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Abstract 
 

In the course of the present work new strategies for the structuring of surfaces utilizing 

different “top-down” and “bottom-up” methods were developed. The central “bottom-up” 

element in this endeavor was the phenomenon of self-organized pattern formation in 

monolayers of phospholipids during Langmuir-Blodgett transfer onto solid substrates 

originally discovered by Gleiche et. al. in our group. At first the influence of different 

substrate treatments as well as the role of heat and humidity on pattern formation and stability 

was analyzed (Chapter 3). To further increase the complexity of achievable patterns a novel 

type of Langmuir-Blodgett transfer was established. In this 

Langmuir-Blodgett rotating transfer the substrate is rotated out of 

the subphase as compared to the conventional vertical 

withdrawing (Chapter 4). It was shown that gradient surface 

structures over large areas can be generated by this approach. 

Another way of increasing the complexity of the obtained patterns as well as getting 

additional insights into the process of pattern formation was realized by introducing 

prestructures on the substrates by electron beam lithography (Chapter 

5). The results of these experiments underline the importance of 

ultrathin water layers on the substrate during pattern formation. The 

influence of admixings of different chemical compounds on pattern 

formation was examined (Chapter 6) and it was demonstrated that this 

is a feasible approach for achieving diverse functionalizations of 

surfaces. As an outstanding example the 

structured transfer of an initiator molecule for 

surface induced polymerization was choosen and 

the growth of different kinds of structured 

polymer brushes on large-area substrates was 

realized (Chapter 7). The mechanical stability of the polymer brushes inspired structuring of 

homogeneous polymer brush films by atomic force microscope 

lithography (Chapter 8). The lithography properties of the polymer 

brushes proved to be superior compared to comparable spin-coated 

polymer films. Additionally, the covalent binding of the polymer 

brushes enabled wet-chemical subsequent processing of the structured 

surfaces. This allowed for the site-selective immobilization of different 



dyes and thus a further functionalization of the surfaces. In the last part of the present work 

molecular dynamics simulations were utilized to gain a better understanding of two different 

self-assembled systems: two distinct structures were observed in the self-assembly of two-

dimensional crystals of adenine-C20  on graphite with different heat stabilities among those 

two domains. The modelling by molecular dynamics simulations enabled an assessment of the 

different structural proposals for the observed domains and established a mechanism for the 

distinct stability on heating (Chapter 9). Finally the simulation of phospholipids monolayers 

on a solid substrate with subsequent 

examination of the diffusion of organic 

molecules on these (Chapter 10) enabled the 

development of an atomistic picture of the 

mechanisms behind the site-selective 

deposition of organic molecules onto 

phospholipid stripe patterns.  

 

 

 

 

 

 

 

 

 

Description of illustrations (in order of appearance): 

1. Scheme of Langmuir-Blodgett rotating transfer, insets show fluorescence microscopy 

images of marked positions on the sample. 

2. DPPC stripe pattern formed on a prestructured substrate. 

3. Mixed DPPC/initiator stripe pattern before and after polymerization of styrene. 

4. AFM image of a polymer brush structured by AFM lithography. Inset shows a 

fluorescence microscopy of the sample after immobilazation of dye into the polymer 

brush. 

5. Snapshot of a molecular dynamics simulation of the diffusion of perylene on a DPPC 

film supported by a solid substrate. 

 



Zusammenfassung 
 

Im Rahmen der vorliegenden Arbeit wurden neue Strategien zur Strukturierung von 

Oberflächen unter Einbeziehung verschiedener „top-down“ und „bottom-up“ Methoden 

entwickelt. Das zentrale „bottom-up“ Element war dabei das ursprünglich von Gleiche et. al. 

entdeckte Phänomen selbstorganisierter Musterbildung in Phospholipidmonolagen bei 

Langmuir-Blodgett Transfer auf ein festes Substrat. Zunächst wurde der Einfluss 

verschiedener Substratbehandlungen sowie die Rolle von Hitze und Luftfeuchte auf die 

Musterbildung und -stabilität untersucht (Kapitel 3). Um die Komplexität der erzeugbaren 

Muster weiter zu steigern wurde eine neuartige Art der Langmuir-Blodgett Transfers 

entwickelt, bei dem das Substrat aus der Subphase herausrotiert 

anstatt vertikal herausgezogen wird (Kapitel 4). Dies ermöglicht 

die Erstellung gradienter Oberflächenstrukturen über große 

Flächen. Ein anderer Weg die Komplexität der erhaltenen  Muster 

zu steigern, sowie weitere Einblicke in den 

Musterbildungsprozess zu gewinnnen, wurde durch die Vorstrukturierung der Substrate 

mittels Elektronenstrahllithographie verwirklicht (Kapitel 5).  Die 

erhaltenen Ergebnisse untermauern zusätzlich die Rolle ultradünner 

Wasserfilme auf dem Substrat während der Musterbildung. Der 

Einfluss von Beimischung verschiedener chemischer Verbindungen 

auf die Musterbildung wurde untersucht (Kapitel 6) und gezeigt, dass 

sich auf diese Weise sehr unterschiedliche Funktionalisierungen von Oberflächen realisieren 

lassen. Als herausragendes Beispiel wurde hier das strukturierte Aufbringen eines 

Initiatormoleküls für die oberflächeninduzierte 

Polymerisation gewählt und mittels dieser 

Methode das Aufwachsen verschiedener Arten 

von strukturierten Polymerbürsten auf 

großflächigen Substraten realisiert (Kapitel 7).  Die mechanische Stabilität dieser 

Polymerbürsten inspirierte den Versuch homogene 

Polymerbürstenfilme mittels Rasterkraftmikroskoplithographie zu 

Strukturieren (Kapitel 8).   Die Lithographieeigenschaften der 

Polymerbürsten erwiesen sich dabei als den vergleichbarer 

rotationsbeschichteter Polymerfilme als überlegen. Zudem ermöglicht 

die kovalente Anbindung der Polymerbürsten eine nasschemische 



Weiterbehandlung der strukturierten Oberflächen, die eine selektive Anbindung verschiedener 

Farbstoffe und somit eine weitere Funktionalisierung der Oberfläche möglich macht. Im 

letzten Teil der Arbeit wurden Molekulardynamiksimulationen eingesetzt um ein besseres 

Verständnis zweier unterschiedlicher selbstassemblierter Systeme zu erhalten: Bei der 

Selbstassemblierung zweidimensionaler Kristalle aus Adenin-C20 Molekülen auf Graphit 

wurden zwei unterschiedliche Strukturen, sowie eine unterschiedliche Hitzestabilität dieser 

verschiedenen Domänen beobachtet. Die Modellierung mittels 

Molekulardynamiksimulationen ermöglichte 

eine Einschätzung der verschiedenen 

Strukturvorschläge für die vorgefundenen 

Domänen, sowie eines Mechanismus für die 

unterschiedliche Hitzestabilität (Kapitel 9).  

Die Simulation von Phospholipidmonolagen 

auf einem festen Substrat mit der 

anschließenden Untersuchung  der Diffussion organischer Moleküle auf diesen (Kapitel 10) 

ermöglichte schließlich die Entwicklung einer atomistischen Vorstellung der Prozesse die zur 

ortsselektiven Ablagerung organischer Moleküle auf Phospholipidstreifenmustern führen.  

 

 

 

 

 

Beschreibung der Bilder (Reihenfolge wie im Text): 

1. Schematische Darstellung des Langmuir-Blodgett Rotationstransfer, die kleinen Bilder 

zeigen Floureszenzmikroskopaufnahmen der markierten Stellen auf der Probe. 

2. DPPC Streifenmuster auf einem vorstrukturierten Substrat. 

3. DPPC/Initiator Mischfilm vor und nach der Polymerisation von Styren. 

4. Rasterkraftmikroskopaufnahme einer durch Lithographie mittels Rasterkraft-

mikroskop strukturierten Polymerbürste. Das eingefügte Bild zeigt eine 

Fluoreszenzmikroskopaufnahme der Probe nach der Immoblisierung eines Farbstoffes 

in die Polymerbürste. 

5. Momentaufnahme einer Molekulardynamiksimulation der Diffusion von Perylen auf 

einem DPPC Film auf einem festen Substrat. 
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1 Introduction 

 

1.1 Why Surface Structuring? 

The structuring of surfaces on a micro and nanoscale has become one of the most active fields 

in the nano-sciences over the last decades. This is not surprising since control over matter at 

the micro- and nano-scale potentially gives one control about the many processes that are 

rooted in these length scales or enables miniaturization of existing technologies for enhanced 

performance. Miniaturization was the driving force in electronic devices like micro processors 

in the last 50 years most arrestingly depicted by Moore’s law which states that the number of 

transistors in commercial integrated circuits grows exponentially doubling about every two 

years.[1] It also enabled new integrated devices in the field of opto-electronics or even the 

integration of whole “lab-on-a-chip” systems and other micro-electro-mechanical systems 

(MEMS). Up to now the miniaturization of already existing major structures has been done 

with rather conventional top-down methods in particular optical lithography which have been 

enhanced constantly over the years. Moore’s law is thought to continue for some more years 

even with “simple” enhancement of existing technologies, but ultimately there has to be some 

new method for generating the ever smaller structures needed and at some point even new 

concepts of transistors will be necessary. Surface structuring also plays an important role in 

microbiology where one can gain control over cell growth, migration, adhesion or even 

differentiation by ably preparations of surfaces.[2] Surface structuring at the micro- and even 

nano-scale can also lead to new macroscopic properties making structuring methods of huge 

relevance to the material sciences, too. The most prominent application – at least in the 

awareness of the general public – is superhydrophobicity and therefore self-cleaning 

properties by altering the wetting behavior of surfaces by carefully designed structuring, the 

so called lotus effect.[3] Another interesting possibility is the generation of so-called meta-

materials with electromagnetic properties that are not available in natural materials (e.g., a 

negative refractive index). These are opening up completely new potentials for optical 

devices.[4] 

 

The methods for the structuring of surfaces are usually divided into two main groups, so 

called “top-down” (from big to small, starting from bulk material and breaking it down) and 

“bottom-up” (from small to big, building up a desired structure from smaller often molecular 
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building blocks) methods. Top-down methods are usually characterized by the application of 

externally-controlled tools that shape the preparation system into the desired structure. In 

contrast bottom-up methods start with small building blocks (usually of molecular size) and 

then rely onto the chemical properties of these building blocks to either directly build some 

useful structure by self-assembly or self-organization or achieve a functional structure by 

selective assembly onto desired position. In the latter top-down and bottom-up approaches are 

often mixed with each other, when, e.g., a top-down method is used for the preparation of 

active sites that then allow for a selective assembly of molecules in a bottom-up process. 

Another example for mixed bottom-up and top-down approaches is when in contrast to the 

aforementioned procedure a self-assembled monolayer (bottom-up) is used as a substrate for 

subsequent structuring by a top-down method.[5-7] 

 

1.2 Top-Down Approaches 

A list of common top-down approaches and typical length scales accessible by the respective 

method as well as a comparison of the size of natural and artificial objects is given in Figure 1. 

The accessible length scales of the different methods span from millimeter to sub-nanometer 

resolution. 

 

Figure 1. Accessible length scales by top-down methods (below ruler) compared to common structural length 

scales of specific natural and artificial objects (above ruler). Taken from reference.[8] 
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By far the most common top-down technique is the optical lithography which is extensively 

used in the manufacturing of microelectronic devices like processors or memory chips.[9] 

Optical lithography is based on the exposure of a photosensitive resist layer to spatially 

modulated UV light. The structured resist layer is then used as a mask or sacrificial layer for 

subsequent process steps to generate the desired structures. In commercial manufacturing 

feature sizes of 45 nm are well-established and 32 nm are projected for the near future. In 

electron beam lithography the UV light is replaced by a focused electron beam. This allows 

for a highly improved resolution with features below 10 nm but unfortunately has the 

implication of a much lower throughput. This is because in electron beam lithography there is 

no mask that allows for a parallel exposure of large areas as with optical lithography but every 

structure must be written sequentially by the electron beam. Scanning Probe Microscopy 

(SPM) techniques, like lithography with Atomic Force Microscopes (AFM) or Scanning 

Tunneling Microscopes (STM) reach the ultimate resolution limit by enabling the interaction 

with and movement of single molecules and atoms. The precise positioning of single atoms 

into arbitrary patterns by STM was first demonstrated in 1990[10] and lead to the famous 

“quantum corral” a few years later.[11] STMs can also be used to induce chemical reactions on 

atomic scales.[12] Another SPM based approach in top-down patterning is the so-called Dip 

Pen Nanolithography (DPN). In this method an AFM tip is “inked” with a suitable substance 

and then scanned over the surface in the desired pattern, leaving the substance on the surface 

similar to a fountain-pen.[13] All scanning probe techniques are sequential methods so they 

exhibit the same drawbacks with respect to achievable throughput (although this may be 

compensated to some extend by parallelization through cantilever arrays). Alternative 

methods like micro- or nanocontact printing (µCP/NCP) are especially useful in the chemical 

patterning of surfaces and are often used to print “ink” molecules that form self-assembled 

monolayers (thus somehow combining again top-down and bottom-up methods). They can be 

used in the patterning of chemical compounds that may not be stable enough for other 

lithographic methods (like many proteins) and can be employed in mass production even 

cheaper than optical lithography.[14] Another promising emerging structuring method is 

nanoimprint lithography (NIL).[15] In this method the patterns are transferred from a mask by 

mechanical deformation of an imprint resist often combined with a curing with UV light or 

heat during the imprint process. What makes this method very promising is that it potentially 

features a very high resolution while still having a considerable throughput, therefore, being 

much cheaper than for example electron beam lithography. The remaining problem in this 

approach is that still another conventional method (e.g., optical lithography or electron beam 
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lithography) is needed for manufacturing the mask for the imprint process which may be 

prohibitive for a broad commercial usage at the present time. 

 

1.3 Bottom-Up Approaches 

“Bottom-up” means to use smaller often molecular size building blocks and rely on their 

specific interactions with each other or prestructured substrates to form desired functional 

structures by self-assembly or self-organization♣. Therefore, these approaches are often 

essentially of chemical nature because of the need for specific design in and synthesis of the 

molecular building blocks. The key feature of bottom-up approaches is the molecular 

self-assembly most prominently known in the case of self-assembled monolayers (SAMs).[16] 

SAMs are organized monomolecular films consisting of bipolar molecules that have one end 

with a special affinity to the substrate and the other free for functionalization with desired 

chemical groups. SAMs can be used to alter surface properties, e.g., the wetting behavior or 

induce new chemical functionalities to a surface like the polymerization of polymer brushes. 

Other examples of self-assembly giving rise to pattern formation can be found in many 

different systems and on many different length scales like phase-separating block 

copolymers,[17] two dimensional molecular crystals on surfaces,[18] DNA network 

structures,[19] and the generation of close packed structures of latex beads[20] to mention only a 

few in the multitude of reported approaches.[21] An obvious example for extreme self-

organization is the growth of biological organism (although most basic assembly processes in 

cells may be based on self-assembly).[22,23] Other examples are the pattern formation in 

chemical reactions[24] or the pattern formation in Langmuir-Blodgett films.[25,26] Many of 

these pattern producing processes are used in bottom-up approaches by utilizing them as 

templates to guide further self-assembled positioning of functionalized building blocks for 

later applications.[27] The main fascination in bottom-up approaches is found in their potential 

of providing nanoscale structuring and functionalization over arbitrary sized areas combined 

with low cost and low time consumption. The problems in controlling these processes may 

                                                 
♣ The terms “self-assembly” and “self-organization” are often used synonymously. However “self-assembly” is 

more precisely used for processes where the ordered structure is formed while the system approaches 

thermodynamic equilibrium minimizing it’s free energy. In contrast “Self-organization” often appears far away 

from equilibrium and may need constant supply of energy to occur. For example one could call the growth of a 

highly ordered crystal as a simple form of self-assembly whereas a growing biological organism is an extreme 

form of self-organization. 
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seem enormous but we should not forget that the most sophisticated “machines” known to 

men are biological systems and these rely entirely on bottom-up approaches. 

 

1.4 Scope of This Thesis 

This thesis mainly deals with the endeavor to utilize the self-organized pattern formation of 

DPPC during Langmuir-Blodgett transfer for novel approaches of chemical and structural 

surface patterning. This type of self-organization being a typical bottom-up approach is 

combined but also contrasted with typical top-down methods as electron beam lithography 

and lithography by an atomic force microscope. Last but not the least the use of molecular 

dynamic simulations for elucidating pattern formation in self-assembly systems is 

demonstrated. 

 

The thesis is structured into eleven chapters of which eight (Chapter 3 - 10) deal with 

experimental results. After the introduction (Chapter 1) a short overview on the methods 

employed is given (Chapter 2). The first chapter on experimental results (Chapter 3) deals 

with the influence of substrate treatment on the self-organized pattern formation of DPPC 

during Langmuir-Blodgett transfer and the impact of environmental humidity and temperature 

on the pattern. In Chapter 4 the development of a novel device that allows for a new variation 

of Langmuir-Blodgett transfer is described. It is shown that by this “rotational” Langmuir-

Blodgett transfer complex pattern of gradient structure can be obtained. Striving for another 

way of deliberately influencing the self-organized DPPC patterning the interaction of 

prestructures introduced by electron beam lithography with the patterning process is 

examined (Chapter 5). One approach for the functionalization of the self-organized DPPC 

pattern is the admixing of compounds with desired functionality into the Langmuir film prior 

to the transfer onto a solid substrate. The feasibility of this approach for different kind of 

compounds and the impact of the admixing onto pattern formation and phase transition are 

demonstrated in Chapter 6. One class of the previously examined compounds that is 

functionalized for polymerization is used in the generation of structured polymer brushes, the 

results being described in Chapter 7. The mechanical properties of the polymer brushes were 

inspiring the use of these in lithography by an atomic force microscope, thus coming back to 

the realm of top-down methods. Chapter 8 is about the outcome of the lithographic process in 

comparison to spin-coated polymer films and some interesting application in the selective 

patterning of chemical compounds into the structured polymer brushes. Finally Chapter 9 
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and 10 deal with the modeling and simulation of self-organization and self-assembly 

processes with the means of molecular dynamics. Chapter 9 features a stability analysis of a 

system consisting of adenine-C20 molecules on a graphite substrate that self-assemble into two 

different domain structures. The molecular dynamics simulation can shed some light onto the 

possible molecular packing structure and the mechanism behind their different stability on 

heating of the substrate. In Chapter 10 molecular dynamics simulation are utilized to discover 

the possible molecular mechanism behind the selective deposition process taking place in the 

evaporation of 3(5)-(9-anthryl) pyrazole and perylene onto structured DPPC pattern. 

Chapter 11 then gives some conclusions regarding the thesis as a whole and for some closing 

remarks. 

 

The fact that most of the present work either has already been published or is in preparation 

for publication in scientific journals reflects in the structure of the single chapters. They can 

be read independently although the order is intentional because most of them rely in one way 

or the other on the results and achievements of the previous chapters. 
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2 General Methodology 

 

2.1 Langmuir-Blodgett Technique 

2.1.1 Introduction 

The Langmuir-Blodgett technique (in short LB technique) deals with the preparation and 

investigation of insoluble monolayers at the air-water interface (usually termed as Langmuir 

films) as well as the transfer of such films onto solid substrates (then called LB films). 

Probably the earliest documented scientific observation related to the emergence of the LB 

technique was made as early as 1773 by Benjamin Franklin who “stilled the waves” by 

dropping a teaspoon full of oil into a pond.[28] Over a century later Lord Rayleigh realized that 

Franklin had actually generated a monolayer of oil on the ponds surface that was calming 

down the surface movement and calculated the thickness of such a monolayer as well as used 

these calculations to confirm the Avogadro number.[29] The progenitor of today’s LB trough 

(actually an ordinary kitchen sink) was introduced by Agnes Pockels. She experimented on 

the influence of oil monolayers and the compression of these through barriers on the water 

surface tension.[30] Based on this setup Irving Langmuir developed the instrument that has 

come to be known as Langmuir trough and opened up a whole new scientific field.[31] 

Together with his assistant Katherine Blodgett♣ he later did the groundbreaking works in the 

transfer of Langmuir films onto solid substrates[32-34] and finally established what is today 

known as Langmuir-Blodgett technique. Starting in the 1960s the LB technique gained 

growing interest for the generation of functional molecular arrangement on solid substrates 

with specifically designed molecules, advanced especially by Hans Kuhn and his 

colleagues.[35] Although the LB technique is already a mature field with a century-long history 

it still constitutes an active research area with many recent applications in a broad variety of 

fields like molecular electronics,[36,37] optoelectronics,[38] sensor devices,[39,40] generation of 

ordered arrangement of particles,[41-43] and even the processing of graphene.[44] 
                                                 
♣ An interesting side note is that although the general (non-scientific)                           c 

public has never reached a state of wide awareness about LB technique                                   c 

Katherine Blodgett nevertheless had an appearance in the famous animation                                                         c 

show “The Simpsons” (episode 2 of season 17, GABF16) when Lisa                           c 

talked her family into a trip to the newly opened local stamp museum.  
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2.1.2 The Langmuir-Blodgett Trough 

The essential piece of equipment for the LB technique the LB trough has come a long way 

from the more improvised kitchen sink used by Pockels over the first dedicated troughs 

designed by Langmuir to modern commercially available LB troughs. Although a variety of 

different setups exist[45] LB troughs commonly consist of the same basic constituents. A 

typical setup realized in one of the commercial troughs used during the course of the present 

work is shown in Figure 2. 

 

 

Figure 2. Image of a commercial Langmuir-Blodgett trough consisting of (1) the basin (2) symmetric movable 

barriers (3) dipper (4) Wilhelmy plate and (5) connectors for the thermostat. 

 

This typical setup consists of a basin (1) to hold the subphase on which the monolayers are to 

be spread. This basin is made of Teflon which has the advantage of being chemically inert to 

a wide range of compounds and is hydrophobic, hence easy to clean. Incorporated into the 

basin is a network of tubes to allow temperature control of the subphase by a thermostat. The 

symmetric movable barriers (2) are made from Teflon, too, and are used to adjust the surface 

area of the floating monolayer. The dipper (4) is utilized to move a sample vertically into or 

out off the subphase in order to transfer a floating monolayer onto a solid substrate. The 

Wilhelmy plate (4) is used to measure the change in surface tension during experiments that is 
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usually translated into the lateral surface pressure, a key parameter for the characterization of 

the state of a floating monolayer. The plate used in this setup is made of platinum but other 

materials (glass, mica, and even filter paper) can be used, too. Connectors for a thermostat (5) 

enable a temperature control of the subphase. 

 

 

Figure 3. Schematic view of a Wilhelmy plate in (a) front view and (b) side view. 

 

When a rectangular plate (Figure 3) with the dimensions l, w, and t made from a material with 

a density ρP is immersed up to a depth h into a liquid of density ρL it will experience a force F 

given by 

 

 ( ) gtwhwtglwtF LP ρθγρ −++= cos2  ( 1 ) 

 

with g being the acceleration of gravity, γ the surface tension of the liquid and θ the contact 

angle of the liquid on the plate. If the plate is completely wetted (θ = 0°), sufficiently thin 

(t ≪ w), and stationary during the experiment the change in surface tension Δγ due to a 

floating monolayer is related to a change in force acting onto the plate ΔF by the simple 

expression 

 

 ( ) w
F

wt
F

22
Δ

≈
+
Δ

=Δγ  ( 2 ) 

 

a) b) 
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The surface pressure π is then defined by 

 

 
w
F

20
Δ

−=Δ−=−= γγγπ  ( 3 ) 

 

where γ0 is the initial surface tension of the pure subphase and γ is the surface tension in the 

presence of a floating monolayer. 

 

2.1.3 π-A Isotherms 

A floating monolayer at the air-water interface can be described as a two-dimensional gas. In 

analogy to the thermodynamics of three-dimensional gasses a lateral pressure π (as defined 

above by the drop in surface tension of the subphase due to the floating monolayer) assumes 

the role of the pressure p in the three-dimensional case and instead of the volume V the 

molecular area A (defined by the surface area available in the monolayer per molecule) is 

used for characterization of the thermodynamic state. The molecular area A for a floating 

monolayer in a LB trough can be adjusted by restricting the available surface area with 

moving barriers. For a constant temperature a π-A isotherm can be recorded for the Langmuir 

film by progressive compression and simultaneously measuring the lateral pressure π. A 

generalized π-A isotherm of a Langmuir film of fatty acid is shown in Figure 4. 
 

 

Figure 4. A generalized π-A isotherm of a Langmuir film of a fatty acid (taken from reference[46]). 
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In a very dilute state with molecular areas of hundreds of square angstroms the monolayer is 

well described as being in a gaseous state. Upon compression there will be a transition into 

what is traditionally called the liquid expanded phase. Both aforementioned phases do not 

exhibit any measurable order; the molecule’s headgroups are translationally disordered and 

the carbon chain tails are conformationally disordered. Further compression leads to an 

increase in surface pressure until a plateau region is reached, indicating a first-order transition 

from the liquid expanded phase to a condensed phase (meaning that now the film exhibits 

translational and conformational order to some extend when examined by, e.g., x-ray-

diffraction methods). The condensed phase is less compressible than the liquid expanded 

phase; therefore the rise in surface pressure upon compression is steeper. At some point 

usually a kink in the isotherm can be observed that denotes the transition into another 

condensed phase. This kink was observed and interpreted as an additional phase transition as 

early as 1922[47] before structural data was available. Therefore, the phases after the main 

phase transition from the liquid expanded phase where traditionally termed liquid condensed 

and solid phase. Later obtained structural data implies that the translational order in both of 

these phases is alike and the transition is essentially a change in the tilt angle of the 

hydrocarbon chains with respect to the water surface, so it would be more appropriate to refer 

to both of these phases as condensed and denote the difference by the prefix tilted or untilted, 

respectively. Nevertheless, the use of the terms “liquid condensed phase” and “solid phase” is 

still common due to described historical reasons. Monolayers of the phospholipid DPPC, the 

prominent system in the LB related parts of the current work, exhibit a first-order transition 

between liquid expanded and liquid condensed phase, too. This transition plays a crucial role 

in the self-organized patterning of DPPC during LB transfer. 

 

2.1.4 Langmuir-Blodgett Transfer 

The Langmuir-Blodgett transfer was introduced by Langmuir and Blodgett in the 1930s[32-34] 

and is still the most common method to transfer a floating monolayer onto a solid substrate. 

Most of the transfers carried out in the current work use this method, too. A schematic 

transfer procedure for the case of a hydrophilic substrate is shown in Figure 5. 
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Figure 5. Schematic procedure for a Langmuir-Blodgett transfer onto a hydrophilic substrate. 

 

The hydrophilic substrate is submerged into the water subphase (a) then a monolayer is spread 

(b) and compressed to the desired surface pressure (c). Finally the substrate is withdrawn 

from the subphase and the monolayer transfers onto the solid substrate at the three-phase 

contact line, the line on the sample where air, water and the solid substrate converge (d). 

Usually the surface pressure is kept constant during transfer by a feedback loop that 

compresses the film by movement of the barriers as soon as the surface pressure drops due to 

the transfer of molecules onto the solid substrate. 

 

The detailed processes in the vicinity of the three-phase contact line during LB transfer are 

still poorly understood. The contact angle θ of a liquid resting on a solid substrate is governed 

by Young’s equation:[48] 

 

 
LV

SLSV
e γ

γγ
θ

−
=cos  ( 4 ) 

 

with γSV, γSL, and γLV being the surface tensions at the solid/vapor, solid/liquid, and 

liquid/vapor interface, respectively. For the case of a vertical wall immersed in a liquid at the 

equilibrium state the then static meniscus is described by[49] 

 

a) 

d) 

b) 

c) 
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 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

γ
ρθ

2
1arcsin

2gZ
e  ( 5 ) 

 

where ρ is the density of the liquid, g the acceleration of gravity, Z the capillary height and γ 

the surface tension of the liquid. However, in the case of the solid substrate being withdrawn 

from a subphase that is additionally covered with a floating monolayer that will alter itself the 

wetting properties during transfer the description becomes much more complicated. One 

approach based on a combined molecular-hydrodynamic model obtained following equation 

for the description of the meniscus shape during transfer:[50,51] 

 

 ( ) ( )e
b

r K
vTnk

θ
λσ

θ cos
2

arcsincos +⎟
⎠
⎞

⎜
⎝
⎛=  ( 6 ) 

 

This model was applied with some success for the description of the self-organized DPPC 

patterning.[52] 

 

2.2 Brewster Angle Microscopy 

Brewster Angle Microscopy (BAM) was introduced independently and almost simultaneously 

by two groups Hönig and Möbius[53] and Hénon and Meunier[54] in 1991. It is a potent tool for 

the direct visualization of monolayers at the air-water interface. The basic phenomenon that is 

exploited by the BAM is the so called Brewster angle (after Sir David Brewster who 

discovered it in 1811). This is the angle of incidence at which only the s-polarized part of the 

light shining on an interface between two media of different refractive index is reflected: 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2arctan
n
n

Bθ  ( 7 ) 

 

The Brewster angle for an air-water interface (n1 ≈ 1, n2 ≈ 1.33) is approximately 53°. In a 

BAM setup p-polarized light is used to illuminate the air-water interface in a LB trough under 

the Brewster angle. Because only s-polarized light is reflected when the Brewster angle 

condition is fulfilled there will be no reflection from the trough surface. However if a floating 

monolayer covers the air-water interface the Brewster angle condition will be slightly violated 

h 
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giving rise to a small amount of reflection that can be detected and translated into an image of 

the monolayer morphology (Figure 6). 

 

 

Figure 6. Scheme of the signal generation in BAM. 

 

Since the reflected signal is only a tiny fraction of the incoming light intensity (usually in the 

order of 10-6) lasers are used as light sources and the reflected signal is collected by CCD 

cameras or similar devices. A typical BAM setup as it was also used in the present work is 

shown in Figure 7. 

 

 

Figure 7. Schematic setup of a Brewster angle microscope. 

air 
monolayer 

water 

laser 

polarizer 

LB trough 

microscope with 

CCD camera 
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A laser source (Nd-YAG laser in our setup) is filtered by a polarizer yielding p-polarized light 

shining on the LB trough under the Brewster angle θB. Since a floating monolayer is present 

part of the incoming light is reflected and collected by a microscope equipped with a sensitive 

CCD camera. The BAM usually yields a resolution of about 1 to 2 µm and enables the direct 

optical observation of domain growths in Langmuir films without the need of adding 

fluorescent probes that may itself influence the behavior of the examined system. 

 

2.3 Fluorescence Microscopy 

Fluorescence Microscopy (FM) is a special form of conventional light microscopy where a 

sample is studied by the fluorescence (or phosphorescence) of either naturally occurring 

fluorophores inside the sample or deliberately added fluorescent dyes. It has become 

extremely useful especially in the life sciences because biological structures can be selectively 

labeled by different fluorescent dyes. In the simplest form of fluorescence light of a certain 

wavelength is absorbed by an atom or molecule (the fluorophore) leaving it in an excited state 

that later decays under emission of light with longer wavelength. In fluorescence microscopy 

light matching the excitation spectra of the used fluorophores evokes fluorescence inside the 

sample that is then observed. A set of filters in the excitation and observation light path 

ensures that only fluorescence coming from the sample is observed while mere reflection of 

the exciting light is blocked. By an intelligent choice of fluorophores with different excitation 

and emission characteristics multi-color and selective observations of dye species are possible. 

A typical setup for an (epi-)fluorescence microscope if given in Figure 8. 
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Figure 8. Schematic setup of an epi-flourescence microscope. 

 

The emitted light from a bright light source (usually a xenon or mercury lamp) is filtered by 

an excitation filter to a narrow spectrum suitable for the excitation of the used fluorophore. 

The excitation light is then reflected onto the sample by a dichroic mirror that is matched to 

reflect the excitation light while letting pass the emitted fluorescent light from the sample. 

The fluorescent compounds inside the sample are excited by the incoming light and the 

resulting fluorescent emission is passed through the dichroic mirror and is filtered once again 

by an emission filter matched for the emission spectra of the used dye before reaching the 

objective where it can be observed directly or captured with a camera. The resolution limits of 

fluorescence microscopy are in principal similar to conventional microscopy (i.e., about half 

the wavelength of the used light) but advanced methods evolved based on fluorescence 

techniques, e.g., confocal laser scanning microscopy (CLSM), 4Pi microscopy, stimulated 

emission depletion (STED) and more that can reach resolutions even beyond the Abbe 

limit.[55,56] 
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2.4 Atomic Force Microscopy 

Atomic Force Microscopy (AFM) is an excellent tool for exploring surfaces and measuring 

tiny forces at the nanometer scale. The first AFM was introduced by Gerd Binnig, Calvin 

Quate and Christoph Gerber in 1986.[57] Whereas imaging in atomic scale resolution on 

conducting surfaces was achieved before by scanning tunneling microscopy (STM)[58,59] the 

advent of AFM provided a similar high resolution for the wide range of non-conductive 

samples (especially the most organic and biological materials). A scheme of a basic AFM 

setup is shown in Figure 9. 

 

 

Figure 9. Schematic basic AFM setup. 

 

The image generation by AFM is done by scanning a sharp tip (with apex radii of only several 

nanometers) attached to a cantilever over the surface to be examined. The scanning is either 

done by moving the sample or the cantilever usually by piezo crystal units for the movement 

in lateral (x-y) and vertical (z) direction. The interactions between tip and sample will bend 

the cantilever which is then detected by the instrument (usually by a Laser that is reflected by 

the cantilever onto a split photodiode) and translated into a topographic image of the surface. 
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Three modes of operation can be distinguished depending on how the cantilever is scanned 

over the sample: 

 

(1) Contact mode: in this mode the tip is in direct mechanical contact with the sample surface 

which means that strong repulsive forces are acting. There is a further distinction between 

constant height mode where the z-position is not altered during scanning and the constant 

force mode where the z-position is updated during scanning in a way that keeps the bending 

of the cantilever constant (which means a constant force is acting upon the tip). In the first 

case the current deflection of the cantilever is converted into a topographic image of the 

surface, in the latter case the topographic image is obtained by recording the current z-

position of the cantilever. 

 

(2) Non-contact or dynamic mode: here the cantilever is excited to oscillate and the tip is 

scanned over the sample far away from the surface (about 100 nm). Long-range forces acting 

between sample and cantilever shift the resonance frequency of the oscillating cantilever 

which is then detected as measurement signal. 

 

(3) Tapping or intermittent mode: when applying this mode the cantilever is oscillating, too, 

but is scanning so close to the sample surface that the tip reaches the repulsive forces regimen 

in the lower dead centre of the oscillation. The tip is therefore not in constant mechanical 

contact with the sample surface but is just tapping on the sample regularly. The feedback 

signal in this mode is usually the oscillation amplitude. When the distance (hence the force) 

between oscillating cantilever and the sample surface changes the resonance frequency of the 

cantilever will change and therefore the oscillation amplitude (because the excitation 

frequency will not exactly match the resonance frequency any more). The feedback loop will 

then adjust the z-position of the cantilever until the oscillation amplitude reaches the old 

magnitude again. Generally two measurement signals are generated regularly: the z-position 

of the cantilever is used to generate a topographic image. As a second source of information 

the phase shift between excitation oscillation and the actual oscillation of the cantilever is 

recorded and translated into a phase image of the surface. 

 

All three modes have advantages and drawbacks with respect to resolution, mechanical strain 

on tip and sample, and stability and complexity of the setup itself. While the contact mode 

was the first one to be implemented historically it is also the one with the strongest forces 



2.5 Electron Beam Lithography 

19 

acting on tip and sample. This may not be a problem on hard samples but for soft surfaces 

(like most biological samples) scanning in contact mode will considerably alter or even 

damage the scanned object. The non-contact mode exerts the lowest force onto the sample but 

high-vacuum conditions are needed for a feasible application. Therefore, the most common 

mode today for the examination of soft matter samples (like most samples in the current work) 

is the tapping mode that yields good results even under ambient conditions as long as 

molecular or even atomic resolution is not necessary. When used for lithographic purposes the 

AFM is most often operated in contact mode because relatively high forces are to be 

generated but the intermittent mode can also be used in the right setup and for soft 

materials.[60-64] 

 

2.5 Electron Beam Lithography 

In electron beam lithography (EBL) a focused electron beam is scanned over a sample 

covered with a resist layer (e.g., PMMA) sensitive to electron irradiation to generate a pattern 

of exposed and non exposed areas that can be later selectively removed by solvents. The 

structures generated in the resist layer by this process can then be transferred onto the sample, 

e.g., by evaporating of metals and subsequent removal of the remaining resist layer. A typical 

schematic process as it was used to generate the prestructures in the present work is depicted 

in Figure 10. 

 

Figure 10. Scheme of a typical EBL process: (a) a sample with resist layer (b) exposure to an electron beam (c) 

selective solving of exposed areas (d) evaporating of metal (e) removal of residual resist layer. 

a) b)

c)

d)e) 
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A silicon sample is covered with a resist layer (a) in a typical case 300 nm of PMMA. The 

sample is then scanned by an electron beam to expose the desired pattern (b). The electron 

beam induces chain breaks in the exposed areas of the resist layer thus lowering the molecular 

weight of the PMMA in these areas. Since the solubility of PMMA is strongly dependant on 

the molecular weight for some solvents the exposed pattern can be dissolved selectively (c) by 

washing the sample with an appropriate solvent (e.g., MIBK). Metals can then be applied to 

the sample for example by thermal evaporation (d) and after a final lift off process in that the 

residual resist layer is completely removed (e.g., by washing with acetone) the exposed 

pattern remains as a metal structure on the sample (e). Since EBL can generate structure way 

beyond the diffraction limit it has become widely used in the area of nanotechnology and 

related fields. Dedicated EBL systems can reach feature sizes down to 10 nm and for systems 

(that are more common in research setups) that are built upon a conventional electron 

microscope (like used in the present work) still features down to 20 nm are reported. 

Although EBL is superior to photolithographic approaches in terms of resolution it has the 

problem of being a serial technique: the electron beam has to scan the whole pattern and dwell 

long enough in each position to reach the exposure dose needed for development of the resist. 

Therefore EBL is limited to the patterning of relatively small areas in feasible time scales and 

only used in areas where the improved resolution makes up for the extensive fabrication time 

(e.g., mask production for later photolithographic processes) or only small area patterning is 

needed as is often the case in research settings. 

 

2.6 Molecular Dynamics with GROMACS 

2.6.1 Introduction 

Molecular dynamics (MD) refers to a method of computer simulation where a system of 

atoms or molecules is allowed to evolve for a period of time (usually) under Newtonian 

physics. This means that in contrast to Monte Carlo (MC) simulations the trajectories of the 

constituents are not based on random movements but rather dictated by the forces calculated 

from approximations of know interactions within the system (e.g., coulomb forces, van der 

Waals forces). The first MD simulations were performed in the late 50s[65] and since then the 

method was constantly improved. With the advances in computer technology and therefore 

constantly increasing computing power the simulation of ever more complex and larger 

systems have become feasible. Recently, even a MD simulation of a whole virion with a 

complete set of RNA and viral proteins in atomistic details (about one million atoms) for a 
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period of 50 ns was achieved.[66] Another development enabling simulations of larger systems 

for longer timescales is the use of coarse grained (CG) models in which several atoms are 

combined into one model particle to reduce the overall numbers of particles for that the forces 

and resulting trajectories must be calculated. By current implementations of this method, e.g., 

the MARTINI force field[67] for GROMACS, time scales in the range of microseconds for big 

systems like phospholipid bilayers on a solid support[68] or phospholipid monolayers on 

water[69] (with over 200,000 particles representing over 2,400,000 atoms) can be reached if 

atomistic details are not necessary. Nowadays MD simulation has become a powerful tool and 

is often referred to as “molecular microscope”. It is broadly used in the biochemical sciences 

to investigate the properties of proteins, the interaction of proteins with small molecules, or 

other proteins in water and within biomembranes. There are several software suites available 

that provide efficient MD codes and standardized force fields. This opens up the use of MD 

simulation to a broader audience that generally does not have the resources to develop 

simulation programs from scratch: among the most widespread simulation suites are 

AMBER[70], CHARMM[71-73], GROMACS[74,75] and NAMD[76]. For the simulations in the 

present work we chose GROMACS because it is broadly used in the simulation of 

phospholipid systems, highly efficient, and freely available. 

 

2.6.2 General MD Algorithm 

A general flow chart of a simulation in the GROMACS suite (as well as of most classical MD 

simulations) is given in Figure 11. As an input the simulation requires the position and speed 

of all constituents of the system (i.e., the system’s starting configuration) as well as all 

parameters that describe the bonded and non-bonded interactions within the system namely 

the topology that describes which atoms in the system are bound together to molecules (and in 

which way) and the force field that provides the parameters for calculating the interaction 

forces. Given all of this information the software can determine the forces acting upon each 

constituent of the system by calculating the force between each pair of non-bonded 

constituents plus the forces due to bonded interaction. Afterwards the configuration is updated 

by calculating the movement of each constituent for the period of one time step by 

numerically solving Newton’s equation of motion. During the duration of a time step the 

forces are postulated to remain constant, therefore it is very important to choose the steps 

short enough in order to prevent artifacts. Usually time steps in the order of 1 to 4 fs are 

applied, depending on the fastest occurring motions (e.g., oscillations of bound hydrogen 
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atoms) in the simulated system. When the new position and velocity of each system 

constituent are  determined   they  can  be  logged   together   with   other  system    parameters 

 

Figure 11. Flow chart of a classical MD algorithm (adapted from GROMACS manual[77]). 
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of  interest (e.g., potential and kinetic energies and pressure tensors) that can be derived from 

the calculation. After each time step it is checked whether the desired simulation time has 

already been reached. If not the algorithm starts over with calculating the forces on each 

system constituent based upon their new positions and then updates the configuration again 

until the desired simulation time is reached. 

 

2.6.3 Used Interaction Function and Force Field 

The interactions between the constituents of a simulated system can be divided into non-

bonded and bonded interactions. GROMACS offers various functions and methods to 

calculate the interaction forces in order to be easily adaptable to a lot of different set of force 

field parameters from external sources as well as personal preferences of the users. This 

chapter covers only the options used and relevant to this work. For a full account of possible 

choices and more detailed information refer to the GROMACS manual[78] and the description 

of the GROMOS96 force field.[79] 

 

All non-bonded interactions in GROMACS are pair-additive as well as centro-symmetric: 
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The non-bonded interactions contain a repulsion and dispersion term that are combined into a 

Lennard-Jones (or 6-12 interaction) term and a Coulomb term. Additionally (partially) 

charged constituents act through the Coulomb term. 

 

The Lennard-Jones potential VLJ is given by 
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The term derived from this potential is 
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Alternatively VLJ can be written in the form of 
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The parameters ( )12
ijC  and ( )6

ijC  depend on each respective pair of the system constituent. 

Therefore, it is necessary to calculate these parameters for all possible types of pairs within 

the simulated system. This is done once before the start of the simulation and the results are 

stored into a LJ-parameter matrix to be used whenever needed. The combination rules to 

determine the combined parameters from the self-interaction parameters given by the force 

field are either to use geometric means for both parameters: 
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or alternatively use an arithmetic average for the ijσ  and geometric average for the ijε : 
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the latter known as the Lorentz-Berthelot rules.[80] 

 

The Coulomb interaction between two charged particles is given by: 
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Hence the derived force term is: 
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In order to save computing time usually the non-bonded forces are not accounted for if the 

pair of beheld system constituents is farther away from each other than a certain cutoff radius. 

Introducing such a simple cutoff will produce a discontinuity in the experienced forces just at 

the cutoff radius which can result in serious simulation artifacts.[81] To remove the artificial 

leap in force at the cutoff radius shift functions can be used that smoothen out the 

discontinuity. For a pure Coulomb interaction ( ) ( ) ( )1+−== α
α rrFrF  the shifted force ( )rFs  

can generally be written as 
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Here two new parameters r1 and rc are introduced. The shifted force is identical to the 

unshifted force up to a radius of r1. Then the shifting function S(r) is added in order to bring 

the force smoothly down to zero until radius rc is reached. For bigger r the shifted force is set 

to zero. The corresponding shifted Coulomb potential is 
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Because the shifted force function should be smooth at r1 and rc and additionally become zero 

at rc the following boundary conditions are imposed: 
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A third degree polynomial like 
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can fulfill these requirements. A and B are determined by the boundary conditions to: 
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The shifted force function in the range between r1 and rc is therefore 
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and the corresponding potential 
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When r1 is set to zero the modified Coulomb force function becomes 
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and is identical to the parabolic force function recommended to be used as a short-range 

function in conjunction with a Poisson solver for the long-range part.[82] The corresponding 

Coulomb potential is  
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The use of shift functions and cutoffs has only minor implications for the Lennard-Jones 

forces but will obviously reduce the long-range Coulomb forces drastically. Negligence of the 

long-range Coulomb forces by not applying a suitable correction may result in simulation 

artifacts.[83] To account for the decline in Coulomb force due to the exclusion of charges 

farther away than the cutoff radius a method named Ewald summation can be used: 

 

Generally the total electrostatic energy of N particles and their periodic images is 
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For nx = ny = nz = 0 (i.e., the box vector n becomes the zero vector) the exception must be 

made that terms with i = j are omitted to avoid self-interaction within the base simulation cell. 

The distance rij,n is the true distance between two particles and not the nearest-image distance. 

This sum conditionally converges but does so very slowly. To ease the calculation of long-

range interactions of the periodic images in crystals the Ewald summation was introduced.[84]  
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The basic idea is to split up the slowly converging sum into two faster converging and a 

constant term: 

 

( 30 ) 

( 31 ) 
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The parameter β determines the relative weight between the direct sum Vdir and the reciprocal 

sum Vrec. By this approach relative short cutoffs in the direct space sum (in the order of 1 nm) 

and in the reciprocal space sum (e.g., 10 wave vectors in each direction) can be used. Still, 

there remains a problem in efficiency: the computing cost of the reciprocal sum increases as 

N2 which (by better implemented algorithms) can be cut down only to N3/2. This makes the 

approach prohibitive for bigger system sizes. To circumvent this problem GROMACS usually 

utilizes a refined method named particle-mesh Ewald (PME).[85,86] In this method the charges 

are assigned to a grid by cardinal B-spline interpolation. Then the grid is Fourier transformed 

with a 3D-FFT and the complete reciprocal energy term is obtained by a single sum over the 

grid in k-space instead of directly summing the wave vectors. The potential at the grid points 

is obtained by an inverse transformation and by using the interpolation factors the forces on 

each system constituent is gained. The computing cost of the PME algorithm scales as 

( )NN log  and is therefore considerable faster than simple Ewald summation for medium to 

larger systems; though on very small systems simple Ewald summation may perform better. 

 

In addition to the non-bonded interactions there are several bonded interactions that apply to 

all systems constituents that are bound to each other. The total bonded interaction on a given 

constituent is a sum of forces due to a bond stretching potential, angle potential, dihedral 

potentials and some cross term. 
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Figure 12. Naming conventions for the bonded interactions: (a) bond stretching, (b) proper dihedral angle, 

(c) bond angle, and (d) improper dihedral angle. 

 

The bond stretching between two covalently bound atoms i and j is usually modeled by a 

harmonic potential 
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with harmb
ijk ,  being the bond stretch force constant and ijb  the equilibrium bond length. This 

potential results in a force given by 
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To gain computing efficiency a fourth power bond potential is used within the GROMOS96 

force field.[79] 
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The resulting force term becomes 
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The relation of this form of potential’s force constant to the usual harmonic one is 

 

 harmb
ijij

b
ij kbk ,22 =  ( 38 ) 

 

Most of the force constants are derived by this relation from the harmonic ones used in the 

GROMOS-87 force field.[87] The gain in computing efficiency (no need for the evaluation of  

square roots) is paid for by a conceptually more complex design. One particular disadvantage 

is that due to the non-harmonic form the average energy of a single bond does not equal kT2
1  

as one would expect for a usual harmonic potential. 

 

The vibration of the bond angle between a triplet ijk of atoms is also usually represented by a 

harmonic potential with the equilibrium angle 0
ijkθ : 
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The corresponding forces on each atom can be derived by the chain rule: 
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Within the GROMOS96 force field a simplified function represents the angle vibrations: 
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where now 

 

 ( )
kjij

ijk rr
kjij rr ⋅

=θcos  ( 42 ) 

 



2.6 Molecular Dynamics with GROMACS 

31 

The corresponding forces can be obtained by partial differentiation with respect to the atomic 

positions. The relationship between the harmonic force constant harm
ijkk ,θ  and the cosine form is 

given by 

 

 ( ) harm
ijkijkijk kk ,02sin θθ θ =  ( 43 ) 

 

A much more complicated temperature dependent relationship is given in the GROMOS96 

manual[79] but the formulas are equivalent at 0 K and show only minor deviations (about 0.1% 

to 0.2% at 300 K). Therefore, the use of this conversion is feasible for virtually all 

applications.  

 

In addition to the pure bond and angle potentials two terms originating from crosstalk 

between the stretching of neighboring bonds (bond-bond cross term) and the stretching of 

bonds by angle deformation (bond-angle cross term) are included.[88] 

 

For three particles i, j and k forming bonds between i and j respectively k and j the bond-bond 

cross term is given by: 

  

 ( )( )eerrrr rrkV 21 −−−−= ′′ jkji rrrr ( 44 ) 

 

rrk ′  is the force constant, r1e and r2e are the equilibrium bond length of i-j and k-j respectively. 

This correction potential results in a force 
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on particle i. To obtain the force on particle k it is sufficient to interchange the indices i and k 

in ( 45 ). Because the sum of internal forces should be zero the force on particle j is given by 

the simple relationship 

 

 
kij FFF −−=  ( 46 ) 
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The bond-angle cross term for the same three particles accounting for the bond deformations 

occurring when the angle between the bonds i-j and k-j is changed is 

 

 ( )( )eeerr rrrkV 213 −−+−−−−= jkjiki rrrrrrθθ ( 47 ) 

 

where θrk  is the force constant r1e and r2e apply again to the equilibrium bond lengths and r3e 

stands for the equilibrium distance between the non-bonded particles i and k. The force 

resulting on particle i is given by 
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Proper dihedral angles are defined in compliance with IUPAC/IUB convention:[89] φ  is 

defined as the angle between the ijk and jkl planes, a φ  of zero corresponds to the cis 

configuration (i.e., i and l are located on the same side). The proper dihedral potential 

function is given by 

  

 ( ) ( )( )sijkld nkV φφφ φ −+= cos1 ( 49 ) 

 

In order to keep planar groups (e.g., aromatic rings) flat improper dihedrals are introduced 

with an additional harmonic potential: 

 

 ( ) ( )202
1 ξξξ ξ −= ijklijklid kV  ( 50 ) 

 

Since the potential is harmonic there will be a kink at some point of the potential when it also 

should exhibit a 360° periodicity. To prevent any problems that could arise of this the 

placement of the discontinuity is chosen at a distance of 180° from 0ξ  (i.e., as far away as 

possible from equilibrium configuration). 
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3 Substrate Treatment and Self-Organized Pattern Formation 
∗ 

3.1 Introduction 

Micro and nanoscale patterning of surfaces is of importance in wide areas of research fields 

and applications including biology, material, and medical science. There are two main 

strategies in surface patterning: the top-down approach like e-beam lithography and the 

bottom-up approach that utilizes self-assembly and self-organization of molecules or simple 

basic building blocks in order to achieve regular structures. The main advantage of most top-

down strategies is the precise control over the structuring process. Very delicate structures 

like those found in modern micro processors are implemented by means of typical top-down 

strategies like photo or UV-lithography and electron beam lithography. The disadvantage of 

most top-down strategies is that they are very elaborate and usually time consuming. Most 

bottom-up strategies that use self-assembly are much simpler and can often pattern over 

arbitrary sized areas during the process. Stripe patterning during LB transfer was observed in 

the early 1990’s[90] and later our group proposed an easy way of patterning large mica 

surfaces with regular stripe patterns with submicron resolution[25]. Recently, mixed 

component transfers yielding luminescent stripe patterns[91] or initiator patterns for polymer 

brushes[92] could be shown. Many other applications were demonstrated for this self-

organized patterning process. A full review can be found in the literature.[27] Many more 

fields of application like chemical modification, etching and imprinting were opened up by 

switching to silicon substrates. It was observed that the periodicity of the stripe pattern was 

generally much smaller when using silicon substrates. Also due to the natural hydrophobicity 

of silicon additional cleaning and pretreatment steps were necessary in order to prepare the 

silicon and render it hydrophilic. This motivated us to systematically investigate the influence 

of different surface chemistry on the pattern formation by preparations of the substrate with 

different cleaning treatments.  

 

                                                 
∗ The work presented in this chapter is a direct continuation of my diploma thesis[209] and was published partly 

ibidem and in a peer reviewed paper.[208] 

Michael Hirtz
Notiz
Reproduced in part with permission from M. Hirtz, H. Fuchs, L. F. Chi: Influence of Substrate Treatment on Self-Organized Pattern Formation by Langmuir-Blodgett Transfer (J. Phys. Chem. B, 112 (3), 824-827, 2008). Copyright 2008 American Chemical Society. 
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3.2 Preparations of the Samples 

Before transfer the Silicon substrates (2 x 5 cm²) were sonicated consecutively in a bath of 

chloroform, isopropanol and pure water (15 minutes each). Two different treatments were 

applied after this pre-cleaning procedure: Either 2 minutes of  O2-plasma etching at 1 mbar 

and 300 watts or 25 minutes in a mixture of ammonium hydroxide, hydrogen peroxide and 

pure water (ratio 5:1:1) known as RCA-1. The RCA-treated samples were sonicated in pure 

water for an additional 10 minutes after treatment. Both types of substrate were stored under 

pure water after treatment and used within one hour. The mica substrates used for the heating 

experiments were cleaved freshly and rinsed with purified water directly before transfer. 

 

The general procedure for the preparation of self-organized DPPC patterns is already 

described extensively elsewhere[27]. 

 

The LB-Transfers were conducted under clean room conditions (class 10.000). The subphase-

thermostat was kept at 29 °C yielding a temperature of about 26 °C at the air-water interface. 

The room temperature was kept at 22 °C and humidity was constant at about 37%. After the 

DPPC-solution was spread onto the surface the solvent was allowed to evaporate for 

10 minutes. The resulting monolayer was then compressed up to a lateral pressure of 

6.0 mN/m and allowed to rest for another 20 minutes. The trough barriers were kept fixed 

during the actual withdrawal of the substrate. Therefore, the lateral pressure dropped down 

during the transfer resulting in a pressure gradient from top to bottom on the substrate, a 

technique later termed “continuously varying surface pressure” (COVASP) by other 

authors.[93] The lateral pressure was recorded with respect to the dipper position to allow a 

reference of the position on the samples to a specific lateral pressure. 

 

3.3 Pattern Formation on the Different Treated Substrates 

After the preparation of the samples was completed AFM was used to investigate the LB-

films. A typical result of our LB-transfers can be seen in Figure 13. When the lateral pressure 

during transfer is higher (here 3.5 mN/m) a homogeneous monolayer of DPPC will be 

transferred onto the substrate (top). As the pressure drops the monolayer will break up and 

channel-like structures will emerge, first parallel (not shown here), then perpendicular to the 

withdraw direction (second from top). The channels parallel to the withdraw direction vanish 

with further decrease in lateral pressure and the perpendicular channels become very regular 
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(middle) before the pattern becomes irregular again and the condensation stops (lower two). 

This general behavior for different pressure ranges is observed on all samples and is in good 

agreement with the previous work.[27]  

 

 

Figure 13. AFM-micrographs of different areas on a silicon surface (plasma treated) after LB-transfer with a 

transfer speed of 32mm/min. The corresponding lateral pressures from top to bottom are: 3.5 mN/m, 3.0 mN/m, 

2.5 mN/m, 2.3 mN/m, 2.0 mN/m, 1.5 mN/m, 1.0 mN/m and 0.5 mN/m. 

 

 

Figure 14. Direct comparison of transferred monolayers on plasma-treated (in each case upper image) and RCA-

treated (in each case lower image) at same transfer pressures. The transfer pressure was 2.5 mN/m for the upper 

images, 3.5 mN/m for the middle images and 5.0 mN/m for the lower ones. Transfer speed was 32mm/min for 

all images. 
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In a direct comparison to the plasma-treated substrates the whole pattern formation is shifted 

towards higher lateral pressures on the RCA-treated substrates. The upper picture in Figure 14 

shows the samples at a lateral pressure of 2.5 mN/m. There is a regular stripe pattern formed 

on the plasma-treated substrate but no visible condensation at all on the RCA-treated substrate. 

In the middle images the lateral pressure is 3.5 mN/m. Here the monolayer on the plasma-

treated sample is almost compact already (except for some lines parallel to the withdraw 

direction) whereas the RCA-treated still shows no visible condensation. Finally, in the lower 

pictures (p = 5.0 mN/m) the stripe patterning on the RCA-treated substrate is very regular 

whereas the monolayer on the plasma-treated sample is absolutely compact. Table 1 

summarizes the pressure ranges for stripe patterning on the different treated substrates and for 

different withdrawal speeds. The transfer pressure at which the stripe patterning starts is for 

all withdraw speeds about 2.5 mN/m higher on the RCA-treated sample than on the plasma-

treated. Also the transfer pressure at which the transition to a compact monolayer occurs is 

about 2.0 mN/m to 2.4 mN/m higher on the RCA-treated samples as compared to the plasma-

treated.  

 

Table 1. Transfer pressure ranges for patterning on different treated substrates and for different withdrawal 

speeds. 

Transfer speed (mm/min) 16 32 64 

Treatment Plasma RCA Plasma RCA Plasma RCA 

Pressure (mN/m) at       

 Start of patterning 1.3 3.7 1.5 4.1 1.7 4.3 

 Most regular pattern 2.0 4.2 2.3 5.0 2.5 5.2 

 Transition to compact 

monolayer 

2.7 4.7 3.3 5.7 3.7 5.9 

 

The pressure drop graphs are recorded during the transfer to enable a correlation of certain 

positions on the samples with the momentary transfer pressure. They can also be used to 

quantify the amount of material transferred onto the substrates. Figure 15 shows a typical 

transfer pressure versus sample position graph used to derive the transfer pressure at a given 

sample position during AFM measurements. The current lateral pressure and the relative 

dipper position are recorded by the LB trough control software during transfer. The point of 

no further decrease of the lateral pressure corresponds to the bottom of the sample because 

from this point on there is no more transfer of DPPC onto the sample (sample left water phase 
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completely). By adjusting the recorded relative dipper position to zero at this point and 

plotting the pressure data against the adjusted position we obtain the desired graph that gives 

us information about the current transfer pressure on a given sample position. 

 

 

Figure 15. Typical transfer pressure vs. sample position graph. 

 

The amount of transferred material (indicated by the slope of the surface pressure vs. dipper 

position graph) stays almost constant over the whole transfer, although it decreases a bit at 

lower surface pressures. The average slope is a little bit higher on plasma treated samples for 

all transfer speeds (Table 2) indicating a slightly higher DPPC transfer compared to RCA 

treated samples. Note that there is still transfer of DPPC onto the substrate in areas where 

there is no DPPC film visible on the sample by AFM. This is explained by two different 

phases on the substrate (see discussion). 

 

Table 2. Average slopes of transfer pressure vs. dipper position graphs at different transfer speeds. 

 

Transfer speed (mm/min) 

Plasma 

slope (N/m²) 

RCA 

Slope (N/m²) 

16 0.144 0.128 

32 0.111 0.107 

64 0.133 0.119 
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When we consider the periodicity and the width of stripes and channels with respect to the 

transfer pressure there is also a common trend visible at all transfer speeds regardless of the 

substrate treatment. Figure 16 shows this behavior for a plasma treated substrate and a 

transfer speed of 32 mm/min (a) and for the same transfer speed on a RCA treated sample (b). 

The width of stripes increases whereas the width of channels decreases with increasing 

transfer pressure. This yields a minimum in the periodicity (about 800 nm for plasma treated 

and 750 nm for RCA treated samples at this transfer speed). The most regular stripe pattern 

occurs for all transfer speeds and for both treatments always at the respective minimum in 

periodicity. 

 

 

Figure 16. Periodicity stripe and channel width at a transfer speed of 32mm/min with respect to transfer pressure 

for (a) plasma treated and (b) RCA treated samples. 

 

3.4 Surface Energy Measurements 

As a first step to understand the cause of the difference in pattern formation on the differently 

treated substrates surface energy consideration were done. The surface energies of the naked 

different treated substrates were determined by a modified sessile drop method as proposed 

by Schultz et. al.[94,95]. The static contact angles of droplets of pure water under a bulk phase 

of different alkenes (hexane, octane, decane, hexadecane) were measured with a commercial 

instrument (Contact Angle Measuring System G2, Krüss). The surface energy for cleaved 

mica was also determined in the same fashion for comparison and to confirm validity of the 

current method. The results are presented in Table 3. The surface energy of mica was 

determined to check the validity of our measurements and is in good agreement with literature. 

Regardless of treatment the silicon samples were shown to have lower surface energies than 
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mica (especially the non-polar part γS
D which is one half for RCA treated and one tenth for 

plasma treated). 

Table 3. Surface energies of the different substrates. 

 γS
D (mN/m) γS

P (mN/m) γS (mN/m) 

Mica 33.3 ± 3.0 89.7 ± 0.8 123.0 ± 3.8 

Mica (Schultz et. al.)[95] 30 ± 2.5 90 120 ± 2.5 

Silicon (Plasma) 3.2 ± 1.5 85.1 ± 0.4 88.3 ± 1.9 

Silicon (RCA) 17.4 ± 2.5 88.1 ± 0.6 105.5 ± 3.1 

 

The trend in the observed surface energies for the differently treated silicon samples is in 

compliance with the higher density of OH groups on the RCA-treated surfaces[96] that should 

yield a higher surface energy as compared to the plasma treated ones. 

 

3.5 Effect of Sample Heating 

We proposed that micro water films on the substrate surface may play a crucial role to 

influence the pattern formation. To test this notion subsequent heating of mica substrates 

covered with DPPC patterns was conducted for 1 h at 80°C in a dry (~0% RH) or wet 

(~100% RH) environment. Typical results are shown in Figure 17. 

 

 

Figure 17. Patterned mica substrate after heating for 1h at 80°C in (a) dry environment (b) wet environment. 
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The pattern survives heating in a dry environment whereas the topography pattern is 

destroyed by heating in a wet environment. Note that the effects seen here are not due to 

diffusion of the DPPC molecules under the wet conditions: in the case of mixed transfer dye 

patterns (where the DPPC molecules in the channels are labeled by fluorescent dye) the 

fluorescent pattern remains unaltered although the topography pattern is destroyed. The 

images in Figure 18 show such a sample with a fluorescent stripe pattern on mica consisting 

of alternating DPPC LC/LE stripes and a fluorescent dye in the LE phase stripes (preparation 

details of fluorescent stripes can be found in the literature[91]). After preparation the sample 

was cut into three pieces of which two were heated to 80 °C for 1 h , one in a dry oven 

(~0% RH), the other in a closed Petri dish with abundant water for yielding high humidity 

(~100% RH) but without liquid water coming in direct contact with the sample. The third part 

of the sample was kept untreated for reference. 

 

 

Figure 18. Fluorescence microscope images of (a) untreated DPPC pattern, (b) sample heated in dry 

environment, and (c) sample heated in humid environment. 
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Although the topography of the pattern was totally destroyed for the sample heated under 

humid conditions (Figure 17), there is no visible change in the luminescence pattern between 

the untreated sample (a), the sample heated in dry environment (b), and the sample heated in 

humid environment (c). This implies a phase change of the DPPC film during heating in 

humid conditions rather than diffusion on the sample, which should result in a disturbed 

fluorescence pattern, too. Therefore, it can be concluded that individual DPPC molecules 

remain more or less in place during heating. The DPPC film appears to undergo a phase 

transition (from a liquid condensed phase to a liquid expanded phase) rather than diffuse. 

 

3.6 Discussion 

In order to understand the experimental findings we utilize a model of equivalent states as 

proposed by Peterson[97]. He and his co-workers separate the surface pressure into an 

interfacial term that describes the interaction between the monolayer and the substrate and an 

internal pressure term. Thus, the total surface pressure experienced by a monolayer will 

change during transfer onto substrates depending on the difference in monolayer-substrate 

interfacial energy. In our experiments all transfers are conducted at transfer pressures lower 

than the critical pressure for the DPPC monolayer to undergo the phase transition from a 

liquid expanded (LE) to condensed phase. Assuming a sufficiently higher interfacial mediated 

pressure between the monolayer and silicon compared to that between the monolayer and 

water, it follows that there is a condensed phase monolayer on the substrates at sufficiently 

high transfer pressures although the monolayer is in LE phase on the water before transfer. At 

low transfer pressures the difference in the interfacial pressure is not sufficient to evoke the 

phase transition so the LE phase is present on the silicon substrate after transfer. We assume 

that the LE phase is normally not visible with AFM under ambient conditions due to a lack of 

contrast. The recorded drop in surface pressure during transfer indicates ongoing transfer of 

DPPC even in areas of the sample where there is no AFM observable DPPC layer and 

supports this notion. Additional XPS measurements♣ showed an almost uniform average 

concentration on the whole sample. The pressure shift ~2.5 mN/m between the RCA and 

plasma treated silicon substrates indicates a higher interfacial mediated pressure on the 

plasma treated silicon. The trend of increasing pressure pc for phase transfer pc,water > pc,RCA > 

pc,Plasma fits well to what one would expect from chemistry. Since RCA-treated silicon exhibits 

                                                 
♣ done by Dr. Andreas Schäfer  (nanoAnalytics GmbH)  
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more hydroxyl groups on the surface than plasma treated[96] it should adsorb more ambient 

water vapor and interact more “water-like” with the DPPC film. This behavior can not be 

explained by examining only the respective surface energies alone. The explorative heating 

experiments shed light on the influence of thin water films in the micro to nanometer range on 

the pattern formation process. They indicated a water film is crucial for the potential of phase 

transition of the DPPC film. Another possible explanation for the differences between plasma 

and RCA-treated substrates may relate to the amount of water adsorbed on the surface during 

LB transfer although in all cases there is no water visible to the naked eye.  

 

The results also have some interesting implications on the supposed mechanism for the stripe 

patterning. The stripes parallel to transfer direction occurring at high transfer pressures can be 

explained by the Maragoni Effect fingering instabilities and were successful modelled.[52] The 

exact cause for the stripe patterns perpendicular to the transfer direction is yet unclear as the 

proposed stick-slip-models need to introduce some ad-hoc assumptions to account for these 

patterns. The results presented here strongly suggest that the channels separating the stripes 

are not bare substrate but rather filled with DPPC in LE phase while the stripes are DPPC in 

condensed phase (Figure 19b). The areas transferred at lower transfer pressure than necessary 

for pattern formation are covered completely with LE phase (Figure 19a). This conclusion has 

been supported recently by direct AFM observation of different height steps in stripe pattern 

defects.[98] This implies that models that employ pressure oscillations at the meniscus[99] may 

account for this behavior. 

 

 

Figure 19. Scheme of DPPC Langmuir Blodgett film on a substrate transferred (a) at very low pressure (b) at a 

higher pressure suitable for stripe pattern formation. 

 

3.7 Conclusion 

In this chapter a systematic study of the influence of substrate treatment on DPPC stripe 

pattern formation was performed. The results obtained can be explained in terms of equivalent 

states. The data gives some interesting insights into stripe pattern formation and strongly 
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suggests an alternating LE / LC phase sequence as the pattern morphology. This should lead 

to more detailed consideration of meniscus pressure oscillation models for stripe pattern 

formation. Furthermore, this work motivates future experiments to investigate the 

experimental parameters surrounding stripe pattern formation on other substrates (e.g., gold or 

other metal films or polymers), because in this study experimental parameters were shown to 

play a major role in pattern formation on different surfaces. Also the role of the micro or nano 

water films was shown to influence pattern formation and should be taken into account by 

performing experiments with humidity controlled transfers. 
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4 A Device for Rotational Langmuir-Blodgett Transfer 
∗ 

4.1 Introduction 

Substrate-bound molecular gradients (chemical gradients) obtained in a well-controlled 

fashion offer an in vitro model to study the biological phenomena that occur in vivo, for 

instance, axon guidance, cell signaling, and proliferation.[100] It has been demonstrated that 

chemical gradients on surfaces can influence the function and development of cells, biological 

recognition, and interaction.[101,102] Different approaches to produce chemical gradients on 

surfaces have been reported, for instance, microfludic systems,[103-105] controlled diffusion of 

reactive substances,[106-108] and microcontact printing.[109-111] Similarly, generating continuous 

gradient micro/nanostructures on surfaces (topographical or pattern gradients) would be 

interesting for the study of cell motility and adhesion, cell mechanotransduction,[112] and 

micro/nano analysis systems.[113] However, the fabrication of structure gradients on surfaces 

has been much less frequently addressed than that of concentration gradients. This can be 

explained with the difficulty and expensiveness of fabricating continuous-gradient 

micro/nanostructures on surfaces over the distances required for biological studies (at least a 

few hundred micrometers) on the basis of only top-down techniques, e.g., scanning probe 

lithography[114] or optical lithography.[113] This inspires the search for bottom-up techniques 

based on self-assembly due to their simplicity, high yield, and ease of implementation over 

large areas.[8,115] Here we report a simple yet novel method based on the Langmuir-Blodgett 

(LB) technique to achieve a continuous gradient mesostructure in a well-ordered fashion over 

large areas. The key improvement over the standard LB transfer technique is the transfer of a 

monolayer onto a solid substrate by rotating the substrate rather than vertically pulling the 

substrate. As a result, LB patterns with different dimensions and orientations that depend on 

the transfer velocity[52,116] can be generated simultaneously. The varying orientation of the 

three-phase contact line during rotating transfer opens up opportunities for complex 

patterning not achievable solely by transfer speed variations (COVASP[93]) principally 

capable of yielding gradient structures, too. These new possibilities can also be interesting for 

                                                 
∗ The work presented in this chapter was done together with Dr. Xiaodong Chen who also performed the 

experiments to test the capability of complex patterning with the rotational Langmuir-Blodgett transfer. The 

results were already published[128] and a patent for the method has been filed (GB 2444036 A). 

Michael Hirtz
Notiz
Reproduced in part with permission from X. Chen, M. Hirtz, H. Fuchs, L. F. Chi: Fabrication of Gradient Mesostructures by Langmuir-Blodgett Rotating Transfer (Langmuir, 23, 2280-2283, 2007). Copyright 2007 American Chemical Society.
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other patterning methods depending on the orientation of the three-phase contact line, e.g., in 

the patterning of nanocrystals by LB-transfer.[41,42,117] 

 

4.2 Conventional and Rotational Langmuir-Blodgett Transfer 

The typical geometry during LB-transfers is shown in Figure 20a: a substrate is fixed in a 

sample holder and can be moved up and down in z-direction.  

 

            

Figure 20. Typical geometry during LB-transfers: (a) definition of axes, (b) conventional Langmuir-Blodgett 

transfer, (c) Langmuir-Schaefer transfer, (d) horizontal scooping-up transfer. 

 

This setup gave rise to three widespread modes for the transfer of a floating monolayer to a 

solid substrate. The first one and by far the most common mode (Figure 20b) is the 

conventional vertical transfer introduced by Blodgett and Langmuir[32-34] where a hydrophilic 

substrate is withdrawn from a fluid subphase, dewetting at the three-phase contact line where 

the floating monolayer is transferred onto the substrate. In a variation of this method 

hydrophobic substrates can be used to transfer the monolayer during the downstroke of the 

substrate. Multilayers can be transferred by repeating up and downstrokes with the 

accompanying film transfer as desired. The second transfer method the horizontal lifting 

transfer (Figure 20c) also termed Langmuir-Schaefer transfer, was introduced by Langmuir 

and Schaefer.[118] Here a flat hydrophobic substrate is placed parallel to the air-subphase 

interface covered by the monolayer. Then the substrate is lowered to the point of touching the 

a) b) 

c) 

d) 
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floating monolayer. Finally it is withdrawn together with the monolayer which is now 

attached to the substrate. The third less often used method is the horizontal scooping-up 

method (Figure 20d). A hydrophilic substrate is submerged into the subphase into a position 

parallel to and just beneath the air-subphase interface before the monolayer to be transferred 

is spread. For the transfer the substrate is either slowly raised through the monolayer allowing 

the subphase to flow off or the subphase level is decreased by suction or evaporation until the 

substrate emerged completely. Which way of transfer has to be favored depends strongly on 

the monolayer to be transferred, the substrate properties, and the desired film morphology. 

All three transfer methods described above rely on the movement of the substrate along the z-

direction. Our approach for the creation of gradient and more complex patterns by rotating 

LB-transfer incorporates another degree of freedom: the substrate is rotated along the x-axis 

(i.e., the axis parallel to the air-subphase interface and perpendicular to the substrate). This 

yields on the one hand a varying velocity field over different areas of the substrate and on the 

other hand a changing alignment of the three-phase contact line in regard to the substrate in 

the course of the transfer. To clarify these new features we will discuss the geometrical 

conditions of this setup. 

 

 

Figure 21. Geometric setup of the rotating LB transfer and naming conventions. 

 

The basic geometric setup during a rotating transfer and naming for all entities relevant to the 

discussion is given in Figure 21. The rotation speed vt and the distance d of the rotational axis 

from the air-subphase can be chosen by the experimenter. Since the pattern formation in our 

system is dependent on the vertical withdrawal speed vv we should consider the split up of vt 

in its components vertical and parallel to the three-phase contact line. 
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( 52 ) 

 

The angle α at a given position with the distance r to the rotational axis is determined by 

geometrical relations as 
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The key parameter for the alignment of the pattern (which emerges in our system as stripes 

either parallel or perpendicular to the three-phase contact line) is defined by the angle θ 

between the sample and the three-phase contact line at a given position on the sample. Along 

line a the angle θ is given by the simple expression 
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θ will be constant along line b (i.e., the three-phase contact line). To get an impression of the 

overall distribution of vv and θ on the sample we developed a simulation program that plots 

color maps based on the given substrate dimensions and the chosen setup for d and rotation 

speed. 

 

 

Figure 22. Simulation of the (a) velocity field for vv (b) angle field for θ and (c) velocity field with overlaid lines 

of same θ (i.e., three-phase contact line). Sample width 20 mm, length 60 mm, d = 22 mm and a rotation speed 

of 0.07 rpm. 
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Figure 22 shows color maps for a typical setup. In this case vertical speeds from 0 mm/min up 

to 25 mm/min occur (Figure 22a). The pattern alignment in the case of a line pattern emerging 

parallel to the three-phase contact line is denoted in Figure 22c by an overlay of white lines 

with same θ. 

 

4.3 Description of the LB Rotator 

Figure 23 shows the actual LB rotator sample holder prototype. 

 

 

Figure 23. Close up of the LB Rotator: (1) sample holder clamp, (2) DC motor, (3) gears, (4) angular position 

control, and (5) frame and connector to conventional dipper. 

 

The LB rotator consists of the following main parts: the sample holder clamp (1) is made 

from plexiglass and is connected by a strong spring that enables a secure and stable fixing 

mica substrates as well as heavier silicon substrates. The DC motor (2), a very smooth 

running electric motor (Faulhaber 1224 012 S), is connected with a high reduction gear (3) 

(Faulhaber 12/3, reduction 68,608:1) yielding the very low rotational speeds needed for our 

system but still assuring a very smooth movement not achievable by step motors. The angular 

position control (4) consists of a potentiometer that generates a voltage drop proportional to 

the angular position of the sample holder clamp that can be evaluated by the control interface. 

The frame (5) holds together all pieces of the LB rotator, guarantees for a decent damping of 
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vibrations, and connects the whole device to the conventional z-direction LB dipper allowing 

a convenient positioning of our LB rotator in a conventional commercial LB trough setup. 

 

 

Figure 24. LB rotator attached to commercial LB trough with a clamped mica sample. 

 

a)   b)  

c)   d)  

Figure 25. The interface software used to control the LB rotator: (a) control-mode, (b) setup-mode, and (c), (d) 

debug-mode. 
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The whole device is connected to a standard personal computer by a commercial interface that 

can digitize voltages (for the angular position control) and generates the pulse width 

modulation (PWM) signal needed for the speed control of the electric motor. The control 

software is written in Visual Basic (the programming environment was Microsoft Visual 

Studio 2005) and is split into three parts: control, setup and debug-mode (Figure 25). 

 

In the control-mode one can set the rotation speed of the sample in specified distances from 

the rotation axis or in rotations per minutes. The dipper can be moved to defined positions 

“up” (sample parallel to the air-water surface) and “down” (sample perpendicular to the air-

water surface) and the dipping process can be initiated by control buttons. In setup-mode one 

can choose the COM port for connecting the rotator interface, test this connection, and run the 

calibration to get the required values to calculate the speed readings in control mode. In 

debug-mode one has direct access to the actual angular position and one can move to any 

desired position and measure the actual rotation speed as well as record graphs of the position 

versus time to check the rotator’s status. 

 

4.4 Demonstration Experiment Results and Discussion 

We use the transfer of a mixed DPPC/NBD (2 mol%) monolayer as a model system to 

demonstrate the feasibility of LB rotating transfer for complex patterning and to test our 

theoretical consideration. We chose this system because it is already known to yield large area 

luminescent patterns easily observed by fluorescent microscopy[91] which would be needed to 

check the complex pattern generated by LB rotating transfer extending over the whole 

substrate. The mixed monolayer was transferred onto mica at a surface pressure of 2 mN/m 

with an angular velocity of 0.07 rpm. The obtained sample was measured by a fluorescence 

microscopy (Olympus BX41). According to the principle of LB rotating and the mechanism 

for DPPC stripe pattern formation we can expect a pattern similar to Figure 26 (generated by 

the simulation software mentioned above). 
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Figure 26. Scheme of the expected pattern generated by the experiment and definition of line a and b. The color 

map shows the local θ angle, white lines denote the local stripe pattern direction. 

 

However, it is not feasible to measure all the points on the whole substrate. Therefore, we 

select two typical scenarios. One scenario is the points along line a.  In this case, θ is equal to 

α, i.e., line a and line c (of Figure 21) are superposed and θ is changing with the position on 

line a. The second scenario is the points along line b. Here θ stays constant but α (and 

therefore also vv) is different for different points. 

 

 

Figure 27. Fluorescence microscopy images (30 × 30 μm2) for the pattern along line a.  The number in the 

images denotes the distance to the rotational axis in mm. 
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Figure 27 illustrates the fluorescence microscopy images of gradient stripe patterns along 

line a. The changing alignment of the pattern with increasing distance r from the rotational 

axis is clearly visible. Additionally, the lateral width of the stripe pattern decreases with 

increasing r (which also means increasing vv). The angle of θ was determined for the different 

points on line a. The experimental data for the relationship between θ and r is shown in Figure 

28a, which could be fitted well by the theoretical expectation derived from Formula ( 54 ). 

Figure 28b and c summarize the lateral width of the luminescent stripes, the dark stripes and 

the overall periodicity as a function of radius r and vertical transfer velocity vv. One observes 

that the lateral width of luminescent stripe and the periodicity strongly depend on the radius, 

mono-exponential decreasing with the radius increasing. In other words, the pattern was 

gradient rather than repetitive in a substrate which is different to the stripe pattern published 

before.[25,91,116,119-121] 

 

 

Figure 28. (a) Dependence of θ on the radius with fit from Formula ( 54 ). (b) Dependence of the lateral width of 

the luminescent stripe and dark stripe and periodicity of the gradient pattern on the radius and (c) linear velocity 

perpendicular to the three-phase contact line. (d) Area coverage of the luminescent stripe and NBD concentration 

as a function of the radius. All data in b-d is fitted by mono-exponential decay. 
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Figure 29. Fluorescence microscopy images (30 × 30 μm2) for the pattern along line b (θ = 35°). The number in 

the images denotes the distance to the rotational axis in mm. 

 

Fluorescence microscopy images of gradient stripe patterns along line b for an angle of 

θ = 35° are shown in Figure 29. The dependence of lateral width on the radius r (or vv) is 

more complicated (as compared to the latter case along line a). Primarily, the lateral width 

decreases with the radius increasing.  However, at some point the lateral width tends to 

increase with the radius increasing yielding an additional gradient in the overall pattern. 
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Figure 30. The dependence of the lateral width of luminescent stripes, dark stripes, and pattern periodicity along 

line b (θ = 35°) on the radius and vv respectively. 

 

4.5 Summary and Conclusion 

In summary, we put forth a new idea of monolayer transfer onto solid substrate, i.e., LB 

rotating transfer which extends the application of LB patterning. We found that this new 
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transfer technique can be used to transfer DPPC/NBD mixed monolayer onto mica to achieve 

complex patterns. This simple yet novel approach enables one to produce and organize 

surface patterns in a well-ordered gradient fashion. We expect that combining vertical and 

rotating transfers would further enrich the transfer way and achieve more complex pattern. It 

is easy to extrapolate the ideas presented here to other systems, such as nanocrystals,[41,42,117] 

or lipopolymer.[122] Moreover, this kind of transfer could be easily used to test the 

experimental conditions for exploring the pattern formation of other systems. 
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5 Self-Organized DPPC Patterns on Prestructured Substrates 

 

5.1 Introduction 

For the formation of DPPC stripe patterns on mica the substrate is cleaved prior to LB transfer 

to obtain an atomic flat and clean area. Although atomically flat surfaces over areas of square 

centimeters are accomplished regularly, often places with terraces can be found on the 

samples, too, where the mica is cleaved at different crystal layers. This usually unwanted 

phenomenon also gave rise to the observation of the interaction of the stripe pattern formation 

with structural defects in the substrate. Figure 31 shows a typical result of a pattern formation 

on stepped mica terraces. 

 

 

Figure 31. DPPC stripe pattern on mica over different substrate terraces. The focal plane is on the highest 

terrace in upper left image and is then lowered subsequently to the lowest terrace in the lower right image. Black 

arrows denote the direction of withdrawal during LB transfer. 
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The images show a pattern created by a mixed DPPC/NBD-PC film as reported before.[91] It is 

clearly visible that the different edge steps of the terraces disrupt the continuity of pattern 

formation but without inhibiting it. Even the smaller terraces are covered with stripe pattern, 

the stripes being sometimes continuous sometimes uncoupled over the terrace edges. All in all 

the observation of substrate defects on mica with the corresponding stripe pattern formations 

lead to the clear notion that the observed deviation originate in the guiding and pinning of the 

water meniscus during transfer but for a more detailed picture it would be nice to design 

arbitrary defect structures instead of the limited and accidentally generated defects on mica. 

Therefore we decided to switch silicon substrates where electron beam lithography could be 

employed to introduce prestructures onto the samples and study the impact on pattern 

formation.   

 

5.2 Materials and Experimental Details 

Silicon wafers with a native oxide layer were cut into 2 × 2 cm² pieces, cleaned by rinsing and 

sonication in acetone and covered with a resist layer of 300 nm thickness for electron beam 

lithography. The desired prestructures were then written into fields of 150 × 150 µm² each. 

Three to six of these fields were written onto one sample by electron beam lithography in 

distances of several millimeters so that several different patterns could be examined within 

one LB transfer assuring exactly same transfer conditions for all fields while still providing 

independence due to the large distances of the fields on the sample. The line patterns spacings 

ranged from 500 nm to 10 µm and additional fields filled with arrays of squares and circles 

were written to study point defects. All lithographic procedures were done on an Elphy 100 

system attached to a LEO 1530 VP Gemini electron microscope. After development of the 

exposed resist layers 2 nm of chrome was evaporated onto the sample as a sticking layer 

followed by the evaporation of gold until the desired structural height (ranging from 10 to 

50 nm) was reached. The evaporation was done in an Edwards system at a residual pressure 

of 2·10-4 Pa. After the lift off process (submerging into acetone at 70 °C for 60 minutes 

followed by rinsing with acetone) the samples were cleaned in the usual way for LB transfer 

of DPPC stripe patterns by subsequent sonication in chloroform, isopropanol and pure water 

(DI, resistance of 18.2 MΩcm) for 10 minutes each. After this the samples were exposed for 

2 minutes to an oxygen plasma of 300 W at a pressure of 1 mbar and stored under pure water 

until the LB transfer took place. A DPPC solution with an addition of 2 mol-% of NBD-PC 

was used for the LB transfers since the small admixing improves patterning stability. All 
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transfers were done with a withdrawal speed of 30 mm/s and with a controlled subphase 

temperature of 25 °C. Since the air temperature and humidity varied over the different 

experiments (in the range from 22 to 25 °C and 40% to 60% RH, respectively) the lateral 

pressure for transfer was fine-tuned for the best patterning in the vicinity of 4.0 mN/m by test 

transfers onto unstructured silicon substrates prior to transfer onto the structured samples. 

After transfer the samples were allowed to rest for about 24 hours before AFM images were 

acquired. 

 

5.3 Results and Discussion 

Despite the prestructuring and the accompanying substrate treatment with resist layers and 

metal evaporation surfaces clean enough for DPPC stripe pattern formation could still be 

obtained. The pattern formation far away (about hundred micrometer or more) from the 

prestructured areas is unaffected and is in accordance with conventional transfers under 

similar conditions. Figure 32 shows the impact of single topographic lines (actually an array 

of lines in 6 µm distance in case of the Figure 32a) on the pattern formation. 

 

 

Figure 32. AFM images of topographic lines (height 20 nm) running (a) parallel and (b) perpendicular to the 

withdrawal direction during LB transfer (indicated by black arrow). Black bar equals 2.5 µm. 

 

The line in Figure 32a runs parallel to the withdrawal direction (that is indicated by the black 

arrow) and has a height of 20 nm. The undisturbed pattern on the left is disrupted by a thicker 

stripe directly at the beginning of the line which is most probably caused by some pinning 

a) b) 
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effect of the line array on the flowing meniscus. The width of this “stop stripe” is dependent 

on the spacing between the lines and discussed later in this chapter. After the broader stripe 

the patterning immediately sets in again with almost the same periodicity. The shape of the 

stripes is distorted to some extent and becomes sickle-shaped. The shape matches what one 

would expect from a water meniscus flowing through a hydrophilic channel: the receding 

waterfront is lagging at the walls giving rise to the observed crescent shape. The impact of a 

line lying perpendicular to the withdrawal direction (Figure 32b) is more pronounced. There 

is again some broader stripe at the position of the interfering prestructure indicating 

pronounced pinning of the receding three phase contact line but since the waterfront is not 

divided into several channels for a continuous flow like in the latter case it will now run into 

the space behind from the edges of the flow-obstructing line (rather than just jumping over it). 

Since the waterfront will recede normally in the areas left and right of the line a pattern of 

strongly distorted stripes will result with normal parallel stripes at the areas left and right of 

the obstacle line that bend to connect in an almost perpendicular angle behind the line at its 

edges and with a decreasing angle towards the middle of the line. After the waterfronts 

emerging from the edges of the line meet each other at the middle of the line the receding 

waterfront is finally detached from the line completely and the normal patterning sets in again, 

in this particular case the pattern returns to normal about 3 µm after being disturbed by the 

line. A sketch of the proposed flow of the receding meniscus in the two discussed cases is 

given in Figure 33. 

 

 

Figure 33. Proposed flow of the three phase contact line in the case of a line running (a) parallel and (b) 

perpendicular to the withdrawal direction during LB transfer (denoted by black arrow). 

a) b) 
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Figure 34. AFM images of self organized DPPC pattern on arrays of squares (edge length 1 µm) at (a) the edge 

of the array and (c) in the middle of the array and of circles (diameter 1 µm) at (b) the edge of the array and (d) 

in the middle of the array (distortions by defect of scanner in y-direction). All prestructures are 25 nm in height. 

Black arrow denotes the direction of withdrawal during LB transfer, black bar equals 2.5 µm. 

 

The meniscus pinning effect also becomes nicely visible in the case of prestructured point 

defects (Figure 34). The prestructures in this experiment consist of squares with a side length 

of 1 µm and circles of 1 µm diameter, respectively, in a regular array with 3 µm spacing in 

between the structures that have a height of 25 nm. The square shaped point defects in the 

middle of the array are connected by a “stop stripe” similar to that observed before, almost as 

broad as the defects itself (Figure 34c). This stripe is followed by an area of about 1 µm width 

where almost no stripes are found (only some bent stripes indicating the longest lasting 

a) b) 

c) d) 
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pinning of the meniscus at the corners of the squares) but are filled mainly with small DPPC 

LC domains. This area looks like a sample that has been either transferred at too high 

withdrawal speed or too low lateral pressure for pattern formation. Thus, the observed 

patterns suggest a rapid motion of the receding water front after the pinning at the square 

defects to catch up with the undisturbed receding waterfront far away from the prestructured 

area of the sample which would emulate an alternating lower (when pinned) and higher (while 

catching up) withdrawal speed than in the unstructured areas of the sample with a steady-

speed receding waterfront. Directly after this area of small domains the patterning returns to a 

regular pace until it is stopped again by the next row of defects. At the edges of the structured 

area (Figure 34a) it becomes obvious that the pronounced “stop stripe” is a collective effect of 

the repetitive defect structure: although the broad stripe connects even the outmost square to 

the next neighbor in direction to the array bulk (next neighbor is not visible in this image) it is 

much less pronounced in the direction of the unstructured substrate area, breaks up into 

several smaller stripes and the overall pattern has a bent shape that blends into the undisturbed 

pattern over some tens of micrometers away from the prestructured area. In the case of the 

circular point defects a quite similar pattern can be found although there are some distinct 

differences. The observation of a “stop stripe” connecting the prestructures is also repeated 

for the circular defects inside the array (Figure 34d). Interestingly the area without stripes 

behind the broad stripe is much smaller and interspersed with sickle-shaped stripes spanning 

from one prestructure to the next or sometimes also blending into the reappearing regular 

pattern after the disturbance. This is most likely a result of the more streamline form of the 

circular defects promoting a flow of the waterfront around the shape of the defects and an 

easier detachment at the end of the circular defect structure leading to a more regular flow of 

the waterfront as compared to the square shape case. This is also supported by the smaller 

width of the “stop stripe” that does not form as broad as the whole circular defect but only 

about three quarters of it again indicating less pronounced pinning and smoother detachment 

of the receding waterfront compared to the square shape defects. At the edge of the circular 

defect array (Figure 34b) the pattern looks quite similar to the square shaped case. The “stop 

stripes” may be even less pronounced but the overall effect of a quite rapid blending of the 

stripes into the regular undisturbed ones by splitting and bending towards the unstructured 

area of the sample is in full accordance to the square shaped case. 
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Figure 35. AFM image of a DPPC stripe pattern on a prestructured line array with a height of 6 nm. Black arrow 

denotes the withdrawal direction, black bar represents 2.5 µm. 

 

The influence of regularly spaced line arrays on the pattern formation depends crucially on 

the prestructure’s height and the spacing in between the prestructure’s lines. Figure 35 shows 

an image of a completely undisturbed pattern formation on a prestructured substrate with a 

line height of 6 nm and a line spacing of 2 µm. The spacing should be narrow enough to have 

a pronounced influence on the stripe pattern formation but obviously the height of only 6 nm 

is not enough to have a noticeable influence on the receding waterfront. The DPPC stripes are 

absolutely continuous and synchronous over the lines; this becomes especially obvious when 

the stripe and channel widths vary over the course of the pattern like in the top right part of 

the image. A much higher and narrower prestructure is shown in Figure 36. Here the structure 

height is 30 nm and the line spacing is 500 nm. The undisturbed pattern far away from the 

prestructured areas is shown in Figure 36c. The other images show (with respect to the 

withdrawal direction) the top right corner (Figure 36a), the bottom right corner (Figure 36b) 

and the bottom left corner (Figure 36d) of the prestructured field (with an overall size of 

150 × 150 µm²). 
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Figure 36. AFM images of a DPPC stripe pattern on a substrate with a 500 nm spacing line pattern of 30 nm 

height parallel to the withdrawal direction (indicated by black arrow) at (a) the top right corner, (b) bottom right 

corner, and (d) the top left corner of the prestructured area (relative to the withdrawal direction); (c) shows an 

area far away from the prestructured area for comparison. Black bar equals 2.5 µm. 

 

With the undisturbed pattern coming from the right again the aforementioned “stop stripe” 

can be observed at the beginning of the prestructured area (Figure 36a). In between the lines 

of the prestructure the LC phase stripe extends for more than 10 µm but on the outside edge of 

the prestructure it quickly breaks into smaller stripes that bend and blend into the surrounding 

undisturbed DPPC stripe pattern. At the bottom end of the prestructure (Figure 36b and d) the 

stripe pattern is still bent towards the prestructured area but the pattern periodicity and 

regularity is similar to the undisturbed pattern owing to a new balance between the 

a) b) 

c) d) 
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undisturbed receding waterfront and the one flowing over the prestructure that may still flow 

with some delay but after a while inevitably with the same speed because of the 

comparatively large size of the prestructured area or otherwise it would detach from the 

undisturbed waterfront and be trapped on the sample which would than be incompatible with 

the observed continuous pattern formation. At the bottom end of the prestructured area 

(Figure 36b and d) the pattern looks similar to the case of the single line perpendicular to the 

withdrawal direction case: the stripes bend strongly yielding an almost 90 degree angle 

directly at the corners of the prestructured area and this angle is decreasing towards the 

middle of the prestructure indicating again a receding waterfront from the corners of the 

prestructured area to the middle where it finally detaches and catches up with the undisturbed 

receding waterfront of the unstructured surrounding substrate. 

 

Varying the spacing in between the prestructure’s lines has a profound influence on the width 

of the “stop stripe” at the beginning of the prestructured area. Figure 37 shows AFM phase 

images of DPPC stripe patterns on substrates with line prestructures of 50 nm height and 

different spacing in between the lines. The two images in the top (Figure 37a/b) show the 

same prestructure, once at the top of the prestructured area and once in the middle of it (with 

regard to the withdrawal direction during transfer). At the top of the prestructured area (Figure 

37a) it can be nicely observed that the previously undisturbed pattern reacts with a broad 

“stop stripe” exactly when the receding water front reaches the prestructured line pattern most 

probably arising by the pinning or at least slowing down of the receding meniscus due to the 

prestructure. Directly after this broader stripe the regular stripe patterning returns in a form of 

sickle-shaped stripes clearly reflecting the shape of the receding waterfront in the channels 

created by the prestructure’s lines as side walls and as expected for a receding waterfront 

through a hydrophilic channel. For a proposed flow of the waterfront over the prestructure see 

Figure 38. The sickle-shaped stripes continue over the rest of the prestructured area as seen in 

Figure 37b. It is interesting to note that although the stripe patterning within the different 

channels of the prestructure is almost perfectly synchronized with variations in the stripe size 

usually appearing in all channels at parallel the patterning itself seems to be decoupled in 

between the different channels because defects in one channel (like the two successive 

broader stripes in Figure 37b marked by the red arrow) do not necessarily spread to adjacent 

channels. These findings are in line with a two region model of the meniscus shape for the 

receding waterfront as proposed in theoretical modelling before:[52] a thicker “macroscopic” 

meniscus  that will  not  split up by the  prestructure into  independently receding  waterfronts 
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Figure 37. AFM images (phase) of a DPPC stripe pattern on prestructures with different line spacing. The image 

(a) shows the start of a prestructured area with 3 µm line spacing, (b) the same sample in the middle of the 

prestructure. The red arrow indicates an incidence of uncoupled patterning in the channels created by the line 

array prestructure. The other two images show the beginning of prestructures with (c) 1 µm and (d) 5 µm line 

spacing. All prestructures have a height of 50 nm. The black arrows denote the withdrawal direction, black bars 

equal 5 µm. 

 

will lead to a general synchronization of the pattern formation in the channels with global 

variations in the pattern induced by, e.g., irregularities in the withdrawal speed, vibrations of 

the sample or similar influences. A second much thinner precursor water film in which the 

actual stripe formation will occur is significantly influenced or even ruptured by the 

prestructure giving rise to the possibility of defects in the pattern formation in one channel 

(induced, e.g., by a irregularity in the channels sidewall) that is not translating to the 

a) b) 

c) d) 
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neighboring channels. While the aforementioned macroscopic water film should be much 

thicker than the prestructures (hence at least hundreds of nanometers) to be not severely 

influenced by the underlying prestructures a better range estimate can be given for the thinner 

precursor water film based on the impact of prestructures with different height on the pattern 

formation: here we would conclude a thickness in the order of 10 to 20 nm since the low 

prestructures with 6 nm (Figure 35) do not disturb the pattern formation at all while 

prestructures with a height of 20 nm already show an profound impact on pattern formation. 

 

 

Figure 38. Proposed flow of the receding waterfront over the line array prestructure during LB transfer (transfer 

direction denoted by black arrow). 

 

A plot of the width of the “stop stripe” width against the line spacing of the prestructure for 

different prestructure’s height is given in Figure 39. In general the “stop stripe” width 

increases dramatically when the spacing between the lines of the prestructure drops below 

4 µm. For similar line spacings the “stop stripe” width increases with increasing height of the 
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prestructure. The obtained data points for the different prestructures could be fitted 

empirically by a power function of the form 

 

 ( ) 2.1x
axf =  ( 55 ) 

 

With a = 4 for the 50 nm height prestructure, a = 3.2 for 30 nm and a = 2.2 for 20 nm 

structural height. 

 

 

Figure 39. Width of the “stop stripe” versus line spacing of the prestructure for prestructures of different height. 

 

5.4 Summary and Outlook 

DPPC stripe patterns were successfully obtained on substrate with prestructured areas 

patterned by electron beam lithography. The resulting patterns enabled a profound insight in 

the meniscus flow during pattern formation and could affirm the theoretical proposed partition 

of the meniscus into a (thick) macroscopic part and a thin precursor water film. The thickness 

of the precursor film could be estimated to be in the range of 10 to 15 nm. Since the influence 

of the prestructure on the pattern formation is mediated by shaping, pinning, and guiding the 
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receding waterfront future experiments should aim at altering the local wetting properties on 

the sample to directly target the meniscus shape and flow of water during LB transfer. It 

would be also interesting to generate prestructures with continuously varying height (e.g., by 

electron or ion-beam induced metal deposition from precursor gasses) to further clarify the 

role of the precursor film and macroscopic meniscus during pattern formation. Another 

interesting conceivable application that should be probed in future experiments is inspired by 

the works of Moraille and Badia on the templated assembly of proteins on the DPPC stripe 

pattern.[123] They showed that the preferred assembly of the protein human albumin (HSA) is 

dependent not only of the general phase state (LE or LC) but also on the packing density (that 

still can vary within a phase state). The concerted modulation of the meniscus flow could 

enable such density variations within the general LE/LC pattern and yield a route for 

additional control on the absorption of proteins. 
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6 Admixing of Functional Compounds in LB Transfer 

 

6.1 Introduction 

The DPPC stripe pattern was shown to be useful as a template to guide the self-assembly of 

nanoparticles[124,125] and can be modified for further chemical patterning[121] enabling, e.g., 

etching of the pattern into silicon[119,126] or electrodeposition of copper wires.[127] All these 

patterning methods take place after the LB-transfer of pure DPPC. Since experiments have 

shown that other lipids (that are also normally part of phospholipid-membranes in biological 

systems) can be directly transferred with DPPC and will affect but not inhibit pattern 

formation.[116] In experiments with admixtures of fluorescent labelled dyes or even pure dye 

(i.e., not bound to a lipid) to the DPPC monolayer a phase separation leaving the admixed  

compound mainly in the LE-phase stripes of the pattern was observed yielding fluorescent 

stripe patterns.[91,128] These results raise the question whether other functional compounds 

(especially non-lipid ones) can be generally patterned with this approach which would enable 

another rapid patterning technique for big surface areas. 

 

6.2 Materials and Experimental Details 

The chemical structures of the different compounds used in our experiments are shown in 

Figure 40. All compounds were synthesized in the group of Prof. Studer (by Julia Hederer and 

Dr. Marion Brinks) and checked for purity by means of mass spectrometry. 

 

Figure 40. Molecular structure of (a) the azide, (b) lithocholic acid, (c) estrone derivative, and (d) the 

alkoxyamine N. 

a) b)

c) d)
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For each experiment fresh solutions of DPPC and the respective compound in HLPC grade 

chloroform at concentrations around 1 mg/ml were prepared. The DPPC solution was then 

divided into six parts and to each an appropriate amount of the respective compound was 

added to reach admixing of 2.5 mol-%, 5.0 mol-%, 7.5 mol-%, 10.0 mol-%, 12.5 mol-%, and 

15.0 mol-%. As substrates silicon wafers with a native oxide layer were cut into pieces of 

about 5 × 2 cm² that were subsequently cleaned by 10 minutes of sonication each in 

chloroform, isopropanol and pure water (DI, resistance of 18.2 MΩcm) and finally exposed to 

a 300 W oxygen plasma at a pressure of 1 mbar for 2 minutes. The substrates were stored 

under pure water and used for the transfer within 3 hours. The subphase temperature for all 

experiments was fixed at 25 °C, the relative humidity varied in between 50 % to 60 % 

between transfers. After a substrate was submerged into the subphase the respective solution 

was spread onto the air-water interface and the chloroform was allowed to evaporate for about 

10 minutes, additional 50 minutes were waited for in the case of the acid and alkoxyamine to 

allow for hydration of the triethoxy anchors to enable a later covalent binding to the substrate. 

The monolayer is then compressed to a lateral pressure of 5 mN/m and another 10 minutes 

were allowed to pass so that the film could equilibrate. The substrate was then lifted through 

the monolayer with a velocity of 10 mm/min. The substrate were kept under ambient 

conditions at room temperature for one day and then studied by AFM to observe the resulting 

patterning. 

 

For the monolayer with alkoxyamine admixings additionally Brewster angle microscopy was 

performed. For this the solution with the respective amount of admixture was spread onto a 

water subphase fixed at a temperature of 25 °C in a trough equipped with a Brewster angle 

microscope. After allowing the chloroform to evaporate for about 10 minutes an isotherm was 

recorded and images were acquired from the Brewster angle microscope in regular intervals 

during compression. 

 

6.3 Results and Discussion 

All four compounds could be transferred together with DPPC without inhibiting pattern 

formation. Detailed compilations of images of a typical transfer for a given admixing as well 

as data on stripe width, channel width and overall periodicity are given for the estrone 

derivative (Figure 41, Figure 42), lithocholic acid (Figure 43, Figure 44) and the azide (Figure 

45, Figure 46). 
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Figure 41. Obtained patterns after LB transfer with admixing of the estrone derivative (insets indicate added 

concentration, scale bar equals 2.5 µm). 

 

 

Figure 42. Size of the stripes, channels and overall periodicity versus admixing of the estrone derivative. 

2.5 mol-% 5.0 mol-% 7.5 mol-% 

12.5 mol-% 15.0 mol-% 10.0 mol-% 
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Figure 43. Obtained patterns after LB transfer with admixing of lithocholic acid (insets indicate added 

concentration, scale bar equals 2.5 µm). 

 

 

Figure 44. Size of the stripes, channels and overall periodicity versus admixing of lithocholic acid. 

 

2.5 mol-% 5.0 mol-% 7.5 mol-% 

12.5 mol-% 15.0 mol-% 10.0 mol-% 
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Figure 45. Obtained patterns after LB transfer with admixing of the azide (insets indicate added concentration, 

scale bar equals 2.5 µm). 

 

 

Figure 46. Size of the stripes, channels and overall periodicity versus admixing of the azide. 

 

2.5 mol-% 5.0 mol-% 7.5 mol-% 

12.5 mol-% 15.0 mol-% 10.0 mol-% 
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There are some similar trends observed in all patterned films after transfer with an admixing. 

All in all the stripe edges of the transferred patterns look more rugged as compared to that of 

pure DPPC transfers (c.f. rugged domains in BAM images, see below). Moreover the pattern 

dimensions become significantly smaller as compared to the transfer of pure DPPC: in the 

current experiment the overall periodicity varies from 1.2 µm down to under 400 nm 

depending on the amount and type of admixing whereas transfers of pure DPPC usually yield 

periodicity way above 1 µm under similar transfer velocities. Under the current transfer 

parameters all systems lose the patterning with an admixing of 15 mol-%, although patterning 

may be still possible by altering the transfer parameters to higher lateral pressures. With 

admixing of 2.5 mol-% only the DPPC/estrone derivate mixture still exhibit a regular stripe 

patterning. The other compounds form more or less complete LC phase films as would be 

expected for pure DPPC under current transfer conditions. All transferred systems show a 

pronounced minimum in the overall periodicity (at 7.5 mol-% for the estrone derivative, at 

10.0 mol-% for the lithocholic acid and the azide). In general the stripe size decreases while 

the channel size increases with increasing of admixing which concurs with the intuition that 

(since the admixing tends to accumulate in the LE phase channels) a more of admixing should 

enlarge the channels. In case of the lithocholic acid admixing there is also a slight increase in 

channel size with decreasing admixing from 7.5 mol-% to 5.0 mol-%. This somehow 

counterintuitive behavior was also observed in the previous experiments with dye admixing[91] 

and leads to the conclusion that under some circumstances a lower concentration of admixing 

can have an even bigger effect on the condensation behavior than a higher admixing. Another 

general observation is that a higher lateral transfer pressure is needed for the patterning of 

films with admixing. LB transfer of pure DPPC monolayers under a pressure around 5 mN/m 

would lead to a complete and unstructured LC phase coverage on the silicon substrates. This 

can be understood by the rise in the coexistence plateau of the isotherms with admixing. The 

condensation is hindered by the admixing therefore requiring a rise in lateral pressure to occur. 
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Figure 47. Isotherms for pure DPPC and different admixing of the alkoxyamine N. 

 

The isotherms of DPPC with different amounts of admixed alkoxyamine N and that of pure 

DPPC for comparison are shown in Figure 47. With increasing admixing the plateau of 

LC/LE phase coexistence is shifted to higher pressures and twisted in a way that the transition 

of LE to LC phase is less pronounced. There is no substantial influence on the onset and slope 

of the LE phase domain of the isotherm by the admixing. For the LC phase domain a decrease 

in slope with increasing admixing is observed. With admixing of 10 mol-% and 15 mol-% 

there is no clear distinguishing mark between LC phase and the coexistence domain, only a 

kink in the isotherm between LE phase and the coexistence domain is still discernible. The 

following series of images shows Brewster angle microscopy (BAM) micrographs captured 

during the recording of the isotherms with different admixing and grouped into images with 

similar lateral pressure. 
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Figure 48. BAM images with different admixing amounts of alkoxyamine N (image width 430µm). 

Pure DPPC, 7.2 mN/m 

Pure DPPC, 8.0 mN/m 

15 mol-% N, 8.0 mN/m 

15 mol-% N, 8.0 mN/m 

5 mol-% N, 6.8 mN/m 

5 mol-% N, 8.0 mN/m 

10 mol-% N, 8.1 mN/m 

10 mol-% N, 8.1 mN/m 
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Figure 49. BAM images with different admixing amounts of alkoxyamine N (image width 430µm). 

Pure DPPC, 9.4 mN/m 

Pure DPPC, 10.8 mN/m 

15 mol-% N, 11.1 mN/m

15 mol-% N, 10.7 mN/m

5 mol-% N, 9.2 mN/m 

5 mol-% N, 11.0 mN/m 

10 mol-% N, 10.8 mN/m 

10 mol-% N, 9.9 mN/m 
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Figure 50. BAM images with different admixing amounts of alkoxyamine N (image width 430µm). 

Pure DPPC, 10.8 mN/m 

Pure DPPC, 15.7 mN/m 

15 mol-% N, 14.4 mN/m

15 mol-% N, 12.0 mN/m

5 mol-% N, 12.3 mN/m 

5 mol-% N, 14.6 mN/m 

10 mol-% N, 13.9 mN/m 

10 mol-% N, 12.5 mN/m 
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Figure 51. BAM images with different admixing amounts of alkoxyamine N (image width 430µm). 

Pure DPPC, 15.7 mN/m 

Pure DPPC, 15.7 mN/m 

15 mol-% N, 18.8 mN/m

15 mol-% N, 16.3 mN/m

5 mol-% N, 14.6 mN/m 

5 mol-% N, 20.2 mN/m 

10 mol-% N, 17.9 mN/m 

10 mol-% N, 16.2 mN/m 
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Figure 52. BAM images with different admixing amounts of alkoxyamine N (image width 430µm). 

 

While the lateral pressure is increasing the nucleation of LC domains sets in, first in the pure 

DPPC, then later in the films with admixed alkoxyamine more delayed with increasing 

amount of admixing. The lateral pressure at the moment where the first LC domains become 

visible is a little bit higher as it would be indicated by the kink between LE and phase 

coexistence domain of the corresponding isotherm. This can be understood by taking into 

account that the LC domains need to grow to a specific size before they can be observed by 

the BAM, therefore the observed nucleation corresponds well to the recorded isotherms. For 

further evaluation the relative coverage of the images by LC domains was determined by 

image processing with self developed software. For this the images were converted into black 

and white images by a threshold optimized on the intensity of the LE background and then the 

relative amount of white pixels to black pixels was calculated. Figure 53 shows the resulting 

graph of relative coverage versus lateral pressure. Looking at images with different amounts 

of admixing but similar relative coverage a clear difference in domain size and shape can be 

seen for pure DPPC and DPPC with admixed alkoxyamine: the LC domains of the pure 

DPPC film grow in a round shape, almost circular (the domains look oval in the BAM images 

Pure DPPC, 15.7 mN/m 

15 mol-% N, 19.8 mN/m

5 mol-% N, 20.2 mN/m 

10 mol-% N, 20.8 mN/m 
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because they are not corrected for the tilted view angle of the BAM) while the LC domains in 

the monolayers with admixed alkoxyamine grow very irregular with branches or even small 

inclusions of LE phase. At the same relative coverage the LC domains of the pure DPPC are 

smaller and more numerous compared to the domains in films with admixed alkoxyamine. 

 

 

Figure 53. Relative coverage with LC domains in the BAM images versus lateral pressure for different amounts 

of admixing. 

 

 

Figure 54. Relative coverage with LC domains in the BAM images versus molecular area for different amounts 

of admixing. 
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The graph of relative coverage versus lateral pressure (Figure 53) shows again the delayed 

onset of nucleation for the films with admixed alkoxyamine. Although the graph for the 

10 mol-% looks distorted the overall trend is still clearly visible. The relative coverage rises 

very quickly for the case of pure DPPC. This abrupt transition is smeared out severely in the 

case of admixed monolayers. Plotting the relative coverage against the molecular area (Figure 

54) reveals another interesting point: although the overall characteristics of all curves are 

quite similar it can be observed that all curves corresponding to monolayers with admixing 

have a broadened transition leading to an onset of nucleation at higher molecular areas as 

compared to pure DPPC with completion of the transition to LC phase at lower molecular 

area than for pure DPPC at the same time. An interesting point is that the shift in the curve is 

most pronounced for the 5 mol-% admixing leaving the 10 mol-% and 15 mol-% admixing 

curves more similar to pure DPPC than the one with the lower admixing. This could 

correspond to the observation of a minimum in the channel size in the transferred films of 

other compounds because this also implies that low concentration of admixing can sometimes 

have bigger implications on the pattern formation than higher ones (within certain borders). 

This behavior could be mediated by the change in interaction force between the DPPC and the 

admixing. Smaller amounts of admixing may be integrated into the DPPC film up to a certain 

concentration when the interaction within the molecules of the admixing also may play a 

crucial role and therefore lead the film back to more DPPC like behavior.  

 

6.4 Summary 

By transferring DPPC monolayers with admixing of different test compounds we further 

established that this approach constitutes a valid method of patterning a broad variation of 

chemical compounds onto solid substrates. The mixed layer LB transfer seems feasible for 

many types of molecules as long as they can form stable monolayers at the air water interface 

(i.e., are amphiphilic or insoluble in water). Of the examined compounds especially the 

alkoxyamine offers a route to interesting further experiments due to its intended use as a 

polymerization initiator. 
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7 Structured Polymer Brushes by LB-Transfer 
∗ 

7.1 Introduction 

Growth of polymers from surfaces has been successfully conducted to tune surface properties 

such as wettability, bioadhesion and surface activity.[129-131] Polymer brushes are successfully 

prepared via covalent attachment of a polymerization initiator onto the surface with 

subsequent surface initiated polymerization (SIP) via the “grafting from” approach.[132,133] 

Atom transfer radical polymerization (ATRP),[134] nitroxide mediated radical polymerization 

(NMP)[135,136] and reversible addition fragmentation transfer polymerization (RAFT)[137] were 

used in SIP. Site specific surface polymerization affords spatially controlled polymer brushes. 

Nanometer-sized structures are of increasing importance in various fields of nanoscale science. 

Microcontact printing,[138-141] photo lithography,[142-144] electron-beam lithography[145-148] and 

other techniques were successfully used to spatially control covalent surface binding of the 

initiator. These techniques belong to the top-down strategies. Alternatively, self-assembly and 

self-organization offer interesting routes to patterned structures via a bottom-up approach.[8] 

Block-copolymer lithography[149] and nanosphere lithography[150] belong to this category. 

Herein we present the use of self-organization to spatially control initiator attachment for the 

formation of regular stripes of polymer brushes using Langmuir-Blodgett (LB)-

lithography.[25,119] The width and the periodicity of the stripes can be controlled. Moreover, 

LB-lithography is performed using inexpensive equipment and large areas (several cm2) can 

be patterned. We have previously shown that mixed monolayers of L-α-dipalmitoyl-phospha-

tidylcholine (DPPC) and dyes can be transferred onto a mica surface in regular stripes 

consisting of dyes with submicrometer lateral dimensions by LB-technique.[91,151] The 

challenge for the present work was to find a polymerization initiator which a) forms LB-films 

and b) is transferred to surfaces periodically from mixed monolayers with DPPC and c) 

contains a reactive functional group for covalent attachment of the polymer initiator onto a Si-

wafer (Figure 55). For polymerization technique we chose NMP.[134,152] The synthesis of the 

alkoxyamine initiator 4, which should fulfill all the requirements mentioned above, is 

depicted in Figure 56.  
                                                 
∗ This chapter’s work was done in close collaboration with the group of Prof. Studer. Dr. Marion Brinks, former 

PhD student in that group was responsible for the synthesis of the initiator and the polymerization of the brushes. 

Most of the results were already published in a peer reviewed paper.[92,210] 

Michael Hirtz
Notiz
M. Brinks, M. Hirtz, L. F. Chi, H. Fuchs, A. Studer: Site-selective surface-initiated Polymerization by Langmuir-Blodgett Lithography. Angew. Chem. Int. Ed., 46, 5231-5233, 2007. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
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Figure 55. Formation of patterned polymer brushes – the concept (LC = liquid condensed phase, LE = liquid 

expanded phase). 
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Figure 56. (a) iPrMgCl, Et2O; (b) aq. HCl; (c) HBr (33% in AcOH), CH2Cl2; (d) TEMPO, Cu, Cu(OTf)2 (cat), 

4,4’-bis-tert-butylpyridine (cat), Ph-H; (e) LAH, THF; (f) TMSCl, NaI, CH3CN; (g) NaH, CH2=CH(CH2)8OH, 

THF; (h) HSi(OEt)3, Karstedt-cat. 

 

7.2 Synthesis of an Amphiphilic Initiator 

Reaction of 1 with iPrMgCl followed by acetal cleavage and subsequent bromination 

provided bromide 2 (72%). Transformation of 2 into the corresponding alkoxyamine was 

achieved using 2,2,6,6-tertramethylpiperidine-1-oxy radical (TEMPO) and Cu-catalysis.[153] 

Aldehyde reduction (LAH) and iodination with TMSCl/NaI delivered 3. Etherification using 

CH2=CH(CH2)8OH/NaH and hydrosilation with Karstedt-catalyst in HSi(OEt)3 gave 4. 

Alkoxyamine 5 bearing a sterically more demanding nitroxide moiety[154,155] was prepared in 

an analogous way. 
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Pleasingly, 4 forms stable monolayers in the mixture with DPPC at the air/water interface.[156] 

For the measurement of isotherms 20 µl of the respective solvent was spread onto the water 

surface and then allowed to evaporate for about 15 min. After that isotherms were measured 

with a maximum barrier speed of 10 mm/min. The surface pressure area (π-A) isotherms of a 

pure solution of 4, of DPPC as well as of a mixture of 4 and DPPC are given in Figure 57. 

 

 

Figure 57. Surface pressure-molecular area (π-A) isotherms of 4, DPPC and mixed DPPC/4 (10 mol-% of 4) 

monolayers at the air/water interface at room temperature. 

 

7.3 LB Transfer of a DPPC/Initiator Film 

In the LE-phase region, the mixed monolayers [DPPC/4 (2.5 – 15 mol-%)] were transferred to 

an oxidized Si-wafer by the LB technique. All experiments were conducted in a commercial 

LB trough (KSV 3000). The subphase (MilliQ DI Water, 18.2 MΩcm) was temperature 

controlled at (24.0 ± 0.1) °C and the air temperature varied between 24.0 and 24.5 °C. A 

DPPC solution in chloroform as well as chloroform solutions of 4 and 5 at a concentration of 

1 mg/ml were prepared. The DPPC solution was then parted and mixed with a solution 

containing appropriate amounts of 4 and 5 to yield DPPC solutions with 2.5 mol-%, 5 mol-%, 

7.5 mol-%, and 10 mol-% 4, respectively 10 mol-% 5. The silicon substrates for the transfer 

(Si 100, natural oxide layer) were cut into 5×2 cm² pieces and then cleaned subsequentially 

for 10 min each step in chloroform, isopropanol, and DI water (as above) and then treated 
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with an oxygen plasma (TePla 100-E, 300 W) for 2 min. The substrates were then submerged 

into the trough and 20 µl of mixed solutions were spread. After waiting for 1 h to allow 

hydrolyzation of the triethoxy functions of 4 respectively 5 the film was compressed to a 

lateral pressure of 5.0 mN/m with a maximum barrier speed of 30 mm/min and let rest again 

for about 10 min to stabilize. Then the substrate was lifted with a speed of 15 mm/min while 

the lateral pressure was kept constant by further compression. As an example for the typical 

result of such a procedure the AFM image of a covered Si-wafer prepared with 10 mol-% 4 

showing regular stripes of DPPC (width =0.27 ± 0.01 µm) with channels (width = 0.26 ± 0.02 

µm) consisting of DPPC and 4 is presented in Figure 58a. The height difference between LC 

stripes and the LE channels is measured to be ca. 1 nm as reported earlier.[91,151] 

 

7.4 SIP of Structured Polymer Brushes 

The covered wafer was then dried at 0.01 bar and at 80 °C under vacuum for 2 h to covalently 

bind 4 respectively 5 onto the wafer. The physisorbed DPPC was eventually removed by 

washing with CHCl3. To produce PS brushes on surfaces covered with 4 SIP was performed 

in a Schlenk tube charged with 2,2,6,6-tetramethyl-1-(1-phenyl-ethoxy)-piperidine (6) 

(5.4 mg, 21 μmol, 0.2 mol-%) sacrificial polymerization regulator and styrene (1.18 ml, 

10.3 mmol, 1.00 eq).[134] The tube was subjected to three freeze-thaw cycles. Then the 

structured silicon wafer containing immobilized alkoxyamine initiator 4 was added and sealed 

off under argon. The polymerization was carried out under argon at 125 °C for 24 h. The 

resulting mixture was cooled to room temperature and dissolved in CH2Cl2. The wafer was 

taken out of the solution and continuously extracted with CH2Cl2 for at least 14 h before AFM 

measurements were carried out. CH2Cl2 was removed from the styrene/polystyrene solution 

under reduced pressure and residual monomer was removed in a vacuum-drying cabinet at 

60 °C for 12 h. Conversion was evaluated gravimetrically; molecular weight and 

polydispersity index (PDI) were determined by size exclusion chromatography yielding a 

conversion of 73%, Mn = 32300 g/mol, PDI = 1.30. Initiator 4 is somewhat limited to the 

polymerization of styrene. On the contrary initiator 5 is capable of polymerizing styrene as 

well as acrylates.[134] The SIP procedures for surfaces covered with 5 are similar to the one 

stated above with the difference that 2,2,6,6-tetraethyl-4-methoxy-1-(1-phenyl-ethoxy)-

piperidine (7) (6.4 mg, 18 μmol, 0.2 mol-% for styrene, 5.3 mg, 15 μmol, 2mol-% for the 

acrylate) was used as sacrificial polymerization regulator. The polymerization of styrene 

(1.06 ml, 9.21 mmol, 1.00 eq) and n-butyl acrylate (1.09 ml, 7.63 mmol, 1.00 eq) was also 
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done under argon for 24 h but the temperature (105 °C) was slightly lower than in the case of 

4. The post-polymerization procedure was the same as already given for 4 (Conversion = 76%; 

Mn = 29400 g/mol; PDI = 1.21 for styrene, Conversion = 67%; Mn = 43800 g/mol; PDI = 1.21 

for acrylate). 

 

7.5 Results and Discussion 

AFM images of the polymerized surfaces show the formation of regular stripes of polymer 

brushes. For instance, using 10 mol-% of 4 after LB-lithography and SIP resulted in PS 

brushes with 0.20 ± 0.02 µm channel width and 0.26 ± 0.03 µm stripe width. The height of 

the stripes increased to 8.0 ± 0.2 nm (Figure 58b). 

 

 

Figure 58. AFM image of a sample prepared with 10 mol-% of 4 (a) before and (b) after SIP of styrene (insets 

show sections, black bar equals 2.5 µm). (c) Periodicity (sum of stripe and channel size, blue circles), the size of 

stripes (red triangles) and the size of channels (black diamonds) depending on the amount of 4. To visualize the 

trends, experimentally determined values are interconnected. 

Smallest stripes were obtained for the 10 and 12.5 mol-% experiments. Lowering as well as 

increasing the amount of 4 provided wider stripes while the channel width remained nearly 

constant (Figure 58c).  
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To characterize the polymer brushes further the density of the chains on the wafer can be 

determined from the brush height and the number-average molecular weight (Mn) of the 

surface bound polymer.[157] The graft density σ was estimated from  

 

 σ = LρNA/Mn ( 56 ) 

 

where L is the thickness of graft layer (determined by AFM-measurements), ρ is the bulk 

density of the polymer (0.906 g/cm3 for styrene), NA is the Avogadro number and Mn is the 

number-average molecular weight.[158] Mn is determined on the polymer synthesized in 

solution with the sacrificial alkoxyamine initiator.[157] The calculated graft densities σ of the 

polystyrene chains prepared from immobilized alkoxyamine initiator 4 are presented in Table 

4. 

 

Table 4. Chain densities of the structured wafers derived from immobilized alkoxyamine initiator 4. 

 

Densities ranging from 0.09 to 0.14 chains/nm2 were calculated which proves that the brushes 

are in the semi-diluted regime.[158] The brush heights obtained are typical for dry polymer 

brushes in the semi-diluted regime. Due to the rather low density brush thickness cannot be 

further increased upon increasing the reaction time.[157] 

 

It is known that NMP using TEMPO as a mediator is restricted to styrene derivatives.[134] To 

employ our methodology to acrylic acid derivatives we conducted the surface modification 

percentage of 
admixing of 4 

[%] 

height 
 

L [nm] 

Mn [g/mol] of polymer 
synthesized in solution  

(PDI) 

chain density 
 

σ [nm2] 

2.5 4.5 ± 0.1 22 850     (1.28) 0.11 

5.0 3.7 ± 0.2 22 000     (1.23) 0.09 

7.5 6.8 ± 0.2 32 900     (1.28) 0.11 

10.0 8.0 ± 0.2 32 300     (1.30) 0.14 

12.5 7.0 ± 0.2 31 400     (1.23) 0.12 

15.0 10.0 ± 0.2 40 400     (1.35) 0.14 



7.5 Results and Discussion 

91 

with 5 bearing a nitroxide which is able to control acrylate polymerization.[154,155] LB 

lithography was performed using a mixed DPPC/5-monolayer containing 10 mol-% of 5. The 

regularity of stripe pattern improved significantly indicating a better compatibility of 5 with 

DPPC. Also vertical stripes appearing with mixtures of 4 in higher concentrations decreased. 

SIP in neat styrene containing sacrificial 7 for 2 h delivered regular styrene stripes with an 

average height of 5.3 ± 0.2 nm (Figure 59a). We also performed n-butyl acrylate SIP in neat 

n-butyl acrylate containing 7 at 105 °C for 24 h. After rinsing, regularly patterned poly-n-

butyl acrylate brushes were obtained (height = 4.7 ± 0.2 nm, stripe width = 0.18 ± 0.03 µm, 

channel width = 0.29 ± 0.05 µm, Figure 59b).  

 

 

Figure 59. (a) AFM image after SIP of styrene using 5. (b) AFM image after SIP of n-butyl acrylate using 5 

(insets show sections, black bar equals 2.5 µm). 

 

The DPPC stripe patterns can generally extend over large surface areas[91]. Here the typical 

dimension of the substrates used during LB deposition was 5×2 cm². Unfortunately a quick 

large area survey by optical means was not feasible for our system because of the small 

periodicity and the thin film thickness. Alternatively AFM images were taken at several 

different positions all over the substrate to make sure that the whole substrate was covered 

uniformly by the stripe pattern. These random sample images show a complete coverage of 

the substrate by the alternating DPPC (LE) mixed with  alkoxyamine initiator / DPPC (LC) 

stripe pattern over the whole sample surface. The primary substrates where then cut into 

smaller pieces (10×5 mm²) for the SIP. After the SIP once again several locations all over 

each sample were checked to ensure the uniformity of the polymerized pattern. A typical 

sample image is shown in Figure 60. 
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Figure 60. 20×20 µm² AFM image of a sample with 10 mol-% of 5 after SIP of styrene. 

 

7.6 Summary and Conclusion 

In conclusion LB-lithography based on dynamic self-assembly can be used for site specific 

covalent immobilization of radical initiators on a Si-wafer. Nitroxide mediated SIP delivers 

regular stripes of polystyrene and polyacrylate brushes. The polymer stripe width can be 

adjusted ranging from about 0.2 to 1.3 μm. This technique can be performed using 

inexpensive equipment and large surface areas up to square centimeters can readily be 

patterned. 

 

 



93 

8 AFM Lithography on Polymer Brushes 
∗ 

8.1 Introduction 

Structured polymer surfaces have gained increased attention in various research fields during 

the past few years. By structuring of polymer surfaces, in particular of polymer brushes, 

functional surfaces with defined properties, e.g., for the study of cell adhesion [159,160] and of 

cell alignment[161,162] have been prepared. Moreover, patterning of polymer brushes allows to 

alter and to control their wetting properties.[163] Patterned polymer brushes can be obtained by 

different methods including top down approaches such as electron beam chemical lithography 

(EBCL),[145,5,6] photo lithography,[164] dip-pen lithography[165] or microcontact printing 

(µCP)[138,166] and bottom up methods such as Langmuir-Blodgett (LB) lithography.[92] These 

methods mainly rely on a “grafting from” approach in which lithography is used to site 

selectively initiate a polymerization process or to site selectively install a polymerization 

initiator. In the latter case, subsequent polymerization eventually leads to structured polymer 

brushes. In addition, studies on the mechanical manipulation (nanoscratching/nanoshaving) of 

polymer films prepared by spin-coating,[167] as well as SAMs[7,168,169] and the nanowear of 

different polymer film architectures[170] have been performed and even heated AFM tips were 

used for lithographic processes on polymer films[171]. 

Herein we present an alternative approach to obtain structured polymer brushes by 

mechanical nanoscratching with AFM lithography. We will show that this method works very 

well for structuring polymer brushes whereas moderate results are obtained by nanoscratching 

of spin-coated polymer films. To the best of our knowledge, intentional scratching of polymer 

brushes by an AFM tip has not been reported to date whereas AFM lithography on spin-

coated films is known.[167] Furthermore, we will demonstrate that site selective 

immobilization of functionalized materials such as dyes (lissamine rhodamine B derivatives 

and boron-dipyrromethene (BODIPY) derivatives) into these structured polymer brushes can 

be achieved. 

 

                                                 
∗ This chapter’s work was done in close collaboration with the group of Prof. Studer. Dr. Marion Brinks, former 

PhD student in that group was responsible for the polymerization of the brushes. Saskia Miele, one of Prof. 

Studer’s PhD students, synthesized/modified and applied the dyes and polymerized the PNIPAM brushes used in 

the experiments. The results were partly already published in a peer reviewed paper.[211] 

Michael Hirtz
Notiz
M. Hirtz, M. K. Brinks, S. Miele, A. Studer, H. Fuchs, L. F. Chi: Structured Polymer Brushes by AFM Lithography. Small, 5(8), 919-923, 2009. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
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8.2 Preparation of Polymer Brushes 

Various controlled radical polymerization techniques such as atom transfer radical 

polymerization (ATRP),[135,136] reversible addition-fragmentation chain transfer (RAFT)[137] 

and nitroxide mediated polymerization (NMP)[134,172,152] have been successfully applied for 

the preparation of polymer brushes by surface initiated radical polymerization (SIP). The thin 

films of brush polymer in the present studies were prepared by using NMP on oxidized silicon 

wafers containing a 300 nm oxide layer (Figure 61). 

 

 

Figure 61. Immobilization of alkoxyamine initiators and surface initiated polymerization by using NMP. 

 

Immobilization of the polymerization initiators 1-3 was achieved by transsilyletherification on 

the oxidized Si-wafer: therefore the silicon wafers were cleaned by sonication in solvents of 

increasing polarity (pentane, CH2Cl2, acetone, methanol, ultrapure water) for 5 min. The clean 

surfaces were oxidized with freshly prepared piranha solution (conc. H2SO4/H2O2 

(30%) = 7:3) for 45 min. The surfaces were rinsed again with ultrapure water and blown dry 

with argon. The oxidized wafers were placed into a sealed tube and a solution of 1, 

respectively 2 or 3, was added (1.5 mL, 10 mmolar in abs. toluene). The mixture was allowed 

to stand at 60 °C (1), respectively room temperature (2, 3) for 3 days. The surfaces were 

purged with CH2Cl2 followed by soxhlet extraction for at least 14 h in CH2Cl2. After this 

procedure SIP was performed by placing the initiator covered wafer into neat styrene (125 °C, 

polystyrene (PS) brushes) or neat n-butyl acrylate (105 °C, poly n-butyl acrylate (PNBA) 

brushes) in the presence of a sacrificial alkoxyamine 4 or 5, respectively. poly N-

isopropylacrylamide (PNIPAM) brushes were obtained by SIP in a solution of NIPAM in 

C6D6 (125 °C). Basically the procedure was the same to the one for the polymer brush stripes 
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described in Section 7.4, only that the SIP took place on silicon wafers uniformly covered 

with the initiator. For control experiments polymers synthesized under standard NMP 

conditions were used for spin-coating. For a better comparison the polymers used in the spin-

coating process had about the same molecular weight as the polymers of the brushes which 

are covalently bound to the wafer.  

 

8.3 General Lithography Procedure 

AFM lithography experiments were performed on a Dimension 3000 AFM equipped with 

silicon tapping mode cantilevers (k ~ 42 N/m) operating in contact mode and if not stated 

otherwise at a set-point of 5 V yielding a loading force of about 22 µN. The lithographic 

pattern, as shown in Figure 62, consists of six single scan lines. The first on the left of the 

field is written from top to bottom consecutively followed by lines with decreasing distances 

in-between (2.0 µm, 1.5 µm, 1.0 µm, 500 nm, 200 nm) and a 1 µm x 1 µm square that is 

written by 20 overlapping scan lines (line distance 50 nm, deviations are due to the drift of the 

microscope during lithography). After AFM lithography the structured wafers were washed 

with chloroform by using sonication to remove the scratched out polymer. 

 

 

Figure 62. Schematic outline of the lithographic layout. 
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8.4 Lithography Results 

 Results of such a lithographic procedure on different polymer brushes and in comparison on 

spin-coated films are shown in Figure 63. 

 

 

Figure 63. (a) Comparison of the different polymers (top row PS, middle row PNIPAM, bottom row PNBA) 

after lithography, either spin-coated film (left column) or polymer brushes before (middle column) and after 

(right column) sonication of 20 s in chloroform, film thicknesses around 25 nm (black bars represent 2.5 µm). 

(b) Sections of PS brush after sonication through the written square (left) and the single scan lines (right). 
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The comparison of lithography on spin-coated films and polymer brushes reveals obvious 

qualitative differences as shown in Figure 63a. The polymers investigated in this work can be 

categorized into two groups, the more crystalline PS and PNIPAM and the comparatively soft 

and viscous PNBA. Evidently the lithography results reflect these differences. The PS and 

PNIPAM systems show similar results in lithography. The single scan lines broaden in scan-

direction by more than four times by going from polymer brushes to spin-coated wafers (from 

100 nm to 450 nm) due to the dragging of polymer by the tip. The excavated material is 

clearly visible at the end of the grooves (Figure 63a, upper and middle image on the left). 

Overall, the scratch borders are not well defined and some material is also piled on the rim of 

the scratch on spin-coated films. No broadening of scan lines is observed on scratched PS and 

PNIPAM brushes although the scratched out material is clearly visible at the end and to a 

smaller extent at the rims of the groove. This implies a smaller adhesive force of the spin-

coated films to the substrate than of the cohesive force within the polymer film, so that further 

material is dragged along with the moving tip. In the case of the polymer brushes the cohesive 

forces cannot overcome the binding of the brushes to the substrate, hence leaving the vicinity 

of the scratched areas intact. Another considerable advantage of the polymer brushes is the 

feasibility of cleaning the sample after lithography by sonication. While spin-coated films 

were washed away completely, only the material scratched out gets removed from the 

polymer brushes. The images in the right column of Figure 63a show the polymer brushes 

after sonication in chloroform for 20 seconds. The excavated material is removed completely 

at the end of the scan lines as well as at the rims leaving the clean lithographic pattern. In the 

case of PNBA covered wafers the difference between AFM lithography on spin-coated films 

and on polymer brushes is even more pronounced. Here lithography by AFM on the spin-

coated film is impossible because the resulting scratches are immediately filled up again by 

the reflow of the previously scratched polymer (curing of the scratches, lower left image in 

Figure 63a). The lithographic pattern is however recognizable on the PNBA brush, although 

the pattern is partially filled with reflowing material (lower middle image in Figure 63a). 

After sonication this reflowing material is removed and the pattern becomes clearly visible 

(lower right image in Figure 63a). 

 

The section analysis of the pattern on a PS brush shows that the square area as well as the 

single scan lines were written down to the substrate (silicon oxide layer). The footprint of the 

single scan lines is about 100 nm (Figure 63b). To demonstrate the stability and resolution of 

the lithographic process on polymer brushes, we used an altered pattern design consisting of 
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multiple single scan lines as shown in Figure 64a. Line structures in 200 nm periodicity were 

achieved. All lines are well defined showing no broadening. Due to the stability of the 

structure, even second writing over the existing scratched lines (perpendicular to the first 

scratch direction) is possible resulting in pillar structures shown in Figure 64b. 

 

 

Figure 64. (a) Multiple single scan lines with periodicity of 200 nm on a PS brush. (b) Array of 200 nm diameter 

pillars achieved by perpendicular writing of single scan lines with 200 nm periodicity (32 nm thickness, black 

bars represent 600 nm). 

 

The lithography process is highly reproducible and does not seem to depend crucially on the 

exact loading force or polymer film thickness as long as a certain threshold force is overcome. 

To clarify the threshold force needed, single scan lines with increasing and decreasing loading 

forces as shown in Figure 65 were written (in this case on a PS brush of 20 nm thickness).  

 

 

Figure 65. Single scan lines written with increasing (upper row) and decreasing (lower row) loading forces on a 

PS brush (20 nm thickness, black bar represents 2.5 µm). 
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The scan lines were prepared starting from left in the upper row with a low loading force of 

1.3 µN. Six further scan lines were written with an increasing loading force of 2.6 µN, 4.0 µN, 

5.3 µN, 6.6 µN, 7.9 µN, and 9.2 µN, respectively, followed by scratching of the lower seven 

scan lines, now beginning from the right with decreasing loading forces. A loading force of 

1.3 µN causes only an incomplete scratching of the polymer brushes leaving a disconnected 

line. In the range of 2.6 to 6.6 µN continuous lines can be achieved, but the scratches do not 

penetrate the whole polymer film (only about half of it), probably resulting from partial 

polymer removal or thinning of the brush density. From 7.9 µN the substrate bottom (silicon 

oxide layer of the wafer) is reached. Higher loading forces (9.2 µN and higher) do not change 

the outcome of a single scan line. The line scans with decreasing loading force are stable and 

completely penetrate the polymer film down to a loading force of 4.0 µN. The scan lines were 

disconnected at lower loading forces. The hysteresis effects observed by increasing or 

decreasing loading forces can be understood by considering substantial modification of the tip 

at a force of 7.9 µN (Figure 66). The initially sharp tip applies a high pressure onto the 

substrate even with comparatively small loading forces due to its small contact area. Because 

this contact area is not well defined with changing tips and due to minor modification by wear 

within one tip the lithography results tend to be poorly reproducible in the middle loading 

force range. At a certain point the loading force becomes high enough to flatten the tip apex 

substantially yielding contact areas with a diameter of about 100 nm (Figure 67) 

corresponding to the observed width of single scan lines. Since the tip does not change to a 

great extent with even higher loading forces the lithography process becomes reproducible 

and reliable even after many subsequent pattern writings. Decreasing the loading force on 

such a modified tip results in reliable writing of single scan lines down to a loading force of 

about 4.0 µN. 

 

 

Figure 66. New cantilever (left) and used cantilever after lithography with an applied loading force of about 

22µN (right). White bar represents 2 µm. 
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Figure 67. Cantilever after lithography with an applied loading force of about 22µN. White bar represents 1 µm. 

 

The size of the flattened area at the tip apex was found to be about 0.16 µm² on electron 

micrographs yielding estimated contact pressures of 49 GPa at the threshold force (7.9 µN) 

and 25 GPa at 4.0 µN, respectively. Even for the high loading force of 22 µN (approximately 

138 GPa) used in the regular lithographic procedures no substantial modification of naked 

silicon oxide surfaces was observed. Overall the range of needed loading forces is comparable 

to preliminary studies of the removal of an alkyl silane monolayer by AFM lithography.[173,174] 

 

8.5 Immobilization of Dyes 

The stability of the polymer brushes towards solvents allows us to further process the 

scratched brushes in solution (scheme depicted in Figure 68). This would not be possible on 

spin-coated polymer films. As an example we used the pink dye lissamine rhodamine B 

sulfonyl chloride 6 and alkyl chain conjugated derivatives thereof (7-9) to target the brushes 

or the scratched areas for selective deposition (structures given in Figure 69). Dye 

immobilization was performed by placing the structured wafer into a CH2Cl2 solution 

containing the dye (0.1 mM) for 3 days. After removal of the dye solution the wafer was 

cleaned by sonication with CH2Cl2 and water five minutes each. An AFM image of the 
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lithographic pattern and fluorescent microscopy images of the resulting dye distribution on a 

patterned PS brush are shown in Figure 69a and b. 

 

 

Figure 68. Schematic representation for the process of selective dye deposition onto the scratched areas or 

polymer brushes. 

 

Interestingly, the polar dye 6 does not enter the polymer brushes. It selectively adsorbs to the 

scratched areas (Figure 69b, left image). However, when a C4 hydrocarbon chain is 

covalently bound to the dye (  7) the interaction of the dye with the polymeric material 

becomes stronger, but 7 still adsorbs more in the scratched areas (stronger fluorescence). 

Attachment of a C7 hydrocarbon chain (  8) further shifts the dye distribution towards the 

brush regime, but in the scratched areas dye is still clearly visible. Pleasingly, the dye with a 

hydrocarbon chain of 10 carbon atoms (  9) selectively adsorbs on the polymer covered 

regions. In this case, at the scratched areas of the wafer which are free of polymer brushes no 

dye adsorption was observed. Hence, depending on the length of the alkyl chain attached to 

the polar chromophore, the immobilization of the dye molecules either at the brush polymer 

regime or in the scratched areas can be controlled and adjusted. The site specific dye 

immobilization is probably caused by intermolecular interactions of the alkyl chain of the dye 

with the polymer brushes (for 9) or by hydrogen bonding of the Si-OH groups of the 

scratched areas with 6.  
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Figure 69. (a) AFM image of a lithographic pattern on a PS brush. Fluorescent microscopy images (b) after 

placing the structured wafer into a solution of lissamine rhodamine B dyes 6-9, (c) after placing a structured 

wafer into a solution of BODIPY dye 10, and (d) of selective deposition of 6 and 11 onto a PS brush respectively 

the structured area (bars represent 5 µm). 

 

Furthermore we studied the immobilization of BODIPY dyes (hydrophobic dyes) 10 and 11 

and found that both adsorb at the brush region (Figure 69c). Hence, for hydrophobic dyes 

long alkyl chains are obviously not necessary for immobilization into the brush area. 

Combining the two types of adsorption behaviors of the dye molecules, we further achieved 

the selective deposition of two different dyes (BODIPY derivative 11 and lissamine 

rhodamine B sulfonyl chloride 6) into the polymer brushes and on the scratched areas on the 

same sample by exposing the wafer to a CH2Cl2 solution containing both dyes (Figure 69d). 

The hydrophobic BODIPY 11 adsorbs at the brush region and 6 is site specifically 

immobilized into the scratched area. We believe that this approach is highly promising for 

selective immobilization of chemical compounds into specific areas of structured brushes. 

 

8.6 Summary and Outlook 

In conclusion, we demonstrated substantial differences between spin-coated polymers and 

polymer brushes during high loading force AFM lithography. Polymer brushes with a 

thickness of 20-30 nm can be reproducibly structured and scratched down to the substrate 

(silicon oxide layer of the wafer) even with single scan lines without dragging of material in 

the vicinity. Equally distanced line structures with 100 nm resolution were achieved in such a 

simple lithography process. Higher resolution is expected by further parameter optimization 

(polymer brush system, AFM tip, loading force etc.). Parallel pattern writing by cantilever 
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arrays is considered for future experiments to enable patterning of larger surface areas in 

shorter time. The possibility of cleaning the structured polymer brushes by sonication and 

removing the excavated material without altering non-scratched areas results in lithographic 

pattern with well defined rims. Furthermore, the stability against solvents allows us to further 

process the structured wafers in solution. As first examples dye molecules were site 

selectively immobilized into the structured brushes either into the polymeric region or on the 

scratched part of the structured wafer. The two different regions of the wafer can be 

selectively addressed by tuning the chemical structure of the dye. By choosing suitable pairs 

and modifications different dyes can be immobilized in separate areas (i.e., one in the 

polymeric and the other in the scratched areas) on the same sample. 

 

 

    

 

Figure 70. Parallel pattern writing with a one dimensional cantilever array. Black bars represent 200µm. 
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Some preliminary experiments♣ with cantilever arrays demonstrate the feasibility of parallel 

pattern writing to achieve large area patterning. This is one of the key requirements for the use 

of such substrates in cell culture experiments which usually require a large area patterning not 

accessible in a reasonable time scale with sequential writing. Figure 70 shows a one 

dimensional array of twelve v-shaped cantilevers before and after writing a chessboard pattern 

(with squares of 10 µm, 1 µm and 500 nm edge length in a 60 x 80 µm² field for each 

cantilever). A fluorescent microscopy micrograph of one the chessboard patterns after 

deposition of NBD into the polymer brushes is shown in Figure 71b. The writing performance 

is already quite good because of the much better position control on this closed loop 

instrument that enables the precise positioning of elements and well defined lines over large 

areas (Figure 71a). A problem that still remains is that the cantilever arrays are designed for 

contact mode application and therefore exhibit a small k constant of 0.5 N/m. To reliably 

reach the high loading forces needed for the presented type of AFM lithography it would be 

nice to obtain high k cantilever arrays made from hard materials like silicon oxide. Together 

with a better force feedback control this would enable an excellent and maximum 

reproducible method towards the large area patterning of polymer brushes. The 

functionalizing options of selective deposition of bioactive molecules into the brushes open 

up an interesting road to produce chemically defined substrates for cell culture experiments. 

 

                                                 
♣ These experiments where done at the KIT at the research centre Karlsruhe under the guidance of Dr. Steven 

Lenhert. 
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Figure 71. Fluorescent microscopy images of NBD stained PS brushes. (a) Logo of Münster University (b) 

Parallel written chessboard pattern. 

a) 

b) 
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9 MD Simulation of Adenin-C20 on Graphite 

 

9.1 Introduction 

The self-assembly of molecules at the solid-liquid or solid-vacuum interface has drawn much 

interest. They offer an excellent possibility to study the influence of binding force balances 

and binding networks on pattern formation as well as to investigate interesting surface 

patterns for further or future use. Here we present our MD simulations on the specific self-

assembly system of adenine-C20 on graphite that shows interesting phase transitions upon 

heating and cooling. Our aim is to elucidate the validity of different structural propositions for 

the different observed phases and also to shed some light on the thermal stability of the crystal 

structures. 

 

9.2 The Experimental System 

The experiments described in this section were conducted by Dr. Zhongcheng Mu and are not 

published yet. The overall experiments involved the self-assembly of different alkyl 

derivatives of thymine and adenine. Here we will only discuss the experiments with 

adenine-C20 on HOPG where we elucidated the phase behavior with MD simulations. For the 

self-assembly process a saturated solution of adenine-C20 in phenyloctane was applied onto a 

freshly cleaved surface of HOPG at room temperature. 

 

 

Figure 72. Ordered adenine-C20 structures on HOPG (area 500 × 500 nm2) with narrow-stripe domains 

(α phase) and wide-stripe domains (β phase). 
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Figure 72 shows a typical result of such a self-assembly process. Ordered structures in form 

of a stripe pattern are visible over a wide area of the substrate. Two different kinds of domains 

can be observed: a narrow-striped one (termed α phase from now on) with a stripe distance of 

about 3.3 nm and a wide-striped one (termed β phase from now on) with an increased 

inter-stripe distance of 4.9 nm. 

 

  

 

 

Figure 73. STM close ups and corresponding structural model propositions for (a) α phase (STM image 

12 × 12 nm2), (b) β1 phase (STM image 15 × 15 nm2), and (c) β2 phase (STM image 10 × 10 nm2). 

a) 

b) 

c) 
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Taking into account the spatial information obtained by the STM images and the homopairing 

possibilities of adenine[175] structural propositions for the two observed phases were 

developed and are shown in Figure 73. The α phase can be best described by an interdigitated 

structure depicted in Figure 73a. For the β phase two equally well fitting propositions were 

made that will be referred to as β1 phase (Figure 73b) and β2 phase (Figure 73c), respectively. 

One of our targets was to find indications to judge which on of the proposals for the β phase 

should be favored. 

 

  

Figure 74. Structural transformation of adenine-C20 layer by heating: (a) layer as prepared, (b) after 10 min at 

50 °C (image area 500 × 500 nm2). 

 

An interesting feature of the adenine-C20 layers is that they undergo a phase transition over 

heating. Figure 74a shows an adenine-C20 layer as prepared; α phase and β phase are 

coexisting. Heating-up the sample to 50 °C for 10 min. transforms the whole layer into 

β phase (Figure 74b). This phase transition is reversible: Letting the layer rest at room 

temperature for several hours one can observe recurrence of the α phase and shrinkage of 

β phase domains (Figure 75). 

 

a) b)
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Figure 75. Reoccurrence of α phase and shrinking of β phase domains over time (image areas 250 × 250 nm2). 

 

The timescales of phase transfer (especially in the latter case) observed in these experiments 

are far out of reach for the current MD simulations. Nevertheless, the simulations can give 

indications for the stability of films over heating and the mechanism behind phase transfer in 

the adenine-C20 films. 

 

9.3 Modelling of the System in GROMACS 

For a successful modelling of the described experimental system in GROMACS a description 

of the graphite substrate and the adenine-C20 molecules must be established. The initial 

structure for the graphite substrate was generated by the Inorganic Builder plug-in of the 

visualization software package VMD.[176] Three layers of graphite were kept ensuring a 

substrate thicker than the VdW cutoff radius of the simulations. The lateral size of the 

substrate was adjusted to the need of the respective simulation, which demands periodic 

continuation to enable full periodic boundary conditions. The force field parameters for the 

substrate were taken from literature.[177,178] 
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Figure 76. Topology for adenine-C20. Numbers correspond to the atom number in Table 5. 

 

Table 5. Atom type, charge group and charge by atom number for the used adenine-C20 topology. 

Atom 

Number 

Atom 

Type 

Charge 

Group 

Charge 

(e) 

 Atom 

Number 

Atom 

Type 

Charge 

Group 

Charge 

(e) 

1 CH3 1 -0.047  18 CH2 8 +0.027 

2 CH2 1 +0.024  19 CH2 8 -0.020 

3 CH2 1 +0.023  20 CH2 8 -0.064 

4 CH2 2 0  21 NR 8 +0.119 

5 CH2 2 0  22 CR1 8 +0.241 

6 CH2 3 0  23 HC 8 -0.147 

7 CH2 3 0  24 NR 8 -0.146 

8 CH2 4 0  25 C 8 +0.022 

9 CH2 4 0  26 C 9 +0.171 

10 CH2 5 0  27 NR 9 -0.183 

11 CH2 5 0  28 CR1 9 +0.463 

12 CH2 6 0  29 HC 9 -0.299 

13 CH2 6 0  30 NR 9 -0.207 

14 CH2 6 0  31 C 10 +0.084 

15 CH2 7 0  32 NT 10 +0.121 

16 CH2 7 0  33 H 10 -0.110 

17 CH2 8 -0.021  34 H 11 -0.095 

 

The basic topology for the adenine-C20 was obtained from the Dundee PRODRG2.5 

Server,[179] a website♣ that can generate valid topologies for different molecular dynamics 

packages based on given coordinates (e.g., PDB files) or even simple drawings for small 

molecules. To enhance the partial charges on the molecule we obtained a charge distribution 

                                                 
♣ http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg_beta 
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by DFT calculations♣ and derived the atom bound charges of the MD topology by a modified 

restrained electrostatic potential (RESP) fitting[180] with the method published by Hu, Lu and 

Yang.[181] The final topology parameters are listed in Table 5. 

 

Since the detailed structure of the adenine-C20 phases was unknown we followed a multi-step 

approach to obtain a starting structure for the bulk crystal simulation. Firstly, we assembled 

“nanocrystals” of 64 adenine-C20 molecules each according to the aforementioned structural 

propositions for the different phases on a much bigger graphite substrate of 19.6 × 17.0 nm2. 

The structures were allowed to relax in a 200 ps simulation at 50 K (the low temperature was 

chosen to prevent additional thermal perturbations). After stabilization of the structures they 

were transferred onto graphite substrates cut into the right size to fit the crystal structure and 

enable a periodic continuation. This allowed for the simulation of a bulk layer of adenine-C20 

in the different phases. The bulk layers underwent a simulated annealing with linear raising 

temperature from 50 K to 300 K for the first 500 ps and then cooling down to 50 K again 

within the next 500 ps and staying stationary at 50 K for last 200 ps of the simulation. All 

simulations were run in GROMACS version 3.3.1[74,182] using either the GROMOS96 

43B1[183] or 53A6[184] force field parameter. Temperature control was maintained by a 

Berendsen thermostat.[185] For the nanocrystal simulations coulomb forces where shifted to 

zero from 0 nm to a cutoff radius of 1.2 nm. In the bulk simulations Particle-mesh Ewald[85,86] 

was used for long range coulomb interactions and a cutoff of 1.4 nm was applied for the short 

range interactions. The Van der Waals forces were modified by a shift function switching 

from 0.9 nm to a cutoff of 1.2 nm. The bonds to hydrogen atoms were constrained using the 

LINCS algorithm[186] and a timestep of 2 fs was used. 

 

9.4 Simulation Results and Discussion 

Since the detailed structure of the different phases was not known we first modeled 

“nanocrystals” of 64 adenin-C20 molecules on a bigger graphite substrate. With this the 

molecules were allowed to slide into their preferable positions within the crystal lattice from a 

rough starting structure. As an example the relaxation of the α phase nanocrystal is shown in 

Figure 77. 

                                                 
♣ Conducted by Jörn-Holger Franke. 
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Figure 77. Relaxation of an α phase “nanocrystal” on a graphite substrate (not shown) over 125 ps. 

 

The starting structure is composed of eight smaller subsets that were obtained by previous 

auxiliary simulations consisting of eight adenine-C20 molecules each. The overall structure 

already resembles the α phase structural proposition. The structural defects vanish within a 

few picoseconds and a stable crystal structure is reached after 100 ps. Stable nanocrystals of 

the two β phase structural propositions were obtained in the same manner. The different stable 

nanocrystals are shown in the first row of Figure 78. The structural proposition for the 

β1 phase evolves into a slightly different stable structure where the adenine-C20 molecules are 

shifted a little bit along the stripe direction without any change in the angle of the adenine 

headgroups toward the hydrocarbon tails. Another interesting observation is that the β1 phase 

shows a strain at the corners where the hydrocarbon tails are drawn into the direction of the 

neighboring “bulk” tails. This leads to a slightly lower tilting angle of the hydrocarbon tails 

with respect to the adenine headgroups at the top left and bottom right corner and a 

considerable increase in the tilting angle at the top right and bottom left corner of the 

nanocrystal. The α phase and the β2 phase nanocrystals do not show any notable edge 

deviations. They could be readily continued by a simple copy and translate procedure while 

the distortion at the corners of the β1 phase nanocrystal prevented a direct periodic 

continuation. A compilation of the crystal structure parameters measured in the different 

nanocrystals is given in Table 6. 
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Figure 78. Heating of nanocrystals of α phase (left column), β1 phase (middle column) and β2 phase (right 

column). 

α β1 β2 
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Figure 78 shows a sequence of snapshots from the heating simulation of the different 

nanocrystals. None of the nanocrystals remains stable upon heating which is not surprising 

since the modelled crystals are way too small to reach a thermodynamic equilibrium with the 

(empty) surrounding substrate. The α and β1 phase crystals suffer a severe structural collapse 

at roughly the same time into the simulation, the β2 phase crystal remains stable a little longer. 

 

 

Figure 79. 2D bulk crystal structure of α phase (top row), β1 phase (middle row) and β2 phase (bottom row) for 

parameter set 43B1 (left column) and 53A6 (right column), simulation unit cells are marked in red. 

 

α 

β1 

β2 
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It is interesting to note that all crystals break up at positions involving inter-adenine bonding. 

The attractive forces between the hydrocarbon chains are obviously much stronger: fragments 

of the particular stripe of the crystal connected by the interactions of the hydrocarbon chains 

remain bound throughout the heating process. 

 

Table 6. Structural parameters of the adenin-C20 nanocrystals. 

 α phase  β1 phase β2 phase 

Crystal area 

(± 0.5 nm²) 

⏐ ar ⏐,⏐ b
r
⏐, φ 

(± 0.1 nm, ± 0.5°) 

108.5 nm² 

 

8.1 nm, 13.9 nm, 74,5° 

 

110.1 nm² 

 

12.9 nm, 11.5 nm, 48.0°

 

105.5 nm² 

 

11.9 nm, 11.1 nm, 53.0°

 

Inter-chain distance 

(± 0.01 nm) 

0.47 nm 

 

0.48 nm 

 

0.48 nm 

 

Inter-stripe distance 

(± 0.1 nm) 

3.3 nm 

 

4.7 nm 

 

4.7 nm 

 

Chain-Stripe angle 

(± 0.5°) 

68.5° 

 

43.0° 

 

43.0° 

 

 

Table 7. Structural parameters of the adenin-C20 bulk crystals. 

 α phase  

43B1 / 53A6 

β1 phase 

43B1 / 53A6 

β 2 phase 

43B1 / 53A6 

Unit cell area 

(± 0.5 nm²) 

⏐ ar ⏐,⏐ b
r
⏐, φ 

(± 0.1 nm, ± 0.5°) 

109.8 nm² 

 

8.4 nm, 14.1 nm, 68.0° 

 

111.9 nm² 

 

9.5 nm, 11.8 nm, 87.0° 

 

106.6 nm² 

 

9.7 nm, 11.0 nm, 87,0° 

 

Inter-chain distance 

(± 0.01 nm) 

0.48 nm / 0.48 nm 

 

0.50 nm / 0.50 nm 

 

0.49 nm / 0.49 nm 

 

Inter-stripe distance 

(± 0.1 nm) 

3.3 nm / 3.3 nm 

 

4.8 nm / 4.8 nm 

 

4.9 nm / 4.9 nm 

 

Chain-Stripe angle 

(± 0.5°) 

67.0° / 67.0° 

 

42.0° / 44.0° 

 

44.0° / 44.0° 

 

 

For the simulation of 2d bulk crystals the obtained crystal structures of the nanocrystal 

simulations were transferred onto a graphite substrate matching the unit cell defined by the 

respective nanocrystal allowing for a periodic continuation yielding the desired bulk crystal. 

These structures were allowed to fully relax in a 200 ps simulation at 0 K; for comparison the 
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simulations were conducted additionally with the 53A6 force field parameters, the results are 

shown in Figure 79. The α and β2 phase bulk crystals relax into a stable structure virtually 

identical to the ones of the nanocrystals for both force fields (structural data given in Table 7). 

The case of the β1 phase bulk crystal is more complicated. The β1 phase nanocrystal was not 

suitable for a direct continuation due to corner distortions. Hence, the bulk crystal was 

compiled by cutting smaller pieces out of the nanocrystal and duplicating them to achieve a 

unit cell of 64 adenine-C20 molecules adequate for the periodic continuation. The structure 

stabilizes in yet another relative position of the adenine headgroups of the different stripes 

while the tilt angle of the hydrocarbon tails remains constant. Even more intriguing is the fact 

that the stripes (formed by the adenine headgroups) itself break up after a few adenine-C20 

dimers. The straining force responsible for the distortion of the nanocrystal cannot alter the 

tilting angle of the hydrocarbon chains in the case of the bulk crystal. Therefore, they create a 

slight tilt in the headgroup stripe that leads to a parallel set off after a few adenine-C20 dimers. 

Since the intra row binding between the hydrocarbon tails is bigger than the inter row binding 

of the adenine headgroups there is also some splitting of the headgroup bindings parallel to 

the stripe direction. The lateral offset is less defined but still visible in the case of the 53A6 

force field but no inter row splitting is observed.  

 

The time evolution graphs of the total binding energies and the parts contributed by Lennard-

Jones interactions and Coulomb interactions for the simulations with parameter set 43B1 

(Figure 80) as well as for the simulations with parameter set 53A6 (Figure 81) show a stable 

structure after several picoseconds of simulation. The stable binding energies are given in 

Table 8. The part of the binding energy originating in Lennard-Jones interactions is bigger 

than that by Coulomb interactions for all phases. The hydrocarbon chain of the adenine-C20 is 

almost uncharged; therefore, virtually all electrostatic binding or repulsion is mediated by the 

adenine headgroups. This also makes it understandable why the crystals tend to break up at 

the headgroup bindings first: unlike the Lennard-Jones interactions that only become 

repulsive if the interacting particles come too close together, the Coulomb interactions 

additionally depend on the charge polarity. The hydrocarbon chains will have a certain 

distance of ideal binding energy (in the minima of the Lennard-Jones potential) and small 

perturbation of the position will always tend to move back into the ideal position. With the 

charge and polarity pattern of the headgroups small perturbations can already lead to 

instabilities and repulsive forces when corresponding charges come together (comparable to a 



9 MD Simulation of Adenin-C20 on Graphite 

118 

sodium chloride crystal bursting along a crystal axis by an induced displacement that places 

positive and negative charges next to each other). 

 

 

Figure 80. Total binding energy, Coulomb and Lennard-Jones part of the binding energy (43B1). 

 

 

Figure 81. Total binding energy, Coulomb and Lennard-Jones part of the binding energy (53A6). 
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Table 8. Binding energies for the different bulk crystal phases. 

 

energies in kJ/mol 

α phase  

43B1 / 53A6 

Β1 phase 

43B1 / 53A6 

β 2 phase 

43B1 / 53A6 

Coulomb energy -2978.8 / -2971.6 -2985.5 / -2945.7 -2811.5 / -2772.2 

Lennard-Jones energy -3971.7 / -3627.0 -3908.4 / -3674.2 -4211.3 / -3798.2 

Total energy -6950.5 / -6598.6 -6893.9 / -6619.9 -7022.8 / -6570.4 

 

The total binding energies do not vary greatly among the different phases. For the 43B1 

parameter set the β2 phase has the biggest binding energy, followed by the α phase. The 

β1 phase is the least bound one but the overall binding energy varies only by 2%. The 

simulations with the 53A6 parameter set result in an overall decrease in binding energy. The 

β1 phase becomes the most bound structure followed by the α phase and the β2 phase is now 

the least bound one but the difference in binding energy among the different phases is not 

even 1%.  Since the overall structure does not vary much between the different parameter sets 

the Coulomb energies do not change substantially because the charges stay the same in all 

simulations. Accordingly, the overall decrease in binding energy is caused by a decrease of 

the Lennard-Jones energy due to the different Lennard-Jones parameterization. 

 

Table 9. Comparison of total binding energies per molecule of MD and DFT calculations. 

 

 Energies in eV 
α phase β1 phase β 2 phase 

MD (43B1) -1.126 -1.116 -1.137 

MD (53A6) -1.069 -1.072 -1.064 

DFT♣ - -1.299 -1.094 

 

Table 9 gives a comparison of the total binding energy per molecule from the MD simulations 

with DFT calculations made for the β phases, α phase calculations would be prohibitive for 

the required system size. The magnitude of the binding energies from MD fits to the 

(probably more precise) ones obtained by DFT calculations. The main difference is the 

significantly stronger binding (about 20%) of the β1 phase compared to the β2 phase in the 

DFT calculations. 

  

                                                 
♣ Received by personal reference from Jörn-Holger Franke. Calculations where done in VASP[212] with the 

revPBE[213,214] functional and semi-empirical dispersion corrections.[215] 
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Figure 82. 2D bulk crystal α phase (top row), β1 phase (middle row) and β2 phase (bottom row) before (left 

column) and after (right column) annealing. 

 

The results of the annealing simulations of the bulk crystals are shown in Figure 82. Only the 

43B1 parameter simulations were stable under annealing. Heating under 53A6 parameters led 

α 

β1 

β2 
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to film breaks with adenine headgroups leaving the substrate plane and sticking out of the 

monolayer. The left column shows the initial structures, the right column the resulting 

structures after the annealing cycle. The α phase is somewhat disturbed after annealing, 

although not completely destroyed. The β2 phase is completely stable and survives the 

annealing process without any deviation in the crystal structure. In contrast, the β1 phase 

structure is severely deranged by the annealing cycle. It is especially striking that a 

considerable part of the simulation unit cell is transformed into β2 phase. This strongly 

suggests an increased stability of the β2 phase structure as compared to β1 phase structure. The 

energy differences (Table 8) seem to be much too small to account for such a distinct 

difference in stability on heating. But we can understand this difference by considering the 

observation of the relative position change in opposed adenine headgroups of the β1 phase in 

the different simulations: in all simulations of the β1 phase we observed adjustments in the 

relative positions of opposed adenine headgroups parallel to the stripe direction. This relative 

ease of sliding the half stripes against each other implies a multitude of similar β1 phases, 

sharing the overall parameters of stripe distance and chain tilt angle while the relative position 

of opposed adenine headgroups is different. This makes the β1 phase susceptible to random 

perturbations because if combined the different relative headgroup positions are not 

compatible with the overall ordered structure. Another similar contribution to the enhanced 

stability of the β2 phase may be a better interlocking of the charge pattern of the adenine 

headgroups. The α and β2 phase seem to lack nearby stable configurations forcing them back 

into the initial crystal structure after thermal random fluctuations, especially the latter one 

exhibiting good thermal stability. The overall better stability of the β2 phase over the α phase 

for higher temperatures is also reflected in the different area requirements that are higher for 

the α phase. This means additional stress for the crystal structure during heating because of 

thermal expansion that can be avoided by evading into the β2 phase. Notably, the β1 phase 

needs even more area than the α phase which constitutes yet another argument for the better 

stability of the β2 phase. 

 

9.5 Summary 

Extensive simulations on the stability of three different structural propositions (α, β1, and 

β2 phase) for self-assembled monolayers of adenine-C20 molecules on a graphite substrate 

were conducted. Although the sole consideration of MD binding energies remains indecisive 

and DFT calculations clearly indicate a stronger binding in the case of β1 phase MD 
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simulations strongly suggest a superior stability of the β2 phase structure. Taking into account 

the different structural parameters (especially area requirements) it can also be understood 

why the β2 phase is prevailing in high temperature environments while α phase could be 

predominating at lower temperatures. All in all we conclude that the β2 phase is most 

probably the actual crystal structure of the broad stripe β phase on the samples and that the 

structural proposition for the α phase is excellent for the observed narrow stripe phase. 
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10 MD Simulation of Molecular Diffusion on DPPC 
♣ 

10.1 Introduction 

The site-selective patterning of luminescent organic materials into ordered micro to nanoscale 

arrangements has become a major research interest due to its broad potential application in 

many areas, e.g., photonics,[187,188] optoelectronics,[188-191] biochip-based detection,[192] and 

biosensor arrays.[193] Current strategies to achieve large-area site-selective patterning usually 

involve various combinations of top-down and bottom-up methods, such as 

nanoimprinting[194] or microcontact printing (µCP).[195-198] Within these approaches the 

substrate surfaces are chemically modified to generate binding sites specific for the material 

to be patterned by tuning energetically and/or chemically properties of these areas (templated 

self-assembly). Usually the templated self-assembly of organic material is conducted in wet-

chemical environments. Until recently much less effort has been spent on site-selective 

patterning of luminescent organic molecules via gas-phase deposition.[198-200] 

Before this we and others have shown that our DPPC stripe pattern can be utilized as a 

template to pattern nanocrystals[151,124,125] or proteins.[123] Recently the DPPC stripe pattern 

was introduced as a template for luminescent organic molecules like 3(5)-(9-anthryl) pyrazole 

(ANP)[201] and perylene (publication in preparation). In this work we use molecular dynamics 

simulations to clarify the mechanism behind the selective deposition of these organics 

molecules onto the DPPC stripe pattern. 

 

10.2 The Experimental System 

This chapter gives a quick overview over the experimental findings investigated in our 

molecular dynamics study. Hao et. al. introduced a DPPC stripe pattern as a template for the 

selective deposition of ANP.[201] The ANP is deposited by thermal evaporation under a 

vacuum of 5 × 10-4 Pa and a sublimation temperature of only 43°C. The amount of deposited 

ANP is quantified by a quartz crystal microbalance (QCM). The film thickness read from the 

QCM sensor corresponds to the film thickness on the sample if the deposited molecules 

would constitute a smooth film. On the contrary it is found that the molecules first deposit 
                                                 
♣ Part of the work contained in this chapter was submitted for publication, a complete account with additional 

simulations that expand and deepen the findings presented here is in preparation for publication. 
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exclusively onto the LE-phase areas of the stripe pattern for lower occupancy and decorate the 

LC-phase areas only on further evaporation (Figure 83). 

 

 

    

Figure 83. DPPC stripe pattern with evaporated ANP, (a) lower occupancy (1 nm), (b) higher occupancy (7 nm), 

(c) higher occupancy (7 nm, close up). Bars equal 5 µm. 

 

The comparison of the nucleation on the LE- and LC-phase reveals another striking difference: 

the nucleation sites are smaller on average and more numerous on the LC-phase areas 

compared to the LE-phase areas. This observation is true not only for the mixed phase stripe 

pattern but was also verified for pure phase substrates. Hao et. al. explain their findings in the 

following way: first the preferred deposition of the organic molecules onto the LE-phase areas 

may be attributed to their higher surface energy, which drives, for example, the preferred 

deposition of nanocrystals as well.[125] The difference in size and distribution of the nucleation 

a) 

b) c)
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sites strongly suggest a smaller diffusion length of the ANP molecules on the LC-phase 

compared to the LE-phase. On first sight this may seem inconsistent to the preferred 

deposition onto the LE-phase, because a better diffusion on the LE phase should also lead to a 

flow of material from the LE-phase areas to the LC-phase areas where it should accumulate. 

To solve this contradiction Hao et. al. postulate a difference in the energy barrier for 

molecules crossing from LC- to LE-phase and vice versa. If the energy barrier is higher for 

the case of crossing from LE- to LC-phase this would result in a lower rate constant 

preserving the preferred deposition on LE-phase areas. Consistent with this notion the 

preferred nucleation onto LE-phase areas is lost when the LC-stripes become too large. 

 

 

Figure 84. DPPC stripe pattern with evaporated perylene. Bar equals 5 µm. 

 

A second model system with similar behavior is the evaporation of perylene molecules onto 

DPPC stripe pattern (Figure 84). The results of these experiments are not yet published but 

were relayed to the author by personal communication. 

 

10.3 Modelling of the System in GROMACS 

To model the experimental system into GROMACS several subtasks had to be achieved: 

topologies for the silicon oxide substrate, DPPC, and for the molecules to be deposited on the 

surface (ANP and Perylene) had to be written and a suitable equilibrated DPPC monolayer 

had to be obtained. 
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The silicon oxide substrate was modelled in an approach similar to that used by Wensink et. al. 

in their study on water bridging effects between two surfaces.[202] The modelling of 

amorphous silicon oxide would be much more complicated probably without notable 

improvement of the results. Hence, we decided to use an easier to handle substrate with a 

regular crystal lattice, namely α-quartz. As a starting point an α-quartz crystal of desired size 

was produced by the Inorganic Builder plug-in of the visualisation package VMD.[176] The 

crystal was cut and rotated to expose the (1,0,-1) Miller plane as the surface lying parallel to 

the x-y-plane of the coordinate system. The surface was then saturated with silanol groups by 

adding a hydrogen atom to each surface oxygen atom. Finally the crystal was cut at two 

planes perpendicular to the x-y-plane with respect to the periodic boundary conditions and in 

parallel to the x-y-plane to a thickness of about 1.4 nm to ensure a substrate thicker than the 

cutoff radius of typical simulations. This procedure resulted in a silanol terminated silicon 

oxide slab of the dimensions 9.6 nm × 9.8 nm × 1.4 nm suitable for periodic continuation in 

the x-y-plane (Figure 85). 

 

 

Figure 85. Silicon oxide in α-quartz configuration with surface silanol groups. 

The force field parameters for the silicon oxide substrate were taken from literature[202-204] and 

are summarized in Table 10. 

 

Table 10. Force field parameters for the silicon oxide substrate. 

Atom Type C(6) 

(kJ nm12/mol) 

C(12) 

(kJ nm6/mol) 

q 

(e) 

Hydrogen - - +0.40 

Oxygen (bulk) 0.22617 × 10-2 0.74158 × 10-6 0 

Oxygen (surface) 0.22617 × 10-2 0.15062 × 10-5 -0.71 

Silicon (bulk) 0.22617 × 10-2 0.22191 × 10-4 0 

Silicon (surface) 0.22617 × 10-2 0.22191 × 10-4 +0.31 
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Table 11. Atom type, charge group and charge by atom number for the used DPPC topology. 

Atom 

Number 

Atom 

Type 

Charge 

Group 

Charge 

(e) 

 Atom 

Number 

Atom 

Type 

Charge 

Group 

Charge 

(e) 

1 CH3 0 +0.4  26 CH2 12 0 

2 CH3 0 +0.4  27 CH2 13 0 

3 CH3 0 +0.4  28 CH2 14 0 

4 N 0 -0.5  29 CH2 15 0 

5 CH2 0 +0.3  30 CH2 16 0 

6 CH2 1 +0.4  31 CH3 17 0 

7 OA 1 -0.8  32 CH2 18 +0.50 

8 P 1 +1.7  33 OA 18 -0.70 

9 OM 1 -0.8  34 C 18 +0.80 

10 OM 1 -0.8  35 O 18 -0.60 

11 OA 1 -0.7  36 CH2 19 0 

12 CH2 2 +0.4  37 CH2 20 0 

13 CH1 2 +0.3  38 CH2 21 0 

14 OA 2 -0.7  39 CH2 22 0 

15 C 2 +0.7  40 CH2 23 0 

16 O 2 -0.7  41 CH2 24 0 

17 CH2 3 0  42 CH2 25 0 

18 CH2 4 0  43 CH2 26 0 

19 CH2 5 0  44 CH2 27 0 

20 CH2 6 0  45 CH2 28 0 

21 CH2 7 0  46 CH2 29 0 

22 CH2 8 0  47 CH2 30 0 

23 CH2 9 0  48 CH2 31 0 

24 CH2 10 0  49 CH2 32 0 

25 CH2 11 0  50 CH3 33 0 

 

The topology for the DPPC molecules was adapted from available topologies for the 

GROMOS96 45A3 parameter set[205] and transcribed into the current GROMOS96 53A6 

force field scheme.[184] The obtained topology is shown in Figure 86, the force field parameter 

are tabulated in Table 11. Only very recently (after completion of most simulations) a detailed 

study on slightly differing DPPC topologies for the GROMOS96 53A6 force field was 

published by Kukol.[206] Our topology corresponds to the model termed DPPC2 therein. The 

model favored by this author matches our current model except for the use of a different 

estercarbonyl carbon atom type, “CH0” instead of “C”. The van der Waals radius for the 

carbonyl-ester is therefore increased from 0.336 nm for atom type “C” to 0.664 nm for atom 

type “CH0”.[206] The repetition of some of our simulations with the newly suggested topology 
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revealed no differences relevant to our considerations. Nevertheless, we suggest switching to 

the new topology for future simulations because eventually it will become the standard for 

DPPC bilayer simulations based on the thorough investigation presented by Kukol. 

 

 

Figure 86. Topology for DPPC. Numbers correspond to the atom number in Table 11. 

The molecular topologies for ANP and perylene were obtained from the Dundee PRODRG2.5 

Server.[179] This website♣ allows to generate valid topologies for different molecular dynamics 

packages based on given coordinates (e.g., PDB files) or even simple drawings for small 

molecules. 

 

 

Figure 87. Topologies of (a) ANP, (b) perylene (top view), and (c) perylene (side view). Numbers correspond to 

the atom number in Table 12 and Table 13, respectively. 

 

The obtained topologies for ANP and perylene are shown in Figure 87. Tabulated values for 

the force field atom type and partial charges are given in Table 12 and Table 13, respectively. 

                                                 
♣ http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg_beta 

a) b)

c) 
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Table 12. Atom type, charge group and charge by atom number for the used ANP topology. 

Atom 

Number 

Atom 

Type 

Charge 

Group 

Charge 

(e) 

 Atom 

Number 

Atom 

Type 

Charge 

Group 

Charge 

(e) 

1 CR1 1 -0.007  17 HC 4 +0.007 

2 HC 1 +0.007  18 CR1 5 -0.007 

3 CR1 2 -0.003  19 HC 5 +0.007 

4 HC 2 +0.013  20 CR1 6 -0.007 

5 CR1 2 -0.003  21 HC 6 +0.007 

6 HC 2 +0.013  22 C 7 -0.010 

7 CR1 2 -0.003  23 C 7 -0.010 

8 HC 2 +0.013  24 C 7 +0.092 

9 C 2 -0.013  25 CR1 7 -0.003 

10 C 2 -0.014  26 HC 7 +0.018 

11 CR1 2 -0.003  27 CR1 7 -0.003 

12 HC 2 +0.013  28 HC 7 +0.018 

13 C 2 -0.013  29 NR 7 -0.265 

14 CR1 3 -0.007  30 NR 7 +0.161 

15 HC 3 +0.007  31 H 7 +0.002 

16 CR1 4 -0.007      

 

Table 13. Atom type, charge group and charge by atom number for the used perylene topology. 

Atom 

Number 

Atom 

Type 

Charge 

Group 

Charge 

(e) 

 Atom 

Number 

Atom 

Type 

Charge 

Group 

Charge 

(e) 

1 CR1 0 -0.004  17 C 2 -0.012 

2 HC 0 +0.014  18 C 2 -0.012 

3 CR1 0 -0.005  19 C 2 -0.012 

4 HC 0 +0.014  20 CR1 2 -0.004 

5 CR1 0 -0.005  21 HC 2 +0.016 

6 HC 0 +0.015  22 CR1 2 -0.004 

7 C 0 -0.013  23 HC 2 +0.016 

8 C 0 -0.012  24 CR1 2 -0.004 

9 C 0 -0.013  25 HC 2 +0.016 

10 CR1 0 -0.005  26 C 3 -0.016 

11 HC 0 +0.014  27 CR1 3 -0.006 

12 CR1 1 -0.005  28 HC 3 +0.011 

13 HC 1 +0.013  29 CR1 3 -0.006 

14 CR1 1 -0.005  30 HC 3 +0.012 

15 HC 1 +0.012  31 CR1 3 -0.006 

16 C 1 -0.015  32 HC 3 +0.011 
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A self developed program was used to set up the simulation geometries and to combine the 

different system constituents (i.e., water, DPPC, silicon oxide substrate, ANP and perylene, 

respectively) into the desired quantity and starting positions. The single point charge (SPC) 

water model[207] integrated in GROMACS served as model for the water molecules. To 

achieve a pseudo two-dimensional simulation geometry a big z dimension of 30 nm was 

applied which sufficiently separates the periodical images of the system in z direction. The 

MD simulations ran in GROMACS version 4.0.3.[75] If not stated differently, all simulations 

are conducted with constant volume and temperature (Berendsen thermostat[185] at 300 K) and 

the number of particles is not changing during simulation (NVT ensemble). Particle-mesh 

Ewald[85,86] is used for long range coulomb interactions and a cutoff of 1.4 nm was applied for 

the short range interactions. Van der Waals settings included a shift function switching from 

0.9 nm to a cutoff of 1.2 nm. The bonds to hydrogen atoms were constraint using the LINCS 

algorithm.[186] A timestep of 2 fs was used for the simulation of DPPC on water and of 1 fs in 

the simulations involving the silicon oxide substrate. 

 

10.4 Simulation Results and Discussion 

To obtain equilibrated DPPC monolayers in a different phase (LE and LC respectively) for 

the diffusion simulations first a simulated compression of a DPPC monolayer on a small 

water slab was carried out. For this purpose a system consisting of 100 DPPC molecules in a 

regular grid on a water slab of 12 × 12 nm² area and an initial thickness of about 1 nm (6,501 

molecules) was simulated under a semi-isotropic Berendsen pressure coupling[185] with a 

compressibility of 5×10-5 in x-y-direction and 0 in z-direction. During the course of the 

2,000 ns simulation of the film compression the x-y plane area was reduced from 12 × 12 nm² 

to 5.3 × 5.3 nm² yielding molecular areas from 1.44 nm² to 0.28 nm². Figure 88 shows 

snapshots of the first 1,100 ps of the simulation in top and side view. The progressive 

reduction in the surface area is clearly visible and accompanied by a straightening up of the 

hydrocarbon chains of the DPPC molecules. After about 900 ps of the simulation (at a 

molecular area of about 0.53 nm2) buckling of the DPPC monolayer occurs. Eventually this 

leads to a later film collapse or the emerging of vesicles from the film into the water slab. 
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Figure 88. Snapshots (top view/side view) of a simulated compression of a DPPC film on a thin water slab at 

different simulation times. 
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In a second step the system snapshots after 0 ps, 100 ps, 200 ps, 300 ps, 400 ps, 500 ps, 

600 ps, 700 ps, and 800 ps served as start configurations of simulations for additional 

2,000 ps with constant volume condition (NVT ensemble). This yielded an equilibration on 

the respective molecular area (1.44 nm², 1.25 nm², 1.08 nm², 0.94 nm², 0.83 nm², 0.72 nm², 

0.66 nm², 0.59 nm², and 0.56 nm² respectively) without further compression. In the case of 

1.44 nm² and 1.25 nm² the water slab is not sufficiently stabilized by the overlying monolayer 

and collapses under its own surface tension (Figure 89). This behavior is in good agreement 

with the observation that a DPPC film in GA phase should not substantially alter the surface 

tension of water. All other monolayers are stable under further simulation. 

 

 

Figure 89. Disruption of a thin water slab covered with DPPC at a molecular area of 1.25 nm². Snapshots at four 

different times of simulation in top and side view each. Side length of the simulation box is about 11 nm. 

 

Figure 90 shows the order parameter Sz of the DPPC molecules after the additional 2,000 ps 

equilibration run (the values for 1.44 nm² and 1.25 nm² were taken at some time before the 

break up of the water slab). Considering the clustering of the order parameter graphs and 

keeping in mind the isotherm data for DPPC obtained by experiments we can conclude that 

the areas of 1.44 nm² and 1.25 nm² correspond to the gas analogues (GA) phase fading into 

the liquid expanded (LE) phase at about 1.08 nm² and 0.94 nm². With an area per molecule of 

0.83 nm² the film is still in LE phase. Therefore, it is still clustering together with the latter 

two but on the verge of the coexistence domain. The molecular areas of 0.72 nm² and 

0.66 nm² delimit the coexistence region of the isotherm. Therefore, they are not clustering 

well with the other order parameter graphs. With areas of 0.59 nm² and 0.56 nm² clearly the 
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liquid condensed (LC) phase is reached, further compression is not considerably changing the 

order parameter anymore. By periodic continuation of one monolayer for each phase 

(0.59 nm² monolayer for LC, 0.83 nm² monolayer for LE, and 0.94 nm² monolayer for GA 

phase respectively) sufficiently large areas were constructed to cut out an area of appropriate 

size and transfer it onto the silicon oxide substrate. During this process the water film was 

thinned out to about 0.5 nm in between the DPPC monolayer and the silicon oxide substrate 

as well. We chose to include this thin water film into the simulation geometry because 

previous experiments strongly suggest some remaining water after film transfer.[208] After the 

transfer onto the silicon oxide substrate the systems were simulated an additional 2,000 ps to 

allow for a new equilibration. After this the order parameters were determined again (also 

shown in Figure 90). The molecular areas differs a little bit from the source monolayers due 

to mismatch of molecules during the cutting out of the periodic continued monolayers and the 

new imposed periodic boundaries of the silicon oxide substrate containing simulation box. 

Nevertheless, the order parameters of the monolayers on the silicon oxide substrates clearly 

correspond to the LC, LE and border of GA phase as intended. 

 

 

Figure 90. Order parameter Sz of the DPPC molecules in films with different molecular area, averaged over both 

hydrocarbon chains. 
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Having obtained suitable substrate systems with silicon oxide covered by a thin water layer 

and a DPPC monolayer in LC, LE or GA phase respectively, the actual diffusion simulations 

could be set up. For this one molecule of ANP and perylene respectively was brought into 

close vicinity (ca. 0.3 nm) to the monolayer and for each phase four different simulations with 

different start positions of the molecule in the x-y-plane where performed, again for 2,000 ps 

each. Snapshots from a typical simulation are shown in Figure 91. 

 

 

Figure 91. Snapshots of the simulation of a perylene molecule on a LE-phase DPPC substrate at different 

simulation times (top view/side view). The substrate system is depicted transparent for better visibility of the 

perylene molecule. 

 

After completion of the simulations the mean square displacement (MSD) in the x-y-plane for 

the respective molecule was calculated by the program g_msd[78] of the GROMACS suite and 

the MSD was averaged over the four simulations for each substrate. Graphs of the resulting 

MSD versus time are given in Figure 92 for ANP and Figure 93 for perylene. 

 

The diffusion of ANP as well as perylene molecules is higher on the LE phase DPPC than on 

LC phase underground. This fits well with the experimental finding of fewer but bigger 

domains on LE phase compared to LC phase for ANP as well as perylene. This can be 

explained by a higher mobility of the molecules on the LE phase. 
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Figure 92. Graph of mean square displacement versus time for ANP. 

 

 

Figure 93. Graph of mean square displacement versus time for perylene. 
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Figure 94. Graph of mean square displacement versus time for perylene NCs. 

 

For comparison we also performed simulations of the diffusion of perylene nanocrystals (NCs) 

consisting of three perylene molecules. These simulations showed a lower diffusion for the 

perylene NCs on LC- and LE-phase (Figure 94). The diffusion constants in Table 14 are 

derived by a linear fit to the averaged MSDs in the middle time segment (from 500 s to 

1,500 s) to avoid edge artefacts. 

 

Table 14. Lateral diffusion coefficients by molecule and phase. 

 Lateral Diffusion Coefficient (10-6 cm²/s) 

 LC-phase LE-phase GA-phase 

ANP 1.13 ± 0.02 9.70 ± 0.12 5.09 ± 0.04 

Perylene 1.60 ± 0.06 8.64 ± 0.09 1.63 ± 0.03 

Perylene NCs 1.37 ± 0.02 0.86 ± 0.04 4.24 ± 0.04 

 

The molecules do not stay on top of the DPPC film but rather submerge into the hydrocarbon 

chains of the DPPC monolayer during diffusion. Taking this into account we can identify a 

plausible mechanism for the difference in diffusion as well as the bigger energy barrier for 

crossing from LE- to LC phase in comparison to the opposite way. The difference in plasticity 
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and chain movement of the DPPC film becomes quite obvious when looking at a trajectory. 

But to introduce a measure easier to communicate we calculated the root mean square 

deviation (RMSD) for the DPPC films of the ANP simulations with the tool g_rmsdist of the 

GROMACS simulation suite.[78] The first frame of each simulation was taken as a reference 

and the deviation in the distance of all possible atom pairs within the DPPC film compared to 

the respective reference structure versus time was calculated. This allows for judging of the 

plasticity of the film. Figure 95 shows the RMSD averaged over the different simulations. 

 

 

Figure 95. Averaged RMSD of the DPPC films in different phases. 

 

As expected, the packing density of the DPPC films is directly reflected in the structural 

plasticity, therefore yielding higher RMSD from LC- to LE- to GA-phase. When the molecule 

is submerged into the DPPC film (as in the case for LC- and LE-phase) its diffusion will be 

hindered according to the plasticity of the surrounding DPPC chains. Therefore the diffusion 

becomes slower on LC-phase DPPC with respect to LE-phase areas, yielding the observed 

increase in number and decrease in size of the domains on the LC-phase. The same difference 

in diffusion drag can also account for the asymmetric energy barrier between LC- and LE-

phase. Recognizing the higher density and lower plasticity of the LC-phase it should be easier 

for diffusing molecules to pass over from the LC-phase to the LE-phase than the other way 

around. This behavior still allows for a preferential deposition of molecules onto the LE-phase 
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even when there is a higher diffusion associated with the LE-phase area. The higher RMSD of 

the GA-phase does not directly translate into even higher diffusion of the single molecules on 

GA-phase DPPC. But we observed an intermediate diffusion constant for ANP and an almost 

LC-phase-like one for perylene. We attribute this to the very unordered structure of the GA-

phase film that yields a high RMSD but nevertheless may be harder to cross for the molecules 

because the hydrocarbon chains of the DPPC are more entangled and tilted than it is the case 

for the other phases. This notion is also supported by the diffusion of the perylene NCs that is 

lower compared to single molecule diffusion on LC- and LE-phase but higher on the GA-

phase, because the NC will not tumble like single perylene molecules on the rough GA-phase. 

The NC’s incomplete submergence in the case of GA-phase film yields even a higher 

diffusion than for the single molecules on LC- or LE-phase. 

 

10.5 Summary and Outlook 

We conducted a series of MD simulations to elucidate the diffusion and deposition of organic 

molecules ANP and perylene onto phase-separated DPPC samples. The lower diffusion on 

LC-phase DPPC observed in experiments could be replicated in the simulation. The 

mechanism behind the diffusion hindrance in our simulations was identified as an increased 

drag onto molecules submerged into the hydrocarbon chains of the DPPC film by a denser 

and less plastic character of the LC-phase compared to the LE-phase. This mechanism can 

account both for the observed difference in diffusion as well as the postulated asymmetric 

energy barrier for crossing LC-/LE-phase boundaries which are necessary to explain preferred 

deposition of molecules onto LE-phase in the light of lower diffusion on the LC-phase. There 

are additional unpublished experimental results on the organic molecule sexiphenyl (6P) 

which show a temperature dependant selective assembly onto the DPPC stripe pattern 

template. Preliminary results suggest that the presented simulations can be applied to this 

system, too. Therefore ongoing effort is made to run simulations onto this temperature 

dependant behavior and expand the findings presented here to gain further understanding of 

the selective deposition of organic molecules onto the DPPC stripe pattern template for 

different types of molecules. 
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11 Closing Remarks 

During the course of the present work we adventured into many interesting topics in the field 

of nanotechnology. New insights into the self-organized patterning of DPPC were gained and 

some novel ways of employing this process for the generation of chemical and topographic 

patterned surfaces were developed. The combination of the bottom-up process constituted by 

the DPPC pattern formation with top-down methods like electron beam lithography to 

generate prestructures that influence the pattern formation lays the foundation for future work 

on topographic and chemical prestructures with the aim to gain more control over the pattern 

shape and distribution. Another promising approach to functionalized patterned surfaces for 

the life sciences is embodied by the enhanced mechanical properties of polymer brushes. This 

enables structuring by AFM lithography with subsequent selective deposition of chemical 

compounds into the structured polymer brushes. Preliminary experiments with cantilever 

arrays for the structuring of large surface areas and the employment of dip pen 

nanolithography for additional functionalization have been conducted and will be continued 

in the future. The molecular dynamics simulations gave an additional insight into two model 

systems: one (domain structure and stability of adenine-C20 on graphite) being a typical 

example for pattern formation by self-assembly, the other (diffusion and selective deposition 

of ANP and perylene on DPPC stripe pattern) a likewise typical example for a template 

guided selective deposition process. The results of the simulations encourage future modelling 

of similar systems to gain deeper insight into the molecular mechanisms behind the 

experimental findings. The prospect of ever-growing computational power makes these kinds 

of calculations more and more feasible even for bigger and more complex systems. 

 

Science is always a collaborative process and I am glad that I was able be a part in this 

process together with my colleagues. Hopefully we added a grain of useful knowledge to the 

ever-growing body of science and I would be more than glad to be able to continue to do so in 

the future. 
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