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Abstract. Let T be the circle and A be a T-C∗-algebra. Then the T-equivariant K-theory
KT

∗
(A) of A is a module over the representation ring Rep(T) of the circle. The latter is a

Laurent polynomial ring. Using the support of the module as an invariant, and techniques of
Atiyah, Bott and Segal, we deduce that there are examples of T-C∗-algebras A such that A

and A⋊T are in the bootstrap category, but A is not KKT-equivalent to any commutative T-
C∗-algebra. We also assemble various results on T-equivariant K-theory of smooth manifolds
and deduce an equivariant version of the Lefschetz fixed-point formula for T-equivariant
geometric correspondences.

1. Introduction

This article has several purposes. The first is to show that many T-C∗-
algebras are not KKT-equivalent to any commutative T-C∗-algebra, even
though both they and their cross products by T are in the boostrap category.
These examples include the Cuntz–Krieger algebras OA with their usual circle
actions. To prove this statement we use a simple KT

∗-theoretic obstruction to
commutativity based on ideas of Atiyah, Bott and Segal.

The phenomenon just described is in sharp contrast to the nonequivariant
situation: every C∗-algebra in the boostrap category is KK-equivalent to a
commutative one.

Here and throughout this article, KT
∗(A) := KT

0 (A)⊕KT
1(A) denotes equivari-

ant K-theory with complex coefficients, i.e. is the integral K-theory tensored
by C. In particular Rep(T) = KKT(C,C) ∼= C[X,X−1] is the ring of Laurent
polynomials with complex coefficients.

Study of equivariant K-theory groups K∗
G(X) as modules over Rep(G) (G

a compact group) began with a series of papers by Atiyah, Bott and Segal,
written in the 60’s (see [2, 3, 4, 23].)

A common strategy in these articles is first to prove results about the case
G = T, and then extend them to the case of connected groups G using Lie
group theory (we will restrict entirely to T in this article.) The article [2] treats
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equivariant cohomology (for torus actions) and contains a lot of the essential
ideas used by us here, except that we work in equivariant K-theory instead.
Other good sources for equivariant K-theory are the articles [23] of Segal and
Atiyah–Segal [3]. As we wish to reach a wider readership than only those who
are familiar with these articles, we have explained supports and localization
rather carefully in this article.

Any module over Rep(T) ∼= C[X,X−1], and in particular, the module KT
∗(A)

for a T-C∗-algebra A, yields a sheaf of modules over C∗ defined by localizing
the module to Zariski open sets. Such a sheaf has a support. The techniques
of Atiyah and Segal are used in the first part of the article to check that, for
any locally compact T-space X , the support of KT

∗

(
C0(X)

)
= K∗

T
(X) is always

either contained in the unit circle or is all of C∗. But, as we observe, for a
Cuntz–Krieger algebra OA with its standard circle action, the support of the
sheaf KT

∗(OA) is the set of nonzero eigenvalues of the 0-1-valued matrix A.
Thus Cuntz–Krieger algebras have rather arbitrary algebraic integers as

spectral points. In particular, they are not generally KKT-equivalent to com-
mutative T-C∗-algebras.

The second purpose of this paper is to strengthen several results on T-
equivariant K-theory of compact smooth manifolds due to Atiyah et al., for
example, proving that after a suitable localization, C(X) is KKT-equivalent to
C(F ) with F ⊂ X the stationary set, and to describe T-equivariant K-theory
for smooth manifolds in terms of various geometric data. This discussion is
mainly for purpose of proving the Lefschetz theorem in KKT.

The equivariant Lefschetz theorem proved here generalizes the classical Lef-
schetz fixed-point formula. Recall that this formula equates a homological
invariant of a smooth self-map f : X → X with a geometric invariant of
the map. Our equivariant Lefschetz formula takes into account a T-action
for which the map is equivariant; moreover, it applies to more general mor-
phisms in KKT(C(X), C(X)) than just the ones induced from smooth maps:
our techniques work just as well for geometric correspondences in the sense of
[15].

Since C[X,X−1] is a principal ideal domain, any finitely generated C[X,
X−1]-module M decomposes uniquely into a torsion module and a free mod-
ule ∼= C[X,X−1]n. Any module self-map of M thus has a C[X,X−1]-valued
trace by compressing it to the free part of M . In particular, this applies to any
element f ∈ KKT

∗(C(X), C(X)) where X is a T-space, for f acts by a mod-
ule map on K∗

T
(X). We denote by traceC[X,X−1](f∗) ∈ C[X,X−1] the graded

module trace of f∗ in this sense.
In the case of a morphism f represented by a smooth T-equivariant geo-

metric correspondence in the sense of [15], the Lefschetz theorem identifies the
homological invariant traceC[X,X−1](f∗) with the Atiyah–Singer T-index of a
certain geometrically defined coincidence cycle constructed out of the corre-
spondence: that is, we prove that

(1.1) traceC[X,X−1](f∗) = indT
(
Lef(f));
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where Lef(f) is the class in KKT of a certain T-equivariant Baum–Douglas
cycle for X , depending geometrically on the correspondence representing f
and indT is the Atiyah–Singer T-index.

In particular the right hand side is defined purely in terms of equivariant
correspondences and geometric intersections, and hence is a local, topological
invariant of the correspondence. The left hand side is of course homological
and global in nature.

The equivariant Lefschetz theorem presented here is a special case of joint
work with Ralf Meyer. See [9] for the more general version.

I would like to express my appreciation to Siegried Echterhoff and Ralf
Meyer for their comments on the material here. The material in this note is
related to joint work with both of them (independently.) I would also like
to thank Nigel Higson for drawing my attention to the beautiful paper [2] of
Atiyah and Bott on localization in equivariant cohomology.

Finally, the reader interested in further information on equivariant K-theory
for compact group actions should see the important source [22], which deals ex-
tensively with the Universal Coefficient and Künneth theorems in the integral
version of KKT, and more generally, for Hodgkin groups. When one works in-
tegrally, the representation ring Rep(T) becomes Z[X,X−1] which is no longer
a principal ideal domain; this complicates some statements considerably.

2. The T-spectrum of spaces

In the following, the reader should consider all T-equivariant K-theory
groups, e.g. K∗

T
(X) for a T-space X , or KT

∗(A) for a T-C∗-algebra A, as hav-
ing complex coefficients. Thus, KT

∗(A) denotes the usual integral equivariant
K-theory of A tensored by the complex numbers.

Similarly, the symbol Rep(T) means the usual representation ring of the cir-
cle, tensored with the complex numbers, or, more conveniently for us, the ring
C[X,X−1] of Laurent polynomials in one variable, and complex coefficients.
The isomorphism Rep(T)→ C[X,X−1] is the character map.

This note makes crucial use of the fact that for any T-C∗-algebra A, the T-
equivariant K-theory KT

∗(A) is a module over Rep(T) ∼= C[X,X−1]. For unital,
commutative T-C∗-algebras this is rather clear, since in this case KT

∗(A) is a
ring and the unital inclusion C→ A maps Rep(T) to a subring of KT

∗(A). This
induces the module structure. It is not hard to convince oneself that if even
if A is not unital, and hence no ring embedding exists, the module structure
still makes sense.

In the general case, we may point to the external product in equivariant
Kasparov theory as a formal definition of the module structure: to translate
to Kasparov language, KT

∗(A) = KKT

∗(C, A) and Rep(T) = KKT(C,C) (ten-
sored by the complex numbers.) So Kasparov external product gives grading-
preserving maps

KKT

∗(C, A)×KKT(C,C)→ KKT

∗(C, A)

KKT

∗(C,C)×KKT(C, A)→ KKT

∗(C, A)

Münster Journal of Mathematics Vol. 6 (2013), 413–444
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These maps agree: external product is commutative.
More generally, KKT

∗(A,B) is a graded Rep(T)-module for any A,B.
For commutative A, i.e. for T-spaces, the module structure of K∗

T
(X) over

Rep(T) has been quite extensively studied by Atiyah and Segal in [1] and [2],
and also by Atiyah and Bott in the context of equivariant cohomology in [2].

The following definition applies to arbitrary C[X,X−1]-modules, and in-
deed, to modules over more general polynomial rings.

Definition 2.1. Let M be a module over the ring Rep(T) ∼= C[X,X−1]. Its
annihilator ann(M) is the ideal {f ∈ C[X,X−1] | fM = 0}. The support of
M is defined by

supp(M) :=
⋂

f∈ann(M)

Zf

where Zf ⊂ C∗ is the zero set of f .

Thus a point z is not in the support of M if and only if there is a polynomial
f such that f(z) 6= 0 but fM = 0. In particular, this can hold only if M has
module torsion. Since a free module has no torsion, the support of a free
module like C[X,X−1] itself, is C∗.

Under embeddings M1 →M2 of C[X,X−1]-modules, supports can only in-
crease as ann(M2) ⊂ ann(M1) in this situation, which implies supp(M1) ⊂
supp(M2). In particular, supp(M) = C∗ as soon as M contains a free sub-
module. If on the other hand one has a surjection M1 →M2, then ann(M1) ⊂
ann(M2) so that supp(M2) ⊂ supp(M1) results.

The ring C[X,X−1] is a principal ideal domain, i.e. any ideal is generated
by a single polynomial f . This polynomial is unique up to multiplication by an
invertible in C[X,X−1], i.e. f can be replaced by fXn for any integer n, and in
particular f may always be taken to be a polynomial. Furthermore, any finitely
generated module over a principal ideal domain decomposes uniquely into a
direct sum of a free module and a torsion module. The torsion submodule is
by definition {m ∈M | fm = 0 for some f 6= 0 in C[X,X−1]}.

A finitely generated torsion module has a nonzero annihilator ideal because
the annihilator ideal is the intersection of the annihilator ideals of the gen-
erators, this is an intersection of finitely many nonzero ideals and hence is
nonzero. If the annihilator of the torsion module is generated by f , then the
support of the torsion module is the zero set Zf of f in C∗, and in particular
is a finite set of points of C∗. If the module is not finitely generated, it may be
torsion, but have a zero annihilator ideal, however. In this case, the support
will be C∗ (see below for an example.)

If a module has finite dimension as a vector space over C then of course it
is torsion and finitely generated and the above discussion applies.

For any C[X,X−1]-module, ring multiplication by X ∈ C[X,X−1] is an
invertible, complex linear operator on the module, viewed just as a complex
vector space. If M is torsion with nonzero annihilator ideal, then the support
is the set of eigenvalues of X and the generator f of the annihilator ideal is the
minimal polynomial of X . Indeed, factor f(X) = (X − λ1)

k1 · · · (X − λn)
kn .

Münster Journal of Mathematics Vol. 6 (2013), 413–444
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Each λi must be an eigenvalue of X since
∏

j 6=i(X − λj)
kj (X − λi)

ki−1 maps
M into the kernel of X − λi. If the kernel of X − λi is zero, we would have a
polynomial of smaller degree annihilating M , false. So the kernel is nonzero.
Furthermore, as f(X) = 0 on M , 0 = f(X)v = f(λ)v if v is any eigenvector
of X with eigenvalue λ. Hence any eigenvalue of X is a root of f .

Remark 2.2. Finite generation is guaranteed for the C[X,X−1]-module K∗
T
(X)

whenever X is a smooth, compact manifold and T acts smoothly (see [23]) or
the discussion in Section 4 of this paper.

Definition 2.3. Let A be a T-C∗-algebra. The T-spectrum of A is defined to
be the support of KT

∗(A) as an C[X,X−1]-module.

In the commutative case, we refer to the T-spectrum of the corresponding
space.

Remark 2.4. The definition of spectrum in terms of the module KT
∗(A) :=

KT
0 (A) ⊕ KT

1(A) given above does not take into account the grading on T-
equivariant K-theory. A more natural invariant, in some ways, would take this
into account, but we do not do this here because it is not necessary for our
purposes. Note also that KT

∗(A)
∼= KT

0

(
C(S1)⊗A

)
where the T-action on the

circle S1 is trivial, which means that in computing module structures we can
deal exclusively with T-equivariant vector bundles.

In the case of the trivial T-action on a point, K∗
T
(·) = Rep(T) and the

module structure over Rep(T) is by ring multiplication. Hence the annihilator
ideal is zero and T-spec(·) = C∗.

If A = C([0,∞)) with trivial T-action, then KT
∗(A) = 0 and hence T-spec(A)

= ∅ in this case.
Note that, although evaluation of Laurent polynomials at any z ∈ C∗ yields

a C[X,X−1]-module M such that supp(M) = {z}, if this module is to arise
from an equivariant K-theory module, then z must be an algebraic integer, at
least if the module is finite dimensional over C.

Proposition 2.5. If KT
∗(A) is finite dimensional over C, then the T-spectrum

of A is a finite set of algebraic integers in C∗.

Proof. The spectrum in this case is the spectrum of X acting on KT
∗(A). But X

comes from an endomorphism of the underlying T-equivariant K-theory with
integer coefficients and therefore is represented in some basis for KT

∗(A) by a
matrix with integer coefficients, and T-spec(A) is its set of eigenvalues, so they
are algebraic integers. �

Theorem 2.6. If A = C0(X) is any commutative T-C∗-algebra, then either
T-spec(A) = C∗ or T-spec(A) ⊂ T. In the latter case, the spectrum is finite
and each point of it is an nth root of unity where n is the order of some (finite)
isotropy group of the action.

If X is compact, then T-spec(X) = C∗ if and only if X has a stationary
point.

Münster Journal of Mathematics Vol. 6 (2013), 413–444
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The proof will occupy the rest of this section. We start by discussing sta-
tionary points. Suppose X has such a point. Then there is a T-map from the
one-point T-space to X ; it induces a module map K∗

T
(X)→ K∗

T
(·) = Rep(T).

If X is compact this map is surjective because the map from X to a point is
proper in this case and gives a splitting. Hence C∗ = T-spec(·) ⊂ T-spec(X).

Thus, T-spec(X) = C∗ if X has a stationary point and is compact. This is
rather common; for example, by the Hopf theorem any smooth T-action on a
smooth manifold of nonzero Euler characteristic has a stationary point. Hence
having T-spectrum C∗ is rather generic for compact T-spaces.

If X is not compact, it may have a stationary point without the spectrum
being C∗; for example [0,∞) with trivial T-action has empty spectrum but
many stationary points. The other implication also requires compactness in
view of Example 2.8 below, where the spectrum is C∗ but there is no stationary
point.

To get an example of a space with non stationary point but with spec-
trum C∗, observe first that for any collection (Mλ)λ∈Λ) of nonzero C[X,X−1]-
modules, the annihilator of the direct sum M :=

⊕
Mi is, essentially tau-

tologically, the intersection
⋂

i ann(Mi) of the annihilators. But for the ring
C[X,X−1], there can only be finitely many ideals containing a given nonzero
ideal, for if the given one is generated by (f) then any ideal containing (f) is
generated by a divisor of f . Hence if there are infinitely many distinct ideals
ann(Mi), then

⋂
i ann(Mi) would have to be the zero ideal.

This shows the following.

Lemma 2.7. If X is a T-space which is a disjoint union X =
⊔

i Xi for a
family of T-spaces Xi. Then either the T-spectrum of X is C∗ or the sets
T-spec(Xi) are all finite, there are only finitely many of them, and T-spec(X)
is their union.

Proof. K∗
T
(X) = ⊕i∈ΛK

∗
T
(Xi) and the result follows from the preceding re-

marks. �

Example 2.8. Let T act on Xn := T with t · s := tns. Let Ωn ⊂ T denote the
subgroup of nth complex root of unity. Then Xn

∼= T/Ωn with T acting by
translation on the quotient. Thus K∗

T
(Xn) ∼= Rep(Ωn), and the C[X,X−1] ∼=

Rep(T ) module structure is by restriction of representations, i.e. by restrictions
of polynomials to Ωn ⊂ C∗. The support is Ωn, thus T-spec(Xn) = Ωn.

Now let X = T×N with T acting as above in the nth copy of T. By Lemma
2.7, the T-spectrum of X is C∗, although there is no stationary point.

The proof of Theorem 2.6 follows from the following two lemmas.

Lemma 2.9. Let X be any T-space and Y ⊂ X be a closed T-invariant sub-
space of X. Then

T-spec(X) ⊂ T-spec(Y ) ∪ T-spec(X − Y ).

Münster Journal of Mathematics Vol. 6 (2013), 413–444
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Proof. Consider the 6-term exact sequence of T-equivariant K-theory groups
associated to the exact sequence

0→ C0(X − Y )
i−→ C(X)

r−→ C0(Y )→ 0.

Let f ∈ C[X,X−1] annihilate K∗
T
(X − Y ) and K∗

T
(Y ). Then if a ∈ K0

T
(X),

0 = f · r∗(a) = r∗(f · a) implies f · a = i∗(a
′) some a′ ∈ K0

T
(X − Y ) and then

f2 ·a = i∗(f ·a′) = 0 so f2 annihilates K0
T
(X). Similarly f2 annihilates K1

T
(X).

Thus

f ∈ ann
(
K∗

T(X − Y )
)
∩ ann

(
K∗

T(Y )
)
⇒ f2 ∈ ann

(
K∗

T(X)
)
.

Hence supp
(
K∗

T
(X)

)
is contained in Zf2 = Zf for any f ∈ ann

(
K∗

T
(X − Y )

)
∩

ann
(
K∗

T
(Y )

)
. The result now follows. �

Lemma 2.10. If X := T ×H Y for some closed subgroup H ⊂ T and some
H-space Y , then T-spec(X) ⊂ H. In particular, if H is a proper subgroup,
then the T-spectrum of X consists of a set of nth roots of unity, where n is the
cardinality of H.

Proof. The Rep(T)-module structure on K∗
T
(X) ∼= K∗

H(Y ) factors through
the restriction map Rep(T) → Rep(H) and the Rep(H)-module structure on
K∗

H(Y ). If f is a polynomial which vanishes on H ⊂ T then it restricts to zero
in Rep(H) and hence acts by zero on K∗

H(Y ) ∼= K∗
T
(X). Hence T-spec(X) ⊂ H

as claimed. �

Remark 2.11. We remind the reader of two easy and well-known facts about
induced spaces.

(i) Induced spaces W = T ×H Y from a subgroup H ⊂ T are characterized
among T-spaces as those admitting a T-map ϕ : W → T/H . We can
recover Y from ϕ as the fiber over the identity coset in T/H .

(ii) We often call induced spaces slices. Since we can always restrict a T-map
to a T-invariant subspace, any T-invariant subspace of a slice is a slice
too.

(iii) A theorem of Palais (see [20]) asserts that any T-space can be covered by
open slices using stabilizer subgroups of the action. That is, if X is any
T-space and x ∈ X , then there exists an open subset U ⊂ X with x ∈ U ,
and a T-map ϕ : U → T/H where H := Tx is the stabilizer of x. (This
result holds more generally for actions of Lie groups.)

Note that if ϕ : U → T/H is a slice with H = Tx for some x ∈ U , then Ty ⊂ Tx

for any y ∈ U .

Lemma 2.12. Let X be a (locally compact) T-space.

(i) If X has no stationary points, then K∗
T
(X) is a torsion module and

T-spec(Y ) is a finite subset of T for every precompact T-invariant subset
Y ⊂ X. Furthermore, T-spec(Y ) ⊂ ∪y∈Y Ty.

(ii) If T-spec(X) is finite, F ⊂ X is the stationary set, then K∗
T
(F ) = 0 and

the T-equivariant *-homomorphism C0(X − F )→ C0(X) determines an
isomorphism K∗

T
(X − F ) ∼= K∗

T
(X) of C[X,X−1]-modules.

Münster Journal of Mathematics Vol. 6 (2013), 413–444
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Remark 2.13. The same arguments prove a stronger version of the second
statement: that the T-equivariant *-homomorphism C0(X − F ) → C0(X) is

invertible in KKT(C0(X − F ), C0(X)).
The condition of having finite T-spectrum thus implies that the stationary

set F is homologically trivial : that is, K∗
T
(F ) = 0. Compare the ray [0,∞)

with the trivial action.

Proof. For the first statement, K∗
T
(X) is the inductive limit of the K∗

T
(Y ), as

Y ⊂ X ranges over the precompact T-invariant subsets of X . Therefore, if we
can prove that the annihilator ideal of K∗

T
(Y ) is nonzero for every precompact

T-invariant subset Y ⊂ X , we will be done. This is equivalent to showing that
T-spec(Y ) is finite for all such Y . If Y ⊂ X is precompact, with closure Y ,
then we can cover Y by finitely many T-slices ϕ : Ui → T/Hi using stabilizer
subgroups Hi of the action on Y . This gives a finite cover of Y itself by open
slices (as in Remark 2.11, intersecting a slice with a T-invariant subset always
results in a slice.) Furthermore, since the Hi are stabilizer groups of points in
Y and the action has no stationary points, all Hi are finite subgroups of T.

Now prove the result by induction on the minimal number of slices required
to cover Y , which we have just observed is finite. It can be covered by a single
slice, then it is itself a slice, and the result follows from Lemma 2.10. If the
result is true for precompact subsets of X that can be covered by < n slices,
and Y can be covered by n slices with domains U1, . . . , Un and subgroups Hi,
then the closed T-invariant subspace Y − Un of Y can be covered by n − 1
slices so by inductive hypothesis T-spec(Y −Un) ⊂

⊔
x∈Y Tx ⊂ T is finite. The

result for Y now follows from Lemma 2.9.
For the second statement, consider the exact sequence of T-C∗-algebras

0→ C0(X − F )→ C0(X)→ C0(F )→ 0.

This induces an exact sequence of K∗
T
-groups. The restriction map K∗

T
(X) →

K∗
T
(F ) must vanish, because we have assumed that X has finite spectrum, (i.e.

K∗
T
(X) is torsion) whereas K∗

T
(F ) is free. This implies that we have a pair of

short exact sequences

0→ K∗+1
T

(F )→ K∗
T(X − F )→ K∗

T(X)→ 0

for ∗ = 0, 1. But X − F has no stationary points, so from the first part of
this Lemma, K∗

T
(X − F ) is torsion. Now a free C[X,X−1]-module K∗+1

T
(F )

which injects into a torsion module K∗
T
(X − F ) can only be the zero module.

Hence K∗
T
(F ) = 0, ∗ = 0, 1 and C0(X − F ) → C(X) induces an isomorphism

on K∗
T
-theory. �

Proof of Theorem 2.6. Assume that T-spec(X) 6= C∗.
Then since X has finite T-spectrum, K∗

T
(X) ∼= K∗

T
(X − F ) as C[X,X−1]-

modules, where F ⊂ X is the stationary set, by Lemma 2.12. In particular,
T-spec(X) = T-spec(X −F ) so by replacing X by X −F we may assume that
X itself has no stationary points.
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Now by the preliminary discussion following Definition 2.1, since K∗
T
(X)

has nonzero annihilator ideal, the support is the set of eigenvalues of X acting
on K∗

T
(X). Suppose λ is an eigenvalue, v ∈ K∗

T
(X) an eigenvector for λ.

Since K∗
T
(X) is the inductive limit of the K∗

T
(Y ) as Y ⊂ X ranges over the

precompact T-invariant subsets of X , there exists precompact Y and w ∈
K∗

T
(Y ) mapping to v. By Lemma 2.12, since there are no stationary points,

K∗
T
(Y ) has a finite annihilator ideal, say generated by g ∈ C[X,X−1], and

moreover, the support of K∗
T
(Y ) is contained in the unit circle. Since gw = 0,

gv = 0, and as gv = g(λ)v, λ is a root of g, whence λ is contained in the unit
circle as claimed.

This also proves that λ is an nth root of unity where n is the cardinality of
some isotropy group of the action (on Y ). �

3. The T-spectra of C∗-algebras

Let B be a C∗-algebra equipped with an automorphism σ. Then A := B⋉Z

is a T-C∗-algebra using the dual action

z

(∑

n∈Z

bn[n]

)
:=

∑

n∈Z

znbn[n].

Hence it has a T-spectrum. The Green–Julg theorem asserts that the T-
equivariant K-theory of A is isomorphic to the K-theory K∗(A ⋊ T) of the
cross product. By Takai–Takesaki duality, this agrees with K∗(B).

Proposition 3.1. Let B be a C∗-algebra and σ ∈ Aut(B). Endow the cross

product A := B⋊σZ with the dual action of T ∼= Ẑ. The automorphism induces
an invertible linear map σ∗ : K∗(B) → K∗(B) and hence a C[X,X−1] module
structure on K∗(B). This module is naturally isomorphic to KT

∗(A).
In particular, if K∗(B) is finite dimensional over C, then

T-spec(B ⋊ Z) = Spec(σ∗),

with Spec(σ∗) the set of eigenvalues of the invertible linear map σ∗ ∈ EndC
(
K∗

(B)
)
.

Proof. This follows from Blackadar Proposition 11.8.3, which asserts that the
isomorphism

K∗(B) ∼= K∗(B ⋉ Z ⋉ T) = K∗(A⋊ T) ∼= K∗
T(A)

of Takai–Takesaki duality and the Green–Julg theorem, intertwines the group
homomorphism σ∗ and the group homomorphism of scalar multiplication by
X ∈ C[X,X−1] ∼= Rep(T).

Furthermore, if K∗
T
(A) has finite dimension, then T-spec(A) has nonzero

annihilator ideal and the support is the set of nonzero eigenvalues of the linear
map X because it is the zero set of the minimal polynomial of the linear map
X . �
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Remark 3.2. Baaj–Skandalis duality (see [5]) is a functor KKT → KKZ which
on objects sends a T-C∗-algebra B to the Z-C∗-algebra B := A ⋊ T, with
the dual action and sends a T-equivariant *-homomorphism A → A′ to the
(obvious) induced Z-equivariant map B := A ⋊ T → B′ := A′ ⋊ T. Baaj and
Skandalis extend this to a natural isomorphism

KKT

∗(A,A
′) ∼= KKZ

∗(A⋊ T, A′
⋊ T)

of equivariant KK-groups. Note that this transformation maps an induced
space X = T ×H Y for some H-space Y and a closed subgroup H of T to the
Z-C∗-algebra

C0(X)⋊ T ∼= C0(Y )⋊H

with an appropriate dual action of Z. The important point is that this Z-
action factors through a periodic action, i.e. factors through the homomorphism
Z→ H ∼= Z/n for some n, and a Z/n-action.

Under the Baaj–Skandalis transformation, the T-spectrum of a T-C∗-algebra
A corresponds, as we have observed above, to the spectrum, in the usual sense,
of the endomorphism of K∗(A) by the generator 1 ∈ Z of the Z-action. Hence
if the Z-action is periodic, then the corresponding linear map has finite order,
and hence its spectrum consists of roots of unity in the circle. This is, roughly,
then, the counterpart of the situation in the first section, in the category KKZ.

For instance let A = C with the trivial automorphism. Applying the propo-
sition gives that the T-spectrum of C∗(Z) with its dual action of T is the single
point {1} ⊂ C∗.

Example 3.3. The T-spectrum of the irrational rotation algebra Aθ := C(T)
⋊Rθ

Z with the dual action of T is also {1} because σ∗ is the identity map on
K∗(T).

Example 3.4. Let A be an integer n-by-n matrix with entries either 0 or 1
and assume for simplicity that A is invertible over C. Then the T-spectrum of
the associated Cuntz–Krieger algebra OA is the set of eigenvalues of A. Indeed,
OA
∼= FA ⋉ Z where FA is an appropriate AF-algebra, and ∼= means Morita

equivalence. It is well-known and easily checked from the Bratteli diagram,
that the K-theory of FA is ∼= Cn, and the action of Z on it is by the matrix A.
Hence the T-spectrum of OA is the spectrum of A.

Corollary 3.5. The Cuntz–Krieger algebra OA is not KKT-equivalent to any
commutative T-C∗-algebra as soon as the integer matrix A has some eigenvalue
of modulus 6= 1.

This happens for instance if A =

[
1 1
1 0

]
.

For the benefit of the reader (the result is well-known) we prove the follow-
ing.

Lemma 3.6. Both OA and OA ⋊ T ∼= FA are in the boostrap category N .
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Proof. FA is an AF algebra so is in N . The Baum–Connes conjecture for Z is
the statement that C0(R) with the Z-action by translation is KKZ

1 -equivalent
to C. It follows from this that OA = FA⋊Z is KK-equivalent to C0(R, FA)⋊Z.
There is an exact sequence

0→ S ⊗ FA ⊗K→ C0(R, FA)⋊ Z→ FA ⊗K→ 0

of C∗-algebras, obtained by evaluating functions on R at the integer points Z ⊂
R, a closed and Z-invariant subset, and using C0(Z)⋊Z ∼= K. Since K is KK-
equivalent to C both ends are in the boostrap category. Hence C0(R, FA)⋊ Z

is also. �

Remark 3.7. We have actually proved something stronger than Corollary 3.5,
for we have shown that the T-equivariant K-theory of OA is not isomorphic
in the category of C[X,X−1]-modules to the T-equivariant K-theory of any
locally compact Hausdorff T-space.

We close this section with some further remarks on T-equivariant K-theory
of Cuntz–Krieger algebras, to see T-spectra in a dynamical perspective.

Up to now we have considered KT
∗(A) := KT

0 (A) ⊕ K1
T
(A) as simply a

C[X,X−1]-module without taking into consideration the grading. If we con-
sider KT

∗(A) as a Z/2-graded C[X,X−1]-module, then an invariant of it—
assuming it finite dimensional over C—is the rational function

(3.1) charA(t) :=
det(1− tX+)

det(1 − tX−)

where X± denotes the action of the generator X on KT

0/1(A).

If A and B are KKT-equivalent, they have the same rational function (3.1).
The following elementary result about (grading-preserving) linear transfor-

mations X on a Z/2-graded vector space can be found in the appendices to
Hartshorne’s book [17]:

(3.2) charA(t) = exp

( ∞∑

n=1

traces(X
n)

tn

n

)

holds, where traces is the graded trace, the difference of the traces of X acting
on KT

1 (A) and KT
0(A).

We now specialize to the following situation: let φT : Tn → Tn be a linear
automorphism, where T ∈ GLn(Z). We assume that T is self-adjoint, so it is
diagonalizable over C with real, nonzero eigenvalues. We can form the cross
product A := C(Tn) ⋊φT

Z, which is a T-C∗-algebra. By the Lefschetz fixed-
point theorem,

traces
(
(φ∗

T )
n
)
= (−1)k Pn(φT ),

because the sign of det(1 − T ) is (−1)k where k is the number (including
multiplicities) of eigenvalues λ of T with λ > 1. Here traces(φT ) is the graded
trace of the action of φT on K∗(Tn), and Pn(φT ) is the number of periodic
points of order n.
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Putting things together, we see that

det(1− tX+)

det(1− tX−)
= exp

(
(−1)k ·

∞∑

n=1

Pn(σ)
tn

n

)
.

The right hand side is called the Artin-Mazur zeta function of the map φT (see
[1].)

To be explicit, if n = 2 and T =

[
1 1
1 0

]
, so k = 1, X+ = Id and X− acts as

T on K1(T2) ∼= C2 and so charC(T)⋊φT
Z(t) = t2 − t− 1 and

T-spec
(
C(T2)⋊φT

Z
)
=

{
1,

1±
√
5

2

}
.

Note that this yields another example of a T-C∗-algebra not KKT-equivalent
to a commutative one.

4. T-equivariant KK-theory of smooth manifolds and localization

If R is any commutative (unital) ring then any free, finitely generated R-
module M has a well-defined rank, and any R-module self-map of M has a
well-defined trace. We denote these invariants by rankR(M) and traceR(L)
respectively, so that in particular traceR(Id) = rankR(M).

We will be mainly interested in the case where R = C[X,X−1] or a local-
ization of R.

Consider C[X,X−1] as regular (rational) functions on C∗. In algebraic
geometry, if one wants to study the behavior of a variety near a point z ∈
C∗, then one considers the set S of functions which are nonzero at z, and
localizes C[X,X−1] with respect to this multiplicative set (a subset of a ring is
a multiplicative set if it includes the unit 1 and is closed under multiplication.)

This means that we invert all functions which are in S, i.e. invert functions
which do not vanish at z. We therefore get all rational functions which are
regular at z:

C[X,X−1]z ∼=
{
f ∈ C(X)

∣∣∣∣ f =
h

g
, g(z) 6= 0

}
.

This is a local ring: it has a unique maximal ideal, the ideal of f ∈ C[X,X−1]z
such that f(z) = 0, and any f ∈ C[X,X−1] such that f(z) 6= 0 is invertible in
C[X,X−1]z .

Note also that C[X,X−1] embeds in its localization(s).
Localization can be defined for any commutative ring R with no zero divi-

sors, at a multiplicative subset S (like the complement of a prime ideal) by
considering the elements r

s in the ring of fractions of R, such that s ∈ S. In
this situation, R embeds in its localization.

For rings with zero divisors, localizations can still be defined, but the map
from the original ring to its localization need not any longer be injective. Any
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element r ∈ R such that there exists s ∈ S so that rs = 0, is is killed by
localization at S.

The prime ideals of the localization of a ring R at S correspond to the prime
ideals of R which do not intersect S.

The “localizations” C[X,X−1]z just discussed, are the stalks of a sheaf of
rings over C∗ with the Zariski topology. For most of this paper, we will not
use the stalks, but the values of the sheaf on Zariski open sets. To fix notation
and terminology, we state the definition formally.

Definition 4.1. Let f ∈ C[X,X−1]. The localization of C[X,X−1] at the
Zariski open Uf := C∗ − Zf is the ring obtained from C[X,X−1] by inverting
all powers of f . We denote by C[X,X−1]f the localization of C[X,X−1] at
Uf . The assignment Uf 7→ C[X,X−1]f defines a sheaf on C∗ with the Zariski
topology. The stalks of this sheaf are denoted C[X,X−1]z and are as discussed
above.

Note that inverting f automatically inverts all divisors of f and hence inverts
all polynomials which do not vanish on Uf , since the roots of such a polynomial
are all roots of f , which implies it is a divisor of some positive power of f .

Hence C[X,X−1]f is simply the ring of regular rational functions on Uf .
Modules over a ring R can also be localized at multiplicative subsets of R,

by setting

MS := M ⊗R RS

where RS is the localization of R at S. In the case of interest, where R =
C[X,X−1], we denote by Mf the localization of a C[X,X−1]-module at S :=
{1, f, f2, . . .} (that is, at Uf .) The important point is that localization of a
module at Uf kills torsion supported in Zf . If M is a torsion module with finite
support, then Mf = 0 if f vanishes on the support. More generally, of course,
if the support of the torsion submodule of a finitely generated module M is
Zf then localizing M at Uf kills the torsion part, and the localization of the
free part is free (over C[X,X−1]f .) (Recall that since C[X,X−1] is a principal
ideal domain, every finitely generated C[X,X−1]-module splits uniquely into
a torsion and a free module.)

We now consider the case where the module M has the form M = K∗
T
(X)

whereX is a T-space. More generally, we may consider any KKT-group, i.e. any
KKT

∗(A,B), for A and B T-C∗-algebras, with its C[X,X−1]-module structure.

If f ∈ C[X,X−1] we may localize any such module at f , yielding KKT

∗(A,B)f .
Localization is obviously compatible with the Z/2-gradings, the intersection

product (composition in KKT) and the external product. In particular we may

speak of KKT

f -equivalence and so on.

Remark 4.2. Localization in K-theory is slightly different from localization
in equivariant cohomology as in [2].

(i) The coefficient ring C[X,X−1] = KKT(C,C) = KKT

∗(C,C) we use is triv-
ially graded, while the cohomological analogue H∗

T(pnt) := H∗(BT) ∼=
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C[u] is Z-graded with deg(u) = 2. Atiyah’s Completion Theorem re-
lates the two rings: equivariant cohomology is the I-adic completion of
C[X,X−1] with respect to the ideal I := 〈X−1〉 corresponding to 1 ∈ C∗.
Supports of C[u]-modules, like for example H∗

T
(X) := H∗(ET×TX) for a

T-space X , are contained in C instead of C∗. If the modules are graded,
then their supports are always either all of C or are {0}, because they
must be a cone (see [2]). Therefore the cohomological analogue of T-spec
is rather trivial: the support of the torsion submodule of H∗

T
(X) must be

{0} and after localizing at C∗ := C− {0} we get a free module.
(ii) After localizing H∗

T(X) by localizing, separately, its even and odd parts,
the integer gradation on the module becomes lost; the Z/2-grading is not
lost, however.

Both of these facts would seem to support the idea that K-theory responds
somewhat better to localization.

We are now going to refine some of our results from the first section about
equivariant K-theory of spaces, using localization. See also [3], for some over-
lapping results.

We begin by discussing the issue of finite generation, which, importantly,
implies that the torsion submodule of K∗

T
(X) has finite spectrum. Graeme

Segal has proved the following.

Lemma 4.3 ([23, Prop. 5.4]). If X is a smooth compact T-manifold, then
K∗

T
(X) is a finitely generated C[X,X−1]-module.

The following is a useful geometric counterpart of Segal’s lemma.

Lemma 4.4. For a compact manifold X with smooth T-action, there are only
finitely many points t ∈ T which fix some point of X − F , where F ⊂ X is the
stationary set.

Hence if f ∈ C[X,X−1] is a polynomial which vanishes on these points,
then K∗

T

(
W × (X − F )

)
f
= 0 for any locally compact T-space W .

Proof. For the first statement, since F is a smooth submanifold of X it has
a normal bundle ν, which is a T-equivariant real vector bundle. This may be
identified with the orthogonal complement of TF in TX |F with respect to any
T-invariant Riemannian metric. Since the fixed-point set of t ∈ T in TxX (for
x ∈ F ) is exactly TF , t fixes no nonzero vector in ν.

Let U be the corresponding T-invariant open neighborhood of F . Since T

acts freely on ν − 0 it acts freely on U − F . We can cover the compact X −U
by finitely many open slices Wi ⊂ X − U , centered, say at points xi, and if
x ∈ X −U is any point, then Tx ⊂ Txi

follows for x ∈Wi. Since Tx = {1} for
x ∈ U ,

⋃
x∈X−F Tx is a finite set as claimed.

If (w, x) ∈ W × X − F then of course T(w,x) ⊂ Tx. It follows that if f ∈
C[X,X−1] vanishes on

⋃
x∈X−F Tx then it annihilates the image of K∗

T
(Y )→

K∗
T

(
W × (X−F )

)
for any precompact Y ⊂W × (X−F ), cp. the arguments in
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the first paragraph of the proof of Lemma 2.12. Hence it annihilates K∗
T

(
W ×

(X − F )
)
. �

Example 4.5. Consider T × N with the T-action of Example 2.8. Let X be
the one-point compactification of X×N, with T-action the canonical extension
of the action on X × N (fixing the point at infinity). Then X is a compact
space but there are infinitely many distinct points t ∈ T which fix some point
of X − F . The equivariant K-theory is zero in dimension 1 and in dimension
0 is the C[X,X−1]-module

K0
T(X) ∼= C[X,X−1]⊕

⊕

n∈N

C[X,X−1]/(fn)

where fn(X) =
∏

ω∈Ωn
X−ω. The torsion submodule of K0

T
(X) is not finitely

generated and has support C∗. Thus both Lemma 4.3 and Lemma 4.4 fail for
X due to a lack of a “collaring” for the stationary set.

Lemma 4.6. Let A,B and C be C[X,X−1]-modules, α : A→ B and β : B →
C module maps, such that the sequence

0 −→ im(α) −→ B −→ ker(β) −→ 0

is exact and A and C are finitely generated. Then B is finitely generated.

Proof. This reduces immediately to whether ker(β) and im(α) are finitely gen-
erated; the latter is obvious and the former follows from the fact that any
submodule of a finitely generated C[X,X−1]-module is finitely generated, be-
cause C[X,X−1] is noetherian. �

Corollary 4.7. K∗
T
(X − F ) is finitely generated for any smooth and compact

T-manifold X.

Proof. By Lemma 4.3 K∗
T
(X) and K∗

T
(F ) are finitely generated C[X,X−1]-

modules (see Remark 4.8.) The result then follows from Lemma 4.6, for
K∗

T
(X − F ) fits into a 6-term exact sequence with the other terms K∗

T
(F )

or K∗
T
(X). finitely generated. �

Remark 4.8. The stationary set of a smooth T-action is smooth: a choice of
a T-invariant Riemannian metric yields, at every x ∈ F , an exponential map,
TxX → X , which is T-equivariant and is a diffeomorphism in a small metric
ball around the origin in TxX . Therefore expx intertwines (an open subset of)
the stationary set of the linear action of T on TxX , to (an open subset) of the
stationary set F . This yields a T-equivariant smooth manifold chart around x
in F .

It follows that K∗
T
(X − F ) has a finite T-spectrum, equivalently, a nonzero

annihilator ideal, because it is finitely generated and torsion.
We will discuss T-equivariant Poincaré duality for smooth manifolds in

greater depth later; for now, the following statement is useful for proving cer-
tain things quickly.
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Theorem 4.9. Let X be a smooth and compact T-manifold and let
D ∈ KKT(C0(TX),C) the class of the Dirac operator on the almost-complex
T-manifold TX. Then cup-cap product with D determines a natural family of
isomorphisms

KKT

∗(C(X)⊗A,B) ∼= KKT

∗(A,C0(TX)⊗B)

for all T-C∗-algebras A,B.

Theorem 4.9 is due to [8] in the nonequivariant setting. See also Kasparov
[18] in the equivariant setting and his references. For a modern treatment of
equivariant Poincaré duality see [14].

It follows from Poincaré duality that if W and Z are compact smooth T-
manifolds, then KKT

∗(C(W ), C(Z)) is a finitely generated C[X,X−1]-module.
Indeed, duality reduces us to proving that K∗

T
(TW × Z) is finitely generated,

which follows from Lemma 4.10 below. From this, and consideration of the
6-term exact sequence associated to F ⊂ X , we deduce that the modules e.g.
KKT

∗(C0(X−F ), C(F )) of morphisms in KKT between any two of C(X), C(F )
and C0(X − F ), are finitely generated.

Lemma 4.10. If X is a compact smooth T-manifold and V → X is a real
T-equivariant vector bundle on X, then K∗

T
(V ) is finitely generated. Moreover,

if T acts freely on V − 0 then the restriction map

K∗
T(V )→ K∗

T(X)

induces an isomorphism after localizing at C∗ − {1}.
In particular, T-spec(V ) = T-spec(X) ∪ {1} if T acts freely on V − 0. A

good example is V = TX for a compact smooth T-manifoldX where stationary
points of the action are isolated, that is, where there is only a finite number
of them. Fixing a T-invariant Riemannian metric, any nonzero tangent vector
which is fixed by the T-action results in a geodesic which is point wise fixed
by the action, contradicting that the stationary set consists of finitely many
points. Thus the T-action on nonzero tangent vectors is free.

Proof. Fix a T-invariant metric on V and consider the exact sequence

0 −→ C0(DV ) −→ C0(DV ) −→ C(SV ) −→ 0

where DV is the open disk bundle, DV the closed disk bundle, and SV the
sphere bundle. Since DV is T-equivariantly proper homotopy equivalent to X ,
which is a compact smooth manifold, and since SV is also a compact smooth
manifold, it follows from considering the associated 6-term exact sequence and
Lemma 4.6 that K∗

T
(V ) ∼= K∗

T
(DV ) is finitely generated.

If T acts freely on V − 0 then it acts freely on SV and hence T-spec(SV ) ⊂
{1}. Therefore, localizing at C∗ − {1} kills K∗

T
(SV ) and the claim follows. �

Remark 4.11. Suppose that V carries a T-equivariant K-orientation. The
Euler class eV ∈ K− dim(V )(X) of V can be defined as the restriction to X

(the zero section in V ) of the Thom class for V , in K
− dim(V )
T

(V ). The Thom
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class generates K∗
T
(V ) as a free rank-one K∗

T
(X)-module. It follows that the

restriction map K∗
T
(V ) → K∗

T
(X) identifies, under K∗

T
(V ) ∼= K∗

T
(X), with the

map
K∗

T(X)→ K∗
T(X), ξ 7→ ξ · eV .

It follows then from Lemma 4.10 that eV becomes an invertible after we localize
at C∗−{1}, that is, eV is an invertible in the ring K∗

T
(X)f where f(X) = X−1.

This fact is used frequently in connection with characteristic class compu-
tations in the work of Atiyah and Segal and in Atiyah and Bott’s paper [2].

Theorem 4.12. Let X be a compact smooth T-manifold and F ⊂ X the
stationary set. Let

Ω := {t ∈ T | tx = x for some x ∈ X − F}.
Ω is finite. Let f ∈ C[X,X−1] be a polynomial vanishing on Ω. Then C0(X −
F ) is KKT

f -equivalent to the zero T-C∗-algebra, and the localization ρf ∈
KKT(C(X), C(F ))f of the restriction morphism ρ ∈ KKT(C(X), C(F )), is

invertible (in KKT

f ).

This theorem is similar to [3, Prop. 1.5].

Proof. To prove that C0(X − F ) is KKT

f -equivalent to zero it suffices to prove

that KKT

∗(C0(X − F ), C0(X − F ))f is the zero module over C[X,X−1]f . By
Lemma 4.4, if f vanishes on Ω then K∗

T

(
TF × (X − F )

)
f
= 0 = K∗

T

(
TX ×

(X −F )
)
f
and by Poincaré duality for respectively F and X this implies that

(4.1) KKT

∗(C(F ), C0(X − F ))f = 0, KKT

∗(C(X), C0(X − F ))f = 0.

Using the 6-term exact sequence applied to the first variable, we deduce that

KKT

∗(C0(X − F ), C0(X − F ))f = 0,

too. Thus, C0(X −F ) is KKT

f -equivalent to the zero T-C∗-algebra as claimed.
(We could not use Poincaré duality directly for C0(X − F ) because it is

noncompact, and duality works differently for noncompact spaces.)
Now from the 6-term exact sequence, and the fact just proved that C0(X −

F ) is KKT

f -equivalent to zero, the map

(4.2) KKT

∗(A,C(X))f
·⊗C(X)ρ−−−−−→ KKT

∗(A,C(F ))f

induced by restriction to F is an isomorphism for any T-C∗-algebraA. Now use
the Yoneda lemma: setA := C(F ) and find a preimage α ∈ KKT(C(F ), C(X))f
of the identity morphism in KKT

∗(C(F ), C(F ))f . Then the composition in KKT

f

C(F )
α−→ C(X)

ρ−→ C(F )

is the identity by the definitions, and the composition

C(X)
ρ−→ C(F )

α−→ C(X)

is therefore multiplication by an idempotent γ := ρ ⊗C(F ) α ∈ KKT(C(X),
C(X))f . To show that 1 − γ = 0 set A := C(X), and observe that this is
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mapped to zero under composition with ρ, i.e. under the map (4.2). Since the
latter is an isomorphism after localization, 1− γ = 0. �

Remark 4.13. While a properly formulated version of Theorem 4.12 should
be true without smoothness assumptions (cp. Theorem 2.6, which does not use
such an assumption), we have not pursued it since we are mainly interested
in smooth manifolds anyway, and because Example 4.5 shows that away from
smooth manifolds, T-spec(X − F ) may not be finite, which makes it more
difficult to formulate a theorem.

Corollary 4.14. Let D be a T-C∗-algebra in the boostrap category, such that
D⋊T is also in the boostrap category, let X be a smooth, compact T-manifold,
and f,Ω be as in Theorem 4.12. Then

(i) KKT

∗(C(X), D)f ∼= HomC[X,X−1]f

(
K∗

T
(X)f ,K

T
∗(D)f

)
,

(ii) KKT

∗(C, C(X)⊗D)f ∼= K∗
T
(X)⊗C[X,X−1]f KT

∗(D).

Proof. The class of T-spacesX for which both theorems hold (in KKT

f ) is closed

under KKT

f -equivalence so we may replace X by F by Theorem 4.12; since F

is a trivial T-space, KKT

∗(C(F ), D) ∼= KK∗(C(F ), D ⋊ T) by the Green–Julg
theorem, and by the UCT this is isomorphic to HomC

(
K∗(F ),K∗(D ⋊ T)

) ∼=
HomC

(
K∗(F ),KT

∗(D)
)
. This implies the corresponding isomorphisms after lo-

calization. Now K∗
T
(X)f ∼= K∗

T
(F )f ∼=

(
K∗(F ) ⊗ C[X,X−1]

)
f
∼= K∗(F ) ⊗

C[X,X−1]f and hence HomC[X,X−1]f

(
K∗

T
(X)f ,K

T
∗(D)f

) ∼= HomC[X,X−1]f

(
K∗

(F ) ⊗ C[X,X−1]f ,K
∗
T
(D)f

) ∼= HomC

(
K∗(F ),K∗

T
(D)f

)
which proves the first

statement. The second follows similarly (see the proof of Lemma 5.8.) �

We end this section with a fairly precise description of K∗
T
(X) for smooth

T-manifolds, starting with the following result, which uses ideas of Baum and
Connes (see [6]).

Theorem 4.15. Let X be a smooth, compact T-manifold, F ⊂ X the station-
ary set.

For γ ∈ T we endow the C-vector space K∗
(
T\(Xγ−F )

)
with the C[X,X−1]-

module structure by evaluation C[X,X−1]→ C at γ. Then

(4.3) K∗
T(X − F ) ∼= ⊕γ∈T-spec(X−F )K

∗
(
T\(Xγ − F )

)

as C[X,X−1]-modules.

Remark 4.16. The usual geometric effect of localization of K∗
T
(X) at γ ∈ T—

it annihilates the contribution of X −Xγ , as we have seen—is obviously nil in
the case where γ = 1. Thus Theorem 4.15 goes further in this case, informing
us that the stalk at 1 of the sheaf determined by K∗

T
(X−F ) is K∗

(
T\(X−F )

)

(with C[X,X−1]-module structure by evaluation at 1 ∈ C∗.)

Proof. Set Ω := {γ ∈ T | γx = x some x /∈ F} ⊂ T-spec(X − F ). Ω is finite.
We consider a theory defined on T-spaces (like X − F ) which can be covered
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by a finite number of open H-slices, where H ⊂ Ω is some subset. This class
of spaces is clearly closed under passing to subspaces. If Z is such a space, let

F(Z) :=
⊕

γ∈Ω

K∗(T\Zγ)

with module structure evaluation of characters at γ in the corresponding sum-

mand. Observe that we may interpret this vector space as K∗(Ẑ) where

Ẑ := T\{(z, γ) ∈ Z × T | γz = z}.
Indeed, the space Ẑ fibers over Ω with fiber T\Xγ over γ.

If Y ⊂ Z is a closed T-invariant subspace of Z in our class, then Ŷ ⊂ Ẑ as a

closed subspace, and Ẑ−Ŷ = Ẑ − Y . Hence an inclusion of a closed T-invariant
subspace generates a corresponding 6-term exact sequence and the theory F is
excisive. To show that it agrees with K∗

T
( · ) it is sufficient then to verify this

for an induced space U ∼= T×H Y . In this case K∗
T
(U) ∼= K∗

H(Y ) as C[X,X−1]-
modules, where the C[X,X−1]-module action on K∗

H(Y ) factors through the
restrictionC[X,X−1]→ Rep(H) and the Rep(H)-module structure on K∗

H(Y ).
By a result of Baum and Connes for equivariant K-theory of finite group actions
(see [6])

K∗
H(Y ) ∼=

⊕

h∈H

K∗(H\Y h),

where the Rep(H) ∼= C[X,X−1]/(fH)-module structure on the right hand side
is by evaluation of characters at the points of H (here fH =

∏
h∈H X − h and

(fH) is the ideal of C[X,X−1] generated by fH .) We are using the fact that
H is abelian, so that the centralizer of h in H is H . Localizing at γ ∈ Ω yields
zero unless γ ∈ H , and in this case,

K∗
H(Y )γ := K∗

H(Y )⊗C[X,X−1] C[X,X−1]γ

∼=
⊕

h∈H

[
K∗(H\Y h)⊗C[X,X−1] C[X,X−1]γ

]
.

Now for each term on the right hand side, the tensor product is over the
evaluation map C[X,X−1] → C at h. It follows that all terms in the sum on
the right hand side vanish except for h = γ. The C[X,X−1]γ-module structure
on this term is evaluation of polynomials at γ. Thus,

K∗
T(U)γ ∼= K∗(H\Y γ)γ .

Given that H\Y γ ∼= T\Uγ , the result follows. �

In particular, we now have an exact description of T-spec(X) when X is a
compact smooth manifold.

Corollary 4.17. Let X be a compact smooth T-manifold with no stationary
points. Then

T-spec(X) = {γ ∈ T | K∗(T \Xγ) 6= 0}.
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Before the proof, we use Theorem 4.15 determine the exact relation between
the torsion submodule of K∗

T
(X) and the torsion module K∗

T
(X − F ).

Let Tors
(
Ki

T
(X)

)
be the torsion part of Ki

T
(X) and Free

(
Ki

T
(X)

)
the free

part. The 6-term exact sequence associated to the stationary set F ⊂ X yields
surjections

Ki
T(X − F )→ Tors

(
Ki

T(X)
)

since the map Ki
T
(X) → Ki

T
(F ) vanishes on the torsion part, since K∗

T
(F ) is

free, and injections

Free
(
Ki

T(X)
)
→ Ki

T(F ) ∼= Ki(F )⊗ C[X,X−1],

since the map Ki+1
T

(X − F )→ Ki+1
T

(X) has range in the torsion subgroup.
We have the boundary maps

(4.4) ∂i : K
i−1(F )⊗ C[X,X−1] −→ Ki

T(X − F )
)

and thus

coker(∂i) ∼= Tors
(
Ki

T(X)
)
, ker(∂i+1) ∼= Free

(
Ki

T(X)
)
.

Theorem 4.15 and some geometric arguments (using smoothness) tells us
more.

Corollary 4.18. If X is a smooth compact T-manifold, then the range of
∂i : K

i
T
(F ) → Ki+1

T
(X − F ) is supported at 1 ∈ C∗. Hence ∂i factors through

a map

∂′
i : K

i
T(F )→ Ki+1(T \X − F ).

Thus Tors(Ki
T
(X))z ∼= Ki

T
(X −F )z for all z ∈ T−{1}, and for the component

at 1 ∈ C∗ we have

Tors(Ki
T(X)1) ∼= Ki(T\X − F ) / im(∂′

i+1).

Furthermore, the free modules Free
(
K∗

T
(X)

)
and K∗

T
(F ) have the same rank

in each dimension.

Remark 4.19. The Lefschetz fixed-point theorem discussed below implies
that the difference in ranks of the free part of K0

T
(X) and the free part of

K1
T
(X) equals the difference of ranks of the C-vector spaces K0(F ) and K1(F ).

The above statement is stronger, since it holds before taking differences.

The boundary maps in the 6-term exact sequence of Theorem 4.15 can be
computed fairly precisely if X is a smooth manifold with smooth T-action, and
this also proves the Corollary 4.18.

For the definition of correspondence, used below, see the discussion in Sec-
tion 5.

Proof. (Of Corollary 4.18). F is a closed, smooth submanifold of X . Let ν
be the normal bundle of the stationary set F ⊂ X ; it can be endowed with
a T-action and invariant Riemannian metric. Let ϕ̂ : ν → X the tubular
neighborhood embedding.
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Let Sν be the sphere bundle of ν and π : ν → F the bundle projection.
Let j : Sν → X be its restriction to Sν. Note that j(Sν) is disjoint from F
and that j is a canonically T-equivariantly K-oriented embedding with trivial
normal bundle. To see this, define

f̂ : Sν × R ∼= UF ⊂ X − F, f̂(x, ξ, s) := ϕ̂(sξ).

The restriction of f̂ to the zero section Sν × {0} is the embedding j.

The class in KKT

1 (C(F ), C0(X − F )) of the T-equivariant extension

0 −→ C0(X − F ) −→ C(X) −→ C(F ) −→ 0

is equal (see [8, Prop. 3.6]; the equivariant version goes through in the same way
since we have a T-equivariant normal bundle) to the class of the T-equivariant
correspondence

Sν
πSν←−− (Sν × R, βR)

f̂−→ X − F

where βR ∈ K1
T
(R) is the Bott class (for the trivial T-action on R.)

Hence the class ∂[V ] ∈ K1
T
(X − F ) is then represented by the smooth T-

equivariant correspondence pnt← (Sν, π∗
Sν(V ))

j−→ X \F , alternatively, as the
class

f̂!
(
π∗
Sν(V ) · βR

)
∈ K1

T(X − F )

of the Thom class of the (trivial) normal bundle, pushed forward to X−F via

f̂ .
Note that since T acts freely on ν − 0, the open neighborhood UF of ϕ̂(Sν)

may be assumed to meet none of the Xγ with γ ∈ T− {1}). Hence localizing
at γ 6= 1 kills the range of ∂0, so its range is contained in the component of
K1

T
(X − F ) over 1 ∈ T. Similarly for i = 1.
For the last statement, we know from the general discussion above that

ker(∂i+1) ∼= Free
(
Ki

T
(X)

)
as C[X,X−1]-modules, which implies the corre-

sponding statement after localization at C∗ − {1}. But we have just argued
that ∂i+1 induces the zero map after localization at C∗ − {1}, so that its
kernel after localization becomes Ki

T
(F )f (f(X) = X − 1). Hence the free

C[X,X−1]f -modules Free
(
Ki

T
(X)f

)
and Ki

T
(F )f are isomorphic, so have the

same rank, and it follows that Free
(
Ki

T
(X)

)
and Ki

T
(F ) have the same rank

also, since localizing a free module does not change its rank. �

Remark 4.20. We make several remarks about the proof.

(i) We can describe the maps ∂′
i more precisely. In the proof of Corollary

4.18 we observed that there is a T-equivariant correspondence

Sν
πSν←−− (Sν × R, βR)

f̂−→ X − F.

In fact by shrinking the neighborhood UF of Sν if needed so that it

is disjoint from F , we can factor f̂ through an open embedding f̂ ′ :
Sν ×R→ UF − F and the open embedding UF − F → X − F . The first
yields a class in KK1

T(C(Sν), C0(UF − F )) but this group maps, using
descent, to KK1

T(C(T\Sν), C0(UF − F )) since T acts freely on Sν and
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UF − F . Now the open embedding UF − F → X − F induces an open
embedding of quotient spaces T\UF − F → T\X − F and an element
j! ∈ KK(C0(T\UF − F ), C0(T\X − F )). The map ∂′

i is the composition

(4.5)

Ki
T(F )

π∗

Sν−−→ Ki
T(Sν)

∼= Ki(T\Sν) f̂ ′

−→ Ki+1(UF − F )
j!−→ Ki+1(T\X − F ).

(ii) The boundary map ∂0 : K0(F ) ⊗ C[X,X−1] → K1
T
(X − F ) may be

understood as giving an obstruction to extending a T-equivariant vector
bundle on F to a T-equivariant vector bundle on X : this is possible for
a given [V ] only if ∂0[V ] = 0, which is if and only if the class

f̂!
(
π∗
Sν(V ) · βR

)
∈ K1(T\X − F )

vanishes.

5. The Lefschetz theorem

Definition 5.1. Let X be a smooth, compact T-manifold. Let

• D ∈ KKT

0 (C0(TX),C) be the class of the T-equivariant Dirac operator
on the almost-complex manifold TX .
• Θ ∈ KKT

0

(
C0(X), C0(X × TX)

)
the class of the T-equivariant K-

oriented embedding ρ : X → X × TX , ρ(x) :=
(
x, (x, 0)

)
.

• s be the proper T-map TX → X × TX , s(x, ξ) :=
(
(x, ξ), x

)
.

Then the Lefschetz map (see [14])

Lef : KKT

∗

(
C(X), C(X)

)
→ KKT

∗(C(X),C
)

is the composition

(5.1) KKT

∗

(
C(X), C(X)

) ⊗C1TX−−−−→ KKT

∗(C0(X × TX), C0(X × TX))

s∗−→ KKT

∗

(
C0(X × TX), C0(TX)

)

⊗C0(TX)D−−−−−−−→ KKT

∗

(
C0(X × TX),C)

Θ⊗C0(X×TX)−−−−−−−−−→ KKT

∗(C(X),C)

Thus the Lefschetz map associates to an equivariant morphism X → X in
KKT, an equivariant K-homology class for X . Such a class has an index in
Rep(T) ∼= C[X,X−1].

Definition 5.2. The Lefschetz index IndL(Λ), where f ∈ KKT

∗(C(X), C(X))
is the T-equivariant index

IndL(Λ) := (pnt)∗ Lef(Λ) ∈ Rep(T) ∼= C[X,X−1],

where pnt : X → pnt is the map to a point.

In [15] and [16] we proved that T-equivariant correspondences are cycles for

a bivariant homology theory isomorphic to KKT, with some restrictions on its
arguments (e.g. to compact smooth T-manifolds.)
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Hence both the domain and codomain of the Lefschetz map can be described
in terms of equivalence classes of correspondences; since we have defined the
Lefschetz map itself in terms of correspondences, the Lefschetz map can be
described in purely geometric terms. We give a brief summary.

Suppose the following data is given (see the original reference [8]), or [15].)

• M is a smooth T-manifold (not necessarily compact).
• b : M → X is a smooth T-map (not necessarily proper).
• ξ ∈ RK∗

T,X(M) is an equivariant K-theory class with compact support
along the fibers of b.
• f : M → X is a T-equivariant smooth K-oriented map.

This data is sometimes summarized by a diagram X
b←− (M, ξ)

f−→ X . The
quadruple (M, b, f, ξ) is a T-equivariant correspondence from X to X .

It is convenient to assume that the correspondence—denote it Λ—also sat-
isfies

• f : M → X is a submersion.
• The map X → X ×X , x 7→

(
f(x), b(x)

)
is transverse to the diagonal

X → X ×X .

These conditions imply that the coincidence space

C := {x ∈M | f(x) = g(x)}
has the structure of a smooth, equivariantly K-oriented T-manifold (probably
disconnected, but with only finitely many connected components, but each of
the same dimension.)

Clearly it comes with a map b|C : C → X , so we obtain a Baum–Douglas
cycle (C, b|C , ξ|C) for X by restricting ξ to C ⊂M .

To a correspondence is associated a class, which by abuse of notation we
also denote by Λ, in KKT

∗(C(X), C(X)). Here ∗ = dim(M)−dim(X)+dim(ξ).
See [15] for the details.

The following is a straightforward manipulation with correspondences.

Proposition 5.3. If Λ ∈ KKT

∗(C(X), C(X)) is represented by the T-equivari-
ant correspondence in general position in the sense described above, then Lef(Λ)
is represented by the Baum–Douglas cycle (C, b|C, ξ|C) for X. In particular,

IndL(Λ) = indT(DC · ξ|C) ∈ Rep(T) ∼= C[X,X−1]

holds; that is, the Lefschetz index of Λ equals the T-index of the T-equivariant
Dirac operator on the coincidence manifold C, twisted by ξ|C.

We will not prove this proposition; the proof can be found in [9] or the
reader reasonably familiar with correspondences can prove it himself.

We aim to prove that IndL(Λ) = traceC[X,X−1](Λ∗) for where Λ∗ : K∗
T
(X)→

K∗
T
(X) is the action of Λ on equivariant K-theory; note that Λ∗ is a C[X,X−1]-

module map. Proving this statement has nothing to do with correspondences;
it depends only on formal properties of KKT.
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The result provides a homological interpretation of the Lefschetz index along
the lines of the classical theorem.

By the trace we mean the following. Firstly, since X is a smooth compact
manifold, K∗

T
(X) is a finitely generated C[X,X−1]-module. Therefore (in each

dimension ∗ = 0, 1 it decomposes into a free part and a torsion part. Any
C[X,X−1]-module self-map of K∗

T
(X) of even degree will induce a grading-

preserving map on K-theory. We will define the trace of such a map to be the
differences of the C[X,X−1]-valued module traces on K0

T
(X) and K1

T
(X). To

define these individually, consider any C[X,X−1] module, which we write as
M = T ⊕ C[X,X−1]k where T is torsion. Any self C[X,X−1]-module map of

M sends T to itself and hence has an upper-triangular form L =

[
A B
0 C

]
and

we let traceC[X,X−1](L) := traceC[X,X−1](C). This is uniquely defined.

A C[X,X−1]-module self-map of K∗
T
(X) with odd degree will have trace

zero, by definition.

Theorem 5.4. (Lefschetz theorem in KKT). Let X be a compact smooth T-

manifold and Λ ∈ KKT

∗(C(X), C(X)). Then IndL(Λ) = traceC[X,X−1](Λ∗).

Before proceeding, note that since Lef (and IndL) are both defined by basic

KKT-operations, both maps are compatible in the obvious sense with local-
ization. For any A and B and any α ∈ KKT

∗(A,B), and any f ∈ C[X,X−1],

denote by αf ∈ KKT

∗(A,B)f the image of f under localization at Uf . Then
compatibility means that the diagram

(5.2) KKT

∗(C(X), C(X))

��

Lef
// KKT

∗(C(X),C)

��

indT
// C[X,X−1]

��

KKT

∗(C(X), C(X))f
Lef

// KKT

∗(C(X),C)f
indT

// C[X,X−1]f

commutes, where the lower row is the “localized” Lefschetz index map, defined
using Kasparov products as on the top row, except with the localized classes
Df ,Θf and so on.

Neither the first nor second vertical map need be injective, of course, but
the third vertical map is injective because C[X,X−1] is an integral domain.

The diagram says that IndL(Λ)f = IndL
f (Λf ) where Ind

L
f is the Lefschetz map

in localized KKT.
We define the localized module trace

traceC[X,X−1]f : EndC[X,X−1]f (K
∗
T(X)f )→ C[X,X−1]f

as with the nonlocalized version. Note that localization of a C[X,X−1]-module
respects the decomposition into its torsion and free parts, so that

(5.3) traceC[X,X−1]f (Lf ) =
[
traceC[X,X−1](L)

]
f

is clear, for any C[X,X−1]-module self-map of K∗
T
(X).
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It will be sufficient to prove the following apparently weaker version of The-
orem 5.4.

Lemma 5.5. Let Ω be as in Theorem 4.12 and f ∈ C[X,X−1] vanish on Ω.

Then the Lefschetz theorem for X holds in KKT

f . That is,

IndLf (Λf ) = traceC[X,X−1]f

(
(Λf )∗

)

for any Λ ∈ KKT

∗(C(X), C(X)).

Lemma 5.5 implies Theorem 5.4 because combining the diagram (5.2) and
its algebraic analogue (5.3) gives

(5.4) IndL(Λ)f = IndLf (Λf ) = traceC[X,X−1]f

(
Λf )∗

)

=
[
traceC[X,X−1](Λ)

]
f
∈ C[X,X−1]f .

By injectivity of C[X,X−1] → C[X,X−1]f , it follows that IndL(Λ) =
traceC[X,X−1](Λ∗), yielding Theorem 5.4.

To prove Lemma 5.5 it is useful to use a slightly different formalism for
the Lefschetz indices IndL( · ). This formalism is more general in the sense
that it applies to noncommutative T-C∗-algebras as well, provided they have
duals. (The Lefschetz map of Definition 5.1 exists in more generality than we
have suggested, but does not work for noncommutative algebras because of the
implicit use of the “diagonal map” X → X × TX .)

As above, s : TX → X × TX is the obvious section. Let Σ : X × TX →
TX ×X be the flip. Set

• ∆ := Σ∗s∗(D) ∈ KKT(C0(TX ×X),C),

• ∆̂ := (pnt)∗(Θ) ∈ KKT(C, C0(X × TX)),

We denote A := C(X) and B := C0(TX).

It is easily checked that ∆ and ∆̂ satisfy the “zig-zag equations”

(5.5)
(
∆̂⊗C1A

)
⊗A⊗B⊗A

(
1A⊗∆

)
= 1A,

(
1B⊗C∆̂)⊗B⊗A⊗B

(
∆⊗C1B

)
= 1B

and it follows that the map

KKT

∗(D1, D2 ⊗B)→ KKT

∗(D1⊗, D2), x 7→ (x⊗ 1A)⊗B⊗A ∆

is an isomorphism for every D1, D2 (cp. the briefly stated Theorem 4.9). The

inverse map is defined similarly, using ∆̂. This is the kind of noncommutative
Poincaré duality studied by the author in several papers, e.g. [10, 11, 14].

Set ∆̂ := Σ∗(∆̂).

Lemma 5.6. In the above notation: for any Λ ∈ KKT

∗(A,A) := KKT

∗(C(X),
C(X)),

(5.6) IndL(Λ) =
(
∆̂⊗B⊗A (1B ⊗ Λ)

)
⊗B⊗A ∆ ∈ KKT

∗(C,C)
∼= C[X,X−1].

Similarly after localization.
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Proof. Using the definitions

(5.7) IndL(Λ) := (pnt)∗
(
Lef(Λ)

)

= (pnt)∗(Θ)⊗C0(X×TX) (Λ⊗C 1C0(TX))⊗C0(X×TX) [s
∗]⊗C0(TX) D

= ∆̂⊗C0(X×TX) (Λ ⊗ 1C0(TX))⊗C0(X×TX) Σ
∗(∆).

where [s∗] ∈ KKT(C0(X × TX), C0(TX)) is the class of s. Carrying the flip
across yields

(5.8) = ∆̂⊗C0(TX×) (1C0(TX) ⊗C Λ)⊗C0(TX×X) ∆

as required. �

In particular, using the right hand side of (5.6), we can define the Lefschetz

index of a morphism Λ ∈ KKT

∗(A,A) for any T-C∗-algebra A for which there

exists a triple (B,∆, ∆̂) satisfying (5.5). We call such A dualizable.
The author believes that A dualizable implies KT

∗(A) is a finitely generated
C[X,X−1]-module (see [14] for the nonequivariant proof) but does not have a
reference. We are not interested in proving this here, since the A we consider
obviously have finitely generated equivariant K-theory.

Suppose for such A there exists a C∗-algebra A′ and a KKT-equivalence
α ∈ KKT(A,A′). In this case, A′ is also dualizable using B′ := B,

(5.9) ∆′ := (1B ⊗C α−1)⊗B⊗A ∆ ∈ KKT(B′ ⊗A′,C)

and

(5.10) ∆̂
′
:= ∆̂⊗A⊗B (α⊗ 1B) ∈ KKT(C, A′ ⊗B′).

Conjugation by α gives an isomorphism KKT

∗(A,A)
∼= KKT(A′, A′) and it is

easy to check that

Lemma 5.7.

(5.11) IndL(Λ) = IndL(α⊗A′ Λ ⊗A′ α−1)

for any Λ ∈ KK∗(A
′, A′), and where the left hand side of this equation is

defined using the dual (B′,∆′, ∆̂
′
) and the right hand side using (B,∆, ∆̂).

This is of course what is to be expected if IndL is to agree with a C[X,X−1]-
valued trace: the statement

traceC[X,X−1](Λ∗) = traceC[X,X−1](α
−1
∗ ◦ Λ∗ ◦ α∗)

with Λ∗ : KT
∗(A

′)→ K∗
T
(A′), α∗ : KT

∗(A)→ KKT

∗(A
′) the module maps induced

by Λ and α, is obvious.
Lemma 5.7 also proves the independence of

IndL : KKT

∗(A,A)→ C[X,X−1]

of the choice of dual (B,∆, ∆̂), since any two duals for a fixed T-C∗-algebra A

are related by a self-KKT-equivalence of B as in (5.9) and (5.10).
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This discussion has its obvious analogue in the localized category KKT

f (for

any f ∈ C[X,X−1]). That is, we can speak of a C∗-algebra A being dualiz-

able in KKT

f , we may define the Lefschetz index map IndLf : KKT

∗(A,A)f →
C[X,X−1]f , and so on, cp. the discussion around (5.2) regarding the Lefschetz
map for A = C(X).

We now return to the case where A = C(X) for a smooth, compact T-

manifold X . Let f be as in Theorem 4.12. Thus ρf ∈ KKT(C(X), C(F ))f is a

KKT

f -equivalence. Hence by the analogue in KKT

f of Lemma 5.7,

IndLf (Λf ) = IndLf (ρ
−1
f ⊗C(X) Λf ⊗C(F ) ρf ).

Note that IndLf is defined for the stationary set F because already

IndL : KKT

∗(C(F ), C(F ))→ KKT

∗(C(F ),C)

is defined, because the stationary set F is a smooth T-manifold (with the trivial
action), and hence has a dual.

Our goal at this stage is therefore to prove that

(5.12) IndLf (µ) = traceC[X,X−1]f (µ∗)

for any µ ∈ KKT(C(F ), C(F ))f . This will prove Lemma 5.5 and hence The-
orem 5.4. But since F is a trivial T-space, we can prove even the stronger
statement

(5.13) IndL(µ) = traceC[X,X−1](µ∗).

In fact this is simply a computation with bilinear forms, and applies to general
groups.

Lemma 5.8. Let G be a compact group, let A be a trivial G-C∗-algebra and B
a G-C∗-algebra. Assume that as a C∗-algebra, A is in the boostrap category N .
Finally, assume that B and A are Poincaré dual, i.e. that there exist classes

∆ ∈ KKG
0 (B ⊗ A,C) and ∆̂ ∈ KKG

0 (C, A ⊗ B) such that (5.5) are satisfied.

Let Λ ∈ KK∗(A,A) and ∆̂ := Σ∗(∆̂) ∈ KKG
0 (C, B ⊗A). Then

(
∆̂⊗B⊗A (1B ⊗ Λ)

)
⊗B⊗A ∆ = traces(Λ∗)

holds, where the trace is that of the module map induced by Λ on the free,
finitely generated Rep(G)-module KG

∗ (A)
∼= K∗(A) ⊗C Rep(G).

In particular, Lemma 5.5, and hence Theorem 5.4 and (hence) all of its
localized analogues (in particular (5.12)) hold for trivial compact T-manifolds
X.

Proof. Since A is a trivial G-C∗-algebra, KKG
∗ (C, B⊗A) ∼= KK∗(C, A⊗B⋊G).

The assumed equivariant duality implies nonequivariant duality and this im-
plies (see [14] that K∗(A) is finite-dimensional. By the Green–Julg theo-

rem KKG
∗ (C, B ⊗ A) ∼= KK∗(C, B ⋊ G ⊗ A), and by the (nonequivariant)

Künneth theorem ([7, Thm. 23.1.3]) this is ∼= KK∗(C, B ⋊G) ⊗KK∗(C, A) ∼=
KKG

∗ (C, B) ⊗ KKG
∗ (C, A); where the tensor product is in the category of

Rep(G)-modules.
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Thus, external product

KKG
∗ (C, A) ⊗KKG

∗ (C, B)→ KKG
∗ (C, A⊗B)

is an isomorphism; for emphasis, the tensor product on the left hand side is in
the category of Rep(G)-modules.

We may find a finite basis {yǫi} for KG
∗ (A) as an Rep(G)-module with yǫi ∈

KG
ǫ (A), and there exist xǫ

i ∈ KG
ǫ (B) such that

(5.14) ∆̂ =
∑

i

yǫi ⊗C xǫ
i ∈ KG

0 (A⊗B).

We have assumed ((5.5)) that

(5.15) (∆̂⊗C 1A)⊗A⊗B⊗A (1A ⊗∆) = 1A ∈ KK0(A,A).

Applying the functor from the category KKG to the category of Z/2-graded
Rep(G)-modules, we get that

y = y ⊗A

(
(∆̂⊗ 1A)⊗A⊗B⊗A (1A ⊗∆)

)

for all y ∈ K∗(A). Expanding the right hand side using (5.14) yields

(5.16) y =
∑

i,ǫ

(
yǫi ⊗C xǫ

i ⊗C y
)
⊗A⊗B⊗A (1A ⊗∆)

=
∑

i,ǫ

yǫi ⊗C

(
(xǫ

i ⊗C y)⊗B⊗A ∆
)
=

∑

i,ǫ

Lǫ
i(y)y

ǫ
i

where, as indicated, Lǫ
i(y) = (xǫ

i ⊗C y) ⊗B⊗A ∆ ∈ Rep(G). Since the yǫi form
a basis, we deduce by setting y = yγj , that

(5.17) Lǫ
i(y

γ
j ) = δǫ,γδi,j .

Now let Λ ∈ KK0(A,A) (similar computations apply to odd morphisms.) We
can write

(5.18) Λ∗(y
ǫ
i ) =

∑

j

λǫ
ijy

ǫ
j.

Since the external product in KKG is graded commutative,

∆̂ := Σ∗(∆̂) =
∑

i,ǫ

(−1)ǫxǫ
i ⊗C yǫj .

We get, therefore,

(5.19)
(
∆̂⊗B⊗A (1B ⊗ Λ)

)
⊗B⊗A ∆

=
∑

i,ǫ

(−1)ǫ
(
xǫ
i ⊗C yǫi

)
⊗B⊗A (1B ⊗C Λ)⊗B⊗A ∆

=
∑

i,j,ǫ

(−1)ǫλǫ
ij(x

ǫ
i ⊗C yǫj)⊗B⊗A ∆ =

∑

i,ǫ

λǫ
ii

where the last step is using (5.17). This gives the graded trace of Λ∗ acting on
the free Rep(G)-module KG

∗ (A) as required.
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The last statement follows from setting A = C(X) as in the discussion
around (5.5). �

We close with a brief discussion of equivariant Euler numbers, in order to
illustrate the Lefschetz theorem.

Remark 5.9. The case of Euler numbers is the case where Λ is a “twist” of

the identity correspondence, thus Λ has the form X
Id←− (X, ξ)

Id−→ X where
ξ ∈ K∗

T
(X).

We first make a general observation about the Lefschetz map.

Lemma 5.10. For any T-C∗-algebra A and any T-space X, KKT

∗(C(X), A) is
a module over K∗

T
(X). This module structure is “natural” with respect to A.

Moreover, Lef : KKT

∗(C(X), C(X)) → KKT

∗(C(X),C) is a K∗
T
(X)-module

homomorphism.

The K∗
T
(X)-module structure on KT

∗(X) corresponds to the process of twist-
ing an elliptic operator by a vector bundle. Furthermore, it follows from
the axiomatic definition of the Kasparov product that the Kasparov pairing
K∗

T
(X)×KT

∗(X) = KKT

∗(C, C(X))×KKT

∗(C(X),C) maps (ξ, a) to pnt∗(a · ξ),
where the dot is the module structure, pnt : X → pnt is the map from X to a
point.

We therefore have

〈ξ,Lef(Λ)〉 = IndL(Λ · ξ) ∈ C[X,X−1]

for any Λ ∈ KKT

∗(C(X), C(X)) and ξ ∈ K∗
T
(X), and, roughly, if we can realize

Lef(Λ) as the class of a suitable elliptic operator, then this can be interpreted
as the T-index of that operator twisted by ξ. The module structure can also
be easily described explicitly in topological terms, using correspondences.

The point is that the action of Λ·ξ ∈ KKT

∗(C(X), C(X)) on K∗
T
(X) is clearly

the composition

K∗
T(X)

Λ∗−−→ K∗
T(X)

λξ−→ K∗
T(X)

where the map denoted λξ is ring multiplication by ξ; this is clearly a C[X,X−1]-
module map. Therefore we get a refinement of Theorem 5.4 involving the
twisted Lefschetz numbers IndL(Λ · ξ) = 〈ξ,Lef(Λ)〉.
Proposition 5.11. In the above notation,

〈ξ,Lef(Λ)〉 = traceC[X,X−1](Λ∗ ◦ λξ) ∈ C[X,X−1]

for any Λ ∈ KKT

∗(C(X), C(X)) and ξ ∈ K∗
T
(X), where λξ is the Rep(T)-module

homomorphism of ring multiplication by ξ.

We call the elements eX(ξ) := IndL(Id · ξ) for ξ ∈ K∗
T
(X), the twisted T-

equivariant Euler numbers of X . Note that eX(ξ) = 0 if ξ is an odd K-class.
We may interpret the Euler numbers in two different ways, given the above

discussion:
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• eX(ξ) is the T-equivariant analytic index of the de Rham operator on
X twisted by ξ.
• eX(ξ) is the module trace traceC[X,X−1](Lξ) of ring multiplication by
ξ on K∗

T
(X).

The first statement follows from the computation in [13], which proves the
much stronger statement that Lef(Id) = [DdR] ∈ KG

0 (X), where DdR is the
de Rham (or “Euler”) operator on X and G is any locally compact group
acting properly and smoothly on X . For further information on the class of
the de Rham operator and related issues, see [12] and [13], and the paper of
Rosenberg and Lück [19] and of Rosenberg [21].

To compute the invariants in the first interpretation, let g ∈ T generate the
circle topologically, so that Fix(g) = F . Since g : X → X is T-equivariantly
homotopic to the identity, Lef(Id) = Lef([g∗]). Now the computation of the
Lefschetz map (for ordinary smooth self-maps) in [13] yields

Lef([g∗]) = (iF )∗([D
F
dR])

where DF
dR is the de Rham operator on F , [DF

dR] its class in KKT

0 (C(F ),C),
and iF : F → X is the inclusion map. (The sign data in [13] vanishes because
g is an isometry, which implies that the vector bundle map Id − Dg on the
T-equivariant normal bundle to F is homotopic to the identity bundle map.)

Thus, we see that eX(ξ) = eF (ξ|F ) where eF (ξ|F ) denotes the equivariant
Lefschetz number of the restriction of ξ to the smooth (trivial) T-space F . By
another application of the Lefschetz theorem, this time for the trivial T-space
F , yields that this equals the T-index of the de Rham operator on F twisted
by ξ|F .

Since F is T-fixed pointwise, we can further simplify this answer. Assume
first that F is connected. The bundle E|F can be diagonalized into eigenspaces
for the T-action, E|F ∼= ⊕λEλ where T acts on Eλ by the character fλ, some
fλ ∈ C[X,X−1]. Let ξλ = [Eλ] ∈ K0(F ). We see then that

eF (ξ|F ) =
∑

λ

enonequ.F (ξλ)fλ

where in this formula enonequ.F are the twisted, nonequivariant Euler numbers
for the stationary manifold F .

Nonequivariant Euler numbers are straightforward to compute. The in-
dex of the de Rham operator on a connected compact manifold P , twisted
by ξ ∈ K0(P ), is simply χ(P ) dim(ξ) ∈ Z, where χ is the numerical Euler
characteristic.

We conclude that

eX([E]) = χ(F )
∑

λ

dimC(Eλ) fλ.

If F has components {P} then this formula becomes

traceC[X,X−1](λξ) = eX(ξ) =
∑

P

χ(P )
∑

λ

dimC((E|P )λ) fλ,P .
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The right hand side is by and large easy to compute in specific situations. The
case of isolated fixed-points is particularly transparent.

Proposition 5.12. Let X be a smooth compact T-manifold with a finite set
of isolated stationary points. Then for any ξ ∈ K0

T
(X),

traceC[X,X−1](λξ) =
∑

P∈F

ξP

where the ξP are the restrictions of ξ ∈ K∗
T
(X) to the points P , each such P

yielding an element ξP ∈ K∗
T
(P ) ∼= C[X,X−1].

The following example illustrates the difference in computing the two in-
variants equated by the Lefschetz theorem.

Example 5.13. Let X = CP
1 with the T-action induced by the embedding

T → SU2(C) ⊂ Aut(C2), z 7→
[
z 0
0 z̄

]
. There are two stationary points,

with homogeneous coordinates [1, 0] and [0, 1] respectively. Let H∗ be the

canonical line bundle on CP
1, it is a T-invariant subbundle of CP1×C2 so has

a canonical structure of T-equivariant vector bundle. Restricting H∗ to the
stationary points [1, 0] and [0, 1] yields respectively the characters X and X−1,
whence by the Lefschetz theorem

eCP1([Hk]) = traceC[X,X−1](λ
k
[H]) = Xk +X−k ∈ C[X,X−1].

where H is the dual of H∗. Computation of the traceC[X,X−1](λ
k
[H]) by homo-

logical methods requires computing K∗
T
(CP1) as both a ring and as a C[X,X−1]-

module. By results of Atiyah and others, (see Segal’s article [23] for a beautiful
and concise proof) it is generated as a commutative unital ring by X and [H ]
with the relations that X and [H ] are invertible and commute, and satisfy

([H ]−X)([H ]−X−1) = 0.

Hence [H ]2 = (X +X−1)[H ] + 1. This implies that as a C[X,X−1]-module,
K0

T
(CP1) is generated by the unit 1 of the ring, and the element [H ]. This is

a free basis, and with respect to it

λ[H] =

[
0 1
1 X +X−1

]
.

The trace is X + X−1. The formula for traceC[X,X−1](λ
k
[H]) follows from in-

duction, using the relation λn
[H] = (X +X−1)λn−1

[H] + λn−2
[H] , which comes from

the relation given by the minimal polynomial λ2 − (X +X−1)λ− 1 of λ[H].
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