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Abstract. We study the behavior of ÛD-modules on rigid analytic varieties under pushfor-
ward along a proper morphism. We prove a ÛD-module analogue of Kiehl’s proper mapping
theorem, considering the derived sheaf-theoretic pushforward from ÛDX -modules to f∗ÛDX -
modules for proper morphisms f : X → Y . Under assumptions which can be naturally
interpreted as a certain properness condition on the cotangent bundle, we show that any
coadmissible ÛDX -module has coadmissible higher direct images. This implies, among other
things, a purely geometric justification of the fact that the global sections functor in the
rigid analytic Beilinson–Bernstein correspondence preserves coadmissibility, and we are able
to extend this result to twisted ÛD-modules on analytified partial flag varieties.

1. Introduction

Let K be a complete discretely valued field of mixed characteristic (0, p),
with discrete valuation ring R and uniformizer π, and let f : X → Y be a
proper morphism of rigid analytic K-varieties.

Recall Kiehl’s proper mapping theorem for coherent O-modules.

Theorem 1.1 ([18]). If M is a coherent OX-module, then Rjf∗M is a co-
herent OY -module for each j ≥ 0.

The main goal of this paper is to prove a noncommutative analogue of
Theorem 1.1, considering coadmissible ÙD-modules.

The sheaf ÙDX of analytic differential operators on X was introduced by Ar-
dakov and Wadsley in [4]. This sheaf consists of differential operators, possibly
of infinite order, with rapidly decreasing coefficients. It was shown in [10] that
for any smooth rigid analyticK-variety U , ÙDU is a full Fréchet–Stein sheaf (see
Section 3 for precise definitions), which allows us to consider the category of
coadmissible modules, a natural analogue of coherent modules in this setting.

We present in this paper several conditions one can impose to guarantee
that the derived pushforward functors Rjf∗ preserve coadmissibility.
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In this introduction, we say that a Lie algebroid L on X is locally free
relative to Y if there exists an admissible covering (Yi) of Y such that the
restriction L |Xi to each Xi = f−1Yi is a free OXi -module for each i.

Theorem 1.2. Let f : X → Y be a proper morphism of rigid analytic K-
varieties, where X is smooth.

(i) Suppose the tangent sheaf TX is locally free relative to Y . Then f∗ÙDX

is a full Fréchet–Stein sheaf on Y , and if M is a coadmissible ÙDX-
module, then Rjf∗M is a coadmissible f∗ÙDX-module for each j ≥ 0.

(ii) Suppose TX is the quotient of a Lie algebroid L on X which is locally

free relative to Y . Then f∗ÙDX is a Fréchet–Stein sheaf on Y , and if
M is a coadmissible ÙDX-module, then Rjf∗M is a coadmissible f∗ÙDX-
module for each j ≥ 0.

We obtain as a consequence the following corollary.

Corollary 1.3. Let X be a smooth proper rigid analytic variety over K. If
TX is generated by global sections, then ÙDX(X) is a Fréchet–Stein algebra, and

if M is a coadmissible ÙDX-module, then Hj(X,M) is a coadmissible ÙDX(X)-
module for each j ≥ 0.

We make a couple of remarks.
(i) Note that in Theorem 1.2 (ii), the sheaf f∗ÙDX is not claimed to be a full

Fréchet–Stein sheaf, but only a Fréchet–Stein sheaf, meaning that the desired
properties need not hold on any admissible open affinoid subspace, but only
on a certain base of the topology, see Section 3. This is a familiar feature
already occurring in results in [4]. While we were able to overcome these
issues pertaining to the results in [4] with our paper [10], our situation here
seems to be more complicated. In fact, the difficulties do not just arise from
possible π-torsion in certain formal models, but rather from the limited scope
of Lemma 3.15.

(ii) The condition of being locally free relative to Y imposed in Theorem 1.2
ensures that we can lift f to a proper morphism between certain vector bundles.
As we can think intuitively of ÙDX as a noncommutative analogue of functions
on the cotangent bundle T ∗X , our result is strictly speaking not in parallel
with Kiehl’s theorem applied to f , but rather (in the case of Theorem 1.2 (i))
to the induced map T ∗X → g∗T

∗X , where g : X → Z is the first map in the
Stein factorization of f , and g∗T

∗X is the vector bundle (dually) associated to
g∗TX , which is locally free by assumption. This map is proper as it is locally of
the form X ×A

n,an → Z ×A
n,an, by assumption. A similar description works

for (ii), see Proposition 6.12.
(iii) The results given in this paper are actually more general than Theo-

rem 1.2. We consider full Fréchet–Stein sheaves which are in a ‘natural’ way

coadmissible over U̇ (L ), where L is some Lie algebroid on X which is locally
free relative to Y . This set-up allows us to extend results to twisted ÙD-modules,
see below.
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(iv) It is obviously necessary to work with f∗ÙDX rather than the sheaf ÙDY ,
as can be seen by just considering the point Y = SpK. This is due to the
fact that we are considering the sheaf-theoretic pushforward f∗ rather than a
ÙD-module pushforward via transfer bimodules, which has not been developed
yet beyond the case of a closed embedding (see [5]). We hope that our result
can actually be used as a stepping stone to establishing a theory of ÙD-module
pushforwards more generally, with an analogue to the proper mapping theorem
(i.e., a p-adic analytic version of [15, Theorem 2.5.1]) as a natural consequence.

(v) The main motivation for this work (and a justification for using f∗)
comes from the discussion of a rigid analytic Beilinson–Bernstein correspon-
dence in [1]. If X = (G/B)an is the analytified flag variety of some split
reductive algebraic group G over K, Corollary 1.3 states that ÙDX(X) is a
Fréchet–Stein algebra, and that the global sections of any coadmissible ÙDX -
module are coadmissible. Also note that in this case, the geometric picture
given in remark (ii) translates to the properness of the moment map. We thus
recover part of the statement of [1, Theorem 6.4.7] (without equivariance)
by purely geometric means, and are able to extend this straightforwardly to
arbitrary coadmissible twisted ÙD-modules on partial flag varieties.

Corollary 1.4. Let G be a split reductive affine algebraic group scheme over K,
P a parabolic subgroup scheme and X = (G/P)an the analytification of the
partial flag variety. Let g be the Lie algebra of G and h a Cartan subalgebra.
If M is a coadmissible ÙDλ

X-module for some λ ∈ h∗, then RjΓ(X,M) is a

coadmissible Ū(g)λ-module for each j ≥ 0.

All relevant definitions will be given in Section 6.
We now give a brief overview of the structure of the paper.
In Section 2, we distill those parts of the original proof of Theorem 1.1

which can naturally be adapted to our situation: Schwartz’ theorem for strictly
completely continuous morphisms and a finiteness result for cohomology groups
due to Cartan–Serre. We will be working with a certain class of noetherian
Banach K-algebras which we call strictly NB, which includes both affinoid K-

algebras and the algebras ◊�U(πnL)K involved in the definition of ÙDX . We also
recall some results from [10] concerning completed tensor products.

In Section 3, we recall the basic theory of ÙDX -modules, using the more
general language of Fréchet completed enveloping algebras for Lie algebroids,
as in [4]. In order to capture sheaves like ÙDλ, we introduce the even more
general notion of a Fréchet–Stein sheaf. We then establish enough terminology
to state the main result (for a free Lie algebroid, Theorem 3.22) and reduce
all claims to statements about strictly NB K-algebras and finitely generated
modules over them.

Sections 4 and 5 then deal with the proof of Theorem 3.22.
Taking Y to be a suitable affinoid, the proof can be split into two parts:

one statement about global sections (Section 4) and one about localization
(Section 5). Having reduced to strictly NB K-algebras, the global sections
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part becomes quite straight-forward, using Section 2. This means that the
proof of this part is almost entirely analogous to the original proof in [18].
The only subtlety lies in ensuring that the finitely generated pieces we exhibit
match up in the right way to produce a coadmissible module. This can be
dealt with using the results on completed tensor products developed in [10],
which also provide the main tools for the arguments in Section 5.

In Section 6, we formulate more general versions and variants of our theorem.
We then go on to discuss a geometric interpretation of our results to provide
more intuition for the conditions we impose, and describe several examples.
We conclude with our main application, twisted ÙD-modules on partial flag
varieties, Corollary 1.4 and some generalizations of it.

As already mentioned, we hope that it will be possible in the future to
employ our results in order to study a ÙD-module pushforward using transfer
bimodules (see [15, Section 1.5]) – for this, it seems necessary to work in
a larger category than that of coadmissible modules in order to allow for a
‘derived’ picture. We suspect that the quasi-abelian category of ÙD-modules
whose sections are complete bornological vector spaces of convex type might
be a suitable framework, as was indicated in [2] and [7]. Once a ÙD-module
pushforward is in place, a corresponding proper mapping theorem (at least
for projective morphisms) should be a fairly straight-forward consequence of
our results, as we can consider in turn the cases of closed embeddings and
projections, both of which are dealt with in this paper – see Theorem 6.13 and
the remarks following it.

On the representation theoretic side, our discussion of pushforwards be-
tween partial flag varieties strongly suggests a theory of intertwining operators
analogous to [8].

Notation. Throughout, K is a complete nonarchimedean, discretely valued
field of mixed characteristic (0, p), with discrete valuation ring R and uni-
formizer π.

Given a semi-normed K-vector space V , we denote by V ◦ the unit ball of
all elements in V with semi-norm ≤ 1. We define the value set of V to be the
set |V | \ {0}. For instance, the value set of K is |K∗| = |π|Z.

A normed K-algebra A is always required to have a submultiplicative norm,
so that A◦ is always a subring. Similarly, a normed A-module is a normed K-
vector space M with an A-module structure satisfying |am| ≤ |a| · |m| for all
a ∈ A, m ∈ M . In particular, M◦ is an A◦-module.

We denote the completion of a semi-normed K-vector space V by “V . We
also write M̂ for the π-adic completion of an R-module M , but it should always
be clear from context which completion we are using. We sometimes shorten
M ⊗R K to MK .

If i = (i1, . . . , im) ∈ Nm is a multi-index, we write |i| = i1 + i2 + · · · + im,
and abbreviate the expression

X i1
1 X i2

2 · · ·X im
m

to X i.
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We denote by Tm = K〈X1, . . . , Xm〉 the mth Tate algebra over K, given by
converging power series:

K〈X〉 =

ß ∑

i∈Nm

aiX
i : ai ∈ K, |ai| → 0 as |i| → ∞

™

Given an affinoidK-varietyX= SpA, we letXw denote the weak Grothendieck
topology (consisting of affinoid subdomains, with finite coverings by affinoid
subdomains as coverings) and Xrig the strong Grothendieck topology (admis-
sible open subspaces and admissible coverings, see [11, Definition 5.1/4]).

2. Background

2.1. Schwartz’ theorem and the Cartan–Serre argument. We begin by
discussing those parts of the argument in [18] (see [11, Sections 6.3, 6.4] for an
account in English) which lend themselves to generalization to the noncommu-
tative setting.

Throughout, A will be a (not necessarily commutative) unital left noetherian
Banach K-algebra, whose norm is determined by an R-algebra A◦ as its unit
ball, which we assume to be also left noetherian. We summarize this by saying
that A is a strictly noetherian Banach (NB) K-algebra.

Note that affinoid K-algebras equipped with a residue norm are obvious
examples of strictly NB algebras: they are noetherian Banach by [11, Propo-
sitions 3.1/3 (i), 3.1/5 (ii)], and the unit ball of any residue norm is noetherian
as long as K is discretely valued by [11, Remark 7.3/1].

Lemma 2.2. Let A be a left noetherian R-algebra containing R. Then “AK =
“A⊗R K carries a natural structure of a strictly NB K-algebra.

Proof. Note that the K-algebra AK is naturally equipped with a gauge semi-
norm (see [23, Lemma 2.2]) with unit ballA = A/π−tor(A), and its completion

is isomorphic to “AK = “A⊗K, a Banach K-algebra. By [9, Property 3.2.3 (iv)],
“A injects into “AK and can thus be naturally identified with the unit ball. But

by [9, Property 3.2.3 (vi)], “A is left noetherian, so “AK is a left noetherian
Banach K-algebra with left noetherian unit ball, and hence a strictly NB K-
algebra.

Finally, the natural morphism “AK → “AK is an isometric isomorphism of
Banach K-algebras, by the same argument as in [4, Lemma 2.5]. �

In this section, we will verify that Schwartz’ theorem, as given in [18,
Satz 1.2], as well as the Cartan–Serre argument about finite cohomology groups
(proof of [18, Satz 2.5], see [17, Lemma 1.10] for another generalization) hold
in the more general context of strictly NB K-algebras. All proofs will be essen-
tially as in [18], except that some of our arguments become easier to formulate
due to our assumptions on the field K (note in particular that R is always
noetherian in our setting).
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The module category we will be working with consists of all (left) Banach A-
modules, together with continuous A-module morphisms. We call this category
BanA.

We recall the following facts:

(i) Since every A-module is also aK-vector space, an A-module morphism
between normed A-modules is continuous if and only if it is bounded
(see [23, Proposition 3.1]).

(ii) Any surjection in BanA is open (open mapping theorem, [23, Proposi-
tion 8.6]).

(iii) Any finitely generated A-module is in BanA, equipped with a canoni-
cal topology (see [12, Proposition 3.7.3/3]). Any A-module morphism
between finitely generated A-modules is continuous with respect to the
canonical topologies (see [12, Proposition 3.7.3/2]).

(iv) Given two objects M , N of BanA, their direct sum M ⊕N carries the
structure of a Banach A-module with respect to the max norm (see
[12, Definition 2.1.5/1, Proposition 2.1.5/6]).

Note that for any M,N ∈ BanA, the space of morphisms

BanA(M,N) = Homcts
A (M,N)

may be equipped with the supremum norm

|f |sup := sup
x 6=0

|f(x)|

|x|
.

This turns Homcts
A (M,N) into a Banach K-vector space by the same argument

as in [23, Proposition 3.3].
When we speak of a sequence of morphisms fi converging to some f ∈

BanA(M,N), we mean uniform convergence, i.e., convergence with respect to
the supremum norm.

We also need to define topologically free modules. Given an indexing set S,
consider the A-module ⊕

s∈S

Aes,

equipped with the direct sum (maximum) norm, where |aes| = |a| for each
s ∈ S, a ∈ A. Its completion

FS :=
⊕̂

s∈S

Aes

lies in BanA and satisfies the following universal property.

Proposition 2.3. Given M in BanA and any map f : S → M such that the set
{|f(s)| : s ∈ S} is bounded in R, there exists a unique morphism φ : FS → M
in BanA satisfying φ(es) = f(s) for each s ∈ S. Moreover, the operator norm
of φ is |φ| = sups∈S |f(s)|.
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Proof. By the universal property of (abstract) free modules, there exists a
unique A-module morphism extending f , given by

θ :
⊕

s∈S

Aei → M,
∑

ases 7→
∑

asf(s).

Moreover, |θ(
∑

ases)| = |
∑

asf(s)| ≤ max |as||f(s)| for any finite sum
∑

ases,
so that θ is continuous by the boundedness assumption, with operator norm
|θ| = sup|f(s)|. By continuity, θ extends uniquely to a continuous map φ
between the completions FS → M , and |φ| = |θ|. �

We call FS the topologically free module over S or the topologically free
module (topologically) generated by S.

An obvious example is the K-algebra A〈X1, . . . , Xn〉 = A ⊗̂K Tn for any
n ∈ N, which has a natural structure of a topologically free A-module over Nn

as it is the completion of the polynomial algebra A[X1, . . . , Xn] with respect
to the natural norm.

The following corollary is a direct consequence of the proposition above.

Corollary 2.4. For any M ∈ BanA, there exists a topologically free module
F ∈ BanA and a continuous surjection

p : F → M.

Proof. Let S = M◦ be the unit ball ofM . The natural inclusion f : S → M is a
function with bounded image, extending to a continuous morphism p : FS → M
by the above. As the unit ball spans M as a K-vector space, p is surjective by
K-linearity. �

We now introduce a special kind of morphism in the category BanA.

Definition 2.5. A morphism f : M → N in BanA is called strictly completely
continuous if f is the limit of morphisms fi : M → N in BanA such that fi(M

◦)
is a finitely generated A◦-module for each i.

It follows from noetherianity of A◦ that this notion does not depend on a
particular choice of norm on M , but only on its equivalence class.

We mention here that Kiehl phrases this definition differently in [18, Defi-
nition 1.1], since he does not assume K to be discretely valued (in particular,
an affinoid K-algebra might have a unit ball which is not noetherian). It is
easy to check that the two definitions are equivalent in BanA, where A is some
strictly NB algebra.

We discuss one example which will feature in our proofs later.

Lemma 2.6. Let F = ⊕̂S Aes be a topologically free A-module over S. If
f : F → M is a morphism in BanA such that for any ǫ > 0, there are only
finitely many s ∈ S with |f(es)| ≥ ǫ, then f is strictly completely continuous.

Proof. For any ǫ > 0, denote by Sǫ the finite set of s ∈ S such that |f(es)| ≥ ǫ.
Given s ∈ S, consider the continuous A-module morphism

gs : F → M,
∑

ajej 7→ asf(es),

Münster Journal of Mathematics Vol. 12 (2019), 163–214
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i.e., we only consider the es part of f . Now we set, for any n ∈ N,

fn =
∑

s∈S1/n

gs,

a continuous A-module morphism such that

fn(F
◦) ⊆

∑

s∈S1/n

A◦f(es)

is a finitely generated A◦-module.
It thus remains to show that the fn tend to f . By Proposition 2.3, |f−fn| =

sups∈S |f(es) − fn(es)|. Now if s ∈ S1/n, then f(es) = fn(es), and if s is not
in S1/n, then fn(es) = 0 and |f(es) − fn(es)| < 1/n, by construction. Thus,
|f − fn| ≤ 1/n, proving the result. �

Corollary 2.7. Let f : A〈x1, . . . , xn〉 → M be a morphism in BanA such that
f(xi) tends to zero as |i| → ∞. Then f is strictly completely continuous.

We briefly record the following properties.

Lemma 2.8. Let f : M → N be a strictly completely continuous morphism in
BanA, and let L, G be in BanA. Then the following hold:

(i) For any morphism g : N → G in BanA, the composition gf is strictly
completely continuous.

(ii) For any morphism h : L → M in BanA, the composition fh is strictly
completely continuous.

Proof. Let (fi : M → N) be a sequence of morphisms in BanA as in Defini-
tion 2.5.

(i) For any continuous morphism g, the compositions gfi converge to gf ,
and since fi(M

◦) is finitely generated, so is gfi(M
◦): if fi(M

◦) is generated
by n1, . . . , nr, then gfi(M

◦) is generated by g(n1), . . . , g(nr).
(ii) Since |(f −fi)h| ≤ |f −fi| · |h|, we know that fih converges to fh. Since

h is continuous, boundedness implies that there exists some integer a such that

h(L◦) ⊆ πaM◦,

and thus fih(L
◦) is contained in πafi(M

◦), a finitely generated A◦-module by
definition of the fi (multiplication by πa establishes an isomorphism fi(M

◦) ∼=
πafi(M

◦)). By noetherianity of A◦, fih(L
◦) is thus a finitely generated A◦-

module. �

Lemma 2.9. Let f1 : M1 → N1, . . . , fr : Mr → Nr be a finite set of strictly
completely continuous morphisms in BanA. Then the finite direct sum

r⊕

i=1

fi : ⊕Mi → ⊕Ni

is also a strictly completely continuous morphism in BanA.
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Proof. As mentioned earlier, the modules ⊕Mi and ⊕Ni are in BanA and ⊕fi
is a morphism in BanA, as each fi is bounded.

For each i, let fi be the limit of A-module morphisms gij such that gij(M
◦
i )

is finitely generated for each j ∈ N. Then clearly ⊕fi is the uniform limit of
(
⊕

i gij)j , and moreover(⊕

i

gij

)
(⊕M◦

i ) =
⊕

i

gij(M
◦
i )

is a finitely generated A◦-module for any j, as required. �

The class of strictly completely continuous morphisms is used in the proof
of Kiehl’s proper mapping theorem by applying Theorem 2.11, which is known
as Schwartz’ theorem. First, we need a definition.

Definition 2.10. Let N be an object of BanA, and let M be a submodule
of N . We say M is closed and of finite index in N if M is a closed submodule
such that the quotient module N/M is a finitely generated A-module.

Theorem 2.11 ([18, Satz 1.2]). Let f : M → N be a surjection in BanA,
and let g : M → N be a strictly completely continuous homomorphism of A-
modules. Then Im(f + g) is closed and of finite index in N .

Before turning to the proof of Theorem 2.11, note that we have the following
easy properties concerning submodules which are closed and of finite index.

Lemma 2.12. Let N be in BanA and let M be some A-submodule of N .
Suppose there exists some morphism

f : N → G

in BanA such that f(M) is closed and of finite index in G, and M contains
the kernel of f . Then M is closed and of finite index in N .

Proof. By continuity of f , we know that f−1(f(M)) is closed in N . But
f−1(f(M)) = M , because M contains the kernel of f . Moreover, as abstract
A-modules, we have isomorphisms

N/M ∼= (N/ ker f)/(M/ kerf) ∼= f(N)/f(M) ≤ G/f(M),

which is finitely generated by noetherianity of A. �

Lemma 2.13. Let N be in BanA and let M be some A-submodule of N .
Suppose M contains some A-module M ′ which is closed and of finite index
in N . Then M is closed and of finite index in N .

Proof. Since M ′ is closed in N , the quotient semi-norm on N/M ′ is actually
a complete norm, i.e., N/M ′ equipped with the quotient norm is in BanA.
It follows from [12, Proposition 3.7.3/3] that this gives rise to the canonical
topology on the finitely generated A-module N/M ′.

Now apply the above lemma to the natural projection pr: N → N/M ′, not-
ing that pr(M) is closed in N/M ′, as every A-submodule of a finitely generated
A-module (with the canonical topology) is closed by [12, Proposition 3.7.2/2],
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while finite generation of the quotient (N/M ′)/pr(M) follows directly from
finite generation of N/M ′. �

Lemma 2.14. Let M and N be modules in BanA such that M is closed and
of finite index in N . Let f : N → G be a surjection in BanA. Then f(M) is
closed and of finite index in G.

Proof. By Lemma 2.13, the submodule M + ker f is closed and of finite index
in N . Since f(M) = f(M + ker f), we can assume without loss of generality
that ker f ⊆ M .

By the open mapping theorem, f is open. By assumption, the set comple-
ment N \M is open in N , so f(N \M) is open in G. But since f is surjective
and ker f ⊆ M , we have

f(N \M) = G \ f(M),

so that f(M) is a closed submodule of G.
Moreover, we have the following isomorphisms as abstract A-modules

G/f(M) ∼= (N/ ker f)/(M/ ker f) ∼= N/M,

which is finitely generated by assumption. �

The content of the following lemma can be summarized as: small continuous
displacements of surjections are still surjective.

Lemma 2.15. Let f : M → N be a surjection in BanA. Then there exists a
real number c > 0 such that for any ǫ ∈ BanA(M,N) with |ǫ| < c (again with
respect to the supremum norm), the map f − ǫ is still surjective.

Proof. This is exactly [18, Lemma 1.3]. The proof given there works for any
strictly NB K-algebra. �

Proof of Theorem 2.11. We follow the argument in [18, Satz 1.2].
Since g is strictly completely continuous, we have a sequence of homomor-

phisms gi : M → N converging to g such that each gi(M
◦) is a finitely gen-

erated A◦-module. Note in particular that for each i, the image gi(M) is a
finitely generated A-module.

By Lemma 2.15, we can choose i large enough such that f − (gi − g) is
surjective. We set h = f − (gi − g), and note that f + g = h+ gi.

Let K = ker gi, which is closed (by continuity of gi) and of finite index in
M , since M/K ∼= gi(M) as abstract A-modules. Thus, by surjectivity of h,
Lemma 2.14 implies that h(K) is closed and of finite index in N . But now
h(K) = (h + gi)(K), by definition of K, and (h + gi)(K) is contained in
(h + gi)(M). Thus, by Lemma 2.13, (h + gi)(M) is closed and of finite index
in N , as required. �

We can now straightforwardly generalize two results from [18] regarding
affinoid K-algebras A to arbitrary strictly NB algebras.
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Theorem 2.16 (see [18, Satz 1.4]). Let f : M → N be a morphism in BanA.
Suppose that N is a closed submodule of some G ∈ BanA via the injection
j : N → G such that the composition jf is strictly completely continuous.
Then there exists a topologically free A-module F and a surjection p : F → M
in BanA such that fp is strictly completely continuous.

Proof. We only sketch the argument, as it is entirely analogous to [18, Satz 1.4].
By Corollary 2.4, there exists a topologically free A-module F and a contin-
uous surjection p : F → M in BanA. By Lemma 2.8, the composition jfp is
strictly completely continuous, so replacing M by F , we can assume that M
is topologically free, and we only need to show that f is strictly completely
continuous in that case.

Write M =
⊕̂

s∈S Aes, M
◦ = ⊕̂A◦es, and let 0 < ǫ < 1. Since jf is strictly

completely continuous, there exists some continuous morphism h : M → G
such that |jf − h| ≤ ǫ, with h(M◦) a finitely generated A◦-module, generated
by y1, . . . , yr, say.

For any s ∈ S, let ast ∈ A◦, t = 1, . . . , r, such that

h(es) =

r∑

t=1

astyt.

Since yt ∈ h(M◦) for any t, we can choose xt ∈ M◦ such that h(xt) = yt, and
set zt = f(xt) ∈ N .

Now define elements

fs =
r∑

t=1

astzt ∈ N

for any s ∈ S, and consider the continuous morphism φ : M = ⊕̂Aes → N
obtained by applying Proposition 2.3 to the function

S → N, s 7→ fs,

which is bounded, as |fs| ≤ maxt|zt| for any s ∈ S. Moreover, φ(M◦) ⊆∑
A◦zt is a finitely generated A◦-module by noetherianity.
The same calculation as in [18] verifies that |f − φ| ≤ ǫ, showing that f is

strictly completely continuous. �

Theorem 2.17 ([18, Korollar 1.5]). Let f : M → N be a surjection in BanA,
and let g : M → N be another morphism in BanA. Suppose N is a closed
submodule of some G ∈ BanA via the injection j : N → G, and suppose that
the composition jg is strictly completely continuous. Then Im(f + g) is closed
and of finite index in N .

Proof. By Theorem 2.16, there exists a topologically free module F and a
surjection p : F → M in BanA such that gp is strictly completely continuous.
By surjectivity of p, we have that fp is still surjective, so Theorem 2.11 implies
that Im(fp+ gp) = Im((f + g) ◦ p) is closed and of finite index. But since p is
surjective, this is the same as Im(f + g), and the result follows. �
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Note that the same result holds for Im(f − g). If jg is strictly completely
continuous, written as the limit of some (hi)i, then j◦(−g) is strictly completely
continuous, as it is the limit of (−hi)i.

These results are applied in the proof of Theorem 1.1 using the following
observation, which in [17] is attributed to Cartan and Serre.

Proposition 2.18. Let C•, D• be two cochain complexes in BanA, and let
α = (αi ∈ BanA(C

i, Di)) be a quasi-isomorphism. Assume further that for
each i there exists F i ∈ BanA together with a continuous surjection βi : F

i →
Ci such that αiβi is a stricly completely continuous morphism of A-modules.
Then Hi(D•) is a finitely generated A-module for each i.

Proof. This proof can be found in [18] as part of the proof of Satz 2.5 and
Satz 2.6. In a slight abuse of notation, all differentials will be denoted by the
same letter d.

Let Gi be the preimage of Zi(C•) = ker d ⊆ Ci in F i. Note that Zi(C•)
is closed in Ci, so it is complete when equipped with the subspace norm.
Similarly, it follows from continuity that Gi is closed in F i, and hence an
object in BanA.

We wish to apply Theorem 2.17 to

Gi ⊕Di−1 → Zi(D•), (a, b) 7→ d(b) = (αiβi(a) + d(b))− αiβi(a).

Firstly, we claim that the map

f : Gi ⊕Di−1 → Zi(D•), (a, b) 7→ αiβi(a) + d(b),

is a surjection in BanA.
We have already shown that each of the modules appearing is an object in

BanA (recall that BanA is closed under taking finite direct sums with the cor-
responding max norm), and since αi, βi and d are all bounded, f is clearly also
bounded. For surjectivity, note that we assume that αi induces an isomorphism
of cohomology groups, and hence the map

Zi(C•)⊕Di−1 → Zi(D•), (a, b) 7→ αi(a) + d(b),

is surjective.
Since βi is surjective, it follows that the restriction βi|Gi : Gi → Zi(C•) is

surjective by definition of Gi. Therefore, the composition

f : Gi ⊕Di−1 → Zi(C•)⊕Di−1 → Zi(D•)

is also surjective, as required.
Secondly, we need to show that the map

g : Gi ⊕Di−1 → Zi(D•), (a, b) 7→ αiβi(a),

is strictly completely continuous after composition with the injection j :
Zi(D•) → Di.
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Again, it is straight-forward to see that g is a morphism in BanA. Note that
it fits into the commutative diagram

Gi ⊕Di−1

pr

��

g
// Zi(D•)

j

��

Gi

ι

��

F i βi
// Ci αi

// Di,

where the bottom row is strictly completely continuous by assumption, the
map pr is the projection onto the first factor, and ι is the natural inclusion.

By Lemma 2.8, the composition αiβiιpr is strictly completely continuous.
It follows by commutativity of the diagram that the composition jg is a

strictly completely continuous morphism of A-modules, as required.
We can therefore apply Theorem 2.17 (and the remark after its proof) to

conclude that Im d = Im(f − g) is closed and of finite index in Zi(D•), i.e.,

Hi(D•) = Zi(D•)/d(Di−1)

is a finitely generated A-module. �

Recall that a morphism of semi-normedK-vector spaces φ : M → N is strict
if the induced morphism Coimφ → Imφ is a linear homeomorphism (i.e., the
quotient semi-norm on M/ kerφ is equivalent to the subspace semi-norm on
Imφ). Due to the open mapping theorem, a morphism in BanA is strict if and
only if it has closed image (see [12, Proposition 3.7.3/4], [10, Lemma 2.6]).

Corollary 2.19. In the situation of Proposition 2.18, D• is a cochain complex
with strict morphisms.

Proof. By the above, Im dj−1 is a closed subspace of Zj(D•), which is in
turn a closed subspace of Dj by continuity. Thus, we can apply [12, Proposi-
tion 3.7.3/4] to show that dj−1 is strict for each j. �

2.20. Completed tensor products. Recall the definition of the completed
tensor product M ⊗̂A N from [11, Appendix B], where A is a normed K-
algebra, M a normed right A-module, and N a normed left A-module.

We note the following straight-forward properties.

Lemma 2.21. Let A and B be noetherian Banach K-algebras. Let N be
a finitely generated left Banach A-module, and let M be a Banach (B,A)-
bimodule which is finitely generated as a left B-module. Then the natural
morphism

M ⊗A N → M ⊗̂A N

is a B-linear homeomorphism, i.e., the tensor semi-norm is a norm with respect
to which M ⊗N is already complete.
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Proof. This is a straight-forward generalization of [12, Proposition 3.7.3/6].
By [12, Proposition 3.7.3/3], the norm on N is equivalent to one induced

by a surjection ρ : A⊕r → N for some integer r. The map ρ is then strict by
definition.

Now [12, Proposition 2.1.8/6] implies that the map M ⊗ ρ : M ⊗A A⊕r →
M ⊗A N is a strict surjection of semi-normed left B-modules, i.e., the tensor
semi-norm onM⊗N is equivalent to the quotient semi-norm induced by M⊗ρ.

Note that M ⊗ A⊕r ∼= M⊕r, as semi-normed left B-modules. But M⊕r is
a finitely generated left Banach B-module. Therefore, the kernel of M ⊗ ρ is
closed by [12, Proposition 3.7.2/2], making M ⊗N a Banach B-module by [12,
Propositions 2.1.2/1, 3]. �

Lemma 2.22. Let A be a strictly NB K-algebra, and let M be a finitely
generated left Banach A-module. Then M◦ is a finitely generated A◦-module.

Proof. Since A◦ is noetherian, the property of having a finitely generated unit
ball is preserved under replacing an A-module norm by an equivalent one. So
by [12, Proposition 3.7.3/3], we can assume that the norm on M is induced
by a surjection ρ : A⊕r → M for some positive integer r, giving the finitely
generated unit ball M◦ ⊆ π−1ρ((A◦)⊕r). �

Let A be a normed K-algebra. We now recall a result from [10] concerning
exactness properties of ⊗̂A. While the results in [10] were proved under the
assumption that |A| \ {0} = |K∗|, this is not a restriction: any K-algebra
norm on A is equivalent to the gauge norm associated to its unit ball (see
[23, Lemma 2.2]), which is a submultiplicative norm with the same unit ball
satisfying the assumption on the value set.

Let (C•, ∂) be a cochain complex of left Banach A-modules, with strict
differentials.

Let U be a normed right A-module that is flat as an abstract A-module.
We equip the cohomology groups Hj(C•) with the quotient norm induced

from the subspace norm on ker ∂j . For any left A◦-module M , we will abbre-

viate the R-module TorA
◦

s (U◦,M) to Ts(M).

Theorem 2.23 ([10, Theorem 2.16]). Suppose that for large enough j,
Ts((Coim ∂j)◦) and Ts((ker ∂

j)◦) have bounded π-torsion for all s ≥ 0. Sup-
pose further that for all j, the following are satisfied:

(i) Ts

(
Hj(C•)◦

)
has bounded π-torsion for all s ≥ 0.

(ii) Ts

(
(Cj)◦

)
has bounded π-torsion for all s ≥ 0.

Then the complex U ⊗A C•, with each term being equipped with the tensor
product semi-norm, consists of strict morphisms, and the canonical morphism

U ⊗̂A Hj(C•) → Hj(U ⊗̂A C•)

is an isomorphism for each j.

Note that this applies in particular whenever U◦ is a flat A◦-module (see
[10, Corollary 2.15]).
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We now give some further applications. We assume that Cj = 0 for suf-
ficiently large j, so that the condition on Ts((Coim ∂j)◦) and Ts((ker ∂

j)◦) is
automatically satisfied. Also note that since Hj(C•) is Banach with respect to

the quotient norm, the A-module structure extends to an Â-module structure.

Corollary 2.24. Suppose that U◦ and A◦ are left noetherian rings such that
the module structure on U◦ is given by a ring morphism A◦ → U◦, and that

the multiplication extends to endow U◦ ⊗A◦ Â◦ with the structure of a left
noetherian ring. Assume further that for each j, the following are satisfied:

(i) Hj(C•) is a finitely generated Â-module.
(ii) Ts((C

j)◦) has bounded π-torsion for each s ≥ 0.

Then U ⊗A C• consists of strict morphisms and the natural morphism

“U ⊗
Â
Hj(C•) → Hj(U ⊗̂A C•)

is an isomorphism of “U-modules.

Proof. By Lemma 2.2, Â is a strictly NB K-algebra whose unit ball is Â◦.

Therefore, by Lemma 2.22, Hj(C•)◦ is a finitely generated Â◦-module. Now

Ts(H
j(C•)◦) = TorA

◦

s (U◦,Hj(C•)◦) ∼= TorÂ
◦

s (U◦ ⊗A◦ Â◦,Hj(C•)◦),

by [26, Proposition 3.2.9], as Â◦ is flat over A◦ by [9, Property 3.2.3 (iv)].

By noetherianity of Â◦, Hj(C•)◦ now admits a free resolution of finitely

generated Â◦-modules, so that each

TorÂ
◦

s (U◦ ⊗ Â◦,Hj(C•)◦)

is a finitely generated left U◦ ⊗ Â◦-module, as we assume this ring to be
noetherian.

So by noetherianity, the π-torsion submodule is also finitely generated, and
thus Ts(H

j(C•)◦) has in fact bounded π-torsion for each s ≥ 0. Now apply
Theorem 2.23.

For the last isomorphism, note that we have

“U ⊗̂
Â
Hj(C•) ∼= U ⊗̂A Hj(C•) ∼= Hj(U ⊗̂A C•),

by [12, Proposition 2.1.7/4] and the above, and we can remove the completion
symbol over the first tensor product by Lemma 2.21. �

Corollary 2.25. Suppose that U◦ and A◦ are left noetherian rings such that
the module structure on U◦ is given by a ring morphism A◦ → U◦, and that both
A and U are Banach algebras. Assume further that for each j, the following
are satisfied:

(i) Hj(C•) is a finitely generated A-module.
(ii) Ts((C

j)◦) has bounded π-torsion for each s ≥ 0.

Then U ⊗AC• consists of strict morphisms and U ⊗AHj(C•) ∼= Hj(U ⊗̂A C•).
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Proof. This is just a special case of the above, that is, Â◦ = A◦, as we assume
A to be complete, so U◦ ⊗A◦ Â◦ = U◦, which is a left noetherian ring by
assumption. �

3. Statement of the theorem

3.1. Fréchet–Stein algebras and coadmissible modules. We recall some
important notions from [4].

Definition 3.2 ([4, Definition 9.1]). A Lie algebroid on a rigid analytic K-
varietyX is a pair (ρ,L ), where L is a locally freeOX -module of finite rank on
Xrig which is also a sheaf of K-Lie algebras, and the anchor map ρ : L → TX
is an O-linear map of sheaves of Lie algebras, satisfying

[x, ay] = a[x, y] + ρ(x)(a)y

for any x, y ∈ L (U), a ∈ OX(U), U any admissible open subset of X .

This is the natural sheaf analogue of Rinehart’s notion of a (K,A)-Lie al-
gebra, see [22].

Let X be a rigid analytic K-variety. To any Lie algebroid (ρ,L ) on X we

can associate the sheaf of Fréchet completed enveloping algebras U̇ (L ), whose
sections can be described as follows.

Let U = SpA be an admissible open affinoid subspace of X , and let A
be the unit ball of A with respect to some residue norm (an ‘affine formal
model ’). Inside L (U), choose an (R,A)-Lie lattice, i.e., a finitely generated
A-submodule L such that

(i) L generates L (U) as an A-module,
(ii) L is closed under the Lie bracket of L (U),
(iii) A is preserved under the induced action of L on A via ρ.

Then

U̇ (L )(U) = ˛�UA(L (U)) := lim
←−
n

Ÿ�UA(πnL)K ,

where UA(L) is the enveloping algebra introduced in [22]. A standard argu-
ment shows that this expression is independent of the choices made, see [4,

Section 6.2]. By construction, U̇ (L )(U) carries the structure of a Fréchet
K-algebra.

If X is a smooth rigid analytic K-variety, then the tangent sheaf TX is a

Lie algebroid, and we denote the resulting sheaf ˚�U (TX) by ÙDX .

Definition 3.3 ([24, Section 3]). A topological K-algebra U is called a (left,
two-sided) Fréchet–Stein algebra if U ∼= lim

←−
Un is an inverse limit of countably

many (left, two-sided) noetherian Banach K-algebras Un, such that for every
n the following are satisfied:

(i) The morphism Un+1 → Un makes Un a flat Un+1-module (on the right,
on both sides).

(ii) The morphism Un+1 → Un has dense image.
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Given a Lie algebroid L on a rigid analytic K-variety X , it was shown in

[10, Theorem 3.5] that U̇ (L )(U) is a two-sided Fréchet–Stein algebra for any
admissible open affinoid subspace U of X .

For Fréchet–Stein algebras, the natural analogue of a coherent module is a
coadmissible module, whose definition we recall below.

Definition 3.4 ([24, Section 3]). A left module M of a left Fréchet–Stein al-
gebra U = lim

←−
Un is called coadmissible if M = lim

←−
Mn, such that the following

are satisfied for every n:

(i) Mn is a finitely generated left Un-module.
(ii) The natural morphism Un ⊗Un+1

Mn+1 → Mn is an isomorphism.

By [24, Lemma 3.8], the notion of coadmissibility is independent of the
chosen presentation U ∼= lim

←−
Un.

We record the following basic results from [24, Section 3].

Proposition 3.5. Let M = lim
←−

Mn be a coadmissible U = lim
←−

Un-module.
Then the following hold:

(i) The natural morphism Un ⊗U M → Mn is an isomorphism for each n
(see [24, Corollary 3.1]).

(ii) The system (Mn)n has the Mittag-Leffler property, as described in [14,

Remarques 0.13.2.4], so that lim
←−

(j) Mn = 0 for any j ≥ 1 (see [24,

Section 3, Theorem B]).
(iii) The category of coadmissible U -modules is an abelian category, con-

taining all finitely presented U -modules (see [24, Corollaries 3.4, 3.5]).

Given a (K,A)-Lie algebra L which is finitely generated projective over A,

finitely generated UA(L)-modules give rise to coadmissible U̇A(L)-modules in
a natural way as follows.

As UA(L) is noetherian, any finitely generated UA(L)-module M is finitely
presented, so the module

ıM := U̇A(L)⊗U(L) M

is a finitely presented Ŭ(L)-module and thus coadmissible by property (iii) of
Proposition 3.5.

Choose an (R,A)-Lie lattice L in L and write Un = UA(π
nL). It now

follows from property (i) in Proposition 3.5 that

ıM ∼= lim
←−

(”UnK ⊗U(L) M).

We call ıM the coadmissible completion of M , as in [4, Definition 7.1].

Lemma 3.6 ([10, Lemma 4.14]). The functor M 7→ ıM is exact on finitely
generated UA(L)-modules.

Theorem 3.7. Let L be a (K,A)-Lie algebra which is finitely generated pro-

jective as an A-module. Then U̇A(L) is flat as a (left and right) UA(L)-module.
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Proof. Let I be a left ideal of UA(L), which is automatically finitely generated
by noetherianity of UA(L). By [26, Proposition 3.2.4], it is sufficient to show

that the map Ŭ(L)⊗ I → Ŭ(L) is injective. But this follows immediately from

the previous lemma. Thus, U̇A(L) is flat as a right U(L)-module. The proof
concerning the left module structure is entirely analogous. �

3.8. Fréchet–Stein sheaves. We now introduce a class of sheaves of algebras

which is large enough to include not only those of the form U̇ (L ), but also

various quotients, for example the twisted sheaves ÙDλ which we are going to
define in Section 6.

Definition 3.9. A sheaf of topological K-algebras F on a rigid analytic K-
variety X is called a (left) global Fréchet–Stein sheaf if there exists

(i) a collection of sites (Xn)n∈N on X such that Xn is contained in Xn+1

for each n, and any U ∈ Xw is in Xn for sufficiently large n, likewise
for Xw-coverings; and

(ii) for each n, a sheaf of K-algebras Fn on Xn, together with morphisms
Fn+1|Xn → Fn,

such that the following hold:

(i) There is an isomorphism F ∼= lim
←−

Fn (where we write lim
←−

Fn for the

sheaf on X obtained from U 7→ lim
←−

Fn(U) for U ∈ Xw), which ex-

hibits F(U) ∼= lim
←−

Fn(U) as a (left) Fréchet–Stein algebra for every
admissible open affinoid subspace U of X .

(ii) If V is an affinoid subdomain of an admissible open affinoid subspace
U ⊆ X such that both U and V are open in Xn, then the restriction
map Fn(U) → Fn(V ) is flat (on the right).

(iii) If U ⊆ X is an admissible open affinoid subspace which is open in Xn

and U is a finite covering of U in Xn by affinoid subdomains, then
Ȟj(U,Fn) = 0 for each j > 0.

Given a left global Fréchet–Stein sheaf on an affinoid K-variety X , we can
repeat all the arguments in [4, Sections 5 and 8] to produce a localization
functor Loc, sending a coadmissible left F(X)-module M to the sheaf of F -
modules given by

U 7→ F(U)Ù⊗F(X) M

for each U ∈ Xw. By the same argument as in [10, Theorem 4.16], LocM is a
sheaf with vanishing higher Čech cohomology for every finite affinoid covering.

Definition 3.10. Let F be a left global Fréchet–Stein sheaf on a rigid analytic
K-variety X . A left F -module M is then called coadmissible if there exists an
admissible covering U of X by affinoid subspaces such that for every U ∈ U,
the following hold:

(i) M(U) is a coadmissible F(U)-module,
(ii) the natural morphism LocM(U) → M|U is an isomorphism.
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Definition 3.11. A sheaf of K-algebras F on a rigid analytic K-variety X is
a full Fréchet–Stein sheaf if for any admissible open affinoid subspace U of X ,
the restriction F|U is a global Fréchet–Stein sheaf on U .

An F -module M is called coadmissible if there exists an admissible covering
U by affinoid subspaces such that for all U ∈ U, M|U is a coadmissible F|U -
module.

The analogue of Kiehl’s theorem ([4, Theorem 8.4], [10, Theorem 4.17]) still
holds in this generalized context, so that if M is coadmissible with respect to
one covering, then it is coadmissible with respect to any affinoid covering.

If there exists a collection S of admissible open affinoid subspaces of X
forming a basis of the topology with the property that F|U is a global Fréchet–
Stein sheaf for each U ∈ S, we call F simply a Fréchet–Stein sheaf. For this
it is evidently sufficient to give one admissible covering (Ui) of X by affinoid
subspaces such that F|Ui is a global Fréchet–Stein sheaf for each i.

There is a natural analogue of the theory above for Fréchet–Stein sheaves,
see [4].

We can now restate a result from [10] as follows.

Proposition 3.12 ([10, Theorems 3.5, 4.9, 4.10]). If L is a Lie algebroid on

some rigid analytic K-variety X, then U̇ (L ) is a full Fréchet–Stein sheaf.

Let L be a Lie algebroid on an affinoid K-variety X . For future reference,
we recall the corresponding sites Xn and sheaves Fn explicitly in this case.

Let X = SpA, and let A be an affine formal model in A. Choose an
(R,A)-Lie lattice L in L (X). Recall from [4, Definition 3.1] that an affinoid
subdomain Y = SpB of X is called L-admissible if B contains an L-stable
affine formal model, i.e., an affine formal model which contains the image of A
under restriction and is preserved by the L-action.

We now consider the site Xn = Xac(π
nL) of πnL-accessible subdomains as

defined in [4].

Definition 3.13 ([4, Definitions 4.6, 4.8]). Let Y be a rational subdomain
of X . If Y = X , we say that it is L-accessible in 0 steps. Inductively, if n ≥ 1,
then we say that it is L-accessible in n steps if there exists a chain Y ⊆ Z ⊆ X
such that the following are satisfied:

(i) Z ⊆ X is L-accessible in (n− 1) steps,
(ii) Y = Z(f) or Z(f−1) for some nonzero f ∈ O(Z),
(iii) there is an L-stable affine formal model C ⊂ O(Z) such that L · f ⊆ C.

A rational subdomain Y ⊆ X is said to be L-accessible if it is L-accessible in
n steps for some n ∈ N.

An affinoid subdomain Y of X is said to be L-accessible if it is L-admissible
and there exists a finite covering Y =

⋃r
j=1 Yj , where each Yj is an L-accessible

rational subdomain of X .
A finite covering {Yj} of X by affinoid subdomains is said to be L-accessible

if each Yj is an L-accessible affinoid subdomain of X .
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We then define the sheaf Un(L ) on Xac(π
nL) by setting

Un(L )(Y ) = ¤�UB(B ⊗A πnL)K

for any πnL-accessible affinoid subdomain Y = SpB of X , where B ⊂ B is
some πnL-stable affine formal model.

Also note that by [4, Proposition 2.3], Un(L )(Y ) is isomorphic as a B-
module to B ⊗̂A UA(L (X)), where B is equipped with some residue norm
(without loss of generality with unit ball B as above) and UA(L (X)) is equip-
ped with the gauge semi-norm associated to UA(π

nL).
It was shown in [10] that the sheaves Un(L ) have the desired properties.
Recall the following result from [24].

Lemma 3.14 ([24, Proposition 3.7, Lemma 3.8]). Let I be a closed two-sided
ideal in a Fréchet–Stein algebra U . Then U/I is a Fréchet–Stein algebra, and
a U/I-module is coadmissible if and only if it is coadmissible as a U -module.

We will slightly extend this result and its sheaf analogue in order to produce
further examples of global Fréchet–Stein sheaves.

Just as a Fréchet–Stein algebra B = lim
←−

Bn carries a natural Fréchet topol-
ogy as the inverse limit topology of the Banach norms on Bn, so any coadmis-
sible B-module M = lim

←−
Mn carries a canonical Fréchet topology induced by

the canonical Banach module structures on each Mn.
An algebra structure on M is said to have continuous multiplication (with

respect to (Bn)) if we can choose, for each sufficiently large n, a Banach Bn-
module norm |−| on Mn such that the natural morphism ιn : M → Mn endows
M with a semi-norm | − |n which is submultiplicative, i.e.,

|xy|n := |ιn(xy)| ≤ |ιn(x)| · |ιn(y)|

for any x, y ∈ M . If this holds, multiplication on M extends continuously to
make Mn = Bn ⊗B M a Banach K-algebra.

It is important to note that this definition depends on the presentation
B ∼= lim

←−
Bn, and is stronger than requiring that M be a Fréchet algebra with

respect to the canonical Fréchet topology.

Lemma 3.15. Let B = lim
←−

Bn be a left Fréchet–Stein K-algebra, and let
C be a K-algebra which is also a left coadmissible B-module with continuous
multiplication via an algebra morphism B → C. Then C is a left Fréchet–
Stein algebra. If M is a left C-module, then it is coadmissible if and only if it
is coadmissible as a B-module.

Proof. By assumption, Cn := Bn ⊗B C is a finitely generated left Bn-module
and the canonical Banach norm gives rise to a submultiplicative semi-norm
| − |n on C. Note that the image of ιn : C → Cn is dense by [24, Theorem A].
But then the completion of C with respect to | − |n is a Banach K-algebra,
which as a Banach space is naturally isomorphic to Cn by construction.

Thus, C = lim
←−

Cn is the limit of BanachK-algebras, and each Cn is left noe-
therian, as it is finitely generated over Bn via the natural morphism Bn → Cn.
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Since the functor Cn ⊗Cn+1
− can be written as

(Bn ⊗Bn+1
Cn+1)⊗Cn+1

−,

flatness follows from flatness of the maps Bn+1 → Bn.
Since the map Bn+1 → Bn has dense image, it follows that Cn+1 → Cn =

Bn⊗Bn+1
Cn+1 also has dense image for each n. Thus, C is a left Fréchet–Stein

algebra.
The second part of the statement is now a simplified version of [24, Lem-

ma 3.8].
If M is a left C-module, then

Mn := Cn ⊗C M ∼= (Bn ⊗B C)⊗C M = Bn ⊗B M,

as a Bn-module, and Mn is finitely generated as a Cn-module if and only if it
is finitely generated as a Bn-module, because Cn is finitely generated over Bn.
Moreover,

Bn ⊗Bn+1
Mn+1

∼= (Bn ⊗Bn+1
Cn+1)⊗Cn+1

Mn+1
∼= Cn ⊗Cn+1

Mn+1,

finishing the proof. �

Proposition 3.16. Let X be a rigid analytic K-variety and let F ′ = lim
←−

F ′
n

be a left global Fréchet–Stein sheaf on X. Let F be a sheaf of K-algebras on
X which is also a left coadmissible F ′-module via a morphism θ : F ′ → F .
Assume that F(U) has continuous multiplication with respect to (F ′

n(U)) for
each admissible open affinoid subspace U . Then F is itself a left global Fréchet–
Stein sheaf on X, and an F-module M is coadmissible if and only if it is
coadmissible as an F ′-module.

Proof. Consider the sheaves Fn := F ′
n ⊗F ′ F on Xn. By assumption, this is

in fact a sheaf of K-algebras, extending the multiplication on F by continuity.
Now let U be an admissible open affinoid subspace of X .

We have shown in [10, Theorem 4.16] that the sheaf Fn|U on Xn has vanish-
ing higher Čech cohomology. The flatness of restriction maps is again inherited
from F ′

n, and F(U) is a Fréchet–Stein K-algebra by Lemma 3.15. This makes
F a global Fréchet–Stein sheaf on X .

The statement on coadmissible modules is now just Lemma 3.15 combined
with the natural isomorphism

F(V )Ù⊗F(U)M ∼=
(
F ′(V )Ù⊗F ′(U) F(U)

)Ù⊗F(U) M ∼= F ′(V )Ù⊗F ′(U) M

for any coadmissible F(U)-module M and any affinoid subdomain V of U (see
[4, Proposition 7.4]). �

In this case, we call F a coadmissible enlargement of F ′.
A standard example of a coadmissible enlargement is given by the following.

If L ′ → L is an epimorphism of Lie algebroids on an affinoid K-variety X =
SpA, we can choose an affine formal model A in A and an (R,A)-Lie lattice
L′ in L′ := L ′(X), and let L denote the image of L′ in L := L (X). Then L
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is an (R,A)-Lie lattice in L, and the induced map UA(π
nL′) → UA(π

nL) is
surjective for each n.

By [9, Property 3.2.3 (iii)], Ÿ�UA(πnL) is isomorphic to ÿ�U(πnL′) ⊗U(πnL′)

U(πnL) as a ÿ�U(πnL′)-module, and hence tensoring with K yields

◊�U(πnL)K
∼= ÿ�U(πnL′)K ⊗U(L′) U(L).

Thus, U̇ (L )(X) = U̇A(L) is the coadmissible completion of the finitely gen-
erated UA(L

′)-module UA(L) as discussed in Lemma 3.6. This shows that

U̇ (L )(X) is a coadmissible ˚�U (L ′)(X)-module with continuous multiplica-
tion, and repeating the argument for arbitrary affinoid subdomains shows that

the natural epimorphism ˚�U (L ′) → U̇ (L ) turns U̇ (L ) into a coadmissible

enlargement of˚�U (L ′). The proposition above can then be viewed as the sheaf
analogue of Lemma 3.14.

Note that another example of coadmissible enlargement was already given
in [24, Theorem 5.1]: there, the distribution algebra D(G0,K) was described
as a free D(H0,K)-module of finite rank, and a crucial step in the proof that
D(G0,K) was Fréchet–Stein consisted in checking that the multiplication on
D(G0,K) satisfied the necessary continuity condition.

We will see other examples arising as quotients of U̇ (L ) in Section 6.

Lemma 3.17. Let h : X → Y be an affinoid morphism of rigid analytic K-
varieties, and let F be a global Fréchet–Stein sheaf on X. Then h∗F is a global
Fréchet–Stein sheaf on Y . If M is a coadmissible F-module, then h∗M is a
coadmissible h∗F-module. If G is a coadmissible enlargement of F , then h∗G
is a coadmissible enlargement of h∗F .

Proof. Let Fn be sheaves on sites Xn, satisfying the conditions given in Defini-
tion 3.9. Define Yn to be the Grothendieck topology on Y induced by Xn, i.e.,
an affinoid subspace U in Yw is open in Yn if h−1U is open in Xn, analogously
for coverings. Then the sheaf h∗Fn is defined on Yn, and h∗F ∼= lim

←−
h∗Fn.

The claims now follow immediately from the definitions, as for any admis-
sible open affinoid subspace U of Y , its preimage h−1U is an admissible open
affinoid subspace of X by assumption. �

3.18. Proper morphisms. We now describe the geometric situation we will
be concerned with in this paper.

Definition 3.19 ([11, Definition 6.3/6]). Let f : X → Y be a morphism of
rigid analytic varieties, with Y being affinoid, and let U ⊆ U ′ ⊆ X be ad-
missible open affinoid subspaces. We say U is relatively compact in U ′ (with
respect to Y ), or U lies in the interior of U ′ with respect to Y , if the map
OY (Y ) → OX(U ′) gives rise to a surjection

θ : OY (Y )〈x1, . . . , xl〉 → OX(U ′),
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for some integer l, such that

U ⊆ {x ∈ U ′ : |fi(x)| < 1},

where fi is the image of xi under θ.

Recall that |fi(x)| is the norm of the residue class fi in OX(U ′)/mx, a finite
field extension of K, with mx the maximal ideal of OX(U ′) corresponding to
x ∈ U ′.

Definition 3.20 ([11, Definition 6.3/8]). A morphism f : X → Y between
rigid analytic varieties is proper if it is separated and there exists an admissible
affinoid covering (SpAi)i∈I of Y such that for all i ∈ I, Xi = f−1(SpAi) has
two finite admissible affinoid coverings (Uij), (Vij), with Vij being relatively
compact in Uij with respect to SpAi for each j.

As properness is local on the base (see [12, Proposition 9.6.2/3]), we will
often restrict our attention to the case when Y = SpA is itself affinoid and
satisfies the condition in Definition 3.20, i.e., we have two finite admissible
affinoid coverings U = (Ui), V = (Vi) of X such that Vi is relatively compact
in Ui with respect to Y for each i. Thus, there exists a commutative diagram

A〈x1, . . . , xl〉

θi

��

hi

&&
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

OX(Ui)
res

// OX(Vi)

such that the map θi is surjective and

|hi(xj)|sup < 1

for any j = 1, . . . , l by the maximum principle [11, Theorem 3.1/15].
In particular, hi(xj) is topologically nilpotent in OX(Vi) for each j (it follows

from [11, Corollary 3.1/18] that this notion is independent of the choice of norm
on OX(Vi)).

Moreover, writing Ui1···ij for the finite intersection Ui1 ∩ · · · ∩Uij , it follows
from separatedness that all Ui1···ij and Vi1···ij are admissible open affinoid
subspaces of X , and that Vi1···ij is relatively compact in Ui1···ij with respect
to Y (see [11, Lemma 6.3/7 (iii)]).

In this situation (i.e., when the covering (SpAi) in Definition 3.20 consists
of a single affinoid), we say that f : X → Y is elementary proper.

Note that if f : X → Y = SpA is elementary proper, then OX(X) is a
finitely generatedA-module by Theorem 1.1. In particular, it is of topologically
finite type, and hence an affinoid K-algebra. The morphism f thus admits a
factorization X → SpOX(X) → Y .

More generally, we have the following version of Stein factorization.
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Proposition 3.21 ([12, Proposition 9.6.3/5]). Let f : X → Y be a proper
morphism of rigid analytic K-varieties. Then there exists a rigid analytic K-
variety Z and a factorization

X

f
��
❅

❅

❅

❅

❅

❅

❅

❅

g
// Z

h

��

Y ,

where g is a surjective proper morphism with connected fibres and g∗OX
∼= OZ ,

and where h is finite.

Let f : X → Y be a proper morphism of rigid analytic K-varieties, and let
(ρ,L ) be a Lie algebroid on X .

Most of this paper will be devoted to the special case when L is a free OX -
module. The more general result will be a relatively straight-forward corollary.

Theorem 3.22. Let f : X → Y be an elementary proper morphism of rigid
analytic K-varieties, and let L be a Lie algebroid on X which is free as an

OX -module. Then U̇ (L ) is a global Fréchet–Stein sheaf on X, f∗U̇ (L ) is a

global Fréchet–Stein sheaf on Y , and if M is a coadmissible left U̇ (L )-module,

then Rjf∗M is a coadmissible left f∗U̇ (L )-module for each j ≥ 0.

While we will prove the above theorem for coadmissible left modules, all ar-
guments can be easily adapted to right modules. From now on, all coadmissible
modules will be understood to be left modules.

By Lemma 3.17, we can assume without loss of generality that f is equal
to the first map in its Stein factorization, i.e., Y = SpA, where A = OX(X).
We will work in this specific setting until the end of Section 5.

Note that if U ⊆ Y is an affinoid subdomain of Y , then all our assumptions
are still satisfied after restricting to f |f−1U : f−1U → U . If U = SpB, then
OX(f−1U) = B by Kiehl’s proper mapping theorem, L |f−1U is a free Lie alge-
broid and f |f−1U is an elementary proper morphism f−1U → U by the behav-
ior of relative compactness under direct products (see [11, Lemma 6.3/7 (i)]).

3.23. The sheaves Un and Mn. Let us abbreviate U̇ (L ) to ıU , and let M

be a coadmissible ıU -module.
We begin by showing that bothıU and f∗ıU are global Fréchet–Stein sheaves.

For this, we will construct sheaves Un such that lim
←−

Un
∼= ıU , similarly to the

discussion of U̇ (L ) on an affinoid K-variety in [10]. We will then proceed by
describing a similar construction for M, which will allow us to reduce to the
noetherian case.

Lemma 3.24. The pushforward f∗L is a Lie algebroid on Y .

Proof. By Kiehl’s proper mapping theorem, f∗L is a coherent OY -module,
and it is free by assumption.
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The anchor map ρ : L → TX gives rise to a Lie algebra action of L on
OX(X) = A. Restricting to an admissible affinoid covering of X , it follows
from the definition of a Lie algebroid that L acts via derivations (see [4, Propo-
sition 9.1]), and that the corresponding map ρ′(Y ) : L → DerK(A) satisfies the
Leibniz property of an anchor map.

By the remark at the end of the previous subsection, we obtain corre-
sponding morphisms ρ′(U) : f∗L (U) → TY (U) for any affinoid subdomain
U ⊆ Y , which naturally give rise to an anchor map ρ′ : f∗L → TY , finishing
the proof. �

We now fix an affine formal model A inside A = OX(X), and let L be an
(R,A)-Lie lattice inside L = L (X). Since L is assumed to be free, L is a free
A-module, so that we can (and will) take L to be a free A-module.

Proposition 3.25. The sheaf ıU is a global Fréchet–Stein sheaf on X.

Proof. For each n ≥ 0, we define a Grothendieck topology on X , whose site we
denote by Xn, and a sheaf Un on Xn satisfying the conditions in Definition 3.9.

Let U = (Ui), V = (Vi) be affinoid coverings of X as described in Defini-
tion 3.20, i.e., for each i, Vi is relatively compact in Ui with respect to Y .

Note that by [4, Lemma 3.1], each OX(Ui) admits an affine formal model
containing the image of A under the restriction map

OX(X) → OX(Ui).

Replacing L by πnL for suitable n, we can assume that OX(Ui) admits an
affine formal model Bi that

(i) contains the image of A, and
(ii) is preserved under the action of L induced via the map L (X) → L (Ui)

(as any affine formal model is topologically of finite type).

We adopt the same terminology as in the case of affinoid subdomains and call
such a Bi an L-stable affine formal model.

Thus,
Li := Bi ⊗A L ⊆ OX(Ui)⊗A L = L (Ui)

is an (R,Bi)-Lie lattice inside Li = L (Ui) for each i.
Recall that for each i, we have defined the G-topology Ui,ac(Li) of Li-

accessible subdomains of Ui in Definition 3.13. Again, replacing L by πnL for
suitable n and invoking [4, Proposition 7.6], we can assume that each Ui1···ij

and each Vi1···ij is Li-accessible whenever it is a subspace of Ui (here we are
using the fact that both coverings are finite).

Furthermore, using [4, Lemma 3.1], we can find affine formal models Bij

in OX(Uij) such that Bij contains the image of Bi and Bj under restriction.
Replacing L by πnL, we can assume that Bij is L-stable for each i, j, and thus
both Li-stable and Lj-stable by construction.

In particular,
Bij ⊗Bi Li

∼= Bij ⊗A L ∼= Bij ⊗Bj Lj

is an (R,Bij)-Lie lattice inside L (Uij).
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We now define the site Xn to be the G-topology on X generated by the
Ui,ac(Li), i.e., the finest G-topology onX inducing on Ui the topology Ui,ac(Li)
– see [12, Section 9.1.3].

Recall from the discussion after Definition 3.13 that we have for each non-
negative integer n a sheaf of K-algebras Un,i on Ui,ac(π

nLi) given by

U 7→ OX(U) ⊗̂Bi
ÿ�U(πnLi)K ,

satisfying lim
←−

Un,i(U) = U̇ (L )(U) for each affinoid subdomain U ⊆ Ui.
On each overlap Uij = Ui ∩ Uj , we have

Un,i|Uij = (OX(Uij) ⊗̂Bi U(Li))
∼

= ¤�U(Bij ⊗A L)
∼

K

= (OX(Uij) ⊗̂Bj U(Lj))
∼

= Un,j |Uij ,

where we write M∼ for the presheaf V 7→ OX(V ) ⊗̂M . Thus, the sheaves Un,i

agree on all overlaps and glue to give a sheaf Un on Xn.
Since lim

←−
Un,i = ıU |Ui on each Ui, this implies the equality lim

←−
Un(U) =

ıU (U) for any admissible open subspace U of X .
Restricting to any admissible open affinoid subspace U of X , the construc-

tion above coindices with the one given after Definition 3.13, so that the con-
ditions on flat restriction and vanishing cohomology on U follow directly from
[10, Theorems 4.9, 4.10].

Thus, ıU ∼= lim
←−

Un is a global Fréchet–Stein sheaf. �

Lemma 3.26. The natural morphism ¸�U (f∗L ) → f∗ıU is an isomorphism.
In particular, f∗ıU is a global Fréchet–Stein sheaf on Y .

Proof. Consider the Čech complex Č•(V,OX), where V = (Vi). It follows
from Corollary 2.19 that this is a finite cochain complex of Banach A-modules
with strict morphisms, where each cohomology group is a finitely generated
A-module by Kiehl’s proper mapping theorem.

Since πnL is a free A-module, so is UA(π
nL) by Rinehart’s theorem, [22,

Theorem 3.1]. In particular, applying [10, Corollary 2.15], the complex

◊�U(πnL)K ⊗̂A Č•(V,OX) = Č•(V,Un)

has cohomology

Ȟj(V,Un) ∼= ◊�U(πnL)K ⊗̂A Ȟj(V,OX) = ◊�U(πnL)K ⊗A Ȟj(V,OX),

by Lemma 2.21.
This naturally identifies Un(X) with ◊�U(πnL)K , and f∗ıU (Y ) = ıU (X) =

U̇A(L).
Restricting f to f |f−1U : f−1U → U preserves all assumed properties of the

morphism, so that the same argument applies to arbitrary affinoid subdomains
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U of Y . Thus, the natural morphism ¸�U (f∗L ) → f∗ıU is bijective on each
affinoid subdomain of Y , and is hence an isomorphism.

Since the sheaf of Fréchet completed enveloping algebras on an affinoid K-
variety is a global Fréchet–Stein sheaf by Proposition 3.12, the last statement
follows immediately. �

We can also read off from the above discussion that Ȟj(V,Un) is a finitely
generated Un(X)-module for any j ≥ 0, which can be seen as a first partial
result in the direction of Theorem 3.22.

We conclude this section by constructing Un-modules Mn having the prop-
erty lim

←−
Mn

∼= M.

In [10, Section 4.3], we showed that M|Ui can be written as the inverse limit
of sheaves Mn,i on Ui,ac(π

nLi), given by

U 7→ Un(U)⊗ıU (Ui)
M(Ui).

Note that then by definition of Ù⊗,

Mn,i(U) = Un(U)⊗ıU (U)
(ıU (U)Ù⊗ıU (Ui)

M(Ui)) = Un(U)⊗ıU (U)
M(U)

for any U ∈ Ui,ac(π
nL).

Thus, Mn,i agrees with Mn,j on Uij , giving a sheaf Mn on the site Xn

defined in the proof of Proposition 3.25. Since lim
←−

Mn,i
∼= M|Ui , we see that

lim
←−

Mn(U) ∼= M(U) for any admissibe open subspace U of X .

It follows from [10, Theorem 4.16] and [25, Tag 03F9] that U resp. V are
admissible coverings such that if U ∈ Xn is a finite intersection of sets in U

resp. V, then Hj(U,Mn) = 0 for any j > 0.
Thus, applying [25, Tag 03F7] gives

Ȟj(U,Mn) ∼= Hj(Xn,Mn) ∼= Ȟj(V,Mn)

for any j ≥ 0.
Finally, we will see later that

Rjf∗M(Y ) = Hj(X,M) ∼= lim
←−

Ȟj(V,Mn),

therefore we have found natural candidates exhibiting the coadmissibility of
Hj(X,M).

4. Global sections

In particular, we can reduce our problem to a ‘noetherian’ set-up. For the
global sections, we wish to show the following.

(i) For each j ≥ 0 and each n, Ȟj(V,Mn) is a finitely generated Un(X)-
module.

(ii) The natural morphism

Un(X)⊗Un+1(X) Ȟ
j(V,Mn+1) → Ȟj(V,Mn)

is an isomorphism of Un(X)-modules.
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(iii) The natural morphism

Ȟj(V,M) → lim
←−

Ȟj(V,Mn)

is an isomorphism of ıU (X)-modules.

The argument for (i) will rest on the discussion in Section 2 and be analogue
to the argument in [18], while (ii) will be established through an application
of Theorem 2.23. The last statement (iii) will then follow easily from property
(ii) in Proposition 3.5.

Recall the commutative diagram of A-modules

A〈x1, . . . , xl〉
hi1···ij

''
❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

��

OX(Ui1···ij ) // OX(Vi1···ij ),

induced from the definition of properness, where hi1···ij (xm) is topologically
nilpotent in OX(Vi1···ij ) for each m = 1, . . . , l.

Equip A〈x1, . . . , xl〉 with the natural residue norm (i.e., with unit ballA〈x〉),
and recall that in the proof of Proposition 3.25 we have already chosen residue
norms for the other terms given by L-stable affine formal models as unit balls,
which turns the above into a diagram in BanA.

Now apply the functor Un(X) ⊗̂A − to the diagram to obtain

Un(X) ⊗̂AA〈x1, . . . , xl〉

θ′

��

h′

**❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

Un(X) ⊗̂A O(Ui1···ij ) // Un(X) ⊗̂A OX(Vi1···ij ),

which is a commutative diagram in BanUn(X).
Note that h′ is no longer a homomorphism of algebras, but only of left

Banach Un(X)-modules. It inherits from hi1···ij the property that

h′(xr) = (Un(X) ⊗̂A hi1···ij )(x
r)

tends to zero as |r| → ∞, so Corollary 2.7 implies that h′ is strictly completely
continuous in BanUn(X).

Now note that by [12, Proposition 2.1.7/4]

Un(X) ⊗̂A OX(Ui1···ij )
∼= UA(L) ⊗̂A OX(Ui1···ij ),

where UA(L) is equipped with the norm with unit ball U(πnL).
Thus, Un(X) ⊗̂A OX(Ui1···ij )

∼= Un(Ui1···ij ).
The corresponding statement holds for Vi1···ij , and the horizontal map be-

tween the two terms is simply the restriction map.
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Thus, we can read the above diagram as

Un(X) ⊗̂A A〈x1, . . . , xl〉

θ′

��

h′

))
❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

Un(Ui1···ij )
res

// Un(Vi1···ij ),

where h′ is strictly completely continuous.

Lemma 4.1. If M is a left coadmissible ıU -module, then Ȟj(V,Mn) is a
finitely generated Un(X)-module for all j ≥ 0.

Proof. By functoriality, both θ′ and h′ are maps in BanUn(X). Likewise, the
restriction maps are naturally morphisms in BanUn(X).

By [12, Proposition 2.1.8/6], the map θ′ is a strict surjection in BanUn(X).
We have thus shown that all the maps in the diagram are in BanUn(X), the

arrow on the left is surjective, and h′ is strictly completely continuous.
We now verify the conditions of Proposition 2.18 by following the corre-

sponding steps from the proof of Theorem 1.1, as in [18].
Since Mn(Ui1···ij ) is finitely generated over Un(Ui1···ij ), it is equipped with

a canonical topology, making it an object in BanUn(Ui1···ij
) and hence a fortiori

in BanUn(X). All the restriction maps are naturally continuous, so the Čech

complexes Č•(U,Mn) and Č•(V,Mn) are cochain complexes in BanUn(X).
By construction, we have

Mn(Vi1···ij )
∼= Un(Vi1···ij )⊗Un(Ui1···ij

) Mn(Ui1···ij ),

so that finite generation induces a commutative diagram in BanUn(X)

Un(Ui1···ij )
⊕r //

��

Un(Vi1···ij )
⊕r

��

Mn(Ui1···ij )
res

// Mn(Vi1···ij ),

where both vertical maps are surjections and r is the size of some finite gener-
ating set.

Attaching this to r copies of the previous diagram, we obtain

Un(X) ⊗̂A A〈x1, . . . , xl〉
⊕r

�� ))
❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

Un(Ui1···ij )
⊕r //

��

Un(Vi1···ij )
⊕r

��

Mn(Ui1···ij ) // Mn(Vi1···ij ).
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Write Gi1···ij :=(Un(X) ⊗̂A A〈x1, . . . , xl〉)
⊕r and β′

i1···ij:Gi1···ij →Mn(Ui1···ij ).

For the surjective morphism on the left-hand side of the diagram, we can invoke
Lemma 2.9 and Lemma 2.8 to see that

res ◦ β′
i1···ij : Gi1···ij → Mn(Vi1···ij )

is strictly completely continuous in BanUn(X), by commutativity of the dia-
gram.

Fixing j and summing over all different Ui1···ij , Lemma 2.9 thus implies that

βj : F
j := ⊕Gi1···ij → ⊕Mn(Ui1···ij ) = Čj(U,Mn)

is a surjection in BanUn(X) with the property that res◦βj is strictly completely
continuous.

But res: Čj(U,Mn) → Čj(V,Mn) induces an isomorphism on the level of
cohomology groups, as seen in the previous section. Thus, we have verified
that Proposition 2.18 applies, proving the result. �

We note that it now follows from Corollary 2.19 that Č•(V,Mn) consists
of strict morphisms.

In general, we see that the part of Theorem 3.22 which is concerned with
certain finiteness properties is still very close to the proof of Theorem 1.1. The
only additional difficulties here lie in passing to sheaves Un and Mn, whose
structure is more ‘finite’ than that of the original sheaves, and analyzing some
easy completed tensor products.

Note however that there remains an additional property to be checked which
has no counterpart in Theorem 1.1. We need to show that the finite compo-
nents which we have exhibited match up in the right way, that is to say

Un(X)⊗Un+1(X) Ȟ
j(V,Mn+1) ∼= Ȟj(V,Mn).

Replacing L by πnL, it is enough to consider the case n = 0.

Recall that U0(X) = ’U(L)K is flat over U1(X) by [4, Theorem 6.6], so we
know that

U0(X)⊗U1(X) Ȟ
j(V,M1) ∼= Hj(U0(X)⊗ Č•(V,M1)).

Our first goal will be to show that the isomorphism claimed above can be
viewed as a ⊗̂-version of this statement.

Lemma 4.2. If V is an admissible open affinoid subspace of X and V ∈ X0,
then the natural map

U0(X) ⊗̂U1(X) M1(V ) → M0(V )

is an isomorphism of U0(X)-modules.
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Proof. Using Lemma 2.21 and associativity of the completed tensor product
(see [12, Proposition 2.1.7/6]), we have the following chain of isomorphisms:

M0(V ) ∼= U0(V )⊗U1(V ) M1(V )

∼= U0(V ) ⊗̂U1(V ) M1(V )

∼=
(’U(L)K ⊗̂A OX(V )

)
⊗̂U1(V ) M1(V )

∼=

Å
’U(L)K ⊗̂’U(πL)K

÷U(πL)K ⊗̂A OX(V )

ã
⊗̂U1(V ) M1(V )

∼=’U(L)K ⊗̂’U(πL)K

((÷U(πL)K ⊗̂A OX(V )
)
⊗̂U1(V ) M1(V )

)

∼= U0(X) ⊗̂U1(X)

(
U1(V ) ⊗̂U1(V ) M1(V )

)

∼= U0(X) ⊗̂U1(X) M1(V ),

as required. �

To continue in our proof of Theorem 3.22, we therefore wish to show that

U0(X) ⊗̂U1(X) Ȟ
j(V,M1) ∼= Hj(U0(X) ⊗̂U1(X) Č

•(V,M1)).

This will be achieved by checking all the conditions in Corollary 2.24, where
the role of A◦ is played by U(πL), and that of U◦ by U(L).

Lemma 4.3. U(L)⊗U(πL)
÷U(πL) carries a natural ring structure, making it

a left and right noetherian ring.

Proof. By freeness of L, we have a natural injection UA(L) → UA(L) (by

Rinehart’s theorem, [22, Theorem 3.1]). Since ÷U(πL) is flat over U(πL) by [9,

Property 3.2.3 (iv)], we thus can view U(L)⊗U(πL)
÷U(πL) as a subset of

UA(L)⊗U(πL)
÷U(πL) = UA(L)⊗UA(L)

÷U(πL)K = ÷U(πL)K ,

identifying it with U(L)·÷U(πL). We will show that this is a noetherian subring

of ÷U(πL)K .
Since [L, πL] ⊆ πL, an easy inductive argument shows that [L, U(πL)] ⊆

U(πL), where the commutator is understood in UA(L).
Hence, we have that for each ∂ ∈ L, the commutator map

[∂,−] : UA(L) → UA(L)

preserves U(πL), i.e., is a bounded linear map on UA(L) with unit ball U(πL),
where we can take 1 as a bound.

Thus, passing to the completion, [L,÷U(πL)] ⊆ ÷U(πL), where the commuta-

tor is understood in ÷U(πL)K . Therefore,

U(L) ·÷U(πL)

is a subring of ÷U(πL)K by another easy induction argument, as required. De-
note this ring by E .
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Let F•U(L) be the usual degree filtration on UA(L). Then E is filtered by

F ′
iE = FiU(L) ·÷U(πL),

such that the following are satisfied:

(i) F ′
0E = ÷U(πL).

(ii) F ′
iE · F ′

jE ⊆ F ′
i+jE , by reiterating the above commutator expression.

Just as in the proof of [10, Theorem 3.5], the associated graded ring gr′E is

generated by finitely many central elements over the zeroth piece ÷U(πL), which
is noetherian by Rinehart’s theorem and [9, Property 3.2.3 (vi)].

Thus, E is a noetherian ring by [21, Corollary D.IV.5]. �

We thus have confirmed that the first condition in Corollary 2.24 is satisfied.
It remains to show that the relevant Tor groups have bounded π-torsion.

Write OX(Vi1···ij ) = B, and let B = BVi1···ij
be an L-stable affine formal

model, as discussed in the previous section.
Denote by UB the noetherian ring UB(B ⊗A πL) and by”UB its π-adic com-

pletion. Note that this is the unit ball of U1(Vi1···ij ).
Similarly to the above, we have the following lemma.

Lemma 4.4. U(L)⊗U(πL)
”UB carries a natural ring structure, making it a left

and right noetherian ring.

Proof. As before, we identify the tensor product with a certain subset of a
K-algebra.

Since U(L) is flat over A, we have an injection

U(L)⊗U(πL) U(πL)⊗A B = U(L)⊗A B → U(L)⊗A B = UA(L)⊗A B.

As U(πL) ⊗ B ∼= U(B ⊗ πL), and ⁄�U(B ⊗ πL) is flat over U(B ⊗ πL) by [9,
Property 3.2.3 (iv)], this induces an injective map

U(L)⊗U(πL)
⁄�U(B ⊗ πL) → U(B ⊗ L)⊗U(B⊗L)

⁄�U(B ⊗ πL)K ,

and the right-hand side is clearly just ⁄�U(B ⊗ πL)K =”UB⊗K. The map above

identifies U(L)⊗”UB with U(L) ·”UB in this algebra.
Since B is L-stable, we can repeat the argument in Lemma 4.3 to show this

is a noetherian subring of ⁄�U(B ⊗ πL)K . �

Lemma 4.5. Let N be a finitely generated ”UB-module. Then the module

TorU(πL)
s (U(L), N) has bounded π-torsion for each s ≥ 0. It follows that

TorU(πL)
s (U(L), Čj(V,M1)

◦) has bounded π-torsion for each s ≥ 0 and each j.

Proof. We abbreviate the functor TorU(πL)
s (U(L),−) to Ts(−).

By noetherianity, we have a short exact sequence

0 → N ′ →”UB

⊕r
→ N → 0

for some integer r and some finitely generated”UB-module N ′.
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We will use this to prove the lemma inductively via the corresponding long
exact sequence.

For s = 0, we have that

U(L)⊗U(πL) N = U(L)⊗U(πL)
”UB ⊗

ÛB

N

is a finitely generated U(L)⊗”UB-module and hence has bounded π-torsion by
noetherianity (see Lemma 4.4).

Next we show that

TorU(πL)
s (U(L),”UB) = 0

for s ≥ 1.
For this note that by flatness of U(L) and U(πL) over A, we have

0 = TorAs (U(L),B) = TorU(πL)
s (U(L), U(πL) ⊗A B),

using [26, Proposition 3.2.9]. Therefore, TorU(πL)
s (U(L), UB) = 0.

As, moreover, ”UB = ⁄�U(B ⊗ πL) is flat over UB by [9, Property 3.2.3 (iv)],
we obtain

TorU(πL)
s (U(L),”UB) = 0

for s ≥ 1 by [26, Corollary 3.2.10].
Thus, the long exact sequence

· · · → Ts(N
′) → Ts

Ä”UB

ä⊕r
→ Ts(N) → Ts−1(N

′) → · · ·

shows that Ts(N) → Ts−1(N
′) is an injection for all s, and an isomorphism for

s ≥ 2.
So if we suppose that Ts−1(N) has bounded π-torsion for any finitely gen-

erated ”UB-module N , this holds in particular for N ′, proving that Ts(N) has
bounded π-torsion as well.

By induction, this finishes the proof of the first statement.

Now M1(Vi1···ij )
◦ is a finitely generated”UB = ⁄�U(B ⊗ πL)-module by Lem-

ma 2.22, so taking the corresponding finite direct sum to form the jth term of
the Čech complex proves the result. �

Theorem 4.6. The natural morphism

Un(X)⊗Un+1(X) Ȟ
j(V,Mn+1) → Hj(Un(X) ⊗̂Un+1(X) Č

•(V,Mn+1))

is an isomorphism of Un(X)-modules for each n ≥ 0, j ≥ 0.

Proof. Without loss of generality, we can assume n = 0.
Then the theorem is precisely Corollary 2.24 applied to the Čech complex

Č•(V,M1). This is a finite cochain complex in BanU1(X) with strict mor-
phisms by Corollary 2.19.

By Lemma 4.3, U(L) ⊗U(πL)
÷U(πL) is a noetherian ring, Ȟj(V,M1) is a

finitely generated U1(X) = ÷U(πL)K-module by Lemma 4.1, and Lemma 4.5
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ensures bounded π-torsion for each of the Tor groups. Thus, Corollary 2.24
states that

UA(L)
′ ⊗UA(L) Č

•(V,M1)

is a strict complex, where U(L) is equipped with the norm with unit ball U(πL)
and we write U(L)′ for U(L) with unit ball U(L).

Thus, Corollary 2.24 together with [12, Proposition 2.1.7/4] implies that

U0(X)⊗U1(X) Ȟ
j(V,M1) = ’U(L)′ ⊗‘U(L)

Ȟj(V,M1)

∼= Hj(U(L)′ ⊗̂U(L) Č
•(V,M1))

∼= Hj(U0(X) ⊗̂U1(X) Č
•(V,M1)),

proving the result. �

Corollary 4.7. The ıU (X)-module lim
←−

Ȟj(V,Mn) is coadmissible for each
j ≥ 0.

Proof. Each module Ȟj(V,Mn) is a finitely generated Un(X)-module by Lem-
ma 4.1, and

Un(X)⊗Un+1(X) Ȟ
j(V,Mn+1) ∼= Ȟj(V,Mn),

by the theorem above combined with the observation that

Un(X) ⊗̂Un+1(X) Č
•(V,Mn+1) = Č•(V,Mn)

by Lemma 4.2. �

Finally, fixing an integer j, we show that lim
←−

Ȟj(V,Mn) gives indeed the
corresponding higher direct image of M.

Proposition 4.8. For each j ≥ 0, the canonical morphism of ıU (X)-modules

Hj(X,M) ∼= lim
←−

Ȟj(V,Mn)

is an isomorphism.

Proof. By Proposition 3.5 (ii), each system (Čj(V,Mn))n satisfies the Mittag-
Leffler property as described in [14, Remarques 0.13.2.4], and by Corollary 4.7,
so does the inverse system (Ȟj(V,Mn))n. Hence, we can apply [14, Proposi-
tion 0.13.2.3] to deduce that

Ȟj(V,M) = Hj(lim
←−

Č•(V,Mn)) ∼= lim
←−

Ȟj(V,Mn).

Since M also has vanishing higher Čech cohomology on affinoids by the com-
ment following [10, Theorem 4.16], we have Hj(X,M) ∼= Ȟj(V,M) by [25,
Tag 03F7], and the result follows. �

This concludes the proof that Rjf∗M(Y ) = Hj(X,M) is a coadmissible
ıU (X)-module.
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5. Localization

It remains to show that other sections of the sheaf are obtained by local-
ization, that is if U = SpB ⊆ Y is an affinoid subdomain, we want to show
that

ıU (f−1U)Ù⊗ıU (X)
Hj(X,M) := lim

←−

(
Un(f

−1U)⊗Un(X) H
j(X,Mn)

)

∼= Hj(f−1U,M)

via the natural morphism.
Similarly to the above, our strategy will consist in a reduction to the noe-

therian components of the coadmissible module and an argument involving
completed tensor products similar to Theorem 4.6.

Recall from Lemma 3.24 that f∗L is a Lie algebroid on Y with f∗L (Y ) = L.
In particular, we can talk about the πnL-accessible affinoid subdomains of Y ,
as introduced in Definition 3.13.

Our plan looks as follows.

Step A: Consider the case where U is a rational subdomain which is πnL-
accessible in one step. As B = OY (U) can be described as a quotient
of A〈t〉, we will establish some properties relating to A〈t〉 before pass-
ing to the quotient via some homological algebra.

Step B: An easy inductive argument extends the result to any πnL-accessible
rational subdomain.

Step C: Passing to suitable coverings and arguing locally, we can generalize to
arbitrary πnL-accessible affinoid subdomains. Since any affinoid sub-
domain is πnL-accessible for sufficiently large n ([4, Proposition 7.6]),
this finishes the proof.

Step A. Let x ∈ A be nonzero such that πnL · x ⊆ A, and consider

Y1 = Y (x) = SpB1, Y2 = Y (x−1) = SpB2.

We adopt the notation from [4]. Let a be a positive integer satisfying πax ∈ A,
and define

u1 = πax− πat ∈ A〈t〉, u2 = πaxt− πa ∈ A〈t〉.

Then we have short exact sequences

0 → A〈t〉
ui·−−→ A〈t〉

ρ
−→ Bi → 0

for i = 1, 2 by [4, Lemma 4.1].
We define Bi = A〈t〉/uiA〈t〉. Then Bi = Bi/π−tor(Bi) = ρ(A〈t〉) is a

πnL-stable affine formal model in Bi, see [4, Lemma 4.3].

By the definition of Ù⊗ and Proposition 4.8, it will be enough to show that
the natural morphism

Un(f
−1Yi)⊗Un(X) Ȟ

j(V,Mn) → Ȟj(V ∩ f−1Yi,Mn)

is an isomorphism for i = 1, 2.
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First recall that by Kiehl’s proper mapping theorem, OX(f−1Yi) = Bi, and

Un(f
−1Yi) =

¤�U(Bi ⊗ πnL)K
∼= Bi ⊗̂A Un(X)

by Corollary 3.26.
Note that for any admissible open affinoid subspace V ⊆ X , we have

f−1Yi ∩ V = SpBi ×SpA SpOX(V ) = Sp
(
Bi ⊗̂A OX(V )

)

by [12, Proposition 7.1.4/4], and hence

Mn(f
−1Yi ∩ V ) = Un(f

−1Yi ∩ V )⊗Un(V ) Mn(V )

= Un(f
−1Yi ∩ V ) ⊗̂Un(V ) Mn(V )

=
(
(Bi ⊗̂AOX(V )) ⊗̂OX(V ) Un(V )

)
⊗̂Un(V ) Mn(V )

= (Bi ⊗̂A OX(V )) ⊗̂OX(V ) Mn(V )

= Bi ⊗̂A Mn(V ).

Thus,

Č•(V ∩ f−1Yi,Mn) ∼= Bi ⊗̂A Č•(V,Mn),

which in turn can be written as Un(f
−1Yi) ⊗̂Un(X) Č

•(V,Mn) by the above.
We thus wish to show that

Un(f
−1Yi) ⊗̂Un(X) Ȟ

j(V,Mn) ∼= Hj
(
Un(f

−1Yi) ⊗̂Un(X) Č
•(V,Mn)

)
.

We will prove this isomorphism by a number of lemmas, mainly exploiting the
short exact sequence

0 → A〈t〉 → A〈t〉 → Bi → 0

and our study of completed tensor products.
Recall from [4, Proposition 4.2] that the πnL-action on A lifts to an action

σi : π
nL → DerR(A〈t〉), turning A〈t〉 ⊗A πnL into an (R,A〈t〉)-Lie algebra.

We will write

Un(X)〈t〉i = ¤�U(A〈t〉 ⊗A πnL)K
for the corresponding completed enveloping algebra.

Lemma 5.1. The natural map

Un(X)〈t〉i ⊗Un(X) Ȟ
j(V,Mn) → Hj(Un(X)〈t〉i ⊗̂Un(X) Č

•(V,Mn))

is an isomorphism of left Un(X)〈t〉i-modules for each j ≥ 0.

Proof. We know that Č•(V,Mn) is a finite cochain complex of Banach Un(X)-
modules, a fortiori of Banach A-modules, with strict morphisms.

As a right Un(X)-module, Un(X)〈t〉i is isomorphic to

A〈t〉 ⊗̂A Un(X)

by [4, Proposition 2.3], which is the completion of A〈t〉⊗A Un(X) with respect
to the tensor product semi-norm with unit ball given by

A〈t〉 ⊗A
÷U(πL).
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In particular, viewing the morphism in the statement of the lemma as a mor-
phism of A〈t〉-modules, it can be written as

A〈t〉 ⊗̂A Ȟj(V,Mn) → Hj(A〈t〉 ⊗̂A Č•(V,Mn)).

Since A〈t〉 is flat over A by [11, Remark 7.3/2], this is an isomorphism of
A〈t〉-modules by [10, Corollary 2.15] and hence a bijection. Thus, the natural
morphism

Un(X)〈t〉i ⊗̂Un(X) Ȟ
j(V,Mn) → Hj(Un(X)〈t〉i ⊗̂ Č•(V,Mn))

is an isomorphism of Un(X)〈t〉i-modules. �

We now fix a finite set of indices i1, . . . , ij and write V = Vi1···ij and C =
OX(V ).

Lemma 5.2. Let C be a πnL-stable affine formal model in C. Then

Bi ⊗A
¤�UC(C ⊗A πnL)

has bounded π-torsion.

Proof. Define B′
i = A[t]/uiA[t]. Note that the π-adic completion of the short

exact sequence

0 → A[t]
ui·−−→ A[t] → B′

i → 0

is obtained by applying the exact functor A〈t〉 ⊗A[t] − by [13, Theorem 7.2].

In particular, “B′
i = Bi.

Since B′
i is of finite type over A, the ring B′

i ⊗A C is of finite type over C
and is hence noetherian. In particular, it has bounded π-torsion.

Tensoring with a flat module preserves the property of bounded π-torsion,
as the π-torsion of an R-module M is given by the kernel of the natural map

M → M⊗RK. Since Bi = “B′
i, it is flat over B

′
i by [13, Theorem 7.2]. Moreover,

U(C ⊗A πL) ∼= C ⊗A U(πnL)

is flat over C, and ¤�U(C ⊗A πnL) is flat over U(C ⊗A πnL), again by [9, Prop-
erty 3.2.3.(iv)].

Thus,

Bi ⊗A
¤�U(C ⊗A πnL) ∼= Bi ⊗B′

i
(B′

i ⊗A C)⊗C
¤�U(C ⊗ πnL)

has bounded π-torsion, as required. �

Corollary 5.3. Let C be a πnL-stable affine formal model in C. Then

Bi ⊗A
¤�U(C ⊗A πnL)

has bounded π-torsion.
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Proof. Writing T = π−tor(Bi), we have a short exact sequence

0 → T → Bi → Bi → 0.

Since Bi is noetherian, T is annihilated by some power of π, i.e., for some r,
we have πrT = 0.

Now consider the exact sequence

T ⊗ ¤�U(C ⊗A πnL) → Bi ⊗ ¤�U(C ⊗A πnL) → Bi ⊗ ¤�U(C ⊗A πnL) → 0.

Suppose that x ∈ Bi ⊗ ¤�U(C ⊗A πnL) is killed by πs. Then any preimage

y ∈ Bi ⊗ ¤�U(C ⊗A πnL) has the property that πsy gets sent to 0. In particular,
πr+sy = 0, as πrT = 0. So if y is a preimage of x, then y is π-torsion. Since

Bi ⊗ ¤�U(C ⊗A πnL) has bounded π-torsion by the previous lemma, this proves
the result. �

Lemma 5.4. There is a short exact sequence

0 → A〈t〉 ⊗̂A Un(V )
ui·−−→ A〈t〉 ⊗̂A Un(V ) → Bi ⊗̂A Un(V ) → 0

of left A〈t〉-modules.

Proof. This is an easy variant of [10, Lemma 4.11] and [4, Proposition 4.3.c)].
First note that the short exact sequence

0 → A〈t〉 → A〈t〉 → Bi → 0

consists of strict morphisms by [11, Proposition 3.1/20] and [10, Lemma 2.6].
Since Bi is flat over A by [11, Corollary 4.1/5], we have

TorA1 (Bi,Un(V )) = 0,

so tensoring with Un(V ) yields a short exact sequence

0 → A〈t〉 ⊗A Un(V ) → A〈t〉 ⊗A Un(V ) → Bi ⊗A Un(V ) → 0.

Finally, Bi ⊗A
¤�U(C ⊗A πnL) has bounded π-torsion by Corollary 5.3, so that

the short exact sequence above consists of strict morphisms and stays exact
after completion by [10, Lemma 2.13]. �

Lemma 5.5. Let N be a finitely generated left Banach Un(V )-module. Then
we have a short exact sequence

0 → A〈t〉 ⊗̂A N
ui·−−→ A〈t〉 ⊗̂A N → Bi ⊗̂A N → 0

of left A〈t〉-modules, analogously for right modules.

Proof. Since N is finitely generated over the noetherian algebra Un(V ), we
have a short exact sequence

0 → N ′ → Un(V )⊕r → N → 0,

where N ′ is another finitely generated Banach module over Un(V ). By [10,
Lemma 2.6], this consists of strict morphisms.
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Since A〈t〉 is flat over A by [11, Remark 7.3/2], we know, by [10, Lem-
ma 2.13], that

0 → A〈t〉 ⊗̂A N ′ → A〈t〉 ⊗̂A Un(V )⊕r → A〈t〉 ⊗̂A N → 0

is exact.
Moreover, Bi ⊗̂A N ′ ∼= Un(f

−1Yi ∩ V )⊗Un(V ) N
′ as left Bi-modules, where

we could omit the completion symbol on the right-hand side by Lemma 2.21.
Likewise for the other terms.

Now f−1Yi ∩ V is a rational subdomain of V by [11, Proposition 3.3/13],
and is actually C ⊗ πnL-accessible – it is V (x) if i = 1, V (x−1) if i = 2, again
by [11, Proposition 3.3/13]. So by [10, Theorem 4.10], we know that

0 → Bi ⊗̂AN ′ → Bi ⊗̂A Un(V )⊕r → Bi ⊗̂A N → 0

is exact.
We thus obtain the following commutative diagram of left A〈t〉-modules:

0 // A〈t〉 ⊗̂A N ′ //

f1

��

A〈t〉 ⊗̂A Un(V )⊕r //

g1

��

A〈t〉 ⊗̂A N //

h1

��

0

0 // A〈t〉 ⊗̂A N ′ //

f2

��

A〈t〉 ⊗̂A Un(V )⊕r //

g2

��

A〈t〉 ⊗̂A N //

h2

��

0

0 // Bi ⊗̂A N ′ // Bi ⊗̂A Un(V )⊕r // Bi ⊗̂AN // 0,

where each row is exact.
We know from [12, Proposition 2.1.8/6] that f2, g2 and h2 are surjections,

so we have a long exact sequence

0 → ker f1 → ker g1 → kerh1 → ker f2/ Im f1

→ ker g2/ Im g1 → kerh2/ Imh1 → 0.

By Lemma 5.4, this becomes

0 → ker f1 → 0 → kerh1 → ker f2/ Im f1 → 0 → kerh2/ Imh1 → 0,

so we immediately get that kerh2 = Imh1. But this argument holds for any
finitely generated Un(V )-module, so in particular for N ′. Thus, ker f2 = Im f1,
and by exactness, kerh1 = 0.

Thus,

0 → A〈t〉 ⊗̂A N → A〈t〉 ⊗̂A N → Bi ⊗̂A N → 0

is a short exact sequence. �

Theorem 5.6. The natural morphism

Un(f
−1Yi)⊗Un(X) Ȟ

j(V,Mn) → Hj(Un(f
−1Yi) ⊗̂Un(X) Č

•(V,Mn))

is an isomorphism of Un(f
−1Yi)-modules for each j ≥ 0.
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Proof. We abbreviate Ȟj(V,Mn) to Hj and Č•(V,Mn) to C•.
Since

Un(f
−1Yi) ∼= Bi ⊗̂A Un(X),

as Bi-modules, it is enough to show that the natural morphism

Bi ⊗̂A Hj → Hj(Bi ⊗̂A C•)

is an isomorphism of left Bi-modules, or equivalently of A〈t〉-modules.
Since Un(f

−1Yi) = Un(f∗L )(Yi) is flat over Un(X) = Un(f∗L )(Y ) on the
right by [10, Theorem 4.10], we know that

Tor
Un(X)
1

(
Un(f

−1Yi), H
j
)
= 0,

so that the short exact sequence of (A〈t〉,Un(X))-bimodules from [10, Lem-
ma 4.11],

0 → Un(X)〈t〉i
ui·−−→ Un(X)〈t〉i → Un(f

−1Yi) → 0

remains exact after applying the functor −⊗Un(X)H
j, producing a short exact

sequence of left A〈t〉-modules, which can be written as

0 → A〈t〉 ⊗̂A Hj → A〈t〉 ⊗̂A Hj → Bi ⊗̂A Hj → 0.

By Lemma 5.5, we also have a short exact sequence

0 → A〈t〉 ⊗̂A C• → A〈t〉 ⊗̂A C• → Bi ⊗̂A C• → 0,

of left A〈t〉-modules.
This now induces a long exact sequence

· · · → Hj(A〈t〉 ⊗̂C•) → Hj(A〈t〉 ⊗̂C•) → Hj(Bi ⊗̂C•) → · · · ,

fitting into a commutative diagram

A〈t〉 ⊗̂H
j

ui·
//

∼=

��

A〈t〉 ⊗̂H
j //

∼=

��

Bi ⊗̂H
j

ξ
//

θ

��

A〈t〉 ⊗̂H
j+1

ui·
//

∼=

��

A〈t〉 ⊗̂H
j+1

∼=

��

Hj(A〈t〉 ⊗̂C
•) // Hj(A〈t〉 ⊗̂C

•) // Hj(Bi ⊗̂C
•) // Hj+1(A〈t〉 ⊗̂C

•) // Hj+1(A〈t〉 ⊗̂C
•),

where the vertical maps are isomorphisms as indicated by Lemma 5.1.
The top row is exact (with ξ being the zero map) by the exactness of the

short exact sequences above, and the bottom row is exact by construction, so θ
is an isomorphism by the 5-lemma, as required. �

Step B. We now generalize the argument to arbitrary πnL-accessible rational
subdomains.

Proposition 5.7. Let U ⊆ Y be a πnL-accessible rational subdomain of Y .
Then the natural morphism

Un(f
−1U)⊗Un(X) Ȟ

j(V,Mn) → Hj(Un(f
−1U) ⊗̂Un(X) Č

•(V,Mn))

is an isomorphism for each j ≥ 0, and thus

ıU (f−1U)Ù⊗ıU (X)
Hj(X,M) ∼= Hj(f−1U,M).

Münster Journal of Mathematics Vol. 12 (2019), 163–214



A proper mapping theorem for coadmissible ÛD-modules 203

Proof. Let U be πnL-accessible in r steps. Theorem 5.6 proves the case of
r = 1. We proceed inductively. Let V ⊆ Y be a πnL-accessible rational sub-
domain in r − 1 steps, containing U and satisfying the properties in Defini-
tion 3.13, so that U = V (x) or V (x−1) for a suitable x ∈ OY (V ).

By induction hypothesis, we have

Un(f
−1V )⊗Un(X) Ȟ

j(V,Mn) ∼= Hj(Un(f
−1V ) ⊗̂Un(X) Č

•(V,Mn))

∼= Hj(f−1V ∩V,Mn).

Moreover, the restriction

f |f−1V : f−1V → V

is an elementary proper morphism with trivial Stein factorization, and L |f−1V

is a free Lie algebroid on f−1V , i.e., all our assumption remain valid under
restriction. But now U is a rational subdomain of V which is C ⊗A πnL-
accessible in one step, where C is a suitable affine formal model in OY (V ).
Thus, Theorem 5.6 implies that

Un(f
−1U)⊗Un(f−1V ) Ȟ

j(f−1V ∩V,Mn)

∼= Hj(Un(f
−1U) ⊗̂Un(f−1V ) Č

•(f−1V ∩V,Mn)).

Writing Hj for Ȟj(V,Mn), we therefore obtain

Un(f
−1U)⊗Un(X) H

j ∼= Un(f
−1U)⊗Un(f−1V ) Un(f

−1V )⊗Un(X) H
j

∼= Un(f
−1U)⊗Un(f−1V ) Ȟ

j(f−1 ∩V,Mn),

and thus

Un(f
−1U)⊗Un(X) H

j

∼= Hj(Un(f
−1U) ⊗̂Un(f−1V ) Č

•(f−1V ∩V,Mn))

∼= Hj(Un(f
−1U) ⊗̂Un(f−1V ) Un(f

−1V ) ⊗̂Un(X) Č
•(V,Mn))

∼= Hj(Un(f
−1U) ⊗̂Un(X) Č

•(V,Mn)),

as required. �

Step C.

Theorem 5.8. Let U ⊆ Y be an affinoid subdomain. Then the natural mor-
phism

ıU (f−1U)Ù⊗ıU (X)
Hj(X,M) → Hj(f−1U,M)

is an isomorphism for each j ≥ 0.

Proof. We know from [4, Proposition 7.6] that U is πnL-accessible for suffi-
ciently large n, so there exists a finite covering of U by πnL-accessible rational
subdomains (Wi) of Y for sufficiently large n.
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By Corollary 4.7 and Proposition 4.8, Hj(X,M) is a coadmissible ıU (X)-
module, so that

ıU (f−1U)Ù⊗ıU (X)
Hj(X,M)

is a coadmissible ıU (f−1U) = ¸�U (f∗L )(U)-module.
We have a natural morphism

Loc
(ıU (f−1U)Ù⊗ıU (X)

Hj(X,M)
)
→ (Rjf∗M)|U

of sheaves of ¸�U (f∗L )|U -modules, and by Proposition 5.7, this becomes an
isomorphism after taking sections over any Wi or any finite intersection of Wis.

Considering the corresponding Čech complex therefore forces the map be-
tween the global sections also to be an isomorphism, i.e.,

ıU (f−1U)Ù⊗ıU (X)
Hj(X,M) ∼= Hj(f−1U,M). �

This concludes the proof of Theorem 3.22.

6. Generalizations, examples, applications

6.1. Generalizations. We can now state various generalizations of Theo-
rem 3.22, considering glueing and passing to coadmissible enlargements.

Lemma 6.2. Let f : X → Y be a proper morphism of rigid analytic K-
varieties, and assume Y is affinoid. Let L be a Lie algebroid on X which

is a free OX-module. Then U̇ (L ) is a global Fréchet–Stein sheaf on X, and

f∗U̇ (L ) is a global Fréchet–Stein sheaf on Y . If M is a coadmissible U̇ (L )-

module, then Rjf∗M is a coadmissible f∗U̇ (L )-module for each j ≥ 0.

Proof. Write f = hg for the Stein factorization. Then the same argument as
in Lemma 3.24 shows that g∗L is a Lie algebroid, and by Lemma 3.26, the

morphism ¸�U (g∗L ) → g∗U̇ (L ) becomes an isomorphism under restriction to

each h−1Yi. Thus, g∗U̇ (L ) ∼= ¸�U (g∗L ) is a global Fréchet–Stein sheaf by

Proposition 3.12, and hence so is f∗U̇ (L ) by Lemma 3.17.
By definition of properness, there exists an affinoid covering (Yi) of Y such

that for Xi = f−1Yi, the morphism f |Xi : Xi → Yi is elementary proper.
Since Y is affinoid, we can assume that the covering is finite, and the def-
inition of properness now produces a finite covering (Uij) of X by affinoid
subspaces (which is admissible by G-topology axioms). Choosing a Lie lattice
in g∗L (Y ) = L (X), we can repeat the construction of Un as in Section 3.23

to verify that U̇ (L ) is a global Fréchet–Stein sheaf on X .

Now by Theorem 3.22 and Lemma 3.17, if M is a coadmissible U̇ (L )-

module, then Rjf∗M|Yi is a coadmissible f∗U̇ (L )|Yi-module for each i and
every j ≥ 0, and thus Rjf∗M is coadmissible. �
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Lemma 6.3. Let f : X → Y be a proper morphism of rigid analytic K-
varieties. Let L be a Lie algebroid on X, and suppose there exists an affinoid
covering (Yi) of Y such that the restriction of L to Xi = f−1Yi is free for each

i. Then f∗U̇ (L ) is a full Fréchet–Stein sheaf on Y . If M is a coadmissible

U̇ (L )-module, then Rjf∗M is a coadmissible f∗U̇ (L )-module for each j ≥ 0.

Proof. Without loss of generality, we can assume Y to be affinoid, and it

remains to show that f∗U̇ (L ) is a global Fréchet–Stein sheaf in that case.
Write g : X → Z for the first map in the Stein factorization of f = hg. As
before, g∗L is a locally free OZ -module, and the induced anchor map from L

makes it a Lie algebroid on Z. The morphism ¸�U (g∗L ) → g∗U̇ (L ) becomes an

isomorphism under restriction to each h−1Yi by the above, so again g∗U̇ (L ) ∼=
¸�U (g∗L ) is a global Fréchet–Stein sheaf on Z. Thus, f∗U̇ (L ) is a global
Fréchet–Stein sheaf on Y by Proposition 3.12.

For the coadmissibility result, it is again sufficient to restrict to each Yi,
reducing the claim to Lemma 6.2. �

This proves Theorem 1.2 (i) from the introduction.
We can now state a more general proper mapping theorem. For this, let

f : X → Y be a proper morphism of rigid analytic K-varieties. Let L be a Lie
algebroid on X , and suppose there exists an affinoid covering (Yi) of Y such
that the restriction of L to Xi = f−1Yi is free for each i. Note in particular

that U̇ (L )|Xi is a global Fréchet–Stein sheaf for each i by Lemma 6.2, and

f∗U̇ (L ) is a full Fréchet–Stein sheaf on Y by Lemma 6.3.

Proposition 6.4. Let U be a sheaf of K-algebras on X with a morphism of

sheaves of algebras θ : U̇ (L ) → U such that U |Xi is a coadmissible enlarge-

ment of the global Fréchet–Stein sheaf U̇ (L )|Xi for each i (in particular, this
makes U a Fréchet–Stein sheaf on X). Then f∗U |Yi is a coadmissible en-

largement of f∗U̇ (L )|Yi , and in particular a global Fréchet–Stein sheaf on Yi

for each i. Thus, f∗U is a Fréchet–Stein sheaf on Y . If M is a coadmissible
U -module, then Rjf∗M is a coadmissible f∗U -module for every j ≥ 0.

Proof. Note that f∗U̇ (L )|Yi is a global Fréchet–Stein sheaf by Lemma 6.3, and

f∗U |Yi is a coadmissible f∗U̇ (L )|Yi-module. As f∗U |Yi can easily be checked
to have continuous multiplication by passing to affinoid coverings of Xi, this

shows that f∗U |Yi is a coadmissible enlargement of f∗U̇ (L )|Yi by Proposi-
tion 3.16. Thus, f∗U |Yi is a global Fréchet–Stein sheaf.

If M is a coadmissible U -module, it is in particular a coadmissible U̇ (L )-
module, by Proposition 3.16 applied to each restriction M|Xi . Applying

Lemma 6.3 shows that Rjf∗M is a coadmissible f∗U̇ (L )-module. Therefore,

Rjf∗M|Yi is coadmissible over the global Fréchet–Stein sheaf f∗U̇ (L )|Yi , and
thus coadmissible over f∗U |Yi by Proposition 3.16. Thus, Rjf∗M is a coad-
missible f∗U -module. �
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Lemma 6.5. Let

X1
f1
−→ X2

f2
−→ Y

be two proper morphisms, and assume that Y is affinoid. Let L be a Lie alge-
broid on X1 which is free as an OX1

-module. Note that by applying Lemma 6.2

to f2f1, we know that U̇ (L ) is a global Fréchet–Stein sheaf on X1. Let U be a

coadmissible enlargement of U̇ (L ). Then f1∗U̇ (L ) is a global Fréchet–Stein

sheaf on X2, and f1∗U is a coadmissible enlargement of f1∗U̇ (L ). If M is a
coadmissible U -module, then Rjf1∗M is a coadmissible f1∗U -module for each
j ≥ 0.

Proof. Let g : X1 → Z be the first map in the Stein factorization of f1.
Then g∗L is a Lie algebroid on Z which is free as an OZ -module, so by

Lemma 6.2 applied to the proper morphism f2h, ¸�U (g∗L ) is a global Fréchet–

Stein sheaf on Z. As before, g∗U̇ (L ) ∼= ¸�U (g∗L ), so Proposition 3.12 proves

that f1∗U̇ (L ) ∼= h∗
¸�U (g∗L ) is a global Fréchet–Stein sheaf on X2.

By Lemma 6.3, f1∗U is a coadmissible f1∗U̇ (L )-module. As before, this

makes f1∗U a coadmissible enlargement of f1∗U̇ (L ).
The coadmissibility argument is now the same as in Proposition 6.4. �

As a corollary to Proposition 6.4, we can consider Lie algebroids L which
are not themselves free, but admit an epimorphism L ′ → L for some free
Lie algebroid L ′. The reason why we spell this out explicitly is given by the
geometric interpretation later.

Corollary 6.6. Let f : X → Y be a proper morphism of rigid analytic K-
varieties, and let L be a Lie algebroid on X such that there is an epimorphism

L ′ → L for some free Lie algebroid L ′. Then f∗U̇ (L ) is a Fréchet–Stein

sheaf, and if M is a coadmissible U̇ (L )-module, then Rjf∗M is a coadmissible

f∗U̇ (L )-module for each j ≥ 0.

This proves Theorem 1.2 (ii) from the introduction.
We now consider one particular instance of this corollary.
Suppose that f : X → Y is elementary proper, and write f = hg for the

Stein factorization as usual. Let (ρ,L ) be a Lie algebroid on X with the
property that g∗L is free, i.e., L := L (X) is a free OX(X)-module.

Lemma 6.7. The OX-module g∗g∗L given by U 7→ OX(U)⊗OX(X) L (X) is
a Lie algebroid on X and is free as an OX-module.

Proof. As L is a free OX(X)-module, finitely generated by Kiehl’s proper
mapping theorem, g∗g∗L is a free coherentOX -module. Write ι : g∗g∗L → L

for the natural morphism.
The Lie bracket on L allows us to define a Lie bracket on g∗g∗L , given by

[a⊗ x, b⊗ y] := ab⊗ [x, y]L + ρι(a⊗ x)(b)⊗ y − ρι(b⊗ y)(a)⊗ x
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for a, b ∈ OX(U), x, y ∈ L, U an admissible open subspace of X . Note that
this is well-defined, as ρ satisfies the anchor map property.

This turns g∗g∗L into a sheaf ofK-Lie algebras such that ι is a morphism of
sheaves of Lie algebras. The composition ρι is then also a morphism of sheaves
of Lie algebras, satisfying the axiom of an anchor map by construction. �

Thus, we can apply Corollary 6.6 as soon as the natural morphism g∗g∗L →
L is an epimorphism. By definition of g∗g∗L , this is equivalent to requiring
L to be generated by global sections.

Corollary 6.8. Let f : X → Y be an elementary proper morphism of rigid
analytic K-varieties, and let L be a Lie algebroid on X such that L (X) is a

free OX(X)-module and L is generated by global sections. Then f∗U̇ (L ) is a

global Fréchet–Stein sheaf on Y . If M is a coadmissible U̇ (L )-module, then

Rjf∗M is a coadmissible f∗U̇ (L )-module for each j ≥ 0.

Corollary 6.9. Let X be a proper rigid analytic K-variety, and let L be a

Lie algebroid on X which is generated by global sections. Then U̇ (L )(X)

is a Fréchet–Stein algebra, and if M is a coadmissible U̇ (L )-module, then

Hj(X,M) is a coadmissible U̇ (L )(X)-module for each j ≥ 0.

Proof. By Kiehl’s proper mapping theorem, L (X) is a finite-dimensional K-
vector space, and L ′ := OX ⊗K (L (X)) is a free Lie algebroid on X by the
same argument as above. Thus, the result follows from Corollary 6.6. �

Setting L = TX yields Corollary 1.3 from the introduction.
More generally, Proposition 6.4 gives directly the following.

Corollary 6.10. Let f : X → Y be a proper morphism with Stein factorization
f = hg, and let L be a Lie algebroid on X such that the following hold:

(i) g∗L is locally free.
(ii) The natural morphism g∗g∗L → L is an epimorphism of sheaves on

Xrig.

Then f∗U̇ (L )|U is a global Fréchet–Stein sheaf for any admissible open affi-
noid subspace U of Y such that L (f−1U) is a free OX(f−1U)-module. In

particular, f∗U̇ (L ) is a Fréchet–Stein sheaf on Y . If M is a coadmissible

U̇ (L )-module then Rjf∗M is a coadmissible f∗U̇ (L )-module for each j ≥ 0.

We will discuss a number of examples after giving a more geometric moti-
vation for the conditions we have imposed in our results.

6.11. Geometric interpretation and examples. Let E be a locally free
OX -module of finite rank on a rigid analytic K-variety X . Note that we can
associate to E a rigid analytic K-variety V (E) with a projection morphism
ρ : V (E) → X , completely analogue to the construction of vector bundles in
algebraic geometry. We sketch the construction below, as it is rarely discussed
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in this context and the reader might find the relation to our definition of U̇ (L )
illuminating.

Suppose that X = SpA is affinoid, and E is free of rank m. Fix an affine
formal model A of A and free generators e1, . . . , em ∈ E(X). We can now
identify S = SymA E(X) with the polynomial algebra A[x1, . . . , xm]. Via this
identification, we can equip S with an algebra norm corresponding to the gauge
norm on A[x] with unit ball A[πnx], and we denote the corresponding Banach
completion by Sn, which is naturally isomorphic to A〈πnx〉.

We denote by V (E) the space obtained by glueing SpSn, i.e., V (E) =
lim
−→

SpSn. By construction, V (E) is isomorphic to X × A
m,an
K , and the nat-

ural morphisms A → Sn give rise to a projection morphism ρ : V (E) → A,
corresponding to the natural projection onto the first factor.

A standard argument ensures that up to isomorphism, this construction is
independent of the choices made. Moreover, we can glue this construction to
obtain a vector bundle V (E) for any locally free OX -module E of finite rank
on a rigid analytic K-variety X , giving rise to a contravariant functor V .

We will now interpret the conditions imposed in our previous results as
certain properness conditions on the level of vector bundles.

Let f : X → Y = SpA be an elementary proper morphism such that A =
OX(X), and let L be a Lie algebroid on X which is a free OX -module of
rank m. In this case the rigid analytic vector bundles

V (L ) ∼= X × A
m,an, V (f∗L ) ∼= Y × A

m,an

are trivial, and there is a natural morphism V (L ) → V (f∗L ), which is proper
by [12, Lemma 9.6.2/1].

Our Theorem 3.22 can thus be viewed as a noncommutative version of
Kiehl’s Theorem 1.1 on trivial vector bundles.

The next result extends this interpretation to the case of Corollary 6.10.

Proposition 6.12. Let f : X → Y be a proper morphism of rigid analytic
K-varieties with Stein factorization

X
g
−→ Z

h
−→ Y,

and let L be a Lie algebroid on X such that the following hold:

(i) g∗L is locally free.
(ii) The natural morphism g∗g∗L → L is an epimorphism of sheaves

on Xrig.

Then there is a natural morphism V (L ) → V (g∗g∗L ), which is a closed im-
mersion, and a proper morphism V (g∗g∗L ) → V (g∗L ) of rigid analytic K-
varieties. In particular, their composition V (L ) → V (g∗L ) is proper.

Proof. The natural map µ : L ′ := g∗g∗L → L induces a morphism of rigid
analytic K-varieties V (µ) : V (L ) → V (L ′) by functoriality.

We show that this is a closed immersion. Restricting to an admissible affi-
noid covering (Ui) of X on which both L ′ and L are free, the morphism
θi : SymL ′(Ui) → SymL (Ui) is a surjection for each i by assumption.
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Choosing a residue norm on OX(Ui) with unit ball Bi and a free generating
set e1, . . . , em of L ′(Ui), endow S = SymL ′(Ui) with the norm with unit
ball the Bi-subalgebra generated by the ej , and endow SymL (Ui) with the
corresponding quotient norm via θi. In particular, θi is strict with respect to
these choices of norm by construction.

The completion of SymL ′(Ui) is the affinoid algebra S0 constructed above,
and by strictness this surjects onto the completion of SymL (Ui), which is
again affinoid, as it is topologically of finite type over K.

Replacing ej by πnej for varying n, the affinoid spaces SpSn form an admis-
sible covering of V (L ′|Ui) by affinoid subspaces, and the surjections between
affinoid algebras exhibit V (µ) as a closed immersion. In particular, V (µ) is a
proper morphism by [12, Proposition 9.6.2/5].

Choosing an admissible covering (Zi) of Z such that g∗L |Zi is free of rank
m on each i, g∗g∗L |g−1Zi

is also free of rank m, again inducing a proper
morphism

g−1Zi × (Am)an //

∼=

��

Zi × (Am)an

∼=

��

V (L ′|g−1Zi
) // V (g∗L |Zi).

These glue to give a proper morphism V (L ′) → V (g∗L ), and the result
follows from the fact that the composition of proper morphisms is proper (see
[20, Corollary 3.2]). �

Thus, our assumptions can be interpreted as requiring a vector bundle
V (g∗L ) on Z together with a proper morphism V (L ) → V (g∗L ).

Our next goal will be to spell out a number of naturally occurring cases in
which Proposition 6.4 applies. We reserve the main application, our discussion
of analytic partial flag varieties, for the next subsection.

Example 1: Closed immersions. Let Y = SpA be an affinoid K-variety and
let ι : X → Y be a closed immersion of affinoid varieties, i.e., if X = SpB,
then the corresponding morphism of affinoid algebras A → B is a surjection.
This map is proper by [12, Proposition 9.6.2/5] with trivial Stein factorization
in the sense that g = idX is the identity on X and h = ι in our usual notation.

In particular, if L is a Lie algebroid on X , then g∗L ∼= L , g∗g∗L = L ,
and all conditions in Corollary 6.10 are trivially satisfied.

Since all conditions in Corollary 6.10 are local, it follows that the same holds
true for arbitrary closed immersions ι.

This is of course not really surprising, as ι is an affinoid morphism, so we
could deduce everything in this case simply from Lemma 3.17 (as is tacitly
done in [5]).

Example 2: Projections. Let X = Pn,an be the analytification of projective
n-space over K, and consider the projection to a point

f : Pn,an → SpK.
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This is trivially a projective morphism and hence proper, and the Stein fac-
torization in this case is g = f , h = idSpK .

If L is a Lie algebroid on X , then g∗L = L (X) is a (finite-dimensional)
K-vector space, and

g∗g∗L = OX ⊗K L (X).

Thus, our assumptions are satisfied if and only if OX ⊗ L (X) → L is an
epimorphism, i.e., if and only if L is generated by global sections. This is for
example the case when L = TX is the tangent sheaf of X .

Example 3: Direct products. Let Y be a smooth rigid analytic K-variety and
consider the projection f : Pn,an × Y → Y , which is again proper. As in the
previous example, the Stein factorization is trivial. Now X = Pn,an × Y is
smooth, so the tangent sheaf TX is a Lie algebroid on X . By definition of
smoothness, Y admits an admissible covering by affinoid subspaces (Yi) such
that TYi is free, and we write Xi = Pn,an × Yi. Write p1 : X → Pn,an for the
projection onto the first factor. Since

TX ∼= OX ⊗p−1

1
OPn,an

p−1
1 TPn,an ⊕OX ⊗f−1OY

f−1TY ,

as in the algebraic case, TX(Xi) is a free module over OY (Yi) = OX(Xi), and
TXi is again generated by global sections.

Thus, f∗ÙDX |Yi is a global Fréchet–Stein sheaf on Yi, f∗ÙDX is a Fréchet–

Stein sheaf on Y , and Rjf∗M is a coadmissible f∗ÙDX -module for each j ≥ 0,
where M is any coadmissible ÙDX -module.

Moreover, note that f∗TY = OX⊗f−1OY
f−1TY is a Lie algebroid on X (via

the natural embedding into TX) with the property that f∗TY |Xi = OXi⊗OY (Yi)

TY (Yi) is a free O-module. As OX(Xi) = OY (Yi), we have f∗f
∗TY ∼= TY , and

thus f∗˝�U (f∗TY ) ∼= ÙDY by Lemma 3.26. Hence, we can formulate the following
theorem as a direct consequence of Lemma 6.3.

Theorem 6.13. Let f : X = P
n,an
K ×Y → Y be the projection for some smooth

rigid analytic K-variety Y . Let M be a coadmissible ˝�U (f∗TY )-module on X.

Then Rjf∗M is a coadmissible ÙDY -module for each j ≥ 0.

This allows us to briefly discuss ÙD-module pushforwards, i.e., a functor
which sends ÙDX -modules to ÙDY -modules rather than f∗ÙDX -modules.

Let f : X → Y be an arbitrary projective morphism of smooth rigid analytic
K-varieties, which can be factored as

X
ι
−→ P

n,an × Y
g
−→ Y,

where ι is a closed immersion and g is the natural projection. Any coad-
missible ÙDX -module M gives rise to a coadmissible ÙDPn,an×Y -module ι+M
by [5], and we expect a well-behaved ÙD-module pushforward to be obtained
by applying Rg∗ to a suitable relative de Rham complex DRg(ι+M), in strict
analogy to [15, Proposition 1.5.28]. The above results should then make it
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straight-forward to verify that coadmissibility is preserved under this push-
forward functor, once the correct (derived) categorical framework has been
formulated rigorously.

6.14. Application: Analytic partial flag varieties. Let G be a split re-
ductive affine algebraic group scheme over K with Lie algebra g. Let B ≤ G

be a Borel subgroup scheme, P ≤ G a parabolic subgroup scheme and let
X = G/P be the partial flag variety. In this section, we will be concerned
with coadmissible ÙD-modules on the analytification X = Xan.

By [16, Section II.1.8], G/P is projective, and thus X is proper over SpK
by [19, Satz 2.16].

More generally, if P1 ≤ P2 are two parabolics, Xi = (G/Pi)
an, then the

natural projection morphism X1 → X2 is proper by [12, Proposition 9.6.2/4]
and [19, Satz 2.16].

Let R ≤ G be the unipotent radical of P and L its Levi factor. Write l for
the Lie algebra of L = L(K). Following [6], the natural morphism ξ : G/R →
G/P turns G/R into an L-torsor in the sense of [6, Section 4.1], where L acts
on G/R by right translations.

Define the enhanced tangent sheaf ‹TG/P := (ξ∗TG/R)
L, a Lie algebroid onX

(see [6, Definition 4.2], [3, Section 4.4]).

Applying the analytification functor, we obtain the Lie algebroid ‹TX . Since

the natural morphism OX ⊗K g → ‹TG/P is an epimorphism by the same
argument as in [3, Proposition 4.8 (a)], it follows from [11, Theorems 6.3/12

and 13] that ‹TX is generated by global sections.
We now set

Ù‹DX :=
¸�
U

Ä‹TX
ä
,

a coadmissible enlargement of ˇ�U (OX ⊗ g). Applying Corollary 6.9, we obtain
the following.

Corollary 6.15. The global sections
Ù‹DX(X) form a Fréchet–Stein algebra,

and if M is a coadmissible
Ù‹DX -module on X, then RjΓ(X,M) is coadmissible

over both
Ù‹DX(X) and Ū(g) for each j ≥ 0.

Write h for a Cartan subalgebra of g, and let λ ∈ h∗. The center of the
enveloping algebra U(g) will be denoted by Z(g).

The triangular decomposition g = n− ⊕ h ⊕ n induces the Harish-Chandra
morphism θ : Z(g) → U(g) → U(h) = Sym h, which allows us to view λ as
a character for Z(g). We let Kλ denote the corresponding one-dimensional
Z(g)-representation, and set

Uλ := U(g)⊗Z(g) Kλ.

We denote the kernel of the surjection U(g) → Uλ by mλ.
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Now choose an (R,R)-Lie lattice gR inside g, and write Un = U(πngR). This
induces a norm on U(g), and we let Z(g) be equipped with the corresponding
subspace norm. We define

ÙUλ := lim
←−

(”UnK ⊗̂Z(g) Kλ

)
,

where the norm on Kλ is given by identification with K.

Lemma 6.16. The K-algebra ÙUλ is naturally isomorphic to the quotient of

Ū(g) by the closure of mλ. In particular, ÙUλ is a Fréchet–Stein algebra.

Proof. This is Lemma 3.6 applied to the short exact sequence

0 → mλ → U(g) → Uλ → 0,

together with [24, Proposition 3.7]. �

As in Section 6.1, note that πngR determines compatible norms on U(‹TX)(U)
for any admissible open affinoid subspace U ⊂ X , giving rise to completions

‹Dn := Un(‹TX) such that
Ù‹DX = lim

←−
‹Dn is a global Fréchet–Stein sheaf on X .

Identifying Z(l) with L-invariant differential operators on G/R (see [6, Sec-

tion 4.1]), we obtain a natural morphism Z(l) → ‹Dn with central image for
each n, and we define the sheaf of twisted differential operators on X by

ÙDλ
X = lim

←−
(‹Dn ⊗̂Z(l) Kλ).

Again, Lemma 3.6 shows that the natural morphism
Ù‹DX → ÙDλ

X is an epimor-

phism which turns ÙDλ
X into a coadmissible enlargement of

Ù‹DX , and hence a

coadmissible enlargement of ˇ�U (OX ⊗ g).
Now let P1 ≤ P2 be two parabolic subgroups, and consider the proper

morphism f : X1 → X2, where Xi = (G/Pi)
an.

Corollary 6.17. The pushforward f∗ ˇ�U (OX1
⊗ g) is a global Fréchet–Stein

sheaf on X2, and f∗ÙDλ
X1

is a coadmissible enlargement. In particular, f∗ÙDλ
X1

is a global Fréchet–Stein sheaf on X2. If M is a coadmissible ÙDλ
X1

-module,

then Rjf∗M is coadmissible over f∗ÙDλ
X1

, and a fortiori coadmissible over

f∗ ˇ�U (OX1
⊗ g) for each j ≥ 0.

Proof. This is the content of Lemma 6.5. �

Note that in the extreme case P2 = G, we obtain the following generaliza-
tion of the first statement in [1, Theorem 6.4.7].

Corollary 6.18. Let P ≤ G be a parabolic subgroup, and let X = (G/P)an.

Then the global sections ÙDλ
X(X) form a Fréchet–Stein algebra, and if M is a

coadmissible ÙDλ
X-module, then RjΓ(X,M) is coadmissible over both ÙDλ

X(X)

and over Ū(g) for each j ≥ 0.
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As the Ū(g)-action factors through ÙUλ, this makes RjΓ(X,M) a coadmis-

sible ÙUλ-module for each j ≥ 0 by [24, Lemma 3.8].
We thus obtain Corollary 1.4.
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