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Abstract. We establish necessary and sufficient conditions on a (not necessarily countable)
graph E for the graph C∗-algebra C∗(E) to be primitive. Along with a known characteriza-

tion of the graphs E for which C∗(E) is prime, our main result provides us with a systematic
method for easily producing large classes of (necessarily nonseparable) C∗-algebras that are
prime but not primitive. We also compare and contrast our results with similar results for
Leavitt path algebras.

1. Introduction

It is well known that any primitive C∗-algebra must be a prime C∗-algebra,
and a partial converse was established by Dixmier in the late 1950’s when
he showed that every separable prime C∗-algebra is primitive (see [11, Corol-
laire 1] or [24, Thm. A.49] for a proof). For over 40 years after Dixmier’s
result, it was an open question as to whether every prime C∗-algebra is prim-
itive. This was answered negatively in 2001 by Weaver, who produced the
first example of a (necessarily nonseparable) C∗-algebra that is prime but not
primitive [28]. Additional ad hoc examples of C∗-algebras that are prime but
not primitive have been given in [10], [19, Prop. 31], and [21, Prop. 13.4], with
this last example being constructed as a graph C∗-algebra. In this paper we
identify necessary and sufficient conditions on the graph E for the C∗-algebra
C∗(E) to be primitive. Consequently, this will provide a systematic way for
easily describing large classes of (necessarily nonseparable) C∗-algebras that
are prime but not primitive. In particular, we obtain infinite classes of (non-
separable) AF-algebras, as well as infinite classes of non-AF, real rank zero
C∗-algebras, that are prime but not primitive.
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Compellingly, but perhaps not surprisingly, the conditions on E for which
C∗(E) is primitive are identical to the conditions on E for which the Leavitt
path algebra LK(E) is primitive for any field K [2, Thm. 5.7]. However, as is
typical in this context, despite the similarity of the statements of the results,
the proofs for graph C∗-algebras are dramatically different from the proofs for
Leavitt path algebras, and neither result directly implies the other.

2. Preliminaries on graph C∗-algebras

In this section we establish notation and recall some standard definitions.

Definition 2.1. A graph (E0, E1, r, s) consists of a set E0 of vertices, a set
E1 of edges, and maps r : E1 → E0 and s : E1 → E0 identifying the range
and source of each edge.

Definition 2.2. Let E := (E0, E1, r, s) be a graph. We say that a vertex
v ∈ E0 is a sink if s−1(v) = ∅, and we say that a vertex v ∈ E0 is an infinite
emitter if |s−1(v)| = ∞. A singular vertex is a vertex that is either a sink or
an infinite emitter, and we denote the set of singular vertices by E0

sing. We

also let E0
reg := E0 \E0

sing, and refer to the elements of E0
reg as regular vertices ;

i.e., a vertex v ∈ E0 is a regular vertex if and only if 0 < |s−1(v)| < ∞. A
graph is row-finite if it has no infinite emitters. A graph is finite if both sets
E0 and E1 are finite. A graph is countable if both sets E0 and E1 are (at
most) countable.

Definition 2.3. If E is a graph, a path is a finite sequence α := e1e2 . . . en of
edges with r(ei) = s(ei+1) for 1 ≤ i ≤ n − 1. We say the path α has length
|α| := n, and we let En denote the set of paths of length n. We consider the
vertices of E (i.e., the elements of E0) to be paths of length zero. We also
let Path(E) :=

⋃

n∈N∪{0} E
n denote the set of paths in E, and we extend the

maps r and s to Path(E) as follows: for α = e1e2 . . . en ∈ En with n ≥ 1, we
set r(α) = r(en) and s(α) = s(e1); for α = v ∈ E0, we set r(v) = v = s(v).
Also, for α = e1e2 · · · en ∈ Path(E), we let α0 denote the set of vertices that
appear in α; that is,

α0 = {s(e1), r(e1), . . . , r(en)}.

Definition 2.4. If E is a graph, the graph C∗-algebra C∗(E) is the universal
C∗-algebra generated by mutually orthogonal projections {pv | v ∈ E0} and
partial isometries with mutually orthogonal ranges {se | e ∈ E1} satisfying

(1) s∗ese = pr(e) for all e ∈ E1,

(2) ses
∗
e ≤ ps(e) for all e ∈ E1,

(3) pv =
∑

{e∈E1|s(e)=v} ses
∗
e for all v ∈ E0

reg.

Definition 2.5. We call Conditions (1)–(3) in Definition 2.4 the Cuntz–Krieger
relations. Any collection {Se, Pv | e ∈ E1, v ∈ E0} of elements of a C∗-algebra
A, where the Pv are mutually orthogonal projections, the Se are partial isome-
tries with mutually orthogonal ranges, and the Cuntz–Krieger relations are
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satisfied is called a Cuntz–Krieger E-family in A. The universal property of
C∗(E) says precisely that if {Se, Pv | e ∈ E1, v ∈ E0} is a Cuntz–Krieger E-
family in a C∗-algebra A, the there exists a ∗-homomorphism φ : C∗(E) → A
with φ(pv) = Pv for all v ∈ E0 and φ(se) = Se for all e ∈ E1.

For a path α := e1 . . . en, we define Sα := Se1 · · ·Sen ; and when |α| = 0, we
have α = v is a vertex and define Sα := Pv.

Remark 2.6. Using the orthogonality of the projections {ses
∗
e | e ∈ E1}, we

see that if α, β ∈ Path(E), then sαs
∗
αsβs

∗
β is nonzero if and only if α = βγ or

β = αδ for some γ, δ ∈ Path(E); in the former case we get sαs
∗
αsβs

∗
β = sαs

∗
α,

while in the latter we get sαs
∗
αsβs

∗
β = sβs

∗
β . Specifically, if | α |=| β |, then

sαs
∗
αsβs

∗
β is nonzero precisely when α = β, in which case the product yields

sαs
∗
α.

Definition 2.7. A cycle is a path α = e1e2 . . . en with length |α| ≥ 1 and
r(α) = s(α). If α = e1e2 . . . en is a cycle, an exit for α is an edge f ∈ E1

such that s(f) = s(ei) and f 6= ei for some i. We say that a graph satisfies
Condition (L) if every cycle in the graph has an exit.

Definition 2.8. A simple cycle is a cycle α = e1e2 . . . en with r(ei) 6= s(e1)
for all 1 ≤ i ≤ n− 1. We say that a graph satisfies Condition (K) if no vertex
in the graph is the source of exactly one simple cycle. (In other words, a graph
satisfies Condition (K) if and only if every vertex in the graph is the source of
no simple cycles or the source of at least two simple cycles.)

Our main use of Condition (L) will be in applying the Cuntz–Krieger Unique-
ness Theorem. The Cuntz–Krieger Uniqueness Theorem was proven for row-
finite graphs in [6, Thm. 1], and for countably infinite graphs in [13, Cor. 2.12]
and [23, Thm. 1.5]. The result for possibly uncountable graphs is a special
case of the Cuntz–Krieger Uniqueness Theorem [20, Thm. 5.1] for topological
graphs. Alternatively, one can obtain the result in the uncountable case by
using the version for countable graphs and applying the direct limit techniques
described in [23] and [14].

Theorem 2.9 (Cuntz–Krieger Uniqueness Theorem). If E is a graph that
satisfies Condition (L) and φ : C∗(E) → A is a ∗-homomorphism from C∗(E)
into a C∗-algebra A with the property that φ(pv) 6= 0 for all v ∈ E0, then φ is
injective.

It is a consequence of the Cuntz–Krieger Uniqueness Theorem that if E
is a graph satisfying Condition (L) and I is a nonzero ideal of C∗(E), then
there exists v ∈ E0 such that pv ∈ I. (To see this, consider the quotient map
q : C∗(E) → C∗(E)/I.)

Definition 2.10. If v, w ∈ E0 we write v ≥ w to mean that there exists a
path α ∈ Path(E) with s(α) = v and r(α) = w. (Note that the path α could
be a single vertex, so that in particular we have v ≥ v for every v ∈ E0.)
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If E is a graph, a subset H ⊆ E0 is hereditary if whenever e ∈ E1 and
s(e) ∈ H , then r(e) ∈ H . Note that a short induction argument shows that
whenever H is hereditary, v ∈ H , and v ≥ w, then w ∈ H .

For v ∈ E0 we define

H(v) := {w ∈ E0 | v ≥ w}.

It is clear that H(v) is hereditary for each v ∈ E0. A hereditary subset H is
called saturated if {v ∈ E0

reg | r(s−1(v)) ⊆ H} ⊆ H . For any hereditary subset
H , we let

H :=
⋂

{K | K ⊆ H and K is a saturated hereditary subset}

denote the smallest saturated hereditary subset containing H , and we call H
the saturation of H . Note that if H is hereditary and we define H0 := H and
Hn := Hn−1 ∪ {v ∈ E0

reg | r(s−1(v)) ⊆ Hn−1} for n ∈ N, then H0 ⊆ H1 ⊆

H2 ⊆ . . . and H =
⋃∞

n=0 Hn. It is clear that both of the sets ∅ and E0 are
hereditary subsets of E0.

Lemma 2.11. Let E = (E0, E1, r, s) be a graph. If H ⊆ E0 and K ⊆ E0 are
hereditary subsets with H ∩K = ∅, then H ∩K = ∅.

Proof. Since H ∩K = ∅, we have H0 ∩K0 = ∅. A straightforward inductive
argument shows that Hn ∩Kn = ∅ for all n ∈ N. Since H0 ⊆ H1 ⊆ H2 ⊆ . . .
and K0 ⊆ K1 ⊆ K2 ⊆ . . ., it follows that

⋃∞
n=0 Hn ∩

⋃∞
n=0 Kn = ∅. Hence

H ∩K = ∅. �

If H is a hereditary subset, we let

IH := span
(

{sαs
∗
β | α, β ∈ Path(E), r(α) = r(β) ∈ H}).

It is straightforward to verify that if H is hereditary, then IH is a (closed,
two-sided) ideal of C∗(E) and IH = IH . In addition, the map H 7→ IH is an
injective lattice homomorphism from the lattice of saturated hereditary subsets
of E into the gauge-invariant ideals of C∗(E). (In particular, if H and K are
saturated hereditary subsets of E, then IH ∩ IK = IH∩K .) When E is row-
finite, the lattice homomorphismH 7→ IH is surjective onto the gauge-invariant
ideals of C∗(E).

Definition 2.12. A graph E is downward directed if for all u, v ∈ E0, there
exists w ∈ E0 such that u ≥ w and v ≥ w.

Lemma 2.13. Let E = (E0, E1, r, s) be a graph, and let v, w ∈ E0. If I is an
ideal in C∗(E), pv ∈ I, and v ≥ w, then pw ∈ I.

Proof. Let α be a path with s(α) = v and r(α) = w. Since pv ∈ I, we have

pw = pr(α) = s∗αsα = sαps(α)s
∗
α = sαpvs

∗
α ∈ I. �

The following graph-theoretic notion will play a central role in this paper.
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Definition 2.14. Let E = (E0, E1, r, s) be a graph. For w ∈ E0, we define

U(w) := {v ∈ E0 | v ≥ w};

that is, U(w) is the set of vertices v for which there exists a path from v to w.
We say E satisfies the Countable Separation Property if there exists a countable
set X ⊆ E0 for which E0 =

⋃

x∈X U(x).

Remark 2.15. It is useful to note that E does not satisfy the Countable
Separation Property if and only if for every countable subset X ⊆ E0 we have
E0 \

⋃

x∈X U(x) 6= ∅.

2.16. The notions of “prime” and “primitive” for algebras, and for

C
∗-algebras. When we are working with a ring R, an ideal in R shall always

mean a two-sided ideal. When working with a C∗-algebra A, an ideal in A
shall always mean a closed two-sided ideal. If we have a two-sided ideal in a
C∗-algebra that is not closed, we shall refer to it as an algebraic ideal.

Many properties for rings are stated in terms of two-sided ideals. However,
when working in the category of C∗-algebras it is natural to consider the cor-
responding C∗-algebraic properties stated in terms of closed two-sided ideals.
Thus for C∗-algebras, one may ask whether a given ring-theoretic property
coincides with the corresponding C∗-algebraic property. In the next few def-
initions we will consider the notions of prime and primitive, and explain how
the ring versions of these properties coincide with the C∗-algebraic versions.
In particular, a C∗-algebra is prime as a C∗-algebra if and only if it is prime
as a ring, and a C∗-algebra is primitive as a C∗-algebra if and only if it is
primitive as a ring. This will allow us to unambiguously refer to C∗-algebras
as “prime” or “primitive”.

If I, J are two-sided ideals of a ring R, then the product IJ is defined to be
the two-sided ideal

IJ :=

{

n
∑

ℓ=1

iℓjℓ

∣

∣

∣

∣

n ∈ N, iℓ ∈ I, jℓ ∈ J

}

.

Definition 2.17. A ring R is prime if whenever I and J are two-sided ideals
of R and IJ = {0}, then either I = {0} or J = {0}.

If I, J are closed two-sided ideals of a C∗-algebra A, then the product IJ is
defined to be the closed two-sided ideal

IJ := IJ =

{

n
∑

ℓ=1

iℓjℓ

∣

∣

∣

∣

n ∈ N, iℓ ∈ I, jℓ ∈ J

}

.

Definition 2.18. A C∗-algebra A is prime if whenever I and J are closed
two-sided ideals of A and IJ = {0}, then either I = {0} or J = {0}.

Remark 2.19. We note that if a ring R admits a topology in which multipli-
cation is continuous (e.g., if R is a C∗-algebra), then it is straightforward to
show that R is prime if and only if R has the property that whenever I and J
are closed two-sided ideals of R and IJ = {0}, then either I = {0} or J = {0}.
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Thus a C∗-algebra is prime as a ring (in the sense of Definition 2.17) if and
only if it is prime as a C∗-algebra (in the sense of Definition 2.18). Moreover,
since any C∗-algebra has an approximate identity, and any closed two-sided
ideal of a C∗-algebra is again a C∗-algebra, we get that whenever I and J are
closed two-sided ideals in a C∗-algebra, then IJ = I ∩ J . Thus a C∗-algebra
A is prime if and only if whenever I and J are closed two-sided ideals in A
and I ∩ J = {0}, then either I = {0} or J = {0}. In addition, the existence
of an approximate identity in a C∗-algebra implies that ideals of ideals are
ideals. In other words, if A is a C∗-algebra, I is a closed two-sided ideal of A,
and J is a closed two-sided ideal of I, then J is a closed two-sided ideal of A.
Consequently, if I is a closed two-sided ideal in a prime C∗-algebra, then I is
a prime C∗-algebra.

Definition 2.20. Recall that for a ring R a left R-module RM consists of
an abelian group M and a ring homomorphism π : R → End(M) for which
π(R)(M) = M , giving the module action r · m := π(r)(m). We say that

RM is faithful if the homomorphism π is injective, and we say RM is simple
if M 6= {0} and M has no nonzero proper R-submodules; i.e., there are no
nonzero proper subgroups N ⊆ M with π(r)(n) ⊆ N for all r ∈ R and n ∈ N .
We make similar definitions for right R-modules MR, faithful right R-modules,
and simple right R-modules.

Definition 2.21. Let R be a ring. We say that R is left primitive if there
exists a faithful simple left R-module. We say that R is right primitive if there
exists a faithful simple right R-module.

There are rings that are primitive on one side but not on the other. The
first example was constructed by Bergman [7, 8]. In his ring theory textbook
[26, p. 159] Rowen also describes another example found by Jategaonkar that
displays this distinction.

Definition 2.22. If A is a C∗-algebra, a ∗-representation is a ∗-homomorphism
π : A → B(H) from the C∗-algebra A into the C∗-algebra B(H) of bounded
linear operators on some Hilbert space H. We say that a ∗-representation
π : A → B(H) is faithful if it is injective. For any subset S ⊆ H, we define
π(A)S := span{π(a)h | a ∈ A and h ∈ S}. If S = {h} is a singleton set,
we often write π(A)h in place of π(A){h}. A subspace K ⊆ H is called a
π-invariant subspace (or just an invariant subspace) if π(a)k ∈ K for all a ∈ A
and for all k ∈ K. Observe that a closed subspace K ⊆ H is invariant if and
only if π(A)K ⊆ K.

Definition 2.23. Let A be a C∗-algebra, and let π : A → B(H) be a ∗-
representation.

(1) We say π is a countably generated ∗-representation if there exists a count-
able subset S ⊆ H such that π(A)S = H.

(2) We say π is a cyclic ∗-representation if there exists h ∈ H such that
π(A)h = H . (Note that a cyclic ∗-representation could also be called a
singly generated ∗-representation.)
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(3) We say π is an irreducible ∗-representation if there are no closed invariant
subspaces of H other than {0} and H. We note that π is irreducible if and
only if π(A)h = H for all h ∈ H \ {0}.

Remark 2.24. One can easily see that for any ∗-representation of a C∗-
algebra, the following implications hold:

irreducible =⇒ cyclic =⇒ countably generated.

In addition, if H is a separable Hilbert space (and hence H has a countable
basis), then π is automatically countably generated.

Definition 2.25. A C∗-algebra A is primitive if there exists a faithful irre-
ducible ∗-representation π : A → B(H) for some Hilbert space H.

The following result is well known among C∗-algebraists.

Proposition 2.26. If A is a C∗-algebra, then the following are equivalent.

(1) A is a left primitive ring (in the sense of Definition 2.21).
(2) A is a right primitive ring (in the sense of Definition 2.21).
(3) A is a primitive C∗-algebra (in the sense of Definition 2.25).

Proof. If A is a C∗-algebra and Aop denotes the opposite ring of A, then we
see that a 7→ a∗ is a ring isomorphism from A onto Aop. Hence A−Mod and
Aop−Mod ∼= Mod−A are equivalent categories. (We mention that, in general,
a C∗-algebra is not necessarily isomorphic as a C∗-algebra to its opposite C∗-
algebra; see [22].)

The equivalence of (1) and (3) is proven in [12, Thm. 2.9.7, p. 57] and
uses the results of [12, Cor. 2.9.6(i), p. 57] and [12, Cor. 2.8.4, p. 53], which
show two things: (i) that any algebraically irreducible representation of A on a
complex vector space is algebraically equivalent to a topologically irreducible
∗-representation of A on a Hilbert space, and (ii) that any two topologically ir-
reducible ∗-representations of A on a Hilbert space are algebraically isomorphic
if and only if they are unitarily equivalent. �

Remark 2.27. In light of Proposition 2.26, a C∗-algebra is primitive in the
sense of Definition 2.25 if and only if it satisfies any (and hence all) of the three
equivalent conditions stated in Proposition 2.26.

3. Prime and primitive graph C∗-algebras

In this section we establish graph conditions that characterize when the as-
sociated graph C∗-algebra is prime and when the associated graph C∗-algebra
is primitive.

The following proposition was established in [19, Thm. 10.3] in the con-
text of topological graphs, but for the convenience of the reader we provide a
streamlined proof here for the context of graph C∗-algebras. We also mention
that this same result was obtained for countable graphs in [5, Prop. 4.2].)

Proposition 3.1. Let E be any graph. Then C∗(E) is prime if and only if
the following two properties hold:

Münster Journal of Mathematics Vol. 7 (2014), 489–514
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(i) E satisfies Condition (L), and
(ii) E is downward directed.

Proof. First, let us suppose that E satisfies properties (i) and (ii) from above.
If I and J are nonzero ideals in C∗(E), then it follows from property (i)
and the Cuntz–Krieger Uniqueness Theorem for graph C∗-algebras that there
exists u, v ∈ E0 such that pu ∈ I and pv ∈ J . By property (ii) there is a vertex
w ∈ E0 such that u ≥ w and v ≥ w. It follows from Lemma 2.13 that pw ∈ I
and pw ∈ J . Hence 0 6= pw = pwpw ∈ IJ , and so C∗(E) is a prime C∗-algebra.

For the converse, let us suppose that C∗(E) is prime and establish properties
(i) and (ii). Suppose C∗(E) is prime, and E does not satisfy Condition (L).
Then there exists a cycle α = e1 . . . en in E that has no exits. Since α has
no exits, the set H := α0 = {s(e1), r(e1), . . . , r(en−1)} is a hereditary subset
of E, and it follows from [5, Prop. 3.4] that the ideal IH = IH is Morita
equivalent to the C∗-algebra of the graph EH := (H, s−1(H), r|H , s|H). Since
EH is the graph consisting of a single cycle, C∗(EH) ∼= Mn(C(T)) for some
n ∈ N (see [16, Lemma 2.4]). Therefore, the ideal IH is Morita equivalent to
C(T). However, since C∗(E) is a prime C∗-algebra, it follows that the ideal
IH is a prime C∗-algebra. Because Morita equivalence preserves primality, and
IH is Morita equivalent to C(T), it follows that C(T) is a prime C∗-algebra.
However, it is well known that C(T) is not prime: If C and D are proper closed
subsets of T for which C ∪D = T, and we set IC := {f ∈ C(T) | f |C ≡ 0} and
ID := {f ∈ C(T) | f |D ≡ 0}, then IC and ID are ideals with IC ∩ID = {0} but
IC 6= {0} and ID 6= {0}. This provides a contradiction, and we may conclude
that E satisfies Condition (L) and that property (i) holds.

Next, suppose C∗(E) is prime. Let u, v ∈ E0, and consider H(u) :=
{x ∈ E0 | u ≥ x} and H(v) := {x ∈ E0 | v ≥ x}. Then H(u) and
H(v) are nonempty hereditary subsets, and the ideals IH(u) = I

H(u) and

IH(v) = I
H(v) are each nonzero. Since C∗(E) is a prime C∗-algebra, it fol-

lows that I
H(u)∩H(v) = I

H(u) ∩ I
H(v) 6= {0}. Thus H(u) ∩ H(v) 6= ∅, and

Lemma 2.11 implies that H(u) ∩ H(v) 6= ∅. If we choose w ∈ H(u) ∩ H(v),
then u ≥ w and v ≥ w. Hence E is downward directed and property (ii)
holds. �

The following is well known, but we provide a proof for completeness.

Lemma 3.2. Any primitive C∗-algebra is prime.

Proof. Let A be a primitive C∗-algebra. Then there exists a faithful irreducible
∗-representation π : A → B(H). Let I and J be ideals of A, and suppose that
IJ = {0}. If J 6= {0}, then the faithfulness of π implies π(J)H 6= {0}, and
the fact that J is an ideal shows that π(J)H is a closed invariant subspace
for π. Since π is irreducible, it follows that π(J)H = H. Using the fact that
IJ = {0}, it follows that {0} = π(IJ)H = π(I)π(J)H = π(I)H. Since π is
faithful, this implies that I = {0}. Thus A is a prime C∗-algebra. �

The following two lemmas are elementary, but very useful.
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Lemma 3.3. If X ⊆ (0,∞) is an uncountable subset of positive real numbers,

then the sum
∑

x∈X

x diverges to infinity.

Proof. For each n ∈ N, let Xn := {x ∈ X | x ≥ 1
n
}. Then X =

⋃∞
n=1 Xn, and

since X is uncountable, there exists n0 ∈ N such that Xn0
is infinite. Thus

∑

x∈X x ≥
∑

x∈Xn0

x ≥
∑∞

i=1
1
n
= ∞. �

Lemma 3.4. Let A be a C∗-algebra, and let {pi | i ∈ I} be a set of nonzero
mutually orthogonal projections in A. If there exists a ∗-representation π :
A → B(H) and a vector ξ ∈ H such that π(pi)ξ 6= 0 for all i ∈ I, then I is at
most countable.

Proof. Let P :=
⊕

i∈I π(pi) be the projection onto the direct sum of the im-
ages of the π(pi). Since the π(pi) are mutually orthogonal projections, the
Pythagorean theorem shows

∑

i∈I ‖π(pi)ξ‖
2 = ‖Pξ‖2 ≤ ‖ξ‖2 < ∞. Since each

‖π(pi)ξ‖
2 term is nonzero, and since any uncountable sum of positive real

numbers diverges to infinity (see Lemma 3.3), it follows that the index set I is
at most countable. �

The following proposition provides a necessary condition for a graph C∗-
algebra to be primitive.

Proposition 3.5. If E is a graph and C∗(E) has a faithful countably generated
∗-representation, then E satisfies the Countable Separation Property.

Proof. By hypothesis there is a faithful countably generated ∗-representation
π : C∗(E) → B(H). Thus there exists a countable set of vectors S := {ξi}

∞
i=1 ⊆

H with π(C∗(E))S = H. For every n ∈ N ∪ {0} and for every i ∈ N, define

Γn,i := {α ∈ Path(E) | |α| = n and π(sαs
∗
α)ξi 6= 0}.

(Recall that we view vertices as paths of length zero, and in this case sv = pv.)
By Remark 2.6, for any n ∈ N∪ {0} the set {sαs

∗
α | α ∈ Path(E) and |α| = n}

consists of mutually orthogonal projections, and hence Lemma 3.4 implies that
for any n ∈ N ∪ {0} and for any i ∈ N, the set Γn,i is countable.

Define

Γ :=

∞
⋃

n=0

∞
⋃

i=1

Γn,i,

which is countable since it is the countable union of countable sets. Also define

Θ :=
⋃

α∈Γ

U(r(α)).

Then Θ ⊆ E0 is a set of vertices, and we shall show that Θ = E0. We note
that Θ consists precisely of the vertices v in E for which there is a path from
v to w, where w = r(α) for a path α having the property that π(SαS

∗
α)ξi is

nonzero for some i.

Münster Journal of Mathematics Vol. 7 (2014), 489–514



498 Gene Abrams and Mark Tomforde

Let v ∈ E0, and let I denote the closed two-sided ideal of C∗(E) generated
by pv. Since I is a nonzero ideal and π is faithful, it follows that π(I)H 6= {0}.
Thus

π(I)S = π(IC∗(E))S = π(I)π(C∗(E))S = π(I)H 6= {0}

and hence there exists a ∈ I and ξi ∈ S such that π(a)ξi 6= 0. If H(v) :=
{w ∈ E0 | v ≥ w} is the hereditary subset of E0 generated by v (as given in
Definition 2.10), then it follows from [5, §3] that

I = IH(v) = span{sαs
∗
β | α, β ∈ Path(E) and r(α) = r(β) ∈ H(v)}.

Since a ∈ I and π(a)ξi 6= 0, it follows from the linearity and continuity of π
that there exists α, β ∈ Path(E) with r(α) = r(β) ∈ H(v) and π(sαs

∗
β)ξi 6= 0.

Hence
π(sαs

∗
β)π(sβs

∗
β)ξi = π(sαs

∗
βsβs

∗
β)ξi = π(sαs

∗
β)ξi 6= 0,

and thus π(sβs
∗
β)ξi 6= 0. If we let n := |β|, then β ∈ Γn,i ⊆ Γ. Since

r(β) ∈ H(v), it follows that v ≥ r(β) and v ∈ U(r(β)) ⊆
⋃

α∈Γ U(r(α)) = Θ.

Thus E0 = Θ :=
⋃

α∈Γ U(r(α)), and since Γ is countable, E satisfies the
Countable Separation Property. �

Corollary 3.6. If E is a graph and C∗(E) has a faithful cyclic ∗-representa-
tion, then E satisfies the Countable Separation Property.

Corollary 3.7. If E is a graph and C∗(E) is primitive, then E satisfies the
Countable Separation Property.

Our main objective in this article is the following result, in which we provide
necessary and sufficient conditions on a graphE for the C∗-algebraC∗(E) to be
primitive. In particular, we identify the precise additional condition on E that
guarantees a prime graph C∗-algebra C∗(E) is primitive. With the previously
mentioned result of Dixmier [11, Corollaire 1] as context (i.e., that any prime
separable C∗-algebra is primitive), we note that our additional condition is
not a separability hypothesis on C∗(E), but rather the Countable Separation
Property of E.

Theorem 3.8. Let E be any graph. Then C∗(E) is primitive if and only if
the following three properties hold:

(i) E satisfies Condition (L),
(ii) E is downward directed, and
(iii) E satisfies the Countable Separation Property.

In other words, by Proposition 3.1, C∗(E) is primitive if and only if C∗(E) is
prime and E satisfies the Countable Separation Property.

Proof. To prove this result we establish both the sufficiency and the necessity
of properties (i), (ii), and (iii) for C∗(E) to be primitive.

Proof of sufficiency. Since E satisfies the Countable Separation Property by
(iii), there exists a countable set X ⊆ E0 such that E0 =

⋃

x∈X U(x). Since
X is countable, we may list the elements of X as X := {v1, v2, . . .}, where this
list is either finite or countably infinite. For convenience of notation, let us
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write X = {vi}i∈I where the indexing set I either has the form I = {1, . . . , n}
or I = N.

We inductively define a sequence of paths {λi}i∈I ⊆ Path(E) satisfying the
following two properties:

(a) For each i ∈ I we have vi ≥ r(λi).
(b) For each i ∈ I with i ≥ 2 there exists µi ∈ Path(E) such that λi = λi−1µi.

To do so, define λ1 := v1 and note that for i = 1 Property (a) is satisfied
trivially and Property (b) is satisfied vacuously. Next suppose that λ1, . . . λn

have been defined so that Property (a) and Property (b) are satisfied for 1 ≤
i ≤ n. By hypothesis (ii) E is downward directed, and hence there exists a
vertex un+1 in E such that r(λn) ≥ un+1 and vn+1 ≥ un+1. Let µn+1 be a path
from r(λn) to un+1, and define λn+1 := λnµn+1. Then the paths λ1, . . . , λn+1

satisfy Property (a) and Property (b) for all 1 ≤ i ≤ n. Continuing in this
manner, we either exhaust the elements of I or inductively create a sequence
of paths {λi}i∈I ⊆ Path(E) satisfying Property (a) and Property (b) for all
i ∈ I.

Note that, in particular, for each i < n, we have λn = λiµi+1 . . . µn, and
hence by Remark 2.6 for i ≤ n we have

sλi
s∗λi

sλn
s∗λn

= sλn
s∗λn

.

We now establish for future use that every nonzero closed two-sided ideal
J of C∗(E) contains sλn

s∗λn
for some n ∈ I. Using hypothesis (i), our graph

satisfies Condition (L), and the Cuntz–Krieger Uniqueness Theorem (Theo-
rem 2.9) implies that there exists w ∈ E0 such that pw ∈ J . By the Countable
Separation Property there exists vn ∈ X such that w ≥ vn. In addition,
by Property (a) above vn ≥ r(λn), so that there is a path γ in E for which
s(γ) = w and r(γ) = r(λn). Since pw ∈ J , we have by Lemma 2.13 that
pr(λn) ∈ J , so that sλn

s∗λn
= sλn

pr(λn)s
∗
λn

∈ J as desired.
Define

L :=

{

n
∑

i=1

(xi − xisλi
s∗λi

)

∣

∣

∣

∣

n ∈ I and x1, . . . , xn ∈ C∗(E)

}

.

Recall that λ1 = v1, and by our convention (see Definition 2.5) sλ1
= pv1 and

sλ1
s∗λ1

= pv1 . Clearly L is an algebraic (i.e., not necessarily closed) left ideal
of C∗(E). We claim that pv1 /∈ L. For otherwise there would exist n ∈ I and
x1, ..., xn ∈ C∗(E) with

n
∑

i=1

(xi − xisλi
s∗λi

) = pv1 .

But then multiplying both sides of this equation by sλn
s∗λn

on the right gives

n
∑

i=1

(xisλn
s∗λn

− xisλi
s∗λi

sλn
s∗λn

) = sλn
s∗λn

.
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Using the previously displayed observation, the above equation becomes

n
∑

i=1

(xisλn
s∗λn

− xisλn
s∗λn

) = sλn
s∗λn

,

which gives 0 = sλn
s∗λn

, a contradiction. Hence we may conclude that pv1 /∈ L,
and L is a proper left ideal of C∗(E).

By the definition of L, we have a− apv1 ∈ L for each a ∈ C∗(E) and hence
L is a modular left ideal of C∗(E), a property which necessarily passes to any
left ideal of C∗(E) containing L. (See [9] for definitions of appropriate terms.
Also, cp. [25, Chap. 2, Thm. 2.1.1].) Let T denote the set of (necessarily
modular) left ideals of C∗(E) that contain L but do not contain pv1 . Since
L ∈ T , we have T 6= ∅. By a Zorn’s Lemma argument there exists a maximal
element in T , which we denote M . We claim that M is a maximal left ideal
of C∗(E). For suppose that M ′ is a left ideal of C∗(E) having M $ M ′. Then
by the maximality of M in T we have pv1 ∈ M ′, so that xpv1 ∈ M ′ for each
x ∈ C∗(E), which gives that x = (x − xpv1) + xpv1 ∈ L +M ′ = M ′ for each
x ∈ C∗(E), so that M ′ = C∗(E). Thus M is a maximal left ideal, and since M
is also modular, M is a maximal modular left ideal. Thus by [9, VII.2, Exer. 6]
(cp. [25, Chap. 2, Cor. 2.1.4]) M is closed.

Since M is closed we may form the regular ∗-representation of C∗(E) into
C∗(E)/M ; i.e., the homomorphism π : C∗(E) → End(C∗(E)/M) given by
π(a)(b+M) := ab+M . In this way C∗(E)/M becomes a left C∗(E)-module.
The submodules of C∗(E)/M correspond to left ideals of C∗(E) containing M ,
and by the maximality of M the only submodules of C∗(E)/M are {0} and M .
Hence C∗(E)/M is a simple module. We claim that kerπ = {0}. If a ∈ kerπ,
then for all b ∈ C∗(E) we have ab + M = π(a)(b + M) = 0 + M , so that
ab ∈ M for all b ∈ C∗(E). If {eλ}λ∈Λ is an approximate unit for C∗(E), then
the previous sentences combined with the fact that M is closed implies that
a = limλ aeλ ∈ M . Hence we have established that kerπ ⊆ M . Furthermore,
since kerπ is a closed two-sided ideal of C∗(E), it follows from above that if
kerπ is nonzero, then sλn

s∗λn
∈ kerπ for some n ∈ I. But then M contains

asλn
s∗λn

for every a ∈ C∗(E). In addition, since a− asλn
s∗λn

∈ L ⊆ M for all
a ∈ C∗(E), it follows that a ∈ M for all a ∈ C∗(E), and C∗(E) ⊆ M , which is
a contradiction. We conclude that kerπ = {0}. Hence C∗(E)/M is a faithful
left C∗(E)-module, which with the simplicity of C∗(E)/M yields that C∗(E)
is primitive as a ring. It follows (see Remark 2.26) that C∗(E) is primitive as
a C∗-algebra.

Proof of necessity. If C∗(E) is primitive, then C∗(E) is necessarily prime
by Lemma 3.2, so by Proposition 3.1 we get that E satisfies Condition (L)
and is downward directed. In addition, Corollary 3.7 shows that if C∗(E) is
primitive, then E satisfies the Countable Separation Property, thus completing
the proof. �
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Corollary 3.9. Let E be a graph. Then the following are equivalent:

(i) C∗(E) is primitive.
(ii) C∗(E) is prime and E satisfies the Countable Separation Property.
(iii) C∗(E) is prime and C∗(E) has a faithful cyclic ∗-representation.
(iv) C∗(E) is prime and C∗(E) has a faithful countably generated ∗-represen-

tation.

Proof. The equivalence of (i) and (ii) follows from Theorem 3.8 and Proposi-
tion 3.1. The implications (i) =⇒ (iii) =⇒ (iv) are trivial. The implication
(iv) =⇒ (ii) follows from Corollary 3.7. �

Remark 3.10. In [21, Problem 13.6] Katsura asks whether a prime C∗-algebra
is primitive if it has a faithful cyclic ∗-representation. Corollary 3.9 shows
that the answer to Katsura’s question is affirmative in the class of graph C∗-
algebras. Moreover, Corollary 3.9 prompts us to ask the following more general
question.

Question. If a C∗-algebra is prime and has a faithful countably generated
representation, then is that C∗-algebra primitive?

Again, Corollary 3.9 provides us with an affirmative answer to this question
for the class of graph C∗-algebras. In addition, an affirmative answer to this
question in general implies an affirmative answer to Katsura’s question in [21,
Problem 13.6].

Remark 3.11. In the introduction of [28] Weaver notes that his example of a
prime and not primitive C∗-algebra “. . . places competing demands on the set
of partial isometries: it must be sufficiently abundant . . . and [simultaneously]
sufficiently sparse . . .” Effectively, Theorem 3.8 identifies precisely how these
two competing demands play out in the context of a graph C∗-algebra C∗(E):
primeness (abundance of partial isometries) corresponds to E satisfying Con-
dition (L) and being downward directed, while nonprimitivity (sparseness of
partial isometries) corresponds to E not satisfying the Countable Separation
Property.

Remark 3.12. It is shown in [5, Prop. 4.2] that for a graph E having both
E0 and E1 countable, C∗(E) is primitive if and only if E is downward directed
and satisfies Condition (L). When E0 is countable, then E trivially satisfies the
Countable Separation Property, with E0 itself providing the requisite countable
set of vertices. Thus Theorem 3.8 provides both a generalization of (since the
countability of E1 is not required), and an alternate proof for, the result in [5,
Prop. 4.2].

4. Examples of prime but not primitive C∗-algebras

We now offer a number of examples of prime nonprimitive C∗-algebras that
arise from the characterizations presented in Proposition 3.1 and Theorem 3.8.
These examples are similar in flavor to the classes of examples that played an
important role in [2].
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Definition 4.1. Let X be any nonempty set, and let F(X) denote the set
of finite nonempty subsets of X . We define three graphs EA(X), EL(X), and
EK(X) as follows.

(1) The graph EA(X) is defined by

EA(X)0 = F(X) and EA(X)1 = {eA,A′ | A,A′ ∈ F(X) and A $ A′},

with s(eA,A′) = A and r(eA,A′) = A′ for each eA,A′ ∈ EA(X)1.
(2) The graph EL(X) is defined by

EL(X)0 = F(X) and EL(X)1 = {eA,A′ | A,A′ ∈ F(X) and A j A′},

with s(eA,A′) = A and r(eA,A′) = A′ for each eA,A′ ∈ EL(X)1.
(3) The graph EK(X) is defined by

EK(X)0 = F(X) and

EK(X)1 = {eA,A′ | A,A′ ∈ F(X) and A j A′} ∪ {fA | A ∈ F(X)},

with s(eA,A′) = A, and r(eA,A′) = A′ for each eA,A′ ∈ EK(X)1, and with
s(fA) = r(fA) = A for all fA.

Remark 4.2. Observe that for any nonempty set X , the graph EA(X) is
acyclic, the graph EL(X) has as its only simple cycles the single loop at each
vertex (so that EL(X) satisfies Condition (L), but not Condition (K)), and
the graph EK(X) has as its only simple cycles the two loops at each vertex
(so that EK(X) satisfies Condition (K)).

In this section all direct limits that we discuss will be direct limits in the
category of C∗-algebras, so that the direct limit algebras discussed are C∗-
algebras. An AF-algebra is typically defined to be a C∗-algebra that is the
direct limit of a sequence of finite-dimensional algebras. Since it is a sequential
direct limit, an AF-algebra is necessarily separable. Some authors, such as
Katsura in [19], have considered arbitrary direct limits of finite-dimensional C∗-
algebras. Following Katsura in [19], we shall define an AF-algebra to be a C∗-
algebra that is the direct limit of finite-dimensional C∗-algebras. (Equivalently,
an AF-algebra is a C∗-algebra A with a directed family of finite dimensional
C∗-subalgebras whose union is dense in A.) An AF-algebra in our sense is a
sequential direct limit (i.e., an AF-algebra in the traditional sense) if and only
if it is separable.

Lemma 4.3. Let EA(X), EL(X), and EK(X) be the graphs presented in Def-
inition 4.1.

(1) Each of the graphs EA(X), EL(X), and EK(X) is downward directed.
(2) Each of the graphs EA(X), EL(X), and EK(X) satisfies the Countable

Separation Property if and only if X is countable.

Proof. To establish (1), we observe that in each of the graphs EA(X), EL(X),
and EK(X), each pair of vertices A,A′ corresponds to a pair of finite subsets
of X , so that if B denotes the finite set A∪A′ then there is an edge eA,B from
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A to B and an edge eA′,B from A′ to B. Downward directedness of each of
the three graphs follows.

For (2), we note that if X is countable then F(X) is countable, so that
in this case each of the three graphs has countably many vertices, and thus
trivially satisfies the Countable Separation Property. On the other hand, if
X is uncountable, then any countable union of elements of F(X) includes
only countably many elements of X , so that there exists some vertex (indeed,
uncountably many vertices) which does not connect to the vertices represented
by such a countable union. �

Proposition 4.4. Let X be an infinite set, and let EA(X), EL(X), and
EK(X) be the graphs presented in Definition 4.1. Then

(1) C∗(EA(X)) is a prime AF-algebra for any set X. Furthermore, C∗(EA

(X)) is primitive if and only if X is countable. In addition, C∗(EA(X))
is a separable AF-algebra if and only if X is countable.

(2) C∗(EL(X)) is a prime C∗-algebra that is not AF for any set X. Further-
more, C∗(EL(X)) is primitive if and only if X is countable. In addition,
C∗(EL(X)) contains an ideal that is not gauge invariant.

(3) C∗(EK(X)) is a prime C∗-algebra of real rank zero that is not AF for any
set X. Furthermore, C∗(EK(X)) is primitive if and only if X is countable.
In addition, every ideal of C∗(EK(X)) is gauge invariant.

Proof. The indicated primeness and primitivity properties of each of the three
algebras C∗(EA(X)), C∗(EL(X)), and C∗(EK(X)) follow directly from Propo-
sition 3.1, Theorem 3.8, and Lemma 4.3. We now take up the discussion of the
additional properties.

(1) Since EA(X) is a countable graph if and only if X is countable, it follows
that C∗(EA(X)) is separable if and only if X is countable.

(2) We see that EL(X) has exactly one loop at each vertex, and that these
are the only simple cycles in EL(X). Thus every vertex of EL(X) is the base
of exactly one simple cycle, so that EL(X) does not satisfy Condition (K). In
addition, if α is the loop based at the vertex A, then since A is finite and X is
infinite there exists an element x ∈ X \A, and the edge from A to A∪{x} pro-
vides an exit for α. Hence every cycle in EL(X) has an exit and EL(X) satisfies
Condition (L). Since EL(X) contains a cycle, C∗(EL(X)) is not AF. Moreover,
since EL(X) does not satisfy Condition (K), it follows that C∗(EL(X)) con-
tains an ideal that is not gauge invariant. (This is established for row-finite
countable graphs in [27, Thm. 2.1.19], although the same argument works for
non-row-finite or uncountable graphs. Alternatively, the result for uncountable
graphs may also be obtained as a special case of [21, Thm. 7.6].)

(3) As EK(X) has two loops at each vertex, every vertex in EK(X) is the
base point of two distinct simple cycles, so that EK(X) satisfies Condition (K).
Since EK(X) contains a cycle, C∗(EK(X)) is not AF. In addition, since EK(X)
satisfies Condition (K), C∗(EK(X)) has real rank zero. (This was established
for C∗-algebras of locally-finite countable graphs in [18, Thm. 4.1] and for
C∗-algebras of countable graphs in [15, Thm. 2.5], and can be extended to

Münster Journal of Mathematics Vol. 7 (2014), 489–514



504 Gene Abrams and Mark Tomforde

uncountable graphs using the approximation methods of [23, Lemma 1.2].)
Moreover, since EK(X) satisfies Condition (K), all ideals of C∗(EK(X)) are
gauge invariant. �

We can now produce infinite classes of C∗-algebras that are prime and not
primitive. In fact, we are able to produce three such classes of C∗-algebras: one
in which all the C∗-algebras are AF-algebras, one in which all the C∗-algebras
are non-AF and contain ideals that are not gauge invariant, and one in which
all the C∗-algebras are non-AF, have all of their ideals gauge invariant, and
are real rank zero.

Proposition 4.5. For a set X we let |X | denote the cardinality of X.

(1) If C := {Xi | i ∈ I} is a collection of sets with |Xi| > ℵ0 for all i ∈ I, and
with |Xi| 6= |Xj| for all i, j ∈ I with i 6= j, then

{C∗(EA(Xi)) | i ∈ I}

is a collection of AF-algebras that are prime and not primitive. Moreover
C∗(EA(Xi)) is not Morita equivalent to C∗(EA(Xj)) for all i, j ∈ I with
i 6= j.

(2) If C := {Xi | i ∈ I} is a collection of sets with |Xi| ≥ 2ℵ0 for all i ∈ I, and
with |Xi| 6= |Xj| for all i, j ∈ I with i 6= j, then

{C∗(EL(Xi)) | i ∈ I}

is a collection of non-AF C∗-algebras each of which is prime and not prim-
itive, and each of which has the property that it contains ideals that are
not gauge invariant. Moreover, C∗(EL(Xi)) is not Morita equivalent to
C∗(EL(Xj)) for all i, j ∈ I with i 6= j.

(3) If C := {Xi | i ∈ I} is a collection of sets with |Xi| > ℵ0 for all i ∈ I, and
with |Xi| 6= |Xj| for all i, j ∈ I with i 6= j, then

{C∗(EK(Xi)) | i ∈ I}

is a collection of non-AF C∗-algebras of real rank zero each of which is
prime and not primitive, and each of which has the property that all of its
ideals are gauge invariant. Moreover, C∗(EK(Xi)) is not Morita equivalent
to C∗(EK(Xj)) for all i, j ∈ I with i 6= j.

Proof. For (1), the fact that the C∗(EA(Xi)) are AF-algebras that are prime
and not primitive follows from Proposition 4.4(1). It remains to show the
C∗(EA(Xi)) are mutually non-Morita equivalent. For each i ∈ I, the graph
EA(Xi) satisfies Condition (K), and hence the ideals in C∗(EA(Xi)) are in one-
to-one correspondence with admissible pairs (H,S), where H is a saturated
hereditary subset of EA(Xi)

0 and S is a subset of breaking vertices for H .
For each x ∈ Xi define Hx := EA(Xi)

0 \ {x}. Because {x} is a source and an
infinite emitter in EA(Xi) that only emits edges intoHx, the setHx is saturated
and hereditary, and Hx has no breaking vertices. In addition, any saturated
hereditary subset of EA(Xi)

0 that contains Hx is either equal to Hx or equal
to EA(Xi)

0. Thus I(Hx,∅) is a maximal ideal in C∗(EA(Xi)). Conversely, any
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maximal ideal must have the form I(H,S) for an admissible pair (H,S), and in

order to be a proper ideal there exists x ∈ EA(Xi)
0 \H . Because H ⊆ Hx, the

maximality of I(H,S) implies H = Hx and S = ∅. Thus we may conclude that
the map x 7→ I(Hx,∅) is a bijection from X onto the set of maximal ideals of
C∗(EA(Xi)). Hence the cardinality of the set of maximal ideals of C∗(EA(Xi))
is equal to |Xi|. Since any two Morita equivalent C∗-algebras have isomorphic
lattices of ideals, any two Morita equivalent C∗-algebras have sets of maximal
ideals with the same cardinality. Thus, when i, j ∈ I with i 6= j, the fact that
|Xi| 6= |Xj | implies that C∗(EA(Xi)) is not Morita equivalent to C∗(EA(Xj)).

For (2), the fact that the C∗-algebras C∗(EL(Xi)) are non-AF C∗-algebras
that are prime and not primitive and that each contains ideals that are not
gauge invariant follows from Proposition 4.4(2). It remains to show the C∗(EL

(Xi)) are mutually non-Morita equivalent. Fix i ∈ I, and let J ⊳ C∗(E) be a
maximal ideal in C∗(EL(Xi)). Then there exists exactly one x ∈ Xi such that
IHx

⊆ J , where Hx := EL(Xi)
0 \ {x}. (If there did not exist such an x, then J

would be all of C∗(EL(Xi)), and if there existed more than one x, then J would
not be maximal.) Since IHx

⊆ J , it follows that J corresponds to a maximal
ideal of the quotient C∗(EL(Xj))/IHx

. Because the graph EL(Xi) \ Hx is a
single vertex with a single loop, we see that C∗(EL(Xj))/IHx

∼= C(T). For
this maximal ideal there is a unique z ∈ T such that the ideal is equal to
{f ∈ C(T) | f(z) = 0}. This line of reasoning shows that the map J 7→ (x, z)
is a bijection from the set of maximal ideals of C∗(EL(Xi)) onto the set X×T.
Since |Xi| ≥ 2ℵ0 and |T| = 2ℵ0 , we may conclude that |Xi × T| = |Xi|. Thus
the set of maximal ideals of C∗(EL(Xi)) has cardinality equal to |Xi|. Since
any two Morita equivalent C∗-algebras have isomorphic lattices of ideals, any
two Morita equivalent C∗-algebras have sets of maximal ideals with the same
cardinality. Thus, when i, j ∈ I with i 6= j, the fact that |Xi| 6= |Xj | implies
that C∗(EL(Xi)) is not Morita equivalent to C∗(EL(Xj)).

For (3), the fact that the C∗(EK(Xi)) are non-AF C∗-algebras of real rank
zero that are prime and not primitive and that all ideals are gauge invariant
follows from Proposition 4.4(3). It remains to show the C∗(EK(Xi)) are mu-
tually non-Morita equivalent. The proof follows much like the proof of part
(1): For each i ∈ I, the graph EK(Xi) satisfies Condition (K), and hence the
ideals in C∗(EK(Xi)) are in one-to-one correspondence with admissible pairs
(H,S), where H is a saturated hereditary subset EK(Xi)

0 and S is a subset of
breaking vertices for H . For each x ∈ Xi define Hx := EK(Xi)

0 \{x}. Because
{x} is a source and an infinite emitter in EA(Xi), the set Hx is saturated and
hereditary. In addition, because there is a loop at {x}, it is a (unique) breaking
vertex for Hx. In addition, any saturated hereditary subset of EK(Xi)

0 that
contains Hx is either equal to Hx or equal to EA(Xi)

0. Thus I(Hx,{x}) is a
maximal ideal in C∗(EK(Xi)). Conversely, any maximal ideal must have the
form I(H,S) for an admissible pair (H,S), and in order to be a proper ideal

there exists x ∈ EK(Xi)
0 \H . Because H ⊆ Hx, the maximality of I(H,S) im-

plies H = Hx and S = {x}. Thus we may conclude that the map x 7→ I(Hx,{x})
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is a bijection from X onto the set of maximal ideals of C∗(EK(Xi)). Thus the
cardinality of the set of maximal ideals of C∗(EK(Xi)) is equal to |Xi|, and
as argued in (1) this implies that when i, j ∈ I with i 6= j, the C∗-algebra
C∗(EK(Xi)) is not Morita equivalent to C∗-algebra C∗(EK(Xj)). �

Remark 4.6. Note that in each of parts (1)–(3) of Proposition 4.5 we are
constructing a prime, nonprimitive C∗-algebra for each set in the collection C.
We mention that for any cardinal number κ, there exists a collection of κ sets of
differing cardinalities all greater than or equal to 2ℵ0 . (This fact is well known;
see e.g. [17, Lemma 7.7].) Hence in each of parts (1)–(3) of Proposition 4.5
one can choose the collection C to be of any desired cardinality κ.

Example 4.7. There are, of course, many examples of uncountable graphs
whose associated C∗-algebras are primitive. For instance, let X be any un-
countable set, let P(X) denote the set of all subsets of X , and let EP(X) be
the graph having

E0
P(X) = P(X) and E1

P(X) = {eA,A′ | A,A′ ∈ P(X) and A $ A′},

with s(eA,A′) = A, and r(eA,A′) = A′ for each eA,A′ ∈ E1
P(X). Then EP(X) is

not a countable graph, and C∗(EP(X)) is not a separable C∗-algebra. However,
EP(X) satisfies the three conditions of Theorem 3.8, and hence C∗(EP(X)) is a
primitive C∗-algebra. (In particular, we observe that any vertex in EP(X) emits

an edge pointing to {X} ∈ E0
P(X), so EP(X) trivially satisfies the Countable

Separation Property.) The graph EP(X) has no cycles, so that C∗(EP(X)) is
an AF-algebra. In a like manner, we could construct additional examples of
uncountable graphs having primitive graph C∗-algebras, and one could easily
produce non-AF examples by adding one or two loops at every vertex of EP(X).

The following definition provides a second graph-theoretic construction
which produces examples of graphs whose corresponding graph C∗-algebras
are prime but not primitive.

Definition 4.8. Let κ > 0 be any ordinal. We define the graph Eκ as follows:

E0
κ = {α | α < κ}, E1

κ = {eα,β | α, β < κ, and α < β},

s(eα,β) = α, and r(eα,β) = β for each eα,β ∈ E1
κ. �

Recall that an ordinal κ is said to have countable cofinality in case κ is the
limit of a countable sequence of ordinals strictly less than κ. For example,
any countable ordinal has countable cofinality. The ordinal ω1 does not have
countable cofinality, while the ordinal ωω does have this property. With this
definition in mind, it is clear that E0

κ has the Countable Separation Property
if and only if κ has countable cofinality. Thus by Theorem 3.8 we get

Proposition 4.9. Let {κα | α ∈ A} denote a set of distinct ordinals, each
without countable cofinality. Then the collection {C∗(Eκα

) | α ∈ A} is a set
of nonisomorphic AF-algebras, each of which is prime but not primitive.
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5. A comparison of the conditions for a graph C∗-algebra to be
simple, to be primitive, and to be prime

In Proposition 3.1 and Theorem 3.8, we obtained conditions for a graph
C∗-algebra to be prime and primitive, respectively. In this section we compare
these conditions with the conditions for a graph C∗-algebra to be simple. Recall
that an infinite path p in E is a nonterminating sequence p = e1e2e3 . . . of
edges in E, for which r(ei) = s(ei+1) for all i ≥ 1. (Note that this notation,
while standard, can be misleading; an infinite path in E is not an element
of Path(E), as the elements of Path(E) are, by definition, finite sequences of
edges in E.) We denote the set of infinite paths in E by E∞.

Proposition 5.1. Let E be a graph.
The graph C∗-algebra C∗(E) is simple if and only if the following two condi-
tions are satisfied

(1) E satisfies Condition (L), and
(2) E is cofinal (i.e., if v ∈ E0 and α ∈ E∞ ∪ E0

sing, then v ≥ α0).

The graph C∗-algebra C∗(E) is primitive if and only if the following three
conditions are satisfied

(1) E satisfies Condition (L),
(2) E is downward directed (i.e., for all v, w ∈ E0 there exists x ∈ E0 such

that v ≥ x and w ≥ x), and
(3) E satisfies the Countable Separation Property (i.e., there exists a countable

set X ⊆ E0 such that E0 ≥ X).

The graph C∗-algebra C∗(E) is prime if and only if the following two condi-
tions are satisfied

(1) E satisfies Condition (L), and
(2) E is downward directed (i.e., for all v, w ∈ E0 there exists x ∈ E0 such

that v ≥ x and w ≥ x).

Proof. Proposition 3.1 and Theorem 3.8 give the stated conditions for a graph
C∗-algebra to be prime and primitive, respectively. The conditions for sim-
plicity are established in [27, Thm. 2.12]. (Although all of [27] is done under
the implicit assumption the graphs are countable, the proof of [27, Thm. 2.12]
and the proofs of the results on which it relies all go through verbatim for
uncountable graphs.) �

Every C∗-algebra has a nonzero irreducible representation. (This follows
from the GNS construction, which shows that GNS-representations constructed
from pure states are irreducible [24, Lemma A.12], and the Krein–Milman
Theorem, which asserts that pure states exist for any C∗-algebra [24, Lemma
A.13].) Thus any simple C∗-algebra has a faithful irreducible ∗-representation,
and any simple C∗-algebra is necessarily primitive. Moreover, as was shown in
Lemma 3.2, any primitive C∗-algebra is necessarily prime. Thus we have

C∗(E) is simple =⇒ C∗(E) is primitive =⇒ C∗(E) is prime.
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We observe that the form of each of the three results presented in Proposi-
tion 5.1, in which simplicity, primeness, and primitivity of C∗(E) are given in
graph-theoretic terms, may be described as “Condition (L) plus something ex-
tra”. This having been said, our goal for this section is solely graph-theoretic:
we show that these three “extra” conditions may be seen as arising in a com-

mon context, by considering subsets of E0 of the form H(v).

Proposition 5.2. Let E be a graph. Then the following equivalences hold.

(1) E is cofinal if and only if for all v ∈ E0 one has H(v) = E0.

(2) E is downward directed if and only if for all v, w ∈ E0 one has H(v) ∩

H(w) 6= ∅.
(3) E satisfies the Countable Separation Property if and only if there exists a

countable collection of subsets of vertices {Si | i ∈ I} (so, I is countable

and Si ⊆ E0 for all i ∈ I) with E0 =
⋃

i∈I Si and with
⋂

v∈Si
H(v) 6= ∅

for all i ∈ I.

Proof. For (1), suppose first that for all v ∈ E0 we have H(v) = E0. Choose

v ∈ E0 and α ∈ E∞ ∪ E0
sing. If α ∈ E0

sing, then α ∈ H(v) = E0. Since every

element of H(v)\H(v) is a regular vertex, it follows that α ∈ H(v) and v ≥ α.
If instead α ∈ E∞, then we may write α = e1e2e3 . . . for ei ∈ E1 with r(ei) =

s(ei+1) for all i ∈ N. Since s(e1) ∈ H(v) = E0, it follows that s(ei) ∈ H(v)n
for some n ∈ N (recall the notation of Lemma 2.11). Thus s(e2) = r(e1) ∈
H(v)n−1, and continuing recursively we have s(en) = r(en−1) ∈ H(v)1, and
s(en+1) = r(en) ∈ H(v)0 = H(v). Hence v ≥ s(en+1), and v ≥ α0. Thus E

is cofinal. Conversely, if there exists v ∈ E0 with H(v) 6= E0, then there is a

vertex w ∈ E0 \H(v). Since H(v) is saturated, either w ∈ E0
sing or there exists

an edge e1 ∈ E1 with s(e1) = w and r(e1) /∈ H(v). Using r(e1) and continuing

inductively, we either produce a singular vertex z ∈ E0 \H(v) or an infinite

path α := e1e2e3 . . . with s(ei) ∈ E0 \ H(v). Since H(v) ⊆ H(v), it follows
that either there is a singular vertex z with v 6≥ z or there is an infinite path
α with v 6≥ α0. Hence E is not cofinal.

For (2), suppose first that E is downward directed. If v, w ∈ E0, then
the definition of downward directed implies that H(v) ∩ H(w) 6= ∅. Since

H(v) ⊆ H(v) and H(w) ⊆ H(w), it follows that H(v)∩H(w) 6= ∅. Conversely,

suppose that for all v, w ∈ E0 one has H(v)∩H(w) 6= ∅. Then for any v, w ∈

E0, we may choose x ∈ H(v) ∩ H(w). Using the notation of Definition 2.10

write H(v) =
⋃∞

n=0 H(v)n and H(w) =
⋃∞

n=0 H(w)n. Choose the smallest
n1 ∈ N ∪ {0} such that x ∈ H(v)n1

, and choose the smallest n2 ∈ N ∪ {0}
such that x ∈ H(w)n2

. If we let n := max{n1, n2}, then x ∈ H(v)n ∩H(w)n.
If n = 0, then x ∈ H(v) ∩ H(w) and we have that v ≥ x and w ≥ x. If
n ≥ 1, then there exists an edge e1 ∈ E1 such that s(e1) = x and r(e1) ∈
H(v)n−1 ∩H(w)n−1. Using r(e1) next, and continuing recursively, we produce
a finite path α := e1 . . . en with r(en) ∈ H(v) ∩ H(w). Hence v ≥ r(en) and
w ≥ r(en). Thus E is downward directed.
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For (3), suppose first that E satisfies the Countable Separation Property.
Then there is a countable nonempty set X ⊆ E0 such that E0 =

⋃

x∈X U(x).

In addition, x ∈
⋂

v∈U(x) H(v) for all x ∈ X , so
⋂

v∈U(x) H(v) 6= ∅ for all

x ∈ X . Thus the condition in (3) holds with I := X and Si := U(i) for all
i ∈ I. Conversely, suppose that there exists a countable collection of subsets

of vertices {Si | i ∈ I} with E0 =
⋃

i∈I Si and with
⋂

v∈Si
H(v) 6= ∅ for all

i ∈ I. For each i ∈ I, choose a vertex vi ∈
⋂

v∈Si
H(v) and define

Cvi := {r(α) | α ∈ Path(E), s(α) = v, and s(αi) ∈ E0
reg for all 1 ≤ i ≤ |α|}.

(Note that if vi ∈ E0
sing, then Cvi := {vi}.) Since there are only a finite number

of edges emitted from any regular vertex, we see that Cvi is a countable set for
all i ∈ I. We define X :=

⋃

i∈I Cvi , and observe that since X is a countable

union of countable sets, X is countable. If w ∈ E0 is any vertex, then by
the hypothesis that E0 =

⋃

i∈I Si there exists i ∈ I such that w ∈ Si. By

the definition of vi we then have that vi ∈ H(w). Hence there exists a path
α ∈ Path(E) such that s(α) = vi, r(α) ∈ H(w), and s(αi) ∈ E0

reg for all
1 ≤ i ≤ |α|. Thus r(α) ∈ Cvi , and w ≥ r(α), so that w ∈

⋃

x∈X U(x).

We have therefore shown that E0 =
⋃

x∈X U(x), and hence E satisfies the
Countable Separation Property. �

It is clear that Property (1) of Proposition 5.2 implies both Property (2)
and Property (3) of that Proposition. (Note that we may use the singleton set
S = E0 to establish Property (3) from Property (1).) Thus, as promised, using
Proposition 5.1, we have established a natural connection between simplicity,
primitivity, and primeness for graph C∗-algebras from a graph-theoretic point
of view. We summarize this observation as the following result.

Corollary 5.3. Let E be a graph.
The graph C∗-algebra C∗(E) is simple if and only if the following two condi-
tions are satisfied

(1) E satisfies Condition (L)

(2) If v ∈ E0, then H(v) = E0.

The graph C∗-algebra C∗(E) is primitive if and only if the following three
conditions are satisfied

(1) E satisfies Condition (L)

(2) If v, w ∈ E0, then H(v) ∩H(w) 6= ∅.
(3) There exists a countable collection of subsets of vertices {Si | i ∈ I} (so,

I is countable and Si ⊆ E0 for all i ∈ I) such that E0 =
⋃

i∈I Si and
⋂

v∈Si
H(v) 6= ∅ for all i ∈ I.

The graph C∗-algebra C∗(E) is prime if and only if the following two condi-
tions are satisfied

(1) E satisfies Condition (L)

(2) If v, w ∈ E0, then H(v) ∩H(w) 6= ∅.
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We conclude this graph-theoretic section with the following observation.
Since the simplicity of C∗(E) clearly implies its primeness, it is perhaps not
surprising that there should be a direct graph-theoretic connection between
the germane properties appearing in Proposition 5.1. Indeed, one can easily
see that cofinal implies downward directed, as follows. If E is cofinal, and
v, w ∈ E0, then one may inductively create a sequence of edges α := e1e2e3 . . .
with s(e1) = w and s(ei) = r(ei−1) for all i ≥ 2, and such that this sequence
either ends at a sink or goes on forever to produce an infinite path. Hence
either v ≥ r(α) (if α ends at a sink) or v ≥ α0 (if α is an infinite path), and E
is downward directed.

From this point of view, the difference between the notion of cofinal and the
notion of downward directed can be viewed as follows: E is cofinal if and only
if “for all v, w ∈ E0 and for all α ∈ Path(E) with s(α) = w there exists x ∈ E0

such that v ≥ x and r(α) ≥ x”, while E is downward directed if and only if
“for all v, w ∈ E0 and for some α ∈ Path(E) with s(α) = w there exists x ∈ E0

such that v ≥ x and r(α) ≥ x.” Specifically, the cofinality property allows for
the path from one of the vertices to start along any specified initial segment
α, while the downward directedness property contains no such requirement.

6. Primality and primitivity of graph C∗-algebras compared with
primality and primitivity of Leavitt path algebras

In this final section we compare the notions of primeness and primitivity
for graph C∗-algebras C∗(E) with primeness and primitivity for Leavitt path
algebras. Briefly, for any graph E and any field K, one may define the K-
algebra LK(E), the Leavitt path algebra of E with coefficients in K. When
K = C, then LC(E) may be viewed as a dense ∗-subalgebra of C∗(E). For
reasons which remain not well understood, many structural properties are si-
multaneously shared by both LC(E) and C∗(E). We show in this section that
the primitivity property may be added to this list. Additional information
about Leavitt path algebras may be found in [1] or [2].

The map
∑n

i=1 λiαiβ
∗
i 7→

∑n

i=1 λiβiα
∗
i is a K-algebra isomorphism from

LK(E) onto its opposite algebra LK(E)op. Hence there is a natural correspon-
dence between left LK(E)-modules and right LK(E)-modules, which yields

Proposition 6.1 ([2, Prop. 2.2]). If E is a graph and K is a field, then the
algebra LK(E) is left primitive if and only if it is right primitive.

Definition 6.2. In light of Proposition 6.1, we shall say a Leavitt path algebra
LK(E) is primitive if it is left primitive (which occurs if and only if LK(E) is
also right primitive).

Remark 6.3. When we say LK(E) is primitive, we mean that LK(E) is
primitive as a ring. The astute reader may notice that it seems more natural
to consider primitivity of LK(E) as an algebra; that is, to reformulate the
definition of primitive as having a simple faithful left K-algebra module (not
merely a simple faithful left ring module). However, since LK(E) has local
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units, any ring module also carries a natural structure as a K-algebra module.
Hence any Leavitt path algebra is primitive as a ring if and only if it is primitive
as a K-algebra. Likewise, again using that Leavitt path algebras have local
units, any ring ideal of LK(E) is closed under scalar multiplication by K, and
hence the ring ideals of LK(E) are precisely the K-algebra ideals of LK(E).
Consequently, a Leavitt path algebra is prime as a ring if and only if it is prime
as a K-algebra, and a Leavitt path algebra is simple as a ring if and only if
it is simple as a K-algebra. Thus for Leavitt path algebras the ring-theoretic
notions of primitive, prime, and simple coincide with the corresponding K-
algebra-theoretic notions.

Theorem 6.4. Let E be a graph. Then the following are equivalent.

(i) C∗(E) is primitive.
(ii) LK(E) is primitive for some field K.
(iii) LK(E) is primitive for every field K.
(iv) E satisfies Condition (L), is downward directed, and satisfies the Count-

able Separation Property.

Proof. The equivalence of (i) and (iv) is precisely Theorem 3.8. The equiva-
lence of (ii), (iii), and (iv), is shown in [2, Thm. 5.7]. �

Theorem 6.4 provides yet another example of a situation in which the same
ring-theoretic property holds for both of the algebras C∗(E) and LC(E) (in-
deed, LK(E) for any field K), but for which the proof that the pertinent prop-
erty holds in each case is wildly different. In particular, no “direct” connection
between C∗(E) and LC(E) is established. We note that the proof of the suf-
ficiency direction of Theorem 3.8 looks, on the surface, nearly identical to the
proof that LC(E) is primitive whenever E satisfies Condition (L), is downward
directed, and satisfies the Countable Separation Property [2, Thm. 3.5 with
Prop. 4.8]. However, in the proof of the result herein we invoke the Cuntz–
Krieger Uniqueness Theorem, whose justification is significantly different than
that of the correspondingly invoked algebraic result [4, Cor. 3.3]. Furthermore,
the proof of the necessity direction of Theorem 3.8 is significantly different than
the proof of the analogous result for Leavitt path algebras [2, Prop. 5.6]. In
this regard, it is worth noting that for Leavitt path algebras, in contrast to
Lemma 3.4 for C∗-algebras, it is perfectly possible to have a graph E and left
LK(E)-module M containing an element m for which there exists an uncount-
able set of nonzero orthogonal projections in LK(E) which do not annihilate
m. For example, let U be an uncountable set, and let EU denote the graph
having one vertex v, and uncountably many loops {ei | i ∈ U} at v. Let
R = LK(EU ), and let M = RR. Then for m = 1R ∈ M , {eie

∗
i | i ∈ U} is such

a set.
In contrast to the result presented in Theorem 6.4, the class of graphs which

produce prime Leavitt path algebras is not the same as the class of graphs
which produce prime graph C∗-algebras. For example, if we let E be the
graph with one vertex and one edge
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•
��

then for any fieldK, the Leavitt path algebra LK(E) is isomorphic toK[x, x−1],
the algebra of Laurent polynomials with coefficients in K, which is prime. (In-
deed, K[x, x−1] is a commutative integral domain.) However, the graph C∗-
algebra C∗(E) is isomorphic to C(T), the C∗-algebra of continuous functions
on the circle, which is not prime.

Thus “primeness” yields one of the relatively uncommon contexts in which
an algebraic property of LK(E) does not coincide with the corresponding C∗-
algebraic property of C∗(E). Hence the conditions on E for LK(E) to be prime
are different than the conditions on E for C∗(E) to be prime.

Necessary and sufficient conditions for a Leavitt path algebra to be prime
are given in [3, Cor. 3.10] (see also [2, Thm. 2.4]), which we state here.

Proposition 6.5. Let E be a graph. Then the following are equivalent

(i) LK(E) is prime for some field K.
(ii) LK(E) is prime for every field K.
(iii) E is downward directed.

We conclude this article with the following summary of comparisons of ger-
mane properties between Leavitt path algebras and graph C∗-algebras. A proof
that the indicated conditions on E which yield the simplicity of LK(E) for any
field K is given in [1]. The remaining comparisons follow from Proposition 6.5
with Proposition 3.1 and Theorem 6.4.

LK(E) is
simple

⇐⇒
C∗(E) is
simple

⇐⇒
E is cofinal, and E

satisfies Condition (L)

LK(E) prime ⇐⇒ E is downward directed

C∗(E) prime ⇐⇒
E is downward directed, and
E satisfies Condition (L)

LK(E) is
primitive

⇐⇒
C∗(E) is
primitive

⇐⇒
E is downward directed, E

satisfies Condition (L), and E has
the Countable Separation Property

In particular, we note that C∗(E) is prime if and only if LK(E) is prime and

E satisfies Condition (L). Specifically, C∗(E) prime implies LK(E) prime for
every field K, but not conversely.
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