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Introduction

The origin of this thesis is the following conjecture of Gromov [26, Section 8A,
p. 232] revealing a connection between the L2-Betti numbers b(2)

k (M̃)and the sim-
plicial volume ‖M‖ of a closed oriented connected aspherical manifold M.

Conjecture. Let M be a closed oriented connected aspherical manifold with ‖M‖ = 0.
Then

b(2)
k (M̃) = 0 for all k ≥ 0.

The first definition of L2-Betti numbers for cocompact free proper G-manifolds
with G-invariant Riemannian metric (due to Atiyah [2]) is given in terms of the
heat kernel. We will briefly recall this original definition at the beginning of Chap-
ter 1. Today, there is an algebraic and more general definition of L2-Betti numbers
which works for arbitrary G-spaces. Analogously to ordinary Betti numbers, they
are given as the “rank” of certain homology modules. More precisely, the k-th L2-
Betti number b(2)

k (Z;NG) of a G-space Z is the von Neumann dimension of the k-th
twisted singular homology group of Z with coefficients in the group von Neumann
algebra NG. Here, von Neumann dimension means the dimension function de-
veloped by Lück [36],[37] for arbitrary modules (in the algebraic sense) over finite
von Neumann algebras. The k-th L2-Betti number b(2)

k (G) of a group G is defined

as b(2)
k (EG;NG), where EG → BG is the universal principal G-bundle. The nota-

tion b(2)
k (M̃) is short for b(2)

k

(
M̃;Nπ1(M)

)
. We will present the relevant definitions

in Chapter 1. The standard reference for L2-Betti numbers is Lück’s extensive text-
book [38].

The simplicial volume ‖M‖ is a real valued homotopy invariant for closed ori-
ented connected topological manifolds M. It measures the “complexity” of the fun-
damental homology class of M. Namely, ‖M‖ is defined as the infimum of the
�1-norms of real singular cycles representing the fundamental class. The simplicial
volume was defined by Gromov in order to give volume estimates for Riemannian
manifolds [24]. In particular, Gromov was interested in lower bounds for the mini-
mal volume minvol(M), if M is in addition smooth. Definition and properties of the
simplicial volume and the relation to the minimal volume are treated in Chapter 2.
It is quite interesting that there are many connections to Riemannian geometry al-
though the definition of simplicial volume only takes the topological structure of
the manifold into account. For example, a manifold with vanishing simplicial vol-
ume cannot carry a Riemannian metric of negative sectional curvature [29].
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At first sight the definitions of L2-Betti numbers and the simplicial volume do
not indicate a relationship between them, but in certain situations both invariants
behave similarly. We will provide examples for this in Section 5.1. These similari-
ties suggest a connection between L2-Betti numbers and the simplicial volume. An
immediate consequence of Gromov’s Conjecture would be the fact that the Euler
characteristic χ(M) vanishes if M is aspherical with ‖M‖ = 0. This fact could have
been the motivation for Gromov to study relations between L2-Betti numbers and
simplicial volume. Gromov’s Conjecture would also imply that the L2-Betti num-
bers of the universal covering M̃ of an aspherical manifold M vanish if M admits a
selfmap M → M of degree d /∈ {−1, 0, 1}. This was proved by Lück under the ad-
ditional assumption that each normal subgroup of finite index of the fundamental
group π1(M) is Hopfian [38, Theorem 14.40, p. 499]. A group G is called Hopfian if
each surjective group homomorphism G → G is an isomorphism.

In this thesis, we will pick another approach to L2-Betti numbers of G-spaces.
We follow the philosophy that it is often fruitful to look at the same invariant from
different points of view. A basic example for this is provided by the Betti num-
bers bk(Z) of finite CW-complexes Z: Looking only at the singular chain complex,
it is not clear that they are finite. Looking only at the cellular chain complex, one
does not see directly that they are independent of the CW-structure. But once one
has shown that both chain complexes have isomorphic homology groups, it turns
out that the bk(Z) are homotopy invariants with values in the nonnegative inte-
gers. We will see that L2-Betti numbers are another good instance for this general
principle. For some properties the original analytic approach of Atiyah is more
convenient (e.g., the vanishing of L2-Betti numbers of the universal covering of hy-
perbolic manifolds outside the middle dimension [16]), other properties are more
easily proved with Lück’s algebraic definition, such as the fact that L2-Betti num-
bers of universal coverings of aspherical spaces with amenable fundamental group
vanish [37, Section 5, p. 155 ff.]. In this thesis we will give another definition of
L2-Betti numbers which is adequate for analyzing Gromov’s Conjecture.

We define L2-Betti numbers ofR-spaces. These are spaces which are parametrized
over a standard Borel probability space X and provided with an action of a standard
equivalence relation R ⊂ X × X. The starting point of exploring standard equiva-
lence relations is the work of Feldman and Moore [18]. The definition of R-spaces is
due to Connes. The basic example for standard equivalence relations is given by the
orbit equivalence relation RG�X of a standard action G � X. Each standard equiv-
alence relation is an orbit equivalence relation of an appropriate measure preserving
action G � X [18], but one cannot assume that the action is essentially free. The
definition of L2-Betti numbers of R-spaces makes use of the equivalence relation
ring ZR and the equivalence relation von Neumann algebra NR. With these two
objects replacing the group ring and the group von Neumann algebra, the definition
is analogous to the algebraic definition of L2-Betti numbers of G-spaces. In fact, we
first define a singular chain complex CX

• (S; Z) for an R-space S and consider then
the homology of the complex NR⊗ZR CX

• (S; Z). The k-th L2-Betti number of S is
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defined as
dimNR

(
Hk
(
NR⊗ZR CX

• (S; Z)
))

.

If G � X is a standard action, there is an induction functor

ind : G-Spaces → RG�X-Spaces

which sends a G-space Z to the RG�X-space X × Z. In Chapter 4, we show the
following result.

Theorem. Let G be a countable group and G � X a standard action on a standard Borel
space X. Then for a countable free G-CW-complex Z one has

b(2)
k (X × Z;NRG�X) = b(2)

k (Z;NG) for all k ≥ 0.

This is a slight generalization of a result of Gaboriau who proved the same result
for countable free simplicial complexes. He also defined L2-Betti numbers b(2)

k (R)

of a standard equivalence relation R and proved that b(2)
k (RG�X) = b(2)

k (G) holds
for a standard action G � X. Gaboriau used this result to show that L2-Betti num-
bers of orbit equivalent groups coincide and those of measure equivalent groups
coincide up to a non-zero multiplicative constant. Orbit equivalence will be in-
troduced in Section 4.6, where we also give a new proof for the orbit equivalence
invariance of L2-Betti numbers. The definition of measure equivalence, which can
be viewed as a measure theoretic analogue of quasi isometry, is due to Gromov
and Zimmer. A lot of work on measure equivalence was done by Furman [19],[20].
It should be mentioned that Sauer [41] reproved Gaboriau’s theorem using the di-
mension theory of Lück. More information about about measure equivalence can
be found in [22],[41].

The first motivation for the approach to L2-Betti numbers via the detour to R-
spaces was a remark of Gromov [27, p. 306f.], indicating how one could try to prove
the conjecture relating L2-Betti numbers and the simplicial volume of aspherical
manifolds. The starting point for that is the upper bound

n

∑
j=0

b(2)
j (M̃) ≤ 2n+1 · ‖M‖Z,

where ‖M‖Z denotes the integral simplicial volumewhich is given as the minimum
of �1-norms of integral fundamental cycles. This inequality is an easy application of
the Poincaré duality theorem. Unfortunately, ‖M‖Z is only a very rough estimate
for the simplicial volume ‖M‖ (e.g., ‖M‖Z ≥ 1 holds for all manifolds M), and
the Poincaré duality argument does not provide an upper bound for the sum of L2-
Betti numbers in terms of the coefficients of a real fundamental cycle (and therefore
of the simplicial volume). Gromov’s idea behind the integral foliated simplicial vol-
ume ‖M‖F ,Z is to resolve this drawback by introducing weighted singular cycles to
represent the fundamental class of M. The weight is given by the coefficients which
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are functions f ∈ L∞(X; Z). One has the inequality ‖M‖F ,Z ≤ ‖M‖Z. Roughly
speaking, the integral foliated simplicial volume is given as the infimum of the sum
of �1-norms

∫
X| f | of the coefficient functions f of “weighted” fundamental cycles.

This definition is only vaguely indicated by Gromov [27, p. 305f.]. The following
theorem is posed there as an exercise (with 2n instead of 2n+1 as constant factor):

Theorem. Let M be a closed connected oriented manifold of dimension n. Then

n

∑
j=0

b(2)
j (M̃) ≤ 2n+1 · ‖M‖F ,Z

holds.

In Chapter 5, we give a concise definition of ‖M‖F ,Z and prove this theorem.
Note that there is no asphericity condition in the theorem. In order to prove

Gromov’s conjecture, one could try to prove that ‖M‖ = 0 implies ‖M‖F ,Z = 0 for
aspherical manifolds M. Unfortunately, we are far away from such a result. The
best outcome in this direction is ‖S1 × M‖F ,Z = 0.

Actually, the current definition of ‖M‖F ,Z and the proof of the above theorem
does not make use of R-spaces. Hence the thesis somehow breaks up into two
independent parts, one about R-spaces and their L2-Betti numbers and one deal-
ing with Gromov’s conjecture. There is a version of ‖M‖F ,Z, where R-spaces and
their L2-Betti numbers occur, but this version needs the fact that the corresponding
cohomology

H•(homZR
(
C•(S; Z),NR

))
satisfies Eilenberg-Steenrod-type axioms, and we could not prove the excision ax-
iom. Nevertheless, the definition of ‖M‖F ,Z is motivated by the study of R-spaces
and their homology.

This thesis is organized as follows: The first two chapters consist of a survey
about the concepts appearing in Gromov’s Conjecture, namely L2-Betti numbers
and simplicial volume.

Chapter 1 deals with L2-Betti numbers of G-spaces. We describe the algebraic
approach to L2-Betti numbers using Lück’s dimension theory and collect the main
properties without proof.

In Chapter 2, the simplicial volume of closed oriented connected manifolds is
introduced. In addition to the definition and properties, we describe bounded co-
homology as a main tool for exploring simplicial volume. A section about minimal
volume is included since the study of this invariant was the main motivation for
Gromov to analyze simplicial volume.

Chapters 3 and 4 contain the approach to L2-Betti numbers via R-spaces.
In Chapter 3, we present the definition of R-spaces. We examine standard Borel

spaces and assign to a standard Borel space X with probability measure the category
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of X-spaces. In analogy to ordinary singular homology we define singular homol-
ogy of X-spaces. If R ⊂ X × X is a standard equivalence relation, we describe the
category of R-spaces. These are special X-spaces, their additional feature is an ac-
tion of R. As a slogan, X-spaces should be thought of as an analog of ordinary
topological spaces, and R-spaces should be thought of as an analog of G-spaces.

The purpose of Chapter 4 is to define L2-Betti numbers of R-spaces and to com-
pare them to ordinary L2-Betti numbers in the situation of the orbit equivalence re-
lation RG�X and an induced RG�X-space X × Z. We first define the von Neumann
algebra NR of a standard equivalence relation, following Feldman and Moore [18].
The definition of L2-Betti numbers of R-spaces is then analogous to the algebraic
definition of ordinary L2-Betti numbers. We show that the homology functor which
showed up in the definition of L2-Betti numbers of R-spaces satisfies appropriate
Eilenberg-Steenrod axioms up to dimension isomorphisms. From this, we deduce
that the L2-Betti numbers of a countable free G-CW-complex Z and those of the
induced RG�X-space X × Z coincide. We define R-CW-complexes and cellular ho-
mology. It is proved that the L2-Betti numbers of an R-CW-complex can be com-
puted with the cellular complex. As an application of the theory of L2-Betti num-
bers for R-spaces, we provide another proof for the orbit equivalence invariance of
L2-Betti numbers.

Chapter 5 deals with Gromov’s Conjecture. First, we give an overview of the
conjecture. The rest of the chapter is devoted to the definition and properties of the
integral foliated simplicial volume ‖M‖F ,Z. The main result is the upper bound

n

∑
j=0

b(2)
j (M̃) ≤ 2n+1 · ‖M‖F ,Z

for an n-dimensional manifold M. We prove that for simply connected M one
has ‖M‖Z = ‖M‖F ,Z. This is no surprise since then b(2)

0 (M̃) = b0(M) = 1 holds,
and consequently ‖M‖F ,Z cannot vanish. In contrast to that, we show ‖S1‖F ,Z = 0.
Furthermore, we prove that ‖M × N‖F ,Z ≤ c · ‖M‖F ,Z · ‖N‖F ,Z holds, where the
constant c depends only on dim(M) + dim(N). We show that the integral foliated
simplicial volume satisfies

‖M‖ ≤ ‖M‖F ,Z ≤ ‖M‖Z.
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want to express my gratitude to my advisor Wolfgang Lück for the choice of the
fascinating subject and constant support. I am also grateful for the opportunity to
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1 L2-Betti Numbers

The original definition of L2-Betti numbers was given by Atiyah in 1976 [2]: The
k-th L2-Betti numbers of a cocompact free proper G-manifold M with G-invariant
Riemannian metric is given by

b(2)
k (M; G) = lim

t→0

∫
F

trR

(
e−t·Δk(x, x)

)
vol(x),

where F ⊂ M is a fundamental domain for the G-action. Furthermore, Δk is the
Laplacian acting on L2-integrable k-forms, and e−t·Δk(x, y) is the integral kernel (the
heat kernel) of the operator e−t·Δk which is given by spectral calculus. In particular,
for each x ∈ M the map e−t·Δk(x, x) is an endomorphism of the finite dimensional
vector space Altk(TxM) of which we can take the ordinary trace in the sense of linear
algebra.

Nowadays there is an algebraic and more general approach to L2-Betti numbers
in terms of homology due to Lück ([36],[37]). Using this approach L2-Betti numbers
can be defined for arbitrary G-spaces Z, but the main interest lies on the special
case, where Z = Ỹ is the universal covering of some space Y with the natural action
of the fundamental group G = π1(Y). In that situation, L2-Betti numbers can be
viewed as a refinement of ordinary Betti numbers which takes the action of the fun-
damental group on the universal covering into account. In a first naive approach to
such a refinement one would probably try to find a good notion of dimCG and then
consider dimCG

(
Hk(Ỹ; C)

)
. The problem is that in general CG is not a “nice” ring

and consequently such a notion would not have the desired properties. Therefore
one passes from CG to the group von Neumann algebra NG which is a certain com-
pletion of CG. For modules over NG there is a convenient dimension theory which
will be used to define L2-Betti numbers.

The standard reference for L2-Betti numbers is Lück’s extensive textbook [38].

1.1 Basics about von Neumann Algebras

We will briefly recall what we need from the theory of finite von Neumann algebras.
One can find this in any textbook on von Neumann algebras, e.g. in [14] or in [31]
and [32].

Definition 1.1. A von Neumann algebra N is a weakly closed ∗-subalgebra of L(H)
which contains idH : H → H, where H is a Hilbert space and L(H) denotes the
algebra of continuous linear operators on H.

1



1 L2-Betti Numbers

The weak topology on L(H) is generated by all seminorms ηx,y( f ) = |〈 f (x), y〉| with
x, y ∈ H. The strong topology on L(H) is generated by all seminorms ηx( f ) = ‖ f (x)‖
with x ∈ H. In other words, the strong topology coincides with the topology of
pointwise convergence on L(H).

For the definition of L2-Betti numbers we will need the following example of a
von Neumann algebra.

Example 1.2. For a group G consider the Hilbert space �2(G) consisting of formal
sums ∑g∈G λg · g with complex coefficients λg ∈ C which are square summable,
i.e. ∑g∈G|λg|2 < ∞. The group G acts on �2(G) from the left and from the right by
translation. This induces embeddings

ρl : CG → L
(
�2(G)

)
and

ρr : CG → L
(
�2(G)

)
by linear continuation. The group von Neumann algebra NG of G is defined as the
weak closure of ρr(CG) in L

(
�2(G)

)
.

Definition 1.3. For a subset A ⊂ L(H) its commutant is defined as

A′ = { f ∈ L(H) : a f = f a for all a ∈ A}.

The following celebrated double commutant theorem of von Neumann gives rise
to an alternative definition of von Neumann algebras. A proof can be found for
example in [31, Theorem 5.3.1, p. 326].

Theorem 1.4. For a ∗-closed subalgebra A of L(H) the following statements are equivalent:

(i) The algebra A is closed in the strong topology.

(ii) The algebra A is closed in the weak topology.

(iii) The equation A = A′′ holds.

The elements of a von Neumann algebra N ⊂ L(H) can be partially ordered: For
a, b ∈ N we define

a ≤ b ⇐⇒ b − a is positive.

An element m ∈ N is called positive if it can be written as m = f f ∗ for some f ∈ N .
This is equivalent to 〈m(x), x〉 ≥ 0 for all x ∈ H. An element p ∈ N is called a
projection if p2 = p and p = p∗ hold. It immediately follows that projections are
positive.

An important input for the definition of L2-Betti numbers is the notion of a trace
on a von Neumann algebra.

Definition 1.5. Let N be a von Neumann algebra. A finite faithful normal trace on N
is a linear map tr : N → C for which the following properties hold:

2



1.1 Basics about von Neumann Algebras

(i) The map tr satisfies the trace property, i.e. tr(ab) = tr(ba) for all a, b ∈ N .

(ii) For all positive a ∈ N one has tr(a) = 0 if and only if a = 0.

(iii) The map tr satisfies
tr(a) = sup{tr(ai) : i ∈ I},

where (ai)i is a monotone increasing net of positive elements ai ∈ N and a is
the supremum of the ai.

A von Neumann algebra which possesses such a finite faithful normal trace is
called finite.

Example 1.6. Let G be a group and NG its group von Neumann algebra. The map

trNG : NG → C

f �→
〈
f (e), e

〉
�2

defines a finite faithful normal trace on NG, where e ∈ G ⊂ �2(G) is the unit ele-
ment.

This is not hard to prove and follows for example from [38, Theorem 1.9, p. 18].

From now on we will simply say trace if we mean a finite faithful normal trace.

Definition 1.7. A ∗-homomorphism f : N → M between finite von Neumann al-
gebras N and M is called trace preserving if

trM
(
f (x)

)
= trN (x)

holds for every x ∈ N .

If f : N → M is a ∗-homomorphism, then M gets an N -module structure. The
next lemma is proved in [41, Theorem 1.48].

Lemma 1.8. Let f : N → M be a trace preserving ∗-homomorphism of finite von Neu-
mann algebras. Then M is a flat N -module.

To a finite von Neumann algebra N with a given trace trN we can assign the
Hilbert space �2N . It is given as the Hilbert space completion of N with respect to
the inner product 〈x, y〉 = trN (x∗y). Left multiplication with a given element x ∈ N
is a linear map N → N which induces a continuous linear map �2N → �2N . This
construction yields a left N -module structure on �2N . Analogously we get a right
N -module structure on �2N . There is the following result which is important for
the exploration of finite von Neumann algebras.

Theorem 1.9. Let N be a finite von Neumann algebra. The map

N → L(�2N )N

given by sending x ∈ N to right multiplication with x is an isometric ∗-antihomomorphism
of C-algebras.

3



1 L2-Betti Numbers

This is proved for example in [14, Theorem 1 in I.5.2 and Theorem 2 in I.6.2]. The
von Neumann algebra N can be viewed as a subalgebra of L(�2N ), and hence �2N
serves as a Hilbert space on which N acts.

Example 1.10. Another type of examples of von Neumann algebras is given by
L∞(X, μ), where X is a compact space and μ is a finite measure on its Borel σ-
algebra. The associated Hilbert space is L2(X, μ), where the action is given by the
obvious embedding

L∞(X, μ) → L
(
L2(X, μ)

)
which comes from pointwise multiplication.

It turns out that every separable abelian von Neumann algebra is of this form.
More precisely, for each separable abelian von Neumann algebra N there is a com-
pact space X with a finite measure μ on its Borel σ-algebra such that

N ∼= L∞(X, μ),

for a proof see [14, Theorem 1 and 2 in I.7.3].
There is a trace trL∞(X,μ) given by trL∞(X,μ)( f ) =

∫
X f dμ.

1.2 Dimension Theory for Modules over Finite von
Neumann Algebras

Lück developed a dimension theory for arbitrary modules over finite von Neu-
mann algebras ([36],[37]). We will briefly recall the construction and the important
properties. For a comprehensive presentation we refer to [38, Chapter 6]. There,
everything is formulated for group von Neumann algebras, but the construction is
exactly the same for arbitrary finite von Neumann algebras.

Note that module over a von Neumann algebra means module in the algebraic sense,
i.e. the von Neumann algebra is just viewed as a ring. If not stated otherwise, all
modules will be assumed to be left modules.

Definition 1.11. LetN be a finite von Neumann algebra with trace trN and let P be a
finitely generated (f. g.) projective N -module. There exists a natural number n and a
matrix T ∈ M(n, n;N ) such that T2 = T and P ∼= im(rT), where rT is multiplication
with T from the right. Now define

dimN (P) = trN (T) =
n

∑
j=1

trN (tjj) ∈ [0, ∞). (1.1)

This is independent of the choice of T. From the fact that T can be chosen such
that T = T∗ it follows easily that dimN (P) is fact a nonnegative real number.

The generalization of Definition 1.11 to arbitrary N -modules is the following one:

Definition 1.12. Let A be an N -module. We define

dimN (A) = sup
{
dimN (P) : P ⊂ A is a f. g. projective submodule

}
. (1.2)

4



1.2 Dimension Theory for Modules over Finite von Neumann Algebras

From the definition it is not at all clear that this notion of dimension has any prop-
erties you would demand of a dimension function. Lück has shown that this notion
has some nice “dimension properties”. A few of them are listed in the following
proposition.

Proposition 1.13. The dimension function dimN satisfies the following properties.

(i) Additivity.
Let A0, A1, A2 be N -modules and let 0 → A0 → A1 → A2 → 0 be an exact
sequence. Then

dimN (A1) = dimN (A0) + dimN (A2).

(ii) Cofinality.
Let I be a set and let A =

⋃
i∈I Ai be a directed union of N -modules. Then one has

dimN (A) = sup
{
dimN (Ai) : i ∈ I

}
.

(iii) Let P be a projective N -module. Then

dimN (P) = 0 ⇐⇒ P = 0.

For the next property of the dimension function we need some notation. Recall
that the dual module M∗ of an N -module M is defined as M∗ = homN (M,N ). One
gets a right module structure on M∗ given by ( f · x)(m) = f (m) · x for f ∈ M∗,
x ∈ N and m ∈ M. The involution on N allows us to define a left module structure
on M∗ by (x · f )(m) = f (m) · x∗. A homomorphism ϕ : M → N of N -modules
induces a homomorphism ϕ∗ : N∗ → M∗ given by ϕ∗( f ) = f · ϕ. The next definition
can also be given for modules over arbitrary rings.

Definition 1.14. Let M be an N -module and K ⊂ M be a submodule. Then the
closure K of K is defined as

K =
{
x ∈ M : ϕ(x) = 0 for all ϕ ∈ M∗ with K ⊂ ker(ϕ)

}
.

The following result is taken from [38, Theorem 6.7 (2) and (4)(d)].

Lemma 1.15. Let M be a finitely generated N -module and let K ⊂ M be a submodule.

(i) The submodule K ⊂ M is a direct summand, and M/K is a finitely generated projec-
tive N -module.

(ii) We get dimN (K) = dimN (K).

Remark 1.16. The additivity of dimN with respect to short exact sequences implies
that the subcategory N -Mod0 of all N -modules of dimension 0 is a Serre subcategory
of the abelian category N -Mod of all N -modules. Recall that a Serre subcategory
of an abelian category is an abelian subcategory which is closed under subobjects,
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1 L2-Betti Numbers

quotients and extensions. If A is a well powered abelian category and B is a Serre
subcategory then there exists the quotient category A/B. It has the same objects as
A and comes with an exact functor π : A → A/B with the property that for a mor-
phism f in A the induced morphism π( f ) is an isomorphism if and only if ker( f )
and coker( f ) both belong to the objects of B. Note that a category is called well
powered if the family of subobjects of any object is small. Let us briefly recall what a
subobject of an object in an arbitrary category is: If A is a category and a is an object
of A, then we consider monomorphisms u : s → a. Two monomorphisms u : s → a
and v : t → a satisfy s ≤ t by definition if there is an arrow u′ : s → t with u = v ◦ u′.
We write u ≡ v if u ≤ v and v ≤ u hold. Then the subobjects of a are defined to
be the equivalence classes of this equivalence relation. It is clear that for a ring R,
the subobjects of an object M of R-Mod are precisely the submodules of M in the
usual sense. It follows immediately that N -Mod is well powered. More details and
a proof for the preceding claims can be found in [44, Section II, p. 40ff.].

Property (iii) of Proposition 1.13 is not true if one omits the restriction to projec-
tive modules: There are nontrivial N -modules of dimension zero. We will see such
examples later in this chapter.

The existence of nontrivial modules with trivial dimension leads to the following
generalization of isomorphisms between N -modules.

Definition 1.17. Let f : A → B be an N -homomorphism of N -modules. The map f
is called a dimN -isomorphism if dimN (ker f ) = dimN (coker f ) = 0 holds.

We will simply speak of a dimension isomorphism if it is clear from the context
which von Neumann algebra is involved.

The fact that N -Mod0 is a Serre subcategory of N -Mod has the consequence that
dimension isomorphisms behave very much like isomorphisms. For example, there
is a five-lemma for dimension isomorphisms.

The following lemma provides a useful local criterion to check whether an N -
module has dimension zero. It is taken from Sauer’s thesis [41, Lemma 3.16].

Lemma 1.18. Let A be an N -module. Then dimN (A) = 0 holds if and only if for every ele-
ment a ∈ A there is a sequence of projections (pn)n∈N in N such that limn→∞ trN (pn) = 1
and pn · a = 0 for all n ∈ N.

There is also a connection between the vanishing of the dimension of a module
and the dual module.

Lemma 1.19. Let M be an N -module. Then

dimN (M) = 0 =⇒ M∗ = 0.

Proof. Suppose dimN (M) = 0 and let ϕ : M → N be an N -homomorphism. From
additivity of the dimension function we conclude dimN

(
im(ϕ)

)
= 0. Consequently,

dimN
(
im(ϕ)

)
= 0 by (ii) of Lemma 1.15. Part (i) of the same lemma implies that

6



1.2 Dimension Theory for Modules over Finite von Neumann Algebras

im(ϕ) is a direct summand of N and therefore of the form N · p for a projection p.
We get trN (p) = 0 from the definition of the dimension function and hence p = 0
from faithfulness of trN . Now im(ϕ) = 0 follows.

Remark 1.20. The converse of Lemma 1.19 is not true. A counterexample is con-
structed in [38, Exercise 6.5]. For finitely generated N -modules M the vanishing
of dimN (M) is in fact equivalent to the triviality of M∗.

The dimension function is compatible with induction by trace preserving ∗-ho-
momorphisms:

Lemma 1.21. Let N → M be a trace preserving ∗-homomorphism of finite von Neumann
algebras. Then we have

dimN (N) = dimM(M⊗N N)

for any N -module N.

A proof can be found in [41, Theorem 3.18]. The following notion, which is due
to Sauer [41, Definition 3.24], generalizes the situation of Lemma 1.21.

Definition 1.22. Let M and N be two finite von Neumann algebras. An M-N -
bimodule M is called dimension compatible if for each N -module N the implication

dimN (N) = 0 =⇒ dimM(M ⊗N N) = 0

holds.

From Lemma 1.21 we can directly draw the following consequence.

Corollary 1.23. Let N ⊂ M be an inclusion of finite von Neumann algebras. Then M is
a dimension compatible M-N -bimodule.

For later use in Chapter 4 we will state another result of Sauer [41, Lemma 3.28].

Lemma 1.24. Let N ⊂ R ⊂ M be an inclusion of rings, where N and M are finite von
Neumann algebras. Let B be an M-R-bimodule satisfying the following properties:

(i) The ring R is dimension compatible as an N -N -bimodule.

(ii) The module B is dimension compatible as an M-N -bimodule.

(iii) The module B is flat as a right N -module.

Then every R-homomorphism M → N of R-modules induces a dimM-isomorphism

TorR
• (B, M) → TorR

• (B, N).

7



1 L2-Betti Numbers

1.3 Definition and Properties of L2-Betti Numbers

In this section we will define L2-Betti numbers of arbitrary spaces with group action.
If Z is a space with an action of a group G, then the group action G � Z induces

a ZG-module structure on the singular chain complex C•(Z; Z).

Definition 1.25. Let G be a group and let Z be a topological space with an ac-
tion of G. Consider the chain complex of NG-modules NG ⊗ZG C•(Z; Z), where
NG is equipped with the canonical NG-ZG-bimodule structure. The homology
of NG ⊗ZG C•(Z; Z) is called the L2-homology of Z and is denoted by HG

• (Z;NG).
The k-th L2-Betti number of Z is defined as

b(2)
k (Z;NG) = dimNG

(
HG

k

(
Z;NG)

)
.

The k-th L2-Betti number b(2)
k (G) of G is defined as

b(2)
k (G) = b(2)

k (EG;NG),

where EG is the total space of the universal principal G-bundle EG → BG.

Notation. We will mainly be interested in the L2-Betti numbers b(2)
k

(
Z̃;Nπ1(Z)

)
of the universal covering Z̃ of a topological space Z endowed with the canonical
action of the fundamental group π1(Z). We will simply write b(2)

k (Z̃) in that case.

Remark 1.26. Later on, we will need the corresponding cohomology to HG
• (Z;NG),

i.e. the cohomology of the cochain complex

homZG
(
C•(Z; Z),NG

)
.

It is called the L2-cohomology of Z and is denoted by H•
G(Z;NG).

Remark 1.27. In the case of a cocompact free proper G-manifold M with G-invariant
Riemannian metric the L2-Betti numbers b(2)

k (M;NG) as defined in Definition 1.25
coincide with the analytical L2-Betti numbers defined at the beginning of this chap-
ter. This follows from work of Dodziuk [15], a proof can be found in [38, 1.4.2,
p. 58ff].

The following lemma due to Lück shows that one can compute L2-Betti numbers
of a G-CW-complex using its cellular chain complex.

Recall that a G-CW-complex Z is a G-space with a G-invariant filtration

∅ = Z[−1] ⊂ Z[0] ⊂ Z[1] ⊂ . . . ⊂
⋃

n∈N

Z[n] = Z

such that the topology on Z is the colimit topology with respect to this filtration and
each Z[n] is obtained from Z[n−1] by a G-pushout of the form

�i∈In G/Hi × Sn−1

��

�� Z[n−1]

��

�i∈In G/Hi × Dn �� Z[n]

8



1.3 Definition and Properties of L2-Betti Numbers

Here, In is an index set and Hi ⊂ G is a normal subgroup.
As in the non-equivariant case, the cellular complex Ccell

• (Z; Z) of Z has the rela-
tive singular homology group Hn(Z[n], Z[n−1]; Z) as n-th chain group.

Lemma 1.28. Let G be a group and let Z be a G-CW-complex . Then

b(2)
k (Z;NG) = dimNG

(
Hk
(
NG ⊗ZG Ccell

• (Z; Z)
))

.

This was proved by Lück [37, Lemma 4.2].

1.3.1 Basic Properties of L2-Betti Numbers

We list some fundamental properties of L2-Betti numbers whose proofs can be found
in [38, Theorem 6.54].

Theorem 1.29. The L2-Betti numbers of G-spaces satisfy the following properties.

(i) Homotopy invariance.
Let Z, Y be G-spaces and let Z → Y be a G-homotopy equivalence. Then

b(2)
k (Z;NG) = b(2)

k (Y;NG) for all k ≥ 0.

(ii) Künneth formula.
Let Z be a G-space and let Y be an H-space. Then Z × Y is a G × H-space, and

b(2)
k

(
Z ×Y;N (G × H)

)
= ∑

i+j=k
b(2)
i (Z;NG) · b(2)

j (Y;NH) for all k ≥ 0,

where the conventions 0 · ∞ = 0, r · ∞ = ∞ for r ∈ (0, ∞] and r + ∞ = ∞
for r ∈ [0, ∞] are used.

(iii) Restriction.
Let Z be a G-space and let H ⊂ G be a subgroup of finite index [G : H]. Denote
by resH

G (Z) the H-space obtained by restricting the G-action. Then

b(2)
k

(
resH

G (Z),NH
)

= [G : H] · b(2)
k (Z;NG) for all k ≥ 0,

where the convention [G : H] · ∞ = ∞ is used.

(iv) Induction.
Let i : H → G be an inclusion of groups and let Z be an H-space. Then G ×H Z is a
G-space and

b(2)
k (G ×H Z;NG) = b(2)

k (Z;NH) for all k ≥ 0.

9



1 L2-Betti Numbers

(v) Zeroth L2-Betti number.
Let Z be a path connected G-space. Then

b(2)
0 (Z;NG) =

1
|G| ,

where 1
|G| is assumed to be zero if the order |G| of G is infinite.

As an immediate consequence of the restriction property in Theorem 1.29 we
obtain the following result.

Corollary 1.30. Let Y → Z be a d-sheeted covering with d < ∞. Then

b(2)
k (Ỹ) = d · b(2)

k (Z̃) for all k ≥ 0.

In particular, the L2-Betti numbers b(2)
k (Z̃) vanish if there exists a non trivial finite

covering Z → Z. Recall that ordinary Betti numbers are not multiplicative with
respect to finite coverings. Also in general, L2-Betti numbers of Z̃ and ordinary Betti
numbers of Z do not share a lot of common properties. One exception is given by
the Euler-Poincaré formula which expresses the Euler characteristic of a finite CW-
complex as the alternating sum of of its Betti numbers. The same is true for the
L2-Betti numbers of its universal covering [38, Theorem 1.35 (2)].

Lemma 1.31. Let Z be a finite CW-complex . Then the equation

χ(Z) =
dim(Z)

∑
k=1

(−1)k · bk(Z) =
dim(Z)

∑
k=1

(−1)k · b(2)
k (Z̃)

holds.

There is another connection between L2-Betti numbers and ordinary Betti num-
bers. Namely, in special situations one can approximate the L2-Betti numbers of
the universal covering of a space by the normalized Betti numbers of some finite
covering. Recall the following definition. A group G is called residually finite if for
any element g ∈ G there is an epimorphism p : G → G′ onto some finite group G′

with p(g) �= e, where e ∈ G′ denotes the unit element. For a countable group G this
condition is equivalent to the fact that there is a sequence of subgroups

G = G0 ⊃ G1 ⊃ G2 ⊃ . . .

of finite index [G : Gn] < ∞ for all n ≥ 1 with
⋂

n≥1 Gn = {e}.
The following result was conjectured by Gromov [26] and proved by Lück [35].

Theorem 1.32. Let Z be a finite connected CW-complex with residually finite fundamental
group G = π1(Z) and let G = G0 ⊃ G1 ⊃ G2 ⊃ . . . be a sequence of subgroups of G
of finite index with

⋂
n≥1 Gn = {e}. For n ≥ 1 denote by Zn the associated covering

to Gn ⊂ G. Then we have

lim
n→∞

bk(Zn)
[G : Gn]

= b(2)
k (Z̃) for all k ≥ 0.
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1.3.2 L2-Betti Numbers and Aspherical Spaces

A topological space Z is called aspherical if it is connected and possesses a universal
covering Z̃ which is contractible. For CW-complexes Z this is equivalent to

πk(Z) = 0 for k �= 1.

If Z is an aspherical CW-complex with fundamental group G, then Z is a model
for the classifying space BG. Examples of aspherical spaces are closed Riemannian
manifolds with non positive sectional curvature.

The following result is due to Cheeger and Gromov [10]. For a proof using the
algebraic approach to L2-Betti numbers see [38, Section 6.4].

Theorem 1.33. Let Z be an aspherical CW-complex such that π1(Z) contains an infinite
amenable normal subgroup. Then b(2)

k (Z̃) = 0 holds for all k ≥ 0.

A group G is called amenable if there is a G-invariant linear map m : l∞(G, R) → R

such that
inf{ f (g) : g ∈ G} ≤ m( f ) ≤ sup{ f (g) : g ∈ G}

holds for all f ∈ l∞(G, R). There are many equivalent characterizations of amenabil-
ity. Examples of amenable groups are finite groups and abelian groups. The class
of amenable groups is closed with respect to subgroups, quotients, group exten-
sions, and directed unions. The easiest example of a non amenable group is the free
product Z ∗ Z. A standard reference for amenability is [40].

The next result is taken from [38, Corollary 1.43].

Theorem 1.34. Let M be a closed aspherical manifold with a non trivial S1-action. Then the
action has no fixed points, and the inclusion of any orbit into M induces a monomorphism
on fundamental groups. Moreover, we get b(2)

k (M̃) = 0 for all k ≥ 0.

Note that the fact that the action is fixed point free has not to be assumed, it is a
consequence of the assumptions.

1.3.3 L2-Betti Numbers and Manifolds

As in the situation of classical Betti numbers, there is a Poincaré duality theorem for
L2-Betti numbers.

Theorem 1.35. Let M be a closed manifold of dimension n. Then we have

b(2)
k (M̃) = b(2)

n−k(M̃) for all k ∈ Z.

For low dimensional manifolds the L2-Betti numbers can be computed. For 1-
dimensional closed manifolds the situation is clear. It follows directly from Corol-
lary 1.30 that

b(2)
k (S̃1) = 0 for all k ≥ 0.

11
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In dimension 2 the situation is as follows: Since S2 is simply connected its L2-Betti
numbers coincide with its ordinary Betti numbers. In the case of the torus T2 we
can use Corollary 1.30 again to conclude

b(2)
k (T̃2) = 0 for all k ≥ 0.

For closed oriented surfaces Fg of genus g ≥ 1 we get b(2)
k (F̃g) = 0 for k �= 1 and

b(2)
1 (F̃g) = 2 · (g − 1). This follows easily from Theorem 1.29 (v), Lemma 1.31 and

Theorem 1.35.
For 3-dimensional closed manifolds the L2-Betti numbers of their universal cov-

erings can also be computed, we refer to [38, Chapter 4].
We mention the following proportionality principle which is proved in [38, The-

orem 3.183]. It is based on work of Cheeger and Gromov [9, Proposition 6.4].

Theorem 1.36. Let M and N be two Riemannian manifolds with isometric universal cov-
erings. Then we get

b(2)
k (M̃)

vol(M)
=

b(2)
k (Ñ)

vol(N)
for all k ≥ 0.

Note that the assumption of Theorem 1.36 is satisfied if M and N are both closed
hyperbolic manifolds of the same dimension. A Riemannian manifold M is called
hyperbolic if its sectional curvature satisfies sec(M) = −1. This is equivalent to the
fact that its universal covering M̃ is isometric to the hyperbolic space Hn, where n
is the dimension of M. Hyperbolic manifolds are aspherical. The following result
holds for L2-Betti numbers of hyperbolic manifolds.

Theorem 1.37. Let M be a closed hyperbolic manifold of dimension n. Then one has

b(2)
k (M̃) = 0 for 2 · k �= n

and
b(2)
k (M̃) > 0 if 2 · k = n.

This follows from work of Dodziuk [16], the idea of the proof is presented in [38,
Theorem 1.62]. The first statement of Theorem 1.37 is a special case of the following
Singer Conjecture:

Conjecture 1.38. Let M be a closed aspherical manifold of dimension n. Then we get

b(2)
k (M̃) = 0 for 2 · k �= n.
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2 Simplicial Volume

In this chapter we will discuss the simplicial volume of closed oriented connected
manifolds. Although the definition is purely topological, the simplicial volume has
many properties in terms of Riemannian geometry. This was in fact Gromov’s main
motivation for studying simplicial volume in [24]. We will review some of these
relations in this chapter. In particular, we recall the definition of minimal volume,
which was also introduced by Gromov [24], and discuss its connection to simplicial
volume.

2.1 Definition and Properties of Simplicial Volume

First we define a norm on the real singular chain complex of a topological space.
For a topological space X denote the real singular chain complex of X by C•(X; R).
In degree k it is the real vector space generated by all continuous maps σ : Δk → X
(which are called singular simplices), where Δk ⊂ Rk+1 is the k-dimensional standard
simplex. By Σk(X) we denote the set of all singular simplices in X of dimension k.

Definition 2.1. Let X be a topological space. Define the �1-norm on Ck(X; R) by∥∥∑l
j=1 λj · σj

∥∥
1 = ∑l

j=1|λj|.

Note that any norm on Ck(X; R) induces a seminorm on Hk(X; R). In particular,
we obtain the following seminorm.

Definition 2.2. Let X be topological space. Define the �1-seminorm on Hk(X; R) by

‖α‖1 = inf
{
‖z‖ : z is a cycle in Ck(X; R) with [z] = α

}
.

Remark 2.3. Note that in general this is not a norm since it is possible that ‖α‖1 = 0
but α �= 0 in Hk(X; R). We will see in a moment that this actually happens.

2.1.1 Definition of Simplicial Volume

Now we consider the case of a closed orientable connected manifold M of dimen-
sion n. Let [M] be a fundamental class of M, i.e. a generator of Hn(M; Z) and let
j : Cn(M; Z) → Cn(M; R) be the change of coefficients homomorphism. We will
sometimes omit the j from the notation and regard elements of Cn(M; Z) as ele-
ments of Cn(M; R) without mentioning.
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Definition 2.4. Let M be a closed oriented connected manifold. Define its simplicial
volume as

‖M‖ = ‖j∗([M])‖1.

2.1.2 First Properties of Simplicial Volume

Next we will collect some elementary properties of simplicial volume.

Lemma 2.5. Let M be a closed oriented connected manifold which has a triangulation with
k simplices in degree dim(M). Then ‖M‖ ≤ k.

Proof. Let n be the dimension of M. The sum of the n-dimensional simplices with
suitable signs represents a generator of the simplicial homology Hsimpl

n (M; Z) in
degree n. Its image under the canonical isomorphism Hsimpl

n (M; Z)
∼=−→ Hn(M; Z)

is a generator [M] of Hn(M; Z). Hence j([M]) can be represented by a cycle with
norm at most k.

Lemma 2.6. Let M and N be closed oriented connected manifolds of the same dimension
and let f : M → N be a map of degree deg( f ) = d ∈ Z. Then

‖M‖ ≥ |d| · ‖N‖

holds.

Proof. Let z ∈ Cn(M; R) represent [M]. It is clear that ‖ f#(z)‖1 ≤ ‖z‖1 holds, where
f# is the induced map on the chain complex. By definition of the degree, f (z) rep-
resents d · [N]. For d �= 0 the claimed inequality follows from

‖N‖ ≤ 1
|d| · ‖ f (z)‖1 ≤ 1

|d| · ‖z‖1

and taking the infimum. In the case d = 0 the inequality is trivial.

This shows immediately that simplicial volume is a homotopy invariant. As an-
other corollary we get the following result.

Corollary 2.7. Let M be a closed oriented connected manifold and let f : M → M be a
selfmap with |deg( f )| ≥ 2. Then ‖M‖ = 0 holds.

In particular, ‖Sn‖ = ‖Tn‖ = 0 for all n ∈ N. Here Sn stands for the n-dimensional
sphere, and Tn denotes the n-dimensional torus.

It is not hard to show that the inequality in Lemma 2.6 is an equality in the case
of a covering map. A proof can be found in [43].

Lemma 2.8. Let M and N be be closed oriented connected manifolds and f : M → N be a
d-sheeted covering map. Then

‖M‖ = d · ‖N‖
holds.
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One could ask what happens if one works with Hn(M; Q) instead of Hn(M; R) in
the definition of simplicial volume. Denote the resulting number by ‖M‖Q.

Lemma 2.9. Let M be a closed oriented connected manifold. Then ‖M‖ = ‖M‖Q holds.

Proof. Let ε > 0 and let z ∈ Cn(M; R) be a real fundamental cycle. Moreover,
let z ∈ Cn(M; Z) be an integral fundamental cycle. Then z − z is a boundary, i.e.
there is a chain c ∈ Cn+1(M; R) with ∂n+1(c) = z − z. Since Q ⊂ R is dense there
is a rational chain c′ ∈ Cn+1(M; Q) such that ‖c − c′‖1 < ε

n+2 . The operator norm
of the boundary operator ∂k : Ck(M; R) → Ck−1(M; R) satisfies ‖∂k‖ ≤ k + 1. Hence
we get

‖z − (z + ∂n+1(c′))‖1 = ‖∂n+1(c − c′)‖1 < ε.

This proves the lemma since z + ∂n+1(c′) is a rational fundamental cycle.

2.1.3 Bounded Cohomology

We now recall the notion of bounded cohomology as an important tool in the study
of simplicial volume. Although the definition is not due to Gromov, his fundamen-
tal article [24] was the first systematic study of bounded cohomology.

For a topological space X denote by C•(X; R) its real singular cochain complex. In
degree k it is given by

Ck(X; R) = homR

(
Ck(X; R), R

)
= map

(
Σk(X), R

)
.

Definition 2.10. Let X be a topological space and let C•(X; R) be its real singu-
lar cochain complex. A cochain ϕ ∈ Ck(X; R) is called bounded if there is a con-
stant C > 0 such that ϕ(σ) ≤ C holds for all σ ∈ Σk(X). Define the bounded
cochain complex Ĉ•(X) of X as the subcomplex of C•(X; R) generated by all bounded
cochains. The bounded cohomology Ĥ•(X) of X is defined to be the cohomology
of Ĉ•(X).

Remark 2.11. Bounded cohomology is a homotopy invariant and satisfies the di-
mension axiom, i.e. Ĥk(pt) = 0 for k �= 0 and Ĥ0(pt) = R. But bounded coho-
mology is not a cohomology theory since the excision axiom fails. This fact makes
bounded cohomology much harder to compute than singular cohomology. For ex-
ample the second bounded cohomology group Ĥ2(S1 ∨ S1) of the wedge of two cir-
cles is an infinitely generated R-vector space although S1 ∨ S1 is a one-dimensional
CW-complex. For a proof see [23, Section 5A].

Dually to the seminorm on H•(X; R), we will next define a seminorm on Ĥ•(X).

Definition 2.12. For a bounded cochain ϕ ∈ Ĉk(X) define its �∞-norm by

‖ϕ‖∞ = sup
{
|ϕ(σ)| : σ ∈ Σk(X)

}
.

The induced �∞-seminorm on Ĥk(X) is given by

‖ψ‖∞ = inf
{
‖ϕ‖∞ : ϕ is a cocycle in Ĉk(X) with [ϕ] = ψ

}
.
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For a homology class α ∈ Hk(X; R) and a bounded cohomology class ψ ∈ Ĥk(X)
one can define the Kronecker product as 〈ψ, α〉 = ϕ(z), where ϕ ∈ Ĉk(X) is a cocycle
representing ψ and z ∈ Ck(X; R) is a cycle representing α. It is clear that this does
not depend on the choice of the representing cycle and cocycle. We get the relation

|〈ψ, α〉| ≤ ‖ψ‖∞ · ‖α‖1.

The following lemma is the link between simplicial volume and bounded coho-
mology. Its proof is a simple application of the Hahn-Banach theorem [4].

Lemma 2.13. (i) Let X be a topological space. For α ∈ Hk(X; R) it is ‖α‖1 = 0 if and
only if 〈ψ, α〉 = 0 holds for every ψ ∈ Ĥk(X). If ‖α‖1 > 0 then

1
‖α‖1

= sup
{
‖ψ‖∞ : ψ ∈ Ĥk(X) with 〈ψ, α〉 = 1

}
.

(ii) Let M be a closed oriented connected manifold of dimension n. Then ‖M‖ = 0 holds
if and only if the natural map Ĥn(M) → Hn(M; R) is the zero map. If ‖M‖ > 0
then

1
‖M‖ = ‖ψ‖∞,

where ψ is the image of a cohomological fundamental class under the canonical homo-
morphism Hn(M; Z) → Hn(M, R) which is induced by inclusion of coefficients.

The next striking result is due to Gromov [24, Section 3.1]. An alternative proof
was given by Ivanov [30, Theorem 4.3].

Theorem 2.14. Let X and Y be path-connected topological spaces and let f : X → Y
be continuous. If the induced homomorphism π1( f ) : π1(X) → π1(Y) is surjective and
ker
(
π1( f )

)
is amenable, then the induced homomorphism Ĥ•( f ) : Ĥ•(Y) → Ĥ•(X) is an

isometric isomorphism.

We immediately get the following useful consequences.

Corollary 2.15. (i) Let X be a path-connected topological space and let f : X → Bπ
be the classifying map of its fundamental group π = π1(X). Then the induced
map Ĥ•( f ) : Ĥ•(Bπ) → Ĥ•(X) is an isometric isomorphism.

(ii) Let X be a path-connected topological space with amenable fundamental group. Then

Ĥk(X) = 0 for all k ≥ 1.

(iii) Let M be a closed oriented connected manifold with fundamental group π = π1(X)
and classifying map f : M → Bπ. Then we have ‖M‖ = ‖ f∗([M])‖1.

(iv) Let M be a closed oriented connected manifold with amenable fundamental group.
Then ‖M‖ = 0 holds.
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2.1 Definition and Properties of Simplicial Volume

2.1.4 Further Properties of Simplicial Volume

Up to now we have not seen a single example of a manifold with non vanishing
simplicial volume. This changes if we turn our attention to hyperbolic manifolds.
The next result is due to Gromov and Thurston [46], a detailed proof can be found
in [4].

Theorem 2.16. Let M be a closed oriented connected hyperbolic manifold of dimension n.
Then we have

‖M‖ =
vol(M)

vn
,

where vn is the supremum of the volumes of all geodesic n-dimensional simplices in hyper-
bolic n-space Hn.

In particular, we get ‖Fg‖ = 4 · (g − 1), where Fg is the closed oriented surface of
genus g.

For the definition of Hn see for example [4, Section A.1, p. 1f.].
For arbitrary negatively curved manifolds the method of proof of Theorem 2.16

can be used to conclude that their simplicial volume is non zero.

Theorem 2.17. Let M be a closed oriented connected Riemannian manifold whose sectional
curvature is everywhere negative. Then ‖M‖ > 0 holds.

This is a result of Inoue and Yano [29].
Simplicial volume behaves well with respect to products and connected sums as

the next results show. Both of them are due to Gromov [24], a proof of the first one
can also be found in [4].

Theorem 2.18. Let M and N be closed oriented connected manifolds of dimensions m
and n. Then there is a constant c(n + m) > 0, not depending on M and N, such that

‖M‖ · ‖N‖ ≤ ‖M × N‖ ≤ c(n + m) · ‖M‖ · ‖N‖.
Theorem 2.19. Let M and N be closed oriented connected manifolds of the same dimen-
sion n ≥ 3. Then we get

‖M # N‖ = ‖M‖ + ‖N‖.
Note that Theorem 2.19 is not true in dimension 2 since the simplicial volume of

the connected sum of two tori is non zero.
The next result was proved by Gromov and Thurston [46],[24]. An extensive

proof is given in [43].

Theorem 2.20. Let M and N be closed oriented connected Riemannian manifolds with
isometric universal coverings. Then we get

‖M‖
vol(M)

=
‖N‖

vol(N)
.

The following Theorem was proved independently by Gromov [24] and Yano [49].

Theorem 2.21. Let M be a closed oriented connected manifold. If there is a non trivial
S1-action on M then we get ‖M‖ = 0.

17



2 Simplicial Volume

2.2 Minimal Volume

There is the following finiteness theorem of Cheeger [8].

Theorem 2.22. Let n ≥ 1 be an integer. For any given d > 0 and v > 0 there is only a
finite number of diffeomorphism classes of closed Riemannian manifolds M of dimension n
such that |sec(M)| < 1, diam(M) < d and vol(M) > v hold.

This result motivates the question how small the volume of a given smooth man-
ifold M can be if its sectional curvature satisfies |sec(M)| ≤ 1.

2.2.1 Definition of Minimal Volume

Definition 2.23. Let M be a closed oriented connected smooth manifold. We define
its minimal volume minvol(M) as

minvol(M) = inf
{
vol(M, g) : g is a Riemannian metric on M with |secg(M)| ≤ 1

}
.

Remark 2.24. The restriction to closed manifolds is not necessary. In the general
situation one allows only complete Riemannian metrics g in the definition, a condi-
tion which is automatically satisfied for closed manifolds. Since we are only inter-
ested in closed manifolds, we will restrict our attention to that case.

It is clear that for the definition of the minimal volume we need a smooth struc-
ture on the manifold. Moreover, the next result of Bessières [5] shows that the mini-
mal volume is not a topological invariant, it really depends on the smooth structure.

Theorem 2.25. Let M be a closed connected hyperbolic stably parallelizable manifold of
dimension n �= 4 and let N be a closed connected smooth manifold of the same dimension.
Then

minvol(M # N) ≥ minvol(M)

with equality if and only if N is diffeomorphic to the n-sphere Sn.

It follows that if Σ is an exotic sphere one has minvol(M # Σ) > minvol(M) al-
though M # Σ and M are homeomorphic.

2.2.2 Properties of Minimal Volume

It is obvious that the minimal volume of closed oriented connected smooth mani-
folds which admit a flat Riemannian metric vanishes.

Next we want to compute the minimal volume of closed oriented surfaces. Note
that for a closed oriented surface F the Gauß-Bonnet theorem yields

χ(F) =
1

2π
·
∫

F
sec(F) vol .

18



2.2 Minimal Volume

Hence for any Riemannian metric on F whose sectional curvature satisfies |sec| ≤ 1,
it follows that

vol(F) ≥
∫

F
|sec| vol ≥

∣∣∣∫
F
sec vol

∣∣∣ = 2π · |χ(F)|.

Since on the closed oriented surface Fg of genus g ≥ 2 there is a hyperbolic Rieman-
nian metric, we have

minvol(Fg) = 2π · |χ(Fg)| = 4π · (g − 1) = π · ‖Fg‖.

For arbitrary dimension, there is also a relation between the Euler characteristic and
the minimal volume, namely we have the following result of Gromov [24, page 6].

Theorem 2.26. There is a dimension constant en > 0 such that

χ(M) ≤ en ·minvol(M)

holds for all closed oriented connected smooth manifolds M of dimension n.

As a special case, we get that minvol(S2n) �= 0 for all n ≥ 0. This result com-
bined with Theorem 2.25 shows that minimal volume is not additive with respect
to connected sums.

There is a similar result as Theorem 2.21 for minimal volume. It is also due to
Gromov [24, page 7].

Theorem 2.27. Let M be a closed oriented connected smooth manifold. If there is a free
S1-action on M, then minvol(M) = 0 holds.

In particular, minvol(M × S1) = 0 for all closed oriented connected smooth man-
ifolds M, and also minvol(S2n+1) = 0 for all n ≥ 0.

2.2.3 Relation between Simplicial and Minimal Volume

There is a relation between simplicial and minimal volume. It is based on the fol-
lowing theorem of Gromov [24, Main Inequality on page 12].

Theorem 2.28. Let M be a closed oriented connected Riemannian manifold of dimension n
whose Ricci curvature satisfies ric(M) ≥ −1

n−1 . Then there is a constant cn with 0 < cn < n!
such that

‖M‖ ≤ cn · vol(M).

Recall that the lower bound sec(M) ≥ −α2 for the sectional curvature implies the
lower bound ric(M) ≥ −(n − 1) · α2 for the Ricci curvature. Hence the following
corollary holds:

Corollary 2.29. Let M be a closed oriented connected smooth manifold of dimension n.
Then we have

‖M‖ ≤ n! · (n − 1)n ·minvol(M).
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3 R-Spaces

In this chapter, R-spaces are introduced. We will first collect some basic facts about
standard Borel spaces which we need later to define and analyze R-spaces. Stan-
dard Borel spaces are used since they form a category in which measure theory
works well. Fundamental facts about measure theory can be found in detail for
example in [11]. A good source for many results about standard Borel spaces is
Kechris’s monograph [33].

To a standard Borel space X with a probability measure μ we assign the cate-
gory of X-spaces. Aside from some mild technical conditions, an X-space is sim-
ply a space fibered over X with measurable projection to X. Morphisms between
X-spaces are measurable and fiber preserving maps which are fiberwise contin-
uous. The natural example is the product X × Z for a topological space Z. We
introduce singular homology HX

• (S; Λ) with coefficients in a subring Λ ⊂ C for
X-spaces S by a natural transfer of the definition of ordinary singular homology.
We define standard equivalence relations R ⊂ X × X on a standard Borel space
in the sense of Feldman and Moore [18] and give some examples. Fundamental
for our applications will be the orbit equivalence relation RG�X of a standard ac-
tion G � X. The definition of R-spaces is given in 3.3.3. They arise as X-spaces
provided with an “action” of R. One should think of X-spaces as the analog of
topological spaces, and of R-spaces as the analog of G-spaces. We define an in-
duction functor ind : G-Spaces → RG�X-Spaces which assigns to a G-space Z the
RG�X-space X×Z. TheRG�X-action is induced by the diagonal action G � X×Z.

3.1 Standard Borel Spaces

Let us recall some basic definitions and facts from measure theory. A measurable
space is a set X together with a σ-algebra A of subsets of X. The elements of A are
called measurable subsets of X. A morphism (or a measurable map) between measur-
able spaces (X1,A1), (X2,A2) is a map f : X1 → X2 such that f−1(A) ∈ A1 holds for
all A ∈ A2. Two measurable spaces (X1,A1), (X2,A2) are called isomorphic if there
is a bijective map f : X1 → X2 such that f and f−1 are measurable. For a topological
space X denote by B(X) its Borel σ-algebra generated by the open subsets of X.

A measurable space (X,A) together with a measure μ on A is called a measure
space. Later the case of a probability measure μ, i.e. μ(X) = 1 will be important. A
measure on B(X) is called a Borel measure on X. A measurable map f : X1 → X2
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3 R-Spaces

between to measure spaces (X1,A1), (X2,A2) with measures μ1 and μ2 respectively
is called measure preserving if μ1

(
f−1(A)

)
= μ2(A) holds for all A ∈ A2.

A Polish space is a separable topological space which is metrizable by a complete
metric. A measurable space (X,A) is called a standard Borel space if it is isomorphic
to
(
Y,B(Y)

)
for some Polish space Y. Measurable subsets of standard Borel spaces

will also be called Borel sets, measurable maps between standard Borel spaces will
be called Borel maps. The σ-algebra A of a standard Borel space (X,A) will also be
called Borel σ-algebra although the Polish topology generating A is not part of the
structure, see Remark 3.2 below.

In the next theorem we present some classical results about Polish and standard
Borel spaces.

Theorem 3.1. (i) Open and closed subsets of Polish spaces are Polish spaces.

(ii) Countable disjoint unions of Polish spaces are Polish spaces.

(iii) Countable products of Polish spaces are Polish spaces.

(iv) Measurable subsets of standard Borel spaces are standard Borel spaces.

Remark 3.2. A standard Borel (X,A) space can be given a topology by means of the
isomorphism (X,A) ∼=

(
Y,B(Y)

)
, where Y is Polish. Note that this topology is not

part of the structure of (X,A). For example, in general a measurable subset Y ⊂ X
with the induced topology of a chosen Polish topology on X does not turn Y into
a Polish space. The point is that there exists a Polish topology on Y having the
restricted Borel σ-algebra B(X)|Y as its Borel σ-algebra.

The next useful theorem is due to Kuratowski. A proof can be found in [41, The-
orem 1.3 on p. 15 f.].

Theorem 3.3. Let f : X → Y be a measurable map between standard Borel spaces which
is countable-to-1, i.e. for each y ∈ Y the preimage f−1(y) is countable. Then the im-
age f (X) ⊂ Y is measurable, and there is a countable partition (Xn)n∈N of X by measur-
able subsets Xn, such that f |Xn is injective and f |Xn : Xn → f (Xn) is a Borel isomorphism
for all n ∈ N.

If f is actually uniformly finite-to-1, i.e. there is N ∈ N such that f−1(y) has at most N
elements, then there is a partition with the properties above consisting of at most N sets.

There is another helpful result about mappings between standard Borel spaces, a
proof is given e.g. in [33, Corollary 15.2].

Theorem 3.4. Let X and Y be standard Borel spaces and f : X → Y be a Borel map. If f |A
is injective for a Borel subset A ⊂ X then f (A) ⊂ Y is a Borel subset and f |A : A → f (A)
is a Borel isomorphism.

We get immediately the following corollary.

Corollary 3.5. The graph gr( f ) =
{
(x, f (x)) : x ∈ X} of a Borel map f : X → Y between

standard Borel spaces X and Y is a Borel subset of X × Y.
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3.1 Standard Borel Spaces

Proof. Consider the injective Borel map

f : X → X ×Y, x �→
(
x, f (x)

)
.

By Theorem 3.4 its image im( f ) = gr( f ) is a Borel subset of X × Y.

Remark 3.6. If not otherwise stated we will always use the product σ-algebra on
the product of countably many measurable spaces

(
(Xn,An)

)
n∈N

, which will be
denoted by

⊗
n∈N An.

For later use we will state the following theorem due to Kunugui and Novikov,
which is proved for example in [33, Theorem 28.7, p. 220].

Theorem 3.7. Let X be a standard Borel space and Y be a Polish space with a basis (Vn)n∈N

for its topology. If A ⊂ X × Y is measurable such that each Ax = {y ∈ Y : (x, y) ∈ A} is
open in Y for all x ∈ X then there is a family (Bn)n∈N of Borel subsets Bn ⊂ X such that

A =
⋃

n∈N

Bn × Vn

holds.

We will need the following consequence of Theorem 3.7.

Lemma 3.8. Let X be a standard Borel space and Y be a compact Polish space. If A ⊂ X×Y
is a measurable set such that Ax is open in Y for all x ∈ X then the set

BA = {x ∈ X : Ax = Y}

is measurable.

Proof. Let (Vn)n∈N be any basis for the topology of Y. By Theorem 3.7 we know that
there is a family (Bn)n∈N of measurable subsets of X with A =

⋃
n∈N Bn ×Vn. Now

consider the set

V =
{

I ⊂ N :
⋃
i∈I

Vi = Y, I minimal with this property
}

.

Since Y is compact V consists only of finite subsets and is therefore countable. The
lemma now follows because of

BA =
⋃
I∈V

⋂
i∈I

Bi.
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3 R-Spaces

3.2 X-Spaces and Singular Homology

In the following X stands for a standard Borel space which is σ-compact with re-
spect to some Polish topology on X which generates the Borel σ-algebra. Note that
any Polish topology on X is second countable. We assume that X is equipped with
a probability measure μ.

Remark 3.9. Recall that a topological space is called σ-compact if it is the union of
countably many compact subspaces.

Notation. In a measure space (X, μ) by the phrase “∀x ∈ X” we always mean “for μ-
almost all x ∈ X” unless otherwise stated.

3.2.1 Definition and Examples of X-Spaces

Roughly speaking an X-space is a collection of topological spaces (called the fibers)
indexed by X such that the fibers depend measurably on X. Note that we will
always work in the category of compactly generated spaces. We will collect the
necessary background about compactly generated spaces in Section 3.4.

Definition 3.10. An X-space is a pair (S, p), where S is a σ-compact, second count-
able Hausdorff space and p : S → X is a measurable map to a standard Borel
space X. For x ∈ X we call Sx = p−1(x) the fiber over x. A morphism of X-
spaces (S, p) and (T, q) is a measurable map F : S → T such that the following
diagram commutes

S

p
��

��
��

��
�

F �� T

q
����

��
��

�

X

and the restriction F|Sx : Sx → Tx is continuous for each x ∈ X.

We will often omit the p from the notation and just write S for an X-space (S, p).
If there is risk of confusion we will sometimes write pS for the projection of an X-
space S to X.

Remark 3.11. If not stated otherwise, the measurable structure on a topological
space is always given by its Borel σ-algebra, which is generated by the open subsets
of the space.

Example 3.12. The easiest example of an X-space is the product X × Z for a σ-
compact, second countable Hausdorff space Z with the obvious projection. The
topology on X × Z is given by the product topology, where we choose some σ-
compact, second countable topology on X which generates the Borel σ-algebra. This
choice does not affect the categorical properties of X ×Z in the category of X-spaces
since the measurable structure on X × Z and the topological structure in the fibers
do not vary.
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3.2 X-Spaces and Singular Homology

Definition 3.13. Let (S, p) be an X-space and let (T, q) be an X′-space. Then the
X × X′-space (S × T, p × q) is called the cartesian product of (S, p) and (T, q).

3.2.2 Colimits of X-Spaces

There are several problems with limits of X-spaces due to lack of heredity properties
of σ-compactness. For example, even for two X-spaces (S, p) and (T, q) it is not clear
if their fibered product

S ×X T =
{
(s, t) ∈ S × T : p(s) = q(t)

}
is again an X-space since S ×X T ⊂ S × T is in general only measurable and not
necessarily closed. Hence we can not draw σ-compactness of S ×X T from that of S
and T.

The situation is much more convenient if we ask for colimits. Before we can
show the existence of countable colimits in the category of X-spaces we need the
following lemma which is of interest in its own right. There are many well known
results in this direction, the proof for this particular case was communicated to me
by Roman Sauer.

Lemma 3.14. Let f : Y → Z be a continuous surjective map of σ-compact second countable
Hausdorff spaces. Then f has a measurable section, i.e. there is a measurable map s : Z → Y
(with respect to the Borel σ-algebras) such that f ◦ s = idZ.

Proof. First we consider the case that Y is compact. Since Y is second countable and
Hausdorff it is metrizable. Hence there is a continuous surjective map h : C → Y
where C ⊂ [0, 1] is the Cantor set [33, Theorem I.(4.18)]. We define a map s′ : Z → C
by z �→ min

(
( f ◦ h)−1(z)

)
. The minimum exists since f ◦ h : C → Z is continuous

and surjective and C ⊂ [0, 1] is closed. Next we show that s′ is measurable. It is

s′−1(C ∩ [0, t]
)

=
{
y ∈ Y : min

(
( f ◦ h)−1(z)

)
≤ t
}

=
{
y ∈ Y : ∃t′ ∈ C ∩ [0, t] f ◦ h(t′) = y

}
= f ◦ h

(
C ∩ [0, t]

)
,

and this set is compact and hence measurable. Since the sets of the form C ∩ [0, t]
generate the Borel σ-algebra of C, measurability of s′ follows. The map s = h ◦ s′ is
a measurable section of f .

In the general case pick an exhaustion Y =
⋃∞

n=1 Yn of Y by compact subspaces
(recall that Y is σ-compact). Then Z =

⋃∞
n=1 f (Yn) is also an exhaustion by compact

subspaces. One can construct a measurable section sn of f |Yn as above. Then the
map s : Z → Y defined by s(z) = sn(z) for z ∈ f (Yn) − f (Yn−1) is a measurable
section of f .

Lemma 3.15. Countable colimits exist in the category of X-spaces (Note that “countable
colimit” means that there are also only countably many structure maps).
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3 R-Spaces

Proof. Let (Si)i∈I be a countable family of X-spaces and for each pair (i, j) ∈ I2 let
( f l

i,j : Si → Sj)l∈Li,j be a countable family of X-maps . It is easy to see that the disjoint
union �i∈I Si is again σ-compact and second countable and therefore an honest X-
space. We now build the quotient space

S = colim
i∈I

Si = �
i∈I

Si/ ∼,

where s ∼ f l
i,j(s) for all i, j ∈ I, l ∈ Li,j, s ∈ Si. This is also an X-space since

σ-compactness and second countability persist under continuous images. We will
show that S is the colimit in the category of X-spaces. Let q : �i∈I Si → S be the
quotient map. First of all, there are natural maps fi : Si → S of X-spaces given
by fi = q ◦ ji, where ji : Si → �i∈I Si is the inclusion. It is clear that fi = fj ◦ f l

i,j

holds, whenever there are maps f l
i,j.

Let T be an X-space and let Fi : Si → T be an X-map for each i ∈ I such that
Fi = Fj ◦ f l

i,j for all suitable i, j ∈ I, l ∈ Li,j. Obviously, there is a function F : S → T
which satisfies F ◦ fi = Fi for all i ∈ I (since S is the colimit in the category of sets).
We have to show that F is an X-map, i.e. that F is measurable and continuous on
almost each fiber and that

S

pS
��

��
��

��
�

F �� T

pT
����

��
��

�

X

(3.1)

commutes. The commutativity of (3.1) follows directly from the construction of the
colimit and the map F. Measurability of F follows from Lemma 3.14 applied to
the projection q. This yields a measurable section s of q, and now measurability
of F =

(
�i∈I Fi

)
◦ s follows.

Each Fi is an X-map and therefore continuous on Si,x for all x ∈ Xi, where Xi ⊂ X
is a subset of full measure. The subset

⋂
i∈I Xi ⊂ X also has full measure. One has

Sx = colim
i∈I

Si,x

for x ∈
⋂

i∈I Xi, and Fx is just the colimit of the Fi,x in the category of topological
spaces (which makes sense since all Fi are continuous on Si,x). It follows that F is
continuous on almost each fiber.

3.2.3 Singular Homology for X-Spaces

We will develop a homology theory for X-spaces in analogy to singular homology
for topological spaces.

Definition 3.16. A singular X-simplex of dimension n of an X-space (S, p) is an X-
map

σ : Xσ × Δn → S,
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3.2 X-Spaces and Singular Homology

where Xσ ⊂ X is a measurable subset. That means that σ is measurable and con-
tinuous on {x} × Δn for almost all x ∈ Xσ. As usual, Δn ⊂ Rn+1 denotes the stan-
dard n-simplex. Define ΣX

n (S) as the set of n-dimensional X-simplices in S. We will
use the notation σx for the ordinary singular simplex σ|{x}×Δn .

In other words, σ is a measurable collection of singular simplices in the fibers
of S. The following lemma about X-simplices will be useful later on.

Lemma 3.17. Let S be an X-space and T ⊂ S be a measurable subset which is either
fiberwise open or fiberwise closed, i.e. the fiber Tx = T ∩ Sx ⊂ Sx is either open for almost
all x ∈ X or it is closed for almost all x ∈ X. Then for every X-simplex σ : Xσ × Δn → S
the subset {

x ∈ Xσ : im(σx) ⊂ T
}

is measurable.

Proof. In the case of a fiberwise open measurable subset T ⊂ S we can apply
Lemma 3.8 to the measurable subset σ−1(T) ⊂ Xσ × Δn to obtain measurability
of
{
x ∈ Xσ : im(σx) ⊂ T

}
.

If T ⊂ S is measurable and fiberwise closed we use Theorem 3.7 to get

σ−1(S − T) =
⋃
k∈N

Bk × Vk,

where (Vk)k∈N is any basis for the topology of Δn and (Bk)k∈N is a suitable family
of Borel subsets of Xσ. We conclude{

x ∈ Xσ : im(σx) ⊂ T
}

= Xσ −
⋃
k∈N

Bk.

This proves the desired measurability.

Now we will define the singular chain complex of S.

Definition 3.18. For a subring Γ ⊂ C we define the n-th singular chain group CX
n (S; Γ)

of S with coefficients in Γ by

CX
n (S; Γ) = L∞(X, Γ)[ΣX

n (S)]/ ∼,

where

∑
σ

fσ · σ ∼ ∑
σ

gσ · σ ⇐⇒ ∑
σ

fσ(x) · σx = ∑
σ

gσ(x) · σx in Cn(Sx)

for almost all x ∈ X. We will sometimes write (∑σ fσ · σ)x for ∑σ fσ(x) · σx. For
all x /∈ Xσ we regard σx as zero in Cn(Sx; Γ).

If the coefficients are the integers Z themselves we will sometimes omit them
from the notation and write CX

n (S) for CX
n (S; Z). Note that nevertheless L∞(X) will

always denote L∞(X; C).
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3 R-Spaces

Remark 3.19. In the notation we will not always distinguish between an element
of L∞(X, Γ)[ΣX

n (S)] and its class in CX
n (S; Γ) as one usually also does in the case

of Lp-spaces (and as we did without mentioning it before with elements of L∞(X)).

The collection {CX
n (S; Γ)}n becomes a chain complex of L∞(X, Γ)-modules with

boundary operator dn : CX
n (S; Γ) → CX

n−1(S; Γ) given by

dn(σ) =
n

∑
i=0

(−1)i · σ ◦ (idXσ ×τi),

where τi : Δn−1 → Δn is the i-th face map.
For a pair T ⊂ S of X-spaces we define the relative complex

CX
• (S, T; Γ) =

CX
• (S; Γ)

CX
• (T; Γ)

.

The boundary operator on CX
• (S; Γ) induces a boundary operator on CX

• (S, T; Γ).

Definition 3.20. Let T ⊂ S be a pair of X-spaces. We define the singular X-homology
of (S, T) as the homology of CX

• (S, T; Γ) and denote it by HX
• (S, T; Γ). The singular

X-homology of S is defined as HX
• (S, ∅; Γ) and denoted by HX

• (S; Γ). Again, we will
sometimes omit integral coefficients from the notation.

Remark 3.21. One could prove suitable variants of the Eilenberg-Steenrod axioms
for HX

• ( , ) up to L∞(X)-dimension isomorphisms. We will not do it here since we
will prove equivariant versions of them later in this chapter. It will then be easy to
establish the non equivariant case.

As a consequence we get the following result.

Theorem 3.22. Let Z be a CW-complex . Then there is an L∞(X)-dimension isomorphism

H•
(
Z; L∞(X)

) ∼=dim−−→ HX
• (X × Z; C),

where H•
(
Z; L∞(X)

)
is ordinary singular homology with L∞(X)-coefficients.

3.2.4 Reduced Form

The chain groups CX
n (S) are not free as L∞(X)-modules. For example, if σ1 and σ2

only agree on A × Δn, then χA · σ1 − χA · σ2 represents zero in CX
n (S) . This fact

causes some difficulties in the definition of maps on CX
n (S). We will therefore show

that one can always find special representatives for X-chains.

Definition 3.23. For ∑k
i=1 fi · σi ∈ L∞(X)[ΣX

n (S)] let supp( fi · σi) = supp( fi) ∩ Xσi .
By definition, ∑k

i=1 fi · σi is in reduced form if for all i, j ∈ {1, . . . , k} with i �= j the set

A(i, j) = supp( fi · σi) ∩ supp( fj · σj) ∩ {x ∈ X : σi,x = σj,x}

has measure zero.
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3.3 Definition and Examples of R-Spaces

In other words ∑k
i=1 fi · σi is in reduced form if and only if for almost all x ∈ X the

singular chain
(
∑k

i=1 fi · σi
)

x is in standard form, i.e. each singular simplex occurs at
most once in the sum.

Lemma 3.24. Let c ∈ CX
n (S) be a singular X-chain. Then c can be represented in reduced

form, i.e. there exists an element ∑k
i=1 fi · σi ∈ L∞(X, Z)[ΣX

n (S)] in reduced form such
that c =

[
∑k

i=1 fi · σi
]

holds.

Proof. Given a singular X-chain c ∈ CX
n (S) represented by ∑k

l=1 gl · σl we will give a
procedure which turns this representative into a reduced form element also repre-
senting c.

Order the pairs in
{
(i, j) ∈ {1, . . . , k}2 : i �= j

}
lexicographical, i.e.

(i, j) < (r, s) ⇐⇒ (i < r) or (i = r and j < s).

For each pair (i, j) with i < j according to the lexicographical order do the following
steps. If A(i, j) has positive measure then change the coefficients:

• gj(x) =

{
gi(x) + gj(x), x ∈ A(i, j)
gj(x), otherwise

• gi(x) =

{
0, x ∈ A(i, j)
gi(x), otherwise

One easily checks that each step in the algorithm does not change the represented
element in CX

n (S). This algorithm clearly ends up in a reduced form element which
represents c.

Remark 3.25. The representation of chains by elements in reduced form is not
unique. Also the output of the algorithm above depends on the enumeration of
the simplices. Fortunately, we only need the existence of representatives in reduced
form later on.

3.3 Definition and Examples of R-Spaces

The relationship between X-spaces and R-spaces can be seen as the one between or-
dinary topological spaces and topological spaces with the action of a group. We will
define R-spaces to be X-spaces equipped with the action of a suitable equivalence
relation. Before we can make that precise we have to fix some notation.

3.3.1 Standard Equivalence Relations

First we have to define special equivalence relations on a standard Borel space X.
From now on we will always assume that X is equipped with a probability mea-
sure μ.

29



3 R-Spaces

Definition 3.26. A standard equivalence relation R on a standard Borel space X with
probability measure μ is an equivalence relation R ⊂ X × X such that the following
conditions hold.

(i) The subset R ⊂ X × X is measurable.

(ii) The equivalence classes of R are countable.

(iii) For each Borel isomorphism φ : A → B between measurable subsets A, B ⊂ X
satisfying gr(ϕ) ⊂ R one has μ(A) = μ(B).

As usual, gr(ϕ) =
{(

x, ϕ(x)
)

: x ∈ X
}

denotes the graph of ϕ. A standard equiv-
alence relation R ⊂ X × X is called ergodic if any R-invariant measurable sub-
set A ⊂ X satisfies μ(A) = 0 or μ(A) = 1.

By [R] we will denote the group of Borel automorphisms ϕ : X → X satisfy-
ing gr(ϕ) ⊂ R.

Remark 3.27. Note that a standard equivalence relation R is itself a standard Borel
space. This follows directly from Theorem 3.1.

The next well known result shows that in some sense the group [R] is big. A
proof is given e.g. in [21, Lemma 2.1].

Lemma 3.28. Let R ⊂ X × X be an ergodic standard equivalence relation. Then the
group [R] acts transitively up to measure zero on the measurable subsets of X of a fixed
measure.

We will often use the following fact.

Lemma 3.29. Let R ⊂ X × X be a standard equivalence relation, and A ⊂ R be a mea-
surable subset. Then there is a partition A =

⋃
n∈N An into measurable subsets An such

that both coordinate projections are injective on each An.

Proof. Since the equivalence classes of R are countable the coordinate projections
are countable-to-1 maps. Hence we can first apply Theorem 3.3 to the projection p1
on the first factor to obtain a partition of A into measurable subsets A′

n such that p1
is injective on each A′

n. Then we apply Theorem 3.3 again to the projection p2 on
the second factor restricted to each A′

n to get the desired partition.

The most important example of a standard equivalence relation for us is provided
by the following lemma.

Lemma 3.30. Let X be a standard Borel space X with probability measure μ and G be a
countable group with an action G × X → X on X by measure preserving Borel automor-
phisms. Then the orbit equivalence relation

RG�X =
{
(x, g.x) : x ∈ X, g ∈ G

}
is a standard equivalence relation.
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3.3 Definition and Examples of R-Spaces

Proof. For fixed g0 ∈ G the subset
{
(x, g0.x) : x ∈ X

}
is a Borel subset and hence

RG�X ⊂ X × X is Borel as a countable union of Borel subsets. The equivalence
classes of RG�X are countable since so is G. Now let ϕ : A → B a Borel isomor-
phism between Borel subsets A, B ⊂ X with gr(ϕ) ⊂ RG�X . Choose some enu-
meration G = {g1, g2, . . .}. Then A is the disjoint countable union A =

⋃∞
n=1 An

with
An = {a ∈ A : ϕ(a) = gn.a and ϕ(a) �= gj.a for all j < n}.

Since G � X is measure preserving, we obtain μ
(

ϕ(An)
)

= μ(gn.An) = μ(An) for
all n ∈ N and therefore

μ(B) =
∞

∑
n=1

μ
(

ϕ(An)
)

=
∞

∑
n=1

μ(An) = μ(A)

since the union B =
⋃∞

n=1 ϕ(An) is also disjoint due to bijectivity of ϕ.

Somehow this is the only example of a standard equivalence relation since there
is the following result of Feldman and Moore [18].

Theorem 3.31. Let R be a standard equivalence relation on a standard Borel space X. Then
there is a countable group G acting on X by measure preserving Borel automorphisms such
that R = RG�X holds.

For the proof of Lemma 3.30 we did not need the fact that the action is free. Also
in Theorem 3.31 one can not assume freeness of the action. However we will need
freeness of the action later, so we restrict our attention to this situation.

Definition 3.32. Let X be a standard Borel space with probability measure μ and
G be a countable group. A group action G � X is called a standard action if G acts
by measure preserving Borel automorphisms and the action is essentially free, i.e.
the stabilizer Gx = {g ∈ G : g.x = x} is trivial for almost all x ∈ X. A standard
action G � X is called ergodic if any G-invariant measurable subset A ⊂ X satisfies
μ(A) = 0 or μ(A) = 1.

Remark 3.33. A standard action G � X is ergodic if and only if the associated orbit
equivalence relation RG�X is ergodic.

Remark 3.34. If G � X is an essentially free action on a standard Borel probabil-
ity space X, we can easily switch to a free action on a standard Borel probability
space X′. Namely, let

X0 =
{
x ∈ X : g.x = x for some g ∈ G − {e}

}
and consider X′ = X−X0. The subset X0 ⊂ X is measurable since it is the countable
union

X0 =
⋃

g∈G−{e}
X(g), X(g) = {x ∈ X : g.x = x}

31



3 R-Spaces

and each X(g) is measurable since it is the preimage of the (measurable) diagonal
ΔX =

{
(x, x) : x ∈ X} under the measurable map

lg : X → X × X, x �→ (x, g.x).

Since the action G � X was assumed to be essentially free the set X0 has measure
zero. As a measurable subspace of a standard Borel space X′ is itself a standard
Borel space, and the restricted measure on X′ is again a probability measure.

Definition 3.35. A standard action G � X is called mixing if for each pair of Borel
subsets A, B ⊂ X and each sequence (gn)n∈N with gn

n→∞−−−→ ∞ the condition

lim
n→∞

μ(A ∩ gn.B) = μ(A) · μ(B) (3.2)

holds, where gn
n→∞−−−→ ∞ means that for each finite subset F ⊂ G there exists NF ∈ N

with gn /∈ F for all n ≥ NF.

Remark 3.36. It is immediately clear that each mixing action is ergodic. Further-
more, it suffices to check (3.2) for measurable subsets of a generating set of the
σ-algebra on X.

Lemma 3.37. Each countable group admits an ergodic standard action.

Proof. Let G be a countable group. If G is finite then G itself with the normalized
counting measure is a standard Borel probability space with a free measure preserv-
ing G-action given by the shift (g, h) �→ gh.

If G is countably infinite consider the standard Borel space X = {0, 1}G equipped
with the product measure of equipartition on {0, 1}. The shift action(

g, (λh)h∈G
)
�→ (λgh)h∈G

is easily seen to be measure preserving. It is not hard to show that the shift action is
essentially free, this is done e.g. in [41].

To prove ergodicity of the action G � {0, 1}G , we show that it is mixing. For a
finite subset F ⊂ G and subsets Af ⊂ {0, 1} for each f ∈ F, we define

XF =
{
(λg)g∈G : λ f ∈ Af for all f ∈ F

}
.

The collection of those XF generate the product σ-algebra. For sets of this form, one
easily proves the mixing condition (3.2).

Remark 3.38. The action G � {0, 1}G is called Bernoulli shift action.

For later use we will now state the Rohlin Lemma, a classical and useful result from
ergodic theory. A proof can be found e.g. in [1, Theorem 1.5.9, p. 47].

Theorem 3.39. Let X be non-atomic probability space and T : X → X be a measure pre-
serving ergodic Borel automorphism. Given ε > 0 and n ∈ N there is a measurable sub-
set B ⊂ X such that the following conditions hold:
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3.3 Definition and Examples of R-Spaces

(i) The subsets B, T(B), . . . , Tn−1(B) are pairwise disjoint.

(ii) It is μ
(⋃n−1

j=0 Tj(B)
)

> 1− ε.

Remark 3.40. If G � X is an ergodic standard action of an infinite group G on a
standard Borel probability space X, then X is non-atomic.

3.3.2 A Measure on a Standard Equivalence Relation

Let R be a standard equivalence relation. We define a measure on R, which is
induced by the measure on X in a natural way. Since p1 : R → X is countable-
to-1 by Lemma 3.29 there is a measurable partition R =

⋃
n∈N Rn such that both

coordinate projections are injective on each Rn. It follows that for a measurable
subset B ∈ R the function defined by

x �→
∣∣B ∩ p−1

1 (x)
∣∣ = ∑

n∈N

χp1(Rn∩B)(x) (3.3)

is measurable, where |A| denotes the cardinality of A.

Definition 3.41. Let R be a standard equivalence relation. The measure ν on R is
given by

ν(B) =
∫

X

∣∣B ∩ p−1
1 (x)

∣∣ dμ(x)

for measurable subsets B ⊂ R.

Remark 3.42. One could define the measure with respect to both coordinate projec-
tions. As a consequence of property (iii) of Definition 3.26 the measure is the same
no matter which projection we take. For a proof of this fact see e.g. [41, Lemma 1.9].

The invariance of ν with respect to the coordinate projections will be very useful.
It appears for example in the following lemma about products of standard equiva-
lence relations.

Lemma 3.43. Let R ⊂ X × X and R′ ⊂ X′ × X′ be standard equivalence relations. Then
their product

R×R′ =
{(

(x, x′), (y, y′)
)

: (x, y) ∈ R, (x′, y′) ∈ R′} (3.4)

is a standard equivalence relation on X × X′.

Proof. Note that we have identified R×R′ ⊂ X × X × X′ × X′ with the set defined
in (3.4) by the obvious Borel isomorphism which interchanges the second and third
factor of the product. Hence it is clear that R×R′ is a measurable subset.

For a pair (x, x′) ∈ X × X′ there are only countably many elements y ∈ X with
(x, y) ∈ R and only countably many elements y′ ∈ X′ with (x′, y′) ∈ R′. Conse-
quently the equivalence classes of R×R′ are countable.
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3 R-Spaces

Let A, B ⊂ X × X′ be two subsets and ϕ : A → B be a Borel isomorphism such
that gr(ϕ) ⊂ R×R′. The probability measures on X and X′ will be denoted by μ
and μ′ respectively. First we define for each (x, y) ∈ R the sets

Ax,y =
{
x′ ∈ X′ : (x, x′) ∈ A, p1

(
ϕ(x, x′)

)
= y

}
and

Bx,y =
{
y′ ∈ X′ : (y, y′) ∈ B, p1

(
ϕ−1(y, y′)

)
= x

}
.

Clearly we have
Ax =

{
x′ ∈ X′ : (x, x′) ∈ A

}
=
⋃
y∼x

Ax,y

and
By =

{
y′ ∈ X′ : (y, y′) ∈ B

}
=
⋃
x∼y

Bx,y,

where both unions are disjoint. One obtains a Borel isomorphism ϕx,y : Ax,y → Bx,y
given by x′ �→ p2

(
ϕ(x, x′)

)
. Because of gr(ϕ) ⊂ R×R′ we get gr(ϕx,y) ⊂ R′ and

hence by measure invariance of standard equivalence relations μ′(Ax,y) = μ′(Bx,y).
Now we can conclude

μ × μ′(A) =
∫

X
μ′(Ax) dμ(x)

=
∫

X
∑
y∼x

μ′(Ax,y) dμ(x)

=
∫

X
∑
y∼x

μ′(Bx,y) dμ(x)

=
∫

X
∑
x∼y

μ′(Bx,y) dμ(y)

=
∫

X
μ′(By) dμ(y)

= μ × μ′(B)

In the step from line 3 to line 4 we used the invariance of the measure ν with respect
to both coordinate projections for integrating the function R → R which is given
by (x, y) �→ μ′(Bx,y).

3.3.3 Definition of R-Spaces

Now we are prepared to give the definition of R-spaces.

Definition 3.44. An R-space is an X-space (S, p) together with a measurable map

ρ : R×X S → S(
(x, y), s

)
�→ (x, y).s = ρ

(
(x, y), s

)
,
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where R×X S =
{(

(x, y), s
)
∈ R × S : p(s) = y

}
, satisfying the following condi-

tions:

(i) For all (x, y) ∈ R, s ∈ Sy we get (x, y).s ∈ Sx.

(ii) For all (z, x), (x, y) ∈ R, s ∈ Sy we get (z, x).
(
(x, y).s

)
= (z, y).s.

(iii) For all y ∈ X, s ∈ Sy we get (y, y).s = s.

The map ρ is called R-action. An R-map of two R-spaces (S, p) and (T, q) is an
X-map F satisfying F

(
(x, y).s

)
= (x, y).F(s) for all (x, y) ∈ R and s ∈ Sy.

The above definition was that of a left R-space. One can define right R-spaces
as well, but we will deal with left R-spaces only. Note that the R-action on (S, p)
induces a group action of [R] on S given by

ϕ.s =
(

ϕ
(
p(s)

)
, p(s)

)
.s.

Example 3.45. The first example of an R-space is R itself, where the R-action is
given by (x, y).(y, z) = (x, z). A little more general, for a Borel subset A ⊂ X the
restricted equivalence relation

R|A =
{
(x, y) ∈ R : y ∈ A

}
is an R-space with the same action.

The next lemma provides another class of examples of R-spaces which will be
crucial for our applications.

Lemma 3.46. Let G be a countable group. Then there is a standard action G � X on a
standard Borel space X and a functor

ind : G-Spaces → RG�X-Spaces,

where G-Spaces denotes the category of σ-compact, second countable Hausdorff spaces with
an action of G and RG�X-Spaces denotes the category of RG�X-spaces.

Proof. By Lemma 3.37 there is a standard action of the group G on some standard
Borel space X. We can use Remark 3.34 to obtain a free action.

Let Z be a G-space and define ind(Z) = X × Z. With the obvious projection and
the RG�X-action defined by

(g.x, x).(x, m) = (g.x, g.m)

this is an RG�X space. G-maps between G-spaces induce RG�X-maps between the
corresponding RG�X-spaces in an obvious way.

Remark 3.47. An example of an R-map which is not induced by a G-map is pro-
vided in the proof of Theorem 4.36.
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As in the case of X-spaces we can build products.

Definition 3.48. Let R ⊂ X × X and R′ ⊂ X′ × X′ be two standard equivalence
relations. If (S, p) is an R-space and (T, q) is an R′-space, then their cartesian prod-
uct (S × T, p × q) is an R×R′-space, where the action is given by(

(x, x′), (y, y‘)
)
.(s, t) =

(
(x, y).s, (x′ , y′).t

)
.

3.4 Compactly Generated Spaces

We will collect some facts which we need later on about compactly generated spaces,
the category of topological spaces we are working in. We will see that this category
is very convenient for a lot of constructions and will be useful for us in particular
in Section 4.4 when we study R-CW-complexes. The category of compactly gener-
ated spaces was introduced by Steenrod [42]. Most of the following facts are taken
from [48, I.4] and [13, VI.6] which are good introductions to compactly generated
spaces.

Definition 3.49. A topological space Z is called compactly generated if it is a Haus-
dorff space and each subset A ⊂ Z with the property that A ∩ K ⊂ Z is closed for
every compact subset K ⊂ Z is itself closed in Z.

The category of compactly generated spaces and continuous maps will be de-
noted by K. If we denote the category of Hausdorff spaces by T2, then there is
a functor k : T2 → K which does not change the underlying set of a Hausdorff
space Z. A subset A ⊂ Z is closed in k(Z) if and only if A ∩ K is closed in Z for
every compact subset K ⊂ Z. For a continuous map f : Z1 → Z2, the map k( f ) is
defined to be the same function considered as a map k(Z1) → k(Z2). One easily
checks that k(Z) is compactly generated and k( f ) is continuous. If Z is compactly
generated, one has k(Z) = Z.

The functor k is right adjoint to the inclusion functor K → T2. In particular, for
compactly generated Z1 and continuous f : Z1 → Z2 the map k( f ) : Z1 → k(Z2) is
also continuous. This implies that the singular chain complexes of Z and k(Z) agree
and therefore also their singular homology and cohomology.

In general, the cartesian product of two compactly generated spaces is not com-
pactly generated. One resolves this defect by defining Z1 ×K Z2 = k(Z1 × Z2). It can
be shown that ×K is the categorical product in K. We will need the following result
about products of identifications which is proved e.g. in [13, Satz (6.13), p. 223]. Re-
call that an identification f : Z1 → Z2 is a surjective map such that A ⊂ Z2 is closed
if and only if f−1(A) ⊂ Z1 is closed.

Lemma 3.50. Let Z1 and Z′
1 be compactly generated and let f : Z1 → Z2 and f ′ : Z′

1 → Z′
2

be identifications. Then the product f × f ′ : Z1 ×K Z′
1 → Z2 ×K Z′

2 is an identification.

We will now prove that the Borel σ-algebra of an X-space S is the same as that
of k(S). This is implied by the following lemma since an X-space is σ-compact and
Hausdorff by part of its definition.
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Lemma 3.51. Let Z be σ-compact and Hausdorff. Then the Borel σ-algebra of Z and that
of k(Z) coincide.

Proof. It suffices to show that a closed subset A ⊂ k(Z) is contained in the Borel σ-
algebra of Z. Since Z is σ-compact, there is a sequence (Kn)n∈N of compact sub-
sets Kn ⊂ Z with Z =

⋃∞
n=1 Kn. If A ⊂ k(Z) is closed, then A ∩ Kn is closed in Z

for all n ∈ N by definition. Consequently, A =
⋃∞

n=1 A ∩ Kn is an element of the
Borel σ-algebra of Z since it is the countable union of closed subsets.

A subspace A ⊂ Z of a compactly generated space is not necessarily compactly
generated. Again, one uses the functor k to overcome this problem and consid-
ers k(A). One can show that k(i) : k(A) → Z, where i : A → Z is the inclusion, has
the formal properties of a subspace in K, i.e. for a compactly generated space Z′, a
map f : Z′ → k(A) is continuous if and only if k(i) ◦ f is continuous [13, Satz (6.7),
p. 221].

The preceding arguments show that k becomes a functor from the category of
X-spaces to the category of compactly generated X-spaces. First, X = k(X) since
metrizable spaces are compactly generated [13, Satz (6.1)(1), p. 218]. The projec-
tion p : S → X of an X-space (S, p) remains measurable since the σ-algebra of S does
not change under k because of Lemma 3.51. By the same reason, an X-map f : S → T
remains measurable if regarded as a map k(S) → k(T). For x ∈ X, the fiber over x
is k(Sx) by definition of the subspace topology in K. Since k is a functor T2 → K and
for almost all x ∈ X the map f |Sx : Sx → Tx is continuous, the map k( f )|k(Sx ) is also
continuous for almost all x ∈ X.

Lemma 3.52. Let S be an X-space. Then the singular X-simplices of S are precisely the
X-simplices of k(S).

Proof. The domain Xσ × Δn of an X-simplex σ is compactly generated, since the
product of a compactly generated space and a locally compact space is compactly
generated [13, Satz (6.8), p. 221] and Xσ is compactly generated as a metrizable
space, whereas Δn is compact. Thus k(Xσ × Δn) = Xσ × Δn, and it follows that an
X-map

σ : Xσ × Δn → S

induces an X-map Xσ × Δn → k(S) by the arguments above. The other direction is
clear since the topology of k(S) is finer than that of S.
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In this chapter, we will define L2-Betti numbers of R-spaces and compare the L2-
Betti numbers of a G-space with those of the induced RG�X-space. First we need
some algebraic ingredients analogous to the group ring and the group von Neu-
mann algebra. We define the equivalence relation ring ΛR for subrings Λ ⊂ C,
closed under complex conjugation. In analogy to the group-situation, the equiv-
alence relation von Neumann algebra NR arises as a completion of CR. There
is a trace trNR : NR → C turning NR into a finite von Neumann algebra. The
notion of the equivalence relation von Neumann algebra is due to Feldman and
Moore [18]. The definition of L2-Betti numbers of R-spaces is based on Lück’s al-
gebraic definition of ordinary L2-Betti numbers. We show that R-homology (i.e.
Hn
(
NR⊗ZR CX

• (S; Z)
)
) satisfies adapted Eilenberg-Steenrod axioms up to dimen-

sion isomorphisms. Furthermore, R-CW-complexes will be considered as a natural
analog of G-CW-complexes. We will prove that the L2-Betti numbers of a countable
free G-CW-complex Z and those of the induced RG�X-space X × Z coincide. As
an application, we provide another proof for Gaboriau’s theorem about the orbit
equivalence invariance of L2-Betti numbers.

4.1 The von Neumann Algebra of a Standard Equivalence
Relation

The following construction should be thought of as an analog to the group ring.

4.1.1 The Equivalence Relation Ring

In the following, we will always tacitly use the measure ν on R. This measure was
introduced in Definition 3.41.

Definition 4.1. Let R be a standard equivalence relation and Λ ⊂ C be a subring,
which is closed under complex conjugation. Then the equivalence relation ring ΛR is
defined by

ΛR =
{

η ∈ L∞(R, Λ) :

∃n ∈ N ∀x ∈ X : |{y : η(x, y) �= 0}|, |{y : η(y, x) �= 0}| ≤ n
}
.
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The addition on ΛR is given by pointwise addition, whereas the multiplication is
given by

η · ρ(x, y) = ∑
z∼x

η(x, z) · ρ(z, y).

Define an involution on ΛR by η(x, y) = η(y, x).

Remark 4.2. There is an embedding of rings

j : L∞(X, Λ) → ΛR (4.1)

given by restriction to the diagonal. This means that j( f ) maps (x, x) to f (x) and
vanishes outside the diagonal. We will usually omit the j from the notation and
simply regard f ∈ L∞(X, Λ) as an element of ΛR.

Definition 4.3. The augmentation morphism ε : ΛR → L∞(X, Λ) is defined by

ε(η)(x) = ∑
y∼x

η(x, y).

It is clear that ε ◦ j = idL∞(X,Λ) holds. Hence L∞(X, Λ) is a direct summand
of ΛR. The augmentation morphism ε can be used to define an ΛR-module struc-
ture on L∞(X, Λ).

Definition 4.4. For f ∈ L∞(X, Λ) and η ∈ ΛR we define

η · f = ε
(
η · f

)
.

This defines a left ΛR-module structure on L∞(X, Λ).
Using the involution on ΛR we define a right ΛR-module structure on L∞(X, Λ)

by f · η = η · f .

The augmentation morphism becomes a ΛR-morphism if L∞(X, Λ) is endowed
with the ΛR-module structure of Definition 4.4.

Remark 4.5. Note that L∞(X, Λ) is not an L∞(X, Λ)-ΛR-bimodule since in general

( f · g) · η (x) = ∑
y∼x

η(y, x) · f (y) · g(y) �= ∑
y∼x

η(y, x) · f (x) · g(y) = f · (g · η) (x).

Remark 4.6. There is an injective map I : [R] → ZR given by

I(ϕ)(x, y) =

{
1, ϕ(y) = x

0, otherwise.

In other words, I is given by ϕ �→ χgr(ϕ−1).

The following lemma about the elements of the equivalence relation ring will be
quite useful later on.
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4.1 The von Neumann Algebra of a Standard Equivalence Relation

Lemma 4.7. For each η ∈ ΛR there are pairwise disjoint Borel subsets E1, . . . , Ek ⊂ R and
measurable maps f1, . . . , fk ∈ L∞(X, Λ) with the property that both coordinate projections
restricted to each Ej are injective and

η =
k

∑
j=1

fj · χEj

holds.

Proof. The coordinate projections p1, p2 : supp(η) → X are finite-to-1 maps between
standard Borel spaces, since supp(η) is a measurable subset of the standard Borel
space R and therefore itself standard Borel. By Lemma 3.29 one gets a finite par-
tition of supp(η) into Borel sets E1, . . . , Ek such that p1, p2 restricted to each Ej are
injective. For x ∈ p1(Ej) let yx,j be the unique point in X with (x, yx,j) ∈ Ej and
define

fj : X → Λ, x �→
{

η(x, yx,j), x ∈ p1(Ej)
0, otherwise.

By direct computation one checks that η = ∑k
j=1 fj · χEj holds.

Remark 4.8. In the important special case R = RG�X there is a close relation be-
tween the group ring ΛG and the equivalence relation ring ΛRG�X , namely there
is a ring monomorphism

ΛG → ΛRG�X

which maps ∑g∈G λg · g to the function RG�X → Λ given by

(g0.x, x) �→ λg0 .

4.1.2 Definition of the Equivalence Relation von Neumann Algebra

In analogy to the group ring situation we can embed CR into the bounded linear
operators on L2(R) in two ways, i.e. there are linear maps ρl : CR → L

(
L2(R)

)
given by

ρl(φ)(ψ)(x, y) = ∑
z∼x

φ(x, z) · ψ(z, y)

and ρr : CR → L
(
L2(R)

)
given by

ρr(φ)(ψ)(x, y) = ∑
z∼x

ψ(x, z) · φ(z, y).

Definition 4.9. The von Neumann algebraNR of a standard equivalence relation R
is defined as the weak closure of ρr(CR) in L

(
L2(R)

)
.

There is a trace trNR : NR → C on NR defined by

trNR(T) =
〈
T(χΔX), χΔX

〉
L2(R)

where ΔX ⊂ R is the diagonal in X × X and χΔX is its characteristic function.
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4 L2-Betti Numbers of R-Spaces

In [41, Theorem 1.46] it is proved that trNR is in fact a trace on NR. The following
lemma is also proved in [41, Corollary 1.54].

Lemma 4.10. The ring homomorphism CG → CRG�X defined in Remark 4.8 extends to
a trace preserving ∗-homomorphism NG → NRG�X.

Since any trace preserving ∗-homomorphism of von Neumann algebras is a flat
ring extension by Lemma 1.8, we get the following consequence.

Corollary 4.11. The von Neumann algebra NRG�X is a flat NG-module.

4.2 L2-Betti Numbers of R-Spaces

Recall that in the case of an ordinary topological space X with the action of a
group G we used the fact that the group action induces a ZG-module structure on
the singular chain complex C•(X; Z) and considered the complexNG⊗ZG C•(X; Z).

In order to proceed similarly in the situation of an R-space (S, p) we first have to
define a ZR-module structure on the singular chain complex CX

• (S; Z).

4.2.1 A ZR-Module Structure on the Chain Complex of an R-Space

The R-action on (S, p) induces a group action of [R] on ΣX
n (S). Namely, for ϕ ∈ [R]

and a singular X-simplex σ : Xσ × Δn → S we define an X-simplex by

ϕ.σ : ϕ(Xσ) × Δn → S

(x, t) �→
(
x, ϕ−1(x)

)
.σ
(

ϕ−1(x), t
)
.

In the same way we can define an action of partial Borel isomorphisms ψ : A → B
between Borel subsets A, B ⊂ X with gr(ψ) ⊂ R on σ : Xσ × Δn → S. The domain
of ψ.σ is given by B ∩ ψ(Xσ ∩ A), while the image of (x, t) ∈ B ∩ ψ(Xσ ∩ A) is the
same as above.

This action induces a ZR-module structure on CX
• (S; Z) in the following way:

Due to Lemma 4.7 each function η ∈ ZR can be written as a finite sum ∑k
j=1 fj · χEj

with fj ∈ L∞(X, Z) and pairwise disjoint measurable subsets Ej ⊂ R such that
both coordinate projections are injective on each Ej. Hence each Ej induces a Borel
isomorphism ψj : p2(Ej) → p1(Ej) with gr(φj) ⊂ R. We get η = ∑k

j=1 fj · χgr(ψ−1
j ).

For σ ∈ ΣX
n (S) define

η · σ =
k

∑
j=1

fj · (ψj.σ).

This is well defined since for almost all x ∈ X one has

(η · σ)x = ∑
y∈Xσ
y∼x

η(x, y) · (x, y).σy.
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4.3 R-Homology

Note that we obtain the equation I(η) · σ = η.σ (where I : [R] → ZR was the
embedding defined in Remark 4.6).

The ZR-module structure on CX
n (S) is now given by

η · ∑
σ

fσ · σ = ∑
σ

(η · fσ) · σ.

The assignment (S, p) �→ CX
n (S) becomes a functor

R-Spaces → ZR-Mod,

where an R-map F : S → T yields the ZR-module morphism F# : CX
n (S) → CX

n (T)
induced by σ �→ F ◦ σ.

This construction turns {CX
n (S)}n into a chain complex of ZR-modules.

4.2.2 Definition of L2-Betti Numbers of R-Spaces

After the technical preparation we are now ready to define L2-Betti numbers of R-
spaces.

Definition 4.12. Let S be an R-space. The complex

NR⊗ZR CX
• (S; Z)

of NR-modules is called the singular R-complex of S. Here NR is equipped with
the standard NR-ZR-bimodule structure. We will sometimes abbreviate

CR
• (S;NR) = NR⊗ZR CX

• (S; Z).

The homology of CR
• (S;NR) is called the singular L2-homology of S and is denoted

by HR
• (S;NR). The n-th L2-Betti number of S is defined as

b(2)
n (S;NR) = dimNR

(
HR

n (S;NR)
)
.

The homology of NR⊗ZR CX
• (S, T; Z) will be denoted by HR

• (S, T;NR).

We will next establish some properties of L2-homology of R-spaces. Our main
goal will be the equality

b(2)
n (Z;NG) = b(2)

n (X × Z;NRG�X) for all n ≥ 0

for G-spaces Z and standard Borel spaces X with a standard action G � X.

4.3 R-Homology

In analogy to G-homology theorieswe will defineR-homology theories forR-spaces
and show that HR

• (., .;NR) is “nearly” such a theory. Let R-Spaces2 denote the cat-
egory of pairs of R-spaces.
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4 L2-Betti Numbers of R-Spaces

4.3.1 R-Homology Theories

The definition of R-homology theories is motivated by the Eilenberg-Steenrod ax-
ioms for homology theories.

Definition 4.13. An R-homology theory with values in an abelian category A is a
collection of functors

Hn : R-Spaces2 → A

such that the following conditions hold:

• Long exact homology sequence of a pair
If T ⊂ S is a pair of R-spaces and T is fiberwise open or fiberwise closed in S,
then there is a natural long exact sequence of the form

. . . → Hn+1(S, T) → Hn(T) → Hn(S) → Hn(S, T) → . . . .

• Homotopy invariance
If f , g : S → T are R-homotopic R-maps, then H•( f ) = H•(g) holds.

• Excision
If S is an R-space and A ⊂ B ⊂ S are R-subspaces such that Ax ⊂ B◦

x holds
for almost all x ∈ X, then the inclusion (S − A, B − A) ↪→ (S, B) induces an
isomorphism

H•(S − A, B − A)
∼=−→ H•(S, B).

• Countable Additivity
If I is a countable index set and Sα is an R-space for each α ∈ I, then the
canonical map ⊕

α∈I

H•(Sα) → H•
(
�α∈I Sα

)
is an isomorphism.

The homology theory H• satisfies the dimension axiom if Hn(R) = 0 holds for
each n �= 0.

The following observation is obvious.

Lemma 4.14. Let G be a group and G � X be a standard action. Then an R-homology
theory H• with values in A yields a G-homology theory with values in A via

(Z,Y) �→ H•
(
ind(Z), ind(Y)

)
,

where ind is the induction functor defined in Lemma 3.46 and (Z,Y) is a pair of G-spaces.
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4.3 R-Homology

4.3.2 L2-Homology is an R-Homology Theory up to Dimension

It turns out that L2-homology is not an R-homology theory with values in NR-
Mod, but it is one modulo dimension. More precisely, L2-homology becomes an R-
homology theory with values in the quotient category NR-Mod/NR-Mod0 (com-
pare Remark 1.16), where dimension isomorphisms become isomorphisms. We will
give a proof of this fact now.

Theorem 4.15. Singular L2-homology HR
• (., .;NR) is an R-homology theory modulo di-

mension, i.e. the composite functor

(S, T) �→ π
(
HR

• (S, T;NR)
)

is anR-homology theory with values in NR-Mod/NR-Mod0, where π is the exact functor
defined in Remark 1.16. The dimension axiom holds with HR

0 (R;NR) ∼=dim NR.

Proof. First we prove the existence of the long exact homology sequence. By defini-
tion, the sequence of ZR-chain complexes

0 → CX
• (T; Z) → CX

• (S; Z) → CX
• (S, T; Z) → 0

is exact. The first map does not split as a chain map, but it does split degreewise.
Namely, for a chain in CX

n (S; Z) represented by ∑k
j=1 fj · σj we consider the subsets

Aj =
{
x ∈ X : im(σj,x) ⊂ T

}
. (4.2)

Measurability of Aj follows from Lemma 3.17. The chain ∑k
j=1(χAj · fj) · σj repre-

sents an element of CX
n (T; Z). This procedure yields a split of the inclusion map

CX
n (T; Z) → CX

n (S; Z). It follows that the first map in the sequence of NR-chain
complexes

0 → NR⊗ZR CX
• (T; Z) → NR⊗ZR CX

• (S; Z) → NR⊗ZR CX
• (S, T; Z) → 0

is injective. Since the sequence is exact in the middle and on the right due to gen-
eral homological algebra it is overall exact. Hence there is a long exact homology
sequence for L2-homology.

For the proof of homotopy invariance we want to imitate the proof in the classical
situation (which can be found in any textbook on algebraic topology, e.g. in [6]). Let
Y be a topological space. There is a natural map

D : Cn(Y; Z) → Cn+1(Y × I; Z)
c �→ c × idΔ1

satisfying d ◦ D + D ◦ d = i1 − i0, where (by abuse of notation) d denotes the bound-
ary in C•(Y; Z) and C•(Y × I; Z) as well and i0, i1 are induced by the obvious in-
clusions Y → Y × I. Moreover, there are integers a1, . . . , ak ∈ Z and singular sim-
plices τ1, . . . , τk : Δn+1 → Δn × I such that D(idΔn) = ∑k

j=1 aj · τj. By naturality of D
we get

D(τ) =
k

∑
j=1

aj · (τ × idI) ◦ τj (4.3)
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4 L2-Betti Numbers of R-Spaces

for an arbitrary simplex τ : Δn → Y. Now we use (4.3) to define the “X-version”
of D. For an R-space S the ZR-homomorphism DX : CX

n (S; Z) → CX
n+1(S × I; Z) is

given by

σ �→
k

∑
j=1

aj · (σ × idI) ◦ (idXσ ×τj),

for an X-simplex σ : Xσ × Δn → S in S and linear extension. Note that one has to be
a little careful with linear extension in CX

n (S; Z) since it is not a free L∞(X)-module.
To see that DX is nevertheless well defined let ∑r

l=1 fl · σl with f1, . . . , fr ∈ L∞(X; Z)
and singular X-simplices σ1, . . . , σr represent an element of CX

n (S; Z). Then we get
for almost all x ∈ X the equation

DX
([ r

∑
l=1

fl · σl
])

x
=

r

∑
l=1

k

∑
j=1

fl(x) · aj ·
(
(σl)x × idI

)
◦ τj = D

( r

∑
l=1

fl(x) · (σl)x

)
. (4.4)

Hence DX is well defined. Equation (4.4) also yields

d ◦ DX + DX ◦ d = i1 − i0,

where d now denotes the boundary operator of both CX
• (S; Z) and CX

• (S× I; Z) and
i0, i1 are induced by the inclusions S → S × I. Now homotopy invariance follows
easily: Let H : S × I → T be an R-homotopy between R-maps f0, f1 : S → T. Then
we observe

d ◦ (HΔ ◦ DX) + (HΔ ◦ DX) ◦ d = ( f1)Δ − ( f0)Δ,

where the subscript Δ indicates the induced map on the singular chain complex.
Hence HΔ ◦ DX is a chain homotopy between ( f0)Δ and ( f1)Δ. This property per-
sists after tensoring with NR and consequently f0 and f1 induce the same homo-
morphism in L2-homology.

Next we are going to prove the excision axiom. Here we really have to work in
the quotient category NR-Mod/NR-Mod0 since the map which is supposed to be
an isomorphism by the axioms will only be a dimNR-isomorphism, which becomes
an isomorphism in the quotient category.

We first recall the proof in the classical situation since we are going to copy it:
One defines a natural chain map Y• : C•(Z; Z) → C•(Z; Z) (the so called subdivi-
sion chain map) which is chain homotopic to the identity by a natural chain homo-
topy F• : C•(Z; Z) → C•+1(Z; Z). The maps Y and F have the property that for each
singular simplex τ : Δn → Z the chains Yn(τ) and Fn(τ) are built up by simplices
with image in im(τ). Furthermore, if Z is covered by a finite family V = {V1, . . . , Vl}
of open subsets, then there is a positive integer k such that Yk

n(τ) ∈ CV
n (Z; Z), where

CV
• (Z; Z) is the subcomplex of C•(Z; Z) generated by all singular simplices with im-

age in one of the elements of V . By Fk
• we denote a natural chain homotopy between

Yk
• and idC•(Z;Z).
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4.3 R-Homology

To get the X-versions of Yk
• and Fk

• let Yk
n(idΔn) = ∑r

j=1 aj · τj ∈ Cn(Δn ; Z) and
define

YX,k
n : σ �→

r

∑
j=1

aj · σ ◦ (idXσ ×τj)

for an X-simplex σ : Xσ × Δn → S in an R-space S. One proceeds similarly to define
FX,k

n : CX
n (S; Z) → CX

n+1(S; Z). Again it is easy to see that YX,k
• and FX,k

• extend in
a well defined way to ZR-homomorphisms on CX

• (S; Z) by linearity and we get
YX,k

n (c)x = Yk
n(cx) as well as FX,k

n (c) = Fk
n(cx) for almost all x ∈ X where c is an

X-chain in CX
n (S; Z). The properties of the classical maps Yk

• and Fk
• imply

YX,k
n (c) − c = FX,k

n−1 ◦ d(c) + d ◦ FX,k
n (c).

For the proof of the excision axiom we first take a finite family U = {U1, . . . , Ur}
of R-invariant subspaces of an R-space S, such that Sx =

⋃r
j=1 int(Uj,x), where

int(Uj,x) is the topological interior of Uj,x. We denote by CX,U
• (S; Z) the subcomplex

of CX
• (S; Z) generated by all singular X-simplices whose images are contained in

one of the elements of U . To show that the homomorphism

j : NR⊗ZR CX,U
• (S; Z) → NR⊗ZR CX

• (S; Z) (4.5)

given by inclusion induces a dimNR-isomorphism in homology we proceed in two
steps.

First consider the subset ΣX
n,k(S) ⊂ ΣX

n (S) of those singular X-simplices σ satisfy-

ing YX,k
n (σ) ∈ CX,U

n (S; Z). Now we define

CX
n,k(S; Z) =

{
∑j fj · σj ∈ CX

n (S; Z) : σj ∈ ΣX
n,k(S) for all j

}
. (4.6)

Because of the R-invariance of the subsets Uj ⊂ S, it follows that CX
n,k(S; Z) is a ZR-

submodule of CX
n (S; Z). The inclusion CX

n,k(S; Z) ↪→ CX
n (S; Z) splits for all n ∈ N

by a similar construction as in (4.2). Hence

NR⊗ZR CX
n,k(S; Z) → NR⊗ZR CX

n (S; Z)

is injective. Since directed colimits commute with tensor products and preserve
exactness, we conclude that

j0 : colim−→
k

NR⊗ZR CX
•,k(S; Z) → NR⊗ZR CX

• (S; Z)

is injective.
Next we want to show that j0 is dimension surjective in each degree. We will

use the local criterion (Lemma 1.18) to show that coker(j0) has dimension zero in
degree n. For this purpose let ∑k

j=1 fj · σj represent a chain c ∈ CX
n (S; Z) and define

Aj(l) = (X − Xσj) ∪
{
x ∈ Xσj : σj,x ∈ Cn,l(Sx; Z)

}
(4.7)
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4 L2-Betti Numbers of R-Spaces

for j = 1, . . . , k. Here, Cn,l(Sx; Z) denotes the subcomplex of the ordinary chain
complex Cn(Sx; Z) of Sx generated by those singular simplices whose l-th subdivi-
sion is a sum of simplices which all have image in one of the covering sets. We will
show measurability of Aj(l). For one X-simplex σ : Xσ × Δn → S and one measur-
able set U ⊂ S the subset

Aσ,U = (X − Xσ) ∪
{
x ∈ Xσ : im(σx) ⊂ int(Ux)

}
is measurable by Lemma 3.17. Consequently, for a countable family Σ of X-simpli-
ces and a countable family U of measurable subsets of S

AΣ,U =
{
x ∈ X : ∀σ ∈ Σ with x ∈ Xσ ∃U ∈ U with im(σ)x ⊂ int(Ux)

}
=
⋂

σ∈Σ

(⋃
U∈U

Aσ,U
)

is measurable. This shows measurability of Aj(l) since for

Σ =
{
all summands of YX,l

n (σj)
}

and U = {U1, . . . , Ur}

the equation Aj(l) = AΣ,U holds.
The properties of Y• imply that for almost all x ∈ Xσj there is an index L ∈ N

such that x ∈ Aj(l) for all l ≥ L, in other words

lim
l→∞

μ
(
Aj(l)

)
= 1. (4.8)

By definition of Aj(l) we get

1 ⊗
[
∑l

j=1(χAj(l) · fj) · σj
]
∈ NR⊗ZR CX

n,l(S; Z) (4.9)

Define

A(l) =
k⋂

j=1

Aj(l).

Then liml→∞ μ
(
Aj(l)

)
= 1 for each j = 1, . . . , k implies

lim
l→∞

μ
(
A(l)

)
= 1.

By (4.9) and the definition of A(l), we obtain 1⊗χA(l) ·
[
∑k

j=1 fj · σj
]

= 0 in coker(j0).

Since (χA(l))l∈N is a sequence of projections with trNR(χA(l)) = μ
(
A(l)

) l→∞−−→ 1, the
local criterion implies dimNR

(
coker(j0)

)
= 0. It follows that

H•
(
colim−→

k

NR⊗ZR CX
n,k(S; Z)

) (j0)∗−−→ H•
(
NR⊗ZR CX

n (S)
)

= HR
• (S;NR)

is a dimension isomorphism since it is induced by a chain map, which is a dimen-
sion isomorphism in each degree.
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The second step in the proof that (4.5) is a homology isomorphism consists of
showing that the chain map

j1 : NR⊗ZR CX,U
• (S; Z) → colim−→

k

NR⊗ZR CX
•,k(S; Z)

induces an isomorphism (j1)∗ in homology. This can be shown as in the classical
situation, compare [6]. For the sake of completeness we recall the argument. Note
that by slight abuse of notation we will regard YX,k

n and FX,k
n as maps on the tensor

product NR⊗ZR CX
n (S; Z).

Let z ∈ NR ⊗ZR CX,U
n (S; Z) be a cycle with the property that for some k ≥ 0

there is a chain e ∈ NR⊗ZR CX
n+1,k(S; Z) with d(e) = z. For injectivity of (j1)∗ we

have to show that there is e′ ∈ NR⊗ZR CX,U
n+1(S; Z) with d(e′) = z. One gets

YX,k
n+1(e) − e = FX,k

n ◦ d(e) + d ◦ FX,k
n+1(e) = FX,k

n (z) + d ◦ FX,k
n+1(e).

This implies
d ◦YX,k

n+1(e) − d(e) = d ◦ FX,k
n (z).

Now we can conclude

c = d(e) = d
(
YX,k

n+1(e) − FX,k
n (z)

)
.

If we define e′ = YX,k
n+1(e)− FX,k

n (z) then it follows directly from the construction that
e′ ∈ NR ⊗ZR CX,U

n+1(S; Z) holds. Hence (j1)∗ is injective.
Next we show surjectivity of (j1)∗. Let z ∈ NR ⊗ZR CX

n,k(S; Z) be a cycle. We
have

YX,k
n (z) − z = FX,k

n−1 ◦ d(z) + d ◦ FX,k
n (z) = d ◦ FX,k

n (z).

By construction, YX,k
n (z) ∈ NR⊗ZR CX,U

n (S; Z). This shows surjectivity of (j1)∗.
The proof that the map j = j0 ◦ j1 of (4.5) induces a dimNR-isomorphism in ho-

mology is now complete.
The results obtained above enable us to complete the proof of the excision axiom.

Let A, B ⊂ S be R-invariant subspaces with Ax ⊂ int(Bx) for almost all x ∈ X. Then
U = {B, S − A} is a system of R-invariant subspaces with

Sx = int(Bx) ∪ int
(
(S − A)x

)
.

We have

NR⊗ZR CX,U
• (S; Z) = NR⊗ZR

(
CX
• (B; Z) + CX

• (S − A; Z)
)

NR⊗ZR CX
• (B − A; Z) = NR⊗ZR

(
CX
• (B; Z) ∩ CX

• (S − A; Z)
)
.

Note that the sum in the first equation is not a direct sum. By one of the Noetherian
isomorphisms we get an isomorphism

NR⊗ZR
CX
• (S − A; Z)

CX
• (B − A; Z)

∼=−→ NR⊗ZR
CX,U
• (S; Z)

CX
• (B; Z)
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4 L2-Betti Numbers of R-Spaces

induced by inclusion. This isomorphism fits into the following commutative dia-
gram, with all maps induced by inclusion:

NR⊗ZR
CX
• (S−A;Z)

CX• (B−A;Z)

���������������

∼= �� NR⊗ZR
CX,U
• (S;Z)

CX• (B;Z)

���������������

NR⊗ZR
CX
• (S;Z)

CX
• (B;Z)

Since the map

NR⊗ZR
CX,U
• (S; Z)

CX
• (B; Z)

→ NR⊗ZR
CX
• (S; Z)

CX
• (B; Z)

induces a dimension isomorphism in homology by the results shown above and a
five-lemma argument we conclude that

HR
• (S − A, B− A;NR) → HR

• (S, B;NR)

is also a dimension isomorphism.
To prove the countable additivity axiom we pick a countable index set I and a

family of R-spaces {Sα}α∈I , and consider the canonical map

j :
⊕
α∈I

CX
• (Sα; Z) → CX

•
(
�α∈I Sα; Z

)
.

First we investigate the case where I = {1, . . . , k} is finite. If σ : Xσ × Δn → �k
j=1 Sj

is an X-simplex set Xj = p1
(
σ−1(Sj)

)
. If one defines

σj : Xj × Δn → S

as the restriction of σ then
s(σ) = (χXi · σi)i=1,...,k

extends to a split of j in each degree (but, as usual, not as a chain map). Hence
idNR ⊗j is also split injective in each degree for finite I. Taking the direct colimit
over the finite subsets of I therefore shows that

idNR ⊗j :
⊕
α∈I

NR⊗ZR CX
• (Sα; Z) → NR⊗ZR CX

•
(
�α∈I Sα; Z

)
is injective.

To show that idNR ⊗j is dimension surjective, consider the class

[1 ⊗ c] ∈ coker(idNR ⊗ j),

where c ∈ CX
n
(
�α∈I Sα; Z

)
is represented by ∑k

j=1 fj · σj. We choose some enumera-
tion I = {α0, α1, . . .} of I and define

Aj(l) = (X − Xσj) ∪
{
x ∈ Xσj : im(σj,x) ⊂ �l

i=0 Sαi

}
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4.3 R-Homology

for j = 1, . . . , k. Measurability of Aj(l) follows easily from Lemma 3.17 since

n

�
i=0

Sαi ⊂ �
α∈I

Sα

is open. The union
⋃

n≥0 Aj(l) has measure 1, thus liml→∞ μ
(
Aj(l)

)
= 1 follows for

all j = 1, . . . , k. Each χAj(l) · σj is in the image of j, hence
[
1⊗ ∑k

j=1(χAj(l) · fj) · σj
]

= 0
in coker(idNR ⊗j). If we define

A(l) =
k⋂

j=1

Aj(l),

we obtain liml→∞ μ
(
A(l)

)
= 1 and χA(l) · [1 ⊗ c] = 0 in coker(idNR ⊗ j). Now

μ
(
A(l)

) n→∞−−−→ 1 implies trNR(χA(l))
n→∞−−−→ 1 and dimNR coker(idNR ⊗j) = 0 fol-

lows from the local criterion 1.18.
Finally, we show the dimension axiom. We first observe that the equivalence

classes of R are totally disconnected with respect to some Polish topology which
induces the restricted Borel-σ-algebra on R ⊂ X × X. That follows from the general
fact that connected sets in normal topological spaces are one-pointed or uncount-
able (see e.g. [17]) and that R with a Polish topology is normal. Hence a singular X-
simplex σ : Xσ ×Δn → R can be identified with a map fσ : Xσ → X with gr( fσ) ⊂ R.
We will show that therefore we can identify CX

n (R; C) with

C2R =
{

η ∈ L∞(R) : ∃N ∈ N ∀x ∈ X : |{y : η(x, y) �= 0}| ≤ N
}
.

To an X-chain represented by ∑k
j=1 fj · σj we define a function in C2R by

(x, y) �→
k

∑
j=1

σj(x,t)=(x,y)

fj(x). (4.10)

It is clear that this defines a monomorphism CX
n (R; C) → C2R. To see that this

map is also surjective, pick some function η ∈ C2R. By definition, the projec-
tion pr1 : supp(η) → X to the first coordinate is uniformly finite-to-1. Hence Theo-
rem 3.3 implies that there is a partition supp(η) =

⋃N
j=1 Ej such that pr1 |Ej is injec-

tive for all j = 1, . . . , N. Now we define X-simplices σj : pr1(Ej) × Δn → R by

(x, t) �→ (x, yj
x)

and measurable maps fj : X → C by

x �→
{

η(x, yj
x), x ∈ pr1(Ej)

0, otherwise,
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4 L2-Betti Numbers of R-Spaces

where yx
j ∈ X is the unique element with (x, yj

x) ∈ supp(η) ∩ Ej. Then the X-chain

represented by ∑k
j=1 fj · σj maps to η under the mapping defined in (4.10).

As in the classical case, the boundary operator dn : CX
n (R; C) → CX

n−1(R; C) is the
identity for n ≥ 3 odd and zero for n ≤ 1 or n even. Now the dimension axiom
follows, but we additionally want to compute HR

0 (R;NR).
To do so, we first show that the inclusion CR ↪→ C2R is a dimL∞(X)-isomorphism,

i.e. dimL∞(X)(C2R/CR) = 0. Again, we want to apply the local criterion 1.18. For a
given η ∈ C2R we consider the measurable subset

supp(η) = {(x, y) ∈ R : η(x, y) �= 0} ⊂ R.

The function given by
y �→

∣∣{x ∈ X : η(x, y) �= 0}
∣∣

is measurable (compare (3.3) on page 33). Hence

An =
{
y ∈ X : |{x ∈ X : η(x, y) �= 0}| ≤ n

}
and

A′
n =

{
y ∈ X : |{x ∈ X : η(x, y) �= 0}| = n

}
are measurable subsets of X for all n ∈ N. The invariance of the measure ν on R
with respect to the choice of the coordinate projection gives us

∞

∑
n=1

n · μ(A′
n) = ν

(
supp(η)

)
≤ N

for some N ∈ N. Hence for each ε > 0 we find some k ∈ N with ∑∞
n=k n · μ(A′

n) < ε.
It follows that

ν
(
p−1

2 (X − Ak) ∩ supp(η)
)

=
∫

X−Ak

|{x : η(x, y) �= 0}| dμ(y) =
∞

∑
n=k+1

n · μ(A′
n) < ε.

Let Bn =
{
x ∈ X : p−1

1 (x) ∩ p−1
2 (X − An) ∩ supp(η) = ∅

}
. For each n ≥ k one gets

μ(X − Bn) ≤
∫
X

|p−1
1 (x) ∩ p−1

2 (X − An) ∩ supp(η)| dμ(x) =

= ν
(
p−1

2 (X − An) ∩ supp(η)
)

< ε

or, equivalently, μ(Bn) > 1− ε. For pn = χBn one has

pn · η(x, y) =

{
η(x, y), x ∈ Bn

0, otherwise.
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4.4 R-CW-Complexes

If pn · η(x, y) �= 0 then we get y ∈ An. It follows that pn · η ∈ CR. By the local
criterion, the inclusion CR ↪→ C2R is a dimL∞(X)-isomorphism since we have

trL∞(X)(pn) = μ(Bn)
n→∞−−−→ 1.

We finally show that this implies that

NR = NR⊗CR CR → NR⊗CR C2R (4.11)

is a dimNR-isomorphism.
Since CR ↪→ C2R does not split as a CR-homomorphism we have to show injec-

tivity of (4.11) by using another argument. From Lemma 1.24 we get

0 = dimNR TorCR
• (NR, 0) = dimNR TorCR

• (NR, C2R/CR).

It follows that dimNR
(
ker(NR → NR⊗CR C2R)

)
= 0 holds. By Corollary 1.23,

NR is dimension compatible as an NR-L∞(X)-bimodule. This implies

dimL∞(X)(C2R/CR) = 0 ⇒ dimNR(NR⊗L∞(X) C2R/CR) = 0.

Since NR⊗CR C2R/CR is a quotient of NR⊗L∞(X) C2R/CR it follows that

dimNR(NR⊗CR C2R/CR) = 0.

We conclude HR
0 (R;NR) ∼= NR⊗CR C2R ∼=dim NR.

Remark 4.16. It is natural to consider also singular R-cohomology of an R-space S,
i.e. the cohomology of the cochain complex

homZR
(
CX
• (S; Z),NR

)
.

Unfortunately, we were not able to prove that it satisfies the excision axiom.

4.4 R-CW-Complexes

In the R-space setting, there is also an appropriate notion of CW-complexes which
will be introduced in this section. It is an analog of free G-CW-complexes. As an
additional feature, the cells of an R-CW-complex are equipped with a weight in the
unit interval [0, 1] given by μ(A) for a measurable subset A ⊂ X. We first investigate
colimits in the category of R-spaces based on the study of colimits in the category
of X-spaces in 3.2.2.
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4 L2-Betti Numbers of R-Spaces

4.4.1 Colimits of R-Spaces

The next result is derived easily from Lemma 3.15.

Lemma 4.17. Countable colimits exist in the category of R-spaces.

Proof. Let (Si)i∈I be a countable family of R-spaces together with a countable fam-
ily ( f l

i,j : Si → Sj)l∈Li,j of R-maps for each i, j ∈ I. Since R-spaces are special X-
spaces, we can use Lemma 3.15 to get the existence of the colimit colimi∈I Si in the
category of X-spaces. The induced R-action on colimi∈I Si is well defined since the
structure maps f l

i,j commute with the R-action.
To see that colimi∈I Si is a colimit in the category ofR-spaces we have to show that

the X-map F : colimi∈I Si → S induced by a family of R-maps (Fi : Si → S)i∈I which
is compatible with the structure maps is R-equivariant. This follows immediately
from the equivariance of the maps Fi.

4.4.2 Definition and Examples of R-CW-Complexes

Being sure that pushouts exist in the category of R-spaces we are now prepared
to introduce R-CW-complexes. Recall that for a Borel subset A ⊂ X the restricted
equivalence relation was defined as R|A =

{
(x, y) ∈ R : y ∈ A

}
.

Definition 4.18. A relative R-CW-complex is a pair (S, T) of R-spaces together with
a filtration

T = S[−1] ⊂ S[0] ⊂ S[1] ⊂ . . . ⊂ S =
⋃
n≥0

S[n]

of R-spaces such that the following conditions hold.

• The space S carries the weak topology with respect to the filtration, i.e. a
subset C ⊂ S is closed if and only if C ∩ S[n] is closed in S[n] for all n ≥ 0.

• For each n ≥ 0 there is a countable index set In and a pushout

�i∈In R|Ai × Sn−1 ��

��

S[n−1]

��

�i∈In R|Ai × Dn �� S[n]

of R-spaces, where each Ai ⊂ X is a Borel subset.

The weight of the equivariant cell R|Ai × Dn is defined as μ(Ai). For each n ≥ −1
the subspace S[n] ⊂ S is called the n-skeleton of S.

An R-map f : S → S′ between R-CW-complexes is called cellular if f (S[n]) ⊂ S′
[n]

holds for all n ∈ N.

Remark 4.19. The unusual notation S[n] for the n-skeleton of S should avoid confu-
sion of skeleta and fibers of S.
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We already know that a G-space Z induces an RG�X-space X × Z, where G � X
is a standard action. We will now show that the induction functor will map G-CW-
complexes on RG�X-CW-complexes. We will use the following result. Note that
in this context the category of G-spaces has as objects σ-compact, second countable
Hausdorff G-spaces.

Lemma 4.20. The functor

ind : G-Spaces → RG�X-Spaces

Z �→ X × Z

preserves countable colimits.

Proof. Let (Zi)i∈I be a countable family of G-spaces together with a countable fam-
ily ( f l

i,j : Zi → Zj)l∈Li,j of G-maps for each i, j ∈ I. Denote its colimit colimi∈I Zi by Z.
We have to show that the RG�X-space X × Z satisfies the properties of a colimit
in RG�X-Spaces.

If we are given an RG�X-space S together with RG�X-maps gi : X × Zi → S for
each i ∈ I which commute with the structure maps, we define g : X × Z → S by
gx = colimi∈I(gi)x for all x ∈ X. Here, we regard the maps (gi)x just as maps of
sets without any further structure, but we will show in a moment that g indeed is
an RG�X-map. The proof is similar to that of Lemma 3.15.

We will first show that g is measurable. By Lemma 3.14 there is a measurable
section s : colimi∈I Zi → �i∈I Zi of the projection q : �i∈I Zi → colimi∈I Zi. Hence,
g =

(
�i∈I gi

)
◦ (idX ×s) is measurable.

Note that for each i ∈ I there is a subset Xi ⊂ X of full measure such that (gi)x is
continuous for all x ∈ Xi. Consequently, for x ∈

⋂
i∈I Xi each (gi)x is continuous. It

follows that gx is also continuous in all fibers over the full measure subset
⋂

i∈I Xi.
We therefore have shown that g is an X-map.

The RG�X-equivariance of g follows immediately from the RG�X-equivariance
of the gi.

As a consequence, we will get a class of examples of R-CW-complexes. Recall
that we are working in the category of compactly generated spaces.

Corollary 4.21. Let Z be a countable free G-CW-complex and G � X be a free standard
action. Then X × Z is an RG�X-CW-complex.

Proof. For each n ∈ N there is a G-pushout

�i∈In G × Sn−1 ��

��

Z[n−1]

��

�i∈In G × Dn �� Z[n]

.
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4 L2-Betti Numbers of R-Spaces

By Lemma 4.20 the induced diagram

�i∈In X × G × Sn−1 ��

��

X × Z[n−1]

��

�i∈In X × G × Dn �� X × Z[n]

is a pushout of RG�X-spaces.
The map ϕ : X × G → RG�X given by

(x, g) �→ (x, g−1.x)

is an isomorphism of RG�X-spaces. Hence we obtain an RG�X-pushout of the
desired shape.

To see that X×Z carries the weak topology with respect to the subspaces X×Z[n],
we have to show that the maps

�
i∈In

RG�X︸ ︷︷ ︸
∼=X×G

×Dn → X × Z

which are induced by the lower horizontal map in the above pushout diagrams are
identifications for all n ∈ N. This follows from the fact that the maps

�
i∈In

G × Dn → Z

are identifications for all n ∈ N and products of identifications are identifications
by Lemma 3.50.

4.4.3 Cellular Homology

In analogy to the situation of ordinary CW-complexes or G-CW-complexes we will
define the cellular chain complex of an R-CW-complex S and show that its homol-
ogy coincides with the singular homology of S.

Definition 4.22. We define the cellular chain complex
(
CR,cell
• (S;NR), β•

)
of an R-

CW-complex S as follows: The n-th chain group is given by

CR,cell
n (S;NR) = HR

n (S[n], S[n−1];NR).

The boundary operator βn : HR
n (S[n], S[n−1];NR) → HR

n−1(S[n−1], S[n−2];NR) is the
composite

HR
n (S[n], S[n−1];NR) ∂n−→ HR

n−1(S[n−1];NR)
jn−→ HR

n−1(S[n−1], S[n−2];NR),

where ∂n is the boundary operator in the long exact homology sequence of the
pair (S[n], S[n−1]) and jn is induced by inclusion. This is indeed a complex, and
its homology is denoted by HR,cell

• (S;NR).
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Next we compute the cellular homology of an R-CW-complex. This is analo-
gous to the situation of ordinary CW-complexes (or G-CW-complexes) for finite
dimensional R-CW-complexes and only a little more difficult for arbitrary R-CW-
complexes.

Proposition 4.23. Let S be an R-CW-complex. Then for each n ∈ Z there is a dimension
isomorphism

HR
n (S;NR)

∼=dim−−→ HR,cell
n (S;NR).

Proof. Using the axioms, one gets as in the case of an ordinary CW-complex

HR,cell
n (S;NR) ∼=dim HR

n (S[n+1];NR) ∼=dim HR
n (S[n+2];NR) ∼=dim . . . (4.12)

(see for example [6, IV.10, pages 200 ff.]). This implies the result for finite dimen-
sional R-CW-complexes. For arbitrary R-CW-complexes the direct transfer of the
proof in the classical situation fails, because it is not clear that an R-cycle has image
in a finite subcomplex.

In the same manner as in the proof of excision of R-homology on page 47 one
shows that the map

colim−→
l

NR⊗ZR CX
n (S[l]; Z) → NR⊗ZR CX

n (S; Z)

induced by inclusion is injective.
Let z = ∑k

j=1 ψj ⊗ σj be a cycle in NR ⊗ZR CX
n (S; Z). For almost all x ∈ X the

restricted simplices σj,x have compact image and therefore lie in a finite subcomplex
and hence in some S[n(x)] for an appropriate n(x) ≥ 0. Let

Aj(l) = (X − Xσj) ∪
{
x ∈ Xσj : im(σj,x) ⊂ S[l]

}
.

Measurability of Aj(l) follows from Lemma 3.17, because each skeleton S[l] is a mea-

surable, fiberwise closed subset of S. We get μ
(
Aj(l)

) l→∞−−→ μ(X) = 1. Furthermore,
we have ∑k

j=1(χAj(l) · ψj) ⊗ σj ∈ NR⊗ZR CX
n (S[l]; Z). For the intersection

Az(l) =
k⋃

j=1

Aj(l)

we still have μ
(
Az(l)

) l→∞−−→ μ(X) = 1. It is χAz(l) · z ∈ colim−→
l

NR⊗ZR CX
n (S[l]; Z)

and liml→∞ trNR(χAz(l)) = 1. By the local criterion (Lemma 1.18),

colim−→
l

NR⊗ZR CX
n (S[l]; Z) → NR⊗ZR CX

n (S; Z)

is NR-dimension surjective, and consequently an NR-dimension isomorphism.
Hence we also get an NR-dimension isomorphism in homology:

Hn
(⋃

l≥0
NR⊗ZR CX

n (S[l]; Z)
) ∼=dim Hn(NR⊗ZR CX

n (S; Z)) = HR
n (S;NR).
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Now with (4.12) we conclude

HR,cell
n (S;NR) ∼= colim−→

l

HR
n (S[l];NR) ∼= Hn

(⋃
l≥0

NR⊗ZR CX
n (S[l]; Z)

)
,

and therefore HR,cell
n (S;NR) ∼=dim HR

n (S;NR) for all n ∈ N.

4.5 L2-Betti Numbers Old and New

If Z is a G-CW-complex we can consider its L2-Betti numbers b(2)
k (Z;NG).For a

standard action G � X we can induce Z to the RG�X-CW-complex X × Z and
consider its L2-Betti numbers b(2)

k (X ×Z;NRG�X). In this section we want to show
that these two invariants coincide for finite free G-CW-complexes Z, i.e.

b(2)
k (X × Z;NRG�X) = b(2)

k (Z;NG) for all k ≥ 0.

The proof is based on the following two lemmas.

Lemma 4.24. Let G be a countable group and G � X a standard action on a standard Borel
space X. Let further Z be a countable free G-CW-complex. There is a natural dimension
isomorphism

Hk
(
NRG�X ⊗ZG C•(Z; Z)

) ∼=dim−−→ HRG�X
k (X × Z;NRG�X). (4.13)

It is induced by the assignment σ �→ idX ×σ for a singular simplex σ : Δk → Z.

Proof. By Lemma 4.14 and Theorem 4.15, the functor

(Z,Y) �→ HRG�X
•

(
ind(Z), ind(Y)

)
yields a G-homology theory up to dimension, i.e. the composite functor

(Z,Y) �→ π ◦ HRG�X
•

(
ind(Z), ind(Y)

)
is an honest G-homology theory with values in NRG�X-Mod/NRG�X-Mod0 (this
quotient category was introduced in Remark 1.16).

Classical L2-homology with NRG�X-coefficients, i.e. the functor

(Z,Y) �→ H•
(
NRG�X ⊗ZG

C•(Z; Z)
C•(Y; Z)

)
is also a G-homology theory with values in NRG�X-Mod and becomes a G-homol-
ogy theory with values in NRG�X-Mod/NRG�X-Mod0 if one composes with the
quotient functor π. We have

HRG�X
k (X × G;NRG�X) ∼=dim Hk

(
NRG�X ⊗ZG C•(G; Z)

) ∼= {
0, k > 0
NRG�X, k = 0,
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and the dimension isomorphism

Hk
(
NRG�X ⊗ZG C•(G; Z)

)
→ HRG�X

k (X × G;NRG�X)

is induced by σ �→ idX ×σ for a singular simplex σ : Δk → G. Both homology
theories are countably additive, satisfy the dimension axiom and coincide on the
trivial free G-space G. As in the case of non equivariant homology theories (which
is proved e.g. in [45, Theorem 7.55, p. 123]), it follows that

π ◦ HRG�X
k (X × Z;NRG�X) ∼= π ◦ Hk

(
NRG�X ⊗ZG C•(Z; Z)

)
holds for all countable free G-CW-complexes Z. This yields the desired dimension
isomorphism (4.13).

Lemma 4.25. Let G be a countable group and G � X a standard action on a standard
Borel space X. Then for a G-space Z the equation

b(2)
k (Z;NG) = dimNRG�X Hk

(
NRG�X ⊗ZG C•(Z; Z)

)
. (4.14)

holds.

Proof. For the proof of (4.14) note that

NRG�X ⊗ZG C•(Z; Z) = NRG�X ⊗NG NG ⊗ZG C•(Z; Z).

In Corollary 4.11 we have shown that NRG�X is a flat NG-module. We therefore
obtain

Hk
(
NRG�X ⊗ZG C•(Z; Z)

) ∼= NRG�X ⊗NG Hk
(
NG ⊗ZG C•(Z; Z)

)
.

Now Lemma 1.21 implies equation (4.14).

The following result is now a direct consequence of Lemma 4.24 and Lemma 4.25.

Theorem 4.26. Let G be a countable group and G � X a standard action on a standard
Borel space X. Then for a countable free G-CW-complex Z one has

b(2)
k (X × Z;NRG�X) = b(2)

k (Z;NG) for all k ≥ 0.

4.6 Orbit Equivalence and L2-Betti Numbers

We will apply the results of the preceding section to reprove that the L2-Betti num-
bers of two infinite countable orbit equivalent groups coincide. First, we recall some
facts about orbit equivalence.
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4.6.1 Orbit Equivalence

Throughout this section, all groups appearing are assumed to be infinite.
Orbit equivalence is an equivalence relation of standard actions G � X. Two

such actions are called orbit equivalent if they generate the same orbit equivalence
relation. More precisely, we have:

Definition 4.27. Let G � X and H � Y be two standard actions. They are called
orbit equivalent if there is a Borel isomorphism ϕ : X → Y such that ϕ(G.x) = H.ϕ(x)
holds for almost all x ∈ X.

Two countable groups G, H are called orbit equivalent if there exist orbit equivalent
standard actions G � X and H � Y on appropriate standard Borel probability
spaces X and Y.

If G and H are two countable amenable groups, then any two ergodic standard
actions G � X and H � Y are orbit equivalent [12]. On the other hand, no stan-
dard action of a non amenable group is orbit equivalent to a standard action of an
amenable group [50, 4.3.3]. Hence, the orbit equivalence class of Z consists pre-
cisely of all infinite countable amenable groups.

Gaboriau proved that the L2-Betti numbers of two countable orbit equivalent
groups coincide [22, Théorèm 3.12]. This was also proved by Sauer [41, Theo-
rem 3.38] using Lück’s algebraic approach to L2-Betti numbers. We will provide
yet another proof for the orbit equivalence invariance of L2-Betti numbers using
classifying spaces and the singular homology for R-spaces.

4.6.2 Classifying R-Spaces

First, we define the homotopy relation for X-maps and R-maps. This is just an ob-
vious analog of homotopy and G-homotopy, and was tacitly used in the Eilenberg-
Steenrod axioms for R-homology.

Definition 4.28. Let S and T be two X-spaces. Two X-maps f0, f1 : S → T are called
X-homotopic if there exists an X-map F : S × [0, 1] → T such that F( , j) = fj holds
for j = 0, 1. We will write f0 �X f1 in this case.

An X-map f : S → T is called an X-homotopy equivalence if there exists an X-
map g : T → S such that g ◦ f �X idS and f ◦ g �X idT holds.

An X-space S is called X-contractible if the projection pS : S → X is an X-homotopy
equivalence.

We will do the same equivariantly.

Definition 4.29. Let S and T be two R-spaces. Two R-maps f0, f1 : S → T are called
R-homotopic if there exists an R-map F : S × [0, 1] → T such that F( , j) = fj holds
for j = 0, 1. We will write f0 �R f1 in this case.

An R-map f : S → T is called an R-homotopy equivalence if there exists an R-
map g : T → S such that g ◦ f �R idS and f ◦ g �R idT holds.
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Remark 4.30. For an X-space S the product S× [0, 1] is an X-space in a natural way.
The analog is true for an R-space S.

The following lemma will be useful later on in this section.

Lemma 4.31. Let Z be a σ-compact second countable Hausdorff space and let T be an
R-space. Then for each measurable subset A ⊂ X there is a bijection

mapR(R|A × Z, T) → mapX(A × Z, T),

where on the right hand side, T is regarded as an X-space by forgetting the R-action.

Proof. We define maps

ϕ : mapR(R|A × Z, T) → mapX(A × Z, T)

and
ψ : mapX(A × Z, T) → mapR(R|A × Z, T),

and show that they are mutually inverse. For an R-map f : R|A × Z → T define the
X-map ϕ( f ) : A × Z → T by

ϕ( f )(x, z) = f (x, x, z).

For an X-map g : A × Z → T the R-map ψ(g) : R|A × Z → T is defined by

ψ(g)
(
(x, y), z

)
= (x, y).g(y, z).

By direct computation, one checks that ψ(g) is R-equivariant and that ψ ◦ ϕ( f ) = f
and ϕ ◦ ψ(g) = g hold.

The following definition is an analog of the classifying space EG for free G-spaces.
The subsequent lemma shows that it has the corresponding property.

Definition 4.32. An R-CW-complex T is called classifying R-space if T is contractible
as an X-space.

Lemma 4.33. Let T be a classifying R-space. Then for every countable R-CW-complex S
there is up to R-homotopy exactly one R-map S → T.

Proof. Since T is contractible as an X-space, there is an X-map s : X → T such that
s ◦ pT �X idT. Hence, there is an X-map F : T × [0, 1] → T satisfying F( , 0) = s ◦ pT
and F( , 1) = idT. We will define the R-map f : S → T by induction over the
skeleta S[n]. Thus, we first have to define f on the 0-skeleton

S[0] = �
i∈I0

R|Ai .

Define an X-map Ai → T by x �→ s(x) for all i ∈ I0. This gives rise to an R-
map R|Ai → T by Lemma 4.31. Hence, we have defined fS[0]

.
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4 L2-Betti Numbers of R-Spaces

Next, we extend f |S[n−1] to S[n]. By the pushout property and Lemma 4.31, it suf-
fices to solve the extension problem

Ai × Sn−1

��

ϕi
�� T

Ai × Dn.

���
�

�
�

�

(4.15)

This is done using the following diagram:

Ai × Sn−1 × {0}
j

��

q
�� Ai × {0}

�� s|Ai

		

Ai × Sn−1 × [0, 1] ��

F◦(ϕi×id[0,1]) 



Ai × Dn

Φi

���
�

�
�

�

T

Due to the pushout property and

F ◦ (ϕi × id[0,1])(x, r, 0) = F
(

ϕi(x, r), 0
)

= s ◦ pT
(

ϕi(x, r)
)

= s(x)
= s|Ai ◦ q(x, r, 0)

there exists the map Φi making the diagram commutative. Note that the lower
horizontal map restricted to Ai × Sn−1 × {1} is induced by Sn−1 ↪→ Dn. Hence,
the map Φi solves the extension problem (4.15). It follows that we can extend f
to the n-skeleton S[n] of S. By induction (and a colimit argument if S is not finite
dimensional), this yields an R-map f : S → T.

The proof that two R-maps f0, f1 : S → T are R-homotopic is a simple application
of the preceding arguments. In fact, to define a homotopy between f0 and f1 on the
0-skeleton S[0] = �i∈I0 R|Ai , we have to solve the extension problem

Ai × {0, 1}

��

f0� f1
�� T

Ai × [0, 1]

���
�

�
�

�

and use Lemma 4.31 afterwards. But this extension problem is just (4.15) for n = 1
which was solved above. To extend the homotopy from S[n−1] to S[n], one has to
complete the diagram

Ai ×
(
Sn−1 × [0, 1] ∪ Dn × {0, 1}

)
��

�� T

Ai × Dn × [0, 1].

��									
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4.6 Orbit Equivalence and L2-Betti Numbers

But the vertical map is just the inclusion Ai × Sn ↪→ Ai × Dn+1, so we get (4.15)
again.

Definition 4.34. The R-homotopy type of an X-contractible R-CW-complex is de-
noted by ER. Any R-CW-complex in that homotopy class is called a model for ER.

As usual in the situation of classifying spaces for groups, we will sometimes
write ER also for models of ER. The following observation is an obvious conse-
quence of Lemma 4.33.

Corollary 4.35. Let G be a countable group and G � X be a standard action. Then

X × EG �R ERG�X .

4.6.3 Orbit Equivalence Invariance of L2-Betti Numbers

We are now prepared to show Gaboriau’s theorem that the L2-Betti numbers of orbit
equivalent groups coincide with help of our methods.

Theorem 4.36. Let G and H be two infinite countable groups. If G and H are orbit equiv-
alent, then

b(2)
k (G) = b(2)

k (H) for all k ≥ 0

holds.

Proof. First, we can assume by means of the orbit equivalence ϕ : X → Y that G and
H act on the same standard Borel space X. Moreover, we can assume that both ac-
tions are free by restricting to a full measure subset which will also be denoted by X
(compare Remark 3.34). In this situation, we have RG�X = RH�X. Consequently,
there is a map σ : G × X → H which is defined by

g.x = σ(g, x).x.

The map σ is called a cocycle and satisfies the cocycle condition

σ(g′g, x) = σ(g′, gx)σ(g, x).

Corollary 4.35 implies that X × EH is a model for ERH�X. Due to RG�X = RH�X
we know that X × EH is obviously also an RG�X-space. The RG�X-action can be
written as

(gx, x).(x, z) =
(
gx, σ(g, x).z

)
.

Hence, X × EH and X × EG are both models for ERG�X and therefore Lemma 4.33
yields X × EH �R X × EG. By R-homotopy invariance of singular L2-homology
we obtain

b(2)
k (X × EG;NRG�X) = b(2)

k (X × EH;NRH�X).

The result follows since by Theorem 4.26

b(2)
k (G) = b(2)

k (EG;NG) = b(2)
k (X × EG;NRG�X)
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4 L2-Betti Numbers of R-Spaces

and
b(2)
k (H) = b(2)

k (EH;NH) = b(2)
k (X × EH;NRH�X).

Remark 4.37. The not explicitly given R-homotopy equivalence X× EG → X × EH
is an example for an R-map which is not induced by a G-map.
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5 Integral Foliated Simplicial Volume and
L2-Betti Numbers

The following conjecture is due to Gromov [26, p.232].

Conjecture 5.1. Let M be a closed oriented connected aspherical manifold with ‖M‖ = 0.
Then

b(2)
k (M̃) = 0 for all k ≥ 0.

There is some evidence for this conjecture due to similar behavior of simplicial
volume and L2-Betti numbers in certain situations, although the definitions of the
two invariants would not indicate a connection between them. We will review some
results of the first two chapters under this aspect in Section 5.1.

In his influential and inspiring book [27] Gromov indicates how one could try
to prove Conjecture 5.1. The idea is to define a new invariant, the integral foliated
simplicial volume ‖M‖F ,Z which bounds the sum of the L2-Betti numbers of M̃ up
to a multiplicative constant. In this chapter, we give a concise definition of ‖M‖F ,Z
and show

n

∑
k=0

b(2)
k (M̃) ≤ 2n+1 · ‖M‖F ,Z.

This estimate appears as an exercise in [27, p. 307].
To prove Conjecture 5.1 one could try to show ‖M‖ = ‖M‖F ,Z for aspherical

manifolds M. Unfortunately, very little is known about the integral foliated simpli-
cial volume ‖M‖F ,Z. In Section 5.2 we will define ‖M‖F ,Z and derive some prop-
erties.

5.1 Overview of Gromov’s Conjecture

Some evidence for Gromov’s conjecture comes from similar behavior of the sim-
plicial volume ‖M‖ and the L2-Betti numbers b(2)

k (M̃) in certain situations. For
example, simplicial volume is multiplicative under finite coverings (cf. Lemma 2.8).
The same is true for L2-Betti numbers of the universal coverings, as was remarked
in Corollary 1.30.

If the fundamental group π1(M) is amenable, then ‖M‖ = 0 by Corollary 2.15 (iv).
For aspherical manifolds with amenable fundamental group we get b(2)

k (M̃) = 0 for
all k ≥ 0 as well by Theorem 1.33.
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5 Integral Foliated Simplicial Volume and L2-Betti Numbers

Recall that there is a proportionality principle for simplicial volume: If M and N
are Riemannian manifolds with isometric universal covering M̃ ∼= Ñ, then

‖M‖
vol(M)

=
‖N‖

vol(N)

by Theorem 2.20. The same proportionality principle holds for L2-Betti numbers by
Theorem 1.36.

Conjecture 5.1 holds for manifolds M with dim(M) ≤ 3: The only closed ori-
ented connected 1-dimensional manifold is S1 and we already know that ‖S1‖ = 0
as well as b(2)

k (S̃1) = 0 for all k ≥ 0 by Corollary 2.7 and Corollary 1.30, respec-
tively. In dimension 2, the torus T2 = S1 × S1 is the only closed oriented connected
aspherical manifold with vanishing simplicial volume (note that oriented surfaces
of genus g ≥ 2 admit a hyperbolic Riemannian metric and have therefore positive
simplicial volume by Theorem 2.16). We clearly have b(2)

k (T̃2) = 0 for all k ≥ 0,
e.g. by Corollary 1.30. In dimension 3, it follows from the computation in [34] that
the Singer Conjecture 1.38 holds [38, Section 11.1]. Of course, in odd dimensions n
the Singer Conjecture is stronger than Conjecture 5.1 since it predicts that all L2-
Betti numbers vanish for the universal covering of a closed aspherical manifold of
dimension n.

Gromov’s conjecture becomes false if one drops the condition that the manifold
in question is aspherical. Indeed, for any simply connected manifold M one has
‖M‖ = 0 by Corollary 2.15 (iv), but in this case the L2-Betti numbers are just the
ordinary Betti numbers, and hence b(2)

0 (M̃) �= 0.
One could ask if the converse of Gromov’s conjecture holds. The answer is nega-

tive since for odd dimensional hyperbolic manifolds M (which are of course as-
pherical by the Cauchy-Hadamard theorem) one has ‖M‖ > 0 by Theorem 2.16,
but b(2)

k (M̃) = 0 by Theorem 1.37.

5.2 The Integral Foliated Simplicial Volume

We will first establish a connection between the fundamental class of a closed con-
nected oriented manifold M and the L2-Betti numbers of M̃. It is based on the
equivariant Poincaré chain homotopy equivalence which is given by the cap prod-
uct with a fundamental cycle. We obtain a bound for the sum of L2-Betti numbers
in terms of the fundamental cycle and will improve this bound later in this chapter
using R-homology.

5.2.1 A Bound for L2-Betti Numbers in Terms of a Fundamental Cycle

Let us recall the definition of the cap product.

Definition 5.2. Let Z be a connected space with fundamental group G = π1(Z).
Denote by C•(Z̃; Z) the singular ZG-chain complex of its universal covering Z̃. We
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5.2 The Integral Foliated Simplicial Volume

write homZG
(
C•(Z̃; Z),NG

)
for the NG-cochain complex associated to the NG-

chain complex NG ⊗ZG C•(Z̃; Z). The cap product is defined as the map

homZG
(
Cj(Z̃; Z),NG

)
⊗Z Z ⊗ZG Cn(Z̃, Z)

∩−−→ NG ⊗ZG Cn−j(Z̃; Z)

ϕ ⊗ k ⊗ σ �−→ k · ϕ(σ�j) ⊗ n−j�σ. (5.1)

Remark 5.3. (i) By σ�j we denote the front j-face of a singular n-simplex σ. It
is the j-simplex given by composing σ with the inclusion Δj → Δn induced
by ei �→ ei on the set of vertices. Analogously, the back (n − j)-face n−j�σ of σ

is defined as the composition of σ with the inclusion Δn−j → Δn induced
by ei �→ ej+i.

(ii) We have Z ⊗ZG Cn(Z̃, Z) ∼= Cn(Z, Z).

(iii) If M is a closed connected oriented manifold of dimension n with fundamen-
tal group G = π1(M) and ∑k

i=1 λi ⊗ σi ∈ Z ⊗ZG Cn(M̃, Z) is a fundamental
cycle of M (i.e. a representative of the fundamental class [M]), then

homZG
(
Cj(M̃; Z),NG

) ∩∑k
i=1 λi⊗σi−−−−−−−→ NG ⊗ZG Cn−j(M̃; Z)

is an NG-homotopy equivalence. This equivariant version of Poincaré duality
follows from [47, Theorem 2.1 on page 23].

Now we are ready to prove the following result.

Proposition 5.4. Let M be a closed connected oriented manifold of dimension n and let
further ∑k

i=1 λi · σi ∈ Cn(M; Z) be a fundamental cycle of M. Then

b(2)
j (M̃) ≤

(
n + 1

j

)
· k

holds for all j ≥ 0, and consequently

n

∑
j=0

b(2)
j (M̃) ≤ 2n+1 · k.

Proof. Consider the evaluation morphism of NG-modules (where G = π1(M)):

evn−j : homZG
(
Cn−j(M̃),NG

)
−→

k⊕
i=1

⊕
(n− j)-faces

of σi

NG

ϕ �−→
(

ϕ(σl
i )
)
,

where σ1
i , . . . , σ

(n+1
j )

i denote the (n − j)-faces of σi.
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5 Integral Foliated Simplicial Volume and L2-Betti Numbers

We define
H•

G(M̃;NG) = H•(homZG
(
C•(M̃),NG

))
.

Let ψ ∈ Hn−j
G (M̃;NG) be a cohomology class which can be represented by a cocy-

cle ϕ ∈ homZG(Cn−j(M̃),NG) with ϕ ∈ ker(evn−j). In other words, we have

ϕ(σl
i ) = 0 for all i = 1, . . . , k, l = 1, . . . ,

(
n + 1

j

)
.

By definition of the cap product (cf. (5.1)), we get evn−j(ϕ) = 0 and hence

ker(evn−j) ⊂ ker
(

∩ ∑k
i=1 λi ⊗ σi

)
.

Since ∩ [M] : Hn−j
G (M̃;NG)

∼=−→ HG
j (M̃;NG) is an isomorphism by the Poincaré

duality Theorem (cf. Remark 5.3 (iii)), we conclude ψ = 0. Hence the projec-

tion pr : ker(δn−j) → Hn−j
G (M̃;NG) factorizes over ker(δn− j)

ker(evn− j)∩ker(δn− j),
, i.e. we get a

commutative diagram

ker(δn−j)















pr
�� Hn−j

G (M̃;NG)

ker(δn− j)
ker(evn− j)∩ker(δn− j).

pr

��������������

Here, δ• is the differential in the cochain complex homZG(C•(M̃),NG). Since pr is
surjective, additivity of the von Neumann dimension yields

dimNG
(
Hn−j

G (M̃;NG)
)
≤ dimNG

( ker(δn−j)
ker(evn−j) ∩ ker(δn−j)

)
. (5.2)

Moreover, we have the following composition of injective NG-morphisms, where
the right map is induced by evn−j:

ker(δn−j)
ker(evn−j) ∩ ker(δn−j)

→
homZG

(
Cn−j(M̃),NG

)
ker(evn−j)

evn− j−−−→
⊕

(n− j)-faces
of the σi

NG.

Again by additivity of the von Neumann dimension, we get

dimNG

( ker(δn−j)
ker(evn−j) ∩ ker(δn−j)

)
≤ dimNG

(homZG
(
Cn−j(M̃),NG

)
ker(evn−j)

)
≤ dimNG

( k⊕
i=1

⊕
(n− j)-faces

of σi

NG
)

≤
(

n + 1
j

)
· k. (5.3)
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Poincarè duality provides

b(2)
j (M̃) = dimNG

(
Hn−j

G (M̃;NG)
)
,

and the result follows immediately by combining (5.2) and (5.3).

Remark 5.5. The same argument applies to the usual Betti numbers, i.e. we get

bj(M) ≤
(

n + 1
j

)
· k

for all j ≥ 0, and hence
n

∑
j=0

bj(M) ≤ 2n+1 · k.

If we define the integral simplicial volume ‖M‖Z as the minimum of ∑k
i=1|λi| for

all fundamental cycles ∑k
i=1 λi · σi ∈ Cn(M; Z), Proposition 5.4 yields the following

consequence.

Corollary 5.6. Let M be a closed connected oriented manifold of dimension n. Then

b(2)
j (M̃) ≤

(
n + 1

j

)
· ‖M‖Z,

for all j ≥ 0, and therefore also

n

∑
j=0

b(2)
j (M̃) ≤ 2n+1 · ‖M‖Z.

Unfortunately, ‖M‖Z is not closely related to the simplicial volume ‖M‖. For
example, one always has ‖M‖Z ≥ 1. Hence, the preceding results do not get us
closer to Gromov’s Conjecture. The problem is that the coefficients do not show up
in the upper bound in Proposition 5.4, only the number of summands appears (and
can be bounded by ‖M‖Z since the absolute value of any nonzero integer is at least
one). In the following, we will try to resolve this defect by introducing the integral
foliated simplicial volume.

5.2.2 A Generalized Cap Product

First, we have to generalize the definition of the cap product. In the following, X
will denote a standard Borel probability space with a standard action of the fun-
damental group G = π1(M). We first introduce another description of the von
Neumann algebra NRG�X in terms of the crossed product ring L∞(X) ∗G which is
defined as follows.
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5 Integral Foliated Simplicial Volume and L2-Betti Numbers

Definition 5.7. Let G be a countable group and let G � X be a standard action. The
crossed product ring L∞(X) ∗ G has L∞(X)[G] as underlying abelian group, and its
multiplication is uniquely determined by the rule

g · f = ( f ◦ lg−1) · g,

where lh : X → X is given by x �→ h.x.

Remark 5.8. For the product of two elements ∑g∈G fg · g and ∑g∈G hg · g in the
crossed product ring L∞(X) ∗ G we obtain(

∑g∈G fg · g
)
·
(
∑g∈G hg · g

)
= ∑

g∈G

(
∑

g1,g2∈G
g1g2=g

fg1 · (hg2 ◦ lg−1
1

)
)
· g.

The map

L∞(X) ∗ G → CRG�X

∑
g∈G

fg · g �→
(
(h.x, x) �→ fh(h.x)

)
is an embedding of rings. Note that this map is well defined since the action G � X
is essentially free.

Definition 5.9. The von Neumann algebra N
(
L∞(X) ∗ G

)
of the crossed product

ring L∞(X) ∗ G is defined as the weak closure of ρr
(
L∞(X) ∗ G

)
in L

(
L2(RG�X)

)
.

The map ρr was defined in 4.1.2 on page 41. The following classical result yields
another construction of NRG�X [39, IV, p. 192 ff.].

Lemma 5.10. Let G be a countable group and let G � X be a standard action. Then we
have NRG�X = N

(
L∞(X) ∗ G

)
.

We will now describe the generalization of the classical cap product. We do this
a little more general than we will actually use it since then the approach becomes
more conceptional.

Let A be a ring with involution which contains ZG as a subring. Then A has a
natural ZG-bimodule structure. Let B ⊂ A be a subring closed under involution
such that for all b ∈ B and g ∈ G the product g · b · g−1 (the product is built in A) is
again in B. We will consider B as a right ZG-module by b � g = g−1 · b · g. We use
the symbol � to avoid confusion with the right module structure on A.

Next, we explain other module structures we will use.

• As usual, we define a left ZG-module structure on B by

g � b = b � g−1 = g · b · g−1.

The corresponding left ZG-module will be denoted by Bl. In the same way,
we define a right ZG-module structure on Cn(M̃) by σ · g = g−1 · σ. The
corresponding right ZG-module will be denoted by Cr

n(M̃).
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5.2 The Integral Foliated Simplicial Volume

• On homZG
(
Cj(M̃), A

)
⊗Z Cr

n(M̃), a right ZG module structure is given by

(ϕ ⊗ σ) · g = ϕ ⊗ g−1 · σ.

Together with the left A-module structure given by a · (ϕ ⊗ σ) = ϕ · a⊗ σ, this
turns homZG

(
Cj(M̃), A

)
⊗Z Cr

n(M̃) into an A-ZG-bimodule.

• On A ⊗Z Cr
n−j(M̃), a right ZG-module structure is given by

(a ⊗ σ) · g = a · g ⊗ g−1 · σ.

In fact, A ⊗Z Cr
n−j(M̃) becomes an A-ZG-bimodule with the natural left A-

module structure.

We will introduce some homomorphisms which will appear in the definition of
the generalized cap product.

• The map

T : B ⊗ZG Cn(M̃) → Cr
n(M̃) ⊗ZG Bl

b ⊗ σ �→ σ ⊗ b

yields a well defined homomorphism of abelian groups.

• The cap product

homZG
(
Cj(M̃), A

)
⊗Z Cr

n(M̃)
∩−−→ A ⊗Z Cr

n−j(M̃)

ϕ ⊗ σ �→ ϕ(σ�j) ⊗ n−j�σ

yields a homomorphism of A-ZG-bimodules.

• The map

m : A ⊗Z Cr
n−j(M̃) ⊗ZG Bl → A ⊗ZG Cn−j(M̃)

a ⊗ σ ⊗ b �→ a · b ⊗ σ

yields a well defined homomorphism of A-modules.

These claims are easily checked by direct computation. To see that m is well
defined, we calculate

m(a ⊗ σ ⊗ g � b) = m(a ⊗ σ ⊗ g · b · g−1)

= a · g · b · g−1 ⊗ σ

= a · g · b · g−1 ⊗ σ

= a · g · b ⊗ g−1 · σ

= m(a · g ⊗ g−1 · σ ⊗ b)
= m

(
(a ⊗ σ) · g ⊗ b

)
.
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Definition 5.11. The generalized cap product is given by the composition

homZG
(
Cj(M̃), A

)
⊗Z B ⊗ZG Cn(M̃)

id⊗T
��

homZG
(
Cj(M̃), A

)
⊗Z Cr

n(M̃) ⊗ZG Bl

∩⊗id
��

A ⊗Z Cr
n−j(M̃) ⊗ZG Bl

m
��

A ⊗ZG Cn−j(M̃)

of A-module homomorphisms.

By minor abuse of notation, we will write ϕ ∩ c for the generalized cap product
of a cochain ϕ ∈ homZG

(
Cj(M̃), A

)
and a chain c ∈ B ⊗ZG Cn(M̃).

The generalized cap product is then explicitly given by

homZG
(
Cj(M̃), A

)
⊗Z B ⊗ZG Cn(M̃)

∩−−→ A ⊗ZG Cn−j(M̃)

ϕ ⊗ b ⊗ σ �→ ϕ(σ�j) · b ⊗ n−j�σ.

Remark 5.12. One checks easily that

∂n−j
(

ϕ ∩ c
)

= (−1)j ·
(
δj−1(ϕ) ∩ c − ϕ ∩ ∂n(c)

)
.

The computation works as in the classical situation [28, p. 240]. Consequently, the
generalized cap product induces a map (also called cap product) in (co)homology.

From now on, we will only deal with the case

A = N
(
L∞(X) ∗ G

)
= NRG�X

and
B = L∞(X, Z).

Remark 5.13. In the case B = L∞(X, Z), the right ZG-module structure is given by

( f � g)(x) = (g−1 · f · g)(x) = f (g.x).

Note that L∞(X, Z)⊗ZG Cn(M̃) is not an L∞(X, Z)-module, because L∞(X, Z) is not
an L∞(X, Z)-ZG-bimodule. In fact, for f , f ′ ∈ L∞(X, Z) and g ∈ G we have

( f · f ′) � g(x) = ( f · f ′)(g.x) = f (g.x) · f ′(g.x) �= f (x) · f ′(g.x) = f ·
(
f ′ � g

)
(x).
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5.2.3 Generalized Poincaré Duality

We will now mildly extend the Poincaré duality theorem. Let M be an n-dimen-
sional closed connected oriented manifold with fundamental group G = π1(M)
and let X be a standard Borel space with probability measure μ provided with an
essentially free action of G by measure preserving Borel isomorphisms.

In the following we will use the terms M, G, X and R as explained above without
further mentioning.

Definition 5.14. Let

i1 : Z ⊗ZG Cn(M̃; Z) → L∞(X, Z) ⊗ZG Cn(M̃; Z)

be the homomorphism of abelian groups given by

i1(1⊗ σ) = const1 ⊗σ,

where const1 : X → Z is the constant function with value 1.

Remark 5.15. It is clear that i1 is a chain map. If we want to emphasize the mani-
fold M, we will write iM1 .

With aid of the morphisms given in Definition 5.14, we can now link the classical
cap product with the extended cap product. If no coefficients are given explicitly
they are understood to be integral.

Lemma 5.16. The diagram

homZG
(
Cj(M̃),NR

)
⊗Z Z ⊗ZG Cn(M̃)

i1
��

∩
�� NR⊗ZG Cn−j(M̃)

=
��

homZG
(
Cj(M̃),NR

)
⊗Z L∞(X, Z) ⊗ZG Cn(M̃)

=

��

∩
�� NR⊗ZG Cn−j(M̃)

commutes, i.e. for a cochain ϕ ∈ homZG
(
Cj(M̃),NR

)
and a chain c ∈ Z ⊗ZG Cn(M̃)

one gets
ϕ ∩ c = ϕ ∩ i1(c).

Proof. It suffices to compute the terms in question for c = 1⊗ σ, where σ : Δn → M̃
is a singular simplex. We get

ϕ ∩ (1 ⊗ σ) = ϕ(σ�j) ⊗ n−j�σ

= ϕ(σ�j) · χΔX ⊗ n−j�σ

= χΔX · ϕ(σ�j) ⊗ n−j�σ

= const1 ·ϕ(σ�j) ⊗ n−j�σ

= ϕ ∩
(
const1 ⊗σ

)
= ϕ ∩ i1(1 ⊗ σ)
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5 Integral Foliated Simplicial Volume and L2-Betti Numbers

since χΔX , the characteristic function of the diagonal ΔX =
{
(x, x) : x ∈ X

}
, is

the identity in NR and moreover the image of const1 under the obvious inclu-
sion L∞(X, Z) → ZR.

We immediately get the following Poincaré type theorem as a corollary. The nota-
tions HG

j and Hj
G are analogs of those introduced in Definition 1.25 and Remark 1.26

respectively.

Corollary 5.17. Let [M] ∈ Hn(M; Z) be the fundamental class. Then the NR-homomor-
phism

∩ (i1)∗
(
[M]

)
: Hj

G(M̃;NR) → HG
n−j(M̃;NR)

is an isomorphism.

Definition 5.18. We will call (i1)∗
(
[M]

)
the measurable fundamental class and its rep-

resentatives measurable fundamental cycles.

5.2.4 A Better Upper Bound

We will now use the results of the previous subsection to improve the upper bound
for L2-Betti numbers in Proposition 5.4.

Theorem 5.19. Let M be a closed connected oriented manifold of dimension n and let X be
as above. Let further

k

∑
i=1

fi ⊗ σi ∈ L∞(X, Z) ⊗ZG Cn(M̃; Z)

be a measurable fundamental cycle. Then we have

b(2)
j (M̃) ≤

(
n + 1

j

)
·

k

∑
i=1

μ
(
supp( fi)

)
(5.4)

for all j ≥ 0, and consequently

n

∑
j=0

b(2)
j (M̃) ≤ 2n+1 ·

k

∑
i=1

μ
(
supp( fi)

)
. (5.5)

Proof. The idea is to refine the proof of Proposition 5.4 in such a way that the mea-
sures of the supports of the coefficient functions fi will enter the upper bound for
the sum of the L2-Betti numbers.

Consider the evaluation homomorphism

evn−j : homZG
(
Cn−j(M̃),NR

)
−→

k⊕
i=1

⊕
(n− j)-faces

of σi

NR · fi

ϕ �−→
(
fi · ϕ(σl

i )
)
,
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5.2 The Integral Foliated Simplicial Volume

where σ1
i , . . . , σ

(n+1
j+1)

i denote the (n − j)-faces of σi. Note that

fi · ϕ(σl
i ) = ϕ(σl

i ) · fi,

because fi = fi holds. Hence, the image of evn−j is really contained in

k⊕
i=1

⊕
(n− j)-faces

of σi

NR · fi.

Write z = ∑k
i=1 fi ⊗ σi for short and let ψ ∈ Hn−j

G (M̃;NR) be a cohomology class
which can be represented by a cocycle in ker(evn−j). By definition of the cap prod-
uct, we obtain

ϕ ∩ z = 0.

Hence we have shown ker(evn−j) ⊂ ker( ∩ i1(z)). Since ∩ i1(z) induces an iso-
morphism in homology, it follows that the projection

ker(δn−j) → Hn−j
G (M̃;NR)

factorizes over
ker(δn−j)

ker(evn−j) ∩ ker(δn−j)
,

where δ• is the boundary of the cochain complex homZG
(
C•(M̃),NR

)
. Hence we

get the following commutative diagram:

ker(δn−j)

������������
�� Hn−j

G (M̃;NR)

ker(δn− j)
ker(evn− j)∩ker(δn− j)

pr

��������������

Due to additivity of the von Neumann dimension, we conclude

dimNR
(
Hn−j

G (M̃;NR)
)
≤ dimNR

( ker(δn−j)
ker(evn−j) ∩ ker(δn−j)

)
. (5.6)

Consider the composition of injective NR-homomorphisms

ker(δn−j)
ker(evn−j) ∩ ker(δn−j)

→
homZG

(
Cn−j(M̃),NR

)
ker(evn−j)

evn− j−−−→
k⊕

i=1

⊕
(n− j)-faces

of σi

NR · fi. (5.7)

Furthermore, fi = fi · χsupp( fi) implies

NR · fi ⊂ NR · χsupp( fi).
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Using additivity of the von Neumann dimension once more, we obtain

dimNR
( ker(δn−j)

ker(evn−j) ∩ ker(δn−j)

)
≤ dimNR

( k⊕
i=1

⊕
(n− j)-faces

of the σi

NR · χsupp( fi)

)
. (5.8)

Directly from the definition of the von Neumann dimension, it follows

dimNR
(
NR · χsupp( fi)

)
= trNR

(
χsupp( fi)

)
= μ

(
supp( fi)

)
. (5.9)

Combining Corollary 5.17 with (5.6), (5.7), (5.8) and (5.9) yields

dimNR
(
HG

j (M̃;NR)
)
≤
(

n + 1
j

)
·

k

∑
i=1

μ
(
supp( fi)

)
,

and now Theorem 4.26 completes the proof.

5.2.5 Definition of the Integral Foliated Simplicial Volume

We will now imitate the definition of simplicial volume in the measurable context.
More precisely, we first assign a “norm” to each measurable fundamental cycle in

L∞(X, Z) ⊗ZG Cn(M̃; Z)

of a closed oriented connected manifold M and then take the infimum of the norms
of measurable fundamental cycles. This value may depend on the choice of the
standard Borel probability space X and will be denoted by ‖M‖X

F ,Z. Then we will
again take the infimum, this time over G-isomorphism classes of standard Borel
probability spaces X with standard G-action, where G = π1(M) is the fundamental
group of M. The resulting value will be defined as the integral foliated simplicial
volume ‖M‖F ,Z of M.

Now we give the details of the definition.

Definition 5.20. For an element ∑k
i=1 fi ⊗ σi ∈ L∞(X, Z) ⊗ZG Cn(M̃; Z) we define

its �1-norm by ∥∥∑k
i=1 fi ⊗ σi

∥∥
1 =

k

∑
i=1

∫
X
| fi| dμ.

Usually, the phrase “norm” is used only on real or complex vector spaces. Nev-
ertheless, we will use it in the present situation although L∞(X, Z) ⊗ZG Cn(M̃; Z)
is just a Z-module.

Remark 5.21. The �1-norm on L∞(X, Z) ⊗ZG Cn(M̃; Z) is well defined since∫
X

f (x) dμ(x) =
∫

X
f (g.x) dμ(x)

holds for all f ∈ L∞(X) and g ∈ G by measure preservation of the action G � X.
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5.2 The Integral Foliated Simplicial Volume

Definition 5.22. Let M be a closed oriented connected manifold of dimension n
with fundamental group G = π1(M). Let further X be a standard Borel probability
space with standard action G � X.The integral X-foliated simplicial volume of M is
defined as

‖M‖X
F ,Z = inf

{
‖z‖1 : z ∈ L∞(X, Z) ⊗ZG Cn(M̃; Z)

is a measurable fundamental cycle of M
}
.

Remark 5.23. For a fundamental cycle ∑k
i=1 λi · σi ∈ Z ⊗ZG Cn(M̃; Z) the induced

cycle ∑k
i=1 constλi ⊗σi is a measurable fundamental cycle by definition. We have∫

X
|constλi | dμ = |λi|,

and consequently we obtain

‖M‖X
F ,Z ≤ ‖M‖Z.

On the other hand, the proof of Theorem 5.35 will imply ‖M‖ ≤ ‖M‖X
F ,Z for all

standard Borel probability space X with standard action G � X.

Next we want to get rid of the particular standard Borel G-probability space X
by taking the infimum over isomorphism classes of such spaces. Before, we have to
make precise, what we mean by isomorphism in that situation.

Definition 5.24. Let X and Y be standard Borel probability spaces with standard
action of a countable group G. A map X → Y is called a Borel G-isomorphism if it is
measurable, G-equivariant, measure preserving and bijective (measurability of the
inverse map is then automatically given by Theorem 3.3).

Now we are prepared to give the definition of the integral foliated simplicial vol-
ume.

Definition 5.25. Let M be a closed oriented connected manifold with fundamental
group G = π1(M). The integral foliated simplicial volume ‖M‖F ,Z of M is defined
as the infimum of ‖M‖X

F ,Z, where X runs through the set of Borel G-isomorphism
classes of standard Borel probability spaces with standard G-action.

Remark 5.26. The Borel G-isomorphism classes of standard Borel probability G-
spaces form indeed a set. Namely, there is a universal standard Borel G-space UG
with the property that any standard Borel G-space embeds measurably and G-
equivariantly into UG. This follows from [3, Theorem (2.6.1), p. 23]. By Theorem 3.4,
the embedding is a Borel isomorphism onto its image.

Remark 5.27. The term foliated might be a bit confusing since there is no foliation
around. It has its source in earlier work of Gromov [25, Section 2.4.B, p. 70] (based
on unpublished work of Connes), where he defined an extension of the simplicial
volume to foliations with transverse measure.
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5 Integral Foliated Simplicial Volume and L2-Betti Numbers

Note that the integral foliated simplicial volume defined above has nothing to
do with the foliated Gromov norm in the sense of Calegari [7], which is defined on
foliated manifolds by restricting the set of simplices allowed to represent the fun-
damental class to those which are transverse to the foliation.

5.2.6 Properties of the Integral Foliated Simplicial Volume

The intention of the definition of the foliated simplicial volume was to improve
the upper bound for the sum of L2-Betti numbers given in Corollary 5.6. Actually,
Theorem 5.19 implies

Corollary 5.28. Let M be a closed connected oriented manifold of dimension n. Then

b(2)
j (M̃) ≤

(
n + 1

j

)
· ‖M‖F ,Z,

and therefore also
n

∑
j=0

b(2)
j (M̃) ≤ 2n+1 · ‖M‖F ,Z.

Proof. Consider a measurable fundamental cycle

k

∑
j=1

fj ⊗ σj ∈ L∞(X, Z) ⊗ZG Cn(M̃; Z).

For almost all x ∈ supp( fj) we have fj(x) ≥ 1 since fj is integer valued. We obtain

k

∑
j=1

∫
X
| fj(x)| dμ(x) ≥

k

∑
j=1

μ
(
supp( fj)

)
.

Now the result follows from Theorem 5.19.

With regard to Conjecture 5.1 we would like to show that for all closed connected
oriented aspherical manifolds M the vanishing of the simplicial volume ‖M‖ im-
plies the vanishing of the integral foliated simplicial volume ‖M‖F ,Z. Unfortu-
nately, we can only show this in some very special cases.

Integral Foliated Simplicial Volume of Simply Connected Manifolds

In the opposite direction, one can ask for the integral foliated simplicial volume of
simply connected manifolds. Note that by Corollary 2.15 their simplicial volume
vanishes. In contrast, we have the following result for the foliated simplicial vol-
ume.

Proposition 5.29. Let M be a closed connected oriented manifold with π1(M) = 0. Then
‖M‖F ,Z = ‖M‖Z ≥ 1 holds.
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5.2 The Integral Foliated Simplicial Volume

Proof. Let X be an arbitrary standard Borel probability space. Since G = π1(M) is
the trivial group, we have

L∞(X, Z) ⊗ZG Cn(M̃; Z) ∼= L∞(X, Z) ⊗Z Cn(M; Z).

Any singular chain c = ∑k
i=1 fi ⊗ σi ∈ L∞(X, Z) ⊗Z Cn(M; Z) induces singular

chains cx = ∑k
i=1 fi(x) · σi ∈ Cn(M; Z) for almost all x ∈ X, and if two chains c, c′

in L∞(X, Z) ⊗Z Cn(M; Z) are homologous, then so are their induced chains cx, c′x
for almost all x ∈ X.

If z ∈ Cn(M; Z) is a fundamental cycle, then i1(z) induces a fundamental cy-
cle i1(z)x for almost all x ∈ X. Hence, the same is true for any measurable funda-
mental cycle ∑k

i=1 fi ⊗ σi ∈ L∞(X, Z) ⊗Z Cn(M; Z). Thus, ∑k
i=1| fi(x)| ≥ ‖M‖Z for

almost all x ∈ X. It follows that

∥∥∑k
i=1 fi · σi

∥∥
1 =

k

∑
i=1

∫
X
| fi(x)| dμ(x)

=
∫

X

k

∑
i=1

| fi(x)| dμ(x)

≥
∫

X
‖M‖Z dμ(x)

= ‖M‖Z.

This shows ‖M‖F ,Z ≥ ‖M‖Z, and the result follows with help of Remark 5.23.

Integral Foliated Simplicial Volume of S1

We will compute the integral foliated simplicial volume for the easiest closed man-
ifold with positive dimension.

Proposition 5.30. The equation ‖S1‖X
F ,Z = 0 holds for every standard Borel probability

space X with ergodic standard Z-action. Consequently, ‖S1‖F ,Z = 0 holds.

Proof. Let X be a standard Borel probability space with ergodic standard Z-action.
Let further n ∈ N>0 be a positive integer and let ε > 0. Consider the obvious
measurable fundamental cycle const1 ⊗σ with

σ : I → R

t �→ t,

where I = [0, 1] is identified with the standard 1-simplex Δ1. Furthermore, for j ∈ Z

we define σj : I → R by σj(t) = j + t.
By the Rohlin Lemma (Theorem 3.39), there is a measurable subset B ⊂ X such

that B, 1.B, . . . , (n − 1).B are pairwise disjoint and

μ
(
X −

⋃n−1

j=0
j.B
)

< ε.
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In the following, we will write A = X −
⋃n−1

j=0 j.B. Obviously, the equation

const1 ⊗ σ = χA ⊗ σ +
n−1

∑
j=0

χj.B ⊗ σ

holds in L∞(X; Z)⊗C1(R; Z). For j ∈ Z we obtain f ⊗ σj = f (j. )⊗ σ by the tensor
product relation in L∞(X, Z) ⊗ZG C1(R; Z). Consequently,

χB ⊗ σ−j = χj.B ⊗ σ

in L∞(X, Z) ⊗ZG C1(R; Z). We obtain

const1 ⊗ σ = χA ⊗ σ +
n−1

∑
j=0

χj.B ⊗ σ

= χA ⊗ σ +
n−1

∑
j=0

χB ⊗ σ−j.

Next we observe that ∑n−1
j=0 χB ⊗σ−j is homologous to χB ⊗σ, where σ is the singular

simplex defined by

σ : I → R

t �→ −(n − 1) + n · t.

Hence χA ⊗ σ + χB ⊗ σ is a measurable fundamental cycle of S1. We conclude

‖S1‖X
F ,Z ≤ μ(A) + μ(B) < ε +

1
n

.

Now ‖S1‖X
F ,Z = 0 follows since n ∈ N and ε > 0 can be chosen arbitrarily.

Remark 5.31. The idea of the proof of Proposition 5.30 can be seen geometrically
if one chooses a specific standard Borel space. Namely, let X = S1 with the usual
Lebesgue measure. The canonical measurable fundamental cycle is shown in Fig-
ure 5.1.

S1 × R

σ

10

Figure 5.1: The canonical measurable fundamental cycle.

For given n ∈ N and ε > 0 let α ∈ [0, 1/n] be irrational with
∣∣ 1
n − α

∣∣ < ε
n . Let

the Z-action on X be induced by rotation around α. This action is ergodic since the
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S1 × R

σ

σ

−(n − 1)

B
A

10

Figure 5.2: A measurable fundamental cycle of smaller weight.

rotation action of Z on S1 is ergodic if and only if α is irrational (see [1, Proposi-
tion 1.2.5, p. 24] for a proof). We can define B ⊂ X as [0, α) ⊂ S1. The measurable
cycle χA ⊗ σ + χB ⊗ σ is shown in Figure 5.2.

Integral Foliated Simplicial Volume and Products

Recall that the simplicial volume of a product of two closed oriented manifolds M,
N is related to the product of the simplicial volumes (Theorem 2.18). We will see
that at least the upper bound

‖M × N‖ ≤ c · ‖M‖ · ‖N‖, (5.10)

where c depends only on dim(M) + dim(N), can be carried over to the foliated
simplicial volume.

We will need the cross product map Cn(M; Z) ⊗Z Cm(N; Z) → Cn+m(M × N; Z).
Its definition uses the fact that Δn × Δm can be canonically triangulated. Denote
by ∑s

r=1 λr · αr the corresponding chain in Cn+m(Δn × Δm; Z). For two singular sim-
plices σ : Δn → M and τ : Δm → N their cross product is defined as

σ × τ =
s

∑
j=r

λr · (σ × τ) ◦ αr.

The cross product is then defined by linear extension. We denote its value on a
chain c ⊗ c′ ∈ Cn(M; Z) ⊗Z Cm(N; Z) is by c × c′.

It is easy to see that the cross product induces a map

Hn(M; Z) ⊗Z Hm(N; Z) → Hn+m(M × N; Z)

in homology (which is also called cross product) and that [M] × [N] = [M × N]
holds.

Let H = π1(N) be the fundamental group of N and let Y be a standard Borel
probability space with standard action H � Y. As before, G = π1(M) denotes the
fundamental group of M and X denotes a standard Borel probability space with
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standard action G � X. Denote the orbit equivalence relation of G � X by R and
that of H � Y by R′. Consider two chains

k

∑
j=1

fj ⊗ σj ∈ L∞(X, Z) ⊗ZG Cn(M̃; Z),

l

∑
i=1

gi ⊗ τi ∈ L∞(Y, Z) ⊗ZH Cm(Ñ; Z).

Definition 5.32. Define the cross product map(
L∞(X, Z) ⊗ZG Cn(M̃; Z)

)
⊗Z

(
L∞(Y, Z) ⊗ZH Cm(Ñ; Z)

)
→ L∞(X ×Y; Z) ⊗Z(G×H) Cn+m(M̃ × Ñ; )

by (
∑k

j=1 fj ⊗ σj
)
⊗
(
∑l

i=1 gi ⊗ τi
)
�→

k

∑
j=1

l

∑
i=1

s

∑
r=1

( fj × gi) ⊗ (σj × τi) ◦ αr.

To see that the cross product is well defined, note that for an element g ∈ G we
obtain

( f ⊗ g.σ) × ( f ′ ⊗ τ) =
s

∑
r=1

( f × f ′) ⊗ (g.σ × τ) ◦ αr

=
s

∑
r=1

( f × f ′) ⊗ (g, eH).(σ × τ) ◦ αr

=
s

∑
r=1

(
f (g. ) × f ′

)
⊗ (σ × τ) ◦ αr

=
(
f (g. ) ⊗ σ

)
× ( f ′ ⊗ τ),

where eH ∈ H denotes the unit element. Hence the definition of the cross product
respects the tensor product relations.

For c ∈ L∞(X, Z) ⊗ZG Cn(M̃; Z) and c′ ∈ L∞(Y, Z) ⊗ZH Cm(Ñ; Z) we have

d(c × c′) = d(c) × c′ + (−1)n · c × d(c′),

where, by slight abuse of notation, d denotes the boundary operators in the respec-
tive chain complexes. It follows that the cross product induces a map in homology.

Lemma 5.33. The cross product of two measurable fundamental cycles of M and N respec-
tively is a measurable fundamental cycle of M × N.

Proof. By definition, a measurable fundamental cycle ∑k
j=1 fj ⊗ σj of M is homolo-

gous to iM1 (z) for a fundamental cycle z ∈ Z ⊗ZG Cn(M̃; Z). A measurable funda-
mental cycle ∑l

i=1 gi ⊗ τi of N is homologous to iN1 (z′), where z′ ∈ Z ⊗ZH Cm(Ñ; Z)
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is a fundamental cycle. It follows directly from the definition of the cross product
that iM1 (z) × iN1 (z′) = iM×N

1 (z × z′) holds. Hence the cross product

(
∑k

j=1 fj ⊗ σj
)
×
(
∑l

i=1 gi ⊗ τi
)

is a measurable fundamental cycle of M × N.

Now we are able to prove the product inequality for the integral foliated simpli-
cial volume.

Theorem 5.34. Let M and N be closed connected oriented manifolds of dimensions n and m
respectively. Then

‖M × N‖F ,Z ≤ c · ‖M‖F ,Z · ‖N‖F ,Z

holds, where the constant c depends only on n + m.

Proof. Let X and Y be as above. Furthermore, let

k

∑
j=1

fj ⊗ σj ∈ L∞(X, Z) ⊗ZG Cn(M̃; Z)

be a measurable fundamental cycle of M and let

l

∑
i=1

gi ⊗ τi ∈ L∞(Y, Z) ⊗ZH Cm(Ñ; Z)

be a measurable fundamental cycle of N. By Lemma 5.33, their cross product is a
measurable fundamental cycle of M × N. If c denotes the maximum of (n + m)-
simplices needed to triangulate Δn+m−r × Δr for r = 0, . . . , n + m, we obtain

∥∥∑k
j=1 fj ⊗ σj ×∑l

i=1 gi ⊗ τi
∥∥ ≤ c ·

k

∑
j=1

l

∑
i=1

∫
X×Y

| fj(x) · gi(y)| d(μ × μ′)(x, y)

= c ·
k

∑
j=1

∫
X
| fj(x)| dμ(x) ·

l

∑
i=1

∫
Y
|gi(y)| dμ′(y).

As a consequence we obtain

‖M × N‖X×Y
F ,Z ≤ c · ‖M‖X

F ,Z · ‖N‖Y
F ,Z.

The result follows by taking the infimum over the appropriate isomorphism classes
of standard Borel spaces X and Y.
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Simplicial Volume and Integral Foliated Simplicial Volume

We will now prove that the integral foliated simplicial volume bounds the simplicial
volume from above.

Theorem 5.35. Let M be a closed oriented connected manifold. Then

‖M‖ ≤ ‖M‖F ,Z

holds.

Proof. Let p1 : L∞(X, Z) ⊗ZG Cn(M̃; Z) → Cn(M; R) be the homomorphism given
by f ⊗ σ �→

(∫
X f dμ

)
· p ◦ σ, where p : M̃ → M is the universal covering. Note that

p1 is well defined since f · g ⊗ σ and f ⊗ g · σ both map to
(∫

X f dμ
)
· p ◦ σ. The

homomorphism p1 fits into the commutative diagram

Cn(M; Z)
j1

��

j
��

L∞(X, Z) ⊗ZG Cn(M̃, Z)

p1
��														

Cn(M; R),

where j1 is given by σ �→ const1 ⊗ σ̃ for some lift σ̃ : Δn → M̃ of σ (whereas j1 does
not depend on the choice of the lift) and j is induced by inclusion of coefficients.
If ∑k

i=1 fi ⊗ σi is a measurable fundamental cycle, then it represents (j1)∗
(
[M]

)
by

definition. Consequently,

p1
(
∑k

i=1 fi ⊗ σi
)

= ∑k
i=1

(∫
X

fi dμ
)
· p ◦ σi

represents (p1 ◦ j1)∗
(
[M]

)
= j∗

(
[M]

)
. We obtain

‖M‖ ≤ ∑k
i=1

∣∣∣∫
X

fi dμ
∣∣∣ ≤ ∑k

i=1

∫
X
| fi| dμ =

∥∥∑k
i=1 fi ⊗ σi

∥∥
1.

The result follows from taking infima over measurable fundamental cycles and then
over G-isomorphism classes of standard Borel spaces with standard G-action.

84



Bibliography

[1] Jon Aaronson. An Introduction to Infinite Ergodic Theory, volume 50 of Mathe-
matical Surveys and Monographs. American Mathematical Society, Providence,
RI, 1997.

[2] Michael F. Atiyah. Elliptic operators, discrete groups and von Neumann al-
gebras. In Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay,
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