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Analytic filling of totally real tori

Kai Zehmisch

(Communicated by Linus Kramer)

Abstract. We prove that any embedded Maslov index two analytic disc attached to a totally
real torus in the complex two-dimensional affine space extends to an analytic filling provided
that the torus is contained in a regular level set of a strictly plurisubharmonic function.

1. Introduction

We consider an embedded two-dimensional torus T in the affine space C2.
We assume that T is totally real in the sense that no complex line is tangent
to the torus T . We abbreviate

S1 = R/2πZ and D = {|z| ≤ 1} ⊂ C.

The totally real torus T admits an analytic filling provided there exists an
embedding F of the solid torus S1 × D into C2 such that

(F1) the boundary S1 × ∂D is mapped onto T , and
(F2) for all t ∈ S1 the restriction of ut := F (t, ·) to the interior of D defines

a holomorphic map, i.e., ut solves the Cauchy–Riemann equation

∂xut + i∂yut = 0

on IntD, where z = x+ iy.

If a thickened disc (−ε, ε) × D for some ε > 0 is embedded instead, then the
map F is called a local filling. The aim of this note is to prove the following
extension result.

Theorem 1.1. If T is contained in a regular level set of a strictly plurisub-

harmonic function on C2, then any local filling of T extends after restriction

to a global analytic filling of T .

The Clifford torus is the embedded totally real torus given by the product
of unit circles ∂D× ∂D inside C×C so that the solid tori D× ∂D and ∂D×D

induce an analytic filling each. Notice that the Clifford torus is contained
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in the expanded 3-sphere
√
2 · S3 of all vectors having length

√
2. A small

perturbation of the Clifford torus inside
√
2 · S3 that fixes a neighborhood of

{1} × ∂D or ∂D × {1} for example yields totally real tori that admit local
fillings but might not be foliated by circles of the Hopf fibration. In view of
Theorem 1.1 the perturbed Clifford tori still admit global analytic fillings. This
can be obtained by the perturbation results of Alexander [2] and Bedford [4],
alternatively.

More generally, we consider the 2-sphere S2 in S3 ⊂ C × C obtained by
intersecting with the real hyperplane C×R. The intersections with the complex
lines C × {s}, s ∈ (−1, 1), define an analytic filling of S2, cp. [15]. The
filling collapses at the singular points (0,±1), at which S2 is tangent to the
complex lines C × {±1}. Attach an embedded 1-handle to S2 inside S3 that
is obtained from a small tubular neighborhood of an embedded path that
connects (0,±1) and is everywhere transverse to the field of complex lines
TS3 ∩ iTS3, cp. [13, §3.3.2]. The construction results in a possibly knotted
totally real torus inside S3, cp. [20, §4.5, §5.3]. The totally real torus admits a
local and, hence, with Theorem 1.1 a global analytic filling. A general existence
result for analytic fillings of totally real tori that are unknotted in S3 is obtained
by Duval–Gayet [10].

We remark that the example of attaching a 1-handle generalizes to small per-
turbations of embedded 2-spheres in regular level sets of strictly plurisubhar-
monic functions invoking the Giroux elimination lemma [18] and local Bishop
discs [7] or global fillings obtained by Bedford–Gaveau [5], Gromov [19], Eliash-
berg [11], Bedford–Klingenberg [6], Kruzhilin [22, 23], and Ye [29].

1.2. Totally real isotopies. By the results of Borrelli [8, 9] there are infinitely
many isotopy classes of embedded totally real tori in C2. Precisely one class
admits analytic fillings, see Proposition 6.1 below. In Section 6 we will prove:

Corollary 1.3. If T is contained in a regular level set of a strictly plurisub-

harmonic function on C2 and admits a local filling, then T is isotopic to the

Clifford torus through totally real tori.

1.4. Non-trapped characteristics. The complex lines tangent to a regular
level set of a strictly plurisubharmonic function constitute a field of real two-
dimensional planes, which turns out to be a contact structure, see Section 2.1
and Section 5. The foliation on T cut out by the contact structure is the so-
called characteristic foliation, which is transverse to the foliation obtained by
the boundary circles of an analytic filling. In Section 4.2 we will show:

Corollary 1.5. In the context of Theorem 1.1 cylinders in T cut out by bound-

ary circles of holomorphic discs that belong to an analytic filling do not admit

trapped characteristics.

In view of [14] we call a characteristic which does not connect the two
boundary components of the cylinder to be trapped. The corollary says that
any boundary circle induced by an analytic filling is a global circle of section
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for the characteristic foliation of T . In particular, any integrating and non-
vanishing vector field defines a Poincaré section map on all boundary circles.
Hence, the characteristic foliation is homotopically trivial, i.e., any integrating
characteristic line field is homotopic to the kernel of a non-singular closed
1-form.

2. Recollections

2.1. Pseudo-convexity. A real-valued function H on C2 is called strictly

plurisubharmonic if the 2-form −d(dH ◦ i) is positive on complex lines, i.e.,

−d(dH ◦ i)(v, iv) > 0

for all non vanishing tangent vectors v of C2. This is equivalent to say that
H ◦ u is strictly subharmonic for any holomorphic map u : D → C2 defined on
an open domain D of C2, cp. [16, §3.1].

We assume that T is contained in the regular level set M := H−1(0) and
write W = H−1((−∞, 0]). Then ∂W = M as oriented manifolds. The restric-
tion of −dH ◦ i to the tangent bundle of M defines a positive contact form on
M whose kernel ξ equals TM ∩ iTM . Therefore, ξ is invariant under the mul-
tiplication by i. The characteristic foliation Tξ of T is the intersection of TT
with ξ. Because T is a totally real torus, the intersection is transverse so that
Tξ is indeed a one-dimensional foliation on T . Choosing a co-orientation of
T in M , the complex orientation of ξ orients Tξ, i.e., the leaves of Tξ are the
so-called characteristic leaves of T .

The strongmaximum principle of Eberhard Hopf applied toH◦u yields that
any non-constant holomorphic map u : (D, ∂D) → (C2, T ) sends the interior
of D into the interior of W such that the restriction of u to ∂D is an immersion
positively transverse to ξ, see [15, Prop. 4.2]. Therefore, we can choose an
orientation of T such that the holomorphic discs given by the local filling of T
intersect the leaves of Tξ positively.

2.2. Factorizability. One consequence of the maximum principle is that all
non-constant holomorphic maps u : (D, ∂D) → (C2, T ) do not have any mixed
self-intersection points, i.e., u does not map an interior point of D to u(∂D). In
view of Lazzarini’s work [24, 25] this implies that u either is simple or multiply

covered. This means that there exist

• a holomorphic map π : (D, ∂D) → (D, ∂D) that is continuous up to the
boundary and satisfies π−1(∂D) = ∂D, and

• a holomorphic map v : (D, ∂D) → (C2, T ) with a dense set of points
z ∈ D satisfying Tzv 6= 0 and v−1(v(z)) = {z}

such that u = v ◦ π. Being simple corresponds to π having mapping degree 1
as it is satisfied for v.

2.3. Topological index. Denote by A a relative homotopy class of contin-
uous maps u : (D, ∂D) → (W,T ). The Maslov index µ(A) of A is defined
to be the Maslov index of the bundle pair (u∗TW, u∗TT ) for any disc map u
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representing A, see [27, §C.3]. Notice, that the Maslov index µ([u]) does not
change if the map u is perturbed through homotopies relative T that even
take values outside W ⊂ C2. In other words, µ(A) is uniquely determined by
the image ∂∗A under the boundary homomorphism ∂∗ that maps π2(C

2, T )
isomorphically onto π1(T ).

We remark that the Maslov index µ(A) is an even integer for all classes A
because T is orientable. This is because the forgetful map from the space of
oriented real planes through 0 ∈ C2 onto the space of all real planes through
0 ∈ C2 has degree two, cp. [26, pp. 52–53], [3, Appendix] and [27, p. 554].

2.4. Intersection product. A smooth map (D, ∂D) → (W,T ) is called ad-

missible if it sends IntD into IntW , restricts to an immersion on ∂D, and is
transverse to M . Any non-constant holomorphic map (D, ∂D) → (C2, T ) is
admissible, see Section 2.1. For admissible maps u1, u2 : (D, ∂D) → (W,T )
an intersection number u1 • u2 is defined provided u1 and u2 intersect in only
finitely many points and the span of the tangent spaces to u1(D) and u2(D) at
all boundary intersection points is not three-dimensional, see [15, §8]. We will
say that u1 and u2 intersect nicely.

To each interior intersection point a local intersection multiplicity is as-
signed. For boundary intersection points one takes local intersection multi-
plicities of extensions of u1(D) and u2(D) by local Schwarz reflections, see [15,
pp. 569–571]. By definition the intersection number u1 • u2 is the total sum of
local intersection multiplicities, where interior intersections are counted twice,
see [15, Def. 8.8]. It is shown in [15, Prop. 8.9] that u1 • u2 only depends on
the relative homotopy classes [u1] and [u2] in π2(W,T ). By [15, Prop. 8.2] the
condition on u1 and u2 to intersect nicely is generic. Hence, the intersection
number defines an intersection product • on π2(W,T ), see [15, Rem. 8.11].

2.5. Non-negativity of intersections. By [15, Prop. 9.1] any two distinct
holomorphic discs u1, u2 : (D, ∂D) → (C2, T ) intersect nicely. The intersection
number u1 • u2 is nonnegative and equals zero if and only if u1 and u2 have
disjoint images, see [15, Thm. 9.2].

2.6. Relative adjunction inequality. The embedding defect of a relative
homotopy class A in π2(W,T ) is defined to be

D(A) = A •A− µ(A) + 2.

For all simple holomorphic maps u : (D, ∂D) → (C2, T ) the embedding defect
D([u]) is nonnegative and vanishes if and only if u is an embedding, see [15,
Thm. 9.4].

Proposition 2.7. Let F be a local filling of T . Then the Maslov index of

F (t, ·) equals 2 for all t.

Proof. Set ut = F (t, ·). The embedding defect D([u0]) vanishes because u0 is
an embedding. The intersection product [u0] • [u0] is equal to the intersection
number u0 • ut for t > 0 small, which is zero as u0(D) and ut(D) are disjoint.
Therefore, µ([u0]) = 2. �
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Example 2.8. Consider the holomorphic embedding u(z) = (z, z), z ∈ D,

that takes boundary values on the Clifford torus ∂D× ∂D inside
√
2 · S3. As

u has Maslov index 4, there is no filling of the Clifford torus that extends u,
which of course can be verified directly.

Remark 2.9. In [22], Kruzhilin showed that any totally real torus that is
contained in a regular level set of a strictly plurisubharmonic function admits
a family of Maslov index 2 holomorphic discs that are attached to the torus
passing through all its points. Therefore, the total obstruction to extend to
an analytic filling lies in the vanishing of the self-intersection number of the
represented relative homology class.

2.10. Automatic transversallity. We formulate the converse of Proposi-
tion 2.7. For that consider a holomorphic embedding u : (D, ∂D) → (C2, T ).
The collection of three pairwise disjoint local paths in T that intersect u(∂D)
transversally in a single point will be referred to as the transverse constraints.

Proposition 2.11. Let u : (D, ∂D) → (C2, T ) be a holomorphic embedding of

Maslov index 2. Then there exists a local filling F of T that extends u = F (0, ·)
such that the curves t 7→ F (t, ik), k = 0, 1, 2, locally parametrize the transverse

constraints. Moreover, the filling is unique up to re-parametrizations in the

time variable t and shrinking the time interval.

Proof. This is worked out in [20, §2] and [21, §3.2]. The necessary modifications
in view of the transverse constraints can be achieved similarly to [15, Lem. 7.5
and Prop. 7.6] by a choice of a Riemannian metric that turns T and the three
transverse constraints into totally geodesic submanifolds. �

3. A moduli space

In this section we assume the situation of Theorem 1.1 and denote the local
filling of T by F .

3.1. Definition. Set u0 = F (0, ·). Provide the space of all holomorphic maps
u : (D, ∂D) → (C2, T ), which by Section 2.1 take values in W , with the C∞-
topology. The subspace consisting of all u that are homologous to u0 in W
relative T is denoted by M̃. Notice, that all holomorphic discs u ∈ M̃ are
simple. To see this, factor u = v ◦π as described in Section 2.2. Because µ([v])
is even and using Proposition 2.7, we see that the degree of the holomorphic
map π must be one. In particular, the group G of conformal automorphisms of
(D, i) acts without fixed points via re-parametrizations. The moduli space M
is defined to be the quotient M̃/G.

Because D([u0]) vanishes, all holomorphic maps in M̃ are embeddings with
Maslov index 2, cp. Proposition 2.7. By Section 2.5 the images of holomorphic
maps in M̃ that have distinct images, i.e., represent distinct classes inM, are in
fact disjoint because [u0]• [u0] = 0. With the arguments from Proposition 2.11
M̃ is a four-dimensional, and hence M a one-dimensional, smooth manifold.
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3.2. Geometric bounds. Denote by B a ball in C2 that contains the torus T .
BecauseB is a sub-level set of the strictly plurisubharmonic function z 7→ 1

4 |z|2,
all holomorphic discs u(D) with u(∂D) ⊂ T are contained in B. This again
follows from the maximum principle.

3.3. Cutting the torus. The image of u0|∂D is an oriented knot in T , which is
transverse to the characteristic leaves of T , see Section 2.1. Therefore, u0(∂D)
can not bound a disc inside T . In view of [28, p. 25] the complement T \u0(∂D)
is diffeomorphic to S1 × (0, 1). We may assume that the boundary circles of
the holomorphic discs that belong to the local filling F coincide with the slices
S1 × {t} for t ∈ (0, ε) ∪ (1 − ε, 1) so that we can add two copies of u0(∂D)
to the cylinder to get S1 × [0, 1]. According to the orientation convention in
Section 2.1 the leaves of Tξ point inwards S1 × [0, 1] along S1 × {0}.

3.4. Energy bounds. Denote by ω the symplectic form dx ∧ dy of C2 ≡ R4.
The energy E(u) of a holomorphic disc u is defined by

∫
D
u∗ω. Because i and

ω are compatible, E(u) is equal to the Dirichlet energy of u, see [27, §2.2].
Both descriptions imply that the energy is invariant under conformal re-para-
metrizations.

Proposition 3.5. The energy function [u] 7→ E(u) on M is bounded from

above.

Proof. We consider a holomorphic map u ∈ M̃ that is not a conformal re-
parametrization of u0. Then u(∂D) divides T \ u0(∂D), which is diffeomorphic
to S1 × (0, 1), into two nonempty cylindrical components, because the knots
u0(∂D) and u(∂D) are homotopic in S1 × [0, 1]. We denote the cylinder for
which u(∂D) is an oriented boundary component by C. Therefore, by Stokes
theorem, ∫

C

ω =

∫

u(∂D)

λ−
∫

u0(∂D)

λ = E(u)− E(u0)

writing λ instead of xdy. Choose an area form σ on T so that ω = fσ for a
smooth function f on the 2-torus T . Therefore,

∫

C

ω ≤ max
C

|f | · σ(C),

where we denote the total area of a subset U ⊂ T by σ(U). Combining both
expressions, we obtain

E(u) ≤ E(u0) + max
C

|f | · σ(C).

Repeating the argument with C replaced by T \ C, we eventually obtain

E(u) ≤ E(u0) +
1
2 max

T
|f | · σ(T )

because the minimum of two real numbers is smaller than the arithmetic mean
of the two. �
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3.6. Compactness. Any sequence in M̃ has a subsequence that Gromov con-
verges to a stable holomorphic disc u, which represents the relative homotopy
class [u0], see [12, Thm. 1.1]. By Liouville’s theorem, u has no spherical com-
ponents.

Proposition 3.7. M is compact.

Proof. We consider a sequence in M̃. We can assume that the boundary
circles of the holomorphic discs stay in the complement of F ((−ε/2, ε/2)×∂D).
Denote by u1, . . . , uN the components of a limiting stable holomorphic disc of
a Gromov converging subsequence. We conclude that the circles uj(∂D) are
contained in the complement of u0(∂D), i.e., in S1 × (0, 1). We will show that
N = 1 so that the chosen subsequence descends to a converging sequence in
the moduli space M.

As described in Section 2.2 each of the holomorphic discs uj factors through
a simple holomorphic disc vj via a branched covering map of degree mj ≥ 1.
Therefore, [u0] equals

[u0] =

N∑

j=1

mj [v
j ]

in π2(W,T ). We can assume that the images of the vj ’s are pairwise distinct. If
not we combine any pair of classes that represent the vj ’s with common image
to a single class weighted with the sum of the multiplicities. This procedure
shrinks N and enlarges the mj ’s.

We will utilize the argument from [17, pp. 549–550] and assume by contra-
diction that N ≥ 2. Because [u0] • [u0] = 0, we get with Section 2.5 that
[u0] • [vj ] = 0 for all j. Substituting the above expression for [u0] once more,
we get for all j,

0 =

N∑

k=1

mk[v
k] • [vj ]

or equivalently

−mj [v
j ] • [vj ] =

∑

k 6=j

mk[v
k] • [vj ].

At least two of the vj ’s, which originate from the bubble tree of the limiting
stable holomorphic disc, must intersect. Section 2.5 yields that the right-hand
side is positive. Therefore, [vj ] • [vj ] ≤ −1 for all j.

Because µ([u0]) = 2, we get furthermore

2 =

N∑

j=1

mjµ([v
j ]).

Moreover, by Section 2.6 the embedding defect

0 ≤ D([vj ]) = [vj ] • [vj ]− µ([vj ]) + 2
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of the [vj ]’s is nonnegative. Combining both yields

2 ≤
N∑

j=1

mj

(
[vj ] • [vj ] + 2

)
.

We conclude that at least one of the vj ’s, v1 say, has self-intersection number
equal to [v1] • [v1] = −1.

We can approximate v1 by a smooth admissible map w : (D, ∂D) → (W,T )
that represents [v1] and intersects v1 transversely in a finite number of points,
see [15, Rem. 8.6] and Section 2.4. Hence, v1 • w = −1. Because interior
intersections are weighted with factor two, the contribution from interior inter-
section points to the intersection number v1 •w is even. Therefore, v1(∂D) and
w(∂D) intersect in an odd number of points, which are transverse intersections
by construction. This implies that the ordinary intersection product

[v1|∂D] · [v1|∂D] = [v1|∂D] · [w|∂D] 6= 0

does not vanish on the first homology of T \u0(∂D). In other words [v1|∂D] 6= 0,
so that the classes of v1|∂D and u0|∂D are nontrivially co-linear in the Z-module
H1(T \ u0(∂D)), the latter being identified with Z[u0|∂D]. We infer that

[u0|∂D] · [u0|∂D] 6= 0.

This is a contradiction as u0(∂D) and F (ε/2, ∂D) are disjoint. Hence, we get
N = 1. �

4. Extensions of local fillings

4.1. Holomorphic discs with one boundary marked point. Consider
the quotient space

M1 = M̃ ×G ∂D

by the action

g ∗ (u, z) = (u ◦ g, g−1(z)).

By Section 3.1 and Proposition 3.7 the moduli space M1 is a closed sur-
face. Charts can be obtained via local fillings as described in Proposition 2.11.
For any u ∈ M̃ and transverse constraints c0, c1, c2 that intersect u(∂D) in
u(1), u(i), u(−1), respectively, there exists a local filling F : (−ε, ε)× D → C2

that extends u = F (0, ·). The local filling is uniquely determined up to re-
parametrizations in time. The map (−ε, ε)× ∂D → M1, (t, z) 7→ [F (t, ·), z] is
a local parametrization near (u, z). In order to obtain coordinate changes, con-
sider local fillings F1 and F2 that extend u and u ◦ h, h ∈ G, respectively. By
shrinking the time intervals, we can assume that the images coincide. There-
fore, we obtain a diffeomorphism

F−1
2 ◦ F1 = (f, g) : (−ε1, ε1)× D → (−ε2, ε

′
2)× D,

where f : (−ε1, ε1) → (−ε2, ε
′
2) is a smooth strictly increasing function and

g = gt, t ∈ (−ε1, ε1), a smooth 1-parameter family of conformal automorphisms
in G such that f(0) = 0 and g0 = h−1, see [20, Thm. 18] and [21, Prop. 3.12].
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The desired coordinate change (−ε1, ε1)×∂D → (−ε2, ε
′
2)×∂D according to the

parametrizations F1 and F2 spells out as (t, z) 7→ (f(t), gt(z)). In particular,
the evaluation map

ev : M1 → T, [u, z] 7→ u(z)

equals (t, z) 7→ F (t, z) in the chart obtained by F . Because ev is injective by
Sections 2.5 and 2.6, the evaluation map ev is a diffeomorphism.

4.2. No trapped characteristics on the cut-off torus. We identify the
complement T \ u0(∂D) with S1 × (0, 1) according to the conventions made in
Section 3.3.

Proposition 4.3. Each characteristic leaf of S1 × (0, 1) connects S1 × {0}
with S1 × {1}.
Proof. Choose a characteristic leaf ℓ on S1×(0, 1) that intersects S1×{0}. For
each point p ∈ ℓ there exists a local filling Fp such that Fp(0, ∂D) intersects p,
see Section 4.1. Denote by

U =
⋃

p∈ℓ

Fp

(
(−εp, εp)× ∂D

)

the union of the images of all local fillings Fp, p ∈ ℓ, in S1 × (0, 1). Denote by
s0 the supremum of

proj2
(
U ∩ ({0} × (0, 1))

)

in the unit interval (0, 1). Then there exists a local filling F0 such that F0(0, ∂D)
intersects the point (0, s0) in S1 × (0, 1). The image of F0 in S1 × (0, 1)
overlaps with U . Because ℓ intersects boundary circles of holomorphic discs
transversally, each boundary circle of each holomorphic disc F0(t, ·) intersects
ℓ nontrivially. Hence, s0 = 1 and F0(0, ∂D) coincides with S1 × {1} so that ℓ
connects S1 × {0} with S1 × {1}. �

4.4. Gluing local fillings. We consider a local filling F : (−ε, ε) × D → C2

of T and set u0 = F (0, ·). In view of Proposition 4.3 we choose three dis-
joint smooth knots K0,K1,K2 in T such that each coincides with a connected
characteristic leaf on S1 × [ε, 1 − ε] and is transverse to the boundary circles
of F (t, ·), whose images correspond to the slices in S1 × ((0, ε) ∪ (1 − ε, 1)).
Therefore, each holomorphic disc u ∈ M̃ intersects each knot Kk transversely.
We can assume that u0(i

k) ∈ Kk for k = 0, 1, 2.
Let M1,i,−1 be the moduli space of all u ∈ M̃ such that u(1) ∈ K0, u(i) ∈

K1, u(−1) ∈ K2. Requiring the three marked points to lie on the respective
knots, which play the role of global transverse constraints, is the same as to
build the abstract quotient M. A variant of the considerations in Section 4.1
that ignores the marked point shows that

M1,i,−1 → M, u 7→ [u]

is a diffeomorphism. Therefore, M1,i,−1 is a circle, which of course can be seen
directly with Proposition 2.11 and [15, Prop. 7.1].
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The evaluation map

ev : M1,i,−1 × ∂D → T, (u, z) 7→ u(z)

is a diffeomorphism, as it factors through the diffeomorphism

M1,i,−1 × ∂D → M1, (u, z) 7→ [u, z],

and the evaluation map we considered earlier, see Section 4.1. By construction
ev1 = ev(·, 1) maps M1,i,−1 diffeomorphically onto the knot K0. Therefore,
choosing a regular parametrization c : S1 → K0, the map

S1 × D → C
2, (t, z) 7→

(
ev−1

1 (c(t))
)
(z)

turns out to be an analytic filling of T , cp. [15, Prop. 5.2].

Proof of Theorem 1.1. Denote by F1 the global analytic filling just obtained.
The given local filling is denoted by F2. Then F−1

2 ◦ F1 has the form (f, g)
as indicated in Section 4.1. This time f sends (a, b) to (−ε, ε), where we can
assume that a ∈ (−π, 0) and b ∈ (0, π). The path g = gt in G is parametrized
by t ∈ (a, b). Replace f by a smooth strictly increasing function that is the
identity near 0 and coincides with the old near ±ε. Similarly, replace the
path gt by a path in G that is constantly equal to the identity near 0 and
coincides with the old path near ±ε. This is possible because the group G of
Möbius transformations on D is diffeomorphic to S1×R and, hence, connected.
The analytic filling that equals F2 ◦ (f, g) on (a, b) × D and F1 elsewhere on
S1 \ (a, b)× D is an extension after restriction of F2. �

5. Generalizations

Theorem 1.1 remains valid if we replace C2 by any Stein surface, which is a
complex two-dimensional complex manifold that admits a proper holomorphic
embedding into a complex affine space, cp. [13, pp. 283–284]. In fact, the
integrability of the almost complex structure is not used in the proof. The
theorem therefore can be phrased in the following form:

Let (M, ξ) be a closed oriented contact 3-manifold with a positive contact

form α, i.e., α∧ dα > 0. Let (W,ω) be a weak filling of (M, ξ), i.e., a compact
symplectic manifold, which is oriented by ω2, such that ∂W = M as oriented
manifolds and the restriction of ω to ξ is positive. Assume that the symplectic
manifold admits an almost complex structure J that turns T ⊂ M into a
totally real torus, leaves ξ and its symplectic orthogonal invariant, and is tamed

by ω, i.e., ω is positive on J-complex lines. In particular, the boundary M
is J-convex , i.e., the complex tangencies ξ define a positive contact structure,
see [17, p. 538] and [15, Rem. 4.3].

Assume that T admits a local filling F . Then F extends to a global filling
of T after restriction, either if H2W has no spherical classes A with ω(A) > 0
and A ·A = −1, or J is perturbed away from F ([−ε/2, ε/2]×D) to be generic
for precisely those classes and (W,ω) is minimal, i.e., does not admit any
embedded symplectic sphere of self-intersection equal to −1. Indeed, if J turns
all simple stable holomorphic discs that have an exceptional sphere component
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as described into a regular moduli space problem, then no further assumptions
on W are necessary.

The proof is a variation of the one we gave. In order to get uniform en-
ergy bounds, replace the primitive λ in Proposition 3.5 by a 3-chain that has
boundary u(D) + C − u0(D), which exists by assumption. Moreover, in order
to prove compactness, combine the intersection argument from Proposition 3.7
with the one from [17, pp. 549–550], and from [16, p. 276] in the generic case
described at last.

6. From filling to isotopy

We consider a totally real torus T ⊂ C2 which is provided with an analytic
filling F : S1 × D → C2. We write ut instead of F (t, ·) for all t ∈ S1 and
parametrize the Clifford torus by

S1 × ∂D → C
2, (t, eiθ) 7→ (eit, eiθ).

Corollary 1.3 will follow from the next proposition.

Proposition 6.1. There exists an isotopy Φ of embeddings S1 × ∂D → C2

that connects Φ0 = F with the chosen parametrization Φ1 of the Clifford torus

such that the image tori Φs(S
1 × ∂D) are totally real for all s ∈ [0, 1].

Proof. The embeddings F (·, 0) and t 7→ (eit, 0) of S1 into C2 are isotopic by
the unknotting theorem [1, Cor. 7.2]. We denote the isotopy by

ϕ : [0, 1]× S1 → C
2, (s, t) 7→ ϕs(t).

The isotopy defines a trivial complex plane bundle E = ϕ∗TC2, which has a
preferred non-vanishing section X defined by X(s,t) = Ttϕs(∂t). The complex
line bundle generated by X is denoted by E1. Let E2 be a complementary
complex subbundle of E1 in E such that the fiber of E2 over (0, t) equals the
tangent plane of the disc ut(D) at ut(0) and the fiber of E2 over (1, t) is equal
to {eit} ×C. Choose a complex trivialization of E that preserves the splitting
E1 ⊕ E2. Together with the normal exponential map of the Euclidean metric
we obtain an isotopy Φ of embeddings

(S1 × (−ε, ε))×D2
ε → C

2

for some small ε > 0. The isotopy Φ restricts to ϕ on [0, 1]×S1×{0}×{0} such
that Φ1(t, r; z) = (eit, z) and that Φ∗

si leaves the splitting (S1 × (−ε, ε))×D2
ε

invariant.
The desired isotopy will be a combination of isotopies. In a first step, we

shrink T via

(t, eiθ) 7→ F (t, reiθ)

into the image of Φ0, which is a neighborhood of F (S1, 0), by making r small.
The neighborhood contains a second family of embedded totally real tori that
are parametrized by Φ0(t, 0; re

iθ). The tangent spaces to the tori for t and θ
fixed converge in both families to the real plane spanned by the vectors X(0,t)

and T(t,0;0)Φ0(0, ie
iθ) as r tends to zero. Hence, for r sufficiently small the
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angle between the respective tangent planes is less than π/2 so that the convex
combination of F (t, reiθ) and Φ0(t, 0; re

iθ) induces an isotopy of embeddings.
Shrinking r again if necessary, the isotopy will be through totally real tori
because the space of all real planes in the Grassmannian of all two-dimensional
subspaces of C2 ≡ R4 is open. The third isotopy is given by

(t, eiθ) 7→ Φs(t, 0; re
iθ)

sending s to 1 and the last brings ∂D2
1 × ∂D2

r to the Clifford torus by radially
expanding the second circle factor. �
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