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Abstract. In this paper, two sufficient and necessary conditions are given. The first one
considers the boundary path groupoid of a topological graph without singular vertices, and
it characterizes when the interior of its isotropy group bundle is closed. The second one
concerns the path groupoid of a row-finite k-graph without sources, and it demonstrates
when the interior of its isotropy is closed. It follows that the associated topological graph

algebra and the associated k-graph C*-algebra have Cartan subalgebras due to a result of
Brown–Nagy–Reznikoff–Sims–Williams.

1. Introduction

Renault in [17] defined the notion of Cartan subalgebras in the C*-algebras
setting, as a C*-analog to Cartan subalgebras of von Neumann algebras studied
by Feldman and Moore [3].

Definition 1.1 ([17, Def. 5.1]). Let B be an abelian C*-subalgebra of a C*-
algebra A. Then B is called a Cartan subalgebra if the following hold:

(i) B contains an approximate identity of A;
(ii) B is a maximal abelian subalgebra of A;
(iii) there exists a faithful conditional expectation from A onto B;
(iv) {n ∈ A | nBn∗, n∗Bn ⊂ B} generates A.

For an étale groupoid Γ (see Section 2.1), the inclusion of the interior of the
isotropy Iso(Γ)o into Γ induces an inclusion of the C*-algebras

ιr : C∗
r (Iso(Γ)

o) →֒ C∗
r (Γ).

Brown, Nagy, Reznikoff, Sims, and Williams [2] characterized when this inclu-
sion is Cartan.
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Theorem 1.2 ([2, Cor. 4.5]). Let Γ be an étale groupoid. Suppose that Iso(Γ)o

is abelian. Then ιr(C
∗
r (Iso(Γ)

o)) is a Cartan subalgebra of C∗
r (Γ) if and only

if Iso(Γ)o is closed.

This result has many applications. For example, it induces the Cuntz–
Krieger uniqueness theorem [8] and the general Cuntz–Krieger uniqueness the-
orem [19].

The motivations for Brown et al. [2] originally came from graph algebras
and their generalizations. Indeed, many C*-algebras coming from graphs have
groupoid models, including:

• directed graphs [9],
• topological graphs [6], and
• k-graphs [7].

The difficulty of applying the full power of Theorem 1.2 to these situations, is
that it is unclear when the interior of the isotropy is closed in the associated
groupoid. Brown et al. showed in [2] using indirect means that the interior
of the isotropy is always closed in the groupoid associated to directed graphs,
but they also provided a counterexample [2, Ex. 4.7] in which the interior of
the isotropy group bundle of the path groupoid of the k-graph is not closed.
Yang provided some partial results for k-graph C*-algebras in [20], and proved
the sufficiency of Theorem 1.2 for k-graph C*-algebras in [21]. However, there
are currently no conditions intrinsic to a k-graph that show the associated
groupoid satisfies the conditions of Theorem 1.2.

In this paper, we investigate examples of étale groupoids arising from di-
rected graphs, topological graphs and k-graphs. Given a graph as we men-
tioned, we determine when the interior of the isotropy group bundle of the
associated groupoid is closed. We begin with a brief review on the back-
ground of groupoid C*-algebras, graph algebras, topological graph algebras,
and k-graph C*-algebras in Section 2.

Let E be a topological graph without singular vertices, Γ(E∞, σ) the as-
sociated path groupoid, and Iso(Γ(E∞, σ))o the interior of the isotropy of
Γ(E∞, σ). In Section 3 we study when Iso(Γ(E∞, σ))o is closed in Γ(E∞, σ).
In Example 3.1 we show that Iso(Γ(E∞, σ))o need not be closed in general.
Our main result is Theorem 3.8 which characterizes when Iso(Γ(E∞, σ))o is
closed in Γ(E∞, σ) using base points of cycles without entrances. More pre-
cisely, let E be a topological graph without singular vertices. We show that
Iso(Γ(E∞, σ))o is closed in Γ(E∞, σ) if and only if

Vn :=

{

v ∈ E0
∣
∣
∣
there is an open neighborhood of v consisting of
base points of cycles without entrances in En

}

is closed in E0 for all n ≥ 1.
Let Λ be a row-finite k-graph without sources, GΛ the associated groupoid,

and Iso(GΛ)
o the interior of the isotropy of GΛ. In Section 4 we study when

Iso(GΛ)
o is closed in GΛ. By [2, Ex. 4.7] this does not hold in general. We

then characterize when Iso(GΛ)
o is closed in GΛ using certain periodic paths in
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Theorem 4.4. More precisely, for p 6= q ∈ N
k, denote by Λ∞

p,q the set consisting
of x ∈ Λ∞ satisfying the following properties:

(i) σp(x) = σq(x);
(ii) for any p′, q′ ∈ N

k with p′ − p = q′ − q ∈ N
k, the pair (x(0, p′), x(0, q′)) is

not cycline (see Definition 4.1), and (x(0, p′)µ, x(0, q′)µ) is a cycline pair
for some µ ∈ Λ.

Then Theorem 4.4 says that Iso(GΛ)
o is closed if and only if Λ∞

p,q = ∅ for all

p 6= q ∈ N
k.

Finally, in Appendix A we present a short and direct proof that the interior
of the isotropy group bundle of the boundary path groupoid of a row-finite
directed graph without sources is always closed. This theorem can be inferred
from Section 3, but we include it here because of its relative simplicity.

2. Preliminaries

Throughout this paper, all topological spaces are assumed to be second
countable; all locally compact groupoids are assumed to be second-countable
locally compact Hausdorff groupoids. By N (resp. N+), we denote the set of
all nonnegative (resp. positive) integers.

2.1. Groupoids. In this subsection we recap the background of groupoid C*-
algebras studied by Renault in [15, 18].

A groupoid is a small category (see [11]) where every morphism has an
inverse. Let Γ be a groupoid. Denote by Γ0 the set of objects in Γ which
can be identified with the set of identity morphisms in Γ. If Γ is a groupoid
then there exist maps r, s : Γ → Γ0 such that r(γ) = γγ−1 is the range
of the morphism γ and s(γ) = γ−1γ is the source of the morphism γ. In
this paper we deal exclusively with topological groupoids, that is, a groupoid
with a topology in which composition and inversion are continuous. A locally
compact groupoid is said to be étale if its range and source maps are both
local homeomorphisms.

Notation 2.2. Let Γ be an étale groupoid. For u ∈ Γ0, denote Γu := s−1(u),
Γu := r−1(u), and by Γu

u := Γu ∩ Γu the isotropy group at u. Denote by
Iso(Γ) :=

⋃

u∈Γ0 Γu
u the isotropy group bundle, which is closed in Γ. The

interior of Iso(Γ), denoted by Iso(Γ)o, is open and is an étale subgroupoid of Γ.

Definition 2.3. Let Γ be an étale groupoid. Then Γ is said to be essentially
free if the set of units whose isotropy groups are trivial is dense in Γ0.

Definition 2.4. Let Γ be an étale groupoid. For f, g ∈ Cc(Γ), γ ∈ Γ, define

f ∗ g(γ) :=
∑

r(β)=r(γ)

f(β)g(β−1γ) and f∗(γ) := f(γ−1).

Then Cc(Γ) is a ∗-algebra. For u ∈ Γ0, define Lu : Cc(Γ) → B(l2(Γu)) by

Lu(f)(δγ) :=
∑

s(β)=r(γ)

f(β)δβγ for all f ∈ Cc(Γ), γ ∈ Γ.
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Lu is a ∗-representation called the left regular representation at u. Define
L :=

⊕

u∈Γ0 Lu. For f ∈ Cc(Γ), define ‖f‖r := ‖L(f)‖. Then ‖·‖r is a C*-
norm on Cc(Γ) and the completion of Cc(Γ) under the ‖·‖r-norm is called the
reduced groupoid C*-algebra of Γ which is denoted by C∗

r (Γ) (it is the closure
of L(Cc(Γ))).

Proposition 2.5 ([13, Prop. 1.9]). Let Γ be a locally compact étale groupoid.
Then the inclusion ι : Cc(Iso(Γ)

o) →֒Cc(Γ) induces an injective homomorphism
ιr : C∗

r (Iso(Γ)
o) →֒ C∗

r (Γ).

2.6. Topological graphs. Topological graphs were introduced in [4] which
generalize directed graphs by adding topologies to the vertex and edge spaces.
In this subsection, we review the background of topological graph algebras
from [4].

Definition 2.7. A topological graph is a quadruple E = (E0, E1, r, s) such
that E0, E1 are locally compact Hausdorff spaces, r : E1 → E0 is a continuous
map, and s : E1 → E0 is a local homeomorphism. In particular, a directed
graph is a topological graph E where E0 and E1 are countable and discrete.

Let E be a topological graph. A subset U of E1 is called an s-section if
s|U : U → s(U) is a homeomorphism with respect to the subspace topologies.
Define the set of finite receivers E0

fin consisting of all v ∈ E0 which has an

open neighborhood N such that r−1(N) is compact. Define the set of sources

by E0
sce := E0 \ r(E1). Define the set of regular vertices by E0

rg := E0
fin \ E

0
sce.

Moreover, define the set of singular vertices by E0
sg := E0 \ E0

rg. Notice that

the sets E0
fin, E

0
sce, E

0
rg are all open, and the set E0

sg is closed. In particular,

a directed graph E is said to be row-finite if E0
fin = F 0; and E is said to be

without sources if E0
sce = ∅. Notice that if Erg = E0 then r is a proper map.

Let E be a topological graph. For n ≥ 2, define

En :=
{

µ = (µ1, . . . , µn) ∈
n∏

i=1

E1 | s(µi) = r(µi+1), i = 1, . . . , n− 1
}

endowed with the subspace topology of the product space
∏n

i=1 E
1. For con-

venience, for µ ∈ En we write µ = µ1 · · ·µn instead of (µ1, . . . , µn). We
extend the range and source maps of E to En by rn(µ1 · · ·µn) = r(µ1) and
sn(µ1 · · ·µn) = s(µn), in this case we say µ connects rn(µ) and sn(µ). We call
an open subset O ⊂ En an sn-section if sn|O : O → sn(O) is a homeomor-
phism. Define the finite path space by E∗ :=

∐∞
n=0 E

n with the disjoint union
topology. We call elements of E∗ (finite) paths.

Definition 2.8. Let E be a topological graph. For n ≥ 1, a finite path
µ ∈ En is called a cycle if r(µ1) = s(µn), and the vertex r(µ1) is called the
base point of the cycle. The cycle µ ∈ En is said to be without entrances if
r−1(r(µi)) = {µi} for i = 1, . . . , n. Furthermore, E is said to be topologically
free if the set of base points of cycles without entrances has empty interior.
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Let E be a topological graph such that E0
sg = ∅. Define the infinite path

space by

E∞ :=
{

x ∈

∞∏

i=1

E1 | s(xi) = r(xi+1), i = 1, 2, . . .
}

.

We call elements x ∈ E∞ infinite paths and for convenience write x = x1x2 · · ·
instead of x = (x1, x2, . . .). Denote the length of a path µ ∈ E∗ ∐ E∞

by |µ|. Endow E∞ with the subspace topology inherited from the product
space

∏∞
i=1 E

1. A basis for this topology consists of Z(U) := {x ∈ E∞ |
x1 . . . xn ∈ U} where U is open in En for some n ≥ 1. The product topology
on E∞ is locally compact Hausdorff by [6, Def. 4.7, Lem. 4.8]. The one-sided
shift map σ : E∞ → E∞, x1x2 · · · 7→ x2x3 · · · is a local homeomorphism by
[6, Lem. 7.1].

Definition 2.9 ([16, Def. 2.4]). Let E be a topological graph such that E0
sg =

∅. Define the boundary path groupoid by

Γ(E∞, σ) :=
{
(x, k − ℓ, y) ∈ E∞ × Z× E∞ | σk(x) = σℓ(y)

}
.

The range of (x,m, y) is x and its source is y, so

Iso(Γ(E∞, σ)) = {(x, k, x) ∈ Γ(E∞, σ)}.

For k, ℓ ∈ N and open subsets U, V of E∞ such that σk is injective on U ,
and σℓ is injective on V , denote

U(U, V, k, ℓ) :=
{
(x, k − ℓ, y) | x ∈ U, y ∈ V, σk(x) = σℓ(y)

}
.

The collection {U(U, V, k, ℓ)} of subsets of Γ(E∞, σ) as above forms an open
base on Γ(E∞, σ), and under this topology Γ(E∞, σ) is an étale groupoid.

We give a characterization of convergent sequences in Γ(E∞, σ). Fix a
sequence ((xt, nt, y

t))∞t=1 ⊂ Γ(E∞, σ), and fix (x, n, y) ∈ Γ(E∞, σ). Using the
well-ordering principle, find k, ℓ ≥ 0 such that

(i) n = k − ℓ, σk(x) = σℓ(y);

(ii) for k′, ℓ′ ≥ 0 satisfying that k′ ≤ k, ℓ′ ≤ ℓ, n = k′ − ℓ′, σk′

(x) = σℓ′(y),
we have k′ = k, ℓ′ = ℓ.

Then (xt, nt, y
t) → (x, n, y) if and only if xt → x, yt → y, and there exists

N ≥ 1 such that whenever t ≥ N , we have nt = n and σk(x) = σℓ(y).

Remark 2.10. Let E be a topological graph such that E0
sg = ∅. In [4],

Katsura defined the topological graph algebra O(E) by modifying Pimsner’s
construction in [14]. Recently, Kumjian and Li in [6] proved that

C∗
r (Γ(E

∞, σ)) ∼= O(E).

2.11. k-Graphs. In this subsection, we recall the background of k-graph
C*-algebras from [7].

Notation 2.12. Let k ∈ N+, n,m ∈ N
k. Denote n ∨m := (max{ni,mi})

k
i=1.

For a category Λ we denote its objects by Λ0 and the range and source maps
from Λ to Λ0 by r and s, respectively.
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Definition 2.13 ([7, Defs. 1.1, 1.4]). Let k ∈ N+. A countable category Λ
is called a k-graph if there exists a functor d : Λ → N

k satisfying the unique
factorization property, that is, for µ ∈ Λ, n,m ∈ N

k with d(µ) = n+m, there
exist unique ν, α ∈ Λ such that d(ν) = n, d(α) = m, s(ν) = r(α), µ = να. The
functor d is called the degree map of Λ.

Let (Λ1, d1), (Λ2, d2) be two k-graphs. A functor f : Λ1 → Λ2 is called a
k-graph morphism if d2 ◦ f = d1.

For n ∈ N
k and v ∈ Λ0 denote

vΛ := r−1(v), Λn := d−1(n), vΛn := vΛ ∩ Λn.

Λ is row-finite if |vΛn| < ∞ for all v ∈ Λ0, n ∈ N
k. Λ is without sources if

vΛn 6= ∅ for all v ∈ Λ0, n ∈ N
k.

Example 2.14 ([7, Ex. 1.7 (ii)]). Let k ∈ N+. Define

Ωk :=
{
(p, q) ∈ N

k × N
k | p ≤ q

}
,

Ω0
k := N

k, r(p, q) := p, s(p, q) := q, and d(p, q) := q − p. Then (Ωk,Ω
0
k, r, s) is

a k-graph.

Definition 2.15 ([7, Defs. 2.1, 2.4]). Let k ∈ N+ and let Λ be a row-finite
k-graph without sources. An infinite path is a k-graph morphism from Ωk

to Λ: denote by Λ∞ the set of all infinite paths of Λ and extend r to Λ∞ by
r(x) = x(0). Define vΛ∞ := {x ∈ Λ∞ | r(x) = v}. For x ∈ Λ∞ and p ∈ N

k,
denote by σp(x) the unique element in Λ∞ such that x = x(0, p)σp(x). For
µ ∈ Λ, denote Z(µ) := {µx | x ∈ Λ∞, s(µ) = x(0)}. Endow Λ∞ with the
topology generated by the basic open sets {Z(µ) | µ ∈ Λ}.

Definition 2.16 ([7, Def. 2.7]). Let k ∈ N+ and let Λ be a row-finite k-graph
without sources. Define the path groupoid by

GΛ :=
{
(x, p− q, y) ∈ Λ∞ × Z

k × Λ∞ | p, q ∈ N
k, σp(x) = σq(y)

}
.

The range of (x,m, y) is x and its source is y. So Iso(GΛ) = {(x, k, x) ∈ GΛ}.
For µ, ν ∈ Λ with s(µ) = s(ν), denote

Z(µ, ν) :=
{
(µx, d(µ) − d(ν), νx) | x ∈ Λ∞, s(µ) = x(0)

}
.

Endow GΛ with the topology generated by the basic open sets
{
Z(µ, ν) | µ, ν ∈ Λ, s(µ) = s(ν)

}
.

By [7, Prop. 2.8], GΛ is an étale groupoid and in particular each Z(µ, ν) is
a compact open bisection. Also Λ∞ is a locally compact Hausdorff space and
each Z(µ) is a compact open set.

We now give a characterization of convergent sequences in GΛ. Fix a se-
quence ((xt, n, yt))∞t=1 ⊂ GΛ, and fix (x, n, y) ∈ GΛ. We have (xt, n, yt) →
(x, n, y) if and only if for any p, q ∈ N

k satisfying that p − q = n and
σp(x) = σq(y), there exists N ≥ 1, such that t ≥ N implies

xt(0, p) = x(0, p), yt(0, q) = y(0, q), σp(xt) = σq(yt).
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Remark 2.17. Let k ∈ N+ and let Λ be a row-finite k-graph without sources.
Kumjian and Pask in [7] defined the k-graph C*-algebra C∗(Λ) using the com-
binatorial method and they also showed that C∗

r (GΛ) ∼= C∗(Λ).

3. Cartan subalgebras of topological graph algebras

In this section, we give a complete characterization of when the interior of
the isotropy group bundle of the boundary path groupoid for a topological
graph E without singular vertices is closed.

The next example shows that for a topological graph E without singular
vertices, Iso(Γ(E∞, σ))

o
is not closed in general.

Example 3.1. Let

E0 = E1 := {0} ∪

{( 1

n
, 0
)

,
(

−
1

n
, 0
)

| n ≥ 1

}

∪

{(

−
1

n
,
1

m

)

| m ≥ n ≥ 1

}

with the topology induced from R
2. Define r to be the identity map. Define s

to be the identity map on {0} ∪ {( 1
n
, 0), (− 1

n
, 0)}∞n=1. For m ≥ n ≥ 1, define

s
(

−
1

n
,
1

m

)

:=
(

−
1

n
,

1

m+ 1

)

.

Then E is a topological graph with E0
sg = ∅.

Denote x := 000 · · · . Then (x, 1 − 0, x) ∈ Iso(Γ(E∞, σ)). For n ≥ 1, denote

xn :=
( 1

n
, 0
)( 1

n
, 0
)( 1

n
, 0
)

· · · ,

yn :=
(

−
1

n
,
1

n

)(

−
1

n
,

1

n+ 1

)(

−
1

n
,

1

n+ 2

)

· · · ,

zn :=
(

−
1

n
,

1

n+ 1

)(

−
1

n
,

1

n+ 2

)(

−
1

n
,

1

n+ 3

)

· · · .

Notice that (xn, 1 − 0, xn) ∈ U(Z( 1
n
, 0), Z( 1

n
, 0), 1, 0) ⊂ Iso(Γ(E∞, σ)) and

(xn, 1−0, xn) → (x, 1−0, x), which implies that (x, 1−0, x) ∈ Iso(Γ(E∞, σ))o.
On the other hand, (yn, 1 − 0, zn) /∈ Iso(Γ(E∞, σ)) and (yn, 1 − 0, zn) →
(x, 1−0, x). So (x, 1−0, x) /∈ Iso(Γ(E∞, σ))o. Therefore Iso(Γ(E∞, σ))

o
is not

closed.

Notation 3.2. Let E be a topological graph. For n ≥ 1, denote by Cn the
set of cycles in En, which is a closed subset of En. For k ≥ 1, n ≥ 1, µ ∈ Cn,
and for an open neighborhood N of µ, denote

kµ := µ · · ·µ
︸ ︷︷ ︸

k

, kN := N × · · · ×N
︸ ︷︷ ︸

k

.

Denote by Bn the set of all cycles µ in Cn satisfying that there exist k ≥ 1
and an open neighborhood N of µ such that

(i) for any distinct α, β ∈ kN , there are no paths in N connecting s(α), s(β);
and

(ii) for any α ∈ kN , there are no cycles in N with entrances and of base
point s(α).
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Remark 3.3. By condition (ii) of Notation 3.2, for each n ≥ 1, each cycle in
Bn has no entrances.

We show in Theorem 3.6 below that Iso(Γ(E∞, σ))◦ is closed in Γ(E∞, σ)
if and only if Bn is closed for all n.

Remark 3.4. If E is a directed graph and µ is a cycle in E, then we can take
N = {µ}; in this case condition (i) is vacuous and condition (ii) says that µ
does not have an entrance. So for directed graphs, Bn consists of cycles of
length n without entrances. Furthermore, since E is discrete, En is discrete
and Bn is closed. Therefore, by Theorem 3.6 below, Iso(Γ(E∞, σ))◦ is always
closed.

Lemma 3.5. Let E be a topological graph such that E0
sg = ∅, and let (x, n, x) ∈

Iso(Γ(E∞, σ)). Pick p, q ≥ 0 with p− q = n and σp(x) = σq(x).

(i) If n > 0, then (x, n, x) ∈ Iso(Γ(E∞, σ))o if and only if xq+1 · · ·xp ∈ Bn.
(ii) If n < 0, then (x, n, x) ∈ Iso(Γ(E∞, σ))o if and only if xp+1 · · ·xq ∈ Bn.

Proof. We may assume that n > 0 and for the case n < 0 the argument
is similar. Suppose that (x, n, x) ∈ Iso(Γ(E∞, σ))o. Then there exist open
subsets U, V of E∗ such that (x, n, x) ∈ U(Z(U), Z(V ), p, q) ⊂ Iso(Γ(E∞, σ)).
Since U ⊂ EnU , V ⊂ EnV for some nU , nV , picking M > max{p, nU , nV },
we see that for m ≥ M there exists an open subset W ⊂ Em such that
(x, n, x) ∈ U(Z(W ), Z(W ), p, q) ⊂ U(Z(U), Z(V ), p, q). Pick m ≥ M . Write
m = q + kn+ l, where k ≥ 1, 0 ≤ l < n. We may choose W such that

W = (W0 × k(W1 × · · · ×Wn)× (W1 × · · · ×Wl)) ∩ Em,

where W0 is an open neighborhood of µ1 · · ·µq; W1 × · · · × Wn is an open
neighborhood of the cycle µq+1 · · ·µp; W0,W1, . . . ,Wn are open s-sections;
and r(W1) ⊂ s(W0). Let

W ′ = (W0 × (k + 1)(W1 × · · · ×Wn)× (W1 × · · · ×Wl)) ∩Em+n.

Then U(Z(W ′), Z(W ), p, q) ⊂ U(Z(W ), Z(W ), p, q).
We claim that U(Z(W ′), Z(W ), p, q) = U(Z(W ′), Z(W ),m + n,m). First

show

(1) U(Z(W ′), Z(W ),m+ n,m) ⊂ U(Z(W ′), Z(W ), p, q).

Fix (y, n, z) ∈ U(Z(W ′), Z(W ),m+ n,m). Then

(2) σm−q(σq+n(y)) = σm+n(y) = σm(z) = σm−q(σq(z)).

Since σq+n(y), σq(z) ∈ Z(k(W1×· · ·×Wn)× (W1×· · ·×Wl)), by [6, Lem. 7.1]
σq+n(y) = σq(z). So (y, n, z) ∈ U(Z(W ′), Z(W ), p, q). Hence (1) holds. That
U(Z(W ′), Z(W ), p, q) ⊂ U(Z(W ′), Z(W ),m+n,m) follows from a permutation
of equation (2).

Choose m0 = q + k0n ≥ M for some k0 ≥ 1. Construct Wi, W and W ′ for
this m0 as above. We claim k0 and N := W1 × · · · ×Wn satisfy conditions (i)
and (ii) of Notation 3.2.
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For condition (i), if α, β ∈ k0N and γ ∈ N with s(αγ) = s(β) pick y ∈ E∞

with r(y) = s(β) and να, νβ ∈ W0 with s(νω) = r(ω). Then

(νααγy, n, νββy) ∈ U(Z(W ′), Z(W ),m+ n,m) ⊂ Iso(Γ(E∞, σ)).

Therefore νααγy = νββy and so να = νβ and α = β.
For condition (ii), suppose α ∈ k0N and γ ∈ s(α)N is a cycle with an

entrance. Write γ = γ1 · · · γn. Then there exists i0 such that r−1(r(γi0 )) −
{γi0} 6= ∅. Pick δ ∈ r−1(r(γi0 )) − {γi0}. Take γ′ = γ1 · · · γi0−1 and pick
y ∈ Z(s(δ)) and ν ∈ W0. Consider z = γ′δy. Then

(ναγz, n, ναz) ∈ U(Z(W ′), Z(W ),m0 + n,m0) ⊂ Iso(Γ(E∞, σ)).

Therefore γγ′δ = γ′δ contradicting that δ 6= γi0 .
Conversely, suppose that xq+1 · · ·xp ∈ Bn. Then there exist k ≥ 1 and an

open neighborhood N of x satisfying conditions (i) and (ii) of Notation 3.2.
Choose an arbitrary open sq-section O containing x1 · · ·xq. Let

W := (O × kN) ∩ Eq+kn, W ′ := (O × (k + 1)N) ∩Eq+(k+1)n.

Now

(x, n, x) ∈ U(Z(W ′), Z(W ), p, q)

⊂ U(Z(W ′), Z(W ), p+ kn, q + kn)

⊂ Iso(Γ(E∞, σ)).

So (x, n, x) ∈ Iso(Γ(E∞, σ))o. �

Theorem 3.6. Let E be a topological graph such that E0
sg = ∅. Then

Iso(Γ(E∞, σ))o is closed in Γ(E∞, σ) if and only if Bn is closed in En for
all n ≥ 1.

Proof. Suppose that Iso(Γ(E∞, σ))o is closed in Γ(E∞, σ). Fix n ≥ 1. Fix
(µk)∞k=1 ⊂ Bn which is convergent to µ ∈ En (µ is a cycle). Then

(µkµk · · · , n− 0, µkµk · · · ) → (µµ · · · , n− 0, µµ · · · ).

Fix k ≥ 1. By the definition of Bn in Notation 3.2 and by Lemma 3.5, we have
(µkµk · · · , n − 0, µkµk · · · ) ∈ Iso(Γ(E∞, σ))o. Since Iso(Γ(E∞, σ))o is closed,
(µµ · · · , n − 0, µµ · · · ) ∈ Iso(Γ(E∞, σ))o. Again by the definition of Bn in
Notation 3.2 and by Lemma 3.5, we have µ ∈ Bn. So Bn is closed.

Conversely, suppose that Bn is closed in En for all n ≥ 1. Fix a convergent
net (xk, nk, x

k) ⊂ Iso(Γ(E∞, σ))o with the limit (x, n, x). We may assume
that nk = n for all k and we take arbitrary p, q ≥ 0 such that p − q = n,
σp(xk) = σq(xk), and σp(x) = σq(x). We may further assume that n > 0 since
the case n < 0 shares a symmetric proof. By Lemma 3.5, xk

q+1 · · ·x
k
p ∈ Bn.

Since xk
q+1 · · ·x

k
p → xq+1 · · ·xp and Bn is closed, we have xq+1 · · ·xp ∈ Bn.

Again by Lemma 3.5, (x, n, x) ∈ Iso(Γ(E∞, σ))o. �

Since Bn is closed for a directed graph, Theorem 3.6 gives Proposition A.2
(see Remark 3.4).
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Notation 3.7. Let E be a topological graph. For n ≥ 1, denote

Vn :=

{

v ∈ E0
∣
∣
∣
there is an open neighborhood of v consisting of
base points of cycles without entrances in En

}

.

Notice that Vn is an open subset of E0 for all n ≥ 1.

Theorem 3.8. Let E be a topological graph. Fix n ≥ 1. Then rn(Bn) = Vn

and Bn = (rn)−1(Vn). Hence Bn is an open subset of En. Furthermore,
suppose that E0

sg = ∅. Then Bn is closed if and only if Vn is closed. Therefore

Iso(Γ(E∞, σ))o is closed in Γ(E∞, σ) if and only if Vm is closed in E0 for all
m ≥ 1.

Proof. First of all, we show that rn(Bn) = Vn. Fix µ ∈ Bn. Then there exist
k ≥ 1 and an open neighborhood N of µ satisfying conditions (i) and (ii) of
Notation 3.2. Then

W := s(k+1)n((k + 1)N ∩E(k+1)n)

is an open neighborhood of rn(µ). For v ∈ W , there exists

α = α(1) · · ·α(k)α(k+1) ∈ (k + 1)N ∩ E(k+1)n,

where α(i) ∈ N , such that s(k+1)n(α) = v. So α(k+1) connects

skn(α(1) · · ·α(k)) = skn(α(2) · · ·α(k+1)).

By condition (i) of Notation 3.2, we have α(1) · · ·α(k) = α(2) · · ·α(k+1). So
α(1) = · · · = α(k) = α(k+1) is a cycle in En. By condition (ii) of Notation 3.2,
α(1) = · · · = α(k) = α(k+1) has no entrances. So rn(µ) ∈ Vn and rn(Bn) ⊂ Vn.

Conversely, fix v ∈ Vn. Then there exists an open neighborhood W of v
consisting of base points of cycles without entrances in En. So (rn)−1(W ) is
an open neighborhood of (rn)−1(v) consisting of cycles without entrances. It
is straight-forward to see that (rn)−1(v) ∈ (rn)−1(W ) ⊂ Bn. So rn(Bn) = Vn.
It follows immediately that Bn = (rn)−1(Vn). Hence Bn is an open subset of
En because Vn is open.

Finally, suppose E0
sg = ∅ and Bn is closed. Since E0

sg = ∅, rn is proper,
and so rn is closed. Since rn(Bn) = Vn, Vn is closed. Conversely, suppose that
Vn is closed. Since Bn = (rn)−1(Vn), B

n is closed. �

Corollary 3.9. Let E be a topological graph such that E0
sg = ∅. Then the

following are equivalent.

(i) E is topologically free.
(ii) Vn = ∅ for all n ≥ 1.
(iii) Bn = ∅ for all n ≥ 1.
(iv) Γ(E∞, σ) is essentially free.

In these cases, Iso(Γ(E∞, σ))o is closed in Γ(E∞, σ).

Proof. (i) ⇔ (ii). We prove the contrapositive. If Vn 6= ∅ for some n then
E is not topologically free by definition. Now if E not topologically free then
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[5, Prop. 6.12] gives a nonempty open subset V ⊂ E0 and n ∈ N+ such that
V consists of base points of cycles in En and thus Vn 6= ∅.

(ii) ⇔ (iii) follows from Theorem 3.8.
(i) ⇔ (iv) follows from [10, Prop. 3.7]. �

Corollary 3.10. Let E be a topological graph such that E0
sg = ∅ and O(E) is

simple. Then Iso(Γ(E∞, σ))o is closed in Γ(E∞, σ).

Proof. This follows from Corollary 3.9 and [5, Thm. 8.12]. �

4. Cartan subalgebras of k-graph algebras

In this section, we characterize when the interior of the isotropy of the path
groupoid of a row-finite k-graph without sources is closed.

Definition 4.1 ([1, Def. 4.3]). Let k ∈ N+ and let Λ be a row-finite k-graph
without sources. Then a pair (µ, ν) ∈ Λ × Λ is called a cycline pair if s(µ) =
s(ν) and µx = νx for all x ∈ s(µ)Λ∞.

The following lemma is stated without proof in [1, Rem. 4.11].

Lemma 4.2. Let k ≥ 1 and let Λ be a row-finite k-graph without sources.
Then

Iso(GΛ)
o =

{
(x, p− q, x) | σp(x) = σq(x), (x(0, p), x(0, q)) is a cycline pair

}
.

Proof. First of all, fix (x, n, x) ∈ Iso(GΛ)
o. Then there exist µ, ν ∈ Λ such that

(x, n, x) ∈ Z(µ, ν) ⊂ Iso(GΛ). So

σd(µ)(x) = σd(ν)(x), (x, n, x) = (µσd(µ)(x), d(µ) − d(ν), νσd(ν)(x)),

and (µ, ν) is a cycline pair.
Conversely, fix (x, p−q, x)∈ GΛ such that σp(x) = σq(x) and (x(0, p), x(0, q))

is a cycline pair. Then (x, p− q, x) ∈ Z(x(0, p), x(0, q)) ⊂ Iso(GΛ). So we have
(x, p− q, x) ∈ Iso(GΛ)

o. �

Notation 4.3. Let k ≥ 1 and let Λ be a row-finite k-graph without sources.
For p 6= q ∈ N

k, denote by Λ∞
p,q the set consisting of x ∈ Λ∞ satisfying the

following properties:

(i) σp(x) = σq(x);
(ii) for any p′, q′ ∈ N

k with p′ − p = q′ − q ∈ N
k, the pair (x(0, p′), x(0, q′)) is

not cycline, and (x(0, p′)µ, x(0, q′)µ) is a cycline pair for some µ ∈ Λ.

Theorem 4.4. Let k ≥ 1 and let Λ be a row-finite k-graph without sources.
Then Iso(GΛ)

o is closed if and only if Λ∞
p,q = ∅ for all p 6= q ∈ N

k.

Proof. First of all, suppose that Iso(GΛ)
o is closed. Aiming at a contradiction,

suppose that there exist p 6= q ∈ N
k such that Λ∞

p,q 6= ∅. Fix x ∈ Λ∞
p,q. For

n ≥ 1, let pn := p + (n, . . . , n) and qn := q + (n, . . . , n). By condition (ii) of
Notation 4.3, for n ≥ 1 there exist yn ∈ s(x(0, pn))Λ

∞ and µn ∈ s(x(0, pn))Λ
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such that x(0, pn)yn 6= x(0, qn)yn and (x(0, pn)µn, x(0, qn)µn) is a cycline pair.
For n ≥ 1, take an arbitrary zn ∈ s(µn)Λ

∞. Then

(x(0, pn)yn, p− q, x(0, qn)yn) → (x, p− q, x),

(x(0, pn)µnzn, p− q, x(0, qn)µnzn) → (x, p− q, x).

However, (x(0, pn)yn, p− q, x(0, qn)yn) /∈ Iso(GΛ); and by Lemma 4.2 one has
(x(0, pn)µnzn, p − q, x(0, qn)µnzn) ∈ Iso(GΛ)

o. This is a contradiction. So
Λ∞
p,q = ∅ for all p 6= q ∈ N

k.

Conversely, suppose that Λ∞
p,q = ∅ for all p 6= q ∈ N

k. Aiming at a con-
tradiction assume that Iso(GΛ)

o is not closed. Then Iso(GΛ)o \ Iso(GΛ)
o 6= ∅.

Fix (x, p − q, x) ∈ Iso(GΛ)o \ Iso(GΛ)
o. We may assume that p 6= q ∈ N

k

and σp(x) = σq(x). Then there exist a sequence (yn, p − q, yn) in Iso(GΛ)
o

converging to (x, p− q, x), and another sequence (zn, p− q, wn) with zn 6= wn

for all n ≥ 1 also converging to (x, p − q, x). By Lemma 4.2 for n ≥ 1 there
exist pn, qn ∈ N

k with pn − qn = p − q such that σpn(yn) = σqn(yn) and
(yn(0, pn), yn(0, qn)) is a cycline pair. Fix p′, q′ ∈ N

k with p′−p = q′− q ∈ N
k.

Then there exists N ≥ 1 such that

yN (0, p′) = x(0, p′), yN(0, q′) = x(0, q′), σp′

(yN ) = σq′ (yN ),

zN (0, p′) = x(0, p′), wN (0, q′) = x(0, q′), σp′

(zN) = σq′ (wN ).

Since (yN (0, pN ), yN (0, qN)) is a cycline pair and pN ∨ p′ − qN ∨ q′ = p− q, we
obtain a cycline pair

(yN (0, pN )yN (pN , pN ∨ p′), yN (0, qN)yN (qN , qN ∨ q′))

= (yN (0, p′)yN (p′, pN ∨ p′), yN (0, q′)yN (q′, qN ∨ q′))

= (x(0, p′)yN (p′, pN ∨ p′), x(0, q′)yN (q′, qN ∨ q′)).

But we also have that x(0, p′)σp′

(zN ) = zN 6= wN = x(0, q′)σq′ (wN ) which
implies that (x(0, p′), x(0, q′)) is not a cycline pair. Hence x ∈ Λ∞

p,q which is a
contradiction. Therefore Iso(GΛ)

o is closed. �

Example 4.5. The following example is from [2, Ex. 4.7]. Consider the two-
colored graph in Figure 1 where the factorization rules are given by

ebαr = erαb, ebβr = erβb, αbfr = αrfb, fbfr = frfb, βbgr = βrgb,

βbhr = βrhb, gbgr = grgb, gbhr = hrgb, hbgr = grhb, hbhr = hrhb.

Define x := eberebereber · · · . It was shown in [2] that γ := (x, (1,−1), x) /∈
Iso(GΛ)

o and Iso(GΛ)
o is not closed. We show that x ∈ Λ∞

(1,0),(0,1) so that
Λ∞
(1,0),(0,1) is nonempty. Notice x satisfies condition (i) of Notation 4.3 by

definition. For condition (ii) pick p′, q′ ∈ N
k with p′ ≥ (1, 0), q′ ≥ (0, 1) and

p′ − q′ = (1,−1). For µ = αb, the pair (x(0, p′)µ, x(0, q′)µ) is cycline. To show
the pair (x(0, p′), x(0, q′)) is not cycline, define

y := βb(gbgrhbhr)(gbgrhbhr)(gbgrhbhr) · · · .
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eb

fb

gb

hb
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fr
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hr

αb

βb

αr

βr

Figure 1. A 2-graph such that Iso(GΛ)
o is not closed.

Then y is periodic, and we have r(y) = s(x(0, p′)) and x(0, p′)y 6= x(0, q′)y. No-
tice that in this example we used a periodic path to show that (x(0, p′), x(0, q′))
is not cycline.

Appendix A. Cartan subalgebras of graph algebras

Let E be a directed graph: we consider E as a topological graph with the
discrete topology. Suppose E is row-finite without sources, then combining
[2, Cor. 4.5] and [12, Thm. 3.6], we get Iso(Γ(E∞, σ))o is closed in the boundary
path groupoid Γ(E∞, σ). In this appendix, we provide a direct proof of this
result by investigating the boundary path groupoid of a directed graph. Given
α, β ∈ E∗ with s(α) = s(β), define

Z(α, β) := U(Z(α), Z(β), |α|, |β|).

The Z(α, β) form a basis for the topology on Γ(E∞, σ).

Proposition A.1. Let E be a row-finite directed graph without sources, let α, β
with |α| 6= |β|. Then Z(α, β) ∩ Iso(Γ(E∞, σ)) is either empty or a singleton.

Proof. If Z(α, β) ∩ Iso(Γ(E∞, σ)) is empty, then we are done. Suppose that
Z(α, β)∩Iso(Γ(E∞, σ)) is nonempty. Since |α| 6= |β|, without loss of generality,
we assume that |α| < |β|. Fix (αx, |α| − |β|, βx) ∈ Z(α, β) ∩ Iso(Γ(E∞, σ)).
Then αx = βx. Since |α| < |β|, we have β = αγ, where γ is a cycle in E|β|−|α|.
So x = γx, which implies that x = γγ · · · . Therefore Z(α, β) ∩ Iso(Γ(E∞, σ))
is a singleton. �

Proposition A.2. Let E be a row-finite directed graph without sources and
Γ(E∞, σ) the associated groupoid. Then Iso(Γ(E∞, σ))o is closed.
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Proof. Suppose that γi → γ with γi ∈ Iso(Γ(E∞, σ))o. Since Iso(Γ(E∞, σ)) is
closed, we have γ ∈ Iso(Γ(E∞, σ)). If γ ∈ Γ(E∞, σ)(0) then γ ∈ Iso(Γ(E∞, σ))o

because Γ(E∞, σ) is étale. Now suppose γ /∈ Γ(E∞, σ)(0). Then there exist
α, β with |α| 6= |β| such that γ ∈ Z(α, β). Since γi → γ, there exists i0 ≥ 1
such that γi0 ∈ Z(α, β). By Proposition A.1, Z(α, β) ∩ Iso(Γ(E∞, σ)) is a
singleton. So γ = γi0 ∈ Iso(Γ(E∞, σ))o. Hence Iso(Γ(E∞, σ))o is closed. �
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