Rigid-analytic L-Transforms

Schneider, Peter

First published in:
Lecture Notes in Mathematics, S. 216 — 230, Berlin 1984, ISBN 3-540-13356-9

Miinstersches Informations- und Archivsystem multimedialer Inhalte (MIAMI)
URN: urn:nbn:de:hbz:6-58359543865

Universitats- und Landesbibliothek Miinster http://miami.uni-muenster.de
http://www.ulb.uni-muenster.de



RIGID-ANALYTIC L - TRANSFORMS

P. Schneider
Fakultdt flir Mathematik
Universitdtsstr. 31
8400 Regensburg
Bundesrepublik Deutschland

In this talk I want to present a new method of defining p-adic
L-functions for a certain class of elliptic curves. In the first
section we shortly review the general philosophy of complex and p-adic
L-functions and then explain the idea of the method which is based on
the notion of a rigid-analytic automorphic form. The construction of
a p-adic L-function associated with such an automorphic form is carried
out in the second section.

I. THE STARTING POINT

Let E/Q be an elliptic curve over the rationals. One of the most
interesting invariants of E is-its Hasse-Weil L-~function
- -2s, -1 -s, -1
L(e,s) = TT (1-tp Sipi™28)7L . 97 (1-t_p s)

p good p bad

with tp:= {p+l - #E(IFP) if E has good reduction at p,

+1l or 0 otherwise,

It converges for Re(s) > 3/2 and apparently collects arithmetic inform-
ation about E. But in order to study its properties one needs analytic
methods. We therefore now assume that E is a Weil curve, i.e., there
exists a nonconstant @-morphism

Xo (N) —X

>E

such that w(iw) = 0 and e = cw-f for any holomorphic differential
form w on E,where S is a constant and f is a normalized newform of
weight 2 for T, (N).

Commentary:

1) 7*w always is a cuspform of weight 2 for T, (N) which is an eigen-
form for all Hecke operators Tp’ p + N. The requirement "1*y newform"

means that N is the minimal possible number for which such a 7w exists.

2) One of Weil's conjectures says that any E/m is a Weil curve.
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The analytic properties of the Mellin transform
. s-1
sy J fliy)y™ “dy
0
of f are easy to obtain. But according to Eichler/Shimura, Igusa,

L(f,s):=

and Deligne/Langlands we have
L(E,s) = L(f,s).

We therefore get analytic continuation and a functional equation also
for L(E,s).

On the other hand, at certain integer points L(f,s) and its twists
by Dirichlet characters have strong algebraicity and even integrality
properties. Therefore there is a natural way to associate with L(f,s)
a p-adic analytic L-function Lp(f,s) (p a prime number and s now a p-adic
variable) such that the values of L(f,s) and Lp(f,s) at the "critical"
integer points are closely related (Mazur/Swinnerton-Dyer, Manin,
Amice~Velu, Visik). We emphasize that with this method Lp(f,s) cannot
be defined independently of L(f,s). It also should be mentioned that
there is a theory (Iwasawa,Mazur) how to define arithmetically a p-adic
L-function Lp(E,s); furthermore there is the "main conjecture" which
relates Lp(E,s) to Lp(f,s).

Our idea to construct a p-adic L-function for E is to use directly
Mumford's theory of p-adic uniformization. Let T_ denote the completion

of an algebraic closure of Qp. The modular curve Xo(N)/m itself is a
P

Mumford curve if and only if N = p (see [2]). Unfortunately, at present,
no corresponding discrete group is known explicitly. But let us assume
that N is square-free with an even number of prime divisors. Denote by
DN the quaternion algebra over @ which is ramified precisely at the prime
divisors of N, and let FN be the group of units of reduced norm 1 in a
maximal order of DN. If SN/@
then a result of Ribet ([8]) says that the Jacobian of &

to the new part of the Jacobian of X, (N):

is the Shimura curve with SN(E) = FN\IH

N is @-isogenous

new

Jo (N) ~ Jac Sy.

We now fix a prime divisor p of N and denote by D& the quaternion algebra
over @ which is ramified precisely at <« and at the prime divisors of

N different from p. The image F& in PGLz(mp) of the group of p-units
(with respect to a maximal order) in Dﬁ is a discrete and finitely
generated subgroup of PGLZ(@p). According to Cerednik ([1]) one has a
rigid-analytic isomorphism
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~
SN(EP) = FN\(EP\QP) .

Thus any Weil curve E with an analytic conductor N which fulfills the
above assumptions (and consequently has multiplicative reduction at p)
has a p-adic analytic uniformization

' L)
TN\(EP\QP) —> E(¢P)

which is "defined over Q@". Furthermore the rigid-analytic automorphic
form w*w of weight 2 for Fé up to a constant only depends on E.

In the next section we shall construct a p-adic analogue Lp(g,s)
of the classical Mellin transform for any rigid-analytic automorphic
form g of arbitrary weight. In particular, we view Lp(w*w,s) as the
p-adic L-function of E; of course, one first has to normalize the
constant correctly (usihg Hecke operators). But we will not discuss
this problem here,neither the question whether Lp(w*w,s) and Lp(f,s)

agree.

II. THE L-TRANSFORM

Let K c Ep be a finite extension field of @_, let T € SL, (K) be
a-finitely generated discrete subgroup, and denote by ;ﬁ c KU {»} its
set of limit points. T then acts discontinuously (via frac¢tional linear

transformations) on the analytic set
Hi = €, U (=) £

and according to Mumford ([7] or [6]) C: = I'NH has a natural structure
of a smooth projective curve over mp. We always make the following

assumptions:

a) & is infinite (and therefore compact and perfect);

b) = eX.

DEFINITION:

A rigid=-analytic function f: H — EP is called an automorphic form of
weight n € & for T if

ab

£(yx) = (ex+d)"f(x) for all y = (C a

) €l and x € H.

Furthermore Mn(F) denotes the Ep—vector space of all automorphic forms

of weight n for T.

In a completely analogous way as in the classical case of a co-compact

Fuchsian group one can compute the dimension of the vector space Mn(F)
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for n # 1., We state the result only for a Schottky group T.

PROPOSITION:

Suppose that T is free of rank r > 1. Then

dimm Mn(r) = 0 for n < 0,
p 1 for n = 0,
r for n = 2,
(n-1) (x-1) for n > 3,
Proof: We have My (l) = ¢p since C is projective. On the other hand

r is equal to the genus of C. MZ(F) which is isomorphic to the vector
space of holomorphic differentials on C therefore has the dimension r.
The considerations in §4 of [5] imply the existence of a nonvanishing

meromorphic function £, on H such that

ab

£o(yx) = (cx+d)ffx) for all vy = (c :

> €’ and x € H

and

deg div(f,) = r - 1.

Consequently the map
r(c,O(n aiv(£,)) —> M _(T)
£ — £.£5

is an isomorphism. But the dimension on the left hand side for n < 0
or n > 3 is the required one by the Riemann-Roch theorem.

I' not only acts on H but also on a certain tree TF' Namely, let
TK be the Bruhat-Tits tree of SLZ(K). The straight paths of TK the
ends of which correspond to the fixed points of a non-trivial hyperbolic

element in T' (i.e., the axes in T, of the hyperbolic elements in T)

K
form a subtree of TK' The tree TF is constructed from this subtree by

neglecting all vertices P with the following two properties:

i. P has only two adjacent vertices Pl and Pyi
ii. there is no nontrivial elliptic element in T which fixes P but
P .
not Pi and P2,

it only depends on I' (not on the field K). The group T acts without
inversion on TF (use [9] II.1.3), and the quotient graph S: = F\TP is
finite ([6] I.3.2.2), Furthermore, there is a canonical T'-eguivariant
bijection
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& <«—> {ends of TF}

= {equivalence classes of halflines in TF}
([611.2.5).

Notation: For any tree T we denote by Vert(T), resp. Edge(T), the set
of vertices, resp. edges, of T. For any edge y of T, the vertices A(y)
and E(y), resp. the edge y, are defined to be the origin and the

terminus, resp. the inverse edge, of y.

DEFINITION:

Let M be an abelian group. A harmonic cocycle on Tp with values in M

is a map
c: Edge(TF) — M
with the properties
i. c(y) = -c(y) for all y € Edge(T[), and

ii. Z c(y) =0 for all P € Vert(Tl..) .
E(y)=P
Let Char(Tr,M) denote the abelian group of all M~valued harmonic co-
cycles on TF'

Our first basic observation will be that by "integration” one can
construct a map from vector-valued holomorphic differential forms on H

to vector-valued harmonic cocycles on T By "integration" we mean

re
the theory of residues which we shortly recall in the following. (I am
grateful to F. Herrlich for some clarifying discussion about this point.)

Let

F = mpu{w}\(oo U--+uUD)
be a connected affinoid set where the Di are pairwise disjoint open
disks

D {x : |x-a_| [b |..} and

>
o o'p o'p

D, = {x : [x-ai[

< |b, | for 1 < i < m;
i i - =

p P}
for simplicity we only consider the case that m > 1 and = § F.
Furthermore we can assume that a_ ¢ F. Put

Fi s = Ep u {oo}\Di
and
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.=x—ag . = 7
wo(x) : By resp. wi(x) : for 1 <i<m.

These wi(x) obviously are invertible holomorphic functions on F. Any

holomorphic differential form w € Q(F) on F has representations

_ 1 .
w=f, d o with £, €O (F).
Let now
_ (1) (1) . (1)
£,= £ 4ok £ with fj € @(Fj)

and £ (@) =0  for 1<j<m

be the Mittag-Leffler decomposition of fi ([6] p. 41), which is uniquely

determined and fulfills the following condition on the norms

(1)
(*) | £.]. = max | £:77] .
i'"F 0<j<m Jj Fj
The differential form
1

W,

w, : = £3) g
1
1

i
then is meromorphic on Fi with at most one pole at x = ag in case
i=0, resp. Xx =« incase 1l < i <m. If

(i) v
w, = ] c 7w, dw,
veég v i i

denotes its development into a Laurent series we define

This definition is independent of the particular representation of the

disks Di' Namely, for 1 < i < m already wy and therefore also res, w
i
(see [4] p. 21) is independent; the case i = 0 then follows from the

subsequent theorem of residues. Although this result is well known we

will include a proof for the convenience of the reader.

PROPOSITION:

m
) resp w = 0 for any w € Q(F).

i=0 i

Proof: If the assertion holds true for rational holomorphic differential

forms on F then also for any holomorphic one by taking limits and using
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(*). Let therefore

w = g(x)dx € Q(F)

be a differential form where g(x) is a rational function without poles
in F. If we view w as a meromorphic differential form on ¢p U {0}
then we of course have

resw =0

aeq =} a

where res_w is defined in the usual way by

resw : =0, W= X av-(x—a)vd(x—a) for a + w
VEZ
z av'(l)v d % for a=o,
VEZ x

Since w 1is holomorphic on F we get

m
Y r.(w) =0 with r.(w):= ] res_w
i=o * * a€p, @

The assertion then is proved if we show that one has

resDiw = —ri(w)

Let us first consider the case i > 1. If

g = go+...+gm with rational gj €6(Fj)

and gj(m) =0 forl<ij<m

is the Mittag-Leffler decomposition of g, then ( z gj(x)>dx is

j#i
holomorphic on D, which implies
ri(w) = ri(qi(x)dx).
According to [4] p. 22 we have
ro(w = r, (g, (xdax) = a'd
i it¢i -1
where g, (x)dx = z d(l)(l—)vd 1—. On the other hand, from
i v W W,
VEZ 1 i
w = g(x)dx = gbid %— we derive fi = big and therefore
_ 1 . 1 _ _ -2 L .
wy; = bigid —= gi(x)dx. Together with d s T W4 dwi this implies

W, :
1 1
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PREN L Y
v -v=-2
T (o)), 1
In the case 1 = 0 the differential form ( ) fj )d v is holomorphic on
j=1 o

DO and we get

- (o) 5 1
rolw) = r (£7°d =)
o
But £ a L is holomorphic on {x: |[x-a | _= |b_| }. We thus have
o wo o'p o'p
- © ; 1, _ _ (o) ;1
ro(w) = r (£77d-=) = ) res, f7 A
o lama_| <|b_| o
o'p op
which according to W] p. 22 is equal to -cig). 0.E.D.

We have to list some further useful properties of the residues the proof

of which is an easy exercise.

Remark:
i. res_. (w,+w,) = res_ w, + res_. w,;
Di 1 72 Di 1 Di 2
.. v ' _ ..
ii. let F cnpu{m}\(Dou...UDn EJDn_'_lU...) >F be an affinoid set
containing F where the D_,...,D ,Dp.y,... (1 < n<m) are pairwise

disjoint open disks; for 0 < i < n and any w € Q(F') we then have

~

res_w = res_ wW|F
D, p, Yl
i i

iii. for any ¥y € PGLz(cp) with o« g€ y(F) we have

Y - . Y. . = -1
resY(D y res, with w : wey

i i
The second ingredient which we need for the construction of a map
from the holomorphic differential forms Q(H) on H to Char(TF'mp) is a
certain natural family of affinoid subsets of H. 1Its definition relies
on ideas of Drinfeld ([3], see also [4] Chap. V). We first put

U(y): = {a €Z: a halfline in T
passes through y}

r corresponding to a

for any y € Edge(Tr). The U(y) are compact and open in &£ and form a
basis of the topology of &£ .
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Remark:
i. & = U(y) UU(Y) and &£ = \_) U(y) where the union is disjoint in each
E(y)=P
case;
ii. U(y(y)) = y(U(y)) for any vy €T.
Let now

R: Ep U{w} ——> HbU{W}

a |l— (a mod m if |a|p <1,

1 ©

be the usual reduction map where m, resp.ifp, denotes the maximal ideal,

otherwise

resp. the residue class field, of ¢p; we set Ro: = R°o_l for o € PGLZ(K).

Furthermore, we denote by Po that vertex of T, which is defined by the

K

lattice nKenK where n, is the ring of integers in K,

K

LEMMA :

For any Yy € Edge(TP), the set

L _l v - 0
Dy : =R (R (U(Y))) < ¢p U {=}

where J € PGLZ(K) is such that E(y) = U(PO) is an open disk and does

not depend on the special choice of 0.

Proof: The fibres of Rc are open disks. So, it remains to show that
RO(U(§)) is a one-point set. We obviously can assume that Tr = TK and
o0 = 1 in which case that property is easily checked by explicit

computation.

Thus, for any P € Vert(Tr),
F(P) : = ¢ u{=}~ \U D
P E(y)=p ¥

is a connected affinoid subset of H, and we have

F(y(P)) = y(F(P)) for vy € T.

We now associate with a holomorphic differential form w € Q(H) the map

Cyt Edge(TF) —_— mp

Yy |I——> resy (0|F(E(Y))) .

y
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LEMMA :

Cu is a harmonic cocycle on TI“

Proof: The above proposition immediately implies Z cwbﬂ = 0. Fix

E(y)=P
now an edge y of TF and put Q: = A(y) and P: = E(y). The open disks
D, with E(z) =P, z #y or E(z) = Q, z # V then are pairwise disjoint
such that

F(y): = a:pu{m}\UDz > F(Q) UF(P) ;
VA

this follows from the general fact that, for any two edges yl,y2 of
T, with E(y,) = A(y;) and y, # §i, we have

freduce to the case Tp = TK and apply [6] 1§2). Using again the above

proposition we compute

c (y) = res (w|F(P)) = - 7} res_ (w|F(P))
w Dy E(z)=P Dz
z7#y

- Z resD (w]F(y)) 2 resD (w]F(yU
E(z)=P z E(zl?Q z

z7#y z7y

I resy (w|F(Q))
E(z)=0 z

- resD_(w|F(QH
- y
z#y

—cw(§).

We therefore get the T'-equivariant homomorphism

I: Q(H) — Char(TF'cp)

w — I(w): = Sy

In order to derive from it maps from the automorphic forms to the
harmonic cocycles we introduce the symmetric powers

Wwh: o= Symnw (n > 0)

of the natural representation of T c SL2(K) on the mp-vector space
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W = mp ® Ep. We then have the homomorphisms

I: M, (N — HO(T,a@)ew’) — HO(T,cp_ (T, W)

n
f |— we — Cgt = (I@ldwn)(wf)
i i n-i
where wg: = ) x £(x)dx ® (1,0)7-(0,1)" ~.
i=0
Remark:

There is a canonical map €yt HO(F,Char(Tr,Wn))——a Hl(T,Wn)(&xa[ﬂ I.2.8).
We will show in another paper that
o . ; l
e I 3 M () ——> B (T,W)
is an isomorphism (which can be viewed as an analogue of the Shimura
isomorphism in the classical theory of automorphic forms).
are

The next basic observation is that harmonic cocycles on TP

nothing else than certain distributions on the set of limit points L.

DEFINITION:

For any abelian group M and any locally compact and totally disconnected
space X let D(X,M) denote the abelian group of all M-valued finitely
additive functions on the family of compact open subsets of X
("distributions on X"). 1In case X is compact put

D,(X,M): = {u € D(X,M): u(X) = 0}.

The following result due to Drinfeld ([3]) now is easy to prove.

LEMMA :

The map DOG£,M) — Char(TP’M) is an isomorphism.

M I—me»cu(y): = pu(U(y)).

Furthermore, if we set fo: =&L~{=} then restriction of distributions
induces an isomorphism DO(iiM) 3 DGf%,M). Altogether we thus have
constructed homomorphisms

~

M, () —>c (r, W) 50 &W) = D&, W)

£ |— Ce f—-— Me -
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We consider ue as the p-adic L-transform of the automorphic form f. If

f has weight 2 then ug even is a mp-valued measure (i.e., a bounded
distribution) on ifo. Namely, because of its T'-invariance and the

finiteness of the quotient graph S the cocycle c_. takes on only a finite

£
number of different values. In general Ue will not be a measure but
we can describe its growth rather precisely. Let f always be an auto-

morphic form of weight n+2 for T.

Notation: For any w € Q(H) and any y € Edge(Tr) we put

resw : = resp (w|F(E(¥))) .
Y
LEMMA :
ab
For 0 <i<n,yc€ Edge(Tr), Y = (c d) €T, and e € Ep such that
y(e) # = we have
i _ n-2i 5t ni a3 i+
res (x—ve) f(x)dx = (ce+d) « ] (i) (e+3) “eres_(x-e)” “f(x)dx .
Y(y) 4=0 J c Y
Proof: Using (~cx+a) = (a-cy(e)) = c(x-y(e)) and (cetd) (a—cy(e)) =1 we
compute

_ a1 - Y oy 1
resy(x e) f(x)dx resY(y)((x e) f(x)dx)

dx-b

= resY (Y) (-——cx+a

e )l (~ex+a) P2 (x) (~ox+a) “2ax

= resy(y)(ce+d)i(x-Ye)i(-cx+a)n_if(x)dx

= nz_ i '(ngl)resY ) (ce+d)i (X-Ye)i(a-cy (e) 3 (_c)n-i-j (x=y e)n—i-j £ () dx
§=0

= nii(n—i)(Ce+d)i_j(-c)n_i-jres (x—Ye)n_jf(x)dx
j=0 J Y () :

In particular, our assertion holds true if i = n. The general case then
follows by an inductive argument using identities like

m=-1 . .
I enIG o = 0™ for i < m. 0.E.D.
j=i

PROPOSITION:

There exists a constant C > 0 such that we have
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n/2-1i
Py

.[resy(x—e)if(x)dx[p < C

for all 0 < i < n, y € Edge(T) with u(y) E:EO, and e € U(Y) where

p,: = sup{|u—vlp: u,v € Dy} .

Yy

Proof: Since the quotient graph S is finite we can choose finitely many
edges Yyrer ¥y of T, such that « £ U(§i)u...U U(§h) and such that
any y € Edge(T) with « ¢ U(y) is T-equivalent to one of the Y, say

- . _ ,ab .
y = vly,) with vy = (_ 3) €T. Using
e + 8 = vhe - v he | 2
p P Yy
and
-1 -2
= -+ .
py = lev “(er+al, Py

v
we derive from the above lemma

n/2-i
fy

i
s - £ d
re y(x e) " f(x) xlp

-1, 4|7 -1, i
max |y (e)g -|resy (x=y " (e)) f(x)dxlp

pn/2—i .
¥y 0<j<n—i p v

<

< max oY res ey Hen Memoax| .
0<j<n-i ¥v Yy P

But the last term obviously is bounded independently of Y_l(e) EU(?&).

Q.E.D.

Let us define the ¢p-valued distributions uéo),...,uén) on afo
by

T i n-i
we = I wg 01,0070 00,1)

Putting
i Lo (1)
[ xtaug s =i
U
for 0 < i < n and any compact open subset U Sfig then induces a
Ep—linear map

J-duf e &) — c,

on the space 'CIWQ%) of all functions with compact support on ;qo which
are locally a polynomial in x of degree < n. The above proposition
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shows that this map satisfies a certain growth condition; we namely have

(x—e)iduf = - resy(x—efif(x)dx
u(y)
(under the appropriate assumptions). That property allows us to extend
f.duf to a map on all functions with compact support on if; which
satisfy a certain condition of Lipschitz type. In order to be more
specific let us make the following assumption which from an arithmetic

point of view seems to be a natural one:

' is cocompact in SLZ(QP).

Then Tp = TQ (use [9] IT.1.5.5) and Mg is a distribution on i% = Qp.
P
In fact, the above proposition shows that f.duf induces an "admissible

measure" on Z; in the sense of Visik .([10]). The function

Lp(f,x): = J xdue

%X
P
. . . X X
therefore is well-defined and analytic in ¥ € Homcont(zp,mp) (see [10]).

In particular, if «: Z; —> 1+pzp < ¢; denotes the canonical projection

map then

L, (£,8): = Lp(f,Kl's)
is an analytic function on the open disk {s € Ep: s|p <qp_l/(p—l)}
where g = 4 for p = 2 and g = p otherwise.
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