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RIGID-ANALYTIC L - TRANSFORMS 

P. Schneider 
Fakultät für Hathematik 

Universitätsstr. 31 
8400 Regensburq 

Bundesrepublik Deutschland 

In this talk I want to present a new method of defining p-anic 

L-functions for a certain class of elliptic curves. In the first 

section we shortly review the general philosophy of complex and p-adic 

L-functions and then explain the idea of the method which is based on 

the notion of a rigid-analytic automorphic form. The construction of 

a p-adic L-function associated with such an automorphic form i~ carried 

out in the second section. 

I. THE STARTING POINT 

Let E/m be an elliptic curve over the rationals. One of the most 

interesting invariants of E is-its Hasse-Weil L-function 

L(E,s) TT (l-t p-S+pl-2s)-1 . TT (l-t p-s)-l 
P good P P bad p 

with t : = {P+l - #E (IF ) if E has good reduction at p, 
p P 

+1 or 0 otherwise~ 

It converges for Re(s) > 3/2 and apparently collects arithI!tetic inform­

ation about E. But in order to study its properties one needs analytic 

methods. We therefore now assume that E is a Weil curve, i.e., there 

exists a nonconstant m-morphism 

Xo (N) __ 7T_>E 

such that 7T(i oo ) = 0 and 7T*W = c·f for any holomorphic differential 
W 

form w on E, where C w 
weight 2 for r o (N). 

is a constant and f is a norrnalized newform of 

Commentary: 

1) 7T*W always is a cuspform of weight 2 for ro(N) which is an eigen­

form for all Hecke operators T , P t N. The requirement "7T*W newform" p 
means that N is the minimal possible number for which such a 7T exists. 

2) One of Weil's conjectures says that any E/(l} is a Feil curve. 
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The analytic properties of the Hellin transform 

(2n)s J s-l L(f,s):= -rTSf. f(iy)y dy 

o 
of f are easy to obtain. But according to Eichler/Shimura, Igusa, 

and Deligne/Langlands we have 

L(E,s) = L(f,s). 

We therefore get analytic continuation and a functional equation also 

for L(E,s). 

On the other hand, at certain integer points L(f,s) and its twists 

by Dirichlet characters have strong algebraicity and even integrality 

properties. Therefore there is a natural way to associate with L(f,s) 

a p-adic analytic L-function L (f,s) (p a prime number and snow a p-adic 
p 

variable) such that the values of L(f,s) and L (f,s) at the "critical" p . 
integer points are closely related (Mazur/Swinnerton-Dyer, Manin, 

Amice-Velu, Visik). Weemphasize that with this method L (f,s) cannot p 
be defined independently of L(f,s). It also should be mentioned that 

there is a theory(Iwasawa,Mazur) how to define arithmetically a p-adic 

L-function L (E,s); furthermore there is the "main conjecture" which 
p 

relates L (E,s) to L (f,s). p p 

Our idea to construct a p-adic L-function for E is to use directly 

Murnford's theory of p-adic uniformization. Let ~ denote the completion p 
of an algebraic closure of mp . The modular curve Xo(N) /~ itself is a 

p 

Mumford curve if and only if N = P (see [2]). Unfortunately, at present, 

no corresponding discrete group is known explicitly. But let us assume 

that N is square-free with an even number of prime divisors. Denote by 

DN the quaternion algebra over ro which is ramified precisely at the prime 

divisors of N, and let f N be the group of units of reduced norm 1 in a 

maximal order of DN. If SN/ID is the Shimura curve with SN(~) = fN'IH 

then a result of Ribet ([8]) says that the Jacobian of SN is m-isogenous 

to the new part of the Jacobian of Xo(N): 

We now fix a prime divisor p of N and denote by D~ the quaternion algebra 

over ID which is ramified precisely at 00 and at the prime divisors of 

N different from p. The image f~ in PGL2 (!;Qp) of the group of p-units 

(with respect to a Maximal order) in D~ is a discrete and finitely 

genera ted subgroup of PGL2 (!;Qp). According to Cerednik ([1]) one has a 

rigid-analytic isornorphism 
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Thus any l"Jeil curve E wi th an analytic conductor N v!hich fulfills the 

above assumptions (ane consequently has multiplicative reduction at p) 

has a p-adic analytic uniformization 

which is "defined over (O". Furthermore the rigid-analytic automorphic 

form ~*w of weight 2 for f~ up to a constant only depends on E. 

In the next section we shall construct a p-adic analogue Lp(g,S) 

of the classical Mellin transforrn for any rigid-analytic automorphic 

form 9 of arbitrary weight. In particular, we view L (~*w,s) as the p 
p-adic L-function of Ei of course, one first has to normalize the 

constant correctly (usi~g Hecke operators). But we will not discuss 

this problem here,neither the question whether Lp(~*W,s) and Lp(f,s) 

agree. 

11. THE L-TRANSFORM 

Let K c ~ be a finite extension field of m , let f c SL2 (K) be p p -
afinitely generated discrete subgroup, and denote by ~~ K U {oo} its 

set of limit points. f then acts discontinuously (via fractional linear 

transformations) on the analytic set 

H: = ~ U {oo}~ ~ 
p 

and according to Mumford ([7] or [6]) C: = f~H has a natural structure 

of a srnooth projective curve over ~. We always make the following p 
assurnptions: 

a) oe is infinite (and therefore compact and perfect) i 

b) E;e. 

DEFINITION: 

A rigid-analytic function 

weight n E ~ for f if 

f: H ~ ~ is called an automorphic form of p 

f(yx) = (cx+d)nf(x) for all y (~ ~) Ef and x E H. 

Furthermore Un (r) denotes the ~ -vector space of all autoIP.orphic forms p 
of weight n for f. 

In a completely analogous way as in the classical case of a co-compact 

Fuchsian group one can compute the dimension of the vector space Mn(f) 
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for n t 1. We state the result only for a Schottky group r. 

PROPOSITION: 

Suppose that r is free of rank r > 1. Then 

dimer: ~1n (r) = [0 
P 1 

r 

(n-l) (r-l) 

for n < 0, 

for n = 0, 

for n 2, 

for n > 3. 

Proof: We have Mo(r) = er: since C is projective. On the other hand p 
r is equal to the genus of C. l12 (r) which is isomorphie to the vector 

space of holomorphic differentials ·on C therefore has the dimension r. 

The considerations in §4 of [5] imply the existence of a nonvanishing 

meromorphic function f o on H such that 

fo(Yx) = (cx+d)fJx) for all y (~ ~) Er and x E H 

and 

deg div(f o) r - 1. 

Consequently the map 

is an isomorphism. But the dimension on the left hand side for n < 0 

or n > 3 is the required one by the Riemann-Roch theorem. 

r not only acts on H but also on a certain tree Tr . Namely, let 

T
K 

be the Bruhat-Tits tree of SL
2

(K). The straight paths of T
K 

the 

ends of which correspond to the fixed points of a non-trivial hyperbolic 

element in r (i.e., the axes in TK of the hyperbolic elements in r) 

form a subtree of T
K

• The tree Tr is constructed from this subtree by 

neglecting all vertices P with the following two properties: 

i. P has only two adjacent vertices PI and P 2 ; 

ii. there is no nontrivial elliptic element in r which fixes P but 

not PI and P 2 ; 

it only depends on r (not on the field K). The group r acts without 

inversion on T
r 

(use [9] II.I.3), and the quotient graph S: = r'T r is 

finite ([6] I.3.2.2). Furthermore, there is a canonical r-equivariant 

bijection 
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~ ~> {ends of Tr } 

{equivalenee elasses of halflines in Tr } 
([6]1.2.5) • 

Notation: For any tree T we denote by Vert(T) I resp. Edge(T) I the set 

of vertiees , resp. edges , of T. For any edge y of T, the vertiees A(y) 

and E(y), resp. the edge y, are defined to be the origin and the 

terminus, resp. the inverse edge, of y. 

DEFINITION: 

Let M be an abelian group. A harmonie eoeyele on Tr with values in ~1 

is a map 

with the properties 

i. e(y) = -e(y) for all y E Edge{T r ) ,and 

ii. I e(y) = 0 for all P E Vert(Tr ). 
E(y)=P 

Let C har (Tr IM) denote the abelian group of all Jt1-valued harmonie eo­

cycles on Tr . 

Our first basic observation will be that by "integration" one ean 

eonstruet a map from veetor-valued holomorphie differential forms on H 

to veetor-valued harmonie eoeyeles on Tr . By "integration" we mean 

the theory of residues \\1hieh we shortly reeall in the following. (I am 

grateful to F. Herrlich for some elarifying diseussion about this point.) 

Let 

F = a: u { 00 } ....... (D U··. UD ) 
P 0 m 

be a eonneeted affinoid set where the Di arepairwise disjoint open 

disks 

D. 
1 

{x 

{x 

Ix-ao1p > Ibol p } 

Ix-ail p < Ibil p } 

and 

for 1 2 i 2 mi 

for simplieity we only eonsider the ca se that m > 1 and 00 ~ F. 

Furthermore we ean assurne that a ~ F., Put 
o 

and 

F. 
1 
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x-ao 
~' resp. wi (x) 

b. 
1 for 1 < i < m . x-a. 

1 

These wi(x) obvious1y are invertib1e ho1omorphic functions on F. Any 

ho1omorphic differential form w E Q(F) on F has representations 

f. d 1 with f. E C,(F). W = 
1 W. 1 

1 

Let now 

f. f(i) + ••. + f (i) with f~i) E (? (F.) 
1 0 m J J 

and f~i) (00) 0 for 1 < j < m 
J 

be the Mittag-Leff1er decomposition of f
i 

([6] p. 41), which is unique1y 

deterrnined and fu1fi11s the fo11owing condition on the norms 

(* ) max 
0.2j~ 

The differential form 

f ~i) d 
1 

then is meromorphic on F
i 

with at most one pole at x 

i = 0, resp. x = 00 in case 1 < i < m. If 

denotes its deve10pment into a Laurent series we define 

resD.w : 
1 

a o in case 

This definition is independent of the particu1ar representation of the 

disks Di • Narne1y, for 1 < i < malready wi and therefore also resD.w 
1 

(see [4] p. 21) is independent; the case i = 0 then fol1ows from the 

subsequent theorem of residues. A1though this resu1t is we11 known we 

will inc1ude a proof for the convenience of the reader. 

PROPOSITION: 

m 
L resD w = 0 

i=O i 
for any w E Q(F). 

Pr0of: If the assertion ho1ds true for rational ho1omorphic differential 

forms on F then also for any ho1omorphic one by taking limits and using 
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(*). Let therefore 

W = g(x)dx E n(F) 

be a differential form where g(x) is a rational function without poles 

in F. If we view w as a meromorphic differential form on a: u {<XI} 
P 

then we of course have 

where resaw is defined in the usual way by 

= (1_1' w = f L 
v~ 

L 
v01l 

(1 • (x-a) v d (x-a) 
v 

Since w is holomorphir. on F we get 

m 
L r. (w) = 0 

i=O 1. 
with 

for 

for 

The assertion then is proved if we show that one has 

resD.w = -ri (w) • 
1. 

Let us first consider the case i > 1. If 

g = go+ ..• +gm with rational gj E6(F j ) 

and g. (00) = 0 for 1 ~ j ~ m 
J 

is the Mittag-Leffler decomposition of g, then ( L g. (x) ). dx i s 
j~i J 

holomorphic on Di ,.,hich implies 

According to [4] p. 22 we have 

where gi (x)dx = L d(i)(~)vd 
vEZ v wi 

g(x)dx 1 
derive w = = gb.d - we 

1. .." . 

b.q.d ~= 
1. 

wi = gi(x)dx. Together 
1.-1. w. 

1. 

1 
wi 

f. = 
1. 

with 

On the other hand, from 

big and therefore 

d 1- -2 w
i 

-wi dWi this irnplies 
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c ( i ) = -d (i) • 
v -v-2 

In the case i 

Do and \oIe get 

o the differential form (I f ~O))d ~ is holomorphic on 
j=l J Wo 

But f (0) d.!..... is holomorphic on {x: I x-a I = I b I }. Ne thus have 
o Wo 0 pOp 

L res f(o) d 1-
la-a I <Ib I a 0 Wo 

op op 

which according to ~] p. 22 is equal to _c(o) 
-1 Q.E.D. 

We have to list some further useful properties of the residues the proof 

of which is an easy exercise. 

Remark: 

i. resD. (W l +W2 ) = resD.wl + resD.w2 ; 
~ ~ ~ 

ii. let F' = CI: U{CD}'(D U •.• UD UD'+lU ..• ) :::)P be an affinoid set 
p 0 n. n 

containing F where the Dol ••• ,Dn,D~+l' ... (1 < n< m) are pair\<Jise 

disjoint open disks; for 0 < i < n and any w E n(F') we then have 

resD.w = resD.wlF 
~ ~ 

iii. for any y E PGL2 (CI:
p

) wi th 

y 
resy (D.) (Al 

~ 

~ y(F) we have 

with 
-1 woy 

The second ingredient which we need for the construction of a map 

from the holomorphic differential forms n(H) on H to Char(Tr,CI:p ) is a 

certain natural family of affinoid subsets of H. Its definition relies 

on ideas of Drinfeld ([3], see also [4] Chap. V). We first put 

U(y): = {a E~: a halfline in T
r 

corresponding to a 

passes through y} 

for any y E Edge(Tr ). The U(y) are compact and open in ~ and form a 

basisof the topology of ~. 
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Remark: 

i. ;e = U (y) u u (y) and ;e '-J U(y) where the union is disjoint in each 
E(y)=P 

casei 

ii. u (y (y» y (U (y) ) for any y Er. 

Let now 

R: er u {oo} ~ IF U {oo} 
P P 

a if I al < 1, 
P -

otherwise 

be the usual reduction map where m. resp.~ , denotes the maximal ideal, 

resp. the residue class field, of er i we set
P 

R : = Ro a -1 for''O E PGL
2 

(K) • 
P a 

Furthermore, we denote by Po that vertex of TK which is defined by the 

lattice uKffi~ where u
K 

is the ring of integers in K. 

LEl·1MA: 

For any y E Edge(T r ), the set 

where a € PGL2 (K) i s such tha t E (y) 

not depend on the special choice of o. 

a(po } is an open disk and does 

Proof: The fibres of Ra are open disks. So, it remains to show that 

Ra(U(y» is a one-point set. We obviously can assume that Tr = T
K 

and 

a = 1 in which case that property is easily checked by explicit 

computation. 

Thus, for any P E Vert(Tr ), 

F(P) : = er U{oo}, '-J D 
p E(y)=P Y 

is a connected affinoid subset of H, and we have 

F(y(P» = y(F(P» for y E r. 

We now associate with a holomorphic differential form w E n(H) the map 

c w: Edg~(Tr) ~ erp 

y I~ resD (wIF(E(y») • 
y 
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LEMMA: 

Cw is a harmonie eoeyele on Tr . 

Proof: The above proposition immediately implies L cw(y) = O. Fix 
E(y)=P 

now an edge y of Tr and put 0: A(y) and P: = E(y). The open disks 

Dz with E(z) = P, z ~ y or E(z) 

such that 

0, z ~ y then are pairwise disjoint 

F(y): = CI:p U {CXl}-.UDz ~ F(Q) UF(P) ; 
z 

this follows from the general fact that, for any two edges Yl'Y2 of 

Tr with E(Y2) = A(Yl) and Y2 ~ Yl , we have 

~educe to the case Tr 
proposition we compute 

TK and apply [6J I§2). Using again the above 

cw(y) = resD (w!F(P)) 
y 

L res
D 

(w!F(P)) 
E(z)=P z 
z~y 

- L res
D 

(w!F(y)) 
E(z)=P z 

L res
D 

(w!F(y)) 
E(z)=Q z 

z~y z~Y 

L res
D 

(wIF(Q)) 
E(z)=Q z 
z~y 

We therefore get the r-equivariant homomorphism 

I: 

w I~ I(w): = C w 

Q.E.D. 

In order to derive from it maps from the automorphic ~orms to the 

harmonic cocycles we introduce the symmetric powers 

of the natural representation of r c SL2 (K) on the ~p-vector space 
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W ~p ~ ~p. We then have the homomorphisms 

f I~ 

where 
n . i n-i L xl.f(x)dx ® (1,0) . (0,1) . 

i=O 

Remark: 

There is a canonical map E:
n

: HO (r ,C
har 

(T r ,~)) -~ H
l (r ,~) (see [9] TI.2.8). 

We will show in another paper that 

E: °1 n n 

is an isomorphism (which can be viewed as an analogue of the Shimura 

isomorphism in the classical theory of automorphic forms). 

The next basic observation is that harmonie cocycles on Tr are 

nothing else than certain distributions on the set of limit points ~. 

DEFINITION: 

For any abelian group M and any locally compact and totally disconnected 

space X let D(X,M) denote the abelian group of all M-valued finitely 

additive functions on the family of compact open subsets of X 

("distributions on X"). In case X is compact put 

Do(X,M): = {lJ E D(X,M): lJ(X) = O}. 

The following result due to Drinfeld ([3J) now is easy to prove. 

LEl-1MA: 

The map Do(.e,M) ~ Char(Tr,M) is an isomorph1stn. 

I~c (y): 
lJ 

1-1 (U(y». 

Furthermore, if we set -e : =-e,{oo} then restrietion of distributions 
o ~ 

induces an isomorphism D (ot',M) ~ D (;f ,~i). Al together we thus have o 0 
constructed homomorphisms 

f I~ :;. 
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We consider llf as the p-adic L-transform of the automorphic form f. If 

f has weight 2 then llf even is a ~p-valued measure (i.e., a bounded 

distribution) on ~. Namely, because of its r-invariance and the 
o 

finiteness of the quotient graph S the cocycle cf takes on only a finite 

number of different values. In general llf will not be a measure but 

we can describe its growth rather precisely. Let f always be an auto­

morphic form of weight n+2 for r. 

Notation: For any w E Q(H) and any y E Edge(Tr ) we put 

LEMMA: 

res w y 

For o < i 2 n, y E Edge(T
r
), y 

y(e) ~ Cl) we have 

res
D 

(w I F (E (y)) ) . 
y 

anci e E ~ 
P 

such that 

i n-2i n-i n-i d -j i+j 
resy(y) (x-ye) f(x)dx = (ce+d) • L ( . ) (e +-) ·res (x-e) f(x)dx 

j=O .J c Y 

Proof: 

compute 

Using (-cx+a) (a-cy(e)) - c(x-y(e)) and (ce+d) (a-cy(e)) =1 we 

i 
res (x-e) f(x)dx y 

res ~ -e (-cx+a) f(x) (-cx+a) dx (
d b)i n+2 -2 

y (y) -cx+a 

. i i n-i 
resy (y) (ce+d) (x-ye) (-cx+a) f (x) dx 

n-i n-i i i j n-i-j n-i-j L -( j ) resy (y) (ce+d) (x-ye) (a-cy (e)) (-c) (x-ye) f (x)dx 

j=O 

n-i. . . . . . 
\ n-1 1-J n-1-J n-J L ( • ) (ce+d) (-c) res ( ) (x-ye) f(x)dx. 

j=O J Y Y 

In particular, our assertion holds true if i = n. The general case then 

follows by an inductive argument using identities like 

j=i 

ni-i . . r (-l)J(~)(~) 
J 1 

for i < m. Q.E.D. 

PROPOSITION: 

There exists a constant C > 0 such that we have 
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nj2-i I i I p • res (x-e) f(x)dx y y p < C 

for all 0 < i < n, yEEdge(T
r

) withU(y) c;l, 
- 0 

and where 

Proof: Since the quotient graph S is finite we can choose finite1y many 

edges Y1'··· 'Ym of Tr such that CD ~ U(Y1)U ..• lJ U(Ym) and such that 

any y E Edge(Tr ) \·lith CD ~ U(Y) is r-equiva1ent to one of the y\), say 

y = y(y\) with y = (~ ~) Er. Using 

and 

we derive from the above lemma 

nj2-i I i I Py . res (x-e) f (x) dx 
Y p 

nj2-i -1 dl- j 1 l' +J' 
< Py • max Iy (e)~ ·Ires (x-y - (e» f(x)dxl 

\) O.::.JS.n- i c p y \) p 

But the last term obvious1y is bounded independent1y of -1 
y (e) EU(y\). 

Q.E.D. 

Let us define the ~ -va1ued distributions 
p 

(0) (n) J) 

~f '···'~f on ~O 
by 

Putting 

~f 

U 

~ (i) (U) 
f 

for 0 < i < n and any compact open subset 

~ -linear map p 

J.d~f : en(.eo ) ~ ~p 

U c.e then induces a o 

on the space e n 
(;;t) of all functions with compact support on ;e, which o 0 

are loca11y a po1ynornia1 in x of degree < n. The above proposition 
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shows that this map satisfies a certain growth conditioni we name1y have 

ii (x-e) d1J f = - r'es (x-e) f (x) dx , Y 

(under the appropriate assumptions). That property a110ws us to extend 

J.d1J f to a map on all functions with compact support on ~o which 

satisfy a certain condition of Lipschitz type. In order to be more 

specific let us make the fo11owing assumption which from an arithmetic 

point of view seems to be a natural one: 

r is cocompact in SL2 (mp ). 

Then Tr = T (use [9] II.1.5.5) and 1J f is a distribution on oe = (g • Wp 0 P 
In fact, the above proposition shows that J.d1J f induces an "a dmissib1e 

measure" on ~x in the sense of Visik ,([la]). The function 
p 

L (f ,x): = p 

x x therefore is we11-defined and ana1ytic in X E Horn t(~'~) (see [10]). con p p 
In particu1ar, if K: ~x ~ l+pZ c ~x denotes the canonica1 projection p p p 
map then 

L (f,s): = L (f,K1- s ) p p 

is an ana1ytic function on the open disk 

where q = 4 for p = 2 and q = p otherwise. 
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