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Abstract

Background

Spinal pattern generators (SPG) are neural networks in the spndathat do not require
central input from the brain to generate a motor output. We wanteddondee whethe
SPG can adapt to the changing motor demands from walking atediff speeds, af
performing silly walks.

Methods

An SPG model consisting of an oscillator made up of two neuronsitiiged in this study;

one neuron activates the soleus and the other activates the #hteli®r. The outputs of tf
SPG model therefore represent the electromyographic measusefnen each muscl
Seven healthy subjects were requested to perform silly walkmahwalking at self-selecte
speed (4.8 = 0.5 km/h), 3.5 km/h, 4.0 km/h and 4.5 km/h on a treadmill. Loading
angles were used as inputs into the model.

Results
No significant differences in the model parameters were foutwieba normal walking 3
self-selected speed and other walking speeds. Only the adaptatoconstant for the ank|
flexor during silly walks was significantly different from the other normalking trials.

Conclusion

We showed that SPG in the spinal cord can interpret and respondiagboto velocity-
dependent afferent information. Changes in walking speed do not requiferandimotor

control mechanism provided there is no disruption to the alternating rausatlvations

generated at the ankle.
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Background

Afferents interact continuously with different parts of the nensystem so as to enable a
smooth and efficient gait. As the human nervous system should coordifiaienty,
responding and adapting to the immediate environment, it is importarthéhatethora of
signals coming from the central, sensory and peripheral systesadmed and modulated,
so that the motor output fulfils the demands of the locomotor task.

Different control networks at different levels of the nervousesgstontribute to human
motor control. The lowest level of neural control, which is responsdrlgenerating the

basic patterns of locomotion, is believed to come from spinal paggemerators (SPG)
located in the spinal cord [1-3]. Brown [4] showed that decerebrat cza produce

locomotor-like electromyographic (EMG) patterns while walking arreadmill. Similar

results were also obtained from other vertebrates and inverefitdig A study by Maegele
et al. in 2002 [6] showed that clinically incompletely and complesgiyal cord-injured

patients can activate lower limb muscles after treadrhifirapy. While these studies
successfully showed the ability of the SPG to produce a motor outgunwiinterference

from the brain, they also demonstrated that the interactions be®R® and sensory inputs
are important in generating a dynamic movement [7]. Taga [8]shad/in that a real-time
dynamic interaction between the neural and mechanical systenthdogeith sensory

information from the environment, could influence the motor output of the lower limbs.

Walking at a slower or faster pace creates different ndg#orands on the neural system. A
number of gait components such as stance and swing phase intervaissahel activations
change with increasing speed. However, in healthy humans, it isnoan whether these
changes result from sensory cues to the neural network in thd spnda since higher
commands from the brain can intervene. The aim of our study wdstéomine whether
neural networks in the spinal cord can adapt to changing sensergra$f and directly
influence muscular activity to meet the motor demands of walkingjfferent speeds. We
therefore studied the response of the SPG model in situations gdiecemponents in a gait
cycle will be different from normal walking: change in walkisgeed and in performing
“silly walks”. Our study used an SPG model that is triggenel¢ by sensory afferents with
no interference from a cortical signal.

Methodology

Seven healthy male subjects (28.0 + 4.4 years, 1.8 £ 0.1 m, 76.4 + Q/blig)eered to
participate in this study. They were thoroughly informed of treegutures and gave their
consent. Each subject was requested to walk at his normal selfesekpeed (4.8 £ 0.5
km/h), at 3.5 km/h, 4.0 km/h and 4.5 km/h on a treadmill (Kinetics s3, KegBgmany). In
addition, they were asked to perform movements unlike their normaéingali.e. “silly
walks”, at a speed of their own choice (3.8 £ 0.4 km/h). Data fronc@msecutive strides
were collected during steady-state walking. Three trisdsewecorded for each subject for



each walking speed and silly walks, i.e. a total of 210 tffalsboth right and left limbs).
Trials were ignored if there were missing data in any one stride. dheraftotal of only 176
trials was analysed in this study.

Vertical force data were collected at 200Hz and calculft@d in-shoe pressure sensors
(Gesellschaft fur Biomechanik Minster, Germany) as a suimmaf the pressure acting on
the entire area of the insole. Hip angles were acquired émor@qus 3D motion analysis
system (Qualisys, Sweden) at 100 Hz. This system used saxra@drcameras, which tracked
a total of fifteen retro-reflective markers attached toftlewing body landmarks: lateral
and medial knee, and four tracking markers on the thigh of eaclsdegum, and left and
right anterior superior iliac spine. Segment definitions and kinenak#tia were processed
using Visual3D (C-Motion Inc, Maryland, USA). Muscle activation fromrtheoleus (SOL)
and m. tibialis anterior (TA) were captured using bipolar surface electrodes (5-700 Hz,
Biovision, Wehrheim, Germany) at 2000 Hz. The SOL and TA muscles elesen because
they are the principal monoarticular plantarflexor and dorsiflexasates, respectively.
Electrodes were placed according to recommendations by Hermters 1999 [9]. The
electromyographic (EMG) signals were centred, rectified atedefd using a fifth-order low-
pass Butterworth filter with a cut-off frequency of 40Hz.

A simple Matsuoka oscillator [10,11] consisting of two neurons was W=gdré 1); one
neuron activated the SOL and the other activated the TA. Thus, the ofriputshe

oscillator represented the corresponding activation of each mudcée.n&urons were
mutually inhibited, i.e. when one neuron was activated, the other was suppressed.

Figure 1 SPG model consisting of two neuronsDark triangles represent excitatory
connections, dark spheres represent inhibitory connections. Note thatigubs@fers to
SOL and subscript 2 to TA.

The oscillator was governed by the following equations (adapted from Matsuoka, 10935 [

Jj
X + x; =Z.aijyj+5i_bif (1)
L
Tifi + fi = i (2)
yi = max(0,x;) (3)

wheref is the adaptation in the neuron, andndb are the parameters that determine the time
course of the adaptation. Whbrr 0 there is no adaptation and the output will increase and
then remain at a constant value (Refer to Figure 1 in MatsuokaXi€fhe inner state of the
neuron,y is the generated output of the neursrs the input signal, and is the strength of
the connection between the two neurams<0 fori # j (mutual inhibition) and >0 for = j
(self-excitation). We assume a symmetrical arrangement of neurog,=.&;, aii = a;.

The model is triggered by both the magnitude and the change in magnitude of loading and hip
angles. Vertical force calculated from the insoles wasrmsnalised to the subject’s weight.
Normalised force= and hip flexion/extension anglé#A of the ipsilateral limb (in radians)

were used to determine the signal ingum equation (1):

Si=mpp+n.p+w.q+v.q (4)



with

p=n(F-p) (5)
q =1,(HA—q) (6)

wherem, n, w and v represent the weights of each excitapop , q, ¢ respectively.

The parametera, b, m, n, r, T, v, w from the above equations determined the pattern and
frequency of the output. A nonlinear least-squares fitting algontias used to determine a
set of parameters that would fit the output to experimental data i.e. the output drbylce
neuron representing the SOL would be fitted to measured EMG d#te &OL. This was
done simultaneously for the TA. Initial values for each neuron va&entfrom the first value

of the measured EMG data so as to solve the differential egaatumerically. The fitting
algorithm terminated once the relative deviation between twatibers fell below 0.001. A
correlation coefficientR between the model output and experimental EMG data was
calculated in each trial.

The following gait components were analysed; Maximum normalisex fand maximum

range of hip flexion-extension angles were calculated foh efgde. Stance and swing
phases determined from force profiles of each stride werecalsalated. For these gait
components, analysis of variance (ANOVA) and Tukey’'s post-hoc teist performed to

determine the significant differences between all the diffesatiing types. In analysing the
rectified EMG signals for different speeds, we adopted the mdiiaddurray et al., 1984

[12]. Cumulative numerical integration (IEMG) for each EMG slgmaeach stride was

calculated for all speeds. The maximum of the mean IEMG salses designated as 1.00,
regardless of speed. The other mean values were normalisetespétt to this maximum

value [12]. To determine significant differences in the model par@s (p < 0.05),

multivariate analysis of variance (MANOVA) along with ayga$ of variance (ANOVA) and

Tukey’s post-hoc test were performed.

Results

No significant differences iR were found between normal walking at self-selected speeds
and walking at other speeds. Howewralculated for silly walks (mean correlatiopdz,=

0.70 £ 0.08) was significantly lower than for the other walkingesy(Figure 2). The quality

of the fitting for silly walks is therefore not as good as Far dther walking types (examples

of three trials of one subject are presented in Figures 3, 4, Waslfound that the output
became oscillatory only after the first stride, so the tesal Figures 3, 4, 5 are only from
stride two onwards. It is also possible that the sensory inputs insdee model were
insufficient to account for the muscular activations measured., Haseeunknown whether
additional sensory inputs or a cortical signal would give a better correlation.

Figure 2 Correlation coefficients R) at different speeds and silly walksThe tops and
bottoms of the boxes are the 25th and 75th percentiRsedfpectively. Red lines indicate
the median values. (*) denotes significant difference.

Figure 3 Raverage(ave)= 0.88. Muscle activation of the soleus {R = 0.90) and the tibialis
anterior (Ra = 0.87) of subject #1 walking at 4.5km/h with insole forces and hip auagle



inputs (bold lines represent the output from the SPG model and thinthmexperimental
EMG data).

Figure 4 Rae = 0.80.Muscle activation of the soleus4iR = 0.90) and the tibialis anterior
(Rra = 0.71) of subject #1 walking at 4.0km/h with insole forces and hip aaglésputs
(bold lines represent the output from the SPG model and thin linexpleemnental EMG
data).

Figure 5 Rae = 0.63.Muscle activation of the soleusdi® = 0.79) and the tibialis anterior
(Rra = 0.46) of subject #1 performing silly walks with insole forces laipdangles as inputs
(bold lines represent the output from the SPG model and thin linexpleemnental EMG
data).

Significant differences were found in the gait components cagzll@table 1). As expected,
an increase in walking speed is accompanied by a decrease lialatiee stance phase
duration, an increase in the relative swing phase duration, an increagedof hip flexion-
extension angles, and increased peak activation values of the SOL and TA [12lo&iinmog
and hip angles were significantly different, this meant thjatits to the SPG model differed
significantly for all walking types.

Table 1 Mean and standard deviation (std) of gait components at different speedsd
during silly walks

35km/h 4.0km/h 45km/h Self-selected 4.8 + 0.5 km/I8illy walks 3.8 £ 0.4 km/h p

Mean std Mean std Mean std Mean std Mean std
Stance (%) 66.684.85 65.59+4.34 65.22+4.48 64.99 +1.58 63.33 +7.34p < 0.05
Swing (%) 32.93.01 34.05+2.70 34.38+2.79 35.01 +1.58 36.67 +7.34p < 0.05
Hip flexion-extension range (rad)0.67+0.21 0.73+0.22 0.76+0.26 0.77 +0.07 0.84 +0.32p < 0.05
Max F 1.11+0.19 1.17+0.22 1.23+0.25 1.26 +0.20 1.25 +0.29p < 0.05
IEMG_SOL 0.47+0.26 0.51+0.27 0.53+0.31 0.53 +0.20 0.69 +0.20p < 0.05
IEMG_TA 0.42+0.26 0.47+0.28 0.51+0.32 0.53 +0.21 0.65 +0.21p < 0.05

MANOVA revealed significant differences between the modehmpa&ters. To continue with
the analysis, ANOVA followed by Tukey’'s post-hoc test revealegignificant differences
between the model parameters for normal walking at self-edlesgteeds and other speeds
(Figure 6). OnlyT,, the constant describing the time lag of the adaptation effébe TA,
showed significant differences between the silly walks and the normal walikilsg tr

Figure 6 Values of all parameters at different speeds and silly watk The tops and
bottoms of the boxes are the 25th and 75th percentiles of the pasanesigzctively. Red
lines indicate the median values. Paramete@ndn are weights related to the normalised
force F, while parameterss andv are weights related to hip anglda (refer to equations 4—
6). SOL: soleus, TA: tibialis anterior. (*) denotes significant difference.

Discussion

The results of this study showed that neural networks in the sjirchican activate muscles
at the ankle to generate stepping motion during steady-stiiemgvdn humans, it is difficult
to determine whether the elevated EMG patterns during walkisigt reom supraspinal
control, activations from sensory inputs, or an interaction between pirnaiaand spinal
control. However, the outputs generated by our model, consisting only of spunans,



suggest that muscle activations can be generated by sensory figputkading and hip
angles at the spinal level [13].

While there were significant differences in both the inputs (loadimgy hip angles) and
outputs (IEMG) between the different walking speeds and sillksnvd@able 1), significant
differences were only found i, between silly walks and the other walking tests (Figure 6).
For normal walking at different speeds, this might imply thatrsignificant change in a
parameter is sufficient to cause a significant changkerottput. Since the control of these
parameters, which determine the neuronal properties of the SPG, comle ftom
interneurons, presynaptic inhibition [11], or through descending pathwayssfrpraspinal
structures, the insignificant changes might imply that no régualdy the brain or inter-
spinal circuitry is required to modulate the activation patternsiguvalking. Comparing our
study to split-belt treadmill locomotion, Morton and Bastian (2006) fabhadsubjects with
cerebellar damage were able to perform rapid reactive adjoss to stride length and stance
time when their legs were operating at different speeds [14].s@dy corroborates their
findings that higher control is not needed to alter the motor outpubwinmlimbs, but the
corrections could instead be performed predominantly by spinal strsiaianeg available
sensory information. It has also been suggested that the samaé ciewitry is responsible
for gait transitions between walking and running [15]. Thus, whilenpatifrom the cerebral
cortex is required to initiate a movement, higher command cemdes$ not be recruited to
regulate motor output during locomotion regardless of speed.

Grasso et al. [16] suggested that the nervous system attempiset motor demands by
controlling posture or limb joint motion rather than regulating musdieagions. We agree

with their arguments, since we successfully used loading anahbipsaas inputs to the SPG
model to generate muscle activations. In addition, provided the gaitnsatte not result in

changes to equilibrium, the same neural network will be utilj$&fl Since the data were
captured during steady-state walking, it might also be importiaat the alternating

activations of the flexor and extensor are not disrupted. Perhapsgshanggit components
are secondary, and could result from changes in stride lenbér than a different motor
control mechanism.

It has been shown that cats with lesions in the motor cortex encalntepgoblems walking
on a flat horizontal surface until they were required to crosadestor climb a ladder [18].
In addition, Armstrong and Drew [19] found that pulses measured ircdtie cortical
neurons were unrelated to speed, though muscle activity increasdidamty. Therefore, as
in humans, no conscious effort is necessary during level walkgydaless of walking pace,
until an obstacle or a sudden change in the external environment is enedunthen
corrective responses are required.

We expected differences in the silly walks as the subjeets wmtentionally requested to
perform a movement unlike normal walking. Since the subjects eagrgciously aware that
they had to perform ‘something silly’, we postulated that the tiagumuscle activations
were due to a command from the brain. However, we found significangedanly inT,
the adaptation time constant for the TA. Persistent inward rear(@1C) are known to be
essential for the firing of motor neurons [20]. It was speculdt@dRIC are expressed in the
extensors from birth, but less so in the flexors [21], because tha@lextensors are mostly
activated during walking, the flexors do not require long-lasting butsiguld therefore be
more economical to modulate the flexors rather than the extensarsrtheless, it remains
uncertain whether the TA requires more intervention from the beam®r more neural



circuitries than the SOL. The significant differenc&rcould also be due to the SPG model,
which requires a strong adaptation effect (Additional file 1)enegating stable oscillations
(T2, sily waiks = 0.12 £ 0.17 compared I, self-selected= 0.03 + 0.04) 10]. The highdr, value
could therefore just be a way for the model to continue generating statiiioss.

A limitation in this study was the restricted array ofyswalks the subjects could perform
while walking on a treadmill at a constant speed (an exampleisn in ‘Additional file 1’).
The movements performed by the subjects still involved an on-goindetmioted rhythmic
pattern of activation between the antagonistic muscles at the. &ikce we now know the
same neural network is responsible for normal walking at diffexmetds, future studies can
give the subjects a freer choice of the types of silly wdlky tvould like to perform (like
those seen in Monty Python’s sket@he Ministry of Slly Walks). In such studies, significant
differences in more model parameters might be found.

Conclusion

We proposed that SPG in the spinal cord can interpret and respond adgdalvegocity-
dependent afferent information. Changes in walking speed do not requiferandimotor
control mechanism provided equilibrium is not affected and there idistaption of the
continuous rhythmic patterns produced at the ankle.
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Additional _file_1 as AVI
Additional file 1 One subject performing a silly walk.
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Additional file 1: Additional file 1.avi, 17104K
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