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ZUSAMMENFASSUNG 

 

The effect of granulocyte colony-stimulating factor on the peripheral nerve and 

the progress of Charcot-Marie-Tooth neuropathy type 1A in a rat model 

Van Cauwenberge, Margot 

 

Morbus Charcot Marie Tooth (CMT) ist die Sammelbezeichnung für eine Gruppe von 

genetische chronisch progrediente Neuropathien mit variabler distalen Muskelschwäche und 

Sensibilitätsstörungen. Aktuell bestehen keine kausale Therapieoptionen für die CMT . 

CMT1A ist die  häufigste Subtyp. In 90% dieser Patienten ist der verantwortliche Defekt die 

Duplikation des Gens für das periphere Myelinprotein 22 (PMP22).  

 

Von Granulocyte colony-stimulating factor (G-CSF) sind letztens neuroprotektive Qualitäten 

in Hirnneuronen nachgewiesen. In dieser Arbeit wurde das therapeutische potentiell von G-

CSF untersucht für die Behandlung von Morbus Charcot Marie Tooth  in einem Tiermodel für 

CMT1A.  PMP22
+|++

 transgene CMT1A Ratten (33) und wild-Typen (17) werden random mit 

G-CSF (10, 50, 100 µg/kg/tgl. subkutan) oder Placebo behandelt ab den 15 bis 30 Lebenstag. 

Auskünfte waren die nerve conduction velocity (NCV) und compound muscle action potential 

(CMAP) in den Nervus caudalis und Myelination (G-Ratio), axonale Erhaltung, 

Vaskularisation  und  zelluläre Immunreaktion in den Nervus  ischiadicus und tibialis. 

 

Es wurden keine signifikanten Unterschiede festgestellt in die NCV, CMAP oder in die 

Myelination, axonale Erhaltung und Immunreaktion zwischen peripheren  Nerven von Tieren 

behandelt mit G-CSF oder Placebo. Eine zugenommen Nervendurchmesser und Zunahme der 

Zahl an endoneuralen Blutgefäße wurde nachgewiesen in den PMP22 transgene Ratten.  

Aktenzeichen tierexp. Genehmigung 8.87-51.04.20.09.347 durch das Landesamt für Natur, 

Umwelt und Verbraucherschutz Nordrhein-Westfalen am17.08.2009  
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Introduction – Background 

 

Charcot Marie Tooth disease (CMT) refers to a group of hereditary neuropathies 

characterized by variable distal muscle weakness and sensory loss (Dyck et al, 2005; Klein, 

2007). It is named after Charcot, Marie and Tooth, who first described the disease in 1886. 

The more descriptive term “hereditary motor and sensory neuropathy” (HMSN) is used as 

well. The prevalence of CMT is estimated at 2 to 4 per 10.000 persons in European countries 

(Martyn et al., 1997). 

The CMT neuropathies are divided in multiple subtypes that differ in clinical course, 

pathophysiology and genetics. The primary classification is based on the relative extend of 

axonal and demyelinating pathology in disease pathogenesis, with CMT subtypes 1,4,5 and 6 

being primarily a demyelinating pathology with reduced nerve conduction velocity (NCV, 

<38 m/s), and CMT 2 being principally an axonal pathology with preserved or mildly slowed 

NCV (>38 m/s) (Pareyson et al., 2009). Further subclassification of CMT is derived from 

specific pathogenic genetic alterations, that have been identified in already more than thirty 

different gene loci. The most common genetic alterations involve genes coding for the 

peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ) and the gap-junction 

protein connexin 32 (Cx32, also called “gap junction protein beta 1” (GJB1). (Klein, 2007; 

see http://www.molgen.ua.ac.be/cmtmutations).  

The most frequent CMT subtype is CMT1A, accounting for 40-50% of all CMT patients 

(Martyn et al., 1997). In 90% of these patients, the responsible defect is a duplication of a 1.5 

Mbp region on chromosome 17p11.2-12, that includes the gene for peripheral myelin protein 

22 (PMP22) (Lupski et al.,1991). This small four-domain membrane protein is found in the 

compact myelin of Schwann cells and is thought to stabilize myelin (Kamholz et al., 2000). 

Duplication of the PMP22 gene leads to hypo- and demyelination via a gene-dosage 

dependent toxic gain of function, but the precise pathophysiology remains unknown (Sutter et 

al., 2003). In rare cases (1%), CMT1A is caused by point mutations in the PMP22 gene. 

Patients with heterozygosity for the PMP22 duplication demonstrate segmental demyelination 

        p   p            y              v    A             CV’                    38  /  

before the onset of clinical signs. Ensuing axonal damage leads to a peripheral symmetric 

sensorimotor neuropathy, with slow progression from distal to proximal limb muscles. The 

clinical picture shows large variability but typically starts between 10 to 20 years of age with 
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moderate weakness and muscle atrophy of the intrinsic foot muscles leading to hammer toes, 

pes cavus or planus deformation. Moderate sensory loss in the feet and later hands are present 

in early disease stage. Proximal progression involves the peroneal and calf muscles in the 

lower limb as well as upper limb muscles, with reduction to loss of deep tendon reflexes. As 

skeletal deformations start to develop, musculoskeletal pain may occur. Walking difficulties 

and steppage gait often develop in later disease stage, but an evolution to wheelchair 

dependency is seldom (Pareyson et al., 2009; Dyck et al., 2005; Shy, 2004; Hattori et al., 

2003). The disease does not affect life expectancy, but has a high impact on life quality due to 

impaired mobility, reduced fine motor hand function and musculoskeletal or neuropathic pain.  

There is to date no causal therapy for any subtype of CMT (Young et al., 2008). Current 

support is multidisciplinary and consists of physical therapy, lifestyle advice, orthopedic 

devices and surgery for skeletal deformities. Past research aimed to identify substances that 

could improve the function, survival or interaction of axons and/or Schwann cells, both by 

direct and indirect influences on the genetic defect in CMT patients. 

The neurotrophic factor Neurothrophin 3, a component of the Schwann cell autocrine survival 

regulation, was proven to favor axonal regeneration and sensory loss in a study of CMT1A-

xenograft harboring mice and Trembler(J) mice with a peripheral myelin protein 22-point 

mutation, as well as a smal placebo-controlled pilot sample of human CMT1A patients (n=8) 

(Sahenk et al.;2005). Larger scale studies are lacking to confirm these findings.  

Therapy with the progesterone receptor antagonist Onapristone, a regulator of Pmp22 and 

Mpz genes in cultured Schwann cells, reduced the PMP22 overexpresssion in a CMT1A rat 

model to a degree at which the axonal support function of Schwann cells is better maintained 

than myelination in later disease stage. Despite these promising results for the treatment of 

CMT1A, inacceptable toxicity was expected for humans (Sereda et al., 2003; Meyer zu 

Horste, 2007). 

Another interesting agent that is currently under clinical investigation is ascorbic acid, which 

is necessary for peripheral nerve myelination both in vivo and in vitro. Chronic high dose 

application of ascorbic acid resulted in prolonged survival and clinical improvement in a 

CMT1A mouse model (Passage et al., 2004;). Nevertheless, clinical studies in humans 

showed no significant improvement in patients after one (Verhamme et al.,2009; Micallef et 

al., 2009; Burns et al., 2009) or two years (Pareyson et al., 2011) of treatment. Furthermore, 

important gastrointestinal adverse effects were seen in half of the patients with the highest 

dose (5 grams daily).  
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The curry spice derivate Curcumin was proposed as a causal working agent for those CMT 

types in which accumulation of cytotoxic proteins is involved in disease pathogenesis. It 

stimulates misfolded proteins to migrate from the endoplasmatic reticulum to the cell 

membrane, thereby removing cytotoxic components from the cytoplasma. In a TremblerJ 

mouse model for CMT1, Curcumin has been proven to reduce apoptosis, increase axonal size 

and thickness of myelin and improve motor performance (Khajavi et al, 2007). Side effects 

were not reported thus far, but clinical trials with CMT patients are not available to confirm 

these positive findings (Singh et al., 2007). 

 

The search for substances that can improve function or survival of degenerating neurons or 

neuroglia  is the subject of ongoing research both in the central and peripheral nervous system 

(PNS). An interesting protein in this perspective is granulocyte colony stimulating factor (G-

CSF). Granulocyte colony stimulating factor (G-CSF or CSF 3) is a glycoprotein produced by 

monocytes, fibroblasts, endothelial and mesothelial cells in humans. It stimulates the 

proliferation, differentiation and specific cell function activation of neutrophil progenitor cells 

in the bone marrow (Roberts et al., 2005; Anderlini et al., 2008). Beside this main site of 

action, G-CSF has functional receptors (GCSF-R) on other hematopoietic cell types like 

monocytes, platelets, activated T-cells and dendritic cells, and extra-hematopoietic cells 

including endothelium, placental, neurons and glial cells (Roberts et al., 2005). The 

mechanism of action of G-CSF in these cells is not completely understood, but seems to 

parallel the anti-apoptotic and proliferative effect on neutrophil progenitor cells. For more 

than two decades, recombinant human G-CSF has been used in clinical practice as a 

stimulator of white blood cell production in patients with neutropenia. It serves as an adjuvant 

treatment for leukemia and myelodysplasia. After the discovery of its capacity to mobilize 

stem cells from the bone marrow (Bussolino et al., 1987), it gained a place in the preparation 

of bone marrow from donor patients. It has been thoroughly tested and approved safe for 

humans, with serum hyperviscosity syndrome (due to granulocytosis) and bone pain as main 

adverse effects (Welte et al., 1996). 

The discovery of G-CSF receptors (G-CSF-R) in the central nervous system (CNS) has been 

subject of multiple studies over the last ten years. The G-CSF-R is expressed by neurons in 

virtually all areas of the brain (Diederich et al., 2007). Growing evidence depicts a 

neuroprotective role for G-CSF by inhibition of programmed cell death and stimulation of 

neuronal progenitor proliferation and differentiation. In animal models for cerebral ischemia, 
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G-CSF attenuated the inflammatory cascade and potentiated angiogenesis (Schneider et al., 

2005). Furthermore, G-CSF was shown to mobilize neural stem cells from the bone marrow, 

which suggests regenerative opportunities in the CNS (Shyu et al. 2004). In rodent models for 

stroke, diminished infarct size, improved functional recovery and survival were observed 

following G-CSF administration (Schabitz et al., 2003; Six et al., 2003; Gibson et al., 2005). 

These findings have led to clinical trials investigating G-CSF as a candidate therapy for stroke 

(for review see Bath et al., 2007 and England et al., 2009) and other neurodegenerative 

diseases including Parkinson’          (Cao et al., 2006; McCollum et al., 2010), amyotrophic 

lateral sclerosis (Pitzer et al., 2008; Henriques et al., 2010; Chiò et al, 2011) and Alzheimer’  

disease (Tsai et al., 2007; Sanchez-Ramos, 2009; Zao et al., 2011).  

The suggested functions of G-CSF in the CNS sparked the interest to investigate its effects in 

the PNS. To date, no studies have been published that investigated the presence of G-CSF 

receptors (G-CSFR) in the PNS or the role of G-CSF in peripheral nerve disease. Our hope is 

that the investigation of a potential function of G-CSF in the PNS may reveal findings similar 

to those in the CNS, so it can open a window for a regenerative therapy for hereditary 

neuropathies and perhaps other degenerative peripheral nerve diseases. 
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Research goals 
 

The aim of the research project was to investigate the effects of G-CSF in CMT disease, using 

a rat model of CMT1A. The obtained in vivo data may, in the best scenario, serve as a basis to 

evaluate G-CSF as a therapeutic agent for hereditary neuropathies in human clinical trials.  

The research project ensued previous unpublished studies at our centre on the role of G-CSF 

in the PNS. In these preceding investigations, the expression of G-CSF and its receptor in 

primary rat Schwann cells (RSC), motoneurons, dorsal root ganglia neurons (DRGs) and 

sciatic nerves was studied in vitro and in vivo (Kleffner e.a., unpublished) . In addition to the 

expression pattern of G-CSF and its receptor in these cells, it was found that G-CSF exhibits 

proliferative and anti-apoptotic effects in primary rat Schwan cells, motoneurons and DRGs. 

It was clarified via which pathway G-CSF exerts these influences on the cell cycle in RSC 

and different pathways were explored with this purpose. Of special interest were the adenylat 

cyclase, MAPK/ERK, PI3K and JAK/STAT signal transduction pathways. It was studied  

how these effects correlated with myelination and myelin maintenance in vitro.  

The findings above suggest a beneficial role for G-CSF in the survival, proliferation and 

function of Schwann cells that may enhance proper PNS myelination. It makes G-CSF an 

protein of interest with possible therapeutic potential for demyelinating hereditary 

neuropathies and perhaps acquired demyelinating neuropathies. To further investigate its 

therapeutic potential, we designed a pilot-study in which the histological, electrophysiological 

and vascular effects of G-CSF on peripheral nerves of a CMT animal model were investigated 

in a blinded, randomized, placebo-controlled fashion. We chose a CMT1A rat model that 

contains a duplication of the PMP22 gene, the PMP22
+|++

 transgenic rat, because it has proven 

to be a reliable model that mimics well the clinical and histological features of human 

CMT1A patients and has early-onset pathology. In immature animals, we examined if the 

daily administration of G-CSF during two weeks from the third week after birth, could 

prevent or improve the histological and electrophysiological features of the PMP22
+|++

 

transgenic rat. The next step would be to administer the same treatment schemes in adolescent 

animals, to verify if G-CSF can ameliorate the disease course once neuropathological features 

have clearly developed. If the findings of the pilot-study support the role of G-CSF as a 

protective or regenerative agent in CMT1A, the conduct of a larger long-term animal trial 

would be planned that could pave the way to a clinical trial of G-CSF in CMT1A patients. 
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Materials and methods 
 

Animal model 

PMP22
+|++

 transgenic CMT1A Sprague Dawley rats were provided by M. Sereda and his 

team. Routine genotyping was performed by polymerase chain reaction (PCR), using genomic 

DNA from ear biopsies and mouse transgene-specific primers under standard conditions as 

described previously (Pareyson et al., 2009). The study animals were kept in standard housing 

conditions in mixed cages together with their mother, with a 12-hours light dark cycle and 

free access to food and water. The animals were daily evaluated clinically using a 

standardized clinical list for evaluating rodents as required by the ethical committee. All 

procedures and animal studies were performed in concordance with and approved by the local 

governmental authority Landesamt für Natur, Umwelt und Verbraucherschutz (Study 

approval number 8.87-51.04.20.09.347 on 17.08.2009) and the European Convention for 

Animal Care and Ethical Use of Laboratory Animals. The number of animals was kept to the 

minimum. 

 

Interventions 

Ear biopsies for genetic analysis and animal identification were taken on postnatal day 14. 

PMP22
+|++

 transgenic CMT1A rats and wild-type rats were treated with G-CSF (case) or 

placebo (control) from postnatal day 15 until day 30. Different doses of subcutaneous G-CSF, 

10/ 50/100 µg/kg per day or placebo (NaCl 0.9%), were applied once daily during 15 

subsequent days. The treatment protocol was derived from stroke studies in murine models 

with short (<10 days) subcutaneous G-C                         0     00 μ /   (Gibson et 

al., 2005; Sehara et al., 2007; Six et al., 2003; Solaroglu et al.,2006; 2009, 26,47,48 Shyu et 

al., 2004; Yanqing et al., 2006; Taguchi et al., 2007). G-CSF was provided as Filgrastim 

(Neupogen® - Amgen Inc) subcutaneous injection solution. Safety of repeated Filgrastim 

administration has previously been established in the rat in both subacute and chronic settings. 

Subcutaneous administration showed no significant toxicity with doses up to 3450 μg/kg in 

these studies (For pre-clinical experience see 

http://www.accessdata.fda.gov/drugsatfda_docs/label/2002/filgamg052902PLBp1.pdf). The 

animals were randomly assigned to treatment or placebo groups. Injections were given 

subcutaneous in the neck fat pads by the same investigator following weight measurement to 

http://www.accessdata.fda.gov/drugsatfda_docs/label/2002/filgamg052902PLBp1.pdf
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daily adjust the individual doses. The investigator was blinded for the genotype and treatment 

of the animals. Blood samples were taken from the tail vein on postnatal day 16 in at least 

four animals per treatment group. At this time, the rats had received two administrations of G-

CSF. A time-frame of 18 hours after the second G-CSF injection preceded the blood 

collection. 

 

Electrophysiological evaluation 

Electrophysiological analysis was performed on caudal nerves in living anesthetized animals, 

24 hours after the last administration of G-CSF or placebo (postnatal day 31). Nerve 

conduction velocity (NCV) and compound muscle action potential (CMAP) of the caudal 

nerve were determined by tail recordings by the same examiner who was blinded for the 

genotype and treatment of the animals. The rats were anesthetized with a mixture of Ketamine 

(100 mg/kg) and Xylazine (20 mg/kg) and placed under an infrared warmth lamp to stabilize 

temperature before and after the procedure. During the EMG measurement, body temperature 

was maintained at 37°C by placing the rats on a heat pad, monitoring temperature with a 

rectal probe. CMAP recordings from tail muscles to single electric stimuli of 0.1 millisecond 

duration to the tail nerves were recorded via fine subcutaneous needle electrodes connected to 

  T                     y     (J     )   CV’                              y          

      y                        CMA ’      r successive proximal stimulation at two sites 20 

mm apart. CMAP amplitudes were calculated peak to zero line. 

. 

Tissue Preparation 

After 15 days of treatment (postnatal day 31), all rats were killed by isoflurane inhalation after 

the electrophysiology procedure. The animals were perfused with 0.9% NaCl solution for 5 

minutes and, in case of Epon embedding, with 4% paraformaldehyde for 15 minutes. After 

perfusion, sciatic and tibial nerves were immediately dissected entirely from its spinal origin 

up to the medial ankle, and embedded in Epon epoxy or frozen in Tissue Tek according to 

previously published protocols (Serada et al. 2006, Carenini 2001). The liver, thymus and 

spleen were dissected entirely and weighted immediately.  
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Histological Evaluation 

Blood smears were investigated for cellular composition after Giemsa-staining with light 

microscopy, magnification 100x. White blood cell differentiation was performed by counting 

at least 200 white blood cells per animal, by an investigator who was blinded to the treatment 

groups. Morphological nerve studies of Epoxy epon embedded sections were performed with 

light microscopy on semithin sections (50μm) of the distal sciatic and tibial nerve (Ultracut 

200 microtome, Leica). The sections were stained with alkaline toluidine blue1% and 

photographed using a standard video frame grabber with 40x magnification (Leica) installed 

on a Zeiss Axiophot microscope (Zeiss). Overlapping photographs of the nerve were merged 

using Autostitch software (http://www.cs.bath.ac.uk/brown/autostitch/autostitch.html). The 

total number of axons (“       x         ”) per sciatic and tibial nerve was counted 

manually on cross sections by the same investigator in a blinded fashion using ImageJ cell 

counter (v1.36, National Institutes of Health). Physiologically unmyelinated axons (diameter 

<1μm) and blood vessels were not included. The nerve caliber (area) of sciatic and tibial 

nerve cross sections was calculated using ImagJ cell area calculator. The degree of 

demyelination and remyelination of axons was estimated visually in more than 1000 axons 

per animal. The area based myelin G-ratio, defined as the ratio between the inner and the 

outer diameter of the myelin sheath, was calculated to assess axonal myelination on cross 

sections in at least 200 axons per animal using ImageJ G-ratio Tool (CIF). For 

immunohistochemical analysis, semithin (10 µm) cross-sections of fresh frozen sciatic nerves 

were investigated with an Zeiss Axioplan2 immunofluorescence microscope connected to a 

Zeiss AxioCam MRc camera (AxioVision 3.1.).  Blood vessel count was performed manually 

with ImageJ cellcounter                   (                 >  μ )   Blood vessels were 

visualized with rabit-anti Von Willebrand Factor antibodies (Dakocytomation®) and 

secondary goat-anti-rabbit IgG AlexaFluor 594 (Invitrogen Molecular Probes®). 

Macrophages (circulation + tissue macrophages) were detected using mouse-anti ED2 (= 

CD163) primary antibodies (Serotec®) with goat-anti-mouse secondary IgG antibodies 

AlexaFluor 488 (Invitrogen Molecular Probes ®). T-lymphocytes were detected using mouse-

anti CD3 primary antibodies (BD Biosciences®) and goat-anti-mouse AlexaFluor 488 

secondary antibodies. Granulocytes were stained with rabbit-anti-elastase (Abcam®) and 

goat-anti-rabbit AlexaFluor 488 secondary antibodies. Nuclei were stained with 4',6-

diamidino-2-phenylindole (DAPI) for all analyses.  
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Statistical analysis 

Data was analyzed using SPSS statistic 19.0. Continuous variables were analyzed for normal 

                    p                 ’                     p               A OVA            

more than two groups, followed by post hoc analysis (LSD). A p-v        ≤ 0 05 double sided 

(       ’        )              (A OVA), was considered significant. Results are reported as 

percentage for categorical variables, as mean ± SD for normal distributed continuous values 

and as median with interquartile range (IQR) [25-75%] if not normal distributed. Outcome 

variables were nerve conduction velocity (m/s), compound muscle action potential (mV), 

nerve caliber (nerve area, mm
2
), total axon number and density (pro mm

2
), area based myelin 

G-ratio, demyelination percentage (%), inner and outer axon diameter (µm), total blood vessel 

number and total blood vessel density (pro mm
2
), number of endoneural macrophages, 

granulocytes and lymphocytes. 
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Results  
 

Subjects 

A total of 50 animals, 33 PMP 22
+|++

 case animals and 17 wild-type controls, were included. 

Animal distribution to dosing groups or placebo is displayed in table 1. One transgenic animal 

re   v     00 μ /    -CSF deceased on postnatal day 28. The animal displayed failure to 

thrive from the second week after birth, presumably due to the large litter size of 14 animals, 

rather than as a side effect of G-CSF. 

During the 14 days of observation, there was no difference in general appearance, activity and 

behavior among transgenic and wild-type rats either treated with placebo or one of the three 

G-CSF doses. Average daily weight gain was comparable for all treatment groups and 

placebo (3.45 g/day for females and 3.06 g/day for males; p = 0.82 resp. 0.27).  

Animals treated with G-CSF showed a dose-dependent elevation of the relative and absolute 

number of neutrophils on differential blood counts (15.9% neutrophils (placebo), 17.0% (10 

µg/kg G-CSF), 46.1% (50 µg/kg G-CSF) and 47.6% (100 µg/kg G-CSF); p = 0.001; fig. 1A-

B, table 2). They also displayed a dose dependent spleen enlargement (0.37% of total body 

weight (placebo), 0.41% (10 µg/kg G-CSF), 0.44% (50 µg/kg G-CSF), 0.49% (100 µg/kg G-

CSF); p = 0.003; table 2). Liver and thymus size was not significantly different between 

treatment and placebo groups.  

 

Table 1:  Animal distribution to different G-CSF doses or placebo. 
 

 

 
 

 

 

 
 

 

 

 

a m= male, f= female 
b one transgenic male deceased on postnatal day 28 

 

 

 

 PMP 22+|++ (m:f)a wild-type (m:f) a total 

placebo 
8  (3:5) 5  (2:3) 13 

 0 μ /   
7  (3:4) 3  (2:1) 10 

50 μ /   9  (3:6) 4  (2:2) 13 

 00 μ /    9  (5:4)b 5  (3:2) 14 

total  33 17 50 
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Figure 1: Venous blood smears of wild-type rats receiving placebo (A) or G-CSF (B) (Giemsa staining, LM 

magnification 100x) . Smear A shows some lymphocytes (asterix) and no neutrophils. Smear B of a rat 

receiving 100 μg/kg G-CSF displays an elevated number of neutrophils (arrow) on treatment day 3.  

  

 

Table 2: White blood cell differentiation and organometrics of rats aged resp. 3 and 4 weeks  

 

placebo 

(n=5) 

 0 μ /   

G-CSF 

(n=4) 

50 μ /    

G-CSF 

(n=4) 

 00 μ /   

G-CSF 

(n=5) ref. valuesa 

WBC differentiation      

lymphocyte (%)  80.7 80.25 51.9 50.4 83.2-87.7% 

neutophil (%) 15.9 17.0 46.1 47.6 7.0-13.3% 

monocyte (%) 1.9.0 1.90 1.28 1.32 2.0-3.1% 

basophil (%) 0.4 0.0 0.2 0.4 0.3-0.6% 

eosinophil (%) 1.0 0.9 1.5 2.8 0.8-1.0% 

organometrics      

liver (%TBW)b 4.7 4.3 4.6 4.5    not available                    

spleen (%TBW)b 0.37 0.41 0.44 0.49     not available                    

thymus (%TBW)b 0.51 0.53 0.57 0.56 not available                    

a Reference values source: Charles River laboratory hematology chart for male Sprague-Dawley  rats aged 3-7 weeks 
bTBW= total body weight 

 

 

A B * 

* 

* 

* 

* 
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Electrophysiology 

 
The caudal nerve conduction velocity (NCV) was measured in 49 animals, 17 wild-type and 

32 PMP22
+|++ 

transgenic animals. We could not produce a consistent NCV measurement (no 

muscle action potential detectable) in one transgenic animal treated with  00 μ /    -CSF 

and one wild-type animal treated with 50 μ /    -CSF, which excluded them from analysis. 

Mean caudal NCV was more than three times lower in PMP22
+|++ 

transgenic rats compared to 

wild-types (4.1 ±1.39 m/s vs 15.7 ±5.44 m/s; p <0.001; fig. 2A). The compound muscle action 

potential (CMAP) amplitude at the distal stimulation site was significantly decreased in 

transgenic animals compared to wild-types (0.3 ± 0.20 mV vs 0.5 ± 0.40 mV; p = 0.02; fig. 

2B). We did not find a statistically significant difference in the caudal NCV or CMAP 

amplitude between transgenic animals receiving G-CSF treatment in any dosage and those 

receiving placebo (p = 0.957 resp. 0.788; table 3; fig. 2A-B). 

 

 
Table 3: Mean caudal nerve conductance velocity (NCV) and compound muscle action potential (CMAP) 

for transgenic and wild-type rats treated with G-CSF compared to placebo. 

 mean NCV (m/s) pa mean CMAP (mV) pa 

PMP 22
+|++

   

placebo (n=8) 3.9 ±0.56 0.957 0.23 ±0.16 0.788 

 0 μ /   ( =7) 4.2 ±1.62 

 

0.26 ±0.11  

50 μ /   ( =9) 4.1 ±1.09 0.20 ±0.13  

 00 μ /   ( =7) 3.8 ±2.1 0.27 ±0.20  

wild-type 
  

placebo (n=5) 15.9 ±5.82 0.896 1.06 ±0.963 0.286 

 0 μ /   ( =3) 15.5 ±10.68 

 

0.30 ±0.100  

50 μ/   ( =3) 14.2 ±1.34 0.77 ± 0.473  

 00 μ /   ( =5) 17.5 ±3.96 0.36 ±0.163  

a one-way ANOVA; significance level p <0.05 
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Figure 2A-B: Box-and-whiskerplots of (A) caudal nerve conduction velocity (NCV) and (B) 

compound muscle action potential (CMAP) in PMP22
+|++ 

transgenic rats and wild-types. 

Outliers are marked by °, IQR with small group size is marked by * 

 
A 

B 



15 

 

Nerve Histology 
 

Sciatic nerve histology 
 

Morphological analysis of distal sciatic nerve cross sections embedded in Epon epoxy was 

performed in 33 rats: 22 PMP22
+|++

 transgenic rats and 11 wild-types (table 4, fig. 3). The 

total axon number and axon density were comparable for wild-types and PMP22
+|++

 

transgenic animals (table 4, fig. 4A). The sciatic nerve caliber (“           v      ”) was 

increased with 10% in PMP22
+|++

 transgenic rats compared to wild-types (p= 0.038; table 4, 

fig. 4B). The number of demyelinated axons and the area based G-ratio were significantly 

increased in PMP22
+|++

 transgenic animals compared to wild-types, confirming the presence 

of demyelination in transgenic animals at the age of 4-weeks (table 4, fig. 4C-D).  

Among the PMP22
+|++

 transgenic animals, there was no statistically significant difference in 

the mean total axon number and density or in the extend of demyelination of the sciatic nerve 

in animals receiving G-CSF or placebo (table 5 and 6, fig. 4A-D).  

 

Table 4:  Total axon number, axon density, nerve area, demyelination and G-ratio in sciatic nerves of 

wild-type and PMP22
+|++ 

rats. 

 

a        ’        ;                 v   p <0 05 (*) 

 wild-type (n=11) PMP22+|++ (n=22) pa 

total axon number  4514 ±485.4 4503 ±623.8 0.958 

 axon density (x102/mm2) 53.5 ±5.35 49.0 ±7.47 0.590 

nerve area (mm2) 0.85 ±0.06 0.93 ±0.01 0.038* 

demyelination (%) 3.5 ±2.69 10.4 ±3.10 0.001* 

   inner axon diameter (µm) 8.4 ±0.99 6.4 ±0.55 <0.001* 

   outer  axon  diameter (µm) 14.1 ±1.14 10.7 ±0.58 <0.001* 

area based G-ratio 0.55 ±0.028 0.60 ±0.040 0.001* 



16 

 

 

 

Table 5: Axon number, nerve area, axon density and demyelination in sciatic nerves of transgenic and wild-type rats receiving G-CSF or placebo. 

 total axon number pa nerve area (mm2) pa 
axon density 

(x102/mm2) 
pa demyelination (%) pa 

PMP 22
+|++

   

placebo (n=5) 4467 ±399.0 0.890 0.92 ±0.075 0.538 48.9 ± 6.80 0.268 11.0 ±4.37 0.757 

 0 μ /   ( =6) 4568 ±816.9 

 

0.90 ±0.082  50.6 ±6.96  10.2 ±2.16  

50 μ /   ( =6) 4616 ±562.9  0.90 ±0.191  52.2 ±6.52  9.4 ±2.93 

 00 μ /   ( =5) 4320 ±726.1 1.00 ±0.077  43.5 ±8.63  11.4 ±3.73 

wild-type 

  

placebo (n=3) 4665 ±631.7 0.753 0.84 ± 0.069 0.940 55.5 ±7.87 0.820 4.1 ±3.50 0.713 

 0 μ /   ( =2) 4681 ±226.2 

 

0.87 ±0.023  53.6 ±3.99  1.8 ±0.50 

 50 μ/   ( =3) 4448 ±654.8 0.84 ±0.094  52.7 ±2.92  4.5 ±3.90 

 00 μ /   ( =3) 4267 ±267.3 0.83 ±0.069  51.4 ±5.50  2.8 ±0.36 

a ANOVA;  significance level p <0.05 (*) 
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Table 6:  Area based G-ratio, inner and outer axon diameter in sciatic nerve sections for transgenic and wild-type rats receiving G-CSF or placebo. 

 G-ratio pa inner perimeter (µm) pa outer perimeter (µm) pa 

PMP 22
+|++

  

placebo (n=5) 0.61 ±0.027 0.158 6.93 ±0.611 0.047* 11.21 ±0.630 0.139 

 0 μ /   ( =6) 0.60 ±0.033 

 

6.52 ±0.515  10.80 ±0.462 

 50 μ /   ( =6) 0.58 ±0.018 6.03 ±0.402  10.35 ±0.459 

 00 μ /   ( =5) 0.57 ±0.029 6.19 ±0.388  10.74 ±0.632 

wild-type 

 

placebo (n=3) 0.58 ±0.013 0.334 8.55 ±1.451 0.746 14.17 ±2.300 0.743 

 0 μ /   ( =2) 0.54 ±0.051 

 

8.39 ±1.085  14.34 ±0.442 

 50 μ/   ( =3) 0.55 ±0.028 8.67 ±0.765  14.71 ±0.983 

 00 μ /   ( =3) 0.55 ±0.018 7.78 ±0.554  13.32 ±0.875 

a ANOVA;  significance level p <0.05 (*) 
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Figure  3: Peripheral nervous system hypomyelination in PMP22
+|++

  transgenic rats (LM, 

magnification 40x). 

A-B: Semithin (50 μ ) transverse sections of sciatic (A) and tibial (B) nerves from a wild-

type rat showing normal myelin sheet thickness relative to axon size. Small blood vessels 

are also visible (asterix).  

C-D:  Semithin (50 μ ) transverse sections of sciatic (C) and tibial (D) nerve from a 

PMP22
+|++

 transgenic rat receiving placebo. Hypo-myelinated (arrowhead) and a-

myelinated axons (arrow) are surrounded by normal myelinated axons.  

E-F: Semithin (50 μ ) transverse sections of sciatic (E) and tibial (F) nerve from PMP22
+|++

 

transgenic animals receiving 100 μg/kg G-CSF . Hypo-myelinated (arrowhead) and a-

myelinated axons (arrow) are present among normal myelinated axons. 
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Figure 4 A-D: Box-and-whiskerplots of  sciatic axon density (A), nerve area (B), demyelination % 

(C) and area based G-Ratio (D) for transgenic and wild-type rats receiving G-CSF or placebo. 

Outliers are marked by●, IQR with small group size is marked by * 

 

 

 

 

 
 

  

A 
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Comparing the histological findings in sciatic nerves with the electrophysiological data of the 

caudal nerve,  a strong correlation is observed between  the extend of demyelination and the 

NCV: de y                                          CV  (       ’      = - 0.659; p<0.001 

(2-tailed), fig. 5). 

 

 

 

 

 

 

 

Figure 5: Scatterplot sciatic nerve conduction velocity and demyelination, Pearsons Rho = -0.66.  

 

(p<0.001) 

Sciatic nerve conductance velocity 
(m/s) 
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Tibial nerve histology 
 

Because CMT1A is a length-dependent neuropathy, we studied the effects of G-CSF on the 

morphology of the distally located tibial nerve. Histological analysis was performed on distal 

tibial nerve biopsies of 23 animals, 20 PMP22
+|++

 transgenic and 3 wild-type animals (table 7, 

fig. 3 B, D, F). 

The total axon density of the tibial nerve was reduced in PMP22
+|++

 transgenic animals 

compared to wild-types (table 7, fig. 6A). The tibial nerve caliber (“   v      ”) was not 

significantly different between PMP22
+|++

 transgenic and wild-type animals (table 7). The 

percentage of demyelinated axons was seven times higher in PMP22
+|++

 transgenic animals 

compared to wild-types (table 7, fig. 6B). 

We did not find statistically significant differences in the extend of demyelination or axonal 

loss in the distal tibial nerve between transgenic animals receiving treatment or placebo 

(Table 8 and 9; fig. 7A-B).  

 

Table 7: Axon count, demyelination,  area and G-ratio in tibial nerves 

 

 

 

 

 

 

 Wild-type (n=3) PMP22+|++ (n=20) pa 

total axon number  2628 ±66.4 2302±563.4 0.337 

   axon density ( x102/mm2) 59.6 ±3.67 51.5±6.05 0.037* 

nerve area (mm2) 0.44 ±0.021 0.45 ±0.098 0.938 

demyelination (%) 1.1 ±0.74 7.0 ±2.90 0.024* 

   inner axon diameter (µm) 7.10 ±0.916 5.51 ±0.440 0.001* 

   outer diameter (µm) 13.21 ±1.181 9.92 ±0.617 0.001* 

area based G-ratio 0.53 ±0.015 0.54 ±0.017 0.3475 

a       ’        ;                 v   p <0 05 (*) 
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Table 8: Total axon count, nerve area, axon density and demyelination in tibial nerve sections from transgenic and wild-type rats receiving G-CSF or placebo. 

 total axon count pa 
nerve area 

(mm2) 
pa 

axon density 

(x102/mm2) 
pa 

demyelination 

(%) 
pa 

PMP 22
+|++

   
  

placebo (n=5) 2418 ±518.0 0.883 0.50 ±0.088 0.549 48.7 ±5.91 0.553 6.8 ±2.85 0.198 

 0 μ /   ( =5) 2269 ±716.4 

 

0.43 ±0.104  52.3 ±6.90  9.2 ±3.09 

 50 μ /   ( =5) 2120 ±624.7 0.40 ±0.111  52.9 ±5.65  5.2 ±2.42 

 00 μ /   ( =5) 2375 ±571.1 0.49 ±0.158  48.9 ±3.62  6.7 ±2.85 

Wild-type (n=3) 2628 ±66.4  0.44 ±0.021  59.6 ±3.67  1.1 ±0.74  

a One-way NOVA;  significance level p <0.05 (*) 
 
 
 

Table 9:  Area based G-ratio, inner axon and outer nerve perimeter in tibial nerve sections from transgenic and wild-type rats receiving G-CSF or placebo. 

 G-ratio pa inner perimeter (µm) pa outer perimeter (µm) pa 

PMP 22
+|++

  

placebo (n=5) 0.56 ±0.005 0.360 5.81 ±0.504 0.224 10.162 ±0.619 0.210 

 0 μ /   ( =5) 0.54 ±0.019 

 

5.20 ±0.358  9.434 ±0.477 

 50 μ /   ( =5) 0.53 ±0.012 5.46 ±0.302  9.927 ±0.608 

 00 μ /   ( =5) 0.53 ±0.030 5.56 ±0.591  10.157 ±0.762 

Wild-types (n=3) 0.53 ±0.015  7.10 ±0.916  13.21 ±1.181  

a One-way NOVA;  significance level p <0.05 (*) 
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Fig. 7 A-B: Box-and-whisker plots of tibial axon density (A) and G-ratio (B) for PMP 22
+|++

 transgenic rats 

receiving G-CSF or placebo. Outliers are marked by°, IQR with small group size is marked by * 

 

 

 

 

 

 

  

Figure 6 A-B: Box-and-whiskerplots of axon density (A) and degree of demyelination (B) of tibial nerve 

sections of PMP22
+|++

 transgenic and wild-type animals receiving G-CSF or placebo. 

A B 

B 

A 

A 
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Nerve vascularization following G-CSF 
 

Because G-CSF has been shown to induce angiogenesis and arteriogenesis in the CNS, it 

seemed interesting to study the effects of G-CSF on vascularization in the sciatic nerve of 

PMP 22
+|++

 transgenic and wild-type rats. In order to obtain a first impression of nerve 

vascularization, we counted blood vessels on toluidine blue stained epoxy sections. We 

controlled and made our observations more precise using nerve immunohistochemistry for the 

Von-Willebrand factor, a component of endothelium. 

Toluidine blue stained blood vessel count 
 

Blood vessels were counted manually on toluidine blue stained epoxy cross sections of the 

distal sciatic nerve from 33 animals, 22 PMP 22
+|++

 transgenic and 11 wild-type animals. We 

observed a higher number of blood vessels per nerve section in transgenic animals compared 

to wild-types (48.6 ±27.31 vs 29.8 ±8.74 x10
2
/mm

2
; p = 0.034, fig. 8A). This difference 

sustained with respect to the nerve area (“      v            y”  5  8 ±2.61 per mm
2 

 vs 0.35 

±1.30 per mm
2
; p = 0.054; fig. 8B). We already reported that nerve caliber was larger in PMP 

22
+|++

 transgenic animals compared to wild-types (0.85 ±0.066 mm
2 

vs 0.92 ±0.120 mm
2
; p = 

0.029).  

 

Figure 8: A: Box-and-whisker plots of bloodvessel count on toluidine blue stained sciatic nerve sections 

from transgenic and wild-type rats receiving G-CSF or placebo. B: Trend line of means of blood vessel 

density (x10
2
/mm

2
) by G-CSF treatment or placebo. 

A 

 

B 
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Comparison of vascularization between animals treated with G-CSF and placebo, using this 

technique, revealed no significant dose-effect relation of G-CSF on vascularization (“blood 

vessel       ”; p = 0.643, fig. 9A; ‘blood vessel density’ p = 0.692, fig.9B).  

 

Within-group subanalysis of G-CSF or placebo treated PMP22 
+|++ 

transgenic and wild-type 

animals, showed no significant difference in blood vessel number or density between placebo 

and any of different concentrations of G-CSF (table 10, fig. 9C-D).  

 

 

 

Table 10: Blood vessel count, nerve area and blood vessel density on toluidine blue stained epoxy cross 

sections of sciatic nerves from PMP22 
+|++

 transgenic and wild-type animals treated with G-CSF or 

placebo. 

 
blood vessel 

count 
pa 

blood vessel 
density (/ mm2) 

pa nerve area (mm2) pa 

PMP 22
+|++

   

placebo (n=5) 35.8 ±26.79 0.634 39.5 ±29.59 0.651 0.90 ±0.079 0.490 

 0 μ /   ( =6) 50.7 ±38.11 

 

54.2 ±36.63  0.90 ±0.082 

 50 μ /   ( =6) 48.7 ±18.91 53.8 ±12.15  0.90 ±0.019 

 00 μ /   ( =5) 59.0 ±24.26 62.0 ±21.93  1.00 ±0.077 

Wild-type        

placebo (n=3) 29.3 ±9.02 0.860 34.0 ±7.41 0.928 0.85 ±0.090 0.951 

 0 μ /   ( =2) 35.00 ±2.83 

 

40.0 ±2.19  0.87 ±0.023 

 50 μ /   ( =3) 27.3 ±12.42 33.2 ± 6.49  0.84 ±0.094 

 00 μ /   ( =3) 29.3 ±10.26 35.5 ±12.97  0.83 ±0.695 

a One-way NOVA;  significance level p <0.05 (*) 
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B A 

D C 

Figure 9: Box-and-whisker plots of blood vessel number  and density  in toluidine blue stained sciatic 

nerve sections of  PMP22
+|++

 transgenic and wild type animals receiving G-CSF or placebo. A-B: 

grouped means. C-D: subgoup analysis in PMP22
+|++

 transgenic and wild type animals.  Outliers are 

marked by °. 
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Immunohistochemical study of vascularization 

 

To enhance the accuracy of the observations above, we visualized endothelial cells in distal 

sciatic nerve sections by immunofluorescence microscopy using antibodies against the 

endothelial von Willebrand factor (anti-VWF) (fig. 10 A-B). A total of 16 animals were 

analyzed, 10 transgenic and 6 wild-type animals, randomly distributed to placebo, 50 µg and 

100 µg G-CSF treatment. With this technique, we did not observe a significant difference in 

the number or density of blood vessels located in distal sciatic nerve sections of PMP22 
+|++

 

transgenic animals compared to wild-types (27.2 ±5.16 vs 29.7 ±2.80, p = 0.1789, fig. 11A-

B).  

 

 

 

Comparing vascularization between the 50 and 100 µg G-CSF treated animals and placebo, 

revealed a significant group-difference in vascularization (p = 0.048, Table 8, fig. 12A). 

Between group and post-hoc analysis did not reveal a linear dose-effect response; but revealed 

the 50 µg G-CSF dosing group to be lower in particular to the 100 µg G-CSF dosing group 

(LSD post hoc, p = 0.015) as well as to the placebo group. 

  

Figure 11: Box-and-whisker plots of blood vessel number (A) and blood vessel density (B) on anti-VWF 

stained sciatic nerve sections from PMP 22
+|++

 transgenic and wild-type rats receiving G-CSF or placebo.  

A B 
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Figure 10 A-D: blood vessels and macrophages in sciatic nerves of PMP 22
+|++

 transgenic rats 

 

 

A-B:  Transverse cryosections of distal sciatic nerves from PMP22+|++ rats receiving 100 

μg/kg G-CSF (A) or placebo (B) were stained with anti-VWF to visualize blood vessels 

(green, arrows). Cell nuclei were stained with DAPI (blue). (IHC, 40x magnification) 

C-D:  Semithin transverse sections of frozen distal sciatic nerve from PMP22 
+|++

 rats 

receiving 50, 100 μg/kg G-CSF or placebo were stained with anti-ED2 to visualize 

endoneural (C) and epineural (D) macrophages (red, arrows). Cell nuclei were stained 

with DAPI (blue). (IHC, 40x magnification) 

A B 

D C 
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Figure 12 : total blood vessel number and blood vessel density in sciatic nerves of PMP 22
+|++

 transgenic 

and wild-type rats receiving placebo or 50 or 100 µg G-CSF (° outlier). A: grouped mean of blood vessel 

number. B-C: subgroup analysis in PMP 22
+|++ 

transgenic and wild-type rats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8: blood vessel count and blood vessel density in sciatic nerve 

 Blood vessel number pa 
Blood vessel density 

(pro mm2) 
pa 

Placebo (n=5) 28.2 ±2.94 0.048 11.0 ±1.07 0.164 

50 μg/kg (n=6) 25.2 ±4.75 
 

9.3 ±2.40  

100 μg/kg (n=5) 31.6 ±3.21 10.9 ±0.8986  

a One-way ANOVA test;  significance level p <0.05 (*) 

 
 

 

 

A 

B 

A 

B 

D B 

C 
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Subanalysis among the two G-CSF dosing schemes and placebo for transgenic and wild-type 

animals suggested a significant group-difference in blood vessel density in PMP22 
+|++

 

transgenic animals (Table 11, Fig. 12 B-C). Post-hoc analysis again did not reveal a linear 

dose-effect response, and also pointed out the 50 µg G-CSF dosing group to be lower with 

respect to the 100 µg G-CSF dosing group as well as to the placebo group. In other words, 

there was no significant raise of blood vessel density with increasing concentrations of G-

CSF. 

 

 

Table 11:  Blood vessel count and density (immunofluorescent method), nerve area for transgenic and 

wild-type rats; G-CSF compared to placebo 

 

 

 

 

  

 

 

 

 

  

  

 
Blood vessel 

count 
pa 

Blood vessel 
density (/ mm2) 

pa 
Nerve area 

(mm2) 
pa 

PMP 22
+|++

   

placebo (n=3) 26.7 ±2.52 0.113 11.6 ±0.00 0.036 2.31 ±0.168 0.200 

50 μ /   ( = ) 24.0 ±5.29 
 

8.3 ±0.21  2.92 ±0.149 
 

 00 μ /   ( =3) 32.0 ±4.00 11.1 ±0.00  2.95 ±0.295 

Wild-type       

placebo (n=2) 30.5 ±2.12 0.507 10.3 ±0.02 0.767 3.00 ±0.242 0.161 

50 μ /   ( =2) 27.5 ±3.54 
 

22.3 ±0.02  2.45 ±0.068 
 

 00 μ /   ( =2) 31.0 ±2.80 9.0 ±0.00  2.84 ±0.269 

a One- way ANOVA test; significance level p <0.05 
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The immune system: role in early CMT? 
 

Because macrophages and T-helper-2 lymphocytes are thought to play a local role in the 

pathophysiology of CMT, we investigated the presence of inflammatory cells in sciatic nerve 

sections. We also investigated if there were endoneural granulocytes present in the sections as 

a possible effect of the administration of G-CSF. Distal sciatic nerve sections of 16 animals 

were studied, 10 PMP 22
+|++

 transgenic and 6 wild-type animals randomly distributed to three 

different dose groups (placebo, 50 µg and 100 µg G-CSF). 

The sections were analyzed with immunohistochemical staining against CD163 (ED2) for the 

presence of tissue macrophages (fig. 10 C-D). We noticed a perineural clustering of tissue 

macrophages in the nerve sections with fewer endoneural macrophages. There was no 

significant difference in the number of endoneural macrophages in transgenic animals 

compared to wild-type controls (23.2 ±12.72 in transgenic and 32.5 ±11.02 in wild-type 

                ’    test, p = 0.170). We did not find  statistically significant differences in the 

number of endoneural macrophages between animals receiving placebo, 50 or 100 µg G-CSF 

treatment (resp. 20.8 ±8.20; 24.8 ±9.30 and 34.8 ±17.05, One-Way ANOVA, p = 0.20).  

We could not visualize T-lymphocytes or granulocytes in the endoneurium with 

immunohistochemistry using antibodies to respectively CD3 and anti-elastase on subsequent 

sciatic nerve sections (not shown).  
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Discussion 

 
The main goal of this study was to examine the short-term effects of G-CSF on peripheral 

nerve myelination and axonal preservation in a rat model of CMT1A, the PMP22
+|++

 rat. 

Additionally, we studied the effects of G-CSF on the vascularization and cellular immune 

response in peripheral nerves of PMP22
+|++

 transgenic rats and wild-type animals.  

Previous investigations conducted at our institute found evidence that G-CSF had proliferative 

and anti-apoptotic effects on primary cultured rat Schwann cells, motoneurons and dorsal root 

ganglion neurons in vitro (Kleffner et al. 2011, unpublished results). However promising, our 

study could not confirm these findings in a rat model of CMT1A at the electrophysiological or 

histological level after two weeks of subcutaneous G-CSF therapy.  

 

No place for G-CSF in the treatment of CMT? 
 

Before concluding that there is no potential for G-CSF in the treatment of CMT(1A), it is 

important to consider the possibility of a false negative finding.  

First we need to verify if, and in which concentration, G-CSF reached the Schwann cells, 

dorsal root ganglion neurons and motoneurons of the studied nerves after subcutaneous 

injection. Direct measurement of G-CSF in the peripheral nerve would be the most accurate 

approach to define its passage over the blood-nerve barrier and measure the concentration at 

the target tissue. However, direct measurements of G-CSF in peripheral nerve lysates, anterior 

spinal cord or dorsal root ganglia were not performed in this study because of the high cost of 

such analysis. We delivered indirect proof of the systemic and dose-related activity of G-CSF 

in the blood by analyzing the white blood cell count, which was elevated in a dose-dependent 

way. Measurement of a dose-depended elevated spleen and liver weight contributed to the 

proof of systemic G-CSF activity since these organs are known to enlarge due to 

extramedullary hematopoiesis (Welte et al.,1996).  

It is possible that the final G-CSF concentration at the nerve level was insufficient to 

mimic the observed in vitro effects. The three different doses of G-CSF were based on studies 

in the CNS (see below). A higher dose of G-CSF may be required, but it has to be kept in 

           00μ /            x         p                                   y       v     

effects on the long term. 
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Second, we need to consider if the animal model for CMT1A was adequate. The PMP22
+|++

 

rat has been confirmed to be a reliable model that mimics the clinical situation in human 

CMT1A patients well, as described in previous work (Sereda et al., 1996, 2003; Grandis et al., 

2004; Fledrich et al., 2012). The electrophysiological and histological hallmarks of CMT1A 

were present in the PMP 22
+|++

 transgenic animals in our study at the early age of 4 weeks. 

We observed a three times lower mean sciatic NCV in transgenic rats compared to wild-type 

controls (4.0 vs 14.0 m/s) and a significant decreased proximal CMAP (0.22  vs 0.76 mV).  

Grandis et al. described comparable NCVs (5.2 m/s) in the CMT1A rat at 4 weeks of age, yet 

their measurements in wild-type animals were more than twice as high compared to our study 

(34.4 m/s). This difference may be attributed to the fact that we performed our 

electrophysiological analysis on tail nerves, while Grandis et al. used the sciatic nerve. At the 

histological level, we found no difference in total axon count or fiber density of the sciatic 

nerve between transgenic and wild-type animals, which is in line with the observations of 

Grandis et al. in animals < 8 weeks. We observed axonal loss in the tibial nerves of our PMP 

22
+|++

 rats compared to wild-types (“axon density”, resp. 51.5 ±6.05 vs. 59.6 ±3.67 

x10
2
/mm

2
), but found no data on the axon number in tibial nerves of young rats in literature to 

compare this result with. Clinical signs of distal muscle involvement (plantar muscle 

weakness), suggesting axonal degeneration, are reported in the study of Grandis et al. Signs of 

demyelination were observed in the form of an increased number of demyelinated axons in 

sciatic and tibial nerves, and increased G-ratio in sciatic but not in tibial nerves. We found 

resp. 10% and 7% demyelinated axons in sciatic and tibial nerves of transgenic animals and 

3% resp. 1%  in wild-types. These findings are comparable with the observations of Sereda et 

al. in eight week-old PMP22
+|++

 rats, who found demyelination but also axonal loss in sciatic 

nerves (Sereda et al., 2003). They also noticed less demyelination in the tibial nerve compared 

to the sciatic nerve, but observed no demyelination at all in wild-types. The difference in age 

(four versus eight weeks) or an inter-observer variability in analysis of myelination (manual 

counting) might explain the latter dissimilarity. We did not observe onion bulbs in sciatic or 

tibial nerve sections, which occurs only from 2.5 months of age according to the study of 

Sereda et al. Grandis et al. also rarely encountered onion bulbs in sections from 4 week old 

PMP22
+|++

 rats.  

Taken together, our data confirmed that the animal model provides sufficient 

electrophysiological and histological features of CMT1A making it an appropriate disease 

model. Nevertheless, the study could have benefited from clinical and histological hallmarks 

that can be noticed only in older animals. 
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The third and probably most important question is if fourteen days of G-CSF therapy are long 

enough to induce noticeable changes in histology and electrophysiology in our animal model. 

Since G-CSF pharmacology, to our knowledge, has not been studied before in the PNS at the 

time that our animal experiments were conducted, the only studies that were available to 

answer this question were G-CSF (subcutaneous delivered) studies conducted in CNS 

                          A z      ’               ’         .  

Several stroke studies in murine models noticed improvement of diverse study 

outcomes after short subcutaneous G-CSF administration dosed 10 t   00 μ /  , for example 

one day (Gibson et al., 2005; Sehara et al., 2007; Six et al., 2003; Solaroglu et al.,2006, 2009)  

or two to five days (Shyu et al., 2004; Yanqing et al., 2006; Taguchi et al., 2007). 

Nevertheless, stroke is an acute event characterized by different pathophysiological processes 

attacking previously healthy neurons. Regenerative mechanisms play a major role in outcome 

concerning the attached neurons and their supporting cells in the CNS. On the other hand, 

CMT1A is a slowly progressive degenerative disease in which the Schwann cells are 

constitutively affected. Regenerative stimulation may therefore be hindered by their primary 

dysfunction or may require a longer time of treatment.  

Neu            v                         ’           A z      ’               y   p    

lateral sclerosis (ALS) might serve as better models for study comparison, but have rarely 

been studied in terms of G-C                                           ’         , beneficial 

effects on dopaminergic neurons were seen after daily admin              0 μ /    -CSF 

subcutaneous for 13 days (Meurer et al., 2006) a    200 μ /         v     y  (Cao et 

al.,2006).   j          50 μ /   subcutaneous in two mouse models for A z      ’          

also resulted in functional and biochemical signs of improvement (Tsai et al., 2007).  In two 

mouse model studies for ALS and one for spinal cord injury, the ways of G-CSF 

administration were either via an intrathecal pump or carrier virus, making them 

incomparable.  

 

Knowing that short periods of subcutaneous G-CSF administration can cause noticeable 

effects in the CNS, the same dosage may by deduction be sufficient in the PNS provided that 

the G-CSF concentration at the nerve level and the mechanism of action in the CNS would be 

comparable in the PNS.  
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This brings us to the question which pathophysiological mechanism could be responsible for a 

G-CSF effect in the PNS. In the introduction we mentioned the neuroprotective properties of 

G-CSF in the CNS, that take place by a direct anti-apoptotic and proliferative effect on 

neurons, as well as by an indirect effect by mobilizing neuroprogenitor stem cells from the 

bone marrow. The studies that have been conducted in this domain involved a broad range of 

neurological disorders and shared that the common site of G-CSF action is thought to be on 

the neuron itself and not the surrounding microglia. Receptor activation was shown to occur 

specifically in adult neurons and neural progenitor cells (Schneider et al., 2005). In CMT1A, 

the primarily pathofysiological feature is not a neuron pathology; but a slowly progressive 

Schwann cell pathology that leads in later stages of the disease to axonal degeneration. Our 

pilot study was based on the finding of a G-CSF receptor on cultured rat primary Schwann 

cells in vitro with proliferative and anti-apoptotic effects. We suggested that the Schwann cell 

would be site of G-CSF action (Kleffner et al. 2011, unpublished results) in case of a benefit 

in early CMT1A, a finding that has been confirmed nor studied in other research projects so 

far. If we had aimed to study proliferative and anti-apoptotic effects of G-SCF on other sites 

of action; more particularly motoneurons and dorsal root ganglion neurons, a much longer 

time of evaluation should have to be applied that encompasses the propagated disease stage 

with axonal loss. Finally, the translation of the in vitro results into a living animal is not 

straightforward, and we already mentioned the prerequisite of a proper nerve penetration by 

G-CSF with this regard. 

 

 In conclusion, we have to omit that the study design raises important concerns regarding the 

length of therapy and disease stage of the animal model; that cannot allow us to draw definite 

conclusions on the potential effects of G-CSF in CMT pathology.  
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G-CSF and the immune response 
 

Next to the anti-apoptotic and proliferative effect on neurons and the mobilizing stimulus on 

neuroprogenitor stem cells, G-CSF is thought to induce a beneficial effect in CNS disease by 

regulation of local immune responses and stimulation of angiogenesis. (Schneider et al., 

2005). Since local inflammation contributes to the pathogenesis and progression of CMT, it 

seemed opportune to investigate the effect of G-CSF on PNS inflammation (Maurer et al. 

2002, Groh et al. 2012).  

In a mouse model for CMT, demyelination was accompanied by peri-axonal 

infiltration of macrophages and  T-lymphocytes, in order to remove myelin by phagocytosis 

(Maurer et al. 2002). Pro-inflammatory changes may play a role in other CNS and PNS 

disease. In an animal study for ALS, for example, G-CSF was shown to reduce inflammation 

both in the CNS and PNS. An increase of the availability of anti-inflammatory monocytes was 

observed, thereby delaying disease progression (Polari et al., 2011). We investigated the 

presence of macrophages, T-lymphocytes and granulocytes in distal sciatic nerve sections and 

compared both transgenic and wild-type animals for a possible effect of G-CSF. We were not 

able to confirm the findings of Mauer et al. in our rat model. It has to be taken in 

consideration that our observations were made at the early age of four weeks, whereas the 

observations by Mauer and colleagues were made in animals aged  over two months (Maurer 

et al. 2002).  Although a trend towards more macrophages was seen with the 100 µg G-CSF 

doses, this was statistically not significant (p=0.2). This insignificant result may be influenced 

by the small sample size (16 animals) that was available for immunohistochemical analysis. 

To make general conclusions, the intervention should be repeated in a larger sample.  

Some question marks about the role of the immune response in CMT and the actions 

of G-CSF have to be postulated with this regard. First, there is a high amount of cross-talk as 

a typical hallmark of regulatory factors of the immune system that also may apply to G-CSF, 

making its action in local immune responses unpredictable (Roberts et al.,2005; Anderlini et 

al., 2012). This may explain why G-CSF is reported to have both pro- and anti-inflammatory 

effects depending on the clinical setting (Weis et al., 1999; Hartung, 1998). Furthermore, 

multiple factors can influence G-CSF action directly or indirectly in vivo, and adaptive 

mechanisms may functionally interfere with its effect. One interfering factor could be 

downregulation of the G-CSF-R, which was described in bone marrow cells after endogenous 

elevation of G-CSF (Demetri et al., 1991; Avalos, 1996).  
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Several models for nerve injury on the other hand, suggest receptor upregulation at the 

neuronal level (Pitzer et al., 2010). In conclusion, it remains unclear what the specific role of 

G-CSF is in CNS or PNS inflammation. 

 

G-CSF and angiogenesis 
 

Several studies on experimental stroke documented the stimulatory effect of G-CSF on 

angiogenesis (Schneider et al. 2005; Lee et al., 2005; Bussolino et al, 1991). We were 

interested in studying the effect of G-CSF on angiogenesis in the PNS. G-CSF has a local 

proliferative influence on mature endothelial cells and mobilizes endothelial progenitor cells 

from the bone marrow (Körbling et al.,2006). Although the number of blood vessels appeared 

                                           v     00 μ /    -CSF, this finding was not 

statistically significant. We made our observation in a small number of animals. Extended 

animal numbers and observation time may be required to observe a significant difference. The 

therapeutic relevance of these findings and considerations requires further investigation.  

 

At least some new findings 
 

L  ’s discuss two interesting findings of this study that have not been described previously in 

CMT1A. We noticed a significant enlarged nerve area and a an elevated blood vessel number 

(on manual count) in the sciatic nerve of our PMP22
+|++

 transgenic rats compared to wild-

types. The interpretation of these features came out to be a challenge. We mentioned the study 

of Mauer et al. in which demyelination was accompanied by peri-axonal infiltration of 

macrophages and T-lymphocytes in a mouse model for CMT (Maurer et al., 2002). We could 

pose that a local inflammatory response in CMT may result in enlargement of the nerve 

diameter and enhance angiogenesis, which would indeed explain both features. We could not 

find significant differences in the endoneural presence of immune cells in transgenic animals 

compared to placebo, regardless of G-CSF treatment, so that this proposed mechanism could 

not be proven in our study. Nevertheless, due to the small sample size that was available for 

immunohistochemic analysis (10 transgenic and 6 wild type animals), this does not mean that 

the observations of Mauer and colleagues are invalid. The increase in endoneural blood 

vessels could in part account for the observed increased nerve area. The pathophysiology of 

the latter finding is unsure. It is known that local inflammation in the CNS may provide a 
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stimulus for neo-vascularization by the release of vascular growth factors, like vascular 

endothelium derived growth factor (VEGF) (Carmeliet, 2003). VEGF is a potent stimulator of 

survival and proliferation of endothelium, and can induce a similar response in adult neurons, 

astroglia and Schwann cells who also express functional VEGF receptors (Sondell et al., 

1999). The Schwann cell on the other hand, is known to secrete VEGF during embryogenesis 

to direct vascularization along the nerve path  (Zacchigna et al., 2008). Interestingly, VEGF  

can also be induced by G-CSF (Anderlini et al., 2012). In vivo and in vitro studies merged 

that VEGF has pleiotropic activity in the nervous system, including neurogenesis, neuronal 

migration, survival of multiple adult axons types and axon guidance after injury (for review 

see Zacchigna et al., 2008; Mackenzie et al., 2012). In a rat model for diabetic neuropathy, 

one study documented upregulation of VEGF in Schwann cells and neurons upon functional 

alterations in the peripheral nerves (Samii et al., 1999). We pose the theoretical hypothesis 

that the demyelination and possibly local inflammation in the peripheral nerve in CMT1A 

might trigger release of VEGF from Schwann cells or other supportive cells, leading to 

increased vascularization. Again, this study did not investigate this theoretical mechanism of 

action.  

 

G-CSF for CMT: end of story? 
 

Finally, some remarks have to be made regarding a hypothetical use of G-CSF for CMT 

p         B                     ’                  CMT p               preferably be offered a 

lifelong therapy that is safe on the short and long term. It should be easy to administer and 

have a low adverse drug response profile in the light of the mild and slowly progressive 

symptoms of CMT.  

On the short term, G-CSF has been proven to be save and has minor adverse reactions, with 

leukocytosis and bone pain being the most frequent side-effects. The effect of chronic 

leukocytosis, however, is insufficiently studied in humans. Splenomegaly and risk of spleen 

rupture is possible  with chronic use (Anderlini et al.,2002). Some concerns are postulated in 

literature regarding the safety of G-CSF in the development of malignancy. Two randomized 

clinical trials in more than 5000 healthy subjects showed no significant relation to 

malignancy, but the follow up-period was short (for review see Beekman et al; 2012).  
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On the long term, the risk of a myelodysplastic syndrome (MDS) development remains 

unclear and there is a suspicion of elevated MDS prevalence when G-CSF is given to patients 

with breast cancer.  

Next to this concern, the route of G-CSF administration is less favorable. It is given parenteral 

because of gastrointestinal break down, and because of the short plasma half life (t1/2 = 4 

hours), some authors recommend a continuous mode of delivery in chronic settings by either a 

subcutaneous pump (Pitzer et al., 2010) or viral carrier (Henriques et al., 2010). This makes 

G-CSF  less attractive for chronic daily use.  
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Conclusions and perspectives for further research   

 

This research project was designed as a pilot study to examine the short-term effects of G-

CSF on peripheral nerve myelination, axonal containment and vascularization in a rat model 

for CMT1A. Our findings did not support the beneficial effect of G-CSF on CMT1A rat 

Swann cells that was seen in the in-vitro observations at an electrophysiological or 

histological level. A longer period of treatment may be required to show beneficial effects of 

G-CSF. Nerve regeneration is a slow process after all, and an evaluation period of two months 

or more better parallels the mechanisms of de- and re-myelination in CMT1A. This would 

allow to evaluate the effects on clinical symptoms seen at this disease stage in muscle 

strength, gait and balance of the animal model. Since            00 μ /    -CSF given for 

longer than 13 weeks is known to cause hind-leg problems in the healthy rat model due to 

peri-articular swelling (Zsebo et al., 1986), testing of forelimbs would be recommended to 

avoid any interference.  

This study made some unique electrophysiological and histological observations in the 

PMP22
+|++

 rat at four weeks and observed some interesting new features concerning the 

peripheral nerve vascularization of CMT1A rats which may serve as a basis for future 

research. The unexpected finding of enlarged nerve area and extended vascularization in 

PMP22 transgenic rats demands further study. More sensitive methods to detect 

vascularization and, above all, a larger sample size are required in order to accurately 

investigate and quantify this feature, like analysis of endothelium with different markers or 

3D-reconstructions of blood vessels to explore branching. Furthermore, ensuing research 

should be done to identify the mechanisms involved in vascularization of diseased and  

healthy nerves (Carmeliet et al., 2003). The role of G-CSF and other hematopoietic growth 

factors in neuroprotection and regeneration has been established in experimental models in 

the CNS and the PNS. Further research will be necessary to evaluate the role of hematopoietic 

growth factors in the PNS. The pathophysiology and impact of local inflammation in 

degenerative neuropathies also requires further investigation (Maurer et al., 2002; Fledrich et 

al., 2012). It is our hope that better insight in these domains might open windows for further 

therapeutic strategies. 

Despite extensive research during the past decades, there is to date no causal therapy for any 

subtype of the CMT family (Young et al., 2008; Fledrich et al., 2012). Therapeutic strategies 
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should be based on the underlying disease mechanism. Pathophysiological studies 

demonstrated several signal transduction pathways that are involved in myelination and are 

disrupted in CMT. Further insight into the molecular pathophysiology of these pathways may 

provide new strategies for therapy. From this point of view, therapies that repair or modify the 

PMP22 duplication or alter its mRNA transcripts to achieve a balanced control of PMP22 

expression seem the most promising findings for the treatment of CMT1A. Both vitamin C 

and progesterone antagonist Onapriston reduced the toxic overexpression of PMP22 mRNA 

in murine models for CMT1A. Nevertheless, these effects could not be established in humans 

so far. Caution should be taken when pharmacologically lowering the PMP22 gene 

expression, because too little expression can cause neuropathy with liability to pressure 

palsies (HNPP) (Fledrich et al., 2012). Research on this domain is ongoing and currently 

focuses on the use of viral vectors and siRNA in PMP22 gene modulation. Another strategy, 

in line with the scope of this study, is to identify substances that support axon containment. 

This is relevant for CMT, as the axonal degeneration is the direct cause of clinical 

manifestations rather than the demyelination. The neurotrophic factor Neurothrophin 3 was 

proven to favor axonal regeneration and sensory loss in a small clinical pilot study (Sahenk et 

al., 2005), but these findings have to date not been confirmed. Finally, drugs that restore 

misfolded proteins or target their overload of the cell’              pathways are a last 

therapeutic target under study in CMT animal models (Khajavi et al., 2007). They might be 

promising for distinct subtypes of CMT. 

We hope that our study may contribute as an aid and inspiration to develop future therapeutic 

strategies for CMT. 
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