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Abstract. We study generalized homology and cohomology theories on the category of
manifolds. Ordinary (co-)homology including the cup product is characterized axiomatically.

1. Introduction

In this paper, we study generalized homology and cohomology theories on
the categories of smooth, PL, and topological manifolds. These are, by defini-
tion, absolute theories satisfying a Mayer-Vietoris property (see Section 4).

Recently, the first author constructed such a theory (of ordinary type) on
smooth manifolds [4]; he expected that there is a uniqueness theorem telling
that his theory is isomorphic to singular homology. Surprisingly, we could not
find such a result in the literature. The incentive for writing this note was to
provide a proof for this fact which we present in Section 5.

It turned out that some parts of our argument worked for generalized the-
ories as well; Section 4 is written in this greater generality: We find a functor
F which assigns to a generalized (co-)homology theory h∗ on manifolds a the-

ory ĥ∗ on the category C of countable CW complexes of finite dimension and
we show that this functor is full and faithful, that is that F is a bijection on
morphism sets. This reduces our original problem to a uniqueness result for
ordinary (co-)homology on the category C.

Sections 2 and 3 are preparatory; in Section 2 we collect some well-known
facts about CW structures on manifolds and generalize these in Section 3 to
triples.

In Section 6, we give, for certain coefficient rings, an axiomatic characteri-
zation of the cup product on the singular cohomology of manifolds.
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2. Countable CW complexes of finite dimension

Let DIFF be the category consisting of all smooth manifolds without bound-
ary and of the continuous maps between them. A manifold is of course assumed
to be Hausdorff and to admit a countable basis for its topology; it is not as-
sumed to be connected, but we require that all its components have the same
(finite) dimension. The objects of DIFF are simply called differentiable mani-
folds or DIFF manifolds.

Similarly, there are the categories PL of PL manifolds and TOP of topolog-
ical or TOP manifolds.

Fact 1. A topological n-manifold has the homotopy type of a countable CW
complex of dimension n.

Proof. Let M be a topological n-manifold. As observed in [5], it follows
from the work of Whitehead and Hanner that M has the homotopy type of a
countable CW complex K. From Theorems E and C of [8] we conclude then
that there is such a K of dimension n. Actually, Wall’s Theorem E requires
the hypothesis n ≥ 3; but for n ≤ 2 our assertion is anyway clear. �

Fact 2. A countable CW complex X of dimension n is homotopy equivalent
to a differentiable manifold of dimension 2n+ 1.

Proof. By Theorem 13 of [9], X has the homotopy type of a locally finite
polyhedron P of dimension n. We can embed P in R

2n+1. If U is the interior
of a regular neighborhood of P in R

2n+1 then U is a differentiable manifold
which is homotopy equivalent to X . (Concerning regular neighborhoods of not
necessarily compact polyhedra, cp. [1].) �

From these two facts, we conclude in particular:

Proposition 3. Let CAT ∈ {DIFF, PL, TOP}. A topological space X has
the homotopy type of a CAT manifold if and only if X has the homotopy type
of a countable CW complex of finite dimension. �

3. Triples

Next, we have to generalize the considerations of the previous section from
spaces to triples. For our purposes, a triple (X ;X1, X2) consists of a topological
space X and two subspaces X1 and X2 with X = X1 ∪X2. Of course, a map
of triples f : (X ;X1, X2) → (Y ;Y1, Y2) is a continuous map f : X → Y
with f(Xi) ⊆ Yi. We denote by f1 : X1 → Y1, f2 : X2 → Y2 and f3 :
X1 ∩X2 → Y1 ∩ Y2 the restrictions of f and put f0 := f . We say that f is a
pseudo-equivalence of triples if each fi is a homotopy equivalence, 0 ≤ i ≤ 3.
And we call f a homotopy equivalence of triples if there is a map of triples
g : (Y ;Y1, Y2) → (X ;X1, X2) such that gi is a homotopy inverse of fi for
0 ≤ i ≤ 3.

A triple (X ;X1, X2) is called a CW triple if X is a CW complex and X1

and X2 are subcomplexes of X . A basic fact which we will use repeatedly and
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tacitly asserts that a pseudo-equivalence between CW triples is a homotopy
equivalence ([7, Theorem (5.1)]).

We begin with the generalization of Fact 2, which is rather straightforward.
Let us adopt the following conventions:

A simplex is a closed linear simplex in some R
N . We write σ ≤ τ if σ is a

face of τ . By a simplicial complex K we understand a locally finite simplicial
complex in some R

N . The subset of R
N which is the union of the simplices of

K is denoted by |K|.

Lemma 4. Let K be a simplicial complex and let L1, L2 be subcomplexes of
K. We write

Z := |K|

Xi := |Li|, i = 1, 2,

X := |L1 ∪ L2|

D := |L1 ∩ L2|

and assume that Z is a PL-manifold of dimension n. Then there are regular
neighborhoods Ni of Xi in Z (i = 1, 2) with the following properties:

(i) N1 ∪N2 (resp. N1 ∩N2) is a regular neighborhood of X (resp. D) in
Z.

(ii) Denoting by Ui the interior Int Ni of Ni in Z, we have

U1 ∪ U2 = Int(N1 ∪N2), U1 ∩ U2 = Int(N1 ∩N2).

(iii) The inclusion (X ;X1, X2) → (U1 ∪ U2;U1, U2) is a homotopy equiva-
lence.

Proof. (i) For S ⊆ Z, let us write

N(S;K) := {σ ∈ K | there is τ ∈ K with σ ≤ τ and τ ∩ S 6= ∅}.

If K ′′ is the second barycentric subdivision of K, the sets

N1 := |N(X1,K
′′)|

N2 := |N(X2,K
′′)|

N := |N(X,K ′′)|

N3 := |N(D,K ′′)|

are regular neighborhoods of X1, X2, X and D in Z. It is obvious that N3 ⊆
N1 ∩N2 and N = N1 ∪N2. So we have only to show that N1 ∩N2 ⊆ N3.

Let σ ∈ N(X1,K
′′) ∩N(X2,K

′′). Then there exist τi ∈ K with σ ≤ τi and
τi ∩Xi 6= ∅ for i = 1, 2.

If τi ∩D 6= ∅ for some i, we have σ ∈ N(D,K ′′), hence σ ⊆ N3. Therefore
we may assume that

(⋆)

{

σ ∈ N(Xi \D,K
′′) for i = 1, 2,

σ ∩D = ∅.
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According to the definition introduced in [1], the set

Ñi := |N(Xi \D,K
′′)|

is a regular neighborhood of Xi mod D in Z, and Ñ := Ñ1 ∪ Ñ2 is a regular
neighborhood of X mod D in Z. By [1, Theorem 5.1], the inclusions

X \D →֒ Ñ \D and Xi \D →֒ Ñi \D

are homotopy equivalences. In particular, they induce bijections of the sets of
path components. By (⋆), we have σ ⊆ Ñi \D for i = 1, 2. This implies that

σ belongs to different path components of Ñ , which is absurd.
(ii) We have only to show that

Int(N1 ∪N2) ⊆ U1 ∪ U2.

Let x ∈ Int(N1 ∪ N2), and assume that x 6∈ U1 ∪ U2. Then we must have
x ∈ ∂N1 ∩ ∂N2 ⊆ N1 ∩ N2. By (i), N1 ∩ N2 is an n-manifold. Certainly,
x 6∈ Int(N1∩N2); hence x ∈ ∂(N1∩N2). Therefore, and since x ∈ Int(N1∪N2),
there is an open n-ball B around x contained in N1 ∪ N2 such that the set
S := B \ (N1 ∩N2) is connected and non-empty. Now S is the disjoint union
of S ∩ N1 and S ∩ N2. These are closed subsets of S. So we arrive at a
contradiction.

(iii) From (ii) and Theorem 5.1 of [1] it is obvious that

(X ;X1, X2) →֒ (N1 ∪N2;N1, N2)

is a homotopy equivalence. Using collars, this implies that

(X ;X1, X2) →֒ (U1 ∪ U2;U1, U2)

is a homotopy equivalence. �

Let us say that a triple (M ;U, V ) is a CAT manifold triple or simply a CAT
triple if M is a CAT manifold and U, V are open in M .

Proposition 5. Each CW triple (X ;X1, X2) with a countable CW complex
X of dimension n is homotopy equivalent to a differentiable manifold triple of
dimension 2n+ 1.

Proof. An easy modification of the proof of Theorem 13 of [9] yields a
homotopy equivalence between (X ;X1, X2) and a triple (P ;P1, P2) where P
is a locally finite polyhedron of dimension n and P1, P2 are subpolyhedra. We
embed P in R

2n+1 and apply Lemma 4. �

It is not completely clear to us to what extent Fact 1 can be generalized.
The following result is sufficient for our purposes:

Proposition 6. Given a topological manifold triple (M ;U, V ) of dimension n,

there exist another topological manifold triple (M̃ ; Ũ , Ṽ ), a pseudo-equivalence

from (M̃ ; Ũ , Ṽ ) to (M ;U, V ) and a CW triple (X ;X1, X2) which is homotopy

equivalent to (M̃ ; Ũ , Ṽ ) such that X is countable and

dimX = max{n+ 1, 6}.
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Proof. Since we may replace M by M × R
k, we may assume that n ≥ 5.

Let

D := U ∩ V,

Ũ := (U×]0, 1[) ∪ (D×]0, 3[),

Ṽ := (V×]4, 5[) ∪ (D×]2, 5[),

M̃ := Ũ ∪ Ṽ .

The projection (M̃ ; Ũ , Ṽ ) → (M ;U, V ) is a pseudo-equivalence. Denote by A

and B the closures of Ũ and Ṽ in M̃ . Then (M̃ ; Ũ , Ṽ ) is homotopy equivalent

to the triple (M̃ ;A,B). Since dim M̃ ≥ 6 and since A∩B is a clean submanifold

of M̃ in the sense of [3], Theorem 2.1 of Essay III of [3] yields that M̃ is a
TOP handlebody on A ∩B and that A ∩B is itself a TOP handlebody. This
implies our assertion. �

4. Generalized homology and cohomology theories

Let CAT be one of the categories DIFF, PL, or TOP. We consider the
category HCAT of generalized homology theories on CAT. An object h∗ of
HCAT consists, by definition, of a sequence (hn)n∈Z of covariant homotopy
functors on CAT with values in the category A of abelian groups and, for each
CAT triple (M ;U, V ), of natural homomorphisms

∆ = ∆U,V : hn(M) → hn−1(U ∩ V )

which make the corresponding Mayer-Vietoris sequence exact.
Of course, a morphism α between two objects h∗ and k∗ of HCAT consists

of natural transformations αn between hn and kn such that

αn−1∆ = ∆αn

for each CAT manifold triple; we write αM : hn(M) → kn(M).
Similarly we have the category H∗

CAT of generalized cohomology theories on
CAT.

Let C be the category consisting of all countable CW complexes of finite
dimension and the continuous maps between them. Let HC and H∗

C be the
categories of generalized (co-)homology theories on C, defined exactly as HCAT

and H∗
CAT by using CW triples instead of CAT triples.

We wish to define functors

F : HCAT → HC , H∗
CAT → H∗

C

h∗ 7→ ĥ∗, h∗ 7→ ĥ∗.

We consider only homology; the case of cohomology theories is entirely
similar.

For each object X of C we choose once and for all an object X̂ of CAT, a
homotopy equivalence ϕX : X → X̂ , and a homotopy inverse ψX : X̂ → X of
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ϕX . We put

ĥn(X) := hn(X̂).

For a morphism f : Y → X in C, we define

f∗ := (ϕXfψY )∗ : ĥn(Y ) → ĥn(X).

This, so far, gives a homotopy functor ĥn : C → A.
For a CW triple (X ;Y, Z) with X ∈ C, we choose by Proposition 5 a homo-

topy equivalence f from (X ;Y, Z) to a CAT triple (M ;U, V ) and define

∆̂ = ∆̂Y,Z : ĥn(X) → ĥn−1(Y ∩ Z)

to be the composition

∆̂ := (f3ψY ∩Z)−1
∗ ◦ ∆U,V ◦ (fψX)∗.

It is easy to check that ∆̂ is well-defined, natural, and that the corresponding
Mayer-Vietoris is exact.

All this means that we now have a generalized homology theory ĥ∗ ∈ HC .
Finally, given a morphism α : h∗ → k∗ in HCAT, we obtain a morphism

α̂ : ĥ∗ → k̂∗

as follows: For X ∈ C, define α̂ : ĥn(X) → k̂n(X) to be the homomorphism

α
X̂

: hn(X̂) → kn(X̂). The following is now obvious:

Proposition 7. By h∗ 7→ ĥ∗ we obtain a functor F from HCAT to HC. Simi-
larly for cohomology. �

Proposition 8. The functor F is full and faithful, i.e. F is a bijection on
morphism sets. In particular, two generalized homology theories h∗ and k∗ are

isomorphic in HCAT if and only if ĥ∗ and k̂∗ are isomorphic in HC . Similarly
for cohomology.

Proof. Let h∗, k∗ ∈ HCAT and let

ω : ĥ∗ → k̂∗

be a morphism in HC . We wish to define a morphism

ω̌ : h∗ → k∗.

For a manifold M , choose X ∈ C and a homotopy equivalence ρ : M → X .
We define

ω̌M : hn(M) → kn(M)

to be the composition

hn(M)
(ϕ

X
ρ)∗

−→ hn(X̂)
=
−→ ĥn(X)

ω
X−→ k̂n(X)

=
−→ kn(X̂)

(ϕ
X

ρ)−1

∗

−→ kn(M).

This does not depend on the choice of X and ρ. It is obvious that ω̌M is
natural with respect to continuous maps between manifolds. From Proposition
6, we conclude that ω̌∆ = ∆ω̌ for CAT triples. Hence, ω̌ is a morphism from
h∗ to k∗. From the definition, it is immediately clear that ω 7→ ω̌ is the inverse

of the map α 7→ α̂ from mor(h∗, k∗) to mor(ĥ∗, k̂∗). �
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Remark. On C, as on other categories of CW complexes, there is no essential
difference between absolute homology theories in the sense of HC and relative
homology theories. How to pass between these two aspects is generally known
and will be used in the next section without further elaboration.

5. Axioms for ordinary (co-)homology on manifolds

A generalized homology theory h∗ ∈ HCAT is called an ordinary homology
theory on CAT if it satisfies the following three additional properties:

• hn = 0 for n < 0.
• The Dimension Axiom [2] is satisfied, i.e. hn(∗) = 0 for all n 6= 0.
• h∗ is additive [6] in the sense that for a manifold M of dimension 0,

each group hn(M) is canonically isomorphic to
⊕

x∈M

hn({x}).

We fix a reference point P0 and call the group h0(P0) the coefficients of the
theory.

An ordinary cohomology theory on CAT is defined correspondingly; addi-
tivity means that for a manifold M of dimension 0, each group hn(M) is

canonically isomorphic to
∏

x∈M

hn({x}).

Lemma 9. Let h∗ be an ordinary homology theory on CAT. Suppose that the
manifold M is a topological sum, M =

∐

i Mi. Then the groups hn(M) are
canonically isomorphic to

⊕

i hn(Mi).

Proof. Step 1. Suppose that each Mi has the homotopy type of a sphere. In
this special case, the assertion follows by induction on the dimension, using
the standard Mayer-Vietoris argument.

Step 2. Now let M be an arbitrary manifold. In the case of TOP, we replace
M by M × R

k and assume that dimM ≥ 6. We use once more handlebody
decompositions. Let us say that M is of type r if M can be obtained by
attaching an open collar to a manifold M ′ (possibly with boundary, of course)
such that M ′ has a decomposition with all handles of index ≤ r. We proceed
by a straightforward induction on the type of M , using Step 1. �

Proposition 10. Let h∗ be an ordinary homology theory on CAT. We denote
singular homology theory on CAT with the same coefficients as h∗ simply by
H∗. For each isomorphism α0 : H0(P0) → h0(P0), there exists a unique iso-

morphism of homology theories α : H∗

∼=
−→ h∗ (this means in particular that

α∆ = ∆α) inducing α0 on the coefficients. A corresponding result holds for
cohomology theories.

Proof. Again we consider only homology. Applying the functor F of Proposi-

tion 7, we obtain from h∗ a homology theory ĥ∗ ∈ HC . Of course, we can also
form Ĥ∗; this is isomorphic to singular homology H∗, considered as an element
of HC . By Proposition 8, it suffices to show that there is a unique isomorphism

ω : H∗

∼=
−→ ĥ∗ in HC inducing α0 on the coefficients.
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To do this, we extend ĥ∗ to pairs (see the Remark at the end of Section
4) and obtain a homology theory satisfying all seven axioms of Eilenberg-
Steenrod. Then we can apply the following lemma. �

Lemma 11. Let us consider ĥ∗ and H∗ as homology theories in the sense
of Eilenberg-Steenrod on the admissible category Ĉ whose objects are the pairs
(X,Y ) where X is an object of C and Y is a subcomplex of X. Given an

isomorphism α0 : H0(P0) → ĥ0(P0), there exists a uniquely determined iso-

morphism ω : H∗ → ĥ∗ (of homology theories on pairs) which equals α0 on the
coefficients.

Proof. Let C′ be the subcategory of Ĉ consisting of pairs (X,Y ) where X is
a locally finite simplicial complex of finite dimension. As observed by Milnor
[6] in a similar situation, the proof given in [2, pages 76 - 105], applies with-
out essential change and provides us with the desired natural isomorphism on
C′. (This requires Lemma 9.) Then we use the fact that each object of Ĉ is
homotopy equivalent to an object of C′. �

6. Multiplicative structures on ordinary cohomology

Having characterized axiomatically ordinary homology and cohomology on
manifolds, we now turn to axioms for the ring structure on ordinary cohomol-
ogy.

Let R be a commutative ring with 1. We consider singular cohomology
H∗(. ;R) as an element of H∗

CAT. A multiplicative structure on H∗(. ;R) is, by
definition, a natural multiplication • on the R-module H∗(M ;R) for all CAT
manifolds M which gives H∗(M ;R) the structure of a graded R-algebra and
which has the following property:

λ•x = x•λ = λx

for x ∈ H∗(M ;R) and λ ∈ H0(M ;R) = R if M is connected. (If M is not
connected, it is obvious what we require instead.)

To obtain uniqueness, we need that a certain normalization axiom is satis-
fied. For a closed connected oriented n-manifold M , let

ιM ∈ Hn(M ;R) = Hom(Hn(M ; Z), R)

be the homomorphism sending [M ] to 1. We call a multiplicative structure •

normalized, if for all n,m ∈ N we have

pr∗1(ιSn)•pr∗2(ιSm) = ιSn×Sm in H∗(Sn × Sm;R).

Proposition 12. Let R be one of the rings Z or Z/nZ with n ∈ N and let •

be a normalized multiplicative structure on the theory H∗(. ;R) ∈ H∗
CAT. Then

• equals the usual cup product.

Proof. Let M be a manifold, x ∈ Hn(M ;R) and y ∈ Hm(M ;R). We have
to show that x•y = x ∪ y. We may assume that n,m > 0. The cohomology
classes x and y can be represented by maps into Eilenberg-MacLane spaces;
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these can be replaced by finite skeleta which lie, up to homotopy, in CAT. So
we are reduced to a ”universal” situation. This, in turn, can be compared with
the spheres Sn and Sm so that we can apply the normalization axiom. �

Remark. Note that we do not require that a normalized multiplicative struc-
ture is graded commutative. By the proposition, this is automatically the case
for the coefficients in question.
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