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Abstract. We show that Property (A) of subshifts and the semigroup that is associated to
subshifts with Property (A) are invariants of flow equivalence. We show for certain R-graphs
that their isomorphism is implied by the flow equivalence of their R-graph shifts.

1. Introduction

Let Σ be a finite alphabet, and let SΣ be the shift on the shift space ΣZ,

SΣ((xi)i∈Z) = (xi+1)i∈Z, (xi)i∈Z ∈ ΣZ.

The SΣ-invariant closed subsets X of ΣZ (more precisely, with SX denoting the
restriction of SΣ to X , the dynamical systems (X,SX)) are called subshifts.
These are the subject of symbolic dynamics. For an introduction to symbolic
dynamics see [3] or [6].

A word is called admissible for a subshift X ⊂ ΣZ if it appears in a point
of X . We denote the set of admissible words of a subshift X ⊂ ΣZ by L(X).
The language L(X) is factorial and bi-extensible, and every factorial and bi-
extensible language is the set of admissible words as a unique subshift.

Let • be a symbol that is not in Σ, and consider a subshift X ⊂ ΣZ.
Denote by ϕ(σ) the mapping that assigns to a word a ∈ L(X) the word that is
obtained from a by carrying out the substitution that replaces the symbol σ
by the word σ•. The set of subwords of the words in ϕ(σ)(L(X)) is a factorial
and bi-extensible language, and we denote the subshift that it determines by
X(σ). One says that the subshift X(σ) arises from the subshift X by symbol
expansion. In Section 2 we describe some effects of symbol expansion.

Subshifts X ⊂ ΣZ and X̃ ⊂ Σ̃Z are called flow equivalent if there exists a

sequence Zk, 1 ≤ k ≤ K, K ∈ N, of subshifts, such that X = Z1 and X̃ = ZK ,
and such that Zk is topologically conjugate to Zk−1, or Zk is obtained from
Zk−1 by symbol expansion, or Zk−1 is obtained from Zk by symbol expansion,
1 < k ≤ K. Flow equivalence was introduced by Parry and Sullivan in 1975
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in [10]. Next to topological conjugacy it is one of the fundamental equivalence
relations for subshifts.

The notions of R-graph, R-graph semigroup, and R-graph shift were intro-
duced in [5]. The class of R-graph shifts contains the class of Markov–Dyck
shifts [9]. In Section 5 we show for certain R-graphs that the flow equivalence
of their R-graph shifts implies their isomorphism. This extends a result of
Costa and Steinberg [1] for Markov–Dyck shifts. The proof uses Property (A)
and the semigroup that is associated to subshifts with Property (A) (see [4]).
In Section 3 we prove invariance under flow equivalence of Property (A) and
in Section 4 we prove invariance under flow equivalence of the associated semi-
group. For an extension of the theory beyond subshifts with Property (A) see
Costa and Steinberg [1].

In Section 5 we consider R-graph shifts. In [2] there was given a necessary
and sufficient condition for an R-graph to have an R-graph shift with Property
(A), whose associated semigroup is the R-graph semigroup of the R-graph.
Under this condition we prove in Section 5 that the flow equivalence of R-
graph shifts implies the isomorphism of the underlying R-graphs.

2. Symbol expansion

We introduce notation for subshifts X ⊂ ΣZ. We denote the SX -orbit of a
point x ∈ X by OX(x), and for an SX -invariant set A ⊂ X we denote the set
of SX -orbits in A by Ω(A). The period of a periodic point p ∈ X we denote
by π(p). For x ∈ X , i, j ∈ Z, i ≤ j, we set

x[i,j] = (xk)i≤k≤j ,

and
X[i,j] = {x[i,j] | x ∈ X}.

We use similar notation in the case that indices range in semi-infinite intervals.
(The elements in X[i,j], X[i,∞), X(∞,i) can be identified with the words they
carry. From the context it becomes clear if such an identification is made.)
For a ∈ X[i,j], i, j ∈ Z, i ≤ j, we set

Γ+
X(a) = {x+ ∈ X(j,∞) | ax

+ ∈ X[i,∞)}.

The notation Γ− has the symmetric meaning. For a ∈ X[i,j], i, j ∈ Z, i ≤ j,
we also set

ω+
X(a) =

⋂

x−∈Γ−(a)

{x+ ∈ Γ+(a) | x−ax+ ∈ X}.

The notation ω− has the symmetric meaning. And for a ∈ X[i,j], i, j ∈ Z,
i ≤ j, we set

ΓX(a) = {(x−, x+) ∈ Γ−(a)× Γ+(a) | x−ax+ ∈ X}.

Let σ ∈ Σ, let • be a symbol that is not in Σ, and consider for a subshift
X ⊂ ΣZ the subshift X(σ) ⊂ (Σ ∪ {•})Z. We denote by ϕ(σ)

− (resp. ϕ(σ)
+ )

the mapping that assigns to x− ∈ X(−∞,0) (resp. x+ ∈ X[0,∞)) the point in
X(σ)

(−∞,0) (resp. X(σ)
[0,∞)) that is obtained from x− (resp. x+) by carrying out
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the substitution that replaces the symbol σ by the word σ•. Also we denote
by ϕ(σ) the mapping that assigns to a point x ∈ X the point in X(σ) that is
given by

ϕ(σ)(x)(−∞,0) = ϕ
(σ)
− (x(−∞,0)),

ϕ(σ)(x)[0,−∞) = ϕ
(σ)
+ (x[0,−∞)).

One observes that

ϕ(σ)(OX(x)) ⊂ OX(σ)(ϕ(σ)(x)), x ∈ X.

With the notation ℓ−(x, n) (resp. ℓ+(x, n)) for the length of ϕ(σ)(x[−n,0)) (resp.
ϕ(σ)(x[0,n))), we note for precision that one has

ϕ(σ)(Sn
X(x)) = S

−ℓ+(x,n)

X(σ) (ϕ(σ)(x)),

ϕ(σ)(S−n
X (x)) = S

ℓ−(x,n)

X(σ) (ϕ(σ)(x)), n ∈ N.

Also,

X(σ) = ϕ(σ)(X) ∪ SX(σ)(ϕ(σ)(X)).

We denote by ξσ the bijection of Ω(X) onto Ω(X(σ)) that assigns to the SX -
orbit of x ∈ X the SX(σ) -orbit of ϕ(σ)(x).

Lemma 2.1. For a subshift X ⊂ ΣZ and for σ ∈ Σ, a ∈ L(X), one has

ϕ
(σ)
+ (ω+

X(a)) = ω+
X(σ)(ϕ

(σ)(a)).

Proof. We prove that ϕ(σ)(ω+
X(a)) ⊂ ω+

X(σ)(ϕ(σ)(a)). Let x+ ∈ ω+
X(a), and let

y− ∈ Γ−

X(σ)(ϕ
(σ)(a)).

It follows from ϕ(σ)(a)0 6= • that y−−1 6= σ, and one sees that y− is in the

image of ϕ(σ)
− . Its inverse image x− under ϕ(σ)

− is in Γ−
X(a). It follows that

x−ax+ ∈ X , and therefore

ϕ(σ)(x−ax+) = y−ϕ(σ)(a)ϕ
(σ)
+ (x+) ∈ X(σ).

This means that ϕ(σ)
+ (x+) ∈ ω+

X(σ)(ϕ(σ)(a)).
For the converse one has a similar argument. �

Lemma 2.2. For a subshift X ⊂ ΣZ and for σ ∈ Σ, b, b′ ∈ L(X), one has

ΓX(b) = ΓX(b′)

if and only if

ΓX(σ)(ϕ(σ)(b)) = ΓX(σ)(ϕ(σ)(b′)).

Proof. The lemma follows from

Γ+
X(σ)(ϕ

(σ)(a)) ⊂ ϕ
(σ)
+ (Γ+

X(a)),

Γ−

X(σ)(ϕ
(σ)(a)) ⊂ ϕ

(σ)
− (Γ−

X(a)), a ∈ L(X). �
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3. Property (A)

Given a subshift X ⊂ ΣZ, we define for n ∈ N a subshift of finite type
An(X) by

An(X) =
⋂

i∈Z

(
{x ∈ X | x[i,∞) ∈ ω+

X(x[i−n,i))}

∩ {x ∈ X | x(−∞,i] ∈ ω−
X(x(i,i+n])}

)
,

and we set
A(X) =

⋃

n∈N

An(X).

Lemma 3.1. For a subshift X ⊂ ΣZ and for σ ∈ Σ, one has

ξσ(Ω(An(X))) ⊂ Ω(A2n(X
(σ))), n ∈ N,(1)

ξ−1
σ (Ω(An(X

(σ)))) ⊂ Ω(An(X)), n ∈ N.(2)

Proof. We show (1). Let n ∈ N, x ∈ An(X), and i ∈ Z. Let µ be the number
of times that the symbol • appears in ϕ(σ)(x)[i,i+2n]. Assume that neither
x(σ)i = •, nor x(σ)i+2n−1 = σ. Then

ϕ(σ)(x[i,i+2n−µ)) = ϕ(σ)(x)[i,i+2n].

From
x[i+2n−µ,∞) ∈ ω+

X(x[i,i+2n−µ)),

it follows then by Lemma 2.1 that

(3) ϕ(σ)(x)[i+2n,∞) ∈ ω+
X(σ)(ϕ

(σ)(x)[i,i+2n)).

In the case that x(σ)i = • we have necessarily x(σ)i−1 = σ, and in the case that
x(σ)i+2n−1 = σ we have necessarily x(σ)i+2n = •. In both cases it is seen that (3)
also holds.

For (2) one has a similar argument. �

We recall from [4] the definition of Property (A). For n ∈ N a subshift X ⊂

ΣZ has property (a, n,H), H ∈ N, if for h, h̃ ≥ 3H and for I−, I+, Ĩ−, Ĩ+ ∈ Z

such that
I+ − I−, Ĩ+ − Ĩ− ≥ 3H,

and for a ∈ An(X)(I−,I+], ã ∈ An(X)(Ĩ−,Ĩ+] such that

a(I−,I−+H] = ã(Ĩ−,Ĩ++H], a(I+−H,I+] = ã(Ĩ+−H,Ĩ+],

one has
ΓX(a) = ΓX(ã).

It is assumed that A(X) 6= ∅. The subshift X ⊂ ΣZ has property (A) if there
are Hn, n ∈ N, such that X has the properties (a, n,Hn), n ∈ N.

Theorem 3.2. For a subshift X ⊂ ΣZ and for σ ∈ Σ, one has that X has

Property (A) if and only if X(σ) has Property (A).

Proof. The theorem follows from Lemma 2.2 and Lemma 3.1. �
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4. The associated semigroup

Consider a subshiftX ⊂ ΣZ with Property (A). We denote the set of periodic
points in A(X) by P (A(X)). We introduce a preorder relation &(X) into the
set P (A(X)) where for q, r ∈ P (A(X)), q &(X) r means that there exists a
point in A(X) that is left asymptotic to the orbit of q and right asymptotic
to the orbit of r. The equivalence relation on P (A(X)) that results from the
preorder relation &(X) is denoted by ≈(X). We denote the set of ≈(X)-
equivalence classes by P(X).

Lemma 4.1. For a subshift X ⊂ ΣZ, for σ ∈ Σ, q, r ∈ P (A(X)), and for

σ ∈ Σ, one has

q &(X) r

if and only if

ϕ(σ)(q) &(X(σ)) ϕ(σ)(r).

Proof. This follows from Lemma 3.1. �

We recall the construction of the associated semigroup. For a Property (A)
subshift X ⊂ ΣZ we denote by Y (X) the set of points in X that are left
asymptotic to a point in P (A(X)) and also right-asymptotic to a point in
P (A(X)). Let y, ỹ ∈ Y (X), let y be left asymptotic to q ∈ P (A(X)) and right
asymptotic to r ∈ P (A(X)), and let ỹ be left asymptotic to q̃ ∈ P (A(X)) and
right asymptotic to r̃ ∈ P (A(X)). Given that X has the properties (a, n,Hn),
n ∈ N, we say that y and ỹ are equivalent, y ≈(X) ỹ, if q ≈(X) q̃ and r ≈(X) r̃,

and if for n ∈ N such that q, r, q̃, r̃ ∈ P (An(X)) and for I, J, Ĩ, J̃ ∈ Z, I < J ,

Ĩ < J̃ , such that

y(−∞,I] = q(−∞,0], y(J,∞) = r(0,∞),

ỹ(−∞,Ĩ] = q̃(−∞,0], ỹ(J̃,∞) = r̃(0,∞),

and for h ≥ 3Hn and a ∈ X(I−h,J+h], ã ∈ X(Ĩ−h,J̃+h] such that

a(I−Hn,J+Hn] = y(I−Hn,J+Hn], ã(Ĩ−Hn,J̃+Hn]
= ỹ(Ĩ−Hn,J̃+Hn]

,

a(I−h,I−h+Hn) = ã(Ĩ−h,Ĩ−h+Hn)
, a(J+h−Hn,J+h] = ã(J̃+h−Hn,J̃+h],

a(I−h,I] ∈ An(X)(I−h,I], ã(J̃−h,Ĩ] ∈ An(X)(J̃−h,Ĩ],

a(J,J+h] ∈ An(X)(J,J+h], ã(J̃,J̃+h] ∈ An(X)(J̃,J̃+h],

it holds that

ΓX(a) = ΓX(ã).

To give [Y (X)]≈(X) the structure of a semigroup, let u, v ∈ Y (X), let u be
right asymptotic to q ∈ P (A(X)) and let v be left asymptotic to r ∈ P (A(X)).
If here q &(X) r, then [u]≈(X)[v]≈(X) is set equal to [y]≈(X), where y is any

point in Y such that there are n ∈ N, I, J, Î, Ĵ ∈ Z, I < J , Î < Ĵ , such that
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q, r ∈ An(X), and such that

u(I,∞) = q(I,∞), v(−∞,J] = r(−∞,J],

y(−∞,Î+Hn]
= u(−∞,I+Hn], y(Ĵ−Hn,∞) = v(J−Hn,∞),

and

y(Î,Ĵ] ∈ An(X)(Î,Ĵ],

provided that such a point y exists. If such a point y does not exist, then
[u]≈(X)[v]≈(X) is equal to zero. Moreover, in the case that one does not have
q &(X) r, one sets [u]≈(X)[v]≈(X) equal to zero.

Consider a subshift X ⊂ ΣZ with Property (A). For p ∈ P(X) we choose
d(p) ∈ p and set

D = {d(p) | p ∈ P(X)}.

In order to facilitate the proof of its invariance under flow equivalence we give
an alternate description of the semigroup that is associated to X in terms of
the system D ⊂ YX of representatives of the equivalence relation ≈(X). For
y ∈ OX(d(p)), p ∈ P(X), we define J(y, d(q)) ∈ Z by

S
−J(y,d(p))
X (y) = d(p), 0 ≤ π(d(p)) < π(d(p)).

For p ∈ P(X) we set

H(d(p)) = min{H ∈ N | ΓX(p[0,Hπ(p))) = ΓX(p[0,(H+1)π(d(p))))}.

We denote by Y −
X (D) the set of points in YX that are left asymptotic to the

orbit of a point in D, and also right asymptotic to the orbit of a point in D.
More precisely, we denote by Y −

X (d(p)) (resp. Y +
X (d(p))) the set of points in YX

that are left (right) asymptotic to the orbit of d(p), p ∈ P(X). For

y ∈ Y −
X (d(q)q) ∩ Y +

X (d(r)), q, r ∈ P(X),

we set

I−(y) =

{
J(y, d(q)), if y ∈ OX(d(q)),

max{I ∈ Z | y(−∞,I) = d
(q)
(−∞,0)}, if y 6∈ OX(d(q)),

I+(y) =

{
J(y, d(r)), if y ∈ OX(d(r)),

min{I ∈ Z | y[I,∞) = d
(r)
[0,∞)}, if y 6∈ OX(d(r)).

We say that O,O′ ∈ Ω(Y
(D)
X ) are ≈(D)-equivalent if O and O′ are left asymp-

totic to the same periodic obit, and also right asymptotic to the same periodic
obit, and, with q ∈ P such that y and y′ are right asymptotic to the orbit of
d(q) and with r ∈ P such that y and y′ are left asymptotic to the orbit of d(r),
if there exist y ∈ O and y′ ∈ O′ such that

ΓX(d
(q)

[0,H(d(q))π(d(q)))
y[I−(y),I+(y))d

(r)

[0,H(d(r))π(d(r)))
)

= ΓX(d
(q)

[0,H(d(q))π(d(q)))
y′[I−(y′),I+(y′))d

(r)

[0,H(d(r))π(d(r)))
).
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To give Ω(Y
(D)
X ) the structure of a semigroup, let q, p, r ∈ P, and suppose that

u ∈ Y −
X (q) ∩ Y +

X (p), v ∈ Y −
X (p) ∩ Y +

X (r).

In case that the word

d
(q)

[0,H(d(q))π(d(q)))
y[I−(u),I+(u))(4)

∗ d
(p)

[0,H(d(p))π(d(p)))
y[I−(v),I+(v))d

(r)

[0,H(d(r))π(d(r)))

is admissible for X , let a point y[u, v] ∈ Y −
X (q) ∩ Y +

X (r) be given by

y[u, v](−∞,0) = d
(q)
(−∞,0),

y[u, v][0,∞) = d
(q)
[0,H(q)π(q))y[I−(u),I+(u))d

(p)

[0,H(d(p))π(d(p)))
y[I−(v),I+(v))d

(d(r))
[0,∞).

Then set

[O(u)]≈(D)[O(v)]≈(D) = [O(y[u, v])]≈(D).

In case that the word (4) is not admissible for X , set

[O(u)]≈(D)[O(v)]≈(D) = 0.

Also, for q, r ∈ P, if
Y −
X (q) ∩ A(X) ∩ Y +

X (r) 6= ∅,

define a ≈(D)-equivalence class γ(q, r) by

γ(q, r) = [O(y)]≈(D), y ∈ Y −
X (q) ∩ A(X) ∩ Y +

X (r).

As a consequence of Property (A) of X the ≈(D)-equivalence class γ(q, r) is
well defined. If

Y −
X (q) ∩ A(X) ∩ Y +

X (r) = ∅,

set
γ(q, r) = 0.

Identify p ∈ P with γ(p, p). Finally, for q, r ∈ P and u ∈ Y +
X (q), v ∈ Y −

X (r),
set

[O(u)]≈(D)[O(v)]≈(D) = [u]≈(D)γ(q, r)[v]≈(D).

An isomorphism ησ,D of [YX ]≈(X) onto [Ω(Y
(D)
X )]≈(D) is obtained by choosing

out of every ≈(X)-equivalence class α a point η(α) ∈ Y
(D)
X , and by setting

η
(D)
X (α) = [η(α)]≈(D).

Theorem 4.2. For a subshift X ⊂ ΣZ with Property (A) and for σ ∈ Σ the

semigroups that are associated to X and X(σ) are isomorphic.

Proof. Set

d(p
(σ)) = ϕ(σ)(d(p), p ∈ P.

One has
π(d(p

(σ))) = π(d(p), p ∈ P,

and, by Lemma 2.2,

H(d(p
(σ))) = H(d(p), p ∈ P.
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Setting

D(σ) = {d(p
(σ)) | p ∈ P}

yields a system of representatives of the ≈(X(σ))-equivalence classes in
P(X(σ)). By construction

ϕ(σ)(y[u, v]) = y[ϕ(σ)(u), ϕ(σ)(v)], u, v ∈ YX .

Also, by Lemma 3.1, for q, r ∈ P, one has

Y −
X (q) ∩ A(X) ∩ Y −

X (r) 6= ∅

if and only if

Y −
X (q(σ)) ∩ A(X(σ)) ∩ Y −

X (r(σ)) 6= ∅.

It follows that an isomorphism ψσ,D of [Y
(D)
X ]≈(D) onto [Y

(D(σ))
X(σ) ]≈(D(σ)) is given

by setting

ψσ,D([y]) = [ϕ(σ)(y)], y ∈ Y
(D)
X ,

and one obtains an isomorphism Ξ(σ) of [YX ]≈(X) onto [YX(σ) ]≈(X(σ)) by setting

Ξ(σ) = η−1
σ,Dψσ,Dησ,D. �

See also [1, Thm. 9.20] for the invariance of the associated semigroup under
flow equivalence, under the assumption that A(X) is dense in X , or in the sofic
case.

The semigroup [Y
(D)
X ]≈(D) is a set of equivalence classes of orbits. As orig-

inally done in [4], we have introduced the associated semigroup of a subshift
with Property (A) in terms of equivalence classes of points, rather than equiv-
alence classes of orbits. However, since points in YX that are in the same
orbit are ≈(X)-equivalent, one can define the associated semigroup in the first
place as a set of equivalence classes of orbits. The same remark applies to
the set of idempotents P. When the associated semigroup is introduced as a
set of equivalence classes of orbits, then the mapping ξσ is seen to induce the
isomorphism of the associated semigroup of X onto the associated semigroup
of X(σ).

5. R-graph shifts

Given finite sets E− and E+ and a relation R ⊂ E− × E+, we set

E−(R) = {e− ∈ E− | {e−} × E+ ⊂ R},

E+(R) = {e+ ∈ E+ | E− × {e+} ⊂ R},

and

Ω+
R(e−) = {e+ ∈ E+ | (e−, e+) ∈ R}, e− ∈ E−,

Ω−
R(e+) = {e− ∈ E− | (e−, e+) ∈ R}, e+ ∈ E+.

We recall from [5] the notion of an R-graph. Let there be given a finite
directed graph with vertex set P and edge set E . Furthermore, assume that
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On flow-equivalence of R-graph shifts 237

a partition E = E− ∪ E+ is given. With s and t denoting the source and the
target vertex of a directed edge we set

E−(q, r) = {e− ∈ E− | s(e−) = q, t(e−) = r},

E+(q, r) = {e− ∈ E+ | s(e+) = r, t(e+) = q}, q, r ∈ P.

We assume that E−(q, r) 6= ∅ if and only if E+(q, r) 6= ∅, q, r ∈ P, and we
assume that the directed graph (P, E−) is strongly connected, or equivalently
that the directed graph (P, E+) is strongly connected. Furthermore, let there
be given relations

R(q, r) ⊂ E−(q, r)× E+(q, r), q, r ∈ P.

Set
R =

⋃

q,r∈P

R(q, r).

The resulting structure, for which we use the notation GR(P, E−, E+), is called
an R-graph.

We also recall the construction of a semigroup (with zero) SR(P, E−, E+)
from an R-graph GR(P, E−, E+) as given in [5]. The semigroup SR(P, E−, E+)
contains idempotents 1p, p ∈ P, and has E as a generating set. Besides the
relations 1

2
p = 1p, p ∈ P, one has for q, r ∈ P, q 6= r, the relations 1q1r = 0,

and, with q, r ∈ P, for the elements of the generating set E of SR(P, E−, E+)
the relations

f−g+ = 1q, f− ∈ E−(q, r), g+ ∈ E+(q, r), (f−, g+) ∈ R(q, r),

1qe
− = e−1r = e−, e− ∈ E−(q, r),

1re
+ = e+1q = e+, e+ ∈ E+(q, r),

f−g+ =

{
1q, if (f−, g+) ∈ R(q, r),

0, if (f−, g+) /∈ R(q, r),
f− ∈ E−(q, r), g+ ∈ E+(q, r).

The semigroup SR(P, E−, E+) is called an R-graph semigroup.
The R-graph shift MDR(P, E−, E+) of the R-graph GR(P, E−, E+) is the

subshift
MDR(P, E−, E+) ⊂ EZ

with the admissible words (σi)1≤i≤I , I ∈ N, of MDR(P, E−, E+) given by the
condition ∏

1≤i≤I

σi 6= 0.

For an R-graph GR(P, E−, E+) we denote by P(1) the set of vertices in P

that have a single predecessor vertex in E−, or equivalently that have a single
successor vertex in E+. For p ∈ P(1) the predecessor vertex of p in E−, which
is identical to the successor vertex of p in E+, is denoted by κ(p). We set

E−
R =

⋃

p∈P(1)

E−(R(κ(p), p)), E+
R =

⋃

p∈P(1)

E+(R(κ(p), p)),
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and

P
(1)
R = {p ∈ P(1) | R(κ(p), p) = E−(κ(p), p)× E+(κ(p), p)}.

We formulate conditions (a), (b), (c) and (d) on an R-graph GR(P, E−, E+)
as follows:

(a−) Ω+
R(q,r)(e

−) 6= Ω+(ẽ−), e−, ẽ− ∈ E−(q, r), e− 6= ẽ−, q, r ∈ P.

(a+) Ω−
R(q,r)(e

+) 6= Ω−(ẽ+), e+, ẽ+ ∈ E+(r, q), e+ 6= ẽ+, q, r ∈ P.

(b−) There is no nonempty cycle in E−
R.

(b+) There is no nonempty cycle in E+
R.

(c) For p ∈ P(1) such that κ(p) 6= p, E−
R(p) = ∅ or E−

R(p) = ∅.

(d) For q, r ∈ P(1), q 6= r, there do not simultaneously exist a path in E−
R

from q to r and a path in E+
R from q to r.

Theorem 5.1. For R-graphs GR(P, E−, E+) that satisfy the conditions (a),
(b), (c) and (d) the flow equivalence of the R-graph shifts DR(P, E−, E+)
implies the isomorphism of the R-graphs GR(P, E−, E+).

Proof. By [2, Thm. 2.3 and Thm. 6.1] the conditions imply that the R-graph
shift DR(P, E−, E+) has property (A), and that the semigroup that is as-
sociated to it is SR(P, E−, E+). By Theorem 4.2 the flow equivalence of
the shifts DR(P, E−, E+) implies the isomorphism of the R-graph semigroups
SR(P, E−, E+), which in turn, by [5, Thm. 2.1], implies the isomorphism of
the R-graphs GR(P, E−, E+). �

Theorem 5.1 extends the result of Costa and Steinberg that the flow equiv-
alence of Markov–Dyck shifts of finite irreducible directed graphs, in which
every vertex has at least two incoming edges, implies the isomorphism of the
graphs (see [1, Thm. 8.6]).

For K > 1, let BK denote the full shift onK symbols, and let D2 denote the
Dyck shift on four symbols. The shifts D2 × BK , K > 1, belong to the class
of R-graph shifts. They arise from the one-vertex R-graphs GR({p}, E−, E+),
where

E− = {e−(m,β) | 1 ≤ m ≤ K, β = 0, 1},

E+ = {e−(l, β) | 1 ≤ l ≤ K, β = 0, 1},

and where

(e−m, (β−), e−(l, β+)) ∈ R(p, p)

if and only if

β− = β+, 1 ≤ m ≤ K, 1 ≤ l ≤ K.

These R-graphs do not satisfy the conditions of Theorem 5.1, but the R-graph
shifts D2 × BK , K > 1, have Property (A), and the flow equivalence of their
R-graph shifts D2 × BK , K > 1, still implies the isomorphism of these R-
graphs. This can be seen from the invariance under flow equivalence of the
K-groups of subshifts as shown by Matsumoto in [7], and from

K0(D2 ×BK) = Z[ 1
n
]∞, K > 1,
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as also shown by Matsumoto [8, Section 8]. Note that the associated semigroup
of D2 ×BK , K > 1, is the Dyck inverse monoid D2.
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