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Abstract. In this paper we show that the universal C∗-algebra satisfying the Cuntz-Li
relations is generated by an inverse semigroup of partial isometries. We apply Exel’s theory
of tight representations to this inverse semigroup. We identify the universal C∗-algebra as
the C∗-algebra of the tight groupoid associated to the inverse semigroup.

1. Introduction

Let R be an integral domain with only finite quotients. Assume that R is
not a field and let K be its field of fractions. We denote the set of nonzero
elements in R (resp. K) by R× (resp. K×). In [3], Cuntz and Li studied
the C∗-algebra, denoted Ar[R], on ℓ

2(R) generated by the isometries induced
by the multiplication and addition operations of the ring R. They showed
that it is simple and purely infinite. It was also shown that this C∗-algebra
is the universal C∗-algebra generated by isometries satisfying the relations
reflecting the semigroup multiplication in R ⋊ R× and one more important
relation satisfied by the range projections. Also it was shown that Ar[R] is
Morita-equivalent to a crossed product of the form C0(R)⋊ (K ⋊K×) where
R is a locally compact Hausdorff space. For R = Z, R = Af is the space of
finite adeles. Alternate approaches to the algebra Ar[R] were considered in
[10], [2], and [19].

In [10], the situation in [3] was abstracted. Consider a semidirect product
N ⋊ H and a normal subgroup M of N . Let P := {a ∈ H | aMa−1 ⊂ M}.
Then P is a semigroup. In [10], under certain hypotheses regarding the pair
(G = N ⋊ H,M), the crossed product algebra C0(N) ⋊ G was considered.
Here N is the profinite completion of N with respect to the group topology
induced by the neighborhood base {aMa−1}a∈H at the identity. Let M be
the closure of M in N . In [10], it was shown that the crossed product algebra
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C0(N)⋊G is Morita-equivalent to the C∗-algebra of the groupoid N⋊G|M . In

[10], it was shown that when H is abelian, C∗(N ⋊G|M ) is the universal C∗-
algebra generated by isometries satisfying the relations reflecting the semigroup
multiplication in M ⋊ P and one more important relation among the range
projections. They also obtained sufficient conditions which will ensure that
the reduced C∗-algebra C∗

red(N ⋊G|M ) is simple and purely infinite.
Our objective in this paper is to weaken the hypothesis that H is abelian.

Instead we assume H = PP−1 = P−1P . This allows us to consider pairs
like (Qn ⋊GLn(Q),Zn). Also we start with the universal C∗-algebra, denoted
A[N ⋊ H,M ], generated by isometries satisfying the Cuntz-Li relations (see
Def. 2.11). We show that A[N⋊H,M ] is generated by an inverse semigroup of
partial isometries denoted by T . We show that A[N ⋊H,M ] is isomorphic to
the C∗-algebra of the groupoid Gtight , considered in [6], of the inverse semigroup
T . We also identify the groupoid Gtight explicitly and show that Gtight is

isomorphic to N⋊G|M . The author had done a similar analysis for the Cuntz-
Li algebra associated to the ring Z in [19]. At the end of this paper, we prove
a duality result analogous to the duality result obtained in [4].

2. Semidirect products and the Cuntz-Li relations

Let G = N ⋊H be a semidirect product and let M be a normal subgroup
of N . Let P := {a ∈ H | aMa−1 ⊂ M}. Then P is a semigroup containing
the identity e. Assume that the following holds.

(C1) The group H = PP−1 = P−1P .
(C2) For every a ∈ P , the subgroup aMa−1 is of finite index in M .
(C3) The intersection

⋂
a∈P aMa−1 = {e} where e denotes the identity

element of G.

Let U = {aMa−1 | a ∈ H}. In [10], the following conditions were required
to be satisfied. (Cp. [10, Sec. 2].)

(E1) Given U, V ∈ U , there exists W ∈ U such that W ⊂ U ∩ V .
(E2) If U, V ∈ U and U ⊂ V then U is of finite index in V .
(E3) The intersection

⋂
U∈U U = {e}.

We claim that (E1) is equivalent to the condition H = PP−1. Assume (E1).
Let a ∈ H be given. Then there exists c ∈ H such that a−1Ma∩M ⊇ cMc−1.
Then c ∈ P and ac ∈ P . Note that a = (ac)c−1 ∈ PP−1. Thus we have
H = PP−1.

Now suppose H = PP−1. First note that for every a, b ∈ P , aP ∩ bP is
nonempty. Now let c, d ∈ H be given. Write c = a1a

−1
2 and d = b1b

−1
2 with

ai, bi ∈ P . Choose α, β ∈ P such that a1α = b1β. Let a := a1α. Then
c−1a = a2α ∈ P . Similarly d−1a ∈ P . Hence aMa−1 ⊂ cMc−1 ∩ dMd−1.
Thus (E1) holds.

Given (E1), note that (E3) is equivalent to (C3). For if a ∈ H , there
exists b ∈ P such that aMa−1 ∩ M ⊇ bMb−1. Thus for every a ∈ H ,
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aMa−1 ⊇
⋂

b∈P bMb−1. Hence
⋂

U∈U U =
⋂

a∈P aMa−1. Thus given (E1),
(E3) is equivalent to (C3). Clearly (E2) is equivalent to (C2).

Remark 2.1. In [10], the Cuntz-Li algebra associated to the pair (N ⋊H,M)
(cp. Def. 2.11) was considered when H is abelian (cp. Hypothesis 9.2 and
Theorem 9.11 in [10]). Here, we consider a slightly more general situation. We
assume H = P−1P = PP−1.

Remark 2.2. The condition H = P−1P = PP−1 is equivalent to saying
that P generates H and P is right and left reversible i.e. given a, b ∈ P , the
intersections Pa ∩ Pb and aP ∩ bP are nonempty. Cancellative semigroups
which are right (or left) reversible are called Ore semigroups. For more details
on Ore semigroups, we refer to [5].

A semigroup P is called right reversible (left reversible) if Pa∩Pb (if aP∩bP )
is nonempty for every a, b ∈ P .

Throughout this article, whenever we write G = N ⋊H and M is a normal
subgroup of N , we assume that conditions (C1), (C2) and (C3) hold. For
a ∈ P , let Ma = aMa−1. We will use this notation throughout.

Lemma 2.3. Let G = N ⋊H and M be a normal subgroup of N . Let N0 :=⋃
a∈P a

−1Ma. Then N0 is a subgroup of N and is invariant under conjugation
by H.

Proof. First observe that N0 is closed under inversion. Let a, b ∈ P be given.
Choose an element c in the intersection Pa ∩ Pb. Then a−1Ma ⊂ c−1Mc and
b−1Mb ⊂ c−1Mc. Now it follows that N0 is closed under multiplication. Thus
N0 is a subgroup of N .

Obviously N0 is invariant under conjugation by P−1. Let a, b ∈ P be given.
Since P is right reversible, there exists c, d ∈ P such that ab−1 = c−1d. Now
observe that a(b−1Mb)a−1 = c−1(dMd−1)c ⊂ c−1Mc. Thus it follows that N0

is closed under conjugation by P . This completes the proof. �

Remark 2.4. As a consequence of Lemma 2.3, we may very well assume as
in [10] that N =

⋃
a∈P a

−1Ma.

Let us consider a few examples which fits the setup that we are considering.

Example 2.5 ([3]). Let R be an integral domain such that for every nonzero
m ∈ R, the ideal generated bym is of finite index in R. Assume that R is not a
field. We denote the field of fractions of R by Q and the set of nonzero elements
in Q by Q×. The multiplicative group Q× acts on Q by multiplication. Now
let N := Q, H := Q× and M := R. Then P = R× where R× denotes the
set of nonzero elements in R. Then conditions (C1)–(C3) hold for the pair
(N ⋊H,M).

Example 2.6 ([10]). Let F be a finite group and consider the direct sum
N := ⊕ZF . Then H := Z acts on N by shifting. Let M := ⊕NF be the
normal subgroup of N . Then it is easily verifiable that the pair (N ⋊H,M)
satisfies the hypothesis (C1)–(C3).
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In the following two examples, we think of elements of Qn as column vectors.

Example 2.7. Let A be a n × n integer dilation matrix. In other words, A
is an n× n matrix with integer entries such that every complex eigenvalue of
A has absolute value greater than 1. Note that A is invertible over Q and
| det(A)| > 1. The matrix A acts on Qn by matrix multiplication and thus
induces an action of Z on Qn. We let the generator 1 of Z act on Qn by
1.v = Av for v ∈ Qn. Let N := Qn, H := Z and M := Zn. Then P = N. Let
us verify the hypothesis (C1)–(C3).

(C1) Note that H is abelian and H = PP−1 = P−1P .
(C2) For r ≥ 0, the index of ArZn is of finite index in Zn and in fact its

index is | det(A)|r .
(C3) Lemma 4.1 of [8] implies that the operator norm ‖A−m‖ converges to

0 as m tends to infinity. Thus if 0 6= v ∈ ⋂∞
r=0A

rZn, then for every
m ≥ 0, A−mv ∈ Zn. Thus we have 1 ≤ ‖A−mv‖ ≤ ‖A−m‖‖v‖ which
is a contradiction. Thus (C3) holds.

The case n = 1 and A = p where p is a prime number was discussed in [12].
In the previous example, we can consider integer matrices other than dilation
matrices. It is possible that (C3) is satisfied for an integer matrix A such that
| det(A)| > 1 and

⋂
r>0A

rZn = {0} without A being a dilation matrix. In fact
we have the following nice characterization of condition (C3) when n = 2.

Lemma 2.8. Let A be a 2 × 2 matrix with integer entries. Assume that
| det(A)| > 1. Then the following are equivalent.

(1) The intersection
⋂

r≥0A
rZ2 is trivial.

(2) Neither 1 nor −1 is an eigenvalue of A.

Proof. Suppose
⋂

r≥0A
rZ2 = {0}. If 1 is an eigenvalue of A then there exists

a nonzero v ∈ Q2 such that Av = v. By clearing denominators, we can assume
that v ∈ Z2. Then clearly v ∈ ⋂r≥0A

rZ2. Thus we have shown that 1 is not
an eigenvalue of A. Similarly we can show −1 is not an eigenvalue of A.

Now assume that neither 1 nor −1 is an eigenvalue of A. Let Γr := ArZ2 and
Γ :=

⋂
r≥0 Γr. Since Γ ⊂ Γr ⊂ Z2, we have [Z2 : Γ] ≥ [Z2 : Γr] = | det(A)|r .

Hence Γ cannot be of finite index in Z2. This implies that Γ is of rank at most
1. If Γ is rank 1 then there exists a nonzero v ∈ Z2 such that Γ = Zv. But
A : Γ → Γ is a bijection. Thus it must either be multiplication by 1 or by
−1. In other words, v is an eigenvector for A with eigenvalue 1 or −1. This is
a contradiction. Thus Γ cannot be of rank 1 which in turn implies Γ = {0}.
This completes the proof. �

The matrix A :=

[
0 2
1 −2

]
has eigenvalues

√
3 − 1 and −

√
3 − 1. But A is

not a dilation matrix but still (C3) holds for A.

Remark 2.9. It is not clear to the author whether (C3) can be characterized
in terms of eigenvalues of the matrix in the higher dimensional case.
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Let us now consider an example where H is nonabelian.

Example 2.10. Let N = Qn and H be a subgroup of GLn(Q) containing the
nonzero scalars. Just as in Example 2.7, H acts on N by matrix multiplication.
Let M = Zn. Then P consists of elements of H whose entries are integers.

(C1) Let A ∈ H be given. Then there exists a nonzero integer m such that
mA = Am ∈ P . Hence H = PP−1 = P−1P .

(C2) ForA ∈ P , the subgroupAZn is of finite index and its index is | det(A)|.
(C3) Since

⋂
m∈Z× mZn = {0}, it follows that

⋂
A∈P AZ

n = {0}.
Definition 2.11. Let G := N⋊H be a semidirect product andM be a normal
subgroup ofN such that (C1)–(C3) holds. We let A[N⋊H,M ] be the universal
C∗-algebra generated by a set of isometries {sa | a ∈ P} and a set of unitaries
{u(m) | m ∈M} satisfying the following relations.

sasb = sab

u(m)u(n) = u(mn)

sau(m) = u(ama−1)sa∑

k∈M/Ma

u(k)eau(k)
−1 = 1

where ea denotes the final projection of sa.

Note that u(k)eau(k)
−1 depends only on the coset k(Ma). Moreover if k1

and k2 lie in different cosets of Ma then u(k1)eau(k1)
−1 and u(k2)eau(k2)

−1

are orthogonal.
For a ∈ P and m ∈ M , consider the operators Sa and U(m) on ℓ2(M) ⊗

ℓ2(H) defined as follows

Sa(δn ⊗ δb) := δana−1 ⊗ δab

U(m)(δn ⊗ δb) := δmn ⊗ δb.

Then sa → Sa and u(m) → U(m) gives a representation of A[N ⋊ H,M ] on
the Hilbert space ℓ2(M) ⊗ ℓ2(H). Let us call this representation the regular
representation and denote its image by Ar[N ⋊H,M ].

Remark 2.12. It should be noted that the regular representation for integral
domains considered in [3] is different from ours.

3. An inverse semigroup for the Cuntz-Li relations

The main aim of this section is to show that the C∗-algebra A[N ⋊H,M ]
is generated by an inverse semigroup of partial isometries. We begin with a
lemma similar to Lemma 1 of Section 3.1 in [3].

Lemma 3.1. For every a, b ∈ P , one has

ea =
∑

k∈M/Mb

u(aka−1)eabu(aka
−1)−1.
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Proof. One has

ea = sas
∗
a

= sa

( ∑

k∈M/Mb

u(k)ebu(k)
−1

)
s∗a

=
∑

k∈M/Mb

u(aka−1)saebs
∗
au(aka

−1)−1

=
∑

k∈M/Mb

u(aka−1)eabu(aka
−1)−1.

This completes the proof. �

Let X be the linear span of {u(k)ebu(k)−1 | b ∈ P, k ∈ M}. Denote the
set of projections in X by F . By Lemma 3.1 and the left reversibility of P ,
it follows that f ∈ F if and only if there exists b ∈ P such that f is in the
linear span of {u(k)ebu(k)−1}. The following lemma is an immediate corollary
of Lemma 3.1 and the fact that P is left reversible.

Lemma 3.2. The set F is a commutative semigroup of projections. More-
over F is invariant under the maps x → sbxs

∗
b for every b ∈ P and x →

u(m)xu(m)−1 for every m ∈M .

Now we show that F is also invariant under conjugation by s∗a for every
a ∈ P .

Lemma 3.3. Let a ∈ P be given. If f ∈ F , then s∗afsa ∈ F . Moreover,
s∗au(m)ebu(m)−1sa is in the linear span of {u(k)ea−1cu(k)

−1} where c is any
element in aP ∩ bP .
Proof. Let a ∈ P and f ∈ F be given. First observe that s∗afsa is selfadjoint.
Also

(s∗afsa)
2 = s∗afsas

∗
afsa

= s∗afeafsa

= s∗aeafsa (since F is commutative)

= s∗afsa.

Thus s∗afsa is a projection. Now to show that s∗afsa ∈ F , it is enough to
consider the case when f = u(m)ebu(m)−1. Now let c ∈ aP ∩ bP and write
c = aα = bβ with α, β ∈ P .

Let r1, r2, · · · , rn be distinct representatives ofM/Mβ. Then by Lemma 3.1,
it follows that

s∗au(m)ebu(m)−1sa =

n∑

i=1

s∗au(mbrib
−1)ebβu(mbrib

−1)−1sa

=
n∑

i=1

s∗au(mbrib
−1)eaαu(mbrib

−1)−1sa.
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The term s∗au(mbrib
−1)eaαu(mbrib

−1)−1sa survives if and only if eaαu(mbri
b−1)sa 6= 0 and that is if and only if eaαu(mbrib

−1)eau(mbrib
−1)−1 6= 0. But

by Lemma 3.1 this happens precisely when there exists ti ∈ M/Mα such that
mbrib

−1 ≡ atia
−1modMaα.

Let

A := {i | There exists ti such that mbrib
−1 ≡ atia

−1 mod Maα}.
For every i ∈ A, choose ti such that mbrib

−1 ≡ atia
−1 mod Maα. Now we

have

s∗au(m)ebu(m)−1sa =

n∑

i=1

s∗au(mbrib
−1)eaαu(mbrib

−1)−1sa

=
∑

i∈A

s∗au(mbrib
−1)eaαu(mbrib

−1)−1sa

=
∑

i∈A

s∗au(atia
−1)eaαu(atia

−1)−1sa

=
∑

i∈A

u(ti)s
∗
aeaαsau(ti)

−1

=
∑

i∈A

u(ti)eαu(ti)
−1.

This completes the proof. �

Let us isolate the computation in the previous lemma in a remark. This
will be used later.

Remark 3.4. Let a, b ∈ P be given. Let c ∈ aP ∩ bP . Choose α and β in
P such that c = aα = bβ. Conjugation by a sends Mα to Mc. Thus we get a
map denoted πa

α : M/Mα → M/Mc. Similarly conjugation by b gives a map
πb
β : M/Mβ → M/Mc. Note that both πa

α and πb
β are injective. Denote the

quotient map M →M/Mc by qc. For m ∈M , define

Am := {r ∈M/Mβ | qc(m)πb
β(r) ∈ πa

α(M/Mα)}.
Then the computation in Lemma 3.3 can be restated as follows

s∗au(m)ebu(m)−1sa

=
∑

r∈Am

u
((
πa
α

)−1
(qc(m)πb

β(r))
)
eαu

((
πa
α

)−1
(qc(m)πb

β(r))
)−1

.

Now we show that A[N ⋊ H,M ] is generated by an inverse semigroup of
partial isometries.

Proposition 3.5. Let T := {s∗au(m)fu(m′)sa′ | m,m′ ∈ M,a, a′ ∈ P , and
f ∈ F}. Then T is an inverse semigroup of partial isometries containing 0.
Moreover the set of projections in T coincides exactly with F . Also the linear
span of T is a dense ∗-subalgebra of A[N ⋊H,M ].
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Proof. The fact that T is closed under multiplication follows from the following
calculation. Let a1, a2, b1, b2 ∈ P , m1,m2, n1, n2 ∈ M and e, f ∈ F be given.
Choose c ∈ Pb1 ∩ Pa2 and write c as c = βb1 = αa2. Observe that

s∗a1
u(m1)eu(m2)sa2s

∗
b1u(n1)fu(n2)sb2

= s∗a1
u(m1m2)u(m

−1
2 )eu(m2)s

∗
αsαsa2s

∗
b1s

∗
βsβu(n1)fu(n

−1
1 )u(n1n2)sb2

= s∗a1
u(m1m2)u(m

−1
2 )eu(m2)s

∗
αsαa2s

∗
βb1sβu(n1)fu(n

−1
1 )u(n1n2)sb2

= s∗a1
u(m1m2)s

∗
αsαu(m

−1
2 )eu(m2)s

∗
αscs

∗
csβu(n1)fu(n

−1
1 )s∗βsβu(n1n2)sb2

= s∗a1
s∗αu(αm1m2α

−1)
(
sαu(m

−1
2 )eu(m2)s

∗
α

)

ec
(
sβu(n1)fu(n

−1
1 )s∗β

)
u(βn1n2β

−1)sβsb2

= s∗αa1
u(αm1m2α

−1)
(
sαu(m

−1
2 )eu(m2)s

∗
α

)

ec
(
sβu(n1)fu(n

−1
1 )s∗β

)
u(βn1n2β

−1)sβb2

= s∗αa1
u(αm1m2α

−1)(sαẽs
∗
α)ec(sβ f̃ s

∗
β)u(βn1n2β

−1)sβb2

where ẽ = u(m−1
2 )eu(m2) and f̃ = u(n1)fu(n1)

−1. The above calculation
together with Lemma 3.2 implies that T is closed under multiplication. Obvi-
ously T is closed under the involution ∗.

Now let us show that every element of T is a partial isometry. Let v :=
s∗au(m)fu(m′)sa′ be an element of T . Then

vv∗ = s∗a

(
u(m)

(
fu(m′)ea′u(m′)−1f

)
u(m)−1

)
sa.

Now Lemma 3.2 and Lemma 3.3 implies that vv∗ ∈ F . Thus we have shown
that every element of T is a partial isometry and the set of projections in T
coincides with F . In other words T is an inverse semigroup.

Since T is closed under multiplication and involution, it follows that the
linear span of T is a ∗-algebra. Moreover T contains {sa | a ∈ P} and {u(m) |
m ∈M}. Thus the linear span of T is dense in A[N ⋊H,M ]. This completes
the proof. �

The following equality will be used later. Let a1, a2, b1, b2 ∈ P andm1,m2 ∈
M be given. Choose c ∈ Pb1 ∩ Pa2 and write c as c = βb1 = αa2. Now the
computation in Proposition 3.5 gives the following equality

(3.1) s∗a1
u(m1)sb1s

∗
a2
u(m2)sb2 = s∗βa1

u(βm1β
−1)ecu(αm2α

−1)sαb2

Remark 3.6. We also need the following fact. If v ∈ T , let us denote its
image in the regular representation by V . Observe that v 6= 0 if and only if
V 6= 0. This is clear for projections in T . Now let v ∈ T be a nonzero element.
Then vv∗ ∈ F is nonzero. Thus V V ∗ 6= 0 which implies V 6= 0.

In the remainder of this article, we reserve the letter T to denote the inverse
semigroup in Proposition 3.5 and F to denote the set of projections in T .
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4. Tight representations of inverse semigroups

In this section, we show that the identity representation of T in A[N⋊H,M ]
is tight in the sense of Exel and the C∗-algebra of the tight groupoid associated
to T is isomorphic to A[N ⋊ H,M ]. First let us recall the notion of tight
characters and tight representations from [6].

Definition 4.1. Let S be an inverse semigroup with 0. Denote the set of
projections in S by E. A character for E is a map x : E → {0, 1} such that

(1) the map x is a semigroup homomorphism, and
(2) x(0) = 0.

We denote the set of characters of E by Ê0. We consider Ê0 as a locally

compact Hausdorff topological space where the topology on Ê0 is the subspace
topology induced from the product topology on {0, 1}E.

For a character x of E, let Ax := {e ∈ E | x(e) = 1}. Then Ax is a
nonempty set satisfying the following properties.

(1) The element 0 /∈ Ax.
(2) If e ∈ Ax and f ≥ e then f ∈ Ax.
(3) If e, f ∈ Ax then ef ∈ Ax.

Any nonempty subset A of E for which (1), (2) and (3) are satisfied is called
a filter. Moreover if A is a filter then the indicator function 1A is a character.
Thus there is a bijective correspondence between the set of characters and
filters. A filter is called an ultrafilter if it is maximal. We also call a character
x maximal or an ultrafilter if its support Ax is maximal. The set of maximal

characters is denoted by Ê∞ and its closure in Ê0 is denoted by Êtight .
We refer to [19, Cor. 3.3] for the proof of the following lemma.

Lemma 4.2. Let A be a unital C∗-algebra and E ⊂ A be an inverse semi-
group of projections containing {0, 1}. Suppose that E contains a finite set
{e1, e2, · · · , en} of mutually orthogonal projections such that

∑n
i=1 ei = 1.

Then for every maximal character x of E, there exists a unique ei for which
x(ei) = 1.

Let us recall the notion of tight representations of semilattices from [6] and
from [7]. The only semilattice we consider is that of an inverse semigroup of
projections or in other words the idempotent semilattice of an inverse semi-
group. Also our semilattice contains a maximal element 1. First let us recall
the notion of a cover from [6].

Definition 4.3. Let E be an inverse semigroup of projections containing {0, 1}
and Z be a subset of E. A subset F of Z is called a cover for Z if given a
nonzero element z ∈ Z there exists an f ∈ F such that fz 6= 0. A cover F of
Z is called a finite cover if F is finite.

The following definition is actually Proposition 11.8 in [6].
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Definition 4.4. Let E be an inverse semigroup of projections containing
{0, 1}. A representation σ : E → B of the semilattice E in a Boolean al-
gebra B is said to be tight if σ(0) = 0 and given e 6= 0 in E and for every finite
cover F of the interval [0, e] := {x ∈ E | x ≤ e}, one has supf∈F σ(f) = σ(e).

Let A be a unital C∗-algebra and S be an inverse semigroup containing
{0, 1}. Denote the set of projections in S by E. Let σ : S → A be a uni-
tal representation of S as partial isometries in A. Let σ(C∗(E)) be the C∗-
subalgebra in A generated by σ(E). Then σ(C∗(E)) is a unital, commutative
C∗-algebra and hence the set of projections in it is a Boolean algebra which we
denote by Bσ(C∗(E)). We say the representation σ is tight if the representation
σ : E → Bσ(C∗(E)) is tight. The proof of the following lemma can be found in
[19, Lemma 3.6, p. 7].

Lemma 4.5. Let X be a compact metric space and E ⊂ C(X) be an inverse
semigroup of projections containing {0, 1}. Suppose that for every finite set of
projections {f1, f2, · · · , fm} in E, there exists a finite set of mutually orthogo-
nal nonzero projections {e1, e2, · · · , en} in E and a matrix (aij) such that

n∑

i=1

ei = 1,

fi =
∑

j

aijej.

Then the identity representation of E in C(X) is tight.

As in [19], we prove that the identity representation of T in A[N ⋊H,M ]
is tight.

Proposition 4.6. The identity representation of T in A[N ⋊H,M ] is tight.

Proof. We apply Lemma 4.5. Let {f1, f2, · · · , fn} be a finite set of projections
in T . By definition, given i there exists ai ∈ P such that fi is in the linear
span of {u(k)eai

u(k)−1}. Let c ∈ ⋂n
i=1 aiP . By Lemma 3.1, it follows that for

every i, fi is in the linear span of {u(k)ecu(k)−1 | k ∈M/cMc−1}. Appealing
to Lemma 4.5, we can conclude that the identity representation of T in A[N ⋊
H,M ] is tight. This completes the proof. �

Now we show that A[N ⋊ H,M ] is isomorphic to the C∗-algebra of the
groupoid Gtight associated to T . For the convenience of the reader, we recall
the construction of the groupoid Gtight , considered in [6], associated to an
inverse semigroup with 0.

Let S be an inverse semigroup with 0 and let E denote its set of projections.

Note that S acts on Ê0 partially. For x ∈ Ê0 and s ∈ S, define (x.s)(e) =
x(ses∗). Then

• The map x.s is a semigroup homomorphism, and
• (x.s)(0) = 0.
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But x.s is nonzero if and only if x(ss∗) = 1. For s ∈ S, define the domain and
range of s as

Ds := {x ∈ Ê0 | x(ss∗) = 1},
Rs := {x ∈ Ê0 | x(s∗s) = 1}.

Note that both Ds and Rs are compact and open. Moreover s defines a home-

omorphism from Ds to Rs with s∗ as its inverse. Also observe that Êtight is
invariant under the action of S.

Consider the transformation groupoid Σ := {(x, s) | x ∈ Ds} with the
composition and the inversion being given by

(x, s)(y, t) := (x, st) if y = x.s,

(x, s)−1 := (x.s, s∗).

Define an equivalence relation ∼ on Σ as (x, s) ∼ (y, t) if x = y and if there
exists an e ∈ E such that x ∈ De for which es = et. Let G = Σ/ ∼. Then G is a
groupoid as the product and the inversion respects the equivalence relation ∼.
Now we describe a topology on G which makes G into a topological groupoid.

For s ∈ S and U an open subset of Ds, let θ(s, U) := {[x, s] | x ∈ U}. We
refer to [6] for the proof of the following proposition. We denote θ(s,Ds) by
θs.

Proposition 4.7. The collection {θ(s, U) | s ∈ S,U open in Ds} forms a basis
for a topology on G. The groupoid G with this topology is a topological groupoid

whose unit space can be identified with Ê0. Also one has the following.

(1) For s, t ∈ S, θsθt = θst,
(2) for s ∈ S, θ−1

s = θs∗ ,
(3) for s ∈ S, θs is compact, open and Hausdorff, and
(4) the set {1θs | s ∈ T } generates the C∗-algebra C∗(G).

We define the groupoid Gtight to be the reduction of the groupoid G to Êtight .
In [6], it is shown that the representation s → 1θs ∈ C∗(Gtight ) is tight and
any tight representation of S factors through this universal one.

Proposition 4.8. Let T be the inverse semigroup considered in Proposition
3.5. Denote the tight groupoid associated to T by Gtight . Then A[N ⋊H,M ] is
isomorphic to C∗(Gtight ).

Proof. Let ta and v(m) be the images of sa and u(m) in C∗(Gtight ). By Propo-
sition 4.6 and by the universal property of Gtight , it follows that there exists
a homomorphism ρ : C∗(Gtight ) → A[N ⋊ H,M ] such that ρ(ta) = sa and
ρ(v(m)) = u(m).

Given a ∈ P , the projections {u(k)eau(k)−1 | k ∈ M/Ma} cover the pro-
jections in T . Since the representation of T in C∗(Gtight ) is tight, it follows
that ∑

k∈M/Ma

v(k)(tat
∗
a)v(k)

−1 = 1.
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Now the universal property of A[N ⋊ H,M ] implies that there exists a
homomorphism σ : A[N ⋊ H,M ] → C∗(Gtight ) such that σ(sa) = ta and
σ(u(m)) = v(m). It is then clear that σ and ρ are inverses of each other. This
completes the proof. �

We identify the groupoid Gtight explicitly in the rest of the article.

5. Tight characters of the inverse semigroup T

In this section, we determine the tight characters of the inverse semigroup
T defined in Proposition 3.5. Let

M :=

{
(ra) ∈

∏

a∈P

M/Ma

∣∣∣∣ rab ≡ ra mod Ma

}
.

We give M the subspace topology induced from the product topology on∏
a∈P M/Ma. Here the finite groupM/Ma is given the discrete topology. Then

M is a compact, Hausdorff topological space. Moreover M is a topological
group. Note thatM embeds naturally intoM via the imbedding r → (ra := r).
The map r → (ra := r) is an imbedding since we have assumed that

⋂
a∈P Ma

is trivial.
For b ∈ P and k ∈ M , the set Ub,k := {(ra) ∈ M | rb ≡ k mod Mb} is an

open set. Moreover the collection {Ub,k | b ∈ P, k ∈ M} forms a basis for M .
If k ∈M then clearly k ∈ Ub,k for any b ∈ P . As a consequence, M is dense in

M .
For r ∈M , let

Ar := {f ∈ F | f ≥ u(ra)eau(ra)
−1 for some a ∈ P}.

In the next lemma, we show that for every r ∈ M , Ar is an ultrafilter and all
ultrafilters are of this form.

Lemma 5.1. For r ∈ M , Ar is an ultrafilter. Moreover any ultrafilter is of
the form Ar for some r ∈M .

Proof. Let r ∈M be given. First let us show that Ar is a filter. Clearly 0 /∈ Ar .
Also if f1 ≥ f2 and f2 ∈ Ar then f1 ∈ Ar. Now suppose that f1, f2 ∈ Ar. Then
there exists a1, a2 ∈ P such that fi ≥ u(rai

)eai
u(rai

)−1 for i = 1, 2. Choose
c ∈ a1P ∩a2P . Then by Lemma 3.1, it follows that ec ≤ eai

for i = 1, 2. Since
r ∈M , it follows that rc ≡ rai

mod Mai
for i = 1, 2. Now observe that

f1f2 ≥ u(ra1)ea1u(ra1)
−1u(ra2)ea2u(ra2)

−1

= u(rc)ea1u(rc)
−1u(rc)ea2u(rc)

−1

= u(rc)ea1ea2u(rc)
−1

≥ u(rc)ecu(rc)
−1.

Thus f1f2 ∈ Ar. Thus we have shown that Ar is a filter.
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Now we show Ar is maximal. Let A be a filter which contains Ar . Consider
an element f ∈ A. By definition there exists a ∈ P and scalars αk ∈ {0, 1}
such that

f =
∑

k∈M/Ma

αku(k)eau(k)
−1.

But both f and u(ra)eau(ra)
−1 belong to A and hence their product belongs to

A. Thus the product fu(ra)eau(ra)
−1 is nonzero. This implies that αra = 1.

Thus we have f ≥ u(ra)eau(ra)
−1 or in other words f ∈ Ar. Hence A = Ar.

This proves that Ar is maximal.
Let A be an ultrafilter. By Lemma 4.2, it follows that for every a ∈ P , there

exists a unique ra ∈ M/Ma such that u(ra)eau(ra)
−1 ∈ A. Let r := (ra). We

claim that r ∈M . Let a, b ∈ P be given. By Lemma 3.1, we have

(5.2) u(ra)eau(ra)
−1 =

∑

k∈M/Mb

u(raaka
−1)eabu(rakak

−1)−1.

Since A is a filter containing u(ra)eau(ra)
−1 and u(rab)eabu(rab)

−1, it follows
that their product is nonzero. This fact together with equation (5.2) implies
that there exists k ∈M , such that rab ≡ ra(aka

−1) mod Mab. Thus rab ≡ ra
mod Ma for every a, b ∈ P . As a result, we have r ∈ M . Since A is a filter
it follows that Ar ⊂ A. We have already proved that Ar is maximal. Thus
A = Ar. This completes the proof. �

The following proposition identifies the tight characters of T .

Proposition 5.2. The map M : r → Ar ∈ F̂tight is a homeomorphism.

Proof. It is clear from the definition that r → Ar is one-one. Let us denote
this map by φ. We show φ is continuous. Consider a net rα in M converging
to r. We denote the indicator function of a set A by 1A. Let f ∈ F be given.
Then there exists a ∈ P and scalars αk such that

f =
∑

k

αku(k)eau(k)
−1.

Then we have

1Arα
(f) =

∑

k

αkδrαa ,k.

Since rαa = ra eventually, it follows that 1Arα
(f) converges to 1Ar

(f). This
shows that r → Ar is continuous.

Now Lemma 5.1 implies that φ has range F̂∞. SinceM is compact, it follows

that F̂∞ is compact and hence closed. Thus F̂∞ = F̂tight . Thus φ : M → F̂∞

is one-one, onto and continuous. Since M is compact, it follows that φ is in
fact a homeomorphism. This completes the proof. �

From now on we will simply denote Ar by r and 1Ar
(f) by r(f).

Münster Journal of Mathematics Vol. 5 (2012), 151–182



164 S. Sundar

6. The groupoid Gtight of the inverse semigroup T

In this section, we will identify the tight groupoid Gtight associated to the
inverse semigroup. Throughout this section, we assumeN =

⋃
a∈P a

−1Ma. By
Remark 2.4, we can very well assume this. There is another natural groupoid
which arises out of the following construction.

For every a ∈ P , the co-isometry s∗a will give rise to an injection on M and
the unitary u(m) for m ∈ M will act as a bijection on M . Thus we get an
action of the semigroup M ⋊ P , as injections, on M . Now the space M can
be enlarged to a space N and the action of M ⋊ P can be dilated to get an
action of G = N⋊H on N . We can then consider the transformation groupoid
N ⋊G. But the unit space of Gtight is M . Thus we restrict the transformation

groupoid N ⋊G to M and prove that it is isomorphic to Gtight .
This dilation procedure has appeared in several works [See [11], [13] ]. The

basic principle goes back to [17].
First let us explain the action of M ⋊P on M . The action ofM on M is by

left multiplication as M is a subgroup of M . Let a ∈ P and r ∈ M be given.
For b ∈ P , choose c ∈ aP ∩ bP and write c as c = aα = bβ. We will use the
notation as in Remark 3.4. Note that Mc ⊂ Mb and we denote the induced
quotient map M/Mc → M/Mb by qb,c. Define mb = qb,c(π

a
α(rα)). First let us

show that mb depends only on a and b and not on the choices made.
Suppose c1 = aα1 = bβ1 and c2 = aα2 = bβ2. Choose γ1, γ2 ∈ P such that

α1γ1 = α2γ2. Note that this implies c1γ1 = c2γ2. Now we have

qb,ciπ
a
αi
(rαi

) = qb,ci

(
πa
αi

(
qαi,αiγi

(rαiγi
)
))

= qb,ci

(
qci,ciγi

(
πa
αiγi

(rαiγi
)
))

= qb,ciγi

(
πa
αiγi

(rαiγi
)
)
.

Note that the right hand side is constant for i = 1, 2. Thus we have

qb,c1(π
a
α1
(rα1)) = qb,c2(π

a
α2
(rα2)).

This shows that mb is well defined. We leave it to the reader to check that
m̃ = (mb) ∈M .

On M , the action of P is the usual conjugation. From now on, we denote
the element m̃ by ara−1. This way P acts on M injectively and continuously.
This action of P together with the left multiplication action of M defines an
action of M ⋊P on M (as injective,continuous transformations). We leave the
details to the reader.

Lemma 6.1. For a ∈ P , the kernel of the projection map M ∋ (yb) → ya ∈
M/Ma is aMa−1.

Proof. By definition, it follows that aMa−1 is in the kernel of the ath projec-
tion. Now let y = (yb) be such that ya = 1. Since M is dense in M , there
exists a sequence yn ∈ M such that yn → y in M . As M/Ma is finite, we
can without loss of generality assume that yn ∈ Ma for every n. Thus there
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exists xn ∈ M such that yn = axna−1. But M is compact. Thus, by passing
to a subsequence if necessary, we can assume that xn converges to an element
say x ∈M . Since conjugation by a is continuous, it follows that yn = axna−1

converges to axa−1. But yn converges to y. Thus axa−1 = y. This completes
the proof. �

Now let us explain the dilation procedure that we promised at the beginning
of this section. Consider the set M × P and define a relation on M × P by
(x, a) ∼ (y, b) if there exists α, β ∈ P such that αa = βb and αxα−1 = βyβ−1.
We leave the following routine checking to the reader.

(1) The relation ∼ is an equivalence relation. We denote the equivalence class
containing (x, a) by [(x, a)].

(2) Let N := M × P/ ∼. Then N is a group. The multiplication on N is
defined as follows. For a, b ∈ P , choose α and β such that αa = βb. Then

[(x, a)][(y, b)] = [(αxα−1βyβ−1, αa)].

The identity element of N is [(e, e)] where (e, e) is the identity element of
M × P and the inverse of [(x, a)] is [(x−1, a)].

(3) The group N is a locally compact Hausdorff topological group when N is
given the quotient topology. Here P is given the discrete topology.

(4) The map M ∋ x → [(x, e)] ∈ N is a topological embedding. Thus M can
be viewed as a subset of N . Moreover M is a compact open subgroup of
N .

(5) The map N ∋ a−1ma→ [(m, a)] ∈ N is an embedding. When N is viewed
as a subset of N via this embedding, N is dense in N . Also N ∩M =M .

(6) Let a ∈ P be given. Define a map φa : N → N as follows. Given
[(x, b)] ∈ N , choose α, β ∈ P such that αa = βb. Define φa([(x, b)]) =
[βxβ−1, α)]. One checks that φa is well defined. Moreover for a ∈ P , φa is
a homeomorphism with φ−1

a given by φ−1
a [(x, b)] = [(x, ba)]. Note that φa

restricted to N is the usual conjugation. Also φaφb = φab for a, b ∈ P . For
m ∈M , define ψm : N → N as ψm([(x, a)]) = [(ama−1x, a)]. That is ψm

is just left multiplication by m. One also has the following commutation
relation. For a ∈ P and m ∈M ,

φaψm = ψama−1φa.

(7) Since we have assumed that N =
⋃

a∈P a
−1Ma, it follows that any element

of g ∈ G = N ⋊H can be written as g = a−1mb with a, b ∈ P and m ∈M .
The map a−1mb → φ−1

a ψmφb is well defined and defines an action of G
on N . If h = a−1b ∈ H and x ∈ N , we denote φ−1

a φb(x) as hxh−1. If
n = a−1ma and x ∈ N , we denote φ−1

a ψmφa(x) as nx.
(8) Note that N =

⋃
a∈P a

−1Ma.
(9) Universal Property: Let L be a locally compact Hausdorff topological

group on whichH acts by group homomorphism. Suppose thatK is a com-
pact open subgroup of L which is invariant under P and L =

⋃
a∈P a

−1K.

If φ : M → K is a P -equivariant continuous bijection then the map
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N ∋ a−1xa → a−1.φ(x) ∈ L is a topological isomorphism and is H -
equivariant.

Remark 6.2. It is not difficult to show by using (9) that N is the profinite
completion of N when N is given the topology induced by the neighborhood
base {aMa−1 | a ∈ H} at the identity. In [10], the profinite completion model
of N is used.

When considering transformation groupoids, we consider only right actions
of groups and thus we change the above left action of G on N to a right
action simply by defining x.g = g−1x for x ∈ N and g ∈ G. Now consider the
transformation groupoidN⋊G and restrict it toM . We show that the groupoid
Gtight of the inverse semigroup T is isomorphic to the groupoid N ⋊G|M i.e.

to the transformation groupoid N ⋊G restricted to the unit space M . We will
start with two lemmas which will be extremely useful to prove this.

Lemma 6.3. If a−1
1 m1b1 = a−1

2 m2b2 then s∗a1
u(m1)sb1 = s∗a2

u(m2)sb2 .

Proof. Suppose a−1
1 m1b1 = a−1

2 m2b2. Then a
−1
1 m1a1 = a−1

2 m2a2 and a
−1
1 b1 =

a−1
2 b2. Choose β1, β2 ∈ P such that β1b1 = β2b2. Then a1a

−1
2 = β−1

1 β2 =
b1b

−1
2 . Hence β1m1β

−1
1 = β2m2β

−1
2 . Now observe that

s∗a1
u(m1)sb1 = s∗a1

u(m1)s
∗
β1
sβ1sb1

= s∗a1
s∗β1

u(β1m1β
−1
1 )sβ1b1

= s∗β1a1
u(β1m1β

−1
1 )sβ1b1

= s∗β2a2
u(β2m2β

−1
2 )sβ2b2

= s∗a2
s∗β2

u(β2m2β
−1
2 )sβ2b2

= s∗a2
u(m2)s

∗
β2
sβ2sb2

= s∗a2
u(m2)sb2 .

This completes the proof. �

Lemma 6.4. In Gtight , [(r, s
∗
au(m)fu(n)sb)] = [(r, s∗au(mn)sb)].

Proof. First observe that [(r, s∗a)][r.s
∗
a, u(m)fu(n)sb] = [(r, s∗au(m)fu(n)sb)].

Thus it is enough to consider the case when a is the identity element of P .
Now let s = u(m)fu(n)sb, t = u(mn)sb and e = u(m)fu(m)−1. Observe that
s = et. Thus ss∗ = ett∗e. Hence r(ss∗) = 1 implies r(e) = 1 and r(tt∗) = 1.
Moreover es = s = et. Thus [(r, s)] = [(r, t)]. This completes the proof. �

Now we can state our main theorem.

Theorem 6.5. Let φ : N ⋊G|M → Gtight be the map defined by

φ
(
(x, a−1mb)

)
= [(x, s∗au(m)sb)].

Then φ is a topological groupoid isomorphism.
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Proof. First let us show that φ is well defined. Let (x, a−1mb) ∈ N ⋊ G|M .

Then by definition, there exists y ∈M such that m−1axa−1 = byb−1. Choose
α and β in P such that c := aα = bβ. By definition, this means that πa

α(xα) ≡
qc(m)πb

β(yβ). Now Remark 3.4 implies that

s∗au(m)ebu(m)−1sa ≥ u(xα)eαu(xα)
−1.

Hence x(s∗au(m)ebu(m)−1sa) = 1. Thus we have shown that φ is well-defined.
Before we show φ is a surjection, let us show that if [(x, s∗au(m)sb)] ∈ Gtight

then (x, a−1mb) ∈ N⋊G|M . To that effect, assume that x(s∗au(m)ebu(m)−1sa)
= 1. Choose c ∈ aP ∩ bP and write c = aα = bβ. By Remark 3.4, it follows
that there exists y ∈ M/Mβ such that qc(m

−1)πa
α(xα) = πb

β(y). This implies

that the bth coordinate of m−1axa−1 is 1, i.e. the identity element of M/Mb.
Now Lemma 6.1 implies that there exists z ∈M such that m−1axa−1 = bzb−1.
Hence (x, a−1mb) ∈ N ⋊G|M . Surjectivity is then an immediate consequence
of Lemma 6.4.

Now we show φ is injective. Suppose [(x, s∗a1
u(m1)sb1)] = [(x, s∗a2

u(m2)sb2)].
Then there exists a projection e ∈ F such that 0 6= e(s∗a1

u(m1)sb1) = e(s∗a2

u(m2)sb2). We can without loss of generality assume that e = u(rc)ecu(rc)
−1.

By Remark 3.6 and by reading the above equality in the regular representation,
we immediately obtain a−1

1 b1 = a−1
2 b2 and a−1

1 m1b1 = a−1
2 m2b2. This implies

that φ is injective.
Now let us show that φ is a groupoid morphism. First we show that φ

preserves the range and source. By definition, φ preserves the range. Observe
that φ is continuous and this is a direct consequence of Proposition 5.2. Let γ =
(x, a−1mb) ∈ N⋊G|M . SinceM is dense inM there exists a sequence xn ∈M

such that xn converges to x. Moreover the action of G on N is continuous and
M is compact and open. Thus we can assume that (xn, a

−1mb) ∈ N⋊G|M for

every n. By definition, there exists y ∈ M such that axa−1 = mbyb−1. Also
let yn be such that axna

−1 = mbynb
−1.

To keep things clear, if z ∈ M , we denote the character determined by z
as ξz. Let v := s∗au(m)sb. Now if can show that ξxn

.v = ξyn
then it will

follow from continuity of φ that ξx.v = ξy . Thus we only need to show that
s(φ(γ)) = φ(s(γ)) for γ = (x, a−1mb) with x ∈M .

Now let (x, a−1mb) ∈ N ⋊ G|M with x ∈ M . Then there exists y ∈ M
such that axa−1 = mbyb−1. Let v = s∗au(m)sb. To show ξx.v = ξy, as ξy
is maximal, it is enough to show that the support of ξy is contained in ξx.v.
Again it is enough to show that u(y)ecu(y)

−1 is in the support of ξx.v. Choose
α, β such that aα = bcβ. Note that

vu(y)ecu(y)
−1v∗ = s∗au(m)sbu(y)ecu(y)

−1s∗bu(m)−1sa

= s∗au(mbyb
−1)sbecs

∗
bu(mbyb

−1)−1sa

= s∗au(axa
−1)ebcu(axa

−1)−1sa

= u(x)s∗aebcsau(x)
−1
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≥ u(x)s∗aebcβsau(x)
−1

= u(x)s∗aeaαsau(x)
−1

= u(x)eαu(x)
−1 ∈ supp(ξx).

Hence u(y)ecu(y)
−1 is in the support of ξx.v. Thus we have shown that ξx.v =

ξy . This proves that φ preserves the source.

Now we show φ preserves multiplication. Let γ1 = (x1, a
−1
1 m1b1) and γ2 =

(x2, a
−1
2 m2b2). Since φ preserves the range and source, it follows that γ1 and

γ2 are composable if and only if φ(γ1) and φ(γ2) are composable. Choose
α, β ∈ P such that βb1 = αa2. Now

φ(γ1)φ(γ2) = [(x1, s
∗
a1
u(m1)sb1s

∗
a2
u(m2)sb2)]

= [(x1, s
∗
βa1

u(βm1β
−1)eαa2u(αm2α

−1)sαb2 )] (by equation (3.1))

= [(x1, s
∗
βa1

u(βm1β
−1αm2α

−1)sαb2)] (by Remark 6.4)

= φ(γ1γ2).

It is easily verifiable that φ preserves inversion.
For an open subset U of M and g = a−1mb, consider the open set

θ(U, g) := {x ∈M | x.g ∈M}.
The collection {θ(U, g)} forms a basis for N ⋊ G|M . Moreover φ(θ(U, g)) =
θ(U, s∗au(m)sb). Thus φ is an open map. Thus we have shown that φ is a
homeomorphism. This completes the proof. �

Corollary 6.6. The algebra A[N ⋊H,M ] is isomorphic to C∗(N ⋊G|M ).

Proof. This follows from Theorem 6.5 and Proposition 4.8. �

7. Simplicity of Ar[N ⋊H,M ]

Let us recall a few definitions from [1]. Let G be an r-discrete groupoid and
we denote its unit space by G0. The relation ∼ defined by x ∼ y if and only if
there exists γ ∈ G such that s(γ) = x and r(γ) = y is an equivalence relation
on G0. A subset E ⊂ G0 is said to be invariant if given x ∈ E and y ∼ x then
y ∈ E. For x ∈ G, let G(x) := {γ ∈ G | s(γ) = r(γ) = x} be the isotropy group
of x.

A subset S ⊂ G is said to be a bisection if the range and source maps
restricted to S are one-one. If S is a bisection, let αS : r(S) → s(S) be defined
by αS := s ◦ r−1.

The groupoid G is said to be

• minimal if the only nonempty, open invariant subset of G0 is G0.
• topologically principal if the set of x ∈ G0 for which G(x) = {x} is
dense in G0.

• locally contractive if for every nonempty open subset U of G0, there
exists an open subset V ⊂ U and an open bisection S with V ⊂ s(S)
and αS−1(V ) not contained in V .
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Conjugation by P onM gives rise to a semigroup homomorphism from P to
the semigroup of injective maps on M . In [10], the action of P on M is called
an effective action if the above semigroup homomorphism is injective i.e. given
h ∈ H with h 6= 1, then there exists s ∈ M such that hsh−1 6= s. In [10], the
following facts were proved about the transformation groupoid N ⋊G.

(1) The groupoid N ⋊G is minimal and locally contractive.
(2) The groupoid N ⋊G is topologically principal if and only if P acts effec-

tively on M .
(3) Thus the reduced C∗-algebra C∗

red(N ⋊G) is simple and purely infinite if
P acts effectively on M . [Refer to [1].]

Analogous statements hold for the groupoid Gtight associated to the inverse
semigroup T .

Remark 7.1. In [10], only the if part (in (2)) was proved. But then the other
direction, i.e. if N ⋊G is topologically principal then P acts effectively on M ,
is easy to verify.

Also note that M is a closed subset of N which meets each G orbit of N .
Moreover M is open as well. Hence by appealing to Example 2.7 in [16] , we
conclude that C∗(N ⋊G) and C∗(N ⋊G|M ) are Morita-equivalent.

We end this section by showing that Ar[N ⋊ H,M ] is isomorphic to the
reduced C∗-algebra C∗

red(Gtight ).

Proposition 7.2. Let G := N ⋊ G|M . Then the reduced C∗-algebra of the
groupoid G is isomorphic to Ar[N ⋊H,M ].

Proof. Let e be the identity element of M . Define Ge := {γ ∈ G | r(γ) = e}.
Then Ge := {(e, hm) | m ∈ M,h ∈ H}. Thus L2(Ge) can be identified with
ℓ2(M) ⊗ ℓ2(H). Consider the representation πe of C∗

red(G) on L2(Ge) defined
as follows. For f ∈ Cc(G), define πe(f) by the following formula

(πe(f)(ξ))(γ) :=
∑

γ1∈Ge

f(γ−1γ1)ξ(γ1).

Since M is dense in M , it follows that the largest open invariant set not
containing e is the empty set. Hence πe is faithful.

For a ∈ P and m ∈M , we let Sa and U(m) be the images of sa and u(m) in
C∗

red(G). Let {δm⊗δb | m ∈M, b ∈ H} be the canonical basis of ℓ2(M)⊗ℓ2(H).
Consider the unitary operator V on ℓ2(M)⊗ ℓ2(H) defined by

V (δm ⊗ δb) := δm−1 ⊗ δb−1 .

For a ∈ P and k ∈M , we leave it to the reader to check the following equality

V πe(Sa)V
∗(δm ⊗ δb) = δama−1 ⊗ δab,

V πe(U(k))V ∗(δm ⊗ δb) = δkm ⊗ δb.

Since {Sa | a ∈ P} and {U(k) | k ∈ M} generate C∗
red(G), it follows that

C∗
red(G) is isomorphic to Ar[N ⋊H,M ]. This completes the proof. �
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We now show that Corollary 6.6 and Proposition 7.2 can also be expressed
in terms of crossed products as in [10]. We need to digress a bit before we do
this.

Let G be an r-discrete, locally compact and Hausdorff groupoid. Let Y ⊂ G0

be a compact open subset of the unit space. Assume that Y meets each orbit
of G0. Let

GY := {γ ∈ G | s(γ) ∈ Y },
GY
Y := {γ ∈ G | s(γ), r(γ) ∈ Y }.

Since Y is clopen, it follows that GY and GY
Y are clopen. Thus if f ∈ Cc(G

Y ),
then f can be extended to an element in Cc(G) by declaring its value to be
zero outside GY . Thus we have the inclusion Cc(GY ) ⊂ Cc(G). Similarly, we
have the inclusion Cc(GY

Y ) ⊂ Cc(GY ). The algebra Cc(GY
Y ) is a ∗-subalgebra

of Cc(G).
The space Cc(GY ) is a pre-Hilbert Cc(GY

Y ) ⊂ C∗(GY
Y ) module with the inner

product and the right multiplication given by

〈f1, f2〉(γ) =
∑

γ1γ2=γ

f1(γ
−1
1 )f2(γ2) for γ ∈ GY

Y , f1, f2 ∈ Cc(GY ),

(f.g)(γ) =
∑

γ1γ2=γ

f(γ1)g(γ2) for γ ∈ GY , f ∈ Cc(GY ), g ∈ Cc(GY
Y ).

Moreover there is left action of Cc(G) on Cc(GY ) and it is given by

(f.φ)(γ) = (f ∗ φ)(γ)
=

∑

γ1γ2=γ

f(γ1)φ(γ2)

for γ ∈ GY , f ∈ Cc(G) and φ ∈ Cc(GY ).
Now Theorem 2.8 and Example 2.7 of [16] implies the following. The “com-

pletion” of Cc(G)-Cc(GY
Y ) bimodule Cc(GY ) is a C∗(G)-C∗(GY

Y ) imprimitiv-
ity bimodule implementing a strong Morita equivalence between C∗(G) and
C∗(GY

Y ).
Let us denote the completion of Cc(GY ) by E . For x, y ∈ E , let θx,y be the

compact operator on E defined by θx,y(z) = x〈y, z〉. For x ∈ E , the operator
norm of θx,x is ‖x‖2.

The following proposition has also appeared in [14]. (See [14, Lemma 5.18].)
The proof is exactly as in [14]. We include the proof for the sake of complete-
ness.

Proposition 7.3. The inclusion Cc(GY
Y ) ⊂ Cc(G) extends to an isometric

embedding from C∗(GY
Y ) to C∗(G). Also the inclusion Cc(GY

Y ) ⊂ Cc(G) extends
to an isometric embedding from C∗

red(GY
Y ) to C∗

red(G).

Proof. Let f ∈ Cc(GY
Y ) be given. Consider f as an element of Cc(GY ) ⊂ E .

Then θf,f restricted to Cc(GY ) is just multiplication by f ∗ f∗. Since E is a
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C∗(G)-C∗(GY
Y ) imprimitivity bimodule, it follows that

‖f‖2C∗(G) = ‖f ∗ f∗‖C∗(G)

= ‖θf,f‖
= ‖f‖2E
= ‖f∗ ∗ f‖C∗(GY

Y
)

= ‖f‖2C∗(GY
Y
).

For x ∈ G0, let G(x) := r−1(x). Consider ℓ2(G(x)) and let {δγ : γ ∈ G(x)} be
the standard orthonormal basis. Consider the representation πx of Cc(G) on
ℓ2(G(x)) defined by

(7.3) πx(f)(δγ) =
∑

α∈G(x)

f(α−1γ)δα.

The reduced C∗-algebra C∗
red(G) is the completion of Cc(G) under the norm

‖.‖ given by |f |red = supx∈G0 ‖πx(f)‖. (We refer the reader to [18].)

Let G(x)
Y := {γ ∈ G(x) | s(γ) ∈ Y }. If x ∈ Y , let πY

x be the representation

of Cc(GY
Y ) on ℓ2(G(x)

Y ) defined by the same formula as in equation (7.3). Now
observe the following.

(1) Let γ0 ∈ G be such that s(γ0) = x and r(γ0) = y. Then U : ℓ2(G(x)) →
ℓ2(G(y)) defined by U(δγ) = δγ0γ is a unitary. Moreover Uπx(.)U

∗ = πy(.).
(2) Since Y meets each orbit of G0, it follows from (1) that for f ∈ Cc(G),

‖f‖red = supx∈Y ‖πx(f)‖.
(3) If x ∈ Y , then write ℓ2(G(x)) as ℓ2(G(x)) = ℓ2(G(x)

Y ) ⊕ (ℓ2(G(x)
Y ))⊥. With

this decomposition, for f ∈ Cc(GY
Y ), we have πx(f) = πY

x (f)⊕ 0.

Now the above three observations imply that for f ∈ Cc(GY
Y ), ‖f‖C∗

red
(GY

Y
) =

‖f‖C∗

red
(G). This completes the proof. �

Remark 7.4. The representations used to define the regular representation in
[18] is different from what we have used. But the inversion map of the groupoid
intertwines our representations with those used in [18].

The C∗-algebra of the groupoidN⋊G is naturally isomorphic to C0(N )⋊G.
Let Φ : Cc(N)⋊G→ Cc(N ⋊G) be the map defined by

(7.4) Φ(fUg)(x, h) :=

{
f(x), if g = h,

0, otherwise,

for f ∈ Cc(N) and g ∈ G. Here {Ug | g ∈ G} denotes the canonical unitaries

(corresponding to the group elements) in the multiplier algebra of C0(N)⋊G.
Then Φ extends to an isomorphism from C0(N)⋊G onto C∗(N ⋊G) (Cp. [18,
Cor. 2.3.19, p. 34]).

Let p := 1M ∈ Cc(N) ⊂ C0(N)⋊G where 1M is the characteristic function

associated to the compact open subset M . Note that Φ(1M ) = 1M×{e}.

Münster Journal of Mathematics Vol. 5 (2012), 151–182



172 S. Sundar

Proposition 7.5. The full corner p(C0(N ) ⋊ G)p is isomorphic to A[N ⋊
H,M ]. Here the projection p is given by p = 1M .

Proof. Let i : Cc(N⋊G|M ) → Cc(N⋊G) be the natural inclusion. It is easy to

verify that the image of i is 1M×{e}Cc(N ⋊G)1M×{e}. Now from Proposition

7.3, it follows that C∗(N ⋊G|M ) is isomorphic to 1M×{e}C
∗(N ⋊G)1M×{e}.

But we have the isomorphism Φ : C0(N) ⋊ G → C∗(N ⋊ G) with Φ(1M ) =

1M×{e}. Hence A[N ⋊H,M ] is isomorphic to the corner 1M (C0(N )⋊G)1M .

Let A = C0(N) ⋊G. Then ApA is an ideal in A containing p = 1M . Note
that for every g ∈ G, xg := Ug1M1M ∈ ApA. Hence 1gM = Ug1MU

∗
g =

xgx
∗
g ∈ ApA. Hence for every g ∈ G, 1g.M ∈ ApA. Thus 1a−1Ma ∈ ApA

for every a ∈ P . Thus we have Cc(N) ⊂ ApA (See Remark 7.6) and hence
C0(N) ⊂ ApA. As a consequence we have ApA = C0(N) ⋊ G. Thus the
projection p is full. This completes the proof. �

Remark 7.6. If K ⊂ N is compact then there exists b ∈ P such that K ⊂
b−1Mb. For {a−1Ma | a ∈ P} is an open cover of N . Thus there exists
a1, a2, · · · , an ∈ P such that K ⊂ ⋃n

i=1 a
−1
i Mai. Choose b ∈ ⋂n

i=1 Pai. Then

for every i, a−1
i Mai ⊂ b−1Mb. (Reason: M is dense in M and ba−1

i ∈ P .)

Hence K ⊂ b−1Mb.

Remark 7.7. Using the second half of Proposition 7.3, it can be shown that
the C∗-algebra Ared [N⋊H,M ] is isomorphic to the full corner 1M (C0(N)⋊red

G)1M . We leave the details to the reader.

8. Cuntz-Li Duality theorem

The purpose of this section is to establish a duality result for the C∗-algebra
associated to Examples 2.7 and 2.10. This is analogous to the duality result
obtained in [4] for the ring C∗-algebra associated to the ring of integers in a
number field. The proof is really a step by step adaptation of the arguments
in [4] to our situation.

Let Γ ⊂ GLn(Q) be a subgroup and let Γ+ := {γ ∈ Γ | γ ∈ Mn(Z)}.
Assume that the following holds.

(1) The group Γ = Γ+Γ
−1
+ = Γ−1

+ Γ+.
(2) The intersections

⋂
γ∈Γ+

γZn =
⋂

γ∈Γ+
γtZn = {0}.

Let Γop := {γt | γ ∈ Γ}. Then Γop is a subgroup of GLn(Q). Also Γ satisfies
(1) and (2) if and only if Γop satisfies (1) and (2). If Γ contains the nonzero
scalars then (1) and (2) are satisfied.

For the rest of this section, we let Γ be a subgroup of GLn(Q) which satisfies
(1) and (2). The group Γ acts on Qn by left multiplication. Let NΓ :=⋃

γ∈Γ+
γ−1Zn. Then by Lemma 2.3, it follows that NΓ is a subgroup of Qn

and Γ leaves NΓ invariant. Consider the semidirect product NΓ⋊Γ. Then the
pair (NΓ ⋊ Γ,Zn) satisfies the hypotheses (C1), (C2) and (C3). Let us denote
the C∗-algebra A[NΓ ⋊ Γ,Zn] by AΓ.
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Note that NΓ ⋊ Γ acts on Rn on the right as follows. For ξ ∈ Rn and
(v, γ) ∈ NΓ ⋊ Γ, let ξ.(v, γ) = γ−1(ξ − v). This right action of NΓ ⋊ Γ on Rn

gives rise to a left action of NΓ ⋊ Γ on C0(R
n) as follows. For g ∈ NΓ ⋊ Γ and

f ∈ C0(R
n), let (g.f)(x) = f(x.g).

The main theorem of this section is the following.

Theorem 8.1. The C∗-algebras AΓop and C0(R
n) ⋊ (NΓ ⋊ Γ) are Morita-

equivalent.

To prove this we need a bit of preparation. If γ ∈ Γ+, then γ leaves Zn

invariant and induces a map on the quotient NΓ

Zn which we still denote by γ.
Let

NΓ :=

{
(zγ)γ∈Γ+ ∈

∏

γ∈Γ+

NΓ

Zn

∣∣∣∣ δzγδ = zγ for every γ, δ ∈ Γ+

}
.

We give NΓ

Zn the discrete topology. The abelian group NΓ is given the subspace

topology inherited from the product topology on
∏

γ∈Γ+

NΓ

Zn . The topological

group NΓ is Hausdorff.
Now we describe the action of Γ+ on NΓ. Let γ ∈ Γ+ and z ∈ NΓ be

given. For δ ∈ Γ+, choose α, β ∈ Γ+ such that γα = δβ. Let (γ.z)δ = βzα.
It is easily verifiable that γ is a homeomorphism. The inverse of γ is given by
(γ−1z)δ = zγδ. This way Γ+ acts on NΓ and induces an action of Γ on NΓ.

Proposition 8.2. We have the following.

(1) The map NΓ ∋ v → (γ−1v)γ∈Γ+ ∈ NΓ is injective and is Γ-equivariant.

Moreover, when NΓ is viewed as a subset of NΓ via this embedding, NΓ is
dense in NΓ.

(2) Let MΓ := {z ∈ NΓ | ze = 0} is a compact open subgroup of NΓ. Also the
intersection MΓ ∩NΓ = Zn. Hence Zn is dense in MΓ.

(3) Also NΓ =
⋃

γ∈Γ+
γ−1MΓ. As a consequence, NΓ is locally compact.

Proof. The fact that v → (γ−1v)γ is injective follows from the assumption
that

⋂
γ∈Γ+

γZn = {0}. Let γ ∈ Γ+ and v ∈ NΓ be given. Let us denote the

image of v in NΓ by ṽ. We need to show that for δ ∈ Γ+, the δth coordinate
of γ.ṽ is δ−1γv. Choose α and β in Γ+ such that γα = δβ. Then by definition
(γ.ṽ)δ = βα−1v = δ−1γv. Thus we have shown that the embedding NΓ ∋ v →
(γ−1v)γ∈Γ+ ∈ NΓ is Γ+ -equivariant and consequently is Γ -equivariant.

For γ ∈ Γ+ and v ∈ NΓ, let

Uγ,v := {z ∈ NΓ | zγ ≡ v mod Zn}.

Clearly the collection {Uγ,v | γ ∈ Γ+, v ∈ NΓ} forms a basis for NΓ. Note that

γ.v ∈ Uγ,v. Thus NΓ is dense in NΓ.

For γ ∈ Γ+, let Nγ := γ−1Zn. Note that for γ ∈ Γ+,
Nγ

Zn is finite. Now

observe that MΓ = NΓ ∩∏γ
Nγ

Zn . Thus MΓ is compact. Since the projection
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onto the eth coordinate is a continuous homomorphism, it follows that MΓ is
an open subgroup. The equality MΓ ∩NΓ = Zn is obvious.

Let z ∈ NΓ be given. Since NΓ =
⋃

γ∈Γ+
γ−1Zn, it follows that there exists

γ ∈ Γ+ such that γze = 0. Then γ.z ∈ MΓ. Thus NΓ =
⋃

γ∈Γ+
γ−1MΓ. As

NΓ is a union of compact open subsets, it follows that NΓ is locally compact.
This completes the proof. �

Let N ′ and M ′ be the groups considered in Section 6 applied to the pair
(NΓ ⋊ Γ,Zn). Let us now convince ourselves that the pair (N ′,M ′) is Γ-
equivariantly isomorphic to the pair (NΓ,MΓ). Let γ, δ ∈ Γ+ be given.

Denote the quotient map Zn → Z
n

γZn by qγ . Then qγ descends to a map
Z
n

γδZn → Z
n

γZn which we denote by qγ,δ. Multiplication by γ−1 maps Zn in-

jectively onto γ−1Zn and takes γZn onto Zn. We denote the resulting iso-

morphism from Z
n

γZn → γ−1
Z
n

Zn again by γ−1. Then we have the following

commutative diagram where the vertical arrows are isomorphisms.

(8.5)

Z
n

γδZn
Z
n

γZn

(γδ)−1
Z
n

Zn

γ−1
Z
n

Zn

qγ,δ

(γδ)−1

δ

γ−1

Recall that

M ′ =

{
(zγ)γ∈Γ+ ∈

∏

γ∈Γ+

Zn

γZn

∣∣∣∣∣ qγ,δ(zγδ) = zγ

}
,

MΓ =

{
(zγ)γ∈Γ+ ∈

∏

γ∈Γ+

γ−1Zn

Zn

∣∣∣∣∣ δzγδ = zγ

}
.

Let i : Zn → M ′ be the embedding given by i(v) = (v)γ∈Γ+ and j : Zn → MΓ

be the embedding described in Proposition 8.2. Then j(v) = (γ−1v)γ∈Γ+ for

v ∈ Zn. Now the commutative diagram 8.5 implies that the map ϕ :M ′ →MΓ

given by ϕ((zγ)) = (γ−1zγ) is an isomorphism and ϕ(i(v)) = j(v) for v ∈ Zn.
It is also clear that ϕ is a homeomorphism.

Claim: ϕ is Γ+-equivariant.

Proof. First the embeddings i and j are Γ+-equivariant. Since ϕ ◦ i = j, it
follows that ϕ(γ.i(v)) = γ.ϕ(i(v)) if γ ∈ Γ+ and v ∈ Zn. Since i(Zn) is dense
in M ′ (and the maps involved are continuous), it follows that ϕ(γ.x) = γ.ϕ(x)
for x ∈M ′ and γ ∈ Γ+.
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Now since NΓ =
⋃

γ∈Γ+
γ−1MΓ and N ′ =

⋃
γ∈Γ+

γ−1M ′, it follows from

the universal property, as explained in Section 6 (item (9)), that the map
γ−1x→ γ−1ϕ(x) (with x ∈M ′) extends to a Γ-equivariant isomorphism from
N ′ → NΓ. �

Now we describe the Pontrjagin dual of the discrete groupNΓ. For x, ξ ∈ Rn,
let 〈x, ξ〉 := xtξ . If x, ξ ∈ Rn, we let χξ(x) = e2πi〈x,ξ〉. We identity Rn with

R̂n via the map ξ → χξ. If ξ ∈ Rn, restricting χξ to NΓ gives a character of

NΓ. Moreover the map Rn ∋ ξ → χξ ∈ N̂Γ is continuous.

Let z ∈ NΓop be given. Let χz : NΓ → T be defined as follows. For

x ∈ γ−1Zn for some γ ∈ Γ+, let χz(x) = e2πi〈γx,zγ〉 = e2πi〈x,γ
tzγ〉. It is

easy to verify that χz is well defined and χz is a character of NΓ. Clearly

NΓop ∋ z → χz ∈ N̂Γ is continuous. Note that if z ∈ NΓop and x ∈ NΓ then
χz(x) = e2πi〈x,z〉.

Proposition 8.3. The map Ψ : Rn ×NΓop → N̂Γ defined by

Ψ(ξ, z) = χξχ−z

is a surjective homomorphism with kernel ∆ = {(x, x) | x ∈ NΓop}. The

induced map Ψ̃ : R
n×NΓop

∆ → N̂Γ is a topological isomorphism.

Proof. Clearly Ψ is a continuous group homomorphism and Ψ(∆) = {1}. Now
let us show that the kernel of Ψ is ∆. Let (ξ, z) be such that Ψ(ξ, z) = 1. Then
for every γ ∈ Γ+ and x ∈ Zn, we have

1 = χξ(γ
−1x)χ−z(γ

−1x)

= e2πi〈x,(γ
t)−1ξ〉e−2πi〈x,zγ〉

= e2πi〈x,(γ
t)−1ξ−zγ〉.

Thus for every γ ∈ Γ+, we have zγ − (γt)−1ξ ∈ Zn. In other words, we have

ξ ∈ NΓop and z = ξ in NΓop . Hence (ξ, z) ∈ ∆. Thus we have shown that the

kernel of Ψ is ∆ which implies that Ψ̃ is one-one.

Next we claim R
n×NΓop

∆ is compact. Let λ : Rn × NΓop → R
n×NΓop

∆ be
the quotient map. We also write λ(ξ, z) as [(ξ, z)]. We claim that λ([0, 1]n ×
MΓop ) = R

n×NΓop

∆ . This will prove that R
n×NΓop

∆ is compact.

Let [(ξ, z)] be an element in the quotient R
n×NΓop

∆ . Choose v ∈ Zn and

γ ∈ Γ+ such that ze ≡ (γt)−1v. Then [(ξ, z)] = [(ξ − (γt)−1v, z − (γt)−1v)].
Choose w ∈ Zn such that ξ − (γt)−1v − w ∈ [0, 1]n. Let ξ′ = ξ − (γt)−1v − w
and z′ = z − (γt)−1v − w. Then ξ′ ∈ [0, 1]n and z′ ∈ MΓop . Moreover

λ(ξ, z) = λ(ξ′, z′). Thus the image of [0, 1]n ×MΓop under λ is R
n×NΓop

∆ .

The image of Ψ̃ is a compact subgroup of N̂Γ and it separates points of NΓ.

(The image of Rn × {0} under Ψ separates points of NΓ.) Hence Ψ̃ is onto.

Since R
n×NΓop

∆ is compact, it follows that Ψ̃ is a topological isomorphism. This
completes the proof. �
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Consider the semidirect product Rn ⋊ Γop where Γop acts on Rn by left

multiplication. The semidirect product Rn ⋊ Γop acts on N̂Γ = R
n×NΓop

∆ on

the right as follows. For [(ξ, z)] ∈ N̂Γ and (v, γ) ∈ Rn⋊Γop , let [(ξ, z)].(v, γ) =

[(γ−1(ξ+ v), γ−1z)]. This right action of Rn ⋊Γop on N̂Γ induces a left action

of Rn ⋊ Γop on C∗(NΓ) ∼= C(N̂Γ).
The crossed product C∗(NΓ) ⋊ (Rn ⋊ Γop) is isomorphic to the iterated

crossed product (C∗(NΓ)⋊Rn)⋊ Γop . (Cp. [20, Prop. 3.11, p. 87].) But then
the map Γ ∋ γ → (γt)−1 ∈ Γop is an isomorphism. Thus the crossed product
(C∗(NΓ)⋊Rn)⋊ Γop ∼= (C∗(NΓ)⋊Rn)⋊ Γ.

Let us fix notations. Let τ be the action of Rn on C∗(NΓ). Let β be

the action of Γ on C∗(NΓ) ∼= C(N̂Γ), induced by the action of Γop and the
identification Γ ∼= Γop . For v ∈ NΓ, ξ ∈ Rn and γ ∈ Γ, it is easy to verify the
following,

τξ(δv) = e−2πi〈ξ,v〉δv,

βγ(δv) = δγv,

where {δv | v ∈ NΓ} denotes the canonical unitaries of C∗(NΓ). The action of
Γop on C∗(NΓ) ⋊ Rn, induces an action of Γ (via the identification Γ ∋ γ →
(γt)−1) and let us denote it by β̃. For γ ∈ Γ, and f ∈ Cc(R

n, C∗(NΓ)), we
have

β̃γ(f)(x) = | det(γ)|βγ(f(γtx)).
Now consider the crossed product C0(R

n)⋊ (NΓ⋊Γ) ∼= C∗(Rn)⋊ (NΓ⋊Γ).
Let us denote the action of NΓ and Γ on C∗(Rn) by σ and α. For v ∈ NΓ,
γ ∈ Γ and f ∈ Cc(R

n), we have

(σvf)(ξ) = e2πi〈ξ,v〉f(ξ),

(αγf)(ξ) = | det(γ)|f(γtξ).

Denote the action of Γ on C∗(Rn) ⋊ NΓ by α̃. For γ ∈ Γ, v ∈ NΓ and
f ∈ C∗(Rn), one has

α̃γ(fδv) = αγ(f)δγv.

Let us recall the following lemma which is Lemma 4.3 in [4].

Lemma 8.4 ([4]). Let G be a locally compact abelian group and H be a sub-

group of the Pontrjagin dual Ĝ. Endow H with the discrete topology. Let
σ be the action of H on C∗(G) and τ be the action of G on C∗(H) given

by σh(f) = [g → h(g)f(g)] and τg(f̃) = [h → h(−g)f̃(h)]. Then the map
φ : Cc(H,Cc(G)) → Cc(G,Cc(H)) defined by φ(f)(g)(h) = h(−g)f(h)(g) ex-
tends to an isomorphism between C∗(G) ⋊σ H and C∗(H)⋊τ G.

We are now ready to prove the following proposition.

Proposition 8.5. The crossed products C0(R
n)⋊(NΓ⋊Γ) and C(N̂Γ)⋊(Rn⋊

Γop) are isomorphic.
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Proof. It is enough to show that the crossed products (C∗(Rn) ⋊σ NΓ) ⋊α̃ Γ
and (C∗(NΓ) ⋊τ Rn) ⋊β̃ Γ are isomorphic. We show that C∗(Rn) ⋊σ NΓ and

C∗(NΓ)⋊τ R
n are Γ-equivariantly isomorphic. Then the isomorphism between

the crossed products will follow.

Identify Rn with R̂n via the map ξ → χξ. (Recall that χξ is the character

given by χξ(x) = e2πi<x,ξ>.) Consider NΓ as a subgroup of R̂n via the natural
inclusion NΓ ⊂ Rn. Note that the action σ of NΓ on C∗(Rn) and τ of Rn on
C∗(NΓ) are exactly as in Lemma 8.4.

Thus Lemma 8.4 implies that C∗(Rn) ⋊σ NΓ
∼= C∗(NΓ) ⋊τ Rn. Let φ :

C∗(Rn) ⋊σ NΓ → C∗(NΓ) ⋊τ Rn be the isomorphism prescribed by Lemma
8.4. We claim φ is Γ-equivariant. First note that φ(fδv)(ξ) = e−2πi〈ξ,v〉f(ξ)δv
for f ∈ Cc(R

n) and v ∈ NΓ.
Let γ ∈ Γ be given. Now observe that

β̃γ(φ(fδv))(ξ) = | det(γ)|βγ(φ(fδv)(γtξ))
= | det(γ)|e−2πi〈γtξ,v〉f(γtξ)δγv

= | det(γ)|e−2πi〈ξ,γv〉f(γtξ)δγv.

On the other hand, observe that

φ(α̃γ(fδv))(ξ) = φ(αγ(f)δγv)(ξ)

= e−2πi〈ξ,γv〉αγ(f)(ξ)δγv

= e−2πi〈ξ,γv〉| det(γ)|f(γtξ)δγv.

Hence for every γ ∈ Γ, β̃γφ(fδv) = φα̃γ(fδv). Since {fδv | f ∈ Cc(R
n), v ∈

NΓ} is total in C∗(Rn)⋊σNΓ, it follows that for every γ, β̃γφ = φα̃γ . In other
words, φ is Γ-equivariant. This completes the proof. �

Proof of Theorem 8.1. By Corollary 6.6, it follows that AΓop is isomorphic to

the C∗-algebra of the groupoid G̃ := NΓop ⋊ (NΓop ⋊Γop)|MΓop
. By Proposition

8.5, it follows that C0(R
n) ⋊ (NΓ ⋊ Γ) is isomorphic to the C∗-algebra of the

groupoid G := N̂Γ ⋊ (Rn ⋊ Γop). We will show that G and G̃ are equivalent in
the sense of [16].

By Proposition 8.3, N̂Γ = R
n×NΓop

∆ where ∆ := {(x, x) | x ∈ NΓop}. Denote

the quotient map Rn×NΓop → R
n×NΓop

∆ by λ. Let X := λ({0}×MΓop ). Then

X is a closed subset of G0 and it is easy to verify that X meets each orbit of
G0. Let

GX := {α ∈ G | s(α) ∈ X} = s−1(X).

We claim that the (restricted) source map s : GX → X and the range map
r : GX → G0 are open. Let U ⊂ G be an open subset. Then s(U ∩ GX) =
s(U) ∩X . Since s : G → G0 is open, it follows that s : GX → X is open.

Now we prove that r : GX → G0 is open. It is enough to show that r((U ×
V × {γ}) ∩ GX) is open whenever U ⊂ R

n×NΓop

∆ and V ⊂ Rn are open and
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γ ∈ Γop . We claim that

r((U × V × {γ}) ∩ GX) = U ∩ λ(−V × γMΓop ).

Let [(ξ, z)] ∈ r((U × V × {γ}) ∩ GX). Then there exists ([(η, y)], v, γ) ∈ U ×
V × {γ} such that [(η, y)].(v, γ) ∈ X and [(ξ, z)] = [(η, y)]. Thus there exists
u ∈ NΓop such that γ−1(ξ+v) = u and γ−1z−u = x for some x ∈MΓop . Hence
[(ξ, z)] = [(−v, γx)]. Clearly [(ξ, z)] ∈ U . Hence [(ξ, z)] ∈ U ∩ λ(−V × γMΓop ).
Thus we have shown that

r((U × V × {γ}) ∩ GX) ⊂ U ∩ λ(−V × γMΓop ).

Now let [(ξ, z)] ∈ U ∩λ(−V × γMΓop ). Then there exists (v, x) ∈ V ×MΓop

such that [(ξ, z)] = [(−v, γx)]. This is equivalent to saying that [(ξ, z)].(v, γ) ∈
X . Thus ([(ξ, z)], v, γ) ∈ (U ×V ×{γ})∩GX and r([(ξ, z)], v, γ) = (ξ, z)]. This
proves that U ∩ λ(−V × γMΓop ) ⊂ r((U × V × {γ}) ∩ GX).

This proves the claim that r((U × V × {γ}) ∩ GX) = U ∩ λ(−V × γMΓop ).
Now since λ is open and MΓop is open, it follows that r((U × V × {γ}) ∩ GX)
is open. Thus we have shown that r : GX → G0 is open.

Now by Example 2.7 of [16], it follows that G and GX
X := {α ∈ GX | r(α) ∈

X} are equivalent. Recall that G̃ = NΓop ⋊ (NΓop ⋊Γop)|MΓop
The right action

of NΓop ⋊ Γop on NΓop is given by x.(v, γ) = γ−1(x − v). Let Φ : G̃ → GX
X be

defined by Φ(x, v, γ) = ([(0, x)], v, γ). It is easy to check that Φ is a groupoid
isomorphism and it is continuous. Now we prove that Φ is a topological iso-
morphism.

Let (xn, vn, γ) be a sequence in G̃ such that Φ(xn, vn, γ) converges to ([(0, x)],

v, γ)). First note that x→ [(0, x)] is a topological embedding ofMΓop into N̂Γ.
Thus, it follows that xn converges to x in MΓop . Now Φ(xn, vn, γ) converges
to [(0, x)], v, γ) implies that vn tends to v in Rn and γ−1(x − vn) tends to
γ−1(x − v) in MΓop . Hence vn converges to v in NΓop . Thus (vn, vn) → (v, v)
in Rn × NΓop . But ∆ is a discrete subgroup of Rn × NΓop . Hence vn = v

eventually. Therefore, (xn, vn, γ) → (x, v, γ) in G̃. So, Φ is a topological
isomorphism.

Since G and G̃ are equivalent in the sense of [16], it follows from Theorem

2.8 in [16] that C∗(G) and C∗(G̃) are Morita-equivalent. This completes the
proof. �

8.1. Examples. We end this article by considering two examples.

Example 8.6. First we show that the duality result for the ring C∗-algebra
associated to number fields obtained in [4] can be derived from Theorem 8.1.

Consider a number field K of degree n. Denote the ring of integers in K by
OK . Let {w1, w2, · · · , wn} be a Z-basis for OK . Then {w1, w2, · · · , wn} is a
Q-basis for K. Identify K with Qn via the map β : Qn ∋ (x1, x2, · · · , xn)t →∑n

i=1 xiwi ∈ K. By definition, β(Zn) = OK .
If a ∈ K, then a acts on K by left multiplication and is Q-linear. Thus

a gives rise to a matrix with respect to the basis {w1, w2, · · · , wn} which we
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denote by α(a). Explicitly, for 1 ≤ j ≤ n, let

(8.6) awj :=
n∑

i=1

αij(a)wi.

Let α(a) := (αij(a)). Then α : K → Mn(Q) is an injective ring homo-
morphism. We also have the following equivariance. For a ∈ K and x ∈ Qn,
β(α(a)x) = aβ(x).

Let Γ := α(K×). Then Γ is a subgroup of GLn(Q). Now the pair (K ⋊
K×, OK) is isomorphic to (Qn⋊Γ,Zn). Thus the ring C∗-algebra associated to
OK is nothing but A[Qn ⋊Γ,Zn]. Hence Theorem 8.1 applies. The only thing
that one needs to verify is

⋂
a∈OK

α(a)tZn is trivial. Since
⋂

a∈OK
aOK = {0},

it follows that
⋂

a∈OK
α(a)Zn = {0}. We produce a matrix X with rational

entries whose determinant is nonzero and Xα(a)X−1 = α(a)t for every a ∈
OK . Then it will follow that

⋂
a∈OK

α(a)tZn = {0}. (See also Lemma 8.10.)

Let Tr : Mn(Q) → Q be the usual trace and let tr := Tr ◦α. Denote the
n× n matrix whose (i, j)th entry is tr(wiwj) by X . Then X has determinant
nonzero and its determinant is called the discriminant of the number field K.

Lemma 8.7. For every a ∈ K, Xα(a)X−1 = α(a)t.

Proof. Fix a ∈ K. Let Y = (tr(awiwj)). Multiplying equation (8.6) by wk

and taking trace, we get

Yjk =

n∑

i=1

αij(a)Xik.

In other words, we have Y = α(a)tX . But Y and X are symmetric. Thus
taking transpose, we get Y = Xα(a). Hence Xα(a) = α(a)tX . This completes
the proof. �

Let A∞ denote the ring of infinite adeles associated to K.

Theorem 8.8 ([4]). For a number field K, the ring C∗-algebra A[K⋊K×, OK ]
is Morita-equivalent to C0(A∞)⋊ (K ⋊K×).

Proof. Note that for Γ = α(K×), NΓ = Qn and NΓop = Qn (since Γ contains
the diagonal matrices with rational entries). Thus Lemma 8.7 implies that the
matrix X = (tr(wiwj)) implements an isomorphism between the dynamical
systems (Rn,Qn ⋊ Γ) and (Rn,Qn ⋊ Γop). The map

(Rn,Qn ⋊ Γ) ∋ (ξ, (v, γ)) → (Xξ, (Xv, γt)) ∈ (Rn,Qn ⋊ Γop)

is the required isomorphism. (Note that Γ is commutative.)
Consider the map δ : Rn ∋ (x1, x2, · · · , xn) → ∑

i=1 xiwi ∈ A∞. Then
from standard number theoretic arguments, (for example, using Theorem 13.5
(p. 70) and Theorem 4.4 (p. 110) in [9]), it follows that δ (together with
identifications α and β) implements an isomorphism between (A∞,K ×K⋊)
and (Rn,Qn⋊Γ). Now Theorem 8.1 yields the required result. This completes
the proof. �

Münster Journal of Mathematics Vol. 5 (2012), 151–182



180 S. Sundar

Example 8.9. LetA be an n×nmatrix with integer entries such that det(A) 6=
0 and

⋂∞
r=0A

rZn = {0}. Let Γ := {Ar | r ∈ Z} ∼= Z. Denote the subgroup NΓ

by NA and the Cuntz-Li algebra A[NΓ ⋊ Γ,Zn] by AA. Denote the transpose
At by B. Then Γop = {Br | r ∈ Z} ∼= Z.

We claim that the duality result is applicable to this example. The only
thing that needs verification is

⋂∞
r=0B

rZn = {0}. This follows from the fol-
lowing lemma.

Lemma 8.10. Let A be a n× n matrix with integer entries and denote At by
B. Then

⋂∞
r=0A

rZn = {0} if and only if
⋂∞

r=0B
rZn = {0}.

Proof. Since A and B are similar over Q, it follows that there exists Y ∈
GLn(Q) such that Y AY −1 = B. Choose a nonzero integer m such that X =
mY ∈Mn(Z). One has XA = BX . By induction, it follows that XAr = BrX
for every r ≥ 0. First note that it is enough to show that

⋂∞
r=0A

rZn 6= {0}
implies

⋂∞
r=0B

rZn 6= {0}.
Suppose v is a nonzero element in

⋂∞
r=0A

rZn. Then

Xv ∈
∞⋂

r=0

XArZn

=

∞⋂

r=0

BrXZn ⊂
∞⋂

r=0

BrZn.

Since X is invertible over Q, it follows that Xv is a nonzero element in⋂∞
r=0B

rZn. Thus if
⋂∞

r=0A
rZn 6= {0} then

⋂∞
r=0B

rZn 6= {0}. This com-
pletes the proof. �

Now Theorem 8.1 and Proposition 8.5 implies the following proposition.

Proposition 8.11. The C∗-algebra AAt is Morita-equivalent to C0(R
n) ⋊

(NA ⋊ Z). Also AAt is Morita-equivalent to (C∗(NA)⋊Rn)⋊ Z.

Proposition 8.11 for the case when n = 1 and A = (2) was proved in [12].
In this case, the C∗-algebra AAt = AA is the C∗-algebra Q2 considered in
[12]. The subgroup

⋃
r=0 2

−rZ is denoted Z[ 12 ] in [12]. The Morita equivalence

between Q2 and C0(R) ⋊ (Z[ 12 ] ⋊ (2)) is called the 2-adic duality theorem in
[12]. (Cp. Corollary 5.5 and Theorem 7.5 in [12].)
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