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Summary 

 

Chitosan, a linear polysaccharide composed of N-acetylglucosamine (GlcNAc) and glucosamine 

(GlcN), is commercially produced from chitin by deacetylating shrimp-chitin chemically and used for a 

wide range of applications, including medicine and plant protection. The term chitosan refers to a 

group of oligomers and polymers that differ in their degree of polymerization (DP), their degree of 

acetylation (DA) and their pattern of acetylation (PA), the last one being the sequence of GlcNAc and 

GlcN units. The parameters DP and DA influence the physicochemical properties and biological 

activities of chitosans; therefore, it is proposed that this is also true for PA. In nature, chitosan is 

typically generated from chitin by enzymes that catalyze the hydrolysis of the acetyl group, named 

chitin deacetylases (CDAs, EC 3.5.1.41). CDAs occur in insects, fungi and in chitin-degrading bacteria 

where they are part of the chitin catabolic pathway. In fungi, they function either in the cell wall 

formation in the case of zygomycetes, or in the modification of the fungal cell wall chitin, later in 

development. For plant pathogenic fungi, CDAs play an important role during infection by influencing 

the plant-pathogen interactions. The conversion of the fungal cell wall chitin into chitosan protects the 

polymer from plant chitinase and additionally, the plant response reaction to chitin oligomers is 

reduced by a partial deacetylation.  

CDAs have been isolated directly from fungus or have been heterologously expressed for biochemical 

characterization. CDAs investigated so far have been grouped in two types: intracellular CDA from 

zygomycetes acting processively and extracellular CDA from other phyla with a non-processive mode 

of action. Although the mode of action has only been solved for one CDA of each group, it is 

conceivable that the use of CDA results in chitosan products with a non-random PA and therefore 

different from the chitosan chemically produced. Despite their name, CDAs act on the insoluble 

crystalline chitin to a minimal extent only, depending on the crystallinity of the chitin preparation, 

because the deacetylation is limited to the surface of the chitin particles. Scientific research is aiming 

for novel CDAs producing chitosans by hydrolyzing crystalline chitin and thereby generating water-

soluble chitosan with defined, non-random PAs. 

 

The topic of this thesis is a special type of CDAs differing from biochemically characterized CDAs, 

because they possess a multi-domain structure containing additional chitin binding domains (CBDs). 

These domains occur in chitinases as well and are described to enhance the binding towards 
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crystalline chitin. In order to characterize novel CDAs, two candidates were selected for heterologous 

expression, one from Botrytis cinerea (BC95) and one from Podospora anserina (PaCDA). BC95 was 

identified as one of six putative CDA genes in the B. cinerea genome and expression studies for these 

genes during conidia germination revealed an upregulation of BC95 in fructose containing medium.  

Heterologous production of BC95 revealed challenges that were most probably due to the large 

amount of disulfide bonds (14) in the CBDs and the catalytic domain of the enzyme. Using 

Schizosaccharomyces pombe and Escherichia coli, BC95 was not produced at all, whereas the 

production in Hansenula polymorpha was partly successful. Despite the secretion signal, the presence 

of BC95 was limited to the intracellular fraction, because BC95 was not completely processed and not 

secreted by H. polymorpha. The low mobility during SDS-PAGE analysis with multiple bands 

appearing above 75 kDa suggested that the MF-α1 pre-propeptide was not cleaved and that the 

protein was highly glycosylated. CDA activity tested on different chitinous substrates was not 

demonstrated; thus, it remained unclear if BC95 is a CDA or if the inactivity was caused by missing or 

incorrect processing. 

 

In contrast to BC95, PaCDA was successfully produced in H. polymorpha, being the first CDA 

containing CBDs for which CDA activity was demonstrated. PaCDA was identified by a protein 

sequence alignment of the catalytic polysaccharide deacetylase domain (PDD) sequences and 

comparing biochemically characterized CDAs to sequences of putative CDAs available in databases 

and possessing a PDD/CBD multi-domain structure. PaCDA was purified from the culture supernatant 

and biochemical characterization of PaCDA revealed similarities to the well-characterized 

Colletotrichum lindemuthianum CDA, for example in the presence of a cofactor (Zn
2+

), the pH (8.5) 

and temperature optimum (55°C). The role of the CBDs for PaCDA was investigated by constructing 

three deletion variants lacking the N-terminal (ΔN), the C-terminal (ΔC) and both domains (ΔNC). The 

production and purification of PaCDA-ΔC and PaCDA-ΔNC failed, hence, only PaCDA-ΔC was 

compared to the full length enzyme. The comparison revealed slight differences in the temperature 

optimum and mode of action on chitosan, but the same activity on colloidal chitin. The amounts of 

acetate released by PaCDA using insoluble chitins demonstrated that the deacetylation was limited to 

GlcNAc units accessible on the surface of the chitin particles. 
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In conclusion, the CBDs might help the PaCDA to stay close to the substrate for a fast deacetylation of 

accessible GlcNAc units, but a disruption of the chitin crystal and the conversion to water-soluble 

chitosan was impossible. To investigate the mode of action of PaCDA, chitosan was used as substrate 

and the enzyme was found to be non-processive; furthermore a specific non-random PA was 

produced. This PA was analyzed by enzymatic/mass spectrometric fingerprinting as well as 
13

C-NMR 

and contained less GlcNAc units next to each other than a chemically produced chitosan with the 

same DP and DA. Preliminary comparative experiments on the biological activity of these two 

chitosans differing only in PA revealed no differences for the oxidative burst assay using suspension 

culture rice cells, but differential anti-microbial activities towards Fusarium graminearum and 

Lactobacillus plantarum. To my best knowledge, this non-random, alternate-dominated PA created by 

PaCDA in this study is the first described so far and represents a novel characteristic for further 

investigations on chitosan properties. 
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1. Introduction 

1.1. Chitin and Chitosan 

In the past decades an ongoing trend to natural products became apparent and induced the demand 

for sustainable and renewable resources. Polysaccharides are widely used and one of the most 

abundant biomolecules present in all kingdoms, which include cellulose and pectin from plants, 

carrageenan and alginate from algae, xanthan produced by bacteria as well as chitin and chitosan 

from arthropods or fungi. Chitosan is the deacetylated derivative of chitin, which is a widely spread 

polysaccharide initially discovered in fungi [Muzzarelli et al., 2012] and commercially isolated from 

shrimp shells [Vázquez et al., 2013]. 60 years after its first discovery [Kreger, 1954], chitosan attracted 

much attention nowadays, as seen by an exponentially increasing number of publications on chitosan 

oligomers and polymers [Aranaz et al., 2009]. Scientific research addresses the broad application 

spectrum of chitin and chitosan based on their biodegradability, biocompatibility and biological 

activities as natural and biofunctional polymers [Ravi Kumar, 2000].   

Chitosan-derived dietary supplements including glucosamine are the highest volumes of chitosan 

products consumed worldwide [Sandford, 2002]. Chitosan is also applied in large amounts for other 

functions, like wastewater treatment [Bhatnagar and Sillanpää, 2009], plant protection [El Hadrami et 

al., 2010; Hadwiger, 2013] and food preservation [Aider, 2010], especially in Asia [Kurita, 2006]. In 

contrast, medical applications of chitosan are explored intensively for profitable products [Aam et al., 

2010; Park and Kim, 2010], including nanomaterials [Shukla et al., 2013], wound healing [Jayakumar 

et al., 2011; Muzzarelli, 2009] and drug delivery [Hu et al., 2013], also with chemically modified 

chitosans [Zhang et al., 2010]. Despite the wide range of chitosan application, we need to progress in 

understanding the biological mechanisms of chitosan, because they are based on the different 

properties of this saccharide molecule family. The relation of the physicochemical properties of chitin 

and chitosan to their biological properties and applications are comprehensively discussed [Aranaz et 

al., 2009]. 

 

1.1.1. Structure and properties 

Chitin and chitosan are linear polysaccharides consisting of β-1,4-linked units similar to  cellulose. 

Chitin is composed of N-acetylglucosamine (GlcNAc or A) units only, but in the case of chitosan, 

glucosamine (GlcN or D) units are present as well. Another definition is based on the solubility; as a 

chitin may not be 100% acetylated, it is still insoluble due to strong intermolecular hydrogen bonding 
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[Gardner and Blackwell, 1975], while chitosan with up to 70% GlcNAc units is soluble in weak acids 

[Roberts, 1992]. Solubility [Pillai et al., 2009], solution properties and polyelectrolyte effect of the 

protonated amino group are important qualities for the usability [Anthonsen et al., 1993]. These 

properties are influenced by parameters like the molecular weight and the degree of acetylation (DA) 

of chitosan that have to be considered during the production. The DA can be regulated by a timed or 

stepwise chemical deacetylation of chitin [Sannan et al., 1976] or more precisely by a complete 

deacetylation to a DA about 0% [Domard and Rinaudo, 1983] and a subsequent reacetylation with an 

exact amount of acetic anhydrite calculated for the intended DA [Lavertu et al., 2012; Vachoud et al., 

1997]. The size of the molecules can also be modified by chemical or enzymatical depolymerization 

[Jeon et al., 2000] and is described by the degree of polymerisation (DP) that is the number of units 

(Fig. 1A).  

 

1.1.2. Biological activities 

In many publications it has been reported that the DP and DA are greatly influencing the biological 

activities, so only some examples can be included here. A polymeric chitosan with a medium DA of 

35% caused the strongest resistance reactions when injected to wheat leaves [Vander et al., 1998], 

while the anti-fungal activity of chitosan oligomers were the highest with the lowest DA [Oliveira et al., 

2008]. Both values influenced the callose formation of Catharanthus roseus cells indicating that the 

negative charges of the amino groups are involved in interactions to the cell membranes [Kauss et al., 

1989]. It also has become evidence that the properties of chitosan not only depend on DA and DP, but 

also on source and preparation method [Qun et al., 2007; Tolaimate et al., 2003]. For applications of 

chitosans to plant or human cells and tissues, the presence of chitinases usually possessing a specific 

cleavage activity has to be considered. Thus, the hydrolytic activity and the resulting products depend 

on the sequence of units present in the polymer (Fig. 1B). Hence, a third chitosan parameter of 

becomes important for bioactivity that is the pattern of acetylation (PA).  
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Fig. 1: Chitin and chitosan, A: Three-dimensional chitosan matrix, modified after El Gueddari et al. [2007], 
illustrating the properties degree of polymerization (DP), degree of acetylation (DA) and pattern of acetylation 
(PA) based on GlcNAc (green) and GlcN units (red).  Chitosans assayed for antimicrobial [Oliveira et al., 2008] 
and plant eliciting activities [Vander et al., 1998] were produced chemically and possess a random PA [Weinhold 
et al., 2009]. B: Cleavage of chitosan with the same DP (20) and the same DP (50%), but different PAs 
(random, blockwise and regular) by a chitinase that hydrolyzes only between two GlcNAc units (green) result in 
different products or no cleavage in the case of a strictly regular PA  

 

 

1.1.3. Pattern of acetylation 

The sequence of acetylated and non-acetylated units it can be determined for oligomers by tandem 

mass spectrometry (MS
n
) applying post source decay fragmentation comparable to peptide 

sequencing [Bahrke et al., 2002], even in complex mixtures [Haebel et al., 2007]. A new and simple 

method not requiring MS equipment is the enzymatic sequencing using N-acetylglucosaminidase, 

glucosaminidase and thin layer chromatography [Hamer et al., 2014]. While MS is widely used for the 
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analysis of chitosan oligomers including the PA determination, this method is not suitable for chitosan 

polymers without hydrolysis, which are usually investigated by nuclear magnetic resonance (NMR) 

measurements. 
1
H-NMR is the validated and best method to determine DA by calculating the 

proportion of the peak representing the hydrogen of the acetate group to the peak areas of the 

hydrogen attached to the six carbon atoms in one unit [Hirai et al., 1991; Kasaai, 2010; Lavertu et al., 

2003]. Using 
13

C-NMR, the general randomness can be analyzed by comparing the relative intensities 

of the four possible diads AA, AD, DA and DD within the polymer describing the distribution of 

neighboring units [Kumirska et al., 2009; Vårum et al., 1991]. Although there has been controversy on 

chemical chitosan preparation [Aiba, 1991; Sannan et al., 1976; Varum et al., 1990], it has been 

shown that the PA of polymers is random, regardless which of the different preparation methods, 

homo- and heterologous deacetylation [Chang et al., 1997] or reacetylation [Trombotto et al., 2008], is 

applied. This has been confirmed by Weinhold et al. [2009], who also developed a formula to describe 

the pattern as value PA between 0 and 2. Another possibility to analyze the PA is enzymatic/mass 

spectrometric fingerprinting with sequence-specific enzymes and comparative analysis of resulting 

products [Lopatin and Ilyin, 1995]. These analytical methods help to analyze enzymatic-modified 

chitosan with defined PA and comparing to chemically produced chitosans possessing random PA. 

Therefore, chitin deacetylases (CDAs) might be a valuable tool converting of chitin into chitosan, due 

to the regioselectivity of enzymatic reactions based on the subsite specificity and mode of action 

[Tsigos et al., 2000]. 

 

1.2. Chitin deacetylases 

CDAs (EC 3.5.1.41) catalyze the hydrolytic cleavage reaction of the N-acetamido groups of GlcNAc 

residues in chitin and chitosan by releasing acetate, which classifies the enzymes into the 

carbohydrate esterase family 4 (CE4) of the Carbohydrate Active Enzymes database (CAZY, 

http://www.cazy.org) [Lombard et al., 2014]. Responsible for this reaction is the catalytic center with 

five conserved motives in the polysaccharide deacetylase domain (PDD), also named NodB homology 

domain due to the occurrence in the chitooligo-saccharide deacetylases of rhizobia [John et al., 1993], 

which is also present in peptidoglycan deacetylases and acetylxylan esterases [Caufrier et al., 2003]. 

The CDA enzyme was first described for the fungus Mucor rouxii in 1975 by Araki and Ito being active 

on glycol chitin, colloidal chitin and chitin oligomers DP 3-5  but not towards other substrates with 

GlcNAc residues. Later it was also found in bacteria, insects and several fungi; CDAs from fungi being 
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the most studied also in terms of biochemical properties, modes of action and biological roles as 

reviewed in Zhao et al. (2010).  

 

1.2.1. Occurrence of CDAs and role in nature  

For marine bacteria the role of chitin oligosaccharide deacetylases is part of the chitin catabolic 

pathway [Keyhani and Roseman, 1999] and the enzymes of some Vibrio species have been 

characterized, including V. cholerae [Li et al., 2007] and V. alginolyticus [Li et al., 2007]. As an 

example, V. parahaemolyticus degrades chitin using chitinase into dimers and then the chitin 

oligosaccharide deacetylase acts specifically on the reducing end [Kadokura et al., 2007]. The 

resulting product GlcNAc-GlcN functions as a signaling molecule for other deacetylating Vibrio 

bacteria by chemotactically sensing the presence of chitin [Hirano et al., 2011]. 

In contrast, CDAs of insects are not limited to a single role, because many different paralogous CDAs 

with the same localization are present in insects [Arakane et al., 2009]. Despite many studies on the 

function of putative CDA genes in gut physiology and development, the enzymatic activity of the CDAs 

has been confirmed only in some cases [Toprak et al., 2008; Zhong et al., 2014]. 

 

Like arthropods, fungi synthesize chitin as structural component and therefore these organisms 

express enzymes for synthesis, modification and degradation. In the case of zygomycetes chitosan is 

the mayor component of the cell wall [Bartnicki-Garcia, 1968] and believed to be synthesized by a 

tandem process of chitin synthase and chitin deacetylase as shown on M. rouxii [Davis and Bartnicki-

Garcia, 1984]. A M. rouxii CDA was one of the first being purified and characterized [Kafetzopoulos et 

al., 1993] and its processive mode of action on polymers [Martinou et al., 1998] and oligomers [Tsigos 

et al., 1999] is explained by its role in nature. Also many other zygomycete CDAs, regarded as 

“intracellular type” based on their function, have been purified from culture supernatant or mycelium 

and investigated [Amorim et al., 2005], from species like Absidia coerulea [Gao et al., 1995], 

Gongronella butleri [Maw et al., 2002], Mortierella sp. DY-52 [Kim et al., 2008; Zhong et al., 2014], 

Rhizopus circinans [Gauthier et al., 2008] and R. nigricans [Jeraj et al., 2006]. 

In contrast to zygomycetes, yeast cell walls contain only small amounts of chitosan and CDAs are not 

necessary for vegetative growth, but for the cell walls of ascospores, as reported for Saccharomyces 

cerevisiae [Christodoulidou et al., 1999] and Schizosaccharomyces pombe [Matsuo et al., 2005]. Both 
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CDAs of S. cerevisiae have also been purified and characterized [Martinou et al., 2002; Mishra et al., 

1997]. 

 

The first reported CDA activity from a non-zygomycete fungus was found in the plant pathogen 

Colletotrichum lindemuthianum [Kauss et al., 1983] and it has been proposed early, that this activity, 

also present in the pathogenic relative C. lagenarium, plays a role in host-pathogen interaction by 

escaping the plant chitinases and lowering the elicitor activity of emerging oligomers [Stegrist and 

Kauss, 1990]. This hypothesis was supported by a study that referred increased CDA activity of the 

rust Uromyces viciae-fabae during the development of infection structures [Deising and Siegrist, 

1995]. A visual proof of the conversion of surface chitin into chitosan could be shown for the three 

species Puccinia graminis f. sp. tritici, U. fabae and C. graminicola by differential fluorescence staining 

of chitin and chitosan [El Gueddari et al., 2002]. This conversion seems to be important for the 

success of fungal infection, because resistant wheat was found to counteract fungal CDA activity 

[Maksimov et al., 2011]. Three CDAs expressed during vegetative growth of the opportunistic 

pathogen Cryptococcus neoformans may also function in a similar manner during the infection of 

humans, which have chitinolytic enzymes as well [Baker et al., 2007]. For the of CDA the 

entomopathogenic fungus Metarhizium anisopliae a dual role is suggested: the deacetylation of the 

own chitin and the weakening of the insect cuticle [Nahar et al., 2004]. 

On the other hand, the function of CDAs found in non-pathogenic ascomycetes like Penicillium 

oxalicum [Pareek et al., 2012] or Aspergillus nidulans [Alfonso et al., 1995] is not that clear, whereas 

for the CDA of the basidiomycete Flammulina velutipes could be linked to the fruiting body 

development [Yamada et al., 2006]. This CDA is also produced heterologously in Pichia pastoris for 

characterization studies [Yamada et al., 2008]. 

 

1.2.2. Characterization of CDAs 

Many CDAs have been isolated directly from the fungus itself or have been heterologously expressed 

in P. pastoris or Escherichia coli including. Examples are the A. nidulans CDA in the E. coli pET vector 

system [Wang et al., 2009] and the most studied C. lindemuthianum CDA in both expression systems 

[Shrestha et al., 2004; Tokuyasu et al., 1999]. In case of the M. rouxii CDA, the processive mode of 

action on oligomers and polymers could be solved [Martinou et al., 1998; Tsigos et al., 1999], whereas 

the deacetylation mode of C. lindemuthianum CDA differs clearly from the zygomycete CDA by 
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deacetylating single GlcNAc units more randomly [Tsigos et al., 2000]. Detailed analysis of oligomer 

deacetylation led to the model of four subsites with different affinities [Hekmat et al., 2003; Tokuyasu 

et al., 1997; Tokuyasu et al., 2000a]. This finding could be supported by the crystal structure, which 

was the first for a CDA, revealed insights into the enzyme mechanism and confirmed the role of the 

Zn
2+

 cofactor [Blair et al., 2006]. 

 

Up to now, investigated CDAs vary naturally in a certain range of optimal conditions for activity like pH, 

temperature and presence of divalent cations, as well as in their molecular weights due to N-

glycosylation [Zhao et al., 2010]. It should be stated, that the values in literature are often difficult to 

compare, because of the variety of methods and substrates for CDA activity measurements. The most 

common is the estimation of acetate release, either enzymatically by three coupled reactions 

[Bergmeyer, 1974; Martinou et al., 1995] or by gas chromatography [Aye et al., 2006] and the use of 

substrates with radiolabeled N-acetyl groups is still applied [Araki and Ito, 1975]. On the other hand 

the quantification of free amino groups is possible with fluorescamine [Blair et al., 2005] and 

zymogramms can also be generated by using glycol chitin in polyacrylamide gels and Calcofluor white 

staining [Trudel and Asselin, 1990]. Besides the partly O-hydroxyethylated derivative glycol chitin other 

soluble substrates are chitin oligomers DP 2-6 and chitosans with DA 30-60%. The CDA activity on 

crystalline substrates like α- and β-chitin is commonly low and can be enhanced by treating the 

material for reduced crystallinity, like colloidal chitin [Beaney et al., 2007] or “superfine” chitin, and 

thereby for a better accessibility of the acetyl groups [Win and Stevens, 2001]. In contrast to 

chitinases, CDAs seem to be only capable of acting on the surface of chitin particles [Aye et al., 2006]. 

Hydrolytic enzymes of insoluble substrates like cellulases and chitinases often contain additional 

domains for carbohydrate-binding and improved hydrolysis. Interestingly, there are CDA genes 

available with this modular structure in databases and described for some insect species [Dixit et al., 

2008; Wang et al., 2006] as well as for the fungus Magnaporthe grisea [Kamakura et al., 2002], 

however, the activity of these CDA hasn‟t been explored, yet. 
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1.3. Carbohydrate-binding domains 

In general, carbohydrate-binding modules (CBMs) represent certain protein folds with a binding activity 

towards sugar molecules. Due to the fact that folds are more conserved than amino acid sequences, 

CBMs are classified in families according to their fold in the CAZY database [Lombard et al., 2014], 

since they are often associated with carbohydrate active enzymes. These non-catalytic domains are 

also listed in the Pfam database, which is based on hidden Markov model of multiple sequence 

alignments [Finn et al., 2014]. After three-dimensional structures of different folds have been solved, 

the CBM families were sorted in three types by the position of the substrate-binding aromatic residues 

for stacking with the sugar rings by van der Waals interactions. CBMs of type A build a planar layer of 

aromatic rings for the interaction with crystalline surfaces. Modules of type B form an extended groove 

that targets several sugar units on a single polysaccharide chain and type C is characterized by 

binding small sugar molecules in a more pocket-like structure and forming hydrogen bond interactions 

as well [Boraston et al., 2004; Hashimoto, 2006].  

These modules are mainly found in carbohydrate-active enzymes that are multidomain proteins and 

occur solely or in tandem in binding proteins such as lectins. The role of CBMs in hydrolytic enzymes 

like cellulases and chitinases is to recognize and bind the crystalline substrates and thereby 

concentrate these effectively on the surface for an enhanced activity [Guillén et al., 2010]. In some 

cases it was reported, that CBMs are able to disrupt the substrate without hydrolysis [Shoseyov et al., 

2006], e.g. on cellulose fibers [Din et al., 1991]. For another cellulose-binding module it has then been 

shown to change the cellulose fibril structure by weakening the hydrogen bond network [Wang et al., 

2008a]. Another example is the chitin-binding protein CBP21 from chitinolytic Serratia marcesens, 

which helps the bacterium‟s chitinases by loosening the surface and increasing the substrate 

accessibility [Vaaje-Kolstad et al., 2005].   

 

1.3.1. Chitin binding domains 

Within the number of CBMs described until now, there are 12 families with chitin-binding activity 

demonstrated at least in one case. These chitin binding domains (CBDs) occur in lectins common to 

plants [Damme et al., 1998], chitin recognition proteins, which are often associated with the Lysin Motif 

[Buist et al., 2008] and in chitinases. The binding properties of CBDs in bacterial [Blaak and Schrempf, 

1995; Hashimoto et al., 2000] Huang et al., 2006] and insect chitinases [Arakane et al., 2009] have 
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been investigated by analysis of truncated enzymes, demonstrating that CDBs are not absolutely 

required for hydrolysis, but strongly improve the binding of insoluble chitin.  

Amongst plant [Beintema, 1994] and fungal chitinases [Hartl et al., 2012] the hevein-like CBD of CBM 

family 18 is the most prevalent, occurring only in eukaryotes and also referred as „chitin binding 1‟, as 

seen in Pfam. The structure of CBM18, which has its own Hevein fold family, is known from wheat 

germ agglutinin (WGA) [Wright et al., 1991]. To date only one crystal structure of CBM18 within a 

chitinase is available and yet the proline- and threonine-rich linker region is predicted to be flexible 

[Kezuka et al., 2010]. The domain itself is about 40 amino acids small and the three-dimensional 

structure is stabilized by four disulfide bonds formed by the characteristic cysteine residues [Beintema, 

1994].  

After it had been demonstrated that a CBM18 of Nicotiana tabacum chitinase has chitin binding activity 

and is responsible for high affinity to the crystalline substrate [Iseli et al., 1993], in 2001 Limón and 

colleagues showed that the addition of the plant CBD to a fungal chitinase resulted in higher hydrolytic 

activity towards insoluble chitins. Other chimeric chitinases showed similar results [Huang et al., 2009; 

Matroodi et al., 2013; Neeraja et al., 2010]. CBDs of chitinases are becoming widely studied, however, 

their biochemical role in CDAs has not yet been investigated, although the presence of these 

sequences is known [Dixit et al., 2008; Luschnig et al., 2006]. Assuming a similar role for CDA like for 

chitinases, CBDs could enhance the deacetylation activity on crystalline chitin substrates. Databases 

contain a number of fungal CDA sequences inclosing one or more family 18 CBDs, which were to my 

knowledge not topic of any further research and therefore a good source for novel enzymes to be 

characterized biochemically. 
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1.4. Aim of the thesis 

Topic of the present doctoral thesis is the study of chitin deacetylases that feature one or more chitin 

binding domains in a multi-domain structure. Investigating these special types of enzymes provides an 

opportunity to discover novel CDAs with unknown qualities, regarding substrate specificity, mode of 

action and produced pattern of acetylation.  

The aim of this research was to identify, produce and characterize new enzymes by a knowledge 

based approach, meaning to start with putative CDA sequences listed in databases. After 

bioinformatic analysis on domain structures and sequence similarities to known CDAs, candidates 

should be cloned with affinity tags for heterologous production in three host systems available 

(Escherichia coli, Schizosaccharomyces pombe and Hansenula polymorpha), in order to obtain 

correctly folded and active enzymes for characterization.  One putative CDA gene from Botrytis 

cinerea (BC95) containing three N-terminal CBDs and one from Podospora anserina (PaCDA) with 

one N-terminal and one C-terminal CBDs were chosen. The biochemical characterization of CDAs 

includes tests on optimal temperature and pH, influence of bivalent cations and possible inhibitors, 

assays for substrate specificity and demonstrating the mode of action. Furthermore, truncation 

variants of PaCDA were created lacking the N-terminal (ΔN), the C-terminal (ΔC) or both domains 

(ΔNC), to investigate the role of CBDs for PaCDA and their binding activity towards various substrates 

like it is reported for chitinases.  

Besides testing the enzymatic properties, a second focus was set on the CDA products, to generate 

chitosans with non-random pattern of acetylation. This will lead to further insight into the influence of 

PA on physicochemical properties and biological activities of chitosans. The CDA product, which 

cannot be obtained by chemical methods, might have different biological activities as known chitosans, 

which are tested comparatively to chemically produced chitosan possessing the same DP and DA. If 

differences can be demonstrated, enzymatically produced chitosans with non-random PAs represent a 

promising starting-point for novel applications. 
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Chapter 2 

 

Expression during conidia germination and heterologous 

production of Botrytis cinerea putative chitin deacetylases 

 

 

Abstract 

Chitin deacetylases (CDAs), enzymes converting chitin to chitosan, are known from several fungi, 

were they take part in cell wall formation or plant-pathogen interaction. The genome of Botrytis cinerea 

contains six putative CDA sequences; of these three possess additional chitin binding domains 

(CBDs). I studied the expression pattern of these genes during conidia germination, the main inoculum 

of this plant pathogen. BC1G_00895 (BC95) was confirmed to be upregulated 4 h after germinating in 

fructose containing Gambourg‟s B5 medium. The gene was chosen for heterologous protein 

production, because of its uncommon domain architecture containing three N-terminal CBDs. Due to 

these CBDs, the protein includes many disulfide bonds. Hence, the protein production was expected 

to be challenging. Therefore, different expression systems for protein production including the use of 

the hosts Schizosaccharomyces pombe, Escherichia coli, and Hansenula polymorpha were tested. 

Production of BC95 was indeed successful in H. polymorpha, but the protein remained intracellular 

despite the secretion signal of the proteins signal peptide. CDA activity on the substrates glycol chitin, 

colloidal chitin, chitosan (DA 56%) and chitin oligomer still remains to be proven. 
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2.1. Introduction 

Chitosan, the linear heteropolymer of β-1,4-linked glucosamine (GlcN) and N-acetylglucosamine 

(GlcNAc) units, has become of increased interest due to its wide range of application possibilities such 

as in medicine [Hu et al., 2013; Jayakumar et al., 2011], plant protection [El Hadrami et al., 2010] and 

water treatment [Bhatnagar and Sillanpää, 2009]. Commercially it is mainly made from chitin-

containing shrimp shells, which turns the shrimp residues into a profitable product. The term chitosan 

refers to a diverse group of chitinous molecules differing in size and number of acetyl groups. These 

properties are defined as degree of polymerization (DP) and degree of acetylation (DA), respectively. 

Studies have shown that these characteristics of chitosan are influencing its applicability due to 

differences in physicochemical properties [Aranaz et al., 2009], but the structure-function-relationships 

are so far not completely understood. For this purpose the pattern of acetylation (PA) is considered as 

an important third parameter, especially for the biological activities of chitosan, due to sequence 

specific hydrolases like plant chitinases [Brunner et al., 1998] and human chitotriosidase [Renkema 

and Boot, 1995] present in the target tissues. 

Chitosan was first discovered by Kreger in 1954 in a zygomycete fungus and it was reported to be a 

major cell wall component and the characteristic polymer for this phylum [Bartnicki-Garcia, 1968]. 

Later it was also found in other fungal phyla (basidio- and ascomycota). Also, genes for its enzymatic 

conversion named chitin deacetylases have been identified [Tsigos et al., 2000]. 

 

Chitin deacetylases (CDAs) convert N-acetylglucosamine within the polymer to glucosamine units by 

hydrolysis of the acetamido group and the release of acetate (EC 3.5.1.41). Although some bacterial 

enzymes have been identified by now, fungal CDAs are more widely studied and enzymatically 

characterized [reviewed in Zhao et al. 2010). 

Amongst others, CDA genes from Aspergillus nidulans [Wang et al., 2008b] and Rhizopus circinans 

[Gauthier et al., 2008] have successfully been heterologously expressed in Escherichia coli and Pichia 

pastoris, respectively; the most investigated Colletotrichum lindemuthianum CDA [Shrestha et al., 

2004; Tokuyasu et al., 1999] was expressed even in both systems. Besides C. lindemuthianum, other 

plant pathogenic species were also found to possess active CDAs. The presence of active CDAs has 

been confirmed e.g. in Aspergillus nidulans [Alfonso et al., 1995], Penicillium oxalicum [Pareek et al., 

2011] and Colletotrichum gloeosporioides [Pacheco et al., 2013]. In the fungi Colletotrichum 

lagenarium [Stegrist and Kauss, 1990], Uromyces viciae-fabae [Deising and Siegrist, 1995] and 
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Puccinia graminis f. sp. tritici [El Gueddari et al., 2002] CDA activity has been proposed to play an 

important role during plant infection. 

 

Botrytis cinerea is a plant pathogen attacking more than 200 host species and a necrotrophic life style 

which leads to the so called grey mold disease [reviewed by van Kan 2006]. Conidia are the main 

inoculum for grey mold disease. They germinate with a short germ tube and develop then an 

appressorium to penetrate the plant epidermal [Williamson and Tudzynski, 2007]. Genes expressed in 

this state of development encode enzymes such as cutinase [van Kan et al., 1997], lipase [Comménil 

et al., 1995] and several plant cell wall degrading enzymes. Relating to virulence, delayed lesion 

formation was observed after deletion of pectinases (endo-polygalacturonases) Bcpg1 [ten Have et al., 

1998] and Bcpg2 [Kars et al., 2005] or β-1,4-xylanase [Brito et al., 2006]. A putative CDA gene is 

strongly induced in the first hours of germination and therefore described as germination-specific 

marker [Leroch et al., 2013], but the enzymatic function has never been investigated. This sequence, 

as well as few more putative CDAs in B. cinerea, contains additional carbohydrate binding modules 

[Amselem et al., 2011]. 

 

Carbohydrate binding modules (CBMs) are mainly found in enzymes that degrade insoluble polymers 

like cellulases but also occurr individually in binding proteins and lectins [Boraston et al., 2004]. To 

date, a large number of CBMs with different functions are described and classified into families in the 

CAZY database (http//:www.cazy.org) [Lombard et al., 2014]. CMB18, functionally characterized as 

type 1 chitin binding domain (CBD, PFAM 00187), is present in eukaryotes only and it‟s HMM (Hidden 

Markov Model) pattern contains eight characteristic cysteine residues [Wright et al., 1991]. Analysis of 

the three-dimensional structure confirmed the presence of four disulfide bridges and a unique fold 

named hevein, from Hevea brasiliensis [Beintema, 1994]. Genome databases contain numerous 

uncharacterized sequences with CBDs along with other domains including polysaccharide deacetylase 

domains (PDD), but CDA activity of encoded proteins was not investigated so far. Until now the direct 

enzymatic conversion of chitin into chitosan is only possible to a small extent because the insoluble 

chitin is a poor substrate for all known CDAs [Zhao et al., 2010]. The presence of one or more CBDs 

could enhance this activity, as it is known for chitinases containing CDBs [Blaak and Schrempf, 1995; 

Hashimoto et al., 2000; Iseli et al., 1993].  
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The aim of this study is to identify, produce and characterize a novel chitin deacetylase with chitin 

binding domains and possible new properties, substrate preferences or modes of action. As the 

production of one putative CDA from Botrytis cinerea (BC95) emerged to be challenging, three 

different pro- and eukaryotic expression systems were investigated: Schizosaccharomyces pombe 

(fission yeast), capable of glycosylation and forming disulfide bridges; an E. coli strain improved for 

rare codon usage and reducing environment, and Hansenula polymorpha, a Pichia strain engineered 

for recombinant protein production.  

 

2.2. Materials and methods 

2.2.1. Bioinformatics 

A search for putative chitin deacetylases in Botrytis cinerea was carried out using the GenBank 

(http://www.ncbi.nlm.nih.gov) in March 2009. The Pfam database (http://pfam.sanger.ac.uk) was 

accessed to identify domains present and show their architecture. Signal peptides were identified by 

SignalP 3.0 (http://www.cbs.dtu.dk/services/ SignalP) [Bendtsen et al., 2004] and NetNGlyc 1.0 

(http://www.cbs.dtu.dk/services/NetNGlyc) was used to predict potential N-glycosylation sites [Blom et 

al., 2004]. Multiple sequence alignments and cladograms were computed by ClustalW2 

(http://www.ebi.ac.uk/Tools/ clustalw2) [Larkin et al., 2007].  

 

2.2.2. Cultivation of Botrytis cinerea 

Botrytis cinerea B05.10 was kindly provided by P. Tudzynski (University of Münster, Germany) and 

grown on potato dextrose agar at room temperature and light conditions (16 h light with UV, 8 h dark) 

until sporulation occurred (10-12 days). The conidia were harvested by adding 10 ml sterile water and 

scraping with a glass spatula, washed three times and quantified [Doehlemann et al., 2006]. 

For germination 5 * 10
6
 conidia per ml were incubated in 14.5 cm diameter glass petri dishes with 50 

ml bi-distilled water or Gambourg‟s B5 medium (Duchefa, Haarlem, The Netherlands) containing 10 

mM fructose at 20°C. Germinated conidia were harvested at different time points by scraping off the 

glass and separating from the germination medium by centrifugation (5000 g, 4°C, 10 min). Medium 

was concentrated for activity assays using Vivaspin 20 ultrafiltration devices with 10 kDa molecular 

weight cut-off (Sartorius AG, Göttingen, Germany) and mycelium was washed by centrifugation 

(5000 g, 4°C, 5 min) and frozen at -80°C. 
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2.2.3. DNA/ RNA isolation and RT-PCR 

Botrytis cinerea DNA, isolated from mycelium using a protocol with lysis at 60°C and isopropanol 

extraction, was kindly provided by Dr. Carolin Richter. RNA isolation from frozen samples of 

germinated conidia incubated for 4 h was carried out by following the protocol described by Richter et 

al. [2012]. Obtained RNA pellets were dissolved in 50 μl water (RNase-free) and RQ1-RNAse-Free 

DNAseI was used according to the manufacturer‟s instructions (Promega, Mannheim, Germany) to 

remove DNA contaminants. Two extraction steps were subsequently carried out as described earlier 

[Richter et al. 2012]. RNA samples were dissolved in 30 μl RNase-free water and 

spectrophotometrically quantified.  

The cDNA synthesis was carried out using 1 µg of RNA samples, M-MLV reverse transcriptase 

(Promega) and Oligo (dT18) primers, following the manufacturer‟s recommendations. Gene-specific 

primers applied for PCR amplification with MangoTaq
TM

 DNA polymerase (Bioline, London, UK) are 

listed in table 1. Separation of the fragments was carried out by electrophoresis with 1% agarose gels 

and visualization by ethidium bromide staining and UV light. 

 

Table 1: Oligonucleotide primers for amplification of B. cinerea putative CDA sequences (GenBank) and actin 
control, length of obtained fragments given for RNA and DNA and sequences from 5‟ to 3‟. 
 

gene/primer name fragment length (RNA/DNA) bp sequence 5’ => 3’ 

BC1G_03291 323 / 523 
GTTGCTGTGGCCGGAAGC 
CTGGGCGGGCAATGGTAG 

BC1G_06509 321 / 370 
GGCTTCGTTGTCAAGTGCAC 
GTAGAACCACCAGCTGGAAC 

BC1G_00895 730 / 781 
CCAACCACAGGAGGAACTTG 
GAACGGCTGTTGAAGCAAGC 

BC1G_09146 488 / 537 
CCCTTGGCCAATGGACAAGTG 
GCTACTTGTCACAACAGCCCC 

BC1G_08249 694 
CCTGGTGCTCCTAGCTCTAC 
GCCTCCTAGCGATTCAACCC 

BC1G_14964 445 / 556 
GAGACTCGGAGATACTTGGAC 
CTTCCTTAGGACTTCTCCAGC 

BC actin 250 / 267 
AAGTGTGATGTTGATGTCC 

CTGTTGGAAAGTAGACAAAG 

 

 

2.2.4. CDA activity tests  

CDA activity was tested in germinated conidia and mycelium after a germination period of 2.5, 8 and 

24 hours. For each condition the medium was concentrated and rebuffered to phosphate buffered 

saline (PBS, 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4) to collect the 

extracellular protein fractions, which were tested along with cell extracts, cell wall extracts and 

mycelium pellets on activity gels. Therefore the material was grinded in liquid nitrogen before addition 
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of lysis buffer (20 mM Tris/HCl pH 8.0, 0.05% Triton-X 100, 150 mM NaCl and 2% (v/v) protease 

inhibitor cocktail for tissue culture, Sigma-Aldrich, St. Louis, USA), mixed at 4°C for 15 min and 

centrifuged at 8500 g and 4°C for 5 min. Remaining pellets were washed with 1M NaCl to remove 

ionic bound proteins (cell wall extracts) and pellets afterwards were tested as mycelium residue 

samples. Purified recombinant CDA from Puccinia graminis sp. f. tritici or Podospora anserina were 

used as positive controls for all CDA activity tests. 

 

CDA activity gels were prepared as previously described by Trudel & Asselin [1989] with 0.1% (w/v) 

glycol chitin, 12% (w/v) polyacrylamide, 12.5 mM buffers (BisTris pH 6.0 and 7.0, borate pH 8.0) and 

1 mM ZnCl2. Samples were applied onto the gels (dot gels) as drops of 3 µl each or equal sized solid 

mycelium pieces. Gels were incubated overnight at 37°C, followed by staining with Calcofluor White 

(Fluorescent Brightener) and chemical depolymerization of deacetylated chitin [Trudel and Asselin, 

1990].  

 

2.2.5. Heterologous production of BC95 

 

2.2.5.1. Nucleic acid manipulations: Cloning of BC95 

The sequence of putative CDA BC1G_00895 (BC95) was amplified via PCR using the cDNA sample 

from 4 h germinated conidia in fructose medium and primers BC95_forward: 5‟-AGACCATGGTTTTC 

CAGTGGAGGGAACTGATTC-3‟ including NcoI restriction site and BC95_reverse: 5‟-CTCGTCGACT 

TAATGATGATGGTGATGATGATAACCAAAAGCGGTATTCG-3‟  introducing a C-terminal His6-Tag 

(underlined) and SalI restriction site. The product of proof-reading Pfu-polymerase had a size of 1825 

bp confirmed by electrophoresis and was extracted from the gel. After polyadenylation, the BC95 gene 

was inserted to pCR®II-TOPO® cloning vector using the TOPO cloning kit according to the manual 

(Invitrogen/Life Technologies) before transformation of Escherichia coli with the pCR®II-TOPO::BC95-

His6 plasmid. This plasmid was used for cloning the BC95 gene for further experiments into 

expression vectors. 

 

2.2.5.2. Biochemical analytics  

Protein samples obtained from three different expression hosts specified below were analyzed by 

sodium dodecyl sulfate polyacrylamide electrophoresis (SDS-PAGE) as described [Laemmli, 1970], 
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using gels containing 12% (w/v) polyacrylamide. After electrophoresis gels were either used for silver 

staining [Yan et al., 2000] or for western blotting onto a nitrocellulose membrane in semi-dry method. 

Subsequently reversible PoncausS staining (solution 0.1 % (w/v) in 5% acetic acid, Sigma-Aldrich) 

was carried out before immunodetection with His•Tag® Monoclonal Antibody (mouse-IgG, Novagen, 

Merck KGaA, Darmstadt, Germany) and goat-anti-mouse-IgG-HRP-conjugate, (horseradish 

peroxidase, Sigma-Aldrich) or Strep-Tactin® HRP conjugate (IBA, Göttingen, Germany) followed by 

enhanced chemi-luminescence (ECL) detection. Molecular weight markers used during protein 

separation were Precision Plus
TM

 Protein All Blue Standards (Bio-Rad Laboratories GmbH, München, 

Germany) and unstained, StrepII-tagged peqGOLD Protein-Marker II (Peqlab Biotechnologie GmbH, 

Erlangen, Germany). 

De-N-glycosilation of protein samples was carried out by using PNGase F (New England Biolabs, 

Ipswich, USA) following the manufacturer‟s protocol. For protein quantification, either the bicinchonin ic 

acid assay (Pierce
TM

 BCA Protein Assay Kit, Thermo Fisher Scientific Inc., Waltham, USA) or the 

Bradford assay [Bradford, 1976] was used. 

To detect CDA activity, glycol-chitin gels were prepared as described above (details stated below in 

section for each case) and samples incubated with different substrates were analyzed for acetate 

release by threefold coupled enzyme assay [Martinou et al., 1995]. Therefore an acetic acid assay kit 

was used according to the manufacturer‟s recommendations (R-Biopharm AG, Darmstadt, Germany), 

but downscaled for 96-well mircotiterplates, and acetate concentrations were calculated against a set 

of standards.  

 

2.2.5.3. S. pombe – cloning 

For the construction of expression strains, the fission yeast Schizosaccharomyces pombe and the 

pMel vector with Saccharomyces cerevisiae melibiase signal peptide for extracellular production were 

chosen. The vector is a pREP derivate. It carries a thiamin-repressible nmt1-promoter, a nmt1-

terminator sequence [Maundrell, 1993] and the ura4-gene for selection in uracil-auxotrophic strains 

[Grimm et al., 1988]. The BC95 gene was cut out from the pCR®II-TOPO::BC95-His6 plasmid using 

NcoI and SalI restriction enzymes, extracted from an agarose gel and ligated to the pMel, which was 

also digested by these two enzymes before. S. pombe ura4-D18 was cultivated on YES agar with 

225 mg/l uracil and transformed following the short protocol described by Forsburg & Rhind [2006]. 
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In further experiments, the His6-tag was exchanged to a StrepII-Tag [Schmidt and Skerra, 2007] 

coding sequence by amplifying the whole plasmid with back-to back phosphorylated primers:  5‟-pho-

CAATTTGAAAAGTAACATCATCACCATCATCATTAAGTCG-3‟ and 5‟-pho-AGGATGAGACCAATAAC 

CAAAAGCGGTATTCGAAC-3‟, coding for one half of the tag each (StrepII sequence underlined) and 

Phusion
TM

 Hot-Start High-Fidelity DNA Polymerase (Finnzymes, Thermo Scientific). The PCR 

template pMel::BC95-His6 was then digested using restriction enzyme DpnI followed by recirculation of 

the plasmid pMel::BC95-StrepII. 

 

2.2.5.4. S. pombe – screening 

Transformants of S. pombe were cultivated on Edinburgh minimal medium (EMM) or EMM agar (20 g/l 

Difco
TM

 Agar, BD, Sparks, USA) including adenine, histidine, leucine and lysine-hydrochloride 

(225 mg/l each), but without uracil to maintain the pMel plasmid. To screen S. pombe clones, 2-ml pre-

cultures with 10.1 g/l thiamine were incubated at 30°C and 200 rpm for 30 h followed by main cultures 

containing 20 ml EMM without thiamine to induce gene expression by the nmt1-promoter. After 30 h 

incubation at 30°C and 200 rpm, culture supernatant was harvested by centrifugation (1500 g, 4°C, 

5 min) at OD600 8-10, rebuffered in PBS and concentrated 200-fold using Vivaspin 20 ultrafiltration 

devices with 10 kDa molecular weight cut-off (Sartorius AG). Cell extract samples were prepared 

following the small-scale protein preparation for fission yeast [Forsburg and Rhind, 2006]. SDS-PAGE 

and western blotting were carried out as describe above. Enzyme activity of 3-µl samples was tested 

on glycol chitin gels at different pH values with buffers sodium citrate (pH 5.0), BisTris (pH 6.0, 6.9 and 

7.0) and borate (pH 8.0 and 9.0). 

 

2.2.5.5. E. coli – cloning 

For heterologous production of the putative CDA BC95 in E. coli, the Novagen vector pET-22b(+) 

(Merck) was used. The BC95 coding sequence was amplified via PCR from pMel::BC95-His6 while 

His6-Tag coding sequence was replaced by the StrepII-Tag and simultaneously restriction sites (FauI 

+ XhoI) were introduced with the primers 5‟-CCCGCAATTTATGAAGCTTCGGATCCC 

TTTTCCAGTGGAGGGAACTG-3‟ and 5‟-CCGCTCGAGCTATTTTTCAAATTGAGGATGTGACCAATA 

ACCAAAAGCGGTATTCGAAC-3‟ (StrepII-Tag coding sequence underlined). For the thioredoxin A 

coding sequence, a colony PCR on E. coli K12 was carried out using primers  TRX_for (5‟-

CCCAAGCTTAGCGATAAAATTATTCACCTGAC-3)‟ and TRX_rev (5‟-CGGGATCCTCGCCAGGT 
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TAGCGTC-3‟) with HindIII and BamHI restriction sites, respectively. These sites were used to clone it 

in front of the BC95-StrepII coding sequence in order to get pET-22b(+)::TrxA-BC95-StrepII 

expression plasmid. Expression strain for all constructs was E. coli Rosetta 2 (DE3) [pLysS-RARE2] 

carrying a plasmid for E. coli rare codons with chloramphenicol resistance cassette.  

 

2.2.5.6. E. coli – screening 

Screening for protein production was carried out using the T7 expression systems in auto induction 

medium as described by Studier [2005], adding 0.1 mM ZnCl2, 125 µg/ml ampicillin and 34 µl/ml 

chloramphenicol. In the first experiment baffled flasks with the addition of 20 mM MgSO4 were used 

additionally. In a second experiment non-induced cultures were used as controls and grown in LB 

medium (Luria/Miller, Roth) without induction supplements. Expression strains were incubated at 37°C 

and 180 rpm for 2 h, then at 26°C and 120 rpm for 16 h. After freezing over night at -20°C, cells were 

resuspended in PBS and 0.5 µl Benzonase® nuclease (Novagen, Merck) was added to the auto-lysed 

cell samples. Cell pellets were separated from cell extracts by centrifugation at 15,700 g and 4°C for 1 

min and both protein fractions (1 µl each) were tested on CDA activity gels with 12.5 mM BisTris buffer 

pH 6.9 at 37°C and 20°C. 

 

2.2.5.7. H. polymorpha – cloning 

The protein sequence of BC95 including the StrepII-Tag was provided to GeneArt® (Thermo 

Scientific) for codon-optimization and synthesis for heterologous production in the uracil-auxotrophic 

(ura3) H. polymorpha host strain RB11 [Zurek et al., 1996]. The synthetic gene was then used by 

Artes Biotechnology GmbH (Langenfeld, Germany), to construct expression plasmids by cloning it into 

pFPMT121 [Degelmann et al., 2002] with the FMD (formate dehydrogenase) promoter, the MOX 

(methanol oxidase) terminator and an upstream extension of the pre-propeptide MF-α1 coding 

sequence of S. cerevisiae for secretion [Kurjan and Herskowitz, 1982]. After preparation of competent 

cells and transformation [Klabunde et al., 2007], uracil-prototrophic transformants underwent repeated 

cycles of growth under selective and nonselective conditions (passaging and stabilization), to promote 

mitotically stable integration of multiple expression plasmid copies into the yeast genome. 
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2.2.5.8. H. polymorpha – screening 

Pools of stabilized transformants were pre-screened by Artes Biotechnology by cultivation in glycerol-

containing medium to induce expression (YPYNBG, 1% yeast extract, 2% peptone, 0.14% yeast 

nitrogen base without amino acids and ammonium sulfate, 0.5% ammonium sulphate, 2% glycerol, 0.1 

M potassium phosphate buffer pH 6.0) at 37°C for 70 h. In other experiments varying temperatures 

and media compositions were tested and different cell fractions were analyzed by western blots with 

Strep-Tactin-HRP conjugate (IBA) and chromogenic detection. 

I received the so-called pools #1, #4 and control strain “Mock” from Artes and screened cell-free 

culture supernatants as well as cell extracts for CDA activity on glycol chitin gels as described above 

with 2 µl samples and 25 mM phosphate borate buffer pH 8.0. CDA activity tests for the substrates 

colloidal chitin (1 g/l), chitosan DA 56% (0.5 g/l) and chitin pentamer (0.25 g/l) were carried out by 

incubation of 10 µl-samples in 210 µl 50 mM phosphate borate buffer pH 7.0 at 37°C and 750 rpm for 

43 h and measuring acetate release as described above. 

Cell extracts were prepared by resuspending cell pellets in pre-cooled (4°C) disruption buffer (50 mM 

Tris/HCl pH 8.0, 150 mM NaCl, 0.1% Tween 20) with appropriate volumes in order to achieve an 

OD600 of 60. Disruption was carried out with 500 µl acid-washed glass beads (Ø 0.5 mm) for 500 µl 

cell suspension samples and agitation on a Vibrax® (IKA, Staufen, Germany) at maximum speed and 

4°C for 10 min. Thereafter 500 µl disruption buffer was added for another 10 min of agitation and 

extracts were cleared by centrifugation (500 g, 4°C, 2 min). 
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2.3. Results 

 

2.3.1. Bioinformatical analysis 

The search for domain architectures combining polysaccharide deacetylase (PDD) and chitin binding 

domain (type CBM 18) yielded six sequences of Botrytis cinerea putative CDAs, all differing in length 

and domain architecture (Fig. 1).  Four of the obtained sequences contained a signal peptide and 

three shared additional homologies to chitin binding domains (CBDs). Those three sequences 

containing CBDs clustered in one group of the cladogram, whereas the remaining sequences built a 

second group. Alignments of the six PDDs only revealed also that the three sequences including 

CBDs are more similar to each other than to any of the other sequences from B. cinerea CDAs. 

 

 
 
 
Fig 1: Cladogram and schematic structure of Botrytis cinerea putative chitin deacetylases (CDAs): 
sequences accessed from GenBank, multiple sequence alignment by ClustalW2, yellow: signal peptide (identified 
by SignalP 3.0), pink: polysaccharide deacetylases domain (PF01522) and green: chitin binding domain (CBD, 
PF00187) identified by Pfam. CDAs without CBDs cluster in one group separated from the CDAs containing one 
or more CBDs. 

 

 

BC1G_00895 (BC95) has three N-terminal chitin binding domains, which differ not only in their 

sequences but also in their length. The genomic 1978-nucleotide-sequence has two introns and 

encodes for a protein composed of 618 amino acids and 64.8 kDa in size: this includes a 23 amino 

acid signal peptide. In addition, the secreted enzyme has six possible N-glycosylation sites, of which 

three show the utmost probability. 
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2.3.2. Gene expression during conidia germination 

To evaluate if the identified sequences belong to expressed genes, an expression study using 

germinated conidia was carried out (Fig. 2). The experiment revealed bands for all six CDA 

sequences, however, the obtained band for BC1G_09146 was weak and was absent using fructose 

medium instead of distilled water. In contrast, the gene for BC95 seemed to be stronger expressed in 

the medium containing fructose, whereas the remaining four putative CDAs were expressed at the 

same level under all conditions tested. Germination and growth of the mycelium was much slower in 

bi-distilled water compared to the fructose medium, as seen by visual inspection. 

 

 

 
 

Fig. 2: Reverse transcription-PCR analysis of putative CDA gene expression during Botrytis cinerea 
conidia germination: RNA samples collected 4 h after inoculation in different media, H2O: bi-distilled water, Fru: 
Gambourg‟s B5 medium with 10 mM fructose, controls: genomic DNA as template and primers for B. cinerea 
actin, fragment sizes given for RNA and DNA (bp). BC1G_00895 (BC95) shows enhanced expression in fructose 
containing medium in comparison to H2O. 

 
 

2.3.3. CDA activity during conidia germination  

Because all putative CDAs were expressed during germination, it was tested if any CDA activity was 

present. Different fractions were used for this experiment: concentrated growth medium, crude cell 

extracts, cell wall extracts and pelleted mycelium, all at 2.5, 8 and 24 h after germination. Culture 

supernatant did not show any activity, even after concentration (data not shown). Chitinase activity 

was detected using a dot assay containing glycol chitin at pH 6.0 that was most intense for the 
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pelleted mycelium samples and present as well in the cell extract 24 h after conidia inoculation 

(Fig. 3). For all other samples neither CDA nor chitinase activity was observed using dot assays at pH 

7.0 and 8.0 (data not shown). 

 

 

 
Fig. 3: Chitin deacetylase activity test using 0.1% glycol chitin at pH 6.0, before (A) and after 
depolymerization of chitosan (B). Samples of germinated conidia collected 2.5, 8 and 24 h after inoculation in 
Gambourg‟s B5 medium with 10 mM fructose, ce: cell extract, cw: cell wall extract, pm: pelleted mycelium, 
stained with Calcofluor white. Dark spots present only after depolymerization represent CDA activity (B), spots 
present before (A) are due to chitinolytic activity. 

 

 

2.3.4. Heterologous production of BC95 

Botrytis cinerea putative chitin deacetylase BC95 was chosen for heterologous production because of 

its highly interesting architecture including three chitin binding domains and the increased expression 

during conidia germination. Cloning of BC95 coding sequence from the cDNA sample isolated from 

germinated spores for 4 h in B5 medium with fructose was successful. A His6-Tag coding sequence 

was added C-terminally for detection and purification, before the sequence was inserted into the 

multiple cloning site of different expression vectors. 

 

2.3.4.1. Schizzosaccharomyces pombe 

The fission yeast S. pombe represents a reasonable expression system for BC95 due to the presence 

of four disulfide bridges in each of the three chitin binding domains. Screening of eight S. pombe 

transformants resulted in no overexpressed bands at 63.1 kDa in silver-stained gels, no detection of 

an anti-His6 signal in the western blot and only minor chitinase activity using a dot assay containing 

glycol chitin (pH 6.9), when cell extracts (data not shown) or the concentrated culture supernatant 
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were used (Fig. 4C and D). The extracellular protein fractions were then deglycosylated to detect 

possible covered tags due to protein glycosylation (Fig. 4A and B). CDA activity gel tests on glycol 

chitin were also carried out at pH 5.0, 7.0 and 9.0. However, no activity was revealed in any of these 

experiments. All these findings were confirmed in a second experiment.  

 

 

 

 
Fig.4: Heterologous production of BC95-His6 in S. pombe: analysis of culture supernatants from selected 
clones 1-8 and positive control (+) A: separation of deglycosylated samples by SDS-PAGE (silver stained) and B: 
western blotting (anti-his immunodetection), M:  Precision Plus Protein All Blue Standards (Bio-Rad) C: CDA 
activity test using 0.1% glycol chitin gel at pH 6.9 stained with Calcofluor white. Dark spots before 
depolymerization of chitosan by HNO2 represent chitinase activity, D: spots afterwards are due to CDA activity. 

 

 

In a second approach, the coding sequence of the His6-Tag was replaced by a StrepII-Tag sequence. 

S. pombe transformants were grown and screened. Five cloneses were chosen for further screenings; 

however, all five revealed no activity on glycol chitin gels with pH 6.0, 6.9 and 8.0 for all cell fractions 

tested. Anti-StrepII signals were stronger in deglycosylated than in unmodified samples, but these 

bands did not correspond with the correct protein size of 63.3 kDa in addition, these signals were also 

observed in the control (Mock, Fig. 5). Clone 3 showed an additional band of 20 kDa in the culture 

supernatant (Fig. 5A and B), which could be a tagged degradation product of BC95-StrepII. 
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Fig. 5: Heterologous production of BC95-StrepII in S. pombe – western blot analysis by Strep-Tactin HRP 
conjugate, samples of selected clones (2,3,5,7) and negative control strain (-) A: deglycosylated culture 
supernatants, B: non-treated culture supernatants and C: cell extracts, M: Precision Plus Protein All Blue 
Standards (Bio-Rad). No signal present for BC95-StrepII (63 kDa). 

 

 

2.3.4.2. Escherichia coli 

E. coli was used as expression system, because the production of BC95 was not successful in S. 

pombe. To construct expression plasmids, the coding sequence of BC95-StrepII was cloned into 

pET22b, once with and once without N-terminal thioredoxin A coding sequence for a more reducing 

environment. The two constructs were tested simultaneously in E. coli Rosetta 2 (DE3) [pLysS-

RARE2] expression strain.  

 

Screening of auto-induced expression cultures included cell extracts and pellets, and for some clones 

cultivation in baffled flasks as well. The comparison of non-induced and induced samples after SDS-

PAGE (Fig. 6A) showed no overexpressed bands for BC95 as well as for TrxA-BC95. Figure 6B 

presents the western blot analysis by StrepII detection with bands at 17 kDa, which is the size of E. 

coli biotin carboxyl carrier protein but lanes with insoluble protein were massively overloaded. Activity 

gels using the substrate glycol chitin were carried out at 37°C and 20°C (Fig. 6C) and resulted in 

detection of light chitinase activity for both protein products and all tested clones. A second set of 

experiments showed the same result that no BC95 enzyme, with and without thioredoxin A fusion, 

could successfully be purified. 
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Fig. 6: BC95-StrepII production in E. coli Rosetta2 (DE3) [pLys-RARE] with pET-22b::BC95-StrepII (BC95) or 
pET-22b::TrxA-BC95-StrepII (Trx-BC95), cell extracts analyzed for soluble (s) and insoluble (i) proteins using 
12% polyacrylamide gels and Precision Plus Protein All Blue Standards (Bio-Rad) molecular weight marker (M), 
A: SDS-PAGE including auto-induced (+) and non-induced (-) samples, silver-stained, B: Western blot with 
Strep-Tactin HPC conjugate, additional cultivation in baffled flasks (b)  

 

 

2.3.4.3. Hansenula polymorpha 

H. polymorpha, belonging to the genus of Pichia (P. angusta), is an expression system that combines 

the advantages of fast growth, high production and the ability of glycosylation. Because previuos trials 

for successlul protein expression failed, the BC95 gene was codon-optimized and synthesized before 

multi copy genome integration into H. polymorpha was carried out by Artes Biotechnology 

(Langenfeld, Germany). The company also pre-screened pools of transformants for successful 

genome integration (Fig. 7A). Western blot analysis revealed transformants producing BC95, but 

signals of tagged protein were detected in cell extracts only, indicating that secretion was not working 

properly. Bands at 75 kDa appeared with a higher molecular smear in the same gels. To prove if 

glycosylation of the proteins caused these results, cell fractions were divided into soluble and insoluble 

extracts and enzymatically de-N-glycosylated (Fig. 7B). While the two insoluble protein samples 

appeared to be similar after this procedure, deglycosylation of the soluble cell fraction lead to a shift in 

the pattern, but not to distinct bands. This result implies that soluble BC95 is N-glycosylated, but may 

also form aggregates with other proteins. Testing different culture media with varying pH values (5, 6 

and 7) and also at lower temperatures for improved protein folding (25°C and 30°C) did not result in 

better enzyme secretion, except when using the standard medium (YPYNBG) at 30°C (data not 

shown). Therefore, cultivations for protein production (de-repression) were since carried out at 30°C. 
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Fig. 7: BC95-StrepII production in H. polymorpha, western blot analysis by Artes Biotechnology GmbH 
(modified), using Strep-Tactin-HRP conjugate (IBA) and chromogenic detection for pools (#) expressing 
recombinant MFα-BC95. A: samples of culture supernatants (SN), de-N-glycosylated supernatants (SN-EH) and 
total cell extracts (TCE), Mock: strain for negative control, B: fractionated samples of pool #4 including soluble 
(SF) and insoluble fraction (ISF) as well as both fractions treated for deglycosylation (SF-EH and ISF-EH). 

 

 

 

After the production of tagged protein was verified by Artes in the soluble cell fraction, I tested cell 

extracts and supernatants of pools #1, #4 and Mock clone (negative control) for the activity on glycol 

chitin gels (Fig. 8A and B) and for acetate release using chitosan DA 56%, colloidal chitin and chitin 

pentamer as substrates. The figure indicates chitinase activity for all samples as well as for the 

negative control, especially in the culture supernatant, while no CDA activity was observed. For the 

CDA activity tests, no acetate release could be detected and these results were confirmed by two 

further experiments. 

In a second step, cell fractions were analyzed on SDS-PAGE and western blot (data not shown). In 

these experiments strep-tagged bands could be identified in the intracellular fractions. However, the 

Mock strain containing no gene for BC95 produced the same pattern of bands as the pools #1 and #4; 

hence, these signals were derived from unspecific bindings. 
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Fig. 8: BC95-StrepII production in H. polymorpha, CDA activity assay, analysis of cell extracts (ce) and 
culture supernatant (cs) using 0.1% glycol chitin and 25 mM phosphate-borate buffer pH 8.0 for 2 µl samples 
each and incubation at 37°C, before (A) and after depolymerization of chitosan (B). 

 

 

In summary, the heterologous production of the putative Botrytis cinerea CDA BC95 in S. pombe and 

E. coli was not successful, but could be achieved by using the H. polymorpha expression system. 

Despite using the secretion signal MF-α1, the protein remained mostly intracellular, but soluble and 

probably glycosylated. Chitin deacetylase activity could not be confirmed on different polymeric and 

oligomeric, chitinous substrates. 

 

 

2.4. Discussion 

The existence of chitin deacetylases in combination with chitin binding domains is a hint towards 

enzymes that are capable of deacetylating crystalline chitin. So far, chitosans are commercially 

produced by chemical deacetylation of chitin only, because known CDAs act on the surface of 

crystalline chitin only but fail to unwind the crystal for further or even complete deacetylation [Aye et 

al., 2006]. Although some insect sequences have been discussed to possess these domains and 

abilities [Dixit et al., 2008], enzymatic activity of such CDAs, especially towards crystalline substrates, 

have never been addressed before. It has been demonstrated that fungal CDAs differ in their overall 

properties including the modes of action [Tsigos et al., 2000]; hence, CDAs including CBDs could vary 

from enzymes just solely possessing the catalytic domain in properties and substrate preferences as 

well. Novel enzymes acting on crystalline chitin might give the opportunity to create new chitosans 
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offering potentially non-random patterns of acetylation, which cannot be archived by chemical methods 

[Tsigos et al., 2000]. Fungal chitosans occurring in nature are usually generated by CDAs [Kaur and 

Dhillon, 2014] and are biologically active, e.g. in plant systems [Hadwiger, 2013], where they amongst 

other functions play a role in plant-pathogen interactions [El Gueddari et al., 2002]. Thus, for plants 

secreting sequence specific chitinases and sensing chitin, the PA is more probably than not important.  

In this study I identified several putative CDAs containing one or more CBDs within the same coding 

sequence belonging to Botrytis cinerea, a model plant pathogen. Their expression during conidia 

germination and the production trials of recombinant BC95 in three different systems are shown here. 

 

2.4.1. Botrytis cinerea putative chitin deacetylases 

The bioinformatic analysis of the six putative CDA genes of B. cinerea revealed that all sequences 

differ in length and domain architecture (Fig. 1). A comparison of these sequences showed a high 

similarity in peptide sequence within the domains. Genomes of other fungal species also contain CDA 

genes including CBDs that are similar to the B. cinerea genes in sequence as well as in domain 

structures, for example the closely related Sclerotinia sclerotiorum [Amselem et al., 2011]. It was 

shown that filamentous fungi possess more chitinase genes than yeasts, because this lifestyle 

requires more isoenzymes due to the complex morphology [Karlsson and Stenlid, 2008]. This might 

also be the case for CDAs, especially those expressed by plant pathogens since an important role of 

pathogenic CDAs in plant-pathogen-interaction has been reported for several species [El Gueddari et 

al., 2002]. The combination of polysaccharide deacetylase with chitin binding domains of different 

types seem to be evolutionally invented early and multiple times, because it can be found in many 

species, even in bacteria [Kadokura et al., 2007]. However, the occurrence of CDAs with CBM18 is 

limited to ascomycetes as revealed by my database research.  

 

Here I present that that all six of the CDA genes identified in B. cinerea are expressed at 4 h of conidia 

germination (Fig. 2). The germination in medium containing fructose as C-source on a glass surface, 

which is imitating the hydrophobicity on a plant leaf, was consistent to reported experiments by 

Doehlemann, et al. [2006]. Spores incubated in bi-distilled water did germinate slowly but mycelium 

did not grow under these conditions. These samples might represent an earlier time point in 

development or starving conditions due to the lack of nutrients. Consistent with our result, it is reported 

in a recent paper that BC95 (referred to as cda1) is strongly upregulated in early time points (1 and 
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4 h) of germination; therefore it is proposed to play a key role in germination before germ tubes 

emerge [Leroch et al., 2013]. In my experiments also the five remaining putative CDA genes were 

expressed in fructose medium as well as in bi-distilled water, except for BC1G_09146 that was absent 

in the fructose medium. As many changes in cell wall composition happen during development [Cantu 

et al., 2009], each of these enzymes may have its own task. 

 

To investigate if any CDA activity is detectable during conidia germination, I used a dot gel assay with 

glycol chitin as substrate and a pH range from 6 to 8. Ascomycetes are known to mainly secret their 

CDAs into their growth media [Zhao et al., 2010], but active enzyme could also be present intracellular 

or in the cell wall. So the concentrated culture supernatants as well as fractions of cell extracts and cell 

walls have been tested, but CDA activity tests failed to present active enzyme. Although the activity 

gels are usually a very reliable, highly sensitive and easy method for CDA activity screening, it cannot 

be excluded that these enzymes are not acting on glycol chitin, because it is not a natural substrate. 

Furthermore the quantities of CDA proteins might have been too little compared to the total protein 

amount in the tested samples. Assuming that these CDAs are specialized on fungal cell walls [Zhao et 

al., 2010], they might strongly be bound to the chitin by the CBDs, since macroscopically irreversible 

binding has been reported for a cellulose binding domain [McLean et al., 2002]. Possible CDA activity 

in the pelleted mycelium (Fig. 3) might then be masked by the chitinase activity also present in these 

samples and causing dark spots as well on the activity gels [Trudel and Asselin, 1989]. 

Shortly after our findings the early secretome of Botrytis cinerea was investigated, but none of the 

putative CDAs was found after 16 h inoculation of conidia in different media shaking cultures [Espino 

et al., 2010]. This result leads to the assumption that direct isolation of the enzyme from the fungus 

might not be easy. To investigate if the putative proteins are real CDAs, the strategy of heterologous 

production of one of them was followed, like it was done before for a CDA from Flammulina velutipes 

[Yamada et al., 2008]. 

 

 

2.4.2. Heterologous production of BC95 

BC95 was chosen for heterologous production because it shows a unique domain architecture 

containing three CBDs and an increased expression during spore germination. The production host S. 

pombe (fission yeast) offers the possibility to get properly folded, secreted glyco-protein, especially of 
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proteins rich in disulfide bridges, as typical for CBDs. In the present study no recombinant protein was 

detected in any of the experiments (Fig. 4). CDA pH optima have been reported to range from 4.5 to 

12 [Zhao et al., 2010]. However, no activity on glycol chitin was found under several pH conditions 

tested. In contrast to other fungi, S. pombe cell walls are considered to contain no chitin and only small 

amounts of N-acetylglucosamine in their polysaccharides [Horisberger et al., 1978]. Nevertheless, 

heterologous expression of a chitinase and a chitosanase, respectively, changed the cell morphology 

[Shimono et al., 2002]. This is not expected for CDAs, though the fission yeast seems to secret an 

own chitinase into the culture supernatant, as light activity was detected.  

The genome of S. pombe contains only one chitinase gene, which is to my best knowledge not further 

characterized. This is a clear disadvantage fof using this host for the production of chitin and chitosan 

modifying enzymes, as the presence of organism own substrate degrading enzymes has to be 

excluded. Because the purification of heterologously expressed and also tagged protein via affinity 

chromatography is usually carried out directly after production and thus, the organisms own chitin 

modifying enzymes are removed, the presence of S. pombe chitinase was regarded to be not 

problematic for the enzyme characterization that followed afterwards. 

 

In further experiments the C-terminal His6-tag coding sequence of BC95 was exchanged to a StrepII-

tag coding sequence [Schmidt and Skerra, 2007]; taking into account that the bivalent cation affinity 

may have caused problems for enzyme activity. By solving the crystal structure of a C. 

lindemuthianum CDA, which was heterologously produced in P. pastoris including a His6-tag, Blair and 

colleagues [2006] found an intermolecular interaction between the His6-tag and the active center 

containing the Zn
2+

 cofactor. By using the StrepII-tag for detection and purification, this kind of 

interaction is excluded. The new S. pombe transformants were analyzed by western blots (Fig. 5), 

where multiple bands could be found, especially with the deglycosylated culture supernatants. 

However, no signal corresponded to the correct molecular weight of 63 kDa and again no CDA activity 

at different pH values was detected. A band with the size of about 20 kDa is only present in one clone, 

which might be caused by degradation of the full BC95, as the StrepII-tag is located C-terminally, or by 

unspecific interactions. These results brought us to the conclusion that the successful production in S. 

pombe is highly questionable, so the use of a more straightforward expression system was 

considered.    
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Escherichia coli is one of the major used prokaryotic expression system. Many eukaryotic proteins 

have successfully been expressed by using E. coli expression systems, and today, many specialized 

tools for several challenges during expression of difficult proteins are available. I used the Rosetta 2 

(DE3) strain carrying the pLysS-RARE2 plasmid for avoiding any matters with codon usage [Novy et 

al., 2001] as well as a variant with E. coli innate thioredoxin A as N-terminal fusion with BC95. 

Cytoplasmic co-expression of thioredoxin A or fusion to the target protein can create a more reducing 

environment for the linking of the disulfide bridges; hence, increase the yield of correctly folded 

recombinant protein [Collet et al., 2005; Lavallie et al., 1993]. Checking the constructs with and without 

thioredoxin fusion, auto-induced cultures were analyzed and non-induced cultures were used as 

expression controls in the first experiment. No overexpressed protein could be identified by SDS-

PAGE (Fig. 6A) neither in soluble nor in insoluble intracellular fractions. In the second experiment 

baffled flasks were used to increase oxygen level during cultivation. In the western blot analysis (Fig. 

6B) signals of the intracellular E. coli biotin carboxyl carrier protein could be detected, but no BC95 or 

TrxA-BC95 with the size of 64 kDa and 76 kDa, respectively. The absence of CDA activity tested on 

glycol-chitin was clear, because no chitinase activity disturbing the assay was present in the E. coli 

samples in contrast to the yeast earlier. A CDA from Aspergillus nidulans was successfully produced 

with the E. coli pET-vector system, but the enzyme had to be renatured from inclusion bodies after 

induction by IPTG and is a small protein without CBDs [Wang et al., 2009]. In the present study, BC95 

was not produced at all and may not only need assistance for correct folding, but also glycosylation for 

solubility and function like the majority of fungal CDAs [Zhao et al., 2010].  

 

By going back to a yeast system, two major improvements were implemented: The BC95 coding 

sequence was optimized for heterologous expression in the new host and synthesized including the 

StrepII-tag, and generation of stable transformants of an H. polymorpha industrial strain was executed 

by Artes Biotechnology GmbH. Similar to the fission yeast, H. polymorpha is engineered for correct 

folding, high production and enhanced secretion of recombinant proteins, but in contrast to P. pastoris 

the production cultures are methanol-free [Gellissen, 2000]. The presence of recombinant protein 

could be shown by Artes‟ first screening with bands on western blot at and above 75 kDa, which were 

missing in the corresponding controls (Fig. 7A). The reason why the protein stays intracellular is 

probably up to a lacking or incomplete processing of the pre-pro-peptide, which is in accordance with 

the size of BC95 including the pre-pro-sequence of 72 kDa. However, the production of soluble BC95 
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turned out to be successful. CDA activity was tested with 4 different chitinous substrates, but could not 

be detected in any case, while replication of Artes‟ results was also not achieved.  

Yeast expression systems have the advantage of glycosylation ability, but are also known to over-

glycosylate [Mattanovich et al., 2014]; hence the glycosylation of BC95 as seen by western blot 

analysis may be too much or not appropriate for enzyme function (Fig. 7). Pre-pro-BC95 possesses 

three N-glycosylation sites in the MF-α1 sequence, additionally to the six sites of BC95, which together 

account for the lesser protein mobility during SDS-PAGE. Unfortunately the de-N-glycosylation is only 

accomplishable under denaturating conditions, so deglycosylated samples cannot be tested anymore 

for their activity. As stated before, a broad range of pH optima have been reported for CDAs and 

although one could expect to find a little activity at medium pH values, this has not been the case. In 

spite of the combination of a PDD with CBDs, it might thus be possible that BC95 is no CDA at all. 

Enzymes containing PDDs of the carbohydrate esterase family 4 (CE4, CAZY database) include 

chitooligosaccharide deacetylases, xylanases and acetylxylan esterases, some with overlapping 

substrate specificities [Caufrier et al., 2003]. Therefore, other substrates like xylan should be tested in 

further experiments. For this purpose, the production of BC95 has to be optimized either by cultivation 

and purification from cell extract or ideally by improvement of the secretion.  

 

The genome of B. cinerea contains an interesting set of six putative CDA genes, which are all 

expressed during conidia germination. To analyze enzymatic function the gene of BC95 with three N-

terminal CBDs was cloned for heterologous production in the three different expression hosts S. 

pombe, E. coli and H. polymorpha. Production of recombinant protein was only achieved with H. 

polymorpha, but CDA activity was not detected. Whether this is due to incorrect processing and 

lacking secretion or a different enzymatic function has to be addressed in further studies. 
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Chapter 3 

 

A chitin deacetylase from Podospora anserina with two 

carbohydrate-binding domains produces chitosans with non-

random patterns of acetylation 

 

This chapter will be submitted after slight modifications as a manuscript for publication with the 

following co-authors: Andreas Kranz and Bruno M. Moerschbacher. Dr. Andreas Kranz from Artes 

Biotechnology GmbH was responsible for the generation of Hansenula polymorpha production strains 

(sections 3.2.2 and 3.3.2) and Prof. Dr. Bruno M. Moerschbacher is the supervisor of this doctoral 

thesis. 

 

 

Abstract 

Chitosan is a structurally-diverse biopolymer that is commercially derived from chitin by chemical 

processing, but chitin deacetylases (CDAs) offer a sustainable and potentially more controllable 

approach allowing the production of chitosans with tailored biological activities. We investigated the 

chitin deacetylase from Podospora anserina (PaCDA) and found that it was closely related to 

Colletotrichum lindemuthianum CDA in the catalytic domain, but was unique due to the presence of 

two chitin-binding domains. We produced recombinant PaCDA in Hansenula polymorpha and found 

that the purified 35.5-kDa protein was active against glycol chitin, chitin oligomers with a degree of 

polymerization ≥ 2, chitosans and colloidal chitin. The pH optimum against this latter substrate was 

10.5, and the enzyme remained stable within the pH range 5–8.5. The optimal temperature was 55°C 

and the half-life at 80°C was 11.8 ± 0.6 min. PaCDA was not inhibited by EDTA or acetate and the 

cofactor was Zn
2+

. These data show that the catalytic domain of PaCDA is both structurally and 

functionally similar to C. lindemuthianum CDA. We also studied the mode of action on chitosans by 

enzymatic/MALDI-TOF MS fingerprinting and NMR using chitosans with the same degrees of 

polymerization and acetylation. Chemical processing and enzymatic deacetylation with PaCDA 

generated distinct patterns of acetylation (PAs). These chitosans were also compared in terms of their 

biological activity towards Oryza sativa cell cultures. There were no differences found in this case of 

oxidative burst assay, but we have achieved the enzymatic production of chitosans with non-random 

PAs.  
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3.1. Introduction 

Chitin is a linear polysaccharide of β-1,4-linked N-acetylglucosamine (GlcNAc) units which was first 

isolated from fungi by Henri Braconnot more than 200 years ago [Muzzarelli et al., 2012]. Later, it was 

recognized as the major component of arthropod exoskeletons and now, shrimp shell waste is the 

main source of this compound [Vázquez et al., 2013]. The presence of many intermolecular hydrogen 

bonds gives rise to an insoluble fiber that may exist either in the α- or β-form, depending on the source 

and orientation of the chains [Pillai et al., 2009].  

 

Chitosan is a structurally-diverse family of derivatives of chitin that can be produced by the release of 

acetate, resulting in polymers containing glucosamine (GlcN) and GlcNAc units. The amino groups 

can be protonated under slightly acidic conditions, which makes chitosan more water-soluble than 

chitin. The solubility and structural diversity of chitosans render them more useful for downstream 

applications [Ravi Kumar, 2000; Shukla et al., 2013] including water treatment [Bhatnagar and 

Sillanpää, 2009], medical applications like wound dressing [Jayakumar et al., 2011] or drug delivery 

[Hu et al., 2013], and plant protection [El Hadrami et al., 2010]. 

 

The properties of chitosans can be described by three parameters: the degree of polymerization (DP), 

the degree of acetylation (DA) and the pattern of acetylation (PA), the latter referring to the sequence 

of GlcN and GlcNAc units. While we have a basic understanding of structure-function relationships 

among chitosan molecules concerning DP and DA, little is known on the influence of PA, which based 

on theoretical considerations, we have postulated to also influence biological activity, especially if the 

chitosan is cleaved in situ by a sequence-specific chitosan hydrolase [El Gueddari et al., 2007]. The 

role of PA has been difficult to address due to the absence of chitosans with non-random PAs and the 

lack of suitable analytical methods. Chemically-produced chitosans appear to always display random 

PAs [Weinhold et al., 2009b] whereas enzymes known as chitin deacetylases (CDAs, EC 3.5.1.41) 

may have the potential to generate non-random PAs [Tsigos et al., 2000]. 

 

CDAs have been identified in bacteria [Kadokura et al., 2007; Li et al., 2007], insects [Dixit et al., 2008] 

and fungi [reviewed in Zhao et al., 2010] including Mucor rouxi [Kafetzopoulos et al., 1993], Aspergillus 

nidulans [Alfonso et al., 1995], Saccharomyces cerevisiae [Martinou et al., 2002], Rhizopus circinans 

[Gauthier et al., 2008] and Penicillium oxalium [Pareek et al., 2012]. The CDA from Colletotrichum 



   39 

  

lindemuthianum (ClCDA) is the most widely studied [Tokuyasu et al., 1999; Tsigos and Bouriotis, 

1995]. CDAs from different fungi modify their substrates in different ways depending on their role in the 

fungus, acting processively or in a non-processive mode of action [Tsigos et al., 2000]. The 

zygomycete M. rouxii has an intercellular CDA required for cell wall formation that is believed to work 

processively by a multiple attack mechanism [Davis and Bartnicki-Garcia, 1984; Tsigos et al., 1999]. In 

contrast, the plant pathogen C. lindemuthianum produces an extracellular non-processive CDA 

[Tokuyasu et al., 2000a]. Puccinia graminis f. sp. tritici converts its cell wall chitin into chitosan while 

penetrating the host in order to escape plant defense responses [El Gueddari et al., 2002]. Despite 

their name, all CDAs analysed so far show only minimal activity against polymeric chitin in vitro unless 

the crystallinity is broken by pretreatments generating amorphous/colloidal or superfine chitin [Win and 

Stevens, 2001]. This may indicate that in vitro, enzymatic deacetylation is restricted to the surface of 

insoluble chitins [Aye et al., 2006]. The lack of enzymatic activity of fungal CDAs towards polymeric 

chitin may reflect their physiological role when acting on the nascent chitin chain emerging from the 

chitin synthase before the formation of chitin crystals. However, it may also simply be owed to the low 

number of fungal CDAs investigated so far which by no means reflects the broad diversity of known 

genes putatively coding for CDAs. 

 

Many chitinases can degrade chitin crystals completely. Like other carbohydrate-active enzymes they 

often feature a modular structure featuring catalytic domains and carbohydrate-binding modules 

(CBMs) [Boraston et al., 2004]. These non-catalytic modules are characterized by their unique fold 

and carbohydrate-binding activity. CBM family 18 (CAZY database) also known as the type 1 chitin-

binding domain (CBD, PFAM 00187) is characterized by eight conserved cysteine residues that form 

four disulfide bonds [Beintema, 1994]. This domain also occurs without an accompanying catalytic 

domain in chitin-binding proteins and lectins such as wheat germ agglutinin [Wright et al., 1991]. CBDs 

help chitinases to act on insoluble chitin polymers [Blaak and Schrempf, 1995; Iseli et al., 1993], and 

we therefore assumed that they may also do likewise for CDAs, although active CDAs with CBDs have 

not been described thus far. 

 

Here we describe the discovery, heterologous expression and analysis of a novel CDA containing two 

chitin binding domains in the genome of Podospora anserina, a filamentous ascomycete living as a 

saprophyte on herbivore dung which is considered a model organism for the genetic and molecular 
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analysis of senescence/cell aging [Espagne et al., 2008]. We used this enzyme to produce chitosans 

with non-random PAs and to explore their biological activities, and found that the enzyme was more 

active against chitosans than crystalline chitin but was able to generate non-random PAs. 

 

 

3.2. Materials and methods 

 

3.2.1. Bioinformatics 

The Pfam database (http://pfam.sanger.ac.uk) was accessed in May 2010 and scanned for protein 

architectures containing a polysaccharide deacetylase domain (PDD, PF01522) and the 

“Chitin_bind_1” CBD (PF00187) [Finn et al., 2014]. The resulting list was supplemented with fungal 

sequences from C. lindemuthianum, M. rouxii, R. circinans, A. nidulans, P. graminis and S. cerevisiae 

(CDA1 and CDA2), whose CDA activity was reported in literature [Alfonso et al., 1995; Gauthier et al., 

2008; Kafetzopoulos et al., 1993; Mishra et al., 1997; Tsigos and Bouriotis, 1995]. We used ClustalW2 

to carry out several multiple sequence alignments (http://www.ebi.ac.uk/Tools/clustalw2) initially using 

the parts annotated as PDD to identify putative CDAs, but later also with full-length sequences [Larkin 

et al., 2007]. SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP) was used to identify signal peptides 

[Bendtsen et al., 2004], and NetNGlyc 1.0 (http://www.cbs.dtu.dk/services/NetNGlyc) to predict 

potential N-glycosylation sites [Blom et al., 2004]. 

 

3.2.2. Production and purification of PaCDA  

The Podospora anserina protein sequence (PaCDA, GeneBank: CAP60162) was sourced from the 

NCBI database (http://www.ncbi.nlm.nih.gov) and provided to GeneArt® (Thermo Scientific, Germany) 

for gene optimization and synthesis. We fused the PaCDA gene C-terminally to a StrepII-Tag coding 

sequence [Schmidt and Skerra, 2007] using two phosphorylated primers coding for one half of the tag 

each (5‟-pho-CAATTTGAAAAGTAGTAAGGATCCGGTACCTGGAGC-3‟ and 5‟-pho-AGGATGAGAC 

CAGTTACAGTTGCCGAAGGCTCTC-3‟, StrepII sequence underlined) and amplifying the whole 

plasmid. The PCR template pMA-T::PaCDA was then digested using restriction enzyme DpnI followed 

by gel-extraction of pMA-T::PaCDA-StrepII and recirculation of the plasmid. The uracil-auxotrophic 

(ura3) H. polymorpha host strain RB11 [Zurek et al., 1996] was chosen for high-level production of 

PaCDA. To construct expression plasmids, the optimized sequence of PaCDA was provided to Artes 
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Biotechnology GmbH (Langenfeld, Germany) where it was upstream extended with the pre-propeptide 

MF α1 coding sequence of S. cerevisiae [Kurjan and Herskowitz, 1982] in order to achieve secretion, 

and the construct was cloned into pFPMT121 [Degelmann et al., 2002]. This plasmid contains the 

FMD (formate dehydrogenase) promoter and the MOX (methanol oxidase) terminator as 

transcriptional control elements for inserted genes. Preparation of competent cells and transformation 

were carried out as described before [Klabunde et al., 2007]. To promote mitotically stable integration 

of multiple expression plasmid copies into the H. polymorpha genome, uracil-prototrophic 

transformants were subjected to repeated cycles of growth under selective and nonselective 

conditions (passaging and stabilization). Stabilized transformants were cultivated in glycerol-containing 

medium to induce expression (YPYNBG, 1% yeast extract, 2% peptone, 0.14% yeast nitrogen base 

(without amino acids and ammonium sulfate), 0.5% ammonium sulphate, 2% glycerol, and 0.1 M 

potassium phosphate buffer pH 6.0) for 70 h at 30°C.  

We initially screened pools of H. polymorpha clones for amounts of secreted product present in cell-

free culture supernatants, estimated by Western dot blot using Strep-Tactin-HRP conjugate and 

chromogenic detection. Then we identified individual clones and screened for amounts of active 

enzyme on CDA activity gels containing glycol chitin (prepared as previously described by Trudel and 

Asselin, 1989). The samples of culture supernatant were applied as drops of 1 µl each onto the gels 

(dot gels). These were prepared with 12% polyacrylamide, BisTris buffer pH 7.0 and 0.1% (w/v) glycol 

chitin, incubated overnight at 37°C, followed by staining with Calcofluor White (Fluorescent Brightener) 

and chemical depolymerization of deacetylated chitin using HNO2 as described by Trudel and Asselin  

(1990). Afterwards, the transformants showing high productivity were selected for subsequent 

experiments.  

For enzyme production on larger scale 2-l flasks with 200 ml YPYNBG were inoculated with 4 ml of 

pre-culture and incubated for 70 h at 30°C and 180 rpm. The cell-free culture supernatant was 

concentrated and rebuffered to 20 mM triethanolamine (TEA) pH 8.0 and 400 mM NaCl by 

ultrafiltration through 10-kDa molecular weight cut-off filters in a 400-ml stirred device. The protein was 

purified by StrepTactin affinity chromatography on a Qiagen Strep-Tactin Superflow 1 ml column in an 

ÄKTAprime plus FPLC system (GE) according to the manufacturers‟ protocols. Purified PaCDA was 

stored at -20°C in 50 mM ammonium carbonate buffer pH 8.5 and 50% glycerol. 

Sodium dodecyl sulfate polyacrylamide electrophoresis (SDS-PAGE) was carried out as described 

[Laemmli, 1970], using gels containing 12% (w/v) polyacrylamide and Coomassie Brilliant Blue 
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staining. The semi-native PAGE was carried out like the SDS-PAGE, but without boiling and addition 

of β-mercaptoethanol to the sample, at 4°C and followed by washing steps for renaturation in BisTris 

buffer pH 7.0 with Triton X-100 and a glycol chitin overlay gel as previously described [Trudel and 

Asselin, 1990], then CDA activity was detected as described above. 

 

3.2.3. Substrates 

Chitosan DA 0% (DP≈1540), α- and β-chitin were kindly donated by Gillet-Matani Chitosan (France/ 

India). We prepared reacetylated chitosans as previously described by Vachoud et al., (1997), using 

molar ratios of acetic anhydride in acetic acid/1,2-propanediol/water solution. Colloidal chitin was 

produced from β-chitin by slightly modifying the protocol described by Hsu and Lockwood (1975). 

Chitin oligomers were purchased from Seikagaku Corporation (Japan) and Megazyme (Ireland).  

Deacetylation of chitosans with different DA values ranging from 9% to 60% and DP values ranging 

from about 600 to 1500 was tested by adjusting the substrate concentrations to 0.05 g/l acetate 

groups. The 330-µl samples were incubated with 0.075 µM PaCDA at 37°C for 120 h in 50 mM TEA 

buffer pH 8.5 and 50 mM NaCl. The CDA activity was determined by measuring acetate release 

[Martinou et al., 1995] using an acetic acid assay kit according to the manufacturer‟s 

recommendations (R-Biopharm AG, Darmstadt, Germany) but downscaled for 96-well mircotiter 

plates. Samples were measured in triplicates and acetate concentrations were calculated against a set 

of standards. Chitin oligomers and monomer (N-acetylglucosamine) from DP 1 to 6 (0.1 g/l) were 

incubated with 0.12 µM PaCDA at 37°C for 120 h in 23 mM TEA buffer pH 8.5. In addition to the 

acetate assay, samples were also analyzed by mass spectrometry (MS, see section below). Activity of 

PaCDA on colloidal, α- and β-chitin was tested using 1 g/l substrate and 0.246 µM enzyme in 400 µl of 

49 mM TEA buffer pH 8.5 with 49 mM NaCl and incubating at 37°C and 180 rpm for 120 h. After 

centrifugation at 15,700 g and 4°C for 10 min, the products in the supernatant were analyzed as 

described above. 

 

3.2.4. Characterization of PaCDA 

Colloidal chitin (0.1 g/l) was used as substrate for 0.123 µM PaCDA in 400-µl sample volumes shaken 

in an Eppendorf thermomixer at 750 rpm. The reaction was stopped by removing the insoluble 

substrate by centrifugation (15,700 g, 4°C, 10 min) before the CDA activity was determined by 

measuring acetate release from the supernatant [Martinou et al., 1995]. The impact of pH values 4–12 
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was tested by incubating samples at 37°C for 17 h in 25 mM Teorell-Stenhagen-buffers (citrate, 

phosphate and borate). The stability within this range was tested by pre-incubating PaCDA at 37°C for 

24 h in 50 µl 40 mM Teorell-Stenhagen-buffers, followed by the addition of the substrate in 37.5 mM 

TEA buffer pH 8.5 and 37.5 mM NaCl and incubating at 37°C for 17 h.  

The impact of temperatures over the range 4–90°C was tested by incubating samples for 1 h in 50 mM 

TEA buffer pH 8.5 with 50 mM NaCl. The temperature stability was determined by incubating 5-µl 

aliquots of enzyme solution (1 g/l) in a thermocycler at 80°C for up to 2 h, and then processing the 

samples as discussed above but incubating at 37°C for 17 h. The half-life was calculated by plotting 

time against activity relative to untreated enzyme using SigmaPlot (Systat Software Inc.) and 

calculating the fit to the exponential decay (triple, 7 parameter) curve. 

The influence of bivalent cations (1 and 10 mM, as chloride salts, listed in Table 1), EDTA (1 and 10 

mM) and β-mercaptoethanol (0.5% and 5%) was tested by pre-incubation with the enzyme at room 

temperature or at 95°C for 5 min in 39.5 mM TEA buffer pH 8.5 with 39.5 mM NaCl, followed by 

substrate addition and incubation as described above.  

Total reflection X-ray fluorescence analysis (TXRF) was carried out on a S2-PICOFOX instrument 

(Bruker AXS, Berlin, Germany) with an air-cooled molybdenum anode for X-ray generation as 

previously described [Telgmann et al., 2011]. For the determination of the bivalent cations iron, cobalt, 

nickel, copper and zinc as possible co-factors, aliquots of the purified PaCDA samples were mixed 

with the same volume of the 10 mg/L gallium standard solution, placed on quartz glass disks sample 

carriers and evaporated to dryness. The analysis was carried out by signal integration over 200 

seconds with excitation settings at 50 kV and 750 mA, followed by quantification using the Bruker 

Spectra software (version 6.1.5.0) based on the known concentration of the internal gallium standard. 

Acetate inhibition was tested by incubating 0.25 g/l chitin pentamer with 0.615 µM PaCDA and 

100 mM ammonium acetate at 37°C for 21.5 h in 50 mM ammonium carbonate buffer pH 8.5. Buffer 

was removed by three drying and resolving cycles in a centrifugal concentrator at 60°C before MS 

analysis (see below). 

 

3.2.5. Mode of action 

To analyze the mode of action on polymers, 500 mg reacetylated chitosan DA 60% (as described 

above) was used as substrate for 300 µg PaCDA and incubated at 37°C and 120 rpm for 3 h in 1-l 

flask with 500 ml of 25 mM TEA buffer pH 8.0. We monitored the resulting DA by analyzing samples 



   44 

  

for acetate release (as described above) to stop the reaction at around DA 30% by heating at 90°C for 

10 min. During the process of deacetylation the chitosan was partly precipitating and at the end, 25% 

ammonia solution was added for full precipitation at pH 9-10. The precipitate was washed twice in 

alkaline, then twice again in neutral distilled water to remove enzyme and buffer, and freeze-dried in 

the last step. The final DA of PaCDA-treated chitosan was determined by 
1
H-NMR (see section 

below).  

The pattern of acetylation was analyzed by enzymatic/mass spectrometric fingerprinting, carried out 

using a chitinolytic enzyme from Alternaria alternata known as chitinosanase [Beneteau et al., in 

preparation]. PaCDA-treated and chemically reacetylated chitosan DA 30% (10 µg) was hydrolyzed by 

10 ng enzyme in 20-µl samples at 37°C in 80 mM ammonium acetate buffer pH 4.2 in an over-night 

reaction. Hydrolysates were directly scanned for resulting chitosan oligomers using mass 

spectrometry. 

 

3.2.6. Mass spectrometry (MS) 

Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) 

analysis was carried out using 355 nm SmartBeam
TM

 NdYAG-laser and Bruker Daltonics Autoflex 

Speed (Bremen, Germany). Samples were prepared by mixing 0.7 µl of enzyme products (≈0.1 g/l) 

with 0.7 µl of 2,5-dihydroxybenzoic acid (DHB) matrix solution (10 g/l in a 1:1 acetonitrile:H2O mixture) 

on target and blow-dried. For MS
2
 experiments 3-aminoquinoline (3-AMQ) was used in optimal 

conditions described by Rohmer et al.,  [2010], because this matrix substance also acts as derivatizing 

agent tagging the reducing end and thereby enables oligosaccharide sequencing after post-source 

decay (PSD) fragmentation. Measurements were carried out by the MS service of the Institute of 

Organic Chemistry at WWU Münster. The spectra were evaluated using the latest available version of 

Mmass [Strohalm et al., 2010]; after base line correction, the monoisotopic peaks of 

chitooligosaccharide sodium ions were annotated according to their composition of GlcNAc (A) and 

GlcN (D). 

 

3.2.7. Nuclear magnetic resonance spectroscopy (NMR) 

DAs of chitosans were determined by dissolving ≈2 mg each in about 500 µl of D2O with 2 µl of DCl, 

followed by two freeze-drying and resolving cycles to remove H2O, and recording 
1
H-NMR spectra at 

400 MHz (Bruker Avance II 400, Bruker Corporation, USA) as described previously by Hirai et al. 
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[1991] and Vårum et al. [1991] and validated by Lavertu et al. [2003]. Measurements were carried out 

by the NMR service of the Institute of Organic Chemistry at WWU Münster and spectra were 

evaluated using MestReNova Software v. 9.0 (Mestrelab Research S.L, Spain). 

 

For determination of the PA by 
13

C-NMR diad analysis [Varum et al., 1990] I dissolved and 

depolymerized chitosans as described by Kumirska et al. [2009] and Weinhold et al. [2009], using 

≈100 mg of each sample in 1.4 ml. Spectra were recorded at 600 MHz and 70°C (Agilent DD2 600, 

Agilent Technologies, USA) and evaluated with MestReNova Software v. 9.0 (Mestrelab Research 

S.L, Spain) analogous to the literature specified above for spectrums with a good signal to noise ratio. 

A manual phase correction on PH0 and PH1 and an exponential apodization of the spectra in the 

limits 0.3 - 0.85 Hz or Gaussian apodization until 7 GB (Hz) was carried out before baseline correction 

using the Bernstein polynomial fitting with a polynomial order up to 4. For integration of the diad 

frequencies of the C5 carbon atom, the MestReNova function for Lorentzian Gaussian deconvolution 

was applied by setting a fit region between 74.5 and 76 ppm using width constraint 0.1 - 100 Hz and a 

maximum number of 100 fine iterations was fixed. The PA value was calculated according to equation 

1 with the different fractions (FDD, FAA and FAD* = FAD + FDA) representing the relative intensities of the 

four possible sequences in percent [Kumirska et al., 2009; Weinhold et al., 2009b].  

 

Eq.1 
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3.2.8. Biological activities 

Oxidative burst assay with suspension cultured Oryza sativa cells was carried out by slightly modifying 

the protocol described by Melcher and Moerschbacher [in preparation]. O. sativa cells were obtained 

and cultivated as described [Ortmann et al., 2006] and used for the assay 3-4 days after re-

inoculation. Preparation of 96-well plates was carried out by weighing 1.2 g rice cells in 30 g assay 

medium, pipetting 50 µl cell suspension per well while shaking gently and adding 150 µl assay 

medium for an optimal cell concentration of 0.02 g/l. The cells were pre-treated with L012 luminol 

derivative (Wako Chemicals, Neuss, Germany) by adding 20 µl of a 0.1 g/l L012 solution in 50 mM 

potassium phosphate buffer pH 7.9, before they were incubated at 26°C and 120 rpm for 4 h. Prior to 
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eliciting, 15 µl horseradish peroxidase type II (1 g/l, purchased from Sigma-Aldrich, Hamburg, 

Germany) was added as a catalyst to each well to enhance chemiluminescent reaction. To test 

possible elicitor substances, 30 µl samples of 1 g/l chitosan solutions each were added to the cells by 

a multichannel pipette before recording the emitted light for 1 s every 90 s (40 data points) in a 

microplate luminometer (Luminoskan Ascent, Thermo Scientific, Waltham).  
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3.3. Results 

 

3.3.1. Bioinformatics 

We searched for putative CDAs by screening the Pfam database for proteins containing a catalytic 

PDD and one or more CBDs. The PDDs from this novel sequences and from known and biochemically 

validated CDAs were aligned with ClustalW, revealing predicted protein B2AAQ0, now known as 

Podospora anserina (S mat+) chitin deacetylase (PaCDA).  

 

Fig. 1: Bioinformatic analysis: Cladogram (A) based on a protein sequence alignment (ClustalW2) of the 
polysaccharide deacetylase domains (PDD) of biochemically characterized CDAs (pink) and fungal sequences 
(black) containing additionally one or more chitin binding domains, Podospora anserina putative CDA B2AAQ0 
(blue) is most closely related to the Colletotrichum lindemuthianum CDA (ColLi CDA) and the only sequence with 
CBD that is in the group of known CDAs (blue box), other species: Puccinia graminis f. sp. tritici, Saccharomyces 
cerevisiae, Mucor rouxi, Rhizopus circinans, Aspergillus nidulans, Gibberella zeae, Magnaporthe grisea, Botrytis 
cinerea, Sclerotinia sclerotiorum, Chaetomium globosum, Phaeosphaeria nodorum, A. fumigatus, Neosartorya 
fischeri, A. oryzae, A. niger and Blumeria graminis. (B) Schematic representation of PaCDA with 396 amino 
acids, green: chitin binding domain (PF00187), pink: polysaccharide deacetalase domain (PF01522), grey: linker 
region (low complexity), identified by Pfam, yellow: signal peptide, identified by SignalP.   
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This was the only protein that grouped with the known CDA sequences from M. rouxi, R. circinans, S. 

cerevisiae and C. lindemuthianum (Fig. 1A). The latter was the most closely related to PaCDA, both 

had 53% identity for the PDD sequences. PaCDA (Fig. 1B) is 396 amino acids in length, including a 

21-residue N-terminal signal peptide identified by SignalP 3.0 (HMM result), as well as two CBDs 

located on both sides of the PDD, and contains no potential N-glycosylation sites predicted by 

NetNGlyc 1.0. The two CBDs were classified as CBM family 18 and differed in sequence and length. 

The fungal protein was estimated to feature ten disulfide bonds, four in each CBD and two in the PDD, 

thus making yeast the most sensible approach for heterologous production. 

 

3.3.2. Production and purification of PaCDA 

The PaCDA gene was optimized for extracellular expression in the yeast H. polymorpha, synthesized 

and appended with the sequence for a C-terminal StrepII-Tag. Multi-copy genome integration was 

successful as seen by pre-screening of the transformants for the presence of tagged protein. The 

second screening using glycol chitin dot gels confirmed the presence of correctly folded and active 

enzyme. Clones with CDA activity were cultivated on a larger scale (up to 1 L) and the recombinant 

enzyme was purified to homogeneity from the supernatant by StrepTactin affinity chromatography. 

Analysis of the recombinant protein using SDS-PAGE revealed a single band (Fig. 2A).  

 

 
 

Fig. 2: Analysis of purified PaCDA, A: SDS-PAGE coomassie stained, M: peqGold Protein Marker II 
(unstained, Peqlab); B: activity gel after semi-native PAGE and incubation with overlay gel containing 0.1% 
glycol chitin, stained with Calcofluor white, after depolymerisation of formed chitosan by HNO2, resulted in dark 
bands representing CDA activity, Marker: Precision Plus Protein Standards All Blue (Bio-Rad) 
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Although the predicted molecular weight of PaCDA is 40.5 kDa, it migrated as a 35.5 kDa band on the 

gel. The enzyme remained active following semi-native PAGE and deacetylated glycol chitin present in 

an overlay gel (Fig. 2B). 

 

3.3.3. Substrates 

Soluble glycol chitin, as used in the screenings and purification described above, is an artificial 

substrate. Polymeric chitosans with different DAs were deacetylated by the recombinant enzyme to 

different extents (Fig. 3A), although the same molar amount of acetyl groups was used. This clearly 

shows a preference for higher acetylated chitosans and suggests a corresponding subsite structure. 

The activity of PaCDA against soluble chitin oligomers required a minimum DP of 2, but the activity 

compared to chitosan polymers was very low. Mass-spectrometric analysis showed that completely 

deacetylated oligomers were produced and that if an acetylated unit remained, it was mainly located at 

the reducing end of the pentamer and hexamer.  

 

 
 

Fig. 3: PaCDA activity on chitosans (A) and chitins (B): chitosans with degree of acetylation (DA) ranging from 
9% to 60% were incubated with 0.075 µM PaCDA at 37°C for 120 h, chitosan concentrations were adjusted to 
0.05 g/l acetate groups, graph showing DA [%] before (grey) and after deacetylation by PaCDA (white). For the 
insoluble chitin substrates, the change in DA [%] is given, samples (1 g/l) were incubated with 0.246 µM PaCDA 
at 37°C and 180 rpm for 120 h. 
 

 



   50 

 

Our main interest was focused on the ability of PaCDA to act on insoluble chitin polymers (Fig. 3B). 

Although there was low activity against α- and β-chitin, colloidal chitin was deacetylated by up to 15% 

and thus, to a substantially lower DA than achieved when other, known CDA had been used. We 

therefore used colloidal chitin for further enzyme characterization. 

 

3.3.4. Characterization of PaCDA 

The activity of PaCDA against colloidal chitin was also determined by measuring acetate release. The 

activity described an unusual non-Gaussian curve with a pH maximum at 10.5 (Fig. 4A) but was also 

stable over a wide pH range (5–8.5) so the optimal physiological pH can be considered to be ~8.5. We 

tested the temperature optimum at 1 h and pH 8.5 as shown in Fig. 4B, revealing a broad optimum of 

40–60°C with a maximum at 55°C. Temperature stability testing at 80°C indicated a half-life of 11.8 ± 

0.6 min.  

 

 

Fig. 4: Impact of pH and temperature, A: pH activity optimum and stability PaCDA (0,123 µM) incubated with 
0.1% colloidal chitin at 37°C, for activity incubated 17 h in Teorell-Stenhagen-buffer pH 4 to 12, for stability pre-
incubated 24 h in Teorell-Stenhagen-buffer pH 4 to 12, then the substrate was added and incubation 17 h in TEA 
pH 8.5 followed. B: Temperature optimum: activity of PaCDA (0,123 µM) on colloidal chitin (0.1%), samples 
incubated for 1 h at pH 8.5 (100 mM TEA, 100 mM NaCl), mg/l acetate release assayed for both experiments. 

 

 

Neither EDTA nor β-mercaptoethanol inhibited the enzyme significantly unless combined with 

additional heating. The relative activity of the enzyme in the presence of these inhibitors and various 

bivalent cations is shown in Table 1. The values show that a tightly-bound cation is required for 

enzyme activity, but there is no requirement for a specific cofactor addition. Total reflection x-ray 

fluorescence (TXRF) analysis from the purified PaCDA showed that zinc is the most abundant element 
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among bivalent cations. The only other two detected elements were the known antagonists iron and 

copper. PaCDA activity was not inhibited by the presence of 100 mM acetate as well, tested by using 

chitin pentamer as substrate and analyzed by MALDI-TOF MS as described above. 

 

Tab. 1: Activity of PaCDA with inhibitors (A) and bivalent cations (B): relative activity [%] -/+ standard 
deviation on colloidal chitin, EDTA in mM, ß-mercaptoethanol in %   

 

 

 

3.3.5. Mode of action and pattern of acetylation 

The mode of action of PaCDA was tested against different chitosan substrates. Two chemically-

reacetylated chitosans were determined by 
1
H-NMR to a DA of 61% and DA 33%, respectively. 

Chitosan with DA 61% was deacetylated by PaCDA to DA 29% (acetate release measured by coupled 

enzyme assay and verified by 
1
H-NMR) and compared to solely-chemical chitosan of DA 33%. 

Fingerprinting was carried out using chitin/chitosan-degrading enzymes followed by MALDI-TOF MS 

analysis. The highly sequence-specific chitinosanase from A. alternata achieved the most distinct 

result. The two spectra in Fig. 5 show different sets of peaks. The chemical chitosan was degraded to 

23 different chitosan oligomers varying in DP and DA. The PaCDA-treated chitosan resulted in a set of 

15 peaks, lacking larger oligomers than DP 7. Although this measurement is not entirely quantitative, 

the oligomers containing two or more GlcNAc unit seem to be more abundant in the chemical chitosan 

spectrum, whereas the PaCDA products show higher peaks for oligomers with one GlcNAc unit up to 

the pentamer group.In addition to the MALDI-TOF MS the chitosans were analyzed by 
13

C-NMR 

spectroscopy to determine the PA value by calculating the diad frequencies of the C5 carbon atom.  

A: PaCDA – inhibitors and detaturation 

 H20 EDTA β-merc. β-merc./95°C 
EDTA/ 
β-merc. 

EDTA/ 
β-merc./95°C 

1 mM / 0.5% 100 99.6 ± 1.0 89.6 ± 4.6 67.9 ± 5.8 72.8 ± 1.4 1.1 ± 1.5 

10 mM / 5% 100 60.7 ± 10.8 39.7 ± 0.5 0.5 ± 0.5 31.1 ± 1.7 - 

B: PaCDA – bivalent cations 

 H20 Ca
2+

 Mg
2+

 Mn
2+

 Fe
2+

 Co
2+

 Zn
2+

 

1 mM  100 98.4 ± 2.1 98.7 ± 1.8 109.2 ± 2.1 102.8 ± 2.3 80.6 ± 5.5 31.7 ± 5.2 

10 mM 100 98.0 ± 2.5 99.4 ± 2.7 77.4 ± 2.4 29.5 ± 5.7 19.1 ± 5.6 1.7 ± 1.7 
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Fig. 5: Enzymatic/ mass spectrometric fingerprinting with MALDI-TOF MS: comparison of PaCDA 
deacetylated chitosan DA 29% (A) and chemically produced chitosan with DA 33% (B), samples hydrolyzed with 
sequence specific chitinosanase (A. alternata), resulting oligomers are annotated as A = GlcNAc, and D = GlcN 
unit. 

 

 

The PA of chemically-reacetylated chitosan DP 33% is 1.11, while the PaCDA-treated chitosan has a 

PA of 1.33. By applying the equation 2 to a DP of 33%, the value for a random pattern of acetylation 

found by Weinhold et al. [2009] is 1.06.  

Eq. 2 

               ቀ       ቁ 
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The chemically-reacetylated chitosan can therefore be regarded as random, whereas the value of the 

PaCDA-treated chitosan is differing and by definition on the side of a more alternating pattern. Part of 

the 
13

C-NMR spectra at 600 MHz and 70°C showing the C5 resonance region is displayed in figure 6, 

where difference of the two chitosans can also be seen. The AA peak for example is much smaller in 

the spectrum of the PaCDA-treated chitosan and could not be quantified by the NMR evaluation 

software, which indicates GlcNAc units occur less often next to each other. 

In summary of these two analytical methods the pattern of acetylation of enzymatically-derived 

chitosan is different to that of chitosan produced chemically. 

 

 
 
Fig. 6: PA analysis by 

13
C-NMR: spectra recorded at 600 MHz and 70°C, excerpt of C5 carbon atom resonance 

region showing the diads DA, DD, AA and AD, (A = GlcNAc, D = GlcN), comparison of PaCDA deacetylated 
chitosan DA 29% and chemically produced chitosan with DA 33% reveals smaller AA peak. 
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3.3.6. Biological activities – Oxidative Burst assay 

To test the biological activities of chitosans with different PAs, we chose the oxidative burst assay with 

Oryza sativa cell cultures. This assay measures elicitor-induced defense responses of plant cells by 

quantifying the reactive oxygen species (ROS) produced via the reaction with luminol derivate L012 in 

relative light units (RLU). At a concentration of 113 mg/l both chemical chitosans with a DA of 30% as 

well as the parent chitosan with a DA of 50% (as described above) were able to trigger an oxidative 

burst (Fig. 7). At first a PaCDA-treated chitosan tested did not elicit a strong oxidative burst like the 

two chemically produced (Fig. 7A), but the DA was later estimated to be only 18%. In the second 

experiment (Fig. 7B) chitosan with a DA of 30% was used and showed an oxidative burst curve almost 

as high as for the chemically-reacetylated chitosan with DA 30%, but with some lag-time. This and 

also in comparison to the DA 50% curve clearly indicates that for this assay the chitosans degree of 

acetylation is more important for the plant cell reaction that it‟s pattern.  

 

 

 

Fig. 7: Oxidative Burst assay: 113 mg/l of different chitosans were incubated with suspension cultured cells of 
Oryza sativa in 96-well microtiterplates, the production of ROS was measured as relative light units (RLU) after 
reaction with luminol derivative L012, mean of 5, representative of 7 or more experiments A: PaCDA deacetylated 
chitosan DA 18% was compared to chemically produced chitosans. B: showing same samples, except for PaCDA 
chitosan DA 30%. 
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3.4. Discussion 

Chitosans can be produced from chitin either chemically or by enzymes (CDAs). These two processes 

are thought to generate chitosans that differ in terms of their patterns of acetylation (PA), which is in 

turn thought to influence their biological activities, although there has been no direct demonstration of 

this principle so far. Here we provide for the first time a chitosan with non-random pattern of 

acetylation produced by the novel enzyme PaCDA. 

 

3.4.1. Bioinformatics 

We searched for active CDAs containing CBDs because such enzymes have not been characterized 

before. This led to the identification of a novel CDA from P. anserina, containing one N-terminal and 

one C-terminal CBD (Fig. 1), with high similarity to ClCDA. Although genome databases contain 

multiple sequences like this, and some insect genes have been investigated [Dixit et al., 2008], this is 

the first CDA containing CBDs whose activity against chitinous substrates has been confirmed. 

 

3.4.2. Production and purification of PaCDA 

Our analysis revealed the presence of up to ten disulfide bonds in the protein, suggesting that 

production in E. coli would be challenging. We therefore selected as an alternative production host the 

methylotrophic yeast H. polymorpha [Hollenberg and Gellissen, 1997], also known as Pichia angusta, 

because this genus has been already been used to produce a CDA from C. lindemuthianum [Shrestha 

et al., 2004]. This is also the only fungal CDA whose crystal structure is known, and the investigation 

of this structure revealed an intermolecular interaction between the active site and His6 tag [Blair et al., 

2006]. To avoid this artifact we therefore chose the StrepII-Tag for one-step affinity purification. The 

purified protein migrated as a single band by SDS-PAGE (Fig 2A). The apparent molecular mass was 

lower than expected but this did not interfere with enzyme refolding or activity, as revealed by an in-gel 

assay against the substrate glycol chitin (Fig. 2B). 

 

3.4.3. Substrates 

Besides glycol chitin we carried out a series of in vitro assays against different substrates and found 

that PaCDA was not more active against the insoluble substrates α- and β-chitin than other CDAs 

[Martinou et al., 1995; Pareek et al., 2013], but was more active against colloidal chitin, which was 

deacetylated to a greater degree than achieved by A. coerulea and C. lindemuthianum CDAs [Win and 
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Stevens, 2001] or Rhizopus oryzae CDA [Aye et al., 2006]. This could reflect differences in the size of 

the chitin particles or the fine structure of the surface [Beaney et al., 2007]. However, we conclude that 

PaCDA worked only on the surface of crystals, but the CBDs may help the enzyme to attach to the 

substrate and thus increase its activity, which is a known effect [Bolam et al., 1998]. Originally 

identified as lectins, structural analysis of CBM famlily 18 containing proteins revealed they are made 

to bind small sugars (Type C), in contrast to the “surface-binding” (Type A) and “glycan-chain-binding” 

(Type B) structures [Boraston et al., 2004]. 

For chitin oligomers the minimum DP is 2, like for ClCDA [Tokuyasu et al., 1996] and A. nidulans CDA 

[Alfonso et al., 1995]. Due to the low activity the mode of action on oligomers was not studied further, 

but initial mass-spectrometric analysis showed it could be also very similar to ClCDA [Tokuyasu et al., 

2000a]. Instead, chitosan DA 60% was chosen, which is a good substrate for PaCDA (Fig. 3A). The 

deacetylation of chitosans was carried out using the same molar amount of acetyl groups, therefore 

the different DAs afterwards suggest a specific PA is produced which is a poorer substrate for the 

enzyme.  

 

3.4.4. Characterization of PaCDA 

Although activity was tested against colloidal chitin and not glycol chitin, PaCDA behaves in a similar 

manner in terms of pH and temperature optimum as ClCDA [Tokuyasu et al., 1996; Tsigos and 

Bouriotis, 1995]. The shape of the pH curve can be explained as it is known that higher pH values 

favor deacetylation chemically, before the effect on enzyme stability dominates. Zn
2+

 appears to be the 

cofactor for PaCDA like is was shown previously for ClCDA [Blair et al., 2006]. This bivalent cation 

cannot be removed by EDTA and inactivation can only be achieved by denaturation with additional β-

mercaptoethanol and heating, which adds to the compact structure of PaCDA. The thermo stability at 

80°C is good; although the enzyme is not as heat-stable as A. nidulans CDA [Wang et al., 2009]. 

PaCDA was also unaffected by acetate, this finding groups the CDA again with the two enzymes 

mentioned before. 

Considering the values compared to other CDAs known, PaCDA was highly similar to ClCDA not only 

in catalytic sequence but also in properties, and therefore most likely belongs to the group of endo-

type CDAs which work non-processive and are supposed to have their biological role in plant–

pathogen interactions [Tsigos et al., 2000]. 
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3.4.5. Mode of action and pattern of acetylation 

To study the mode of action, a “parent” chitosan (DP 1540 and DA 0%) was split into two samples, 

one of which was chemically reacetylated to 33% and one of which was chemically reacetylated to 

61% and then enzymatically deacetylated to 29%, so that both samples had about the same DA but 

potentially differed PAs. This was investigated by enzymatic/mass spectrometric fingerprinting analysis 

with specific A. alternate chitinosanase; because this enzyme cleaves the polymer after a GlcN unit 

and a GlcNAc unit, the resulting oligomers must have GlcN-GlcNAc at the reducing end [Beneteau et 

al., in preparation]. The mass spectra for the two samples were distinct, with more oligomers 

containing only one GlcNAc unit for the PaCDA-treated chitosan. This indicates that PaCDA requires 

two side-by-side GlcNAc units for deacetylation, as also seen for the chitin oligomers. This is not 

evidence for a processive mode of action, but for substrate preference based on the PA. We therefore 

conclude that the PA of chitosans produced by PaCDA is not random but rather regular.  

 

Analysis of chitosans by NMR spectroscopy for the distribution of units (=PA) was first described by 

Varum et al., [1990; 1991], who identified the diads and triads of GlcNAc (A) and GlcN (D) units. In 

case of PaCDA the 
13

C-NMR analysis is even more convincing that the fingerprinting result. The 

spectrum of PaCDA-treated chitosan clearly shows a smaller peak for the AA diad, which supports the 

findings discussed before. The equation provided by Weinhold et al. [2009] using the diad frequencies 

of the C5 carbon atom to calculate the PA value also allows numerical comparison. The PA value of 

PaCDA-treated chitosan is not only different from the theoretical value for random distribution, but also 

from the value we determined for the solely-chemical chitosan with the same DP and DA. Martinou et 

al. [1998] studied a processive CDA from M. rouxi and found chitosans with slightly different diad 

frequencies from a Bernouillian distribution of units (=non-random PA) leading to the conclusion that 

the enzyme uses a multiple attack mechanism. In other words this is a more blockwise PA in 

comparison to the more regular pattern we have found for the PaCDA. The hypothesis that enzymes 

can/should/must make a non-random pattern of acetylation was suggested some time ago [Tsigos et 

al., 2000; Zhao et al., 2010], now we not only have shown it is feasible to produce non-random PA 

chitosans with a non-processive enzyme, but also that the resulting PA is different using another type 

of CDA. Generally, enzymes have structurally-specific substrate preferences which in the case of 

CDAs would promote the creation of chitosans with non-random blocks of PAs based on the individual 

preferences at each subsite.  
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3.4.6. Biological activities 

As fungal CDAs are known to play a role in plant-pathogen interactions [El Gueddari et al., 2002] and 

chitosans are biologically active in plant systems [Hadwiger, 2013], it was obvious to test 

enzymatically derived chitosan as well. A measurable indicator of plant defense mechanisms are 

reactive oxygen species (ROS), in particular H2O2. The oxidative burst assay quantifies the reaction 

towards elicitor molecules and it is known that chitin hexamer and chitosan polymers can trigger H2O2 

production [Ortmann et al., 2004; Paulert et al., 2010]. We directly compared different chitosan 

polymers and found that higher DAs resulted in higher peaks, but we could not see a clear difference 

between PaCDA-treated and chemically-reacetylated chitosan with DA 30%. It already has been 

shown that the DP of chitosan has an influence on H2O2 production [Liu and He, 2011] and so has the 

DA on necrosis in wheat leaves [Vander et al., 1998]. Here we confirm that the latter is also the case 

for oxidative burst in rice suspension cultures, as well taking into consideration that O. sativa chitin 

elicitor binding protein (CEBiP) includes two chitin binding motives (LysM), which recognize the 

GlcNAc units [Kaku et al., 2006]. Nevertheless it is possible that the PA matters to the plant cells and 

makes a difference for biological activity. We might speculate that isolated GlcNAc units as present in 

a regular patterned chitosan are not efficient in eliciting resistance reactions. We may further 

speculate, based on previous results with other weak elicitors [Ortmann et al., 2006], that these 

chitosans may be used to prime the cells to prepare them for defense. Therefore oxidative burst 

assays for priming have to be carried out in the next step. If these can confirm the speculations, this is 

a promising result for chitosan applications in the field of plant protection. 

 

 

3.5. Conclusions 

PaCDA is able to work on different substrates and although it has two CBDs is not able to break up 

insoluble chitins, therefore the role of CBDs on enzyme properties and mode of action have to be 

investigated. In PDD sequence and enzyme properties PaCDA is very similar to ClCDA, but it is 

producing a chitosan with a specific, non-random pattern of acetylation, which was confirmed by 

fingerprinting and NMR analysis. Because the oxidative burst assay did not show differences towards 

chemically derived, random chitosan other biological assays (e.g. for anti-microbial activity) have to be 

carried out.  
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The ability to generate non-random PAs by using PaCDA and other enzymes creates the feasibility to 

tailor bioactive properties for applications in plant strengthening, biological control of fungal pathogens 

and even medical applications. 
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Chapter 4 

 

Analysis of chitin binding domain deletion variants of Podospora 

anserina chitin deacetylase  

 

 

Abstract 

Chitosan is a natural carbohydrate product with a wide range of applications depending on its 

properties like the degrees of polymerization and acetylation, both influencing its biological activities. It 

was recently demonstrated that a chitin deacetylase from Podospora anserina (PaCDA) is capable of 

generating chitosans with a non-random pattern of acetylation (PA), which are clearly different from 

random PA chitosans that can be produce chemically, and therefore offer new possibilities for 

application. PaCDA is very similar to the well characterized Colletotrichum lindemuthianum CDA in 

protein sequence of the catalytic domain and enzyme characteristics, but differs in the domain 

structure by carrying two additional chitin binding domains (CBDs).  

In the present study the role of the CBDs for PaCDA was investigated by constructing deletion variants 

lacking the N-teminal (ΔN), the C-terminal (ΔC) and both domains (ΔNC). As for the full-length 

PaCDA, production of the truncated enzymes was carried out using Hansenula polymorpha. However, 

this was not successful for PaCDA-ΔC and ΔNC indicating that the C-terminal deletion caused 

incorrect protein folding. Additionally, CDA activity was discovered in control samples of expression 

host H. polymorpha strain without any PaCDA gene. Due to these challenges, production of PaCDA in 

E. coli was tested, but proved to be no alternative in comparison to the yeast system. Nevertheless, 

PaCDA-ΔN could be produced and purified, followed by the comparison with full-length PaCDA in 

terms of pH and temperature optimum as well as the mode of action on chitosan polymers. While 

showing the same activity on colloidal chitin, PaCDA-ΔN favored lower temperatures and led to slight 

differences in PA analyzed by enzymatic/mass-spectrometric fingerprinting. 
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4.1. Introduction 

Chitin deacetylase from Podospora anserina (PaCDA) has been heterologously produced in 

Hansenula polymorpha and characterized as reported in the previous chapter. The enzyme is able to 

generate chitosan with non-random pattern of acetylation (PA) and deacetylates the insoluble colloidal 

chitin to an extent of 15%. Using this substrate the optimal pH was 10.5, the temperature optimum was 

55°C and Zn
2+

 was found as a cofactor. These and other values were similar to those observed for the 

Colletotrichum lindemuthianum CDA (ClCDA) [Tokuyasu et al., 1996; Tsigos and Bouriotis, 1995], to 

which PaCDA also has the highest sequence similarity concerning the polysaccharide deacetylase 

domain (PDD). The particularity of PaCDA lies in the additional two chitin binding domains (CBDs), 

one of them being located N-terminally to the PDD and the other one at the end of the C-terminus. As 

already mentioned in the chapters describing the CDAs from Botrytis cinerea and P. anserina, binding 

modules occur in carbohydrate degrading enzymes or individually in binding proteins [Boraston et al., 

2004]. As the activity of the B. cinerea putative CDA BC95 could not be demonstrated, PaCDA is the 

first active CDA with CBDs reported.  

 

Coding sequences of CBDs have been deleted from bacterial [Hashimoto et al., 2000] and plant [Iseli 

et al., 1993] chitinase genes and the truncated enzymes had lower activity towards β-chitin 

microcrystals or decreased affinity to colloidal chitin, respectively. The other way around, addition of 

binding domains to a chitinase resulted in stronger binding and higher activity on insoluble, but not to 

soluble substrates [Limón et al., 2001]. Thus for PaCDA the question arose, if the CBDs may influence 

the substrate specificity, especially to insoluble substrates like colloidal chitin, as well as the mode of 

action and the resulting PA of chitosan. The role of the CBDs for the PaCDA enzyme was the subject 

of the master's thesis of Nils Gilleßen [“Functional characterization of chitin binding domains in 

Podospora anserina chitin deacetylase”, 2012], who was supervised by me. His work describes part of 

the screening for production clones, the production and purification of the three truncated variations 

and their comparison in enzymatic means. In this chapter, I will present only a short summary of these 

results and additionally cover the generation of the constructs lacking one or both CBDs, the initial 

screenings and enzymatic/mass-spectrometric fingerprinting of enzyme products. In the end, I added 

results from experiments to analyze the possibility to use E. coli as an alternative expression host for 

PaCDA and variations. The discussion will present all findings regarding the PaCDA deletion variants, 

including the challenges during production and purification. 
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4.2. Materials and Methods 

 

4.2.1. Generation of PaCDA deletion constructs 

An alignment of the protein sequences of PaCDA and ClCDA using ClustalW2 

(http://www.ebi.ac.uk/Tools/clustalw2) was the basis for constructing truncated versions of PaCDA 

(Fig. 1). The deletion of CBDs was achieved by a PCR-based strategy using the plasmid coding for 

the PaCDA gene pMA-T::PaCDA-StrepII as template. For amplification, back-to-back phosphorylated 

primers 5’-pho-TGGTCTCATCCTCAATTTGAAAAG-3’ and 5’-pho-AGCGTCTCTGTACCAGTTAAC-3’ 

were used for PaCDA-∆N and 5’-pho-TCTACCCCAAGACCAAAGTTC-3’ and 5’-pho-ACTGAGAGT 

TAGCGTCTCTC-3’ for PaCDA-∆C. Location of the deletions within the PaCDA sequence is shown in 

Fig. 1 and indicated by black arrows in Fig.2. The PCR was carried out using Phusion
TM

 Hot-Start 

High-Fidelity DNA Polymerase (Finnzymes, Thermo Scientific). This was followed by digestion of the 

amplicons obtained with DpnI. Afterwards the PCR products were extracted from agarose gels and 

self-ligated. To construct the double deletion PaCDA-∆NC, this procedure was repeated with the 

single deletion plasmids, each with the other primer pair. The plasmids obtained were all checked by 

sequencing and sent to Artes Biotechnology GmbH (Langenfeld, Germany), where the three coding 

sequences of PaCDA-∆N, PaCDA-∆C and PaCDA-∆NC were cloned in expression vector pFPMT121. 

Production strains were generated equal to the full-length PaCDA strain (chapter 3.2.2); including the 

pre-propeptide MF-α1 coding sequence for extracellular production in H. polymorpha host strain 

RB11. Transformants underwent the procedure of passaging and stabilization for mitotically stable 

integration of multiple copies into the yeast genome. A pre-screening by western blot and was carried 

out by Artes to identify the best protein producing pools of yeast clones.  

 

4.2.2. Screening, production and purification of PaCDA deletion variants 

Stabilized H. polymorpha transformants were cultivated exactly like the full-length PaCDA strain on 

YPD agar for strain maintenance and in YPYNBG medium for de-repression, using 3 ml in tubes for 

screening and 200 ml each in several 2-l flasks for production cultures up to 1.2 l in total. I screened 

pools of H. polymorpha clones for active enzyme in undiluted culture supernatant, soluble and 

insoluble cell extract samples. The protocol for H. polymorpha cell disruption can be found in chapter 

2.2.5.8, other samples were prepared and analyzed as described in the materials and methods section 

of the PaCDA manuscript (chapter 3.2.), where the details of all following methods can be found as 
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well. Later, clones of all deletion constructs were individualized and screened again for highest activity 

of culture supernatant dilutions 1:1, 1:10, 1:100 and 1:1000. The CDA activity screening was carried 

out by an assay using 0.1% glycol chitin gels with 1-µl samples applied as drops and activity was 

visualized after Calcofluor white staining and chitosan depolymerization [Trudel and Asselin, 1990]. 

Sodium dodecyl sulfate polyacrylamide electrophoresis (SDS-PAGE) and western blotting with Strep-

Tactin® HRP conjugate (IBA, Göttingen, Germany) followed by enhanced chemiluminescence (ECL) 

detection was also carried out accordingly. For the purification of the Strep-tagged proteins a 1-ml 

Strep-Tactin Superflow Plus column (Qiagen) was used for FPLC in an ÄKTAprime plus system (GE) 

following the manufacturers’ recommendations. Additionally, Gilleßen investigated the purification of 

PaCDA-∆C and PaCDA-∆NC also by anion and cation exchange chromatography and carried out a 

large-scale cell disruption for the usage of the intracellular protein fraction [Gilleßen, 2012]. 

 

4.2.3. Comparative characterization of PaCDA and PaCDA-∆N 

The direct comparison of PaCDA and PaCDA-∆N in terms of pH and temperature optimum was done 

by Nils Gilleßen in the context of his master‘s thesis in 2012 using my protocols for PaCDA. 

Accordingly, colloidal chitin (0.1 g/l) was used as substrate, 25 mM Teorell-Stenhagen buffer for the 

pH range from 3-12 and temperatures between 4°C and 90°C were assayed with enzyme 

concentrations adjusted for the same molarity. Samples were incubated at 37°C and 750 rpm for 15 h 

and 1 h, respectively. The enzyme activity was measured by quantifying the acetate release by 

threefold coupled enzyme assay [Martinou et al., 1995] using solutions of an acetic acid assay kit (R-

Biopharm AG, Darmstadt, Germany) in 96-well mircotiterplates. The preparation of all buffers and 

substrates used, including the chitosan DA 50%, are described in the PaCDA manuscript (chapter 

3.2).  

 

4.2.4. Enzymatic / mass-spectrometric fingerprinting of CDA products 

Other than in the PaCDA manuscript, chitosan DA 50% (0.5 g/l) was used for this fingerprinting 

analysis and deacetylated by 0.3 µM PaCDA-∆N and full-length enzyme in 1-ml samples of 50 mM 

volatile ammonium carbonate buffer for 120 h. The resulting DA was calculated after the measurement 

of acetate released. The hydrolysis of deacetylated chitosans for analysis by the chitinosanase from 

Alternaria alternata and the subsequent Matrix-Assisted Laser Desorption-Ionization Time-of-Flight 

Mass Spectrometry (MALDI-TOF MS) were carried out as described in the previous chapter 3.2.6. 



   64 

 

Samples were analyzed using 2,5-dihydroxybenzoic acid (DHB) matrix solution, 355 nm SmartBeam
TM

 

NdYAG-laser and Bruker Daltonics Autoflex Speed (Bremen, Germany) followed by evaluating the 

spectra with Mmass [Strohalm et al., 2010] and annotating the composition of found oligomers as 

GlcNAc (A) and GlcN (D) residues. 

 

4.2.5. PaCDA production in E. coli 

A derivative of the pET-22b(+) vector (Novagen, Merck KGaA, Darmstadt, Germany) including a 

StrepII-tag coding sequence downstream of the multiple cloning site was used for the heterologous 

production of PaCDA in E. coli. The PaCDA coding sequence was amplified using pMA-T::PaCDA-

StrepII as the template, Phusion
TM

 Hot-Start High-Fidelity DNA Polymerase (Finnzymes) and primers 

5‟-GGAATTGCATATGGACGCTAACTCTCAGTCTACTTCG-3‟ and 5‟-CGAGCTCGTTACAGTTG 

CCGAAGGCTCTC-3‟ (NdeI and SacI restriction sites used for cloning are underlined). The Twin-

Strep-tag was introduced by the two complementary primers 5‟-CGAGCTCAGTGCTTGG 

TCTCATCCTCAATTCGAGAAAGGAGGCGGTTCTGGAGGCGGTTCAGGAGGCAGCGCTACTCGAG

CGG-3‟ and 5‟-CCGCTCGAGCGCTGCCTCCTGAACCGCCTCCAGAACCGCCTCCTTTCTCGAA 

TTGAGGATGAGACCAAGCACTGAGCTCG-3‟ that were annealed by lowering the temperature 

gradually from 98°C to 60°C. The DNA fragment obtained was subsequently digested by SacI and 

XhoI and inserted into the SacI/SalI-cut plasmid pET-22b(+)::PaCDA-StrepII. 

The production strains E. coli Rosetta 2 (DE3) [pLysS-RARE2] and E. coli Rosetta 2 (DE3) [pLysS-

RARE2, pCDFDuet1::DSBC/TrxA] were transformed via heat shock with the plasmid pET-

22b(+)::PaCDA-StrepII. While the plasmid pLysRARE2 carries the sequences for stress-induced 

autolysis, chloramphenicol resistance and rare codons, pCDFDuet1::DSBC/TrxA, based on the pCDF 

Duet
TM 

vector (Novagen), includes a streptomycin resistance cassette and two genes: one coding for a 

prokaryotic disulfidebridge isomerase (DsbC) with chaperon activity and one for thioredoxin A for a 

reducing environment [de Marco, 2009].  

For protein production, transformed strains were cultivated in auto induction medium [Studier, 2005] 

including the appropriate antibiotics, as described in the Botrytis cinerea CDA manuscript (chapter 

2.2.5.6). Cell lysis, protein purification and analytics were also carried out using protocols, which can 

be found in the previous chapter 2.2.5. 
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4.3. Results 

 

4.3.1 Bioinformatics and cloning 

The PaCDA gene was chosen for heterologous expression because of its high similarity to the ClCDA 

gene in the PDD coding sequence, as stated in the chapter before. An alignment of the protein 

sequences of PaCDA and ClCDA is pictured in figure 1, where it shows that the number of identical 

amino acids is high in the PDD region as well as in the entire C-terminus of ClCDA. Thereafter ClCDA 

is not only lacking the C-terminal CBD, but also the complete low complexity region, hence both were 

deleted for the PaCDA-∆C variant. I proceeded accordingly with the N-terminal CBD, were also the 

CBD sequence and additional amino acids were deleted to connect both remaining parts with a serine 

followed by a threonine. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Protein sequence alignment of Podospora anserina and Colletotrichum lindemuthianum chitin 
deacetylases (PaCDA and ClCDA) by ClustalW 2.1, used for construction of PaCDA ∆CBD variants, pink: 
polysaccharide deacetylase domains, green: chitin binding domains, grey: low complexity regions (identified by 
Pfam), yellow: signal peptides (idendified by SignalP), deleted regions underlined. 

 

 

PaCDA           MINVPVTLLSLSAVATAAALADANSQSTSPNPSPRQHARDTLQKRANCGAGIGNCPSGQC 60 

ClCDA           -----MHFSTLFGAAATAALAG------STNASP-------LARRQ-------------- 28 

                     : : :* ..*::****.      *.*.**       * :*                

 

PaCDA           CSQYGWCGVTSEHCGTGCQSGFGTCTGGGGGNNEETLSTPRPKFGSIPYGVTITNCNAAG 120 

ClCDA           ----------------------------------------------VPVGTPILQCTQPG 42 

                                                              :* *..* :*. .* 

 

PaCDA           TIALTFDDGPFLYTNQLLDLLAQQQVKATFFTNGLNWGDATQAPYPDVLRRIVNDGHQLG 180 

ClCDA           LVALTYDDGPFTFTPQLLDILKQNDVRATFFVNGNNWANIEAGSNPDTIRRMRADGHLVG 102 

                 :***:***** :* ****:* *::*:****.** **.:   .. **.:**:  *** :* 

 

PaCDA           SHTYNHPDLNTLTTAARRSNMAQNEKIFKDALGGYFPTYMRPPYGSCTGQCLTDLGDLGY 240 

ClCDA           SHTYAHPDLNTLSSADRISQMRHVEEATR-RIDGFAPKYMRAPYLSCDAGCQGDLGGLGY 161 

                **** *******::* * *:* : *:  :  :.*: *.***.** ** . *  ***.*** 

 

PaCDA           HVINWNIDTLDYQGNIPN----SQNIFNSAVSTNAAANKYIALAHDVHQATVQQLALGLI 296 

ClCDA           HIIDTNLDTKDYENNKPETTHLSAEKFNNELSADVGANSYIVLSHDVHEQTVVSLTQKLI 221 

                *:*: *:** **:.* *:    * : **. :*::..**.**.*:****: ** .*:  ** 

 

PaCDA           QTAKNRGYRLVTVGECLGDAPVNWYRDATTGNARTGGGGGSGGNPNPGPITSTNGLCGST 356 

ClCDA           DTLKSKGYRAVTVGECLGDAPENWYKA--------------------------------- 248 

                :* *.:*** *********** ***:                                   

 

PaCDA           NGNMNCLNSGFGNCCSQWGFCGSTAEYCGANCQRAFGNCN 396 

ClCDA           ---------------------------------------- 
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First the single deletion constructs PaCDA-ΔC and PaCDA-ΔN were generated and used for the 

construction of PaCDA-ΔNC. A schematic illustration of the full length protein and the truncated 

variants is shown in figure 2, were the position of the primers used is also indicated. Like PaCDA 

before, the three mutated gene were cloned for heterologous expression in H. polymorpha by Artes 

Biotechnology GmbH, were the corresponding production strains were developed. 

 

 

 
 

 
Fig. 2: Schematic structure of PaCDA and truncated variants with lacking C-terminal (ΔC), N-terminal (ΔN) or 
both (ΔNC) chitin binding domains (green), polysaccharide deacetylase domain (pink), low complexity regions 
(grey) and StrepII-tag (blue), arrows indicate deletions. 

 

 

4.3.2. Screening of transformants 

Pools of transformants were pre-screened by Artes on dot blots with culture supernatants and Strep-

Tactin HRP conjugate detection, in order to identify the best producers of the PaCDA deletion muteins 

PaCDA-ΔN, PaCDA-ΔC and PaCDA-ΔNC. Two pools each were selected for ΔN (#9 and #16) and 

ΔNC (#9 and #12) and three for ΔC (#2, #4 and #18) and analyzed by western blotting of extracellular, 

soluble and insoluble intracellular fractions. As already seen on the dot blot, PaCDA-ΔN (33.4 kDa) 

was secreted into the culture supernatant, but western blot confirmed that weak signals seen for 

PaCDA-ΔC (33.6 kDa) and PaCDA-ΔNC (26.5 kDa) were due to a poor secretion. Both proteins were 

mainly found in the insoluble cell fraction, thus the production of correctly folded and processed protein 

was questioned. 
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All seven pools of clones were tested for CDA activity on dot gels with 0.1% glycol chitin (Fig. 3) after I 

received the H. polymorpha cultures. CDA activity could be detected as dark spots after 

depolymerization of chitosan in all pools and fractions; thereby the spots of the two ∆N samples were 

as big as the full-length PaCDA. PaCDA-∆C and ∆NC showed clearly lower activity, being the weakest 

in the PaCDA-∆NC supernatants. A small amount of chitinase activity, represented by dark spots 

before depolymerization, was present in the supernatants as well as in the insoluble protein fractions 

of all pools, but mostly seen in the Mock samples. 

 

 

 
 
Fig. 3: CDA activity screening of PaCDA deletion constructs using 0.1% glycol chitin dot gel assay stained 
with Calcoflour white, before (A) and after depolymerisation of chitosan (B), pools (numbers) of variants lacking 
C-terminal (∆C), N-terminal (∆N) or both (∆NC) chitin binding domains analyzed for CDA activity in culture 
supernatant (SN), soluble (SF) and insoluble fraction (IS) of cell extracts, PaCDA wild type and H. polymorpha 
Mock strain as controls. 

 

 

Simultaneously the three fractions were analyzed by western blotting and the results confirmed the 

findings previously obtained by Artes (Fig. 4). Clear bands of secreted protein can only be seen for 

full-length PaCDA and the two ∆N pools, whereas it is missing in the supernatants of ∆C and ∆NC 

pools. The insoluble intracellular fractions of PaCDA-∆C and ∆NC contain many detected proteins of 

different sizes forming different band patterns for each variant. These represent most probably 

aggregation and degradation products of the tagged PaCDA variants, because no signals are visible in 

the lanes of the mock negative control. The full-length PaCDA with 40.5 kDa acts in SDS-PAGE like a 

35.5-kDa protein, and the PaCDA-∆N (33.4 kDa) appears at 30 kDa, thus the other found bands could 

not definitely be assigned to the truncated proteins. Due to the CDA activity present in the samples the 

screening was carried on with clones of all variations. 
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Fig. 4: Western blot analysis of PaCDA deletion constructs: pools (numbers) of variants lacking C-terminal 
(∆C), N-terminal (∆N) or both (∆NC) chitin binding domains analyzed for presence of StrepII-tagged protein in 
culture supernatant (SN), soluble (SF) and insoluble fraction (IS) of cell extracts, PaCDA wild type and 
H. polymorpha Mock strain as controls, marker: Precision Plus Protein All Blue Standards (Bio-Rad). 

 

 

Clones of all pools were individualized and screened for the best producer of active enzyme by 

spotting dilution series of culture supernatants onto the substrate gels. Individual clones of PaCDA-

∆N9 and ∆N16 showed similar activity levels, delectable even with 1:1000 dilutions, thus clones ∆N9-

F and ∆N16-B were selected for production. Analogously the screening of pools PaCDA-∆C18 and 

∆NC12 was carried out by Nils Gilleßen and clones ∆C18-A and ∆NC12-A were chosen. 

 

4.3.3. Production and purification 

These experiments were carried out and reported in detail by Gilleßen as well. Clone PaCDA-∆N16-B 

was cultivated for enzyme production like described for the full-length PaCDA and PaCDA-∆N was 

purified from the culture supernatant via Strep-Tactin affinity chromatography using the same protocol 

like for PaCDA as well. To analyze the purity, SDS-PAGE and western blot were carried out including 

PaCDA and using 2.5 µg protein samples, which showed a clear band at 30 kDa and no contaminants 

for PaCDA-∆N (Fig. 5A). Immunodetection with Strep-Tactin HRP conjugate after western blotting 

identified the band as recombinant protein (data not shown). 

Affinity chromatography was also applied to PaCDA-∆C and PaCDA-∆NC with extracellular and 

intracellular protein fractions, but failed for both variants as well as for both sources. A glycol chitin gel 

with all FPLC fractions showed the highest CDA activity in the flow through, pointing out that the 

protein did not bind to the column as expected.  
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Fig. 5: SDS-PAGE of PaCDA and variants, Coomassie staining, M*: Precision Plus Protein Standards All Blue 
(Bio-Rad), M: peqGold Protein Marker II (Peqlab) A: PaCDA and PaCDA-ΔN purified protein 2.5 µg each, B: all 
variants including negative control (Mock), 12 µg culture supernatants each [modified from Gilleßen, 2012] 

 

 

Heterologously expressed PaCDA is known to be the major protein in H. polymorpha culture 

supernatants; therefore other purification methods seemed accomplishable. Gilleßen decided in favor 

of anion exchange chromatography, because of the theoretical isoelectric points (pI) of 6.3 and 6.1 for 

PaCDA-ΔC and PaCDA-ΔNC, respectively. As seen before, enzyme activity was also ending up in the 

flow through. A likely explanation for this is that the actual pI can be 8 or higher, which makes cationic 

exchange chromatography a method to choose. The attempts with this method did neither yield 

purified enzymes.  

 

As the PaCDA variants ΔC and ΔNC could not be purified with any of the described methods, the 

production of heterologous protein was monitored in detail. Therefore the different versions were 

compared on SDS-PAGE, western blot as well as in CDA activity assays. On the Coomassie stained 

gel (Fig. 5B) there are some weak bands around 30 kDa visible for PaCDA-ΔC and ΔNC, that are not 

present in the control, but no clear “overexpression bands” (heterologously produced protein bands) 

like for PaCDA and ΔN. The Western Blot showed strong StrepII-Tag signals for full length and ΔN 

enzyme and no signal at all for the other two truncated proteins (data not shown). These results let to 

the conclusion that only very little amounts of PaCDA-ΔC and ΔNC are secreted and that the StrepII-

Tag is somehow not accessible. The CDA activity assay with glycol chitin gel was carried out like 

before, but revealed that some CDA activity seems to be also present in the supernatant of the 



   70 

  

H. polymorpha control strain (Fig. 6). While the chitinase activity is known, the CDA activity has never 

been seen before, as the spot of the undiluted sample is clearly darker after depolymerization. 

Questioning the findings described before regarding the activity of ∆C and ∆NC proteins, another 

activity assay was followed up, which is independent from any chitinase activity. The culture 

supernatants adjusted for protein content were incubated with colloidal chitin and activity was 

measured following acetate release like described detailed in the PaCDA chapter. This test confirmed 

the same activity level for PaCDA and ∆N enzyme and quantified the activity of PaCDA-∆C at about 

the half of the foresaid. Regarding the PaCDA-∆NC variant, there was less acetate measured, as for 

the control strain without recombinant protein. In summary, the presence of active CDA in the 

unmodified H. polymorpha strain was proven and the activity of the double deletion was not detected. 

 

 
 
Fig. 6: CDA activity assay of PaCDA variants lacking no (FL), C-terminal (∆C), N-terminal (∆N) or both (∆NC) 
chitin binding domains, 1 µl samples of culture supernatants including negative (Mock) and positive control (+) 
using 0.1% glycol chitin, stained with Calcoflour White, gels before and after depolymerisation of chitosan 
[Gilleßen, 2012]. 

 
 

4.3.4. Comparison of PaCDA and PaCDA-∆N 

Gilleßen carried out the experiments described in this section. By comparing the deletion variants and 

the full-length PaCDA, Gilleßens experiments were restricted to PaCDA-∆N only, because the other 

two truncated enzymes could not be produced and purified from H. polymorpha cultures as reported 

above. Gilleßen tested the CDA activity at a range of pH values and found the same curve progression 

with a pH optimum at 9-10. In contrast, he found differences regarding the temperatures tested. The 

curve of PaCDA-∆N was shifted towards lower temperatures with a broad plateau between 30°C and 

50°C, in comparison to the optimum observed for the full-length PaCDA at 50-60°C. Like for the pH 

optimum, the maximal acetate release was at the same extent for the temperature-dependent 
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activities. PaCDA-∆N showed about the same CDA activity than PaCDA, not only on colloidal chitin 

and glycol chitin, but also with chitosan, when the enzyme amounts were adjusted equimolar. Different 

buffer compositions tested, namely Teorell-Stenhagen with citric, phosphoric and boric acid; 

triethanolamine and ammonium carbonate buffer, had no significant influence on activity for both 

enzymes. 

 

4.3.5. Enzymatic / mass-spectrometric fingerprinting 

Chitosan DA 50% was used for a fingerprinting experiment to compare the modes of action of the full-

length and truncated enzymes. The substrate was deacetylated to a DA about 16% for both samples, 

measured by acetate release, and then hydrolyzed by sequence-specific chitinosanase from Alternaria 

alternata like described in the previous chapter.  

 

 
 
Fig. 7: Mass spectra fingerprinting, chitosan deacetylated by PaCDA (upper spectrum) or PaCDA N (lower 
spectrum) and subsequently hydrolysed with sequence-specific chitinosanase from A. alternata  
 
 

 

By MALDI-TOF mass spectrometry analysis, the resulting chitosan oligomers could be identified and 

were annotated according to their composition of A and D units (Fig. 7). Except for A2D4, only 
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both spectra can clearly be seen in the additional peaks of larger oligomers (A1D8 to A1D10) for the 

full-length PaCDA, as the intensities are also similar. To summarize, we can say that both enzymes 

work in a common mode of action, but PaCDA produces larger D blocks. 

 

4.3.6. PaCDA production in E. coli 

After the purification of PaCDA-ΔC and PaCDA-ΔNC from H. polymorpha failed, a new strategy was 

followed with two improvements of for the truncated genes. First being the incorporation of the full C-

terminal low complexity region to get a flexible linker and second the usage of the Twin-Strep-tag® for 

an enhanced Strep-Tactin binding (Fig 8). The Twin-Strep-tag was recently developed by IBA for a 

higher affinity, by combining two Strep-tag sequences with a linker of 12 amino acids.  

First, the full-length PaCDA coding sequence was cloned into the pET-22b(+) vector for testing 

heterologous production in the E. coli T7-system using the resulting plasmid pET-22b(+)::PaCDA-

StrepII. This plasmid was also used later for the introduction of the Twin-Strep-tag. When E. coli 

Rosetta 2 (DE3) [pLysS-RARE2] was used for the first production trial of full-length PaCDA, no Strep-

tag signals were found by western blot in any fraction (data not shown). In the second trial, E. coli 

transformants carrying the additional plasmid pCDFDuet1::DSBC/TrxA were cultivated in up to 1 l 

auto-induction medium and tested for the production of the recombinant protein. In the first 

experiment, PaCDA could only be found in the insoluble fraction of the cell extracts as an 

overexpression band at about 35kDa in Coomassie-stained polyacrylamide gel and by western 

blotting. Then large-scale affinity purification was done by FPLC with Strep-Tactin matrix from the 

soluble fraction and thereby a small amount of PaCDA could be purified and detected on western blot, 

but only after the concentrated eluate was almost completely loaded onto the gel. To test the CDA 

activity, 1-µl samples were applied onto glycol chitin gels and positive signals could be seen for the 

crude extracts as well as the purified and concentrated samples.  

This draws us to the conclusion that the production of PaCDA and their variants in E. coli is in principle 

possible, but limited by the fact that the major part is not folded correctly and ends up in inclusion 

bodies. 
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Fig. 8: Schematic structure of PaCDA and new truncated variants ΔC* and ΔNC* with lacking chitin binding 
domains (green), including the low complexity regions (grey) and Twin-Strep-tag (blue), polysaccharide 
deacetylase domain (pink), arrows indicate deletions. 
 

 

4.4. Discussion 

Chitin binding domains are modular structures that are known to help chitinases to bind their insoluble 

substrates, which are otherwise tough to access [Beintema, 1994; Iseli et al., 1993]. PaCDA described 

in this thesis is the first active CDA with two chitin binding domains and a good activity on colloidal 

chitin. As the two CBDs differ in sequence and length, it is conceivable that they also differ in their 

function. The aim of this study was to investigate the role of the CBDs in PaCDA by deletion of the C-

terminal (ΔC), N-terminal (ΔN) or both CBDs (ΔNC) and the analysis of the truncated enzyme variants 

in comparison to the full-length PaCDA. 

 

4.4.1. PaCDA-ΔN 

The production and purification of PaCDA-ΔN was successful and yielded an amount of 2 mg protein 

per 1 l culture [Gilleßen, 2012] and also a high purity (Fig. 5A) equal to the full-length enzyme. The 

truncated enzyme showed the same activity level on glycol chitin and chitosan as well as on the 

insoluble substrate colloidal chitin. As the lack of only the N-terminal CBD does not result in a reduced 

activity, the C-terminal CBD is able to compensate the truncation or is enough to bind the insoluble 

substrate.  
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Therefore, colloidal chitin was used for testing the pH optimum, which was found to be at 9.0 for both 

enzymes [Gilleßen, 2012]. In my earlier studies I measured 10.5, but this result is in accordance to 

other extracellular CDAs like ClCDA, for which a pH optimum of 8, 8.5 and 11.5 was reported 

depending on the production strain [Shrestha et al., 2004; Tsigos and Bouriotis, 1995 and Tokuyasu et 

al., 1996; respectively]. The physiological optimum for all three enzymes is likely at 8.5, as discussed 

in the PaCDA manuscript (chapter 3.4.4).  

In contrast, the temperature optimum measured for PaCDA (50-60°C) was the same as seen before 

(55°C), though there was a difference towards the deletion variant: PaCDA-ΔN showed also a broad 

activity curve, but an optimum of 40-50°C accompanied by more activity for the lower and less for the 

higher temperatures [Gilleßen, 2012]. This shift of the whole curve might be due to a structural artifact 

of the construct or a stabilizing effect of the CBD. If the deletion variant is also less stable at high 

temperatures, has to be tested in experiments carried out accordingly to the PaCDA assays. 

 

Knowing that the general properties of both CDA versions were comparable, the next step was to test 

the mode of action. For this purpose, a high DA chitosan (50%) was used as substrate for an 

enzymatic/mass-spectrometric fingerprinting analysis, for that samples were hydrolyzed by the 

sequence-specific chitinosanase. By comparing the fingerprinting results (Fig. 7), differences were 

found in block length of several D units in a row. The two spectra could not be compared to solely-

chemically produced chitosan with the same DP and DA, because a chitosan with a DA of 16% was 

not available at this time. This was also the lowest DA measured in this kind of experiment and is most 

probably due to over-incubation with a 4-fold higher amount of enzyme compared to the test described 

in the PaCDA chapter (3.2.5), but not confirmed by 
1
H-NMR due to the low amount of sample. 

Nevertheless, these results are in accordance with the finding that PaCDA creates a non-random 

pattern with only single A units that cannot be further deacetylated. The discrepancy in product quality 

but not quantity is a first hint that the mode of action and PA produced could be different for both 

enzymes and therefore be influenced by the CBDs, leading to the assumption PaCDA might act on 

more multiple GlcNAc units on one chitosan chain than PaCDA-ΔN, but without being a real 

processive enzyme.  

 

Additionally it has been found out that different buffer components, e.g. citric acid, did not have an 

inhibitory effect; however other properties like cofactors and inhibitors were not tested, yet. The 
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characterization in terms of substrate specificity and product analysis by 
13

C-NMR spectroscopy like 

for PaCDA now have to be carried out for all truncation variants, ideally in parallel experiments. For 

PaCDA-ΔN it can be summarized, that in spite of the truncation a correct folding could be achieved 

and verified by activity tests, while PaCDA-ΔC was challenging to produce and the production of 

PaCDA-ΔNC failed. 

 

4.4.2. PaCDA-ΔC and ΔNC 

Like for the N-terminal truncation, the deletion variants lacking the C-terminal CBD were constructed 

using an alignment of PaCDA and ClCDA (Fig. 1), in a way that PaCDA-ΔC and ΔNC also ended with 

an alanine and the low complexity region was deleted along with the CBD. It was also taken into 

account that heterologously produced ClCDA had no additional amino acids as linker to the C-terminal 

His6-tag, too [Shrestha et al. 2004]. In contrast to PaCDA-ΔN, the deletion of the C-terminal CBD 

caused problems during production, as it seemed to have a huge impact on correct folding and Strep-

tag accessibility. 

 

The initial screenings were done by western blot (Fig. 4) and the two C-terminal deletion variants 

yielded neither signals in the supernatant nor in the soluble, but in insoluble cell fraction samples. At 

this point it was clear, that PaCDA-ΔC and ΔNC were not properly produced as expected. When the 

CDA activity was assayed in the first screening with pools of the variants, CDA activity was found for 

all samples, and the control strain seemed to have only chitinase activity (Fig. 3). This suggested that 

at least a small amount of recombinant enzyme was present and the possibility to purify it from one of 

the fractions. After the failure of all purification trials the detailed analysis of protein production by 

Gilleßen showed that PaCDA-ΔC was produced in low amounts only and ΔNC was not produced at all 

(Fig. 5). Importantly the detection of CDA activity in the H. polymorpha control strain on the second 

activity gel (Fig. 6) urged the demand to revisit earlier results.  

 

This activity has never been seen before, probably because it was masked by chitinase activity, and 

clearly demonstrated the limits of glycol chitin gel dot assays, besides the absolute necessity to 

include a negative control. In the case reported here it is conceivable that the white coloration of the 

gel before depolymerization caused by the CDA activity was overlaid by the chitinase activity resulting 

in dark spots [Trudel and Asselin, 1990]. The outcome of this is that it is hardly possible to detect slight 
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CDA activity, when there is also a chitinase present and the other way around. For this case a semi-

native PAGE would be suitable to separate the different enzymes and a substrate containing overlay 

gel to specify their activity. The finding of CDA activity in H. polymorpha Mock (RB11 strain) was then 

confirmed by measuring acetate release after the incubation of culture supernatants with colloidal 

chitin.  

The discrepancy of CDA activity found between the different experiments of this and also earlier 

studies raises the question if this CDA is only produced under certain, maybe stress-related 

conditions. For other yeasts it was reported that CDAs are involved in ascospore formation, which was 

shown for both CDAs of Saccharomyces cervisiae [Christodoulidou et al., 1996] and for one from S. 

pombe [Matsuo et al., 2005]. Assuming the production of heterologous proteins causes a high stress 

level, the expression pattern of these cultures could change towards stress adaption or spore 

formation. The genome of recently sequenced H. polymorpha strain DL-1 contains two putative CDA 

genes [Ravin et al., 2013], which were not investigated by now. By some means the cultivation of the 

H. polymorpha Mock strain by Gilleßen has induced the expression of this CDA for the first time 

[Gilleßen, 2012]. As this opens a new topic for investigation, it also raises the awareness for a proper 

purification of recombinant CDAs from H. polymorpha.  

  

As the presence of PaCDA-ΔC was confirmed by activity tests and low amounts on acrylamide gel, it 

still remained unclear why it could not be purified or detected via the Strep-tag. The first and foremost 

explanation for this is that the Strep-tag is not accessible, due to a protein folding leading to steric 

blocking or incorporation to the catalytic domain. Certainly, the main portion of the single C-terminal 

deletion as well as the double deletion variant is folded or processed incorrectly and therefore ends up 

in the insoluble fraction (Fig. 4). It can be excluded that the lacking secretion is caused by a failure of 

the signal peptide, because the closer and first translated N-terminal deletion part did not show any 

secretion problems. The other purification trials most probably failed because of the low amount of 

PaCDA-ΔC produced and even more by the confusion with the H. polymorpha CDA in the culture 

supernatant. 

 

4.4.3. PaCDA production in E. coli 

Escherichia coli is not only an easy to handle and straight-forward expression system, but also has the 

advantage to have no own CDA activity. The E. coli chito-oligosaccharide deacetylase chbG differs 
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from fungal CDAs, as is active on chitobiose and chitotriose [Verma and Mahadevan, 2012]. E. coli 

was tested as an alternative expression system to H. polymorpha for the production of PaCDA and the 

deletion variants. New constructs of PaCDA-∆C and ∆NC were designed based on the former results 

(Fig. 8), but were not investigated further, yet. The low complexity region of PaCDA is predicted to be 

a flexible linker between the catalytic domain and the C-terminal CBD and therefore could play this 

role also for affinity-tag binding. In contrast to H. polymorpha, E. coli is known to express biotin 

carboxyl carrier protein with affinity to Strep-Tactin which could be detected, so that the Twin-Strep 

can be an improvement for the affinity of the recombinant enzyme.  

To test the ability of the prokaryote to produce the fungal enzyme, first the full-length PaCDA gene 

was brought into E. coli Rosetta 2 (DE3) cells, which carry the pLysS-RARE2 plasmid for rare codons. 

Recombinant protein as well as CDA activity could be seen, but only with the additional use of 

pCDFDuet1::DSBC/TrxA, not with pLysS-RARE2 alone, which implies that  thioredoxin A and the 

disulfidebridge isomerase are needed for correct folding. By using these bimolecular tools, it was 

proven that the production is indeed possible, but the protein remains mainly insoluble and the 

amounts are too low for any further experiments. One could argue that the production might be better 

without the CBDs, because the correct folding of proteins containing lesser disulfide bonds is more 

likely. For ClCDA [Tokuyasu et al., 1999] and the diacetylchitobiose deacetylase from Pyrococcus 

horikoshii [Mine et al., 2012] it was possible to obtain refolded enzymes from inclusion bodies, but due 

to the CBDs I estimated the chances for PaCDA very low. In conclusion, H. polymorpha has proven to 

be a suitable expression system for PaCDA and therefore should also be for the newly constructed 

truncation variants. 

 

4.4.4. Conclusion and Outlook 

The generation of the deletion constructs followed the same strategy as used earlier for the chitinases; 

however, production of two of the three enzyme variants in H. polymorpha was more challenging than 

expected. The characterization of PaCDA-∆N could be initiated and the results obtained are 

promising. This is due to similar properties to the full-length enzyme with only slight differences in 

thermal stability and, unexpectedly, due to indications of a different mode of action. Although PaCDA-

∆C and ∆NC could not be produced and purified, the results led to the designing of new constructs 

PaCDA-∆C* and ∆NC* differing at the C-terminus (Fig. 8), which still have to be investigated. After the 

finding that E. coli is able to produce full-length PaCDA, but in quantities significantly lower as 
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obtained from H. polymorpha, the latter host still represents the expression system of choice. The 

discovery of an active CDA naturally expressed in H. polymorpha has to be taken into account for 

further experiments, but could also be a target for characterization studies. 

 

After the obstacles of protein production have been overcome, further studies on the characterization 

of the three CBD deletions could clarify the role of the CBDs for PaCDA. The production of all 

truncation variants using the same expression system will be beneficial for the comparability. When 

CDA activity of the CBD deletions is confirmed, binding assays and comparative activity tests using all 

possible substrates available are the first experimental steps to be addressed. If PaCDA-ΔC and ΔNC 

have similar activity properties like PaCDA and PaCDA-ΔN, fingerprinting experiments and 13C-NMR 

spectroscopy will provide an insight into the mode of action with and without each CBD. To investigate 

the hypothesis that the CBDs have different binding preferences, the modules could be solely 

produced fused to a marker protein like the Green Fluorescing Protein. The fluorescing tag can then 

be used for quantifying the binding of the fusion protein towards different substrates. Further 

experiments should also address the direct comparison of PaCDA-ΔNC with ClCDA, which is the most 

similar known CDA, so that also a domain swap is imaginable.  

PaCDA is not only the first active CDA with two CBDs, but generates a non-random pattern of 

acetylation on chitosan as well. Hence, the role of the CBDs in this process is a topic that requires 

further investigation. 
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5. Discussion 

The preparation of chitosan from chitin by chitin deacetylases (CDAs) versus chemical deacetylation 

has already been discussed in 2000 by Tsigos et al.. The advantages of a controlled enzymatic 

reaction still are opposed to the low efficiency towards crystalline chitin of all known CDAs. Zhao et al. 

[2010] discussed that the deacetylation could only be improved by substrate modifications and that the 

substrates typically used by researchers for their enzymatic CDA reactions originate from various 

sources and are often poorly characterized. Weinhold et al. [2009a] analyzed commercially available 

chitosans in a multi-dimensional matter and reported differences in molecular weight (DP), 

polydispersity, hydrodynamic radius, intrinsic viscosity and degree of acetylation. He and his 

colleagues showed that also the PA value for a large set of chemically produced chitosans varies, but 

all reveal a random-dominated pattern of acetylation [Weinhold et al., 2009b].  

The application of those commercially available chitosans in biological systems like plant protection 

and medicine led to contradictory and sometimes questionable results [Aam et al., 2010; Hadwiger, 

2013]. But if we consider that chitosans occurring in nature are typically generated from chitin by 

CDAs, the role of PA for biological activities becomes considerable. Like other enzymes, CDAs 

possess a discrete catalytic center surrounded by a certain subsite structure for substrate binding and 

act in a specific mode of action that enables the generation of non-random PAs. CDAs creating a 

specific PA on oligomers and their processivity have been demonstrated earlier [Tsigos et al., 2000]. 

In the present study, a new type of CDAs was investigated for the production of chitosans with non-

random PAs different from known chitosans, possessing additional chitin binding domains (CBDs) in a 

multi-domain structure. Within the increasing number of CDAs being characterized so far, no CDAs 

containing CBDs have demonstrated activity yet. At the same time, enzymes deacetylating crystalline 

chitin like it can be achieved by chemistry are not described until now. Because CBDs are commonly 

found in chitinases degrading crystalline chitin [Beintema, 1994; Iseli et al., 1993], CDAs with CBDs 

might be more effective on this substrate than those containing none. In the present study, the 

identification, heterologous protein production and characterization of novel CDAs including CBDs was 

investigated. The role of the CBDs for enzyme activity, substrate preferences and mode of action was 

addressed by deletion variants lacking CBDs and the chitosan products were analyzed for PA and 

biological activities. 
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5.1. Heterologous production of chitin deacetylases with chitin binding domains 

In this study, chitin binding domains present in a CDA gene are a very special feature and at the same 

time represent the major challenge for heterologous protein production. These CBDs contain four 

highly conserved disulfide bridges each that need a reducing environment for bonding. Using yeast 

expression systems like Schizosaccharomyces pombe and Hansenula polymorpha, owning a 

eukaryotic secretory pathway, seem a reasonable choice for fungal CDAs, but in the case of S. 

pombe, recombinant protein production was not successful. On the other hand Escherichia coli is a 

widely applied expression host and different strategies for the production of proteins with disulfide 

bonds are available [de Marco, 2009]. The application of the three different species mentioned above 

for heterologous expression of CDAs containing CBDs will be discussed in the following chapters. 

 

5.1.1. Escherichia coli  

E. coli has successfully been used for production of recombinant CDAs from Colletotrichum 

lindemuthianum (ClCDA) [Tokuyasu et al., 1999], Aspergillus nidulans [Wang et al., 2009] and the 

archeon Pyrococcus horikoshii [Mine et al., 2012]. For the protein production by E. coli in this study, 

the strain Rosetta 2 (DE3) carrying the pLysS-RARE2 plasmid for stress-induced autolysis and seven 

codons rare in E. coli [Novy et al., 2001] was chosen. The autoinduction medium described by Studier 

[2005] was used for all production cultures for a smooth induction and higher yields. The strategy 

followed was focused on cytoplasmic protein production including biotechnological modifications, not 

on secretion into the naturally oxidizing periplasm. One modification is based on thioredoxin 1 (trxA) 

that reduces cysteines of disulfide bonds in the cytoplasmic redox system. This mechanism functions 

only when trxA is constantly reduced by thioredoxin reductase, an overexpression of trxA results in 

performing the opposite task on co-expressed proteins [de Marco, 2009]. Therefore, BC95 was 

constructed as a fusion protein with an N-teminal thioredoxin [Lavallie et al., 1993] and PaCDA was 

co-expressed with trxA [Yasukawa et al., 1995]. Active PaCDA could be purified from E. coli in a small 

amount, but BC95 was not produced at all and not even detected in insoluble cell fractions. The 

reason for successful protein folding resulting in active enzyme might be size or structure of the 

PaCDA compared to BC95, but also likely the additional co-expression of DsbC. The disulfide bond 

isomerase DsbC is responsible for oxidative protein folding in the periplasm [Messens and Collet, 

2006], while the cytoplasmic overexpression can help for a higher yield of soluble protein [Berkmen, 

2012]. In summary, the “foldase” DsbC and the reducing environment provided by trxA were required 
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for folding PaCDA, but the majority of the protein remained insoluble and the amount of active PaCDA 

purified was too low to quantify, concluding E. coli was not suitable for fungal CDAs with CBDs at least 

in these two cases (s. chapters 2 and 4). 

All CDAs mentioned above for successful production in E. coli were renatured from inclusion bodies in 

vitro, including ClCDA showing two disulfide bonds in the crystal structure [Blair et al., 2006]. In the A. 

nidulans CDA protein sequence one cysteine pair is absent in the catalytic domain, but present in 

PaCDA and BC95. Altogether, PaCDA with two CBDs possesses 10 disulfide bonds and BC95 

containing three CBDs carries even 14. Statistically, the more S=S bridges a protein contains, the 

more unlikely it becomes to fold spontaneously correct in vitro, thus this is no option for CDAs 

containing one or more CBDs. Even with the use of CsbC in vivo it could be shown that not only the 

number but also the pattern of disulfide bond has an influence on correct folding [Berkmen, 2012]. 

A further strategy for correct folding of disulfide-bond-rich proteins is the combination of thioredoxin 

reductase (trxB
-) and glutathione reductase (gor 

-) mutations in the strain FÅ113 (trxB, gor, ahpC*), 

commercially available as OrigamiTM by Novagen. It was successfully used [Bessette et al., 1999], but 

grows slow due to the oxidizing cytoplasm and is not able to refold mis-oxidized proteins being the 

task of periplasmic CsbC [Ito and Inaba, 2008]. Therefore, the Shuffle® strain was developed by New 

England Biolabs able to correctly fold disulfide bonded proteins by an additional CsbC in its cytoplasm 

[Lobstein et al., 2012], and was recently applied successfully to a thioredoxin fusion protein [Kong and 

Guo, 2014].  

Although for improvement of protein solubility the use of fusion to maltose binding protein was adopted 

[Tait and Straus, 2011], another disadvantage of prokaryotic protein production is the absence of 

glycosylation that can lead to insoluble protein. In non-zygomycetic fungi CDAs are extracellular 

enzymes and often glycoproteins [Zhao et al., 2010].  

 

5.1.2. Schizosaccharomyces pombe 

The fission yeast S. pombe was the first expression system used for the heterologous production of 

BC95, because six possible N-glycosylation sites were predicted in the BC95 protein sequence. The 

glycosylation of the BC95 protein might be required for the production of soluble and active enzyme 

and can be provided by the unicellular eukaryote. In contrast to the widely applied host 

Saccharomyces cerevisiae, the fission yeast is conducting less hyperglycolsylation, which is an 

advantage because it might slow down secretion and cause low yields [Celik and Calık, 2012]. S. 



   82 

 

pombe strain ura4
- D18 and the vector pMel have successfully been used (in our lab) for other 

eukaryotic enzymes, namely a CDA from Puccinia graminis sp. f. tritici (PgtCDA) [unpublished results] 

and the human chitotriosidase [Kalagara, 2013]. Nevertheless, this system has the disadvantage of 

requiring cultivation in minimal medium containing no uracil to retain the plasmid containing an ura4
+ 

marker for the auxotrophic ura4
- D18 strain [Grimm et al., 1988]. For protein production the cells have 

to be transferred into medium without thiamin for inducing the nmt1 promoter [Maundrell, 1993]. Later, 

the trial to isolate the expression plasmid from the yeast cells was not possible; indicating that the 

successfully expressing PgtCDA clone had integrated the plasmid into its genome. If the strategy of 

stable integration into the host genome is applied on purpose, it might overcome the drawbacks 

mentioned above. 

A current development in biotechnology also applied on S. pombe is the generation of minimum 

genome factories, because the fission yeast has one of the smallest genomes amongst eukaryotes 

[Giga-Hama et al., 2007; Kumagai et al., 2014]. In doing so, all genes not required for growth in (low 

cost) complex media are deleted and strains are analyzed for growth and metabolism to create 

expression hosts with high production efficiency [Sasaki et al., 2013]. For this objective also the 

deletion of proteases and the improvement of protein secretion were investigated [Idiris et al., 2010].  

 

5.1.3. Hansenula polymorpha 

H. polymorpha is a methylotrophic yeast that is used for extracellular production of recombinant 

proteins in industrial-scale, because the low amount of yeast own proteins secreted into the culture 

medium is beneficial for downstream processes [Stöckmann et al., 2009].  In comparison to the S. 

pombe system described above, genes heterologously expressed by H. polymorpha are mitotically 

stable integrated into the genome. This process called passaging and stabilization is time-consuming 

but allows a reproducible cultivation under non-selective conditions using inexpensive full media 

[Gellissen, 2000]. An advantage over the widely used methylotrophic Pichia pastoris is that 

H. polymorpha does not require  

toxic and flammable methanol for inducing protein production, because the FMD (formate 

dehydrogenase) promoter used is induced by methanol and repressed by glucose, but de-repressed 

by glycerol [Hollenberg and Gellissen, 1997].  

The heterologous expression of BC95 yielded soluble protein, whereas it was only detected 

intracellular indicating difficulties in the secretion mechanism. The secretion signal used in this study 
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was derived and engineered from S. cerevisiae MF-α1 (mating factor α) and is a widely used leader 

sequence also for H. polymorpha [Kurjan and Herskowitz, 1982]. This pre-pro leader peptide initiates 

the two-step maturation of the recombinant protein by translocation into the ER for folding and 

glycosylation. As BC95 protein was found soluble and glycosylated, the bottleneck of production 

seemed to be the second step of exporting the pro-protein into the Golgi for glycan maturation and 

subsequent secretion into the medium [Delic et al., 2013]. In comparison to PaCDA containing no N-

glycosylation sites, six possible N-glycosylation sites were predicted in the BC95 protein sequence 

that could be a source of errors. 

The production of PaCDA and PaCDA-ΔN in H. polymorpha was successful and pure enzymes were 

obtained by Strep-Tactin affinity chromatography; results regarding the enzymes themselves are 

discussed in chapter 5.2.2. The deletion variants PaCDA-ΔC and ΔNC share the C-terminal CBD 

deletion, which is most probably responsible for the failure in production of the two enzymes. Although 

the sequences of the C-terminus from ClCDA and PaCDA-ΔC/ΔNC were similar (Fig. 1, chapter 

4.3.1), the C-terminal truncation of PaCDA enzyme led to a low yield of active PaCDA-ΔC and no 

protein detectable for the double deletion. A strategy to overcome the misfolding of these two 

constructs might be to retain the linker region at the C-terminus, which also ensures the accessibility of 

the Strep-tag (see chapter 4.4.2). 

The StrepII-tag was applied as C-terminal fusion to all recombinant proteins in this study, with the 

exception of the first BC95 experiment that was carried out using a His6-tag. Recombinant CDAs 

described in literature were produced by using His-tag fusions [Shrestha et al., 2004; Wang et al., 

2009; Yamada et al., 2008], but it cannot be excluded that the His-tag might interfere with the zinc ion 

of the CDA active site, as seen for the ClCDA crystal structure [Blair et al., 2006]. Therefore, we 

constructed the recombinant enzymes including StrepII protein sequence, which usually not interferes 

with folding [Schmidt and Skerra, 2007]. 

Furthermore, it has to be stated that H. polymorpha possesses CDA activity discovered in this study, 

but this was no obstacle for the production of PaCDA and PaCDA-ΔN. Like other yeasts, 

H. polymorpha owns two CDA genes [Ravin et al., 2013], which were not analyzed so far. As 

discussed in chapter 4.4.2, the CDA activity appeared in only some of the experiments and the reason 

for enzyme expression remained unclear. 

Having investigated three different systems for heterologous protein production, it can be said in 

summary that the S. pombe system used was not suitable at least for BC95. Whereas it was possible 
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to produce PaCDA in an E. coli system with modifications for disulfide bond formation in the cytoplasm 

and this might be further enhanced by using the newest tools available. But in comparison to the 

production efficiency of the yeast H. polymorpha yielding more than 1 mg protein per 1 l culture, the 

E. coli system is not rewarding for the expression of CDAs with CBDs. Therefore, protein production in 

H. polymorpha should be continued using new constructs of PaCDA deletion variants and might be 

optimized for BC95 to analyze the enzymes function. 

 

5.2. Characteristics of chitin deacetylases with chitin binding domains 

Fungal CDAs have been divided into two groups based on their origin and natural function: The role of 

CDAs in zygomycetes was assigned to the assembly of the chitosan-rich cell walls by acting 

processively in tandem with a chitin synthase [Davis and Bartnicki-Garcia, 1984]. CDAs of asco- and 

basidiomycetes modify the fungal cell wall chitin after hyphal growth, either in plant-pathogen-

interactions, the spore formation of yeasts or in another developmental stage [Tsigos et al., 2000]. 

CDAs from all three taxonomic groups have been characterized [Zhao et al., 2010] but until now no 

CDAs containing CBDs type CMB18, which are limited to ascomycetes. In the present study two 

CDAs with CBDs were heterologously produced, one from Botrytis cinerea and one from Podospora 

anserina, their role and functions will be presented in the following. 

 

5.2.1. Botrytis cinerea putative CDAs 

B. cinerea is a plant pathogen, thus the function of one of the six putative CDAs expressed during 

conidia germination shown in this study might be viewed as infection strategy like reported for other 

plant pathogenic fungi [El Gueddari et al., 2002]. However, the chitin content of B. cinerea mycelium 

three to nine days after inoculation in axenic culture was estimated to be only between 1% and 5% 

[Cantu et al., 2009]. Though the chitin content of spores might be higher, because the thick conidia cell 

wall consists of two layers, of which the outer one is broken during germination [Hawker and Hendy, 

1963].  

As reported in the B. cinerea manuscript (chapter 2.3.2), the BC95 gene was upregulated 4 h post 

inoculation (hpi) in the presence of 10 mM fructose. Recently, Leroch and co-workers have 

investigated transcriptome profiling of germinating B. cinerea conidia and revealed BC95, referred as 

cda1, as reporter gene for germination due to its strong upregulation before germ tube appearance at 

1 hpi [Leroch et al., 2013]. They found germination to be more rapid on apple wax-coated surfaces, 
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starting appressorium development at 4 hpi in fructose containing medium, than on glass used in the 

present study. Nevertheless, analysis of the cda1 promoter by a GFP reporter strain demonstrated 

that expression was independent of the germination conditions and correlated with the outgrowth of 

germ tubes. In the same publication the occurrence of BC1G_03291 (cda2) and BC1G_06509 (cda3) 

was also mentioned [Leroch et al., 2013].  

For biotrophic pathogens like Colletotrichum graminicola and P. graminis it is important for successful 

infections to prevent a hypersensitive reaction of the host plant triggered by elicitors like chitin 

oligomers [Kombrink et al., 2011]. Belonging to the different taxonomic groups of asco- and 

basidiomycetes, both species have convergently evolved a pathogenicity related mechanism, which 

protects the cell wall chitin from degradation by plant chitinases. They possess CDA activity that 

changes the surface of infection hypha from chitin into chitosan directly after the penetration pegs 

develop from appressoria [El Gueddari et al., 2002] and is also able to deacetylate chitin oligomers 

[unpublished results]. Because B. cinerea is a necrotrophic pathogen, its infection mechanism differs 

[Choquer et al., 2007] as it does not have to hide from the plant immune system, but rather makes use 

of reactive oxygen species and induces programmed cell death [Govrin and Levine, 2000; Williamson 

and Tudzynski, 2007]. These facts considered together with the expression of BC95 during early 

germination bring us to the assumption that this enzyme is more likely involved in changing the spore 

wall structure for hyphal outgrowth than in plant infection.  

 

The activity of BC95 was analyzed using samples of germinating B. cinerea conidia at different time 

points and after heterologous protein production described above. However, CDA activity was not 

detected in B. cinerea samples assayed using glycol chitin containing gels, although it might be 

present in the mycelium fraction that also showed chitinase activity (chaper 2.3.3, fig. 3). The 

disadvantages of this activity assay concerting multiple activities have been discussed in 4.4.2. By 

using proteomic tools, Espino and colleagues have investigated the proteins secreted during the first 

16 h after germination of B. cinerea in liquid culture, wherein germ tubes but no appressoria developed 

[Espino et al., 2010]. The secretome contained different polysaccharide hydrolases and other 

degrading enzymes, but no CDA. But taking into account the method using a dialysis bag for 

separating the conidia from the surrounding medium, it is supposable that a CDA tightly attached to 

the fungal cell wall by chitin binding domains might not be detectable in the supernatant.  



   86 

 

The heterologous expression of BC85 in H. polymorpha yielded soluble protein, but as it was found 

intracellular, it might not represent the enzymatically active form. The activity of recombinant BC95 

was tested using chitosan DA 56%, colloidal chitin and chitin pentamer as substrates for acetate 

release measurements and using glycol chitin in a gel assay, but was not proven. Still, the occurrence 

of a polysaccharide deacetylase domain and chitin binding domains within the same protein sequence 

does not necessarily signify that the resulting enzyme is a CDA. To clarify this, other polysaccharide 

substrates should also be analyzed in further experiments, e.g. xylan and peptidoglycan based on the 

catalytic domain [Caufrier et al., 2003] or fungal cell walls, as chitin was shown to be covalently linked 

to the glucans [Kollar et al., 1995]. 

 

While the particular function of BC95 remains unclear, it is certainly connected to conidia germination. 

Interestingly, a homolog is present in the closely related fungus Sclerotinia sclerotiorum, which lacks 

the production of macroconidia along with the whole asexual cycle [Amselem et al., 2011]. If the 

function of BC95 is also related to the germination of ascospores, it might be demonstrated by an in 

situ chitosan staining using chitosan affinity protein [Nampally et al., 2012].  

 

5.2.2. Podospora anserina CDA 

P. anserina is a coprophilous ascomycete lacking the asexual cycle and being heterothallic, hence, 

model fungus for aging/senescence and mating type [Osiewacz, 2002]. As a late grower on herbivore 

dung, it possesses a different set of carbohydrate degrading enzymes like cellulases, compared to the 

pectin degrading Aspergillus species growing earlier [Coutinho et al., 2009]. The large number of 

GH18 and CBM18 domains, 20 and 30 respectively, in the genome of P. anserina [Espagne et al., 

2008] and the discovery of a new broad-specificity β-glycanase containing one usually cellulose 

binding CBM1 might indicate that chitin and glycan degradation might also be important for P. 

anserina. The source of chitin and glycan would be cell walls of other fungi [Bartnicki-Garcia, 1968] 

growing earlier on the dung [Lafond et al., 2012]. The P. anserina genome also contains six 

sequences predicted to be xylanases or CDAs due to their polysaccharide deacetylase domains. In a 

recent study, one CDA (GenBank: CAP60162) was detected by secretome analysis following a 

cultivation with Avicel, a microcrystalline cellulose powder, but not with sugar beet pulp, rich in pectins 

[Poidevin et al., 2014]. This secreted CDA is identical to PaCDA reported in this study, but studies on 

expression patterns of P. anserina CDA genes have not been carried out. Concerning the role of 
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CDAs for P. anserina, it has to be considered that this species is not a zygomycete, neither a yeast 

and non-pathogenic, but belongs to the Sordariomycetes, which also contains plant pathogens. It was 

reported that its tetraspanin-like protein PaPls1 is required for germination of heavily melanized 

ascospores and has a functional ortholog (MgPLS1) in Magnaporthe grisea [Lambou et al., 2008]. 

MgPLS1 is necessary for pathogenicity of M. grisea by acting for the differentiation of penetration pegs 

from melanized appressoria [Clergeot et al., 2001], a structure not present in P. anserina. Assuming 

the same molecular mechanism is underlying the two processes, this might also apply to a CDA acting 

on the own cell walls, which is important for some plant-pathogenic fungi [El Gueddari et al., 2002]. In 

conclusion, the secreted CDA might play a role in hypothetical chitin degradation or is acting on the 

P. anserina own cell wall. 

 

5.2.2.1. PaCDA characteristics  

The recombinant PaCDA presented in this study was successfully produced in H. polymorpha and had 

clear similarities to the well described CDA from the plant pathogen C. lindemuthianum. The PaCDA 

gene was identified by an alignment of putative CDA protein sequences and the sequences of 

biochemically characterized CDAs, revealing that PaCDA was most similar to ClCDA in amino acid 

sequence. The biochemical characterization of PaCDA yielded an optimal temperature of 55°C and an 

optimal pH of 8.5. These values are not only similar to the characteristics of ClCDA [Shrestha et al., 

2004] but also to those of other CDAs belonging to the extracellular type [Zhao et al., 2010]. Like other 

enzymes in this group, PaCDA is not inhibited by acetate, though acetate inhibition was reported for 

the intracellular CDAs of zygomycetes [Gao et al., 1995; Kafetzopoulos et al., 1993]. For ClCDA, it 

was demonstrated that Zn
2+

 was a tightly bound cofactor in the catalytic site of the enzyme [Blair et al., 

2006]. I have seen consistent results for the zinc cation in PaCDA, which was enclosed in a way being 

not accessible for EDTA, because PaCDA was not inhibited by the chelator and the presence of other 

bivalent cations had only minor effects.  

For the analysis of substrate specificity, different chitinous substrates have been assayed for 

deacetylation measurement via acetate release detection. The minimum substrate for PaCDA is the 

chitin dimer (DP 2), but deacetylation was found to be slow on chitin oligomers. It is supposable that 

the CBDs do not take part in the deacetylation of chitin oligomers but in the enzyme activity towards 

insoluble crystalline substrates. So far, the ability of CDAs to deacetylate different insoluble chitin 

substrates was not depending on the enzymes themselves, but rather on the substrate crystallinity that 
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was changed by various chemical treatments in the studies [Beaney et al., 2007; Cai et al., 2006; 

Pacheco et al., 2013]. PaCDA possessed activity towards α-, β- and colloidal chitin, however, the 

change in DA was comparable to those reported for other CDAs, indicating that the deacetylation was 

limited to the substrate surface as well. While PaCDA not yielded the desired result of complete 

deacetylated products, the obtained chitin particles might still represent an interesting material for 

applications e.g. as column matrix material [Aye et al., 2006]. The analysis of deletion variants 

concerning the role of CBDs for PaCDA and the deacetylation of crystalline chitin will be discussed in 

chapter 5.2.2.3.  

The deacetylation of different chitosans with DAs ranging from 9% to 61% by PaCDA resulted in 

different DAs afterwards (chapter 3.3.3, fig. 3A) suggesting that a specific PA is produced, which is a 

poorer substrate for the enzyme than chemically produced chitosan of the same DA. This result was 

the starting point of my research on the mode of action of PaCDA that was carried out using a 

chitosan polymer. 

 

5.2.2.2. PaCDA mode of action 

The mode of action on chitin oligomers has been demonstrated for ClCDA [Tokuyasu et al., 2000a] 

and the CDA from Mucor rouxii (MrCDA) [Tsigos et al., 1999], but using polymers, the processive 

mode was only proven for MrCDA [Martinou et al., 1998]. In the present PaCDA study, initial mass-

spectrometric analysis of oligomers indicated full deacetylation in a presumably random fashion with 

subsite preferences similar to the results for ClCDA [Hekmat et al., 2003], whereas further analysis for 

revealing the mode of action was focused on polymers.  

For this purpose, two chitosans were generated using the same starting material of DA 0% by 

reacetylating to DAs of 33% and 61%. The subsequent deacetylation of chitosan DA 61% by PaCDA 

to DA 29% resulted in two chitosans with the same DP and DA but potentially different PAs. The 

comparison of these two chitosans by enzymatic/mass spectrometric fingerprinting analysis with highly 

sequence specific A. alternata chitinosanase [Beneteau et al., in preparation] yielded indeed 

differences in composition and abundance of the obtained oligomers. The spectrum of chemically 

produced chitosan contained more peaks and larger oligomers, whereas the spectrum of PaCDA 

deacetylated chitosan showed higher intensities for oligomers with only one GlcNAc unit, for example 

A1D2 and A1D3 (chapter 3.3.5, fig. 5). The occurrence of less GlcNAc units next to each other in 
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enzymatically produced chitosan indicates that PaCDA requires two side-by-side GlcNAc units for 

deacetylation and hints to a PA more regular than random. 

After this finding, both chitosans were analyzed by 
13

C-NMR to investigate the distribution of GlcNAc 

units along the chitosan polymer represented by the experimental diads AA, AD, DA and DD of C5 

carbon atom peaks [Varum et al., 1990; Vårum et al., 1991]. The result of this measurement was in 

agreement to the fingerprinting results by showing a smaller AA peak for the PaCDA chitosan (chapter 

3.3.5, fig. 6). By applying the formula established by Weinhold et al. to the obtained diad frequencies, 

the PA of PaCDA-treated chitosan resulted in 1.33, being the highest value determined so far by this 

method [Kumirska et al., 2009; Weinhold et al., 2009b]. The value for chemically-reacetylated chitosan 

was 1.11 and thereby in the range of PA values found for chemically produced chitosans with random-

dominated PAs. Whereas the processive mode of MrCDA is yielding a more blockwise PA [Martinou et 

al., 1998], the PaCDA-generated PA presented in this study is to my best knowledge the first proven 

alternating pattern on chitosan polymers. As mentioned above, the reason for such PA is most 

probably due to the subsite structure demonstrated for ClCDA with varying substrate preferences of 

each subsite [Hekmat et al., 2003]. The options for generating chitosans with non-random PAs and 

their properties will be discussed in chapter 5.3. In contrast to ClCDA, it is conceivable for PaCDA that 

the CBDs also play a role in mode of action and creating non-random PA. 

 

5.2.2.3. Role of CBDs for PaCDA 

Because PaCDA was the first CDA containing CBDs that was biochemically characterized, the role of 

the binding domains were investigated by comparing deletion-variants lacking the N-terminal (ΔN), the 

C-terminal (ΔC) and both domains (ΔNC) to the full length enzyme. As discussed previously, the 

production and purification of PaCDA-ΔC and PaCDA-ΔNC failed; for this reasons only the N-terminal 

deletion variant was used for comparative characterization and will be discussed in the following. 

PaCDA and PaCDA-ΔN deacetylated colloidal chitin to the same extent, but as discussed above, the 

activity of both enzymes was limited to the surface. CBDs of chitinases enhance the activity on 

crystalline chitin substrates [Iseli et al., 1993]; however, this effect was not detected for PaCDA since 

only the single deletion was tested and one CDA might be sufficient for binding. The crystal structure 

of a rice chitinase containing also one CBD of CMB family 18 was solved. The docking simulation with 

possible substrates suggested that this type of CBD is unsuitable for binding to crystalline α-chitin 

[Kezuka et al., 2010]. This can be explained by the pocket-like structure of type C CBMs, a group of 
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which some CBMs, including CMB 18, were originally identified as lectins [Boraston et al., 2004]. For 

PaCDA, we can conclude that the CBDs support the enzyme in substrate binding of amorphous chitin 

chains emerging into the surrounding solution, but cannot disrupt chitin crystals [Aye et al., 2006]. 

Respective to the physiological role of CBDs for P. anserina, they might help the secreted enzyme to 

stay close to the substrate it is naturally acting on. 

Enzymatic/mass spectrometric fingerprinting analysis comparing PaCDA and PaCDA-ΔN revealed 

slight differences of the two spectra (chapter 4.3.5, fig. 7) indicating that the chitin binding domains 

might also play a role for the mode of action. The discrepancy was found in the size of the oligomers 

obtained, such as PaCDA produced larger oligomers with more deacetylated units in a row. This was 

leading to the assumption that PaCDA stays close to one chitosan chain and might even deacetylate 

multiple GlcNAc units in a row supported by the CBDs, while unproductive bindings would explain the 

single GlcNAc units left. A mode of action, forming also unproductive bindings depending on the 

subsites was demonstrated for the processive exo-chitinase B (ChiB) from Serratia marcescens,  

which is moving the sugar chain two residues at a time [Sørbotten et al., 2005]. This is explicable by 

picturing the three-dimensional structure of a β-1,4-linked chitin chain, who‟s N-acetylgroups of 

GlcNac units next to each other are pointing in opposite directions. Another Hypothesis based on the 

differences of the two CBDs indicated that one CBD might possess affinity to chitosan, which would 

assist the enzyme moving along the polymer chain. Mine and co-workers solved the crystal structure 

of ChBD1, a CBM family 5, from a Pyrococcus furiosus chitinase and revealed a different structure 

and binding affinity in comparison to ChBD2 from the same enzyme [Mine et al., 2014; Nakamura et 

al., 2008]. Hence, they suggested that the two CBDs each play a different role in chitin binding. A 

similar assumption was made for an Aeromonas hydrophila chitinase containing different N- and C-

terminal CBDs [Wu et al., 2001].  

However, the products of PaCDA obtained during the fingerprinting analysis using chitosan that was 

not deacetylated to the minimum (DA 30%) contained oligomers with up to four GlcNAc units (chapter 

3.3.5, fig. 5). Therefore, and including the similarities to ClCDA, a processive mode of PaCDA is 

unlikely. Still, the presence of CBDs might influence the substrate binding additional to the subsites of 

the catalytic center. This has to be investigated in further studies that also analyze the variants 

PaCDA-ΔC and PaCDA-ΔNC and incorporates binding assays to chitin and chitosan. 
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Drawing a conclusion towards CDAs containing CBD presented in this study; the CDA activity of BC95 

from the plant pathogen B. cinerea was not proven, whereas PaCDA from P. anserina is certainly a 

CDA. PaCDA showed similarities to characterized CDAs and was capable of producing a non-random 

PA on chitosan that has not been reported until now. 

 

 

5.3. Chitosans with non-random pattern of acetylation  

Chitosans possessing non-random PAs have been discussed for some time, but were rarely 

investigated so far [Tsigos et al., 2000; Zhao et al., 2010]. Only one study reported the analysis of an 

enzymatically-created chitosan by 
13

C-NMR to prove the processive mode of MrCDA [Martinou et al., 

1998]. This might partly be due to the large amount of sample needed for this measurement, in 

biological terms about 50 mg of substrate have to be deacetylated [Weinhold et al., 2009b]. In the 

present study, the generation of chitosans with non-random PA was demonstrated by the 

deacetylation reaction of PaCDA leading to an alternate-dominated pattern containing less GlcNAc 

units in a row than a random distribution. Assuming PaCDA owns the same subsite structure than 

ClCDA, the substrate preferences still could differ, hence, ClCDA might produce a different (non-

random) PA. This implies CDAs are theoretically capable of producing random PAs as well as non-

random PAs, even if they not act processively. This hypothesis was recently addressed by a master’s 

thesis co-supervised by me, comparing the PAs on chitosan polymers from three different CDAs to 

chemically generated PAs [Wattjes, 2014]. In addition to the PA found for PaCDA described above, a 

CDA from Pestaloziopsis spec. created a random-dominated PA and a CDA from P. graminis f. sp. 

tritici resulted in a more blockwise pattern. Initial studies by Wattjes concerning physico-chemical 

properties, e.g. intrinsic viscosity and anti-microbial activity indicated different behaviors of the 

chitosans varying in PA, suggesting the charge distribution within the polymer is an important factor 

[Wattjes, 2014]. The PAs of ClCDA on chitosan polymers and of chitosans deacetylated by other 

zygomycete CDAs than from M. rouxii remain to be investigated. It is of importance to mention that the 

PA of different CDAs should be compared directly using the same substrate and a medium DA (e.g. 

30%), due to the dependence of PA versus DA [Weinhold et al., 2009b]. This study reported a 

tendency of chitosans with lower DAs to lower PA values, which is most probably due to the NMR 

method itself, because the smaller the AA peak for low DAs becomes, the more imprecise is the 

calculation of its area compared to the surrounding peaks. 
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Another possibility for the production of non-random PA chitosan is the isolation from zygomycete 

mycelia, which was reported for M. rouxii [Trutnau et al., 2009] and Absidia coerulea [Wang et al., 

2008b]. Although 
13

C-NMR was used to identify the obtained polysaccharide as chitosan, the analysis 

of the PA is missing in his study. In contrast, chitosan oligomers with defined PAs by using different 

chemical and enzymatic methods have been reported [reviewed by Aam et al. 2010]. For example, 

hydrolytic enzymes for cleaving chitosan polymers [Mitsutomi et al., 1995; Sørbotten et al., 2005] or 

the deacetylation of oligomeric substrates by specific CDAs, like from Vibrio cholerae  [Hamer et al., 

2014], can be applied. Additionally, the production of a chitin oligomer was successful by reversing the 

enzyme function of ClCDA for acetylation, as shown for the tetramer AAAD [Tokuyasu et al., 2000b]. 

 

5.3.1. Biological activities of chitosans with non-random PA 

Naturally occurring chitosans are created by the deacetylation of chitin by CDAs, being the only 

mechanism described apart from chemistry [Kaur and Dhillon, 2014]. As discussed above, the PA of a 

chitosan generated by a CDA may be random, blockwise for processive enzymes or possess a regular 

distribution of A and D units. Being fungal cell wall components, chitosans are biologically active in 

plant systems [Hadwiger, 2013], because they are naturally involved in pathogen-plant interactions [El 

Gueddari et al., 2002]. 

For plants, chitin/chitosan detection and adjusted signaling is important for the defense against 

pathogens [Kombrink et al., 2011] as well as for beneficial interactions towards rhizobia [Hamel and 

Beaudoin, 2010]. Further developing this thought, plant receptors evolved in the presence of natural 

chitosan and their PAs, hence, the application of random PA chitosan available might induce a 

different response than a non-random PA chitosan.  

One reaction of plant cells towards chitosan as elicitor molecule is the production of reactive oxygen 

species [Boller and Felix, 2009]. For this reason, I used the oxidative burst assay to quantify the H2O2 

production after the treatment of rice suspension-cultured cells to different chitosan samples [Ortmann 

et al., 2004; Paulert et al., 2010]. Because of a failure in sample preparation for the NMR 

measurements, most oxidative burst experiments were carried out using an enzymatically produced 

chitosan with a DA of 18% instead of 30%. The differences between PaCDA and chemically produced 

chitosan that were seen in these experiments (chapter 3.3.6, fig. 7B) can be explained by the lower 

DA of PaCDA chitosan. First, chitosan DA18% contains less GlcNAc units that can be recognized by 

the O. sativa chitin elicitor binding protein (CEBiP) [Kaku et al., 2006]. Second, the experiment with 
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PaCDA treated chitosan DA 29% created later did not show a clear difference to the solely-chemical 

chitosan (fig. 7A). In spite of this result concerning the biological activity, the proof of PA influencing 

the interactions between chitosans and biological systems might be demonstrated in further 

experiments using different activity assays. 

The anti-microbial activity of chemical and enzymatic chitosan preparations towards Fusarium 

graminearum and Lactobacillus plantarum was investigated by Wattjes and revealed different MICs 

(minimal inhibitory concentrations) for both chitosans and species [Wattjes, 2014]. Although these 

results have to be confirmed using independently created and well-characterized chitosan batches, a 

higher growth inhibition for PaCDA deacetylated chitosan possessing a rather regular PA indicated 

that the evenly distributed positive charges might be the reason for this effect. By comparing different 

studies on anti-fungal, anti-bacterial and other biological activity assays, it has been proposed that the 

positive charge of the protonated GlcN amino group is responsible for interactions with cells [Aranaz et 

al., 2009]. Nevertheless, in many publications the chitin polymers and oligomers used were mixtures 

or not well-characterized leading to sometimes contradictory results on biological activities [Aam et al., 

2010]. Hence, the use of chitosans with particular DP, DA and PA is an advantage for the 

development of chitosan-based product with defined biological activities. 

 

 

5.4. Conclusions 

Aiming for novel CDAs producing chitosans with non-random PA, good progress was made during the 

work for this thesis. For the first enzyme investigated, BC95, the protein production was challenging, 

nevertheless, successful in the yeast H. polymorpha, yet the CDA activity was not demonstrated. The 

production of BC95 in E. coli and S. pombe failed, and the expression of PaCDA in E. coli yielded only 

minimal protein amounts. But H. polymorpha has been proved to be a suitable host for the production 

of recombinant CDAs containing chitin binding domains by correctly expressing PaCDA. This enzyme 

was identified by comparing biochemical characterized CDA protein sequences to putative CDA 

sequences and then characterized being the first active CDA with CBDs until now. The analysis of the 

biochemical properties of PaCDA revealed similarities to the well-characterized ClCDA and suggested 

also a likewise, non-processive mode of action determined by subsite specificities. The activity of 

PaCDA towards crystalline substrates was not higher than other CDAs have been demonstrated 

earlier, thus the CBDs are not capable of loosening the chitin crystal. Three deletion constructs of 
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PaCDA lacking one or both CBDs were created to investigate the function of the CBDs for the 

enzyme, but only PaCDA-ΔN was successfully produced. Comparison of the two active CDAs to each 

other detected only minor differences between the single deletion variant and the full-length enzyme. 

By using PaCDA and a high DA chitosan (61%), a chitosan possessing a non-random PA was 

generated, which was demonstrated by enzymatic/mass spectrometric fingerprinting and 
13

C-NMR 

analysis. Differing from the random PA of concurrently analyzed chemically produced chitosan with the 

same DP and DA, the alternate-dominated PA created by PaCDA in the recent study was the first 

described so far. 

 

5.4.1. Perspectives 

Further studies on CDAs containing CBDs could provide insights to the deacetylation of crystalline 

substrates and the process of generating chitosans with non-random PAs. Following the work 

presented in this thesis, five experiments for continuing these studies on BC95, PaCDA and chitosans 

with non-random PAs are suggested: 

a) The optimization of BC95 production in H. polymorpha might result in active protein, which 

could then be further characterized. Additionally, experiments using different substrates other 

than chitin should be carried out to detect also other possible enzyme activities (chapter 2). 

b) The mode of action of PaCDA might be unraveled further by using oligomers and investigating 

MS sequencing of intermediates and products, which might illustrate the subsite structure of 

PaCDA accordantly to ClCDA [Hekmat et al., 2003] (chapter 3). 

c) The analysis of PaCDA crystal structure might yield valuable insights to the subsite structure 

and reaction mechanism of PaCDA similar to the study of ClCDA [Blair et al., 2006]. 

Furthermore the structures of the CBDs could be compared to each other and to the solved 

structures of CBM family 18 domains [Kezuka et al., 2010; Wright et al., 1991]. 

d) The construction of new C-terminal deletion constructs based on the results obtained from this 

study might reveal more information of the role the CBDs are playing for PaCDA in substrate 

binding, especially towards crystalline chitin, and mode of action (chapter 4). 

e) The production of chitosan with non-random PA by PaCDA should be scaled up further to 

continue the analysis of physico-chemical properties and biological activities (chapter 3). 

These studies would ideally include as many CDAs as possible to compare different 

enzymatically produced PAs [Wattjes, 2014] 
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