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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit zwei Variationsmodellen für simultane Bild-
und Bewegungsschätzung. Nach Einordnen dieser Probleme in den Kontext medizinis-
cher schlecht gestellter inverser Probleme und Vorstellen genereller Konzepte für die
(numerische) Lösung, wenden wir uns zwei konkreten Problemen zu.

Wir leiten einen verallgemeinertes Funktional für Registrierung mit Rausch-Modellierung
her, indem wir ein zugrunde liegendes echtes Bild als zusätzliche Variable in das Modell
mit aufnehmen. Indem wir verschiedene Tranformationsoperatoren als lineare Opera-
toren auffassen können wir für fixe Transformationen ein optimales Bild berechnen und
dieses in das Funktional einsetzen. Dies führt zu speziell auf Rausch- und Transforma-
tionsmodell zugeschnittene Distanzmaße im Registrierungsterm. Wir weisen nach, dass
für den Masse-erhaltenden Transformationsoperator Existenz für eine breite Klasse von
Rauschdistanzen eines Minimierers gezeigt werden kann. Im Intensitäts-konstanten Fall
sind die entstehenden Distanzmaße jedoch konkav in der Funktionaldeterminante der
Transformation, was den Existenznachweis mit Hilfe der direkten Methode der Varia-
tionsrechnung verhindert. Zum Abschluss vergleichen wir das Modell auf synthethischen
Daten mit bestehenden Registrierungsalgorithmen.

Als zweites leiten wir aus Bayesianischer Modellierung ein Funktional zur bewegungskor-
rigierten Rekonstruktion her. Für dieses Funktional zeigen wir Existenz eines Minimier-
ers unter der Voraussetzung, dass die Transformation, die das zu rekonstruierende Bild
verformt, injektiv ist. Wir diskutieren dabei, wie diese Voraussetzung erfüllt werden
kann. Nach einem Vergleich mit Standard Rekonstruktions- und Bewegungskorrektural-
gorithmen auf einem künstlichen Entzerrungsbeispiel testen wir die vorgestellte Rekon-
struktionsmethode noch für Soft- und Hardware-Phantom Daten.
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Abstract

This thesis is subsequently concerned with two variational models for simultaneous image
and motion estimation. After classifying these problems in the context of ill-posed prob-
lems in medical imaging, we focus on the presentation of (numerical) solution methods
for the latter.

We start by deriving an unified framework for image registration with noise modelling
by incorporating the underlying true image as additional unknown. By interpreting
the motion as a linear operator acting on the image we are able compute an optimal
image for any fixed transformation, which we plug into the functional. In doing so
we obtain specific distance measures for any choice of transformation operator and data
fidelity corresponding to the noise pertubation. We give an existence result for the mass-
preserving transformation operator for a wide range of data fidelities, while the functional
for the intensity-constant case turns out to be concave with respect to the Jacobian
determinant of the transformation gradient, which prevents verifying the existence of
a minimizer with the direct method in the calculus of variations. We conclude by
comparing the model with other registration methods on artificial data.

The second model results from Bayesian Modelling for motion-corrected reconstruction.
We show existence of a minimizer for the resulting functional for MAP estimation, pro-
vided that the transformation, which deformes the image to be reconstructed, is injective.
We discuss two ways to incorporate injectivity as a constraint in the model. After com-
paring the proposed method with reconstruction and motion estimation algorithms on
an artificial deblurring example, we test the proposed method on soft- and hardware
phantom data.
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1 Motivation

In this chapter we give a short motivation for the combined reconstruction and mo-
tion estimation methods we present throughout this thesis. We start by describing the
practical relevance of reconstruction problems and draw the link to motion estimation.

The usage of X-radiation in medical imaging can be traced back to the late 19th century,
when it was discovered by Wilhelm Conrad Röntgen.

Figure 1.1: Early X-ray scan performed by Wilhelm Conrad Röntgen in 1896 [126].

Being initially a method for generating two dimensional images, it took around 70 years
till 3D.imaging with X-radiation was possible via computerized tomography. Ironically
Cormack [38] and Hounsfield [78], the two pioneers in computerized tomography, were
not aware of the fact that the problem of determining a function by its line integrals
was already solved by Johann Radon in 1917 [118]. Since computerized tomography
only yields structural information (tissue and bones), there is also need for imaging
techniques, such as for example emission tomography, yielding metabolic information.

The key idea in these emission tomography methods is to inject a radioactive tracer into
the region to be studied to deduce abnormalities in the accumulation of the tracer via the
emitted radiation. Since tumor cells often have an increased need for glucose, these cells
can often be seen in emission tomography imaging [150]. Because a standard emission
tomography scan might take several minutes the recorded data are often corrupted by
external as well as internal patient movement. A common approach to alleviate these
difficulties is to classify the data in several different stages of motion, the so called gates
[28].
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Figure 1.2: Gated reconstruction of PET head data. The noise corruption is clearly
visible. Data courtesy of Dirk Mannweiler (EIMI Münster).

Naturally only a fraction of the complete data is available for each gate, which results
in images with a low signal to noise ratio. To increase this ratio one could simply
inject a greater tracer dose, but this would result in a higher radiation exposure for
the patient as well as higher costs for the tracer. Thus one often tries to improve the
image quality by motion-correction techniques [63]. We roughly divide reconstruction
with motion-correction into three different classes:

Gating and single gate reconstruction, e.g. [28].

Aligning and averaging several reconstructed images, e.g. [63].

Incorporating motion correction into the reconstruction process, e.g. [96].

Before we compare these three classes, we shortly outline some basic assumptions and
reconstruction techniques in PET-imaging.

Usually the measured data in PET-imaging is assumed to be the Radon transform
corrupted by Poisson noise [40]. For solving problems of the form

Ku = f (1.1)

Shepp and Vardi proposed the expectation maximization (EM) algorithm to solve prob-
lem (1.1) with f being corrupted by Poisson noise [137]:

1. Set u0 ≥ 0.

2. Set uk+1 =
uk

K∗1K
∗
(

f
Kuk

)
.

3. Repeat step 2 until the maximum iteration number is reached.

Unfortunately in the case of noisy data, said noise is amplified in the iteration process
and thus the EM-algorithm needs to be stopped in time [132]. Thus regularized versions
of the EM algorithms have been developed; see e.g. [132, 131, 22] for expectation
maximization with total variation (TV) regularization. Image deblurring, which is a
task in medical imaging as well as microscopy, can be modeled in a similar way [89, 29].
We illustrate the potential of combined reconstruction and motion-correction with an
artificial deblurring problem:
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Figure 1.3: Ground truth data in different stages of compression as an artificial recon-
struction problem; the reference gate to be reconstructed is on the top left.
The same amount of activity is stored in each image. Exact aligning can be
done via (mass-preserving) affine-2D transformation.

Since the total amount of activity is the same in each image, our reference gate can be
matched exactly to each other image with a (mass-preserving) affine linear transforma-
tion. We apply the MATLAB disc-filter to obtain the blurred data :

Figure 1.4: Blurred versions of the images in Figure 1.9 are generated with the MATLAB
disc filter. Note that the images lose their sharp edges.

To simulate the corruption by Poisson noise occurring, e.g., in emission tomography and
fluorescence microscopy, we add Poisson noise:

3



Figure 1.5: The blurred images in Figure 1.4 corrupted with Poisson noise. Note that the
Poisson distribution only takes non-negative integer values and thus there is
massive loss of information.

We start by comparing the three classes of reconstruction methods now by using the
classical EM algorithm. By using the motion-vectors, which align the ground truth im-
ages exactly, we expect the motion-corrected method to yield better reconstruction than
the averaging of reconstructed images, since the motion-corrected reconstruction grants
one reconstruction from full data instead of averaging four incomplete reconstructions:

Figure 1.6: Reconstruction error versus the iterations of the classical EM algorithm.
Note that the noise amplification is lower for the two motion-corrected meth-
ods.

The reconstruction errors are as we expected, but nevertheless we show the best recon-
structions for each method:
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(a) Ground Truth (b) EM

(c) av. EM (d) m.c. EM

Figure 1.7: Ground truth image and EM reconstructions for the three methods. The
improvement by incorporating motion information is clearly visible.

Since the edges get blurred in all of the reconstructions we employ TV-regularization:

Figure 1.8: Reconstruction error versus the parameter of the Bregman EM-TV recon-
struction with classical (motion-corrected) EM reconstructions as bench-
mark. Again the motion-corrected reconstruction performs best.

Before we start discussing this comparison, we give visual impression of the reconstruc-
tion results:
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(a) Ground Truth (b) EM-TV

(c) av. EM-TV (d) m.c. EM-TV

Figure 1.9: Ground truth image and EM-TV reconstructions for the three methods. The
regularization grants a much more homogeneous ring for all methods. The
motion-corrected reconstruction almost completely removes the fading effect
on the right side of the ring.

We saw that incorporating motion information improved the reconstruction result for
the unregularized and regularized EM algorithm. Furthermore incorporating the mo-
tion information directly into the reconstruction process was superior to averaging re-
constructed images, since the motion-corrected reconstruction improves the SNR of the
reconstructed image, while by averaging only images with poor signal to noise ratio
are averaged. The motion-corrected EM reconstruction was even hardly bested by a
TV-regularized single Gate reconstruction (compare Figure 1.8).

The artificial reconstruction problem we outlined above showed us, that incorporating
the motion-information directly into the reconstruction process is superior to the other
two classes. Note that we performed the motion-correction with known motion-vectors,
which guaranteed exact matching of the ground truth images. In practical applica-
tions these motion-vectors are generally not available, thus motion estimation has to be
performed.

Besides from enhancing the quality of reconstructed images, motion estimation is used
for several other medical tasks, as we illustrate with the following example. In order to
control the size of tumors in cancer treatment several follow up scans are performed.
Naturally these images are not exactly aligned due to patient movement or other influ-
ences. Thus motion correction is often performed to quantify the tumor residue [138].
There are several other tasks in medical imaging, where motion-correction via image
registration is performed, see for example [95] or more recently [112] for a survey on this
topic.

6



Unfortunately, the digital images acquired by medical imaging systems are usually cor-
rupted by noise [23]. Naturally, this noise corruption is challenging for registration of
these images. We will illustrate this fact with an artificial example, which we study in
more detail in Section 6.5. Consider the following (mass-preserving) registration prob-
lem:

(a) Reference (b) Template

Figure 1.10: Ground truth data for mass preserving registration: Intensity distributed
over a wide area (template) and the same amount concentrated in a small
circle (reference).

To simulate noise corruption of this images, we add Gaussian noise with mean zero
and standard deviation σ = 50. A common approach to deal with this noise in image
processing is filtering the images with a Gaussian kernel:

(a) Noisy reference (b) Noisy template

(c) Filtered reference (d) Filtered template

Figure 1.11: Noisy version of the registration problem in Figure 1.10 (top row). The
Gaussian filtered versions can be found in the bottom row.

We compare the quality of the registration on the three data sets now by transforming
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the ground truth with the found transformation for various values of the regularization
parameter α (See Section 6.5 for more details on the evaluation).

Figure 1.12: Registration for motion estimation performed on noisy, presmoothed and
unperturbed data. The ground registration on unperturbed data provides
a good solution for a wide parameter range, while the presmoothed regis-
tration performs slightly better than the registration on noisy data.

As expected we see that performing motion estimation on noise free data is much more
stable then registering noisy images. Even filtering only leads to a small improvement
of the estimated transformation. This observation raises the question, whether incor-
porating information on the noise characteristics can improve the quality of the image
estimation. To our best knowledge this subject has not yet been investigated in a general
framework, but there are some studies for specific noise and transformation models. See
e.g. [3] for a statistical framework in the case of Gaussian noise. Thus in Chapter 6 we
aim to derive a framework, which is independent of the noise corruption as well as of
the transformation model.

Going back to the case of estimating motion in order to enhance the quality in image
reconstruction, we expect that the quality of the reconstructed image and estimated mo-
tion field are linked. Thus we hope that we can improve the quality of an reconstructed
image by performing motion-corrected reconstruction; this improved image can then be
used to improve the motion estimation. Motivated by this expectation we formulate a
coupled model for image reconstruction and motion estimation in Chapter 7.

In conclusion we can say, that incorporating exact motion information improved recon-
struction from noisy data, as well as performing registration on noise free data led to a
much more stable registration result. While this conclusion is not surprising at all, we
point it out, explicitly to motivate the combined motion and image estimation models
we will present throughout this thesis. Note that both problems are similar in the mod-
eling, but can be viewed from different angles: In Chapter 6 we use an implicit image
estimation to incorporate noise information into a registration framework, while we use
simultaneously estimated motion in order to enhance reconstruction quality in Chapter
7.

8



2 Structure of the Thesis

We start by presenting some basic definitions and results in the first part of Chapter 3.
Since we are dealing with the concept of mass-preservation the transformation theorem
is a fundamental tool in the analysis we carry out later in this thesis. In order to
generalize the classical version (Theorem 3.1.13) we present the extension of classical
infinitesimal calculus to functions defined on spaces equipped with integral norms in
Section 3.2. The key idea is to assign point values for functions via averaging; as it
turns out those values are well-defined almost everywhere. These results allow us to
generalize the transformation theorem to functions, which are not necessarily injective
and differentiable (Theorem 3.2.7). Following these ideas of approximate differentiability
we present the generalization of diffeomorphisms to a certain class of Sobolev functions.
Although the notion of weak diffeomorphisms originated in the theory of Cartesian
currents, we are able to restrict ourselves to subsets of Sobolev mappings, which are also
weakly diffeomorphic.

The key tool in the analysis of our variational problems is the direct method in the
calculus of variations (Section 3.4): After stating some basic definitions for the analysis
of functionals we are able to give sufficient conditions for the existence of a minimizer:
Compactness of the sublevel set ensures that any infimizing sequence has a convergent
subsequence, while lower semicontinuity guarantees that the limit of this subsequence
minimizes the functional. While the compactness of sublevel sets often can be deduced by
coercivity properties and the theorem of Banach-Alaoglu (Theorem 3.4.7), verification of
lower semicontinuity needs more caretaking (compare the analysis sections in Chapters
6 and 7).

The last part of this basic theoretical chapter is devoted to introducing linear operators
and stating some basic properties. While linear operators are useful in the modeling of
transformations, projection operators in tomography are often assumed to be compact.
Therefore we conclude the survey on linear operators by stating some properties of
compact operators, which transform bounded into totally bounded sets.

Note that the tools presented in Sections 3.1, 3.4 and 3.5 are often used in the analysis
of image processing problems and thus these Sections can be skipped by the experienced
reader. To our best knowledge there are no other works using results from Sections 3.2
and 3.3 in the context of image processing and thus we recommend those sections to all
readers.

Having collected and illustrated these basic definitions and tools we focus on inverse
problems in imaging in Chapter 4. We start by outlining the basic concept of forward
and inverse problem, as well as ill-posedness of said problems. Afterwards we present a
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short survey on regularization and statistical methods to deal with ill-posed problems.

In the second part of this chapter we put reconstruction and motion estimation problems
in the context presented before. After giving short examples of reconstruction problems
occurring in medical imaging we present the basic definition and properties of the widely
used TV-regularization.

In the section on image registration, we state the standard form of the image registra-
tion problem. Following Modersitzki’s definition [100] this problem is formed by several
building blocks. We shortly highlight some examples for transformation operators, dis-
tance measures and regularizers and illustrate the difference between parametric and
non-parametric image registration.

This chapter serves only as collection of some basic concepts used to deal with ill-posed
problems, reconstruct images and estimate motion via registration. Thus this chapter
can be skipped by the experienced reader, but we point out, that the difference between
mass-preserving and intensity constant transformation operator for image registration
has severe impact in Chapter 6 and should be understood by every reader interested in
the framework for registration with noise modeling.

Numerical methods to deal with the (variational) problems arising from Chapter 4 are
presented in Chapter 5. Usually one distinguishes between two types of optimization
algorithms: Discretize-then-Optimize leads to a discretized version of the functional to
be minimized, while in Optimize-then-Discretize methods analytical optimality condi-
tions for said functional are solved numerically. Since we use Discretize-then-Optimize
methods for both models we present later, the focus in this chapter is on these methods,
nevertheless some basic ideas for Optimize-then-Discretize algorithms are outlined in
Section 5.2.

After presenting ideas on how to discretize the building blocks of registration and de-
noising functionals, we concentrate on how to optimize these discretized versions. While
in trust region methods, the function is approximated by a (usually quadratic) model
function and then optimized in a trust region, where this model fit is sufficient, in line
search methods the function is optimized along a specific search direction. We describe
some methods how to determine this search direction, including the modified BFGS
update we use.

This survey is concluded by a short overview on multilevel methods: Originated from
multigrid solvers for partial differential equations, the idea is to minimize the function
for a coarse discretization in order to obtain a starting value for the finer level. In
doing so one hopes to reduce the probability of obtaining unwanted local minima. We
complete this chapter by shortly outlining how this multilevel approach is affected by
data corrupted with Gaussian noise.

Again this chapter serves as a summary of several well known definitions and facts and
can therefore be skipped by readers experienced in this subject. However the modified
BFGS update (5.18), which grants convergence for a wide range of non-convex objective
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functions, and Example 5.1.1, which illustrates how the variance of noisy data is changed
in a multilevel framework should be well-understood for the next chapters.

Developing a unified framework for motion estimation in noisy image sequence is the
topic of Chapter 6. We start by deriving a maximum a posteriori estimator for a Bayesian
modeling of determining true images and motion from noisy images recorded for a certain
scene. By restricting this presentation to the intensity-constant and mass-preserving
transformation operator we deduce a framework for image registration incorporating
noise information.

By modeling the motion between two noisy images we obtain a functional in two un-
knowns: The true image corresponding to one noisy image and the motion between those
images. By employing now regularization on this true image, we can directly optimize
the functional for each fixed motion and plug this solution map into the functional to
obtain a registration functional with implicit image estimation.

As the actual computation of the solution map and obtaining a functional depending
only on the forward transformation consists of some technical computations, we only
present these for the case of Gaussian noise in Section 6.2. For the sake of completeness
these computations can be found in the Appendix 9.1 for Poisson and speckle noise.

We aim to prove the existence of a minimizer for these functionals via the direct method
in the calculus of variations. While the compactness of sublevel sets is a direct conse-
quence of employing suitable regularization on the motion, we need to verify polycon-
vexity, i.e. convexity with respect to the Jacobian determinant of the tranformation,
in order to guarantee lower semicontinuity of the registration functional. Interestingly
we are able to prove that functionals resulting from the mass-preserving transformation
operator are convex with respect to the Jacobian determinant (Theorem 6.3.2), while
functionals arising from intensity-constant transformation modeling are concave with
respect to the Jacobian determinant (Theorem 6.3.4). Thus existence of a minimizer
for the mass-preserving transformation operator is can be shown (Theorem 6.3.3), while
we are not able to establish a similar result for the intensity-constant transformation
operator.

We outline the numerical framework we use to minimize the resulting discretized ob-
jective functions. The focus in this presentation lies on deriving a modified objective
function and optimization method, in order to use as much routines from the FAIR tool-
box [101] as possible. Followed by this the registration method is evaluated thoroughly
on an artificial example, while application towards real data is given by registering PET
images from the XCAT software phantom.

The open questions discussed in the closure of this chapter can be divided in three
blocks: Injectivity, convergence properties and noise modeling. Since we assumed our
transformations to be injective for computing the adjoint transformation operators, we
outline a registration framework with (injective) boundary conditions. Additionally we
sketch the consequences in the modeling, if we allow the transformations to be non-
injective. After computing the adjoint operators in this case, we derive a distance
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measure for Gaussian noise with the mass-preserving transformation operator as an
example.

In Chapter 7 we derive and analyze a model for motion-corrected reconstruction. Af-
ter developing a nonlinear variational approach to this problem by Bayesian modeling
we deal with the analysis of the resulting functional. The backbone of this section is
Theorem 7.2.1, which grants us weak L1-convergence of a sequence of images after trans-
formations. Besides the regularity properties of image and transformations, which are
granted by the regularization we imposed, we also needed that the number of roots to a
point in the range of the transformation is bounded in the L∞-sense. In order to satisfy
this condition we give existence results for constraints guaranteeing injectivity of the
transformation.

After showing that minimizing the functional is a regularization method in the sense of
Definition 4.1.2, we introduce a numerical framework for minimizing the reconstruction
functional. Again we use the Discretize-then-Optimize method; we pursue an alternating
minimization scheme to tackle this optimization problem, which is defined on a product
space. While reconstruction with incorporating motion information only changes the
projection operator we use, minimizing with respect to the transformation leads to a
registration problem. In contrast to the classical registration problem we assess the
similarity of the transformed template in the detector domain instead of the image
domain. While the reconstruction step is implemented using routines from the EMRecon
[84] toolbox, the images estimation step is again performed with the help of FAIR [101].

In Section 7.4 we test the proposed method on three different datasets. After giving
thorough evaluation and highlighting the potential on an artificial deblurring problem,
we give a proof of concept for the usability in clinical applications by reconstructing noisy
data from the XCAT-software phantom as well as the hardware phantom ”Wilhelm”.

The outlook on further research is devoted in outlining a weaker formulation of the
problem, followed by a discussion on how the functional can be modified to incorporate
attenuation correction as well as a priori information. We conclude this section by
discussing the convergence properties of the minimization algorithm we chose and shortly
sketching out an alternative, which grants stronger convergence properties.

In Chapter 8 we do a brief wrap up of the central questions arising in the analysis of both
problems we presented in Chapters 6 and 7. After pointing out that the motion-corrected
reconstruction framework can be seen as a generalization of the unified registration
framework we derived in Chapter 6 we conclude by sketching out a proof that the
Banach indicatrix of local diffeomorphisms is bounded in L∞.

12



3 Theoretical Basics

Before dealing with the reconstruction and motion estimation topics, which we will
investigate in the remainder of this thesis, we aim to present some basic tools, useful
in the analysis for the models to be developed. We start by giving a short overview on
the function spaces and mathematical tools we will use throughout this thesis. After
stating these basic definitions and results, we will present some more specialized tools
we need for the analysis carried out later in this thesis. We focus on a general summary
of existing literature, but illustrate this summary with examples.

3.1 Function Spaces and Diffeomorphisms

Since the focus of this thesis lies on imaging problems we start with the following defi-
nition from [100] of an image:

Definition 3.1.1 (Image). Let Ω ⊂ Rd be bounded. A function ρ : Ω → R is called a
density image, iff

� supp(ρ) ⊂ Ω

� 0 ≤ ρ(x) < ∞ ∀x ∈ Ω

�

´
Ω

ρkdx < ∞ for k ≥ 1

The value ρ(x) is called the intensity of ρ at x.
We can extend this definition to sequences of images ρ(x, t) by requiring, that ρ(x, t) is
an image for each t.
Furthermore the definition above can be relaxed by allowing negative intensities as well.

As we see in the definition above a mathematical image is defined with some integrability
constraints. We will now present some of the function spaces, which are useful in the
analysis of imaging problems. A basic start for many definitions are the Lebesgue spaces,
thus we shortly give the basic definitions from [2]. Formally the Lebesgue spaces are
defined for a certain measure and a σ-algebra of measurable sets. In order to keep this
presentation short we will not elaborate on possible choices for σ-algebrae and associated
measures, but state only that we will use the Borel algebra and the Lebesgue measure
throughout this thesis; compare e.g. [13] for a general course on measure and integration
theory.
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Definition 3.1.2 (Lp-norm). Let Ω ⊂ Rd and u : Ω → R and 0 < p ≤ ∞. For
0 < p < ∞ we denote the Lp-norm with respect to the Lebesgue measure λ by:

‖u‖p :=

⎛
⎝ˆ

Ω

|u(x)|pdλ(x)

⎞
⎠

1
p

(3.1)

and for p = ∞ the p-norm is given by

‖u‖∞ := ess sup
x∈Ω

|u(x)| (3.2)

Consequently we define the space Lp as

Lp(Ω) := {u : Ω → R | ‖u‖p < ∞} (3.3)

Furthermore there are the Lebesgue spaces of locally integrable functions:

Lp
loc(Ω) := {u|

ˆ

K

|u(x)|pdx < ∞ ∀K ⊂ Ω compact} (3.4)

Remarks and Extensions. The triangle inequality for ‖ · ‖p is a consequence of the
Minkowski inequality, which makes the p-norm a seminorm. For gaining a full norm
one usually identifies functions only differing on zero sets by setting:

0Lp := {f : Ω → R| f = 0 a.e.} (3.5)

This has the consequence that we deal with equivalence classes of functions. See for
example [20] for more details.

In the case p = 2, the L2 norm can be deduced from the L2 inner product

〈f, g〉L2Ω :=

ˆ

Ω

f(x)g(x)dx,

which makes L2 a so-called Hilbert space. We will give this definition shortly:

Definition 3.1.3 (Hilbert spaces). Let X be a space equipped with an inner product
〈·, ·〉X . Iff X is complete with respect to the norm

‖x‖X :=
√

〈x, x〉

we call X a Hilbert space.

Another powerful tool in the analysis of Lebesgue functions is Hölder’s inequality, which
allows us to determine a sufficient criterion, whether a product of functions can be
controlled in a certain Lebesgue spaces:
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Theorem 3.1.4 (Hölder’s inequality). Let p, q, r ≥ 1 and 1
p
+ 1

q
= 1

r
. Suppose f ∈ Lp(Ω),

g ∈ Lq(Ω). Then fg ∈ Lr(Ω) and

‖fg‖r ≤ ‖f‖p‖g‖q (3.6)

Proof. See e.g. [119, Thm. 3.1 (c)].

With these basics spaces, we will now define Sobolev spaces. These spaces consist
of functions, which are differentiable in a generalized sense. We restrict ourselves to
summarizing the central results from [45, 2]. Inspired by partial integration we can now
define a weak form of derivatives:

Definition 3.1.5 (Weak derivative). Let u, w ∈ L1
loc(Ω) and α be a multiindex. We say

that w is the α-th weak derivative of u, written

Dαu = w (3.7)

provided

ˆ

Ω

uDαφdx = (−1)α
ˆ

Ω

wφdx (3.8)

for all test functions φ ∈ C∞
c (Ω).

Remarks and Extensions. If it exists a weak partial derivative is uniquely defined up to
a zero set [45].

We give the definition of Sobolev spaces from [45]:

Definition 3.1.6 (Sobolev spaces). Let 1 ≤ p ≤ ∞ and k be a non-negative integer.
Then the Sobolev space

W k,p(Ω)

consists of all functions u ∈ L1
loc(Ω) such that for each multiindex α with |α| ≤ k the

weak partial derivative Dαu exists and belongs to Lp(Ω)

Remarks and Extensions. In the case of p = 2 one usually writes Hk(Ω) := W k,2,
since W k,2 is a Hilbert space. Sobolev spaces can be defined analogously for mappings
u : Ω → Rd̃ by requiring that each component function is in said space.

The Sobolev spaces are usually equipped with the following norm:

Definition 3.1.7 (Sobolev norm). If u ∈ W k,p and p < ∞ we define its norm to be:

‖u‖Wk,p(Ω) :=

⎛
⎝∑

|α|≤k

ˆ

Ω

|Dαu|pdx

⎞
⎠

1
p

(3.9)

For the case of p = ∞ we set:

‖u‖Wk,p(Ω) := max
|α|≤k

ess sup
x∈Ω

|Dαu(x)| (3.10)
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Despite the fact, that ∂Ω is a Rd− zero set, boundary values can be determined for
Sobolev functions [45].

Theorem 3.1.8 (Trace Theorem). Assume Ω is bounded and ∂Ω is C1. Then there
exists a bounded linear operator

T : W 1,p(Ω) → Lp(∂Ω)

such that
Tu = u|∂Ω if u ∈ W 1,p(Ω) ∩ C0(Ω) (3.11)

and
‖Tu‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω) (3.12)

for each u ∈ W 1,p(Ω), with the constant C only depending on p and Ω.

The linear operator is usually called trace operator, while the assigned boundary values
are known as Sobolev traces. Before giving criteria, when Sobolev functions belong to
certain other spaces, we give the definition of the Hölder semicontinuity [45].

Definition 3.1.9. If u : Ω → R is bounded and continuous, we write

‖u‖C(Ω) := sup
x∈Ω

|u(x)|.

Furthermore the Hölder seminorm of u is given by

[u]C0,γ(Ω) := sup
x,y∈Ω,x �=y

{
|u(x)− u(y)|

|x− y|γ

}

Definition 3.1.10 (Spaces of Hölder-continuous functions). The Hölder space

Ck,γ(Ω)

consists of all functions u ∈ Ck(Ω) for which the norm

‖u‖Ck,γ(Ω) :=
∑
|α|≤k

‖Dαu‖C(Ω +
∑
|α|=k

[Dαu]C0,γ(Ω) (3.13)

is finite.

The following theorem from [45] provides useful information, whether a function u ∈
W k,p belongs to other spaces.
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Theorem 3.1.11 (General Sobolev inequalities). Let Ω be a bounded open subset of Rd

with C1-boundary. Assume u ∈ W k,p(Ω). If

k <
d

p

then

u ∈ Lq(Ω) with
1

q
=

1

p
− k

d
. (3.14)

Moreover if

k >
d

p
,

then there is u∗ with u∗ = u a.e and

u∗ ∈ Ck−[ dp ]−1,γ, (3.15)

where

γ =

{[
d
p

]
+ 1− d

p
d
p
/∈ N

a ∈ (0, 1) d
p
∈ N

.

Proof. See [45, Chapter 5.6.4, Thm 6].

Having defined integral norms and spaces of integrable functions, we put our focus on
a powerful tool for the analysis of the arising motion-correction problems. Since we are
often concerned how the integral of functions after transformations changes, we start by
defining a suitable class of such transformations:

Definition 3.1.12 (Ck-diffeomorphism). Let Ω ⊂ Rd be open and

y : Ω → Rm (3.16)

a mapping. Then y is called a Ck-diffeomorphism, if and only if y is bijective and y
aswell as y−1 are of the class Ck.
If for each x ∈ Ω there exists a neighbourhood U(x), such that y is a diffeomorphism
between U and y(U), then y is called a local diffeomorphism.

Remarks and Extensions. As a consequence of the implicit function theorem [104, Thm.
9.2] a C1 function is a local diffeomorphism at x ∈ Ω, provided

det(Dy)(x) = 0. (3.17)

In the case of k = 1 we simply call y a (local) diffeomorphism.

Having defined this class of suitable transformations, we can state the following tool
from [104] to evaluate the integral of a transformed function.
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Theorem 3.1.13 (Transformation Theorem for Diffeomorphisms). Let Ω ⊂ Rd open and
y : Ω → y(Ω) be a diffeomorphism. Then any function u is integrable, iff u(y) det(∇y)
is integrable. Furthermore the following formula holds:

ˆ

y(Ω)

u(z)dz =

ˆ

Ω

u(y(x)) det(∇y(x))dx (3.18)

Proof. See e.g. [104, Thm. 17.2].

As we will see in the next section, there is a version of the transformation theorem with
weaker assumptions, which will become crucial, since our regularization functionals are
not able to guarantee diffeomorphic motion estimates.

3.2 Infinitesimal Calculus for Integral Norms

In this section we generalize known definitions from the classical infinitesimal calculus
to equivalence classes of functions in Lebesque- respectively Sobolev spaces (compare
for example [57, 69, 60] for a further course on this matter). The final goal is to derive
a version of the transformation theorem for integrals for non-diffeomorphic functions.
Since we can not distinguish functions differing on zero sets, the classical definition of
differentiability is not a feasible way, because we would like to obtain the same result for
all representatives of the equivalence class. A natural way to define a coherent function
value for all representatives is via averaging, which leads to the following definition.

Definition 3.2.1. Let Ω be a domain and y ∈ L1. Then the set of points x for which
yl(x) exists, such that

 

B(x,r)

|y(z)− yl(x)|dz → 0 as r → 0 (3.19)

is called the Lebesgue set Ly, while the points in Ly are called Lebesgue points.

Remarks and Extensions.

� It is known that the complement of the Lebesgue points is a zero set [55, Thm.
2.19].

� For y ∈ W 1,1
loc we can define the set of Lebesgue points LDy for the derivative Dy

analogously.

� If y is a vector-valued function, then we say x is a Lebesgue point, iff it is a
Lebesgue point for each component function.

We can generalize differentiability by the same idea [5]:
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Definition 3.2.2 (Approximate differential for L1
loc). Let y ∈ L1

loc(Ω,R
m) and let x ∈

Ly; we say that y is approximately differentiable at x, iff there exists a d×m matrix L,
such that  

Br(x)

|y(z)− yl(x)− L(z − x)|
r

dz → 0 as r → 0. (3.20)

We present a generalized idea of the definition above. Although a standard course on
approximate differentiability is given by [47], we rather use the definition by Whitney
[147] in order to stick to the notation by Hajlasz [69], who formulated the generalized
version of the transformation theorem for integrals we will present later. First we need
to define a certain class of points.

Definition 3.2.3 (Density point). Let E ⊂ Rd be a Lebesgue measurable set. We say
that x ∈ E is a density point of E with respect to the Lebesgue measure λd, iff

lim
r→0

λd(Br(x) ∩ E)

λd(Br(x))
= 1. (3.21)

In other words this means, that part of the ball, which is not in E can be neglected.
Now we can define approximate differentiability, by requiring that the points where the
taylor expansion with help of the approximate differential is inaccurate is negligible in
the sense of Definition 3.2.3.

Definition 3.2.4 (Approximate differential). Let y : Ω ⊂ Rm → R be a measurable
function. L = (L1, ..., Ln) is said to be the approximate total differential of y at x0, if
for every ε > 0 the set

Aε :=

{
x

∣∣∣∣ |y(x)− y(x0)− L(x− x0)|
|x− x0|

< ε

}
(3.22)

has x0 as a density point.

Remarks and Extensions.

� If the condition (3.22) holds, then x0 is a density point of Ω and L is uniquely
determined.

� The approximate differential is uniquely determined, if it exists. Furthermore each
Sobolev function y ∈ W 1,p

loc is approximately differentiable and the approximate
differential equals the weak derivative a.e. [46, Chapter 6,Thm 4].

� Also this definition can be extended to vector-valued functions by applying it to
each component.

With this at hand we can continue describing necessary definitions to derive a gener-
alized version of the change of variables formula. A detailed description of generalized
differentiability can be found e.g. in [147].
Since Sobolev functions can be changed on zero sets, we need to control the behavior of
functions on zero sets, as the following example illustrates.
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Example 3.2.1 (Redefining functions on zero sets). For a short illustration of weird
behaviour of functions on zero sets we recall the so called Cantor set C : This set is
constructed by starting with the interval [0, 1] and iteratively wiping out the middle
thirds; see Figure 3.1 for an illustration.

Figure 3.1: Visualization of the first four construction steps for the Cantor set.

The remaining points are all the points x =
∑
i

xi

3i
, xi ∈ {0, 2}, which can be expressed

without the digit 1 in the ternary expansion. It is well known that C is a zero set which
can be mapped one-to-one to [0, 1] with the so called Cantor function fC . The idea is to
express fC (x) by replacing the digit 2 with 1 and doing a binary instead of the ternary
expansion [139].
We now take a look at two functions y1 and y2

y1 : [0, 1] → R x → x+ 1

y2 : [0, 1] → R x →
{
x+ 1 x ∈ [0, 1]\C
fC x ∈ C

Since the Cantor set is a zero set, it follows directly that ‖y1 − y2‖p = 0 for 1 ≤ p < ∞,
but Im(y1) = [1, 2] = [0, 2] = Im(y2). Thus y2 blows the zero set C up to something
substantial. Note that y2 does only takes its Lebesgue value on [0, 1] \ C .

To overcome difficulties arising from changing functions on a zero set, Nikolai Lusin
imposed in his dissertation [94] the so called Lusin condition1, also known as N-condition:

Definition 3.2.5 (Lusin’s condition). A mapping y : Ω → Rd satisfies Lusin’s condition,
iff for all:

E ⊂ Ω, λ(E) = 0 ⇒ λ(y(E)) = 0 (3.23)

1Historical remarks in this thesis are due to the encyclopedia of mathematics [74], if not explicitly said
otherwise.
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with λ denoting the Lesbesgue-measure.
This condition can be generalized to other measures as well.

Remarks and Extensions. One usually defines a Lusin representative ỹ by setting :

ỹ(x) =

{
yl(x) x ∈ Ly

z with z /∈ Im(y) x ∈ Ω\Ly

. (3.24)

In the following we always assume functions to be Lusin representatives, if not explicitly
said otherwise.

Having surmounted these difficulties we need to take in account, that a non-diffeomorphic
function may hit some points several times. For this problem Stefan Banach introduced
the so called Banach indicatrix, which gives the number of roots to an equation [10].
This concept was generalized to discontinuous functions by Lozinski [93] and into higher
dimensions by Kronrod [88] and Vitushkin in his master thesis [145]:

Definition 3.2.6 (Banach indicatrix). Let y : Rd → Rm, E ⊂ Rd. The Banach indica-
trix

Ny(·, E) : Rm → N0 ∪ {∞}
is given by

Ny(z, E) := card({y−1(z) ∩ E}). (3.25)

Having this tools at hand, we can present a change of variables formula under minimal
assumptions, which was given by Hajlasz [69]. The central idea is, that points hit
multiple times by the transformation need to be taken into account as multiplicative
factor.

Theorem 3.2.7 (Area formula). Let y : Ω → Rd be a mapping. If y is approximately
differentiable almost everywhere, then y can be redefined on a zero set, such that the
new y fulfills Lusin’s condition. Furthermore the following statements hold for every
measurable subset E and positive measurable function u : Ω → R:

(i) The functions u(y) det(∇y) and u(z)Ny(z,Ω) are measurable.

(ii) If moreover u ≥ 0 then
ˆ

E

u(y(x)) det(∇y(x))dx =

ˆ

Rm

u(z)Ny(z,Ω)dz. (3.26)

(iii) If one of the functions u(y) det(∇y) and u(z)Ny(z, E) is integrable then so is the
other and the formula above holds.

Additionally we have

ˆ

Ω

u(x) det(∇y(x))dx =

ˆ

Rd

⎛
⎝ ∑

w∈(y−1(z)∩Ω)

u(w)

⎞
⎠ dz. (3.27)
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Proof. See [69, Theorem 2] for the first part of the theorem.
The second part is given in [60, Chapter 1.2 Theorem 2] for Lipschitz mappings and can
be generalized by following the proof by Hajlasz [69, Theorem 2].

A natural arising question is whether we are able to establish bounds for the Banach
indicatrix, besides the fact that Nf ∈ L1, whenever det(∇f) ∈ L1, which is directly
deduced from the formula above. The following example shows that this might indeed
be a difficult task:

Example 3.2.2 (Local versus global injectivity). Let Ω = [0, 1]2 and n ∈ N. We define
a sequence of functions yn : Ω → R2, n ∈ N by setting for any x = (x1, x2)

yn(x) =

(
ex1 cos(2πnx2)
ex1 sin(2πnx2)

)
(3.28)

Figure 3.2: Visualization of the yn (c.f (3.28)) for n = 1, 2. Note that the visible cells
get bigger for n = 2, because the points in the ring are hit two times.

Obviously yn ∈ C∞(Ω) ∀n ∈ N with

∇yn =

(
ex1 cos(2πnx2) −2πn ex1 sin(2πnx2)
ex1 sin(2πnx2) 2πn ex1 cos(2πnx2)

)
(3.29)

and thus:

det(∇yn)(x1, x2) = 2πn e2x1 > 0 (3.30)

Therefore yn is a local diffeomorphism for each (x1, x2) ∈ [0, 1]2. But also for each
(z1, z2) ∈ Im(yn) = Bε(0)\B1(0) there also exist n pairwise different tupels (x1, x

i
2) with

f(x1, x
i
2) = (y1, y2). It directly follows, that:

Nyn(z,Ω) = n ∀z ∈ Im(yn) (3.31)

Note that we presented this example for the sake of clarity in R2, but the extension into
arbitrary dimensions is straightforward, as we illustrate for the three dimensional case:
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yn (x) =

⎛
⎝ex1 cos(2πnx2)
ex1 sin(2πnx2)

x3

⎞
⎠ (3.32)

The L1-norm of the gradient as well as the Jacobian determinant of this sequence of
functions tends to infinity for growing n. Nevertheless this sequence shows that there
might be difficulties in controling the Banach indicatrix in L∞.
Furthermore this subject ist strongly linked to the topological degree, which was intro-
duced by Browers in 1911 [21] and generalized to Sobolev mappings, by Giaquinta et al.
[59]. We will not focus on this topic, but we will use some of this results in the remain-
ing part of this thesis. We start by giving the generalized definition of the topological
degree, see also[59]

Definition 3.2.8 (Topological degree). Let Ω ⊂ Rd be an open set. For an almost
everywhere approximately differentiable map y with Jacobian Dy the degree of y is
defined as

deg(y,Ω, z) :=
∑

x∈v−1(z)

sgn(det(Dv(x))) (3.33)

Remarks and Extensions. The topological degree is strongly related to the Banach in-
dicatrix, since it coincides with the Banach indicatrix for certain mappings. As a direct
consequence of [58, Chapter 1, Proposition 2] we obtain for orientation preserving map-
pings:

deg(u,Ω, ·) = Nu(·,Ω) a.e. (3.34)

An interesting property of the topological degree is that it is completely determined
on the boundary for sufficiently regular functions. This is phrased in the following
proposition:

Proposition 3.2.9. Let Ω be a bounded Lipschitz domain in Rd and let v1, v2 be map-

pings in W 1,d−1(Ω,Rd) with cof(∇vi) ∈ L
d

d−1 . Suppose that

v1 = v2 on ∂Ω (3.35)

in the sense of W 1,d−1 traces. Then

deg(v1,Ω, y) = deg(v2,Ω, y) (3.36)

Proof. See [58], Chapter 2, Proposition 1.

To conclude this brief summary, we mention that there is indeed a specification to
Sobolev functions, which are injective. This leads to the field of the so called weak
diffeomorphisms, which we discuss shortly in the next section.
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3.3 Weak Diffeomorphisms

We will present some basic ideas and Theorems from [58], how to generalize diffeo-
morphisms for Sobolev mappings, which are not necessarily differentiable. Giaquinta’s
central idea for a mapping

y : Ω ⊂ Rd → Rm (3.37)

is to use properties of the graph G ⊂ Rd × Rm. Based on this idea he introduced so
called Cartesian currents [56]. As the description of these currents is beyond the scope
of this thesis, we will only present the results from [58] related to weak diffeomorphisms
and refer to [58, 60, 62] for a detailed course on Cartesian currents. Because we do
not want to carry out too much of the theory on Cartesian currents, we define a class
of transformations, which contains transformations fulfilling some rather complicated
requirements from the theory of Cartesian currents.

Definition 3.3.1. We define the following two subclasses of Sobolev mappings:

Ap,q(Ω) :={y ∈ W 1,p(Ω;Rm) | cof(∇y) ∈ Lq},
A+

p,q(Ω) :={y ∈ Ap,q(Ω) | det(∇y) > 0 a.e.}.

Next we introduce weak inverses as in [58]:

Definition 3.3.2 (Weak inverse). Given a measurable map

y : Ω → Ω̂ λ(Ω) > 0 λ(Ω̂) > 0. (3.38)

We say that

1. y is weakly invertible with weak inverse ŷ, if and only if

ŷ(y(x)) = x for almost every x ∈ Ω, (3.39)

y(ŷ(z)) = z for almost every z ∈ Ω̂. (3.40)

2. y is a weak one-to-one transformation, iff there exists a measurable map

ŷ : Ω̂ → Ω,

such that

a) y and ŷ fulfill Lusin’s condition (3.23).

b) y and ŷ are the inverses of the respective other.

The next theorem gives us some properties of the inverse of a mapping:

Theorem 3.3.3. Let y : Ω → Ω̂ be a weakly invertible map with inverse ŷ. Suppose that
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(i) y satisfies Lusin’s condition (3.23),

(ii) y is almost everywhere approximately differentiable in Ω.

Then ŷ is approximately differentiable almost everywhere in Ω̂. Moreover:

Dy(ŷ(z))Dŷ(z) = IdΩ̂ for a.e. z ∈ Ω̂ (3.41)

Dŷ(y(x))Dy(x) = IdΩ for a.e. x ∈ Ω (3.42)

Proof. See [58, Chapter 3, Theorem 2].

With this at hand Giaquinta et al. [58] define global invertibility by using properties of
the graph of a map by

Definition 3.3.4 (Global invertibility for a.e. approximately differentiable mappings).
Let y be an a.e. approximately differentiable map from Ω ⊂ Rd into Rm with det(Dy) ∈
L1(Ω) satisfying

det(Dy) > 0 a.e. in Ω. (3.43)

We say y is globally invertible if and only if
ˆ

Ω

φ(x, y(x)) det(Dy(x))dx ≤
ˆ

Rm

(
sup
x∈Ω

φ(x, z)

)
dz (3.44)

holds for all φ ∈ C0
c (Ω× Rm) with φ ≥ 0.

The definition above is related to the area formula; for any function φ ∈ C0
c (Ω×Rm) we

observe:

ˆ

Ω

φ(x, y(x)) det(Dy)(x)dx ≤
ˆ

Ω

sup
x∈Ω

φ(x, y(x))︸ ︷︷ ︸
=:ψ(y(x))

det(Dy(x))dx =

ˆ

Rm

sup
x∈Ω

φ(x, z)Ny(z,Ω)dz

This illustrates, how the invertibility condition (3.44) can be violated by functions which
are not injective on sets with positive measure. According to [58] global invertibility can
be defined equivalently in several other ways:

Proposition 3.3.5. Let y : Ω ⊂ Rd → Rm be a.e. approximately differentiable in Ω with
det(Dy) ∈ L1(Ω) and det(Dy) ≥ 0 a.e. in Ω. Then the following claims are equivalent:

(i) y is globally invertible.

(ii) For any φ ∈ C0
c (R

m) with φ ≥ 0 y satisfies the inequality
ˆ

Ω

φ(y(x)) det(Dy)(x)dx ≤
ˆ

Rm

φ(z)dz. (3.45)
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(iii) For almost every z ∈ Rm we have

N(y,Ω, z) ≤ 1. (3.46)

(iv) For almost every z ∈ Rm we have

Ny(Ω, z) = χy(Ω)(z) :=

{
1 z ∈ y(Ω)

0 z /∈ y(Ω)
. (3.47)

(v) We have
ˆ

Ω

det(Dy)(x)dx = H m(ỹ(Ω)) (3.48)

where H m is the m-dimensional Hausdorff measure2 and ỹ a Lusin representative.

(vi) The inequality
ˆ

Ω

det(Dy)(x)dx ≤ H m(y(Ω)) (3.49)

holds for any representative of y.

Proof. See [58, Chapter 5, Proposition 1]

Having this in mind we can now define a norm for the class of weak diffeomorphisms:

Definition 3.3.6 (Norm for weak diffeomorphisms). For any almost everywhere ap-
proximately differentiable map y : Ω ⊂ Rd → Rm we set

|M(Dy)| :=
(
1 + |Dy|2 + | cof(Dy)|2 + | det(Dy)|2

) 1
2 (3.50)

and define

‖y‖difp,q :=
ˆ

Ω

(
|y|p + |M(Dy)|p + |M(Dy)|q

| det(Dy)|q−1

)
dx. (3.51)

Now we can define the class of weak diffeomorphisms:

Definition 3.3.7 (Space of weak diffeomorphisms). We say that a map y : Ω ⊂ Rd →
Rm belongs to the class d̃if

p,q
(Ω,Rm) for p, q ≥ 1, if and only if:

1. |M(Dy)| ∈ Lp.

2. y has a closed graph in Ω× Rm.

2Hausdorff measures provide s-dimensional measures in Rm for any 0 ≤ s ≤ m. For Euclidean vector
spaces the Hausdorff measure H m coincides with the Lebesgue measure. See [60, 47] for more
details.
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3. det(Dy) > 0 a.e. in Ω.

4. y is globally invertible.

5. ‖y‖difp,q < ∞.

A map only fulfilling the first three conditions is called a weak local diffeomorphism.

Remarks and Extensions. Since giving a thorough definition of the second property
requires insight in the theory of Cartesian currents, we will not elaborate further on this
subject. Details can be found e.g. in [56, 60, 62]. However we can state that y ∈ Ad−1, d

d−1

is sufficient [59] but not necessary [61] to guarantee the closedness of the graph.

A weak diffeomorphism y can be expressed as the limit of a sequence yn of orientation
preserving C1 diffeomorphisms [56]. Furthermore closeness and compactness results for
this class can be stated ([58, Chapter 5, Theorems 3 and 4]). This relies heavily on weak
convergence in d̃if

p,q
, which again needs a deep insight into the theory of currents. Thus

we present a similar result published by Henao and Mora-Corral [75] instead.

Theorem 3.3.8 (Injectivity as closed constraint). For each j ∈ N let yj, u : Ω ⊂ Rd →
Rm be a.e. approximately differentiable. Assume furthermore, that

yj ∈ W 1,p(Ω,Rm) p ≥ d− 1 det(Dyj) ∈ L1(Ω) (3.52)

as well as
cof(Dyj) ∈ Lg(Ω) q ≥ p

p− 1
sup
j∈N

‖ cof(Dyj)‖1 < ∞. (3.53)

Suppose that there exists θ ∈ L1(Ω) such that θ > 0 a.e. and

yj → y det(Dyj) ⇀
3θ in L1(Ω) (3.54)

as j → ∞. Assume that for each j ∈ N the function yj is one-to-one a.e. with
det(Dyj) > 0 a.e.. Then

(i) θ = | det(Dy)| a.e.,

(ii) y is one-to-one a.e..

Proof. Because of (3.53) we can deduce by [75, Proposition 2] that the functional E
introduced by Henao and Mora-Corral is zero for every yj. Now the assertion follows
directly by [75, Theorem 2].

3This denote weak convergence; see Definition 3.4.3.
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3.4 The Direct Method in the Calculus of Variations

The goal of this section is to derive a method for showing the existence of minimizers of
maps with functions as arguments. While the basic principles of functional analysis we
present can e.g. be found in [119], an introduction to the direct method in the calculus
of variations can be found in [39]. We will define this class of mappings mapping into
the real numbers:

Definition 3.4.1 ((Linear) functional). Let X be a R-vector space . A map

J : X → R (3.55)

is called a functional.

If J additionally fulfills

J(αx1 + βx2) = αJ(x1) + βJ(x2) ∀x1, x2 ∈ X , α, β ∈ R (3.56)

then J is called a linear functional.

The space of linear, continuous functionals plays an important role in defining weaker
forms of convergence.

Definition 3.4.2 (Dual space). Let X be a vector space. The dual space is given by

X ∗ := {J : X → R | J continuous and linear}. (3.57)

We will use the dual space to define some different types of convergence. To weaken the
requirements of convergence in the norm one just investigates whether applying linear
functionals to a sequence leads to convergence.

Definition 3.4.3 (Weak convergence). Let xn be a sequence in X and x ∈ X . We say
xn converges weakly to x, iff

φ(xn) → φ(x) ∀φ ∈ X ∗ (3.58)

and use the notation

xn ⇀ x.

With the same idea one is able to define a weak form of convergence for linear functionals.

Definition 3.4.4 (Weak-star convergence). Let X = Z∗ be the dual of a normed vector
space, xn be a sequence in X and x ∈ X . We say xn converges weakly-star to x, iff

xn(z) → x(z) ∀z ∈ Z (3.59)

and use the notation

xn ⇀∗ x.
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Having defined these basics, we turn our focus on how to show the existence of minimizers
for problems of the form

inf
ρ
J(ρ). (3.60)

Since we end up with minimization problems in our modeling for image and motion
estimation we present the standard approach to show the existence of minimizers in the
calculus of variations. We need to verify two conditions, in order to show existence of a
minimizer. The first one is a weaker version of a continuity property:

Definition 3.4.5 (Lower semicontinuity). Let J : X → R be a functional. J is lower
semicontinuous, iff for every sequence xn → x

J(x) ≤ lim inf
n→∞

J(xn). (3.61)

With that at hand, we can give the following theorem, which inspires the direct method
in the calculus of variations.

Theorem 3.4.6 (Fundamental theorem of optimization). Let J : X → R be a func-
tional. Let J fulfill the following two conditions:

1. There is a c ∈ R, such that the sublevel set {x ∈ X |J(x) ≤ c} is compact and
non-empty.

2. J is lower semicontinuous.

Then J has a minimizer.

Proof. Let xn be an infimizing sequence of the functional, then there exists N ∈ N,
such that J(xn) ≤ c ∀n ≥ N . Since this sublevel set is compact, we find a convergent
subsequence x̃n. For the limit x̃ of this subsequence we obtain by the lower semicontinuity
of J :

J(x̃) ≤ lim inf
n→∞

J(x̃n) = inf J. (3.62)

Thus x̃ is a minimizer.

Verifying the compactness of sublevel sets might turn out to be a difficult task in practical
applications. While in finite dimensions boundedness of a closed set is equivalent to
compactness, unfortunately this does in general not hold for infinite dimensional spaces.
However with the famous theorem of Banach-Alaoglu we can prove a similiar result for
the weak-star topology:

Theorem 3.4.7 (Banach-Alaoglu). Let X = Z∗ be the dual of a Banach space Z and
M a bounded set in X . Then M is precompact in the weak-star topology.

Proof. See for example [37], Theorem 3.1

The boundedness can be shown by the so called coercivity property:
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Definition 3.4.8 (Coercivity). Let J : X → R be a functional. J is called coercive, iff

J(x) → ∞ whenever ‖x‖ → ∞.

Having this tool at hand, in the remainder of this thesis we will only show a coercivity
property of an examined functional, because we can deduce the compactness of sub level
sets the by Banach-Alaoglu theorem 3.4.7.
There are different approaches, when the direct method fails, such as [30, 83] . The
most common way is to take a probabilistic approach, where a so called Young measure
gives the probability that a functional has its weak limit as value for each x. These
Young measures were first presented as generalized curves by L.C Young in 1937 [148].
A detailed description of Young measures can be found for example in [107, 83].

3.5 Theory of (Linear) Operators

Since many problems in mathematical imaging can be stated with the help of linear
operators we give a short overview of the most important definitions and theorems on
this subject. A more detailed description of this subject as well as the definitions and
results we present in the remainder of this section can be found in most courses about
functional analysis, such as [4, 146, 37].
We start with the definition of a linear operator:

Definition 3.5.1 (Linear operator). Let X ,Y be vector spaces; a map T : X → Y is
called a linear operator, iff

T (αx+ βy) = αT (x) + βT (y) ∀x, y ∈ X , α, β ∈ R. (3.63)

The following definitions captures some notations used in the remainder of this thesis.

Definition 3.5.2. For any linear operator T : X → Y between Banach spaces we
denote:

� The domain D(T ) as the set of points x ∈ X , such that Tx is defined.

� The kernel N (T ) is defined as {x ∈ X |Tx = 0}.

� The range R(T ) is defined as {y ∈ Y | ∃x ∈ X with Tx = y}.

For any subspace X0 of X the orthogonal complement is defined by

X⊥
0 := {v ∈ X ∗

0 |v(x) = 0 ∀x ∈ X0}

In fact continuity of linear operators can be characterized in many equivalent ways:

Theorem 3.5.3 (Continuity for linear operators). Let T : X → Y be a linear operator.
Then the following claims are equivalent:
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(i) T is continuous.

(ii) There is a c ≥ 0, such that: ‖Tx‖Y ≤ c‖x‖X for all x ∈ X .

(iii) There is c ≥ 0 such that ‖Tx‖Y ≤ c for all x ∈ B1(0).

The next step is now to define the space of linear operators and equip it with a norm:

Definition 3.5.4 (Space of linear operators and operator norm). Let X ,Y be vector
spaces. Then the vector space of linear operators mapping from X to Y is denoted by
L(X ,Y). This vector space is equipped with the following so called operator norm

‖T‖ := inf{c ≥ 0 | ‖Tx‖Y ≤ c‖x‖X∀x ∈ X}. (3.64)

Remarks and Extensions. If X is a normed vector space and Y complete, then L(X ,Y)
is a Banach space.

The next theorem shows how an operator on a given dense subset can be extended to
the whole space:

Theorem 3.5.5 (Unique continuous extension). Let X be a normed vector space, X0 a
dense normed subspace. For a Banach space Y let T0 ∈ L(X0,Y). Then there is exactly
one operator T ∈ L(X ,Y), such that

T0x = Tx ∀x ∈ X0. (3.65)

Additional there is
‖T0‖ = ‖T‖. (3.66)

Besides continuity, there is another important definition we will introduce shortly in the
following:

Definition 3.5.6 (Adjoint operator). Let X ,Y be Hilbert spaces and T ∈ L(X ,Y). Iff
T ∗ fulfills

〈Tx, y〉Y = 〈x, T ∗y〉X ∀x ∈ X , y ∈ Y (3.67)

then T ∗ is called the adjoint operator of T .

Remarks and Extensions. The existence of the adjoint operator follows from Riesz rep-
resentation theorem [37, Thm. 3.4]. Furthermore the concept of adjoints can also be
generalized to Banach spaces [64].

Having stated the main definitions and theorems for linear operators we will draw our
attention on a weaker form of operator convergence:

Definition 3.5.7 (Strong operator topology). Let Tn, T ∈ L(X ,Y). We say the se-
quence Tn converges to T in the sense of the strong operator topology, and write

Tn
s→ T (3.68)

iff
lim
n→∞

Tnx = Tx ∀x ∈ X . (3.69)
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An useful tool to prove convergence in the sense of the strong operator convergence is
provided by the next theorem, which allows us to verify this only on a dense subspace:

Theorem 3.5.8. Let Tn, T ∈ L(X ,Y), such that

sup ‖Tn‖ < ∞. (3.70)

Then the following statements are equivalent:

(i) There is a dense subspace X0 of X , such that lim
n→∞

Tnx = Tx for all x ∈ X0.

(ii) Tn converges to T in the sense of the strong operator topology.

To conclude the remarks about strong operator convergence we make an observation
concerning the product of convergent sequences:

Theorem 3.5.9. Let X ,Y ,Z be Banach spaces, Tn, T ∈ L(X ,Y), Sn, S ∈ L(Y ,Z),
such that

Tn
s→ T and Sn

s→ S (3.71)

in the sense of the strong operator topology. Then

SnTn
s→ ST (3.72)

again in the sense of the strong operator topology.

After having presented the most important results about the strong operator topology
we mention that there is also a weaker one:

Definition 3.5.10 (Weak operator topology). Let Tn, T ∈ L(X ,Y). Tn converges to T
in the sense of the weak operator topology, iff

lim
n→∞

ϕ(Tnx) = ϕ(Tx) ∀x ∈ X , ϕ ∈ Y∗. (3.73)

This concludes our short summary about linear operators. In the following we will focus
on an interesting special case, namely compact operators.

Compact Operators

Compact operators have many applications in mathematical imaging: The projection
process in indirect imaging is for example often modeled with the help of compact
operators. In this subsection we will focus on the definition and some basic properties
of compact operators. We follow Conways presentation [37]; all proofs for the theorems
presented in this subsection can be found there.

Definition 3.5.11 (Compact operator). Let X and Y be Banach spaces andK : X → Y
a linear operator. We call K a compact operator, iff the closure cl(K(B1(0))) is compact.

32



Another property compact operators often possess is the following:

Definition 3.5.12 (Complete continuity). Let X ,Y be Banach spaces. A linear opera-
tor T is called completely continuous, iff:

xn ⇀ x ⇒ Axn → Ax. (3.74)

The next proposition states, under which circumstances those two properties are equiv-
alent:

Proposition 3.5.13. Let X ,Y be Banach spaces and T ∈ L(X ,Y):

(a) If T is compact, then T is completely continuous.

(b) If X is reflexive and T is completely continuous, then T is compact.

The next theorem gives another criterion for the compactness of a linear operator:

Theorem 3.5.14 (Schauders theorem). Let T ∈ L(X ,Y), then T is compact iff T ∗ is
compact.

We have now collected basic definitions and presented the theorems we will use as tools
in the remainder of this thesis. A much more detailed overview on this subject is given
in the references at the start of this section.
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4 Inverse Problems in Imaging

In this chapter we describe inverse problems occuring in mathematical imaging. First
we describe the field of inverse problems in general. We start with a rather general
introduction to inverse and ill-posed problems by giving some basic definitions. Again
this chapter only serves as an overview on definitions and methods used in the literature.
After presenting some general ideas for computing meaningful solutions for ill-posed
problems, we turn our focus on reconstruction and motion estimation, which is the
major focus in this thesis.
Following the introduction by Bertero and Boccacci [16] we present Kellers [82] descrip-
tion of inverse problems:

Inverse Problems

We call two problems inverses of one another if the formulation of each involves
all or part of the solution of the other. Often, for historical reasons, one of the two
problems has been studied extensively for some time, while the other is newer and
not so well understood. In such cases the former is called the direct problem,
while the latter one is called the inverse problem.

As an example of two inverse problems Keller gives the problem of finding the roots of
an polynomial with order n as the direct problem and finding a polynomial with order n
with given roots as the inverse problem. Clearly in this case the inverse problem is easier
to solve but also the solution is not unique, since one can multiply any given solution
by a constant c = 0. In contrast, finding the roots of a given polynomial might cause
some effort, nevertheless the solution is unique (if we take multiple roots into account).
This behaviour is formulated in the following definition by Hadamard [68]:

Definition 4.0.1 (Well and ill-posed problems). According to Hadamards definition a
problem is well-posed if the following three conditions hold.

� A solution exists.

� The solution is unique.

� The solution’s behaviour changes continuously with the initial conditions.

If one of the three conditions is not satisfied, the problem is called ill-posed.

Having formulated the main topic of this chapter, we will first present some ways to
alleviate difficulties in dealing with ill-posed problems and then lie our focus on recon-
struction and motion estimation problems. These two tasks are frequently occurring in
classical imaging and furthermore these are the major problems investigated throughout
this thesis.
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4.1 Dealing with Ill-Posed Problems

In this section we will describe some common approaches to solve the problem

Ku = f, (4.1)

where K is an operator between Banach spaces X and Y . Typically, only noisy data is
available, thus we have in fact to solve the problem

Ku = f δ (4.2)

for noisy data f δ with
‖f − f δ‖ ≤ δ. (4.3)

A way to define an inverse for the operator K is given by [44]

Definition 4.1.1 (Moore-Penrose inverse). The Moore-Penrose (generalized) inverse
K† of K ∈ L(X ,Y) is defined as the unique linear extension of K̃−1 to

D(K†) := R(K) +R(K)⊥ (4.4)

with
N (K†) = R(K)⊥ (4.5)

where
K̃ := K|N (K)⊥ : N (K)⊥ → R(K)

According to [44] this inverse is well-defined.
Typically problem (4.1) is an ill-posed, inverse problem in the sense that the Moore-
Penrose inverse K† for the forward operator K is not continuous.
It is even possible, that (for example due to modeling errors) only a noisy version K̃
of the forward operator is known. In the linear, discrete sense K is an ill-conditioned
matrix. Thus simply applying the Moore-Penrose inverse K† to the noisy data yδ will
in general not lead to meaningful solutions. We will now describe regularization and
statistical methods, designed to deal with ill-posed problems.

4.1.1 Regularization Operators

Following the introduction to regularization from [44] we give the central idea of regu-
larization:

The Central Idea of Regularization

In general terms, regularization is the approximation of an ill-posed problem by
a family of well-posed problems.

This leads to the definition of regularization:
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Definition 4.1.2 (Regularization operator). Let K : U → Y be a bounded linear
operator between the Hilbert spaces X and Y , α0 ∈ (0,∞]. For every α ∈ (0, α0) let

Rα : Y → X

be a continuous (not necessarily linear) operator. The family {Rα} is called a regulariza-
tion or a regularization operator (for K†), iff for all f ∈ D(K†) there exists a parameter
choice rule α = α(δ, f δ) such that

lim sup
δ→0

{‖Rα(δ,fδ)f
δ −K†f‖ | f δ ∈ Y , ‖f − f δ‖ ≤ δ} = 0 (4.6)

holds. Here
α : R+ × Y → (0, α0)

is such that
lim sup

δ→0
{α(δ, f δ)|f δ ∈ Y , ‖f δ − f‖ ≤ δ} = 0. (4.7)

For a specific f ∈ D(K†) a pair (Rα, α) is called a (convergent) regularization method
(for solving Ku = f) if (4.6) and (4.7) hold.

Remarks and Extensions. This definition can be extended to nonlinear problems in a
straightforward way, but we choose to give the original one from [44]. Furthermore
we can also deal with noisy versions K̃ of the operator with ‖K̃ − K‖ ≤ η; then the
parameter choice rule would depend on δ, η, yδ and K̃.

An extensive overview of different regularization operators and their numerical imple-
mentation can e.g. be found in [71, 72]. Before we present examples for regularization
operators, we turn our focus towards parameter choice rules.

Parameter Choice Rules

Engl et al. [44] distinguish between two different parameter choice rules:

Definition 4.1.3 (Parameter choice rules). Let α be a parameter choice rule according
to Definition 4.1.2. If α does not depend on yδ but only on δ, then we call α an a priori
parameter choice rule and write α = α(δ). Otherwise we call α an a posteriori parameter
choice rule.

Note that according to Bakushinskii [9] parameter choice rules depending only on the
data, but not on the noise level δ, cannot lead to convergent regularization methods.
As we saw before the desired properties of regularization operators depend on the choice
of the regularization parameter α. In praxis this might be an issue, since the noise level
δ is not known in general and needs to be estimated too. The general idea is to measure
the difference between the projected solution of the regularization operator and the data.
If this difference is smaller than the noise level δ, we cannot expect a meaningful solution,
since mostly the noise is matched. Morozov [102] suggested to pick parameters fulfilling
a discrepancy principle.
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Definition 4.1.4 (Morozov Discrepancy principle). Let an inverse (and ill-posed) prob-
lem of the form (4.1) be given. We say that a regularization parameter α fulfills the
Morozov discrepancy priniciple for 1 ≤ τ1 < τ , provided

τ1δ ≤ ‖KRα(f
δ)− f δ‖ ≤ τ2. (4.8)

We will not elaborate further on this matter, but refer to [120] for an evaluation of
the performance for different parameter choice rules and to [43] for a discussion about
discrepancy principles.
Having stated this common parameter choice strategies we conclude this section by
mentioning that estimating the noisy level from given data is a difficult task (see for
example [81, Chapter 2, Example 4]).

(Truncated) Singular Value Decomposition

A basic tool to construct regularization operators is the singular system - sometimes
called singular value expansion - [73] (σn; vn, un), which can be found for a compact
operator K, such that

Kx =
∞∑
n=1

σn〈x, vn〉un. (4.9)

The Moore-Penrose inverse of the operator K can be expressed with help of the system
(4.9) via

K†y =
∞∑
n=1

〈y, un〉
σn

vn. (4.10)

This expression of the inverse operator shows that, errors in the data might be blown
up by the small singular values. Inspired by this observation the idea of the truncated
singular value decomposition is to stop the summation at an index J , where the singular
values are smaller than a specified bound α. Thus we can define an operator RJ via

RJy =
J∑

n=1

〈y, un〉
σn

vn. (4.11)

This finite summation is called truncad singular value decomopsition and is often
used as an regularization method. An advantage of this method is, that the (truncated)
SVD only needs to be computed once for a specific operator and thus the truncated SVD
solution can be computed fast for different data. Unfortunately we are not directly able
to incorporate a priori knowledge of the desired solution into the regularization process.
See for example [70, 73] for more details on the use of this method as regularization
operator.
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Tikhonov Regularization

Tikhonov-Regularization, also known as Tikhonov-Phillips regularization is a
widely used regularization method. Inspired by the idea to enforce smoothness assump-
tions on the solution, it was designed by Tikhonov [143, 144], and slightly later by David
L. Phillips [115]. We will present now shortly the central ideas, which can also be found
- with much more details - in Chapter 5 of [44].
For the standard inverse (and perhaps ill-posed problem) (4.1) the normal equation is
given by

K∗Ku = K∗y. (4.12)

The solutions of this equation are the least squares solutions of problem (4.1) (compare
e.g. [44, Theorem 2.6]). For any α > 0 we consider

K∗Ku+ αu = K∗yδ. (4.13)

Solving this equation is called Tikhonov regularization. Obviously this equation has the
solution

û = (K∗K + αI)−1K∗yδ (4.14)

which can also be expressed with the singular system as

û =
∞∑
n=1

σn

σ2
n + α

〈yδ, un〉vn. (4.15)

This representation shows that - similar to the truncated SVD - errors in the data are
not blown up as σn tends to zero, since σn

σ2
n+α

is bounded for n → ∞ and therefore
σn → 0. The solution û can also be characterized variationally:

û := min
u

J(u) := ‖Ku− yδ‖+ α‖u‖2 (4.16)

Note that we can choose different norms in (4.16) as well as replace the identity in
(4.13) by a so called Tikhonov matrix Γ [121]. In contrast to the formulation with the
normal equation (4.13) the functional (4.16) also allows the use of nonlinear operators.
We complete this section by mentioning that for the Tikhonov regularization is in fact
a regularization operator in the sense of Definition 4.1.2 [44, Chapter 5, Theorem 5.2].
An advantage of Tikhonov regularization over the truncated SVD is that, the Tikhonov
Matrix Γ allows us to incorporate a priori knowledge on the desired solution be choosing
an inappropriate norm. Unfortunately we are not able to incorporate additional knowl-
edge on the characteristic of the noise corruption in the data into this process, thus we
turn our focus to statistical methods, which are based on incorporating this information.

4.1.2 Statistical Methods

Since noise corrupting the data in many inverse problems has a random nature [81],
another approach is to take the properties of this noise occurrence into account in the
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model. In this section we will describe two common approaches to incorporate the
process of corrupting data with random noise into specially designed strategies to solve
ill-posed problems suffering from noise. The first idea is to interpret the noisy data f δ as
the realization of a random variable with the true data as mean value, and to search for
a solution x, which has the biggest probability of producing this data. By contrast, in
Bayesian methods not only the data but also the solution is regarded as the realization of
a random variable. We will describe both approaches and draw a link between Bayesian
methods and Tikhonov regularization. For a detailed review on statistical methods in
inverse problems we refer to [79, 81], where the described contents can be found in much
greater detail. Technically a probability is a measure on a σ-algebra, which assigns a
probability to all events collected in the σ-algebra [12]. In the following we will not
focus on this probability triple, but just use an appropriate probability p. A detailed
discussion on this matter is given in [79, Chapters 3,7].

Maximum-Likelihood Estimation

The central idea of the Maximum-Likelihood estimation is to pick the solution x̂, which
maximizes the likelihood of measuring the data f δ, such that the following equation

p(f δ|x̂) ≥ p(f δ|x) ∀x (4.17)

holds for any estimator x [79]. We take a short look into the computation of these
estimators: We assume that the data vector f δ ∈ RN is a collection of N independent
identically distributed random variables F = (Fi)i. So the likelihood of measuring the
actual realization f δ is given by

L(F, F ) =
N∏
i=1

p(Fi = f δ
i ). (4.18)

To maximize this product we apply the logarithm, which makes (4.18) a sum, the so
called log-likelihood

log

(
N∏
i=1

p(Yi = yδi )

)
=

N∑
i=1

log(p(Yi = yδi )). (4.19)

To obtain a minimization problem, we minimize the negative log-likelihood, instead of
the maximization. The following example highlights possible difficulties in this approach
(compare [81, Chapter 5.1.1]):

Example 4.1.1 (Maximum-Likelihood Estimation for Gaussian Noise). Let f δ be a
realization of a random variable Y with

Y = Ax+N (4.20)

39



where N is (0, σ2) normal distributed and A is an (ill conditioned) measurement matrix.
The likelihood of observing f δ is given by

p(f δ|x) =
N∏
i=1

1

σ
√
2π

exp

(
−1

2

(
(Ax)i − f δ

i

σ

)2
)
. (4.21)

By applying the logarithm we obtain:

log(p(f δ|x)) =
N∑
i=1

log

(
1

σ
√
2π

)
− 1

2

(
(Ax)i − f δ

i

σ

)2

. (4.22)

By deriving with respect to x we obtain the following optimality condition

AtAx− Atf δ = 0. (4.23)

This is the normal equation for the least squares problem for the solution of Ax = yδ.
Since A a is an ill conditioned matrix, the solution x of (4.23) might be heavily influenced
by the noise.

As we saw in this example maximum likelihood estimation lead again to the normal
equation, which might give a meaningless solution. Thus we turn our focus to Bayesian
methods, in order to incorporate prior knowledge on the the desired solution.

Bayesian Methods

The central idea in Bayesian methods is to pick an estimator for the desired quan-
tity given the measured data by using Bayes famous rule on conditional probabilities.
Thomas Bayes’ (1701-1761) version of the article An Essay Towards Solving a Problem
in the Doctrine of Chance was edited by Richard Price and published posthumously in
1763 [14]. His famous result on conditional properties for events A and B is given by:

p(A|B) =
p(B|A)p(A)

p(B)
. (4.24)

For a given inverse problem
Ku = f (4.25)

our goal is to use Bayes rule (4.24) to derive an estimator for u. One possibility is to
maximize the a-posteriori probability

p(u|f). (4.26)

By applying the Bayes rule, we can compute this probability as

p(u|f) = p(f |u)p(u)
p(f)

. (4.27)

For computing the maximum a posteriori (MAP) estimator we maximize this probability
(4.27) now with respect to u; since p(f) is a constant independent of u, this factor can be
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neglected in the maximization process. Again we minimize the negative log-likelihood
function, instead of maximizing (4.27). This leads to the problem

xMAP := min
u

(− log(p(f |u))− log(p(u))) . (4.28)

While p(f |u) is called the likelihood (compare the previous paragraph), p(u) is called
the prior probability. Dependent on the noise characteristics of the given problem, the
negative log-likelihood is then given as a distance measure, e.g. the squared L2 norm

− log(p(f |u)) = 1

2σ

ˆ

Ω

(u− f)2dx (4.29)

or the Kullback-Leibler divergence

− ln(p(f |u)) =
ˆ

Ω

u− f log(u)dx. (4.30)

The prior probability is often given by a Gibbs density [54] of the form

p(u) ∝ exp(−R(u)) (4.31)

with R being a regularization term like total variation. We will explore different regu-
larization terms, designed for specific tasks in imaging, in the forthcoming sections. If
we choose e.g. a Gaussian Prior of the form

p(u) ∝ exp(−‖u‖2) (4.32)

and have data with Gaussian noise, then the Bayesian approach is strongly connected
to the Tikhonov functional; compare [81, Chapter 3.4, Example 5].
Note that MAP-estimation is only one method in Bayesian modeling, there are others
such as the conditional mean-estimate

xCM = E{x|f} =

ˆ

Rd

xp(x|f)dx, (4.33)

provided that the integral converges [81]. Since we focus on MAP-estimation methods
in this thesis we will not elaborate further on this, but refer to [81] for more details.
We have now stated the basic ideas of Bayesian modeling in inverse problems. See for
example [81, 79, 140] for far more detailed introductions and discussion to statistical
and especially Bayesian methods in inverse problems. Having described a framework,
which allows us to incorporate noise characteristics as well as prior knowledge on the
desired solution into the modeling of an ill-posed problem, we will now turn our focus
on the two problems we are mainly concerned with throughout this thesis.
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4.2 Reconstruction Problems

We start this section on reconstruction problems with formulating a general framework
for our goal of reconstructing images from indirect measurements. In medical imaging
reconstruction problems are for example given in:

� Computerized Tomography (CT)

� Emission Tomography (ET)

� Electric Impedance Tomography (EIT)

While in the first two modalities (a random sample of) the Radon transform is mea-
sured [40, 106], in EIT one tries to deduce the conductivity inside the body from the
conductivity on the boundary [35].
We will now examine the building blocks of reconstruction problems:

� The output of a reconstruction method is the reconstructed image.

� Images are not measured directly, instead we have indirect measurements (for
example on the boundary of the image domain).

� The measurements or data is the input in the reconstruction problem.

We will put these blocks into a mathematical framework. The indirect measurements
mentioned above are recorded in the data space. Thus we have a forward operator

K : X → Y , (4.34)

mapping from a function space on the image domain X into the domain of measurements.
While different imaging modalities might have different forward operators, usually the
forward operator in different reconstruction problems is considered compact. Hence for
given measurements f we have to solve the problem

Ku = f (4.35)

for u. This is exactly the prototype of an inverse problem we introduced earlier. In this
thesis we are mostly concerned with the Radon-Transform [106].

Definition 4.2.1 (Radon transform). Let f : Rn → R be a Schwartz function. For
θ ∈ Sn−1 and s ∈ R the Radon transform is given by

(Rf)(θ, s) =

ˆ

xθ=s

f(x)dx. (4.36)

Remarks and Extensions.

� Schwartz functions are C∞ functions with rapidly decreasing derivatives [106].
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� The name of this transform is due to Johann Radon, who already gave a recon-
struction formula in 1917 [118]. Being a completely technical problem then, the
Radon transform found its application in the 1960s and 70s, when the first com-
puter tomographs were designed by Cormack [38] and Hounsfield [78]. Both did
not know about Radon’s work and had to design reconstruction algorithms on
their own.

The following example illustrates that direct inversion is not an option for compact
operators.

Example 4.2.1 (Inversion of a compact operator). Let X be an infinite-dimensional
Hilbert space, K : X → X a compact operator. For any orthonormal system (on)n∈N we
know that the sequence of images

(K on)n∈N

is bounded, because K is compact. Therefore we find a subsequence nj, such that

(K onj
)j∈N

converges, but in contrast, we have for any k = l:

‖ok − ol‖2 = 〈ok − ol, ok − ol〉 = 〈ok, ok〉︸ ︷︷ ︸
=1

−2 〈ok, ol〉︸ ︷︷ ︸
=0

+ 〈ol, ol〉︸ ︷︷ ︸
=1

= 2.

Thus the inverse K−1 cannot be continuous.

This example shows that image reconstruction is ill-posed in the sense of Hadamard
(Definition 4.0.1). Since the presented modalities can not guarantee exact measurements
instead of noisy versions of the projected image, we will adapt the methods from the
previous section to the reconstruction problem.
Since our main application is emission tomography where a sample of the Radon trans-
form is recorded, we focus on the Radon transform as forward operator.
In order to highlight possible difficulties in inverting the Radon transform, we study
the inversion of a tomography matrix corresponding to a discrete version of the Radon
transformation.

Example 4.2.2 (Discrete 2D-tomography). We use the regularization toolbox by Per-
Christian Hansen [71, 72] for an academic example. This package allows us to generate a
2D-tomography matrix for a 64× 64 images and 64 · 64 = 4096 rays crossing the domain
in random directions. This matrix is severly ill-conditioned, as we observe by a plot of
the singular values:
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Figure 4.1: Logarithmic plot of all 4096 singular values of the tomography matrix. Note
that the 500 smallest singular values decay rapidly towards 0. SVD computed
by the regularization toolbox [71].

We aim to reconstruct the Shepp-Logan software phantom (intensities in the interval
[0, 1]) provided by Matlab from measurements corrupted by Gaussian noise (with mean
0 and standard deviation σ = 0.25):

(a) Ground Truth (b) Direct Inversion

(c) Truncated SVD
(J = 3500)

(d) Tikhonov Regular-
ization (α = 10)

Figure 4.2: Reconstruction results for the Shepp-Logan-Phantom for different regulariza-
tion methods. The direct inversion of the tomography matrix is meaningless.
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There is no similarity between the ground truth and the solution obtained by direct
inversion of the projection operator. In contrast truncated SVD and Tikhonov regular-
ization allow us to see the structure of the object. Note that we did neither optimize
the truncation index J nor the regularization parameter α. However the structure of
the object is visible.
As a second example we aim to reconstruct an image consisting of two homogenous
regions with intensities in the interval [0, 10], which was again corrupted with Gaussian
noise with mean 0 and standard deviation σ = 0.25:

(a) Ground Truth (b) Direct Inversion

(c) Truncated SVD
(J = 3500)

(d) Tikhonov Regular-
ization (α = 10)

Figure 4.3: Reconstruction of a single white square on black background with different
regularization operators. Again the direct inversion leads to meaningless
results.

As we see both regularization methods recover again the structure of the object, but we
have a high amount of background noise.

The reconstruction example shows, that the regularization methods we presented earlier
have difficulties in reconstructing homogeneous regions with sharp edges. In the next
section we will present a regularization functional which will be able to yield sharp edges.
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TV-Regularization for (Density) Images

As the reconstruction problem is stated exactly in the same way as the prototype of
an inverse problem in the section before and we already applied these regularization
methods, we do not discuss the presented regularization operators adapted to the recon-
struction problem again. We rather focus on a specific regularization functional, which
can be used as a norm penalty in the Tikhonov approach or for determining an a priori
probability in a Bayesian framework.
In this section we want to present TV-regularization for density images, which will
later correspond to the prior knowledge we impose on the image, because it favors
homogeneous regions with sharp edges. We focus only on this regularization, since our
application is in medical imaging and TV-regularization allows for discontinuous images
with sharp edges. This regularization was first introduced for image denoising by Rudin,
Osher and Fatemi in 1992 [127] and is now known as the ROF-model. Recently TV
regularization has been applied to different tasks in imaging. We will now present the
basics of the class of admissible functions for the method, namely the space of functions
of bounded variation BV .
In fact there are many different equivalent ways to define BV−functions (compare
[8, Chapter 10, Definition 10.1.1]), but we focus on the definition by Burger and Osher
[26]. In order to define total variation, we consider the following spaces of test functions

Z̃ := {∇ · g | g ∈ C∞
0 (Ω;Rd, ‖g‖∞ ≤ 1}, (4.37)

where ‖g‖∞ is given by

‖g‖∞ := ess sup
x∈Ω

√√√√ n∑
i=1

gi(x)2. (4.38)

The BV seminorm can now be defined with help of these test functions.

Definition 4.2.2 (BV seminorm and functions of bounded variation). Let

u : Ω ⊂ Rd → R.

The BV-seminorm is then given by:

|u|BV (Ω) := sup
z∈Z̃

ˆ

Ω

uzdx. (4.39)

Consequently we define the space of functions with bounded variation BV (Ω) by

BV (Ω) := {u ∈ L1(Ω) | |u|BV (Ω) < ∞} (4.40)

This space is equipped with the following norm:

‖u‖BV := ‖u‖1 + |u|BV (Ω) (4.41)
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Remarks and Extensions. The BV-seminorm is lower semicontinuous in the L1
loc topology

[5, Remark 3.5].
If u ∈ W 1,1 then the BV-seminorm is given by:

|u|BV (Ω) =

ˆ

Ω

|∇u|dx. (4.42)

The definition above is the isotropic version of the TV-regularization. By replacing
the Euclidean (4.38) norm of the gradient with an appropriate functional anisotropic
versions of the TV regularization can be derived [26]. Although leading to the same
space BV (Ω), the choice of the norm can have significant impact on the reconstruction
- compare [26, Figure 4] and the references given therein.

Properties of BV-functions

In the following we collect some useful properties from [25] and [8]. One of our basical
tools in the analysis of functionals is the direct method in the calculus of variations. For
using this method we have to verify lower semicontinuity and compactness of sublevel
sets. The latter one can be shown by the Banach-Alaoglu theorem (compare Theorem
3.4.7), if the functional is defined on the dual of a Banach space. We present shortly the
properties of BV functions which are crucial to the analysis we carry out in Chapter 7.
For the analysis in BV one often decomposes a function u ∈ BV (Ω), such that

u = u0 + u1 (4.43)

with

ˆ

Ω

u0dx = 0 |u1|BV (Ω) = 0. (4.44)

Remarks and Extensions. This decomposition can be achieved for any function
u ∈ BV (Ω) by setting

u0 := u−
ˆ

Ω

udx u1 ≡
ˆ

Ω

udx. (4.45)

In doing so much of the analysis can be carried out in the space

BV0(Ω) := {u ∈ BV (Ω)|
ˆ

Ω

udx = 0}. (4.46)

Proposition 4.2.3. For BV0(Ω) we can construct a space Z, such that BV0 = Z∗. For
the space

Z0 := {∇ · g|g ∈ C∞
0 (Ω,Rd)} (4.47)
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equipped with the norm
‖p‖Z := inf

g∈C∞
0 (Ω,Rd)
∇·g=p

‖g‖∞, (4.48)

we denote the completion by Z := Z0. Then BV0 is the dual of this space, namely:

BV (Ω)0 = Z∗. (4.49)

Proof. See [26, Proposition 3.4].

Note that also BV (Ω) is the dual of a separable space, see for example [5, Remark 3.12].
According to [5] we can define a weak-star convergence, which is consistent with BV
being the dual of a Banach space:

Definition 4.2.4 (Weak-star convergence in BV ). Let u, un ∈ BV (Ω). We say

un ⇀∗ u

if the function converges strongly

lim
n→∞

‖un − u‖1 = 0 (4.50)

as well as the differential weakly:

lim
n→∞

ˆ

Ω

ϕ(Dun −Du)dx = 0 ∀ϕ ∈ C0(Ω). (4.51)

Note that even the weak star convergence, which is implied by strong and even weak
convergence, guarantees strong convergence in L1. As we will see later, this will be
useful to prove convergence properties of compositions of functions. Furthermore we
can approximate any BV -function by a sequence of smooth functions:

Theorem 4.2.5 (Approximation by smooth functions). Let u ∈ L1(Ω;Rm) Then

u ∈ BV (Ω,Rm),

if and only if there exists a sequence un in C∞(Ω,Rm) converging to u in L1(Ω,Rm) and
satisfying

L := lim
n→∞

ˆ

Ω

|∇un|dx < ∞ (4.52)

Proof. [5, Thm. 3.9].

With TV-regularization we have described a regularization functional, which favors sharp
edges and homogeneous regions, which is favorable in medical imaging. In order to cope
with regions where the intensity changes smoothly between the edges, the ideas presented
above can be generalized to higher derivatives [19]. Additionally classical total variation
regularization can produce an unwanted staircasing effect, which can be removed by
adding higher order terms [34].
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4.3 Image Registration

Image registration is the task of aligning two or more images, which are mismatched
because of a different time of taking, view point or even image modality. We will only
briefly present the basics of image registration, for a detailed overview see for example
[100] and the references therein. We start by giving the image registration problem in
Modersitzki’s formulation [101]:

Image Registration Problem

Find a reasonable transformation, such that a transformed version of a tem-
plate image is similar to a reference image.

We will now define a functional, such that the minimizer of the functional solves the reg-
istration problem. In this problem several words are in bold print; these will correspond
somehow to the building blocks of the functional:

� Template f0 and reference image f1 are the images to be registered.

� The transformation y shall be found as the minimizer of the functional (4.53).

� The similarity is measured with a distance measure D.

� The reasonability of the transformation corresponds to the regularization energy
of the transformation S(y), such that we call a transformation reasonable, if the
regularization energy is sufficiently small.

Building these together we can define the following cost functional:

Registration Functional

J(y) := D(f0(y), f1) + S(y) (4.53)

Note that template and reference image are often dentoted by T and R, but since we will
use the letter T for for transformation operators later, we do not adopt this notation.
We start by motivating the use of regularization energies and continue with presenting
all building blocks of the registration functional shortly.

4.3.1 Image Registration: An Ill-Posed Problem

To give a more visual impression of the need for special treatment of image registration
we present another example by [48]:

Example 4.3.1 (Registration of two squares). The following example illustrates the
ill-posedness of image registration:
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(a) Reference (b) Template

Figure 4.4: A simple registration problem: The template image shall be aligned with the
reference image.

As we see directly, there are several ways to align both images: A rotation of the
whole image as well as a translation leads to an exact registration result. In fact any
transformation that maps the points from the upper right square to the lower left is
exact. Because this latter solution is in most cases not desired, regularization has to be
employed. Note that these registration possibilities may also cause several problems in
the evaluation of an estimated motion vector field.

As we motivated with this short example, in most cases regularization becomes inevitable
for image registration. This regularization can be linked to a priori information on the
desired quantity in the Bayesian modeling. In the following we will outline the central
building blocks of the registration functional.

4.3.2 Transformation Models

There are two transformation models mainly used in image registration. The first one
is the composition of an image f0 with the transformation y

T ic
y f0 := f0(y). (4.54)

The composition is called intensity-constant transformation operator, because the in-
tensity of the transformed image is not modulated.
While doing registration on density images one might desire, that the integral of the
transformed image is the same as the integral of the non-transformed. Motivated by
the transformation theorem this leads to the so called mass-preserving transformation,
defined for transformations with positive Jacobian determinants [128]

Tmp
y f0 := f0(y) det(∇y). (4.55)
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Note that each transformation operator is linear with respect to the image it is applied
to for any fixed transformation. We will use this property later for deriving a registration
framework with noise modeling.

4.3.3 Distance Measures

In this section we will briefly outline some distance measures used in image registration,
see e.g. [101] for more details. The first and most intuitive way to define a distance
measure is to compare the intensity of two images pixelwise:

Definition 4.3.1 (Sum-of-squared-differences). For two images f0, f1 ∈ L2Ω the sum-
of-squared-differences distance measure (SSD-measure) is defined by

DSSD(f0, f1) :=

ˆ

Ω

(f0 − f1)
2dx. (4.56)

Naturally this distance measure is best suited for two images from the same modality, but
registering two images from different modalities is a common task in image registration.
Thus there are several approaches to design distance measures for multi-modal image
registration, such as [124, 66]. In this case the central idea in the latter is that even if
intensities might not match, the edges of two aligned images from different modalities
are still in the same place. Detecting edges via the image gradient leads to the following
distance measure:

Definition 4.3.2 (Normalized Gradient Field). For two imagesf0, f1 ∈ W 1,2(Ω) the
normalized gradient field distance measure (NGF-measure) is defined by:

DNGF :=

ˆ

Ω

1−
(
n(f0)

tn(f1)
)2

dx (4.57)

with

n(T ) := n(f0, η) :=
∇f0√

|∇f0|2 + η2
. (4.58)

The parameter η is an edge parameter, which determines what is considered to be an
edge and what is considered to be within the noise level.
We restrict the presentation of distance measures to these two examples. There is a
variety of distance measures used in the literature. See for example [101] for further
measures like mutual information or normalized cross correlation.
Having presented the basics of image registration, we will use this as a tool in the later
parts of the thesis. A possibility how to actually solve the image registration problem
will be presented in the Chapter 5 dealing with the numerical basics.
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4.3.4 Parametric and Non-Parametric Image Registration

We mainly distinguish between two types of image registration: parametric and non-
parametric [101]. While non-parametric transformations are completely arbitrary para-
metric transformations can by described by few parameters:

Definition 4.3.3 (Parametric-transformations). Let (φl)l=1,..,m, be a finite set of basis
functions. A transformation y : Rd → Rd is called parametric (with respect to the (φl))
iff y can be expressed as a linear combination by parameters ωl, such that

y(x) =
m∑
l=1

ωlφl(x). (4.59)

We will enlighten this definition by the following example presenting one of the most
common parametric registration methods:

Example 4.3.2 (Affine linear transformations in 2D). Let A =

(
a1,1 a1,2
a2,1 a2,2

)
∈ R2×2 be

a regular matrix with ai,j = 0. Furthermore let b =

(
b1
b2

)
∈ R2 with bi = 0 a translation

vector. Then the affine linear transformation y, induced by A and b is given by:

y : R2 → R2 x → Ax+ b. (4.60)

We define the following basis functions:

φ1(x) =

(
x1

0

)
φ2(x) =

(
x2

0

)
φ3(x) =

(
1
0

)

φ4(x) =

(
0
x1

)
φ5(x) =

(
0
x2

)
φ6(x) =

(
0
1

)
. (4.61)

Thus the transformation is given by:

y(x) = a1,1φ1(x) + a1,2 + φ2(x) + b1φ3(x) + a2,1φ4(x) + a2,2φ5(x) + b2φ6(x) (4.62)

The linear function can be described with six basis functions and parameters. Note that
we made the assumption on regularity and non-zero components of the vector only to
guarantee that we need in fact all basis vectors to parametrize the transformation.

In registration pipelines the parametric estimation is often used as a pre-registration
step to obtain the global behavior of the transformation, since this can be done with low
computational costs. Subsequently, a non-parametric registration is usually performed
in order to explore the local behavior of the desired transformation.
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4.3.5 Regularization for Transformations

Since regularization is already a central component of the registration problem formu-
lation by Modersitzki we presented at the start of this section, we will not carry out a
Bayesian approach in order to deduce the framework we present here. However we will
do this in a generalized form in Chapter 6. In this paragraph we focus on some common
regularizers used in image registration.
Many of the regularization energies used in image registration are derived from physical
properties of the transformation. See for example [100] for a detailed modeling and an
elaborate explanation of the underlying physical basics. In order to keep this paragraph
short, we focus only on elastic and hyperelastic regularization. See [100] for a thorough
illustration of curvature and diffusive regularization.
The central idea of elastic regularization is, that the regularization energy of a trans-
formation is given by the elastic potential of the transformation. In his two books on
image registration Modersitzki presents two different versions of the elastic potential
with positive Lamé constants μ and λ. In his first book [100] he uses the following
version

Selas
1 (y) =

ˆ

Ω

μ

4

d∑
j,k=1

(∂xj
yk(x) + ∂xk

yj(x))
2 +

λ

2
(∇ · y(x))2dx, (4.63)

while in his second book [101] he proposes

Selas
2 (y) =

ˆ

Ω

μ

d∑
e=1

〈∇ye,∇ye〉+ (μ+ λ)(∇ · y)2dx. (4.64)

Note that sometimes instead of the transformation y the displacement

y(x)− x (4.65)

is regularized. In doing this one can achieve that the identity (not transforming the
image) has zero regularization energy. While both versions of the elastic potential look
similar, the first one differs from the second by the occurence of mixed terms ∂xj

yk∂kkyj.
This has direct consequences for verifying coercivity properties of the regularizer: While
coercivity can be directly deduced for the latter, coercivity is a consequence of Korn’s in-
equality [36, Thm. 6.3-3] for the first. Nevertheless both versions of the elastic potential
behave similar as a regularizer.
These somehow classic regularizers may cause severe problems, if the transformation is
expected to be (at least locally) invertible. Especially elastic regularization can lead to
non-invertible transformations [25]. Therefore we will focus on regularization functionals,
which yield finite energy only for locally invertible transformations.

Hyperelastic Regularization

The central idea of hyperelastic regularization is to consider energy functionals of the
form
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S(y) =

ˆ

Ω

g(∇y, cof(∇y), det(∇y))dx. (4.66)

The function g is chosen to guarantee certain features for the class of admissible trans-
formations. The hyperelastic energy we use throughout this thesis is given by

Shyper(y) =

ˆ

Ω

α1 len(∇y) + α2 surf(cof(∇y)) + α3 vol(det(∇y)) dx , (4.67)

with the penalty functions

len(s) = ‖s− I‖2Fro , surf(s) =
(
‖s‖2Fro − 3

)2
, vol(s) =

(s− 1)4

s2
.

The three terms punish deviations from the identity related to length, surface and vol-
ume; see [25] for more details. This regularization energy directly implies a certain set
of admissible transformations. Together with a detailed introduction of the hyperelastic
regularization energy Ruthotto [129] gave the following set of admissible transformations:

yk ∈ A

with

A := {y ∈ A0 : |
ˆ

Ω

y(x)dx| ≤ vol(Ω)(M + diam(Ω))} (4.68)

where Ω is bounded by M, and A0 is defined by:

A0 := {y ∈ W 1,2 : cof(∇y) ∈ L4(Ω,R3×3)

det(∇y) ∈ L2(Ω,R), det(∇y) > 0 a.e.}

Remarks and Extensions. If y ∈ A0 we call y an admissible transformation. Note
that all admissible transformations fulfill the conditions on the cofactor in Proposition
3.2.9 and Theorem 3.3.8.

As we see the admissible transformations have strict positive Jacobians a.e., which is
sufficient for the transformation to be locally invertible. Note that this deduction is
not trivial: Since by the Sobolev embedding theorem (Theorem 3.1.11) an admissible
function does not need to be continuous we cannot use the implicit function theorem to
deduce the existence of a local inversion. Even worse, the standard theory about (local)
invertibility of Sobolev mappings is focussed on mappings in W 1,d (see for example
[49, 87]), so this theory would only be applicable for d = 2. However, we can use some
results from the theory of Cartesian currents we mentioned briefly earlier and use the
fact, that:

A ⊂ Ad−1,d−1(Ω,R
m) (4.69)
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with Ad−1,d−1(Ω,R
m) as being defined before. Then a result from Müller [99] yields

the closedness of the graph [59] of the transformation y and thus y is a weak local
diffeomorphism as defined by Giaquinta et al. [61]. We will not elaborate on this
further, because we used this argumentation only to demonstrate that we can expect to
have local invertibility and that this property is not directly guaranteed by the positivity
of the Jacobian determinant.
We conclude this short course on hyperelastic regularization by stating the convergence
properties, Ruthotto proved [129]:

Theorem 4.3.4 (Convergence properties of admissible transformations). Let Ω be a
domain with a C1 boundary and yk, y be admissible transformations. Then we have:

yk ⇀ y in W 1,2(Ω,R3)

cof(∇yk) ⇀ H in L4(Ω,R3×3)

det(∇yk) ⇀ v in L2(Ω,R)

⎫⎪⎬
⎪⎭⇒

{
H = cof(∇y)

v = det(∇y)
. (4.70)

Proof. See [129, Chapter 3, Theorem. 4].
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5 Numerical Methods to Minimize
Functionals

This chapter deals with numerical methods to solve the optimization problems we in-
troduced in the previous chapter. In general there are two different ways to obtain
solutions for these problems: The First-Discretize-then-Optimize approach, where the
problem is first discretized and this version is optimized afterwards. In contrast to
this the First-Optimize-then Discretize approach is characterized by determining opti-
mality conditions for the continuous problem followed by solving these conditions via
discretization techniques.
In the following we will illustrate the two different ways and outline some realizations.
Since the focus of this work lies on the First-Discretize-then-Optimize method, it will
be described in more detail.

5.1 Discretize-then-Optimize Methods

The central idea of the First-Discretize-then-Optimize approach is to derive a sequence
of discretized versions of the functional to be minimized. Each discretized version is
then solved with the help of tools from optimization. We start by deriving a discretized
version of the functional to be minimized.

5.1.1 Discretization

As we see for example in the registration functional (4.53) many functionals in image
processing contain integrals. For the discretization we divide the image domain into
small disjoint boxes Bi for i = 1, ..., N , such that⋃

i

Bi = Ω Bi ∩Bj = ∅ ∀i = j. (5.1)

These boxes are called pixels, or in the case of three dimensional domains sometimes
voxels. With this discretization of the image domain the discretization of a continuous
image is straightforward: For a continuous image ρ we set the value in bi in the i-th
pixel as

bi :=

ˆ

Bi

ρ(x)dx. (5.2)
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Taking this definition of the discrete image into account, we continue by introducing
discrete versions of transformations in the next paragraph.

Grids

A discrete version of a transformation is given by the values on a point sample of the
domain, the so-called grid. We only briefly mention the most important notions and
construction methods for grids; see for example [65, 101] for a description in more detail.
In the following we distinguish between the following three types of grids:

cell-centered grids

nodal grids

staggered grids

We will explain these basic grids in two dimensions, since the extension to higher di-
mensions is straightforward. As a preparation we start with grids in one dimension:
Let Ω = [0, ω1] and n the number of cells Ω is divided into. Then the cell centered grid
is given by

xcc(i) :=

(
i− 1

2

)
h i = 1, ...n with cell size h =

ω1

n
. (5.3)

Note that the grid points of the cell-centered grid, are the center points of the grid cells.
In contrast the grid points of the nodal grid are the nodes of the grid cells

xn(i) := ih i = 0, ...n with cell size h =
ω1

n
. (5.4)

Figure 5.1: Nodal (red crosses) and cell-centered (green circles) grid in one dimension.
Graphic from [113].

Having defined these grids in one dimension, the extension to higher dimensions can be
done in a natural way: We again assume a rectangular domain

Ω := [0, ω1]× [0, ω2].

Here we can define the cell-centered and nodal grid for each component of the Cartesian
product. Cell-centered and nodal grids in two dimensions are then obtained via the
Cartesian product of the one-dimensional ones. If we combine a cell-centered and a
nodal grid, then we get the so called staggered grids.
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Figure 5.2: Nodal (red crosses), cell centered (green circles) and staggered (triangles)
grids in two dimensions. Graphic from [113]

Note that all these grids are used in our registration framework, so we need a grid to
grid interpolator, which changes between the different grid types. We will not focus on
this interpolator, but rather use it as a tool; see [113, 101] for further details on this
matter. Having explained these basic grids, we now discuss numerical integration and
differentiation.

Numerical Integration and Differentiation

As we have seen in the previous chapter, many of the distance measures in image regis-
tration are given as an integral over an integrand function. The regularizers also involve
integration of the norm of some derivatives of the transformation. Therefore we start
by shortly outlining numerical integration and differentiation.
For a sufficiently regular function u given on a cell centered grid xcc(i) with cell size hcc

we perform numerical integration with a simple midpoint quadrature rule (compare for
example [42])

ˆ

Ω

u(x)dx =
∑
i

hccu(xcc(i)) +O(hcc). (5.5)

Note that there are several more accurate quadrature formulas, but for the ease of
computations we stick to this simple midpoint quadrature formula. See for example [42]
for a detailed presentation of various quadrature formulas.
Having shown a simple but yet useful way for numerical integration, we turn our focus
towards numerical differentiation. We only give a short overview; detailed descriptions
can be found in [24]. Again we choose an intuitive way to approximate the derivative of
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a function: Inspired by the definition of differentiability we use the difference quotient
Δ for the approximation of the derivative of a function u for h > 0

Δfu(x) :=
u(x+ h)− u(x)

h
Δbu(x) :=

u(x)− u(x− h)

h
. (5.6)

While these so called forward and backward difference quotients have an error in O(h),
we can define the central difference quotient with an error in O(h2) by

Δcu(x) :=
u(x+ h)− u(x− h)

2h
. (5.7)

Note that this property of the central difference quotient is one of the reasons, we choose
different transformation grids for some regularizers: If a transformation is given on a
nodal grid, we are able to compute an approximation for the derivative on a cell centered
grid with error in O(h2) by using the central difference quotient. See for example [24]
for further details on numerical differentiation and [101] for a detailed description of the
relation between regularization in image registration and the choice of the grid type,
representing the discrete transformation.

5.1.2 Line Search and Trust Region Methods

By applying the described discretization to a functional to be minimized (e.g. the re-
gistration functional) we end up with a finite, but maybe high-dimensional optimization
problem.
Let us assume we want to register two three-dimensional images with resolution 175 ×
175× 47 voxels, then the desired (cell-centered) grid has roughly four million (175 · 175 ·
47 · 3 = 4318125) unknowns. Since analytical minimization is not an option, we need
methods to deal with such big optimization problems. In this section we will briefly
outline the basics of two widely used classes of optimization strategies: line search and
trust region methods. We will roughly follow the presentation from [110]; see also there
for a far more detailed course on numerical optimization.
While line search methods find a search direction (for example s = −∇J(x)) and try
to minimize the effective function along this line, in trust region methods the function
is described via a model function near the actual point and the minimizer of the model
function is the next iterate.
The trust region minimization follows roughly the following scheme:

1. Choose an initial point x0 and trust region size Δ0.

2. Define the model function at the current point.

3. Minimize the model function inside the trust region.

4. Adjust the size of the trust region Δk and take the minimizer as next iterate, if
the step is accepted. Go to step 2.

The key questions here are:
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� How do we choose the model function?

� How do we solve the restricted optimization problem in step 2?

� How is the size of the trust region adjusted?

� When is a step accepted?

We will not answer these questions in detail, but we will shortly present the ideas how
these questions can be answered. For a detailed description and comparison between
different possibilities how to answer the questions see [110].
The model function mk for a function j at the iterate xk is usually chosen as a quadratic
approximation

mk(xk + s) := j(xk) + sT∇j(xk) +
1

2
sTBks, (5.8)

where the matrix Bk is either the Hessian ∇2J(xk) or an appropriate approximation.
Solving the trust region subproblem is the most complex step in the algorithm. Since
we have to deal with a restricted optimization problem, the minimization method has
to be chosen carefully. Since we will not use trust region methods in our optimization
scheme, we only present the Cauchy point (approximate) solution to the problem. For
that we only solve

sk := argmin
s

j(xk) +∇j(xk)
T s s.t. ‖s‖ ≤ Δk. (5.9)

Here the solution is directly given by

sk := − Δk

‖∇j(xk)‖
∇j(xk). (5.10)

Now we calculate the scalar τk that minimizes mk(τsk) and choose the Cauchy step as

sCk := τksk. (5.11)

Note that the Cauchy step only solves a restricted linear problem instead of the quadratic
model. This can be improved via the Dogleg- or Steihaugs CG-method [110].
The last two questions can be answered together: For a step sk we can define the ratio

rk :=
j(xk)− j(xk + sk)

mk(0)−mk(sk)
(5.12)

between actual reduction (numerator) and predicted reduction (denominator). Since the
denominator is always non-negative, a negative ratio always indicates an (unwanted)
increase of the function. Thus a step is accepted, if the ratio is greater than some
specified value. If this ratio is in addition close to 1, the model fits well to the function
and the trust region can be enlarged - in contrast the size of the trust region is decreased,
if the ratio is negative or close to zero.
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In contrast in line search methods we are looking for a step length α̂, such that for a
given search direction s:

α̂ := argmin
α

j(xk + αs) (5.13)

If this equation is solved exactly in an algorithm, this is called an exact line search
method. Since it is mostly too time consuming to solve (5.13) exactly, there are several
conditions employed, which can guarantee sufficient descent in inexact line search me-
thods. Now we discuss some of these conditions before we present some choices of descent
directions:

Strategy Condition(s) Parameter choice

Armijo j(x+ αs) ≤ +σα(∇j(x)T s) α, σ ∈ (0, 1)

Goldstein j(x) + (1− σ)α∇j(x)T s ≤ j(x+ αs) σ ∈ (0, 0.5)
j(x+ αs) ≤ j(x) + σα∇j(x)T s

Wolfe-Powell j(x+ αs) ≤ σα∇j(x)T s σ ∈ (0, 0.5)
∇j(x+ αs)T s ≥ ρ∇j(x)T s ρ ∈ [σ, 1]

Table 5.1: Some common step length strategies. See for example [110].

Note that global convergence properties of line search methods rely on Zoutendijk’s
theorem; see for example [110, Chapter 3.2] for further details, since a discussion about
convergence properties goes beyond the scope of this chapter. Note that the Goldstein
conditions are not well suited for quasi-Newton methods [110]. Furthermore finding
step length parameter fulfilling the Wolf conditions usually requires more computational
effort then finding Armijo step lenghts by backtracking line search. Thus we will use the
Armijo condition in our quasi-Newton optimization framework.
Having presented the most common step length strategies we will now turn our focus
on the determination of an appropriate search direction. Inspired by Newton’s method,
there is a class of search directions we will describe in more detail in the next section:

Newton Type Methods

The central idea in Gauss-Newton type methods is, to use an approximation for the
function to be minimized and use this approximation to compute a descent direction.
For example for a function j ∈ C3 we can do the second order Taylor approximation at
a point x
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j(x+ s) = j(x) +∇j(x)s+
1

2
sT∇2j(x)s+O(s3). (5.14)

The central idea is then to minimize this approximation with respect to s. Since this is
a quadratic form, it is known, that (for ∇2j positive definite) the minimizer ŝ is given
by:

ŝ = −∇2j(x)−1∇j(x). (5.15)

If we want to determine the exact Newton search direction we face a problem: Since we
are mostly dealing with big problems it can get very complicated to invert the Hessian or
even to store it. In fact often a conjugate gradient approach [98] is used to invert the Hes-
sian. If we take a look at the PET-registration, which is an application for the motion-
corrected reconstruction framework we present later, the Hessian in this case would be of
the size 4, 318, 125×4, 318, 125, with 18, 646, 203, 515, 625 elements in total. Assume that
each entry is saved as a double with 8 bytes, this requires 149, 169, 628, 125, 000 bytes,
respectively 149169628.125 gigabytes. Even though the amount of memory needed can
be dramatically decreased by using the symmetry and possible sparsity of the Hessian,
storing the full Hessian is often not an option. Because of that quasi-Newton methods,
where the Hessian matrix is approximated, are often used.
We will now present the Broyden-Fletcher-Goldfarb-Shanno method (BFGS), which is
the most popular quasi-Newton-Algorithm and will be used in our minimization frame-
work. For an initial estimation of the Hessian B0, we update the approximation of the
Hessian by using only information from the gradient

Bk+1 := Bk −
Bksks

T
kBk

sTkBksk
+

γT
k γk
γT
k sk

, (5.16)

with

sk := xk+1 − xk γk := ∇j(xk+1)−∇j(xk). (5.17)

Note that Bk+1 stays symmetric positive definite for a convex function, if γT
k sk > 0.

Unfortunately, this is not the case if we deal with a non-convex objective function. To
overcome these difficulties a modified BFGS-approach has been proposed [90]. The key
idea is to modify the γk slightly to

γ̃k := γk +

(
1 + max

{
− γT

k sk
‖sk‖2

, 0

})
‖∇J(xk)‖sk (5.18)

and then use (5.16) with γ̃k instead of γk. According to the authors this modified method
also has a global convergence property if the function is not necessarily convex, but has
only Lipschitz-continuous gradients. [90, Theorem 3.4]. By applying this method a
superlinear convergence rate may be achieved. Note that this convergence property is
only given, when the original BFGS-method converges.
Another useful property of the BFGS update is, that with the help of the Sherman-
Woodbury-Morrison formula [110, Appendix 2] the inverse can directly be obtained
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from the previous iterate. Let B−1
k be the inverse for Bk and Bk+1 be constructed by

(5.16), then

B−1
k+1 =

(
I − skγ

T
k

γT
k sk

)
B−1

k

(
I − γks

T
k

γT
k sk

)
+

sks
T
k

γT
k sk

. (5.19)

Another benefit of the BFGS-method is, that one only has to store the gradients and
iterates of the previous steps, instead of the full Hessian. But even this can require to
a huge amount of storage capacities. Inspired by some limited memory CG-algorithms
[114, 136] Nocedal presented a limited memory version of the BFGS algorithm [109].
The key idea is, to store only a certain number of vectors generating the BFGS matrix
and just delete the oldest, once the maximum capacity is reached. The l-BFGS method
converges, if certain convexity assumptions are fulfilled; see [92, Theorem 6.1].

5.1.3 Multilevel Methods

Another concept for solving the registration problem are multilevel methods. Inspired
by multigrid strategies for partial differential equations (see [67, 141] for an introduction)
the idea is to solve the problem on a coarse grid with less computational cost and use
this solution as a initial guess to solve the problem on a finer grid.

Figure 5.3: Multilevel representation of the registration problem from Figure 4.4. Note
that the squares overlap at the lowest level (left), while they are disjoint at
the highest (right). Plots by the FAIR toolbox [101]

This approach has the advantage, that it decreases the probabilty of finding local instead
of global minima. While the squares (Figure 5.3) on the highest level are completely
disjoint, the identity is a local minimum: Moving the square a bit does not improve the
data fidelity, but results in a higher regularization energy. In contrast the overlap of the
squares on the lowest level can push the template image in the right direction.
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Another aspect of the multilevel approach is the lessening of noise impact, as we motivate
in the following example:

Example 5.1.1 (Multilevel with Gaussian noise in 2D). Let A = ai,j be a two dimen-
sional image corrupted with independent identically distributed Gaussian noise, such
that

ai,j = âi,j + εi,j. (5.20)

Here â denotes the uncorrupted image and ε is standard normally distributed with mean
zero and variance σ2. The image B = bi,j at the level below is given by

bi,j =
ak,l + ak+1,l + ak,l+1 + ak+1,l+1

4
(5.21)

for suitable k, l.
If we compute the variance at the level below, we obtain

Var(bi,j) = Var

(
ak,l + ak+1,l + ak,l+1 + ak+1,l+1

4

)
=

4σ2

16
=

σ2

4
. (5.22)

Thus the variance decreases with each level by factor four.

Figure 5.4: Multilevel representation of the registration problem from figure 4.4.
Images corrupted by Gaussian noise with mean 0 and standard deviation 50.
Note that the noise is nearly completely removed at the lower levels; this
suggests to pick smaller regularization parameters on coarser levels.

If we expect our regularization parameter to be linked to the variance of the noise
perturbing the data, this suggests to choose smaller regularization weights on coarser
levels.
To conclude this example we inspect the difference between the ground truth images
(Figure 5.3) and the noise corrupted ones (Figure 5.4):
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Figure 5.5: Logarithmic plot for the errors produced by the noise in Figure 5.4. The
linear increase illustrates (5.22).

This example motivates the use of adaptive regularization techniques, where the param-
eter is chosen differently on each level. The behaviour of different noise models for the
multilevel approach has not yet been examined in detail.

5.2 Optimize-then-Discretize Methods

In this chapter we outline the principles of First-Optimize-then-Discretize methods. The
central idea is, to derive optimality conditions for a given functional and then solve them
numerically. For deducing these optimality conditions we will present the extension of
differential calculus to infinite dimensional spaces. Since these optimality conditions
often lead to (weak) solutions of partial differential equations, we present these optimality
conditions for functionals of a specific type.

5.2.1 Differentiation for Functionals

In finite dimensions a sufficient (local) optimality condition in x0 ∈ Rd for function
f ∈ C2(Rd;R) is given by

∇f(x0) = 0 ∇2f(x0) positive definite.

For expanding this into infinite dimensions, we will draw our attention on differential
calculus on infinite dimensional vector spaces. First we turn our focus to directional
derivatives, as introduced by René Gateaux [53]:

Definition 5.2.1 (Gateaux derivative). For any functional J : U → V we define the
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directional derivative at u in direction v by

dvJ(u) := lim
t↓0

J(u+ tv)− J(u)

t
. (5.23)

Iff this limit exists and is finite, then J is differentiable at u in direction v. The set

δJ(u) := {dvJ(u)|dvJ(u) < ∞} (5.24)

is called Gateaux differential. If dJ(u) = ∅, then J is Gateaux-differentiable at u.

Remarks and Extensions. The directional derivative can also be computed via

d

dt
J(u+ tv)|t=0.

The definition from finite dimensional analysis - namely the (total) differential being the
linear map approximating the function locally - was carried out towards functionals by
Frechet [50, 51].

Definition 5.2.2 (Fréchet differential). Let U ,V be Banach spaces and J : U → V .
Furthermore we assume, that the directional derivative dJ(u; v) exists for all directions
v ∈ U . Iff there exists a linear functional J ′(u), which fulfills:

〈J ′(u), v〉 = dvJ(u) (5.25)

as well as the approximation property

lim
‖v‖U→0

‖J(u+ v)− J(u)− J ′(u)v‖V
‖v‖U

= 0. (5.26)

then J is called Fréchet-differentiable at u and J ′(u) the Fréchet differential.

Analogously J ′(û) = 0 is a necessary condition for û being a minimizer of J . We will
illustrate this definitions by computing Gateaux and Frechet derivatives for the widely
used L2-distance.

Example 5.2.1 (Derivatives for the (projected) L2-distance). Let K : L2(Ω) → L2(Ω)
be a compact operator and J : L2(Ω) → R be defined via

J(U) := ‖Ku− f‖22 =
ˆ

Ω

(Ku− f)2dx (5.27)

for a suitable domain Ω and given data f ∈ L2(Ω). Since L2(Ω) is a Hilbert space this
norm can also be written via the L2 inner product as

‖Ku− f‖22 = 〈Ku− f,Ku− f〉L2(Ω) =

ˆ

Ω

(Ku− f)(Ku− f)dx. (5.28)
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We start by computing the directional derivative with the help of formula (5.2.1). Thus
we need the derivative

d

dt
〈K(u+ tv)− f,K(u+ tv)− f〉. (5.29)

For that we expand the dot product:

〈Ku,Ku〉+ 2t〈Ku,Kv〉+ t2〈Kv,Kv〉 − 2〈Ku, f〉 − 2t〈Kv, f〉+ 〈f, f〉. (5.30)

Deriving with respect to t leads to

d

dt
〈K(u+ tv)− f,K(u+ tv)− f〉 = 2t〈Kv,Kv〉+ 2〈Ku− f,Kv〉. (5.31)

Thus the directional derivative is given by

dJ(u; v) = 2〈Ku− f,Kv〉. (5.32)

By using the adjoint operator, we expect that the Frechet derivative is given by

J ′(u) = 2K∗(Ku− f). (5.33)

Now only the approximation property (5.26) remains to be shown. We start by evalua-
ting:

‖J(u+ v)− J(u)− J ′(u)v‖2
‖v‖2

=
‖〈Kv,Kv〉‖2

‖v‖2

=
|Ω|‖Kv‖22

‖v‖2

≤ |Ω|c2‖v‖22
‖v‖2

= |Ω|c2‖v‖2.

The last inequality holds because K is a compact operator and therefore continuous.
Since |Ω|c2‖v‖2 → 0, as ‖v‖2 → 0, the approximation property is verified and J is
Frechet differentiable with

J ′(u) = 2K∗(Ku− f). (5.34)

This computation gives us again the normal equation as optimality condition.

5.2.2 Euler-Lagrange Equations

Having computed optimality conditions for a common, yet specific, example occuring in
imaging, we turn our focus to a wider class of functionals. According to [45, Chapter 8]
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we consider functionals of the type

J(v) =

ˆ

Ω

g(Dv(x), v(x), x)dx =

ˆ

Ω

g(p, z, x)dx (5.35)

with Ω ⊂ Rd and v : Ω → Rm and present the central results Evans [45] states on this
subject. In order to characterize minimizers of (5.35) one often varies J around a fixed
point v̂ in direction v by

J(v̂ + τv) (5.36)

for small τ . Then a minimizer v̂ of J has to fulfill

d

dτ
J(v̂ + τv)|τ=0 = 0 (5.37)

for all v ∈ C∞
c (Ω,Rm). Now the condition (5.37) is equivalent to v̂ solving

−
d∑

i=1

∂

xi

(
∂

∂pk,i
g(Dv̂, v̂, x)

)
+

∂

∂zk
g(Dv̂, v̂, x) = 0 in Ω (k = 1, ...,m). (5.38)

The system of partial differential equations (5.38) is called Euler-Lagrange equations
for the functional J . If this system is solved by all smooth functions the function L is
called a Null-Lagrangian. In this case the energy

J(v) =

ˆ

Ω

g(Dv, v, x)dx (5.39)

only depends on boundary values. We will illustrate this definition now with the follo-
wing example:

Example 5.2.2 (Poisson equation, compare [45]). For a smooth function f : R → R we
define

F (z) :=

zˆ

0

f(x)dx. (5.40)

We consider the energy functional

J(w) :=

ˆ

Ω

1

2
|Dw|2 − F (w)dx. (5.41)

Consequently we get ∂
∂pk,i

L = ∂
∂xi

w. Thus the Euler-Lagrange equation is given by

0 = −
d∑

i=1

∂

∂xi

(
∂

∂xi

w

)
− f(w). (5.42)

Carrying out this divergence we end up with the (nonlinear) Poisson equation:

−Δw = f(w). (5.43)
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As we saw the minimization of the functional J leads to solving a system of partial
differential equations. We will now briefly outline two common strategies how to solve
this resulting equations:
In a finite-difference framework we discretize the function v on a grid X and compute
the differential operators on the grid with finite differences as we presented earlier in
this chapter (5.6), (5.7). For example a discrete version of the 2D-Laplace operator on
a grid X with cell size h2 at the grid point xi,j for a (discrete) function u is given by

Δ2u =
u(xi+1,j) + u(xi−1,j) + u(xi,j+1) + u(xi,j−1)− 4u(xi,j)

h2
. (5.44)

With these discrete versions of differential operators, one can derive a (large) system of
linear equations, which is solved by the discrete solution. See for example [103] for more
details on finite difference methods.
In contrast to that in finite-element methods, we triangulate the given domain Ω. On
this resulting mesh we can define some basis functions φl (e.g. spline functions) and get
the solution of the differential equation as a linear combination with coefficients cl of the
basis functions, such that these functions fulfill (5.38). For example one could decompose
a given domain into small triangles and choose a piecewise linear interpolation on each
mesh element as the basis function. See for example [151] for a detailed course to finite
element methods.

To conclude this chapter on numerical methods, we shortly state advantages and draw-
backs for both optimization approaches. While the Optimize-then-Discretize approach
grants a better insight in the structure of the functional to be optimized, this might
lead to higher computational costs for solving the optimality conditions [116]. Addition-
ally boundary conditions have to be imposed in order to solve the system of optimality
conditions.
In contrast to that this difficulty can be alleviated by using a Discretize-then-Optimize
approach: By using differential operators, which switch grid types during the numerical
differentiation, the regularizers can be implemented without imposing boundary condi-
tions on the transformation [101]. Furthermore this approach generates a cascade of
discrete problems, which converges towards the continuous one. See for example [77, 76]
for a detailed discussion of the two approaches.
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6 Motion Estimation in Noisy Image
Sequences

In this section we present a framework to motion estimation in noisy image sequences.
By considering the motion v ∈ V as a linear operator

Tvu (6.1)

acting on an image u ∈ U , we will deduce a framework for different transformation
models and noise characteristics. While we will discuss the spaces U and V later, we start
with a formulation of the problem and present different choices of transformation models
and noise modeling and develop motion estimation functionals for these choices. After
discussing challenges in a proper analysis of these functionals we present the numerical
realization and some results. We conclude this chapter with a comparison to existing
literature on registration with noise modeling and an outlook towards open problems
arising in studying this subject.

6.1 Formulation of the Problem

In this section we will derive a framework for motion estimation on noise corrupted image
sequences. For the ease of presentation we will limit ourselves to the case of motion
estimation between two images. Thus we assume there is an (unknown) underlying true
image u and

f0 = Tv0u+ ”noise” f1 = Tv1u+ ”noise” (6.2)

are noisy versions of the transformed true image. Note that the noise is not necessarily
additive, since we chose the formulation + ”noise” to indicate an arbitrary noise cor-
ruption. As the noise is of statistical nature, we perform a Bayesian approach to the
estimate u, v0 and v1 from the noisy data f0 and f1. Consequently we aim to maximize
the probability

p(u, v|f0, f1), (6.3)

which can be expressed with Bayes’ Theorem via

p(u, v|f0, f1) =
p(f0, f1|u, v)p(u, v)

p(f0, f1)
. (6.4)
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Analogously to [123, Assumption 2] we assume that noise corrupting our data is context-
free, i.e.

p(f0, f1|u, v) = p0(f0|Tv0u)p1(f1|Tv1u). (6.5)

Now we assume no prior knowledge on the image, thus we set

p(u, v) = p(v). (6.6)

Ignoring the constant p(f0, f1) equation (6.4) evolves now into

p0(f0|Tv0u)p1(f1|Tv1u)p(v). (6.7)

We compute a MAP-estimator by minimizing the negative logarithm of (6.7). As usual
we set Di(u, fi) := − log(pi(fi|u)) and R(v) := − log(p(v)). This leads to a minimization
problem of the following form:

F (u, v) =

ˆ

Ω0

D0(Tv0u, f0)dx+

ˆ

Ω

D1(Tv1u, f1dx) +R(v) (6.8)

Assuming differentiability of the data fidelities we end up with the following optimality
condition for u by using the chain rule:

T ∗
v1∂wD0(Tv0u, f0) + T ∗

v1∂wD1(Tv1u, f1) = 0 (6.9)

Note that this equation can be solved uniquely for strict convex data fidelities and one
injective operator, since we obtain as the second derivative for u:

T ∗
v0∂wwD0(Tv0u, f0)Tv0 + T ∗

v1∂wwD1(Tv1u, f1)Tv1 (6.10)

Let us assume for the sake of clarity in presentation, that Tv0 is injective, then for any
x = 0 we directly obtain Tv0x = 0 and therefore we can deduce by the strict convexity
of the Di

xTT ∗
v0∂wwD0(Tv0u, f0)Tv0x︸ ︷︷ ︸

>0

+ xTT ∗
v1∂wwD1(Tv1u, f1)Tv1x︸ ︷︷ ︸

≥0

.

Having shown that (6.8) is strictly convex with respect to u, it follows that we can solve
(6.9) uniquely for u and thus we can define a map

U : V × U2 → U (v; f0, f1) → u (6.11)

with u solving (6.9). Note that U and V are appropriate spaces for the given problem.
Practically this means U = Lp(Ω) with p depending on the data fidelity and V = A .
Consequently the functional to be minimized is obtained by plugging the map into (6.8):

J(v) = F (U(v), v) =

ˆ

Ω0

D0(Tv0 , f0)dx+

ˆ

Ω

D1(Tv1U(v), f1)dx+R(v). (6.12)
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In the following we will deduce effective functionals for different noise characteristics in
the registration framework we presented in Section 4.3.

6.2 Registration Framework for Different Noise
Characteristics

In this section we compute different effective functionals for specific noise and transfor-
mation models. We use the registration framework we presented in Section 4.3. For a
transformation v, which is injective in the sense of Definition 3.3.2, we use the intensity-
constant and the mass-preserving transformation operator:

T ic
v u := u(v), Tmp

v u := u(v) det(∇v), (6.13)

where we can compute the adjoint operators with the area formula as(
T ic
v

)∗
g = g(v−1) det(∇v−1), (Tmp

v )∗ g = g(v−1). (6.14)

Note that the injectivity of v is crucial, because otherwise we would have the Banach
indicatrix as an additional factor in the operator which would cause severe difficulties
in the following computations (see Subsection 6.6.4). For the sake of simplicity in the
presentation we choose Tv0 = Id and Tv1 as intensity-constant or mass-preserving trans-
formation operator. Furthermore we use the following identity arising from the implicit
function theorem

det(∇v−1)(v(x)) =
1

det(∇v)(x)
. (6.15)

As different image modalities may cause different noise characteristics we show a few
examples in the following table:

Modality Noise Type Noise Corruption Data Fidelity Derivative

Photo Camera Gaussian f = u+N (0, σ) (u− f)2 2(u− f)

PET/SPECT Poisson f = Poi(u) u− f log(u) 1− f
u

Ultrasound Speckle f = u+
√
uN (0, σ) (f−u)2

u
u2−f2

u2

Table 6.1: Different image modalities with occuring noise characteristics and resulting
data fidelites.

72



The last column gives the derivative of the data fidelity with respect to u. Now we will
compute the effective functional for given choices of noise and transformation model.
While we carry out these computations for Gaussian noise, computations for Poisson and
speckle noise can be found in the Appendix in Section 9.1. For the ease of presentation
we assume that u and f0 are defined on a domain Ω0 with Ω0 ⊂ supp(Nv(·,Ω)).

Gaussian Noise

In the case of Gaussian noise, which occurs for example while taking pictures with a
photo camera [105], the data fidelity with derivative is given by

D(u, f) = (u− f)2, ∂uD(f, u) = 2(u− f).

Plugging this into the optimality condition we end up with the equation

2(u− f0) + 2T ∗
v1(Tv1u− f1) = 0. (6.16)

We will solve this equation and derive the effective functional for both presented trans-
formation models.

Intensity-Constant Transformation We solve the optimality condition (6.16) for the
intensity-constant trasformation operator:

0 = 2(u− f0) + 2
(
T ic
v1

)∗
(u(v)− f1)

0 = 2(u− f0) + 2 det(∇v−1)(u− f1(v
−1))

2(1 + det(∇v−1))u = 2f0 + 2f1(v
−1) det(∇v−1)

u =
f0 + f1(v

−1) det(∇v−1)

1 + det(∇v−1)

Now applying the transformation operator leads to

u(v) =
f0(v) + f1

1
det(∇v)

1 + 1
det(∇v)

=
f0(v) det(∇v) + f1

1 + det(∇v)
.

Having computed the map we plug this into 6.12 and examine both data fidelities for f0
and f1 terms separately. The first term leads to

D(u, f0) =

ˆ

Ω0

(u(x)− f0(x))
2dx

=

ˆ

Ω

(u(v(x))− f0(v(x)))
2 det(∇v)(x)dx
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=

ˆ

Ω

(
f0(v(x)) det(∇v) + f1(x)

1 + det(∇v)
− f0(x)

)2

det(∇v)dx

=

ˆ

Ω

(
f1(x)− f0(v(x))

1 + det(∇v)

)2

det(∇v)dx,

while the second computation is given by

D(Tv1u, f1) =

ˆ

Ω

(u(v(x))− f1(x))
2dx

=

ˆ

Ω

(
f0(v(x)) det(∇v(x)) + f1(x)

1 + det(∇v(x))
− f1

)2

dx

=

ˆ

Ω

(
f0(v(x)) det(∇v(x))− f1(x) det(∇v(x))

1 + det(∇v)

)2

dx.

Adding this we end up with

Dgaussian,ic = D(u, f0) +D(Tv1u, f1)

=

ˆ

Ω

(
f1(x)− f0(v(x))

1 + det(∇v)

)2

det(∇v)

+

(
f0(v(x)) det(∇v(x))− f1(x) det(∇v(x))

1 + det(∇v)

)2

dx

=

ˆ

Ω

(
f0(v(x))− f1(x)

1 + det(∇v(x))

)2

det(∇v(x))

+

(
f0(v(x))− f1(x)

1 + det(∇v(x))

)2

det(∇v(x))2dx

=

ˆ

Ω

(
f0(v(x))− f1(x)

1 + det(∇v(x))

)2

det(∇v(x))(1 + det(∇v(x)))dx

=

ˆ

Ω

(f0(v(x))− f1(x))
2 det(∇v(x))

1 + det(∇v(x))
dx.

The result is now closely related to the classical SSD-distance but with the additional
weighting term det(∇v(x))

1+det(∇v(x))
.

74



Mass-Preserving Transformation We solve the optimality condition (6.16) for the
mass-preserving transformation operator:

0 = 2(u− f0) + 2 (Tmp
v )∗ (u det(∇v)− f1)

0 = (u− f0) + (u
1

det(∇v−1)
− f1(v

−1))

u

(
1 +

1

det(∇v−1)

)
= f0 + f1(v

−1)

u =
f0 + f1(v

−1)

1 + 1
det(∇v−1)

u =
f0 det(∇v−1) + f1(v

−1) det(∇v−1)

1 + det(∇v−1)
.

Having computed the map for any fixed transformation v, we now compute the compo-
sition of said map with the transformation v

u(v) =
f0(v)

1
det(∇v)

+ f1
1

det(∇v)

1 + 1
det(∇v)

=
f0(v) + f1
1 + det(∇v)

.

With this at hand we can compute both data fidelities:

D0(u, f0) =

ˆ

Ω0

(u(x)− f0(x))
2dx

=

ˆ

Ω

(u(v(x))− f0(v(x)))
2 det(∇v)dx

=

ˆ

Ω

(
f0(v(x)) + f1(x)

1 + det(∇v)
− f0

)2

det(∇v)dx

=

ˆ

Ω

(
f1(x)− f0(v(x)) det(∇v)

1 + det(∇v)

)2

det(∇v)dx

=

ˆ

Ω

(
f0(v(x)) det(∇v)− f1(x)

1 + det(∇v)

)2

det(∇v)dx.

For the second data fidelity we end up with:

D1(T
mp
v u, f1) =

ˆ

Ω

(u(v(x)) det(∇v)− f1(x))
2 dx

=

ˆ

Ω

(
f0(v(x)) det(∇v) + f1 det(∇v)

1 + det(∇v)
− f1

)2

dx
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=

ˆ

Ω

(
f0(v(x)) det(∇v)− f1(x)

1 + det(∇v)

)2

dx.

The final distance measure is now given as the sum of both data fidelities:

Dgaussian,mp = D(u, f0) +D(Tmp
v u, f1)

=

ˆ

Ω

(
f0(v(x) det(∇v)− f1(x)

1 + det(∇v)

)2

(1 + det(∇v))dx

=

ˆ

Ω

(f0(v(x) det(∇v)− f1(x))
2 1

1 + det(∇v)
dx.

This is the SSD-distance for the mass-preserving transformed template with the weigh-
ting 1

1+det(∇v)
.

For the sake of completeness we shortly list the distance measures for other noise types;
see Section 9.1 in the Appendix for detailed computation.

Dpoisson,ic =

ˆ

Ω

f0(v(x)) det(∇v) ln(f0(v))

− (f0(v(x)) det(∇v) + f1(x)) ln

(
f0(v(x)) det(∇v) + f1(x)

1 + det(∇v)

)
dx

Dpoisson,mp =

ˆ

Ω

f0(v) det(∇v) ln(f0(v) det(∇v)) + f1 ln(f1)

− (f0(v) det(∇v) + f1) ln

(
f0(v) det(∇v) + f1

2

)
dx

Dspeckle,ic =

ˆ

Ω

2
√
(f0(v)2 det(∇v) + f 2

1 )(1 + det(∇v))− 2(f0(v) det(∇v) + f1)dx

Dspeckle,mp =

ˆ

Ω

2(u(v) det(∇v))2 + (f0(v) det(∇v))2 + f 2
1

u(v) det(∇v)
− 2(f0(v) det(∇v) + f1)dx

6.3 Analysis

In this section we present detailed analysis for the resulting functionals in the registration
framework. We start by describing the regularization properties and motivate the choice
of hyperelastic regularization.

6.3.1 Regularization

Since all the functionals depend on the Jacobian determinant, which can be traced
back to the use of the adjoint operator for the intensity-constant transformation model,
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we decide to use hyperelastic regularization. Additionally this control of the Jacobian
determinant grants us at least local injectivity of the transformation. This can be used
to force global injectivity via controlling the behaviour of the function on the boundary
(see Proposition 3.2.9).
As we have described different regularization types in the previous chapters, we just
present the used hyperelastic energy Rhyper:

Rhyper(v) =

ˆ

Ω

α1 len(∇v) + α2 surf(cof(∇v)) + α3 vol(det(∇v)) dx ,

with αi ≥ 0,
∑

αi > 0 for i = 1, 2, 3 and the penalty functions

len(s) = ‖s− I‖2Fro , surf(s) =
(
‖s‖2Fro − 3

)2
, vol(s) =

(s− 1)4

s2
.

6.3.2 Existence of Minimizers

In this section we discuss difficulties in showing the existence of minimizers for the
effective functionals with noise modeling. As we recall the direct method in the calculus
of variations we need to verify for each functional:

(ls) lower semicontinuity

(csls) compactness of sublevel sets

While we can deduce the compactness of the sublevel sets by coercivity properties of the
regularizer and the Banach-Alaoglu theorem (Theorem 3.4.7), the lower semicontinuity
might cause severe problems.
For a functional of the type

J(v) =

ˆ

Ω

g(Dv(x), v(x), x)dx (6.17)

the following theorem from Evans ([45]) gives a sufficient condition for weak lower semi-
continuity:

Theorem 6.3.1 (Weak lower semicontinuity). Assume that g is bounded below, and in
addition the mapping

p → g(p, z, x) (6.18)

is convex for each z, x ∈ Ω. Then J is weakly lower semicontinuous.

Proof. See [45, Chapter 8, Theorem 1].

Generalization is given by Theorems 8 and 9. Consequently we investigate, if the re-
sulting effective functionals are convex with respect to the Jacobian determinant. As it
turns out, this is not always the case.
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Distance Measure Second derivative Convexity

Dgaussian,ic −2(f0(v)−f1)2

(det(∇v)+1)3
concave

Dgaussian,mp 2 (f0(v)+f1)2

(1+det(∇v))3
convex

Dpoisson,ic − (f0(v)−f1)2

(det(∇v)+1)2(f0(v) det(∇v)+f1)
concave

Dpoisson,mp f0(v)f1
det(∇v)(f0(v) det(∇v)+f1)

convex

Dspeckle,ic − (f0(v)2−f2
1 )

2

4 3
√

(f0(v)2 det(∇v)2+(f0(v)2+f2
1 ) det(∇v)+f2

1 )
2

concave

Dspeckle,mp f0(v)2f2
1

3
√

(f0(v)2 det(∇v)2+f2
1 )

2
convex

Table 6.2: The second derivative with respect to the Jacobian is a sufficient criterion to
evaluate (poly)convexity.

We see in the table, that each functional for the mass-preserving transformation operator
is polyconvex. In fact we can even generalize this observation with the following theorem:

Theorem 6.3.2. For strict convex data fidelities D1, D2 ∈ C2(D) with a suitable domain
D ⊂ R, let J be the functional defined by (6.12) for the mass-preserving transformation
operator. Then J is polyconvex.

Proof. After using the area formula for the first distance term the effective functional is
of the following type:

J(v) =

ˆ

Ω

D0(u(v)) det(∇v) +D1(u(v) det(∇v))︸ ︷︷ ︸
:=j(det(∇v))

dx. (6.19)

With the abbreviations ũ := u(v) and d := det(∇v) this reads as

ˆ

Ω

D0(ũ(d))d+D1(ũ(d)d)︸ ︷︷ ︸
:=j(d)

dx.

For this functional we can give a transformed first order optimality condition like (6.9)
for ũ:
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D′
0(ũ)d+D′

1(ũd) = 0. (6.20)

Note that for any fixed v u fulfills (6.9), whenever ũ fulfills (6.20).
With this at hand we prove convexity by deriving j(d) again with the abbreviation
ũ := ũ(d):

j′(d) = ũD′
0(ũ)d+D0(ũ) + (ũ′d+ ũ)D′

1(ũd) (6.21)

This leads to the second derivative:

j′′(d) =ũ′′D′
0(ũ)d+ (ũ′)2D′′

0(ũ)d+ 2ũ′D′
0(ũ)

+ (ũ′′d+ 2ũ′)D′
1(ũd) + (ũ′d+ ũ)2D′′

1(ũd)

We rearrange this term for more clarity:

j′′(d) = (ũ′′ + 2ũ′) (D′
0(ũ)d+D′

1(ũd)d)︸ ︷︷ ︸
:=I

+(ũ′)2D′′
0(ũ)d+ (ũ′dũ)2 +D′′

1(ũd)︸ ︷︷ ︸
:=II

(6.22)

While the first term I vanishes because of the transformed optimality condition (6.20),
the second is non-negative because of the strict convexity of the data fidelities. This is
sufficient for convexity in the Jacobian determinant and thus polyconvexity.

Having shown the semicontinuity for a wide class of transformations, we can use Theorem
6.3.1 for a general existence result for the mass-preserving transformation operator:

Theorem 6.3.3 (Existence of a minimizer for mass-preserving transformations). Let
D1, D2 ∈ C2(D) be strict convex data fidelities for a suitable domain D ⊂ R. Then
the registration functional with noise modeling defined by (6.12) for the mass-preserving
transformation operator has a minimizer.

Proof. We use the direct method in the calculus of variations, thus we need to verify
lower semicontinuity and compactness of sublevel sets.
Since we proved polyconvexity of the functional in Theorem 6.3.2, Theorem 6.3.1 directly
grants us lower semicontinuity.
Furthermore, we can show coercivity directly from the properties of the hyperelastic
regularization, since the strict convexity of the data fidelities implies a lower bound for
the distance measure. Then Banach-Alaoglu gives compactness of the sublevel sets.

For the intensity-constant transformation we observe that each of the deduced distance
measures is concave with respect to the Jacobian determinant. In fact we can prove this
property for a wide class of data fidelities:
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Theorem 6.3.4. For strict convex data fidelities D1, D2 ∈ C2(D), where D is a suitable
domain for the fidelity, let J be the functional defined by (6.12) for the intensity-constant
transformation operator. Then J is concave with respect to the Jacobian determinant.

Proof. Again we start by using the area formula for the first data fidelity and end up
with

J(v) =

ˆ

Ω

D0(u(v)) det(∇v) +D1(u(v))︸ ︷︷ ︸
:=j(det(∇v))

dx. (6.23)

With the same abbreviations as above we get

J(v) =

ˆ

Ω

D0(ũ(d))d+D1(ũ(d))︸ ︷︷ ︸
:=j(d)

dx.

Again we derive a transformed version of the optimality condition, which is again ful-
filled, whenever (6.9) holds for any fixed v

D′
0(ũ)d+D′

1(ũ) = 0. (6.24)

For the later parts of the proof we differentiate this optimality condition with respect
to d

ũ′D′′
0(ũ)d+D′

0(ũ) + ũ′D′′
1(ũ) = 0. (6.25)

With this preparations we proceed in a similar way as in the theorem above and compute
the derivatives:

j′(d) = ũ′D′
0(ũ)d+D0(ũ) + ũ′D′′

1(ũ). (6.26)

This leads again to the second derivative:

j′′(d) = ũ′′D0(ũ)d+ 2ũ′D′
0(ũ) + (ũ)2D′′

0(ũ)d+ ũ′′D′
1(ũ) + (ũ′)2D′′

1(ũ) (6.27)

Now we deduce the following identity from (6.25)

D′
0(ũ) = −ũ′D′′

0(ũ)d− ũ′D′′
1(ũ). (6.28)

Plugging this into the second derivative we end up with:

j′′(d) = ũ′′(D′
0(ũ)d+D′

1(ũ))︸ ︷︷ ︸
=0

−((ũ′)2(D′′
0(ũ)d+D′′

1(ũ)))︸ ︷︷ ︸
≤0

. (6.29)

Again the first term vanishes because of the first order optimality condition (6.24), while
the second one is non-positive because of the strict convexity of the data fidelities.
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Unfortunately, this shows that we do not have the chance to use the direct method
in the calculus of variations for the intensity constant transformation operator. Even
worse, we can directly deduce upper semicontinuity for the distance measures by using
the polyconvexity of the negative distance measure, which is convex with respect to the
Jacobian determinant. Therefore we cannot expect lower semicontinuity, since function-
als depending on the Jacobian determinant are in general not continuous. Additionally,
because of the fact that the distance measure is concave with respect to the Jacobian
determinant, convexification will not work.
Thus we need another approach to tackle this problem. As a first idea we go back to
the first formulation of the functional (6.8) and reformulate this problem:

min
u,u0,u1,v

D0(u0, f0) +D1(u1, f1) +R(v)

such that T0(v)u = u0

Tv1u = u1.

As we can observe the minima of the original and the reformulated functional coincide.
Thus we can benefit from the simplified structure of the functional, at the prize of dealing
with a side condition. Ignoring this condition for the moment, we can show (csls) and
(ls) from the properties of the distance measures. But the prize we have to pay is that
we need to show the closedness of the constraint.
As mentioned before each admissible transformation v defines a linear operator

T ic
v : L2 → L2 u → u(v). (6.30)

Lemma 6.3.5. Let v be an admissible transformation with 0 < δ ≤ det(∇v). Then the
corresponding transformation operator is continuous.

Proof.

‖T ic
v u‖22 =

ˆ

Ω

(u(v(x)))2 dx =

ˆ

Ω

(u(x) det(∇v−1))2 dx ≤ 1

δ2

ˆ

Ω

u(x)2 dx =
1

δ2
‖u‖22

As a consequence we directly obtain ‖T ic
v ‖ ≤ 1

δ
. With that at hand we can investi-

gate convergence properties of the corresponding operator, given a weakly convergent
sequence of admissible transformations:

Lemma 6.3.6. Let vn ⇀ v in H1, such that vn, v ∈ A . Then the sequence of corre-
sponding transformation operators Tvn converges to Tv in the strong operator topology.

Proof. Since ‖Tvn‖ ≤ 1
δ
< ∞ it is sufficient to show the convergence on a dense subset

of L2: Let ũ be a Lipschitz function with Lipschitz-constant L, then we obtain:

‖ũ(v)− ũ(vn)‖ ≤ L2‖v − vn‖22
Since weak convergence in H1 implies strong L2-convergence, the convergence is shown.
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With these preparations at hand we can formulate a convergence result:

Theorem 6.3.7. Let xn → x, un → u in L2 and vn ⇀ v in A with

Tvnun = xn, (6.31)

then this property also holds in the limit, i.e.

Tvu = x. (6.32)

Proof. We show for any ε > 0:

‖Tvu− x‖ < ε.

For ξ ∈ L2 with ‖ξ − u‖ < δ ε
8
we use the following estimation:

‖Tvu− x‖ ≤ ‖Tvu− Tvξ‖︸ ︷︷ ︸
:=I

+Tvξ − Tvnξ‖︸ ︷︷ ︸
:=II

+ ‖Tvnξ − Tvnun‖︸ ︷︷ ︸
:=III

+ ‖Tvnun − x‖︸ ︷︷ ︸
:=IV

We examine these four parts separately:
I: We obtain:

‖Tvu− Tvξ‖ ≤ 1

δ
‖x− ξ‖ =

1

δ
δ
ε

8
=

ε

8
.

II: Since Tvn converges to Tv in the strong operator topology, we find a N1 such that:

‖Tvξ − Tvnξ‖ <
ε

8
∀n ≥ N1.

III: By using the continuity of the transformation operator we obtain:

‖Tvnξ − Tvnun‖ ≤ 1

δ
‖ξ − un‖ ≤ 1

δ
(‖ξ − u‖+ ‖un − u‖).

Since un → u we find N2 with

‖un − u‖ < δ
ε

8
, ‖Tvnξ − Tvnun‖ <

1

δ
(
δε

8
+

δε

8
) =

ε

4
∀n ≥ N2.

IV: By property (6.31) we can deduce:

‖Tvnun − x‖ = ‖xn − x‖ <
ε

4
∀n ≥ N3

for some N3 ∈ N, since xn converges strongly to x.
If we choose any n ≥ N := max{N1, N2, N3} the assertion follows.

Note that for this theorem the strong convergence is crucial. If this is not given we end
up with a product of two weakly convergent sequences, where in general no statement
can be given. Unfortunately strong convergence can only be guaranteed with further
regularity assumptions for the image u, which would complicate the first order optimality
condition (6.9), so this is not an option.
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6.4 Numerical Framework

In this section we present the numerical framework, which we use to minimize the regis-
tration functionals, which we derived for different noise characteristics. As we saw these
were in fact registration functionals, but with some new distance functions. We will
modify the FAIR-framework in order to deal with these distance functions. Our frame-
work follows a First-Discretize-then-Optimize approach, like we described in Chapter 5.
For a given template and transformation grid, the transformed template is computed by
interpolation (see ([101] for more details). The difficulty is caused by the fact that all
the functionals depend on the Jacobian determinant det(∇v) of the transformation. We
start by describing the (discrete) notation we will use in this section:

6.4.1 Implementation of an Objective Function

We assume that we have two digital images f0, f1 with m = m1 × ... ×md pixels, such
that

f0, f1 ∈ Rm. (6.33)

The (discrete) transformation is then given as a nodal transformation grid

vc ∈ Rm̃ m̃ =
d∏

i=1

(mi + 1)d. (6.34)

Furthermore we denote by

inter(f0, vc) : R
m × Rm̃ → Rm (6.35)

the transformation of f0 with the motion vectors vc by interpolation. The computation
of the Jacobian determinant is given by

jac(vc) : Rm̃ → Rm. (6.36)

As a consequence of the chain rule we can directly compute the derivatives with respect
to vc for continuously differentiable distance measures

D : (Rm)3 → R (inter(f0, vc), jac(vc), f1) → D(inter(f0, vc), jac(vc), f1) (6.37)

as

d

d vc
D(inter(f0, vc), jac(vc), f1) =

d

dw1

D
d

d vc
inter+

d

dw2

D
d

d vc
jac . (6.38)

In order to perform a classic matrix-vector multiplication, we compute the transpose of
(6.38) in our framework.
Computing the derivative with help of (6.38) has the consequence that we only have
to differentiate the distance term with respect to the transformed template and the
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Jacobian determinant, in order to compute the derivative with respect to the transfor-
mation. To conclude the course on distance measures we present a short synopsis of all
distance measures with their derivatives. We start by derivating the distance measures
with respect to the transformed template:

Distance Derivative with respect to f0(v)

Dgaussian,ic 2(f0(v)− f1)
det(∇v)

1+det(∇v)

Dgaussian,mp 2det(∇v)(f0(v) det(∇v)−f1)
1+det(∇v)

Dpoisson,ic det(∇v)
(
ln(f0(v))− ln

(
f0(v) det(∇v)+f1

1+det(∇v)

))

Dpoisson,mp det(∇v) ln(f0(v) det(∇v))− det(∇v) ln
(

f0(v) det(∇v)+f1
2

)

Dspeckle,ic f0(v) det(∇v)(1+det(∇v))√
(f0(v)2 det(∇v)+f1)(1+det(∇v))

− 2 det(∇v)

Dspeckle,mp 4f0(v) det(∇v)2√
2(f0(v)2 det(∇v)2+f2

1 )
− 2 det(∇v)

Table 6.3: Derivatives of the continuous integrand functions with respect to the trans-
formed template. The discrete derivative can be computed with help of the
discretization of the distance measure, since the discrete integral is a sum of
the integration function, evaluated on grid points multiplied by the cell size.

Having computed the continuous derivatives with respect to the transformed template
f0(v), the derivatives of a discretized objective function follow immediately from the
nature of the chosen discretization. To complete the overview on the derivatives for our
distance measures, we just state the derivatives of the distance measures with respect
to the Jacobian determinant det(∇v):
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Distance Derivative for det(∇v)

Dgaussian,ic (f0(v)− f1)
2 1
(1+det(∇v))2

Dgaussian,mp −2f0(v)(f0(v) det(∇v)−f1)
(1+det(∇v))2

Dpoisson,ic −f0(v) ln
(

f0(v) det(∇v)+f1
1+det(∇v)

)
− f0(v)(ln(f0(v))− 1)− f0(v) det(∇v)+f1

det(∇v)+1

Dpoisson,mp f0(v) ln(f0(v) det(∇v))− f0(v) ln
(

f0(v) det(∇v)+f1
2

)

Dspeckle,ic f0(v)2(1+2 det(∇v))√
(f0(v)2 det(∇v)+f1)(1+det(∇v))

− 2f0(v)

Dspeckle,mp 4f0(v)2 det(∇v)√
2(f0(v)2 det(∇v)2+f2

1 )
− 2f0(v)

Table 6.4: Derivatives of the continuous integrand functions with respect to the Jacobian
determinant. Again the derivatives of the discretized objective function can
be computed in a straightforward manner.

The objective function can be implemented by using the routines from the FAIR toolbox
[101] for interpolation, regularization and computation of the Jacobian determinant. See
Section 9.2.1 in the Appendix.

6.4.2 Numerical Minimization

We minimize the objective function according to the framework presented in Chapter
5. Thus we follow the multilevel approach, proposed in Section 5.1.3. This leads to the
minimization of a discrete problem on each level, where the solution on a coarse level
serves as initial guess for the finer level.
To solve this optimization problem on each level, we use the modified BFGS method,
presented in Chapter 5. Since we follow the modular implementation of the FAIR toolbox
[101], we can modify the multilevel approach, provided by FAIR to fit our needs. Thus
our minimization algorithm reads as follows:

1. Obtain multilevel representations for the two d-dimensional images f0 and f1 to
be registered and choose a regularization parameter α.
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2. Choose a minimum level lmin and a maximum level lmax for the multilevel frame-
work.

3. Perform a parametric pre-registration. Set the result as starting value.

4. Set j = lmin

5. Change the weight of the regularization to α(2d)−(lmax−j).

6. Solve the problem on the specified j-th level with the given start value.

7. If j < lmax prolong the solution to the finer level and set j = j +1, else return the
solution and end.

8. Repeat steps 5-7.

Note that the adaptive choice of the regularization parameter is motivated by Exam-
ple 5.1.1. An implementation of this algorithm can be found in Section 9.2.1 in the
Appendix.

6.5 Results

In this section we compare the proposed MAP-estimation with results from the classical
(mass-preserving) registration on (presmoothed) noisy data. Before we focus on some
test problems, we shortly describe how we assess the quality of the estimated transfor-
mation. Note that often no ground truth vectors, but only ground truth images u1, u2

are available. Even if ground truth motion vectors are available computing the norm
of the difference between ground truth and estimated motion v might be critical, since
different transformations can produce a perfect registration result (compare Example
4.3.1). So instead we compare how the transformations behave on the ground truth
images. This idea is captured by the phantom-matching-error (compare [96])

PME(v; u1, u2) :=

ˆ

Ω

(T (v)u1 − u2)
2dx. (6.39)

The quality of transformations providing similar phantom matching errors can be as-
sessed by comparison of the regularization energy. Additional to these analytical ap-
proaches we use visual inspection to evaluate the results provided by the methods above:
This includes plotting the transformation grids, the norm of the displacement field and
the Jacobian determinant for a visual impression of the regularity as well as showing the
transformed ground truth images in order to highlight the accuracy of the transformed
template, which is measured by the phantom-matching error.
We start the presentation of results with a synthetic example for mass-preserving re-
gistration. Note that this example was already presented in [142]. By adding noise
with different variance to the ground truth images we are able to compare our MAP-
estimation with a classical registration and the aligning of presmoothed images. We

86



restrict our presentation to Gaussian noise, but results for Poisson noise and cross tests
for the noise models are also available [142]. We conclude this Section by applying the
MAP-estimation on a realistic software phantom in order to show the potential of the
method in practical applications.

6.5.1 Synthetic Toy Example

We start with a simple, but yet challenging registration task:

(a) Reference (b) Template

Figure 6.1: Ground truth data for mass preserving registration: intensity distributed
over a wide area (template) and the same amount concentrated in a small
circle (reference).

Since intensity needs to be changed for a perfect registration, we choose the mass-
preserving transformation operator. For different noise levels we compare the proposed
method with a classical mass-preserving registration performed by the VAMPIRE app
[63] of the FAIR toolbox [101] performed on the noisy and on presmoothed data. In
order to highlight the strength of the proposed method we compare these registration
methods for different noise levels.

Low Noise

In the case of a low noise corruption the images to be registered are given by:

(a) Noisy reference (b) Noisy template

Figure 6.2: Noisy images to registered. Images corrupted by Gaussian noise with stan-
dard deviation σ = 10.
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Applying a Gaussian filter smoothes the images and we get:

(a) Filtered reference (b) Filtered template

Figure 6.3: Noisy images in Figure 6.2 filtered with a Gaussian kernel.

In order to assess the quality of the transformations estimated by the different reg-
istration methods we inspect the phantom matching errors for different hyperelastic
regularization parameters α1 = α3 = α and α2 = 0:

Figure 6.4: Phantom matching errors for the three registration methods and different
registration parameters α.

We can see that in terms of the PME all methods deliver a good registration result
for a wide parameter range. In order to inspect these registration results, we show
the transformed ground truth image with the lowest phantom matching error for each
method:
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(a) FAIR
α = 1

(b) Presmoothed FAIR
α = 0.1

(c) Bayesian ML estimation
α = 100

Figure 6.5: Ground truth template transformed with the transformation with smallest
phantom matching error for each method.

We see that the Bayesian ML estimation leads to a transformed template with a little
irregularity at the bottom of the corner but sharp edges of the circle. As we see in Figure
6.6 this irregularity can be explained by the intensity modulation of the mass-preserving
transformation operator:

(a) FAIR
α = 1

(b) Presmoothed FAIR
α = 0.1

(c) Bayesian ML estimation
α = 100

Figure 6.6: Jacobian determinant of the transformation with smallest phantom matching
error for each method.

Note that the small irregularity at the bottom of the transformed template is observable
in the Jacobian determinant as well (6.6c). Additionally the proposed method leads to
a transformation with a much smoother determinant, but as we see this transformation
is resulting from a registration with higher regularization weight than the other two.
For a better comparison of this regularity we show transformed template and Jacobian
determinant for the same regularization weight:
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(a) FAIR (b) Presmoothed FAIR (c) Bayesian ML estimation

(d) FAIR (e) Presmoothed FAIR (f) Bayesian ML estimation

Figure 6.7: Transformed ground truth (top row) and Jacobian determinant for
α = 1000.

The higher regularization weight leads to smoother Jacobian determinants and as a
direct consequence to a more homogeneous transformed ground truth. Note that we
face a trade-off, between the regularity of the transformation, which is linked to the
value of the Jacobian determinant, and a good matching of the ground truth images,
which requires the Jacobian determinante to take values up to 2.5.

Average Noise

We corrupt the images now with stronger noise:

(a) Noisy reference (b) Noisy template

Figure 6.8: Noisy versions of the ground truth images to be registered. Images corrupted
by Gaussian noise with standard deviation σ = 80.
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While the circle in the reference image still stands out clear, it is hard to distinguish the
circle from the background in the template image. Applying a Gaussian filter smoothes
the images and we get:

(a) Filtered reference (b) Filtered template

Figure 6.9: Filtered versions of the noisy images in Figure 6.8.

Note that the filtering reduces the noise in both images significantly. But as a conse-
quence of the Gaussian filtering the edges of the images get blurred, especially in the
template image 6.9b.
We start again by inspecting the phantom matching errors:

Figure 6.10: Phantom matching errors for the three registration methods and different
registration parameters α.

Note that these errors are similar for small regularization parameters, but get blown up
for the two classical methods with increasing α. Thus the Bayesian ML estimation leads
to a more stable parameter range, where the underlying true images are nearly matched.
Before we inspect the resulting transformations visually we assess the smoothness of the
transformations by the regularization energy:
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Figure 6.11: Double logarithmic plot of the regularization energy of the found transfor-
mation for each method. The regularization energy for the transformations
obtained by Bayesian modeling is lower in the interval, where the phantom
matching error is also smaller.

As we see the regularization energy decreases similarly for all transformation models.
Note that the Bayesian ML estimation produces transformations with significantly lower
regularization energy in the same interval where the phantom matching error is signifi-
cantly smaller.
Figure 6.11 suggests that we can neglect the transformations, which minimize the phan-
tom matching error for the (presmoothed) classical registration.

(a) FAIR
α = 0.1

(b) Presmoothed FAIR
α = 0.1

(c) Bayesian ML estimation
α = 500

Figure 6.12: Ground truth transformed with the transformation with smallest phantom
matching error for each method. The blocky structure is a consequence of
the multiplication with the Jacobian determinant.

In order to explain the blocky structure of the transformed ground truth we examine
the Jacobian determinant:
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(a) FAIR
α = 0.1

(b) Presmoothed FAIR
α = 0.1

(c) Bayesian ML estimation
α = 500

Figure 6.13: Jacobian determinant of the transformation with smallest phantom match-
ing error for each method.

While the determinant resulting from the proposed method is much smoother, the other
two methods yield a determinant with blocky structure. This can be explained by
the fact that the starting value cannot be optimized on the higher levels. Thus the
algorithm was pulled to an unwanted starting value on the lower levels, which could not
be improved by the optimization algorithm on the finest level.
Note that these irregularities in the Jacobian determinants could be expected, since these
transformations are regularized with a small weight. Thus we visualize the estimated
transformations for a bigger regularization parameter:

(a) FAIR (b) Presmoothed FAIR (c) Bayesian ML estimation

(d) FAIR (e) Presmoothed FAIR (f) Bayesian ML estimation

Figure 6.14: Transformed ground truth (top row) and Jacobian determinant for
α = 10000. The Bayesian approach results in a much smoother transfor-
mation.
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Even for a high regularization weight the Bayesian approach produces much smoother
Jacobian determinants. Again the matching is not exact, because the higher regulariza-
tion weight punishes big Jacobian determinants too hard and thus the needed value of
2.5 is not achieved. Nevertheless only the Bayesian ML estimation preserves the contour
of the reference image.

High Noise

We conclude the study on the synthetic example by corrupting the images with heavy
noise:

(a) Noisy reference (b) Noisy template

Figure 6.15: Noisy versions of the ground truth images to be registered. Images cor-
rupted by Gaussian noise with standard deviation σ = 125. Especially the
circle in the template image is nearly not distinguishable from the back-
ground.

Because of this heavy noise corruption the rings nearly vanish in the background. Since
the intensity in the template is lower than in the reference, the reference image stays
clearer. First we try to remove the noise by filtering:

(a) Filtered reference (b) Filtered template

Figure 6.16: Filtered images. The filtering improves the quality of the reference image,
while the ring in the template only gets more blurred.

We see again that filtering slightly improves the sharpness of the ring in the reference
image, while no visual improvement in the template image can be seen. After this
preprocessing steps we turn our focus again on the comparison of all three methods.
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Figure 6.17: Phantom matching errors for the three registration methods and different
registration parameters α.

Again we see that the classical methods only produce transformations with a significantly
lower phantom matching error for very small regularization parameters. Inspecting the
regularization energy suggests to neglect those transformations:

Figure 6.18: Double logarithmic plot of the regularization energy of the found trans-
formation for each method. Note that the regularization energy for the
Bayesian ML estimation is significantly lower than the regularization en-
ergy for the other two methods for α < 104.

We see that the regularization energy of the transformations resulting from the Bayesian
ML estimation is significantly lower than the regularization energies for the other trans-
formations resulting from the other two methods. To give a more visual impression
we show the transformed ground truth images with the transformation minimizing the
phantom matching error for each registration method:
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(a) FAIR
α = 1

(b) Presmoothed FAIR
α = 1

(c) Bayesian ML estimation
α = 1000

Figure 6.19: Ground truth transformed with the transformation with smallest phantom
matching error for each method. The blocky structure is a consequence of
the multiplication with the Jacobian determinant.

Again the transformed ground truth image suffers from a blocky structure. In order to
explain this structure, we proceed in the same way as before and inspect the Jacobian
determinants for all transformations:

(a) FAIR
α = 1

(b) Presmoothed FAIR
α = 1

(c) Bayesian ML estimation
α = 1000

Figure 6.20: Jacobian determinant of the transformation with smallest phantom match-
ing error for each method. Note the blocky structure of the Jacobian de-
terminant for the two classical approaches.

Since the regularization parameter for the Bayesian ML estimation is significantly higher
we compare the three approaches also for a fixed regularization parameter:

(a) FAIR (b) Presmoothed FAIR (c) Bayesian ML
estimation
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(d) FAIR (e) Presmoothed FAIR (f) Bayesian ML estimation

Figure 6.21: Transformed ground truth (top row) and Jacobian determinant for
α = 10000. The Bayesian approach results in a much smoother transfor-
mation.

Again we see that even for high regularization weights the Bayesian approach leads to a
much smoother Jacobian determinant and therefore preserves the contour of the circle.
Thus the registration with noise modeling gives stable registration results for a wide
parameter range.

Concluding Assessment

All three methods produced similar results for a very low noise level. Thus in this case
all three methods are a suitable choice.
By driving the noise level higher we were able to observe different results for the three
methods. For the classical methods the transformations best in the sense of the phan-
tom matching error were produced by registrations with small regularization parameter.
Consequently the noise structure could be observed in a irregular Jacobian determinant.
But even stronger regularization could only mildly alleviate this. In contrast to that
Bayesian ML estimation produced even in the case of high noisy corruption smooth
transformations for a wide parameter range (see Figures 6.11 and 6.18). This can be
explained with the fact, that implicit image estimation in the proposed method manages
to match the underlying images for the low regularization weights, while the classical
methods are still trying to match the noise.
A remaining difficulty is to balance the regularization weight, such that the determinant
takes values in the desired range for an exact matching of the intensity and not only the
contour.

6.5.2 XCAT Software Phantom

As a proof of concept we again shortly present the results on the XCAT phantom [134]
we already presented in [142]. We generated simulated PET images of the end-diastolic
phase (Reference, 6.22a) and the end systolic-phase (Template, 6.22b).
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(a) Reference (b) Template

Figure 6.22: Representative 2D slices of PET images, generated by the XCAT software
phantom [134]. While the end diastolic phase serves as reference image, the
end systolic phase gets transformed.

Both images have the data size 175× 175× 47, thus the images in Figure 6.23 are only
representative 2D slices. Applying the ML estimation leads to the following deformation
grid and transformed template:

(a) Ground truth
reference

(b) Transformed
template

(c) Transformation grid

Figure 6.23: Representative 2D slices of the transformed template (left) and correspon-
ding transformation grid (right). As the slices indicate, the transformation
is smooth and maps the template nearly exactly to the reference.

We see that the Bayesian ML estimation generates a smooth transformation, which maps
the template nearly exactly to the reference image. Thus we gave a proof of concept
for the proposed method; a thorough evaluation of the method on real data has to be
carried out in future studies.
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6.6 Discussion and Outlook

We presented an unified framework for MAP-estimation in image registration with noise
modeling. After computing registration functionals for given data fidelities for some
specific noise models, we turned our focus to the analysis of the resulting variational
problem. We were able to show that we can expect the existence of a minimizer for
suitable data fidelities, if we use a mass-preserving transformation model. The analytical
results for the intensity-constant transformation model are raising more questions: Since
we proved that the resulting distance measures are concave with respect to the Jacobian
determinant for convex data fidelities, it is much more complicated to give existence
results for this case. After presenting a numerical framework we evaluated our methods
on a synthetic toy example and motivated the use of this framework for real data.
While similar ideas have been presented earlier in the literature, our main contribution
lies in the unification for different noise models and the analytical results regarding the
polyconvexity of the registration functionals. A coherent statistical framework for Gaus-
sian noise has been presented by [3]. While in [123] incorporation of noise characteristics
into distance measures has been investigated, several registration criteria for parametric
transformations have been presented in [135]. Note that the latter two approaches do
not impose regularization on the motion.
There are several open problems concerning the registration method we described in
this chapter. In the following we will shortly discuss some of these and hint at possible
further research in this field.

6.6.1 Injectivity in Image Registration

The framework we presented so far is neglecting the assumption, that the transformation
is injective. This assumption is crucial, since we assumed injectivity in the framework we
presented in this chapter. However a restriction to injective transformations is difficult to
realize. One possibility is to restrict ourselves to a minimization problem with injective
boundary values (compare Corollary 7.2.7). Then the injectivity in the interior is given
by Proposition 3.2.9.
The question now arising is how to determine these boundary values in practical ap-
plications. If we observe a larger image than the region of interest, where the motion
occurs, we can restrict the registration to transformations v with v|∂Ω = Id. If this is not
the case, performing an affine linear preregistration with regularization of the Jacobian
determinant is an option: The regularization of the determinant grants locally invertible
affine linear transformations, which are directly global invertible affine linear transfor-
mations. The result of the affine linear preregistration can now serve as an injective
boundary value.
A straightforward way to incorporate this into the numerical framework we presented is
to set the BFGS update to zero at the boundary. However this might cause problems:
If we have an object close to the boundary and the force field generating the search
direction in the distance term pushes this object outside of the image domain.
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(a) Reference (b) Template

(c) Search direction (d) Search direction (Dirichlet)

Figure 6.24: Artificial image registration problem (top row): Since the reference image
is constant zero, we expect the square in the template to be pushed outside
of the image domain. The initial search direction for the normal (left)
approach and Dirichlet boundary conditions (right) is visualized by black
arrows (bottom row).

As we see in Figure 6.24 there is only a non-vanishing search direction inside small the
square. Note that the search direction points outwards of the image domain in both
cases. While in the classic approach the update vector on the boundary points outside
of the image domain (white strip to the right in 6.24c), this update vector is set to zero
in the approach with Dirichlet boundary conditions. Consequently we expect severe
problems for the Dirichlet registration, since the update vector pulls the grid towards
foldings, which are excluded by the hyperelastic regularizer:
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(a) Transformed template
(classic)

(b) Transformed template
(Dirichlet)

(c) Transformation grid (d) Transformation grid (Dirichlet)

Figure 6.25: Registration results (top row) with transformation grids (bottom row) for
classic and Dirichlet approach with α1 = α3 = 10 and α2 = 0. The
classic method (left) pushes the square outside of the domain, while the
border cannot be crossed without violation of the determinant constraint
(det(∇v) > 0) in the Dirichlet approach.

Note that the irregularities in the grid 6.25d can be explained in the following way: The
forces pulling the square outside are stronger in the middle of the center, which results
in enhancement of the corresponding grid cells. Consequently the grid cells near the
boundary get shrinked and moved towards the boundary. Motivated by this we observe
that the approach outlined above may be obstructed by the following problems:

� How can we deal with forces trying to push an object outside of the domain, while
the boundary is fixed by the Dirichlet boundary values?

� What can we do, when no injective Dirichlet boundary values are available?

These problems give rise to the question, whether the injectivity of a starting guess is pre-
served in the optimization process. As we observe the defined transformation operators
T ic and Tmp for a transformation v are injective, iff v is weakly invertible. Further-
more as a consequence of the Neumann series [146, Chapter II, Theorem 1.11] the set
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of invertible operators is open with respect to the operator norm topology. Additionally
for a given injective operator T1, every operator T2 with ‖T1 − T2‖ ≤ q‖(T1)

−1‖−1 for
0 < q < 1 is injective and we have:

‖(T2)
−1‖ ≤ 1

1− q
‖(T1)

−1‖−1 (6.40)

This estimation above might prove to be too restrictive to be used to derive injectivity
conditions in our numerical framework, since it does not take the local invertibility of
the admissible transformations into account. Thus the question arises, if we can derive
conditions for an additive update s, such that v1 + s is an admissible transformation
and stays injective for an injective transformation v1. On the other hand one could try
to find a registration problem generating an update s for an injective transformation v,
such that (v + s) ∈ A , but v + s is not injective.
To complete this short outlook on injectivity in image registration, we mention that there
is a possibility to guarantee injectivity, but at the price of increasing the computational
costs: We can embed the images to be registered into bigger images with a constant
background. Then we can safely assume that the transformation is the identity on
the boundary of the bigger images and Proposition 3.2.9 guarantees the injectivity of
an admissible transformation. Additionally, this embedding can help to alleviate the
difficulties induced by forces pushing a part of the image outside of the domain, since
the constant background ensures, that the forces for the distance measure are zero near
the boundary of the bigger image.

6.6.2 Convergence Properties

There are several questions arising regarding the convergence properties in a numerical
framework. As we saw in Chapter 5 the convergence of the modified BFGS method we
use in the optimization relies on the convergence of the classical BFGS method. Conver-
gence to a local minimum for the classical method is given for an initial starting point
with bounded sublevel set, provided the objective function is continuously differentiable
with Lipschitz continuous gradients [91].
We divide the discussion on the convergence properties into two parts: While we discuss
convergence of the modified BFGS in the first part, we address the question to which
local minimum the method converges in the second.

Convergence of the Modified BFGS-Method

As we mentioned above there are three properties of the objective function j, which
ensure convergence to a local minimum. According to [91] these properties are given by:

1. The objective function j is continuously differentiable.

2. ∇j is Lipschitz-continuous.

3. The sublevel set {x | j(x) ≤ j(x0)} is bounded for the starting value x0.
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We will discuss these three conditions shortly in the following:

Condition 1 should not be a problem in practical applications: Since we start with
digital images we can obtain continuous differentiability via appropriate interpolation
(e.g. cubic or spline interpolation - see [100, Chapter 6.1] for a similar argument). Note
that we assumed data fidelities to be continuously differentiable and thus we end up
with the composition of two C1 functions.

The second condition might cause problems for some given noise models: The Kullback-
Leibler data fidelity DKL for data f corrupted by Poisson noise is given by

DKL : L1(Ω,R>0) → R u →
ˆ

Ω

u(x)− f(x) log(u(x))dx. (6.41)

As we observe this data fidelity explodes for images u → 0 and therefore we cannot
expect Lipschitz continuity. In practical applications often a threshold ε is set, such that
the integrand function is given by:

u →
{
u(x)− f(x) log(u(x)) u(x) > ε

0 u(x) ≤ ε
. (6.42)

As we directly observe this function is not even differentiable for u(x) = ε, but we can
achieve a Lipschitz-continuous approximation by choosing two thresholds ε1 > ε2, setting
the integrand function to zero for u(x) ≤ ε2 and performing an appropriate interpolation
in the interval [ε2, ε1].

Condition 3 can be critical in practical applications: As we see a global translation
applied to all grid points has zero regularization energy. Thus we can find arbitrarily
many transformation grids with a finite distance term and zero regularization energy by
simply performing a translation, which pushes the original image outside of the image
domain. As a short remark we present two ways to handle these difficulties: The first one
is to alternate boundary conditions for the interpolation, which transforms the image
in a manner, such that the values of the transformed image are set to infinity, if the
grid points are pushed too far from the original image domain. Another possibility is
to focus on the regularization energy of said translations. Ruthotto [129] proposed to
restrict the admissible transformations to transformations with bounded displacements
(compare (4.68) in the definition of the hyperelastic regularization) by requiring

ˆ

Ω

y(x)dx| ≤ vol(Ω)(M + diam(Ω)).

It is clear that this restriction discards the unwanted translations we described earlier.

We have now shown that the minimization method we use in our framework converges
to a local minimum, given the assumptions we outlined above. Note that also for a line
search with Wolfe conditions [91] as well as for nonmonotone Armijo line search [149]
global convergence to a local minimum can be shown. The next question is, which local
minimum is chosen by the minimization method.
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A finer Multilevel Sequence

As we described in Chapter 5 we perform a multilevel approach in the minimization
process, because we hope to decrease the probability of obtaining unwanted local minima.
The following example shows that the multilevel approach is even sensitive to the scaling
factor s between two levels:

(a) Reference (b) Template

Figure 6.26: Registration problem to compare the impact of different scaling factors in
the multilevel framework.

We perform a multilevel registration with α = 100 and different scaling factors s between
the levels:

(a) Transformed template
(s = 2)

(b) Transformed template
(s = 1.2)

Figure 6.27: Transformed template images (top row) with transformation grids (bottom
row) for different scaling factors s. The finer sequence reduces the objective
function to 0.037, while the coarse sequence produces a total energy of 4726.

Before we compare both approaches we inspect the transformation grids of the found
transformation.
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(a) Transformation Grid
(s = 2)
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(b) Transformation Grid
(s = 1.2)

Figure 6.28: Transformation grids for both multilevel sequences. While the finer se-
quence leads to a translation, the coarser sequence produces an irregular
transformation.

We see that for the coarser scaling s = 2 the algorithm tries to minimize the distance by
compressing the circle nearly into a small dot. In contrast to that a finer scaling in the
multilevel frameworks generates a transformation aligning the template nearly perfectly
to the reference image. Note that a similar result can be produced with the coarse
framework by affine linear registration. However, we can state, that a finer multilevel
sequence can rule out unwanted local minimizers, but of course at higher computational
costs. Motivated by this synthetic example the question arises, whether this differences
between coarse and fine multilevel scaling can influence registration results in practical
applications.

6.6.3 Noise and Multilevel Approaches

We performed our multilevel minimization with an adaptive parameter choice, where we
linked the regularization parameter α to the variance of the noisy data given on each
level. We motivated this adaptive choice for data corrupted by Gaussian noise with
Example 5.1.1. Unfortunately, for other noise types it is not straightforward how the
variance behaves in the multilevel framework. If we consider an image f = fi,j corrupted
by Poisson noise, then the corruption is given by

fi,j = Poi(ui,j) (6.43)

with u = ui,j being the underlying true image. Thus the random variables generating
the noise in each pixel, are not identically distributed, since the mean and variance are
given by the value of the true image. While the behaviour of Poisson noise in multilevel
approaches has been studied for reconstruction problems [52, 33], to our best knowledge
this has not been investigated for registration problems yet.

Another aspect of the noise modeling in the multilevel approach is, that it is not always
clear, how the noise characteristics change, if we obtain a coarser image by averaging:
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While the sum of Poisson distributed random variables stays Poisson distributed, this
property can not be expected to be preserved by averaging. One method to deal with this
difficulties is applying the Anscombe transformation (compare e.g. [52]), which trans-
formes Poisson distributed random variables in normal distributed ones. The drawback
of the Anscombe transformation is that the variance is increased by the transforma-
tion. Since we formulated a unified framework for registration with noise modeling, the
question arises how the noise characteristics change by the averaging resulting from the
multilevel approach. Directly arising from this is the question, how the change of the
noise characteristics affects the data fidelities we used for a specific noise model.

As we outlined shortly the multilevel approach needs to be studied in two aspects: The
first one is how the variance of the noisy signal changes by the averaging in the multilevel
approach. While this is understood for Gaussian noise, research for other noise models
needs to be done. The second aspect is closely related: Do we need to use specific data
fidelities for each level, since the noise characteristics change on each level?

6.6.4 Adjoint Operators for Non-Injective Transformations

In the derivation of the registration formulation for noisy image sequences we assumed,
that the transformation we estimate is one-to-one. This assumption had the advantage,
that an inverse existed and thus the computation of the adjoint operator with the area
formula was straightforward. In the following we outline a way to compute adjoints to
transformation operators for non-injective transformations.

For a not necessarily injective transformation v we assume, that we can decompose the
image domain Ω into disjoint sets, such that

Ω =
n⋃
i

Ωi ∪N (6.44)

with λ(N) = 0 and v|Ωi
=: vi injective. Then we can start to compute the adjoint

operator for the intensity-constant transformation operator via

ˆ

Ω

f(v(x))g(x)dx =

ˆ
n⋃

i
Ωi∪N

f(v(x))g(x)dx

=

ˆ
n⋃

i
Ωi

f(v(x))g(x)dx

=
n∑
i

ˆ

Ωi

f(vi(x))g(x)dx
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=
n∑
i

ˆ

vi(Ωi)

f(x)g(v−1
i (x)) det(∇v−1

i )dx

=
n∑
i

ˆ

vi(Ωi)

f(x)g(v−1
i (x))

1

det(∇vi)
dx

=

ˆ

v(Ω)

f(x)

⎛
⎝ ∑

z∈v−1(x)

g(z)

⎞
⎠ 1

det(∇v)
dx. (6.45)

For computing the adjoint in the case of the mass-preserving transformation operator
we can proceed analogously and obtain

ˆ

Ω

f(v(x))g(x) det(∇v)dx =

ˆ

v(Ω)

f(x)

⎛
⎝ ∑

z∈v−1(x)

g(z)

⎞
⎠ dx. (6.46)

Note that the decomposition (6.44) cannot be found, if Nv(·,Ω) /∈ L∞(Ω). Thus there
remain two open questions to be studied:

1. Can we find a decomposition (6.44), if Nv(·,Ω) ∈ L∞(Ω)?

2. What can we do, if Nv(·,Ω) /∈ L∞(Ω)?

Since the boundedness of the Banach indicatrix in L∞ is sufficient for the transformation
operator to be continuous we will not pursue the second question further, but rather
focus on the first. We start by stating the aforementioned continuity property of the
mass-preserving transformation operator.

Lemma 6.6.1. Let v : Ω → Ω̂ be an admissible transformation with Nv(·, Ω̂) ∈ L∞ as
well as det(∇v) ∈ L∞. Then the mass-preserving transformation operator

Tmp
v : L2(Ω̂) → L2(Ω) (6.47)

is continuous.

Proof. We observe:

‖Tmp
v u‖2L2(Ω) =

ˆ

Ω

(Tmp
v u)2 dx

=

ˆ

Ω

(u(v(x)) det(∇v(x)))2 dx

≤ ‖ det(∇v)‖∞
ˆ

Ω

(u(v(x)))2 det(∇v)dx
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= ‖ det(∇v)‖∞
ˆ

Rd

(u(z))2 Nv(z, Ω̂)dz

≤ ‖ det(∇v)‖∞‖Nv(·, Ω̂)‖∞
ˆ

Rd

u(z)2dz

= ‖ det(∇v)‖∞‖Nv(·, Ω̂)‖∞‖u‖2
L2(Ω̂)

.

This continuity property ensures that it is sufficient to verify the adjoint operator (6.46)

for step functions g. Thus for any step function g =
K∑
k=1

ckXEk
we obtain:

ˆ

Ω

u(v(x)) det(∇v(x))g(x)dx =
N∑
k=1

ck

ˆ

Ek

u(v(x)) det(∇v(x))dx

=
N∑
k=1

ck

ˆ

Rd

u(z)Nv(z, Ek)dz

=

ˆ

Rd

u(z)
∑

x∈v−1(z)

u(x)dz.

We can proceed analogously for the intensity-constant operator, if we assume
det(∇v)−1 ∈ L∞. To conclude this discussion we will compute the resulting distance
measure for a not necessarily injective transformation in the case of Gaussian noise and
the mass-preserving transformation operator.
We compute analogously to Section 6.2 and start by inserting the modified transforma-
tion operators in the optimality condition (6.16) for Gaussian noise:

0 = 2(u(x)− f0(x)) + 2 (Tmp
v )∗ (u(v(x)) det(∇v(x))− f1(x))

0 = u(x)− f0(x) + u(x)
Nv(x,Ω)

det(∇v−1(x)
−
∑

z∈v−1(x)

f1(z)

(
1 +

Nv(x,Ω)

det(∇v−1(x))

)
u = f0(x) +

∑
z∈v−1(x)

f1(z)

u =

f0(x) +
∑

z∈v−1(x)

f1(z)

1 + Nv(x,Ω)
det(∇v−1(x))

u =

f0(x) det(∇v−1(x)) +
∑

z∈v−1(x)

f1(z) det(∇v−1(x))

Nv(x,Ω) + det(∇v−1(x))
.
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We start by computing the transformed version of u:

u(v(x)) =
f0(v(x))

1
det(∇v(x))

+ f1(x)
Nv(v(x),Ω)
det(∇v)

Nv(v(x), v(Ω)) +
1

det(∇v)

=
f0(v(x)) + f1(x)Nv(v(x),Ω)

Nv(v(x), v(Ω)) det(∇v) + 1
.

We can use this transformed version to expand the first distance term:

D(u, f0) =

ˆ

Ω̂

(u(x)− f0(x))
2dx

=

ˆ

Rd∩{Nv(x,Ω) �=0}

(u(x)− f0(x))
2Nv(x,Ω)

Nv(x,Ω)
dx

=

ˆ

Ω

(u(v(x))− f0(x))
2 det(∇v(x))

Nv(v(x), v(Ω))
dx

=

ˆ

Ω

(
f0(v(x)) + f1(x)Nv(v(x),Ω)

Nv(v(x),Ω) det(∇v) + 1
− f0(v(x)

)2
det(∇v(x))

Nv(v(x),Ω)
dx

=

ˆ

Ω

(
f1(x)Nv(v(x),Ω)− f0(v(x)) det(∇v(x))Nv(v(x),Ω)

Nv(v(x),Ω) det(∇v) + 1

)2
det(∇v(x))

Nv(v(x),Ω)
dx

=

ˆ

Ω

(f0(v(x)) det(∇v(x))− f1(x))
2 Nv(v(x),Ω)

2 det(∇v(x))

(Nv(v(x),Ω) det(∇v(x)) + 1)2Nv(v(x),Ω)
dx

=

ˆ

Ω

(f0(v(x)) det(∇v(x))− f1(x))
2 Nv(v(x),Ω) det(∇v(x))

(Nv(v(x),Ω) det(∇v(x)) + 1)2
dx

Now we evaluate the second distance term:

D(u(v) det(∇v), f1) =

ˆ

Ω

(u(v) det(∇v)− f1)
2dx

=

ˆ

Ω

(
f0(v(x)) + f1(x)Nv(v(x),Ω)

Nv(v(x), v(Ω)) det(∇v) + 1
det(∇v(x))− f1(x)

)2

dx

=

ˆ

Ω

(
f0(v(x)) det(∇v(x))− f1(x)

Nv(v(x), v(Ω)) det(∇v) + 1

)2

dx
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=

ˆ

Ω

(f0(v(x)) det(∇v(x))− f1(x))
2

(Nv(v(x),Ω) det(∇v(x)) + 1)2
dx.

By adding up this two distance terms one power in the denominator cancels out and we
obtain the following modified distance measure

D̃gaussian,mp =

ˆ

Ω

(f0(v(x)) det(∇v(x))− f1(x))
2

Nv(v(x),Ω) det(∇v(x)) + 1
dx. (6.48)

Note that the Jacobian determinant det(∇v−1) can be computed for each x ∈ v−1(z)
with the help of the local inverse. As a consequence of the implicit function theorem we
obtain, that the Jacobian determinants coincide for all those x. Thus we just used the
notation x ∈ v−1(z) in order to keep the computations simple.
As a numerical implementation of the Banach indicatrix Nv is a challenging task, we will
not elaborate further on a possible numerical framework. Nevertheless modified distance
measures can be computed for the intensity-constant transformation operator and other
noise models as well.
To conclude this discussion we mention that the generalized distance measure coincides
for injective transformations with the one we deduced with the injectivity constraint in
Section 6.2.

6.6.5 Intensity-Constant versus Mass-Preserving Transformation
Model

As we showed in the Theorems 6.3.2 and 6.3.4 the two transformation models we pre-
sented behave differently: While we can show polyconvexity of the resulting distance
measure and therefore existence for the mass-preserving transformation, the resulting
distance measure is concave with respect to the Jacobian determinant and thus upper
semicontinuous for the intensity-constant transformation operator. Resulting from this
different behaviour of the transformation operators are the following two problems:

1. Can we show the existence of a minimizer for the intensity-constant transformation
operator, despite the resulting distance measure being concave with respect to the
Jacobian determinant?

2. Can we observe the different (analytical) behaviour of both transformation oper-
ators also in numerical experiments?

We start with presenting some ideas on how to overcome the difficulties in the analy-
sis of the resulting registration functional. Since the volume term in the hyperelastic
regularization is convex, it is a possibility to increase the weight of this term until this
convexity dominates the concavity of the Jacobian determinant. This would allow us to
show existence of a minimizer for a certain range of regularization parameters but on
the other hand eventually discard the possibility to choose the regularization parameter
in dependence of the noise level of the data.
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The next possibility is to show existence in the sense of (orientation-preserving) Young
measures, which we mentioned shortly in Section 3.4. According to [86, Thm. 6.1] every
infimizing sequence vj has a subsequence vjk , such that the gradients of this subsequence
∇vjk generate a Young measure, that minimizes the registration functional in the sense
of Young measures. It is not directly clear, whether this measure is a Dirac-measure.

The next possibility is to evaluate, whether existence results can be stated, although
the functional is not (poly)convex. This question has inter alia been covered by Pietro
Celada et al. e.g. in [31, 30]. The central idea for a functional J of the type

J(y) =

ˆ

Ω

g(y(x),∇y(x), x)dx

is to study the following functional, generated by the convex envelope g∗∗:

J∗∗(y) :=
ˆ

Ω

g∗∗(y(x),∇y(x), x)dx.

Since J∗∗ is polyconvex, existence of a minimizer for J∗∗ is guaranteed. If the convex
envelope is affine on each connected component of the so called detachment set {g∗∗ < g}
and fulfils some regularity conditions (continuity and growth conditions), then existence
of a minimizer is granted [30, Thm. 2.1]. Note that in order to use this result we
have to compute the convex envelope for our registration functional, which is a difficult
task. However, since the distance measure is concave with respect to the Jacobian
determinant, the convex envelope for the distance measure is given by the constant
zero function. This might indicate, that the lack of convexity is too grave to obtain an
existence result following Celada’s reasoning.

In order to study the numerical behaviour we study the following registration problem:

(a) Reference (b) Template

Figure 6.29: Artificial registration problem - the total amount of intensity is the same
in each picture.

Since both images hold the exact amount of intensity and take only values in [0, 1]
we expect that they can be aligned exactly with the mass-preserving transformation
operator as well as the intensity constant. In order to compare both approaches we
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corrupt these images with Gaussian noise with mean zero and standard deviation
σ = 0.01:

(a) Reference (b) Template

Figure 6.30: Noisy version of the artificial registration problem in Figure 6.34. Images
corrupted by Gaussian noise with μ = 0 and σ = 0.01.

We start by registering these images for a wide parameter range with the mass-preserving
Gaussian as well as the intensity constant Gaussian distance. This leads to the following
phantom matching errors:

Figure 6.31: Phantom matching errors for the mass-preserving and intensity-constant
Gaussian distance. The mass-preserving transformation transformation op-
erator leads to smaller phantom matching error for two values.

We see that there is a small parameter range, where the mass-preserving transformation
operator performs better than the intensity-constant in terms of the phantom match-
ing error. Interestingly this small parameter range is also visible in the regularization
energies for the estimated transformations.
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Figure 6.32: Regularization energy of the estimated transformations for mass-preserving
and intensity-constant transformation error. The regularization energy is
significantly lower in the corresponding parameter range to Figure 6.35

Having compared both approaches in a quantitative way, we turn our focus towards
visual inspection.

(a) Intensity-constant
α = 0.1

(b) Mass-preserving
α = 0.01

Figure 6.33: Template transformed with the transformation best in the sense of the
phantom matching error for both methods. The mass-preserving transfor-
mation error captures the wings in the corners of the image better than the
intensity-constant transformation operator.

We see that the pointed wing shapes on the corners of the image are captured slightly
better by the mass-preserving transformation operator. Note that because of this, the
phantom matching error is slightly smaller, despite the modulation by multiplication
with the Jacobian determinant causing errors in the intensity value.
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To conclude this examination, we investigate, whether this properties can also be ob-
served for a higher noise corruption. Thus we corrupt the images in Figure 6.34 with
heavier noise.

(a) Reference (b) Template

Figure 6.34: Noisy version of the artificial registration problem in Figure 6.34. Images
corrupted by Gaussian noise with μ = 0 and σ = 0.025.

Again we inspect the phantom matching error for both transformation models.

Figure 6.35: Phantom matching errors for the mass-preserving and intensity-constant
Gaussian distance. For the high noise corruption the intensity-constant
transformation operator leads to transformations with significantly lower
phantom matching errors.

Interestingly for the higher noise corruption there is a parameter range, where the
intensity-constant transformation modeling performs better than the mass-preserving
in terms of the phantom matching error. Again we turn our focus towards the regular-
ization energy of the estimated transformations.
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Figure 6.36: Regularization energy of the estimated transformations for mass-preserving
and intensity-constant transformation error. There is no parameter range
where the regularization energies differ significantly for both transformation
models.

In contrast to the case of a low noise corruption (compare Figure 6.32) we cannot observe
a significant difference in the regularization energies for the transformation models corre-
sponding to the parameters, where the intensity-constant operator performs better. To
conclude we inspect ground truth template transformed by the optimal transformation
visually:

(a) Intensity-constant
α = 0.1

(b) Mass-preserving
α = 0.1

Figure 6.37: Template transformed with the transformation best in the sense of the phan-
tom matching error for both methods. While the intensity-constant trans-
formation operator rudimentary captures the pointed wings in the corners
of the image, the mass-preserving transformation operator fails to do so.
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As we observe for a higher noise corruption the intensity-constant transformation op-
erator captures the wings in the corners of the image at least rudimentary, while the
mass-preserving transformation operator just slightly deforms the ring. An explanation
could be that the pointed wings are interpreted as noise artifacts, which get smoothed
by the mass-preserving transformation operator.

To conclude we can say that the mass-preserving transformation operator performed bet-
ter than the intensity-constant for a low noise corruption. The better performance was
clearly visible in the plots of phantom matching error (Figure 6.35) and the regularization
energy (Figure 6.32). Increasing the noise gave different results; the intensity-constant
transformation operator now performed better than the the mass-preserving. While this
could be explained with implicit smoothing properties of the mass-preserving operator,
further research on this matter needs to be carried out.

116



7 Motion-Corrected Reconstruction

This chapter deals with the reconstruction of density images from indirect measure-
ments, such as occuring for example in emission tomography. Since the emission tomo-
graphy projection operator, representing the scanner geometry, is often compact and the
measurements are noise corrupted, direct inversion is not an option (compare Example
4.2.1). For the specific case of Poisson noise, Shepp and Vardi proposed the famous and
widely used EM-Algorithm [137], which was extended to regularized reconstruction (see
for example [22]). Motion correction can be performed via gating of the images and per-
forming registration on the reconstructed gates. By averaging the registered images the
signal-to-noise ratio of one gate could be improved [63]. Recently combined approaches
for motion-correction and reconstruction received more and more attention: While the
first step in this process was to incorporate independently estimated motion informa-
tion into the reconstruction process [117], the latest approaches tend to a simultaneous
estimation of the reconstructed density image and motion vector field [96, 18]. In the
following we propose a framework for motion corrected reconstruction with appropriate
regularization for the image (TV) as well as the motion vectors (hyperelastic).

7.1 Problem Formulation

We are concerned with the reconstruction of a sequence of density images ρ0, ..., ρN ,
where each ρi corresponds to a data gate f i. Since we reconstruct the distribution of a
radioactive tracer, we expect mass-preservation:

ˆ

Ω0

ρ0(x)dx =

ˆ

Ωi

ρi(x)dx ∀1 ≤ i ≤ N (7.1)

This guarantees that neither radio activity is created nor vanishing between two gates.
Thus we assume the ρi to be of the following form:

ρi(x) := ρ0(yi(x)) det(∇yi)(x), (7.2)

where ρ0 : Ω0 → R is the so called reference configuration and we set y0 := Id. Further-
more we assume each transformation yi : Ωi → Ω0 to be defined on a specific domain Ωi.
Note that we allow these domains to be different, but in many practical applications we
have in fact Ω0 = Ωi for all 1 ≤ i ≤ N . By the area formula (Theorem 3.2.7) we obtain
mass-preservation for weak diffeomorphisms. The gated data f i is a noisy version of the
projected density Kρi with a compact operator K : Ω → Σ, projecting from the image
domain Ω into the measurement domain Σ with integration measure dσ. In order to
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solve this motion-corrected reconstruction problem, we extend the Bayesian framework
for reconstruction we presented earlier in this thesis. Consequently we aim to maximize
the probability

P ((ρ, y)|f). (7.3)

Bayes’ theorem now gives us

P ((ρ, y)|f) ∝ P (f |ρ)P (ρ|y)P (y). (7.4)

We will enlighten this three probabilities now further. We start by setting

P (f |ρ) =
N∏
i=0

L(Kρi, f i). (7.5)

Here L is the likelihood, adapted to the noise model we assume for the measurement
process. Since the focus of our application lies on photon emission tomography, we
assume Poisson noise [125]. Nevertheless the analysis presented later on can be extended
to different noise characteristics. For the probability of the image sequence with given
deformations we choose

P (ρ|y) ∝ P0(ρ
0)

N∏
i=1

ε(ρi − ρ0(yi) det(∇yi))Pi(ρ
i). (7.6)

Here ε is the concentrated measure, which enforces (7.2). Additionally we choose P (y)
and P (ρ) as suitable priors for motion vectors and density images. Since we aim to
find a maximum a-posteriori probability estimator (MAP-estimator), we minimize the
negative log-likelihood of (7.4):

min
ρ,y

N∑
i=0

(D(Kρi, f i)− log(Pi(ρ
i)))− log(P (y)), (7.7)

where D(Kρi, f i) is the negative log-likelihood adapted to the noise characteristics.
We choose the negative logarithms of the priors related to regularization functionals
presented earlier. Since we aim to reconstruct images with sharp edges, we use a total
variation prior:

− log(Pi(ρ
i)) = αk|ρi|BV (Ω) (7.8)

For the transformation we need a regularization controlling the Jacobian determinant
det(∇yi), in order to enforce the mass-preservation (7.1) with our transformation model
(7.2). Thus we choose the hyperelastic regularization energy presented earlier

− log(P (y)) =
N∑
i=1

βiS
hyper(yi). (7.9)

Note that the hyperelastic regularization may still lead to non-injective transformations
(compare Example 3.2.2), which would violate the mass-preservation condition (7.1) for
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the given transformation model (7.2). However we will ignore this fact for the moment
and discuss it later.
With the given priors our motion-corrected reconstruction problem is then given by

min
ρ0,y

J(ρ, y) =
N∑
i=0

(D(K(ρ0(yi) det(∇yi)), f i) + αi|ρi|BV (Ω)) +
N∑
i=1

βiS
hyper(yi)

s.t. ρ0 ≥ 0. (7.10)

Since our main application is the reconstruction of cardiac PET, we specifically present
the data fidelity for this case:

D(Kρi, f i) =

ˆ

Σ

Kρi − f i log(Kρi)dσ (7.11)

Here dσ denotes the Lebesgue measure for the measurement domain. Having presented
a detailed modeling of the motion-corrected reconstruction problem, we turn our focus
to the analysis of the resulting variational problem.

7.2 Analysis

The goal of this section is the presentation of an analytical framework for the motion-
corrected reconstruction problem. We will show the existence of a minimizer via the
direct method in the calculus of variations: We have to verifiy two properties of our
functional:

(lsc) Lower semicontinuity

(csls) Compactness of sublevel sets resp. coercivity

While the coercivity can be obtained from the regularizer and lower bounds of the
distance measure, the proof of lower semicontinuity needs some caretaking.
As a first step in the analysis of the problem we start by defining the function space, in
which we aim to find a minimizer of our functional. The TV-regularization determines
that we are looking for a density image in BV (Ω), while the hyperelastic regularization
provides transformations in the subset of admissible transformations A ⊂ H1. Conse-
quently we aim to find a minimizer (ρ̂, ŷ) in the space

X := BV (Ω)× (A )N . (7.12)

In order to use the results by Ruthotto we also use the splitting he introduced [129] with
the following auxiliary space

X̃ := BV (Ω)×H1(Ω;Rd)× L4(Ω;Rd×d)× L2(Ω), (7.13)
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equipped with the norm

‖(ρ, y, cof(∇y), det(∇y))‖X̃ := ‖ρ‖BV (Ω) + ‖y‖H1 + ‖ cof(∇y)‖L4(Ω;Rd×d) + ‖ det(∇y)‖2,
(7.14)

where the norms of the transformations are understood componentwise as

‖y‖H1 :=
N∑
i=1

‖yi‖H1 (7.15)

and for cofactor and determinant analogously. In favor of keeping the following proofs as
simple as possible, we avoid to use the splitting of the transformations as long as possible
and use this argumentation only when it is inevitable. Having stated the preliminaries
on the function spaces and norms we turn our focus on the projection operator: Since
our proof for the lower semicontinuity follows Resmerita and Anderssen [122], we impose
similar assumptions on the projection operator K:

(A1) The operator K : L1(Ω) → L1(Σ) is linear and compact.

(A2) The operator K satisfies Kx > 0 a.e. for any x > 0 a.e..

(A3) Given g ∈ Σ, g ≥ c2 > 0, then K∗g ≥ c3 > 0 a.e..

As the analysis of the Kullback-Leibler functional by Resmerita and Anderssen [122] is
only done for stationary reconstruction, we need to do some work before we can use the
results presented in their paper. Thus we present our crucial result about the sequence
of transformed images, which will allow us to show lower semicontinuity following a
reasoning with help of Fatou’s Lemma [60, Chapter 1, Theorem 2 (iii)]:

Theorem 7.2.1. Let ρ0k ⇀∗ ρ0 in BV (Ω0), yk ⇀ y in H1(Ω) and det(∇yk) ⇀ det(∇y)
in L2(Ω). Assume additionally, that

sup
k

‖Nyk(·,Ω)‖∞ ≤ C ∈ R. (7.16)

Then we obtain:
ρ0k(yk) det(∇yk) ⇀ ρ0(y) det(∇y) in L1(Ω).

Proof. For the ease of presentation we use the following abbreviation:

ρk := ρ0k ρ := ρ0 dk := det(∇yk)

For any fixed ϕ ∈ (L1)∗ = L∞ we show:

0 = lim
k→∞

ˆ

Ω

(ρk(yk)dk − ρ(y)d)ϕdx
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= lim
k→∞

ˆ

Ω

(ρk(yk)dk − ρ(yk)dk + ρ(yk)dk − ρ(y)d)ϕdx

= lim
k→∞

ˆ

Ω

(ρk(yk)dk − ρ(yk)dk)ϕdx+ lim
k→∞

ˆ

Ω

(ρ(yk)dk − ρ(y)d)ϕdx

We examine both terms separately and show each of them converges to 0.
We recall that weak star convergence in BV implies strong convergence in L1 (Definition
4.2.4). Now the first term is straightforward by the area formula and with using (7.16)

lim
k→∞

ˆ

Ω

|ρk(yk)dk − ρ(yk)dk| dx

= lim
k→∞

ˆ

Rn

|ρk − ρ|Nyk(x,Ω)dx

≤ lim
k→∞

C

ˆ

Rn

|ρk − ρ| dx

Since supp(ρk − ρ) ⊆ Ω0 and ρk → ρ in L1(Ω0) implies weak convergence, we obtain

lim
k→∞

ˆ

Ω

(ρk(yk)dk − ρ(yk)dk)ϕdx = 0 ∀ϕ. (7.17)

The second term needs more caretaking: According to Theorem 4.2.5 we find a sequence
of functions (ξn)n ⊂ C∞(Ω0) with

lim
n→∞

‖ξn − ρ‖1 = 0.

Let ε > 0. Thus we can pick a fix N, such that:

ˆ

Ω0

|ξN − ρ|dx ≤ ε

4‖ϕ‖∞C
. (7.18)

We now expand the first term with said ξN and obtain:

ˆ

Ω

(ρ(yk)dk − ξN(yk)dk + ξN(yk)dk − ξN(y)dk

+ ξN(y)dk − ξN(y)d+ ξN(y)d− ρ(y)d)ϕdx

=

ˆ

Ω

(ρ(yk)dk − ξN(yk)dk)ϕdx+

ˆ

Ω

(ξN(yk)dk − ξN(y)dk)ϕdx

+

ˆ

Ω

(ξN(y)dk − ξN(y)d)ϕdx+

ˆ

Ω

(ξN(y)d− ρ(y)d)ϕdx,
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We examine each summand separately:
Summand 1:
We start with applying Hölder’s inequality and obtain:

ˆ

Ω

(ρ(yk)dk − ξN(yk)dk)ϕdx

≤
ˆ

Ω

|(ρ(yk)dk − ξN(yk)dk)ϕ|dx

≤ ‖ρ(yk)dk − ξN(yk)dk‖1‖ϕ‖∞

=

ˆ

Ω

|ρ(yk)dk − ξN(yk)dk|dx‖ϕ‖∞

=

ˆ

Rn

|ρ− ξN |Nyk(z,Ω)dz‖ϕ‖∞

≤ C‖ρ− ξN‖1‖ϕ‖∞.

Combining this with (7.18) we obtain:

ˆ

Ω

(ρ(yk)dk − ξN(yk)dk)ϕdx ≤ ε

4
. (7.19)

Summand 2:
First we need a basic observation about this integral:

ˆ

Ω

|ξN(yk)dk|dx ≤ ‖ξN(yk)‖2‖dk‖2. (7.20)

By using that ξN(yk) is bounded, Ω compact and yk is weakly convergent, it directly
follows, that ‖ξN(yk)‖2 < ∞ and ‖dk‖2 is bounded by some E ∈ R (Banach-Steinhaus,
see e.g. [4, Chapter 5, Theorem 3]). Thus (7.20) is finite. Aswell we can directly deduce

ˆ

Ω

|ξN(y)dk|dx ≤ ‖ξN(y)‖2‖dk‖2 ≤ ∞. (7.21)

We can compute now:

ˆ

Ω

(ξN(yk)dk − ξN(y)dk)ϕdx

≤‖(ξN(yk)− ξN(y))ϕ‖2‖dk‖2
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≤‖(ξN(yk)− ξN(y))ϕ‖2E

=

√√√√ˆ

Ω

((ξN(yk)− ξN(y))ϕ)2dxE

Note that ξN is C∞ and therefore
(
ξN
)2

is Lipschitz-continuous with some constant L,
since Ω is compact. We obtain

ˆ

Ω

(
(ξN(yk)− ξN(y))ϕ

)2
dx ≤ (‖ϕ‖∞)2 L‖yk − y‖2. (7.22)

By the Rellich-Kondrachov compactness theorem [45, Chapter 5.7, Theorem 1] yk con-
verges strongly to y in L2 and so we find K2 ∈ N, such that

‖yk − y‖ <
ε2

16 (‖ϕ‖∞)2 LE2
. (7.23)

This implies for each k ≥ K2

ˆ

Ω

(ξN(yk)d− ξN(y)d)ϕdx <
ε

4
. (7.24)

Summand 3:
Since ξN(yk) is bounded it follows from the weak convergence of the determinants, that
there exists K3 ∈ N, such that for every k ≥ K3

ˆ

Ω

(
ξN(y)dk − ξN(y)d

)
ϕdx ≤ ε

4
. (7.25)

Note that the compactness of Ω ensures that ϕξN(y) ∈ L2.

Summand 4:
With K1 like in the explation to summand 1, the same argument yields:

ˆ

Ω

(
ξN(y)d− ρ(y)d

)
ϕdx ≤ ε

4
(7.26)

for any k ≥ K1.
By combining (7.19), (7.24), (7.25) and (7.26), we obtain for every

k ≥ K := max{K1, K2, K3}

ˆ

Ω

(ρ(yk)dk − ρ(y)d)ϕdx ≤ ε ∀ϕ
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and therefore

lim
k→∞

ˆ

Ω

(ρk(yk)dk − ρk(y)d)ϕdx = 0. (7.27)

The assertion follows by combining (7.17) and (7.27).

Remarks and Extensions. The boundedness of the Banach indicatrix (7.16) is crucial for
the proof - but it is not obvious that this is true. To ensure this bound we could either
seek for an injective solution (which is numerically challenging) or appoint Dirichlet
boundary conditions (yk|∂Ω = Id), which leads to injective solutions as well, but is
easier to handle in a numerical framework.
Another approach could be to establish bounds for the Banach indicatrix, by taking the
regularization energy into account.

With that at hand, we can observe lower semicontinuity of our functional:

Lemma 7.2.2 (Lower Semicontinuity for the Kullback-Leibler data fidelity). Let the
previous assumptions from Theorem 7.2.1 be fulfilled. Then our functional J, defined by

D(ρ0, y) =
N∑
i=0

ˆ

Σ

K(ρ0(yi)det(∇yi))− f i log(K(ρ0(yi)det(∇yi)))︸ ︷︷ ︸
:=gi(Kρ0(yi) det(∇yi))

dσ (7.28)

is lower semicontinous with respect to weak-star convergence in BV (Ω0), weak conver-
gence in W 1,2(Ωi) for the transformations and weak convergence in L2(Ωi) for the de-
terminants.

Proof. Let yk ⇀ y in W 1,2(Ω), det(∇yk) ⇀ det(∇y) in L2, ρ0k ⇀ ρ0 in BV (Ω).
Since we denote y = (y1, ...yN) as the collection of all transformations we understand
the weak convergence componentwise.
We recall Theorem 7.2.1 and see that for any fixed 1 ≤ i ≤ N

ρ0k(y
i
k)det(∇yik) ⇀ ρ0(yi)det(∇yi). (7.29)

Since K is a compact operator, by Proposition 3.5.13 K is completely continuous, which
gives us:

K(ρ0k(y
i
k)det(∇yik)) → K(ρ0(yi) det(∇yi)) in L1(Σ). (7.30)

Therefore we can follow the proof of Lemma 3.4 (iii) from [122] for each summand and
obtain lower semicontinuity of the Kullback-Leibler data fidelity term with the following
reasoning:
Since K(ρ0k(y

i
k)det(∇yik)) → K(ρ0(yi) det(∇yi)), we have convergence almost every-

where. Thus we can deduce

gi(Kρ0k(y
i
k) det(∇yik)) → gi(Kρ0(yi) det(∇yi)) in L1(Σ). (7.31)

Now we can apply Fatou’s Lemma [60, Chapter 1, Theorem 2 (iii)] and obtain:
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ˆ

Σ

gi(Kρ0(yi) det(∇yi))dσ ≤ lim inf
k→∞

ˆ

Σ

gi(Kρ0k(y
i
k) det(∇yik))dσ (7.32)

Having shown lower semicontinuity for an arbitrary summand with fixed i, the assertion
follows directly.

Remarks and Extensions. The lemma holds not only for the Kullback-Leibler divergence,
but for any distance

D(Kρ, f) =
N∑
i=0

ˆ

Σ

gi(Kρi, f i)dσ (7.33)

satisfying
gi(Kρik, f

i) → gi(Kρi, f i) in L1(Σ), (7.34)

whenever

Kρik → Kρi in L1(Σ). (7.35)

We have now stated lower semicontinuity results for a wide range of distance terms,
including the Kullback-Leibler data fidelity. Thus we turn our focus to the TV-regulari-
zation. By setting αk = 0 for any 1 ≤ k ≤ N in (7.10), this would follow directly
by the properties of the TV-seminorm we mentioned earlier. However to overcome this
restriction we give the following lemma:

Lemma 7.2.3. Let ρn ⇀ ρ in L1(Ω). Then

|ρ|BV (Ω) ≤ lim inf
n→∞

|ρn|BV (Ω). (7.36)

Proof. The proof follows [26]. Let gl ∈ C∞
0 (ΩRd) with ‖gl‖∞ ≤ 1 satisfying

|ρ|BV (Ω) = lim
l→∞

ˆ

Ω

ρ∇ · gldx. (7.37)

Since ∇ · g ∈ L∞(Ω), we can deduce

ˆ

Ω

ρ∇ · gdx = lim
n→∞

ˆ

Ω

ρn∇ · gdx. (7.38)

This leads to ˆ

Ω

ρ∇ · gldx = lim
n→∞

ˆ

Ω

ρn∇ · gldx

= lim inf
n→∞

ˆ

Ω

ρn∇ · gldx
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≤ lim inf
n→∞

sup
g∈C∞

0 (ΩRd)
‖g‖∞≤1

ˆ

Ω

ρn∇ · gdx

= lim inf
n→∞

|ρn|BV (Ω).

Applying the limit for l leads to

TV (ρ) ≤ lim inf
n→∞

|ρn|BV (Ω). (7.39)

We now have verified the first condition for the existence of a minimizer, so we can turn
our focus on the coercivity properties.

Lemma 7.2.4 (ρ-Coercivity for the Kullback-Leibler divergence). Let our assumptions
(4.68) for our transformation and (A1)-(A3) for the operator be fulfilled. Then

J1(ρ0, y) :=
∑
i

ˆ

Σ

K(ρ0(yidet(∇y)))− f log(K(ρ0(yidet(∇y))))dσ

+ αi|ρ0(yi) det(∇yi)|BV (Ω)

is coercive with respect to the variable ρ0.

Proof. We begin by observing:

log(x) ≤ 1

a
x+ log(a) ∀x > 0

for any fixed a > 0. We add the constant f log(f)− f , such that each summand is non-
negative. Note that y0 = Id and therefore we can bind the Kullback-Leibler divergence
from below by:

N∑
i=0

ˆ

Σ

K(ρ0(yi)det(∇yi))− f log(K(ρ0(yi)det(∇yi))) + f log(f)− fdσ

≥
ˆ

Σ

K(ρ0(y0)det(∇y0))− f log(K(ρ0(y0)det(∇y0))) + f log(f)− fdσ

=

ˆ

Σ

Kρ0 − f log(Kρ0) + f log(f)− fdσ

≥
ˆ

Σ

Kρ0 − f

(
1

f + 1
Kρ0 + log(f + 1)

)
+ f log(f)− fdσ

≥
ˆ

Σ

(
1− f

f + 1

)
Kρ0dσ−

ˆ

Σ

f(f + 1) + f log(f)− fdσ

︸ ︷︷ ︸
:=c2∈R
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=

ˆ

Ω

K∗
(
1− f

f + 1

)
ρ0dx+ c2

≥
ˆ

Ω

c1ρ0dx+ c2dx

=c1‖ρ0‖1 + c2

Therefore we can conclude

J1(ρ0, y) ≥ c1‖ρ0‖1 + |ρ0|BV (Ω) ≥ min{c1, 1}(‖ρ0‖1 + |ρ0|BV (Ω)). (7.40)

Remarks and Extensions. The lemma holds not only for the Kullback-Leibler divergence,
but for any distance

D(Kρi, f i) =

ˆ

Σ

gi(Kρk)dσ (7.41)

which is bounded below and satisfies

g0(Kρ0) ≥ c1Kρ0 + c2 (7.42)

with constants c1 > 0 and c2 ∈ R, only dependent of f .

We have proved that the first part of our functional is coerciv in ρ0, so it remains to
be shown, that the hyperelastic regularization is coercive with respect to y. Fortunately
this has already been done in [129, Chapter 2, Lemma 1]. Combining these results, we
can finally formulate an existence result:

Theorem 7.2.5 (Existence of a minimizer in motion-corrected reconstruction). Let our
assumptions (A1)-(A3) hold, furthermore we assume that we have

J(1, (Id)N) < ∞, (7.43)

aswell as the following assumption on the Banach indicatrix:

‖Ny(·,Ω)‖∞ ≤ c1S
hyper(y). (7.44)

Then the functional

J(ρ, y) =
N∑
i=0

(D(K(ρ0(yi) det(∇yi)), fk) + αi|ρi|BV (Ω)) +
N∑
i=1

βiS
hyper(yi) (7.45)

with a distance term fulfilling (7.34) and (7.42) has at least one minimizer
(ρ̂, ŷ) ∈ BV (Ω) × A N . Particularly this holds for the Kullback-Leibler divergence as
distance term.
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Proof. Our proof follows the direct methods in the calculus of variations: We start by
looking for a minimizer in the space

X̃ := BV (Ω)× (H1(Ω;Rd)× L4(Ω;Rd×d)× L2(Ω))N , (7.46)

equipped with the norm

‖(ρ, y, cof(∇y), det(∇y))‖X̃ := ‖ρ‖BV (Ω)+
N∑
i=1

‖yi‖H1+‖ cof(∇yi)‖L4(Ω;Rd×d)+‖ det(∇yi)‖2.

(7.47)
We define the functional now on this space in the canonical way by setting:

J(ρ, y, cof(∇y), det(∇y)) := J(ρ, y)

and gather some factors in the Cartesian product by setting y := (y1, ..., yN) and for the
cofactors and determinants analogously.
Now we deduce by Lemma 7.2.4 and the coercivity of the hyperelastic regularizer, that

J(ρ, y, cof(∇y), det(∇y)) ≥ C(‖ρ‖BV + ‖y‖H1 + ‖ cof(∇y)‖L4(Ω;Rd×d) + ‖ det(∇y)‖2)
(7.48)

with C the minimum of the constants in the coercivity estimations.
We fix now any E, such that J(1, (Id)N) ≤ E. By the estimation above (7.48) we have
that for all tupels (ρ, y, cof(∇y), det(∇y)) in the sub level set

JE := {(ρ, y, cof(∇y), det(∇y))|J(ρ, y, cof(∇y), det(∇y)) ≤ E} (7.49)

the norm is bounded by

‖(ρ, y, cof(∇y), det(∇y))‖X̃ ≤ E

C
. (7.50)

Consequently, each summand in the norm ‖ · ‖X̃ of the product space is bounded by E
C
.

Thus we can deduce by the Banach-Alaoglu theorem that each factor of the Cartesian
product in the level set is contained in a compact set. Now the level set (7.49) is
contained in a product of compact sets, which is again compact.
We pick now an infimizing sequence (ρn, yn, cof(∇yn), det(∇yn)). Then there exists an
index N such that

(ρn, yn, cof(∇yn), det(∇yn)) ∈ JE ∀n ≥ N. (7.51)

Since JE is contained in a compact set, there exists a convergent subsequence of this
infimizing sequence which we denote again by

(ρn, yn, cof(∇yn), det(∇yn)) ∈ JE ∀n ≥ N.

According to Ruthotto ([130] resp. Theorem 4.3.4) this convergence is weakly for his
splitting, such that

yin ⇀ y in H1(Ω)
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cof(yin) ⇀ H = cof(∇yi) in L4(Ω;Rd×d)

det(yin) ⇀ h = det(∇yi) in L2(Ω)

for each 1 ≤ i ≤ N .
The convergence in the in BV (Ω) is deduced by the Banach-Alaoglu theorem and there-
fore in the weak-star topology:

ρ0n ⇀∗ ρ0 in BV (Ω).

Now the boundedness of the Banach indicatrix is granted by (7.44) and we can derive
for each summand in the first sum by Theorem 7.2.1 and Lemma 7.2.2 and 7.2.3

D(K(ρ0(yi) det(∇yi)), fk) + αi|ρi|BV (Ω)) ≤
lim inf
n→∞

D(K(ρ0n(y
i) det(∇yin)), f

i) + αi|ρi|BV (Ω)). (7.52)

Furthermore Ruthotto [129] showed the lower semicontinuity of the hyperelastic reg-
ularization. Since a sum of lower semicontinuous functionals is again lower semicon-
tinuous we can deduce the existence of a minimizer in X̃ , and J has a minimizer in
BV (Ω)× A N .

We made two additional assumptions in order to prove the theorem: While the assump-
tion (7.43) should not be critical in practical applications, it is not clear, whether (7.44)
holds. Since the area formula gives us for the transformed density image:

ˆ

Ωi

ρidx =

ˆ

Ωi

ρ0(yi(x)) det(∇yi)(x)d(x) =

ˆ

Rd

ρ0(z)Nyi(z,Ω)dz (7.53)

we can only expect mass-preservation for transformations, which are injective almost
everywhere. Thus we turn our focus on this matter and formulate an similar result for
the restriction to injective transformations:

Corollary 7.2.6 (Existence for injective transformations). Let our assumptions (A1)-
(A3) hold, furthermore we assume that we have

J(1, (Id)N) < ∞. (7.54)

Then the functional

min
ρ,y

J(ρ, y) =
N∑
i=0

(D(K(ρ0(yi) det(∇yi)), fk) + αi|ρi|BV (Ω)) +
N∑
i=1

βiS
hyper(yi)

s. t. Nyi(·,Ω) ≤ 1 a. e. for 1 ≤ i ≤ N (7.55)

with a distance term fulfilling (7.34) and (7.42) has at least one minimizer
(ρ̂, ŷ) ∈ BV (Ω) × A N . Particularly this holds for the Kullback-Leibler divergence as
distance term.
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Proof. We can follow the proof of Theorem 7.2.5, but additionally the closedness of the
constraint remains to be shown. This is uncritical, since the hyperelastic regularization
guarantees us that cof(∇yin) ∈ L4(Ω;Rd×d) for all n ∈ N, 1 ≤ i ≤ N . The closedness of
this constraint is then directly granted by Theorem 3.3.8.

While Corollary 7.2.6 provides us a satisfying theoretical result, the injectivity side
constraint is difficult to handle in a numerical framework. Since Dirichlet boundary
conditions are easier to handle we provide an existence result for a closed subset of the
injective transformations:

Corollary 7.2.7 (Existence for Dirichlet boundary conditions). Let our assumptions
(A1)-(A3) hold, furthermore we assume that we have

J(1, (Id)N) < ∞. (7.56)

Then the functional

min
ρ,y

J(ρ, y) =
N∑
i=0

(D(K(ρ0(yi) det(∇yi)), fk) + αi|ρi|BV (Ω)) +
N∑
i=1

βiS
hyper(yi)

s. t. yi = vi on ∂Ω for 1 ≤ i ≤ N (7.57)

with injective boundary values vi in the sense of Sobolev traces and a distance term
fulfilling (7.34) and (7.42) has at least one minimizer (ρ̂, ŷ) ∈ BV (Ω)×A N . Particularly
this holds for the Kullback-Leibler divergence as distance term.

Proof. Since the boundary conditions are understood in the sense of Sobolev traces,
the continuity of the trace operator ensures the closedness of constraint (7.57). Further-
more Proposition 3.2.9 ensures the injectivity of each admissible transformation fulfilling
(7.57). Now we can follow the proof of Corollary 7.2.6, resp. Theorem 7.2.5.

Having stated existence results for the Variational problem of motion-corrected recon-
struction we show that the minimization of our functional can be understood as a (non-
linear) regularization method in the sense of Definition 4.1.2:

Theorem 7.2.8. Let (f i
k)k be a sequence of noisy data with

lim
k

f i
k = f i

∗, (7.58)

where f ∗ is the exact data for an image ρ∗ and transformations y∗, such that:

(ρ∗, y∗) = min
ρ,y

N∑
i=0

D(K(ρ(yi) det(∇yi)), f i
∗) (7.59)

for a non-negative distance D, which is lower semicontinuous in both arguments and
fulfilling (7.42). Furthermore, we define a sequence of functionals Jk by:
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Jk =
N∑
i=0

(D(K(ρ0(yi) det(∇yi)), f i
k) + αi

k|ρi|BV (Ω)) +
N∑
i=1

βi
kS

hyper(yi) (7.60)

Then for αk → 0 and βk → 0 with

N∑
i=0

D(f i
∗, f

i
k)

min
i
{aik, βi

k}
→ 0

max
i

{aik, βi
k}

min
i
{aik, βi

k}
≤ C ∈ R∀k (7.61)

the sequence (ρ̂k, ŷk)k, with (ρ̂k, ŷk) being minimizers of Jk has a convergent subsequence
and the limit (ρ̂, ŷ) fulfills:∑

i

D(ρ̂(ŷi) det(∇ŷi), f i
∗) =

∑
i

D(ρ∗(yi∗) det(∇yi∗), f
i
∗) (7.62)

Proof. We assume for the sake of simplicity:

Kρi∗ = f i
∗ (7.63)

We have for a minimizer (ρ̂k, ŷk) of Jk:

Jk(ρ̂k; ŷk) ≤ Jk(ρ∗, y∗) (7.64)

Now we can deduce:

∑
i=0

|ρ̂ik|BV (Ω) + Shyper(ŷik) ≤

N∑
i=0

D(Kρi∗, f
i
k) + max

i
{αi

k, β
i
k}
(
|ρi∗|BV (Ω) + Shyper(yi∗)

)
min

i
{αi

k, β
i
k}

(7.65)
Using Assumption (7.63) we obtain:

∑
i=0

|ρ̂ik|BV (Ω) + Shyper(ŷik) ≤

N∑
i=0

D(f∗, f i
k) + max

i
{αi

k, β
i
k}
(
|ρi∗|BV (Ω) + Shyper(yi∗)

)
min

i
{αi

k, β
i
k}

.

Now by the parameter choice (7.61) the right hand side of equation (7.65) is bounded.
Since (ρ̂k, ŷk) are minimizers of the functional Jk this equation together with the coer-
civity property of the distance measure grants us boundedness of the norm of (ρ̂k, ŷk).
Then we can deduce by the Banach-Alaoglu theorem that the sequence (ρ̂k, ŷk)k con-
tains a convergent subsequence, which we denote again by (ρ̂k, ŷk)k. For the limit of this
sequence (ρ̂, ŷ) we deduce by the lower semicontinuity of the distance:
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N∑
i=0

D(Kρ̂i, f i
∗) ≤ lim inf

k

N∑
i=0

D(Kρ̂ik, f
i
k)

≤ lim
k

N∑
i=0

D(Kρi∗, f
i
k) +

N∑
i=0

αi
k|ρi∗|BV (Ω) +

N∑
i=1

βi
kS

hyper(yi∗)

Now the regularization parameters tend to zero and we can deduce:

lim
k

N∑
i=0

D(Kρ̂i, f i
k) +

N∑
i=0

αi
k|ρi∗|BV (Ω) +

N∑
i=1

βi
kS

hyper(yi∗) ≤
N∑
i=0

D(Kρi∗, f
i
∗) (7.66)

Since
N∑
i=0

D(Kρi∗, f
i
∗) ≤

N∑
i=0

D(Kρ̂i, f i
∗) by construction the first assertion follows.

Note that the estimation only holds for the composition and not for the components.
Since different transformations can lead to the same transformed image (compare Ex-
ample 4.3.1) we can in general not expect to derive convergence for both components.

Remarks and Extensions. In order to deal with the non uniqueness of the solution yielded
by Theorem 7.2.8 we assume additionally

1. lim
k

N∑

i=0
D(Kρi∗,f i

k)

min
i

{αi
k,β

i
k}

= 0 ,

2. For all αi
k, β

i
k there exist α̃i = lim

k

αi

min
i

{αi
k,β

i
k}
, resp. β̃i = lim

k

βi

min
i

{αi
k,β

i
k}
,

then we can deduce

N∑
i=0

α̃i|ρ̂i|BV (Ω) +
∑
i=1

β̃iShyper(ŷi)

≤ lim inf
k

N∑
i=0

α̃i|ρ̂ik|BV (Ω) +
N∑
i=1

β̃iShyper(ŷik)

≤ lim
k

⎛
⎜⎜⎝

N∑
i=0

D(Kρi∗, f
i
k)

min
i
{αi

k, β
i
k}

+
N∑
i=0

α̃i|ρi∗|BV (Ω) +
N∑
i=1

β̃iShyper(yi∗)

⎞
⎟⎟⎠

=
N∑
i=0

α̃i|ρi∗|BV (Ω) +
N∑
i=1

β̃iShyper(yi∗).

132



By using this deduction we can show that (ρ̂, ŷ) is a solution, which minimizes

N∑
i=0

α̃i| · |BV (Ω) +
N∑
i=1

β̃iShyper(·) ∀ (ρ, y) with
N∑
i=0

D(Kρi, f i
∗) = 0.

This solution can be viewed analogously to the best-approximate solution in the sense
of Engl et al. [44, Definition 2.1].

Having stated these analytical properties of our functional, we turn our focus towards
the numerical implementation in the next section.

7.3 Numerical Framework

In this section we describe the numerical framework we use to solve the motion-corrected
reconstruction problem. Note that we restrict the presentation of the numerical frame-
work to the Kullback-Leibler divergence as distance measure; nevertheless the extension
to other distances with given TV-regularized reconstruction algorithms is straightfor-
ward.
We aim to perform a First-Discretize-then-Optimize approach combined with an alter-
nating minimization strategy. For this we only need a discretization in the space-domain,
since we assume to have time-discretized data. For the time-discretization we assume,
that the discrete data (fi)i is gated: Therefore we define time nodes (ti)i such that each
node ti represents a stage of motion (f.e. cardiac or respiratoric gate). Additionally we
impose regularization only on the reference configuration ρ0 and not on the transformed
versions of ρ0, so by setting αi = 0 for i > 0 we obtain the following functional to be
minimized

J(ρ0, y) =
∑
i

ˆ

Σ

K(ρ0(yi)det(∇yi))− f i log(K(ρ0(yi(det(∇yi)))))dσ

+ |ρ0|BV (Ω) +
∑
i

Shyper(yi).

The space discretization is straightforward: We define pairwise disjoint pixel Bi, such
that

Ω =
⋃
i

Bi. (7.67)

With this discretization at hand we can put our problem in a discrete framework and
start to minimize our functional. Given an initial value ρ00 our algorithm reads as follows:⎧⎪⎨

⎪⎩
1. Motion step: yk+1 ∈ argmin

y
{J(ρ0k, y)}

2. Reconstruction step: ρ0k+1 ∈ argmin
ρ0

{J(ρ0, yk+1)}
.
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While the reconstruction step can be realized via motion corrected EM-TV algorithms
(see e.g. [22]), the motion step needs some caretaking. In the next sections we want to
outline both implementations briefly.

7.3.1 Reconstruction-Step: Motion-Corrected EM-TV

In this section we want to show that we can apply standard EM-TV algorithms to
motion-corrected reconstructions as well. For the ease of presentation we assume that
our transformations yi are global invertible. The central idea for EM-TV is to alternate
an EM step with given discrete projection operator (so called system matrix) with a TV
denoising step [22]. In order to so we will derivate a system matrix for motion-corrected
reconstruction in the following, such that we can apply the EM-TV algorithm from [22].
The central idea of the system matrix is to determine the possibility that a photon
resulting from a decay in a pixel is detected on a specific line. Thus an element ak,j of
the system matrix is the probability that a photon resulting from a decay in pixel j is
detected on the line k. It follows:

(Aρ)k = En(Lk),

where En(Lk) denotes the expected value of decays detected on the k-th line. Ignoring
other effects like scatter we can compute this probability without motion by

ak,j =

´
Lk

1Bj
dx

´
Lk

1dx
.

In the case of injective motion we aim to obtain a system matrix, which maps the
reference acitivity distribution ρ0 for each time node ti to the detector domain. Assume
that the system matrix A0 for the reference configuration is known. Inspired by Chapter
6 we can write our transformation model (7.2) equivalently as

ρi = Tmp
yi

ρ0. (7.68)

Projecting the transformed reference configuration ρi into the measurement domain Σ
is then given by

A0ρi = A0
(
Tmp
yi

ρ0
)
. (7.69)

Now using the associative property leads to

A0ρi =
(
A0Tmp

yi

)
︸ ︷︷ ︸

=:Ai

ρ0, (7.70)

which gives us a motion-corrected projection operator Ai, acting on ρ0 only. Now we
can formulate the motion-corrected reconstruction problem as
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⎛
⎜⎜⎝

A0

A1

· · ·
AN

⎞
⎟⎟⎠

︸ ︷︷ ︸
:=A

ρ0 =

⎛
⎜⎜⎝

f0
f1
· · ·
fN

⎞
⎟⎟⎠

︸ ︷︷ ︸
:=f

. (7.71)

We observe that the structure of (7.71) is like the one in [22] and we can directly apply
the presented EM-TV algorithm. Note that one will not store the matrix A explicitly,
but focus rather on a parallelized, matrix free implementation.

7.3.2 Motion-Step: Interpretation as Registration

In the Motion-Step we need to minimize

∑
i

ˆ

Σ

K(ρ0(y
i) det(∇yi))− fi log(K(ρ0(y

i) det(∇yi)))dσ

+ |ρ0|BV (Ω) +
∑
i

Shyper(yi)

with respect to our set of transformations (yi)i. We notice, that all the summands are
independent, so we obtain a minimum of the sum, by minimizing each summand. Since
|ρ0|BV (Ω) is a constant we retain a problem of the form:

min
yi

ˆ

Σ

K(ρ0(y
i)det(∇y))− fi log(K(ρ0(y

i) det(∇y)))dσ + Shyper(y(·, ti)) (7.72)

If we consider the Kullback-Leibler divergence being an distance measure, this is the
form of a standrad registration problem from [101] with hyperelastic regularization like
we defined in Section 4.3. Nevertheless we should mention that the Kullback-Leibler
distance measure is defined on the detector domain Σ and not on the image domain Ω
like standard distance measures such as SSD or the Normalized Gradient Field.
We turn our focus towards a minimization framework for (7.72). Since Σ is the detector
domain and therefore discrete with size mΣ, the integral becomes a sum:

mΣ∑
j=1

K(ρ0(y
i) det(∇yi))(j)− fi(j) log(K(ρ0(y

i)det(∇yi))(j)) + Shyper(y(·, ti)) (7.73)

Again we aim to perform a minimization with the modified BFGS method like described
in Chapter 5. In order to minimize the objective function (7.73) we need to compute
the derivatives with respect to the transformation grid. Like in the previous chapter the
transformation is given on a nodal grid:
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yc ∈ Rm̃ m̃ =
d∏

i=1

(mi + 1)d, (7.74)

where m = (m1, ..,md) denotes the size of the digital image obtained in the recon-
struction step. Again we use the interpolation inter and computation of the Jacobian
determinant jac, implemented in the FAIR toolbox. Then for any continuously differen-
tiable distance term

D : (RmΣ)2 → R (K(inter(ρ0, yc) jac(yc)), f) → D(K(inter(ρ0, yc) jac(yc)), f)
(7.75)

the derivative with respect to the transformation grid yc is given by the chain rule as

d

d yc
D(K(inter(ρ0, yc) jac(yc)), f)

=
d

dw
D(K(inter(ρ0, yc) jac(yc)), f)

(
K

(
d

d yc
inter+

d

d yc
jac

))
. (7.76)

With the help of (7.76) we can deal with different distance terms in the same objective
function. An implementation is given in Section 9.2.2 in the Appendix.
The actual registration is then performed with a multilevel approach like presented
in the previous chapter. Since the field of view in the scanner is often bigger than
the studied object, it is reasonable to impose Dirichlet boundary conditions on the
motion with y|∂Ω = Id, which guarantees the existence of a minimizer (Corollary 7.2.7).
This boundary conditions can be realized by taking the identity as starting guess and
modifying the search directions to zero at the boundary.
Having described the numerical framework we use for motion-corrected reconstruction
we turn our focus towards applications.
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7.4 Results

This section is devoted to the presentation of reconstruction results obtained by the
variational approach we outlined in the previous sections. We use three different data sets
to highlight the potential gained by our approach. We start with a thorough evaluation
of an artificial 2D deblurring problem, followed by some basic tests on the XCAT software
phantom as well as the hardware phantom ”Wilhelm”.

7.4.1 Artificial Deblurring Example

Deblurring problems are often occuring in microscopy, where the exact image gets con-
voluted with an (often unknown) point-spread function [89, 29]. Since the focus in this
section lies on the motion-corrected reconstruction, we assume the exact blur operator
to be known. We consider a ring shaped object in three different stages of shrinkage:

Figure 7.1: Noise free images used to generate data. Note that the amount of intensity
stored in each image is the same and they can be aligned exactly with help
of an affine linear transformation. We aim to reconstruct the image on the
left.

Since we aim to simulate a mass-preserving reconstruction problem, the overall activity
stored in each image is the same. In order to keep a simple transformation model, all
images can be aligned via 2D affine linear transformations. The noise free data is now
generated by applying a 2D disc filter implemented in MATLAB:

Figure 7.2: Blurred versions of the ground truth images in Figure 7.1. Note that the
sharp edges of the images get lost as a consequence of the blurring.
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We corrupt these blurred versions now by Poisson noise, in order to simulate the noise
corruption occurring in photon counting processes:

Figure 7.3: Blurred images in Figure 7.2 corrupted by Poisson noise. Note that much of
the information is lost.

As we see the ring gets thinned out by the Poisson noise, which causes massive loss of
information. We first start by comparing the proposed method with (TV-regularized)
single gate reconstructions. In the proposed method we chose an affine linear 2D trans-
formation model with hyperelastic regularization with weights β1 = β3 = 1 and β2 = 0
and the Kullback-Leibler divergence as data fidelity. In the proposed method as well
as the EM-TV reconstruction 5 Bregman iterations (see e.g. [22]) were performed for
contrast enhancement. For various TV regularization weights α we obtain the following
reconstruction errors:

Figure 7.4: Reconstruction error for the proposed Method (5 Bregman Iterations), EM-
TV (5 Bregman Iterations) reconstruction and reconstruction error yielded
by classical EM as benchmark. The proposed method yields the best recon-
struction result.

As we see the proposed method performs slightly better than the TV-regularized expec-
tation maximization, but the reconstruction errors are only slightly different for all three
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methods. Thus we turn towards visual inspection of the three reconstruction methods.

(a) Ground truth (b) EM reconstruction

(c) EM-TV reconstruction (d) Proposed method

Figure 7.5: Ground truth and reconstruction results for the three methods. The pro-
posed method nearly recovers the ground truth images, while noise artifacts
can be seen in the EM reconstruction and marginally in the TV-regularized
EM reconstruction.

By visual inspection we see clearly that the EM reconstruction is noise corrupted. While
the contour of the object is recovered, there are several irregularities in the shape as well
as the intensity. The TV regularized reconstruction has a much clearer homogeneous
structure, but the noise artifacts in the top of the image can still be seen. These artifiacts
are nearly completely removed by the proposed method, which results in the nearly
uniform recovering of the ring. Thus visually inspection showed us that the proposed
method yields the best reconstruction result.

We turn our focus now towards the evaluation of the estimated motion vectors. In
order to assess the quality of the estimation we compare the motion estimation by
the proposed method with an affine mass-preserving 2D registration performed on TV
regularized single gate reconstructions. For doing so, we picked the best reconstruction
in the terms of the reconstruction error for the EM-TV reconstruction of each gate and
registered them. This leads to the following phantom matching errors:
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Figure 7.6: Logarithmic plot of the averaged phantom matching errors for transforma-
tions yielded by the proposed method and registration performed on the
best TV regularized single gate reconstructions as benchmark. The phan-
tom matching errors for all transformations were averaged. The error for the
proposed method is smaller by an order of magnitude.

We compare the proposed method now with motion correction techniques using the
motion information gained from the affine 2D registration. As we expect incorpora-
ting this motion information into the reconstruction process does not produce a better
reconstruction than Bayesian ML estimation.

Figure 7.7: Reconstruction error for the proposed method, motion-corrected EM-TV
with motion determined by registration of single gate registrations an aver-
aged (TV regularized) single gate reconstructions as benchmark. The other
motion correction techniques suffer heavily from the inaccurate motion esti-
mation.
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To complete this comparison we visually inspect the reconstruction results in Figure 7.7
for all methods :

(a) Ground truth (b) Averaged EM
reconstruction

(c) Averaged EM-TV
reconstruction

(d) Registration based
m.c. EM-TV

(e) Proposed method

Figure 7.8: Best (TV-regularized) single gate reconstruction averaged by registration,
best motion-corrected EM-TV reconstruction with motion estimation via
registration of EM-TV reconstructed single gates and best reconstruction
yielded by the proposed methods. Note that the precise size of the ring
gets lost due to the inaccurate motion estimation in the registration based
methods.

We see that the inaccurate motion estimation by registering TV regularized single gate
reconstruction has severe impact on the reconstruction quality. Since the edges are not
exactly aligned by the registration, this imprecise motion estimation leads to an inexact
size of the ring in the reconstruction, respectively to a blurring of the edges in the
averaging process.

In conclusion we can state the advantages of the proposed method are twofold. First in-
corporating motion-estimation directly is superior to averaging methods, since the recon-
struction is performed from full data instead of just averaging images reconstructed from
parts of the data (compare Chapter 1). Despite small errors in the motion information
the proposed methods also performs better than the single gate reconstruction with TV
regularization. Note that while the difference between our method and TV-regularized
reconstruction was clearly visible in the visual inspection, both reconstruction methods
had a similar L2-distance to the ground truth image. Additionally the motion-estimation
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yielded by the proposed method was clearly superior to the registration based methods.
We can give the following three possible explanations for this:

� In contrast to single gate reconstructions the proposed methods transforms a tem-
plate image, which is generated from the full data set.

� By projecting the transformed template into the measurement domain the error
occurring from reconstructing the reference image from part of the data is avoided.

� The Kullback-Leibler data fidelity used in the proposed method is directly adapted
to the Poisson noise characteristics of the data, while the SSD distance we use for
the registration is used for Gaussian denoising.

Having illustrated the superior behavior of the simultaneous motion and image estima-
tion on this artificial dataset we turn our focus towards real applications.

7.4.2 XCAT Software Phantom Data

In this subsection we inspect the performance of three reconstructions methods on
data generated by the XCAT software phantom [134]. For generating the data we
projected four cardiac gates of the phantom into the data spaces specified by the
Siemens Biograph Sensation 16 scanner provided by the EMRecon toolbox [84]. The
projected data was downscaled by the factor 1000 corrupted with Poisson noise and
then scaled up again. We reconstructed the first gate from this single gate data with the
classical EM algorithm, EM-TV algorithm, and the method we described in this chap-
ter applied on the full data. For various TV-regularization weights α and hyperelastic
regularization parameter β1 = 500α, β2 = 0, β3 = 650α. Applying these methods with
the specified regularization parameters leads to the following reconstruction errors:

Figure 7.9: Reconstruction errors for EM, EM-TV and the proposed method. EM-TV
Reconstruction performs best.
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As we see, the EM-TV method seems to perform best in terms of the reconstruction
error. Having assessed the quality of the three reconstruction methods quantitatively
we turn our focus towards visual inspection of the reconstructed images.

(a) Ground Truth (b) EM

(c) EM-TV (d) Proposed method

Figure 7.10: Ground truth and reconstructions EM, EM-TV (α = 125) and the pro-
posed method (α = 1000). The TV regularized methods produce clearly
better reconstruction results than the classical expectation maximization
algorithm. The right ventricle is captured slightly better by the proposed
method.

Visual inspection of the reconstructed images shows that despite having a higher recon-
struction error the proposed method captures structures with a low amount of activity
better than both single gate reconstruction methods. As we see the right ventricle
stands out much clearer by incorporating motion information. In order to inspect this
phenomenon further, we show some more 2D slices of the reconstructions.
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(a) Ground truth (b) EM

(c) EM-TV (d) Proposed method

Figure 7.11: Representative 2D slice for the three reconstruction methods. Again the
proposed method recovers areas with a low amount of intensity better than
the single gate reconstructions.

Despite leading to bigger reconstruction errors than TV-regularized single Gate recon-
struction (Figure 7.7) the proposed methods manages to capture areas with low amount
of tracer activity better than the single Gate reconstructions (Figures 7.10 and 7.11).
This illustrates the potential of motion-corrected reconstruction for images suffering from
low signal to noise ratio. As we expected, there are nearly no differences visible in areas
with a high amount of tracer activity. The better performance of the TV regularized sin-
gle gate reconstruction in terms of the reconstruction error can be explained by the fact,
that the proposed method suffers from a slightly inaccurate motion-estimation, which
leads to the observed reconstruction errors. Thus we state that the proposed method
is best suited for images with really poor signal-to-noise ratio, so that the inaccuracies
in the motion estimation are dominated by the improved reconstruction using the full
data.

7.4.3 Hardware Phantom ”Wilhelm”

To conclude this section we test the proposed method on data generated by the hardware
phantom ”Wilhelm” [133]. This phantom is built in the torso of a mannequin and
consists of a diaphragm, which moves in the imaging process and affects a small flask
filled with tracer as well as an artificial left ventricle. By gating we obtained data for eight
different stages of motion. We aim to reconstruct one gate with the motion-corrected
reconstruction framework (5 Bregman iterations in the reconstruction step) and choose
the parameters α = 200 for the TV regularizer and β1 = 50, β2 = 0,
β3 = 65 in the hyperelastic regularization. To compare the results we also reconstruct
the single gate with the classical EM algorithm (5 iterations) and a TV-regularized single
gate reconstruction (α = 50). The TV-regularized reconstructions were performed with
5 EM iterations. Note that we imposed a stronger regularization weight in the motion-
corrected approach, since the data term gets bigger due to the comparison with all data
sets and not only one.
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We start by comparing reconstructions of all three methods in a representative 2D slice
picturing the ventricle.

(a) EM (b) EM-TV

(c) Proposed method

Figure 7.12: Representative 2D slice of the reconstructions yielded by the three differ-
ent reconstruction methods. The proposed methods suffers from loss of
contrast, but nevertheless enhances the structure of the ventricle from the
background. The reconstruction in the proposed method and the EM-TV
algorithm was performed with 5 Bregman iterations.

Note that despite from the loss of contrast the ventricle stands out clearer from the
background. As a drawback we observe that the noise in the background gets amplified
by the proposed method. A possible explanation for the contrast loss is, that the defini-
tion of mass-preservation used in the EMRecon software differs from the notion we used
throughout our modeling [85].
We conclude this paragraph by inspecting the reconstruction with focus on the small
tracer filled flask moving with the diaphragm.
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(a) EM (b) EM-TV

(c) Proposed method

Figure 7.13: Representative 2D slice of the reconstructions yielded by the three different
reconstruction methods. The flask with the tracer is reconstructed nearly
without artifacts by the classical methods due to the good signal to noise
ratio. In contrast to that the proposed method has difficulties in estimating
the large motion of the small flask.

The evaluation of the method on real data showed, that the proposed method yields
improvement in the reconstruction of areas with poor signal-to-noise ratio. However
there are still two major drawbacks, which need to be addressed in further research.
The first is the loss-of-contrast, which we could observe in Figure 7.12, while the second
is given by the poor motion estimation for small objects (Figure 7.13).

7.5 Discussion and Outlook

We have presented a novel variational approach to motion corrected reconstruction of
density images. After the motivation of the model with help of Bayesian statistics, we
proceeded to the analysis of the model. Central part of the analysis was Theorem 7.2.1,
which ensured us weak L1-convergence of the sequence of transformated images, where
images as well as transformations were sequences. To prove this theorem we relied heavily
on regularity properties granted by the regularizers for intensity and motion vectors. A
critical point was the boundedness of the Banach indicatrix in L∞: It remains unclear,
if we can establish a bound of the form

‖Ny(·,Ω)‖∞ ≤ C(Ω)S hyper(y). (7.77)

In order to give existence results, independent of this assumption, we restricted ourselves
to the case of injective transformations. Although this restriction can be motivated by
a mass-preservation demand, which is in our model only granted for injective transfor-
mations, the numerical realization can again be challenging. We proposed a framework
with injective Dirichlet - boundary conditions to guarantee injectivity for the whole do-
main, but an extension to a less restrictive model might be of interest (see e.g. [6] for a
diffeomorphic registration framework).
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We thoroughly tested the method on an artificial deblurring example and showed supe-
riority to several other reconstruction methods. By applying the method on soft- and
hardware-phantom data we gave a proof-of-concept for the applicability for real data.
Although there are still difficulties to deal with the movement of really small objects
the method seems to be well-suited for motion-corrected reconstruction of clinical data,
especially with a low signal-to-noise ratio. Again a thorough evaluation on clinical data
is the next step to go, as well as finding new means to assess the quality of a found
transformation in motion correction.
Motion-corrected reconstruction with alternating minimization has been done e.g. by
Mair et al. [96], although neither the concept of mass-preservation nor TV regularization
is imposed. To the best of our knowledge the work of Blume et al. is most closely related
to the presented framework: In [17] the authors propose a similar general framework to
reconstruction with simultaneous motion estimation and incorporate a local invertibility
constraint in [18]. While the focus of Blume et al. lies on the actual implementation
of a reconstruction method with a parametric B-spline transformation model, our main
contribution in this chapter is therefore twofold:

� A thorough analysis of the motion-corrected reconstruction problem with mass-
preserving transformation model and appropriate regularization for density image
and motion.

� Presentation of a numerical framework, capable of solving the designed functional
for parametric as well as non-parametric transformation models.

In the following we present some open questions, which can motivate further research in
this field.

7.5.1 Weak Formulation of the Reconstruction Problem

In order to present a weaker formulation of the reconstruction problem, we first state
some some basic facts about Radon measures before we actually describe the weak
formulation.

Radon Measures

We will now state the basic definition and properties for Radon measures from [60,
Chapter 1] in order to derive a weaker formulation of the motion-corrected reconstruction
problem:

Definition 7.5.1 (Radon Measure). Let μ be a measure over a locally compact and
separable metric space X . Furthermore we denote the Borel-Algebra by B(X ) and the
sigma-algebra of μ-measurable sets by Mμ. μ is called a Radon measure, iff

(i) B(X ) ⊂ Mμ.

(ii) For every A ⊂ X there exists B ∈ B(X ) such that B ⊃ A and μ(B) = μ(A).
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(iii) For every compact subset K ⊂ X we have μ(K) < +∞.

Remarks and Extensions. A measure μ fulfilling conditions (i) and (ii) is called Borel-
regular.

Note that the total variation can also be defined for Radon measures (compare [60,
Chapter 1.4: Definition 2, Proposition 2]. We will not focus on this matter, but rather
state the space of Radon measures can be identified with the dual space of the compactly
supported continuous functions:

Theorem 7.5.2. Let J : Cc(X ,R) be a positive linear functional, i.e. J(f) ≥ 0, when-
ever f ≥ 0. Then there exists a positive Radon measure μ on X , such that

J(f) =

ˆ
fdμ ∀f ∈ Cc(X ). (7.78)

Proof. See [60, Chapter 1.4 Theorem 2].

Having stated the basic theory, we turn our focus towards presenting a weak formulation
for the motion-corrected reconstruction problem. More information on Radon measures
can e.g. be found in [60].

Weak Formulation of the Problem

The analysis of functional (7.10) showed, that we needed assumptions on the injectiv-
ity resp. boundedness of the Banach indicatrix of the transformation in order to derive
analytical results. We want to outline a weak formulation, which guarantees mass preser-
vation, but does not assume injectivity of the transformation. We conclude this outlook
by showing that the weak formulation implies injectivity for the motion y and thus cor-
responds to restricting the admissible set of transformation to a certain subset of the
weak diffemorphisms.
We start by giving an equivalent formulation of the transformation model (7.2) for a
diffeomorphism yi with inverse yi:

ˆ

Ωi

ρi(x)ϕ(x)dx =

ˆ

Ωi

ρ0(yi(x)) det(∇yi(x))ϕ(x)dx ∀ϕ ∈ C0(Ω). (7.79)

By applying the change of variables formula we obtain

ˆ

Ωi

ρi(x)ϕ(x)dx =

ˆ

Ω

ρ0(x)ϕ(zi(x))dx ∀ϕ ∈ C0(Ω). (7.80)

Since ρi ≥ 0 we can relax to Radon measures:

ˆ

Ωi

ϕ(x)dμi(x) =

ˆ

Ω

ρ0(x)ϕ(zi(x))dx ∀ϕ ∈ C0(Ω). (7.81)
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Alternatively we can use ϕ(yi(x)) as test function:

ˆ

Ωi

ϕ(yi(x))dμi(x) =

ˆ

Ω

ρ0(x)ϕ(x)dx ∀ϕ ∈ C0(Ω). (7.82)

In order to use (7.81) as a constraint for minimizing (7.10) we provide consistency with
the strong formulation by the following propsition:

Proposition 7.5.3. Let ρ0 be nonnegative and zi ∈ A an admissible transformation.
Then there exists a unique, nonnegative μi satisfying (7.81), which fulfils the mass-
preservation property ˆ

Ωi

dμi(x) =

ˆ

Ω

ρ0(x)dx. (7.83)

Proof. Note that for any fixed ρi and zi the right hand side of (7.81) defines a linear
functional. Now Theorem 7.5.2 ensures the existence of a unique Radon measure μi

satisfying (7.81). The mass-preservation condition (7.83) can by shown by using test
functions converging to constants.

As a consequence we obtain for the weak formulation of the motion-corrected recon-
struction problem:

J̃(μ, z) =
N∑
i=0

(D(Kμi, f i) + αi|μi|BV (Ω)) +
N∑
i=1

βiShyper(zi)

subject to (7.81) (7.84)

We will not elaborate further on the analysis for the weak formulation, but instead
present a consistency result:

Proposition 7.5.4. Let ρi ∈ L1 and yi, zi fulfil (7.79) and (7.81). Then we have
Nyi(·,Ω) ≤ 1 a.e. and zi(x) = (yi)−1(x) for a.e. x ∈ Ω.

Proof. We can deduce with the second part of the area formula (Theorem 3.2.7):

ˆ

Ωi

ρi(x)ϕ(x)dx =

ˆ

Ωi

ρ0(yi(x)) det(∇yi(x))ϕ(x)dx

=

ˆ

Rd

∑
w∈((yi)−1(x)∩Ω)

ρ0(yi(w))ϕ(w)dx

=

ˆ

Rd

ρ0(x)
∑

w∈((yi)−1(x)∩Ω)

ϕ(w)dx.

By using Proposition 7.5.3 and (7.81) we obtain:
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ˆ

Rd

ρ0(x)
∑

w∈((yi)−1(x)∩Ω)

ϕ(w)dx =

ˆ

Ω

ρ0(x)ϕ(zi(x))dx ∀ϕ ∈ C0(Ω). (7.85)

By using test functions ϕ converging to constants, we can now deduce, thatNyi(·,Ω) ≤ 1.
It follows that yi is weakly invertible and we can deduce

ˆ

Rd

ρ0(x)ϕ((yi)−1(x))dx =

ˆ

Ω

ρ0(x)ϕ(zi(x))dx ∀ϕ ∈ C0(Ω). (7.86)

Since (7.86) holds for all test functions ϕ ∈ C0(Ω), the assertion follows.

The proposition above guarantees that a for solution (μ, z) of the weak formulation
(7.84), which can be expressed via (7.81) and (7.79), the motion field zi is the weak
inverse of yi. Whether such an y exists for a given weak solution (μ, z) is object to
further research as well as a detailed analysis for the weak formulation.

7.5.2 Attenuation Correction

Attenuation correction plays a big role in the clinical application of emission tomography.
See for example [11] for variational approach to obtain motion-corrected attenuation
maps. Having ignored this factor in our description we will sketch out shortly how
to expand our model to incorporate attenuation information and how this influences
analysis and numerics.
In clinical applications one can not expect to have attenuation information on all gates,
in fact there is often only one CT image μ available, which corresponds to one gate. In
our framework we would choose this gate as the reference gate ρ0. One often incorporates
the information granted by the attenuation map μ into the projection operator [85]. In
the stationary case this changes the operator to

K(μ). (7.87)

Now we assume that μ is transformed accordingly to the image ρ0 and we get a attenu-
ation operator incorporating motion information by

K(μ(y)) or K(μ(y) det(∇y)), (7.88)

depending on whether we assume μ being transformed intensity constant or motion
corrected. Now the crucial question in the analysis is, if the convergence properties we
obtained for a sequence of transformations yk ⇀ y in W 1,2 and density images ρ0k ⇀

∗ ρ0

in BV (Ω) still hold. Since the CT image μ is a digital image, we can use interpolation
techniques to ensure Lipschitz-continuity for μ in the continuous framework (compare
[100] for a similar reasoning). The Lipschitz-continuity then ensures strong convergence
for the intensity-constant transformation:

μ(yk) → μ(y). (7.89)
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We use the fact to motivate a convergence of the operator

K(μ(yk)) → K(μ(y)) (7.90)

in the norm topology might be achieved. If this convergence is granted, then we can
deduce strong convergence of the transformed image ρ0(yk) via

‖Kk(ρ
0
k(yk) det(∇yk))−K(ρ0(y) det(∇y))‖

≤‖(Kk −K)(ρ0l (yk) det(∇yk))‖+ ‖K(ρ0k(yk) det(∇yk)− ρ0(y) det(∇y))‖, (7.91)

where we used the abbreviations K := K(μ(y)) and Kk := K(μ(yk)). Now we can
obtain a convergence property for Kk(ρ

0
k(yk) det(∇yk)) with help of estimation (7.91)

and the convergence of the operator in the norm topology and the boundedness of
ρ0k(yk) det(∇yk) (first summand in (7.91)) resp. the complete continuity of K and The-
orem 7.2.1 (second summand). As this short outline on attenuation correction shows,
there are several questions to be adressed in the analysis for attentuation and motion
corrected reconstruction:

� Can we verify the convergence Kk → K in the norm topology for a general class
of compact reconstruction operators?

� If we cannot achieve convergence in the norm topology, can we achieve convergence
for the operator in weaker topologies (e.g strong operator topology)?

� Can we obtain a strong convergence result for Kk(ρ
0
k(yk) det(∇yk)) only relying on

convergence in weaker topologies?

� How does the weak convergence of the Jacobian determinant influence the conver-
gence properties above, when we assume a mass-preserving transformed attenua-
tion map?

Having identified some central questions for the analysis of the problem we shortly outline
the implications in the numerical framework: If we follow the alternating minimization
approach we presented, we need to evaluate the consequences for reconstruction and
motion step. Since the reconstruction step is performed for a fixed motion, we can
use the same implementation of the reconstruction step with an attenuation corrected
operator. The motion step gets changed: Since the operator depends now on the motion
vectors, we need to compute derivatives for K(y)(ρ0(y) det(∇y)) with respect to y in
order to obtain an adapted object function. If this adapted objective function is given,
we can follow the minimization approach we presented earlier.

7.5.3 A Priori Information

The framework we presented is only capable of incorporating rather general a priori
information via the regularization terms. In practical applications often additional in-
formation is available: In the following we discuss, how we can modify our framework to
be able to deal with this information and present applications. This outlook is divided
into paragraphs for a priori information on image and motion.
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Information on the Image

Recently PET-MRI is used in preclinical studies more and more often ([80]). PET-MRI
is a hybrid technique performing simultaneous PET and MR imaging, which allows to
incorporate a priori information resulting from the MR images into the PET reconstruc-
tion. Recently Ehrhardt et al. [41] proposed a method for joint-PET-MRI reconstruction
by evaluating the similarity of PET and MRI image via a NGF-type metric. Inspired
by this idea, we expand our minimization problem for given MR images ui to

min
ρ,y

J(ρ, y) =
N∑
i=0

(D(Kρi, f i) +DNGF (ρi, ui) + αi|ρi|BV (Ω)) +
N∑
i=1

βiS
hyper(yi). (7.92)

It is not directly clear, whether our analytical results can be extended to this expanded
functional: Although we have the convergence of the composition (Theorem 7.2.1) as
a backbone for the analysis, this convergence is only weak in the L1 sense. Thus the
question arising is, if we can show a lower semicontinuity property for the NGF distance
relying only on this weak convergence. If we expand this model additionally to a joint-
reconstruction, this question becomes even more complex, since we need to study the
lower semicontinuity of the NGF measure for sequences in both arguments.

Besides these analytically challenging problems, one has also to deal with a changed
numerical framework. Since the summand DNGF influences the reconstruction as well
as the motion step both implementations need to be adapted. While the reconstruction
step can be performed like described by Ehrhardt [41] with the fixed motion vectors
incorporated in the operator (compare Subsection 7.3.1), the motion-step can be handled
by solving a registration problem with two distance measures.

Information on the Motion

We will discuss two possible ways how to incorporate a priori motion vectors into the
reconstruction process. Motion-corrected reconstruction is sometimes performed with
motion information ỹ obtained from registration of MR images [117]. Instead of using
this information directly for a reconstruction, we can rather take the registration as an
initial guess for the motion step and slightly change the regularizer to penalizing the
displacement y − ỹ instead of y − Id in area, surface and volume term.

We motivate the second way with the following example: The moving mice project
[97] tries to reconstruct density images for freely moving mice, which are recorded by
cameras. Since the mice move in a box inside the PET scanner, the displacements are
much bigger than respiratory or cardiac motion for fixated mouses. A possibility to deal
with this is to formulate a reconstruction frame work with Dirichlet boundary conditions
(compare Corollary 7.2.7) and use the recorded motion of the mouse as a boundary value.
This idea can be generalized to the cases where motion on the boundary of a studied
object is available as a priori information.
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7.5.4 Different Minimization Strategies and Convergence

We did not address convergence properties of the alternating minimization algorithm
in the presentation of our numerical framework for the minimization of the functional
for motion-corrected reconstruction. While convergence results are available for the
(damped) Bregman-EM-TV algorithm [131], we used for the reconstruction steps and
can be stated in a similar way as in Section 6.6.2 for the registration problem, solved in
the motion step, the convergence of the alternating minimization is an open problem.

Although the algorithm performed well (see Section 7.4), there are few convergence re-
sults for applying alternating minimization algorithm to a minimization problem defined
on a product space. In [27, Theorem 4.3] Burger and Scherzer showed convergence of the
algorithm for a blind deconvolution problem. General results are given with a special
focus on adaptive algorithms are given in [108] and the references therein. These results
rely on the so called three- and four-point-properties, which are hard to verify for our
minimization problem.

To our best knowledge the result most closely related to the minimization problem we
face has been given by Beck [15]. In a discrete setting Beck considers the minimization
of an objective function of the form

H(ρ, y) = D(ρ, y) + g1(ρ) + g2(y). (7.93)

Beck shows that any accumulation point of the sequence generated by the alternating
minimization algorithm is a stationary point, if the following conditions hold:

1. The functions g1 and g2 are closed and proper convex functions, assumed to be
subdifferentiable.

2. The function D is continuously differentiable.

3. The gradient of D is (uniformly) Lipschitz-continuous with respect to ρ for any
fixed y.

4. The gradient of D is Lipschitz-continuous with respect to y for any fixed ρ.

5. The optimal set of (7.93) is nonempty. In addition the problems

min
ρ

D(ρ, ỹ) + g1(ρ) min
y

D(ρ̃, y) + g2(y)

have minimizers for any fixed ỹ, resp. ρ̃.

The first assumption is the most crucial one: While the convexity of the TV-regularization
is well known, verifying convexity for the hyperelastic regularization on the motion vec-
tors is a difficult task. A possible subject of further research on this matter is, whether
the splitting of the transformation into gradient, cofactor matrix and Jacobian determi-
nant, can again be applied to relax this assumption in order to show the convergence
property.
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While the assumptions 2 - 5 can be addressed with an interpolation reasoning (compare
Section 6.6.2), the last assumption should not be critical in practical applications.
Having outlined an approach to verify a convergence property for the alternating min-
imization approach we chose in our numerical framework, we conclude this discussion
by mentioning that convergence properties can be stated for other minimization strate-
gies: Recently the primal-dual algorithm by Chambolle and Pock [32] has received more
and more attention in image processing. Despite being initially presented for convex
problems, extensions to non-convex problems have been given (compare e.g [111]). A
proximal regularization of the alternating minimization introduced by Attouch et al.
([7]) might even better suited for the discrete objective function (7.93). For a given
initial ρ their algorithm is given by:⎧⎪⎨

⎪⎩
yk+1 ∈ argmin

y

{
H(ρk, y) +

1
2λk

‖y − yk+1‖2
}

ρk+1 ∈ argmin
ρ

{
H(ρ, yk+1) +

1
2μk

‖ρ− ρk‖2
}

According to the authors this algorithm converges to a stationary point, provided the
functions g1 and g2 are proper and lower semicontinuous and D is continuously dif-
ferentiable with Lipschitz-continuous gradients. Additionally the so called Kurdyka-
Lojasiewicz inequality needs to be satisfied (compare [7, Section 3.2]). Implementing this
proximal regularized algorithm as well as verifying the Kurdyka-Lojasiewicz inequality
for a wide range of data fidelities is object to further research.
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8 Concluding Discussion

This thesis was devoted to the analysis and numerical implementation of two mathemat-
ical problems resulting from simultaneous image and motion estimation. Although the
problems presented in Chapters 6 and 7 were developed to accomplish different goals they
are nevertheless closely related: While an implicit image estimation enhanced the quality
of image registrations on noisy image sequences in Chapter 6, we used motion-estimation
to obtain better reconstruction results in Chapter 7. Both resulting functionals can be
viewed as special cases of the functional

F (u, v) =
N∑
i=0

D(K(Tviu), f
i) + αiRI(Tviu) +RM(vi). (8.1)

We obtained the functionals for registration with noise modeling by setting

K = Id αi = 0 ∀ 0 ≤ i ≤ N. (8.2)

Note that we restricted the presentation of this functional to the case N = 2, but the
extension is straightforward. In contrast the functionals for motion-corrected reconstruc-
tion are obtained via setting

Tviu := u(v) det(∇v). (8.3)

Consequently the analysis of both functionals relied on the convergence properties of
sequences of the type

un(vn) resp. un(vn) det(∇v) (8.4)

for sequences un and vn converging weakly in certain spaces depending on the regulariza-
tion. Key tool in studying this convergence properties was the area formula (Theorem
3.2.7), which we presented for the admissible transformations given by the hyperelastic
regularization. Since we imposed no additional regularization on the image u in Chap-
ter 6, the composition un(vn) can be viewed as the product of two weakly-convergent
sequences, which converges not necessarily (Theorem 6.3.7). The TV-regularization we
imposed for motion-corrected reconstruction granted a strong convergence in L1, which
helped us to prove weak convergence of the composition (Theorem 7.2.1). The com-
plete continuity of the projection operator K then ensured strong convergence of the
projected composition. Note that we were nevertheless able to give an existence result
for registration with the mass-preserving transformation operator (compare Theorem
6.3.3).
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In order to prove this convergence properties we assumed boundedness of the Banach
indicatrix in L∞. While it is not clear whether this assumption holds for transformations
with bounded hyperelastic energy, we shortly sketch out a special case:
For any transformation

y ∈ C1(Ω,Rd) det(∇y) > 0 (8.5)

the implicit function theorem assures us, that for every x ∈ Ω there exists an open
neighbourhood Ux such that y|Ux is injective. For any compact subset K � Ω we have

K ⊂
⋃
x∈K

Ux. (8.6)

Since K is compact the open cover defined by (8.6) has a finite subcover, i.e. there exists
a finite set I such that for every i ∈ I there is xi ∈ K with

K ⊂
⋃
i∈I

Uxi
. (8.7)

Now y|Uxi
is injective and therefore the Banach indicatrix is bounded by card(I). This

reasoning is not directly applicable for y ∈ H1 with det(∇y) > 0 a.e, because the
transformation is not necessarily invertible at points x with det(∇y(x)) = 0 and thus
we cannot expect to find an open cover like (8.6). Another question is how we can deal
with points x ∈ ∂Ω, which is the reason why we restricted this presentation to compact
sets K � Ω.

As an alternative we gave existence results for motion-corrected reconstruction restricted
to injective transformations (compare Corollaries 7.2.6 and 7.2.7). Note that the regu-
larity of the cofactors of the admissible transformation were sufficient to guarantee that
injectivity is preserved in the limit (Theorem 3.3.8) resp. can be deduced via injective
boundary values (Proposition 3.2.9).

Since the analysis we presented for both models relies heavily on the injectivity of the
transformation, it is inevitable to design a numerical framework for injective registration.
Although Dirichlet boundary conditions should be easier to handle than a general restric-
tion to injective transformations, the determination of the boundary values is subject to
further research. Nevertheless using a affine preregistration or recorded movements as
these starting guesses, seems like a natural way.

Note that the focus of this thesis lies clearly on the derivation and especially thorough
analysis of the combined motion and image estimation models we presented in Chapters
6 and 7. While we tested the resulting methods on artificial data as a proof of concept,
an extensive evaluation on clinical data is the next step to go.
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9 Appendix

9.1 Computation of Registration Functionals

In order to improve the readability of Section 6.2, we moved the computation of distance
measures for Poisson and speckle noise into the appendix.

Poisson Noise

In this section we aim to compute similiarity measures for Poisson noise, for example
occurring in emission tomography [125] or microscopy imaging [22]. For the sake of
numerical stability we use a shifted version of the Kullback-Leibler data fidelity

D(u, f) = u− f ln(u) + f ln(f)− f, ∂uD(u, f) = 1− f

u
. (9.1)

Inserting this into the optimality condition (6.9) we obtain

1− f0
u

+ T ∗
1

(
1− f1

T1u

)
. (9.2)

Note that the nonlinearity in the equation might cause difficulties for a general analysis.
However we can solve (9.2) for the intensity-constant transformation operator as well as
for mass-preserving transformations.

Intensity-Constant Transformation Again we start with solving the optimality con-
dition (9.2) for the chosen transformation operator:

0 = 1− f0
u

+
(
T ic
)∗(

1− f1
u(v)

)
u(1 + det(∇v−1)) = f0 + f1(v

−1) det(∇v−1)

u =
f0 + f1(v

−1) det(∇v−1)

1 + det(∇v−1)

This is the same map we obtained before for Gaussian noise. Therefore we find again,
that

u(v) =
f0(v) + f1

1
det(∇v)

1 + 1
det(∇v)

=
f0(v) det(∇v) + f1

1 + det(∇v)
.
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With that at hand we start the computation of

D(u, f0) =

ˆ

Ω

u(x)− f0(x) ln(u(x)) + f0(x) ln(f0(x))− f0(x)dx

=

ˆ

Ω

(u(v(x))− f0(v(x)) ln(u(v(x))) + f0(v(x)) ln(f0(v(x)))− f0(v(x))) det(∇v)dx

as well as

D(Ticu, f1) =

ˆ

Ω

u(v(x))− f1(x) ln(u(v(x))) + f1(x) ln(f1(x))− f1(x)dx.

The resulting distance measure is now given by the sum:

Dpoisson,ic = D(u, f0) +D(T ic
v u, f1)

=

ˆ

Ω

(u(v(x))− f0(v(x)) ln(u(v(x))) + f0(v(x)) ln(f0(v(x)))− f0(v(x))) det(∇v)

+ u(v(x))− f1(x) ln(u(v(x)) + f1(x) ln(f1(x))− f1(x)dx.

=

ˆ

Ω

u(v(x))(1 + det(∇v))− (f0(v(x)) det(∇v)− f1(x)) ln(u(v(x))

+ f0(v(x)) det(∇v)(ln(f0(v(x)))− 1) + f1(x)(ln(f1(x))− 1)dx

=

ˆ

Ω

(f0(v(x)) det(∇v) + f1(x))

(
1− ln

(
f0(v(x)) det(∇v) + f1(x)

1 + det(∇v)

))

+ f0(v(x)) det(∇v)(ln(f0(v(x)))− 1) + f1(x)(ln(f1(x))− 1)dx

=

ˆ

Ω

f0(v(x)) det(∇v) ln(f0(v))

− (f0(v(x)) det(∇v) + f1(x)) ln

(
f0(v(x)) det(∇v) + f1(x)

1 + det(∇v)

)
dx

Note that the second row of the next to last conversion is the result of the additive
shift f ln(f)− f of the data fidelity, which cancels some terms in the resulting distance
measure.

Mass-Preserving transformation For the mass-preserving transformation we start
with the computation of the map by solving (9.2):

0 = 1− f0
u

+ (Tmp
v )∗

(
1− f1

u(v) det(∇v)

)
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0 = 1− f0
u

+ 1− f1(v
−1) det(∇v−1)

u
2u = f0 + f1(v

−1) det(∇v−1)

u =
f0 + f1(v

−1) det(∇v−1)

2
.

Therefore we obtain:

u(v) =
f0(v) + f1

1
det(∇v)

2
=

f0(v) det(∇v) + f1
2 det(∇v)

.

Inserting this into (6.12) we can derive the effective functional:

Dpoisson,mp = D(u, f0) +D(Tmp
v u, f1)

=

ˆ

Ω

u− f0 ln(u) + f0 ln(f0)− f0

u(v) det(∇v)− f1 ln(u(v) det(∇v)) + f1 ln(f1)− f1dx

=

ˆ

Ω

(u(v)− f0(v) ln(u(v)) + f0(v) ln(f0(v))− f0(v)) det(∇v)

u(v) det(∇v)− f1 ln(u(v) det(∇v)) + f1 ln(f1)− f1dx

=

ˆ

Ω

2u(v) det(∇v)− (f0(v) det(∇v) + f1) ln(u(v) det(∇v))

+ f0(v) det(∇v)(ln(f0(v) det(∇v))− 1) + f1(ln(f1)− 1)dx

=

ˆ

Ω

f0(v) det(∇v) ln(f0(v) det(∇v)) + f1 ln(f1)

− (f0(v) det(∇v) + f1) ln

(
f0(v) det(∇v) + f1

2

)
dx.

Note that the non-logarithmic terms in the data fidelity get cancelled out.

Speckle Noise

The data fidelity for speckle noise (occuring for example in ultrasound imaging [1]) is
given by

D(f, u) =
(u− f)2

u
.

According to our framework we also need the derivative, which is given by

∂uD(f, u) =
u2 − f 2

u2
.
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With that at hand we can use the optimality condition (6.9) to compute the optimal u
for our two transformation models. In the registration framework we end up with the
following condition:

u2 − f 2
0

u2 + T ∗
v

(Tvu)
2 − f 2

1

(Tvu)2
= 0. (9.3)

Intensity-Constant Transformation We use the given adjoint transformation operator
to solve the optimality condition (9.3) for û:

0 =
u2 − f 2

0

u2 +
(
T ic
v

)∗ u(v)2 − f 2
1

u(v)2

0 =
u2 − f 2

0

u2 +
u2 − f1(v

−1)2

u2 det(∇v−1)

0 = u2 − f 2
0 + (u2 − f1(v

−1)2) det(∇v−1)

u2(1 + det(∇v)) = f 2
0 + f1(v

−1)2 det-1(∇v)

u =

√
f 2
0 + f1(v−1)2 det(∇v−1)

1 + det(∇v−1)
.

We compute now:

D(u, f0) =

ˆ

Ω

(u(x)− f0(x))
2

u(x)
dx

=

ˆ

Ω

u(x)2 + f0(x)
2

u(x)
− 2f0(x)dx

=

ˆ

Ω

u(v(x))2 + f0(v)
2

u(v(x))
det(∇v)− 2f0(v(x)) det(∇v)dx. (9.4)

(9.5)

Furthermore we obtain:

D(T ic
v u, f1) =

ˆ

Ω

u(v(x))2 + f1(x)
2

u(v(x))
− 2f1dx. (9.6)

To carry out the computation of the resulting distance measure we use

u(v) =

√
f0(v)2 det(∇v) + f 2

1

1 + det(∇v)
.

Now the resulting distance measure Dspeckle,ic is given by

Dspeckle,ic = D(u, f0) +D(T ic
v u, f1)
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=

ˆ

Ω

(
f0(v)2 det(∇v)+f2

1

1+det(∇v)
+ f0(v)

2
)
det(∇v) +

f0(v)2 det(∇v)+f2
1

1+det(∇v)
+ f 2

1

u(v)

− 2(f0(v) det(∇v) + f1)dx

=

ˆ

Ω

2
f0(v)

2 det(∇v) + f 2
1√

f0(v)2 det(∇v)+f2
1

1+det(∇v)

− 2(f0(v) det(∇v) + f1)dx

=

ˆ

Ω

2
√
(f0(v)2 det(∇v) + f 2

1 )(1 + det(∇v))− 2(f0(v) det(∇v) + f1)dx.

Mass-Preserving Transformation Again we use the given transformation operator to
solve the optimality condition (9.3):

0 =
u2 − f 2

0

u2 + (Tmp
v )∗

(u(v) det(∇v))2 − f 2
1

(u(v) det(∇v))2

0 =
u2 − f 2

0

u2 +
u2 1

det(∇v−1)2
− f1(v

−1)2

u2 1
det(∇v−1)2

0 =
u2 − f 2

0

u2 +
u2 − f1(v

−1)2 det(∇v−1)2

u2

0 = u2 − f 2
0 + u2 − f1(v

−1)2 det(∇v−1)2

2u2 = f 2
0 + f1(v

−1)2 det(∇v−1)2

u =

√
f 2
0 + f1(v−1)2 det(∇v−1)2

2
.

We can use this result to compute the data fidelities like in the case of the intensity-
constant transformation model,thus we obtain:

D(u, f0) =

ˆ

Ω

u(v(x))2 + f0(v)
2

u(v(x))
det(∇v)− 2f0(v(x)) det(∇v)dx

D(Tvu, f1) =

ˆ

Ω

(u(v(x)) det(∇v))2 + f1(x)
2

u(v(x)) det(∇v)
− 2f1dx.

Adding this two distance terms gives the distance measure for registration:

Dspeckle,mp = D(u, f0) +D(Tmp
v (u), f1)

=

ˆ

Ω

2(u(v) det(∇v))2 + (f0(v) det(∇v))2 + f 2
1

u(v) det(∇v)
− 2(f0(v) det(∇v) + f1)dx.

(9.7)

As the computation of u(v) det(∇v) is crucial we will carry it out:

u(v) det(∇v) =

√
f0(v)2 + f 2

1
1

det(∇v)2

2
det(∇v)
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=

√
(f0(v) det(∇v))2 + f 2

1

2
.

Inserting this into (9.7) we end up with:

Dspeckle,mp =

ˆ

Ω

2((f0(v) det(∇v))2 + f 2
1 )√

(f0(v) det(∇v))2+f2
1

2

− 2(f0(v) det(∇v) + f1)dx

=

ˆ

Ω

2
√
2((f0(v) det(∇v))2 + f 2

1 )− 2(f0(v) det(∇v) + f1)dx.

9.2 Numerical Implementations

For the sake of completeness we present the shortly commented code of the implemen-
tations described in the numerical framework for both problems.

9.2.1 Bayesian ML Estimation for Image Registration

Listing 9.1: Objective Function for Registration with noise modeling
� �

1 %Objective Function for registration with Bayesian Modelling

. Note that this

2 %code is matrix free. Furthermore specially designed

distance Functions

3 %have to be used.

4
5 function [Jc ,para ,dJ ,H]= BayesianobjFctn(T,Rc ,omega ,m,~,yc)

6
7 Jc = []; para = []; dJ = []; H = [];

8 persistent P

9
10 P = gridInterpolation(P,omega ,m);

11
12 doDerivative = (nargout >2); % flag for necessity

of derivatives

13
14 % compute interpolated image and derivative , formally:

center(yc) = P*yc

15 dim=length(omega)/2;

16 n = length(center(yc ,m))/dim;

17 [Tc ,dT] = inter(reshape(T,m),omega ,center(yc ,m),�

doDerivative �,doDerivative);
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18
19
20 % compute jacobian determinant for intensity modulation

21 [Jac ,dJac] = geometry(yc ,m,�Jac�,�doDerivative �,doDerivative

,�omega �,omega);

22
23 % compute distance measure

24 [Dc ,rc ,dDTc ,dDJac ,d2psi] = distance(Tc ,Rc ,omega ,m,�

doDerivative �,doDerivative ,�Jac�,Jac);

25
26 % compute regularizer

27 [Sc ,dS ,d2S] = regularizer(yc -getNodalGrid(omega ,m),omega ,m,�

doDerivative �,doDerivative);

28
29 % evaluate joint function and return if no derivatives need

to be computed

30 Jc = Dc + Sc;

31
32 % store intermediates for outside visualization

33 para = struct(�Tc�,Tc ,�Rc�,Rc ,�omega �,omega ,�m�,m,�yc�,

center(yc ,m),�Jc�,Jc);

34
35 if ~doDerivative , return; end;

36
37 %Chain Rule: total derivative results from derivating by Jac

and Tc:

38
39 dD=P((dDTc*dT) �) �+dJac.dJacadj(yc ,m,dDJac �) �;

40
41
42 dJ=dD+dS;

43
44 H=[];

45
46
47
48 end

49
50 function P = gridInterpolation(P,omega ,m)

51 switch regularizer

52 case �mbHyperElastic �,

53 if size(P,1) ~= length(omega)/2 * prod(m)

54 P = nodal2center(m);

55 end

163



56 case {�mfHyperElastic �},

57 P = @(y) nodal2center(y,m);

58 otherwise

59 error(�Bayesian Modelling requires Hyperelastic

Regularization!�);

60 end

61 end
� �

This is related to the objective function used in FAIR, but we point out the difference,
that the derivative is computed with help of (6.38) (see line 39). Furthermore the dis-
tance measures resulting from our noise modeling depend on the Jacobian determinant,
thus we need to pass the determinant to the distance measure (line 24). With this two
modifications the objective function is capable of performing registration with all the
distance measures we derived before. Rather than showing the code for all distances,
we focus on the presentation of the distance measure resulting from Gaussian noise with
the intensity-constant transformation operator as an example:

Listing 9.2: Intensity-constant Gaussian distance
� �

1 %Distance Term for Gaussian noise with intensity -constant

transformation

2 %operator

3 function [Dc ,rc ,dDTc ,dDJac ,d2psi ]= Gaussian(Tc ,Rc ,omega ,m,

varargin)

4 %Initialisation of the output parameters

5 Dc = []; dDTc = []; rc = []; dDJac = []; d2psi = [];

6 doDerivative = (nargout > 2);

7 %Noise level parameter , setting default value to 1.

8 sigma =1;

9 Jac =[];

10 for k=1:2: length(varargin), % overwrite default parameter

11 eval([ varargin{k},�=varargin{�,int2str(k+1),�};�]);

12 end;

13
14 Rc=reshape(Rc ,[ numel(Rc) ,1]);

15 %Cell size for integration

16 hd = prod(( omega (2:2: end)-omega (1:2: end))./m);

17 %Residual

18 rc=Tc -Rc;

19 %Scaling factor in the distance measure

20 detterm=Jac ./(1+ Jac);

21 %Value for the distance measure

22 Dc= hd/(2* sigma)*rc �*(rc.* detterm);

23
24 if ~doDerivative , return; end;
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25
26 %Derivative with respect to the transformed template

27 dDTc = hd /(2* sigma) * (2*(Tc -Rc).* detterm) �;

28 %Derivative with respect to the Jacobian determinant

29 dDJac =(hd /(2* sigma)* rc .^2.*(1./( Jac +1)-Jac ./(( Jac +1) .^2)))

�;

30 %2nd derivative is not needed in the Bayesian Framework

31 d2psi = [];

32
33 end

� �

As we see this distance measure is implemented similar to the standard distance measures
used in the FAIR toolbox, with the difference, that we need the Jacobian determinant
as an additional input and assign derivatives with respect to the transformed template
and the Jacobian determinant. Having described the implementation of the objective
function, we turn our focus on the minimization of this objective function.
As an example we present the implementation for non-parametric image registration
(Note that parametric image registration can be implemented in a similar way):

Listing 9.3: Multi-Level Minimization for the Bayesian objective Function
� �

1 function [yc] = BayesianMLIR(MLdata ,alpha ,varargin)

2
3 % setup default parameter for non -parametric registration

4 NPIRopt = @modlBFGS; % optimizer to be used for

NPIR

5 NPIRobj = @BayesianobjFctn; % objective function for

NPIR

6 yStop = []; % global stopping for NPIR

7 yRef = []; % regularization: S(yc -yRef)

8 adaptive =1; %Flag for adaptive Parameter

choice

9 ratiov =1; %Ratio alphaVolume/

alphaLength

10 yprereg =[]; %Possible Starting guess

11 ratioa =0; %Ratio alphaArea/Alpha/length

12 [MLdata ,minLevel ,maxLevel] = getMultilevel(MLdata);

13
14 for k=1:2: length(varargin), % overwrite default parameter

15 eval([ varargin{k},�=varargin{�,int2str(k+1),�};�]);

16 end;

17
18 % initialization

19 dimstr = @(m) sprintf(�[%s]�,sprintf(� %d�,m));

20 omega = MLdata{end}. omega; % spatial domain
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21 xc = []; % current grid

22 %Bayesian Frameworks needs hyperelastic Regularization!

23 regularizer(�reset �,�regularizer �,�mfHyperElastic �,�alpha �

,1,�alphaLength �,1,�alphaArea �,alphaArea ,�alphaVolume �,

ratio);

24
25 %Grid Type

26 getGrid = @(m) getNodalGrid(omega ,m);

27
28 fprintf(�\n\n�);

29 fprintf(�%s: MultiLevel Image Registration\n�,mfilename)

30 fprintf(�-- distance =%s, regularizer =%s, alpha =%s, trafo =%s\

n�,�...

31 distance ,regularizer ,num2str(regularizer(�get�,�alpha �)),

trafo);

32
33 %For Loop for the Multi -Level Minimization

34 for level=minLevel:maxLevel ,

35
36 %choose adaptive weighting

37 dim=length(MLdata{level }. omega)/2;

38 basis =2^ dim;

39 %Chose the regularization weight corresponding to the

noise variance on the

40 %current Level

41 gewicht =( basis ^(-(maxLevel -level)))^( adaptive);

42 regularizer(�reset �,�regularizer �,�mfHyperElastic �,�alpha �

,gewicht*alpha ,�alphaLength �,1,�alphaArea �,ratioa ,�

alphaVolume �,ratiov);

43
44 xOld = xc;

45 m = MLdata{level }.m;

46 xc = getGrid(m);

47 [T,R] = inter(�coefficients �,MLdata{level }.T,MLdata{level

}.R,omega);

48 Rc = inter(R,omega ,center(xc ,m));

49 FAIRmessage(sprintf(�%s: level %d from %d to %d, %s�,...

50 mfilename ,level ,minLevel ,maxLevel ,dimstr(MLdata{level }.m)

));

51 NPIRfctn = @(yc) NPIRobj(T,Rc ,omega ,m,yRef ,yc);

52
53 if level == minLevel

54
55 yRef=xc;
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56 y0=yRef;

57
58 if ~isempty(yprereg)

59
60 y0=yprereg;

61
62 end

63
64 else

65 % prolongate yc (coarse) y0 (current)

66 y0 = xc + mfPu(yc - xOld ,omega ,m/2);

67 end;

68 %Solve the MinimizationProblem

69 yc=modlBFGS(NPIRfctn ,y0 ,1,MLdata{level }.omega ,MLdata{level }.

m,1);

70
71 end

� �

We outline briefly the main components of this implementation, of our function for
Multi-Level image registration in the Bayesian Framework we presented: As we see in
the function declaration (line 1), we obtain a transformation from the given Multi-Level
data and a regularization parameter.
In the lines 3-12 we just the default parameters for the registration. The values assigned
to the parameters are selected more or less arbitrarily based on some tests. Note that
all of this hardcoded parameters can be changed by overwriting them in the function
call with help of the varargin option (line 14-16).
After some technical initializations and some output the backbone of this routine is given
by the for loop starting in line 34:
Note that we set an adaptive regularization parameter in the lines 36-42. This adaptive
parameter choice links the regularization parameter alpha to the variance of the noise
on each level (compare example 5.1.1).
After initializing the objective function (line 44-51) and the starting guess (line 53. 67) in
line 69 the actual minimization is performed with the modified BFGS method specified
by (5.16) and (5.18).
Having presented the numerical realization of the Bayesian framework for image registra-
tion we turn our focus on comparing this framework with existing registration methods
in the next section.
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9.2.2 Motion Step in Motion-Corrected Reconstruction

The implementation of said function is then given by:

Listing 9.4: Objective Function for the Motion Step
� �

1 %Objective Function for the Motion Step in Motion -Corrected

Reconstruction

2 function [Jc ,para ,dJ ,H]= NPIRprojectedobjfctn(T,Rc ,omega ,m,~,

yc)

3 Jc = []; para = []; dJ = []; H = [];

4 persistent P

5 datares =[192 ,192 ,175];

6 hd = prod(( omega (2:2: end)-omega (1:2: end))./m);

7 doDerivative = (nargout >2);

8
9 % operator for nodal -->cell centered projections

10 P = @(y) nodal2center(y,m);

11
12 % compute jacobian determinant for intensity modulation

13 [Jac ,dJac] = geometry(yc ,m,�Jac�,�doDerivative �,doDerivative

,�omega �,omega);

14 %We only use matrix free implementation

15 matrixFree =1;

16 % interpolation and apply intensity modulation

17 [Tc ,dT] = inter(reshape(T,m),omega ,center(yc ,m),�

doDerivative �,doDerivative ,�matrixFree �,matrixFree);

18 Tcmod = Tc .* Jac;

19 %Project the transformed image into the detector domain

20 Tproj = operator(Tcmod ,m,datares);

21
22
23 % Evaluate the Distance Term

24 [Dc ,~,dD ,dres ,drestrans ,d2psi] = distance(Tproj ,Rc ,omega ,

datares ,�doDerivative �,doDerivative);

25
26 %Compute the regularization Energy

27 [Sc ,dS ,d2S] = regularizer(yc -getNodalGrid(omega ,m),omega ,m,�

doDerivative �,doDerivative);

28
29
30 Jc=Dc+Sc;

31 if ~doDerivative , return; end

32
33
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34
35 %Compute the part of the derivative resulting from the

projection

36 dD=adjointoperator(dD �,m,datares) �;

37
38 %Compute the Derivative for the distance measure like in the

VAMPIRE toolbox

39 dD = (P(vecXmat(dD �,Jac ,dT)) + dJac.dJacadj(yc ,m,dD �.*Tc)) �;

40
41 %Derivative for the joint functional

42 dJ = dD + dS;

43
44
45 end

46
47
48 function data=operator(image ,imres ,datares)

49 %Function for the Projection Operator

50 %Here we use the projection operator provided by EMRecon

51 image=reshape(image ,imres);

52 writeimage(image ,�image �);

53 !export OMP_NUM_THREADS =4; echo "4" | ./

EMrecon_siemens_pet_tools parmfile.emrecon image data >

bruellfile

54 data = loadimage(�data�,datares (1),datares (2),datares (3) ,1);

55 data=reshape(data ,[ numel(data) ,1]);

56 end

57
58
59 function image=adjointoperator(data ,imres ,datares)

60 %Function for the adjoint operator

61 %Again we use the operator provided by EMRecon

62
63 data=reshape(data ,datares);

64 writeimage(data ,�data�);

65 !export OMP_NUM_THREADS =4; echo "5" | ./

EMrecon_siemens_pet_tools parmfile.emrecon data image >

bruellfile

66 image = loadimage(�image �,imres (1),imres (2),imres (3) ,1);

67 image=reshape(image ,[ numel(image) ,1]);

68
69 end

70
71
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72
73 function p = vecXmat(dD ,Jac ,dT)

74 % implementation of vector � * matrix product dD * [Jac] * dT

75 % where

76 %

77 % size(dD) = [1, nVol * prod(m)]

78 % size(Jac) = [prod(m) ,1]

79 % size(dI) = [prod(m),dim ,nVol]

80 dim = size(dT ,2);

81 p = zeros(length(Jac),dim);

82 for d=1:dim ,

83 p(:,d) = dD(:).*Jac (:).*dT(:,d);

84 end

85 p = reshape(p,1 ,[]);

86 end

87
88 function a = sdiag(a)

89 % shortcut for sparse diagonal matrices

90 a = spdiags(reshape(a,[] ,1) ,0,length(a),length(a));

91 end

92
93
94 function p= vecmatprod1(Jac ,dI ,x)

95 % We aim to compute diag(Jac) * [dI] * x

96 %

97 % size(Jac) = [n, 1]

98 % size(dI) = [nVol * n , dim * n]

99 % size(x) = [dim*n,1]

100 dim = size(dI ,2);

101 nVol = size(dI ,3);

102 n = length(Jac);

103
104 x = reshape(x,[],dim);

105 p = zeros(n,nVol);

106 for vol =1:nVol ,

107 for d=1:dim ,

108 p(:,vol) = p(:,vol) + dI(:,d,vol) .* x(:,d);

109 end

110 p(:,vol) = p(:,vol).*Jac;

111 end

112 p = p(:);

113 end

114
115 function p = vecmatprod1adj(dI ,Jac ,x)
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116 % We aim to compute dI � * [Jac] * x

117 %

118 % size(Jac) = [n,1]

119 % size(dI) = [nVol*n, dim*n]

120 % size(x) = [nVol*n,1]

121 dim = size(dI ,2);

122 nVol = size(dI ,3);

123 n = length(Jac);

124
125 x = reshape(x,[],nVol);

126 p = zeros(n,dim);

127 for vol =1:nVol ,

128 for d=1:dim ,

129 p(:,d) = p(:,d) + dI(:,d,vol) .* x(:,vol);

130 end

131 end

132 for d=1:dim ,

133 p(:,d) = p(:,d).*Jac;

134 end

135 p = p(:);

136 end
� �

As we see this objective function is quite similar to the objective function for mass-
preserving image registration provided by the VAMPIRE toolbox ([63]). The difference
lies in projecting the transformed template image into the detector domain (line 20),
which results in different derivatives (lines 35-36). The projection operator can be chosen
in the nested functions (lines 48-69). Note that the operator as well as the adjoint needs
to implemented. The nested functions in line 73-136 are provided by the VAMPIRE
toolbox and needed to handle the Jacobian determinant.
With this objective function at hand, we can implement arbitrary distance measures. As
a example we present the Kullback-Leibler divergence, which we use for motion-corrected
PET reconstruction:

Listing 9.5: Kullback-Leibler divergence as Distance Measure
� �

1 function [Dc ,rc ,dD ,dr ,drtrans ,d2psi] = KullbackLeibler(Tc ,Rc

,omega ,datares ,varargin)

2
3 Dc = []; dD = []; rc = []; dr = []; d2psi = []; drtrans

=[];

4
5
6 %Treshold for the Kullback -Leibler divergence

7 g=1e-8;

8
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9 for k=1:2: length(varargin), % overwrite default parameter

10 eval([ varargin{k},�=varargin{�,int2str(k+1),�};�]);

11 end;

12
13
14 rc=Tc -Rc;

15 %Compute the Distance , where 1/prod(datares) is the

integration weight for

16 %each point in the detector domain

17 Dc=1/ prod(datares)*sum(rc -Rc.*log(max(rc+Rc ,g))+Rc.*log(max(

Rc ,g)));

18
19
20
21 if nargout <3, return; end;

22
23 %Derivative of the Distance measure

24 dD=1/ prod(datares)*(1-Rc./max(rc+Rc ,g)) �;

25
26 %No approximation for the Hessian is needed

27 d2psi =[];

28
29
30
31
32 end

� �
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A short Comment on Notation

As a consistent notation is crucial for keeping the track in all presented methods we will
give a short overview about the entities and the nomenclature we use:

Entity Nomenclature

Dimension of a R-Vectorspace d; m

Image Domain Ω ⊂ Rd

Not specified image/function u : Ω → R

Density Image small greek letters, f.e. ρ

Not specified Hilbert/Banach spaces big callicraphic latters, f.e. X

transformations roman letters y, v

(compact) linear operators big roman letters K,T

Functional big roman letter J

functions small roman letters j, f, g

Table 9.1: The notation used throughout this thesis
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[77] M. Hinze and F. Tröltzsch. Discrete Concepts versus Error Analysis in PDE-
Constrained Optimization. GAMM-Mitteilungen, 33(2):148–162, 2010. 69

[78] G. N. Hounsfield. Computerized Transverse Axial Scanning (Tomography): Part
1. Description of System. The British Journal of Radiology, 46(552):1016–1022,
1973. 1, 43

[79] J. Idier. Bayesian Approach to Inverse Problems. ISTE. Wiley, 2013. 39, 41

[80] M. S. Judenhofer and S. R. Cherry. Applications for Preclinical PET/MRI .
Seminars in Nuclear Medicine, 43(1):19 – 29, 2013. PET/MRI. 152

186



[81] J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems, vol-
ume 160. Springer, 2005. 37, 38, 39, 41

[82] J. B. Keller. Inverse Problems. The American Mathematical Monthly, 83(2):pp.
107–118, 1976. 34

[83] D. Kinderlehrer and P. Pedregal. Characterizations of Young Measures Generated
by Gradients. Archive for Rational Mechanics and Analysis, 115(4):329–365, 1991.
30
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construction of Freely-Moving Mice Comprising Registration-Based Motion Cor-
rection of Internal Structures. In IEEE Nuclear Science Symposium & Medical
Imaging Conference, 2014. 152

[98] J. Martens. Deep Learning via Hessian-Free Optimization. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), pages 735–742,
2010. 62

[99] S. Müller, T. Qi, and B. S. Yan. On a New Class of Elastic Deformations not
Allowing for Cavitation. Annales de l’institut Henri Poincaré (C) Analyse non
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[126] W.C. Röntgen, A. Haase, G. Landwehr, and E. Umbach. Röntgen Centennial:
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