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Abstract

We define the cotangent complex as it is defined in Abrashkin [1], Lichtenbaum; Sch-
lessinger [13] and Messing [14] and then we compare all of them and prove that they are
homotopically equivalent. Let ¢ be an indeterminant over F, and let F,[(] be the ring
of formal power series in ¢ over F,. Let Nz’lqu [c] e the category of F, [¢]-schemes on
which ( is locally nilpotent. When S € Nz’lqu [¢] We prove the equivalence between the
category of effective local shtukas over S and the category of z-divisible local Anderson-
modules over S. The latter objects are analogues of BT-groups (also called p-divisible
groups) in the equal characteristic case. Then we show how to associate a formal Lie
group to any z-divisible local Anderson-modules over S. After this we treat a question
of when a formal Lie group is a z-divisible local Anderson-module.
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Introduction

The z-divisible local Anderson modules are analogues of BT-groups (also called p-
divisible groups) in equal characteristic case. The latter are objects in mixed char-
acteristic over Z,. The z-divisible local Anderson-modules (called z-divisible groups in
other text) were introduced in Hartl [9] but they already appeared in special case in
work of Drinfeld [5], Genestier [8], Laumon [12], Taguchi [16] and Rosen [15]. In [9] our
z-divisible local Anderson-modules were called ” z-divisible groups” and it was claimed
that their category is equivalent to the category of “Dieudonné F,[z]-modules”. The
latter are called local shtukas in the present thesis and we provide the proofs for the
statements claimed in [9]. In this thesis z-divisible local Anderson-modules over an ar-
bitrary base scheme S (on which ¢ is locally nilpotent) are studied. So we can think of
these as nicely varying families of z-divisible local Anderson-modules parametrized by
S. This thesis originates from the following question. Can we associate a formal Lie
group to any z-divisible local Anderson-module? The answer is yes in the case when (
is locally nilpotent.

Motivation: As we know BT-groups may arise from abelian variety, z-divisible lo-
cal Anderson modules arise for example as the z-power torsion of Drinfeld modules or
Anderson modules. On the other hand BT-groups are related via their Tate-module to
p-adic Galois representation. This was one of the reason to study p-divisible groups.

Let us now give a more detailed summary of the various chapters. Let z be an
indeterminant over Fy and suppose that S is a scheme over SpecF,[z]. We denote the
image of z in Og by (. If G is a group on S which is also an Fy[z]-module. We denote
ker z™ by G(n).

For a commutative group scheme G over a scheme S we define its co-Lie module w¢ as
the Og-module of invariant differentials. It is canonically isomorphic to e*QlG /s where
e: S — G'is the zero section i.e. wg g = Os®0, QIG/S. We make the following definition
of z-divisible local Anderson-module.

Definition. A z-divisible local Anderson module over S is a sheaf of F,[z][-modules
G on the big fppf-site of S such that for each integer n > 1:

1. G is of z-torsion i.e. G = limG(n),
H
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2. (G is z-divisible i.e. z: G — G is an epimorphism,

3. The F,-modules G(n) are representable by finite locally free group schemes over S
and are strict.

4. Locally on S there exist a constant d € Z>q, such that (z — ¢)? = 0 on wg where
we = limwgp) cf.2.3.4.
(_

n

To associate a formal Lie group to any z-divisible local Anderson module over S in
the case when ( is locally nilpotent on S, we need to use the theory of relative cotangent
complex. In chapter 1 we define the cotangent complex as it is defined in Abrashkin [1],
Lichtenbaum; Schlessinger [13] and Messing [14] and then we compare all of them and
prove that they are homotopically equivalent.

In section 1.4 and section 1.5 we define the cotangent complex in the sense Abrashkin
and strict finite O-module schemes. For that we fix some notations as p is a fixed prime
number, O is a unitary commutative I, -algebra and A is a commutaive unitary O-
algebra. In section 1.4 we define the cotangent complex in the sense of Abrashkin [1] in
the following way.

For an augmented A-algebra B, we use the following notations: eg : B — A, the
morphism of augmentation, and Kereg = Ip, the augmentation ideal. If A[X] =
A[Xq,...,X,], n > 0, is a polynomial ring we always assume that its augmentation
ideal is T4 5) = (X1..... Xp) l.e. this is the ideal defining the zero section of Spec(A[X]).
We define the category DAug, are the triples B = (B, Bb,ilg) where B is a finite aug-
mented A-algebra, B’ is an augmented A-algebra and ig : B’ — B is an epimor-
phic map of augmented algebras such that locally on A there is a polynomial ring
A[X] = [X1,...,X,], n >0, and an epimorphism of augmented A-algebras j : A[X] — B’
satisfying the following properties:

e the ideal I := Ker(ig o j) is generated by elements of a regular sequence of length n
in A[X];

° Kerj:I-IA[X].

Abrashkin introduces the two A-modules t}; = IA[X]/IE;[X] and Np = I/(I - I4x))-
The cotangent complex in the sense of Abrashkin is defined as the complex

LB = Nt (0.1)
and we show that £2/4 is the fiber at the origin of the cotangent complex of B/A as
have defined by Lichtenbaum; Schlessinger [13] and Messing [14]. In the above complex
the map is the differential map.

In section 1.5 we define strict finite O-module schemes. We denote by DGr(O) 4 the
category O-module objects which satisfy the following definition of strictness.

Definition. Suppose G = SpecB = (Spec B’ Spec B,Specip). A strict O-action
on G is a homomorphism O — Endpg,,(G) such that the induced action on E.B/ 4 s
homotopic to the scalar multiplication via g : O — A.

10
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Here S = Spec(A) is a scheme over O and p : O — I'(S, Og) is the structure morphism.
Then we make the following definition strict finite O-module schemes.

Definition. A strict O-module scheme over S is a finite S-group scheme G together
with a homomorphism O — Endg(G) which lifts to a homomorphism O — Endpg,,(G)

such that the induced action on £Z/* is homotopic to the scalar multiplication via
p: O — A. We denote by Gr(O)4 the category of strict finite O-module schemes.

Mainly Gr(O),4 is the quotient category of DGr(O)4 where the morphisms are the
equivalence classes of morphisms (G, G”) — (H, H’) in the category DGr(©) 4 which
induce the same morphism G — H.

In section 1.6 we fix p a prime number and ¢ is a power of p. Let S = Spec(A) be a
scheme over SpecF,. We denote by o, : S — S its Frobenius endomorphism which acts
as the identity on points and as the g-power map on the structure sheaf. In this section
we explain that Drinfeld established a relation between finite shtukas over S and finite
strict Fg-module schemes over S. We first give the definition of finite F-shtukas over S.

Definition. A finite Fy-shtuka over S is a pair (M, Fj) consisting of a locally free
Og-module M on S of finite rank and an Og-module homomorphism Fyy : oy M — M.
Here oy M = M Q0,07 Og.

We denote by Mod(IFy) 4 the category of Fg-shtukas over S.

After this we define the functor M, : DGr(F,)a — Mod(F;)4 by setting for any
G = (G,G") € DGr(Fg)a, M (G) = (M(G), Far) with

M(G)={ac A(G) | A(a) =a®1+1®a, [of(a) = aa, Ya € Fg},

where Fyr : 0y M(G) — M(G) is induced by the g-th power map on A(G).

Also we construct the inverse functor Dry : Mod(Fy)4 — Gr(FFy) 4 in a following way

If (M, F,) € Mod(F,) , then Dry(M, F,) = SpecB with B = (A(G), A(G)’,iz), de-
fined by:

e A(G) = Symy M/I where the ideal I is generated by {m? — Fy,(m ® 1)| m € M},
the comultiplication A is such that A(m) =m ® 1+ 1 ® m and the Fg-action such that
[a](m) = am for all m € M and « € Fy;

e A(G)" = Symy(M)/(I - Iy) where the augmentation ideal Iy is generated by all
m € M, the comultiplication A’ is such that A’(m) =m ® 1+ 1® m and the F-action
such that [a]’ is given by the correspondence m — am for all m € M and « € Fy;

e iz is the natural projection from A(G)” to A(G).

After this we prove the following theorem

Theorem 1.6.4 (Drinfeld [6,2.1], Taguchi [17,1.7])

11
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1. The two contravariant functors Dry and M, are mutually quasi-inverse anti-
equivalences between the category of finite Fq-shtukas over S and the category of
finite strict Fg-module schemes over S.

2. Both functors are Fq-linear and map short exact sequences to short exact sequences.
They preserve étale objects.

Let (M, F) be a finite Fq-shtuka over S. Then

3. the Fg-module scheme Dry(M, F') is radicial if and only if F' is nilpotent locally on
S.

4. the scheme Drq(M, F) is finite and locally free and the order of the S-group scheme
Dr, (M, F) is q"<M.

5. the Og-modules Whry(M,F) and coker F' are canonically isomorphic.

In section 1.7 we compare between cotangent complex of a finite locally free S-group
scheme G and Frobenius map of finite F, -shtuka associated to it and we prove that they
are isomorphic.

Let Fy[¢] be the ring of formal power series in  over F,. Let Nilpg, ] be the category
of Fy[¢]-schemes on which (¢ is locally nilpotent. In chapter 2 section 2.1, 2.2 and 2.3
the concept of formal Lie groups, local shtuka, z-divisible local Anderson module over S
are defined, several sorites and several examples are given. This three sections consists
of several definitions. We give the following definition of local shtuka and effective local
shtuka.

Definition. A local shtuka of rank(or height) r over S is a pair (M, F)y) consisting of
e a sheaf M of Og[z]-modules on S, which, Zariski-locally on S, is a free Og[z]]-module
of rank r, and
1

e an isomorphism Fy : 0" M| =] —= ]V[[zig}.

Definition. A local shtuka (M, Fy) over S is called effective if Fy; is actually a
morphism Fy; : 0*M — M. Let (M, Fyr) be effective. We say that

1. (M, Fyr) has dimension d if coker Fyy is locally free of rank d as an Og-module.
2. (M, Fyr) is étale if Fpp : 0*M —"~= M is an isomorphism.

3. Fyr is topologically nilpotent if im Fy; C zM locally on S for all large enough
integers n.

In section 2.4 we extend Drinfeld’s construction and the equivalence from Section 1.6
to an equivalence between the category of effective local shtukas over S and the category
of z-divisible local Anderson-modules over S and we prove the following theorem

Theorem 2.4.3 Let S € Nilpy, [¢]-

12
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1. The two contravariant functors Dry and M are mutually quasi-inverse anti-
equivalences between the category of effective local shtukas over S and the category
of z-divisible local Anderson-modules over S. Both functors are Fy[z]-linear.

2. Both functors preserve étale objects and map short exact sequences to short exact
sequences.

Let (M, F) be an effective local shtuka over S. Then

3. the z-divisible local Anderson-module Dry(M, F') is a formal Lie group if and only
if F' is topologically nilpotent.

4. the height and dimension of the z-divisible local Anderson-module Dry(M, F') equal
the rank and dimension of (M, F).

v

the Og|z]-modules W Dr, (M, F) and coker F' are canonically isomorphic.

In section 2.5 the relation between formal Lie groups and z-divisible local Anderson-
modules is studied. First assuming ¢ = 0 on S and using the techniques of Messing
[14], we show how to associate a formal Lie group to any z-divisible local Anderson-
module G. In using the techniques of Messing [14], the main obstruction is getting the
Verschiebung map Vg : G — G such that

d
FgoVg = 2%gw,
VG OFG = Zd‘G

which we get from the above equivalence. Let G[n] will denote the kernel of the nt?
iterate of ¢g-Frobenius homomorphism:

o

¢ o, o) Lew, o) |, gl

Inf§(G) is the k-th infinitesimal neighbourhood of S in G' in the sense of Messing [14]
and we prove the following theorem.

Theorem 2.5.5 When ( =0 on S and G is a z-divisible local Anderson module over S,

then lim G[n] is a formal Lie group and is equal to G : = limInf%(G).
= =

Via the use of the relative cotangent complex this result is extended to a z-divisible
local Anderson-module G over S in the case ( is locally nilpotent on S and we prove the
following theorem.

Theorem 2.5.19 Let ¢ be locally nilpotent on S and let G be a z-divisible local Anderson
module on S. Then G = limInf*(G) is a formal Lie group.
H.
k
Next we treat the question of when a formal Lie group which is also a [F,[z]-module

is a z-divisible local Anderson-module. Finally necessary and sufficient condition for

13
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a z-divisible local Anderson-module to be expressible as an extension of an ind-étale
z-divisible local Anderson-module by a formal Lie group are given.

Proposition 2.5.27 Let ¢ be locally nilpotent on S and G be in z-divisible local Anderson
modules over S. The following conditions are equivalent

1. G is a z-divisible local Anderson module.

2. G is an extension of an ind-étale z-divisible local Anderson module G" by an ind-
infinitesimal z-divisible local Anderson module G'.

2’ G is an extension of an ind-étale z-divisible local Anderson module by a z-divisible
formal Lie group.

3. For all n G(n) is an extension of a finite étale group by a finite locally-free radiciel
group.

37 G(1) is an extension of a finite étale group by a finite locally-free radiciel group.
4. s+ separable rank (G(1)s) is locally constant function.

In last section we compare of Tate-module of local shtuka and z-divisible local Ander-
son module and we prove the following theorem

Theorem 2.6.2 There is a canonical Fy[z]-isomorphism T,G—T,M of
Gal(K%¢P | K)-representations.

where S = Spec Og where O are the integers in a local field K with ¢ € K* and
K5€P s a fixed separable closure.

14
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Chapter 1

Cotangent complex and relation
between strict finite group
schemes and shtukas

Conventions. The conventions of commutative algebra that all the rings are with unit
element unless it is not mentioned.

In this chapter we will define the cotangent complex as it is defined in Abrashkin [1],
Lichtenbaum; Schlessinger [13] and Messing [14]. Then we will compare all of them
and prove that they all are homotopically equivalent. In the end we will compare the
cotangent complex with the Frobenius map of the associated finite shtuka and then we
will prove that they are same.

At first we will define the cotangent complex in the way of Lichtenbaum; Schlessinger
[13]. The following section has been taken from the paper Lichtenbaum; Schlessinger
[13].

1.1 Cotangent complex in the sense of Lichtenbaum;
Schlessinger

In the paper Lichtenbaum; Schlessinger [13] for a ring homomorphism A — B they have
defined the cotangent complex of B over A in the following way. They start with an
extension of B over A by which they mean an exact sequence

E: 0—E 3B 5R5B—0
where eg is a surjection of A-algebras, eo and e; are homomorphism of R-modules, and
e1(x)y = e1(y)z

for z, y € Ej.

Note that the last condition is required to make Fs a B-module. Indeed if I = Ker ey,
if a € I and © € Es, choose y € E; such that e;(y) = a. Then ex(ax) = aes(z) =
e1(y)ea(x) = erea(x).y = 0, so ax = 0. This implies I E» = 0, so E» is a B-module.

17



1 Cotangent complex and relation between strict finite group schemes and shtukas

Let A’ be an A-algebra, B’ be an A’-algebra, and £’ an extension of B’ over A’. By
a homomorphism « : &€ — £ we mean a collection (b, ag, a1, a2) of maps which make
the diagram

0 B,—2 g2 s, p 0
Taz Tal Tao Tb
0 F—=2 s —% R % B 0

commutative. Here b and g are homomorphisms of A-algebras, and a; and ao are
homomorphisms of R-modules (where we regard R’ and B’ as A-algebras via A — A’
and E] and Ef as R-moules via ay).

Definition 1.1.1. With each extension £ of B over A we associate a three term complex

L (&) of B-modules:

L(5> 0—>E2d—2>E1®RBd—])QR/A®RB—)O

Here Qp /A 18 the module of Kéhler differentials, d2 is induced from e, and d; is defined
as follows: let I = Ker eg. Then Im e; = I and we have d : I/I? — Qp/a ®r B. Put
di=do (61 XRRr B)

do
E1®r B (c19nE) »Qr/a®r B
%B) /
I®rB=1/I*

Extensions of B over A are all obtained in the following way. Choose a surjection
eg : R — B of A-algebras, and let I = Ker eg. Then choose an exact sequence

0—ULFLT—0
of R modules and define ¢ : FF® F' — F by the formula
Px@y)=j(z)y —jly)w.

Im¢ € U, because j(¢(z ®@vy)) = j(x)jly) —j(y)j(z) = 0. Let Uy C U be the image of
¢, and let eo : U/Uy — F /Uy and e; : F//Uy — R be the induced maps.

Definition 1.1.2. An extension of the form
0—-U/Uy— F/Uy— R— B —0

where R is a polynomial algebra over A and F'is a free R-module is called a free extension
of B over A.

18



1.1 Cotangent complex in the sense of Lichtenbaum; Schlessinger

It is clear that if
B—t.p
(*)

A—2 A
is a commutative diagram of ring homomorphisms, and £ (resp &')is a free(resp. ar-
bitrary) extension of B over A(resp of B’ over A’), then there exist a homomorphism
a: & — & extending b, and hence a homomorphism a : L'(€) @ B’ — L'(&').
A complex of the form L'(£), where £ is a free extension of B over A is called a
cotangent complex of B over A. In the paper Lichtenbaum; Schlessinger [13] we see that
any two cotangent complexes of B over A are homotopic ([13, 2.1.9]).

An A-algebra B will be called finite if as an A-module it is locally free of finite rank
i.e. flat and finitely presented. If these algebras are with a comultiplication map, then
their spectrum will be a finite flat commutaive group schemes over A. When Spec B is
a group scheme over A, it is known that B is a relative complete intersection [S.G.A.3,
III 4.15], that is of the form B = A[Xq,..., X,,]/I with ideal I generated by a regular
sequence which remains regular after all base changes.

Now we will apply the above results to find the cotangent complex of a group scheme
G which is finite and locally free over S = Spec A i.e. represented by finitely presented
flat A- algebra i.e. G = Spec B, where B is a finite A-algebra, i.e. B = A[X]/I, where
A[X] = A[X1, Xa..., X,],n > 0, and [ is generated by elements of a regular sequence of
length n in A[X].

To apply the results in our case we can take R = A[X] and say I = (f1, fa-.., fn) and
F = A[X]®". We begin with a lemma.

Lemma 1.1.3. When the ideal I = (f1, fa..., fn) is generated by elements of a regular
sequence. Then U = Uy in Definition (1.1.2).

Proof. To prove U = Uy when the ideal I = (f1, fa..., fn) is generated by elements of a
regular sequence we will prove first I is finitely presented over A[X].

Since I = (f1,..., fr) and F = A[X]®". To prove I is finitely presented over A[X X] we
will show that there is an exact sequence of A[X]-modules

AX126G) 4 Ax)on L1 — 0, (1.1)

where the map j sends standard basis vectors e; to f; and the map ¢ sends a basis
gij of Af X% () to fie; — f]el From the definition of map 7, it is surjective. To prove

exactness in the middle let Z aze; € ker j, this implies Z a; f; = 0. This implies,
=1 =1

anfn = 0mod(fi,....fn_1) in A[X]
anfn = 0in A[ ]/(fl,----fn—l)

19



1 Cotangent complex and relation between strict finite group schemes and shtukas

Since f, € I is a non-zerodivisor in A[X]/(f1, - fn_1) we have @, = 0. This implies
there exists b,; € A[X], 1 <j <n— 1 such that,

n—1
ap = Z bnjfj-
J=1

This implies

n n—1
Zaiei =a1e1 +...+an_16p-1+ (Z bnjfj)en.
i=1 j=1
n—1
Take Z bnjgn; € A[X]@(2), this will give us
j=1

n
Zaiei = (a1 + bpifn)er + ... + (an—1 + byn—1fn)en—1 (mod Imi).
i=1
Continuing in this way we will get,
n
Zaiei = (a1 4+ bn1frn + bn—l,lfn—l + ... + b271f2)61 (mod Imi)‘
i=1

Hence (a1 +bp1 fr, +bp—1,1frn—1+..... + 021 f2) fi = 0. Since f; is non-zerodivisor in A[X]
this implies we have

Z a;e; = 0 (mod Imz).
i=1

This proves that I is finitely presented over A[X]. So we have an exact sequence
AXTEE) & AxEn L 1 — 0.
Let us take U = ker j, so we have an exact sequence as A[X]-modules ,

0-U—=AX]"" T -—0

and
¢: AX]P" @ A[X]F" — A[X]|P™
e; ® €; — fiej — fjei.
Since we have U =< fie; — fje; >Ax]= Im ¢ = Uy. This shows that U = U. O

So we have U/Uy =0, F/Uy®r B=1®g B = I/I?. Hence the cotangent complex
L(&): 0-—=U/Uy— F/Uy®r B — Qr/a ®r B — 0;

is equal to

L(E): 0—0-—1I/I>—Qpy®rB—0.

Sometime we will denote this cotangent complex of B over A by L and we say this
is the cotangent complex in the sense of Lichtenbaum and Schlessinger.

20



1.2 Cotangent complex in the sense of Messing

1.2 Cotangent complex in the sense of Messing

In this section we will define the cotangent complex in the sense of Messing [14] for the
same finite and locally-free S-group scheme GG. As we have assumed in the last section
S = Spec(A) and G = Spec(B) where B is a finite and locally free A-algebra. To say G
is a group amounts to saying B is a bi-algebra i.e., we have an algebra homomorphism
A:B— B®B and € : B — A satisfying the usual identities. Thus B = Hom4 (B, A),
the linear dual of B, is equipped with an algebra structure via the transpose of A and
that of e.

The hyperalgebra, U(G), of G is by definition B endowed with its algebra structure.

Remark 1.2.1. As is well known B is in fact a bi-algebra and Spec(B) = G*, the
Cartier dual of G.

Since U(G) is a finite locally free Og-algebra we obtain a smooth group scheme U (G)*
whose points with values in the S-scheme T are by definition the invertible elements in
the ring T'(T, U(Gr)) = T(T, B ®0, Or). Also we have a natural monomorphism
G — U(G)* which is defined by viewing a T-valued point of G as a homomorphism
of Or -algebras B ®py O — Or and hence as an element of I'(7T, B ®og Or). The
fact that such a homomorphism when viewed as an element of I'(7, U(Gr)) is invertible
follows from the commutativity of the following diagram

G(T) x G(T) — T(T, B®o, Or) x (T, B&o, Or)

Speca A

G(T) : I(T, B®os Or)

The above diagram is commutative because both the left and right vertical arrow come
from A. For every f € G(T) there exists ¢ € G(T) such that fg = 1. Since (i X
i)(f.g) = i(f).i(g) = i(fg) = i(1), it is enough to prove that i(1) = 1. 1 € G(T) is
equivalent to € : B ®pg Or — Or which is equivalent to (¢ : Op — B ®os Or) =1 €
I'(T, B®og Or). This shows i(1) = 1. Also it shows us that the morphism G < U(G)*
is a homomorphism of group schemes.

Now we will prove that U(G)* is affine over S. To prove this at first we will prove
that the contravariant functor U(G) sending an S-scheme T to the ring T'(T, B®¢ Or)
is representable. Since B is a finite and locally free Og-algebra, we can assume B =
@D, 0sX; and B = @}, OsY;. Then B ®o, Or = @I, OrY; and U(G)(T) =
(T, BRos Or) = @I, T(T, Or)Y;. We want U(G)(T) = Homg_ge(T, U(G)). Take
U(G) = Spec Og[X1, Xo, ..., Xy] = A%.
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1 Cotangent complex and relation between strict finite group schemes and shtukas

Then Homg_g., (T, SpecOg[X1, Xo, ..., Xy])

= Homgy__,1o(Os[X1, Xa, ... Xp], (T, Op))

= Homg,__0q4(EP OsXi, T(T, Or))

=1

i=1

The last equality comes from the map f € Homos—mod(@?:l OsX;, (T, Or)) sending
to Z J(X3)-Y;. Hence we can take U(G) = Spec(Os[X1, Xo, ..., Xy]) = Spec(Symp  B).
i=1

Hence U(G) is affine over S.

Now we will prove U(G)* — U(G) x U(G) is a closed immersion. It will follow
from the following fiber product diagram

U(G)* =8 Xy (U(G) x U(G)) — U(G) x U(G)

J JMult

g unit section U(G)

Since U(G) is affine, hence separated, the unit section is a closed immersion. Hence
the upper horizontal row U(G)* — U(G) x U(G) is a closed immersion. Therefore
U(G)* is affine over S. Since the unit section is a regular immersion the immersion

U(G)* — U(G) x U(G) is also regular.
Lemma 1.2.2. The natural monomorphism G — U(G)* is a closed immersion.

Proof. @ is finite over S so proper and U(G)* is affine over S(from above) so separated.
Therefore G — U(G)* is proper. We know that every proper monomorphism is a closed
immersion. O

Lemma 1.2.3. The morphism G — U(G)* is a regular immersion.

Proof. Since G is flat over S, so G is locally a complete intersection by [S.G.A.3, III
4.15]. Hence by [S.G.A., 6 VII 1.2, 1.4], we see G — U(G)* is a regular immersion. []

Let J be the ideal defining G in U(G)*; then the definition of [S.G.A., 6] for L{%/®)

which we adopt is:
Definition 1.2.4. The relative cotangent complex, ¢ S), is the complex of Og-
modules J/J2 — QU(G’)X/S‘G'
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1.3 Comparison between cotangent complexes

Since both terms in this complex are locally free we have Leg(L.(G/ S)) = e’(‘;(L.(G/ S)).
Let w# : G — S be the structural morphism. We have the following proposition from
Messing [14].

Proposition 1.2.5. Messing [14, Chap 2, Prop 3.2.9]

W*@E(L.(G/S)) =, L9, (isomorphism as a complex)

Lemma 1.2.6. The formation of LS9 commutes with an arbitrary base change S" —

S.

Proof. Messing [14, Chap 2, Lemma 3.2.11]. O

Recall the construction of U(G) being functorial in G it follows that if u: G — H
is a homomorphism of finite locally-free groups we have a commutative diagram:

G —— U(G)*

|

H<— UH)*

and hence deduce that there is a morphism w* LSy [(CG/9) corresponding to u.

Definition 1.2.7. The co-Lie complex, ¢ is by definition eE(L.(G/ S)). From the above
we see that G — (€ is a contravariant functor.

1.3 Comparison between cotangent complexes

In this section we compare the different cotangent complexes for a finite and locally free
group scheme G over S i.e. G = Spec B, S = Spec A and B is a finite A-algebra. At first
we will compare the cotangent complexes in the sense of Messing [14] and Lichtenbaum,
Schlessinger [13] and prove that both are homotopically equivalent.

For a finite A-algebra B, which is a quotient of polynomial ring over A in n variables
by an ideal generated by elements of a regular sequence of length n i.e. B = A[X]/I,
where A[X] = A[X1,...,X,], and I = (f1,..., fn) an ideal generated by a regular se-
quence. We have computed in section (1.1) that the cotangent complex in the sense of

Lichtenbaum, Schlessinger of B over A is
L(&): 0—0-—1/1>— Qp/y@r B —0. (1.2)

Here R = A[X].
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1 Cotangent complex and relation between strict finite group schemes and shtukas

In section (1.2) we have defined the cotangent complex in the sense of Messing for
a finite locally free group scheme G over S is

L850 = J)J? = QuayxslG — 0 (1.3)

where J is the ideal defining G in U(G)*. We have seen that the immersion G —
U(G)* is closed and also regular. Also we have proved that U(G)* — U(G) x U(G) is
a closed immersion which is regular. From [S.G.A., 6 Chap VII Prop 1.7] we know that
a composition of regular immersions is regular so we have G — U(G) x U(G) is a closed
regular immersion. Since U(G) is affine over S so U(G) x U(G).

To compare both complexes let us assume that U(G) x U(G) = Spec(R), U(G)* =

Spec(R), let I be the ideal defining G in U(G) x U(G) and let K be the ideal defining
U(G)* in U(G) x U(G). Now we have two closed immersions :

G L UG L UG xUG),
so we have an exact sequence of R-modules
0—-K—>I1I—J—0;
after tensoring by R/K = R, we have exact sequence :
K/K? 5 1®rR—JRrR—0;
by tensoring by B = R/I = R/.J, we obtain an exact sequence :
i*(K/K?*) - T1®@rB—J®sB—0;

Since i and j are regular immersions, from [S.G.A., 6 Chap VII Prop 1.7] we know that
the following sequence

0—i*(K/K* - 1®@rB = J®sB —0;
is exact and is equal to
0
0—i*(K/K* = I/I* 2% J/J* = 0.

We have denoted the third map by .
Since the map R — R is surjective and the kernel of this map is an ideal generated
by a regular sequence we have an exact sequence of - modules

0— K/K? = Qp/y @r R — Qp ), — 0.

Since in the above exact sequence all the terms are locally free, after tensoring with B
we get an exact sequence

0
0 — i*(K/K?) —>Q}Q/A ®r B ’6—>Q}§/A®RB—>0.
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1.3 Comparison between cotangent complexes

We have denoted the third map by 3°.

Our aim was to prove that the cotangent complex in the sense of Lichtenbaum, Sch-
lessinger and Messing are homotopically equivalent i.e. the following two complexes are
homotopically equivalent

0— I/T? — Qp/y @r B =0
0= J/J? = Qp ®r B =0

are homotopically equivalent
To prove this we have to find maps f°, f!, ¢°, ¢!

0 s I/ 12 Q}Q/A@)RB%O

e Ay

0—>J/J2—>Q}§/A®RB*>O

such that fg — id and gf — id are null homotopic.
This means there are homotopies hi, hj

0 I/1? Q}%/A(X)RB*N)

flglidJ / Jfogoid
1

0 y [/ 12 » Q4 ®r B——0

OHJ/JQHQ}?/A@)RB*)O

glfl—idJ / Jgofo— id
1

OHJ/JQHQ}—%/A@)RB*)O

satisfying

' —id = dim

flot —id = hd;

gofo— id = JJLI

glfl— id = 7116?1.
We can take for g¥ = 8, since Y : Q}%/A@)RB — Q}—%/A(X)RB is surjective and Q}Q/A®RB
is locally free, we can take fO as section of this map. Similarly for ¢! we take oV, since
aV . I/I? — J/J? is surjective and J/.J? is locally free, then we take f! as section
of the map a, so we have g f0 = id and g f! = id. Our need was ¢°f° — id =
dihy, g'f' — id = hyd;, so we can take h; = 0 and that will satisfy the last two
conditions.
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1 Cotangent complex and relation between strict finite group schemes and shtukas

For the first two conditions let us see the following diagram

0 0
h1
I |
i*(K/K?) i*(K/K?)
0 >I/I2 Q}{/A(X)RB — 0
fﬂ g' fﬁ q°

0 J/J2 Q}?/A(X)RB—)O

0 0

Our aim is to find a homotopy h; in the above diagram such that f0¢" — id = dih
and flg! — id = hidy. Since fY is a section of the map ¢°, so f9¢° — id : Q}Q/A QR
B — ker(¢®) = i*(K/K?). Similarly flg* — id : I/I? — i*(K/K?). Take hy =
i 5/ 1c2) o(f%° — id). This hy satisfies the first two conditions. This follows from
following commutative diagram

(K K?) =—=i*(K/K?)
flgl _ ld] - Tfo 0 _ id
d

I/IP——=Qp,, ®f B.

From the above diagram we have,

frgt —id = md
and dlhl = d1 e} idi*(K/K2) O(fogo — id)
= f9%"— id.

Hence we are done.

1.4 Cotangent complex in the sense of Abrashkin

Notations and Conventions. In the next two sections p is a fixed prime number, O
is a unitary commutative F, -algebra and A is a commutaive unitary O-algebra.

In this section we will define the cotangent complex in the sense of Abrashkin [1].
For that we review the first section of Abrashkin’s paper [1]. We start with deformations
of augmented A-algebras.
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1.4 Cotangent complex in the sense of Abrashkin

Deformations of augmented A-algebras

For an augmented A-algebra B, we use the following notations: e : B — A, the
morphism of augmentation, and Kereg = Ip, the augmentaion ideal. If A[X] =
A[Xq,...,X,], n > 0, is a polynomial ring we always assume that its augmentation
ideal is I 4;%) = (X1, ..., Xpp) i.e. this is the ideal defining the zero section of Spec(A[X]).

The objects of the category DAug, are the triples B = (B, B’,ig) where B is a
finite augmented A-algebra, B’ is an augmented A-algebra and ig : B® — B is an
epimorphic map of augmented algebras such that locally on A there is a polynomial ring
A[X] = [X1,...,X,], n > 0, and an epimorphism of augmented A-algebras j : A[X] — B’
satisfying the following properties:

e the ideal I := Ker(ig o j) is generated by elements of a regular sequence of length n
in A[X];

o Kerj=1-1yx)

From above locally on A, B = A[X7q, ..., X;,]/I with I generated by a regular sequence
and B® = A[Xy,..,X,|/I-1 ajx]- The above definition makes sense for any pointed
A-scheme but we only use it for flat relative complete intersections.

A morphism f = (f, f’): B = C = (C,C",i¢) in DAugy, is given by morphism of
augmented A-algebras f: B — C and f° : B> — C” such that foig = f° oic.

In the category DAug,, A = (A, A, idy4) is an initial object and any B = (B, B’ iB)
has a natural augmentation to A, eg = (ep,ep) : B — A.

Now we will use the simpler notation (B,Bb) instead of (B, B’,ip) if it does not
lead to any confusion.
Lemma 1.4.1. If (B, B") € DAug,, then B’ is a finite A-algebra.
Proof. We have an exact sequence

0= I/1-Iyx) =B —B—0

and if we can prove I /(I - I x)) is locally free A-module that will give us B’ is a finite
A-algebra. From the lemma, (1.1.3) we know that [ is a finitely presented A[X]-module
and have an exact sequence

AxEG) S Ax)e L1 — 0,

After tensoring ®4xjA (Here we see A as A[X]-module through the map A[X] —

A[X]/(X1,..,X,,) = A) in the above exact sequence we get an exact sequence
A2G) L 48 I T, A — 0.

Since the map i ® 1 = 0, this implies A9™ ~ [ Qax) A = I/1- I %) This gives us

I/I-1,% is finitely presented moreover free A-module of finite rank = B is a finite
A-algebra. O
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1 Cotangent complex and relation between strict finite group schemes and shtukas

Abrashkin introduces the two A-modules t; = IA[X]/IZ[X] and Np = I/(I - I4x))-
They do not depend on the choice of the epimorphisms j : A[X] — B’. Indeed, the first
coincides with I,/ I?Bb and the second with Kerig. Note also that both A-modules are
locally free. This is obvious for the first module and for the second we have given a proof
above.

We will denote t}; and Np by t§, and Ng respectively if G = Spec(B).
The cotangent complex in the sense of Abrashkin is defined as the complex
B/A
P = I/ Iapzy) = Lapsy/ a5
— Nt} (1.4)

as concentrated in degrees -1 and 0 and we show that £8/% is the fiber at the origin of
the cotangent complex of B/A that we have defined earlier. In the above complex the
map is the differential map.

As earlier we have seen that the cotangent complex in the sense of Lichtenbaum,
Schlessinger for a finite A-algebra B is the complex of B-modules

0—1I/I” = Qpa ®r B —0

where R = A[X] = A[X1,...,X,], and [ is the kernel of the surjective map of A-
algebras R — B generated by elements of a regular sequence. Our aim is to prove
here that the cotangent complex in the sense of Abrashkin is the fiber at the origin
of the cotangent complex in the sense of Lichtenbaum, Schlessinger i.e. we have to
prove that the cotangent complex in the sense of Abrashkin is pull back(change of rings)
of the cotangent complex in the sense of Lichtenbaum, Schlessinger that through the
augmentation map eg : B — A. Now

ep(I/1?) =1/I? @urx,,..xa1 A= T/ LLyx).

We get this isomorphism of A-modules by sending a basis f; ® 1 to f; and we get the
inverse by sending f; to f; ® 1. It is easy to check both map are well defined and inverse
of each other. And

€5(Qpa Or B) = (Qp/a Or B) @apx,,...x,/1 A = O BAX; @ax,,.. x,1 A
The above isomorphism comes from the surjective map of A -algebras A[X1,..., X,,] > A

and then we take the conormal sequence. Since the maps in both complexes are the
differential maps so compatible hence we are done.

Lemma 1.4.2. If B = (B, B") and C = (C,C") are objects in DAug, and f : B —
C is a morphism of augmented A-algebras then the set of all f° such that (f, fb) €
HomDAugA (B,C) is not empty.
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1.4 Cotangent complex in the sense of Abrashkin

Proof. Since B = (B, B’) € DAug 4 so there exists a polynomial ring A[X] and maps
AX] 5 B 5 B

with the ideal I := Ker(ig o jg) is generated by elements of a regular sequence of length
n in A[X] and Ker jg = I - Iz ie. B= A[X]/I and B’ = A[X]/(I - I4%7)- Similarly
for C = (C, C") there exists polynomial ring A[Y] and maps ic, jc. Let 75 : A — B and
me : A — C be the structure morphisms of B and C' respectively.

To prove the set {fb : B — C” which lift the given f: B — C'} is non empty at first
we will prove

A[X] B g BLp

‘ |

Fl L g Jf
v + p

AlY| Lot 250

there exist F' such that it makes the above diagram commutative. Given f, F|, =
idg = Fomg = me. Choose g; € A[Y] with i¢c o je(g;) = foigo jp(X;). Set
F(X;) := g; implies there exist F : A[X] — A[Y] with ic o jco F = f oigo jg.
This implies e¢ o i¢ o jC(gi) = €goiRo ]B(Xz) =0 = g¢g; = F(XZ) S IA[Y] implies
F(11x)) € Loy

If + € I then (ic o je)F(x) = f(ig o jg(x)) = 0 implies F(I) C J = F(I -
Taix)) € J - Lyy)- This implies there exists f°: B> — C”. Hence the set {f’: B> —
C” which lift the given f : B — C} is not empty. O

From the above lemma the set {f’” : B” — C” which lift the given f : B — C}
is non empty and it has a natural structure of a principal homogeneous space under
homotopies h : t; — N¢ through the map

(h, f2)(X3) = f(X3) + h(X;) for all i.

It is easy to check that the above maps are well defined. Thus the deformations B’ is
unique up to homotopy equivalence, which in turn is unique up to unique homotopy.
Thus £2/4 is independent of B’ up to homotopy equivalence.

Let DAug’ be the following quotient category of DAug,: it has the same objects but
its morphisms are equivalence classes of morphisms from Homp, Aug, (B,C) arising from
the same A-algebra morphisms f : B — C. Then the above description of morphisms in
the category DAug, implies that the forgetful functor (B, B’) — B is an equivalence of
DAug’, and the category of augmented finite A-algebras. In this equivalence of categories
full faithfulness comes from the definition of the functor and for a given B, there exist
B’ because B is a finite A-algebra, that is of the form B = A[X1, ..., X,,]/I with ideal I
generated by a regular sequence so we can construct B’ from here.
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1 Cotangent complex and relation between strict finite group schemes and shtukas

1.5 Strict finite O-module schemes

In this section we will define strict finite O-module schemes. We will start with deforma-
tions of affine group schemes, then we explain what an O-module structure is on these
deformations, and when this module structure is strict. We follow Abrashkin [1].

Deformation of affine group schemes

Let DSchy4 be the dual category for DAugy. Its objects appear in the form H = Spec B =
(H, H",iy) where H = Spec B and H’ = Spec B” are finite flat pointed A-schemes, B =
(B, Bb,i[,’) € DAugy, and iy : H — H is the closed embedding of pointed A-schemes
induced by ig. We agree to use the simpler notation (H, H”) if there is no confusion.
The category DSchy has direct products: if for i = 1,2, B; = (B, Bi-’,igi) with B; =
A[Xl]/fl, sz = A[XZ}/(IZ . I()Z') (Where Io; = IA[X'i])v then the product Spec B1 x Spec Bs
is given by Spec(B1®B3), where B1 @By := (B1®4 Ba, (B ®AB2)b, k), (B1 (X)ABg)b is the
quotient of A[X;®1, 1®Xs] by the product of ideals I1 ®1+1®1I5 and In; ®1+1® I and
k is the natural projection. Note that for i = 1, 2, the projections pr; : Spec(B; ® By) —
Spec B; come from the natural embeddings of A[X;] into A[X; ® 1, 1® Xa].

Let DGry4 be the category of group objects in DSch 4. If G = Spec B € DGr 4, then
its group structure is given via the comultiplication A = (A, A?) : B — B® B, the counit
€= (e,€") : B— A and the coinversion i = (i,i’) : B — B morphisms, which satisfy the
usual axioms. The morphisms in DGr4 are morphisms of group objects. Clearly, DGr 4
is an additive category.

Note that:

(a) G = Spec B is a finite flat group scheme over A with the comultiplication A, the
counit € and the coinversion 7;

(b) € = €g, where &g is the natural augmentation.in the category DAugy;

(c) the counit axiom fori =1, 2, j =1, 2, that prioA?- = id gy gives us the uniqueness
of A as a lifting of A. This is proved as follows.

Since G is flat group scheme, denote G’ = Spec(B?). The comultiplication map
B — B ®4 B lifts to an B” — (B ®4 B)’, or equivalently (G' x G)° — G”. We will
show that the axiom for ¢ = 1, 2, that pr; o AP =id p» gives us the uniqueness of the lift.
Here pr; : B®4 B — B, sends by ® ba — €(b3—;) - b;. This is implied by the following
observation. Suppose that Abl and Ag are two lifts of A

B— B

AﬁHAg J(A

(B® B —— B®B

where B = R/I, B” = R/I - Iy with R = A[X], Iy = I 45}, so we have here B® B =

(ROR)/(1@I+I1®1)and (B®BY = (R®R)/(10 i+ ®1)(1®I+1®1). Since
A and A} are lifts of A this implies for r € R, (A} —A})(r) = 1®u+v® 1 for some
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1.5 Strict finite O-module schemes

u,v € I. The counit axiom for ¢ = 1, 2, j = 1, 2, that is pr; OA?- =idg, gives us u =0
and v = 0 in B” and this gives the uniqueness of the lifting of A;

(d) if B= (B, B’,ig) € DAug, and G = Spec B is a finite flat group scheme over A,
then there is a unique structure of a group object on Spec BB, which is compatible with

that of G}

BP——— B

NEE

(B®B)Y) ——B®B

We take some arbitrary A’ (exists from lemma (1.4.2). Our aim is to find A” such that
for i =1,2 pr;oA’ = idg,. If we write B = A[X]/I, we know

A (X,) — A’(X,) = h(X,) for all v

for some h : IA[)_(]/Ii[X] = 1% — Npep = (I®1+1®I)/(I®1+1®I)(IA[X]®1+1®IA[X]).
As we required
pr; oAb(XU) = X, for all v,

i.e.
pr;oh(X,) = X, — pr; OAb(Xu)-

So we take
h(X,) = (X, —pry oA’(X,) @14 1® (X, — pryoA’(X,)).

It is well defined in Nggp because, if ¢ € B® then a — pr; oAb(a) =0in B ie a—
pr; oA (a) € T/1 - Loz
(e) if f : G — H is a morphism of group schemes and (f, f°) € HomDSChA(Q,’H),

then (f, fb) € Hompg:, (G, H).
To check this property we have to check that the following diagram

(GxG)Y —— (HxH)

Ang/ JAHb

b
Gb f H’

is commutative, where upper horizontal map (G x G)* — (H x H)" is (f* x fb)|(GXG)b

which we also denote by f” x f” i.e. we have to check
L (P x [)(GxG))C (HxH).

2. Ao (fP x f2) = fP o Ay on (G x G).
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1 Cotangent complex and relation between strict finite group schemes and shtukas

Equivalently if we write G = Spec B, H = SpecC, the following diagram

is commutative i.e. we have to check
1. there exists a map (f” x fb)|(C®C)b (C®C) = (B B).

2. Agso f = (f*x ) o Ags.

To check first if we write B = A[X]/I, C = A[Y]/J, we have to check (f* x f*)((J ®
1+1@J)Us @1 +1@Iyp1) C U1 +1@I)(Ly5 @1+ 1®14%)). We have seen
in lemma. (1.4.2) that f*(.J) € I, f*(Iyy)) C Lz, and this implies that (f” x f°)((J @
1+10 ) (I ®1+1® Iyy) C (I @1+ 1@ 1)(Iyz) @ 1+ 1@ I y5)) holds.

To check second let F = Ags o f> — (f> x f°) 0 Ags. Since F : C” — (B ® B)® is map
which is after composing with the map (B ® B)” — B ® B is zero. Hence F is a map
from C” — Ker((B ® B)” — B ® B) i.e. if we write B = A[X]/I, F is a map from

"= (I1+10N)/I@1+1® 1)y @1+ 10 1x)

Now we see that prp, ; oF = pr; o(AgofP—(f*xf)oAp) = idgs of*— fPopr; oA =
f’—foidg =0fori=12and prg; = id®eg and prgs , = g @ id. It will give
us im ' = 0 so F' is zero map hence we are done.

The above properties have the following interpretation. Define the quotient cate-
gory DGr’ as the category consisting of the objects of the category DGrg but where
Hompgy, (G,H) consists of equivalence classes of morphisms from the category DGr 4
which induce the same morphisms of group schemes G — H. Then the forgetful functor
G — G is an equivalence of categories.

The categories of strict O-modules

Suppose that G is an O-module object in the category DSch4. Then G is an object
of DGry and there is a map O — Endpg,,(G) satisfying the usual axioms from the
definition of O®-modules. For 0 € O and G = SpecB, denote by [3] = ([o], [0]”) the
morphism of action of 0 on B = (B, B’,ig). Clearly, G = Spec B is an O-module in
the category of finite flat schemes over A. For any such G, the O-module structure
on the deformation (G,G’) € DGry is given by liftings [0’ : B” — B’ of morphisms
[o] : B — B, o € O. Note that [0]” are morphisms of augmented algebras. All such
morphisms are automatically compatible with the group structure on this deformation,
i.e. for any o € O, one has A’ o [0]” = (0]’ ® [0]’) 0 A’. So the above system of liftings
[0]’, 0 € O, gives an O-module structure if and only if for any o1, 02 € O,
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1.5 Strict finite O-module schemes

01 + 02]” = ([01] ® [02])” 0 A, [0102]" = [02]’ 0 [01]’ (1.5)

where ([01] ® [02])” is induced by [01]” @ [02]".
Note that since O is of characteristic p every O-module scheme is p-torsion.

Let S = Spec(A) be a scheme over O. We denote by ¢ : O — I'(S, Og) the structure
morphism.
We denote by DGr(0)4 the category of above O-module objects which satisfy the
following definition of strictness.

Definition 1.5.1. Suppose G = SpecB. A strict O-action on G is a homomorphism
O — Endpg,,(G) such that the induced action on £BA i homotopic to the scalar
multiplication via p : O — A.

Since £2/4 is independent of B’ up to homotopy equivalence. Hence the above def-
inition of strictness is independent of deformations B°. Therefore we will change the
notation for above category and denote by Gr(O) 4 which will represent the category of
strict O-module schemes over S and have the following definition

Definition 1.5.2. A strict O-module scheme over S is a finite S-group scheme G to-
gether with a homomorphism O — Endg(G) which lifts to a homomorphism O —
Endpg;, (G) such that the induced action on E.B/ 4is homotopic to the scalar multipli-
cation via p: O — A.

Mainly Gr(O)4 is the quotient category of DGr(Q)4 where the morphisms are the
equivalence classes of morphisms (G, G?) — (H, H’) in the category DGr(©)4 which
induce the same morphism G — H.

Now we will compare this definition with Abrashkin’s definition of strictness which is
false for the case Fy, ¢ # p and for that we will give a counter example. Abrashkin’s
definition says that the action of O on G = Spec B € DGry4 is strict if any o € O acts on
ti and NNp via the scalar multiplication.

Let us consider a group G = )2 and take O = F > = F,[\] with A € F2 N\ F,. We can
give two different presentation of G' as Spec B and Spec B where B = A[X], X,]/ (XP —
X2, X2 — X)) and B = A[Y]/(Y?" —Y). In both presentation G is F,-module through
the action \*[X;] = AXy, A*[X2] = A’ X2 and A*[Y] = AY. In the case G = Spec B =
Spec A[X1, Xo]/(X7— X2, X¥ — X7) we can take R = A[X1, Xo], [ = (X7 — X9, X¥— X1)
and IR = (Xl,XQ). We have Bb = A[Xl,XQ]/(Xf — XQ,Xg - Xl)(Xl,Xg), t% =
(Xl,XQ)/(Xl,XQ)Q = AX1 D AX2 and NB = (AXV%7 - XQ,Xg - Xl)/(Xf - X2,Xg -
X1)(X1, X2). Now we have

ﬁ?/A = N —tg
= (X;f —X27Xg —X1)/<X{) —XQ,Xg —Xl)(Xl,XQ) — AX1 EBAXQ.
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1 Cotangent complex and relation between strict finite group schemes and shtukas

Since in the above complex the maps are differential maps, it sends X7 — Xo — — X5
and X5 — X7 — —X;. It is easy to check the action of A on above complex is not equal
to the scalar action but only homotopic to it. But in the second presentation the action
of A on cotangent complex is equal to the scalar action. So the Abrashkin’ definition of
strictness depends on presentation.

Remark 1.5.3. If G = Spec(B) is a smooth group scheme over S = Spec(A), then we
have an exact sequence of B-modules

I/1? = Qp iy ©r B = Q45 = 0

where R is an A-algebra such that R — B is surjective map of an A-algebra and [
is the kernel of the map. Since G is smooth group scheme so SZIG /s locally free. This

implies that second map has a section so the cotangent complex £8/5 is homotopically
equivalent to the complex
1
0—=0—0Q;,5—0.

For the definition of QlG/S see definition (2.1.4).

Remark 1.5.4. If GG is a finite smooth group scheme over S and an O-module scheme
then G is a strict O-module because Qé /s = (0) and 85 i homotopically equivalent
to 0.

For example, if ¢ = p™ with n € N and A is an [Fy-algebra and o € Fy. It is easy to
check that oy = Spec A[X]/(X9) is an Fy-module scheme, a € [, acts via a[X] = aX.
Now we will show that this module structure is strict. The cotangent complex in the
sense of Abrashkin of «y is

0—+X%-A— A.-dX — 0,

if we write B = A[X]/(X?). It is easy to see that the action of o € F, on the above
cotangent complex is scalar multiple by a on the cotangent complex.

If we take for example o, = Spec A[X]/(XP) and p # ¢. It is an F,-module scheme,
a € Fy acts via o[ X] = aX. Since [a](XP) = o?XP # aXP, if o € F; and p # ¢, then
the Fg-action on the cotangent complex is not a scalar multiple and since differential
maps are zero maps so Fg-action on the cotangent complex is not homotopic to a scalar
multiple. Hence through this module structure o, = Spec A[X]/(XP) is not a strict
F,-module.

The constant etale group scheme F, = SpecF,[X]/(X? — X) is a F;-module scheme,
a € Fy acts via o[X| = aX and through this module structure it is strict.

The constant multiplicative group g, = Spec(Fp[X]/(X? —1)), A(X) = X®X, e(X)
= lis a Fp-module scheme, a € F), acts via a[X] = X but through this module structure
is not strict, because the Fp-action does not lift to /‘;'

Example 1.5.5. If S is a scheme over SpecF,, the additive group scheme G, g is an [Fy-
module scheme over S. Likewise every S-group scheme which locally on S is isomorphic
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1.6 Relation between finite shtukas and strict finite flat commutative group schemes

to Gg‘ g for some integer d > 0 is an Fy-module scheme. Such a scheme is called an Fy-
vector group scheme of dimension d over S. For every a € F, the endomorphism Lie*a
on its co-Lie module equals the multiplication with a viewed as an element of I'(S, Og).

We will finish this section with some preliminary on commutative group scheme and
a remark which we will need later on.

For a commutative group scheme G over a scheme S we define its co-Lie module wg as
the Og-module of invariant differentials. It is canonically isomorphic to e*QlG /s where

e : S — G is the zero section i.e. wg/g = Og ®o Qé/s- Each element a € O induces

an endomorphism of wg which we denote by Lie*a. We have Lie G = Homp(wg, Os)
as Og-module.

Remark 1.5.6. If GG is locally of finite presentation over S then wg = 0 if and only if
G is étale over S. Indeed, since QIG g is a finitely generated Og-module, wg = 0 implies
by Nakayama that G is étale along the zero section. Being a group scheme it is étale
everywhere.

1.6 Relation between finite shtukas and strict finite flat
commutative group schemes

In this section we fix p a prime number and ¢ is a power of p. Let S = Spec(A) be a
scheme over SpecF,. We denote by o, : S — S its Frobenius endomorphism which acts
as the identity on points and as the ¢g-power map on the structure sheaf. In this section
we explain that Drinfeld established a relation between finite shtukas over S and finite
strict F;-module schemes over S.

Definition 1.6.1. A finite F,-shtuka over S is a pair (M, Fys) consisting of a locally free
Og-module M on S of finite rank and an Og-module homomorphism Fyy : oy M — M.
A morphism [ : (M, Fyr) — (M, Fyypr) of finite shtukas is an Og-module homomorphism
f: M — M’ which makes the following diagram commutative

*

oiM — s gx M

JVF]W J(FA/[/
f

M————M.
Here oy M = M R0g.0% Og. A finite shtuka over S is called étale if Fi; is an isomorphism.

The above objects were studied at various places in the literature. They were called
“(finite) ¢-sheaves” by Drinfeld [6], Taguchi and Wan [17, 18] and “Dieudonné F-
modules” by Laumon [12].

We denote by Mod(F,) 4 the category of F,-shtukas over S.
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1 Cotangent complex and relation between strict finite group schemes and shtukas

For now suppose that A is an Fp-algebra and study the category Gr(Fp)a of strict
finite Fp-modules G over A. At first we will give a complete description of the category
Gr(Fp)4 and we apply it to describe the category Gr(Fy)4.

Suppose that G is a finite flat commutative group scheme over A. Consider G®) =
G X(Spec A,0,) SPec A, where A is considered as an A-module via the map o, : A — A

such that for any a € A, o;(a) = aP. Then G?) has a natural structure of a finite flat
commutative group scheme over A. Here A(G) is a commutative A-algebra such that
G = Spec A(G).

Let Fi : G — G be the relative Frobenius morphism of G over Spec A. It is given
by morphism of A-algebras F, : A(GP) = A(G) ®(4,0,) A = A(G) such that for all
a€ A(G) and a € A, Fi(a®a) = aPa.

Let Vi : G® — G be the p-Verschiebung morphism of group schemes. Recall from
[G.A., Chap IV §3, 4] that it is given by the morphism of A-algebras V¢ : A(G) —
A(G(p)), which can be described as follows. We can proceed locally on Spec A and,
therefore, can assume that A(G) is a free A-module with a basis ay, .....,a,. Denote by
TSP(A(G)) C A(G)®P the symmetric tensors of order p and s : A(G)*P — TSP(A(Q))
the symmetrisation operator defined by

From the first lemma in [G.A., Chap IV §3, 4.1] we have a canonical bijection map
A(GP)) — TSP(A(G))/s(A(G)®P), sending o @ a — oPa, a € A(G), a € A, here o
denotes the canonical image of a®...Q@ « € TSP(A(G)) in TSP(A(G))/s(A(G)®P). That
is we have a closed imbedding G®) — (GP)% = SPG. The comultiplication map

AP = Ao(A® id)o---o(A® id®P72): A(G) = A(G)®P

defines the multiplication map GP — (. Since it is invariant under SP, it factorizes
through SPG. Since we have an embedding G(P) < (GP)% = SPG therefore we have
induced a map G® --5 G, which is

GP SPQG > G(P)

mklz//

G

the required Verschiebung morphism of G. The way we have defined here the Ver-
schiebung morphism of G, it is clear that it is the dual of Frobenius morphism. The
above definition imply easily that Fg o Vg = pidge and Vg o Fg = p idg. For more
details see [G.A., Chap IV §3, 4].

Now we will explain the antiequivalence M of the category of finite flat commutative
group schemes G over A with zero Verschiebung and the category Mod(Fy) 4 of F,-shtuka
[G.A., Chap 1V §3, 6]. Here M (G) = (M(G), Fura)), where

M(G) := Hom(G, G,) ={a € AG) | Ala) =a®1+1®a}
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1.6 Relation between finite shtukas and strict finite flat commutative group schemes

is free A-module of finite rank and F(g) is induced by the Frobenius F.
The inverse functor Dr, can be described as follows. If M = (M, Fjr) € Mod(Fp) 4
and my,...,my, is an A-basis for M then for 1 <i <mn,

Fy(m;i®1) = Z 74515

1<j<n

Then Dr,(M) = Spec A(G), where A(G) = A[X}, ..., X,,]/1 with the ideal I generated
by the polynomials
XP— " X, 1<i<n, (1.6)
1<j<n

with the group structure given via the comultiplication A such that A(X;) = X; ® 1 +
1 ® X; and the counit e such that e(X;) =0 for 1 <7 <n.

We have a following theorem from Abrashkin [1] which gives us the description of the
category Gr(Fp)a.

Theorem 1.6.2. [1, Thm 1] We have G € Gr(F,)a if and only if Vg = 0.

Now assume that A is an Fg-algebra, where ¢ = p™N and N € N, and now we will
study the category Gr(IFy) 4 of strict finite Fy-modules G over A as a full subcategory of
Gr(Fp)a.

For any A-moules M set oM = M & Al) A, where the A-module structure on the
second component of this tensor product is given via the gth power map oy : A — A.
If f:+ M — N is morphism of A-modules, then we use the notation o f = f O(A,07) A
oM — o, N.

Consider the category Mod(F,)4 consisting of locally free of finite rank A-modules
M with an A-linear morphism Fy : ogM — M. If N is another object, then
Homyoq(r,), (M, N) consists of A-linear morphism f : M — N such that Fy o f =
U;f o FM

Define the functor M, : DGr(F;)a — Mod(Fy)a by setting for any G = (G,G") €
DGr(Fy)a, M, (G) = (M(G), Fyr) with

M(G)={ac AG) | A(a) =a®1+1®a, [¢f(a) = aa, Ya € F4},

where Fyy @ oy M(G) — M(G) is induced by the gth power map on A(G). If H €
DGr(Fg)a, M,(H) = (M(H),F,) and (f, f°) : G — H is a morphism in the category
DGr(F,) 4, then f(M(H)) € M(G) and M,(f) = flarr

Now we construct the inverse functor Dry : Mod(F,) 4 — Gr(F,)4 in a similar way as
we have done earlier.

If (M, F,) € Mod(F,) 4, then Dry(M, F,) = Spec B with B = (A(G), A(G)’,ip), de-
fined by:

e A(G) = Symy M/I where the ideal I is generated by {m? — Fy(m ® 1)| m € M},
the comultiplication A is such that A(m) =m ® 1+ 1 ® m and the Fg-action such that
[a](m) = am for all m € M and « € F;
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1 Cotangent complex and relation between strict finite group schemes and shtukas

o A(G)" = Symy(M)/(I - Iy) where the angmentation ideal Iy is generated by all
m € M, the comultiplication A’ is such that A’(m) =m ®1+1® m and the F4-action
such that [a]b is given by the correspondence and m — am for all m € M and o € Fg;

e iz is the natural projection from A(G)" to A(G).

Clearly, G = Spec B € DGr(F,) 4 and the correspondence Dr, : (M, Fyr) — G can be
naturally extended to the functor Dr, : Mod(Fg4) 4 — DGr(F;) 4. This functor is additive
and faithful.

We have the following theorem from Abrashkin [1] which gives us the description of
DGr(Fy) a.

Theorem 1.6.3. [1, Thm 2] The above defined functor M, : DGr(F,)4 — Mod(F,)
induces an antiequivalence of the categories Gr(Fq)a and Mod(Fy)a.

Note that any G € DGr(IF;) 4 can be identified in the category Gr(F,)4 with some
Dr,(My, Fy), where (M, F,;) € Mod(Fy) a.

Theorem 1.6.4. (Drinfeld [6,2.1], Taguchi [17,1.7])

1. The two contravariant functors Dry and M, are mutually quasi-inverse anti-
equivalences between the category of finite Fq-shtukas over S and the category of
finite strict Fg-module schemes over S.

2. Both functors are Fq-linear and map short exact sequences to short exact sequences.
They preserve étale objects.

Let (M, F) be a finite Fy-shtuka over S. Then

3. the Fy-module scheme Dry(M, F') is radicial if and only if F' is nilpotent locally on
S.

4. the scheme Dry(M, F) is finite and locally free and the order of the S-group scheme
Dry(M, F) is q"<M.

5. the Og-modules wpy, (ar,r) and coker F' are canonically isomorphic.

Proof. Assertion 1 follows from the theorem (1.6.3). In this theorem both G and M (G)
are étale if and only if the matrix 7" of Frobenius morphism Fys(q) : 0, M(G) — M(G), €
GL,(Og). Hence the second statement of 2 follows. Alternatively this is also a conse-
quence of the fact that G is étale if and only if F'robg is an isomorphism. The [Fy-linearity
is clear from the definitions. So let 0 -+ G’ — G — G” — 0 be a short exact sequence of
finite strict F,-module schemes. Then the exactness of 0 — M(G") — M(G) — M(G') is
obvious and the surjectivity of the last morphism also follows from the theorem (1.6.3).
Conversely let 0 — M(G") - M(G) — M(G') — 0 be a short exact sequence of
finite shtukas. Then obviously G’ — G is a closed immersion and the exactness of
0= G = G — G" — 0 follows from the identification

M(G/G)) = ker(M(G) — M(G')) = M(G").
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1.7 Comparison between cotangent complex and Frobenius map of finite F;-shtukas

If M ~ O% and T = (t;5) is the matrix of the morphism F': 6gM — M with respect to
the basis X;, 1 <1i <n, then Dry(M, F) is the subscheme of GZ’S, given by the system
of equations

n
=1

It is easily seen that the quotient of Og[X7, ..., X},] by the ideal generated by the polyno-
mials of (1.7) is free Og-module with a basis X7 --- X"», 0 < m; < q. Hence assertion
4 follows.

In the case where S is the spectrum of a field, 3 follows from the fact that G is
connected if and only if F'robg is nilpotent. The general case is a direct consequence of
this special case.

Finally assertion5 follows from the fact that both Og-modules are isomorphic to

P osXi/(X1,....Xn)- T
=1

from above description of Dry (M, F).

1.7 Comparison between cotangent complex and Frobenius
map of finite F -shtukas

In this section we will follow the same notation as in section (1.3) i.e. G = Spec B, S =
Spec A, R = A[Xq,....,X,,] and S is a scheme over F,.

Let G be a finite flat commutative group scheme which is a strict F;-module scheme
over S. Let M(G) be the finite Fy-shtuka associated to it and Fi () : oy M (G) — M(G)
be its Frobenius map which is given by the matrix 7" = (¢;;) with respect to the basis
X;, 1 <i<mn. From equivalence in section (1.6) we know that if

then G = Spec(Symp, M(G)/I), where the ideal I is generated by the polynomials
fi=X1—(X1,...,X;)Te;, 1 <i < n. Since the A-algebra B is given by n equations above
in R = A[X1,..., X;,] and, therefore it is a relative complete intersection so G — Ghs s
a regular immersion. The cotangent complex of G over S is

01/ - Qp,y @r B — 0. (1.8)

Where the middle arrow is the differential map i.e. the map sending f; to df; =
—(dXy,..,dX,) - Te;. Since the immersion G — Gy s is regular so I/I? is locally free
and it is equal to @B f;. Also Q}{/A ®r B = ®BdX;.
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1 Cotangent complex and relation between strict finite group schemes and shtukas

Since we have the Frobenius map Fiy(q) : 0gM(G) — M(G) which is A-linear and
which sends o X; to (X1,.., X;)Te;. After tensoring with ® 4B we get a B-linear map
ocM(G) ®a B — M(G) ®4 B which we view as a complex

0= o0gM(G)®a B — M(G)®4 B — 0. (1.9)

Now we can see that both complexes (1.8) and (1.9) are isomorphic via the following

map,

0 y [/ 12 Q}%/A ®@r B——0 (1.10)

| |

0——0cM(G) @4 B——M(G)®4 B——0

if we send f; to —ogX; in first vertical row and dX; to X; in the second vertical arrow.
Note that all four elements in both complexes are locally free of same rank.
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Chapter 2

Local shtukas and divisible local
Anderson-modules

2.1 Formal Lie groups

Let S be a scheme, and X and Y with Y — X two sheaves on S for the fppf topology.
Following Messing [14] we make the following definition.

Definition 2.1.1. Inf§(X) is the subsheaf of X whose sections over an S-scheme
T are given as follows: T'(T, Inf% (X)) = {t € I'(T, X)| there is a covering {T; —
T} and for each T} a closed subscheme T}’ defined by an ideal whose (k 4+ 1)** power is
(0) with the property that t7,, € I'(T], X) is actually an element of I'(T}, Y)}.

We call Inf%(X) the Kt infinitesimal neighborhood of Y in X.

If X and Y are schemes, we compare it to the . infinitesimal neighborhood of Y
in X in the sense of [E.G.A., IV §16] when i : Y < X is an immersion and then prove
that both are the same. Since ¥ — X is an immersion, we can assume that Y is a
closed subscheme of X defined be a quasi-coherent I C Ox or to say Oy is identified
with sheaf of quotient rings Ox /1. Then we can provide on Oy the [-adic filtration.

In the sense of [E.G.A.] the Oy-augmented sheaf Ox /I**! is called the k-th normal
invariant of 4; the ringed space (Y, Ox /I*t1) is called the &M infinitesimal neighborhood
of Y in X, and denoted by Y*). The graded sheaf of rings associated to the filtered
sheaf of rings Ox

gr,(i) — @kzolk/lk—l-l

is called the graded sheaf of rings associated to i. The sheaf gr,(i) = I/I? is called the
conormal sheaf of i and we denote the sheaf i*(I/I?) by w;. It is clear that the sheaf
grg(i) is a sheaf of graded algebras on the sheaf of rings Oy = gry(i) and gr,(i) are
Oy-modules.

Our aim was to prove that the sheaves Y (¥) and Inf%.(X) are the same wheni : Y < X
is an immersion. We certainly have a monomorphism Y*) — Inf¥(X). To show that
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2 Local shtukas and divisible local Anderson-modules

this is an isomorphism we must show that for any affine scheme T over S the map
(T, Y®)) — T(T, Inf¥ (X)) is surjective. Thus we are reduce to showing that if
T = Spec(A), T' = Spec(A’) with A — A’ faithfully flat, J C A’ is an ideal with
JF+1 = (0), and ¢ : T — X is such that the composite map Spec(A4’/J) < T' — T — X
factors through Y, then ¢ factors through Y®). Let ¢ denote the morphism A — A’
corresponding to 7" — T. Then the hypothesis tells us that I.A C ¢»~1(.J). But A — A’
being faithfully flat implies that it is injective, and hence 1»~1(.J) has its (k + 1)St power
equal to (0). But this certainly implies that ¢ : T'— X factors through y(®),

It is easy to verify that formation of infinitesimal neighborhoods is compatible under
base change i.e.

Infy (Xg) = (Inf}(X))s.

Let X be a sheaf on S and ex : S — X be a section. If it is understood that X is
given together with a section, then we will write Inf¥(X) rather than Inf%(X).

Definition 2.1.2. A pointed sheaf (X, ex) as above is ind-infinitesimal if

X = lim Inf*(X).
r

Remark 2.1.3. It follows immediately from the definition that Inf*(X) =
Inf*(Inf**¢(X)) for any i > 0.

Definition 2.1.4. Let X — S be a morphism of schemes; and for i take the diagonal
morphism dy,5 : X — X xg X. The quasi-coherent Ox-module w; is then denoted by
Qﬁ( /8 and called the module of differntials of X over S.

If we,, denotes the conormal sheaf of the immersion ex : S < X, we have we, =

ej((Q&/S) ([G.A., I §4,2.2]). From now we will denote we, by wx. In some text it has

been denoted by Lie*(X/S).

The following definition and its explanation is taken from Messing [14].

Definition 2.1.5. [14, Definition 1.1.4] A pointed sheaf (X, ex) on S is said to be a
formal Lie variety if the following conditions are satisfied:

1. X is ind-infinitesimal and Inf*(X) is representable for all k > 0.

2. wx = 6}(QIlnfl(X)/S) = e}(QIlnfk(X)/S) is locally free of finite type.

3. Denoting by gr'™(X) the unique graded Og-algebra, such that gri®(X) =
gr;(Inf*(X)) holds for all i > 0, we have an isomorphism Sym(wx )=
gr'™(X) induced by the canonical mapping wx — gri*f(X)
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We proceed to translate this definition into more down to earth terms. First Condition
1 and Remark (2.1.3) tell us that for each & Inf¥(X) is an affine S-scheme and both S
and Inf¥(X) have the same underlying topological space. Inf¥(X) is given by a quasi-
coherent Og-algebra a; which is augmented:

00— I —a—>05—0

and furthermore I} = (0). We are also told that aj.1/] 15111 = a, which makes obvious
how we define the algebra gr'™(X). Condition 2 and 3 imply that locally on S we have

ag (: Os[Tl, ceeny TN}/(Tl, ....,TN)k+1,

these isomorphisms being compatible [4, Chap.III, §2, #8 Cor.3]. Hence locally on S,
X is given by a power series ring Ogl[T1, ..., Tn]] in the sense that for an S-scheme
S, T(S, X) = Nil(Og) X ...... x Nil(Og/) where Nil(Og) denotes the locally nilpotent
section of Og/. These correspond exactly to the continuous homomorphisms

Os[[Th. .. Tyl — (S, Og))
when the latter is given the discrete topology.

Definition 2.1.6. A formal Lie group over S, (eg, G) is a group in the category of
formal Lie varieties.

2.2 Local shtukas

Let ¢ be an indeterminant over Fy and let F,[(] be the ring of formal power series in ¢ over
Fy. Let Mlqu 1] be the category of F, [¢]-schemes on which ( is locally nilpotent. For S
in Mlqu 1] We let Os[z] be the sheaf on S of formal power series in the indeterminant
z. That is I'(U,Og[z]) = I'(U, Og)[z] for open U C S with the obvious restriction
maps. This is a sheaf of Og-algebras on S since the global sections of a direct product of
sheaves equal the direct product of their global sections. Moreover the topological space
S endowed with the sheaf of rings Og[z] is a locally ringed space. This follows easily
from the fact that z is contained in the Jacobson radical of I'(U, Og[z]) for any U.

Lemma 2.2.1. Let R be an Fy[[(]-algebra in which ¢ is nilpotent. Then the sequence of
R[z]-modules

0 R[~] R[~] R 0

I——2—(, 2——¢C

is exact. In particular R]z] C R[[z]][zic].

Proof. 1f 3, b;z* lies in the kernel of the first map then b; = (bj11 = ("b;yp for all n.
Since ( is nilpotent all b; are zero. Also due to the nilpotency of ¢ the second map is well

defined and surjective. For exactnes in the middle note that Y, b;(z* — ¢*) is a multiple
of z — (. O
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2 Local shtukas and divisible local Anderson-modules

For S € Nilpg, ) let Os [[z]][ﬁ] be the sheaf associated to the presheaf

U +— D(U,0s[2])[72¢] -

Note that this presheaf is already a sheaf if S is quasi-compact. We denote by o* the
endomorphism of Og[z] that acts as the identity on z and as b — b? on the elements
b € Og. For a sheaf M of Og[z]-modules on S we let 0*M := M ®¢[.1,0+ Oslz] and

M’[zig] =M ®04]2] (’)g[[z]][zic] be the tensor product sheaves.

Definition 2.2.2. A local shtuka of rank(or height) r over S is a pair (M, Fj) consisting
of

e a sheaf M of Og[z]-modules on S, which, Zariski-locally on S, is a free Og[z]-module
of rank r, and

e an isomorphism Fy : O*JVI[Z—iC] — ML)

A morphism of local shtukas f : (M, Fy;) — (M, Fyp) over S is a morphism of the
underlying sheaves f : M — M’ which satisfies Fy;r o 0* f = f o Fyy.

Note that if (M, Fys) is a local shtuka, then (M, (z — ()™ - Fyy) is also local shtuka
for every n € Z.

Lemma 2.2.3. Let (M, Fu) be a local shtuka over S. Then locally on S there are
e,d,N' € Z s.t. (z— Q%M C Fy(o*M) C (z — ¢)~¢M and zN'M C Fy(o*M).
For any such e the quotient (z — () M /Fy(0*M) is a locally free Og-module of finite
rank.

Proof. Locally on S, we can assume that 0*M and M are free Og[z]-module of rank r for

some r. Let X;, 1 < i <r be the basis of 6*M over Og|z]. Since Fy : U*M[zic} —

M2 C] is an isomorphism implies

Fu(Xa) =mi/(z =), 1<i<r

for some m; € M and e; € Z. Take e = max{e;}, then Fy;(c*M) C (z — ()" °M. Let
Y;, 1 < i < r be the basis of M over Og[z]. Since Fjy : U*M[ﬁ] — M[ﬁ] is an
isomorphism implies Y; is of the form Fy;(m!/(z — ¢)%) for some m, € 0*M and d; € Z
ie. (2 Q)%Y; = Fy(m)). Take d = max{d;}, then (z — ()M C Fy(c*M). Since
locally on S, ( is nilpotent, take N’ be the smallest integer which is power of p and
greater than N and d, then zV'M C Fy(o* M).

From now the map Fs we mean Fiy|g«pr. Now we prove that Fpy : 0*M — (2—() ™M
is injective. The injectivity of Fj; is equivalent to the injectivity of (z — ¢)¢Fy;. Now
(z — ()¢F)y is injective by the lemma (2.2.1) and the following diagram.

oc*M—— Os[[z]][ﬁ] R[] M
(#=Q)*Fat | ox J’E

M——— Os[2][zZ] @051 M
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2.2 Local shtukas

In the above diagram the horizontal rows are injective because o* M and M are flat over
Os[7] and the right vertical arrow is an isomorphism because (M, Fy) is local shtuka.

Now to prove (z — ()"°M/Fp(c*M) = coker Fy is locally free over S, we will
prove first it is of finite presentation and flat over S. Since zN'M C Fry(o*M) ie.
2NV coker F, Vv = 0 implies

coker Fiy = coker(Fyy mod 2V : o*M/zN'o*M — M)z M)

i.e. coker Fys is of finite presentation over S.
Locally on S, we can assume that S is affine, say S = SpecR. Let m C R be a
maximal ideal and Kk = R/m. Now we consider the exact sequence

R

0 — Tor ¥ (k[[2]], coker Fyr) = o M/mo* M — (z — ¢)*M/m(z — ()°M

— coker F)s ®R[[zﬂ K[[ZH — 0.

As M is locally free of rank 7 we have o* M /mo*M = k[[2]]%" = (2 — ()* M /m(z — {)* M.
Now coker Fiyy ®pjjz) #[[2]] is torsion because coker Fyy is killed by 2N'. So the map
oc*M/mo*M — (z — ()*M/m(z — {)*M is injective by the elementary divisor theorem.
It gives us TOI“?[[Z]](K,[[Z”, coker Fyr) = Torf[z] (k[z], coker Fyr) = Torf(k, coker Fjr) = 0.
Hence from Nakayama lemma coker Fj; is flat over S. Hence (z — ) *M/Fy(0*M) is

locally free over Og of finite rank. 0

Definition 2.2.4. A local shtuka (M, Fyy) over S is called effective if Fyy is actually a
morphism Fyy : 0*M — M. Let (M, Fys) be effective. We say that

1. (M, Fyr) has dimension d if coker Fy is locally free of rank d as an Og-module.
2. (M, Fyp) is étale if Fpy : 0*M —= M is an isomorphism.

3. Fir is topologically nilpotent if im F; C zM locally on S for all large enough
integers n.

We define the tensor product of two local shtukas (M, Fys) and (N, Fiy) over X as
the local shtuka

(M ®@oypq N, Fa @ Fy).

The local shtuka (Ox|[z], F = id) is a unit object for the tensor product. Also there is a
natural definition of internal Hom’s. In particular the dual (M R Wrv ) of alocal shtuka
(M, Fyr) over X is defined as the sheaf M~ = Homo, ;] (M, Ox|[z]) together with

Fyv = (o Fy): 0" M [ == M'[].

Example 2.2.5. Every effective local shtuka (M, F') over S yields for every n € N a
finite shtuka (M /2" M, F mod z”) and (M, F) equals the projective limit of these finite
shtukas.
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2 Local shtukas and divisible local Anderson-modules

2.3 Divisible local Anderson-modules

Let z be an indeterminant over F, and suppose that S is a scheme over SpecF,[z]. We
denote the image of z in Og by (. If G is a group on S which is also an Fy[z]-module.
We denote ker z™ by G(n).

For the next lemma suppose that G = G(n).

Lemma 2.3.1. The following conditions are equivalent
(i) G is a flat Fy[z]/ 2™ -module
(ii) Ker(z"~%) =1Im(2%) fori=0,...,n.

Proof. : First we show that (i) implies (ii). From (i) it follows that gr®(F,[z]/2") ®r,
gr’(G) = gr*(G) (the associated graded group being taken with respect to the filtration
defined by powers of z). Because of this we know that z* induces an isomorphism from
G/zG to 2'G/zF1G for i < n — 1. This gives us Ker(z"™1) C Im(2) i.e. Ker(z"™1) =
Im(z) so we have the result for i = 1. Now Ker(z" %) C Ker(z" 1) C Im(z) which
implies that Ker(z"™?) = z Ker(z" 1) = 2 - 271G = 2’G (by induction on 7).

To prove that (i) == (i), we observe by taking i = 1 that Im(z) = Ker(z"™)
and hence that z"~! induces an isomorphism G/2G—2""1G. Since this map factors
through the epimorphisms G/2G — 2G/2°G — --- — 2" 1G we see that each of these
maps is an isomorphism.Thus we have

gr®(Fylz]/2") @, &r°(G) = er*(G). (2.1)

For simlicity we will write A = Fy[2]/2", I = (z). Note that here the ideal I = (z) is
nilpotent. Since A/I =T, so G/IG is flat over A/I. Equivalence of condition (i) and
(iv) of Theorem 1 in [4, chap III, §5.2] implies that G is a flat F,[2]/2™-module because
we have 2.1 and G/IG is flat over A/I. O

Definition 2.3.2. Let d € Nyg. A truncated z-divisible local Anderson-module of level
n and order of nilpotence d is an S-group such that:

1. If n > 2d it is a finite F,[z]/z"-module scheme G which is strict as Fg-module with

(z — ¢)? homotopic to 0 on LG5 and satisfies the equivalent condition of Lemma
(2.3.1).

2. If n < 2d it is of the form Ker(z" : G — G) for some truncated z-divisible local

Anderson module G of level 2d with (z — ¢)¢ homotopic to 0 on e,

Definition 2.3.3. A z-divisible local Anderson module over S is a sheaf of F,[z]-
modules G on the big fppf-site of S such that for each integer n > 1:

1. G is of z-torsion i.e. G = limG(n),
—_

n

2. G is z-divisible i.e. z: G — @G is an epimorphism,
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2.3 Divisible local Anderson-modules

3. The F;-modules G(n) are representable by finite locally free group schemes over S
and are strict.

4. Locally on S there exist a constant d € Z>g, such that (z — ()¢ = 0 on wg where
wG = l(iian(n) cf.2.3.4.

n

Definition 2.3.4. Let GG be a z-divisible local Anderson-module over S. We define the
co-Lie module of G as
we = limwgp).

“—
n

We will see latter (Thm 2.4.3 or Thm 2.5.19) that w¢ is a finite locally free Og-module
and we define the dimension of G as rkwg .

A z-divisible local Anderson module is called étale if wg = 0. Since wg — wg(n), this
is the case if and only if all G(n) are étale. It is strict (here we strict mean F,[z]-strict)
if and only if z acts via scalar multiplication by ¢ on wg.

Next we want to give an example for divisible local Anderson-modules.

Example 2.3.5. Let C' be a smooth projective geometrically irreducible curve over
SpecF, and let 0o € C' be a closed point. Put A :=T'(C'~{oc},O¢). Let ¢ : S — Spec A
be a morphism of Fg-schemes. A Drinfeld-Anderson A-module of dimension d and rank
r over S is an A-module scheme F over S whose underlying F,-module scheme is a vector
group scheme of dimension d such that the following conditions hold:
a) (Lie*a — c*a)? = 0 on wg for every a € A,
b) the Zariski sheaf Homr, s(F,G,,s) of Fy-linear homomorphisms on S, equipped
with the action of A by composition on the right is a locally free A ®p, Og-module
of finite rank 7.
In case d = 1 this is also called a Drinfeld module over S.
Let z € A. For every Drinfeld-Anderson A-module over S we can associate a z-divisible
local Anderson-module as
G :=lim E[2"],
"
where E[2"] = Ker(2" : E — E).
Its height equals the rank of the module E. If moreover S € Nz'lpIFq [¢] the dimension
of G equals the dimension of E; c¢f.2.3.4

Remark 2.3.6 (on axiom 4). Note the following difference to the theory of p-divisible
groups. On a (finite) group scheme multiplication by p always induces multiplication
with the scalar p on its co-Lie module. In the case of (finite) F,[z]-module schemes,
axiom 4 is the appropriate substitute for this fact, taking into account Example 2.3.5.
It allows that z — ¢ is nilpotent on wg(y)-

Notation 2.3.7. Let G be a z-divisible local Anderson module. We denote by i,, the
inclusion map G(m) — G(m + 1) and by iy, : G(m) — G(m + n) the composite of the
inclusions 4y, 45—10...0%,. We denote by j,, the unique homomorphism G(m +n) —
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2 Local shtukas and divisible local Anderson-modules

G(n) which is induced by multiplication with 2™ on G(m + n) such that i, m 0 jmn =
2™ idG(m4n)- Note here that jn, p is surjective because z : G — G is an epimorphism.

Remark 2.3.8. Let G be a z-divisible local Anderson module.
1. G(n) =G(n+1)(n).

2. For any i such that 0 <4 <n, 2"* induces an epimorphism G(n) — G(i). So we
have exact sequences:

0 — G(n — i) 224 G(n) 2224 Gl — 0.

Hence G(n) satisfies the equivalent condition of lemma (2.3.1).

3. From the theory of finite group schemes over a field that the rank of the fiber of
G(1) at a point s € S is of the form ¢"(*) where h is a locally constant function on
S. Tt also follows from remark 2) that the rank of the fiber of G(n) at s is ¢™()
[G.A., Chap IV 83, 5], we say h is the height of the z-divisible local Anderson

module.

4. Assume we have a system of groups G(n) with G(n) finite, locally free and strict
F, such that
a) G(n) = G(n+1)(n)
b) The rank of the fiber of G(n) at s is ¢"*(*) where h is a locally constant function
on S
¢) Locally on S there exist a constant d € Z>q, such that (z —¢)? = 0 on wg where
we = limwe ().

n

We consider the exact sequence

0= Gln—i) = Gn) 2 Gi).
By looking at each fiber and using the multiplicativity of the ranks G(n)s — G(i)s

znfz

is faithfully flat. Therefore since G(n) is flat over S, it follows that G(n) —— G(i)
is faithfully flat and hence an epimorphism. Thus we see that G = limG(n) is
‘)

n

divisble local Anderson module.

Note that also we have to bound the order of nilpotency due to the following example
which we do not want to consider a divisible local Anderson-module.

Example 2.3.9. Let S be the spectrum of a field L in which ( is zero, and let G(n) be
the subgroup of G = Spec L[z1,...,x,| defined by the ideal (z{,...,2%). Make G(n)
into an F,[z]-module scheme by letting z act through

z(x1) = 0 and 2(xy) = xp—1 forl<v<n.
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2.4 The Local Equivalence

Define i, : G(n) — G(n + 1) as the inclusion of the closed subgroup scheme defined by
the ideal (zp41).

Then the inductive system (G(n), i,) satisfies axioms 1 to 3. But it does not satisfy 4.
Therefore we can not drop the condition (c¢) in Remark 2.3.8/4.

2.4 The Local Equivalence

The category of z-divisible local Anderson-modules over S and the category of local

shtukas over S are both Fg[z]-linear. Our next aim is to extend Drinfeld’s construction

and the equivalence from Section 1.6 to an equivalence between the category of effective

local shtukas over S and the category of z-divisible local Anderson-modules over S.
For every effective local shtuka (M, F') over S we set

Dry(M.F) := hi)n Dry(M/2"M, F mod 2" M)

n

and for every z-divisible local Anderson-module G' = hi>n G(n) over S we set

n

M(G) = (M(G), Fapa)) = @(M(G(n))aFM(G(n)))-

Multiplication with z on G gives M(G) the structure of an Og[z]-module.

Lemma 2.4.1. Let G = lii>nG(n) be a z-divisible local Anderson-module of height r over

n

S then M(G) is locally on S a free Og[z]|-module of rank r.

Proof. Let G = hi)nG(n) be a z-divisible local Anderson-module over S. So we have an

n

exact sequence
0= G(n) ™ Gn+1) 25 Gln+1).

Then we get an exact sequences of Og[z]-modules

M(in)

M(Gn+1)) 25 M(Gn+1)) M(G(n)) — 0.

We deduce from [4, Prop 3.2.11/14] that M (G) is a finitely generated Og[z]-module and
the canonical map M (G) — M(G(n)) identifies M (G(n)) with M (G)/z"M(G).
We claim that multiplication with z on M (G) is injective. So let l(in(fn)n € M(G),

fn € M(G(n)) with z - f,, = 0 in M(G(n)) for all n. To prove the claim consider the
factorization

z-idpgmer)) = M@in) o M(in1): M(G(n+1)) — M(G(n+1))

obtained from Notation (2.3.7). Since M (ji,) is injective, fn, = M (in1)(fnt1) is zero
as desired.
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2 Local shtukas and divisible local Anderson-modules

Locally on S the Og-module M(G(1)) is free. By Theorem 1.6.4 its rank is r. Let
mi,...,my be representatives in M(G) of an Og-basis of M(G(1)) and consider the
presentation

0 — kera — GB Os[z] mi = M(G) - 0.
i=1

Note that « is surjective by Nakayama’s Lemma since z is contained in the radical of
Os[z]. Now the snake lemma implies that multiplication with z is surjective on ker cv.
But this can only be if ker o is zero. Therefore M (G) is locally on S a free Og[z]-module
of rank 7. O

Recall the definition ¢¢ = 6*0(L.(G/ S)) and in writing the cotangent complex L% so
that QIIJ(G)X/S|G is in degree 0 and I/I? is in degree -1, we define wg = Ho(¢9), ng =
H_;(¢%). Note that the use of the symbol wg is of course consistent with our previous
notation. If G be a finite flat commutative group scheme which is a strict Fg-module
scheme over S and M = (M(G), Fi(q)) be the finite Fg-shtuka associated to it then
ng = Ker Fi(q) and wg = coker Fiyy(q)-

Lemma 2.4.2. Let S € Nilpg, ) and G = hi>nG(n) be a z-divisible local Anderson-

module of dimension d over S. Then
(a) for all n >> 0, in induces an isomorphism weg(n)——Wa(n+1)-
(b) ngm) satisfies the Mittag-Leffler condition.
(¢c) M(G) is an effective local shtuka over S.

Proof. Let Fargmy) : 0*(M(G(n))) — M(G(n)) is induced by the Frobenius Fgy,- For
the convenience we denote M(G(n)) by M, and Fy;gm)) by Fn. Since i, : G(n) —
G(n 4+ 1) induces a surjective map mod z" : M, 11 — M, and we have a commutative
diagram

0 ——im Fpy1 —— My 41 —— coker Fj, g —— 0

Jmod 2 Jmod 2" Jmod 2"

0——imF, > M, coker F,, —— 0.

The surjectivity of the map mod 2" : M,,+1 — M, induces surjectivity on coker Fj, 1 —
coker F,,. Let N be the order of nilpotency of ¢ and N’ be the smallest integer which
is power of p and greater than N and d. Since (z — ()¢ = 0 on wg implies 2V = 0
on wg implies 2N = 0 on wa(n) for all n. Therefore 2N =0 on wa(n) = coker Fy, for
all n. It implies if n >> N’, the map mod 2" : coker Fj,;1 — coker F,, is injective.
Hence coker Fj, 11 =2 coker F,, if n >> 0 i.e. for all n >> 0, 4, induces an isomorphism
WG (n) WG (n+1)-

To prove (b) at first we fix n. From above lemma we have an exact sequence for all k

0—>MkL>Mn+kM>Mn—>O.
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2.4 The Local Equivalence

Now for all k, we have commutative diagrams

’ "

F
n+k. . n+k
0—kerFrpp — 0" My —imFyp —0  0—imF,p — M, — coker Fi p, — 0

Lex dmod =» Lk Ty, smod =» |
Oeran—Hf"]V[nTianHO O—)ianFTMWn—)cokean%O.

n

In the above commutative diagrams we have splitted F), : o*M,, — M, in two maps

FII

n

Fo
oc*M, = im F,, = M,,

i.e. F, = F)oF) and €, v are induced maps. In first commutative diagram, from
snake lemma we have the following exact sequence

o* My — Ker~y, — coker e — 0.

We will denote the first map by a; and the second by d;. If n > N’, where N’ is as in
(a), then we know from (a) that right vertical map in second commutative diagram is
an isomorphism and in this case from snake lemma we have

Ker vy, = M.

We will denote this isomorphim by Sg. From above exact sequence and isomorphism we
have following exact sequence

8uBi
o My, 2% M 2P coker e, — 0.
Since we have follwing commutative diagram from above commutative diagrams

o My 2%

F, +k
0* My —— My,

~

and z"|M is injective, so we have Brap = Fj, hence coker F = cokereg. Since for all
k

k > N', coker F1 = cokere;. Hence for all k > N’, coker ey = cokereg. Since we
have exact sequences
0 — imeg — Ker F,, — cokereg — 0

and
0 — imegy1 — Ker F,, — cokeregrq — 0.

Hence for all k& > N', n > N’ ime; = imeqy. Hence nggpy = Ker F, satisfies ML-

condition.

To prove (c) we define Fyyq) : 0*(M(G)) — M(G) by taking the limit of Faygpn))
c*(M(G(n))) — M(G(n)). The maps F,, : o*M, — M, gives us two short exact
sequences of projective systems
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2 Local shtukas and divisible local Anderson-modules

0—kerF, = 0" (M(G(n))) - imF, — 0

and
0 — im F,, - M(G(n)) — coker F,, — 0.

For first short exact sequence of projective systems after taking the projective limit we
have an exact sequence

0 — limker F;, —» 0*(M(G)) — limim F;,, — 0
— —

n n

because ker F;, = ng(y) satisfies the Mittag-Leffler condition. Since the projective system
{M,} satisfies the Mittag-Leffler condition locally on S so does {c*M,,} so does {im F, }.
Hence after taking the projective limit of second short exact sequence of projective
systems we have an exact sequence

0 — limim F;,, - M(G) — lim coker F,, — 0.
— —

n n

After combining both exact sequences we have an exact sequence

0 — limker F,, —» o*(M(G)) - M(G) — lim coker F,, — 0
— —

n n

It gives us that coker Fyyg) = limcoker I5,. Now wg = limwg(,) = lim coker 5. So
i i i3
condition (4) of definition (2.3.3) implies that (z —¢)¢ annihilates lim coker F},. This will
«—

n

prove that the map

1 1
z—C z—=C
is surjective and in this map both modules are locally free over Og [[z]][zic] of the same
rank so the above map is an isomorphism by Nakayama’s Lemma. Hence M(G) is a
local shtuka. O

0" (M(G)) @ogz Oslzll—=] — M(G) ®o,pz Oslz]l-—]

Theorem 2.4.3. Let S € Nilpy,[¢]-

1. The two contravariant functors Dry and M are mutually quasi-inverse anti-
equivalences between the category of effective local shtukas over S and the category
of z-divisible local Anderson-modules over S. Both functors are Fy[z]-linear.

2. Both functors preserve étale objects and map short exact sequences to short exact
sequences.

Let (M, F) be an effective local shtuka over S. Then

3. the z-divisible local Anderson-module Dry(M, F') is a formal Lie group if and only
if F' is topologically nilpotent.
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4. the height and dimension of the z-divisible local Anderson-module Dry(M, F') equal
the rank and dimension of (M, F).

5. the Og[z]-modules W Dr, (M.F) and coker F' are canonically isomorphic.

Proof. Let (M, F) is effective local shtuka over S and G = Dry(M, F) :=
lim Drq (M /2" M, F mod z"M). For convenience of notation we denote M/2"M by M,
—_

and Dry(M/2"M) by G, . Since we have an exact sequence

Mok 2o Mk — My — 0

induced by multiplication by 2™ on M,y for all n,k € N. Then the functor Dr, induce
exact sequences of finite flat commutative group schemes

n
0= Gn = Gnyk — Gnik

for all n,k € N. This implies that G,, = ker(z" : G4 — Gpnix). Now we prove that
G, = G(n) which will prove G = hi>nG(n) Clearly G, C G(n). If x € G(n)(S) i.e.
T € linGm(S) and z"z = 0. Locally on S, we can assume that S is quasi compact, so

n

we can find m such that z € G, (5), 2"z =0 = z € GL(5).
Now from the above exact sequence

n
Myiie = My — M, — 0
we have induced injective map 2" : My — M, implies we have a surjective z" :

G+ — Gy implies z : G — G is epimorphism.

Since G(n) = Drq(M/2z"M, F mod z"M) is finite strict Fg-module scheme over S
by definiton of functor Dr,.

By lemma 2.2.3 we know that locally on S there exist d, N’ € N such that (z—¢)? =0
on coker Fy; and 2V " =0 on coker F V. Now

wg = {ianGn = l(ianoker(FMmod 2") = coker(Fyymod ZN/) = coker Iy

n n

implies (z — ¢ )d = 0 on wg. The last equality comes from applying snake lemma to
following diagram

0——0*M —— M —— coker Fy —— 0

7 7 7

0——0*M —— M —— coker Fy —— 0.
where vertical arrows are the maps multiplication by 2V '. Hence G = lim G,, is z-divisible
‘)

n

local Anderson-module.
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2 Local shtukas and divisible local Anderson-modules

If G is z-divisible local Anderson module, from lemma (2.4.1) and lemma ( 2.4.2),
M(G) is effective local shtuka. Both functors F,[z]-linear by definition of functor. It
proves 1).

From above when M is effective local shtuka we have prove that wg = coker Fyy
which proves that Dry sends étale objects to étale objects and in proof of (c) in the
lemma 2.4.2 we have prove that if G is z-divisible local Anderson module then coker F; =
wg which proves that functor M sends étale objects to étale objects.

Now we prove (2). Let 0 — M" — M — M’ — 0 be a short exact sequence of effective
local shtukas. The exactness of 0 — M"” — M — M’ — 0 implies that exacness of 0 —
M)} — M, — M/ — 0 which gives us exactness of 0 — G'(n) — G(n) — G"(n) — 0,
where G = qu(M, F]\/[), G' = qu(M/,F]V[/), G' = qu(Afl,F]\/[/), G" = DI'q(M”,F]u//).
Since direct limits in the category of modules is an exact functor implies 0 — G' — G —
G" — 0is exact. Let 0 - G” — G — G’ — 0 be a short exact sequence z-divisible
local Anderson module. The exactness of sequence 0 — G” — G — G’ — 0 follows
the exactness of 0 — G"(n) — G(n) — G'(n) — 0 implies the exactness 0 — M, —
M, — M]'! — 0, where M = M(G), M' = M(G"), M" = M(G"). Since {M]} satisfy
the Mittag-Leffler condition assures the exacness of 0 — M’ — M — M" — 0.

Now we prove 3). Let G = Dry(F, M). In proposition (2.5.23) we will see that G is
formal lie group if and only if for all n G(n) is radiciel and from theorem (1.6.4) G(n)
is radiciel if and only if Fi(,) is nilpotent locally on S. If z € G(S), locally on S we
can find m € N such that z € G(m)(S) implies G is formal lie group if and only if F is
nilpotent locally on S. The proof of 4) and 5) follows from the proof of lemmas (2.4.1)
and (2.4.2). 0

Lemma 2.4.4. Let M be a effective local shtuka with (z — () = 0 on coker Fy;. Then
AV : M — o* M with

FyoVy = (2—0%u,
VioFy = (2= 0)%on1

Proof. Since Fyy is injective and (z — ¢)¢ = 0 on coker Fyy, then the following diagram

Fr

0— 0" M M coker Fyy ———0
V -
(z—o{ s J(z—od lcz—c)d
K
00— "M ——— M coker Fyy ———0
M

implies that there exist Vi : M — o*M with

FyoV = (2=0%wm,
ViroFar = (2= Q)% o ur-
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2.4 The Local Equivalence

d

Corollary 2.4.5. Let G be a z-divisible local Anderson module over S with ( = 0 on
S such that (z — ¢)% = 0 on wg. Then Vg : G@ — G with

d
FooVg = 2%gw,
VG OFG = Zd‘G.

Proof. Since G is z-divisible local Anderson module over S, then M(G) = (M(G), Fara))
is effective local shtuka over S. Since (z — ()¢ = 0 on wg and wg = coker F. M(c)s S0 from
above lemma there exist Vi) : M(G) — o*M(G) with

Fue oViue = (2—0%0),
V@ o Fueey = (22— C)d\a*M(G)-

To have Vg = qu(VM( y) G — G we need that V() is a morphism Vi g) :
(M(G), Fare)) = (0*M(G), 0" Fpp(q)) i-e. the following diagram is

*Vara)

o M(G) 9 (552 M (@)

JFM(G) JU*FIM(G)

V
M(G) —2 s o M(G)

commutative i.e. VM( @ ° Fua) = " Fue) o oV e (2 — C)d\U*M(Q =0o*((z —
C)d\M(G)) = (z—¢9)? o+ n(c)s S0 we need ¢ = (9= (7 = ... =0. Hence we can define
V& because we have ( = 0 on S and in this case we have

d
FgoVe = 2%qw,
VaoFg = Zd‘G.

O]

Remark 2.4.6. Every z-divisible local Anderson-module G gives a truncated z-divisible
local Anderson module of level n as G(n) := Ker(z" : G — G).

Proof. 1f G is a z-divisible local Anderson-module then G(n) ofcourse satisfy the equiv-
alent condition of lemma (2.3.1). Let M (G) be the effective local shtuka associated to G
and M (G(n)) be the finite shtuka associated to G(n). Since locally on S there exist d € Z
such that (z — ()¢ = 0 on coker Fy; () implies there exist Vi) : M(G) — o*M(G)
with

55



2 Local shtukas and divisible local Anderson-modules

Fy@yoVme = (2-— Od‘M(G)-/

Vine ° Fuey = (2 O%ar(e)-

If n > 2d we can restrict Fyyq) and Vi) to o*M(G(n)) and M(G(n)) respectively.
This implies we have maps Fiyr(g(n)) and Vas(gm)) with

Fyiemy) © Ve = (2= O%Narcm)),
Vi) © Fumy = (2= O%orar(cn))-

Existence of V;(g(n)) With above condition implies that (z —¢ )¢ is homotopic to zero on

LE™/S gy < 2d, then there is nothing to prove.

d

Corollary 2.4.7. Let G be truncated z-divisible local Anderson module with order of
nilpotence d over S with ¢ =0 on S. Then IV : G@ — G with

d
FgoVe = 2%aw,
VaoFg = Zd‘G.

Proof. Let G be truncated z-divisible local Anderson module with order of nilpotence d
with ¢ =0 on S. Since 2% is homotopic to 0 on L¢3 implies there exists Vg : G — G
with

d
FgoVg = 2%,
VaoFg = Zd‘G.

2.5 Relation between divisble local Anderson modules and
formal Lie groups

In addition to the p-Verschiebung from chapter 1 section (1.6) we have proved that there

exist the z%Verschiebung for divisible local Anderson modules in the case of ¢ = 0 on S

i.e. there exist a map Vg : G¢ — G such that

d
FgoVo = 2%gw,
VG OFG = Zd‘G.
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2.5 Relation between divisble local Anderson modules and formal Lie groups

Notation. G[n] will denote the kernel of the nt* iterate of ¢-Frobenius homomor-
phism:

G ey g o9, @) gl

Definition 2.5.1. A sheaf of groups G on S is said to be of F-torsion if G = hi)nG[n]

n

Definition 2.5.2. A sheaf of groups G on S is said to be F-divisible if Fg : G — G@
is an epimorphism.

To prove the next theorem we are going to use the theorem from Messing [14, 2.1.7]
which explains equivalent conditions for a sheaf of groups G on S be a formal Lie group.
The equivalent condition in that theorem for a sheaf of groups GG on S to be a formal
Lie group are

1. G is of F-torsion.
2. G is F-divisible.
3. The G[n] are finite and locally free S-group schemes.

Lemma 2.5.3. When ( =0 on S and G is a z-divisible local Anderson module over S
with (z — ()% =0 on wg, then Gn] C G(nd).

Proof. When ¢ = 0 on S, we have V2 o F& = 2™, Hence G[n] C G(nd). O

Lemma 2.5.4. If G is finite and locally free then f : G — H is an epimorphism if and
only if it is faithfully flat.

Proof. Messing [14, Lemma 1.5 b] O
Theorem 2.5.5. When ¢ =0 on S and G is a z-divisible local Anderson module over
S, then hi>n G[n] is a formal Lie group and is equal to G : = li‘r)nInfk(G).

Proof. From the above it suffices to show that lim G[n] is of F-torsion, F-divisible and
—
that the G[n] are finite and locally free. By definition it is obvious that lim G[n] is of
—

F-torsion. Since by hypothesis z¢ : G@ — G(@ is surjective and since in our case we
have a factorization of this morphism Fg o Vg = 24

G G
G

it follows that Fg : G — G@ is surjective. Since Fgl(G[n](q)) C G[n + 1] it is clear
that F'(lim Gn]9) C limGln + 1] = limG[n] and hence that Fg : lim G[n] —
— — — —

n n n n
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2 Local shtukas and divisible local Anderson-modules

lii>nG )@ = (hi>n G[n])@ is an epimorphism. Thus it remains to prove that the G[n]

are finite and locally free. Since we have the exact sequences

0 = G[i] — G[n] 25 Gn — @) =0,

from descent theory we are reduced to showing that G[1] is finite and locally free. Since
we have G[1] C G(d) and thus G[1] = G(d)[1] it is certainly representable because it is
a closed subscheme of G(d). Now let us see the commuting diagram

G(d) e G(d)*
\ ) /

Since go F¢ is finite and of finite presentation and ¢ is affine so separated this implies F
is finite and of finite presentation and hence it is the same for the morphism G[1] — S.
Thus to show G[1] is finite and locally free it remains to show that it is flat over S. Since
FG o VG = Zd and

G(d)@ M G(d) Ffa, G(d)@

2% =0 on G(d)\9, the image of Vi(ay is contained in G[1], and we must have |Zad(E))
- G(d)(Q) for the same reason. But just like Fz, Vi is also an epimorphism, and hence
the morphism G(d)(9 — G[1] induced by Vg is an epimorphism. Thus we have an exact
sequence:

y
0 — ker Vgg) — G(d)@ 22 G[1] — 0.

Passing to the fibers we see that for all s € S, Vi), is faithully flat and hence as

G(d)\9 is flat over S, it follows that Vg(g) : G(d)@ — G[1] is faithfully flat [E.G.A.,
IV 11.3.11]. This of course implies that G[1] is flat over S and hence we have shown
that hi>nG[n] is a formal Lie group. To prove the last statement of the theorem we

observe that X = lim G[n] is ind-infinitesimal since this was part of the definition of a
formal Lie group. As we want to prove X = lim Inf*(@), it will be enough to prove that
—
k

li_n)llnfk(G) C X i.e. for every k there should exist some n such that Inf*(G) C G[n].
k

For that we will prove for any n > 0 we have Inf?" ~1(G) C G[n]. To see this we observe

that for any S-scheme T, Fg : (T, G) — I'(T, G@) is simply the mapping sending ¢

to ¢ o Fp which comes from the following commutative diagram

Fr
—

N~
™

Fgs
—
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2.5 Relation between divisble local Anderson modules and formal Lie groups

by applying the contravariant functor G to this above diagram. To take ¢ € Infqn_l(G)
(T') means there exist a covering {T; — T'} and for each T; there is a closed immersion
J : T! < T; of order ¢, such that we have ¢ o J = 0. If J: T/ — T; is a closed
immersion by an ideal I with 19" = 0, then there exist J' : T; — T} with J o J' = FZ.

T; T;
AN
N
N
JoN /
N C
T!
This implies F2(¢) = ¢po Fpp = poJoJ =0 or ¢ € Gln]. Thus we have X = X =
lii>n1nfk (X) C lii>nlnfk(G) C X which completes the proof. O
k k

Now we will prove that when ( is locally nilpotent on S i.e. S € Nilpg, ) and G
is a z-divisible local Anderson module over S, G : = lii>nlnfk(G) is a formal Lie group.
In order to do this we use the relative contangent complex LE™/S that we studied in
chapter 1. Also we use the following proposition from Messing [14, Prop 3.1.1] which
explains us equivalent conditions for a sheaf of group G on S to be smooth along the

section eg : G — S. Note that no hypothesis on S is necessary.

Proposition 2.5.6. [14, Prop 3.1.1] Let (G, eq) be a pointed scheme, locally of finite
presentation on S; i.e. eq is a section of the structural morphism m: G — S. Then the
following two conditions are equivalent:

1. Locally (for the Zariski topology) on S, Inf*(Q) is isomorphic to a pointed scheme
of the form Spec(Og[Ty, ..., Tp] /(T1. ... Tp)* ™) e, wg = eg(QlG/S) is locally free
of finite type, and Sym®(wg)=gr'(G, eq) fori < k.

2. For any affine scheme X over S, an S-infinitesimal neighborhood X' of Xy of
order k, a sub-scheme X of X' containing Xy and any S-morphism f : X — G
such that f|x, factors through eq : S — G, there is a prolongation of f to an
X —=aG.

Xt x Ly xt
Ve
f Ve
L., Lo
S——dCd
We say that GG is smooth along the section e up to order k if GG satisfies the equivalent
conditions of proposition (2.5.6).

The following proposition from Messing [14, 3.3.1] gives us the necessary results in

order to associate a formal Lie group to a z-divisible local Anderson-module. Recall the
definition ¢& = eE(L.(G/S)).

59



2 Local shtukas and divisible local Anderson-modules

Proposition 2.5.7. [1/, Prop 3.3.1] Let G(n) be an inductive system of finite locally-
free groups on an arbitrary scheme S. Let J be a coherent ideal of Og such that JN = (0).
Let Sy = Var(J), Go(n) = G(n) xs So and in general let the subscript “0” denote the
restriction to Sy. Assume we are given a mapping ¢ : N — N such that ¢(n) > n
for all n. Assume that whenever M is a quasi-coherent module on an affine open set
Uo C So, EXt%QUO (KGO(H)|UO, M) — Ext}oUo (€G0(¢(n))|UO, M) is the zero map. (In the
rest of the proposition we shall omit the Oy, and |y, and simply write So, or S depending
on the context. This will not lead any confusion.) Let X' be an affine scheme over S
and X be the subscheme defined by an ideal I such that 1> = (0). Assume we are given
an S-morphism f : X — G(n). Then there is an S-morphism f': X' — G(¢N (n)) such
that the following diagram commutes :

Xe— X
fl Jf’
G(n) — G(¢N(n))
Note - Under the hypothesis of proposition 2.5.7 the sheaf G = hi)nG(n) is formally

n

smooth, because

—

I(X, G) = D(X, mG(n)) = Im (X, G(n)),
since X is quasi-compact.

Let G be a z-divisible local Anderson module over S and S € Nilpg, ). In order

to prove that G = lim Inf*(@) is a formal Lie group we will prove at first G satisfies the
—

k
hypothesis of proposition (2.5.7).

Recall the definition wg = Ho(¢Y), ng = H_1(¢%).
We will need the following proposition and lemma, and their corollaries from Messing
[14] to proceed.

Proposition 2.5.8. [14, Chap 2, Prop 3.3.4] Consider an exact sequence of finite
locally-free S groups: 0 — G' — G — G"” — 0. Then there is an exact triangle in
ol

the derived category, D(S) :

@ ©

giving rise to an exact sequence of Og-modules :

0= ngr = ng — ng — wgr — wg — wgr — 0. (2.2)
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2.5 Relation between divisble local Anderson modules and formal Lie groups

Lemma 2.5.9. [14, Chap 2 Lemma 3.3.6] Suppose G is finite and locally-free on S.
Then wq 1s locally free if and only if it is flat. If this is the case then ng is also locally
free (of finite rank) and rank(wg) = rank(ng).

The following are corollaries of (2.5.8).

Corollary 2.5.10. Given 0 -+ G’ - G — G” — 0 as in 2.5.8 then:
a) The following conditions are equivalent and they are implied by G[1] C G’

1. wg — wer is an isomorphism
2. wgr — wer is the zero map
3. ngr — wgr is surjective

b) Suppose wg is locally free and ngr is of finite type and that ranky)(ng ® k(s)) <
ranky, ;) (wgr @ k(s)) holds for all s € S. Then the above conditions of a) are equivalent
to

3. ng — wgr is an isomorphism and in this case ng — n¢ is the zero map.

Proof. That the three conditions of a) are equivalent is immediate from (2.2). If G[1] C
G', then G[1] = G[1] and hence since Inf}(G) C G[1] (at the end of the proof 2.5.5) we
have wg = wg which is condition 1).

b) Assume the additional condition and that ng — wgr is surjective. Then because
wgr 18 locally free therefore locally on S we must have a splitting ng = Ker X wgr
where Ker denotes the kernel of ng: — wgr. By our assumption on the ranks we must
have Ker ®p, k(s) = 0 for all s € S. Ker is of finite type because n¢ is. Therefore
by Nakayama we must have each stalk of Ker is zero and therefore Ker = (0). This
completes the proof since the last assertion is obvious. O

Remark 2.5.11. From (2.5.9) it follows that the inequality in the last corollary can be
written rank(wg,) < rank(wgr) for all s € S if wer is flat.

Corollary 2.5.12. [14, Chap 2, Cor 3.3.9] Assume given the exact sequence 0 — G’ —
G — G” — 0 as above and assume further that:

1. wg — wgr is an isomorphism
2. wg and wgr are locally free
3. rank(wg,) < rank(wgr) for all s € S
Then for any affine open U C S and for any quasi-coherent module M on U, the map

Exty, (¢ |y, M) — Extg,, (¢€€y, M)

is the zero map. In particular for any quasi-coherent M on S the map Ext!(¢¢", M) —
Ext!(¢“, M) is zero.
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2 Local shtukas and divisible local Anderson-modules

Corollary 2.5.13. Let S be a scheme such that (V! = 0 on S, and let G = G(nd)
be a truncated z-divisble local Anderson module over S with order of nilpotence d and
n > N + 1. Then for any affine open subset U of S, the mapping (defined for any
quasi-coherent M)

G(nd)

Ext! (¢ Ny Ext (09D M) s zero.

Proof. At first we prove that it is equivalent to prove for the case N = 0. i.e. we assume
for Sp = V() € S and for any affine open subset Uj of Sy and M be a quasi-coherent

module on Uy we have Extl(ﬁg((n_l)d), M) — Extl(@G(nd), M) is the zero map.
Now take the exact sequence

0— CM — M — M/CM = 0.

and form the commutative diagram:

Ext? (0N DD enry s Bt (0N DDy R (0FN DD e

! ! !
Ext (¢CMD - enry 5 Bxtt (09D ) Rt (09D e
we see that the image of Extl(E.G((anfl)d), M) is contained in that of Ext! (E.G((an)d),
(M) because the right vertical arrow is the zero map. This tells us that for any quasi-

coherent module M on U the map Extl(ﬁ.G((n*Nfl)d), M) — Extl(é.G(nd), M) is zero
since by hypothesis ¢(V*1 = 0.

Now we prove the case N = 0. Then if n = 1, G((n — N — 1)d) = 0 and there is
nothing to prove. If n > 2 we must verify the conditions of the previous corollary for

G' = G((n —1)d) and G = G(nd).

0 — G((n — 1)d) — G(nd) — G(d) — 0
Since G[1] C G(d) by lemma (2.5.3) so we have

G[1] = G((n = 1)d)[1] = G(nd)[1] = G(d)[1].

It shows that wg((n-1)q) = Wand) = Wa(a) and hence wg — wer is an isomorphism.
Condition 3) is also trivial as G = G(d). To verify condition 2) holds we use statement
3) in the following proposition and appeal to Messing [14, Chap 2, §1, 2.1.4] to conclude
the proof. O

Proposition 2.5.14. Let S be a scheme such that { =0 on S and G = G(nd) a truncated
z-divisible local Anderson module of order of nilpotence d on S, in particular if n = 1
there is a truncated divisible local Anderson module G(2d) giving rise to G. Then

1. For all i such that 0 <1i <n we have Fg_i : Gn] = G[i]9" " is an epimorphism.

2. Ker F; = im V5 and Ker Vi = im F(;
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2.5 Relation between divisble local Anderson modules and formal Lie groups

3. G[n] is finite and locally free on S

Proof. Condition 1) is trivial if n = 1. If n > 2 we have for each i the following
commutative diagram:

o2 d )
(Z(n_i)d)_l(G[i](qnfz)) ala ) N G[i](qnfz)
vird /g_;
Gln]

As the morphism z("~94 id g (gni G = G(nd)"") — G(id)"") is surjective and
G[)(@"™) C G(id)\@" ™), it follows that Fj3~" is an epimorphism. To prove 2) let us first
assume that G(nd) comes from a G(2nd) which is a truncated divisible local Anderson
module. But then we have an exact sequence:

0 — G(nd) — G(2nd) 2% G(nd) — 0.

Therefore we have G[n] C G(nd) and the map (2"¢)~!(G[n]) — G[n] is an epimorphism.
But once again we can write 2" = V% o F% and since obviously FZ : (2"4)71(G[n]) —
G(nd)\?") we see V : G(nd)4") — G[n] is an epimorphism. That proves ker F{¥ = im V.
The other case is of course handled in the same way. Thus we have proved statement 2
for the case n = 1. We proceed to prove it in general by induction on n. Consider the
diagram:

By the induction hypothesis Vg_l is an epimorphism. Therefore Fig o V2 is an epimor-
phism. Hence if we can show G[1] C im V% it will follow that V4 is an epimorphism.
But by the case n = 1 settled above

G[1] = Va(G(d) D) = Vg 0 2 VUG (nd) @) = Vg o FIV(G(nd) @) C VE(G(nd)").

The other case is of course handled in the same way. To prove 3) we observe that G[n]
is certainly finite and of finite presentation over S. Therefore to conclude it is locally
free it suffices to show it is flat. This follows because we have a commutative diagram

Gnd)? —4 G
\ S /

and V7 being an epimorphism is faithfully flat while G(nd)?" is flat over S. O
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2 Local shtukas and divisible local Anderson-modules

Theorem 2.5.15. If S € Nilqu[[C]] and G is a Z-divisible local Anderson module over
S, Then G is formally smooth.

Proof. Let X' be an affine scheme over S and X a closed subscheme defined by an ideal
of square zero. Let f : X — G be in I'(X, G). We must show f can be lifted to an
X =G

X ——X

Ve
fJ g
%4 ’ f
G
As X is quasi-compact we have T'(X, G) = liglF(X, G(n)) = liglF(X, G(nd)) and

hence can assume f : X — G(nd) for some n. We cover X by a finite number of affine
opens U;, © = 1,...,m such that the image of U; in S is contained in an affine open V;.
Since ¢ is nilpotent on each V; there is an integer N such that (V! is zero on UV;.
Replacing S by S’ = UV; and G by Gg we are led to the case when ( is nilpotent on
S, ¢(N*1 kills S. But now by 2.5.13 and 2.5.7 we see f can be lifted to an f’ and the
theorem is proved. O

Finally we shall prove that if S € N ilp]Fq [¢c] then G = lii)nlnf” (G) is a formal Lie group.

We begin with a lemma.

Lemma 2.5.16. Let G be a z-divisible local Anderson module on S with (z—¢)% =0 on
we = limwgy) for some d € N. Assume we are given an S-scheme X' and a subscheme
«—

X defined by an ideal I such that I*+1 = (0) and ¢ - I/1? = 0 and suppose N' is the
smallest integer which is power of p and greater than N and d. Then if f': X' — G is
such that f = f'|x : X — G(n), we have f': X' = G(n + kN').

Proof. : The problem is local on X’ and hence we can assume that X’ is affine and thus
quasi-compact. But then f’ € T'(X’, G) = limT'(X’, G(m)) and hence we can assume
e

m

that f': X’ — G(n') for some n/. Therefore we can assume that G is representable. We
use induction on k. If we could show

VE: flyry s VI = G(n+ (1 - 1)N),

then by the case | = k + 1 we would know f’ : X' = V(I**1) — G(n + kN’). Thus it
suffices to treat the case I = 2, i.e., I? = 0. Since f: X — G(n) we have z" o f = 0 and
2" f' € G(X') has the property that its restriction to G(X) is zero. Since I? =0 and G
is representable we know the group of sections of G over X’ whose restriction to X is
zero is isomorhic to the group Homp, (wg ®oy Ox, I) [S.G.A 3 III 0.9]. This implies
2" '+ h € Home,, (wg ®04 Ox, 1) and since ¢V kills 1

= Noh = 0
= (Moh = 0 since N>N
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2.5 Relation between divisble local Anderson modules and formal Lie groups

Since the action of (z — €)% = 0 on wg := Lie*(G/S)

= (z—ON = 0onwgsince N' >d
= (Lie* z)N/ = CN/ on wg since N’ is multiple of p,

because z acts on wg through Lie* z : wg — wq
= 2NV o (") (Lie* 2)V oh = ¢V o h =0

= f eGn+N)X).
O

Corollary 2.5.17. Let ¢V kill S and let G be as in the lemma, (2.5.16). Then the k-th
infinitesimal neighborhood of G(n) in G is the same as that of G(n) in G(n 4+ kN’). In
particular Inf*(G) = Inf¥(G(kN")) and is therefore representable.

Proof. 1f f : T' — G belongs to the k-th infinitesimal neighborhood of G(n) in G, then
there is a covering family {7] — 7"} and schemes T; such that T; < T/ is a nilpotent
immersion of order k and f|r, : T; — G(n). But then by the lemma f| : T] —
G(n + kN') and hence f € T(T', G(n + kN'")), which proves the corollary. ' O

Corollary 2.5.18. If ¢V kills S and if k < ¢" we have Inf*(G) C G(nd + (N — 1)N)
and hence Inf*(G) = Inf*(G(nd + (N — 1)N').

Proof. Let X' be an S-scheme and X < X’ be a nilpotent immersion of order k.
Denote with the subscript “0” the object obtained by reducing a given object modulo
¢. Given f': X' — G whose restriction to X is zero, then we have f{j : X — Go
belong to Inf*(Gy). By the reasoning at the end of the proof of (2.5.5) (where we
show that Inf?" ~! C Go[n] € Go(nd)). This means that f/ € G(X') has its restriction
to G(X() = Go(X{) belonging to G(nd)(X}). If we now apply lemma (2.5.16) with
I=¢Ox,, k=N 1, and N = 1, we find f' € G(nd + (N — 1)N')(X"). O

Theorem 2.5.19. Let ¢ be locally nilpotent on S and let G be a z-divisible local Anderson
module on S. Then G = lii>nInfk(G) is a formal Lie group.
k

Proof. : As we know G is a subgroup of G we must show it is a formal Lie variety.
By (2.5.17) Inf*(@G) is, locally on S, representable and therefore since it is a sheaf it is
representable.

By theorem (2.5.15) we know G is formally smooth and obviously this implies that G
is formally smooth. This tells us that Inf*(G) satisfies the lifting condition 2) of (2.5.6)
and hence, since locally on S Inf*(G) = Inf*(G/(m)) for an appropriate m, It follows from
(2.5.6) that locally on S Inf*(G) satisfies condition 1) of that proposition. But now it is
obvious that G satisfies condition 2) and 3) of definition (2.1.5) and hence is a formal
Lie group. O
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2 Local shtukas and divisible local Anderson-modules

Remark 2.5.20. Since we know from theorem( 2.4.3) that wg is locally free of finite
rank but it also follows immediately from (2.5.19) that wg is locally free of finite rank
and from (2.5.17) or, for a better estimate, (2.5.18) that locally on S wg = wWg(y,) if m
is sufficiently large. If ¢V kills S, then wg = we(nvy as follows from (2.5.17).

Now we study the relation between formal lie groups which is also Fy[z]-module and
z-divisible local Anderson modules on a scheme S, with ( locally nilpotent on S.

Lemma 2.5.21. Let B be a ring in which ¢ is nilpotent, and I be a nilpotent ideal of B.
Define a sequence of ideals Iy = (I + 12, ..., In41 = CI, + (In)2. Then for n sufficiently
large I, = (0).

Proof. Let J = (B + 1. Then it is easy to check that I, C J"*. Since ¢ and I both are
nilpotent, so is the ideal J. This implies I, = 0 for n sufficiently large. O

Lemma 2.5.22. If { is locally nilpotent on S and G is formal lie group over S which is
also an Fy[z]-module such that locally on S there is an integer d for which (Lie*z—()? =0
on wg, then G is of z-torsion.

Proof. We must show G = lim G(n) and since this is statement about sheaves it suffices
—

to check it locally on S. Thus we can assume S = Spec A with ( nilpotent on A and G is
given by a power series ring A[ X7, ..., X4]. If T is any affine S-scheme, say T'= Spec(B),
then an element of G(T') will be an N-tuple (by,...,bg) with each b; nilpotent. Let I
be the ideal generated by {b1,...,bs}. Let N’ be a power of ¢ with N’ > d. Then
each component of 2V - (by,...,bg) belongs to ¢N'T + I? and 2N . (by,...,bq) belongs
to (N (CV'T 4+ 1%) 4+ (¢NV'T + 1%)%,---. Thus by the previous lemma we see G is of
z-torsion. O

Let S be the spectrum of an artin local ring with residue field of characteristic p, so
¢ = 0 in the residue field because ( is nilpotent and let G' be a z-divisible formal Lie
group on S such that locally on S there is an integer d for which (Lie*z — ¢)% = 0 on
wg for d = dim G. From Proposition Messing [14, Chap II, 4.3] we know that G(n) are
finite and locally free and they are the kernel of an F,-linear homomorphism of formal
Lie groups so they are strict. Hence G is a z-divisible local Anderson modules over S.

We have the following proposition for z-divisible local Anderson modules similar to
the proposition for p-divisible group in Messing [14, Chap II, Prop 4.4] and also its proof
follows similarly.

Proposition 2.5.23. Let ( be locally nilpotent on S and let G be a z-divisible local
Anderson module over S. Then the following conditions are equivalent:

1. G=G.
2. G is a formal Lie group.

3. For all n G(n) is radiciel.
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4. G(1) is radiciel.

Corollary 2.5.24. If ( is locally nilpotent on S, there is an equivalence of categories
between that of z-divisible local Anderson modules on S, with G(1) radiciel, and the
category of formal Lie groups G which are also F,[z]-modules with z : G — G an
epimorphism, G(1) finite and locally free and locally on S there is an integer d for which
(Lie*z — ¢)? = 0 on wg.

Proof. By (2.5.22) and (2.5.23) both categories are identified with the same full sub-
category of fppf sheaves of groupes on S which are also Fj[z]-modules. O

Corollary 2.5.25. If S is artin, a z-divisible formal Lie group such that locally on S
there is an integer d for which (Lie*z — ¢)? = 0 on wg is a z-divisible local Anderson
module with G(1) radiciel and conversely.

Proof. Follows from explanation above and (2.5.24) O

We have the following proposition for z-divisible local Anderson modules similar to
the proposition for p-divisible group in Messing [14, Chap II, Prop 4.7] and also its proof
follows similarly.

Proposition 2.5.26. Let  be éocally nilpotent on S and G be a z-divisible local Anderson
module over S. In order that G = 0 it is necessary and sufficient that G is ind-étale.

We have the following proposition for z-divisible local Anderson modules similar to
the proposition for p-divisible group in Messing [14, Chap II, Prop 4.9] and proof follows

similarly using the lemma from Messing [14, Chap II, 4.8] which says if X I, S be finite
and locally free. Then the function s — separable rank (Xj) is locally constant if and
only if there are morphisms i : X — X', f/: X’ — S which are finite and locally free
with 7 radiciel and surjective, f’ étale and f = f’ o4 and the factorization is “unique”
up to unique isomorphism and is functorial in X/S and the fact that whenever we have
a finite O-module scheme X over S, the canonical decomposition of X

00 X"5X>5X' >0

where X" finite, locally free and radiciel, X’ finite and étale are O-invariant.

Proposition 2.5.27. Let  be locally nilpotent on S and G be in z-divisible local An-
derson modules over S. The following conditions are equivalent

1. G is a z-divisible local Anderson module.

2. G is an extension of an ind-étale z-divisible local Anderson module G" by an ind-
infinitesimal z-divisible local Anderson module G'.

2’ (G is an extension of an ind-étale z-divisible local Anderson module by a z-divisible
formal Lie group.
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2 Local shtukas and divisible local Anderson-modules
3. For all n G(n) is an extension of a finite étale group by a finite locally-free radiciel
group.
3”7 G(1) is an extension of a finite étale group by a finite locally-free radiciel group.
4. s separable rank (G(1)s) is locally constant function.

We have the following lemma for z-divisible local Anderson modules on S similar to
the lemma Messing [14, Chap 11, Prop 4.11] and also its proof follows similarly.

Lemma 2.5.28. Let ¢ be locally nilpotent on S and let 0 — G7 — Go — G3 — 0 be an
exact sequence of z-divisible local Anderson modules on S. Then 0 — G — Go — Gz —
0 s also exact.

2.6 Comparison of Tate-modules

In this section we assume that S € J\/'ilp]Fq[[Cﬂ. Let G be a z-divisible local Anderson
module of rank r over S and M (G) be the local shtuka over S associated to G.

If S = Spec Ok where O are the integers in a local field K with ( € K* and K5¢P
is a fixed separable closure. The z-adic Tate-module of G is defined as

T.G := l(iin(G(n)(Ksep), z:G(n+1) 5 G(n)).

n

So TG is Fy[z]-module and

T.G(KP) = lim(G(n) (K*P)) 2 F[2]* ™.

n

Since O 2 Fy(], so K O Fy((¢)) and ¢ # 0 in K. It will be better to take S €
Pro-Nilpg ¢ i-e. S = lim S, = lim Spec Or /(" = Spec(l{igl Ok /¢™) = Spec Ok.

For a local shtuka M We define the Tate module of M as
TM = (M)™)" = Homg, .y (M & K5P[2])™, B, [2]).

Here M7= := {m € M|r(m) = m}, where the o-linear map 7 : M — M is induced
from the Og-linear map Fis : 0*M — M ie. 7(m) = Fy(m @ 1).

Definition 2.6.1. A pairing G1 X Go — H of étale sheaves G1,Gs, H of A-modules on S
is called perfect if it induces isomorphisms of A-module sheaves G; = Hom 4(G3—;, H).

Theorem 2.6.2. There is a canonical Fy[z]-isomorphism T,G—T,M of
Gal(K5¢P | K)-representations.

Proof. From Bockle, Hartl [3, Lemma 3.4 and Thm 9.6] we have a perfect pairing

G(n)(K®P) x (M/2"M)™=H(K*P) — Homy, _njoq(Fq[2]/2" Fy),
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2.6 Comparison of Tate-modules

(pn: m) — (hn ta— m(apn))

of Fy[z]/2™-modules.
At first we will construct an isomorphism between Hoqu_Mod(Fq[[zﬂ /2", F,) and

2 "Fq[2] /Fq[#] - dz. We define the map from
2 "Fqlz]/Fqlz] - dz — Hoqu_MOd(Fq[[zﬂ/z”, Fy)

which sends f-dz € z7"Fy[z] /F,[z] - dz — hy : a — Res,—o(af) ie. if f = f_pz7" +
o4 fo127 1 then hy,(2) = J—(i+1) and the inverse map is defined by

n—1
Iy —> Z N e P P2
=0

We compose the isomorphism Hom]Fq_MOd(IFq [2]/2"Fq) — 2z "F4[z]/Fqlz] - dz with
the multiplication with 2™
2" 2T F[2] [Fq[2] - dzoFg[l2] /2" Fy[2] - dz = Qp, [/, ®F,[2] Falz]/2"Fqlz]-
Then we have a perfect pairing
on - G) (KCSP) X (M/Z"M)T=L(KP) — Fy[2]/="F[2] - d

n—1
(pn,m) —> Zm(zn_l_i “pn) - Zldz
i=0
of Fy[#]/2"-modules.
Now we have to check the compatibility of the map

G(n) (KSP) x (M2 M)™= (K5eP) —** Fo[1/(=") dz

T'Z Tmod 2" Tmod 2"

G(n+ 1)(KS5®P) x (M /2" M)™=1(KS€P) L)]Fq[[zﬂ/(znﬂ) dz

to get the perfect pairing

T.G x M™=" = F,[2] - d=.
Since T.G = {(pp)n, n € N | p, € G(n) with p, = 2z - pypy1}. To check the

commutativity of the above diagram we have to check ¢pn4+1(pnt1,mMpt1) mod z" =
n

©n(2Pnt1, Mupyrimod 2™). The left hand side is equal to Z mn+1(z”_i -pn+1)-zidz mod
i=0

n—1 n—1
2" = Z mnH(z”_i “Dn+1) -z'dz. The right side is equal to Z(mnﬂ mod z”)(z”_i_l-z-
i=0 i=0
n—1
Pny1)-2'dz = Z Mp+1(2" " “Dnt1)-2'dz. Hence we have perfect pairing of F,[z[-modules
i=0

T.G x (M)™=! = T[] - d=.
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2 Local shtukas and divisible local Anderson-modules

so T.G = Homg, .1 (M)™="Fy[z]) = (M™=")Y = T. M.
If v € Gal(K5®P/K) then

n—1
on(Yprsym) = > am(z" T py,) - 2z
1=0
n—1 ' .
= > m(" Ty ) - 2lde
=0

n—1

= Z m(z" ", - Zdz
i=0

= ¢n(pn,m)

Hence the above isomorphism is Gal(K5P /K )-equivariant.
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