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Abstract

Leucine-rich repeat kinase 2 (LRRK2) is a multi-domain 280 kDa protein that is linked to Parkinson’s disease (PD). Mutations
especially in the GTPase and kinase domains of LRRK2 are the most common causes of heritable PD and are also found in
sporadic forms of PD. Although the cellular function of LRRK2 is largely unknown there is increasing evidence that these
mutations cause cell death due to autophagic dysfunction and mitochondrial damage. Here, we demonstrate a novel
mechanism of LRRK2 binding and transport, which involves the small GTPases Rab32 and Rab38. Rab32 and its closest
homologue Rab38 are known to organize the trans-Golgi network and transport of key enzymes in melanogenesis, whereas
their function in non-melanogenic cells is still not well understood. Cellular processes such as autophagy, mitochondrial
dynamics, phagocytosis or inflammatory processes in the brain have previously been linked to Rab32. Here, we demonstrate
that Rab32 and Rab38, but no other GTPase tested, directly interact with LRRK2. GFP-Trap analyses confirmed the
interaction of Rab32 with the endogenous LRRK2. In yeast two-hybrid experiments we identified a predicted coiled-coil
motif containing region within the aminoterminus of LRRK2 as the possible interacting domain. Fluorescence microscopy
demonstrated a co-localization of Rab32 and LRRK2 at recycling endosomes and transport vesicles, while overexpression of
a constitutively active mutant of Rab32 led to an increased co-localization with Rab7/9 positive perinuclear late endosomes/
MVBs. Subcellular fractionation experiments supported the novel role of Rab32 in LRRK2 late endosomal transport and
sorting in the cell. Thus, Rab32 may regulate the physiological functions of LRRK2.
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Introduction

LRRK2 is a multi-domain protein of 280 kDa that contains

both, a GTPase domain (Ras of Complex = ROC) and a kinase

domain, regulating its cellular function [1,2,3]. Mutations

especially in these GTPase and kinase domains of LRRK2 are

the most common causes of heritable Parkinson’s disease (PD) and

also found in sporadic forms of PD [4]. The cellular function of

LRRK2 remains unknown, although there is evidence that these

mutations lead to cell death due to autophagic dysfunction and

mitochondrial damage [5,6,7].

LRRK2 has several known direct interacting partners, including

a couple of small GTPases from the Ras superfamily. The first

GTPase shown to directly interact with LRRK2 was Rab5B,

linked to the regulation of synaptic vesicle endocytosis [8]. Rac1

and CDC42 were also identified as LRRK2 interacting partners

[9,10]. In contrast to Rab5B, Rac1 is able to bind LRRK2 in a

nucleotide independent manner, but the activity status strongly

influences LRRK2 localization within the cell. Furthermore, the

constitutively active Rac1 mutant is able to rescue the neurite

retraction effect of the LRRK2 mutation G2019S in SH-SY5Y

cells [9]. In Drosophila it has been demonstrated that the

homologue to LRRK2 directly binds to Rab7 thus suggesting a

role in late endosomal/multivesicular body (MVB) or lysosomal

pathways [11]. The authors showed that the Drosophila homo-

logue of the most common PD mutant G2019S displays increased

co-localization with Rab7. In addition to Drosophila, human brain

and cultured human cells reveal LRRK2 localization to late

endosomal or lysosomal compartments [12,13,14]. Recent studies

show that Rab7L1 (or Rab29), the Rab protein most closely

related to Rab32 and Rab38, is a LRRK2 interacting protein as

well [15,16].

In this study, we demonstrate a novel mechanism of LRRK2

binding and transport, which involves the small GTPase Rab32.

Rab32 and its closest homologue Rab38 are known to organize

the trans-Golgi network (TGN) and thereby the transport of key

enzymes in melanogenesis like tyrosinase and Tyrp1 [17]. This

transport is mediated by the first known Rab32 and Rab38

effector Varp (also known as ANKRD27) [18]. This protein was

known as a guanine nucleotide exchange factor (GEF) for Rab21
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and involves the SNARE protein Vamp7 in Tyrp1 trafficking

[19,20].

Recently, novel Rab32 interacting partners were identified and

their role in melanogenesis and the generation of other types of

lysosome related organelles (LRO) was investigated [21]. LROs

are organelles sharing common features of lysosomes but with a

different specialized function. The group of LRO includes

melanosomes, lytic granules in T-cells, lamellar bodies in aveolar

endothelial cells or the dense granule in platelets [22,23]. It could

be demonstrated that Rab32 influences endosomal trafficking by

direct interaction with adapter protein complexes AP-1, AP-3 and

BLOC-2 (biogenesis of lysosome related organelles complex) [24].

The AP-3 complex was also shown to play a role in dense granule

biogenesis [25]. The protein complex BLOC-3, which is a GEF

for Rab32 and Rab38, also plays a role in LRO biogenesis.

Furthermore, one of the proteins in this complex is mutated in the

Hermansky-Pudlak syndrome [26].

However, the role of Rab32 in non-melanogenic cells is poorly

understood yet. It was shown, that Rab32 is a PKA anchoring

protein (AKAP) in melanogenic and non-melanogenic cells

[27,28]. In contrast to the finding that Rab32 is located to

mitochondria in WI-38 fibroblasts, HeLa and COS7 cells, no co-

localization of Rab32 with mitochondria could be detected in

melanocytes and some other cell lines by other groups [17,29].

Furthermore, there is evidence for Rab32 being involved in

autophagy and phagocytotic digestion of bacteria [29,30,31]. A

recent study implicates Rab32 in brain inflammation processes -

Rab32 and Rab20 mRNA levels were increased upon lipopoly-

saccharide (LPS) injection in mouse brain [32].

Here, we demonstrate that Rab32 and Rab38, but no other

GTPases tested, directly interact with LRRK2. In yeast two-

hybrid experiments we identify a predicted coiled-coil motif

containing region within the aminoterminus of LRRK2 as a

possible interacting domain. While microscopy analyses display a

co-localization of Rab32 and LRRK2 at pericentrosomal recycling

endosomes in addition to transport vesicles, overexpression of a

constitutively active mutant of Rab32 leads to an increased co-

localization at Rab7 and Rab9 positive perinuclear late endo-

somes/MVBs. Subcellular fractionation reveals that overexpres-

sion of constitutively active Rab32 decreases the amount of

LRRK2 in mitochondria and lysosome containing fractions.

Rab32-dependent localization of sub-cellular LRRK2 distribution

thereby demonstrates a role for Rab32 in LRRK2 sorting and

transport.

Material and Methods

Plasmids and cloning
Human Rab32 was amplified from pEGFP-Rab32 wt vector,

which was a kind gift from C. Wasmeier from M. Seabra’s group,

by PCR (primer forward: AGAATTCCATATGGCGGGCG-

GAGGAGCC; primer reverse: TACCTAGGTCAGCAACACT-

GGGATTTGTTC) and cloned into the plasmid pAS2-1 to

construct the yeast two-hybrid bait plasmid pAS-Rab32 wt [17].

The same primers were used to clone the constitutively active

GTP bound Rab32 Q85L mutant in the pAS2-1 vector, using

pDsRed-Monomer-Rab32 Q85L as template. This construct was

generated by site directed mutagenesis from pDsRed-Monomer-

Rab32 wt using the following primers: forward: GGGACA-

TCGCGGGGCTGGAGCGATTTGGCAAC; reverse: GTTG-

CCAAATCGCTCCAGCCCGATGTCCC. pDsRed-Monomer-

Rab32 wt was constructed similar to pAS-Rab32 (primer forward:

AAGAATTCTATGGCGGGCGGAGGAGC; primer reverse:

GTGGATCCTCAGCAACACTG). The yeast two-hybrid plas-

mids pAS-Rab38 wt and pAS-Rab38 Q69L were cloned by PCR

(primer forward: CAGAATTCCATATGCAGACACCTCA-

CAAG; primer reverse: CTGGATCCCCTAGGATTTGGCA-

CAGCC) amplifying murine Rab38 sequences from pEF-FLAG-

Rab38 wt and pEF-FLAG-Rab38 Q69L, which were a kind gift

from M. Fukuda, Tohoku University, Sendai, Japan [18]. Other

vectors used in this study were constructed by sub-cloning:

pACT2-LRRK2, pACT2-LRRK2-C, pACT2-LRRK2 1-266,

pACT2-LRRK2 265-552, pEGFP-Rab32 Q85L, pGEX42-

Rab32 wt, pECFP-Rab32 wt and -Q85L and pEGFP-Rab32

Q85L. All vectors constructed by PCR were verified by

sequencing. The pcDNA3-LRRK2-EGFP plasmid was described

before [3]. The plasmids pEYFP-Endo (RhoB) and pEGFP-

Rab5A were a kind gift from Theresia Stradals group, University

Muenster, Germany. pEGFP-Rab11B wt was a gift from Beate

Schlierf, University Erlangen, Germany [33].

Antibodies
Antibodies used in Western blotting were anti-human Rab32

and anti-LC3B antibodies from Sigma (St. Louis, MO, USA) and

used at a 1:1000 dilution. Mouse anti GAPDH was diluted 1:5000

(Invitrogen, Carlsbad, USA). The rat anti-LRRK2 (1E11)

hybridoma supernatant was produced by E. Kremmer, Helmholtz

Zentrum München, Germany and the antibody was applied at a

1:50 dilution [34]. For the analysis of the GFP-Trap experiments

we used the MJFF2 rabbit anti LRRK2 antibody (Abcam,

Cambridge, UK) at a 1:2000 dilution and a mouse anti GFP

(JL-8, Clontech, Mountain View, USA) antibody at a dilution of

1:4000. HRP-coupled antibodies were used as secondary antibod-

ies for Western blotting. Anti-rabbit and anti-mouse secondary

antibodies were obtained from Cell Signaling Technology,

Danvers, MA, USA, and diluted 1:1000. Anti-rat IgG HRP was

from Jackson Immunoresearch, Newmarket, UK, and diluted

1:5000.

For immunofluorescent stainings anti-Rab7 and -Rab9 anti-

bodies (Cell Signaling Technology, Danvers, MA, USA) were used

at dilutions of 1:50 and 1:100, respectively. The mouse anti-Rab11

(clone47) antibody was obtained from Transduction Laboratories,

Lexington, USA). Mouse anti-b-tubulin hybridoma supernatant

(clone E7; Developmental Studies Hybridoma Bank, University of

Iowa, USA) was a kind gift from Sven Bogdan, University

Muenster, Germany. Both were used at 1:50 dilutions. Superna-

tants from mouse hybridoma to detect Rab6A (5B10) and Rab1B

(1E7) were described earlier [35,36,37]. Secondary antibodies

were coupled to Oyster594 (Luminartis GmbH, Muenster,

Germany), cy3 or Alexa488 (Jackson Immunoresearch, Newmar-

ket, UK). U. Schulze kindly provided us with the mouse anti-

LAMP2 antibody (clone H4B4; Developmental Studies Hybrid-

oma Bank, University of Iowa, USA), dilution was 1:250 in

secondary immunofluorescence and 1:5000 in Western blots.

Yeast two-hybrid
The human lung Matchmaker cDNA Library (Clontech,

Mountain View, CA, USA) was a kind gift from Stefan Ludwigs

Lab, UKM, Muenster, Germany. The reporter yeast strain Y190

(Clontech, Heidelberg, Germany) was co-transformed and colo-

nies were analyzed as described previously [38,39]. The reporter

strain Gold (Clontech, Heidelberg, Germany) was co-transformed

similar to the Y190 strain according to the manufacturer’s

instructions.

GST-pulldown and immunoprecipitation
GST-fusion proteins of Rab32 and GST alone as control were

expressed from pGEX-vectors in E. coli BL21 for three hours at
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room temperature after induction with 1 mM IPTG and lysed by

sonication in PBS pH 7.4 containing EDTA-free protease inhibitor

cocktail complete (Roche Diagnostics, Mannheim, Germany). After

addition of Triton X-100 (final concentration 1%) followed by

30 minutes incubation on ice, the lysates were cleared by

centrifugation. GST fusion proteins were purified using 10 ml bed

volume Glutathion Sepharose 4B (GE Healthcare Bioscience,

Freiburg, Germany). 5 mg of each GST fusion protein and GST as

negative control were used for each experiment. After loading the

beads and subsequent washing, NIH3T3 cell lysates were added

and incubated overnight at 4uC in an overhead shaker. Cell lysates

were made by adding pulldown buffer (10 mM Tris pH 7.4,

150 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 0,2% Triton X-100,

complete EDTA free) to the three times PBS washed cell culture dish.

Subsequently, cells were harvested with a cell scraper and the lysate

was cleared by 1 hour centrifugation at 23,0006 g, 4uC. After

24 hours of incubation beads were washed in 200 ml pulldown
buffer three times and subjected to Western blot analysis.

Alternatively, Glutathione HiCap matrix (Qiagen, Hilden, Ger-

many) was used according to the manufacturer’s instructions.

For co-immunoprecipitation experiments confluently grown

cells on a 15 cm cell culture dish were harvested in co-IP buffer

(50 mM Tris pH 7.4, 150 mM NaCl, 1.5 mM MgCl, 4 mM

EDTA, 10% glycerol, 1% Triton X-100, complete EDTA-free).

After clearing the lysates by centrifugation, 1–2 mg of the antibody

was added. After 24 h incubation at 4uC in a rotator 10 ml of

Protein G Sepharose 4 Fast Flow (GE Healthcare Bioscience,

Freiburg, Germany) beads were added followed by incubation for

another hour. Thereafter, the beads were washed with 200 ml PBS

containing 0.2% Triton X-100 three times and the samples were

subjected to Western blot analysis.

For co-immunoprecipitation using the GFP-Trap kit (Chromo-

tek, Planegg-Martinsried, Germany) cells were harvested in a

modified GFP-Trap buffer (10 mM Tris pH 7.5, 150 mM NaCl,

0.5 mM EGTA, 0.5% NP40, 200 mM sodium orthovanadate,

complete EDTA free). The further procedure was according to the

manufacturers instructions.

Western blot
For Western blotting, cell lysates were mixed with 46 loading

dye (40% (v/v) glycerol, 8% (w/v) SDS, 32% (v/v) 1 M Tris/HCl

pH 6.8, 0.04% (v/v) bromophenol blue and 20% b-mercaptoeth-

anol) and incubated 5 min at 95uC. For LRRK2 samples

incubation time was reduced to 60–90 seconds. Samples were

subjected to SDS-PAGE [40]. Proteins were immobilized on

PVDF by semi dry Western blotting. The membrane was blocked

in 5% skimmed milk powder in PBS-T (0.1% Tween20 in PBS) for

1 hour at RT or over night at 4uC. Primary antibodies were

diluted in blocking solution and incubated for 60 min at RT or

over night at 4uC for the anti-LRRK2 antibodies. The secondary

antibodies (HRP conjugated) were diluted in blocking solution and

incubated for 30 min at RT. Subsequently, the membrane was

washed in PBS-T 66 for at least 5 min. Detection of proteins was

carried out on X-ray films using chemiluminescence.

Cell culture and transfection
NIH3T3 (ATTC number: CRL-1658) cells were cultured in

DMEM supplemented with 10% FBS and 4 mM glutamine. One

day prior to transfection, 56105 NIH3T3 cells were seeded in a

3.5 cm cell culture dish containing up to three 12 mm cover slides.

Co-transfection of either pDsRed-Monomer-Rab32 wt or -Q85L

and pcDNA3-LRRK2-EGFP was carried out using PolyFect

(Qiagen, Hilden, Germany) or Lipofectamine 2000 (Invitrogen,

Karlsruhe, Germany) according to the manufacturer’s instruc-

tions. All other transfections were performed by using TurboFect

(Thermo Scientific, Schwerte, Germany) according to the

manufacturer’s instructions.

The renal proximal tubule cell line IHKE-1 was a kind gift from

Thomas Weide, UKM, Muenster. Cells were grown in DMEM/

Ham’s F12 supplemented with 1% FBS, 15 mM HEPES (pH 7.2),

44 mM NaHCO3, 1 mM sodiumpyruvate, 4.5 mM L-glutamine,

36 ng/ml hydrocortisol, 10 ng/ml EGF, 5 mg/ml insulin, 5 mg/ml

transferrin and 5 ng/ml sodium selenite.

Like NIH3T3 cells, IHKE-1 cells were transfected with

TurboFect during passaging. 16105 cells were mixed with the

TurboFect-DNA dilution and plated in a 48 well cell culture dish.

The next day, cells were transferred to a 3.5 cm cell culture dish

containing 12 mm cover slides or two 3.5 cm dishes were

transferred to one 6 cm cell culture dish. After 24 hours cells

were either fixed or harvested for further experiments. To

generate IHKE-1 cell lines stably expressing GFP-Rab32 wt or

GFP-Rab32 Q85L, cells were transfected as described above and

then incubated with G418. After a few weeks colonies from

surviving cells were treated with trypsin, subjected to 48 well plates

and grown to confluence. The best of the resulting clones were

further cultivated and used for this study.

Secondary immunofluorescence
For secondary immunofluorescence cells were washed three times

with ice cold PBS and were fixed for 10 min on ice with 4% PFA in

250 mM HEPES, pH 7.4. An additional incubation step for 30 min

at room temperature (RT) followed. After washing with PBS three

times cells were incubated with 50 mM NH4Cl for 5 min at RT.

The cells were washed three times with PBS and permeabilized with

0.2% Triton X-100 in PBS for 5 min. Thereafter, cells were washed

three times with PBS containing 0.2% gelatine. Unspecific antibody

binding sites were blocked with 10% normal goat serum in PBS+
0.2% gelatine for 30 min followed by incubation with the primary

antibody in PBS+0.2% gelatine for 60 min. After that the cells were

washed three times with PBS+0.2% gelatine and subsequently

incubated with secondary antibody in PBS+0.2% gelatine for

20 min. Before embedding with Mowiol (Sigma Aldrich Chemie

GmbH, Taufkirchen, Germany) supplemented with DAPI and

DABCO, the cells were washed three times with PBS and three

times with ddH2O. The protocol was carried out in drops on

Parafilm beginning from the neutralization step. The samples were

analyzed with a Leitz Diaplan Fluorescence microscope (Leica,

Darmstadt, Germany) equipped with PL Fluotar 1006 - 1.32 NA

and PL Fluotar 506- 1.00 NA objectives or a Zeiss LSM5 live (Carl

Zeiss, Jena, Germany) with a Plan Apochromat 636 – 1.40 NA

objective.

Live cell imaging
For live cell imaging cells were grown in 8 well microscopic slides

(IBIDI, Martinsried, Germany) and transfected with Lipofectamine

2000 (Invitrogen, Karlsruhe, Germany) according to the manufac-

turer’s instructions. Cells were analyzed on an LSM5 live

microscope (Carl Zeiss, Jena, Germany). All images were taken in

the live mode as 8 bit images using a two-track recording setup.

Green and red channels were recorded in parallel for each time

point. Laser power and detector gain were adjusted as needed.

Microscopic imaging and determination of endosomal
size

Images were taken with a Leitz Diaplan Fluorescence micro-

scope equipped with PL Fluotar 1006 - 1.32 NA and PL Fluotar

506 - 1.00 NA objectives. Images were taken with an Olympus
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XM10 camera as 16 bit multipage.tif files, filters for green

(excitation: 450–490 nm, emission: 515–560 nm) and red (excita-

tion: 540–580 nm, emission: 607–682 nm) fluorescence guaran-

teed no bleed trough. Images were taken with constant exposure

time and analyzed with ImageJ [41]. For quantifying the size of

perinuclear late endosomes/MVBs the channel showing Rab7 was

blurred with a 2 px median filter followed by subsequent

background subtraction with a rolling ball radius of 20 px.

Thereafter, an adequate threshold was set manually and the image

was binarized. Data for analysis were generated by selecting the

perinuclear areas with the wand tool and measuring their sizes.

Subcellular fractionation
For subcellular fractionation IHKE-1 or IHKE-1 cells stably

transfected with either GFP-Rab32 wt or GFP-Rab32 Q85L were

grown on 15 cm diameter cell culture dishes to confluence. Then,

cells were washed 3 times with PBS, 4uC, and cell culture plates

were frozen at 270uC. To disrupt the cells we added 450 ml

fractionation buffer (250 mM sucrose, 20 mM HEPES (pH 7.4),

10 mM potassium chloride, 1.5 mM magnesium chloride, 1 mM

EDTA, 1 mM EGTA, 1 mM DTT, complete EDTA-free (Roche

Diagnostics, Mannheim, Germany)) and immediately scraped the

cells off. The lysate was collected to a tube and snap frozen in

liquid nitrogen and thawed 5 times. The resulting lysate was

pressed through a 27 Gauge needle with a syringe 20 times.

Appropriate disruption of the cells was assessed by light

microscopy. This whole cell lysate was separated into the different

fractions by subsequent centrifugation steps. First, centrifugation

at 7206 g for 5 minutes was for pelleting nuclei and bigger cell

debris. The resulting supernatant then was centrifuged at 20,0006
g for 20 minutes to sediment high density organelles like lysosomes

and mitochondria. The pellet was resuspended in 150 ml

fractionation buffer supplemented with 0.1% SDS. The resulting

lysate was used as crude mitochondria and lysosome containing

fraction (CLM). The supernatant containing light membrane

fragments and cytosolic proteins was used as C/M fraction.

Statistical analysis
Statistical analysis was performed by two-sided Student’s T-test

in Excel (Microsoft Corporation, Redmond, WA, USA) assuming

normal distribution. Differences with p-values less than 0.05 were

considered as significant.

Results

Yeast two-hybrid Interactions between LRRK2 and Rab32
Several studies have described the role of Rab32 in the context

of melanogenesis together with the most closely related Rab38

[17,24]. Both GTPases were described to act mostly in a

redundant fashion in melanogenic transport pathways. However,

Rab32 is not only expressed in melanin containing cells - several

groups have demonstrated by Northern as well as Western blot

analyses that lung tissue contains high levels of Rab32 mRNA and

protein [27,42,43]. To obtain further insight into the role of

Rab32 in non-melanogenic cells, we screened a human lung

library in a yeast two-hybrid assay using Rab32 wildtype (wt) as

bait. We screened up to 3.76107 clones and isolated four clones

which caused a strong activation of reporter genes in the presence

of Gal4BD-Rab32 wt fusion proteins. Sequence analyses identified

these clones as a DNA fragment encoding the amino acids 1–552

of human leucine rich repeat kinase 2 (LRRK2, Figure 1).

GST-Rab32 pulldowns and immunoprecipitation of
endogenous LRRK2

Although yeast two-hybrid experiments are suitable for detect-

ing new interacting partners of proteins, this method could identify

false positive results and therefore the interaction between Rab32

and LRRK2 required confirmation by independent methods.

Bacterially expressed GST-Rab32 wt and GST-Rab32 Q85L was

coupled to glutathione agarose beads and incubated with lysates

from NIH3T3 cells. These cells show highest endogenous LRRK2

expression of all cell lines we have tested. We were able to pull

down endogenous LRRK2 from NIH3T3 cell lysates using GST

fusion proteins of Rab32, but not with GST-Rab1A (not shown) or

GST alone (Figure 2A).

To further confirm the direct interaction of LRRK2 and

Rab32, co-immunoprecipitation experiments were performed. We

generated an IHKE-1 cell line stably expressing GFP-Rab32 wt

(IHKE GFP-Rab32 wt) and GFP-Rab32 Q85L (IHKE GFP-

Rab32 Q85L). This human renal cell line was made from

epithelial cells of the proximal tubule, which was demonstrated to

have high LRRK2 abundance [14,44,45]. IHKE-1 cells have the

advantage of relatively high LRRK2 expression and were easy to

transfect. Furthermore, Rab32 is abundant in kidney cells

[27,42,43]. Figure S1 shows the expression of endogenous

Rab32 in untransfected IHKE-1 cells and IHKE GFP-Rab32 wt

cell lines and GFP-Rab32 wt in the stably transfected cell line

(Figure S1). We pulled down endogenous LRRK2 using the 1E11

anti-LRRK2 antibody and probed for GFP-Rab32 wt by Western

blot analysis. We were able to detect GFP-Rab32 wt following

immuno-precipitation of LRRK2 (Figure 2B). In contrast, there

was a minor background in the absence of antibody (Figure 2B) or

a control antibody (data not shown). Unfortunately, we could not

detect endogenous Rab32 due to strong non-specific signals at the

molecular weight of the small GTPase.

Figure 1. LRRK2 constructs used in this study. ARM: armadillo repeats; ANK: ankyrin repeats; LRR: leucine rich repeats; ROC: Ras of complex;
COR: C-terminal of ROC; Kin: kinase domain; WD40: WD40 domain; c/c: coiled coil motif (aa 319–348).
doi:10.1371/journal.pone.0111632.g001
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Due to the lack of available antibodies suitable for the

immunoprecipitation of endogenous Rab32 we used the GFP-

Trap system as an alternative approach to confirm its interaction

with LRRK2. Recombinantly expressed GFP-Rab32 wt or GFP-

Rab32 Q85L allowed the co-precipitation of endogenous LRRK2

from IHKE-1 cell lines while no LRRK2 bound to a GFP-only

control (Figure 2C).

Rab32 specificity of the LRRK2 interaction
Generally, small GTPases are known to bind their effectors in a

highly specific manner. On the other hand, many interacting

partners are recognized by different Rabs at distinct or overlap-

ping binding sites. Notably, LRRK2 is known to bind several small

GTPases [8,9,10,15,16]. Thus, further investigations were needed

to test, whether the interaction is specific for Rab32. We used an

assortment of Rab cDNA molecules as bait constructs in yeast co-

transformation assays (Table 1). LRRK2-N induced cell growth

and a-galactosidase activity only when co-transformed with Rab32

or the closely related Rab38 plasmids. Other GTPases tested did

not interact, as evidenced by the inability to rescue growth and a-

galactosidase activity. Furthermore, we used co-transformation of

LRRK2-N with Tau as a negative control. Tau is a microtubule

binding protein forming neurofibrillary tangles in Alzheimer’s

disease and is also involved in Parkinson’s disease. However, there

are no apparent direct interactions between Tau and LRRK2

[46,47,48,49].

Mapping the Rab32 binding domain of LRRK2
To investigate which part of the LRRK2 protein acts as Rab32

binding domain, we generated several deletion mutants of LRRK2

and tested them in yeast two-hybrid co-transformation assays

(Figure 1, Table 2). A clear interaction signal was observed with

the LRRK2-N deletion mutant and the truncated LRRK2-N

clone, LRRK2 265–552 (Table 2). No interaction was observed

with the deletion mutants LRRK2 1–266 and LRRK2-C

indicating that the Rab32 binding domain lies within the amino

acids (aa) 267 to 552. The LRRK2 full length construct also did

not give a clear positive signal in these experiments, although we

could demonstrate the interaction of endogenous LRRK2 with

Rab32, as shown before (Figure 2). It is possible, that issues

regarding protein folding or posttranslational modifications in the

yeast cells lead to a false negative result in this experiment.

Very little is known about the function of the LRRK2

aminoterminus, which displays armadillo repeat structures. The

smallest Rab32 binding motif we found in our screen contained a

hypothetical coiled-coil motif spanning the amino acids 319 to

348. We found this motif by entering the first 552 residues of

LRRK2 to the coils algorithm (Figure S2) [50]. To elucidate,

whether this motif serves as the Rab32 interacting domain we

generated an additional LRRK2 deletion mutant that lacks this

hypothetical coiled-coil motif (LRRK2 aa 349–552: LRRK2Dcc,

Figure 1). Yeast co-transformation assays revealed that only the aa

265–552 fragment binds to Rab32, but not the one lacking the

region with the predicted coiled-coil motif (Table 3). Therefore,

Figure 2. Binding of endogenous LRRK2 by the small GTPase Rab32. (A) GST-Rab32 wt, GST-Rab32 Q85L or GST as control was applied to
glutathione agarose beads followed by incubation with NIH3T3 lysate overnight. Samples were analyzed by 6% SDS-PAGE and subsequent Western
blot analysis to detect LRRK2. n$3 independent experiments. (B) Lysates from IHKE-1 cells stably expressing GFP-Rab32 wt were incubated overnight
with an anti-LRRK2 antibody (1E11). IP control = no antibody was added. Co-precipitated GFP-Rab32 wt was detected using an anti-Rab32 antibody.
n = 3 independent experiments. (C) Lysates from IHKE-1 cells expressing GFP-Rab32 wt, GFP-Rab32 Q85L or GFP as control were subjected to
immunoprecipitation by the GFP-Trap kit. Co-precipitated endogenous LRRK2 was detected using an anti LRRK2 antibody. n = 2 independent
experiments.
doi:10.1371/journal.pone.0111632.g002
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we concluded that Rab32 is interacting with LRRK2 via this

coiled-coil motif.

Analysis of Rab32 and LRRK2 co-localization in various
intracellular compartments

Following verification and mapping of the Rab32-LRRK2

interactions, we analyzed their intracellular co-localization.

NIH3T3 cells were co-transfected with plasmids encoding

DsRed-Monomer-Rab32 wt and LRRK2-GFP. After 48 hours

cells were analyzed by live cell imaging. DsRed-Monomer-Rab32

and LRRK2-GFP partially co-localized in a structure at the center

of the cell (Figure 3A, Movie S1). Perinuclear as well as peripheral

punctate co-localization was also visible (Figure 3A, arrows).

In many cases the constitutively active mutant of a small Rab

GTPase looks like an exaggerated version of its wildtype and

thereby more explicit in phenotype. This has been observed, for

example, for Rab5 or Rab7, which form giant early endosomes or

perinuclear aggregates of late endosomes/MVBs, respectively

[51,52,53]. To investigate LRRK2-GFP co-localization with

constitutively active Rab32 we co-transfected plasmids encoding

DsRed-Monomer-Rab32 Q85L and LRRK2-GFP in NIH3T3

cells and compared them with DsRed-Monomer Rab32 wt co-

expressing cells. Surprisingly, the Q85L mutant looks rather

different from the wildtype (Figure 3B). It had a more diffuse

appearance, but most characteristic for the constitutively active

mutant are large perinuclear aggregates that occurred in over 90%

of all Rab32 Q85L expressing NIH3T3 cells we analyzed. We

observed significant co-localization of DsRed-Monomer-Rab32

Q85L and LRRK2-GFP in these perinuclear aggregates.

Live cell imaging revealed co-transport and sorting events of

LRRK2-GFP and Ds-Red-Monomer-Rab32 wt at vesicles

(Figure 3C, Movies S1 and S2). It was obvious that the co-

transport was not only directed to the center of the cell, but also

away from it (Movie S1). This indicates a presumable role for

Rab32 in LRRK2 sorting and transport in the cell.

To study the co-localization of Rab32 and LRRK2 in more

detail, we transfected cells with plasmids encoding either DsRed-

Monomer-Rab32 wt or LRRK2-GFP. Immunofluorescence

staining for b-tubulin showed that the area of co-localization

occurred pericentrosomal at the microtubule organizing center

(MtOC, Figure 3D). Both Rab32 and LRRK2 were also reported

to localize to the Golgi apparatus [3,14,15,29]. To examine,

whether the Golgi apparatus is the compartment of co-localiza-

tion, cells were either transfected with plasmids encoding DsRed-

Monomer-Rab32 wt or LRRK2-GFP and stained with an

antibody for the Golgi marker protein Rab6A (Figure 3E). We

could demonstrate co-localization of DsRed-Monomer-Rab32 wt

and Rab6A, but no co-localization of Rab6A and LRRK2-GFP

was detectable. Therefore we concluded that the compartment of

the interaction is not the Golgi apparatus. The perinuclear

aggregates that we observed in the constitutively activated mutant

co-localize neither with b-tubulin nor with Rab6A (data not

shown).

Table 1. Rab binding specificity of LRRK2-N.

bait plasmid prey plasmid QDO+X-a-gal+aureobasidin A

pAS2-1-Rab32 wt pACT2-LRRK2-N +

pAS2-1-Rab38 wt +

pAS2-1-Rab1B Q67L 2

pAS2-1-Rab1B Q67R 2

pAS2-1-Rab11A wt 2

pAS2-1-Rab5A wt 2

pAS2-1-Rab6A Q72L 2

pAS2-1-Rab6A Q72R 2

pAS2-1-Rab7DC 2

pAS2-1-tau 2

After co-transformation of the yeast strain Gold with the indicated plasmids, cells were grown on synthetic media lacking adenine and histidine supplemented with
125 ng/ml aureobasidin and 40 mg/ml X-a-gal. Cell growth and blue color indicated that the proteins interact.
2 no or reduced growth on selection media and no blue color, + colony growth on selection media and blue color. n$3 independent experiments.
doi:10.1371/journal.pone.0111632.t001

Table 2. Mapping of Rab32 binding domain within LRRK2.

bait vector prey vector QDO+X-a-gal+aureobasidin A

pAS2-1 Rab32 Q85L pACT2-LRRK2 2

pACT2-LRRK2-N +

pACT2-LRRK2 1-266 2

pACT2-LRRK2 265-552 +

pACT2-LRRK2-C 2

The yeast strain Gold was co-transformed with the indicated plasmids. Cells were grown on synthetic media lacking adenine and histidine. The medium was
supplemented with 125 ng/ml aureobasidin and 40 mg/ml X-a-gal. Cell growth and blue color indicated that the proteins interact.
2 no or reduced growth on selection media and no blue color, + colony growth on selection media and blue color. n$3 independent experiments.
doi:10.1371/journal.pone.0111632.t002
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Localization of Rab32 with endosomal marker proteins
Rab32 is known to organize lysosome related organelles (LRO)

and therefore to act within the endosomal system [17,24]. We

determined to which endosomal system Rab32 wt and constitu-

tively active Rab32 Q85L localize by co-transfecting the

corresponding constructs with plasmids encoding GFP-Rab11B

(recycling endosomes) or GFP-Rab5A (early endosomes). We

could not detect co-localization between DsRed-Monomer-Rab32

wt or -Q85L and GFP-Rab5A at early endosomes (Figure S3A).

This is in good agreement with the results from other groups, who

examined the role of Rab32 in the context of melanogenesis [25].

In contrast to Rab5A we observed substantial co-localization of

GFP-Rab11B with DsRed-Monomer-Rab32 wt at the pericen-

triolar region (Figure 4A) indicating the recycling endosome

nature of this structure. Compared to DsRed-Monomer-Rab32

wt, DsRed-Monomer-Rab32 Q85L displayed no co-localization

with GFP-Rab11B, especially not at the perinuclear aggregates.

For the detection of late endosomes/MVBs we transfected cells

with either GFP-Rab32 wt or -Q85L constructs. After 24 hours

cells were fixed and stained using an anti-Rab7 antibody

(Figure 4B). In contrast to the results obtained for GFP-Rab11B,

Rab7 strongly co-localized with the perinuclear aggregates of

DsRed-Monomer-Rab32 Q85L, but not with the pericentrosomal

GFP-Rab32 wt. In NIH3T3 cells expressing just LRRK2-GFP we

were able to detect a partial co-localization with Rab7 and Rab11

(Figure S4). Similar to the Rab7 experiment did co-staining of

GFP-Rab32 wt or -Q85L and Rab9. This small GTPase is known

for its function in mannose-6-phosphate receptor recycling from

late endosomes to the TGN [54]. We also observed only limited

co-localization of GFP-Rab32 wt and Rab9, but substantial co-

localization at the perinuclear aggregates of GFP-Rab32 Q85L

transfected cells (Figure S3B). Here, typically the brightest Rab9

intensity is next to the Rab32 signal, but lower intensity areas

matched with the aggregates. Although Rab32 fused to fluorescent

proteins (GFP, DsRed-Monomer) has a very ‘‘typical’’ phenotype

in NIH3T3 cells, we found similar distribution and co-localization

of Rab32 with the markers (as far as examined) in different cell

types like IHKE-1 (Figure S5 and S6A), HeLa or A549 cells (data

not shown). In conclusion, these data support a role of Rab32 in

transport processes from the Golgi apparatus via recycling

endosomes to late endosomes/MVBs or lysosomes.

Effects of wildtype and constitutively activated Rab32 on
late endosomes

It can easily be concluded from Figure 4B that constitutive

activation of Rab32 leads to an altered perinuclear accumulation

of Rab7 (Figure 4B). Therefore we measured the area of Rab7

staining that co-localized with GFP-Rab32 wt or -Q85L

(Figure 4C, arrows) and additionally the Rab7 that did not co-

localize with them in a small perinuclear region as indicated in

Figure 4C (Figure 4 C, arrowheads). Figure 4D shows that this

perinuclear Rab7 formed larger aggregates upon GFP-Rab32 wt

and especially -Q85L overexpression (Figure 4D). For perinuclear

Rab7 structures that co-localize with GFP-Rab32 wt we deter-

mined a median size of 0.77 mm2 and for GFP-Rab32 Q85L co-

localizing with Rab7 2.22 mm2 (Figure 4E). However, non co-

localizing Rab7 in the perinuclear region in untransfected control

cells had an area of just 0.33 mm2. Statistical analysis revealed that

these differences were highly significant (p,0.005). Rab7 positives

areas in the perinuclear region of transfected cells, where no co-

localization with Rab32 was observed, were about the size of the

untransfected control (GFP-Rab32 wt: 0.40 mm2; GFP-Rab32

Q85L: 0.34 mm2). This indicated a Rab32 activity-dependent

effect on the cellular localization of Rab7, which is a major

regulator of late endosome maturation and lysosome fusion [55].

To test, whether the changes in the degree of GFP-Rab32 wt or

-Q85L and Rab7 co-localization in NIH3T3 cells is a general

feature of Rab32 behavior, we repeated the co-localization

experiments with the Rab32 constructs and endogenous Rab7 in

a human cell line, the IHKE-1 cells. We cultivated IHKE-1 cells

stably transfected with GFP-Rab32 wt or -Q85L (IHKE GFP-

Rab32 wt or IHKE GFP-Rab32 Q85L) on cover slips, fixed them

and subsequently stained for Rab7 localization by secondary

immunofluorescence. We could demonstrate that Rab7 exhibits a

significantly higher overlap with GFP-Rab32 Q85L than GFP-

Rab32 wt does (Figure S6A). In contrast, LAMP2 shows co-

localization with both GFP-Rab32 wt and GFP-Rab32 Q85L, but

increased co-localization with the latter was not obvious (Figure

S6B). LAMP2 is a typical marker of lysosomes but also abundant

in late endosomes/MVBs and was shown to co-localize not only

with Rab7 but also with Rab32 wt and -Q85L before [29,56].

From our observations, we conclude that Rab32 targets its

interacting partners to late endosomes/MVBs. Activated Rab32

stimulates the formation of enlarged perinuclear late endosomes/

MVBs. Therefore it seems very interesting to investigate, whether

the novel Rab32 interacting protein LRRK2 changes its more

indistinct cellular distribution pattern upon activation of the

Rab32 GTPase and is targeted by activated Rab32 to late

endosomes/MVBs via recycling endosomes.

Rab32 mediates effects on the intracellular localization of
LRRK2

When we analyzed the localization of Rab32 in NIH3T3 cells,

we found considerable differences between the Rab32 wildtype

and the permanently GTP bound Rab32 Q85L mutant

(Figure 3A, B and Figure 4). In fact, Rab32 wt displays the major

degree of co-localization with LRRK2-GFP at pericentriolar

recycling endosomes and transport vesicles, while the constitutively

active mutant co-localizes with LRRK2-GFP in perinuclear

aggregates positive for the late endosomal marker Rab7. From

Table 3. Mapping of Rab32 binding motif within LRRK2 aminoterminus.

bait vector prey vector b-gal

pAS2-1 Rab32 Q85L pACT2-LRRK2 265–552 +

pACT2-LRRK2 Dcc 2

After co-transformation of the yeast strain Y190 with the indicated plasmids with and without the hypothetical coiled-coil motif, cells were grown on synthetic media
lacking histidine, supplemented with 30 mM 3 AT. Cell growth on these media and blue staining in subsequent b-gal-filter assays indicated direct interaction of the
proteins.
no growth on selection media or staining in ß-galactosidase filter assay, + growth on selection media and blue staining in in ß-galactosidase filter assay. n = 3
independent experiments.
doi:10.1371/journal.pone.0111632.t003
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this observation we hypothesized that Rab32 influences LRRK2

localization inside the cell.

To quantify the fluorescence microscopic analysis we tested the

localization of LRRK2-GFP expressed alone or co-expressed with

DsRed-Monomer-Rab32 wt or DsRed-Monomer Rab32 Q85L

for the abundance of different features: transport vesicles,

pericentriolar recycling endosomes and perinuclear aggregates

(Figure 5A). We found that in 50% of total cells expressing

LRRK2-GFP only small vesicles occurred. Co-expression of

DsRed-Monomer-Rab32 wt with LRRK2-GFP increased this

value to 100% of total cells recorded (Figure 5B). In contrast, upon

DsRed-Monomer-Rab32 Q85L co-expression with LRRK2-GFP,

only a few cells with LRRK2-GFP positive vesicles remained. A

similar result was observed for pericentriolar endosomes (Fig-

ure 5C). LRRK2-GFP alone displays this typical feature less often

(59%) than DsRed-Monomer-Rab32 wt co-expressing cells (92%).

Perinuclear aggregates were characteristic for the constitutively

active mutant Rab32 Q85L. Looking at LRRK2-GFP this feature

occurred in 90% of all DsRed-Monomer-Rab32 Q85L co-

expressing cells (Figure 5D). While co-transfected with DsRed-

Figure 3. Co-localization analysis of LRRK2-GFP and DsRed-Monomer-Rab32. (A) NIH3T3 cells were co-transfected with plasmids encoding
DsRed-Monomer-Rab32 wt and LRRK2-GFP. Living cells were imaged using a Zeiss LSM5 live microscope. The image shows a still frame from Movie
S1. Scale bar = 10 mm. (B) NIH3T3 cells were co-transfected with plasmids encoding DsRed-Monomer-Rab32 Q85L and LRRK2-GFP. After 48 hours the
cells were fixed in 4% PFA and subsequently analyzed with a laser scanning microscope. Scale bar = 10 mm. (C) Co-transport and sorting of LRRK2-GFP
by DsRed-Monomer-Rab32 wt. Image series are a detail view from Movie S2. Both channels were recorded simultaneously every second. Scale
bar = 2 mm. (D and E) NIH3T3 cells expressing either DsRed-Monomer-Rab32 wt or LRRK2-GFP were fixed and subsequently subjected to
immunofluorescence labeling of b-tubulin (D) or the Golgi marker Rab6A (E). Scale bar = 10 mm.
doi:10.1371/journal.pone.0111632.g003
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Monomer-Rab32 wt or expressing LRRK2-GFP alone, perinu-

clear aggregates seemed to be smaller in size and occurred much

more infrequently (see also Figure 4C and D). These results show

that co-expression of activated or wt Rab32 impacts the cellular

localization of LRRK2-GFP in an activity-dependent manner.

To verify these data, we performed subcellular fractionation

experiments. IHKE-1 cells that either stably expressed GFP-

Rab32 wt or GFP-Rab32 Q85L and untransfected IHKE-1 cells

as a control were grown on 15 cm diameter cell culture dishes,

lysed and crude fractions were prepared. We prepared a fraction

which contains lysosomes and mitochondria (CLM = crude

lysosome and mitochondria) and a second fraction which contains

the cytosol and light membranes like microsomes and endosomes

[57]. LAMP2, GAPDH and Rab1B expression detected by

Western blotting confirmed that the fractions were relatively pure

(Figure 6A and data not shown). We were able to detect GFP-

Rab32 wt and GFP-Rab32 Q85L in both fractions, but to a

different extent 225.7%67.7% of GFP-Rab32 wt signal is present

in the C/M fraction, while 74.3%67.7% is in the CLM fraction.

By comparison, GFP-Rab32 Q85L is significantly higher in the

C/M fraction: 55.1%67.4% was found in the C/M fraction, but

just 44.9%67.4% in the CLM fraction.

The subcellular distribution of LRRK2 follows the one of

Rab32: The C/M fractions displayed an increase in LRRK2

protein content comparing control IHKE-1 cells with GFP-Rab32

wt or GFP-Rab32 Q85L expressing cells and a decrease of

LRRK2 protein content in the CLM fraction, respectively

(Figure 6A). Quantification of the Western blot signals confirms

that in the control cells 39.1%67.6% of the LRRK2 protein was

present in the C/M fraction (60.9%67.6% in the CLM fraction),

for IHKE GFP-Rab32 wt 54.2%63.4% (45.8%63.4%) and for

IHKE GFP-Rab32 Q85L 75.9%65.7% (24.1%65.7%, Fig-

ure 6B).

A distinction between late endosomes/MVB and lysosomes

upon co-localization analyses of Rab32 Q85L positive perinuclear

aggregates and Rab7 in NIH3T3 cells is not possible. This is

because Rab7 is found on both types of organelles [55]. The

reduction of LRRK2 in the CLM fraction in IHKE GFP-Rab32

Q85L cells together with the observation of increased co-

localization of the constitutively active GFP-Rab32 Q85L with

Figure 4. Co-localization analysis of Rab32 wt and the constitutively active mutant Rab32 Q85L with different endosomal markers.
(A) NIH3T3 cells were co-transfected with plasmids encoding the recycling endosome marker GFP-Rab11B and DsRed-Monomer-Rab32 wt or DsRed-
Monomer-Rab32 Q85L, fixed and analyzed by fluorescence microscopy. Scale bar = 10 mm. (B) Cells were transfected with plasmids encoding for GFP-
Rab32 wt or GFP-Rab32 Q85L followed by fixation and subsequent immunofluorescence staining of Rab7. Scale bar = 10 mm. (C–E) NIH3T3 cells
expressing either GFP-Rab32 wt or GFP-Rab32 Q85L were fixed and stained for Rab7. (C) Microscopic analysis of GFP-Rab32 Q85L that co-localized
with endogenous Rab7 (arrows) in the perinuclear area. Non co-localizing Rab7 was indicated by arrowheads. The perinuclear area was defined by
the red (outlines nucleus) and the yellow line (outer border for perinuclear area). The image illustrates the cellular area used for the following analysis.
(D) Rab7 perinuclear aggregates co-localizing with GFP-Rab32 wt or GFP-Rab32 Q85L and non co-localizing ones. ctrl. = control (untransfected IHKE-1
cells) (E) Quantification of perinuclear Rab7-positive structures. ctrl. (control): perinuclear Rab7 in untransfected cells; wt/Q85L: perinuclear Rab7 co-
localizing with GFP-Rab32 constructs. control/Rab32 wt/Rab32 Q85L: n = 1660/18/167 structures in 67/18/60 cells, 1/1/3 independent experiments.
Statistical significance was tested by a Student’s T-test: pcontrol-wt = 0.02; pcontrol-Q85L,0.005; pwt-Q85L = 0.02. Scale bar = 10 mm.
doi:10.1371/journal.pone.0111632.g004
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Rab7 (but not LAMP2) precludes the possibility that LRRK2 is

sorted to lysosomes by Rab32. This is supported by the

observation that incubation of neither untransfected IHKE-1 cells

nor cells stably transfected with GFP-Rab32 wt with the lysosomal

degradation inhibitor Bafilomycin A led to increased LRRK2

levels compared to control cells (Figure S7). Proteins destined for

degradation under normal conditions can accumulate upon

inhibition of lysosomal degradation via inhibitors. Taken together,

these data suggest that the perinuclear aggregates originate from

late endosomal structures, and are not associated with lysosomes.

Discussion

We identified the aminoterminal LRRK2 fragment as a novel

Rab32 interacting partner in a yeast two-hybrid screen. Co-

immunoprecipitation of GFP-Rab32 or endogenous LRRK2 from

IHKE-1 cells confirmed the interaction. Furthermore, pulldown of

Figure 6. Subcellular fractionation analysis of endogenous LRRK2 in IHKE-1 cells overexpressing GFP-Rab32 wt or GFP-Rab32
Q85L. (A) IHKE-1 cells either untransfected (-) or stably overexpressing GFP-Rab32 wt or GFP-Rab32 Q85L were mechanically disrupted and
fractionated by differential centrifugation. Fractions received either contained lysosomes and mitochondria (CLM) or cytosol and light membranes (C/
M). Western blot analysis to detect the lysosomal marker LAMP2, GAPDH, Rab32 and LRRK2 were performed with the fractions derived from the
different IHKE-1 cells. (B) Quantification of Western blot signal intensities using the gel analyzer functionality of ImageJ. The signal intensity for both
the C/M and the CLM fraction was added and set to 100%. The graph shows the % of GFP-Rab32 and endogenous LRRK2 in the C/M fraction of the
different cell lines. n = 6 independent experiments. Error bars represent S.E.M.; n.s. = not significant; * = p,0.05; ** = p,0.01.
doi:10.1371/journal.pone.0111632.g006

Figure 5. LRRK2-GFP subcellular localization in DsRed-Monomer-Rab32 wt and DsRed-Monomer-Rab32 Q85L overexpressing
NIH3T3 cells. (A) Graphical representation of the most common subcellular features of LRRK2-GFP in DsRed-Monomer-Rab32 wt or DsRed-
Monomer-Rab32 Q85L expressing cells. 1: pericentriolar endosome; 2: transport vesicles; 3: perinuclear aggregates. (B–D) Microscopic analysis of
NIH3T3 cells co-transfected with plasmids encoding DsRed-Monomer-Rab32 wt or DsRed-Monomer-Rab32 Q85L and LRRK2-GFP. In every cell the
LRRK2-GFP channel was analyzed for the occurrence of the features transport vesicles, pericentriolar endosomes and perinuclear aggregates. (-)
LRRK2-GFP alone: n = 71 cells from 5 independent experiments; LRRK2-GFP and DsRed-Monomer-Rab32 wildtype: n = 15 cells from 3 independent
experiments, LRRK2-GFP and DsRed-Monomer-Rab32 Q85L: n = 21 cells from 5 independent experiments.
doi:10.1371/journal.pone.0111632.g005
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endogenous LRRK2 from NIH3T3 cells using recombinant GST-

Rab32 supported the interaction (Figure 2).

When checking for binding specificity, we found that the

LRRK2 interaction is Rab32 and Rab38 specific. Noteworthy,

other GTPases tested did not interact with the aminoterminal

fragment of LRRK2 that we identified in the yeast two-hybrid

screen. Yet another small GTPase, the Rab29 protein (also known

as Rab7L1), was recently identified as a new LRRK2 interacting

partner [15,16]. Evolutionarily, Rab29 is most closely related to

Rab32 and Rab38. These three GTPases actually belong to a

subfamily, based on subtle differences in the generally conserved

G-domain, relative to other Rab proteins [42,58].

In this study we showed that Rab32 binds to the aminoterminal

region of LRRK2 whose function is largely unknown so far. Only

two domains have previously been described in this region: an

ankyrin repeats domain spanning the amino acids 676–902 of

human LRRK2, and an armadillo repeats domain from amino

acid 49 to 657 [59]. Although the Rab32 and Rab38 interacting

partner Varp (or ANKRD27) was shown to bind the GTPases in

its ankyrin repeats domain, the Rab32 interacting domain of

LRRK2 was located within the armadillo repeats [18]. Because

armadillo repeats are known to interact with GTPases, it was

speculated, that GTPases are a possible target also for the LRRK2

armadillo repeat domain [60]. In our experiments we could

demonstrate that a putative coiled-coil motif within the first 552 aa

of human LRRK2 is mandatory for Rab32 binding. Homology

modeling of the LRRK2 armadillo repeats domain revealed an

extended loop that contains the PD mutation E334K at the

position of the putative coiled-coil motif [59,60]. This loop

between armadillo repeat 6 and 7 is part of the Rab32 binding

region we identified in this work. Whether this mutation is

interfering with the binding capacity to Rab32 remains to be

elucidated.

Besides the analysis of Rab32 binding to LRRK2, we could

demonstrate the co-localization of LRRK2 and wildtype Rab32 at

transport vesicles and recycling endosomes and for LRRK2 and

the constitutively active Rab32 mutant at late endosomes/MVB.

In live cell imaging experiments we observed several sorting

events, thus demonstrating co-transport of Rab32 and LRRK2. It

has previously been shown that LRRK2 co-localizes with

endosome markers such as Rab7 and Rab5B, or the endosomal

transport marker c-adaptin [6,8,11,12,13,14]. The latter was part

of the AP-1 adapter protein complex, which was recently

demonstrated to directly interact with Rab32 [24]. This interac-

tion plays a role in Rab32 mediated endosomal transport of LRO

containing cells like melanocytes or platelets [17,24,25]. Even

more, the AP-1 complex subunit b-1 was found in a GST-

pulldown based screen to directly interact with LRRK2 [61].

Together with our own observations these findings suggest a role

for Rab32 in LRRK2 late endosomal transport and sorting.

Constitutively activated Rab32 showed increased co-localiza-

tion with the late endosome/MVB marker Rab7 in IHKE-1 cells

or Rab7 positive perinuclear aggregates in NIH3T3 cells. We

demonstrated that overexpression of constitutively active Rab32

led to an increased size of perinuclear aggregates, an observation

also made by another group upon LRRK2 G2019S overexpres-

sion [11]. Here, the authors came to the conclusion, that LRRK2

influences the Rab7 dependent lysosome positioning in the cell.

Several groups have demonstrated that small GTPases seemed to

be responsible for LRRK2 localization changes in cells [8,9,15].

Our data also support a role for Rab32 in LRRK2 intracellular

localization. We could not only demonstrate that Rab32 Q85L

overexpression led to the translocation of LRRK2-GFP to the

Rab7 positive perinuclear aggregates, but also that Rab32 Q85L

induced the formation of these structures. The precise mechanism

remains to be elucidated in future work.

Activated Rab32 did not simply seem to guide LRRK2 to

lysosomes. We treated GFP-Rab32 stably expressing IHKE-1 cells

with the lysosomal degradation inhibitor bafilomycin A. If Rab32

increases LRRK2 lysosomal degradation in GFP-Rab32 overex-

pressing cells, we would expect accumulation of LRRK2 upon

Bafilomycin A treatment, but this was not the case. Furthermore,

subcellular fractionation revealed that GFP-Rab32 overexpression

and expression of constitutively active Rab32 removed LRRK2

from the lysosomes and mitochondria containing fraction. This

indicates that the Rab7 positive aggregates of co-localized LRRK2

with Rab32 Q85L represent enlarged late endosomes or MVBs.

In addition to the function of Rab32 in cells containing LROs, a

role for Rab32 in regulating mitochondria has been identified

[17,29]. Rab32 was found at the mitochondria-ER interface,

where it was demonstrated to act as PKA anchoring protein

[27,62]. PKA in turn was shown to phosphorylate LRRK2 which

is then mediating cytotoxic effects that were assumed to play a role

in the pathogenesis of PD [63,64]. LRRK2 is involved in

mitochondrial dysfunction, which is discussed as a cause of

Parkinson’s disease [65]. Our fractionation experiments showed

that Rab32 recruited LRRK2 away from the lysosome and

mitochondria containing fraction in IHKE-1 cells upon overex-

pressing wildtype or constitutively active Rab32. Although we

focused on the role of Rab32 in LRRK2 LE/lysosomal

localization it cannot be excluded, that activated or overexpressed

GFP-Rab32 targets LRRK2 away from mitochondria and

mediates its transport to late endosomes/MVB.

Taken together our results describe Rab32 as a novel LRRK2

interacting protein controlling its late endosomal trafficking,

implying a novel role in regulation of the LRRK2 protein. A

distinct role of the Rab32 GTPase in PD remains still illusive. It

was shown, that Rab32 is present in brain, but the expression is

very low under normal conditions [43,58]. It has recently been

demonstrated, that Rab32 mRNA levels increase in mouse brains

after stimulation with LPS [32]. Whether there is an elevated

Rab32 expression under pathophysiological conditions, like PD,

remains to be elucidated. For the small GTPases Rab5B, Rab7

and RAB7L1 (Rab29), a regulatory role on LRRK2 in PD has

recently been described [8,15,16]. Furthermore, there is evidence,

that LRRK2 itself plays a role in late endocytic transport

pathways. It could be demonstrated, that the PD mutation

LRRK2 G2019S decreased the transport of EGF in a Rab7

mediated manner [66]. Similar to the Rab32 regulation of late

endosomal transport processes, the LRRK2 interacting GTPase

Rab7L1 regulates late endosomal transport of LRRK2, as well

[15]. Therefore, a role for Rab32 in processes underlying the

pathophysiology of PD is definitely possible making it to a

promising target for further functional studies.

Supporting Information

Figure S1 Expression of endogenous Rab32 and GFP-
Rab32 wt in control IHKE-1 and stably transfected
IHKE-1 (IHKE GFP-Rab32 wt) cells. Equal amounts of cell

lysate from IHKE-1 and IHKE GFP-Rab32 wt were subjected to

SDS-PAGE followed by Western blotting. Rab32 was detected

with an anti-Rab32 antibody.

(TIF)

Figure S2 Coiled-coil motif prediction within LRRK2
residues 1–552. The first 552 amino acids of LRRK2 were

entered to the coils algorithm that calculates the probability of
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coiled-coil motifs. The image detects a high probability of such a

structure between the amino acids 319–348.

(TIF)

Figure S3 Co-localization analysis of DsRed-Monomer-
Rab32 wt and DsRed-Monomer-Rab32 Q85L with GFP-
Rab5A and GFP-Rab32 wt and GFP-Rab32 Q85L with
endogenous Rab9. (A) For Rab5 co-localization analysis

NIH3T3 cells were co-transfected with plasmids encoding for

DsRed-Monomer-Rab32 wt or DsRed-Monomer-Rab32 Q85L

and the early endosomal marker protein GFP-Rab5A. Cells were

fixed in 4% PFA and subjected to microscopic analyzes. Scale

bar = 10 mm. (B) For Rab9 co-localization analysis NIH3T3 cells

were transfected with the indicated GFP-Rab32 wt or GFP-Rab32

Q85L expression plasmids. 24 hours after transfection cells were

fixed and subjected to secondary immunofluorescence staining of

Rab9. Scale bar = 10 mm.

(TIF)

Figure S4 Co-localization analysis of LRRK2-GFP with
Rab7 and Rab11. For co-localization analysis NIH3T3 cells

were transfected with plasmids encoding for LRRK2-GFP and

immunostained for Rab7 or Rab11 localization, respectively. Cells

were fixed in 4% PFA and subjected to microscopic analyzes.

Scale bar = 10 mm.

(TIF)

Figure S5 Golgi and endosomal co-localization of GFP-
Rab32 wt. IHKE-1 cells were transiently transfected with

pEGFP-Rab32 wt. After 24 hours cells were fixed and immuno-

stained for the indicated proteins. Scale bar = 10 mm.

(TIF)

Figure S6 Analysis of GFP-Rab32 wt and GFP-Rab32
Q85L co-localization with Rab7 and LAMP2 in IHKE-1
cells. (A) IHKE GFP-Rab32 wt and IHKE GFP-Rab32 Q85L

cells were grown on glass cover slips, fixed and stained for Rab7 by

secondary immunofluorescence. Scale bar = 10 mm. (B) IHKE

GFP-Rab32 wt and IHKE GFP-Rab32 Q85L cells were grown on

glass cover slips, fixed and stained for LAMP2 by secondary

immunofluorescence. Scale bar = 10 mm.

(TIF)

Figure S7 LRRK2 expression in untransfected (IHKE-1)
and IHKE GFP-Rab32 wt cells upon Bafilomycin A
treatment. Western blots of endogenous LRRK2 and LC3B of

IHKE-1 and stably GFP-Rab32 wt expressing IHKE-1 cells. Cells

were grown for 24 hours. After incubation with 100 nM

Bafilomycin A for another 24 hours, cells were lysed and the

proteins separated by SDS-PAGE followed by subsequent Western

blot analysis. n = 3 independent experiments.

(TIF)

Movie S1 Live cell imaging of DsRed-Monomer-Rab32
wt and LRRK2-GFP. NIH3T3 cells were grown in live cell

microscopy chambers for 24 hours. Then, cells were transfected

with plasmids encoding DsRed-Monomer-Rab32 wt and LRRK2-

GFP. After 48 hours of incubation living cells were imaged using a

Zeiss LSM5 live microscope. Images were captured in live mode

every second, both channels simultaneously.

(MP4)

Movie S2 Live cell imaging of DsRed-Monomer-Rab32
wt and LRRK2-GFP. NIH3T3 cells were grown in live cell

microscopy chambers for 24 hours. Then, cells were transfected

with plasmids encoding DsRed-Monomer-Rab32 wt and LRRK2-

GFP. After 48 hours of incubation living cells were imaged using a

Zeiss LSM5 live microscope. Images were captured in live mode

every second, both channels simultaneously.

(MP4)
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