX T (2.0,+,<)m1 : LXTL— Toms: TX T — T}

on a unary set (the first being of burden 1, the second being of burden at
least 2). However, if k is an imperfect field, we will see that k interprets
{k xk,(k,0,1,+,-),m : kX k— k,mg:kxk— k} on a unary set.

Mutually-indiscernible arrays

Let A be a cardinal. We have seen that an array (b;;)i<xj<w Occurs in the
definition of an inp-pattern. A usual argument shows that we often may
assume this array to be mutually-indiscernible. Since many demonstrations
will use this fact, we give here a precise definition and a proof (Proposition
1.1.24). One can also consult [14], which is the reference for this paragraph.
Let L be any first order language, M a L-structure of base set M.

Definition 1.1.21. e A sequence (b;);ex of (tuples of) elements of M is
indiscernible over a subset A C M if for every n € N and every formula
¢(xg, ..., Ty_1,a) with parameters a € A, we have

,/\/l ): ¢(b0’ .. .,bn,l,a) = ¢(bj07 C.e ,bjnfl,a)
for every jo < -+ < jn_1 € \.
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e An array (b;;)iexjew is mutually indiscernible if every line (b; ;) ew is
indiscernible over {by ; bitiker,j<w-

We consider the set L consisting of formulas in the language L with free
variables (z;;)i<xj<w. Let A C Ly be a subset.

Definition 1.1.22. e An array (b; ;)icx jew is said to be A-mutually in-
discernible if for any formula in A

O(Tagas-- s Tagmrs- s Tagls- s Lagny)
where k € N, nq,...,np € Nand a1 < -+ < ag. < A\, we have
¢(ba1,i117 T 7ba1,i1n17 R bak-,ikl’ T bakyiknk)
g ¢(b0¢17j117 R boc1,j1n17 R bak:jkﬂ T bak;jknk)7
forall iy <+ <, <w, jn < - <Jm <wwithl=1,... k.

o Let (b;))ien jew be an array. We denote by EM((b; ;)) the maximal set
of formulas A C Ly such that (b;;) is A-mutually indiscernible and
(b;;) = A. By this, we mean that, for any formula ¢((z;;)iex jew) In
A, we have = ¢((bij)ier jew). Explicitly, EM((b;;)) is equal to

U { A(Tag 1y Tagmys- s Tagds- s Tagn) € Lin

kni,..np<w
ALy, Q<A

¢(ba1,i11a SRR bm,imla T bakvim T bak,iknk)v
forall iy < -+ <y, <w, withl=1,...)k [

Note in particular that if (b; ;) is mutually indiscernible, EM((b; ;)) is
a complete type.

e We also define the type MI((Z4i)a<ri<w) as the type saying that the
array (To.i)a<ri<w is mutually indiscernible:

U Qb(xal’il“ e Lagsiin e Yagie - - 'xakﬂ'kn) <
/

kn<w qD(xOéhjuv o Taggins s Lag,jrr - - - a;’amkn)

Ly, A <A

i <o <y < W, Jn << gl <w

¢((xa,i)a<)\,i<w) S L/\; }
withl=1,...,k

Using Ramsey, one can show the following lemma:
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Lemma 1.1.23. [15, Lemma 3.5] Let (bai)a<nicw be an array with n < Vo,
N an integer and A a finite subset of L,. Then one can find a sub-array

(Baings - - > bavign_1 )a<n C (ba)a<n which is A-mutually indiscernible.

To be precise, our notion of A-indiscernibility (with A C L,) is weaker
than in [15], so the above Lemma is formally only a consequence of [15,
Lemma 3.5].

Proposition 1.1.24. o Let (bij)icrj<w be an array. There is a mutually

indiscernible array (b j)icxj<w such that EM((b;;)) € EM((b;;)).

o If p(x) is a partial type and if {Gi(w, i), (bij)jcw, kiticn s an inp-
pattern in p(x), there is an inp-pattern {&;(x, yi), (bij) jew, ki ticx i p(z)
with a mutually indiscernible array (b; ;)icx j<w-

Proof. The first point follows by Compactness and Lemma 1.1.23, as the
type

EM(<BZ)Z<)\)) U MI(@Z‘)K)\))

is finitely realised by sub-arrays of (b;);<x. The second point follows easily
from the first. Ol

Lemmas on inp-patterns

Let {¢i(x, i), (bij)jew kiticx be an inp-pattern. By Proposition 1.1.24, we
may always assume that the array (b;;)i< jeo is mutually indiscernible. We
will now present some easy lemmas, which we will later use. They give us
tools to ‘transform’ inp-patterns into simpler ones which are easier to analyse.

Lemma 1.1.25. Let {¢i(x,y:), (ai;)j<w kiticx be an inp-pattern with
(@ j)icrj<w mutually indiscernible. Assume for every i < X, ¢;(x,a,0) is
equivalent to some formula ¥;(x,b; o) with parameter b;o. Then we may ex-
tend (bio)i<x to an mutually indiscernible array (b; ;)icxj<w Such that

{0i(z,vi), (bij)j<ws Kiticn,
1S an mp-pattern.

Proof. By l-indiscernibility, we find b; ; such that ¢;(M, a;;) = ¥;(M, b; ;).
Then, the statement is clear. O

Remark 1.1.26. Let D be a stably embedded definable set in M, and
{0i(z,yi;), (@ij)jcw, ki}icx an inp-pattern in D. This in particular implies
that solutions of paths can be found in D but the parameters (a;;) may not
belong to D. Using the previous lemma, we may actually assume that this is

the case. It follows that D endowed with the induced structure is at least of
burden .
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The next lemma shows that one can ‘eliminate’ disjunction symbols in
inp-patterns. A direct consequence is that if the theory has quantifier elimi-
nation, then we may assume that formulas of inp-patterns are conjunctions
of atomic and negation of atomic formulas.

Lemma 1.1.27. Let {¢i(x,vi;), (aij)jcws kiticx be an inp-pattern
with (a;;)i<xj<w mutually indiscernible. Assume that ¢i(x,vy;;) =
Vicn, Vi, yi5).  Then there exists a sequence of natural numbers (1;)i<x
such that l; < n; and

{1/111-.,@'(36: yi,j)a (ai,j)j<w7 ki}i<)\

18 an inp-pattern.

Proof. Let d = {¢i(z,ai0)}j<r. For every ¢ < A, let l; < n; be such that
d =y, (7, a;0). By the mutual-indiscernibility of (a;;)i< j<w, €every path of
the pattern {1y, ;(z,9i;), (@i j)j<w, ki}i<x is consistent. The inconsistency of
the rows follows immediately from the inconsistency of the rows of the initial
pattern. O

‘Elimination’ of conjunction symbols may happen in more specific con-
text. Notably:

Proposition 1.1.28. Let K and H be two structures, and consider the mul-
tisorted structure G:

G={KxHK H,nx:KxH—Kny:KxH— H},

called the direct product structure (where wr and Ty are the natural projec-
tions). Then G eliminates quantifiers relative to K and H, and K and H are
orthogonal and stably embedded within G.

g

/N

K H

We have
bdn(G) = bdn(K) + bdn(H).

We prove an obvious generalisation for product of more than two struc-
tures in the next subsection.
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Proof. Relative quantifier elimination, stable embeddedness and orthogonal-
ity are rather obvious. The inequality bdn(G) > bdn(K) + bdn(H) is easy
but we give a detailed proof. Let {¢;(xk,vi), (@i j)j<w}icn, be an inp-pattern
in K and {¢i(xg,vi), (bij)j<w}icr, an inp-pattern in H. Then

{0i(rk (K, xm), i), (ai,j)j<w}ie>\1 U{i(mu(zx, zm), yi), (bi,j)j<w}ie)\2

is an inp-pattern in G of depth A\; + Ay. Indeed, first notice that inconsis-
tency of each rows is clear. Secondly, take a path f : A; U Ay — w. There is
a element dyx € K satisfying {¢;(2k, a; s(i)) }icx, and an element dy € H sat-
isfying {;(xm, bi r(i)) }ier,- Then, the element d = (dk, dy) of G is a solution
of the pattern along the path f.

For the other inequality, let {6;(z,vi ), (¢i;)j<ws ki }icx be an inp-pattern
in G, with (¢;;)i<)j<w mutually indiscernible. We may assume 6;(z,c; ;)
is of the form ¢;(zk,a;;) N ¢¥i(xp,bi;) where xi = 7w (x), 2y = w(zy),
Cij = aij " bij, ¢i(Tk,a;;) is a K-formula and ¢;(x g, b; ;) is a H-formula.
Indeed, let d |= {6;(x, cip)}j<r, by orthogonality, 6;(x, ¢; ) is equivalent to a
formula of the form:

\ Gin(wi,aio) Avin(x, bio).

k<n;

Then we conclude by using Lemmas 1.1.25 and 1.1.27. For every i, at least
one of the sets {¢;(zx, ai;)}jcw and {Yi(xy,b;j)}j<w is ki-inconsistent (by
indiscernibility of (¢;;);). We may "eliminate" the conjunction as well and
assume that every line is an L-formula or an Ly-formula. We conclude that

A < bdn(K) + bdn(H). O
Together with Fact 1.1.20, we get more generally:

Fact 1.1.29. Let M = (A, C,...) be a many-sorted structure. Assume that A
and C' are orthogonal and stably embedded in M. Then we have bdn(AxC) =
bdn(A) + bdn(C).

Let us finish this subsection with one more lemmas

Lemma 1.1.30. Let D and D’ two type-definable sets respectively given by
the partial types p(x) and p'(x) and let f : D — D' be a surjective finite to one
type-definable function. Then we have bdn(D) := bdn(p(z)) = bdn(p/(x)) =:
bdn(D’).

Proof. We may assume that D and D’ are definable, the general case can
be similarly deduced. Let {¢;(2,v;), (ai;)j<w, ki}i<x be an inp-pattern in
D'. Clearly, {¢;(f(z),y:),(a;;)j<w, ki}icx is an inp-pattern in D. Hence
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bdn(D) > A. Conversely, let {¢;(x,v;), (ai;)j<w, ki}i<x be an inp-pattern of
depth X in D. Consider the pattern

{615;(95/; yi,j)y (avz,j)j<w}v:<,\,

where
(2’ a;;) = Fraxe DA = flz)Ad(x,a; ).

Clearly every path is consistent. Assume for some ¢ < )\, the row
{¢i(2',a; )} j<w is consistent, witnessed by some h’. Note that A’ is in D’
By the pigeonhole principle, there is h € D and an infinite subset J of
w such that f(h) = b’ and h = {¢i(z,a;;)}jes, contradiction. It follows
that {¢i(2',yi;), (@i ;)j<w}ticx is an inp-pattern in D’. We conclude that
bdn(D’) > A. O

More on burden and strength

We will formally introduce a well known convention with respect to the bur-
den, which consists of writing bdn(M) = A_ for a limit cardinal \ if M
admits inp-patterns of depth p for all ;4 < A, but no inp-pattern of depth
A. It has been introduced in [1], and has the advantage to emphasising a
relevant distinction. If the reader is not interested by such subtleties, they
may move to the next subsection. Proposition 1.1.38 might be interesting
on its own, as it corresponds to the ‘baby case’ for the difficulty that we will
encounter for mixed-characteristic Henselian valued fields. One can refer to
[1] for this paragraph.

Definition 1.1.31. We define the ordered class (Card*, <) as the linear
order obtained from the ordered class of cardinals (Card, <) by adding for
any limit cardinal A\ a new element A_ (called ‘lambda minus’). This new
element comes immediately before A\: A\_ < X and if p € Card* with u < A,
then p < A_. In addition to the natural injection Card < Card”*, we define
the actualisation map act : Card* — Card as the map such that act(A_) = A
for every limit cardinal A\, and act(k) = & for any cardinal x € Card. It will
be convenient to also set k- = X\ when K = AT € Card is a successor cardinal.

If A is a limit cardinal, one should think A as an ‘actual’ lambda and
A_ as a ‘potential’ lambda. We don’t change our notion of cardinality of
a set. As we will see, this definition of Card* is motivated by the burden,
i.e. by a notion of dimension. It also motivates to (partially) extend the
arithmetic operations of Card to Card*. We will have to answer any question
of the form: should the cardinal ¥y - N,_ be N,_ or X,? As the definitions
themselves appear to be a bit technical, we prefer to first give intuition to
the reader with a small digression on graphs.
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Graphs and cliques

We consider symmetric graphs in the language L = { R}. We denote by K,
the complete graph on k-many vertices, for x a cardinal in Card. Given a
graph G, we denote by C(G) the cardinal in Card™:

C(G) = k € Card if K, embeds in G and K.+ does not,
|k € Card® if K \ embeds in G for all cardinal A < k and K, does not.

Ezample. Let G be the disjoint union of graphs U, «x, Kp:

o= ]I

By definition, we have C(G) = Ny_.

In addition to the union of graphs, we want to consider another natural
operation:

Definition 1.1.32. We define the lexicographic product of graphs G and F
as the graph G[F] with set of vertices G x F’ and a symmetric relation given
by:

go = g1 and foR” fi,

, fo) ROV (g1, 1) &
(90 Jo) 1) g0 # g1 and goRIg:.

Example. Consider the lexicographic product of K, and Kj3. We simply
obtain Ks:

If C(G),C(F) € Card are cardinals greater or equal to 2, we have by
pigeonhole principle that

C(GIF]) = C(9) x C(F).

This gives us the intuition of how one can define the product of cardinals in
Card”. Let us look at two examples:
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Ezample. Consider G = U, ., Ky, and F = Uy, Ky,. Then we have C(G) =
N,_ and C(F) = R,,_. If we consider the lexicographic product with Ky,
we obtain:

o C(Ky[G]) =R, |
b C(KNO[F]) =Ny - -

We leave the proof to the reader, with the following picture for the intuition:

As a consequence, one might be tempted to write ¥y - X, = N, and
Np - N, - =N, . This is what we want to define now.

Arithmetic on Card*

We first define the cofinality of a cardinal A\ in Card* as the cofinality of
act(A), denoted by cf(\). Secondly, we define the following operations:

Definition 1.1.33. Let A = ()\;)ie; be a sequence in Card*. Let A =
sup;e;(act(A;)) € Card be the supremum in the usual sense, and supp(A) =
{i € I |\;#0}. We find a partition I; U I, U I3 of I such that:

A= (Nier, U (A )ier, U (Niers.
where \; < A_ for ¢ € I;. We define sup* as follows:

N if | I] # 0.

A_ otherwise.

If || and X are finite, the definition of the sum " in Card"* is the sum in

the usual sense: .
D A=) act(h) =Y\

i€l 1€l i€l

Otherwise, we set:
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(|supp(A)| if [supp(A)] > A,
Nif Iy 2 0,

° Z:e[ )\z = Aif |IQ| Z Cf(/\),

A if supyer, (act(A)) = A,

A_ otherwise.

if | supp(A)] < A.

\

For A\, u € Card, A limit cardinal, we define the product -* : Card x Card* —
Card”* in terms of sum:

A_if f(A
.Z;)\_:M.*/\_:{ 1/L<C(),

e At p > cf ().
We see in particular that, under these definition, sup* and Y.* do not

necessary coincide anymore when there are infinite. However, it is clear that
we recover the usual definition via the actualisation map:

Card*!! L Card* Card*! e, Card*®
lact J/act Jact lact
Card!l = Card Card"l =™, Card

Here are the promised examples:

Examples. e Consider the sequence A7y = N, ,1,2,3,.... We have
sup*Ap =D FA =R,
e Consider the sequences Ay = (N, )icw = Ny, N,_,... and A3 =
(N)icw = o, Ny, .... We have sup* Ay = sup* A3 =X, and Y} " A, =
E* A3 = Nw-

e Consider A4 = (Ni)i<w U (Ngw,). Then Sup* A4 = Z* A4 = Nzw,.

e We have Ng - N, =R, Ng- N, =N, _and Ny - N, =R, .
Now, we go back to the burden.

Burden, strength and Card*

In Definition 1.1.15, the burden of the complete theory T is the supremum
(in Card U{oc}) of depth of inp-patterns in 7". However this supremum is not
necessarily attained by an actual inp-pattern. This distinction is in particular
motivated by the following definition:

Definition 1.1.34 ([1]). A complete theory is called strong if there is no
inp-pattern of infinite depth in 7T'.
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One sees that, paradoxically, some strong theories have burden R, and
some theories of burden N, are not strong (see examples below). In other
words, the definition of burden we gave failed to characterize strength. We
will follow Adler’s convention (see [1]) which gives a solution to this problem:
burden will now take values in Card* U{oo}.

Definition 1.1.35. (second definition of burden) Let T" be a complete theory.
We denote by S the set of sorts.

e The burden bdn(w(x)) of a partial type m(z) is the supremum in
Card* U{oo} of the depths of inp-patterns in p(z).

e The cardinal supg. g bdn({zs = xg}) where zg is a single variable from
the sort S, is called the burden of the theory T', and it is denoted by
ki (T) or by bdn(T).

inp

In other words, if the supremum A € Card of depth of inp-patterns is
attained, the burden is equal to A . Otherwise, it is equal to A_. In particular,
strong theories are exactly theories of burden at most Ng_. One can check
that every lemma in the previous subsection -and its proof- still hold. Let us
give a formal definition:

Definition 1.1.36. Let M; = (M;,...) be a structure in a language L;, for
1 € I a set of indices. We define the following multisorted structure:

e The disjoint union
UMi = {(Mi, .. ) }ier.
with a sort for each M;’s.

e The direct product

[IMe =] M, (M, ier, (s ] My — Mi)ier}

el el Jjel

with a sort for each M;’s and a sort for the product and where 7; :
[I;c; M; — M; is the natural projection.

We have the following fact:

Fact 1.1.37. e The sorts M; in the union U;c; M; are stably embedded
and pairwise orthogonal.
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Uier M,

M; Mj

e The direct product [[.., M; eliminates quantifiers relative to the sorts

i€l
M. In particular, the sorts M; are stably embedded, and setwise or-
thogonal.
HieIMi
M; M,

Proof. The first point is easy and is solved by simple inspection on formulas.
For the second point, we leave to the reader to prove quantifier elimination.

Stable embeddedness is clear by inspection: a formula ¢(x;) with variable
r; € M; without M-sorted quantifiers is a finite Boolean combination of
formulas of the form

gbi(miaai?ﬂ-i(a))U U gbj(aﬁﬂj(a))u@’(a’)v
Jen\{i}

where ¢; is an L;-formula, ¢;(a;, 7;(a)) are closed Lj-formula j € I\ {i} and
¢(a) is a closed formula in the empty language. It is clearly equivalent to
an L;-formula with parameters in M;, as a closed formula is true or false
and can be replaced either by z; = z; or by x; # x; . Same argument for
orthogonality.

O

Naturally, we have a generalisation of Proposition 1.1.28 for infinite prod-
ucts.

Proposition 1.1.38. Let M; = (M;,...) be a structure in a language L,
fori eI a set of indices. Assume they are not all finite. One has:

e bdn({J,.; M;) = sup}c, bdn(M;),
i bdn(Hie] Mz) - Z:EI bdn(]\/[i).

Remark 1.1.39. If all structures M; are finite, there are two cases: either
#{i eI | |M;| > 1} is infinite and bdn(J[,c, M;) = 1, or #{i € I | |M;| >
1} is finite and bdn(] ],.; M;) = 0. As the condition |M;| > 1 cannot be seen
in terms of burden, this case is told apart.
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Proof. The first point is clear: an inp-pattern P(x) in | J, M, has to ‘choose’
in which sort M; its variable = lives. This sort, say M,,, is stably embed-
ded by Fact 1.1.37. By Remark 1.1.26, the depth of P(z) is bounded by
bdn(M;,). Going to the supremum, one sees that definitions match:

bdn(U M,;) = supjc; bdn(M;).

i€l

The second point is more subtle: if Q(z) is an inp-pattern of depth p in
Hie ; M, with the variable x in the main sort, then the pattern refers to the
sorts M, simultaneously.

Claim 1. Assume that [[,.; M; admits an inp-pattern of depth p. Then
there is an inp-pattern of depth p in [[,c; M; of the following form:
{00 (1) (%) Yr(@) (@1(0).5)j<w Fazp

for some function [ : p — I and where ¢o(T 50y, Yi)) 15 @ My)-formula.
In other word, we may assume that a line o "mentions” only one structure

M.

Proof. Let us assume that [[M; admits an inp-pattern Q(z) =
{a(®,¥a), (@aj)j<ws kata<y of depth g > 2. We assume the array
(Ga.j)a<p,j<w to be mutually indiscernible. To simplify the notation, a generic
line of Q(x) is denoted by {¢(x,7), (@;)j<w, k} (we drop the index a). By
relative quantifier elimination and by Lemma 1.1.27, we may assume that
formulas ¢ (z,7) in Q(x) are of the form

/\ x 7é Yn Nx = Yy A /\Qbi(ﬂi(l'),yi),

n<N

where ¢;(z,y;) are L;-formulas, N € N and where § = (y1, ..., yn, ¥) U (¥i)ier
and a; = (a1 , ..., anj, a;) U (aij)ier for j < w. If the atomic formula z =y
does occur, for example in the first row, then consistency of paths contradicts
ko-inconsistency of the second row. Thus, we knows that formulas in Q(z)
are of the form

/\ T 7 Yo A /\¢i(7Ti(~’U)7yi)7

n<N

Now, the formula A, _y * # ¥, is co-finite. This implies that

{\ (i), ai5)}jcw
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is k£ + l-inconsistent. Indeed, otherwise, for one (equivalently for all) & + 1-
increasing tuple jp < --- < Jx < w, the set

{Noimi@), i), \dilma), ais,) |

is satisfied by a, ; for some n < N and [ < k. Without loss of generality, as-
sume that n = N —1 and [ = k. Then, by mutual indiscernibility, (anx_1;);>k
are solutions of

{/\ ¢i(7ﬁ'(ﬂf), ai,o), ceey /\ cbi(m(ﬂ?), ai,kfl)}

This contradicts the k-inconsistency of the line

{ /\ x%an,j/\/\@(ﬂi(l")aai,j)} )

n<N

unless (any_1,;)j<w is constant. In that case, this parameter can be ignore:
replace the formula by

/\ T F# Yp A /\qbi(m(x),yi),

n<N-—1

and we still have an inp-pattern. We get our contradiction by induction on
N. Hence, we may assume that formulas ¢(x, 7) in Q(z) are of the form

/\Cbi(ﬁi(f),yi)-

We may now conclude using mutual indiscernibility that for at least one
i =: f(«), the set

{oi(mi(x), ai )},

is k-inconsistant. We may replace the formula A ¢i(mi(z),y;) by
¢ 1) (Tr(a), Yr(a))- In other word, we may assume that only the index i = f(a)
occurs in the formula of the line a. We found an inp-pattern of the desired
form. O

We denote bdn(M;) by A; and sup,; act()\;) € Card by A. One immediate
corollary is that

bdn(J [ M;) =bdn([] Mi) > 1,
iel )\1167510
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(notice that we used that some M; is infinite). We may assume that
I = supp(\;)ier- Now, the proof is straight forward and is just a case study.
We distinguish six cases:

First case: the cardinals |/| and A\ are finite. Then, this is immediate
from the previous claim: bdn(J[JM;) =3\ = >\

Second case: we have |I| > X and |I| > N,. Then, let (b;;)j<. be a
sequence of pairwise distinct elements of M;. Let x be a variable in the
main sort. Then, {m;(z) = v, (bi;)j<w }icr is an inp-pattern of depth |I|. We
have bdn([] M;) > |I|. Reciprocally, assume [][ M; admits an inp-pattern
Q(z) of depth p > |I|. By the previous claim and pigeonhole principle, we
find an inp-pattern of depth p in some M;, which is a contradiction with
A< |I| < p. We get bdn(JTM;) =37, N = |1].

Third case: we have |[I| < X and \; = A > X, for some i € [.
Then clearly bdn(J][M;) > A. Again, by pigeonhole principle, one gets
bdn([[M;) < A.

Fourth case: we have |I| < X and cf(\) < #{i € I | \; = A\_}. Then,
choose any sequence of cardinals (ftq)a<cf(n) With supremum A (in the usual
sense) and g, < A for all . We can assume that I = cf(\) and that we
have an inp-pattern Q;(z;) in M, of depth p;. The inp-pattern Q(x) =
UierQi(m;(x)) is of depth A. We get bdn(JTM;) =3, A = A

Fifth case: we have sup{act(\;) | \i ¢ {A_,A\}} = A. We conclude as in
the previous case that bdn([] M;) = >, A = A

Last case: we are not in the above cases. Then, by the previous claim,
there is no inp-pattern of depth A in [[ M,;. We have then

bdn(JTM) =Y A=A O
el

In a supersimple theory, the burden of a complete type is always finite
(see [1]). Hence, supersimple theories are examples of strong theories.

FExample. The following structures have burden Ny_:

e Any union structure M = |J, M,, where for every n € N, M, is a
structure of burden n.

e Any model of ACFA, the model companion of the theory of alge-
braically closed fields with an automorphism.

e Any model of DCFy, the theory of differentially closed fields.

The first example is clear by the previous discussion but could look ar-
tificial. It will naturally appear when we will discuss the burden of the
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RV _,-sort in mixed characteristic (see Section 2.4). The last one is already
given in [15]. The fact that the last two examples are of burden R,_ follows
from the fact they are super-simple and from the next remark, once we notice
that such fields are infinite dimensional vector spaces over respectively their
fixed field and their constant field:

Remark 1.1.40. /15, Remark 5.3] Let T be a simple theory and assume
there 1s a n-dimensional type-definable vector space V' over a type-definable
infinite field F'. Then there is a type in V' of burden > n.

Let us look at one natural example of a non-strong theory:

Remark 1.1.41. Let k be an imperfect field of characteristic p, considered
as a structure in the language of fields. Then bdn(k) > N,.

Proof. Let ey, e; € k be two linearly independent elements over kP. Then,
we have the definable injective map

fo: kxk — 2
(a,b) +— aPeg+ bPe;

By induction, we define for n > 2:

Jnar k) - k
((]’07"'7(]‘7171) — fn(a/Oe-~-7(1’n737f2(an72a(1n71>>-

Then, consider the formula for n > 0:

¢n($7yn> = HyOT oy Yn—1,Yn+1 T = fn+2(y07 ce ,yn+1>,

and pairwise distinct parameters b, ; € k, for j < w. Then

{gbn(La ’yn), (bn,j)j<w}n<w

is an inp-pattern of depth Nj. O

Similarly, one can show that if a model M is bi-interpretable on a unary
set with the direct product M x M, then bdn M > R, (and it is never of
the form A_ where A is a cardinal of cofinality N).
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1.1.3 Definition of stable embeddedness

Introduction

Stable embeddeness is usually seen as a property of definable sets: it means
that any definable subset can be expressed with a formula with parameters
in the set. As we mentioned in the introduction, in the context of benign
Henselian valued fields (see definition 1.2.21), the value group and the residue
field are both stably embedded. One can see that the definition also makes
sense for any subset of the structure (not necessary definable). We have
for instance the following well known equivalence: a theory is stable if and
only if all sets are stably embedded. Then, it automatically comes to mind
to consider submodels, which play an important role in the understanding
of the structure. As Cubides, Delon and Ye, we will consider the question
of stably embedded elementary pairs of certain valued fields and establish
a transfer principle. As we do not consider definable subsets, it appears
natural to distinguish two notions of stable embedddness. The purpose of
this paragraph is to present these concepts. Fortunately, this distinction will
not bring any difficulties: the same proofs for our transfer principle holds
mutatis mutandis for the uniform and non-uniform case.

Definitions of stable embeddness

Let L be any first order language, and T be an L-theory. We defined in
Subsection 1.1.1 the notion of stable embeddedness for definable sets and
sorts. We define it now for arbitrary sets:

Definition 1.1.42 (stable embeddedness for arbitrary sets). Let M be an
L-structure. A subset S C M is said to be stably embedded in M if for
every formula ¢(z,y) and for every tuple of parameters a € MW, there
is another formula ¢ (z,z) and a tuple of parameters b € S| such that

(Sl a) = (S b). In this case, we write S C* M .

Notice that ¢ (z, z) may depend on the parameter a € M. For this reason,
this definition is not the usual one. It results from this ‘non-uniformity’ the
following:

Remark 1.1.43. Let M < M’ be two L-structures, and D(x) be a L-formula
with |x| = 1. Assume that D(M') is stably embedded in M'. Then D(M) is
stably embedded in M. However, the converse does not always hold i.e., it is
possible to have D(M) stably embedded in M, but D(M") to fail to be stably
embedded in M’ (see example below). In other words, the property of stable
embeddedness of a definable set is not in general preserved by the elementary
extension relation.
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Example. We consider the atomic Boolean algebra M = {Py(w) U
Pe(w),U,N, 0,1}, where Ps(w) is the set of finite subsets of w and P.(w)
is the set of cofinite subsets of w. We refer to the partial order of inclu-
sion as majoring. By [61], one has quantifier elimination if we add unary
predicates A,, n € N, for the elements majoring exactly n atoms (here, a
predicate for the subsets of w of n elements). Then, one sees that the set
of atoms AM, is stably embedded in M. Indeed, all definable subsets of
AM are finite or cofinite and more generally, definable subsets of (A)" are
finite Boolean combination of products of such sets and diagonals. However
in an Ng-saturated elementary extension M’, we have an element f which
is majoring infinitely many atoms and not majoring infinitely many other
atoms. This allows us to define an infinite and co-infinite subset of A,
which naturally cannot be defined using only parameters in A{W.

Definition 1.1.44. Let S be a subset of an L-structure M, and a € Ml
a tuple of elements. We say that the type p(z) = tp(a/S) is definable if for
every formula ¢(x,y), there is an Lg-formula v (y, b) such that for all s € §

p(x) F ¢(x, s) if and only if M = (s, b).

Let us recall some notations from [22]. Notice that it has a slightly more
general meaning, as we also consider non-elementary extensions M C N.

Notation. Let N be an L-structure and S be a subset. We write 7,,(S, N) if
all n-types over S (for the theory of N') realised in N are definable. If M is
an elementary substructure of A/, we might write 7,,(M, N') (both in curvy
letters) instead of T,,(M, N) to emphasise it. We write T,,(M) if all n-types
over M (in any elementary extension) are definable.

One sees immediately the following fact:

Fact 1.1.45. A set S is stably embedded in a structure M if and only if
T.(S, M) holds for all n € N.

We give now a natural ‘uniform’ version of the notion of stable embed-
dedness and that of definable types (Definitions 1.1.46 and 1.1.49).

Definition 1.1.46. A subset S of a structure M is said to be uniformly
stably embedded in M if for every formula ¢(z,y), there is a formula ¢ (z, 2)
such that:

for all @ € M there is a b € S'*l such that ¢(S'%,a) = (S b). ()

In that case, we write S C%¢ M.
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When S is a definable subset of M, (%) is a first order property
of the formula ¢(x,y) and #(x,z). So it is in particular preserved by
elementary extension. It then makes sense to say that a formula is wuni-
formly stably embedded in a given complete theory 7. Following the usual
convention, we will omit to specify ‘uniform’ in such a context. The reason is:

Remark 1.1.47. Assume T is complete. Let D(x) be an L-formula. The
following statements are equivalent:

1. D(M) is uniformly stably embedded in every model M of T,
2. D(M) is uniformly stably embedded in some model M of T,
3. D(M) is stably embedded in every model M of T,

4. D(M) is stably embedded in an |L|-saturated model M of T'.

Proof. (1) = (2) and (1) = (3) = (4) are obvious. (2) = (1) follows from
the fact that (%) is first order. It remains to prove (4) = (2). It immediately
follows from compactness, but we give few details here. We have to show
that

D(M) C* M = D(M) C** M,

for an |L|-saturated model M of T". Take such a model M. If |[D(M)| < 2,
there is nothing to do. Assume that there is an L-formula ¢(z,y) such that
for all finite sets A of L-formulas ¢(z, z), one has

M 3a N\ VeeD3ae D ¢la,ba) < v(a,c).
P(x,2)EA

By compactness and |L|-saturation, there is an element b € M such that
¢(D(M), b) is not L(D(M))-definable. This a contradiction. We have shown

’

that there is a finite set A of L-formulas such that

MEVYs \/ 3ceDVaeD g¢(ab) s ip(ac)
P(x,2)EA

Since |D(M)| > 2, one can use new parameters to encode all formulas in A
in a single one. In other words, we got an L-formula W(z, 2') as wanted:

M EVb 3 € DVae D ¢(a,b) < V(a,d). O

Definition 1.1.48. We say that an L-formula D(x) is (uniformly) stably
embedded for T if D(x) satisfies one (equivalently any) of the conditions in
Remark 1.1.47 above.



26 CHAPTER 1. PRELIMINARIES

Definition 1.1.49. Let S be a subset of an L-structure M. We say that the
family (tp(a/S))acar= of all types over S realised in M is uniformly definable
if for every formula ¢(z,y), there is an L-formula v (y, z) such that for every
tuple @ € M*! there is a tuple b € SI* such that for all s € S:

tp(a/S) F ¢(z, s) if and only if M = (s, b).

We use again the notations of [22], but adapted to this uniform definition.

Notation. Let N be an L-structure and let S be a subset. For n € N,
we write T%(S,N) if the family of types (tp"(a/S))senn realised in N is
uniformly definable. If M is an elementary substructure of A/, we might
write T*(M,N') (both in curvy letters) instead of T*(M,N') to emphasise
it. We write 77%(M) if all n-types over M (in any elementary extension) are
uniformly definable.

Similarly to the non-uniform case, one can also give a characterisation of
uniform stable embeddedness in term of uniform definability of types:

Fact 1.1.50. A set S is uniformly stably embedded in a structure M if and
only if T*(S, M) holds for all n € N.

Ezample. In every benign theory of Henselian valued fields (see the list in
the introduction), the residue field & and the value group I' are stably em-
bedded. This is a well known corollary of relative quantifier elimination in
the language augmented by angular components (see Subsection 1.2.1). In
fact, they are said to be pure with control of parameters in the sense of the
Definition 1.1.8.

We are interested in the following question: given a substructure M of an
L-structure N, when is M stably embedded (resp. uniformly stably embed-
ded) in A/? The following (important) remark is immediately deduced from
the stable embeddedness/ definability of types duality. It will be implicitly
used in the remaining of this text.

Remark 1.1.51. Let N be an L-structure, and M a subset of N and S
an interpretable sort of N'. We denote by S(M) the image of M under the
projection of N to S.

o If M C* N (resp. M C"' N') holds, then S(M) C* N (resp.
S(M) Cust N¢1) holds.

o If M is an elementary submodel of N', then M C* N (resp. M CUust
N) holds if and only if M C** N1 (resp. M C"t N°1) holds.
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In other words, one can freely add some imaginary sorts to the language,
or conversely remove them from the language. For instance, a theory of
Henselian valued fields can either be described in the language Lry or the
language Lrj (see Subsection 1.2.1), and the question of stably embedded
subsets will not be affected by this choice. For this reason, we will use dif-
ferent languages across the sections (notably in Subsections 3.1.2 and 3.1.4).
However, adding new structure might change the notion of stably embedded
substructures. The following is clear:

FExample. The set of rationals Q is uniformly stably embedded in
(Q,0,1,+, -, <), its real closure. However, it is not stably embedded in
(Q,0, 4, <) as an ordered abelian group (consider the cut in v/2). Of course
it is uniformly stably embedded again in Q"¢ as a pure set.

In our study of Henselian valued fields, the question of stably embed-
ded sub-valued fields can be asked in the language of valued fields enriched
with angular components. We will be able to treat this question as well in
Subsection 3.1.3.

One has to notice also that the set of stably embedded subsets is in general
not closed under definable closure, as shown in the following example:

FExample. The set of integers Z is uniformly stably embedded in the ordered
abelian group (R, 0, +, <), but its definable closure Q is not.

More on definability of types

In order to apply Theorems 3.1.16 and 3.1.17, one has to understand stably
embedded substructures in ordered abelian groups and fields. We will focus in
this text on basic examples, namely on o-minimal theories and on Presburger
arithmetic. The reader will also find in Appendix A a similar discussion on
the random graph where we also construct a uniform stably embedded pair
and a non-uniform stably embedded pair of random graphs.

Recall that L is any first order language. We saw that a substructure
is stably embedded if and only if all realised types over this structure are
definable. As we will see, in certain cases it is actually enough to show
that 1-types are definable. We will call this property the ‘Marker-Steinhorn
criterion’; since it was first proved for elementary pairs of o-minimal
structures by Marker and Steinhorn. The question of when definability
of all 1-types implies definability of all n-types has been studied in the
last two decades. In particular, counterexamples to natural generalisations
of the Marker-Steinhorn criterion have been found (see, for example, the
introduction to [22]).
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O-minimal theories

Fact 1.1.52 (Marker-Steinhorn ([55])). Let T' be an o-minimal theory, and
let M <N be two models. Then for alln € N, T{(M,N) = T,(M,N).

From the proof of this fact follows a uniform version of it: if T" is o-
minimal, then

THMN) = THM,N).

One can deduce this from the non-uniform theorem by a general argument:
let us add a predicate P for the small model M to the language. Let (N, M)
be an |L|-saturated elementary extension of (N, M). As it is first order, we
also have T7"(M, N) in the language L (however, it doesn’t have to be true
in the language Lp = L U {P}). In particular we have 7} (M, N) and then
by Marker-Steinhorn, 7, (M, N) for all n. Using that (N, M) is |L|-saturated
and following the proof of Remark 1.1.47, we get that 7*(M, N) holds for
all n. By elementarity, we have T"(M, N) as wanted. As an immediate
consequence, one deduces a previous result of Van den Dries: all types over
an o-minimal expansion of R are definable, as the only possible cuts in R are
of the form a_,a,, 400 or —oo.
Presburger arithmetic

Let T be the theory of (Z,0,1,+, —, <, P,) where P,(a) holds if and only if
n divides a.

Remark 1.1.53. Let M be a model of T', and let a = aq, . ..,ar_1 be a finite
tuple of elements in an elementary extension N of M. Then, by quantifier
elimination:

tp(a) U U tp(z zia; /M) = tp(a/M).

2050y 2k_1€Z i<k

It follows that for all n € N,
Ti(M,N) = T,(M,N),

and

THM,N) = THM,N).

It is also clear that all types over (Z,0, +, —, <) are uniformly definable.
Indeed, any 1-type tp(a/Z) where a is an element of an elementary extension
Z of Z, is determined by the class modulo n of a (for every n) and by whether
a < Z or a > Z. To summarise, one has Z <“' Z for every elementary
extension Z of (Z,0,+, <).

We conclude this small paragraph with a remark on ordered abelian
groups:
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Remark 1.1.54. The only ordered abelian groups Z which satisfy T,,(Z) for
every n are the trivial group, Z and R.

Proof. Consider a non-trivial ordered abelian group Z which is stably em-
bedded in all elementary extensions Z' > Z. It needs in particular to be
archimedian as otherwise an elementary extension will realise an irrational
cut of the form Z_,,.,/Z-,., where

Z_pa = {2z € Z | there is n < w such that z < n-a},

and
Zopa=1{z€Z|foralln<w, z>n-a}

where a is an element of Z such that the above sets are not empty. In other
words, Z is isomorphic as an ordered abelian group to an additive subgroup
of R. We assume that it is a subgroup of R. If Z is discrete, it is isomorphic
to Z. Assume it is not discrete, and so dense in R. If there is a € R\ Z,
this element realises an irrational cut over Z, and thus there would be an
elementary extension Z’ realising this irrational cut, which is a contradiction.
This shows that Z = R. O

1.2 On model theory of algebraic structures

1.2.1 Valued fields

Introduction

We gather here some facts on valued fields. After some general statement
on indiscernible sequences, we will introduce the RV-sort. Then, we will
list the theories of valued fields that we will consider. We will assume the
theory of Kaplansky known. We will need a few lemmas, such as a kind of
transitivity of pseudo-limits, and a case study of indiscernible sequences. A
valued field will be typically denoted by K = (K,T', k,val) where K is the
field (main sort), I' the value group and k the residue field. The valuation
is denoted by val, the maximal ideal m and the valuation ring O. We recall
the two traditional languages of valued fields.

Notation and languages
We will work in different (many-sorted) languages. Let us define two of them:

e Ly, = {K,0,1,+,-,|}, where | is a binary relation symbol, interpreted
by the division:

for a,b € K,a | bif and only if val(a) < val(b).
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e Lry = {K,0,1,+,-} U{k,0.1,+,-} U{I',0,00,4+,<} U {val : K —
[,Res: K? — k}.

where Res : K2 — k is the two-place residue map, interpreted as follows:

Res(a,b) — {res(a/b) i.f val(a) > val(b) # oc,

0 otherwise.
In the next paragraphs, we will also introduce the many-sorted languages
LRV and LRV<W‘

By bi-interpretability, a theory of valued fields can be expressed indiffer-
ently in either of these languages. Let K be a valued field. If the context
is clear, we will often abusively denote by K,I',k, RV, ... the sorts in K. In
general, the sorts of a valued field £ will be denoted by L,I';,k, RV ...
and of a valued field K’ by K', IV, k', RV’, ... etc.

Pseudo-Cauchy sequences

We will discuss here some simple facts about mutually indiscernible arrays
in a valued field K. We will denote by Z the set of integers with extreme
elements {—o00, co}. We will assume that the reader is familiar with pseudo-
Cauchy sequences. We recall however the basic definition:

Definition 1.2.1. Let (/, <) be a totally ordered index set without greatest
element. A sequence (a;);e; of elements of K is pseudo-Cauchy if there is
i € I such that for all indices i < iy < iy < i3, val(a;, — a;y) < val(a;, — a;,).
We say that a € K is a pseudo limit of the pseudo-Cauchy sequence (a;);c;
and we write (a;);e;=-a if there is ¢ € I such that for all indices i < i} < iy,
we have val(a — a;,) = val(a;, — a;,).

The next two lemmas give some useful properties of indiscernible pseudo-
Cauchy sequences.

Lemma 1.2.2. 1. Assume (a;)i<y, is an indiscernible sequence and a is a
pseudo limit of (a;)i<w. Then for any i, val(a; — a) = val(a; — a;41)
depends only on i and not on the chosen limit a (for general pseudo-
Cauchy sequence, this holds only for i big enough).

2. For three mutually indiscernible sequences (a;)i<w, (bi)icw and (¢;)icw,
if (a;)icw=bo and (b;)i<w=>co, then we have (a;)i<,=Co-
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3. If (a;)icz s an indiscernible sequence in K, then (a;)icy=>Go OT
(a_i)icw=0_co OT fori # j, val(a; — a;) is constant (in this last case,

(a;);e7 will be called a fan).

Proof. 1. By definition of a pseudo-Cauchy sequence, (val(a; — a;11)):
is eventually strictly increasing. By indiscernibility, it is strictly in-
creasing. Let iy be such that val(a — a;) = val(a;11 — a;) for all
i > ig. Then val(a — a;,) = min(val(a — a;y41), val(ai, 41 — aiy)) =
min(val(a;y 2 — aigs1), val(ai, 11 — ai,)) = val(ai,11 — ai,)- It holds also
for i = 79 and we can reiterate.

2. Notice that, by mutual indiscernibility and (1), val(a; — by) = val(a; —
ai+1) = val(a;—b;) for any i, j < w, i.e. (a;)i<,=>b; for any j. Similarly,
(b;)i<w=>c; for any j. We have val(by —by) > val(by — a;) = val(a; — by).
If val(by — by) = val(by — a;), we have by mutual indiscernibility that
(val(byg — a;))i<. is constant, which is a contradiction with (a;);<,=>bo.
Then, we have val(by—cg) = val(bg—b1) > val(by—a;). As val(a;—cy) >
min(val(a; — by), val(by — o)), we deduce that val(a; —¢y) = val(a; — bp)
for all 4, i.e. (a;)=co.

3. It is immediate by indiscernibility (consider for example val(ag — a;)
and val(a; — as)).
O

Lemma 1.2.3. Let (a;);ez and (by)iez two mutually indiscernible sequences
in K such that (val(a; — b;));, is not constant. At least one of the following
occurs:

1. (aj)j<w:b0;
(bl)l<w:>a0;

2.
3. (a,j)j<w:>b0,
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4. (b_1)1cw=>ao.

Note that if for example (by)<,=ag, then by mutual indiscernibility,
(b)i<w=>a; for every j € Z.

Proof. Since val(a; — b;) is not constant, using the mutual indiscernibility,
one of the following occurs:

1. Val(ao — bo) < Val(a1 — l)o), 3. Val(do — bo) < Val(a,1 — bo),
2. val(ag — bo) < val(ag — by), 4. val(ag — by) < val(ag — b_y).

Indeed, if 1. and 3. do not hold, then the sequence (val(by — a;));ez is
constant. If 2. and 4. do not hold, then the sequence (val(b; — ag))iez is
constant. This cannot be true for both sequences as it would contradict the
assumption. We conclude by indiscernibility.

K a_1 ap ai as bo b1 bg b_1 0

---------------------------------------------------------- val(a; — a;) = constant

------------------------------------------------- val(ag — bs)
""""""""""""""""""""""""" Val(ao — bl)
"""""""""""""""""""""""" Val(a,g — b())
---------------------------------------------- val(ag — b_1)

RV-sorts

We will now define the RV-sort (or RV-sorts, as we may need to consider
more than one sort) —an intermediate structure between the valued field and
its value group and residue field. We also introduce corresponding languages
Lry and Lgy_,. This paragraph is largely inspired by [40|, which one can
use as a reference. Let K be a Henselian valued field of characteristic (0, p)
with p > 0, of value group I' and residue field k. If 0 € I'>(, we denote by m;
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the ideal of the valuation ring O defined by {x € O | v(z) > ¢}. The leading
term structure of order ¢ is the quotient group

RVY := /(1 + my).

The quotient map is denoted by rvs : K* — RVj. The valuation val : K* — I’
induces a group homomorphism val,,, : RV — I'. Since m = mg and
kE* = (O/my)* ~ O* /(1 + my), we have the following short exact sequence:

valryg

11—k —RVy =" T —0.

In general, we denote by Oy the ring O/my, called the residue ring of order
9 . One has Of ~ O* /(1 + my) and the following exact sequence:

alry 5

1—>(’)6X—>RV§V—> I'—0.

Furthermore, as m, C m; for any 6 < 7 in I's, we have a projection map
RV! — RV} denoted by rv, ;s or simply by rvs. We add a new constant
0 to the sort RV} and we write RVy; := RV;U{0}. We set the following
properties:

o forallx e RV, 0-x=x-0=0.
e val,,,(0) =00, 1vs(0)=0.

Proposition 1.2.4. For any a,b € K and § € I'sg, rvs(a) = rvs(b) if and
only if val(a — b) > val(b) +0 ora=0b=0.

Proof. This follows easily from the definition: assume rvs(a) = rvs(b) and
a # 0. Then a = b(1 + p) for some p € ms and val(a — b) = val(b) +
val(p) > val(b) 4+ 0. Conversely, if val(a — b) > val(b) + 0, one can write
a=0b(1+ &) O

As a group quotient, the sort RVy is endowed with a multiplication. As
we will see, it also inherits from the field some kind of addition.

Notation. Let 0 < 01,02, 03 be three elements of I' and x € RVy,, y € RVy,,
z € RV, three variables. Then we define the following formulas:

Doy 600X, ¥,2) = Fa,b e K rvg, (a) =xA1vs,(b) =y Arvs,(a+b) =z

In our study of valued fields, we will consider the structures RV and
RV .., that we define now:
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Definition 1.2.5. The RV-sort of a valued field K is the first order leading
term structure
RV = (RV(], ) @0,0,07 07 1)

endowed with its natural structure of abelian group and the ternary predicate
described above. Following the usual convention, we drop the index 0, and
write RV, @ and rv instead of RV, ®g 0 and rvy.

Fact 1.2.6 ( Flenner, [40, Proposition 2.8|). The three-sorted structure
{(RV,1,-,0,1),(k,0,1,4,-),(T,0,4, <), ¢, val} and the one-sorted structure
{RV,0, -, @} are bi-interpretable on unary sets.

This will mean, in the context of this paper, that these two points of view
are equivalent, and we will swap between one to the other indifferently (see
Fact 1.1.20 and Remark 1.1.51).

We defined the leading term language Lyry as the multisorted language
with

e a sort for A and RV.

e the ring language for K,

e the (multiplicative) group language as well as the symbol 0 for RV.
e the ternary relation symbol @ and the function symbols rv.

The structure = (K, RV,1rv) becomes a structure in this language where
all symbols are interpreted as before. This language is also bi-interpretable
(without parameters) with the usual languages of valued fields, e.g. with Ly,
(see [40, Proposition 2.8]).

Also, notice that the symbol & suggests a binary operation. Occasionally,
we will indeed write rv(a)®rv(b) for a, b € K to denote the following element:

rv(a +b) if val(a + b) = min(val(a), val(b)),

0 otherwise.

rv(a) drv(d) := {

It is not hard to see that this is independent of the choice of representatives
of rv(a) and rv(b). We will write ,_; a; for I a set of indices and a; € RV,
when such a sum does not depend on any choices of parentheses. Notice that
the law & is not an addition. If a,b € K with val(a) < val(b), we have that
rv(a) @ rv(b) = rv(a) = rv(a + b). Also, notice that it is in general not true
that rv(a+b) = rv(a) ©rv(b) (choose a,b € K such that rv(a) = —rv(b) and
a # —b). When we have indeed that rv(a + b) = rv(a) @ rv(b), we say that
the sum rv(a) @ rv(b) is well-defined.

In the specific context of mixed characteristic Henselian valued fields, we
might have to consider a larger structure:
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Definition 1.2.7. Assume that K is a valued field of characteristic 0 and
residue characteristic p > 0. We reserve now the notation 9,, for d,, = val(p").
We write RV, for the union of sorts leading term structure of finite order
{(RVs, )n<w, (Bs,.6,.6, )n<tms (TVs, 5, Jmen<w} endowed with ternary predi-
cates @, 4,,.0, and a projective system of maps (rvs,—s,, Jm<n<w- We also
write val,y,_, : RV, = I'U {00} for |J,_,(val.y; : RVs, — I'U{o0}), etc.

TV<w n<w(

Remark 1.2.8. In equicharacteristic 0, we have that 6, := val(p™) = 0 for
all n < w. This leads to identifying |J, .., RVs, with RV = RV,

n<w

In Section 2.4 and Section 3.2, we will have to use another language to
describe the induced structure on RV :

Fact 1.2.9 ( Flenner, [40, Proposition 2.8]). The structure

{(RVs, )n<ws (86,6060 )n<tms (TVs, 6, )men<w}

and the structure

{(RVs,)n<w: (O, 4,0, Dpcw, (T, 4,0, <), (valrys, Jncw,
(05, = RV§ Jn<w, (I‘V(sn_ﬂsm)m<n<w}

are bi-interpretable on unary sets.

As before, this is only to say that one can recover the valuation using
the symbols & (see [40, Proposition 2.8]). And again, this fact means that
we will be able to swap between one language to the other indifferently (see
Fact 1.1.20 and Remark 1.1.51).

We defined the language Lry_,, as the multisorted language with

e sorts for A and RV, for n < w.
e the ring language for K,

e for all n < w, the (multiplicative) group language as well as the symbol
0 for RV()n

e relation symbols @s,5,,5, for n < [,m integers, function symbols
rvs, : K — RV, and
Vs, s, - RV, — RV for n > m.

The structure K = (K7 (Rv6n)n<w7 (®61,5m,5n>n<l,ma (rvén)n<w7 (rvén—>6m>m<n<w>

becomes a structure in this language where all symbols are interpreted as

before. This language is also bi-interpretable (without parameters) with the

usual languages of valued fields, e.g. with Lg, (see [40, Proposition 2.8]).
Let K be any valued field. Let us state few lemmas.
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Notation. Let 01, 04,03 € I" be three values. We write:

WDy, 5,.0,(X,y) = dlz € RVs, $s,.0,.6,(X. Y, 2).

If the context is clear and in order to simplify notations, we will write:
L WD53 instead of WD51752753,

e for any formula ¢(z) with z € RVy,, x € RV, and y € RVy,:

P(rvsy (x) +1v5,(¥))

¢(FV53 (X> + I'vg, <Y)) A WD53 (X7 y)

instead of

dz € RV53 ©61,60,65 (X, Yy, Z) AN (b(z) A\ WD51’52753 (X, y).

Example. Take K = R((¢)) the field of power series over the reals endowed
with the t-adic valuation. Consider x = 2 +t3+t* +1°, o/ = 2 +t3+t4+2t° ¢
Ky=-t-t4+t*—tPcKand z2=2t*, 7/ =2t +t° € K.

Then, we have rvy(z) = rvo(z’) since val(z — ') = 5 > val(z) + 2 but
rvy(z) # rvy(2) since val(z — 2') = 5 % val(z) + 1. We have:

= @21 (1va(2),1v2(y), 1v1(2)), | 221 (rva(2), 1v2(y), 1v1(2)),
Hence, the sum is not well-defined in RV:
= = WDa(rve(x), 1v2(y))
We need to pass to RV3 in order to get a well-defined sum in RV;:
E @s31(rva(z),rva(y), 1vi(2)), - Ozs1(rvs(z), rva(y), rvi(2')),

= WDs 31 (rvs(z), rvs(y)).

More generally, we have the following proposition:

Proposition 1.2.10. Let 0 < v < 4 be two elements of I'sg and e =6 —~v >
0. Then for every a,b € K*:

WD, (rvs(a),rvs(b)) if and only if val(a+ b) < min{val(a), val(b)} + €.
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A\ [ /val(a) +9
Vglzya +b)
Te

val(a) = val(b)

Proof. Assume val(a + b) < min{val(a),val(b)} + €. Let ¢’ € K such that
rvs(a’) = rvs(a). This is equivalent to val(a — a’) > val(a) + d, thus we have:

val (a +b— (' + b)) = val(a—ad') > val(a)+d = val(a)+e+~ > val(a+b)+.

Hence, rv,(a’ + b) = rv,(a + b). We have proved the implication from right
to left.

Conversely, assume that val(a + b) > min{val(a),val(b)} + € and
min{val(a), val(b)} = val(a). Let n = val(a+0b)+~ and take any ¢ € K of val-
uation 7. Then rvs(a) = rvs(a + ¢) since val(a + ¢ — a) =n > val(a) + 0 and
1v(a+b) # rvy(a + c+ b) since val (a + ¢+ b — (a+ b)) = n = val(a+b)+~.

O

Remark 1.2.11. To prove val(a+b) < min{val(a), val(b) }+¢c with ¢ > 0, it is
enough to show that val(a+b) < val(a)+e€ (or val(a+b) < val(b)+e€). Indeed,
if val(a) = val(b) then this is clear. If val(a) < val(b) or val(b) < val(a), this
is also clear since we have val(a + b) = val(a) < val(a) + € in the first case
and val(a + b) = val(b) < val(a) + € in the second.

The following lemma is immediate:

Lemma 1.2.12. Let a,b and c = a — b be elements of K and let v € I'sq.
At least one of the following holds:

= WD, (rv,(a), rv,(b — a)) (1.1)
= WD, (1v, (b), v, a — ) (12)

Proof. Notice that exactly one of the following occurs:

1. vala = valc < val b, 3. vala = val b < val ¢,

2. valb = valc < vala, 4. vala = valb = val c.
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aa—bb 0 a ba-—->b 0

1 7 3) 4
r r

a—bb a 0 a ba—-bo

9" 7y /
T r

Let a = 1v,(a),b = rv,(b) and ¢ = rv,(c). In cases 2,3 and 4, the
difference between a and c is well-defined.

= WD, (a, —c).
In cases 1,3 and 4, the sum of b and c is well-defined:

= WD, (b, c).

Benign theory of Henselian valued fields

Later in this text, we prove transfer principles for some rather nice Henselian
valued fields, that we called here ‘benign’ (see Definition 1.2.21 below).
The goal of this subsection is to discuss essential properties that these
benign Henselian valued fields share. We will emphasise model theoretical
properties, and briefly recall from which algebraic properties they can be
deduced. The idea is to implicitly work axiomatically by listing required
properties needed for proving Theorems 2.3.4 and 3.1.17.

Let T be a (possibly incomplete) theory of Henselian valued fields. We
need first to recall the definition of an angular component (or ac-map) . It
is a group homomorphism usually denoted by ac : (K*,-) — (k*,-) such that
acjox = res |ox. We also set ac(0) = 0. We have the following diagram:

1 x K~ r 0

val
ac
res o v
L7 Tacy T >

1— 0 /1+m~k*— RV, T— 0
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One remarks that an angular component gives a section ac,, : RV — k*
and, as a consequence, the sort RV becomes isomorphic as a group to the
direct product I' x k*. Such a map always exists in an N;-saturated valued
field KC: as O* is a pure subgroup of K*, there is a section s : I' — K™* of the
valuation (see Fact 1.2.38). Then, the function ac : a — res(a/s(v(a))) is an
ac-map. Any theory 7" of Henselian valued fields in a language Lr; admits
a natural expansion — denoted by 7T,. — in the language Ly . = L U {ac :
K — k} by adding the axiom saying that ac is an angular component. We
can now define some properties which 7" may or may not enjoy. Recall that an
extension K' = (K’,RV', T", k') of K = (K,RV, T, k) is said to be immediate
if Y =T and k' = k. We denote the following hypothesis:

The set of models of T is closed
under maximal immediate extensions.

(Im)

It is easy to see that extensions preserving the RV-sort are exactly imme-
diate extensions, as the following commutative diagram:

implies RV = RV'.
If (Im) is satisfied, maximal immediate extensions are natural examples

where one can apply the Ax-Kochen-Ershov principle. We name two such
properties:

for C,K'ET,K CK', wehave K XK' < k<K and ' <T". (AKE)r,

for ,K' =T,K C K', we have K <K' & RV < RV'. (AKE)ry

These properties (AKE)ry and (AKE)r are two different points of view,
and often come together. We also denote the following properties:

I' and k are pure, stably embedded and orthogonal. (SE)rx
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RV is pure and stably embedded. (SE)ry

As we will see, they are consequences of relative quantifier elimination:

Ty has quantifier elimination (resplendently)
relatively to I' and % in the language L j ac.

((EQ)F,k,aC>

T has quantifier elimination (resplendently)

. . (BEQ)rv)
relatively to RV in the language Lgy.

Notice that according to the terminology in Subsection 1.1.1, {T'}, {k}
and {RV} are closed sets of sorts. Then resplendency automatically follows
from relative quantifier elimination (Fact 1.1.5).

Here is a well known fact followed by an easy observation.

Fact 1.2.13. (EQ)r k. implies (AKE)r and (SE)r .
(EQ)ry tmplies (AKE)ry and (SE)gy.

Observation 1.2.14. 1. (AKE)ry implies (AKE)gry.

2. (EQ)RV z’mplies (EQ)F,k,ao
We include a proof of this observation for completeness.

Proof. (1) This is immediate, as the value group and residue field are in-
terpretable in the RV-structure: for any models M, N = T, RV, < RVy
implies that I{ZM' j ]{IN and F]\,[ j FN-

(2) We sketch a proof using the usual back-and-forth criterion. We assume
(EQ)ry. Consider two models M = { Ky, TUpr, by} and N = {Kn, Uy, kn}
of T in the language Lrj .., and a partial automorphism f = (fx, fr, fi) :
A= (Ky,Taks) - B=(Kp,'p, kp) between a substructure A C M and
a substructure B C M. Moreover, we assume f;, and fr to be elementary as
morphisms respectively of fields and of ordered abelian groups. We want to
extend [ to an elementary embedding of M into N. By elementarity, we may
extend fr (resp. fi) to an elementary embedding of ordered abelian groups
fr:Ty — Dy (resp. to an clementary embedding of fields fi: ky — k).
Then, by studying quantifier-free formulas, one sees that f = f U fr U fy is
a partial isomorphism of substructures. Without loss, assume that I'y = I"y,
and k4 = kj; and reset the notation. As the ac-map induces a splitting of
the exact sequence

1=k SRV T 0,

we have the bijections RV}, ~ kj, x I'yy and RVy ~ k3 x I'y. Hence,
the partial isomorphism f induces an elementary embedding of RV-structure
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frv : (RVy, @,+,1,0) = (RVy,®,+,1,0), and fx U fry is a partial isomor-
phism of substructures in the language Lry. By relative quantifier elimination
down to RV, fx U fay extends to an elementary embedding f = (fx, fav)
of {M,RV,} into {N,RVy}. One sees that fx U fr U fr : M — N is an
embedding extending the original partial isomorphism f. By back-and-forth,
T satisfies (EQ)r k. ac- O

More specifically, we will have to study 1-dimensional definable sets D C
K. Flenner showed in [40] that in Henselian valued fields of characteristic 0,
definable sets can be written with field-sorted linear terms (See Fact 1.2.28).
This property will be of essential use. Let us give it also an abbreviation:

Definition 1.2.15. Let T" be the theory of a Henselian valued field K in the
language Lry. We denote by (Lin)ry the following property: any formula
¢(z) with parameters in K and with |z| = 1 is equivalent to a formula of the
form

orv(rv(z —aqy),...,1v(x — a,), a) (1.3)

where 7 € N and ¢ry is an RV-formula with a tuple of parameters o € RV(K)
and a,...,a, € K'.

Notice that it is an improvement of a relative quantifier elimination down
to RV for unary-definable sets: the term inside rv is linear in x where (EQ)gry
gives only a polynomial in x.

Its algebraic counterpart seems to be the following:

Definition 1.2.16. A valued field is called algebraically mazximal if it admits
no immediate algebraic extension.

In particular, Henselian valued fields of equicharacteristic 0 are alge-
braically maximal (by the fundamental equality) as well as algebraically
closed valued fields. Delon proved that this is actually a first order prop-
erty. For details, we refer to Delon’s thesis [26] and a recent work of Halevi
and Hasson in [41].

We show now that algebraically maximal valued fields with quantifier
elimination relative to RV enjoy Property (Lin)gy. This fact was suggested
by Yatir Halevi. Notice that a similar statement has been proved by Peter
Sinclair for valued fields in the Denef-Pas language L 4. (see [70, Theorem
2.1.1.]). We thank both of them for their enlightenment.

Let K = {(K,-,+,0,1),(RV,0,1,-,®),rv : K* — RV*} be a Henselian
valued field viewed as a structure in the language Lry. Let K > K be a
monster model. Let z € K\ K. We denote by Ix(z) the set of values
{val(x — a)| a € K}.
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Fact 1.2.17 (Delon). Ix(x) has no mazimum if and only if the extension
K(x)/K is immediate.

Lemma 1.2.18. Assume that K is algebraically maximal. Let v € K\ K.

o [fIx(x) has no maximum, let (; = val(x—a;))ier be a co-final sequence
of values in Ix(x). Then the quantifier-free type qftp(z/K) is implied
by the type {val(z — a;) = vi}ier.

o [f Ix(x) has a maximum, then there is a € K such that tp(rv(z —
a)/ RV(K) determined qftp(z/K). Moreover, RV(K (x)) is generated
by RV(K) and rv(z — a).

Proof. Assume that Ix(z) has no maximum, and let (7; = val(x — a;))ies
be a co-final sequence of values in Ix(x). Then, the sequence (a;)ics is a
pseudo-Cauchy sequence in K, with no pseudo-limit in K and which pseudo-
converges to . The extension is immediate and K is algebraically maximal.
By [49], the pseudo-Cauchy sequence (a;);e; is of transcendental type. Then,
if 2/ € K is another pseudo-limit of (a;);es, the two extensions K (x) and
K (') are isomorphic over K. In other words, the quantifier-free type of x
over K is uniquely determined by {val(z — a;) = 7; }ies-

Assume that I (x) has a maximum ~ = val(z — a). Then, we distinguish
two cases.

Case 1: We have that val(z — a) € k.

Then, we have that rv(z — a) ¢ RV(K), as otherwise, it would exist b € K
such that val(x—a—0b) > val(z—a), contradicting the maximality of val(z—a).
Let ¢ € K such that val(z — a) = val(c). Then, since ki is relatively alge-
braically closed in kx (as K is an elementary extension of K') and since rv(*=%)
is in kg \ kg, we have that res(*>¢) is transcendental over kg. Without loss
of generality, assume that “—* = z. The extension K (r) is the Gauss exten-
sion, thus it is unique up to K-isomorphism (see e.g. [31]). In particular, the
quantifier-free type of x over K is uniquely determined by tp(rv(z)/ RV(K)).
We show now that RV (K (z)) is generated by RV(K) and rv(z) in the fol-
lowing sense: Consider P(X) := 3,  a;X" a non-trivial polynomial in K,
and assume that a;,,...,a;_, are the coefficient of minimum value. Since
rv(z™) € ki for all n, and since rv(x) is transcendental over kg, we have:

rv (P(‘”>> - ZMIV(Iij) € ki,

a;, = rv(ag,)

and so

rv(P(x)) = @rv(aij) rv(z) = @rv(ai) rv(z)’.

Jj<k <n
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Case 2: We have that val(x — a) ¢ I'x. Then for all n € N*, n - val(x —
a) ¢ T'k, as K is an elementary extension of K. Then, for any polynomial
P(x) € K(x), val(P(z — a)) can be expressed in terms of val(z — a). The
isomorphism type of K (x) over K is uniquely determined by rv(z — a) = «,
or in other words the quantifier-free type of x over K is uniquely determined
by tp(rv(z — a)/ RV(K)). Without loss of generality, we may assume that
r = x—a. One sees as well that RV (K (7)) is generated by RV(K) and rv(z):
consider P(X) := ", , ;X" a non-trivial polynomial in K. As n - val(z) is
not in 'y for all n, we have that:

rv(P(z)) = D rv(a;) rv(zh).

<n
Ol

Theorem 1.2.19. Assume that K is algebraically mazimal and admits quan-
tifier elimination relative to RV. Then it also satisfies the property (Lin)gy -

Proof. By compactness, it is enough to show that any (complete) 1-type
p(x) = tp(b/K) over K is determined by formulas of the form 1.3.

o If p(r) = tp(b/K) is a realised type, i.e. b € K, then the type is
determined by {rv(z —b) = 0}.

e If K(b)/K is immediate, then by the previous lemma, qftp(b/K) is
determined by the type {val(z —a;) = ~; }ics, where 7; and a; are given
by the previous lemma. This can be written in the language Lyy: for
1 € I choose ¢; € K of value ;. Then

val(z—a;) = v < rv(z—a;)erv(e) # rv(z—a;) Arv(z—a;)Brv(e;) # rv(e).

As RV(K (b)) = RV(K), and by quantifier elimination relative to the
RV-sort, {val(x — a;) = 7i}ies U tp(0/RV(K)) determines p(z) =
tp(b/ K).

o If K(b)/K is non-immediate, then by the previous lemma, there is
an a € K such that gftp(b/K) is determined by ¢(rv(z — a)) where
q = tp(rv(b —a)/RV). As RV(K(z)) is generated by RV(K) and
rv(b — a), and by quantifier elimination relative to RV, we got that
q(rv(z — a)) determines p(z) = tp(b/K).

O

Definition 1.2.20. A valued field of equicharacteristic p > 0 is said Kaplan-
sky if the value group is p-divisible, the residue field is perfect and does not
admit any finite separable extensions of degree divisible by p.
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Definition 1.2.21. Any {I'}-{k}-enrichment of one of the following theories
of Henselian valued fields is called benign:

1. Henselian valued fields of characteristic (0, 0),
2. algebraically closed valued fields,

3. algebraically maximal Kaplansky Henselian valued fields.

A model of a benign theory will be called a benign Henselian valued field.
As promised, we have:
Fact 1.2.22. Benign theories satisfy (Im), (EQ)ry and (Lin)gy.

By the discussion above, it implies (EQ)r k ac; (AKE)r k., (AKE)ry,(SE)r«
and (SE)RV

Proof. Tt is clear that the set of models of a benign theory is closed under
maximal immediate extensions. Concerning the property (EQ)ry, we just
give examples of references. We also leave here references for the property
(EQ)r.ac. Notice that we might not refer to original proofs. The fact that
Henselian valued fields of characteristic (0,0) has property (EQ)r x.qc is the
classical theorem of Pas. The proof that it has (EQ)gry is in [40]. Alge-
braically closed valued fields (in any characteristic) eliminate quantifiers by
the theorem of Robinson. One deduces the property (EQ)r j 4 from it. One
can find a proof that algebraically closed valued fields of any characteristic
have (EQ)gry in [43]. Algebraically maximal Kaplansky valued fields have
(EQ)rqe and (EQ)ry by |41]. As all these fields are algebraically maximal,
they satisty the condition of Theorem 1.2.19, and thus enjoy the property
(Lin)R\/.

Finally, all these properties hold for any {I'}-{k}-enrichment, as it is a
particular case of {RV }-enrichment, and as the sorts I', k and RV are closed
(Fact 1.1.5).

O

We will complete our study with some transfer principle for unramified
mixed characteristic Henselian valued fields with perfect residue field. As it
requires further techniques, it needs to be treated independently. We first
need to introduce the Witt vector construction.
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Witt vectors

In the theory of unramified mixed characteristic Henselian valued fields, we
will understand RV, -structures thanks to the well known Witt vector con-
struction. We start by briefly recalling the definition. For more details, one
can see [65]. Let k be a field of characteristic p.

Definition 1.2.23 (Witt vectors). Fix Xg, X7, Xs,... and Yy, Y3, Y5, ...
some indeterminates. We consider the polynomials Wy, Wi, Ws, ... in
Z[Xo, X1, X, .. ], called Witt polynomials and defined by:

W, = Zn:pi’Xf .
=0

The ring of Witt vectors over k, denoted by W (k), is a ring of base set k“.
The sum of = (xq, z1,...) and § = (o, ¥1, . . .) is given by:

T+y= (Sn('rOa ooy Tp—1,Y05 - - - 7yn71))n

where Sn(Xoy -y, X 1) is the unique polynomial in
Z[Xo, e 7Xn—17 Yo, e aYn—l] such that

WIL<X07 <. aanl) + Wn(}/()a v >}/n71) = Wn<507 ey S’nfl)-

The product Z -y is defined similarly. These operations make W (k) into a
commutative ring.

The residue map 7 is simply the projection to the first coordinate. The
natural section of the residue map, the so called Teichmiiller lift, is defined
as follows:

T: k — Wi(k)
a > [a] :=1(a,0,0,...)"

Finally, all the above definitions make sense if we restrict the base-set to
k™. One gets then the truncated ring of Witt vectors of length n denoted by
W, (k), as well as its Teichmiiller map 7,, : k& — W, (k).

Observation 1.2.24. (W, (k),+,-,m) s interpretable in the field
(k,+,-,1,0), with base set k™. It is clear that bdn(W,(k)) := xj,,(Wy(k)) <
Kinp(k) (we will show that they are in fact equal).

Recall that a p-ring is a complete local ring A of maximal ideal pA and
perfect residue field A/pA. It is strict if p™ # 0 for every n € N. Here are
some basic facts about Witt vectors:

Fact 1.2.25 (see e.g. [74, Chap. 6]). Recall that the field k is perfect.



76

CHAPTER 1. PRELIMINARIES

. The ring of Witt vectors W (k) is a strict local p-ring of residue field k,

unique up to isomorphism with these properties.

. The Teichmiiller map is given by the following: let a € k, then T(a) is

the limit (for the topology given by the maximal ideal pW (k) ) of any
sequence (P )<y such that w(a,)?" = a for all n.

. In particular 7, is definable in the structure (W, (k),+,-,m). Indeed

T,(a) is the (unique) element aﬁn:; € W, such that ©(a,_ )" = a.

- Jor x = (2p)new € W(k), one hasz =3, _ =8 "|p™.

. In particular, the map x; : W (k) — k, * = (xo, 21, ...) — x; is defin-

able in the structure (W (k),+,-, 7). One has indeed

%

p?,

Similarly, for 0 < i < n — 1 the map xn; : Wi(k) — k, =z =
(X0, X1, .., Tp_1) — x; 18 definable in (W, (k),+, -, 7).

We deduce the following:

Corollary 1.2.26. e The structure (W, (k),+,-,7 : W, (k) — k) is bi-

interpretable on unary sets with the structure (k™ k,+,-,p;,i < n),
where p; : K" — k, (x0,...,Zp—1) — z; is the projection map. In other
words, there is a bijection W, (k) ~ k™ which leads to identify definable
sets.

Similarly, the structure (W (k),+,-,m : W (k) — k) is bi-interpretable
on unary sets with no parameters with the structure (k¥ k, +, -, p;, i <
w) where p; : k¥ — k, (xg,x1,...) — ;.

This corollary, coupled with Fact 1.1.20 and Remark 1.1.51, will be one

of the main argument to treat our reduction principle in the context of un-
ramified mixed characteristic valued fields with perfect residue field.

Unramified mixed characteristic Henselian valued fields

We give a short overview on unramified valued fields, by presenting the sim-
ilarities with benign valued fields. The (partial) theory of Henselian valued
fields of characteristic 0 does not satisfy either (EQ)rxq. or (EQ)ry. We
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indeed need to get ‘information’ modulo my, in a quantifier-free way. Let us
recall the leading term language of finite order:

LRV<W = {]{; (Rvén)n<wa (gél,ém,én)n<l7m7 (rvén)n<w> (rvén—>5m)m<n<w} )

where @, are ternary relation symbols and §,, = val(p™). Let us just define
all the analogous properties:

K,K'E=T,K CK', wehave K < K' < RV_, <RV’ . (AKE)gy_,,

Let us cite two main results in [40]. First we have:

Fact 1.2.27. [/0, Proposition 4.3 Let T be the theory of characteristic 0
Henselian valued fields in the language Lry_,. Then T eliminates field-sorted
quantifiers.

K

Rv<w

This result was already proved in [10]. Again, an im-
portant  consequence is  that  the  multisorted  substructure
((RV s, )n<ws (86,660 )n<tms (TV,—6,, Jmen<w) 1S stably embedded and
pure. Secondly, we have its one-dimensional improved version:

Fact 1.2.28. [/0, Proposition 5.1] Let T be the theory of Henselian valued
fields K of characteristic 0 in the language Lyy_,,. It has the following prop-
erty denoted by (Lin)ry_,,: any formula ¢(z) with parameters in K and with
|z| =1 is given by a formula of the form

Grvs, (1v(r —ay),...,1v(x —a,), a) (1.4)

where ¢ry; (X1,...,%,,y) is an RV -formula, with a tuple of parameters
a € RV (K) and ay,...,a, € K and r € N.

Again, notice that the improvement comes from the fact that the term
inside rvs, is linear in z where Fact 1.2.27 gives only a polynomial in z.
These theorems also include the case of equicharacteristic 0, and it gives the
same result as cited above. Indeed, in equicharacteristic 0, we may identify
U,<. RVs, with RV = RV, (Remark 1.2.8). We continue with a remark on
enrichment.
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Remark 1.2.29. By Fact 1.1.5, the first fact above holds in any RV -
enrichment of Lry. Indeed, first note that the RV _,-sort is closed in the
language Lgy_,,, i.e. any relation symbol involving a sort RVs, or any func-
tion symbol with a domain involving a sort RVs, only involves such sorts.
By Fact 1.1.5, the theory T' of Henselian valued fields of characteristic 0 also
eliminates quantifiers resplendently relative to RV . In other words, given
an RV «,-enrichment Lry __, ., any complete Lry_,, o-theory T, O T eliminates
field-sorted quantifiers. A careful reading of Flenner’s proof give us that Fact
1.2.28 holds resplendently as well.

Now, let us discuss more specifically on the unramified mixed charac-
teristic cases. We denote by 1" the theory of unramified mixed characteris-
tic Henselian valued fields with perfect residue field. We assume now that
IC is such a valued field. There is by definition a smallest positive value
val(p) = 01, that we denote by 1.

Notation: Notice that m = pO and in general that m;, = m"*! = p" 1O
for all n > 0. We will write m"*! instead of m; , O, instead of Os and
RV, instead of RV;, = K*/1 + p"*'O. The projection map ress, : O —
Os,, is written res, 1 : O — O,y etc. The idea is to denote by RV,, the
n'™ RV-sort, as this makes sense in unramified (or finitely ramified) mixed
characteristic valued fields. The purpose is also to fit with the usual notation,
and it will help to simplify the notation, although this convention contradicts
the previous one (RVy where 0 stands for the value 0 € T" is now RV, the
first RV-sort).

In this context, let us define the angular component of degree n:

Definition 1.2.30. Let n be an integer greater than 0. An angular com-
ponent of order m is a homomorphism ac, : K* — O, such that for
all uw € O%, ac,(u) = res,(u). A system of angular component maps
(acp)n<w is said to be compatible if for all n, m, o ac,;1 = ac, where
ot Ony1 — Op =~ Opyq/p"Opy1 is the natural projection.

o =k*
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The convention is to contract ac; to ac and m; to w. Then, let us complete
the diagram given in Subsection 1.2.1:

1 Ol T - ﬂ 0
1— O /1+m") ~O0F — RV T g

A section s : I' — K* of the valuation gives immediately a compatible
system of angular components (defined as ac, := a € K* — res,(a/s(v(a)))).
As O* is a pure subgroup of K*, such a section exists when I is N;-saturated
(see Fact 1.2.38). As always, we assume that I is sufficiently saturated and
we fix a compatible sequence (ac,), of angular components.

We denote by Tj,._,, the extension of 7" to the language Ly ac_,, := Ly U
{O,,ac, : K — O,, n € N} where ac, are interpreted as compatible angular
components of degree n (see for instance [3]).

The following proposition is well known and has been used for example in
[12, Corollary 5.2]. It states how the structure RV,, and the truncated Witt
vectors W,, are related.

Proposition 1.2.31. 1. The residue ring O,, of order n is isomorphic to
W, (k), the set of truncated Witt vectors of length n .

2. The kernel of the valuation val : RV}, — T is given by O* /(1 +m") ~
(O/m™)*. It is isomorphic to W, (k)*, the set of invertible elements of
Wi (k).

Proof. Tt is clear that (2) follows from (1) as O* /(1 +m") ~ (O/m™)*.
Now, we prove (1) for any discrete value group I'. Consider

the inverse limit of the O,,’s. It is:

e strict, i.e. p" # 0 in W’ for every n < w, as m,+1(p") # 0 in Opyq =
O/pn'HO,

e local, as a projective limit of the local rings O,

e a pring. Its maximal ideal is pI#/”’, it is complete as projective limit,
and its residue field is the perfect field k.
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By uniqueness, W’ is isomorphic to W (k), the ring of Witt vectors over k.
One just has to notice that W' /p"W' ~ O/p"O and it follows easily that
O,, ~ W, (k) for every n < w. O

Note. In the above proof, one can also recover W (k) by considering the
coarsening K of K by the convex subgroup Z - 1. Indeed, if we denote by
K° the residue field of the coarsening, as K is saturated enough, one has

hm O, =~ O(K°) (see [10]).

Fact 1.2.32 (Bélair [12]|). The theory Ty._,, of Henselian mized characteristic
valued fields with perfect residue field and with angular components eliminates
field-sorted quantifiers in the language L g ac_, -

Notice that in [12|, Bélair doesn’t assume that the residue field k is per-
fect, but it is indeed necessary in order to identify the ring O,, := O/m™ with
the truncated Witt vectors W,, (k). This implies as well that the residue field
k and the value group I' are pure sorts, and are orthogonal. This can be
seen by analysing field-sorted-quantifier-free formulas, and by noticing that
O,, ~ W, (k) is interpretable in k (Corollary 1.2.26).

By analogy with the previous paragraph, we name the following proper-
ties:

Thc.., eliminates /(-sorted quantifiers in the language Lac_,, .
(EQ)F,k,ac<w

T has quantifier elimination (resplendently) relatively to RV .
(EQ)rv...

Again, notice that RV, = |J,,., RV, is a closed set of sorts. As before, we
get:

Fact 1.2.33. (EQ)RV<w Zmplzes (AKE)RVQL,-

We also need to adapt the axiom (Im), as it is probably safer to look for
a stronger property. Indeed, one can ask the following:

Question. When do we have that, for every n, RV,, = RV for all immediate
extensions K'/K?

The Ax-Kochen-Ershov property and relative quantifier elimination for Henselian un-
ramified mixed characteristic valued fields (with possibly imperfect residue field) has been
proved in [3].
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In general, an immediate extension of a mixed characteristic field can have
a larger RV ,-sort. For instance, let us look at the field of rational functions
K = Q(X) and the field of formal power series K’ = Q((X)). We consider
the valuation ring O’ on K’ defined by

O = {Z a; X") |n € Z, val,(a;) > 0 for all i and val,a; = 0 only if i > 0}.

>n

The value group can be identified with (Z x Z, (0,0), 4+, <je,) endowed with
the lexicographic order <., and where val(p) = (0,1) > val(X) = (0,1). We
consider the restriction of the valuation to K. Then the extension K'/K is
immediate. One sees that RV ¢y(K’) is uncountable (isomorphic as abelian
group to F,((X)) x I'), and that RV o)(K) is countable (isomorphic as an
abelian group to F,(X) x I).

An extension K'/K satisfying RV., = RV_, will be called RV_,-
immediate. Let us give a name to the condition saying that the previous
question has a positive answer:

The set of models of T is closed under maximal
immediate extensions and immediate extensions of (RV_, -Im)
models of T" are RV _-immediate.

This is satisfied by unramified mixed characteristic valued fields with perfect
residue field. Indeed, the same argument as before proves that RV, = RV,
for all n € N, as one has the commutative diagram:

RV!*

SN

1 —— W, (k) r——0,

7

RV*

where W, (k) is the ring of Witt vectors of order n over k.
To sum up, we have:

Fact 1.2.34. The theory of unramified mized characteristic Henselian valued
fields with perfect residue field satisfies (RVy, -Im), (EQ)rv_.,, (EQ)rk.ac-.,»
(Lin)ry..,, (AKE)rk, (SE)ry and (SE)ry_,,-
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1.2.2 Abelian groups

We conclude these preliminaries with some facts on abelian groups. We are
specifically interested in abelian groups for one main reason: we have to
understand the structure of pure short exact sequences of abelian groups in
order to produce our reduction principles for benign Henselian valued fields.
As we obtain also reduction principles for such short exact sequences, we will
take the occasion to apply it on explicit examples.

Burden in abelian groups

Let us gather here few facts on abelian groups. They will be used in Section
2.2, notably to provide examples to the Theorem 2.2.2. First, we have:

Fact 1.2.35 ( |62, Theorem 2 Z 1] ). Let A be an abelian group. Let P, be
a predicate for n-divisibility in A. Then {A.+, —,0,{Py}nen.,} eliminates
quantifiers.

By the work of Szmielew in [71]|, and later by Eklof and Fisher [30],
abelian groups have been classified up to elementary equivalence. Namely,
for k an uncountable cardinal, k-saturated abelian groups are of the form

M = @(@ Z(pn)(ap,n) @ ZE}%') ® Z(poo)(%)) o QY
P n

where:
e Z(p™) is the cyclic group of p" elements,
o Zp) is the additive group of the integers localised in (p),
e 7Z(p>) is the Priifer p-group,
e and 6, oy, B, and 7, are some cardinals.

See [30, Proposition 1.11|. Furthermore, when they are finite, , ,, 3, and v,
are invariants of the theory: there are preserved by elementary extensions.

The burden (or equivalently by stability, the dp-rank) of pure abelian
groups has been computed in terms of these invariants, called Szmielew in-
variants, by Halevi and Palacin in [42]. We borrow from their work the fol-
lowing proposition, which says that a useful criterion to witness inp-patterns
is a characterization in the case of one-based groups (and in particular, in
the case of unenriched abelian groups):
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Proposition 1.2.36 (|42, Proposition 3.4|). A stable one-based group ad-
mits an inp-pattern of depth k if and only if there exists acl®(0)-definable
subgroups (Hy)a<x such that for any ig < k, one has:

[ﬂ i, OHa] = 00.

aFig
If (ba.j)j<w are representatives of pairwise distinct classes of ﬂaﬂo H, modulo

Mo Ha, an inp-pattern of depth k is given by {x € ba;Ha o<k, j<w-

We will use this criterion to provide examples to Theorem 2.2.2.

Quantifier elimination result in pure short exact sequences

Definition 1.2.37. Let B a group and A a subgroup. We say that A is a
pure subgroup of B if for all a in A, n € N, a is n-divisible in B if and only
if a is n-divisible in A.

We recall the following fundamental fact:

Fact 1.2.38. Let M be an Xy -saturated structure, and let A, B be two defin-
able abelian groups, and assume that A is a pure subgroup of B. Then the
exact sequence of abelian groups 0 — A — B — B/A — 0 splits: there is a
group homomorphism o : B — A such that a4 is the identity on A. In such
case, B is isomorphic as a group to A X B/A.

More precisely, it is an immediate corollary of a more general statement
on pure-injectivity. See [13, Theorem 20 p.171].
Assume that we have a pure short exact sequence of abelian groups

0— A——B——C 0.

(meaning that ((A) is a pure subgroup of B). We treat it as a three-sorted
structure (A, B, C, ¢, v), with a group structure for all sorts. In fact, in our
main applications, we will consider such a sequence with more structure on
A and C'. Let us explicitly state all results resplendently, by working in an
enriched language. So, let M = (A, B,C,,v,...) be an {A}-enrichment of
a {C'}-enrichment (for short: an {A}-{C'}-enrichment) of the exact sequence
in a language that we will denote by L, and we denote its theory by 7. We
will always assume that M is sufficiently saturated (X; saturated will be
enough).

Hypothesis of purity implies the exactness of the following sequences for
n € N:

00— A/nA "~ B/nB -~ C/nC —0.



84 CHAPTER 1. PRELIMINARIES

One has indeed that

A—l—nBN A _i
nB ~ ANnB nA

We consider for n > 0 the following maps:

e the natural projections m, : A — A/nA,

e the map
pn: B — A/nA

N Oa/ma ifb¢ v (nC)
1.1 (b4 nB) otherwise,

where 04/,,4 is the zero element of A/nA (often denoted by 0). Then let
us consider the language

Lq =LU {A/nAa T, pn}n20>

and let T; be the natural extension of the theory 7. By < A >, we denote

the set of sorts containing A, A/nA and the new sorts possibly coming from
the A-enrichment. Similarly, let < C' > be the set of sorts containing C' and
the new sorts possibly coming from the C-enrichment. By A-sort and C-sort,
we will abusively refer to < A > and < C' > respectively, and similarly for
A-formulas and C-formulas. Aschenbrenner, Chernikov, Gehret and Ziegler
prove the following result:

Fact 1.2.39 ([4]). The theory T, (resplendently) eliminates B-sorted quan-
tifiers.

M

A

A C

More precisely, all L,-formulas ¢(x) with a tuple of variables x € Bl*l qre
equivalent to boolean combinations of formulas of the form:

1. pc(v(to(x)), ..., v(ts_1(x))) where t;(x)’s are terms in the group lan-
guage, and ¢¢ is a C-formula,

2. da(pno(to(z)), -y oy (ts—1(x))) where the t;(x)’s are terms in the
group language, where
S, Mo, N1, --.,Ns—1 € N, and where ¢, is an A-formula.
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In particular there is no occurrence of the symbol ¢.

In particular, notice that the formula ¢(z) = 0 is equivalent to v(t(x)) =
0A po(t(z)) = 0 and Jy ny = t(x) is equivalent to Jyc nyc = v(t(z)) A
pult(1)) = 0.

We have:

Corollary 1.2.40. In the theory 7, < A > and < C > are stably embedded,
pure (see Definition 1.1.7) and orthogonal to each other.

In fact, it can be easily deduced from the existence of a section. The
following is more technical but highlights the fact that one does not need the
function ¢ in order to express definable sets in (J,,_,, A/nA.

Proof. In this proof, A (resp. C) abusively refer to the union of the sorts
< A > (resp. < C' >). The C-sort is pure and stably embedded by Fact
1.2.39 and closedness of C. It is also clear for the sort A, even if A is not
a closed sort: one only needs to deal with the map + : A — B. If D is a
definable set in Al*4!l it is given by a disjunction of formulas of the form

(/)<$A) :¢A (pno (kOL(tO(IA)) + 60)7 <y Prg (ks—lL(ts—l(fEA)) + bs—l)7 CL)
Ade (v(u(to(a))), - v (ts—i(za))), €) -
where 4 is a tuple of A-variables, the t;(x4)’s are terms in the group lan-
guage, S, ko, ..., ks_1 € N, by,...,bs_1 € B, and a € A and ¢ € C are tuples

of parameters (notice that we also used that + and v are morphisms). We
apply now the following transformation in order to get a new formula ¢'(z4):

e For [ < s, if v(b) ¢ nC, then replace p,, (kie(ti(z.4)) + b)) by 0a/n,a-

e For | < s,if v(bh) € n,C, replace py, (kit(t)(z4)) + b)) by ki, (ti(za)) +
pnl(bl)'

e For | < s, replace v(c(t)(x4)) by Oc.

We obtain a pure A-formula ¢'(z4) such that ¢'(Al*al) = ¢(Al*al). Orthog-
onality can also be proved similarly. (I

The proof shows that one does not need the function ¢ : A — B in order to describe
definable sets in A. In a certain sense, < A > is a ‘closure’ of A, as it describes the induced

structure on A, with no resort to any symbol from L \ Ly|_ - -
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Chapter 2

Burden in Henselian valued fields

In this chapter, we compute the burden of benign Henselian valued fields
(Definition 1.2.21) and of unramified mixed characteristic Henselian valued
fields with perfect residue field in terms of the burden of the value group and
that of the residue field. The first section is common for both cases and treats
the reduction from the valued field to the sort RV (resp. the sorts RV_,).
For the reduction to the value group and residue field, we treat (separately)
the case of benign Henselian valued fields in Section 2.3 and the case of
unramified mixed characteristic henselian valued fields with perfect residue
field in Section 2.4. They are both deduced from a computation of burden in
short exact sequences of abelian groups, that we present in Subsection 2.2.

2.1 Reductions to RV and RV _,

We compute here the burden of Henselian valued fields of characteristc 0 in
terms of burden of RV_,,. As we explained in Section 1.2.1, mixed character-
istic Henselian valued fields satisfy (EQ)rv_,, (quantifier elimination relative
to the union of sorts RV,.), but do not satisfy in general (EQ)gy (elimi-
nation of quantifiers relative to RV). Our result includes naturally the case
of unramified mixed Henselian valued fields, and also equicharacteristic 0
Henselian valued fields. In the former case, we have a computation of the
burden in term of the burden of RV, as in equicharacteristic 0 the structures
RV and RV, can be identified (Remark 1.2.8). In fact, the proof that we
are going to present can be adapted for all benign valued fields, and allows
us to express their burden in term of the burden of their RV-sort.

87
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2.1.1 Reductions

The aim of this subsection is to prove the following:

Theorem 2.1.1. Let K be a Henselian valued field of characteristic (0,p),
p > 0. Let M be a positive integer and assume K is of burden M. Then, the
sort RV, with the induced structure is also of burden M. In particular, IC
s inp-mainimal if and only if RV o, is inp-minimal.

The demonstration (below) follows Chernikov and Simon’s proof for the
case of equicharacteristic 0 and burden 1 (see [19]). As we said, this statement
also cover the case of equicharacteristic 0. One can also generalise the proof
for infinite burden (see Corollary 2.1.3 for details). A careful reading of the
proof shows that one only uses properties (EQ)ry_, and (Lin)gy_,,.

Of course, the proof can be written for equicaracteristic 0 fields only
(it becomes simpler), and then it only uses Property (EQ)ry and (Lin)gy.
As algebraically maximal Kaplansky valued fields and algebraically closed
valued fields satisfy these property, we obtain in fact:

Theorem 2.1.2. Let K be a benign Henselian valued field. Let M be a
positive integer and assume IC is of burden M. Then, the sort RV with the
induced structure is also of burden M. In particular, K is inp-minimal if and
only if RV is inp-minimal.

Proof of Theorem 2.1.1. We denote by 7 the set of natural numbers with
extremal points Z U {£oo}. Let {¢s(z,¥:), (¢ij);jez, ki}icnmr be an inp-pattern
in K of finite depth M > 2 with |z| = 1, where ¢;; = a; ;b;; € K* x RV*2 .
Notice that the set of indices is Z, as we will make use of one of the extreme
elements {a; —oo, @i +o0}) later. We have to find an inp-pattern of depth M
in RV_,. Without loss of generality, we take (¢; ;);; mutually indiscernible.
By Fact 1.2.28 and mutual indiscernibility, we can assume the formulas ¢;
are of the form

0i(x, ¢ ) = Bi(rvs, (T — i), ... 1V, (T — Qi ); big),

for some integer n and where ¢; are RV_, -formulas. Also recall that 9,
denotes the value val(p™). The arguments inside symbols rvs are linear
terms in x. In some sense, difficulties coming from the field structure have
been already treated and it only remains to deal with the structure coming
from the valuation.

Let d = {¢i(rvs, (x — aioa), ..., 15, (T — @iox, ); bio) ticmr be a solution
of the first column. Before we give a general idea of the proof, let us reduce
to the case where only one term rvs, (v — a; ;) occurs in the formula ;.
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Claim 2. We may assume that for all i < M, q?)i(a:,ci,j) is of the form
¢i(rV5n(m — ai,j;l); b’t}j); 1.€e. |a'i,j‘ = k?l =1.

Proof. We will first replace the formula qgo(:c, co,;) by a new one with an extra
parameter.
By Lemma 1.2.12, at least one of the following two cases occurs

1. WD(;n (I‘V(;n (d — 0070;1), Ivs,, (a070;1 — a0,0;2)) or
2. WDy, (I"Van(d - a0,0;2), 1"V5n(a0,0;2 - ao,o;l)) .

According to the case, we respectively define a new formula g(x, co; °
rvs, (@02 — doga)) by:

1.

Go(rvs, (T—ag j;1), V5, (T—agj;1)+1V5, (G051 00 5:2), Vs, (T—a0,5;3), - - -,

1vs, (r — agjx); Do) A WDs, (1vs, (2 — ag 1), 16, (a0 i1 — @oj2)),

Go(rvs, (x—ag j2)+1V5, (a0 j2—00 41 ), Vs, (T—a0 j:2), - - - Vs, (T—a0,jx); Do ;)

ANWDg, (rvs,(z — agj2), 15, (@02 — @o:1))-

We will prove that the pattern where ¢y is replaced by ty:

{wo(il?, Yo = 2)7 (Co,j h TVan(ao,j;Q - a(),j;l))je% ko} U {&z(% ?/z’)7 (Ci,j)jeZa ki}1§i<M

is also an inp-pattern. First note that we have added rvs,(ag 2 — ao 1) to
the parameters by ;, and it still forms a mutually indiscernible array. Clearly,
d is still a realisation of the first column:

d = {¢o(x, coo ™ 1vs, (a0 02 — aoe1))} U {¢5(x, cio) | 1<i< M}.

By mutual indiscernibility of the parameters, every path is consistent. Since
o(K) C ¢;0(IC), inconsistency of the first row is also clear. By induction, it
is clear that we may assume that ¢q is of the desired form. We can do the
same for all formulas ¢;, 0 <7 < M. O

If the array (a;;)i<am,j<w is constant equal to some a € K, then we ob-
viously get an inp-pattern of depth M in RV_y: {¢i(x, 2), (bij) ez, ki bicars
where x is a variable in RV, (such a pattern is said to be centralised ). In-
deed, consistency of the path is clear. If a row is satisfied by some d € RV,
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, any d € K such that rvs, (d —a) = d will satisfy the corresponding row of
the initial inp-pattern, which is absurd. Hence, the rows are inconsistent.

The idea of the proof is to reduce the general case (where the a;;’s are
distinct) to this trivial case by the same method as above: removing the
parameters a;; € K and adding new parameters from RV, to b;; and
specifying the formula by adding a term of the form WD(rv(x — a),rv(a —
a;;)). The main challenge is to find a suitable a € K for a center.

Recall that d = {¢i(rvs, (2 — ai0); bio) icas 1s & solution to the first col-
umn.

Claim 3. For all j < w, and i,k < M with k # i, we have
val(d — a; ;) < val(d — akp) + 0p.

Proof. Assume not: for some j < w, and i, k < M with k # i
val(d — a; ;) > val(d — ay) + 0y.

Then, 1vs, (a;i; — ako) =15, (d — axp). By mutual indiscernibility, we have
aij 1= {Pr(rvs, (r = ak1); beg) bicw

This contradicts inconsistency of the row k. (I

In particular, for all 4, k < M, we have | val(d — ax) — val(d — a;0)| < 0.
For ¢ < M, let us denote 7; := val(d — a;) and let v be the minimum of the
v:’s. By definition, we have the following for all 7, & < M:

val(a; o — axp) > min{val(d — a, ), val(d — ax0)} > 7. (%)
The following claim give us a correct centre a.

Claim 4. We may assume that there is 1 < M such that for all k < M, the
following holds:

Y = val(d — ago) < min{val(d — a; ), val(aico — aro)} + On.

In particular, by Proposition 1.2.10, we have:

WDan(I"V%n(d - ai,oo)a I'vas, (Gzoo - d&o))-

Proof. By Remark 1.2.11, it is enough to find ¢« < M such that the following
holds for all £ < M:

Ye < val(d — ai00) + 0 0or Y < val(ai o — aro) + On.

We will actually find ¢ such that one of the following holds:



2.1. REDUCTIONS TO RV AND RV, 91

L.y <val(d — a; o) + 0, forall k < M
2. v <val(ajoo —aro) +6, forall k<M

The first case will correspond to Case A, the second to Case B.

Case A : There are 0 < i,k < M with ¢ # k such that val(a;; — ax;) is
constant for all 7,/ € w, equal to some €. Note that (x) gives € > 7.

Then, we have:
val(d — a; o) > min{val(d — a;), val(a;o — ai00)} >

Indeed, val(a;p — Gis) > min{val(a; o — axp),val(aro — o)} = € > 7.
Hence, we have for every 0 <1 < M:

Val(d - ai,oo) + 571 > ¥+ 6n > Val(d — am) =M.

Case B: For all 0 < i,k < M with i # k, (val(a;; — ax,));, is not
constant.
By Lemma 1.2.2 (2) and Lemma 1.2.3, there is ¢« < M such that for every
k< M and k # i, (ak1)i<w=ai0 O (ag _1)i<w=a;0. If needed, one can flip
the indices and assume that for all & # 4, (a;)i<w=0io. Note that only
(a;;); could be a fan in this case.
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Then we have
val(ago — aioo) = val(aro — aip) = 7,
since (ag;)=a; . as well. So
val(aro — Gioo) + 6n > Vi
It remains to prove the inequality for k = i. Take [ # ¢, | < M. We have:
val(aio — aico) > min{val(a; o — arp), val(aio — ai00)} > 7.

Hence, val(a; o — @) + 65 > ;.
O

Assume ¢ = 0 satisfies the conclusion of the previous claim. For every
k < M, we have

WD, (rvas, (d — ag,00), 125, (40,00 — k)
Set Z’w =b;j "1V, (000 — aij) for i < M,j < w and
(7, 61;) = ¢ (vvs, (T + 1vas, (A0,00 — @i5)); bi) AWDs, (T, 195, (00,00 — @i 5))

where 7 is a variable in RV, .

This is an inp-pattern. Indeed, clearly, rvas, (d —ao.o0) = {9:(Z, Bi,o)}i< M-
By mutual indiscernibility of (BH)K M.j<ws every path is consistent. It remains
to show that, for every ¢ < M, {;(Z, b; ;) };<w is inconsistent. Assume there
is o* = {4i(Z,bi;)}j<w for some i < M, and let d* be such that rvag, (d* —
a0,00) = . Then, since WDy, (o*, rvas, (@000 — @;,;)) holds for every j < w,
d* satisfies {¢;(rvs, (¥ — a;;), i j)}j<w, Which is a contradiction. All rows are
inconsistent, which concludes our proof.

O
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With minor modifications, the proof goes through in the case of infinite
burden A\. However, one must be careful regarding the precise statement of
this generalisation. Assume we are in mixed characteristic (0,p), and the
burden A is of cofinality cf(\) = w. Then the very first argument of the
proof is no longer true: one cannot necessary assume that there are A-many
formulas ¢;(x,y;) in the inp-pattern of the form

Gi(w, ¢ij) = i(vvs, (T — aija), - -1V, (T — @i k)i Bij),

for a certain n < w. This depends of course of the cofinality of \. Nonetheless,
this is the only problem. One gets the following statement:

Corollary 2.1.3. Let A be an infinite cardinal in Card*.

e Let K be a mixed characteristic Henselian valued field. Assume that
the union of sorts RV, with the induced structure is of burden A.
Then, the field K is of burden A if ¢f(\) > w, and of burden A or act(\)
if cf(\) = w.

e Let K be a benign Henselian valued field. Assume that the sort RV
with the induced structure is of burden A. Then the field K is of burden
A

Proof. We treat the case of mixed characteristic Henselian valued field. We
prove similarly the case of benign Henselian valued fields. Let k > X be the
burden of K, and let

{?Bz(i Yi), (Czpj)j<w}i<n
be an inp-pattern of depth x. If & is of cofinality cf(x) > w, then there are
k-many formulas ¢;(x,y;) in the inp-pattern of the form

Gi(w, ¢ij) = i(rvs, (T — aija), - -1V, (T — aijx); Bij),

for a certain n < w. We deduce an inp-pattern of depth « in the RV _-sort.
Indeed, we follow the exact same proof with few changes in Claim 4:

e The minimum of {7 }r<) may not exist, but one can pick 7 in an exten-
sion of the monster model, realising the cut {y € I' | v < 7 for all k£ <
AU{y €T |~ >~ for some k < A\}. By Claim 3, we have for all
a € K, val(a) > v implies val(a) + 6, > =y, for all k& < A.

e Case A stays the same.
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e Case B is slightly different, since an i such that for all k, (ag;)i<w=0i o
or (ag, —1)1<w=>0; 0 does not necessarily exist either. We may distinguish
three subcases:

1. there is ¢ such that for A-many k, (ag;)i<w or (ak—;)i<, pseudo-
converge to a;o. We conclude as in the proof.

2. there is < A such  that (a;;)j<w  pseudo-
converges to ayo for A-many k. For such a k, we
have val(ar,o — @i00) > val(aro — aio) > 7, and thus
val(aro — @i0o) + 0n > Y. We may conclude as well.

3. there is i < A such that (a;_;);j<. pseudo-converges to ayq for
A-many & . This is an analogue to Subcase (2) just above, where
@i is taking the place of a; .

Hence, we get A\ = k.

If & is of cofinality w, let (Ax)re., be a sequence of successor cardinals cofinal
in k. By the previous discussion, we find an inp-pattern in RV, of depth
Ay for each \;. Hence, Ay < XA and k = X or k = act(\). O

Remark 2.1.4. e Consider now an enriched Henselian valued field KK =
(K,RV_y,...) of characteristic (0,p), p > 0 in an RV _,-enrichment
Lrv_,e of Lry_,. Then, the above proof still holds. The burden of K
is equal (modulo the same subtleties when we consider the burden in
Card*) to the burden of RV, UX, with the induced structure, where
Y. is the set of new sorts in Lry_, ¢ \ Lrv_,,-

o Similarly, an RV —enriched benign Henselian valued field has the same
burden as RV UX, where ¥, is the set of new sorts in Lry e \ Lry.

2.1.2 Applications to p-adic fields

In this subsection, p is a prime number. We will deduce from Theorem 2.1.2,
as an application, that any finite extension of @Q, is dp-minimal. This is
already known (in fact, all local fields of characteristic 0 are dp-minimal).
One can refer to the classification on dp-minimal fields by Will Johnson [46].
The fact that @, is dp-minimal is due to Dolich, Goodrick and Lippel [28,
Section 6| and Aschenbrenner, Dolich, Haskell, Macpherson and Starchenko
in [5, Corollary 7.9.]. In Section 2.4, we will study more generally unramified
mixed characteristic Henselian valued fields.

Theorem 2.1.5. The theory of any finite extension of Q, in the language of
rings s dp-minimal.
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A characterisation of dp-minimality is the following: for any mutually
indiscernible sequences (a;);<,, and (b;);<, and any point ¢, one of these two
sequences is indiscernible over c. As we already mention earlier, a theory is
dp-minimal if and only if it is NIP and inp-minimal (see [68, Lemma 1.4] ).
Since finite extensions of Q, are NIP, we have to prove that they are inp-
minimal. Recall first that the valuation in a finite extension of Q,, is definable
in the language of rings:

val(z) >0 < Jy 1 +7ma? =9,

where 7 is an element of minimal positive valuation and ¢ is a prime with
q # p. We can safely consider Q, in the two-sorted language of valued fields
L = Lyac U Lpes U {val}, where Lyjac = LRings U { Py }n>2 is the language of
Macintyre with a predicate P, for the subgroup of nth-power of Q, and where
Lp,es is the language of Presburger arithmetic. We have the following well
known result, that we already discussed in the example below Proposition
1.1.10:

Fact 2.1.6. The theory Th(Q,) eliminates quantifiers. In particular, the
value group is a pure sort.

Let K = (K,T") be a finite extension of Q, and let 7 € K be an element
of minimal positive valuation. By interpretability, we obtain:

Remark 2.1.7. The value group T is purely stably embedded in IC. Since ' is
a Z-group (as a finite extension of a Z-group), it is in particular inp-minimal.

Fix some n € N. We have the following exact sequence

valpy
1—0%/(1 +m5n)—>RV§n$>F—>0,

where 9, = val(p") and ms, = {x € K |val(z) > val(p")}. One sees that
(O/mg,)* ~ O*/(1 + mg,) is finite, or in other words, that the valuation
map val, is finite to one. It follows by Lemma 1.1.30 that RV;, is
also inp-minimal. Since this holds for arbitrary n € N, RV = (J, RVj, is
inp-minimal. We conclude by using Theorem 2.1.2.

The next application is a anticipation of the next paragraph. We provide
a new proof of the non-uniform definability of an angular component. It can
in fact already be deduced from [19]. Recall that an angular component is a
group homomorphism ac : (K*,-) — (k*,-) such that acjpx = res |ox.

1 o~ K* — r 0
resl AVWJ( » H
| — O /l4mek — RV 2o, T
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Consider any theory T,. of a valued field endowed with an ac-map, and
assume that both the value group I' and residue field & are infinite. Then by
Fact 1.1.29 and bi-interpretability on unary sets, on sees that the RV-sort is
of burden at least 2. The set RV* is indeed in definable bijection with the
direct product I' x k*.

In the field of p-adics Q,, an angular component ac is definable in the
language of rings. We can show now easily that this definition cannot be
uniform:

Corollary 2.1.8. There is no formula which gives a uniform definition of an
ac-map in Q, for every prime p.

Notice that this has already been observed by Pas in [59].

Proof. By Chernikov-Simon [19], we know that the ultraproduct of p-adic
F =11, Qp, where i C P is an ultrafilter on the set of primes, is inp-minimal
in the language of rings (recall that the p-adic valuation is uniformly definable
in LRgings). The residue field and the value group are infinite since they are
respectively a pseudo-finite field and a Z-group. By the above discussion,
the ac-map cannot be defined in the language of rings, as it would contradict
inp-minimality. O

2.2 Reduction in short exact sequences of
abelian groups

We prove in this section that the burden of a pure short exact sequence of
abelian groups
0-A—-B—-C—=0

is given by the maximum of bdn(A/nA) + bdn(nC) for n € N (Theorem
2.2.2). As an RV-structure can be seen as an enrichment of such, we will
deduce Theorem 2.3.4 from it. With more work, we will also be able to use
it in order to prove Theorem 2.4.4.

2.2.1 Reduction

As in the paragraph 1.2.2, we consider a pure exact sequence M of abelian
groups

0 A——B-—"=C 0,
in an { A}-{C'}-enriched language L. In the following paragraph, we compute
the burden of the structure M in terms of burden of A and that of C' (in
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their induced structure). By bi-interpretability on unary sets, one can also
consider it as a one-sorted structure A C B where A is given by a predicate.
It follows indeed from Fact1.1.20 that bdn(A — B — C) = bdn(B, A). We
often prefer the point of view of an exact sequence as it is more relevant for
the computation of the burden. We write indifferently bdn(M), bdn(A —
B — C) or bdn(B), as the sort B is understood as a sort of M with its full
induced structure.

Notice that in the case where B/nB and By, are finite for all n and C'
is torsion free, a straight forward generalisation of [19, Proposition 4.1] gives
that bdn(A — B — (') = max(bdn(A), bdn(C)). We will see that one can
get rid of these hypothesis and obtain a more general result using Fact 1.2.39.
We first show a trivial bound:

Fact 2.2.1 (Trivial bound). Assume there is a section of the group morphism
v: B — (. Consider Ly the language L. augmented by a symbol s, and
interpret it by this section of v.

0 A——B C 0,

We have bdny,(C) = bdny, (C) and bdng(A) = bdny (A) as well as the
following:

max{bdny,(A), bdnr,(C)} < bdng(B) < bdny, (B) = bdng,(A) + bdng, (C).

Proof. The two first equalities are clear since A and C are sta-
bly embedded (and orthogonal) in both languages.  The inequality
max{bdny,(A), bdn,(C)} < bdny(B) is obvious. As the burden only grows
when we add structure, the inequality bdny,(B) < bdnp, (B) is also clear.
The last equality come from the fact that in the language L, the structure
A — B — C and the structure {Ax C, A, C s : AXC — Ao : AxC —
C'} are bi-interpretable on unary sets. We conclude by Proposition 1.1.28
and Fact 1.1.20. O

Theorem 2.2.2. Consider an {A}-{C}-enrichement of a pure exact se-
quence M of abelian groups

0— A——B——C 0,

in a language L. We have bdn M = max,en(bdn(A/nA) + bdn(nC)).
In particular, if A/nA is finite for all n > 1, then bdn M =
max(bdn(A), bdn(C)).
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To clarify, bdn(A/nA) is the burden computed in A/nA , i.e. the supre-
mum of depth of patterns P(x,) with z,, an A/nA variable within the struc-
ture {(A4,0,+,--+), (A/nA,0,4),m, : A — A/nA|n > 1}, where - - - denotes
the enriched structure in A.

Remark 2.2.3. e [f bdn(A) or bdn(C) is infinite (or equals Ry ),
then this is simply the trivial bound in Fact 2.2.1 (as then
max(bdn(A), bdn(C)) = bdn(A) 4+ bdn(C)). Recall that the section
exists as A is pure in B (Fact 1.2.38).

e The mazimum is always attained by at least one n: if bdn(A) and
bdn(C) are finite, this is trivial. If bdn(A) or bdn(C') is infinite, then

n =0 orn =1 realises the maximum by the previous point.

e [f C is torsion free, one has bdn(nC) = bdn(C) for n > 0 (as the
multiplication by n is a definable injection).

e [fmn, then A/mA can be seen as a quotient of A/nA and naturally,
one has bdn(A/mA) < bdn(A/nA).

In the case that the sequence is unenriched, this gives us absolute results:
assume that the induced structures on A/nA and nC' are the structures of
groups. Then, Proposition [42, Theorem 1.1.] together with Theorem 2.2.2
gives us a computation of bdn(A — B — C) in term of Szmielew invariants
of A and C'. We don’t attempt to write a closed formula. Nonetheless, here
are some examples:

Ezamples. We consider the following pairs of abelian groups (A C B) with
quotient C":

o B=174aL) and A = Z{) ©{0}. One has bdn(A/nA)+bdn(nC) =
0+1=1forall 2{n, and bdn(A/2nA)+bdn(2nC) = 1+1 = 2, which
leads to bdn M = 2. This can already be deduced from Halevi and
Palacin’s work: the sort B, equipped only with its group structure, is
already of burden 2. By the trivial bound, the structure M is also of
burden 2.

o B=Z{) & ZY) o LYy () and A=7Z) & Z;) ® {0} & {0}. Then
bdn(M) = 4 (take n = 6 in Theorem 2.2.2). In term of subgroups,
one can consider the subgroups A 4+ 4B, A + 9B, 2B and 3B. The
intersection is

@) o 370) & 47@) & 97
2745 @ L) © ALY & 9Ly,

One may see that these groups satisfy Proposition 1.2.36.
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¢

o A =7(2%), C = Zg)) ® ZEB)) and B = A x C. One can see that
bdn(C' — B — A) = bdn(C,B) = 3. This equality is witnessed
by the subgroups 2B,3B and C + Bjy. However, by Theorem 2.2.2,
bdn (A — B — C) =bdn(A, B) =2 as A/nA = {0} for all n > 1.

Proof of Theorem 2.2.2. By Fact 1.1.20, we can work in the language L, and
use Fact 1.2.39. Recall that we abusively refer the union of sorts {A/nA},en
as the sort A. In particular, A-formula is a formula with potentially variables
in A/nA for some integers n.

By Lemma 1.1.30, if A is finite, we get that bdn(B) = bdn(C) and of
course bdn(A/nA) = 0 for all n € N. Assume that A is infinite. As A and
C' are orthogonal, so are in particular A/nA and nC. It follows by Fact
1.1.28 that bdn(A/nA x nC) = bdn(A/nA) + bdn(nC). The definable (and
surjective) map p, X v : v (nC) — A/nA x nC' gives us that

bdn(B) > rrrllezag]((bdn(A/nA) + bdn(nC)).

It remains to show that bdn B < max,en(bdn(A/nA) + bdn(nC)). By
Remark 2.2.3, we may assume that bdn(A) and bdn(C) are both finite. As
A is infinite, bdn A > 1. If bdn(M) = 1, the equality is clear. Assume that
bdn(M) > 1 and let P(x) = {¢i(x, vi), (@i ;)j<w, ki}icps be an inp-pattern
of finite depth M > 2, with (a;;);; mutually indiscernible and |z| = 1. We
need to show that M < bdn(A/nA) + bdn(nC) for some n > 0. If z is a
variable in the sort A (resp. in the sort C'), P(z) is an inp-pattern in A (resp.
C) of depth bounded by bdn(A) (resp. bdn(C')) by purity (Corollary 1.2.40).
Then, the inequality holds for n =0 (resp. n = 1).

Assume z is a variable in the sort B. Consider a line {¢(z,y), (¢;)j<w}
of P(x) (we drop the index i < M for the sake of clarity). By Fact 1.2.39,
and by the fact that one can "eliminate" disjunctions in inp-patterns (see
1.1.27), we may assume that the formula ¢(x,a;) is of the form

¢A(pno(t0(x7 Bj))ﬂ s 7pnsf1(t57l<x’ Bj))? aj) (21>
Noc(v(r(z, By), .., v(r*(z, B))), 1)), (2.2)

where ¢4 is an A-formula, ¢o a C-formula, and for j < w, o; € A, B; €
B, ~; € C are parameters, s, k,ng,n1,...,ns 1 € N and the "’s and r’s are
terms in the group language (one needs to keep in mind that s,k, ny, ¢, 7, 3;,
a; and v; depend on the line 7). Also, notice that p,,(t°(z, 8;)) # 0 € A/nyA
implies v(t°(z, 8;)) € noC (a formula of the form (2.2)). By writing the
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following

¢A<pno(t0<x7 BJ)) s 7:0ns—1(ts_1($= ﬂj))? aj) =
(04 (ny (2, B8)), - s Py (7 (@, By)), ) A v (t0(2, B)) € noC)
\/ (¢A<Oa pm(tl(xa 5]’))7 cee >/0ns—1(t871(x7 5j))7 O‘j) N V(to(wa ﬁ])) ¢ nOC) ’

and by eliminating once again the disjunction, one can
assume  that  ¢(z,a;) (or more  specifically, the  formula
P, B). .. vt @, ), 7)) implies ©(x,8;) € vl (nC).
We do the same for all terms t'(z, 8;), | < s. This means in particular that
the list of terms {t'},, is included in {r'};;.

Let M’ > 0 be the number of rows such that

{¢C(V(TO($= ﬂj)v R V(Tkil('% ﬂj))v ’Vj)}j<w

is consistent. Without loss, they are the M’ first rows of the pattern P(x),
and we denote by P’(z) the sub-pattern consisting of these rows. At this
point, one can prove that M — M’ is bounded by bdn(C'), but we might need
better (namely, M — M’ < bdn(NC) for a certain N). So we will go back to
this at the end of this proof. For now, we work with the sub-pattern P'(z).

Terms ¢(z, 3;) in the group language are of the form kzr + m - §;, with
k€N, m e N5l

Claim 5. Assume that, in a line {¢(x,y), (a))j<w} of P'(z), a term p,(kx+
m - ;) occurs. Then v(m - ;) mod nC is constant for all j < w.

Proof. Assume not. By indiscernibility, v(m - ;) are in distinct classes mod-
ulo nC'. As

oc(v(r®(z,By), ..., v(r* Nz, B;)),v;) b v(kx +m - B;) € nC,
the ¢¢c part of the line
{¢C(V(r0(x> ﬁj)ﬂ T V<Ts_1<$v Bj))7 ’7]')}]-<w
is 2-inconsistent, contradicting the fact we chose one of the first M’ lines. [

Claim 6 (Main claim). We may assume that in P'(x), formulas are of the
form

¢alpn (@ = d)), 5) A do(v(z = d), ) (2.3)

for a certain integer N and a certain parameter d € B independent of
the line. In other words, in every lines, all terms t'(x, 8;) for 1 < s and all
terms r'(x, B;) for | < k are equal to x — d (the pattern P'(x) is said to be
centralised ), and ng = -+-=ngs_1 = N.
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Proof. Take any realisation d of the first column:

d = A{¢i(x, aio) bicur-

We fix an @ < M’, and consider the i*" line {¢(z, a;)};<w, (again, we drop
the index 4 for a simpler notation). For the following four steps, we fix a line
7.

Step 1;: We may assume that all terms ¢'(x, 8;) = klz +m!- 8;, 1 < s
are of the form k'(z — d).

We change all terms one by one, starting with t°(z, 8;) = Kz + m°- 3;. We
write
0 0 _ 0 0 0
Pro (Ko +m° - B;) = ppo (K" (x — d) + kK°d+m” - 5j).

Replace it by pn, (k°(z — d)) + pny(K°d +m° - 8;). This doesn’t change the
formula ¢(x, a;) as ¢(x,a;) b v(k°(z —d)) € neC. Indeed, ¢(x,a;) - v(k'z+
m? - ;) € noC and v(k°d + m° - ;) € noC since d is a solution of the first
column and v(m° - ;) mod nyC is constant by the previous claim. Then,
Pno (K°d —mP - 3;) is seen as a parameter in A/ngA, and it is added to «;.
We do the same for all terms t'(z, 8;), | < s.

Step 2;: We may assume that all terms 7!(x, 8;) = k'z +m!- p;, | < k,
are of the form x — d.
This is immediate, as v is a morphism. Indeed, replace v(r'(z, 8;)) by k'v(z—
d)+v(k'd+m'- B;), where v(k'd+m'- ;) is seen as a parameter in C', and is
added to the parameters 7;. In other words, we may assume that the formula
in the ith line of the pattern P’(x) is a conjunction of the form:

¢A(pno(k0($ - d)v s 7pns—1(ks_1(x - d))? aj)
A dc(v(z —d), ;).

Step 3,: We may assume that for [ < s, k' and n; are co-prime.
We change the terms k'(x — d) one by one, starting with k°(z — d). Consider
g the greatest common divisor of ny and k°. Write nj = "!70 and £ = %0.
The morphism

A— gnAA

a+— ga mod nA

induces the following isomorphism:

gA A _ A/ngA
nA  ngA+ [A]g B an([A]g)'

The latest quotient being interpretable with base set A/nyA, we see that our
formula

0a(pno(K(x = d)), .., poy (K (2 = d)), )
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is equivalent to a formula of the form
Ga(puy (K (2 = ), puy (K (@ = ), ., o, (K (& = ), ).

By the same argument as before, we may assume that ¢(z,a;) F v(k” (v —

d)) € nyC. We proceed similarly for all remaining terms k'(x —d), 0 < [ < s.
Step 4;: We may assume that k' =1 for all [ < s.

As ¢(z,a;) b v(k'(x — d)) € n;C for all | < s, and as k' and n; are co-prime,

we have that ¢(z,a;) F v(z —d) € nyC. Indeed, Bézout’s identity give us

some integer u, v such that:

Ko(x —d) +ung(x — d) = (v — d).

We can write p,,, (k'(z — d)) = k'py,(x — d) for | < s, and the k"’s can now be
"incorporated" in the formula ¢ 4.
So far, we may assume the formula ¢(x, a;) to be of the form:

¢A(pno<x - d) T 7/071371(3; - d)> aj)) A ¢C(V(‘r - d)vf)/j)' (2'4)

Let us recall that d has been chosen independently of the row. We can apply
these steps for all rows i < M’.

The last step is immediate and will conclude the proof of the main claim.
Let N be the least common multiply of all n’s which occur in any line of
P'(z).

Step 5: We may assume that N and only N occurs i.e. in any line, ng =
coo=n,,=N.

This follows from the fact that A/ns ;A is a quotient of A/NA (and so, is
interpretable in A/N A with base set A/NA). In other words, the formulas
Gi.A(Pnio(x—d), ..., Py, ,(x—d),;)) can be seen in the sort A/NA. Notice
that {¢i(x, a; r(i)) bicy implies that v(z — d) € (), nC = NC for any choice
of function f : M' — w. O

As now the pattern P’(z) is centralised (i.e. only one K-term occurs),
one can easily remark that for every line

{o(z,05) = palpn(z — d)), 05) N de(v(z —d), %)},
at most one of the following sets:

{0a(Tayna, ya)), (ij)jcwt

where |ya/nva| = || and z4/n 4 is a variable in A/NA
or
{oc(zc,yc), (v))j<w}



2.3. BENIGN HENSELIAN VALUED FIELDS 103

(where |yc| = |v;|) is consistent. Indeed, this follows immediately from
the fact that in the monster model, the sequence splits and B ~ A x C.
Unfortunately, some ¢c-part have grown during the process of simplification
(Step 3;), and might no longer be consistent. It is not a problem: let M” be
the number of lines in P’(x) such that the ¢ 4-part form an inconsistent line.
One has M” < bdn(A/NA) as it gives an inp-pattern in A/NA of depth
M". Without lost, they are the first M” lines. Then, the ¢c-part of any of
the M — M" last lines of P(x) is inconsistent by the remark above and the
definition of P’'(z). One gets as well an inp-pattern of depth M — M” in C.
As any realisation r of P'(z) (in particular, of P(x)) satisfies v(r —d) € NC,
one gets actually an inp-pattern in NC. It follows that M —M" < bdn(NC).
At the end, we get that M < bdn(A/NA) + bdn(NC).

O

2.2.2 Applications

As main application of Theorem 2.2.2, we will deduce Theorem 2.3.4. This is
the aim of the next section. For now, we want to emphasise the advantage of
working resplendently by giving a straightforward generalisation of Theorem
2.2.2.

Corollary 2.2.4. Let M be an exact sequence of ordered abelian groups
0 A——B-—"=C 0,
where (A, <) is a convex subgroup of (C,<). We consider it as a three

sorted structure, with a structure of ordered abelian group for each sort, and
function symbols for + and v. Then, we have:

bdn M = mal\)f(bdn(A/nA) + bdn(nC))
ne

= max (bdn(A), géia\])*c(bdn(A/nA)) + bdn(0)> :

Proof. As C'is torsion free, ((A) is pure in B. As for b € B, b > 0 if and only
if v(b) > 0 or v(b) = 0 and ¢~ (b) > 0, M is an {A}-{C}-enrichment of a
short exact sequence of abelian groups. It remains to apply Theorem 2.2.2.
Notice that for all n > 0, we have bdn(nC') = bdn(C) (as the multiplication
by n in C' is a definable injective morphism). O

2.3 Benign Henselian valued fields

Let K = (K,T', k) be a saturated enough benign Henselian valued field. We
will compute the burden of RV := K*/1 4+ m in terms of the burden of & and
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I'. As the RV-sort is stably embedded, we will consider it as a structure on
its own. By Fact 1.2.9, the induced structure is given by:

{(RV, (k,-,+,0,1), (T, +,0,<),val, : RV — T, k* — RV} .

Notice in particular that there is no need of the symbol & as we consider the
sort k and I' instead. The language is denoted by L. In other words the sort
RV is no more than an enriched exact sequence of abelian groups:

1=k SRV T 0,

where & = k* U {0} is endowed with its field structure and I' is endowed
with its ordered abelian group structure. As I is torsion free, k* is a pure
subgroup of RV*. The idea to consider RV as an enrichment of abelian groups
is already present in [19] and has been developed in [4].

2.3.1 Reduction from RV to I' and k&

Let us recall a result of Chernikov and Simon:

Theorem 2.3.1 ([19, Theorem 1.4]). Assume K is a Henselian valued field
of equicharacteristic 0. Assume the residue field k satisfies

k*/(K*)P is finite for every prime p. (Hy)

Then K is inp-minimal if and only if RV with the induced structure is inp-
minimal if and only if k and T are both inp-minimal.

It will now be easy to extend this theorem. We have already seen the
reduction to the RV-sort for any benign Henselian valued field, without the
assumption (Hy). For the reduction to I' and k, one can give first an easy
bound, also independent of the assumption (Hy). Indeed, recall that in an
N;-saturated model, any pure exact sequence of abelian groups splits (Fact
1.2.38). In particular, there exists a section ac,, : RV* — k* of the valuation
val,, or equivalently, there exists an angular component ac : K* — k* (as we
already discussed in Subsection 2.1.2).

1 X/ 0
1_>O></1 +m ~ k*rv Rv* valry 0

Recall that L, is the language L extended by a unary function ac,, : k —
RV. A direct translation of Fact 2.2.1 gives:
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Fact 2.3.2 (Trivial bound). We have bdny,(I') = bdny, (I') and bdny, (k) =
bdny, (k) as well as the following:

bdng, (RV) < bdny,, (RV) = bdny,(T') + bdny,(k).

A valued field K, together with an angular component ac can be consid-
ered as an RV-enrichment of C. Using the enriched version of Theorem 2.1.2
(see Remark 2.1.4), we get:

Theorem 2.3.3. Let K. = (K,T',k,val,ac) be a benign Henselian valued
field endowed with an ac-map. Then: bdn(KC,.) = bdn(k) 4+ bdn(T).

By Theorem 2.1.2 and Theorem 2.2.2, we can state one of our main
theorem:

Theorem 2.3.4. Let K be a benign Henselian valued field. Then:

bdn(K) = max (bdn(k*/k*") + bdn(nl")) .

n>0
This gives a full answer to [19, Problem 4.3] and [19, Problem 4.4]:

Corollary 2.3.5. Let £ = (K,RV, k,T') be a benign Henselian valued field.
Assume that:
k*/(k*)P is finite for every prime p. (Hy)

Then we have the equalities
bdn(K) = bdn(RV) = max(bdn(k), bdn(I")).

Also, in the case that K is not trivially valued, the value group I' is
necessary of burden bdn(I') > 0. It follows that a non-trivially valued benign
Henselian field IC is inp-minimal if and only if I', £ are inp-minimal and %
satisfies (Hg).

Similarly to the proof of non-existence of a uniform definition of the an-
gular component of Q,, we can notice the following:

Remark 2.3.6. Let IC be a benign Henselian valued field of finite burden.
Assume that the residue field is infinite and satisfies (Hy). Then, no angular
component is definable in the language of valued fields Lyg;,.

The reason is of course that in such a case, the two terms
max(bdn(k), bdn(I')) and bdn(k) + bdn(I') are distinct.

All these results hold resplendently. In fact by definition, a benign
Henselian valued field can have an enriched value group and residue field.
Let us clarify by stating the previous theorem in an enriched language:
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Remark 2.3.7. If K = (K,RV,k,T',...) is a {I'}-{k}-enriched benign
Henselian valued field in o {I'}-{k}-enrichment Lr . of Lry, then

bdn(K) = bdn(RV U,) = mgx(bdn(k*/k*“) + bdn(nl'), bdn(X,)),

where . is the set of new sorts in Lr . \ L.

To conclude this short section, let us discuss more on the hypothesis (Hy)
and bounded fields.

2.3.2 Bounded fields and applications

A bounded field is a field with finitely many extensions of degree n for every
integer n. The absolute Galois group is called small if it contains finitely
many open subgroups of index n. These two conditions are equivalent for
perfect fields: a perfect field is bounded if and only if its absolute Galois
group is small. Such a field K satisfies in particular the following:

K*/(K*)P is finite for every prime p, (H)

(see for example |39, Proposition 2.3|), and it’s clear that (H) implies (Hy).
It also implies:
['/pI is finite for every prime p, (Hr)

The condition Hy might be restrictive but it allows various burdens for the
residue field. However, the condition Hy implies inp-minimality for the value
group. Indeed, an abelian group I satisfying (Hr) is called non-singular. In
the pure structure of ordered abelian groups, non-singular ordered abelian
groups are exactly the dp-minimal ones (see [45, Theorem 5.1]). We have
the following examples :

Ezamples. o The Hahn field F&9((Z[1/p])) is algebraically maximal Ka-
plansky Henselian. By Jahnke, Simon and Walsberg, the value group
Z[1/p] is inp-minimal as it satisfies (Hr). The residue field F3% sat-
isfies (Hy) and is inp-minimal. By Theorem 2.3.4, this Hahn field is
inp-minimal.

e In general, a bounded benign Henselian valued field X with residue

field £ has burden max(bdn(k),1).

Montenegro has computed the burden of some theories of bounded fields,
namely bounded pseudo real closed fields (PRC fields) and pseudo p-adicaly
closed fields (PpC fields). We recall here these theorems (see [58, Theorems
4.22 & 4.23)):



2.4. UNRAMIFIED MIXED CHARACTERISTIC HENSELIAN VALUED FIELDS107

Theorem 2.3.8. Let k be a bounded PRC field. Then Th(k) is NTPy, strong
and of burden the (finite) number of orders in k.

Theorem 2.3.9. Let k be an PpC field. Then Th(k) is NTPy if and only if
Th(k) is strong if and only if k is bounded. In this case, the burden of Th(k)
is the (finite) number of p-adic valuations in k.

2.4 Unramified mixed characteristic Henselian
valued fields

Let K = (K,RV_,,I',k) be an unramified Henselian valued field of charac-
teristic (0, p), p > 2 with perfect residue field k. We denote by 1 the valuation
of p. The value group I' contains Z - 1 as a convex subgroup. Recall that
in this context, it is more convenient to denote the RV-sort of order n by
RV} = K*/(1 +m") where m = {z € K | val(z) > 0} is the maximal ideal
of the valuation ring O. Notice that m" = p"O for every integer n. Similarly
to the previous section, we will compute the burden of RV, = U,cy RV, in
terms of the burden of k and I'.

2.4.1 Reduction from RV_, to I' and k&

Now we can look for the burden of RV,,. We start with a harmless observa-
tion:

Observation 2.4.1. Let m < n be integers. The element p™ is of valuation
m. By [40, Proposition 2.8, RV,, is 0-interpretable in RV,,, with base set
RV.,, quotiented by an equivalence relation. Hence the burden of RV,, can only

grow with n: for m < n, bdn(RV,,) < bdn(RV,,).

Recall that in this context of unramified mixed characteristic Henselian
valued fields with perfect residue field, the n'" residue ring O, := O/p"O is
isomorphic to the n-truncated ring of Witt vectors (see Proposition 1.2.31).
We work now in the following languages:

L= {K7 F7 (Rvn)n<wa (Wn,(k))n<w, Val : K* — F’
(resp : O = Wy (k))n<w, (tvy, : K = RV, )<},

which is a little variation of (and bi-interpretable with) the language
Lgry_,, where the structure of the RV,’s is described with exact sequences.
We can also add the ac-maps to this language:
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L =LU{(ac, : K* = W,(k))n<w}-

aC<w

Here is a consequence of Corollary 1.2.26, Remark 1.1.18 and Fact 1.1.20:
Corollary 2.4.2. We have:

e bdn(W,(k)) = k!

W, (k) = 2 (k).

inp

o bdn((W(k), 4,7 : W(k) = k)) = s (k).

np

Recall that we have the following inequalities (see Subsection 1.1.2):

n - Kinp (k) < ki (k) < (i (K) +1)".

inp inp

In particular, if & is infinite then the burden of (W, (k), +,-,7) is at least n.

In the language L,._,, a consequence of Proposition 1.2.31 is that, for
every n < w the sort W, (k) is pure (in particular stably embedded) and
orthogonal to I, as it is (-bi-interpretable with (K", +, -, p;,7 < n), which is a
pure sort orthogonal to I'. It follows that W, (k) doesn’t have more structure
in Ly, than in L. Similarly, the burden of I' is the same in any of the above
languages. Hence, we actually have the following equalities:

bdn (W, (k) = b, __ (Wa(k)) (2.5

bdny, (') = bdny,,._ (T). (2.6)
We are now able to give a relationship between bdn(RV,,) and bdn(W,,(k)).
Proposition 2.4.3. [Trivial bound] We have

max(bdng, (W, (%)), bdn,(T')) < bdng (RV,,) < bdng,,_ (RV,,)
= bdnL(Wn(k:)) + bdnL(F)

Proof. By Proposition 1.2.31, we have the exact sequence of abelian groups:
1— W,(k)* =RV, - T —0.

The first inequality is clear if one shows that bdny(W,(k)) =
bdnyg, (W,,(k)*) where W,,(k)* is endowed with the induced structure. The
second inequality is also clear, as adding structure can only make the bur-
den grow. Let {¢i(x,v:), (ai;)j<w}icx be an inp-pattern in W, (k), with
(@i ;)i<rj<w mutually indiscernible. Let d = {¢(z,a;0)}ien be a realisation
of the first column. In the case where d € W,,(k)*, there is nothing to do.
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Otherwise, 1 +d € W, (k)* and {¢;(z — 1,4;), (@; ;) j<w }iex is an inp-pattern
in W, (k)* of depth A. This concludes the proof of the first inequality.

We work now in L,.__, where we interpret (acy, ), as a compatible sequence
of angular components (it exists by Nj-saturation). Recall that the burden
may only increase. Then, the above exact sequences (definably) split in Ly.__,
as we add a section. By the previous discussion, W,,(k)* and I are orthogonal
and stably embedded. We apply now Fact 1.1.29: the burden bdny,,_ (RV7)
is equal to bdny, _ (W,(k)*) + bdny,._ (T') = bdng, (W, (k)) + bdny,(T').

O

Combining Corollary 2.1.3, Corollary 2.4.2 and Proposition 2.4.3, one
gets:

Theorem 2.4.4. Let K = (K,k,T") be an unramified mized characteris-
tic Henselian valued field. We denote by Ky, = (K, k,I',ac,,n < w) the
structure K endowed with compatible ac-maps. Assume the residue field k is
perfect. One has

bdn(K) = bdn(K,..,,) = max (X, - bdn(k), bdn(I')).
And its enriched version:

Remark 2.4.5. Let L, be a {I'}-{k}-enrichment of L. Let K = (K, k,T,...)
be an enriched unramified mized characteristic Henselian valued field in the
language L.. Assume the residue field k is perfect. We denote by K =

AC<w
(K, k, T ac,,n < w,...) the structure KL endowed with compatible ac-maps.

One has
bdn(K) = bdn(K,e_,,) = max(Xo - bdn(k), bdn(I'), bdn(X,.)),
where X, is the set of new sorts in L. \ L.

This is a simple calculation, unless we want to consider burden in Card*.

Remark 2.4.6. Let K and K,._,, as above. We consider the second definition
of burden (Definition 1.1.33). We have

bdn(K) = bdn(K,e_,,) = max(X, -* bdn(k), bdn(I')).
This is what we will prove now. Remark that it implies that an unrami-

fied mixed characteristic valued field of infinite perfect residue field is never
strong.
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Proof. We use the same notation as before in this section. Unfortu-
nately, due to the ambiguity in Corollary 2.1.3 concerning bdn(K) €
{bdn(RV,),act(bdn(RV,))} in the case that cf(bdn(RV.,)) = w, we have
to go back to the proof of Theorem 2.1.2.

We first show that bdn(K) is at least Ry -* bdn(k). Recall that W, (k) ~
O,, := O/m" is interpretable (with one-dimensional base set O C K), and
so is the projective system {W,,(k), T : Wo(k) — Wi (k), n > m} and the
projection maps Xnn : Wi(k) — k,x = (z1,...,2,) — . If cf(bdn(k)) >
N, there is nothing to do as Rg-bdn(k) = Ry-*bdn(k). Assume cf(bdn(k)) <
No. We write bdn(k) = sup,., A\n with A, € Card. Let P,(zx) be an inp-
pattern with zy € k, |xx| = 1, of depth A, for every n € w. Then, the pattern
P(2) = UpewPn(Xnn(mp(x))) is an inp-pattern in K of depth Ny -* bdn(k).
One gets:

bdn (L) > max(Xy -* bdn(k), bdn(T)).

We now prove that max(Rg -* bdn(k),bdn(I')) is an upper bound for
bdn(Kac_,,)-

Case 1: X -* bdn(k) > bdn(T).

Subcase 1.A: cf(bdn(k)) > ¥N;. By Corollary 2.1.3, bdn(K,_,) =
bdn(RV.,) = sup,(x},,(k),bdn(I')) = bdn(k) = o - bdn(k). We used
the submultiplicativity of the burden, which gives here x7, (k) = &}, (k) =
bdn(k) for all n € N.

Subcase 1.B: cf(bdn(k)) < N;. Then act(bdn(RV.,)) = Ny - bdn(k). By
Corollary 2.1.3, we have bdn(ICae_,,) < Rq - bdn(k).

Case 2: bdn(I') > Yo -* bdn(k). If bdn(I') is in Card, this is clear by
Corollary 2.1.3.  Assume bdn(I') is of the form A_ for a limit cardinal
A € Card. Notice that this case occurs only if the sort I' is enriched. We
work in the corresponding enrichment of language Lry_, together with ac,-
maps. We have to show that A_ is an upper bound for bdn(K,._ ). Let
P(z) = {0i(z,yi;), (cij)jez}iex be an inp-pattern in K of depth A with
|z] = 1 and (¢;;)i<yjez be a mutually indiscernible array. Then, by Fact
1.2.28, one can assume that each formula 0;(z,¢; ;) in P(x) (i <\, j € Z) is
of the form

0;(rvy, (x — ozil’j), T N a:{bj), Bij),

for some integers n; and m, and where U‘zl,ﬁ o as € K, By € RV, and 6,
is an RV, ,-formula. As in the proof of Theorem 2.1.2, we may assume with
no restriction that m = 1. As RV,,, = W,,,(k)* x I' is the direct product of

the orthogonal and stably embedded sorts W, (k)* and I', we may assume
0;(x,c; ;) is equivalent to a formula of the form

(bi(acm (CE — Oé@j), ai,j) A 1/}i<Va1<$ — ai,j); b@j)
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where ¢i<anw a; ;) is a W, -formula and 9;(zr, b; ;) is a I'-formula. By Claim
4 in Theorem 2.1.2 (or more precisely, by a generalisation of Claim 4 to
infinite depth M = X), one may assume that there is k < A such that for all
1<\,

val(d — a9) < min{val(d — o), val(g 0o — io)} + max(ng, ng).

It follows that, if val(d — ag ) = val(geo — @ip), val(d — a;p) is equal
to val(d — ag.) + n; for some 0 < n} < max(n;,ng). Otherwise, one has
val(d — o o) = min{val(d — oy, ), val(ag 00 — @i0)}. We can centralise P(x)
in a0, i.e. we can assume that each formula in P(z) is of the form

Gi(acan, (T — Moo ), i) AN Pi(val(r — o0 ), bij)

(we add new parameters val(ay o — ;) and aco,, (g — ;). Notice that
once the difference of the valuation is known, ac,,(d — a; ;) can be computed
in terms of acay, (d — a.0o) and aca,, (i j — Ak)). By indiscernibility, at
least one of the following sets

{(bl (xVVQnZ- ’ aimj ) }j<w

and
{Wi(xr, bij)}j<w

is inconsistent. Since A > sup,, bdn(W,,(k)), we may assume that

{1/11(3”1'7 ?/z')7 (@‘,j)jez)}id

is an inp-pattern in I". This is a contradiction. Hence, we have bdn(K) =
A_. O

We end now with examples:

FExamples. 1. Assume that k is an algebraically closed field of character-
istic p, and I' is a Z-group. Then I' is inp-minimal, i.e. of burden one
(as it is quasi-o-minimal), and one has 7, (k) = n. By Theorem 2.4.4,
any Henselian mixed characteristic valued field of value group I' and
residue field k& has burden R. In particular, the quotient field Q(W (k))

of the Witt vectors W (k) over k is not strong.
2. Consider once again the field of p-adics Q,. We have 7, (F,) = 0 for

inp

all n, and bdn(Z) = 1. Then Theorem 2.4.4 gives bdn(Q,) = 1.
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Chapter 3

Stably embedded sub-valued
fields

In this chapter we treat the question of definability of types over a submodel
in benign Henselian valued fields (Definition 1.2.21) and unramified mixed
characteristic Henselian valued fields of perfect residue field. We show for
instance that all types realised in a given elementary extension are definable
if and only if the value group and residue field satisfy an analogous property
and the extension is separated (Definition 3.1.1). By Fact 1.1.45, this can
be formulated this way: Such Henselian valued field is stably embedded
(resp. uniformly stably embedded) in a given elementary extension if and
only if the extension is separated, its value group is stably embedded in
the corresponding extension of value group and its residue fields is stably
embedded in its corresponding extension of residue field. In Section 3.1,
we treat the case of benign valued fields. For that, we will have to prove a
similar reduction for submodels of short exact sequences of abelian groups. In
fact, we will also consider non-elementary extensions to enlarge the scope of
applications. For example, we will show that the field of p-adics Q, is stably
embedded in C,, the algebraic closure of its completion (Corollary 3.1.19).
In Section 3.2, we treat the case of elementary extension of unramified mixed
characteristic Henselian valued fields with perfect residue field, using also the
result on short exact sequences of abelian groups. In Section 3.3, we discuss
the elementarity (in the language of pairs) of the class of elementary pairs
K < L where all types over K realised in £ are definable (equivalently where
K is stably embedded in £).

113
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3.1 Benign Henselian valued fields

Consider a benign theory 7" of Henselian valued fields. We want to discuss
when a valued field K is stably embedded (resp. uniformly stably embedded)
in an extension £ which is a model of T'. We need first to define the following:

Definition 3.1.1. An extension of valued fields £/K is said separated if
for any finite-dimensional K-vector subspace V of L, there is a K-basis
{co,...,cn_1} of V such that for any (ag,...,a, 1) € K",

U(Z a;c;) = Iin<irr11(v(aici)).

Equivalently, this means that for any {ag,...,a, 1} € K",

rv(Z a;c;) = @ rv(a;) rv(e;).

Such a basis {cg, ..., c,_1} is called a separating basis of V' over K.

As we will see, it is a necessary condition for an elementary extension
L/K to be separated in order to be stably embedded. This property has
been intensively studied (see [25] and [11] for more details).

Let us state the theorems of Cubides-Delon and Cubides-Ye:

Theorem 3.1.2 (|22, Theorem 1.9]). Consider K < L be two algebraically
closed valued fields. The following are equivalent:

1. K is stably embedded (resp. uniformly stably embedded) in L,

2. the extension L/K is separated and Ik is stably embedded (resp. uni-
formly stably embedded) in T'p,.

Theorem 3.1.3 (|23, Theorem 5.2.3.]). Consider K =< L be two real closed
valued fields, or two p-adically closed valued fields. The following are equiv-
alent:

1. K is stably embedded (resp. uniformly stably embedded) in L,

2. the extension L/ is separated, ki is stably embedded (resp. uniformly
stably embedded) in ki and Ty is stably embedded (resp. uniformly
stably embedded) in T'y,.
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Only the non-uniform case is stated in [22, Theorem 1.9], but the proof
goes through for the uniform case also. In [23|, the uniform case can be
deduced from the proof or by [23, Theorem 6.0.3]. We will generalise these
theorems to extensions £/K of benign theories T of Henselian valued fields
(Subsection 1.2.1). In fact, we will not assume that K and L share the same
complete theory. We proceed in two steps. For a separated extension of
benign Henselian valued fields £/K, we characterise K C* L (resp. K CU
L) by such property of the RV-sorts (Subsection 3.1.2), and later by such
properties of the value groups and the residue fields (Subsection 3.1.4). First,
we show that, in the case of elementary pairs, the notion of separatedness is
indeed a necessary condition.

3.1.1 Separatedness as a necessary condition

We are going to prove that elementary submodels of benign valued fields are
stably embedded only if the extension is separated (Proposition 3.1.4). This
is a generalisation of (1 = 2) in [22, Theorem 1.9]. Notice that our proof
requires that the extension is elementary. In the next subsections, it will no
longer be assumed.

Proposition 3.1.4. Let L/K be an elementary extension of valued fields,
with Th(L) a completion of a benign theory of Henselian valued fields. If K
is stably embedded in L, then L/K is a separated extension of valued fields.

Remark. In fact, the proof below (more specifically the proof of Corollary
3.1.7) does not require relative quantifier elimination, but only the properties

(Im) and (AKE)gy.
Proof. We start by defining the notion of valued vector spaces.

Definition 3.1.5. A valued K-vector space V is a K-vector space V and a
totally ordered set I'y together with:

e a group action + : 'y X 'y — I'yy which is strictly increasing in both
variables,

e a surjective map, called the valuation, val : V' \ {0} — 'y such that
val(w + v) > min(val(w), val(v)) and val(« - v) = val(a) 4 val(v) for all
v,w €V and a € K. By convention, val(0) = oo.

Of course, the notion of separating basis and separated vector space ex-
tend naturally to this slightly more general setting. For v € V and v € Iy,
we define the closed ball Bs,(v) by {v' € V| val(v —¢') >~} and the open
ball B-.(v) by {/ € V' | val(v —v') > v}. The following lemma and proof
are taken from a lecture course of Martin Hils.
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Lemma 3.1.6. Assume K' = (K’,val) to be a mazximal valued field. Let
V' = (V' val) be a separated finite dimensional valued K'-vector space. Then
V' is spherically complete: if (D;)icr is a family of nested balls, then the
intersection (\;,c; D; is non-empty.

Proof. We proceed by induction on n > 1. If V' is of dimension 1, we simply
have that (K',val) ~ (V' val) as K'-valued vector spaces. Then, we only
need to recall that K’ is pseudo-complete as a maximal valued field. Assume
the lemma to holds for all sub-K'-vector spaces of dimension n and let W =
{wo, ..., w,} be a separating basis of V', a sub-K'-vector space of dimension
n+ 1. Let (By = B>+, (v4))a<x be a decreasing sequence of closed balls in
V', with X a limit ordinal. For av < A, write vy = ), o w; With a,,; € K.
Applying the definition of separating basis and by taking a subsequence, we
may assume that v, < val(vas1 — va) = val(dat1n — Gan) + val(wy,) for all
a < A. It follows that the sequence (aa.n)a<a is pseudo-Cauchy in K'. As K’
is pseudo-complete, one finds a pseudo-limit a,, in K’. We consider now the
sequence (v),)a<x Where v, = >, aqw; + aywy,. One has the following:

b U,Oé € BO‘ 1e BZ'\/a (Ua> = BZ'Y& (U/a)7

o theset B, :={>,_, dawi | doi € K', )
(non-empty) closed ball

da,iW; +anw, € B,} is the

<n

B2y (D o)

<n
inV' =< wg,...,wyp_1 >xg.

o (B! )a<n is a decreasing sequence of closed balls in V' (of K’-dimension

By the induction hypothesis, the sequence (B/,)a<x admits a non empty in-
tersection. Let v' € Ny<xBY.,. Then, one has that v = v + a,w, € Ny<rBa.
Ol

Corollary 3.1.7. Assume that K is a stably embedded elementary submodel
of L. Any finite dimensional separated sub-K-vector space V of L is defin-
ably spherically complete: let (D;);c; be a definable family of balls (D; is a
closed ball defined by a parameter 4, and [ is a definable set) with the finite
intersection property (no finite intersection is empty). Then the intersection
Nic; Di is non-empty.
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Proof. Let C = {cy,...,ch—1} be a separating basis of V. We write
vi = val(¢;) € Ty, for i < n. One can interpret V in K": elements are
identified with their decomposition in the basis C, addition and scalar mul-
tiplication are defined as usual. Since K is stably embedded in L, the type
tp(co, - .., cn—1/K) is definable. It follows that v(}_,_, aic;) > v(>,_, bici)
holds if and only if (ag,...,a,_1) and (b,...,b, 1) satisfy a certain K-
formula. So we also interpret the valuation. Let (D;);c; be a uniformly
definable family of nested balls. Consider K’, the maximal immediate ex-
tension of K. By the previous lemma, the (definable) intersection (7., Dj
has a point in K’ (where I’ is the definable set I(K’), D} = D;(K")), and so
(Nic; Di is non-empty, as K’ = K by the Ax-Kochen-Ershov principle. O

We prove by induction on n that any sub-XC-vector space of £ of dimension
n is separated. There is nothing to show for n = 1. Let V' be a finite dimen-
sional K-vector subspace of L, with a separating basis C' = {cq,...,c,_1}.
Let a be any element of L \ V. Let us show that the K-vector space
V =< V,a >x generated by V and a is also separated. It follows from
Corollary 3.1.7 that {v(w — a)] w € V} has a maximum. Indeed, otherwise
the family of balls (B>vaiw—a)(@))wey Will have an empty intersection. As
tp(a, co,...,cn_1/K) is definable (K is stably embedded in £), it is a defin-
able family of balls, contradicting the fact that V' is definably spherically
complete by Corollary 3.1.7. Let ¢, = w — a realise this maximum. By a
simple calculation, one sees that C' = {co,...,cn} is a separating basis of
V =< V,a >. Indeed, consider any element b € 1% \ V and its decomposi-

tion b = Eign bic; in the basis C = {co,...,cn}. Notice that Zi% is an

element of V. If val(}",_, bic;) > v(bncy,), then Val(zi%nbiq + ¢n) = v(cy)
by maximality of val(c,), which gives val(},_, bic; + byc,) = val(b,c,,). If
val(} ., bici) < v(bncy), then val(} ", , bic; + bpen) = val(d 2, bici). This

proves that C' = {co, ..., c,} is a separating K-basis of V. O

3.1.2 Reduction to RV

In this paragraph, we reduce definability over sub-valued fields to the RV-sort
for all benign theories of Henselian valued fields. The next two propositions
consist simply of an RV-version of the theorem of Cubides-Delon. The proof
is completely similar to that of (2 = 1) in [22, Theorem 1.9]. Notice that the
idea of adapting the proof of Cubides-Delon in the setting of an RV-sort can
already be found in Rideau-Kikuchi’s thesis [63]. Let T be a benign theory
of Henselian valued fields. Recall that we can safely work in the language
Lgry (or in an RV-enrichment of it), by Remark 1.1.51.



118 CHAPTER 3. STABLY EMBEDDED SUB-VALUED FIELDS

Theorem 3.1.8. Let L/K be a separated extension with L = T. The fol-
lowing are equivalent:

1. K is stably embedded (resp. uniformly stably embedded) in L,

2. RV is stably embedded (resp. uniformly stably embedded) in RV .
The proof below use the property (EQ)gry.

Proof. We prove the non-uniform case, the uniform case being similar.

(2 = 1) Let ¢(z,a) be a formula with parameters in L, x a tuple of field
sorted variables. By relative quantifier elimination to RV, it is equivalent to
a formula of the form

Y(rv(Py(z)), ..., rv(Pe_1(x)),b),

where ¥(xq,...,X,_1,y) is an RV-formula, P;(x)’s are polynomials with
coefficients in L and b € RV. For instance, notice that the formula
P(z) = 0 for P(X) € L[X] is equivalent to rv(P(z)) = 0. Consider V
the finite dimensional K-vector-space generated by the coefficients of the
P;’s, and let cg,...,c,_1 be a separating basis of V. For x € K, one has
Pix) =3, P! (x)¢; for some polynomials P/(z) € K[z]. By definition of
separating basis, one has for x € K :

rv(Py(x)) = Erv(P (x)e;).
j<n
Hence, the trace in K of the formula ¢(z,a) is given by
O((rv(P;(x)))ickjns (1V(¢)))jen, b), where 6 is an RV-formula. — Now,
using that RVk is stably embedded in RV, 6(x, (rv(¢;j))j<n,b) can be
replaced by a formula &(x,d) with parameters d in RVg, which induces
the same set in RVg. At the end, we get that ¢(K,a) is definable with

parameters in K.

(1 = 2) By relative quantifier elimination to RV, if K is stably embedded
in £, so is RV in RV . Indeed, consider a formula ¢(x, a) with free variable
x € RV and parameter a € RV;. As K is stably embedded in L, there is
an L(K)-formula 1 (x,b) with a priori field-sorted parameters b € K such
that ©)(RVg,b) = ¢(RVk,a). By relative quantifier elimination to RV, there
is a field-sorted-quantifier-free formula 6(x,y) and field-sorted terms ¢(y)
such that O(RVg,rv(t(b))) = ¥ (RVk,b) = ¢(RVk,rv(a)). This concludes
our proof. O

Remark 3.1.9. The proof above holds for any RV -enrichment T¢ of T in a
language L. Indeed T' has quantifier elimination relative to RV only if 1T°
does (see Fact 1.1.5).
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3.1.3 Angular component

Let T" be a benign theory of Henselian valued fields. We expand the language
Lgry with the sort k, I', val, res and with a new function symbol ac : K — k
and consider the theory T,. of the corresponding valued field with an ac-
map. This can be considered as an RV-enrichment of 7', as the map val and
ac reduce to RV (see the diagram below).

1 0k K* o r 0
Kacry ™ valpy H
1 k> RV~ r 0

As Theorem 3.1.8 holds in RV-enrichment, we deduce from it the following
corollary:

Corollary 3.1.10. Let £ be a model of T},.. Assume that £/K is a separated
extension. The following are equivalent:

1. K is stably embedded (resp. uniformly stably embedded) in L,

2. kg is stably embedded (resp. uniformly stably embedded) in k; and
' is stably embedded (resp. uniformly stably embedded) in I'j,

The proof is straightforward, once we prove Lemma 3.1.11. Again, it uses
Property (EQ)gry but Property (Im) is not required.

Given two structures H and IC (possibly in a different language) with
base set H and K, we already defined the product structure H x K as the
three-sorted structure

HxK={HxKHKIU{rg: Hx K — Hrx:HxK— K}

where the function symbols 7y and 7g are interpreted by the canonical
projections (for relative quantifier elimination, orthogonality and stable em-
beddedness, see Proposition 1.1.28). One sees that if H and K are two stably
embedded and orthogonal definable sets in a structure M, then the product
H x K in M? with the full induced structure over parameters is isomorphic
to H x IC, where H (resp. K) is the set H (resp. K') endowed with its induced
structure.

Lemma 3.1.11. Let Hy (resp. K1) be a substructure of a structure Ha (resp.
Ks). Then Hqi x Ky is a substructure of Hy x Ky and we have:

o Hy x Ky T Hy x Ky if and only if Hy 5 Hy and Ky T K.
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o My x Gy T Hy X Ky if and only if Hq Cust Ho and Ky CUS ICs.

Proof. The fact that H;x K is a substructure of Hy X Ky is obvious. We prove
the non-uniform stable embeddedness transfer. The uniform case can be
proved similarly, or can be deduced from the non-uniform case by considering
a saturated enough extension in the language of pairs. First, we prove the left-
to-right implication. This is almost a consequence of purity, but one needs
control over the parameters, which is given by relative quantifier elimination.
Assume H; x Ky C Hy x Ky Let ¢(xy) be a Ho-formula, with ry a
tuple of H-sorted variables. We identify the formula ¢(zy) with the formula
¢(mu(zp k) where xy i is a variable in H x K(in other words, ¢(Hz) is
identified with ¢(Hs) x K5). By assumption, there is a formula ¢ (zy k. b)
with parameters b in H; x K; such that ¢(H; x Ky,b) = ¢(H;) x K;. By
relative quantifier elimination, we may assume that ¢ (zy g, b) is a disjunction
of formulas of the form:

Vu(mr (), T (b)) A k(T (T i), Tr (b))

where Yy (zy,yy) is a H-formula and ¢k (xk,yx) is a K-formula. It fol-
lows that ¢(H;) x K; is a union of rectangles of the forms ¢y (Hy, 7wy (D)) X
Y (K1, mi(b)). The union of the H-side gives a formula 6(zy, 7y (b)) with
parameters in H; such that 0(Hy, 75 (b)) = ¢(H;). This shows that H; is
stably embedded in H, and similarly that K; is stably embedded in &C,.

Assume H; C* Hy and Ky C°f Ky, Let ¢(zp k) be a Hy x Ky-formula.
Again, by relative quantifier elimination, it is a finite union of rectangles,
where the H-side has parameters in Hy and the K-side has parameters in
K,. The trace in H; of each H-side is given by a formula with parameters in
H;. Similarly for the K-side. At the end, it gives a H; x K;-formula ¢ (2 )
such that ¥(H; x Ky) = ¢(H; x Ky). O

Proof of Corollary 3.1.10. By Theorem 3.1.8, or more precisely by Remark
3.1.9, K is stably embedded (resp. uniformly stably embedded) in £ if and
only if RV is stably embedded (resp. uniformly stably embedded) in the
enriched RV-structure

((RV27 17 ')a (kLa 07 ]-7 -+, ')7 (FL7 07 =+, <)’ aCry : sz — kZ*
v 1k} — RV}, val,, : RV] — Tp).

Notice that, in terms of structure, the injection ¢ : kj — RV7 is superfluous,
as is the multiplicative law in RV}, since the graphs are respectively given
by

{(a,b) € k* x RV* | ac,(b) = a A val,(b) = 0}
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and

{((by,b2),b3) € RV? x RV | acy (b)) X acyy(be) = acyy(b3)A
Valrv(bl) + Valrv<b2) = Valrv(bg)}.

In other word, RV, is exactly the product structure ky x I'y:
(RVy, (kr,,0,1,4,-),(T1,0,+, <),ac,, : RV} — kj,val,, : RV} = T'p).

Then the corollary is a direct consequence of Lemma 3.1.11. O

3.1.4 Reduction to I' and k

We reduce definability of types over a submodel in RV to the correspond-
ing conditions in the value group and residue field. We consider the multi-
sorted structure (RV g, 'k, ki) and its (not necessary elementary) extension
(RVy, T, kr). We are going to show that, under some reasonable conditions,
RV is stably embedded (resp. uniformly stably embedded) in RV, if and
only if kg is stably embedded (resp. uniformly stably embedded) in k;, and
'k is stably embedded (resp. uniformly stably embedded) in I'j,. Recall once
again that, if (RV, T, k) is an RV-structure, we have the following short exact
sequence:
l—k*—— RV —— 1 ——0.

It will be seen as a sequence of enriched abelian groups. We will use the
quantifier elimination result for short exact sequences of abelian groups due to
Aschenbrenner, Chernikov, Gehret and Ziegler (see Subsection 1.2.2). Also,
to fit with their notations, let us work in a more general context. Assume we
have a (possibly { A} — {C'}-enriched) short exact sequence of abelian groups

0 A—— B—=C 0,

where ((A) is a pure subgroup of B. As in Subsection 1.2.2, we see it as
an L-structure (resp. an L, structure), and we denote by 7' (resp. 7)) its
theory. Let us insist that A and C' can be endowed with extra structure. By
'the sort A’ and ’an A-formula’, we abusively mean respectively the union
of sort | J,,., A/nA and a | J,_ , A/nA-formula (so with potentially variables
and parameters in A/nA).

We consider the question of stable embeddedness of a sub-short-exact-
sequence M of a model N }= T. We denote by |, _,, pn(M) the union of
the images of M in {J,_, A(N)/nA(N) under the maps p)"’s. Notice that
it should not be confused with J, __ A(M)/nA(M).

n<w
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Proposition 3.1.12. Let N' be models of T and M C N a sub-short ezact
sequence of groups. We have:

o M C* N if and only if U, ., on(M) C* U, A/NAWN) and
C(M) C* C(N) and

o M C"" N if and only if U,., pn(M) " U, , A/nAWN) and
C(M) Co CN).

Proof. We prove only the non-uniform case. We prove the right-to-left im-
plication first.

Let © = (xo,...,25_1) be a tuple of variables in the sort B. A term
t(x,b) with b € B(N) is of the form n -z +m - b for n € N* m € N, where
n-r =mnegro+---+nk_1Tk_1. By quantifier elimination, it is enough to check
that the following formulas define on M some M-definable sets:

L. ¢c(v(to(x)),...,v(ts_1(x)), c) where t;(x)’s are terms with parameters
in B(N), c € C(N) and ¢¢ is a C-formula,

2. da(pny(to(2)), .-, pr._,(ts—1(x)),a) where t;(z)’s are terms with pa-
rameters in B(N), a € |J,,_, A/nAWN).

(1) We have t;(z) = n; - x + my - b where b is some tuple of parameters
in B(N). Write v(n-x 4+ m-b)) =v(n-z)+v(m-b). Then v(m-b) is a
parameter from C'(N') and one just needs to apply C'(M) Ct C(N).
(2) Assume to(z) =n-x+m-b. If for all g € B(M), pp,(n-g+m-b) =0,
replace all occurrences of ty(x) by 0. Otherwise, for some g € B(M), we
have v(n-g+m-b) € ngC. If v(n-x + m-b) € nyC, one can write
Pro(n-x4+m-b) = pp(n-x4+(—n)-g)+ pny(n-g+m-b). The formula is
equivalent to

(B0 v 1) = i) A Gl + () -+
o950 0) (5. 0) )
vV (ﬁﬂyc vin-x+m-b) =noyc A ¢an(0, pn(ti(x)), ..., pn(ts—1(z)), a)>
Now n-z+(—n)-g is a term with parameters in B(M) and p,(n-g+m-b) is

a parameter in A/nA(N'). We proceed similarly for all other terms p,,, (¢;(z)),

0<i<s AsU,pon(M)C* U, A/NAN), we conclude that the trace
in M of the initial formula ¢a(pn,(to(x)), ..., pn._,(ts—1(x)),a) is the trace
in M of a formula with parameters in M.
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It remains to prove the left-to-right implication. This is almost a con-
sequence of purity of the sorts A and C, but one needs control over the
set of parameters (we use implicitly Definition 1.1.8). Let ¢a(z4,a) be
an A-formula with parameters a € J,., A/nAWN). By stable embed-
dedness of M in N, there is an L,-formula ¢ (x4, a,b,c) with parameters
a,b,c € A(M)B(M)C(M) defining the same set on A(M). As in the proof
of Corollary 1.2.40, we may assume that ©(x4,ya, yp, yc) is of the form:

Va(Ta, 94, Pn(t(yB)))

where 14 is an A-formula, t(yp) is a tuple of group terms (and with no

occurrence of the variable yo or of the function symbol ¢). This proves that
Un<w Pn(M) is stably embedded in J,,.,, A/nA(N). Similarly, we prove that
C(M) is stably embedded in C'(N). O

There is a particular case when the condition J,_, pn(M) C*
Unew A/NAWN) (resp. U,,-, pn(M) € U, -, A/nA(N)) is equivalent to
A(M) CF AN) (resp. A(M) €%t A(N)), namely when

pn(B(M)) = m,(A(M)) for all n > 1. (3.1)

(notice that the equality po(B(M)) = m(A(M)) = A(M) always holds).
Indeed, by bi-interpretability and Remark 1.1.51, we have that A(M) C*
A(N) is equivalent to |, ., pn(M) €% U, ., A/nAN).

n<w

Remark 3.1.13. The following conditions implies the condition (3.1):

o C (M) is pure in C(N) (this holds in particular when M is an elemen-
tary submodel of N'),

o AN)/nA(N) is trivial for alln > 1.

The second point is obvious. Let us show that the first one implies (3.1).
If b € B is such that gV (b) # 0, then by definition v(b) € nC(N). By
purity, v(b) € nC(M). Then there is a € A(M) such that ¢(a) + nB(M) =
b+ nB(M). In particular, t(a) + nB(N) = b+ nB(N'), which means that
mn(a) = pn(b). We have showed that p,(B(M)) = m,(A(M)). We con-
clude by Remark 1.1.51 that A(M) C* A(N) implies |, pn(M) C*
Un<o A/NAWN).

We get the following:

Corollary 3.1.14. Let N be model of T" and let M C N be a sub-short-
exact-sequence. Assume either
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e that C(M) is a pure subgroup of C'(N),
e or that A(N)/nA(N) is trivial for all n > 1.
Then, we have:
e M C N if and only if A(M) C** A(N) and C(M) C*' C(N) and
o M Ct A if and only if AM) €t A(N) and C(M) C¥ C(N).

If the reader is not looking for a perfect characterisation, they can easily
slightly weaken the second condition in 3.1.14:

Corollary 3.1.15. Let A/ be models of 7" and let M C N be a sub-short-
exact-sequence. Assume that A(N)/nA(N) is finite for all n > 1.
Then, we have:

o A(M) C* AN) and C(M) C** C(N) imply M C** N and
o A(M) C*t AN) and C(M) C¥* C(N) imply M C“t N

Proof. We deduce from 3.1.12 and from the fact that if A(N')/nA(N) is finite
for all n > 1 that A(M) C* A(N) implies J,,_, on(M) € U, ., A/nAWN).
Indeed, this is due to the fact that the union of a (uniformly) stably embedded
set and a finite set is automatically (uniformly) stably embedded. O

Combining Theorem 3.1.8 and Proposition 3.1.12, we finally get the fol-
lowing theorem:

Theorem 3.1.16. Assume T is a benign theory of Henselian valued fields.
Let L/K be a separated extension of valued fields with L = T. Assume either

e that I'x is a pure subgroup of I'y,,
e or that k3 /(k})™ is trivial for alln > 1.

The following are equivalent:

1. K is stably embedded (resp. uniformly stably embedded) in L,

2. ki 1is stably embedded (resp. uniformly stably embedded) in ky, Uk is
stably embedded (resp. uniformly stably embedded) in T'y.

Recall that by Proposition 3.1.4, stably embedded elementary pairs are
necessarily separated. As an elementary subgroup is automatically a pure
subgroup, we get:
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Theorem 3.1.17. Assume 1T is a benign theory of Henselian valued fields.
Let K < L be an elementary pair of models of T'. The following are equivalent:

1. K is stably embedded (resp. uniformly stably embedded) in L,

2. L/K is separated, ki is stably embedded (resp. uniformly stably embed-
ded) in ki, and Uk is stably embedded (resp. uniformly stably embedded)
m FL.

3.1.5 Applications

Let us apply Theorem 3.1.16 on some examples. We will need:
Fact 3.1.18 ([11]). Any extension of a mazimal valued field is separated.

Hence, Hahn series k((I')) and Witt vectors W (k) give us a very large
branch of examples. We start with the field of p-adics:

Corollary 3.1.19. The field of p-adics Q, is uniformly stably embedded
in any algebraically closed valued field containing it. In particular, it is
uniformly stably embedded in C,,, the completion of the algebraic closure of

Qp.

Proof. By Theorem 3.1.16, it is enough to check that Z is uniformly stably
embedded in any divisible ordered abelian groups containing it (the residue
field of @, being finite, there is nothing to prove for the residue field). By
an argument similar to that in Remark 1.1.53, we only have to prove that
1-types over Z in a divisible ordered abelian group are uniformly definable,
which is immediate. O

With Theorem 3.1.17, we recover in particular the theorems of Cubides
and Delon (Theorem 3.1.2), and of Cubides and Ye (Theorem 3.1.3) in the
case of pairs of real closed fields. Here is a list of examples. Notice that some
of them are new:

Ezxamples. The Hahn series KK = k((I')) where

1. k= ACFy, k= (R,0,1,4,) or k = (Q,,0,1,+,");

2. I'=(R,0,+,<)or I'=(Z,0,+, <).
satisfies KK <“' L for every elementary extension £ of K.
Proof. This is a direct application of Theorem 3.1.17. Indeed:

e By maximality and Fact 3.1.18, all such extensions are separated.
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e By Fact 1.1.52, (R,0,+, <) and (R, 0,1, +,+) are uniformly stably em-
bedded in any elementary extension.

e By Remark 1.1.53, (Z,0,+, <) is uniformly stably embedded in any
elementary extension.

e By the work of Cubides and Ye, Q, is uniformly stably embedded in
any elementary extension.

O

A natural example of an algebraically maximal Kaplansky valued field is
the valued field
K =T, ((Z[1/p]))
where Z[1/p] is the additive group of all rational numbers with denominator
a power of p. Unfortunately, one can find an elementary extension £ so that
IC is not stably embedded in £. In fact, it is the general case: very few
valued fields have the property of being stably embedded in any elementary

extension, as this property is rare for ordered abelian groups (see Remark
1.1.54)

3.2 Unramified mixed characteristic Henselian

valued fields

A statement similar to Theorem 3.1.8 holds if £ is a mixed characteristic
Henselian valued field. As in the case of benign valued fields, separated pairs

are stably embedded if and only if the corresponding pairs of sorts RV, are
stably embedded:

Theorem 3.2.1. Let L/K be a separated extension of valued fields with L a
mized characteristic Henselian valued field. We see L as an Lgy_,-structure.
The following are equivalent:

1. K is stably embedded (resp. uniformly stably embedded) in L,

2. RV, (K) is stably embedded (resp. uniformly stably embedded) in
RV_.(L).

The proof of Theorem 3.1.8 also holds mutatis mutandis for this theorem,
where the property (EQ)grv_,, is used instead of (EQ)gry.

We treat the reduction to the value group and residue field in the more
specific case of unramified mixed characteristic Henselian valued fields with
perfect residue field. First, we can observe that separatedness is also a nec-
essary condition for elementary pairs to be stably embedded:
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Proposition 3.2.2. Let L/K be an elementary extension of unramified mized
characteristic Henselian valued fields with perfect residue field. If IC is stably
embedded in L, then L/K is a separated extension of valued fields.

The proof of Proposition 3.1.4 also holds in the mixed characteristic case:
the only difference is that one should use the properties (AKE)gy_, and
(Im — RV_,,) instead of respectively the properties (AKE)ry and (Im).

The reduction to the value group and residue field gives a generalisation
of the theorem of Cubides and Ye in the case of p-adic fields (Theorem 3.1.3).

Theorem 3.2.3. Let K be an unramified mixed characteristic Henselian val-
ued field with perfect residue field, viewed as a structure in the three-sorted
language Ly i, and let L be an elementary extension. The following are equiv-
alent:

1. K is stably embedded (resp. uniformly stably embedded) in L,

2. The extension L/K is separated, ki is stably embedded (resp. uniformly
stably embedded) in ki and Uk is stably embedded (resp. uniformly
stably embedded) in T'y,.

Remark that this theorem only treats the case of elementary pairs. The
statement like in Theorem 3.1.16 in the mixed characteristic case would in
particular involve imperfect residue fields. Although quantifier elimination in
such a context is known by the work of Anscombe and Jahnke [3|, we chose
to not develop this direction.

Proof. We treat only the non-uniform case. The uniform one is deduced
similarly.

(2 = 1). Assume that ki C% k; and T'x C* I';. Recall that we have the
following diagrams for all n > 0:

1 0k Lx Iy 0

val
resy l ran( ‘

val
T, ——0

1 —— W, (k)X == RVE(L) s

where W, (k1) is the truncated ring of Witt vectors of order n over k. The
same diagram holds for K. Consider an RV _,-formula ¢(z, b) with a tuples of
variables x € RV_,, and a tuples of parameters b € RV _,(L). Without loss of
generality, we may simplify the notation and assume that ¢(z,b) only quan-
tifies on the sorts RV, for k& < n, that all variables x are RV ,-variables and
that parameters are all in RV,,(L). Define the structure RV, (L) obtained
from RV _,, by restricting to the sort RVy, k < n:
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RV, (L) := {(RVi(L))k<n, Wi(kL), -, 4,0, Dp<n, (I, +,0, <),

(Valrvk )k§n7 (Uc)kﬁna (rvm—>k)k<m§n}

with the finite projective system of maps (rv,,.x : RV,(L) —
RVi(L))k<m<n- We can also consider the finite projective system of maps
(respk @ Win(L) = Wi(L))k<men. As ¢(z,b) only quantifies on RV, we
have that

For all a € RV,,(L)*,  RV_,(L) = ¢(a,b) < RV, (L) = ¢(a,b)

(notice that RV<,(L) is not endowed with the full induced structure in-
herited by RV_,,(L) as a formula in the induced structure may quantify over
the sorts RVy with N > n). We can see RV<,(L) as a {W, (k) }-{I'L}-
enriched exact sequence of abelian groups. Indeed, the kernel of the map
IV, 18 given by 1 4 p"W,,(k.), a subset of W, X(k.). It follows that the
diagram

1—— WX (k) LN RV, (L) —— T, ——0,

valrv,,
l Lin— i valyy, ‘
11— W (k) =RV}, (L) =T, ——0
I I
| | ‘
X\L L1 i’ valry;
1 —— W (k) —— RV7(L) r, 0

is fully induced by the following diagram:

1—— W (k1) —"= RV, (L) —— T ——0.
resn%nlJ{

anl (kh) x
|
|
3

Wi(kr)*
This means that RV, is bi-interpretable with the multisorted structure
{Rvn(L)7 (Wk(kL)v % +a Oa 1)k§n> (PLa +7 07 <)7 Valrvn: lp, (resm—)k>k<m§n}-

In order to conclude, recall that by Corollary 1.2.26, W, (k) is interpretable
in k for any field k. In fact, we see as well that the structure

Wen(k) =Wy (k) = - — Wi(k)
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is interpretable in k. Then, we have by Remark 1.1.51:
Wen(ki) CF Wepn (k).

We can conclude using Corollary 3.1.14 that RV, (K) C* RV, (L).
Them, there exists an RV <,,-formula ¢ (z, ¢) with parameters ¢ € RV, (K)
such that ¢(RV,,(K),b) = ¢(RV,(K),c). Then, we have

For all a € RV, (K, RV_,(L) = ¢(a,b) & RV, (L) = ¢(a,b)
& RVa(L) = (e, )
< RV, (L) = ¥(a,c).
This shows that RV, (K) is stably embedded in RV ,(L). We can conclude
using Theorem 3.2.1.

Let us prove (1 = 2). Assume that K is stably embedded in £. By
Theorem 3.2.1, we know that RV, (K) is stably embedded in RV, (L) and
that the extension £/K is separated. We show that ky is stably embedded in
k. Consider a formula ¢(x, a) with free variables x in the residue sort, and a

tuple of parameters a € k. Again, we can see the residue field k;, = Wi (kp)
as a sort in the structure

RVS"(‘L) = {(Rvk(L))kS'nv (Wk<kb>7 St 07 1)k§n7 (FL7 -+, O’ <)7
(Valrvk)kgn; (Lk)kgna (rvmﬁk>k<m§n}

and analogously for kx. As RV_,(K) is stably embedded in RV (L), there
is for some n an RV_,-formula «(x,b) with some RV,-sorted parameters
b € K and quantifiers in RV,, such that d)(kf', b) = ¢(k‘;§', a). As before, we
observe that RV<,, := U<, RV,, is a {W*(k)}-{I"'}-enrichment of the exact
sequence of abelian groups:

1 —-W* (k) —RV,—T—=0.
We may apply Fact 1.2.39: there is a formula 6(z,y) in the language
{(Wk(kL) 5+ 0, 1)k§n7 (Wn%/(sz<>m>m>17 (ﬂ-m : W; - W;/(W:)m)m>1v

(resl%k)kdgn}
and group-sorted terms ¢(y) such that
Ok, pm (D)) = (ki b) = $(ki¢, a)
for some m < w, where p,, is defined as in Subsection 1.2.2. As the structure

Wen(k) i= Wi (k) = Wi (k) = - — Wy (k)
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is interpretable in k for all fields k& (Corollary 1.2.26), we have a formula
&(z,c) in the language of rings and with parameters ¢ in kx such that

(k) ¢) = 0(kE, pu(t(0))) = (K, b) = p(Kiy, a).

This shows that ky is stably embedded in k;. Similarly, we show that I is
stably embedded in I'y,. O

Ezample. Consider K = Q(W(F3'9)) the quotient field of the ring of Witt
vectors over the algebraic closure of F,. Then K is uniformly stably embedded
in any elementary extension.

Proof. By Fact 3.1.18, any elementary extension £/K is separated. The value
group Z of K is stably embedded in any elementary extension by Remark
1.1.54, and its residue field is even stable. We can conclude with Theorem
3.2.3. O

3.3 Axiomatisability of stably embedded pairs

Closely related to the question of definability of types is the question of
elementarity of the class of stably embedded pairs. Consider 7" a theory in
a language L and denote by Tp in the language Lp = L U { P} the theory of
elementary pairs M < N where P is a predicate for M. We consider the
following subclasses of models:

Cit = {(N, M) | N = M =T, M is stably embedded in N'}
and
C¥t ={(N,M) | N = M =T, M is uniformly stably embedded in N'}.

As Cubides and Ye in [23|, we are asking whether these classes are first
order. If that is the case, we denote respectively by 75 and T5s% their re-
spective theory, and we say respectively that T§' and THE exist.

Remark 3.3.1. If M =<5" N is a stably embedded elementary pair of models
which is not uniformly stably embedded, then any |L|-saturated elementary
extension of the pair is not stably embedded.

Proof. By assumption, there is a formula ¢(z,y) such that for all formulas
Y(z, 2), there is a b € N such that for any ¢ € M#, ¢(M*| b) £ p(M*!, c).
By a usual coding trick, we have in fact that for any finite set of formulas A,
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there is a b € N such that for any ¥(z, 2) € A and ¢ € M, (M= b) #
¢ (M'*! ¢). This is to say that the type in the language of pairs

p(y) = {Vc € M, ¢(M" y) # (M, )}y per

is finitely satisfiable in (N, M). Thus, it is realised in any |L|-saturated
elementary extension of the pair. Such a pair will not be stably embedded.

O
Corollary 3.3.2. If T} exists, then T4 exists and TEs" = T

In a stable theory T, elementary submodels are always stably embedded,
Cst and C¥* are simply the class of elementary pairs. In other words, we have
Ts = TE' = Tp. Let us analyse few more examples.

3.3.1 Examples

We quickly cover the case of o-minimal theories and the Presburger arith-
metic. The reader will find in Appendix A the case of the theory of random
graphs.

O-minimal theories

Consider T an o-minimal theory. By Marker-Steinhorn, an elementary
pair (Ry, Ry) of models of T is stably embedded if and only if it is uniformly
stably embedded, if and only if all elements in [?; either realise a type at the
infinity or a rational cut. So both T} and TpE* exist, and TF = Tg*. This
theory is given by the theory T together with the axiom

Veg P (Vbe Px>b)V (Vbe Px<b)
V(dae Pa<xz ANYbeP (a<b)= (z<b))
V(dae Px<a NVYbe P (b<a)= (b<ux)).

Presburger arithmetic
Consider the theory T of (Z,0,1,+,<). An elementary submodel Z of a
model Z’ is stably embedded if and only if no element in Z’ realises a proper
cut. So both T} and T3 exist and are equal. This theory is given by the
theory Tp together with the axiom saying that P is convex.

3.3.2 Benign theories of Henselian valued fields

Let T" be a completion of a benign theory of Henselian valued fields of
equicharacteristic. We denote by Tt and T} the corresponding theories of
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the value group and residue field. We require here 1" to be of equicharac-
teristic in order to get a canonical maximal Henselian valued field of given
value group and given residue field, namely the Hahn series: if I' = Tt and
k | Ty then k((T")) = T.

We have the following reduction:
Proposition 3.3.3. e T% exists if and only if (Tt)% and (Ty)% exist,
o T exists if and only if (11)%" and (Ty)'%* exist.

Notice that the case of algebraically closed valued fields (including ones
of mixed characteristic) follows from the work of Cubides and Delon. The
case of p-adically closed valued fields (which is not covered by this theorem)
is treated together with the case of real closed valued fields in the work of
Cubides and Ye. See [23, Theorem 4.2.4.]. Here is a list of examples (some
of them are new):

Ezamples. Let T be the theory of the Hahn series I = k((T")) where
1. k= ACFy, k= (R,0,1,+,-) or k = (Q,,0,1,+,-);
2. ' =EDOAG or I' = Th(Z, 0, +, <).

Then T3 and T exist.

Proof. We prove the non-uniform case. The right-to-left implication is an
easy consequence of Theorem 3.1.17. Indeed one has that the class Cif is
axiomatised by:

(Tr)% U (Ty)% U{K/P(K) is separated}.

Assume T3 exists. We prove that the class C7i = {(k1, k) | b1 =*" ks |=
Ty, } is axiomatisable. One can show that C7; is axiomatisable by the same
argument. By Theorem 3.1.17, we have

Cj. = {(k1, ko) | there is T' = Tt such that ki ((T')) =* ko((D)) = T, k1, ko |= T}

Indeed, T" admits as models these Hahn series fields, and Hahn series are
always maximal, so in particular every extension of such is separated (Fact
3.1.18). This class is closed under ultraproducts: let I be a set of indices
and (k% kL) € Cit for all i € I, with the corresponding I'" |= Tt Let U be an
ultrafilter on I. Then by Theorem 3.1.17, we have

[Tk = TT k().

u u
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as ki((I7)) = k(1)) for all i and as Cf}, x, is closed by ultraproduct.
Again by Theorem 3.1.17, we have:

[Tk = [T (kD).

u u

(the ultraproduct commutes with the residue map). Obviously, Crifh(k) is sta-
ble under isomophism and if (ko, k1) =< (Kb, k7)) with k] <5° kb, then k; <5 ky
(Remark 1.1.43). This proves that C%th(k) is closed under elementary equiva-
lence and, finally, that it is axiomatisable. O

3.3.3 Bounded formulas and elimination of unbounded
quantifiers

Let T be a complete first order theory in a language L.
Definition 3.3.4. We say that an L p-formula is bounded if it is of the form:

Oo@/o € P Tt Onflynfl € P QS(x?yOa s 7yn71)7

where ¢(z, Yo, - .., Yn_1) is an L-formula and Oy, ...,0,_; € {V,3}. We say
that a theory extending the theory of pair Tp eliminates unbounded quanti-
fiers when any formula is equivalent to a bounded formula.

Let us cite here examples of elimination of unbounded quantifiers.

Examples. e Assume that 7T is an o-minimal theory extending the theory
of ordered abelian groups with distinguished positive element 1. The
theory of dense pairs of models of T" eliminates unbounded quantifiers
(|73, Theorem 2.5]).

e Assume that 7" is stable. The theory of belle pairs 7" O Tp eliminates
unbounded quantifiers if and only if 7" does not have the finite cover
property (see [60, Theorem 6]).

e Assume that T"is NIP. Let I C M be an indiscernible sequence indexed
by a dense complete linear order so that every type over [ is realised
in M. Then Th(M,Z) is bounded ( |9, Theorem 3.3|).

The reader will find an overview on elimination of unbounded quantifier
in [18]. We give now another characterisation of stable embeddedness modulo
elimination of unbounded quantifiers.

Proposition 3.3.5. Let M < N be two models of T'. Assume that the theory
Th(N, M) in the language of pairs Lp eliminates unbounded quantifiers.
Then M is uniformly stably embedded in N if and only if P is a (uniformly)
stably embedded predicate for Th(N, M).
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Proof. Assume M to be uniformly stably embedded in NV, and let (IN, M)
be a monster model. So M is stably embedded in N. Let ¢(z,a) be an
L p-formula with parameter a € N. It is equivalent to a bounded formula

OOyO ep - anlynfl cepr ?/1(%@/0, <oy Yn—1, (Z),

with ¥ (2,90, .., Yn_1,2) an L-formula and Og,...,0,; € {V,3}.
Then the definable set ¢(M""! a) is given by some 6(M"™! b) where
0(z,Y0, - -+ Yn_1,2) is an L-formula and b € MPFl. Hence P(z) A ¢(z,a)
is equivalent to

P(z) ADoyo -+ On_1Yn—10(z, Y0, - - -, Yn—_1,b).

This proves that P(x) is a stably embedded predicate in Th(N, M).

Assume that P is a (uniformly) stably embedded predicate. We want to
show that M is uniformly stably embedded in V. It is enough to show that if
(N, M) = (N, M), then M’ is stably embedded in A (see Remark 1.1.47).
Let (N, M’) be an elementary extension of the pair and let ¢(x,a) be an
L(N’)-formula. As the predicate P is stably embedded, the set ¢(M’, a) is
given by ¢(M/’,b) where ¢ (z, z) is an Lp-formula with parameters b € M.
By elimination of unbounded quantifier, we may assume that ¢ (z, z) is of
the form

Ooyo €P -+ Opn_1yn1 € P O(,90,- - Yn_1,2)

Replace all bounded quantifier over P by the corresponding unbounded quan-
tifier. We obtain an L-formula ¢)’(z, ) such that ¢'(M’,b) = ¢(M’,b). This
proves that M’ is stably embedded in N”. O



Appendix A

On pairs of random graphs

We construct in this appendix two stably embedded pairs of random graphs:
one is non-uniform and the other is uniform. This gives another illustration
of the difference between these notions (Definitions 1.1.42 and 1.1.46). We
then show that the class of uniformly (resp. non-uniformly) stably embedded
pairs of random graphs is not elementary. We also take the occasion to talk
about quantifier elimination in the Shelah expansion of a random graph.

Let T be the theory of the random graph in the language £ = {R} and
G a model of T. The Marker-Steinhorn criterion holds:

Remark A.0.1. Let a = ag,...a,_1 be a finite tuple of elements in an
elementary extension H of G. Then, by quantifier elimination, one has

tp(@) U tp(a:i/G) F tp(a/G).
i<n
It follows that for all n € N,
TG, H) = T,(G. H),

and
TG, H) = T (G, H).

We will give two constructions of an elementary extension H of G such
that all types over GG realised in H are definable. The second one is simpler
but ‘careless’ in the sense that types are actually not uniformly definable.
We will give later a generalisation of the first construction.

Construction (H1). Assume A\ = |G|. We are going to build an in-

creasing sequence (G;),<, of graphs containing G and of cardinality \. We
set Gy := G. Assume that for some j < w, G; has been constructed, and let

135
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(A;, B;)i< be an enumeration of pairs of finite subsets of G; such that for all
i <\, A; N B; = (). For each 7 < A, pick any m; € G such that m; is related
to A; N G and unrelated to B; N G. Then, for each 1 < A, we consider a new
point &5, We set G = G; U {0}}icx and R(0, g) if and only if (g € G and
R(m;, g)) or g € A;. Flnally, we set Hy = U]<,J g,.

Remark A.0.2. H; is by construction a random graph containing G. Also,
every 1-type over G realised in Hy \ G is of the form:

my =<{R(z,9) | g€ R(m,G)} U{z #g | g€ G}>

where m € G. Set of such 1-types is uniformly definable. Hence, one has
g just le.

Construction (H2). Assume A = |G|. We are going to create an in-
creasing sequence (G;);j<. of graphs containing G and of cardinality A. Set
Go := G and assume that G; has been constructed. Let (A;);cx be an enu-
meration of finite subsets of G;. For all i < A, we consider a new point ().
We set G = G U {0 }ica and R(0%,g) if and only if g € A;. Finally, we

set Hy = UKW g;.

Remark A.0.3. H, is by construction a random graph containing G. Also,
every 1-type over G realised in Hy \ G is of the form:

pa=<{R(x,9) | g€ A} U{=-R(x,9) | g¢ A} U{z #g| g€ G} >

where A is a finite subset of G. Such 1-types are definable. Hence one has
G = H,.

One can easily see that G is not uniformly stably embedded in Hs.
Indeed, by construction, for all h € Hy \ G, R(h,G) = {g € G | R(h,9)}
is finite and conversely, any finite set is given by R(h,G) for some h. If it
were uniformly defined by another formula with parameters in G, this would
contradict the fact that T" eliminates 9°° .

No axiomatisation of stably embedded pairs of random graphs
We show that the classes of (uniformly) stably embedded pairs of random
graphs is not axiomatisable in the language of pairs Lp = L U {P}. Let us
recall the notation of Section 3.3:

Ct={(N, M) | N = M [T, M is stably embedded in N}
and

Crt ={(N, M) | N = M T, M is uniformly stably embedded in N'}.
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We show that C5! and C¥** are not axiomatisable.
As we have seen in Examples A.0.3, Cji; is not preserved by elementary
equivalence: using the notation of Paragraph 1.1.3, we have that G <5 H,,
but in any saturated enough extension (G', H}) of the pair (G, Hs), G’ is not
stably embedded in #) (Remark 3.3.1).

However, C¥% is preserved by elementary extensions (as "for all y, there is
a z such that ¢(M®!, y) = o (M®!, 2)" is a first order property in the language
of pairs of the formulas ¥ (z, 2z) and ¢(x,y)). Let us show that C§ is not
stable by ultraproduct. We will need few facts about random graphs. We
leave proofs (by induction) to the reader.

Let us denote by ¢p.m (%, Yo, - - Ym—1, 20, - - - Zn—1) the formula
/\R(:Layl)/\ /\ _‘R(LE,Zj),
<n j<m

for n, m positive integers, n +m > 0 and with all variables distinct. Let ®
be the set of such formulas.

Fact A.0.4. Let G be a random graph and let n and m be positive integers,
n+m > 0. For any disjoint finite subsets A and B of G, there is an instance
of Gnm(x, g), with parameters g = (go, - - ., gmin—1) € G" all distinct such
that A C ¢,..(G, g) C BC.

The following fact says that an instance of ¢, ,, is ‘bigger’ than instances
of ¢y if n4+m <0 +m'.

Fact A.0.5. Let G be a random graph.

o Let ¢(x,y) € ®, and let a € GW. Then ¢(G,a) is infinite and co-

infinite.
e Consider some distinct parameters g = (goy-- -y Gn-1,90s -+ Gim_1) €
G™™ and some distinct parameters h = (ho, ..., hp—1, by, ... R, ) €

GV - Assume n' +m’ > n+m. Then
¢n,m(Ga g) \ an’,m’(Ga h)
15 wnfinite.

As we did previously with Construction H;, we construct an extension
Hn.m such that the set of traces {R(G.h) | h € H,,} is contained in

{6nm(G.9) 1 9= (90s-- -, 9n-1,G0 -+ Gm_1) € G"™™ with all g;, g} distinct},
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the set of instances of ¢(x,y) with distinct parameters in G (we use Fact
A.0.4). If U is a non-principal ultra-filter in N x N\ {(0,0)}, let us denote
by (H,G) the ultraproduct [],,(Hnm,G). One sees that any set R(G,a) for
a ¢ G is infinite and co-infinite in G. But it cannot be given, even up to a
finite set, by a (positive) boolean combination of instances of formulas in @
with parameters in G. Indeed, consider such an instance ®nm(x,g). Then,
by Fact A.0.5, the projection of ¢,L7,,,L(C~¥, 9)\ R(é, a) to H,y e is infinite if
n’ +m’ > n+ m. We conclude by Lo§’s theorem (and the fact that ® is
closed under intersection). It follows that G is not stably embedded in H.

More on expansions of random graphs: We briefly show that in
any model G of the random graph, the Shelah expansion G*" (see e.g. [69,
Definition 3.9]) does not eliminate quantifiers.

Claim 7. There is a cligue A of G consisting of (distinct) elements
o, a1; @ < w such that the subset E = {(ag;, a1;)}icw of G* is definable
in G".

Proof. First notice that any subset of GG is externally definable. We construct
by induction the subset A = {ag;, a1,;}icw and a subset B = {bg;, b1 }icw Of
G such that:

o Aisaclique: forall i,j <w, £ ¢ € {0,1}, ag;R ac;
e foralli,j <wand§& (€ {0,1}, ag;R b ;ifand only ifi = j and £ < (.

The set B ‘encodes’ that the pairs (ag;, a1 ;) belong to E. Indeed, a definition
of F will be given by:

(do,(Ll) S A? /\Elbg,bl € B aR bj & 1 <.

For some k < w, assume that (ag;, a1, b, b1)i<k has been constructed.
Take ag , a1 ; any elements of G such that:

o @o,kRal,k
o foralli < kand &, ¢ € {0,1}, ag,R ac,.
e foralli <k, and &, ¢ € {0,1}, —ag,Rbc;.

Then take by, and by 4 in G such that for all i < kand &, € {0,1}, ag;R be
if and only if ¢ = k and £ < (. This conclude our induction. O

It is easy to see that the set E is not externally definable. Indeed, as
A is a clique, the only externally definable subsets of A% are —by quantifier
elimination — Boolean combinations of rectangles S x S” (where 5,5 C A)
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and of the diagonal {(a,a) | a € A}. Note also that the class of externally
definable subsets is closed under Boolean combinations. The proposition
follows:

Proposition A.0.6. For any random graph G, the Shelah expansion G** does
not eliminate quantifiers.

One can also ask if adding predicates for all subsets of G™ for a given
n gives us quantifier elimination. For the same reason, this does not
hold either: one can similarly show that their is a definable subset E, :=
{(apss-- - ani) | i < w} of (GS")”Jrl where all a’s are distinct and where
A = {apiy ... an;, @ < w} is a clique. Then, one sees that this set can-
not be written as a finite Boolean combination of rectangles S™ x ... x S™*
with 2 <k <n+1,> . ,n =n+1and S" C A" and the diagonal
{(a,...,a) € A"*'}.

i<k
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Appendix B

Reduction of burden in
lexicographic products

Meir defined and studied the lexicographic product of relational structures in
[56]. Using his quantifier elimination result, he notably proved a Stable and
NIP transfer. We continue here to investigate the model theoretic complexity
of such products with respect to the burden. In this last section, we show that
the burden of the lexicographic product of pure relational structures is the
maximum of the burden of these structures. This is a reduction principle for
pure relational structures which appears to be similar to that of pure short
exact sequences of abelian groups. However, the situation is here simpler
since terms are trivial and inp-patterns are automatically centralised.

Consider a relational language L.

Definition B.0.1. Let M and N be two L-structures. We consider the
language Ly s = LU {RY} ger, U {s} where RY are new unary predicates and
s is a binary predicate. The lexicographic product M[N*]Y of M and N is
the Ly s-structure of base set M x N where the relations are interpreted as
follows:

o sMNU = {((a,b),(a. V) | a € M,bV € N}

e if R € L is an n-ary predicate,

RM[NS]U —
{((a,b1),...,(a,by)) | a € M and N |z R(by,...,b,)} U
{ (ay,by), (an,bn)) | \/0<i#<nai # a; and M = R(aq, .. ., an)} .
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e if R € L is an n-ary predicate,

T L | M R o)

n times

We denote by M[N*] the restriction of M[N*]V to L, := L U {s}.

Example. Consider the language of graphs L = {R}, and let M and N be

the graphs:
M = N =

We obtain the following graph:

oa
Nefe

where any point in a circle is related to any point from any linked circle.
Notice that the loop is given by the predicate RV (and not by R).

MIN®

Within M[N*]Y| the structure M can be seen as an imaginary. It is
indeed the quotient of MJN*]Y modulo the equivalence relation s(x,y).
We denote by 7y = 7 : MIN®]Y — M the projection. It is not an
L-homomorphism. Indeed, if R is an n-ary predicate of L, and D" =
{(a,...,a) € M™} is the diagonal, one has:

R(RMNTY RMU D™ if RV is not empty,
RM\ D™ if RN is empty.

Nonetheless, we recover the L-structure when we consider the additional
symbol RY:

RM = n(RMWTY\ D" U {(a,...,a) | a € m(R )
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For a € M, the equivalence class of a is a copy of N and it is denoted by
N,. Here, by definition

fo: N = MN¥Y
b (a,b)

is an L-isomorphism onto N,. We will see that there is no additional structure
on these sets (see Corollary B.0.3). Here is the result of quantifier elimination
obtained by Meir:

Theorem B.0.2. Let L be a relational language. M, N be two L-structures
admitting quantifier elimination. Then M[N®Y admits quantifier elimina-
tion.

On can refer to [56, Theorem 2.6] in the case where M is transitive (for
the action of the automorphism group). The theorem above can be found in
Meir’s thesis [57, Theorem 1.1.4]. We discuss here some immediate corollary.
Let us denote by My the set 7(M|N*]Y) with the full induced structure,
and for a € M, let N, be the subset N, C M|[N] with the full induced
structure.

Corollary B.0.3. The structures M|y and N, for a € M are stably embed-
ded and setwise orthogonal. The structures M|y and M on the one hand,
and NV, and NV on the other hand, have the same definable sets.

Proof. By quantifier eliminations, it is enough to look at atomic formulas. It
is then a simple case study. O

To simplify the notation in our next proof, we will make M an Ly :=
L U {RY} ger- structure, where the unary predicate RY(z) is interpreted as
R(z,...,z)if R € L is an n-ary predicate.

N —

n times

Theorem B.0.4. bdn(M[N*¥]V) = max(bdn(M), bdn(N)).

The theorem holds also if we consider the second definition of burden
(Definition 1.1.35). The quantity max(bdn(M), bdn(N)) is obviously a lower
bound, as M|AN¥]V interprets on a unary set both M and N.

Definition B.0.5. Let x,y°, ..., y"! be single variables. An {s}-formula
ds(x,yY, ..., y"!) is a complete s-diagram in x over y°, ..., y" 1 if it is a
maximally consistent conjunction of —s(x,y') or s(x,y') for I < n.
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Proof. 1f M and N are finite, then so is M|N*]V and the theorem is trivially
true. Assume M or N to be infinite. We may assume that M[N*]Y is very
saturated. Assume

{¢i(x> yi), (Cig = (@i, bij)) ey ki}

is an inp-pattern in M[A*]Y of depth & > max(bdn(M), bdn(N)) > 1 with
|x| = 1. By Ramsey and compactness, we can assume that the sequence of
parameters (a; j,b; ;) j<. for i < k are mutually indiscernible. By quantifier
elimination and usual elimination of the disjunctions, we can also assume that
for i < k the formula ¢;(x,y;) (where y; =y}, ... ,yly”) is a conjunction of
formulas of the form:

1<k

e 0is(X,yi) = Ny (M)s(x, y!), a complete s-diagram in x over
y’}""7ylyi| :

e ¢ir(x,y:)) = N(-)R(x,y;), for finitely many R € L,

o ¢iu(x) = A(—)RY(x), for finitely many R € L.

Then, the crucial step of the proof is to remark that no inp-pattern can have
a line "talking about" M and another one "talking about" N.

Case 1: Assume that the complete s-diagram in x of the first line
implies s(x, y()-

Claim 8. By consistency of paths, and inconsistency of the lines, the same
holds for every line i: there is some yﬁi, Li < l|yil, such that ¢;(x,y) F

S (X, Yil ) .

Proof. Assume for example that line 1 implies —s(x,y}) for all [ < |yy|.
By mutual indiscernibility, a870 #* ale for all j < w and I < |y;|. Take
d; € M[N?*)Y satisfying

¢o(dj, co0) A ¢1(dy, €1 ),
(consistency of paths). As s(d;,c{,) and af, # af ;, this implies
M = ¢1,R(a8,0> ai ;) A ¢17U(08,0)
and equivalently that
MNP |= 61 (o g, €1,5)-

Then, the line 1 would be realised by cf o, contradiction. The same argument
holds for any line ¢ > 0. O
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Without loss of generality, we may assume that for all i, ¢;(x,y) F s(x, y?)
(I; = 0). It follows from the claim and by consistency of paths that:

Claim 9. The parameters {agn}i<k7n<w are all equal to some parameter a €

M.

Then by inconsistency of lines and by definition of RMW 7, there is a
subconjunction ¢(x,y;") of ¢;(x,y;), where y! is a subtuple of y; containing
y?, with a complete (positive) diagram A, <yl s(x,y!) and which already
forms an inconsistent line. This is simply to say that, if ¢;(x,y;) F —s(x,y!)
and ¢;(x,y;) F (=) R(x,y!) for some [ < |y;|, then

M EA{()R(a, a; )}

or equivalently
MINT? = { (=) R(e. ¢ j) o

whenever my(c) = a.

So we may assume that the s-diagram in x in any lines is positive (with
no occurrence of negation of s(x,y!)). Thus, the inp-pattern translates to an
inp-pattern of NV, of depth strictly bigger than bdn(A), namely:

{¢i,R($, yi)a (bi,j)j<w}i<k

This is a contradiction.
Case 2: The complete s-diagram of any line is negative. Then we define the
following pattern in M:

P(x) =4 N @ # 9 A dun(e,y) A dio(), (a5)j<e
l<‘yi| i<k
We can show — and this is a contradiction— that it is an inp-pattern of depth

strictly greater than bdn(M). Indeed, lines are inconsistent: if a € M
realises a line

/\ r# a; N (e, ai) A dip() ;
I<ly; j<w

then for any b € N, (a,b) satisfies the corresponding line of the original
pattern

{@'(X-/ Ci,j)}j<w>
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this is a contradiction. Paths are consistent: take d = (a,b) a realisation of
the first column of our original inp-pattern:

{@'(X, Ci,O)}i<m

then a satisfies the first column of P(z):

/\ T # aé,o N i r(x, aio) N diu(x) )
I<ly;l i<k

This concludes our proof.
O

Ezample. Let L = {R, B} be the language with two binary predicates, and
let M be a set with two cross-cutting equivalence relations with infinitely
many infinite classes.

We saw that bdn(M) = 2. We leave it to the reader to describe M[M?*]Y
(where R and B are no longer equivalence relations). Then, one can verify
that it is also of burden 2. We let the following picture for the intuition:




Appendix C

More on the RV-sort

We defined in Subsection 3.1.2 the leading term structure of order 0
(RV, ®,-,0,1) of a valued field K = (K, T, k) as the abelian group K*/1+m
endowed with some extra structure, where m is the maximal ideal of the val-
uation ring. We saw that in the context of benign valued fields (Definition
1.2.21), and like the value group and residue field, the RV-sort appears to
be a pure imaginary sort (even with control of parameters in the sense of
Definition 1.1.8). This means that, like the value group and the residue field,
it can be seen as a structure on its own. However, RV-sorts have not been
extensively studied as algebraic structures. Let us cite Krasner, who defined
in |51] a generalization of fields called ‘corpoide’ and which includes in par-
ticular the RV-sorts. In this appendix, we give the definition of the RV-sort
out of the context of valued fields — which we call an RV-structure. Then
we give an axiomatisation in a language L := {®,-,0,1} with two constants
and two binary functions, and show that every RV-structure is the RV-sort
of a canonical Henselian valued field.

C.1 Axomatisation of RV-structures
Definition C.1.1. An RV-structure is an abelian group (RV*,-) such that

there are an ordered abelian group (I', +, <,0) and a field (k,+,-,0,1) and
the following short exact sequence:

1=k SRV ST -0
We abusively see k* as a subset of RV*. Outside of k, the addition is
not defined, but one can extend it as follows. We call the group morphism

valgry : RV* — I the valuation map.
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Definition C.1.2. We first complete the embedding of £* in RV* by adding
a new element 0, absorbing for the multiplication (i.e. 0-a = 0 for all
a € RV*U{0}). We denote by RV the set RV*U{0}. We also add a new
element oo in I', with co > I', and extend the valuation map valgy in 0 by
setting valgy(0) = co. Let a,b € RV. We denote by a @ b the element:

0 ifa=b=0,

a if valgy(b) > valgy(a),
b if valgy(a) > valgy(b),
(a/b+1) - b otherwise.

ad®b=

This new law @ extends the addition in k. The phenomenon a® b = a
or a® b = b, corresponding to the first two cases, will be referred to as
‘additive absorption’. Notice that @ is not associative. In particular the
addition in K is not compatible with ¢ through the valuation maps (e.g.: in
R((T)), 1 =valgy(1 — 1 4+t) # valgy(rv(1) @ rv(—1+1t)) = +00).

As the operation @ is not (always) associative, we adopt a natural con-

vention for the contraction € a;:
<n
Notation. Let n € N and a;,...,a, € RV. We will use the notation € a;
<n

for ((((a1 @ az) ® ag) + ---) @ a,) only when the sum ((((a,1) D as(2)) ©
a,3)) + ) @ ag(n)) Is associative for any permutation ¢ (in other word,
when this term does not depend on the choice of parenthesis). It happens
in particular when all a;’s have the same valuation (dividing by a;, we get a
sum in the field k) or a contrario, when they have pairwise distinct valuations
(by additive absorption). Notice for instance that in the RV-sort of R((7)),
the sum 1@ (—1 @ t) is not ‘associative’ whereas the sum 1 & (t ® —1) is.

Even if this operation & does not satisfy all the required properties, we
refer to it as the ‘addition’ of RV. We attempt to describe its essential prop-
erties. Recall that we defined L as the one-sorted language with signature
{&,+,0,1}. We will see that RV-structures are exactly L-structures satisfying
the following list of axioms (1-7):

1. (RV* - 1) is an abelian group, where RV* = RV \ {0},

]

. (neutral element for @) Va € RV, 0@ a = a,

[ON)

. (semi or half-associativity) [(a@ b)©c #a® (bdc) = adb =
Oorb®c=0,

4. (commutativity for @) Va,b € RV, a® b =b @ a,
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5. (distributivity) Va.b,c € RV, (a©&b)-c=ac @ bc.
We define £* as the set:
{frcRV\{0} |1®r#1 and 1®r * #1}.

We write k := k* U {0} and we may denote its elements a,b, ¢, ... € k with
the usual font and denote the restriction @ by the symbol +.

6. (k:=k*U{0},-,+,0,1) is a field,

7. (uniform additive absorption) Va € RV, Vr € k*, (a®1 =1) &
(adr=r).

The fact that all these properties are satisfied by any RV-structure is
clear. From the axioms, one can show the following (8-10):

8. (multiplicative absorption) Va € RV, 0-a = 0.
Assume for some a € RV, 0-a # 0. Then as 0 is a neutral element for & and
by distributivity 0-a=0-a & 0-a. We may multiply by the multiplicative
inverse of 0 - a and we get a contradiction in k.

9. (additive inverse) Va € RV,3lb a® b = 0.

This inverse is given by —a := —1-a. Indeed we have (a @& —a) =
a-(1+ —-1) = 0. Uniqueness is clear if a = 0. Assume a # 0, if
b € RV* is such that a & b = 0, in particular b # 0. Then by distributivity
and multiplicative absorption b/a € k* and from b/a+1 = 0 we get b = —a.

We recover the value group by setting I' := RV* /k*. For the order in I,
one must define it as follows:

V[a],[b] eT,[a] < [b] & 1®b/a=1 < ad®b=a,
where [a] denote the classe of a modulo k*. By uniform additive absorption

and distributivity, this definition does not depend of the representative a and
b we have chosen. Indeed, if r, 7" € k*, one gets:

Iabr/ar =1 @r'/r@b/a:r'/rg 1®¢b/a=1.

10. (T, <) is an ordered group.
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Anti-symmetry of < follows from the definitions of £* and <, and tran-
sitivity is given by semi-associativity: Assume a @ b = a and b @ ¢ = b,
then either b = 0, ora®b # 0 and b® c # 0. In any case, a® c =
(adb)dc=ad(bdc)=adb = a. It'sa total order since for all
a,b € RV*, either a/b € k*, a/b®1 =1 or b/a® 1 = 1, which respectively
gives [a] = [b], [a] > [b] or [b] > [a]. We complete the valuation map by
setting valgy(0) = oo where oo > I

Note. e To avoid the use of conventions for 0, one might define the quo-
tient RV /k* as the set of orbits of RV under the action of k*. This
action preserve the multiplication in RV. We get that 0 is the unique
element in its orbit [0], which we denoted by oco. the definition of <
gives then that oo > T'.

e In [51], structures satisfying Axioms (1) and (8) are called pseudo-group
for the multiplication.

e One can replace (6) by:
(6")Vrek, 1+r €k 0+#1, and + is associative in k.

The fact that (k,-) is a multiplicative group can already be deduced
from (7). Let r,s € RV*. If s € k*, one has:

1@r-s:1@1/s@r:1/sgl+r:r

Hence, a product r - s is not in k if and only if s or r is not in k.

C.2 The Hahn field associated to RV

As we know, given any field k£ and any ordered abelian group I', there is
always a Henselian valued field with residue field k£ and value group I': the
Hahn field &£((T")). We can ask the following question: is any RV-structure
the RV-sort of a certain Henselian valued field? We define for that the Hahn
field associated to RV.

Definition C.2.1 (of the Hahn field RV("). The Hahn field associated to
the RV-structure (RV, k,T') and denoted by RV"), is defined by the following

set:

{(ay)yer | Vy € T'a, € RV, valgy(a,) € {7, 00} and supp(a,), is well-ordered }
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where supp(a,), = {y €' | a, # 0}.
It is endowed with the following laws:

(ay), + (by), = (a, ®b,),

(ay)y - (by)y = ( @ as - be),

o+e=y
val(a,), = minsupp(a, ),

An element (a,) e € RV(" is written 3 a, where the sign Y is purely
yer
formal.

Proposition C.2.2. The Hahn field RVY) is a Henselian valued field of
RV-sort RV.

Proof. The proof is straightforward. As in the Hahn field k((¢")), the difficult
part is to show that every non-zero element of RV(" has a multiplicative
inverse. We first show that it is a spherically complete ring. Then we will
deduce that it is an actual field.

e (associativity for +): if a,b,c € RV with valgy(a) = valgy(b) =
valgy(c), then (a @ b) @ c = a® (b @ c). Then associativity for +
in RV is clear as we sum componentwise.

e (commutativity for +): clear as © is commutative in RV.

e (neutral element for +): 0:= 3" 0 € RV is a neutral element, as
0 € RV is a neutral element for .

e (inverse for +): if a = > a,, the inverse of a is given by a = > —a.,.
yel’ yel’

The support being the same, it is an element of RV,

The multiplication in RV is well-defined: as the supports of a and b are

well-ordered, the sum € as - b, is finite. As before, it is associative since
d+e=y

all terms have same valuation. Then supp(a + b) C supp(a) + supp(b) and it

is easy to see that is a well-ordered set of I'. We have:

e (associativity for -): Let a = )Y az;,b = > b, c = ) c be three
ser eel’ cer
elements of RV(") | then a simple calculation gives (a-b)-c = @ (a;-
0+et+-C=7
b)-cc= @ as-(be-cc)=a-(b-c) (as - is associative in RV).
d+e+(=y
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e (commutativity for -): clear as - is commutative in RV.

e (neutral element for -): Let 1 € RV") be the element >, a, where

_JOify#0
|1ify=0
element for the multiplication in RV.

. It is a neutral element for - as 1 € RV is a neutral

(distributivity): Let a = >~ a,,b= > b,,c= ) c, be three elements
yel yel ~yer

of RV, then:

(a+b)-c = Z @(35@]35)'06:2 @(35'C6€Bb5~ce)

vl 0+e=v YET d+e=v
S Dty @b
vl 0+e=v YET d4e=7y
= a-c+b-c

(valuation): Homomorphism of groups is clear. The ultrametric in-
equality of the valuation is clear from the definition.

(spherically complete): We give here a usual diagonal argument. Let
(a');<x be a pseudo-Cauchy sequence in RV where X is any limit
ordinal. There is iy such that for all i < i < j < k, valgy(a’ — @’) <
valry (a/ — a*). For i > iy, we denote by v; the value valgy(a® — a'™1).
We define

al if »; > ~ for some 7 < A,
ay =
0 otherwise.

It is well defined by definition of the valuation (it does not depend on
the choice of i). Let a = ) a,, we get valgy(a — a’) > 7;. We have
proved that any pseudo-Cauchy sequence admits a pseudo-limit.

multiplicative inverse) Let ¢ = a, € RV(". Assume it has no
p ¥ Y
inverse and consider the set

A:={val(l —a-b) | be RV},

This set has no maximal element. Indeed, notice first if v = val(1—a-b),
then v < oo as a has no inverse. It follows that if ¢, € RV is the
coefficient of value v in ¢ = 1 —a - b, we have val(l —a - (b —c, -
av_all(a))) > 7. So A has no maximal element. Let (7, = val(1—a-b,))ven
be an co-final increasing sequence in A. Then, A is a limit ordinal.
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By definition, (a - b,), is pseudo-Cauchy with pseudo-limit 1. Then,
(by)ven is a pseudo-Cauchy sequence (as multiplication by a preserve
pseudo-Cauchy sequences). It converges to an element b in RV® . Then
val(l —a-b) > A. Contradiction.

We have proved that RV is a spherically complete valued field, so in
particular Henselian. FEvery element ZyaW e RV® can be written as
as(1+>_ a,/a;) where 6 = val(3__ a,). Clearly, we have that RV(RV®)) =
RV. O

Remarks C.2.3. e In the case where RV =k x I, one may easily show
that RV is isomorphic to the Hahn field k((T)).

e The characteristic of RVY is always equal to the characteristic of the
residue field k.
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