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Introduction

Transformation groups play an important role in many parts of mathematics and
theoretical physics. One reason is that they describe various kinds of symmetries of
mathematical structures and physical systems. These symmetries in turn often lead
to considerable reductions of degrees of freedom. For example, Riemannian manifolds
with special curvature conditions (i.e. positive or non-negative curvature, Einstein man-
ifolds) are much easier to understand if they have many symmetries, like homogenous
or cohomogeneity-1-manifolds.

It sometimes occurs that an isometric action of a Lie group G on a Riemannian
manifold M admits a reduction. By this we mean another Lie group W and some
submanifold Σ ⊆M , which satisfies certain conditions such that the action (W,Σ) is in
a reasonable way related to the action (G,M). In many aspects the “best” situation,
which can occur, and where we can give the vague notions above a precise meaning, is
when Σ is a section. This is an embedded submanifold Σ, which intersects all G-orbits
and which is perpendicular to the orbits in the intersection points. An isometric action
that admits a section is called polar. Examples of polar actions occur, for instance,
in Lie theory: The action by conjugation of a compact Lie group with a bi-invariant
Riemannian metric on itself is polar. Every maximal torus is a section in this example.
Also, every transitive isometric action is polar and a section is given by any point of the
manifold in this case. It turns out that polar actions have a particularly nice structure
theory. To begin with, a section is always totally geodesic and its dimension is equal
to the cohomogeneity of the action. Furthermore, all sections are conjugate to each
other and every section comes with a discrete group W , which acts on it and which is
called the generalized Weyl group. The action of W on Σ has the following relation to
the action of G on M . The G-orbits intersect Σ in a discrete set of points, which is
parameterized by W . It follows that the orbit spaces are canonically isometric to each
other and hence G\M actually has the structure of the orbifold W\Σ. Furthermore,
the smooth G-invariant functions on M can be canonically identified with the smooth
W -invariant functions on Σ and integration of functions on M can be reduced to an
integration along Σ and a principal orbit. The property of being polar is inherited
from the G-action on M to the slice representation in every point of M and the orbit
geometry of polar actions is also noteworthy. For instance, the principal orbits of polar
representations are isoparametric submanifolds.

In the same way as one measures the non-transitivity of an isometric action by an
integer, the cohomogeneity cohom(G,M), Gorodski, Olmos and Tojeiro introduced in
[GOT04] an integer called copolarity, copol(G,M), which measures the non-polarity
of an isometric action. Just as cohom(G,M) = 0 means that the action is transitive,
copol(G,M) = 0 has the meaning that the action is polar. Actually, more interesting
than the mere numeric value of the copolarity are the objects, which in [GOT04] are
called k-sections and which we call fat sections in this thesis. These are connected
totally geodesic submanifolds Σ of M , which intersect every G-orbit such that the
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6 INTRODUCTION

normal space to every principal orbit in all intersection points is contained in the tangent
space of Σ with codimension k. In addition, some regularity conditions have to be
satisfied (Definition 1.1.1). The copolarity is now the minimal integer k such that a
k-section, also called minimal section, exists.

For any fat section Σ we can form the fat Weyl group W = W (Σ), which is the
quotient of the normalizer of Σ in G by the centralizer of Σ in G. The pair (W,Σ) is then
called a reduction of the action (G,M). Now the interesting point is that a reduction
contains much information about the original action (G,M). Also, the structure theory
of fat sections resembles very much the structure theory of sections of polar actions,
which in turn can be viewed as a generalization of the structure theory of maximal tori
in Lie theory. More precisely:

• The orbit spaces G\M and W\Σ are canonically isometric (Theorem 2.1.1).
• Any two minimal sections are conjugate.
• In every point q the isotropy group Gq acts transitively on the set of minimal

sections passing through q (Corollary 2.1.4).
• The intersection of a G-orbit with a fat section is always a W -orbit and vice

versa (Corollary 2.1.3).
• A fat section induces in each of its points a fat section of the slice representa-

tion. This implies that the copolarity of the slice representation cannot exceed
the copolarity of (G,M) (Theorem 2.2.2).

• The G-regular points in Σ coincide with the W -regular points (Lemma 2.3.1).
• The copolarity of a reduction (W,Σ) is equal to the copolarity of (G,M)

(Theorem 2.3.2).
• A minimal reduction contains the information on both the copolarity and

cohomogeneity of (G,M): copol(G,M) = dimW and

cohom(G,M) = dim Σ− dimW (Proposition 1.1.16).

• The G-Killing fields decompose reductively and in a geometrically nice way
along a minimal section (Theorem 2.5.5).

Some of these results have already been proved in [GOT04], however in the context
of orthogonal representations. In this thesis we prove the above mentioned results for
general isometric group actions and sometimes our proofs are entirely different from
theirs. We furthermore prove a generalization of Weyl’s classical integration formula
for compact Lie groups to the case of an almost arbitrary isometric action (see Theorem
2.6.4 for details): ∫

M
f(x) dx =

∫
G/N

(∫
Σ
f(g · s) δE(s)ds

)
d(gN).

Here N denotes the normalizer of the minimal section Σ and δE (see Definition 2.6.2)
is a special G-invariant function, which measures the volume of the orbits “outside” of
Σ. At least when N is compact, this allows us to view an isometric group action as a
generalized random matrix ensemble in the sense that M is the integration manifold,
a minimal reduction (W,Σ) generalizes the set of eigenvalues and furthermore δE gen-
eralizes the notion of a joint density function for classical random matrix ensembles.
For polar actions this approach has been investigated in [AWY06, AWY05]. Another
consequence of the integration formula is that, for compact G/N , we can identify the
G-invariant integrable functions on M with the integrable W -invariant functions on Σ
in a natural way (Theorem 2.6.4 (iii)). Actually, also the continuous invariant func-
tions on M and Σ correspond to each other in a natural way (Corollary 2.1.2) and in
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Section 2.7 we try to improve this correspondence to the case of invariant C∞-functions
and basic forms. However, we are only able to achieve this under restrictive additional
assumptions (Theorem 2.7.3). For instance, these assumptions are met by the actions
appearing in Theorem 5.1.4. Nevertheless, it seems natural to expect that the general
result should also be true, without making any assumptions.

The main result of Section 2.4 shows that reductions can be used to study geometric
features of actions: An isometric action is variationally complete if and only if a reduc-
tion has this property (Theorem 2.4.6). Is it true that a corresponding result holds for
taut actions?

In [GS00] Grove and Searle investigate the notions core cM , core group cG and
global resolution rM of an isometric group action. More precisely, cM is defined as the
union of those connected components of the fixed point set of a principal isotropy group
H, which contain G-regular points. The core group is then defined as cG = NG(H)/H
and finally, the global resolution is the twisted product rM = G/H×cGcM . A connected
component of the core is called a canonical fat section in our thesis (Definition 1.1.11).
These yield, whenever the principal isotropy groups of an effective action are non-trivial,
examples of fat sections different from M . Hence, the copolarity is non-trivial in these
cases as well, and often canonical fat sections are minimal sections. In Chapter 3 we
show that the notion of the global resolution can be generalized to a global resolution
with respect to a fat section Σ. This is denoted with MΣ. In this way, we can show
many of the results, which in [GS00] are stated for rM , also for MΣ. In particular, we
obtain a construction of manifolds with non-negative curvature (Proposition 3.1.6). An
advantage of minimal sections over cores is perhaps that minimal sections can also be
defined for singular Riemannian foliations with locally closed leaves. This is explained
in Chapter 4. It is therefore quite probable that many of the results of this thesis can be
generalized to the case of singular Riemannian foliations with locally closed leaves. In
Chapter 5 and 7 we explicitly determine the copolarity and minimal sections of special
actions and representations. Finally, in Chapter 6, we show the surprising result that
a certain infinite dimensional action, which is connected to the action in Chapter 5, is
either polar or has copolarity equal to ∞.

I first of all would like to thank my advisor Linus Kramer. Without his ongoing
support and encouragement I never could have accomplished this thesis. I also thank
Christoph Böhm, Jan Essert, Claudio Gorodski, Petra Hitzelberger, Andreas Kollross,
Alexander Lytchak, Dirk Töben and Burkhard Wilking for many useful discussions.
Special thanks go to Oliver Goertsches and Eva Nowak for their tireless efforts of
proofreading my manuscript and the numerous suggestions they have made. I also
thank Prof. Thorbergsson for introducing me to the subject of my thesis. My research
was partially funded by the DFG-Schwerpunkt 1145 and the federal states North Rhine-
Westphalia and Hesse.





CHAPTER 1

Fat Sections, Fat Weyl Groups and the Copolarity of
Isometric Actions

After fixing our notation, we define fat sections and the copolarity and give examples.
We also recall some basic properties from [GOT04] and introduce fat Weyl groups.

An isometric action of a Lie group G on a (finite or infinite dimensional) Rie-
mannian manifold M is a smooth homomorphism Φ : G→ Iso(M), whose image is an
embedded Lie subgroup of Iso(M)1. We also denote the action by the associated map
ϕ : G×M →M, (g, q) 7→ g · q := Φ(g)(q), or just by (G,M), if no confusion can arise.
We consider regular points as points lying on principal orbits and all other points are
called singular. Thus, points lying on exceptional orbits are also singular in our sense.

Now we come to the central notions of this thesis.

Definition 1.1.1. Let M be a complete Riemannian manifold and let (G,M) be
an isometric action. A submanifold Σ ⊆M is called a fat section of (G,M) if:

(A) Σ is complete, connected, embedded and totally geodesic in M ,
(B) Σ intersects every orbit of the G-action,
(C) for all G-regular p ∈ Σ we have νp(G · p) ⊆ TpΣ,
(D) for all G-regular p ∈ Σ and g ∈ G such that g · p ∈ Σ we have g · Σ = Σ.

In this situation, following [GOT04], we also call Σ a k-section, where k denotes the
codimension of νp(G · p) in TpΣ for any regular point p ∈ Σ. The integer

copol(G,M) := min{k ∈ N | there is a k-section Σ ⊆M}

is called the copolarity of the G-action on M . If Σ ⊆M is a copol(G,M)-section, then
we say that Σ is minimal. If a submanifold Σ ⊆ M satisfies only properties (A)-(C)
above, then Σ is called a pre-section. Finally, if M is a minimal section of (G,M), we
say that (G,M) has trivial copolarity.

Remark 1.1.2.

(i) The definitions are meaningful even if M and G are not necessarily finite
dimensional Hilbert manifolds. The only difference is that one has to add the
possibility that copol(G,M) may be equal to ∞.

(ii) If (G,M) is a polar action, then there exists a complete, connected and em-
bedded submanifold Σ, called section, which intersects every orbit and such
that in the intersection points the orbits are perpendicular to Σ. It follows
that Σ is totally geodesic and satisfies property (D) in the definition above.
Hence, we have copol(G,M) = 0 and a section in the polar sense is a minimal
section in the sense of Definition 1.1.1. Conversely, if an isometric action has

1Note that an isometric action defined in this way is proper. I.e. G×M → M×M, (g, q) 7→ (g ·q, q)
is a proper map. Conversely, at least in the finite dimensional case, every proper action Φ : G → Iso(M)
is an isometric action, because im(Φ) is closed in this case.
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10 1. FAT SECTIONS, FAT WEYL GROUPS AND THE COPOLARITY

copolarity zero, the action is in fact polar and all minimal sections are sec-
tions in the polar sense. The copolarity therefore measures the failure of an
isometric action to be polar.

(iii) For a given Riemannian manifold M , one can define the copolarity of M as
the integer:

copol(M) := copol(Iso(M),M).

Just like the symmetry rank, symmetry degree and the cohomogeneity of a
Riemannian manifold (see for instance [Wil06b] for the definitions), the copo-
larity is also a measure for the amount of symmetry a Riemannian manifold
carries. For instance, homogeneous spaces and cohomogeneity one manifolds
are manifolds of copolarity zero.

Situations in which the copolarity of an action is nontrivial and not equal to zero
and in which the minimal sections can be explicitly computed are described in Chapter
5 and 7. To give some flavor:

Example 1.1.3. The k-fold direct sum of the standard representation of SO(n) on

Rn has nontrivial copolarity equal to k(k−1)
2

for 2 ≤ k ≤ n − 1 and a minimal section

is given by Rk2
, which is embedded into Rkn as block matrices with nonzero entries in

the upper (k × k)-block only.

Example 1.1.4. Consider the following action of T 2×S(U(1)×U(2)) on SU(3).
The first factor acts by matrix multiplication from the left and the second factor by
matrix multiplication from the right by the inverted matrix. The copolarity in this case
is equal to 1 and a minimal section is given by SO(3) ⊂ SU(3).

Pre-sections can also be objects of independent interest:

Example 1.1.5. If G is a compact Lie group, which acts on itself via conjugation,
then any connected subgroup H of maximal rank is a pre-section. In fact, it is well
known that this action is polar and that a section is given by any maximal torus. Since
H contains a maximal torus of G it follows that H is in fact a closed subgroup of G (see
for instance [Djo81]). Therefore, H is a compact Lie group in its own right. It follows
that for every G-regular point p in H the maximal torus through p, which a priori exists
only in G, is in fact contained in H. This implies property (C) of Definition 1.1.1.

The following three lemmas are important in the study of fat sections and their prop-
erties. For instance, Lemma 1.1.6 is needed for the fact that the connected intersection
of two fat sections is again a fat section (Proposition 1.1.9 (iii) and (iv)).

Lemma 1.1.6. Let (G,M) be an isometric action and suppose that M is connected
and finite dimensional. Let p ∈ M be G-regular. Then expp(νp(G · p)) intersects every
G-orbit.

Proof. Let q ∈M be an arbitrary point and let r > 0 be such that

N := Br(p) ∩G · q 6= ∅.
The set N is compact. Therefore the continuous map f : N → R, f(x) := d(p, x) has a
minimum in x0 ∈ N . After enlarging r, if necessary, we may assume that d(p, x0) < r.
A distance minimizing geodesic γ from p to x0 therefore minimizes the distance from p
to N and also from p to G · q. It follows that γ is perpendicular to G · q and therefore,
γ is also perpendicular to G · p. Hence, γ ⊆ expp(νp(G · p)). �
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The following two statements are Lemma 5.1 and Lemma 5.2 from [GOT04]. Note
that we formulate the second lemma for general isometric actions, whereas in loc. cit.
it is formulated for orthogonal representations. However, their proof works also in the
general case.

Lemma 1.1.7. Let (G,M) be an isometric action and let q ∈ M be arbitrary. For
v ∈ νq(G · q) the following assertions are equivalent:

(i) v is Gq-regular.
(ii) There exists ε > 0 such that expq(tv) is G-regular for 0 < t < ε.
(iii) expq(t0v) is G-regular for some t0 > 0.

Lemma 1.1.8. Let Σ be a fat section of (G,M). For all q ∈ Σ there is a Gq-regular
v ∈ TqΣ ∩ νq(G · q). Furthermore, v can be chosen such that p = expq v is G-regular
and arbitrarily close to q.

The following proposition lists several properties related to the copolarity of an
isometric action. All of them are either observations already made in [GOT04] or
immediate consequences of these observations and Definition 1.1.1.

Proposition 1.1.9. Let M,N be finite dimensional Riemannian manifolds and
G,H Lie groups which act smoothly and isometrically on M , resp. N . Let furthermore
p ∈M be an arbitrary G-regular point.

(i) If (G,M) and (H,N) are orbit-equivalent (i.e. there is an isometry from M
onto N , mapping G-orbits onto H-orbits), then copol(G,M) = copol(H,N).

(ii) copol(G,M) = copol(G◦,M), where G◦ denotes the identity component.
(iii) For any two fat sections Σ1,Σ2 containing p, the connected intersection

(i.e. the connected component of p of the intersection Σ1 ∩ Σ2) is again a fat
section. Hence, a minimal section through p is unique.

(iv) The minimal section through p is the connected intersection of all fat sections
containing p. It is also the connected intersection of all pre-sections through
p.

(v) The G-translates of a given fat section Σ induce a foliation on M reg, the set
of regular points of (G,M).

(vi) Every minimal section arises from a given one by translation by an element
of G. That is, G is transitive on the set of all minimal sections of (G,M).

(vii) The intersection of a principal orbit G · p with a fat section Σ is an embedded
submanifold of M . In fact, it is homogeneous: If NG(Σ) denotes the normal-
izer of Σ in G, then

Σ ∩ (G · p) = NG(Σ) · p, if p ∈ Σ.

It may have several connected components.
(viii) The set Σreg = Σ ∩M reg of G-regular points in a fat section Σ is open and

dense in Σ.

Clearly, M itself is always a fat section of (G,M) (hence, we speak of trivial copo-
larity if M is a minimal section). In many cases, the following proposition yields a more
interesting fat section.

Proposition 1.1.10 ([GOT04, Section 3.2]). If (G,M) is isometric and p ∈M reg,
then Σ := Fix(Gp,M)◦, i.e. the connected component of the fixed point set of Gp

containing p, is a k-section, where k is the dimension of the subspace of Tp(G · p) on
which Gp acts trivially.
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Definition 1.1.11. We call the fat sections of Proposition 1.1.10 canonical (fat)
sections. Furthermore, we say that a fat section is sufficiently small if it is contained
in some canonical section. In particular, canonical sections and minimal sections are
sufficiently small.

Remark 1.1.12 ([GOT04], Section 3.2). Canonical sections need not be minimal
sections. For instance, if in Example 1.1.3 k = 2 and n = 3, then the principal isotropy
groups are trivial, but a minimal section is strictly smaller than the representation space.
Nevertheless, it often happens for an isometric action (G,M) that we may enlarge the
group G to a group G′, which also acts isometrically on M and which produces the
same orbits as G, such that (G′,M) has canonical minimal sections. By Proposition
1.1.9 (ii) both actions have the same copolarity and the same minimal sections. It is
interesting to note that for every polar representation the sections can be obtained in
this way ([Str94, Theorem 1.3]) and this is also the case for the representations we
consider in Chapter 7.

We next introduce the notion of the fat Weyl group, which plays a central role
throughout the whole paper.

Definition 1.1.13. Let Σ be a fat section of the isometric action (G,M). We put

W (Σ) := NG(Σ)/ZG(Σ)

and call it the fat Weyl group of Σ. The isometric action (W (Σ),Σ) is called a
reduction of (G,M) (induced by Σ), and if Σ is a minimal section, we call it the
minimal reduction of (G,M).

Remark 1.1.14.

(i) It is possible to define fat sections without assuming them being embedded
submanifolds. However, for our purposes it will be necessary that Σ is closed
in M , because this turns NG(Σ) into a Lie subgroup of G and hence W (Σ)
also carries the structure of a Lie group.

(ii) Every compact Lie group appears as the fat Weyl group of some isometric
action. This is a generalization of [PT88, Remark 5.6.20] and a construction
will be described in greater detail in Chapter 3.

Example 1.1.15. Concerning Example 1.1.3, the fat Weyl group of the minimal
section Rk2

is O(k), acting by multiplication from the left.

Proposition 1.1.16. Let (G,M) be an isometric action and let Σ ⊆ M be a fat
section. We put W = W (Σ). If Σ is sufficiently small, then ZG(Σ) = H, where H is
a principal isotropy group of (G,M). In particular, all principal isotropy groups along
Σ coincide. It follows that W acts freely on Σreg, and if Σ is a minimal section, then
copol(G,M) = dim(W ) and the following formula relates cohomogeneity and copolarity
of (G,M):

dim Σ = cohom(G,M) + copol(G,M).

Proof. Every h ∈ H fixes every element of Σ, because Σ ⊆ Fix(H,M). This shows
H ⊆ ZG(Σ). Conversely, if h ∈ ZG(Σ) then for any point p ∈ Σ with H = Gp we have
h · p = p and hence h ∈ Gp = H. �



CHAPTER 2

Structure Theory of Fat Sections and Reductions

2.1. Properties of Reductions

In this section we generalize several results of [GOT04, Section 5.2], where they
have been stated in the case of orthogonal representations, to the case of an arbitrary
isometric action. Interestingly, in comparison to loc. cit. we obtain the results in a
reversed order. We start with a metric observation concerning orbit spaces1, which is a
much stronger result than [GOT04, Theorem 5.9].

In the following let (G,M) be an isometric group action and let Σ be a fat section.
We put W := W (Σ).

Theorem 2.1.1. The orbit spaces W\Σ and G\M , both endowed with their respec-
tive orbital distance metric, are canonically isometric via the map

ι̃ : W\Σ → G\M, W · q 7→ G · q.

Proof. First of all, ι̃ is a well defined map: If q, q′ ∈ Σ are such that W ·q = W ·q′,
then there exists n ∈ NG(Σ) ⊆ G such that n · q = q′. Hence G · q = G · q′. Since
Σ intersects all G orbits, it is clear that ι̃ is surjective. The following diagram is
commutative:

Σ
ι // //

πW ����

M

πG����
W\Σ

ι̃
// // G\M.

Since Σ is an embedded submanifold of M , ι is continuous and since the vertical maps
are open and continuous, it follows that ι̃ is a continuous map, too. The distance
between two points G · q and G · q′ in G\M is the length of a minimal geodesic segment
γ in M connecting the orbits G · q and G · q′. Each such segment is perpendicular to
both orbits. If now q and q′ are both G-regular, then by properties (A) and (C) of a fat
section, γ is a segment in Σ. We may further assume that q and q′ lie in Σ and thus, γ
minimizes the distance between W · q and W · q′. It follows that ι̃ restricted to the open
and dense subset of G-regular points in Σ (see Proposition 1.1.9 (viii)) is an isometry.
By continuity and using that W\Σ and G\M are complete metric spaces, we see that
ι̃ is a surjective isometry. �

Corollary 2.1.2. The map ι∗ : C0(M)G → C0(Σ)W , f 7→ f |Σ is an isomorphism
of Banach algebras, where both spaces are equipped with the corresponding ‖.‖∞-norm.

1I would like to thank Burkhard Wilking for suggesting this metric approach to me.
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14 2. STRUCTURE THEORY OF FAT SECTIONS AND REDUCTIONS

Proof. Consider the following diagram of Banach algebras associated with the
diagram from Theorem 2.1.1:

C0(G\M)
ι̃∗ //

π∗G
��

C0(W\Σ)

π∗W
��

C0(M)G
ι∗

// C0(Σ)W .

It is commutative and the top arrow is an isomorphism of Banach algebras since the
spaces G\M and W\Σ are canonically homeomorphic under the map ι̃ and the assign-
ment ι̃∗(f) = f ◦ ι̃ is clearly norm preserving. The vertical maps are Banach algebra
isomorphisms by definition of the orbit space. Hence the bottom arrow is also an
isomorphism of Banach algebras. �

The next result is a rephrasing of the injectivity of ι̃ in Theorem 2.1.1 and it gen-
eralizes Proposition 1.1.9 (vii).

Corollary 2.1.3. The fat Weyl group W parameterizes intersections of G-orbits
with Σ: For all q ∈ Σ we have W · q = (G · q) ∩ Σ. In particular, (G · q) ∩ Σ is an
extrinsic homogenous submanifold of the spaces G · q, Σ and M for every q ∈ Σ.

Corollary 2.1.4. For a given fat section Σ and every q ∈ M , the isotropy group
Gq of q is transitive on the set of all G-translates of Σ that contain q. In particular,
Gq is transitive on the set of minimal sections through q.

Proof. Since Σ intersects every orbit we may assume that q ∈ Σ. Let g ∈ G be
such that q ∈ g · Σ. We have to show that there is some g̃ ∈ Gq such that g̃ · Σ = g · Σ
holds. Since we have q ∈ g · Σ, it follows that g−1 · q ∈ Σ. By Corollary 2.1.3 there
is some n ∈ NG(Σ) such that g−1 · q = n · q and it follows that g̃ := gn ∈ Gq and
g̃ · Σ = gΣ. �

In every G-regular point p of a fat section Σ we have the orthogonal decomposition
Tp(G · p) = (Tp(G · p) ∩ TpΣ) ⊕ νpΣ. This is a consequence of property (C) of a fat
section. More generally we have:

Proposition 2.1.5. In all points q of a fat section Σ the tangent space TqM de-
composes compatibly and orthogonally in two ways:

TqM = TqΣ⊕ νqΣ = Tq(G · q)⊕ νq(G · q).
I.e. the following decompositions are orthogonal:

TqΣ = (TqΣ ∩ Tq(G · q))⊕ (TqΣ ∩ νq(G · q)),
νqΣ = (νqΣ ∩ Tq(G · q))⊕ (νqΣ ∩ νq(G · q)).

The proof is basically the same as for [GOT04, Lemma 5.10].

Proof. We just have to prove the first equality. Clearly,

TqΣ = Tq(W · q)⊕ νΣ
q (W · q),

where νΣ
q (W · q) denotes the orthogonal complement of Tq(W · q) in TqΣ. By Corollary

2.1.3 we already have
Tq(W · q) = TqΣ ∩ Tq(G · q).

Furthermore, since W · q ⊆ G · q we have

TqΣ ∩ νq(G · q) ⊆ νΣ
q (W · q).
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For the converse inclusion, we first assume that v ∈ νΣ
q (W · q) has the property that

p := expq(v) is G-regular. Then the geodesic γ(t) := expq(tv) in Σ is perpendicular
to the W -orbit through q and thus it is also perpendicular to the W -orbit through p.
Since νp(G · p) = νΣ

p (W · p) it follows that γ, as a geodesic in M , is perpendicular to
the G-orbit through p. Again, γ is also perpendicular to the G-orbit through q, and it
follows that

v ∈ TqΣ ∩ νq(G · q).
By Lemma 1.1.8, there always exists a Gq-regular v ∈ TqΣ ∩ νq(G · q) ⊆ νΣ

q (W · q)
such that p = expq(v) is G-regular and lies in a W -slice Sq ⊆ Σ through q. Since
the G-regular points form an open subset of M , there is an open neighborhood of p in
Sq consisting of G-regular points. Under the exponential map this neighborhood gets
mapped onto an open subset U of νΣ

q (W · q) and by the above considerations, we have
U ⊆ TqΣ ∩ νq(G · q). An open subset of a vector space always contains a basis. It
therefore follows that

νΣ
q (W · q) ⊆ TqΣ ∩ νq(G · q).

�

Definition 2.1.6. For a given fat section Σ and for every q ∈ Σ we define

Dq := Tq(G · q) ∩ TqΣ and

Eq := Tq(G · q) ∩ νqΣ.
Following [GOT04] we extend D and E to G-invariant distributions on M reg using
property (D) of a fat section. This yields Tp(G · p) = Dp ⊕ Ep for all p ∈M reg.

Remark 2.1.7. Due to Proposition 2.1.5, Tq(G · q) = Dq ⊕ Eq is an orthogonal
decomposition for all q ∈ Σ and both D and E are W -invariant (singular) distributions
along Σ.

Theorem 2.1.8. Let Σ be a fat section of (G,M). For every q ∈ Σ, the submanifold
W · q ⊆ G · q is totally geodesic in G · q. Furthermore, for every η ∈ νq(G · q)∩ TqΣ the
shape operator Aη of G · q leaves the decomposition Tq(G · q) = Dq ⊕ Eq invariant.

Proof. W · q is a submanifold of M , and by Proposition 2.1.5 we have

Tx(G · q) = Dx ⊕ Ex = (Tx(G · x) ∩ TxΣ)⊕ (Tx(G · x) ∩ νxΣ)

for all x ∈ W ·q. Therefore Tx(G ·q) is invariant under the orthogonal reflection on TxΣ.
Now the claim follows from the next Lemma, which is [BCO03, Exercise 8.6.3]. �

Lemma 2.1.9. Let Σ, N and Σ ∩ N be submanifolds of the Riemannian manifold
M and suppose that Σ is totally geodesic. Suppose that TpN is invariant under the
orthogonal reflection at TpΣ for all p ∈ Σ ∩ N , then Σ ∩ N is totally geodesic as a
submanifold of N and Aη, the shape operator of N , leaves Tp(Σ ∩N) invariant for all
p ∈ Σ ∩N and η ∈ νpN ∩ TpΣ.

Proof. We first fix some notation: the orthogonal reflection at TpΣ is the map

σ : TpM = TpΣ⊕ νpΣ → TpM, u+ w 7→ u− w.

Let α, resp. α̃ denote the second fundamental forms of Σ ∩ N in N , resp. of N in M
and let ∇, ∇̃ resp. ∇̄ denote the Levi-Cività connections of Σ ∩ N,N resp. M . Then
we have for all X, Y ∈ X (Σ ∩N):

∇̃XY = ∇XY + α(X, Y ),

∇̄XY = ∇̃XY + α̃(X, Y ),
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from which we obtain the equation:

∇̄XY︸ ︷︷ ︸
∈TΣ

− α̃(X, Y )︸ ︷︷ ︸
νN

= ∇XY︸ ︷︷ ︸
∈TΣ∩TN

+α(X, Y )︸ ︷︷ ︸
TN∩νΣ

. (1)

The assumption that TpN is invariant under σ means, that

TpN = (TpN ∩ TpΣ)⊕ (TpN ∩ νpΣ).

Accordingly, there is a similar decomposition for νpN . Hence, α̃ decomposes as

α̃ = α̃1 + α̃2,

with α̃1 ∈ νN ∩ TΣ and α̃2 ∈ νN ∩ νΣ. Now, applying σ to (1) we obtain

∇̄XY − α̃1(X, Y ) + α̃2(X, Y ) = ∇XY − α(X, Y ).

Subtracting (1) from this, we arrive at

2 α̃2(X, Y )︸ ︷︷ ︸
∈νN∩νΣ

= −2α(X, Y )︸ ︷︷ ︸
TN∩νΣ

.

Therefore, α(X, Y ) = 0 = α̃2(X, Y ). This shows that Σ ∩ N is totally geodesic in N .
The shape operator Aηv of N for η ∈ Γ(νN) and v ∈ TpN is (up to a sign) the part

of ∇̃vη which is tangential to N . If η and v are also tangential to Σ, then ∇vη ∈ TpΣ,
since Σ is totally geodesic in M . Therefore, Aηv ∈ Tp(N ∩ Σ). �

Remark 2.1.10. In case that the action is polar, the orbits of the Weyl group consist
of a discrete number of points and so, trivially, they are totally geodesic inside their
ambient G-orbit. However, if the copolarity is positive and non-trivial, then the orbits
of the fat Weyl group are proper positive-dimensional totally geodesic submanifolds of
their ambient orbit. So one should expect that the theorem imposes certain restrictions
on actions having non-trivial positive copolarity.

2.2. Copolarity and Reductions of the Slice Representation

We now generalize [GOT04, Theorem 5.6] from the case of representations to ar-
bitrary isometric group actions, without making any further assumptions. Therefore,
our proof follows a rather different approach than the one in loc. cit. We first need a
lemma, which will also be frequently used in Section 2.5.

Lemma 2.2.1. Let Σ be a totally geodesic submanifold of the Riemannian manifold
M and let γ ⊆ Σ be a geodesic. Then every Jacobi field J along γ splits uniquely into
Jacobi fields Y and Z along γ such that Y is a Jacobi field in Σ and Z is perpendicular
to Σ. Furthermore, every derivative of Z is perpendicular to Σ.

Proof. Consider the orthogonal decomposition

J(t) = Y (t)︸ ︷︷ ︸
∈Tγ(t)Σ

+ Z(t)︸ ︷︷ ︸
∈νγ(t)Σ

of J . Then Y and Z defined in this way are smooth vector fields along γ. Since J
satisfies the Jacobi equation we have:

0 = J ′′ +R(J, γ̇, γ̇) = Y ′′ +R(Y, γ̇, γ̇) + Z ′′ +R(Z, γ̇, γ̇). (∆)

Clearly, Y ′′ is tangential to Σ. Since Σ is totally geodesic, R(Y, γ̇, γ̇) is also tangential
to Σ. Since parallel transports of vectors normal to a totally geodesic submanifold stay
perpendicular to the submanifold, it follows from the characterization of the covariant
derivative by parallel transport that Z ′′ is perpendicular to Σ. Finally, the expression
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R(Z, γ̇, γ̇) is perpendicular to Σ, because for all v ∈ TΣ we have, using the symmetry
properties of the curvature tensor,

〈R(Z, γ̇, γ̇), v〉 = 〈R(v, γ̇, γ̇)︸ ︷︷ ︸
∈TΣ

, Z〉 = 0.

Thus (∆) implies that both Y and Z are Jacobi fields, and since Σ is totally geodesic
we have that Y is a Jacobi field of Σ. �

Theorem 2.2.2 (Slice Theorem). If (G,M) is isometric, then for all q ∈M :

copol(Gq, νq(G · q)) ≤ copol(G,M).

More generally, if Σ is a fat section of (G,M) and q ∈ Σ, then Vq := νq(G · q) ∩ TqΣ
is a fat section of (Gq, νq(G · q)). If W is the fat Weyl group of Σ, then Wq projects
canonically onto the fat Weyl group of Vq.

Proof. Let Σ be a fat section through q. Since Vq is a linear subspace of νq(G · q),
property (A) of a fat section is already satisfied. Property (B) will follow from property
(C), which we will prove below. In fact, there exist Gq-regular points in Vq by Lemma
1.1.8. Then property (C) and Lemma 1.1.6 show that Vq intersects every Gq-orbit. We
also have property (D): If v ∈ Vq is Gq-regular, then, after scaling if necessary, we may
assume that p := expq(v) lies in a slice Sq through q. Now assume that g ∈ Gq satisfies
g · v ∈ Vq. This implies g · p ∈ Σ. The Gq regular points in Sq are G-regular if we view
them as points of M . Hence, p is also G-regular and therefore g ·Σ = Σ. It follows that

g · Vq = Tq(g · (Σ ∩ Sq)) = Tq(Σ ∩ Sq) = Vq.

We next show

V ⊥
q ⊆ Tv(Gq · v).

Here v ∈ Vq is an arbitrary Gq-regular point and V ⊥
q is the orthogonal complement of

Vq in νq(G · q). This statement is equivalent to property (C) of a fat section. As in
the proof of property (D) we may assume that p = expq(v) lies in a slice Sq through
q. Since p is a G-regular point of Σ, property (C) of Σ now implies νpΣ ⊆ Tp(G · p).
Let w ∈ V ⊥

q be arbitrary. Then d expq(v)(w) ∈ νpΣ. In fact, d expq(v)(w) = J(1),
where J is the Jacobi field along γv(t) = expq(t · v) with initial conditions J(0) = 0 and
J ′(0) = w ∈ νqΣ. (see for instance [Lan99, Chapter IX, Theorem 3.1]). By Lemma
2.2.1, J is always orthogonal to Σ. In particular,

J(1) ∈ νpΣ ⊆ Tp(G · p).
Now let X be a G-Killing field such that d expq(v)(w) = Xp. Since d expq(v)(w) ∈ TpSq
and (G · p)∩ Sq = Gq · p we may further assume that X is a Gq-Killing field. Therefore

d expq(v)(w) = Xp ∈ Tp(Gq · p).
Since expq intertwines the slice representation (Gq, νq(G · q)) with the Gq-action on Sq
we have Gq · p = expq(Gq · v). This in turn implies

Tp(Gq · p) = d expq(v)(Tv(Gq · v)),
and it follows that w ∈ Tv(Gq · v), because d expq(v) is a bijection.

We have therefore proved that Vq is a fat section of (Gq, νq(G ·q)). Since (G,M) and
(Gq, νq(G · q) have the same cohomogeneity and dimVq ≤ dim Σ it follows, by choosing
Σ as a minimal section, that the copolarity of the slice representation is less than or
equal to the copolarity of the G-action on M .
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The fat Weyl group of Vq is given by

W (Vq) = NGq(Vq)/ZGq(Vq).

We first show that
NGq(Vq) = NGq(Σ) = (NG(Σ))q.

Let g ∈ NG(Σ) ∩ Gq = NGq(Σ) be arbitrary. Then g leaves both TqΣ and νq(G · q)
invariant. It therefore also leaves TqΣ ∩ νq(G · q) = Vq invariant and it follows that
g ∈ NGq(Vq). Conversely, for g ∈ NGq(Vq), again as in the proof of property (D), it
follows that g · Σ = Σ and hence g ∈ NGq(Σ). Now it is easy to see that

ZG(Σ) = ZGq(Σ) ⊆ ZGq(Vq).

From the following commuting diagram, we can thus read off that W (Σ)q projects
canonically onto W (Vq):

NGq(Σ)
id //

pr
����

NGq(Vq)

pr
����

W (Σ)q // // W (Vq).

�

From the proof we may further conclude:

Corollary 2.2.3. If Σ is a pre-section of (G,M), then Vq = νq(G · q) ∩ TqΣ is
a pre-section of (Gq, νq(G · q)). If Σ is a sufficiently small section, then Vq is also
sufficiently small and W (Vq) = Wq.

Remark 2.2.4. In the case that Σ is a minimal section, we do not know wether Vq
is necessarily a minimal section of the slice representation (Gq, νq(G · q)), or not.

2.3. Stability of Copolarity under Reductions

We next show that the copolarity of a reduction (W,Σ) is equal to the copolarity
of (G,M). We start with a Lemma, which may be interesting in its own right.

Lemma 2.3.1. If Σ is a fat section of an isometric action (G,M), then the G-regular
points in Σ are W (Σ)-regular and viceversa.

Proof. According to Proposition 1.1.9 (viii) the set of G-regular points is open
and dense in Σ. If we can show that the G-regular points in Σ all have the same
W (Σ)-orbit type, then they must be W (Σ)-regular, because the W (Σ)-regular points
form an open and dense subset of Σ, too. Let p ∈ Σ be an arbitrary G-regular point.
Then property (D) of a fat section implies ZG(Σ) ⊆ Gp ⊆ NG(Σ) and therefore we have
(NG(Σ))p = Gp. Let q be another G-regular point in Σ. If we connect q with G · p
by a G-transversal geodesic γ, properties (A) and (C) of a fat section imply that γ is
a geodesic of Σ. We may assume that γ(0) = q and γ(1) = g · p for some g ∈ G. By
property (D) again, we have that g ∈ NG(Σ). Since Gq = Gg·p = gGpg

−1 we have that
p and q are of the same W (Σ)-orbit-type.

Conversely, let q ∈ Σ be an arbitrary W (Σ)-regular point. By Theorem 2.2.2, Vq is a
fat section of (Gq, νq(G ·q)) and Wq projects canonically onto the fat Weyl group W (Vq)
of Vq. At the same time, Proposition 2.1.5 shows that Vq is also the representation space
for the slice representation of (W (Σ),Σ) in q. By assumption, Wq acts trivially on Vq.
But since W (Vq), by definition, acts effectively on Vq, this implies that W (Vq) must be
the trivial group. In particular, (Gq, νq(G ·q)) is a polar representation with generalized
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Weyl group W (Vq). According to [PT88, Corollary 5.6.22] the latter is a Weyl group
in the classical sense. However, a polar representation with trivial Weyl group must
itself be trivial. So Gq acts trivially on νq(G · q) which means that q is G-regular. �

Theorem 2.3.2 (Stability theorem). Let (G,M) be an isometric action and let Σ
be an arbitrary fat section. Then a subset Σ′ ⊆ Σ is a fat section of (G,M) if and only
if it is a fat section of (W (Σ),Σ). It follows that

copol(G,M) = copol(W (Σ),Σ).

If Σ is a minimal section, then the copolarity of (W (Σ),Σ) is trivial.

Proof. First of all, if Σ′ is complete and connected, totally geodesic and embedded
in Σ, then it also has these properties as a submanifold of M and viceversa. If Σ′

intersects every G-orbit, then it also intersects every W (Σ)-orbit, because the latter are
the intersections of G-orbits with Σ and we have Σ′ ⊆ Σ (Corollary 2.1.3). Conversely,
if Σ′ intersects every W (Σ)-orbit, then it also intersects every G-orbit, because every
G-orbit contains a W (Σ)-orbit. Next, by Lemma 2.3.1, we need not distinguish between
G-regular and W (Σ)-regular points in Σ′. We have for every regular p ∈ Σ:

νp(G · p) = νΣ
p (W (Σ) · p).

And therefore it follows for every regular p ∈ Σ′ that νp(G · p) ⊆ TpΣ
′ is equivalent to

νΣ
p (W · p) ⊆ TpΣ

′. Finally, let p ∈ Σ′ be regular and let g ∈ G be such that g · p ∈ Σ′.
Since Σ′ ⊆ Σ, it follows that g ∈ NG(Σ). Now it is clear that Σ′ has property (D) of a
fat section with respect to (G,M) if and only if it it has this property with respect to
(W (Σ),Σ). �

2.4. A Remark on Variational Completeness and Co-Completeness

A central result of this section is that we show that variational completeness of an
isometric action is inherited to every reduction of that action and conversely, variational
completeness of a reduction extends to the variational completeness of the original
action. As a slight excursion we will also generalize [GOT04, Theorem 4.1] in such a
way that we do not require the considered fat section Σ to be flat but instead relax
this condition to the case that Σ is free of conjugate points. This applies to a wider
variety of situations, for instance if Σ has non-positive curvature. We first recall some
definitions:

Definition 2.4.1. Let N be a submanifold of M . An N-geodesic γ : [0, ε) → M
is a geodesic of M which emanates perpendicularly from N . An N-Jacobi field J is a
Jacobi field (along an N -geodesic γ) which is induced by a variation of N -geodesics.

One can show that if γ(0) = p ∈ N and v = γ′(0), then J is an N -Jacobi field if
and only if it is a Jacobi field which satisfies J(0) ∈ TpN and J ′(0) + AvJ(0) ∈ νpN ,
where Av denotes the shape operator of N in the direction of v. Furthermore, the
vector space J N(γ) of all N -Jacobi fields along γ is isomorphic to TpM = TpN ⊕ νpN
via J 7→ J(0) + (J ′(0) + AvJ(0)).

We fix a fat section Σ of (G,M) and let N := G · p denote a fixed principal orbit
with p ∈ Σ. For v ∈ νpN let γv(t) := expp(tv).

The following Lemmas, together with their proofs, are Lemma 4.3 and Lemma 4.4 of
[GOT04]. The second of these two characterizes under which conditions an N -Jacobi
field is perpendicular to a given fat section whereas the first lemma shows that every
N -Jacobi field, which is induced by a G-Killing field and which has the proper initial
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values, always satisfies this condition. We stress that no assumptions on the curvature
of Σ are necessary at this point, because the beginning of section 4.1 in loc. cit. is
perhaps a bit misleading in this regard (In fact, Corollary 4.6 of the same section shows
that the authors are aware of this circumstance).

Lemma 2.4.2 ([GOT04, Lemma 4.3]). Suppose that J is an N-Jacobi field along
γv such that J(0) ∈ Ep. If J is the restriction along γv of a G-Killing field on M , then
J satisfies J ′(0) + AvJ(0) = 0.

Proof. Let X be a G-Killing field such that J = X|γv . We then have

Xp = J(0) ∈ Ep = νpΣ ∩ TpN.

If ∇ denotes the Levi-Cività connection of M , then J ′(0) = ∇vX. Let w ∈ νpN be
arbitrary and let W be a vector field along γv which extends w in such a way that
W (t) ∈ νγv(t)(G · γv(t)) for all t. Since γv(t) is G-regular for small t, we have that W is
tangent to Σ for small t and thus ∇vW ∈ TpΣ. Now

〈J ′(0), w〉 = 〈∇vX,w〉 =
d

dt
〈X|γv ,W 〉︸ ︷︷ ︸

=0

−〈Xp︸︷︷︸
∈νpΣ

,∇vW︸ ︷︷ ︸
∈TpΣ

〉 = 0.

It follows that J ′(0) ∈ TpN , and since AvJ(0) ∈ TpN , we get J ′(0) + AvJ(0) ∈ TpN .
However, since J , like any N -Jacobi field, satisfies J ′(0) + AvJ(0) ∈ νpN , we conclude
that J ′(0) + AvJ(0) = 0. �

Lemma 2.4.3 ([GOT04, Lemma 4.4]). Let J be an N-Jacobi field along γv such
that J(0) ∈ Ep. Then J is always orthogonal to Σ if and only if J ′(0) + AvJ(0) = 0.

Proof. If J is always orthogonal to Σ then J ′(0) is orthogonal to TpΣ because
of Lemma 2.2.1. Also, by Theorem 2.1.8, Av leaves Ep invariant, so AvJ(0) ∈ νpΣ.
Therefore, J ′(0) + AvJ(0) ∈ νpΣ and in fact J ′(0) + AvJ(0) = 0, since every N -Jacobi
field satisfies J ′(0) + AvJ(0) ∈ νpN , and νpN ⊆ TpΣ.

Conversely, suppose that J ′(0)+AvJ(0) = 0. Then J ′(0) = −AvJ(0) ∈ Ep, again by
Av-invariance of Ep. Now J and J ′ are perpendicular to the totally geodesic submanifold
Σ, and Lemma 2.2.1 tells us that J is then always orthogonal to Σ, because the initial
conditions of the tangential Jacobi field Y associated with J are both zero. �

With the help of the lemmas we can give a refined decomposition of J N(γ):

Proposition 2.4.4. Let Ñ := W (Σ) · p and denote the Ñ-Jacobi fields in Σ by

J Ñ(γ). Then

J N(γ) = J N
0 (γ)⊕ J N

D (γ)⊕ J N
E (γ), where

J N
0 (γ) := {J ∈ J N(γ) | J(0) = 0, J ′(0) ∈ νpN} = J Ñ

0 (γ),

J N
D (γ) := {J ∈ J N(γ) | J(0) ∈ Dp, J

′(0) = −AvJ(0)} = J Ñ
D (γ),

J N
E (γ) := {J ∈ J N(γ) | J(0) ∈ Ep, J ′(0) = −AvJ(0)}

= {X|γ | X is a G-Killing field and Xp ∈ Ep}.

In particular, if J = J0 + JD + JE is an N-Jacobi field represented with respect to the
above decomposition, then, in view of Lemma 2.2.1, J0 + JD is the part of J which is
everywhere tangential to Σ and JE is part of J which is everywhere perpendicular to Σ.
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Proof. The decomposition follows from the isomorphism J N(γ) ' TpN⊕νpN and
because of Tp(G · p) = Dp ⊕ Ep (see Definition 2.1.6). Note that Theorem 2.1.8 implies
that Av leaves Dp invariant. This shows that every element JD of J N

D (γ) is everywhere
tangential to Σ, because JD(0) ∈ Dp and J ′D(0) = −AvJD(0) ∈ Dp. It is also clear that
every element J0 of J N

0 (γ) is tangential to Σ, because of J0(0) = 0 and J ′0(0) ∈ νpN .

We next show that J0 and JD are Ñ -Jacobi fields. First of all, γ is a geodesic in M
which starts in Σ and since γ′(0) ∈ νpN ⊆ TpΣ we have that it is also tangential to Σ.
Since Σ is totally geodesic in M , it follows that γ is a geodesic of Σ and further on, γ
is a Ñ -geodesic. Using Lemma 2.2.1 we see that J0 and JD are Jacobi fields on Σ. For
J0 we now have to show that J ′(0) ∈ νpÑ . But this is clear since we have νpN = νpÑ .

Concerning JD, we have that JD(0) ∈ Dp = TpÑ and if Ã denotes the shape operator

of Ñ , then
J ′D(0) + ÃvJD(0) = J ′D(0) + AvJD(0) = 0,

where we have used that Ãv = Av|Dp , because Ñ is totally geodesic in N , by Theorem
2.1.8 again. By following the previous arguments backwards, we obtain that in fact

the equalities J N
0 (γ) = J Ñ

0 (γ) and J N
D (γ) = J Ñ

D (γ) hold. The statements concerning
J N
E (γ) are direct consequences of Lemma 2.4.2 and Lemma 2.4.3.

�

Definition 2.4.5. An isometric action (G,M) is variationally complete if for
every G-orbit N , every N -geodesic γ and every N -Jacobi field along γ, which vanishes
for some t0 > 0, is the restriction of a G-Killing field to γ.

It suffices to consider principal orbits only in order to show that an isometric action
is variationally complete. This fact seems to be known in the literature. For instance, in
[GOT04] this is implicitly assumed in the characterization of variational completeness
via covar(G,M) = 0 (see below). A proof can be found in [LT07a, Remark 5.5]2.

Theorem 2.4.6. An isometric action (G,M) is variationally complete if and only
if a minimal reduction (W (Σ),Σ) is variationally complete.

Proof. In the following let p ∈ Σ be a regular point. Recall that due to Lemma
2.3.1 we do not have to distinguish between G-regular and W -regular points. Put

N := G · p and Ñ := W (Σ) · p
and let γ be an arbitrary Ñ -geodesic starting in p.

Suppose that (G,M) is variationally complete. If J ∈ J Ñ(γ) satisfies J(t0) = 0 for
some t0 > 0, then according to Proposition 2.4.4, we can view J as an N -Jacobi field
along the N -geodesic γ. By variational completeness of (G,M), there is a G-Killing
field X such that J = X|γ. Let now prΣX denote the orthogonal projection of X onto
Σ, which by Theorem 2.5.53 is a W -Killing field on Σ (in this step we use that Σ is a
minimal section). Since X(γ(t)) = J(t) ∈ Tγ(t)Σ and therefore J(t) = prΣX(γ(t)), we
may conclude that J is the restriction of a W -Killing field to γ.

For the converse direction, suppose now that (W (Σ),Σ) is variationally complete.
Let p ∈ M be an arbitrary regular point and γ an N -geodesic starting in p. Without
loss of generality, we may assume that p ∈ Σ and that γ is an Ñ -geodesic (a suitable
translate g ·Σ contains p and hence γ, and the minimal reduction (W (g ·Σ), g ·Σ) is also
variationally complete). We decompose an arbitrary N -Jacobi field J , which vanishes

2I would like to thank Alexander Lytchak for giving me this reference.
3Although we anticipate a result from section 2.5 we do not fall prey to circular reasoning.
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for some t0 > 0, according to Proposition 2.4.4 into the three parts J = J0 + JD + JE .
The Proposition tells us that JE is already induced by a G-Killing field. From

0 = J(t0) = J0(t0) + JD(t0)︸ ︷︷ ︸
∈TpΣ

+ JE(t0)︸ ︷︷ ︸
∈νpΣ

and the variational completeness of (W (Σ),Σ) it follows that J0 + JD is induced by an
N(Σ)-Killing field. But such a field is also a G-Killing field and it follows that J is the
restriction of a G-Killing field to γ. �

Corollary 2.4.7. An isometric action (G,M) is variationally complete if and only
if some (and hence any) reduction (W (Σ),Σ) is variationally complete.

Proof. According to Theorem 2.3.2, (G,M) and (W (Σ),Σ) have a common mini-
mal reduction (W (Σ′),Σ′) with Σ′ ⊆ Σ. Hence, we may apply Theorem 2.4.6 to (G,M)
and (W (Σ′),Σ′) and then to (W (Σ),Σ) and (W (Σ′),Σ′) and vice versa. �

Remark 2.4.8. As a matter of fact, Theorem 2.4.6 and Corollary 2.4.7 can also be
deduced from [LT07a, Theorem 1.3] and our Theorem 2.1.1, because the first result
states that variational completeness is a property, which depends solely on the metric
properties of the orbit space of the action, and the second result states that the orbit
space of an action is isometric to the orbit space of any reduction of that action.

Corollary 2.4.9. If (G,M) is a polar and variationally complete action, then
every section is free of conjugate points. In particular, if M is a Riemannian manifold
of non-negative Ricci curvature or compact and of non-negative scalar curvature, then
a variationally complete action on M is polar, if and only if it is hyperpolar.

Proof. Polarity implies, that the generalized Weyl group W (Σ) of any section Σ
is finite. Furthermore, a Lie group acts variationally complete, if and only if its identity
component does. However, if the trivial group acts variationally complete, this only
means that every Jacobi field which vanishes in two different points, vanishes entirely.
Hence, there are no conjugate points in Σ.

Note that a fat section Σ inherits the curvature conditions, which we assume on M ,
since Σ is totally geodesic. By a result of Mendonca and Zhou, [MZ00, Corollary 1],
resp. Green [Gre58], we deduce from the above situation that Σ has to be flat. �

Remark 2.4.10. Conlon proved in [Con72] that hyperpolar actions are variation-
ally complete. In general, the converse is false. Take, for instance, the action of the
trivial group on a non-flat space of non-positive curvature. Then this action is varia-
tionally complete and polar, but not hyperpolar. However, Lytchak and Thorbergsson
proved in [LT07b], that variationally complete actions on manifolds of non-negative
curvature are hyperpolar.

We briefly recall the notion of variational co-completeness, which has been intro-
duced in [GOT04]. Let N = G · p denote an arbitrary principal orbit and consider the
isomorphism J N(γ) ' TpN ⊕ νpN . For a subspace Up ⊆ TpM consider the following
condition:

(P) for every N -geodesic γ and every J ∈ J N(γ) that vanishes for some t0 > 0
and such that (J(0), J ′(0) + AvJ(0))⊥Up it follows that J is the restriction
of a G-Killing field to γ.

If Up satisfies condition (P ), then g∗Up satisfies this condition in g · p. Furthermore, we
always have that Up = TpM satisfies condition (P ).
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Definition 2.4.11. We write covarN(G,M) ≤ dimUp, if Up satisfies condition
(P ). Then we say that the variational co-completeness of (G,M) is less than or
equal to k, if covarN(G,M) ≤ k holds for all principal orbits N . We then also write
covar(G,M) ≤ k.

Note that a canonical choice for Up is always TpΣ = νpN ⊕ Dp, where Σ denotes a
fat section through p. This is due to Proposition 2.4.4. In particular, we always have

covar(G,M) ≤ cohom(G,M) + copol(G,M).

This estimate can sometimes be considerably improved. The following result is a gen-
eralization of [GOT04, Theorem 4.1]. However, we do not hide the fact that all we did
was to relax the curvature condition on the fat section appearing in the Theorem. The
condition that Σ has to be flat in the proof of [GOT04, Lemma 4.2] can be weakened
to the condition that Σ has no conjugate points. For example, this situation occurs
whenever M has non-positive sectional curvature. The rest of the proof now just works
as in Section 4.1 of loc. cit.

Theorem 2.4.12. Let (G,M) be an isometric action and Σ ⊆M a k-section. If Σ
is free of conjugate points in the induced metric, then covar(G,M) ≤ k. In particular,

covar(G,M) ≤ copol(G,M).

We even obtain Corollary 4.5 of loc. cit. under these relaxed conditions:

Corollary 2.4.13. Let (G,M) be an isometric action and let Σ be a pre-section
wich we assume to have no conjugate points. Let N be a principal orbit and let p ∈ N∩Σ.
Then Dp = TpN ∩ TpΣ has property (P ).

2.5. Decomposition of Killing Fields and Adapted Metrics

In this section we generalize parts of [GOT04, Section 5.4] and use the resulting de-
composition of Killing fields along a minimal section to define certain adapted invariant
Riemannian metrics on coset spaces G/H which will be useful later.

We consider the following relation on the set of G-regular points of M : We call
two points p, q ∈M reg equivalent, if they can be joined by a broken geodesic in M reg

whose segments are G-transversal geodesics. That is, there exists a finite sequence of
G-transversal geodesics γ0, . . . , γr : [0, 1] →M reg such that

γ0(0) = p, γr(1) = q, γi(1) = γi+1(0), i = 0, . . . , r − 1.

It is easily checked that this relation is indeed an equivalence relation.

Definition 2.5.1. We call the equivalence class containing the point p ∈M reg the
G-network of p and denote it by Sp

4. We further denote by 〈Sp〉 the totally geodesic
hull of Sp, i.e. the connected component of p of the intersection of all complete totally
geodesic submanifolds containing Sp.

It is clear from this definition that Sp ⊆ 〈Sp〉 ⊆ Σ holds for every pre-section Σ
through p. Furthermore, 〈Sp〉 intersects every G-orbit in M . In fact, the statement
follows from expp(νp(G · p)) ⊆ 〈Sp〉 and Lemma 1.1.6.

We next fix a fat section Σ of (G,M) and assume p ∈ Σ to be G-regular. We show
how one can construct a subset Σ̄p of Σ which is again a fat section of (G,M). This

4Sp is related to the notion of the dual foliation F⊥ to the singular Riemannian foliation F on M
given by the G-orbits (see for instance [Wil06a]), but in general it differs from it.
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generalizes the construction given in [GOT04, Section 5.4]. Our proofs are slightly
different in some parts.

Definition 2.5.2. For a vector field Y on M let Zero(Y ) denote the set of points
where Y vanishes. If Y is a Killing field, then the connected components of Zero(Y ) are
closed and totally geodesic submanifolds of M (see for instance [Kob58]). Although
we do not assume our isometric actions to be effective, we identify an element X ∈ g
with its induced G-Killing field on M . We denote the evaluation of the Killing field in
p with Xp or X(p). For any X ∈ g we consider the orthogonal projection prΣX of X to
Σ, which by [KN69, Ch. VII, Theorem 8.9] is a Killing field of Σ. Then Zero(prΣX)
consists of those points of Σ where X is perpendicular to Σ. Now put

Σ̄p := (
⋂
X∈Ip

Zero(prΣX))◦, where Ip := {X ∈ g | prΣX(p) = 0}.

In words, Σ̄p is the connected component of p of the common zero set of those projected
G-Killing fields which vanish in p. It is a closed totally geodesic submanifold of Σ.

Proposition 2.5.3. Let (G,M) be an isometric action, Σ a fat section and p ∈ Σ
be G-regular. Then

Sp ⊆ 〈Sp〉 ⊆ Σ̄p ⊆ Σ.

Furthermore, Σ̄p is a fat section of (G,M).

Proof. Let X ∈ Ip be arbitrary. Then X is a G-Killing field which satisfies
prΣX(p) = 0. By definition, any q ∈ Sp can be joined to p by a broken geodesic whose
segments are G-transversal geodesics. Since we have Xp⊥TpΣ, and thus Xp ∈ Ep, we
may apply the Lemmas 2.4.2 and 2.4.3 repeatedly along each segment and obtain that
Xq⊥TqΣ. Thus q ∈ Zero(prΣX) and we have shown that Sp ⊆ Zero(prΣX). Since
Zero(prΣX) is complete and totally geodesic, we have 〈Sp〉 ⊆ Zero(prΣX), and because
X was arbitrary chosen from Ip it follows that

〈Sp〉 ⊆ Σ̄p.

Now, let us show that Σ̄p is a fat section. Property (A) is obvious and property (B)
follows from 〈Sp〉 ⊆ Σ̄p and the fact that 〈Sp〉 intersects every G-orbit. Concerning
property (C), we first make the following observation: If q ∈ Σ̄p is G-regular then
Σ̄q ⊆ Σ̄p. In fact, we have Ip ⊆ Iq.

We have to show that νq(G · q) ⊆ TqΣ̄p. Using the first part of the proof and the
observation above, we conclude that Sq ⊆ Σ̄q ⊆ Σ̄p and hence it follows that

νq(G · q) ⊆ TqΣ̄q ⊆ TqΣ̄p.

In order to show property (D) we first consider an arbitrary g ∈ NG(Σ) and claim that:

(1) g · Zero(prΣX) = Zero(prΣ(AdgX)) and
(2) g · Σ̄p = Σ̄g·p.

Using that AdgX(p) = dφg(p)(Xg−1·p), we obtain (1) from the following computation:

g · Zero(prΣX) = {g · p ∈ Σ | Xp⊥TpΣ} = {p ∈ Σ | Xg−1·p⊥Tg−1·pΣ}
= {p ∈ Σ | dφg−1(p)(AdgX(p))⊥ dφg−1(TpΣ)}
= {p ∈ Σ | AdgX(p)⊥TpΣ} = Zero(prΣ(AdgX)).

From (1) we conclude that

Adg−1X ∈ Ip ⇔ X ∈ Ig·p,



2.5. DECOMPOSITION OF KILLING FIELDS AND ADAPTED METRICS 25

and now (2) follows from

g · Σ̄p = (
⋂
X∈Ip

g · Zero(prΣX))◦ = (
⋂
X∈Ip

Zero(prΣ(AdgX)))◦

= (
⋂

Adg−1X∈Ip
Zero(prΣX))◦ = (

⋂
X∈Ig·p

Zero(prΣX))◦

= Σ̄g·p.

If g ∈ G satisfies g · p ∈ Σ̄p we have g ∈ NG(Σ), because p ∈ Σ is G-regular. By (2) and
the observation made in the proof of property (C) we then have

g · Σ̄p = Σ̄g·p ⊆ Σ̄p,

and since Σ̄p is complete and connected it follows that g · Σ̄p = Σ̄p.
For the general case let q ∈ Σ̄p be an arbitrary G-regular point and let g ∈ G satisfy

g · q ∈ Σ̄p. Again we have g ∈ NG(Σ). Let γ : [0, 1] → M be a minimal geodesic from
q to G · p. Then γ ⊆ Sq and there exists some h ∈ G with γ(1) = h · p ∈ Σ̄p. The
previous arguments now imply that h · Σ̄p = Σ̄p. Note that the arguments in the first
two paragraphs of the proof show that for all x ∈ Sy we have Σ̄x = Σ̄y. Thus it follows
that

Σ̄q = Σ̄h·p = h · Σ̄p = Σ̄p.

Finally, if g · q ∈ Σ̄p then we have g · q ∈ Σ̄q and again by the previous arguments we
see that

g · Σ̄p = g · Σ̄q = Σ̄q = Σ̄p.

�

Corollary 2.5.4. If Σ is a minimal section of the isometric action (G,M) and
p ∈ Σ is G-regular, then for all X ∈ g we have Xp⊥TpΣ if and only if Xq⊥TqΣ holds
for all q ∈ Σ.

Proof. This follows from Proposition 2.5.3 since Σ = Σ̄p. �

Let Σ ⊆M be a minimal section and put H := ZG(Σ) and N := NG(Σ). As usual,
we denote their corresponding Lie algebras by h, resp. n. We put m := {X ∈ g | X ⊥Σ}.

Theorem 2.5.5. The G-Killing fields decompose as

g = n + m, with h = n ∩m.

In words: Every G-Killing field X decomposes uniquely, up to ZG(Σ)-Killing fields, into
an NG(Σ)-Killing field X1 and a G-Killing field X2, which is perpendicular to Σ.

This decomposition is reductive in the sense that [n,m] ⊆ m, and we even have for
all g ∈ N that Adg(m) ⊆ m. Hence, g/h = n/h⊕m/h is AdG(N)-invariant.

Proof. Let p ∈ Σ be G-regular. Since Xp is normal to νp(G · p) ⊆ TpΣ, we have
that (prΣX)(p) is tangent to (G·p)∩Σ = NG(Σ)·p in p. LetX1 denote an NG(Σ)-Killing
field which satisfies X1(p) = prΣX(p). Then X1|Σ is tangent to Σ. Put X2 := X −X1.
We have

X2(p) = X(p)− prΣX(p) ∈ νp(Σ),

hence, by Corollary 2.5.4, it follows that X2|Σ is always perpendicular to Σ, and thus
we also have X1|Σ = prΣX. If X = Y1 + Y2 is another decomposition of this type, then
X1|Σ = prΣX = Y1|Σ. Hence, 0 = Y1|Σ − X1|Σ, and it follows that Z := Y1 − X1 is a
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ZG(Σ)-Killing field, because the latter are characterized as those G-Killing fields which
vanish everywhere on Σ. Since

X = X1 +X2 = Y1 + Y2 = X1 + Z + Y2,

it follows that Y2 = X2 − Z and clearly, Z is uniquely determined.
We next show the inclusion Adg(m) ∈ m. Let X ∈ m, g ∈ N and p ∈ Σreg be

arbitrary elements. Then g · p ∈ Σreg and it follows that

(AdgX)(g · p) = dφg(p)(Xp)⊥ dφg(p)(TpΣ) = Tg·pΣ.

Thus (AdgX)(g · p) ∈ νg·pΣ and by Corollary 2.5.4 we have AdgX ∈ m. The inclusion
[n,m] ⊆ m follows easily from Adg(m) ⊆ m. �

The following corollary is [GOT04, Lemma 5.3] but formulated for minimal sections
of an arbitrary isometric action. The proof is entirely different as in loc. cit.

Corollary 2.5.6. Let (G,M) be an isometric action and Σ ⊆ M a minimal sec-
tion. Let q ∈ Σ be arbitrary and let p ∈ Sq ∩ Σ be G-regular, where Sq is a G-slice
through q. Then we have an orthogonal decomposition:

Tp(Gq · p) = (Tp(Gq · p) ∩ TpΣ)⊕ (Tp(Gq · p) ∩ νpΣ).

Proof. We have Tp(Gq · q) = {Xp | X is a Gq-Killing field}. Let u ∈ Tp(G · q) be
arbitrary and let X be a Gq-Killing field satisfying Xp = u. Consider a decomposition
X = X1 +X2 with X1 ∈ n and X2 ∈ m as in Theorem 2.5.5. Then

0 = Xq = X1(q) +X2(q)

and therefore X1(q) = 0 = X2(q). It follows that X1 and X2 are Gq-Killing fields and
that X1 is even an NGq(Σ)-Killing field. We thus have u = Xp = X1(p) + X2(p) with
X1(p) ∈ Tp(Gq ·p)∩TpΣ and X2(p) ∈ Tp(Gq ·p)∩νpΣ, which proves the inclusion “ ⊆ ”.
Since the other inclusion is trivial, we have proved our claim. �

Corollary 2.5.7. If G is connected and Σ is a minimal section of (G,M), then G
is generated by (NG(Σ))◦ and exp(m). Furthermore, the subgroup K ≤ G generated by
exp(m) is a normal subgroup of G and G is a quotient of N◦ nK.

The decomposition of Theorem 2.5.5 can also be used to introduce a “nice” metric
on G/H. A Riemannian metric on G/H is called (G-W )-invariant if it is left-G- and
right-W -invariant (see Section 7).

Corollary 2.5.8. For a minimal section Σ of (G,M) put N = NG(Σ), H = ZG(Σ)
and W = N/H.

(i) G/H admits a (G-W )-invariant Riemannian metric with (n/h)⊥(m/h) if and
only if m/h carries an AdG(N)-invariant scalar product and W is covered by
the product of a compact Lie group and a vector group.

(ii) If N is compact, then G/H admits a (G-W )-invariant Riemannian metric such
that n/h and m/h are perpendicular.

Proof. Clearly, the first statement implies the second one. By Theorem 2.5.5, the
decomposition g/h = n/h⊕m/h is direct and AdG(N)-invariant. Hence (i) follows from
Proposition 8.1.2 (iii). �

Definition 2.5.9. Let Σ be a minimal section. Then we call a (G-W )-invariant
Riemannian metric on G/H adapted to Σ if (n/h)⊥(m/h) holds with respect to the
AdG(N)-invariant scalar product on g/h induced by the metric.
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The reason for this definition will become apparent in Section 2.6 where we prove a
generalization of Weyl’s integration formula. By Corollary 2.5.8 (ii) a metric adapted
to Σ exists if N is compact. Also note that in the cases that the action is either polar
(i.e. h = n) or has trivial copolarity (i.e. h = m) any left-invariant metric on G/H is
adapted to Σ. Also note that it follows from Corollary 8.1.4 that, with respect to an
adapted metric, W is totally geodesic in G/H, and if G/N carries the metric induced
from G/H � G/N , then m/h is canonically isometric to g/n.

Proposition 2.5.10. For an isometric action (G,M) with minimal section Σ the
normal bundle νΣreg � Σreg is trivial and a global trivialization can be given by G-Kill-
ing fields.

Proof. Let p ∈ Σreg be arbitrary. Let X1, . . . , Xr ∈ m such that X1(p), . . . , Xr(p)
form a basis of νpΣ. This can always be achieved, since νpΣ ⊆ Tp(G · p). We claim that
X1, . . . , Xr stay linearly independent along Σreg. This is easy to see, if one considers the
orbit projection map r : G · p→ G · q, g · p 7→ g · q, where q ∈ Σreg is an arbitrary point.
Since both p and q are regular, this map is a diffeomorphism. Its differential is given by
dr(p)(u) = Xq, where X is a G-Killing field such that Xp = u ∈ Tp(G · p). Since dr(p)
maps bases to bases and respects the decomposition Tp(G ·p) = (Tp(G ·p)∩TpΣ)⊕νpΣ,
it follows that X1, . . . , Xr are everywhere linearly independent along Σreg. �

2.6. A Generalization of Weyl’s Integration Formula

The aim of this section is to prove a generalization of Weyl’s celebrated integration
formula for compact Lie groups to the case of an almost arbitrary isometric action.
We first formulate Fubini’s Theorem for general submersions. We denote by µg the
Riemannian measure with respect to the Riemannian metric g. Let π : (M, g) → (N, h)
be a surjective submersion between two Riemannian manifolds. For q ∈ N let δq denote
the function

δq : π−1(q) → R, p 7→
∣∣∣det(dπ(p)|Hp)

−1
∣∣∣ ,

where Hp denotes the horizontal space to the fibre π−1(q) in p. (Recall that | det f | for
a homomorphism f : X → Y of equal dimensional Euclidean vector spaces is defined
via the usual determinant by | det f | := | detA ◦ f |, where A : Y → X is an arbitrary
auxiliary linear isometry.) If π is a Riemannian submersion, then δq ≡ 1. In general
this need not be the case. However, we always have δq > 0; and using local frames, it
is not difficult to see that δq is in fact smooth on π−1(q). For a function f on M we set
fq := f |π−1(q) and denote the Riemannian measure on π−1(q) induced by g with µgq . If
fq is integrable with respect to the weighted measure δqµgq on π−1(q), then we put

f̄(q) :=
∫
π−1(q)

fq δqdµgq .

Proposition 2.6.1 (Fubini’s Theorem for submersions). Let π : (M, g) � (N, h)
be a surjective submersion between two Riemannian manifolds. If f ∈ Cc(M) (resp. f
is integrable on M), then f̄ ∈ Cc(N) (resp. fq is integrable for almost all q ∈ N and f̄
is integrable on N). Furthermore, we have:∫

M
f dµg =

∫
N
f̄ dµh =

∫
N

(∫
π−1(q)

fq δqdµgq

)
dµh.

Proof. The proof is literally the same as in [Sak96, Chapter II, Theorem 5.6] (we
also adopted the notation from there). The only modification which occurs is the factor
δq, which enters in the way stated above. We leave the details to the reader. �
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Definition 2.6.2. Let Σ be a minimal section of (G,M). Consider for s ∈ Σ the
differential of the orbit map ωs : G/H → G · s restricted to m/h.

dωs(eH)|m/h : m/h → νsΣ, X + h 7→ Xs.

Here we denote, as in Theorem 2.5.5, by m (resp. h) the elements of g which induce
Killing fields perpendicular to Σ (resp. which vanish on Σ). We assume that there is
some inner product on m/h and define

δE : Σ → R, s 7→
∣∣∣det(dωs(eH)|m/h)

∣∣∣ .
Proposition 2.6.3. Let ϕ : G × M → M be an isometric action with minimal

section Σ and assume that G/H carries a (G-W )-invariant metric adapted to Σ. Then
δE ∈ C0(Σ)W and δE |Σreg ∈ C∞(Σreg)W . In particular, δE extends to a G-invariant
continuous function on M , which we also denote by δE . This function vanishes in the
G-singular points of M . Furthermore, we have

δE(s) =
∣∣∣det((dπ(s)|νsΣ)−1)

∣∣∣ for all s ∈ Σreg,

where π : M reg � G/N is defined as in Theorem 3.1.2 (iv).

Proof. Consider a fixed orthonormal basis X1 + h, . . . , Xm + h of m/h and a local
orthonormal frame Y1, . . . Ym ∈ Γ(Σ, ν(Σ)) on a neighborhood of s ∈ Σ. We define the
auxiliary linear isometry

As : νsΣ → m/h

by mapping Yi(s) to Xi + h. Then As varies smoothly in s. Also note that dωs(eH)
depends smoothly on s ∈ Σ, because the action ϕ is assumed to be smooth. The
usual determinant of square matrices is a polynomial in the matrix entries and thus
det(A ◦ dωs(eH)|m/h) is smooth in s as it is a composition of smooth maps. If s ∈ Σreg

we see that the former expression does not vanish on a small neighborhood of s. Hence
its sign does not change there and we may conclude that

δE(s) =
∣∣∣det(A ◦ dωs(eH)|m/h)

∣∣∣
is smooth in s. If s is not G-regular, then det(A ◦ dωs(eH)|m/h) may become zero in s
and its sign may change in a neighborhood of s. Hence passing to the absolute value
we see that δE need no longer be smooth, but it still remains continuous.

If s ∈ Σreg, then dπ(s)|νsΣ : νsΣ → g/n assigns to v ∈ νsΣ the unique element
X + n ∈ g/n which induces a Killing field on M , such that Xs = v. We thus have

dωs(eH)|m/h = (dπ(s)|νsΣ)−1,

where TeH(G/N) = g/n is identified with m/h via the linear isometry

m/h → g/n, X + h 7→ X + n

(this is an isometry because of Corollary 8.1.4). Note that νsΣ is the horizontal space
of the fibre Σreg of π in s. Thus the claimed formula follows for δE(s) with s ∈ Σreg. It
remains to prove that δE is W -invariant. For all g ∈ N(Σ) we have

dωg·s(eH) = dφg(s) ◦ dωs(eH).

Since dφg(s) is a linear isometry which leaves νsΣ invariant and since the determinant
ignores linear isometries up to a sign, it follows that δE is invariant under W . �

We are now in the position to formulate a generalization of Weyl’s integration for-
mula to the case of an arbitrary isometric group action.
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Theorem 2.6.4 (Weyl’s integration formula). Let ϕ : G×M →M be an isometric
action and let Σ ⊆ M be a minimal section. We put N = NG(Σ) and H = ZG(Σ).
Then W = W (Σ) = N/H. We assume that G/H carries a (G-W )-invariant metric
adapted to Σ and that W and G/N are endowed with the metrics from Corollary 8.1.4.
Furthermore all manifolds are equipped with their corresponding Riemannian measure.
Then:

(i) For every f ∈ L1(M)∫
M
f(x) dx =

∫
G/N

(∫
Σ
f(g · s) δE(s)ds

)
d(gN).

Here d(gN) denotes the Riemannian measure on G/N .
(ii) If G/N has finite volume, then for every f ∈ L1(M)G∫

M
f(x) dx = vol(G/N)

∫
Σ
f(s) δE(s)ds.

(iii) If G/N is compact, the assignment

Θp : Lp(M)G → Lp(Σ)W , f 7→ p

√
vol(G/N)δE f |Σ

is a surjective linear isometry for any 1 ≤ p <∞.

Proof. In the following, we repeatedly use that Σreg and M reg are dense in Σ, resp.
M . We first consider the submersion π : M reg � G/N from Theorem 3.1.2 (iv). Its
fibre in the point gN is given by g · Σ. If we apply Fubini’s Theorem to π, we get for
any f ∈ L1(M): ∫

M
f(x) dx =

∫
G/N

f̄(gN)d(gN), (1)

where

f̄(gN) =
∫
g·Σ

f(x) δ(x)dx, (2)

and δ(x) for x = g · s, s ∈ Σreg is given by

δ(g · s) =
∣∣∣det((dπ(g · s)|νg·s(g·Σ))

−1)
∣∣∣

=
∣∣∣det((dlg(eN) ◦ dπ(s)|νsΣ)−1)

∣∣∣
= δ(s) = δE(s).

Here we used Proposition 2.6.3 in the last equation. Next, we apply the transformation
formula to (2) with respect to the isometry φg. This yields:

f̄(gN) =
∫
Σ
f(g−1 · s) δE(s)ds. (3)

Note that since φg is an isometry, no Jacobian appears in the formula. If we insert (3)
into (1) and exchange g−1N by gN , we obtain formula (i).

Clearly, (ii) is a consequence of (i). For (iii) we proceed as follows. First, because
of formula (ii), we have

p

√
vol(G/N)δEf |Σ ∈ Lp(Σ)W ,

and thus Θ is well defined. Next we observe that Θ is clearly a linear map. Due to
formula (ii), it is an isometry and hence continuous and injective. It remains to prove

that Θ is surjective. For this purpose let f̃ ∈ Lp(Σ)W be arbitrary. Since Σreg is dense in

Σ, we may approximate f̃ by a sequence f̃n ∈ C0
c (Σ

reg)W with respect to the Lp-norm.

According to Corollary 2.1.2, for each f̃n there is a function hn ∈ C0(M reg)G which
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restricts to f̃n on Σreg. In order to show that supp(hn) = G · supp(f̃n) is compact let
xk = gk · yk ∈ supp(hn) be an arbitrary sequence, where n ∈ N is fixed, gk ∈ G and

yk ∈ supp(f̃n). Since G/N is compact, there is some g ∈ G such that, after passing to
some subsequence if necessary, limk→∞(gkN) = gN . Hence, we may assume that there

is a sequence mk ∈ N such that limk→∞(gkmk) = g. Since supp(f̃n) is compact and

N -invariant we may assume again that limk→∞(m−1
k · yk) = y ∈ supp(f̃n). It hence

follows that xk = (gkmk) · (m−1
k · yk) has a convergent subsequence. Therefore supp(hn)

is compact.
Now we define

fn :=
hn

p

√
vol(G/N)δE

∈ C0
c (M

reg)G.

Then Θ(fn) = f̃n and using formula (ii) again we see that fn is a Cauchy sequence.
Hence it converges to some element f ∈ Lp(M)G. By continuity of Θ we may conclude

that Θ(f) = f̃ and we have proved the surjectivity of Θ. �

Corollary 2.6.5. If, under the same assumptions as in Theorem 2.6.4, we further
assume that M has finite volume, then:

vol(G/N) =
vol(M)

volE(Σ)
,

where volE(Σ) =
∫
Σ δE(s)ds is the weighted volume of Σ.

Proof. This follows immediately from Theorem 2.6.4 (ii). �

The next corollary has been investigated in [Mag06]. However, we later realized
that over the years it has been independently discovered by several authors (see for
instance [AWY06, AWY05, FJ80, GT07]). The authors of the first three articles
do not explicitly mention the notion of a polar action.

Corollary 2.6.6. With the same notation as in Theorem 2.6.4 assume that ϕ is
polar and that W is finite. Then the following holds:

(i) If G/H has finite volume, then δE is a volume scaling function in the following
sense:

δE(s) =

{
0 if s is singular,

|Gs/H| · vol(G·s)
vol(G/H)

if s is regular or exceptional.

(ii) For any f ∈ L1(M) we have the formula∫
M
f(x) dx =

1

|W |

∫
G/H

(∫
Σ
f(g · s) δE(s)ds

)
d(gH)

=
1

|W |

∫
Σ

(∫
G/H

f(g · s) d(gH)

)
δE(s)ds.

(iii) If G/H has finite volume then for any f ∈ L1(M)G we have∫
M
f(x) dx =

vol(G/H)

|W |

∫
Σ
f(s) δE(s)ds.

(iv) The assignment

Ψ : Cc(M) → Cc(G/H × Σ)W , f 7→ {(gH, s) 7→ f(g · s)δE(s)}
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extends to a surjective linear isometry from L1(M) onto L1(G/H ×Σ)W . Fur-
thermore, if G is compact, then

Θ : Lp(M)G → Lp(Σ)W , f 7→ p

√√√√vol(G/H)

|W |
δE f |Σ

is a surjective linear isometry.

Proof. For a polar action H is an open subgroup of N and thus G/H → G/N is
a |W |-sheeted covering. The formulas in (ii) and (iii) now follow from Theorem 2.6.4
and Fubini’s Theorem applied to the covering map. Also note that for fixed s ∈ Σ and
f ∈ L1(M) the map gH 7→ f(g · s) is well defined and integrable on G/H. In contrast
to this, gN 7→ f(g · s) need not be well defined.

Since H is open in N we also have h = n and m = g. The volume of G · s for
non-singular s ∈ Σ is defined as

vol(G · s) =
∫
G·s

1 dy,

where dy is the Riemannian measure on G · s induced by the Riemannian metric on
M . The orbit map ωs : G/Gs → G · s is a diffeomorphism. If we transform the volume
integral of G · s with respect to this diffeomorphism we obtain

vol(G · s) =
∫
G/Gs

| det dωs(gGs)| d(gGs)

=
1

|Gs/H|

∫
G/H

| det dωs(gH)| d(gH)

=
1

|Gs/H|

∫
G/H

δE(s) d(gH) =
vol(G/H)

|Gs/H|
δE(s).

The second part of (iv) is a reformulation of (iii) in Theorem 2.6.4. The first part is
proved as follows. First of all, Ψ is well defined. In fact let

F (gH, s) := f(g · s)δE(s).
Then F is continuous with compact support. If n ∈ N is arbitrary, then

F (gn−1H,n · s) = f(g · s)δE(n · s) = F (gH, s),

by W -invariance of δE . So F is W -invariant and this completes the proof that Ψ is well
defined. Furthermore, Ψ is clearly linear. Using formula (i) we see that Ψ is an isometry
which in turn implies that Ψ is injective and continuous. It follows that Ψ extends to
a linear isometry from L1(M) to L1(G/H × Σ)W . In order to show surjectivity of this
map, first consider an arbitrary element F of C0

c (G/H×Σreg)W . From this we construct
a function f ∈ C0

c (M
reg) by

f :=
F ◦ ϕ−1

δE ◦ pr2 ◦ ϕ−1
,

where pr2 : G/H×Σreg → Σreg denotes the canonical projection. The numerator and the
denominator are well defined functions, since F and δE are W -invariant and the fibres
of φ : G/H × Σreg → M reg are precisely the W -orbits on G/H × Σreg. Continuity of f
can be shown by considering local trivializations of the covering ϕ. Since the fibres of ϕ
are finite, it follows that F ◦ϕ−1 has compact support. Furthermore, δE ◦pr2 ◦φ−1 does
not vanish on M reg because δE does not vanish on Σreg. So this f is well defined and
satisfies Ψ(f) = F . We may now approximate an arbitrary element of L1(G/H × Σ)W
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by a sequence of elements in C0
c (G/H × Σreg)W . Using the above construction we can

then show, similarly to the proof of Theorem 2.6.4 (iii), that Ψ is surjective. �

Remark 2.6.7. In the special case that G is a compact Lie group acting on itself
via conjugation, then a maximal torus T is a section and at the same time a principal
isotropy group along T . Thus formula (ii) of Corollary 2.6.6 is the classical integration
formula of Weyl in this case.

Remark 2.6.8. Sometimes there is some kind of “root space decomposition” avail-
able which is adapted to the action. This in turn enables us to compute δE explicitly
in terms of the “roots”. Below we list some examples of polar actions where this has
been carried out in the literature (see for instance [DK00] or [Hel84]):

(i) Let G be a compact group acting on itself via conjugation: (g, x) 7→ gxg−1.
Then a section is given by any maximal torus T of G and at the same time
T is also the principal isotropy group along T . It is pretty straightforward to

show that δE(t) =
∣∣∣det(id− Adt)|g/t

∣∣∣ for any t ∈ T . We recall some basic facts

concerning the root space decomposition of g which we will need:
Fix a maximal torus T of G and let t denote its Lie algebra. An (infini-

tesimal) root α is an element of (tC)∗, the dual space of tC, such that

gα := {Y ∈ gC | adX(Y ) = α(X) · Y for all X ∈ t} 6= 0.

If α is a root then so is −α. Let P be a choice of positive roots ; that implies
0 /∈ P and for each α ∈ P we have −α /∈ P . Now each Lα is defined by
Lα := (gα ⊕ g−α) ∩ g. Note that since adX is a skew endomorphism with
respect to some Ad-invariant inner product, we see that each α takes values
in the imaginary numbers only. It is a fact that each nonzero gα has complex
dimension one, whereas the corresponding Lα has real dimension two. We then
have that Adexp(X) with X ∈ t acts on each nonzero gα as the multiplication

operator eα(X) ∈ U(1). Hence, the action of Adexp(X) on Lα is the rotation
through the angle α(X)/i. The root space decomposition above is invariant
under (id − Adt). If we write an arbitrary t ∈ T as t = exp(X) with X ∈ t,
we obtain

δE(t) = 4|P |
∏
α∈P

sin2

(
α(X)

2i

)
.

(ii) If we linearize the action in (i) in the neutral element of G, we obtain the
adjoint representation Ad of G on g. In this case, a section is given by any
maximal Abelian subspace t ⊆ g which then corresponds to a maximal torus
T of G via T = exp(t). In this context, we have δE(X) = |det(adX)| and
adX acts on gα as the multiplication operator α(X). Since α(X) is purely
imaginary, the action of adX on Lα is a rotation of π

2
scaled by the factor

α(X)
i

. Hence,

δE(X) = (−1)|P |
∏
α∈P

(α(X))2 =
∏
α∈P

|α(X)|2.

(iii) A generalization of the polar action in (i) is present in the context of symmetric
spaces. Let M = G/K be a Riemannian symmetric space with G = Iso(M)◦,
the identity component of the isometry group of M , and K = Gp, the isotropy
subgroup of G of some point p ∈ M . For simplicity reasons we will assume
that M is either of compact type or noncompact type. It is then known that
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the action of K on M = G/K by left translation is (hyper-)polar and a section
is given by any maximal flat A of M through p. In order to compute δE(a) for
a ∈ A, we start with some preliminaries (see e.g. [Hel01, Chapter VII, §11] for
the details). Let g = k⊕p be the Cartan decomposition of g with respect to K
and assume the usual AdG(K)-invariant inner product on g derived from the
Killing form; i.e. if B denotes the Killing form of g, then in the compact case,
the inner product is −B, and in the noncompact case it is −B(·, θ·), where θ
denotes the Cartan involution on g corresponding to the symmetric subgroup
K. We identify TpM with p and, under this identification, let a := TpA.
Then a ⊆ p is a maximal Abelian subspace of p. If π : G → G/K denotes
the canonical projection and dπ(e) : g → p the corresponding projection
with respect to the Cartan decomposition and the above identification, then
δE(aK) = | det(dπ(e) ◦ Ada−1)|. For further computations, we consider the
decompositions

p = a⊕
∑
α∈Σ+

pα and k = zk(a)⊕
∑
α∈Σ+

kα,

where Σ denotes the set of restricted roots, Σ+ a choice of positive roots,

pα = {Y ∈ p | (adX)2Y = α(X)2Y for all X ∈ a} and

kα = {Y ∈ k | (adX)2Y = α(X)2Y for all X ∈ a}.

We put mα := dim pα = dim kα. Now dπ(e) ◦ Ada−1 leaves the above decom-
position of p invariant and acts on each direct summand pα as the operator
− sinhα(H) · adH

α(H)
in case that M is of noncompact type, and it acts as the op-

erator sin
(
α(H)
i

)
· adH

α(H)/i
in case that M is of compact type, where a = exp(H).

In the noncompact case, we thus have:

δE(a) =
∏
α∈Σ+

| sinhα(H)|mα ,

whereas in the compact case we have:

δE(a) =
∏
α∈Σ+

∣∣∣∣∣sin
(
α(H)

i

)∣∣∣∣∣
mα

.

(iv) As before, there is a Lie algebra version of (iii). The action of K on p (using
the same notation as in (iii)) given by k ·X := Adk(X) is (hyper-)polar. Every
Cartan subspace a of p is a section. In view of the root space decomposition
in (iii), we then obtain

δE(H) =
∏
α∈Σ+

|α(H)|mα .

A further generalization of the above actions are the so called “Hermann actions”. They
constitute a quite well understood class of hyperpolar actions on symmetric spaces and
their corresponding δE ’s have been computed in [GT07].

Example 2.6.9. Examples of non-polar actions where δE can be explicitly calculated
are stated in Proposition 7.1.4. For instance, in the case of the k-fold direct sum of the
standard representation of SO(n) with 2 ≤ k ≤ n− 1 (cf. Example 1.1.3) we have

δE(p) =
1√

2k(n−k)
| det(B)|(n−k),
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where p =

(
B
0

)
∈ Σ and B ∈ Rk2

.

2.7. On a Generalization of Chevalley’s Restriction Theorem

Recall that a smooth p-form ω ∈ Ω(M) is called G-invariant, if for all g ∈ G we
have that g∗ω = ω. The set of all G-invariant p-forms on M will be denoted by Ωp(M)G.
A p-form ω is called horizontal, if for all X ∈ g we have ιX(ω) = 0. Here ιX denotes
contraction by the Killing field generated by X. The set of all G-invariant horizontal
p-forms is denoted by Ωp

hor(M)G. These forms are also called basic forms.
If Σ is a fat section with fat Weyl group W , then in view of Corollary 2.1.2 it is

natural to ask whether the isomorphism ι∗ also yields C∞(M)G ' C∞(Σ)W , or if we
even have Ω∗

hor(M)G ' Ω∗
hor(Σ)W . In the polar case (i.e. copol(G,M) = 0) the first

statement has been proved by Palais and Terng in [PT87] and the second statement
by Michor in [Mic96, Mic97]. In the general case we note the following:

Proposition 2.7.1. The map ι∗ : C∞(M)G → C∞(Σ)W , f 7→ f |Σ, is well defined
and injective, and the G-invariant continuous extension (ι∗)−1(f) of f ∈ C∞(Σ)W to
M is smooth on M reg.

Proof. Since Σ is an embedded submanifold of M , the restriction of f to Σ yields
a smooth function on Σ. Thus ι∗|C∞(M)G is well defined. Injectivity is trivial, because

the map ι∗ on C0(M)G is already injective by Corollary 2.1.2. Let now f ∈ C∞(Σ)W be
arbitrary and denote its G-invariant extension to M by F . Smoothness of F is a local
condition. Thus, let p ∈M be an arbitrary point and let U be a tubular neighborhood
of G · p. Since F is G-invariant, we may assume that p ∈ Σ. Let furthermore Sp be
a slice through p such that U = G · Sp. It is known that F |U is smooth in p if and
only if F |Sp is smooth in p. Since Σ is a fat section we have Sp ⊆ Σ in the case that
p is a G-regular point and Sq is also a slice with respect to the W -action on Σ. Hence
F |Sp = f |Sp is smooth in p. �

Proposition 2.7.2. Let (G,M) be an isometric action and let Σ be a fat section
with fat Weyl group W = W (Σ). Then the mapping i∗ : Ω∗

hor(M)G → Ω∗
hor(Σ)W , which

is obtained by restriction to Σ, is injective.

Proof. The mapping i∗ is well defined, since Σ is an embedded submanifold and
due to Corollary 2.1.3. Suppose now that i∗ω = 0 for some p-form ω ∈ Ω∗

hor(M)G.
Let q ∈ Σ ∩ M reg be an arbitrary G-regular point in Σ. By property (C) of a fat
section, we have a (not necessarily direct) decomposition of TqM = TqΣ + Tq(G · q).
Let X1, . . . , Xp be arbitrary vectors in TqM . According to the above decomposition we
can write Xi = Yi + Zi, where Yi ∈ TqΣ and Zi ∈ Tq(G · q) for all i = 1, . . . , p. Now
ωq(X1, . . . , Xp) decomposes into a sum where each summand contains either Yi or Zi
for all i = 1, . . . , p. If a summand contains at least one Zi, then it vanishes, since ω
is horizontal. Otherwise, the summand is ωq(Y1, . . . , Yp) and vanishes because i∗ω = 0.
All in all we thus have that ωq = 0. Since ω is G-invariant, this holds along the whole
orbit through q. Now q ∈M reg was arbitrary, so ω vanishes on the G-regular set of M ,
and since the regular set is dense in M , we finally conclude that ω = 0 on all of M . �

One would expect that i∗ should also be surjective in general. However, we can
show this only under the following strong assumptions:

Theorem 2.7.3. Let (G,M) be an isometric action and let Σ ⊆ M be a minimal
section. Put W = W (Σ). Suppose that the slice representation (Gq, νq(G·q)) is polar for
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every q ∈ Σ and that Vq = νq(G · q) ∩ TqΣ is a 0-section. Then Ω∗
hor(M)G ' Ω∗

hor(Σ)W .
In particular, C∞(M)G ' C∞(Σ)W and the isomorphism in both cases is given by the
map i∗ from proposition 2.7.2.

Proof. All that is left to show is the surjectivity of i∗. The proof is basically the
same as Michor’s in [Mic96, 4.2]. The idea is the following: Given a form ω̃ ∈ Ωp

hor(Σ)W ,
we have to construct a form ω ∈ Ωp

hor(M)G with i∗(ω) = ω̃. In a first step, we construct
ω locally, using that the slice representation is polar in every point in combination
with Corollary 3.8 and Lemma 4.1 of [Mic96]. The corollary states that basic forms
correspond to Weyl-invariant forms for polar representations, and the lemma states
that basic forms on a slice can be extended to basic forms on the corresponding tube.
Finally, we glue up the various local forms via a G-invariant partition of unity. To begin
with, let q ∈ M be an arbitrary point of M and let U denote a tube around G · q and
Sq the corresponding slice through q. After a suitable translation, we may assume that
q ∈ Σ. Let B ⊂ TqM be an open ball centered at 0, such that

expq |(B∩νq(G·q)) : (B ∩ νq(G · q)) → Sq

is a diffeomorphism onto Sq. Then

expq |B∩TqΣ : B ∩ TqΣ → D

is a diffeomorphism onto an open neighborhood D ⊆ Σ of q in Σ. By assumption,
Vq = TqΣ ∩ νq(G · q) is a section of the polar action of Gq on νq(G · q). Furthermore,
the generalized Weyl group of Vq is equal to the isotropy group Wq of W in q. Let
ω′ ∈ Ωp(B ∩ TqΣ)Wq be the pullback of ω̃ by expq |B∩TqΣ. By [Mic96, Corollary 3.8],

there exists a unique form ω′′ ∈ Ωp
Gq−hor(B ∩ νq(G · q))Wq , which extends ω′. We

may now push this form forward along expq |B∩νq(G·q) to Sq to obtain an element of

Ωp
Gq−hor(Sq)

Gq . By Lemma 4.1 loc. cit. we finally obtain a form ωq ∈ Ωp
hor(U)G which

satisfies (i|D)∗(ωq) = ω̃|D.
The intersection U ∩ Σ consists of the disjoint union of all wj · D, where wj is a

representative of a coset of the quotient W/Wq. Choose for all j some element gj of
NG(Σ) which projects down to wj. We then have

(i|wj ·D)∗(ωq) = (lgj
◦ i|D ◦ w−1

j )∗(ωq)

= (w−1
j )∗(i|D)∗l∗gj

(ωq)

= (w−1
j )∗(i|D)∗(ωq) = (w−1

j )∗(ω|D) = ω̃|wj ·D.

We therefore have (i|U∩Σ)∗(ω)q = ω̃|U ∩ Σ and, by choosing a suitable G-invariant
partition of unity, we may glue the desired ω from the various ωq, which then has the
property i∗(ω) = ω̃. �

Remark 2.7.4.

(i) The assumption of polarity of the slice representation in the theorem above
enters in a subtle way. Namely, in the step where [Mic96, Corollary 3.8 ] is
invoked, a theorem enters, which states that the algebra of real G-invariant
polynomials of a polar representation (G, V ) with compact G is isomorphic to
the algebra of real W -invariant polynomials on a section Σ via the restriction
mapping p 7→ p|Σ. Crucial for this theorem in turn is that for any x ∈ Σ
the orthogonal projection of the orbit G · x onto Σ lies in the convex hull of
G · x ∩ Σ = W · x. This statement hinges on the fact, that W · x is a finite
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set in the polar case. We conjecture though, that a corresponding convexity
theorem holds for minimal sections of arbitrary representations.

(ii) A situation, in which the seemingly restrictive assumptions of Theorem 2.7.3
are satisfied, is given in Theorem 5.1.4.

(iii) Forming the cohomology of the complex Ω∗
hor(M)G yields basic cohomology

H∗
G−basic(M). Thus Theorem 2.7.3 implies that H∗

G−basic(M) is isomorphic to
H∗
W−basic(Σ) under the assumptions stated. However, it was already observed

by Koszul in [Kos53], that for compact M , the basic cohomology of (G,M)
is isomorphic to the singular cohomology of the orbit space G\M5. Hence,
in view of Theorem 2.1.1, we obtain the isomorphism of basic cohomology
already under the weaker assumption of M being compact, using that G\M
is homeomorphic to W\Σ.

5I thank Peter W. Michor for this information.



CHAPTER 3

Global Resolutions of Isometric Actions with Respect to Fat
Sections

In this section we define the (global) resolution MΣ of an isometric action (G,M)
with respect to an arbitrary fat section Σ. The construction is related to the so called
core resolution of Grove and Searle in [GS00], which we have already described in the
introduction. The reason, why MΣ is called a resolution, is that it is a G-space whose
isotropy groups are smaller than that of M . So, roughly speaking, the G-orbits on MΣ

are less singular than the G-orbits on M , in a way which will be made precise later.
In the following, let (G,M) be an isometric action and let Σ be a fat section. Put

N = NG(Σ) and H = ZG(Σ). Then W = N/H is the fat Weyl group of Σ. Since Σ is
a W -space, we may form the associated bundle G/H ×W Σ � G/N with fibre Σ, where
G/H ×W Σ is the orbit space of the W -action on G/H × Σ given by

nH · (gH, s) := (gn−1H,n · s).
Its total space is a G-space with respect to the G-action l · [gH, s] := [lgH, s].

Definition 3.1.1. We call

MΣ := G/H ×W Σ

the resolution of (G,M) with respect to Σ. If Σ is a minimal section, we call MΣ a
minimal resolution.

We now list some features related to MΣ (c.f. [GS00], Theorem 2.1):

Theorem 3.1.2. Let ϕ : G×M →M denote the group action (G,M). Then

(i) The group action ϕ induces a smooth and surjective G-equivariant map:

ϕ̃ : MΣ � M, [gH, s] 7→ g · s.
(ii) The isotropy group of the point [eH, s] ∈MΣ = G/H ×W Σ is given by:

G[eH,s] = N(Σ) ∩Gs = NGs(Σ).

(iii) Σ is canonically N-equivariantly immersed into MΣ via the map s 7→ [eH, s].
The image Σ̃ is embedded into MΣ because it is a fibre of MΣ � G\N , and
furthermore it intersects every G-orbit on MΣ. It follows that ϕ̃ restricts to a
W -equivariant diffeomorphism between Σ̃ and Σ.

(iv) The set of G-regular points (MΣ)reg can be identified with G/H ×W Σreg and ϕ̃
restricts to a G-equivariant diffeomorphism from (MΣ)reg onto M reg. It follows
that we have a bundle

π : M reg � G/N, g · s 7→ gN

with structure group W and whose fibres are the G-translates of Σreg. In
particular, they are totally geodesic.

(v) The orbit spaces G\MΣ and G\M are canonically homeomorphic.

37
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(vi) dϕ̃[eH,s] : T[eH,s]MΣ → TsM is a linear isomorphism if and only if

Ts(G · s) + TsΣ = TsM. (∗)
This is furthermore equivalent to Gs ⊆ N and also to (Gs)

◦ = (N ∩ Gs)
◦.

ϕ̃ is a G-equivariant diffeomorphism if and only if (∗) is satisfied for all s ∈ Σ.
(vii) The G-translates of Σ̃ form a foliation of MΣ.

Proof. (i): If [gH, s] = [g̃H, s̃] ∈MΣ, then there is some n ∈ N and h ∈ H with

(g̃, s̃) = (gn−1h, n · s).
It follows that

g̃ · s̃ = g n−1hn︸ ︷︷ ︸
∈H

·s = g · s

and we have shown that ϕ̃ is well defined. Since Σ intersects every orbit, it follows that
ϕ restricted to G × Σ maps onto M . Furthermore, H acts trivially on Σ and so the
induced map

G/H × Σreg →M reg, (gH, s) 7→ g · s
(by abuse of notation again denoted by ϕ) is still surjective. The following diagram is
commutative:

G/H × Σ
ϕ

$$ $$IIIIIIIII
pr

����
MΣ ϕ̃

// M.

From this we can read off that ϕ̃ is also surjective and G-equivariant, and since the
vertical map is a surjective submersion, it follows that ϕ̃ is a smooth map.

(ii): Let g ∈ G[eH,s] be arbitrary. Then there exists some n ∈ N and h ∈ H such
that (g, s) = (n−1h, n ·s). This implies n ∈ Gs and therefore gh−1 ∈ Gs. Since H ⊆ Gs,
it follows that g ∈ Gs ∩N . If conversely g ∈ Gs ∩N , then

g · [eH, s] = [gH, s] = [eH, g−1 · s] = [eH, s],

showing that g ∈ G[eH,s]. If s ∈ Σ is G-regular, then Gs ⊆ N and thus G[eH,s] = Gs.
From here it is not difficult to see that a G-regular [eH, s̃] has an isotropy group which
is conjugate to Gs.

(iii): This statement is easily verified.
(iv): The first part follows from (ii) and (iii). It remains to show that ϕ̃|MΣ

is
injective and that it has a smooth inverse. Suppose that g · s = g̃ · s̃ for g, g̃ ∈ G and
s, s̃ ∈ Σ. Then s̃ = g̃−1g · s and since s and s̃ are G-regular, it follows from property
(D) of a fat section that n := g̃−1g ∈ N . Hence,

[gH, s] = [gn−1H,n · s] = [g̃, s̃].

By property (C) of a fat section, the tangent space of Σ is in regular points transversal to
the orbit. Using (vi) it follows that ϕ̃|(MΣ)reg is a submersion and thus a diffeomorphism.

(v): We have the well defined map f : G\MΣ → G\M, G · [eH, s] 7→ G · s, and the
diagram

MΣ

ϕ̃ // //

pr
����

M

pr
����

G\MΣ
f

// G\M
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is commutative. This shows that f is continuous and surjective. It is also easy to see
that f is injective. To show that f−1 is continuous, we write it as a composition of
continuous maps:

G\M ι̃−1

→ W\Σ → W\Σ̃ → G\MΣ,
G · s 7→ W · s 7→ W · [eH, s] 7→ G · [eH, s].

Here ι̃ is the map from Theorem 2.1.1 and the other two maps are the continuous
injections induced by the continuous maps Σ ↪→ Σ̃, resp. Σ̃ ↪→ MΣ, both of which
appear in (iii).

(vi): From the diagram in the proof of (i) we see that

dϕ̃[eH,s] : T[eH,s]MΣ → TsM

is surjective if and only if

dϕ(eH,s) : T(eH,s)G/H × Σ → TsM

is surjective. The latter map is given by:

dϕ(eH,s)(X + h, v) = Xs + v,

where Xs is the value of the Killing field induced by X + h on M in s. We have

im(dϕ(eH,s)) = Ts(G · s) + TsΣ

and thus the map is surjective if and only if TsM = Ts(G · s) + TsΣ holds.
Using Proposition 2.1.5, we have

Ts(G · s) + TsΣ = Ts(G · s)⊕ (TsΣ ∩ νs(G · s)). (∗∗)
Note that the right hand side is an orthogonal decomposition. Thus (∗) holds if and
only if

νs(G · s) ⊆ TsΣ.

This in turn is equivalent to the statement that Gs ⊆ N . In fact, since the Gs-regular
points in νs(G · s) correspond to G-regular points in M under the exponential map, it
follows from property (D) of a fat section that, if νs(G · s) ⊆ TsΣ holds, then Gs ⊆ N .
Conversely, if Gs ⊆ N then, according to the slice theorem (Theorem 2.2.2), νΣ

s (W · s)
is a Gs-invariant subspace of νs(G · s), but this means that

νs(G · s) = νΣ
s (W · s) ⊆ TsΣ.

Again by Proposition 2.1.5, we may rewrite the right hand side of (∗) as

Ts(G · s) + TsΣ = TsΣ⊕ (Ts(G · s) ∩ νs(Σ)).

Thus, (∗) is furthermore equivalent to

dimM = dim Σ + (dim(G · s)− dim(W · s)) (∗ ∗ ∗)
Let (.)princ denote a principal isotropy group for the action in parentheses. Then

dim Σ = cohom(G,M) + dimW − dim(W,Σ)princ︸ ︷︷ ︸
dim(G,M)princ−dimH

The right hand side of (∗ ∗ ∗) now computes to:

cohom(G,M) + dimW − dim(W,Σ)princ + (dimG− dimGs − dimW + dimWs)

= dimM + dimH − dimGs + dimWs︸ ︷︷ ︸
=dim(Gs∩N)−dimH

= dimM + dim(Gs ∩N)− dimGs.
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It follows that (∗ ∗ ∗) is equivalent to dim(Gs ∩ N) = dimGs, which is the same as
(Gs)

◦ = (Gs ∩N)◦.
Suppose that ϕ̃ is a local diffeomorphism. Since ϕ̃ restricted to (MΣ)reg is a dif-

feomorphism onto M reg and since the regular points form an open and dense subset of
their surrounding space, it follows that ϕ̃ is a diffeomorphism from MΣ onto M .

(vii): Let q := [gH, s] ∈ MΣ be an arbitrary point. According to Corollary 2.1.4,
Gq = g(N(Σ) ∩ Gs)g

−1 is transitive on the set of G-translates of Σ̃ that contain q.

Clearly, g · Σ̃ contains q. For an arbitrary element gng−1 ∈ Gq, where n ∈ N(Σ) ∩Gs,
we have

(gng−1) · (g · Σ̃) = (gn) · Σ̃ = g · Σ̃.
Therefore, only the G-translate g · Σ̃ passes through q. �

Corollary 3.1.3 ([GS00, cf. Corollary 2.4]). If (G,M) has only principal or
exceptional orbits, then MΣ 'M .

Proof. Let q ∈ Σ be arbitrary. According to Lemma 1.1.8 there is some G-
regular point p ∈ Σ in a slice around q. We thus have Gp ⊆ Gq and by assumption
(Gq)

◦ = (Gp)
◦. Since p ∈ Σ is G-regular, property (D) of a fat section implies that

Gp ⊆ N(Σ). Putting all this together yields:

(Gp)
◦ ⊆ (N(Σ) ∩Gq)

◦ ⊆ (Gq)
◦ = (Gp)

◦.

Now the claim follows from Theorem 3.1.2 (vi). �

So far we have considered MΣ only as a smooth manifold without any Riemannian
metric on it. It is natural to demand that G should act isometrically on MΣ. Fur-
thermore, the Riemannian metric on MΣ should be induced by a product metric on
G/H × Σ. Hence, we consider (G-W )-invariant metrics on G/H (cf. Section 7).

Proposition 3.1.4. Suppose that G/H has a (G-W )-invariant Riemannian metric
and Σ carries the Riemannian metric induced by M . Then MΣ, endowed with the
Riemannian metric submersed from G/H × Σ, has the following properties:

(i) (G,MΣ) is an isometric action.
(ii) If Σ is a k-section of (G,M), then Σ̃ = {[eH, s] | s ∈ Σ} is a k-section of

(G,MΣ) and W (Σ̃) = W (Σ). In particular, the foliation of MΣ given by the
G-translates of Σ̃ has totally geodesic leaves.

(iii) (MΣ)Σ̃ 'MΣ (G-equivalent).
(iv) If Σ is a minimal section of (G,M), then copol(G,MΣ) ≤ copol(G,M).

Proof. (i) is clear by the assumptions made on the metric on G/H.
(ii): By Theorem 3.1.2 (iii) we have that Σ̃ is complete, connected and embedded

into MΣ and intersects every G-orbit. Consider the principal bundle

ψ : G/H × Σ →MΣ, (gH, s) 7→ [gH, s],

which maps a point (gH, s) to its W -orbit [gH, s] = {(gn−1H,n · s) | nH ∈ W}. By
our choice of metric, ψ is a Riemannian submersion.

We claim that Σ̃ is totally geodesic in MΣ. In fact, ψ−1(Σ̃) = W × Σ and since W
is totally geodesic in G/H by Corollary 8.1.4, it follows that W × Σ is totally geodesic
in G/H × Σ. Thus Σ̃ = ψ(W × Σ) is totally geodesic in MΣ. This already gives us
properties (A) and (B) of a fat section. The fibre of ψ over [eH, s] is

ψ−1([eH, s]) = {(nH, n−1 · s) | nH ∈ W}.
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In order to speak about metric relations in the tangent spaces of MΣ we have to deter-
mine the vertical and horizontal distribution of ψ along {eH} × Σ. They are defined
as

V(eH,s) := T(eH,s)ψ
−1([eH, s]) and H(eH,s) := (V(eH,s))

⊥.

The definition of the fibre yields

V(eH,s) = {(X + h,−Xs) | X + h ∈ n/h} ⊆ n/h× Ts(W · s),

and a computation shows that

H(eH,s) = ((n/h)⊥ × νΣ
s (W · s))⊕ As,

where As := H(eH,s) ∩ (n/h × Ts(W · s)). In fact, As corresponds to the tangent space
of the W -orbit through [eH, s] (induced by the left action of G) and one can show that

As = {(fs(v), v) | v ∈ Ts(W · s)},

for some linear monomorphism fs : Ts(W ·s) → n/h, but we do not need this fact in the
following. By our assumptions on the Riemannian metric on G/H×Σ and MΣ, we have
that ψ is a Riemannian submersion. Hence, we may identify subspaces of T[eH,s]MΣ

with certain subspaces of H(eH,s). More precisely, we have

T[eH,s](G · [eH, s]) ' H(eH,s) ∩ (T(eH,s)(G · (eH, s)) + V(eH,s)︸ ︷︷ ︸
=g/h×Ts(W ·s)

) = As ⊕ ((n/h)⊥ × {0}),

and it follows that

ν[eH,s](G · [eH, s]) ' {0} × νΣ
s (W · s) ⊆ ({0} × νΣ

s (W · s))⊕ As ' T[eH,s]Σ̃.

We therefore have for all points [eH, s] ∈ Σ̃ (and not just the G-regular ones) that

ν[eH,s](G · [eH, s]) ⊆ T[eH,s]Σ̃.

This shows property (C) of a fat section. We now come to property (D). If [eH, s] ∈ Σ̃
and g ∈ G with g · [eH, s] = [gH, s] ∈ Σ̃, it follows that g ∈ N (again this holds not only
in the G-regular points). We have therefore shown that Σ̃ is a k-section of (G,MΣ) if
Σ is a k-section of (G,M). That W (Σ̃) = W (Σ) holds is also not difficult to show, in
fact we even have NG(Σ̃) = NG(Σ) and ZG(Σ̃) = ZG(Σ).

(iii): Let ˜̃ϕ : (MΣ)Σ̃ →MΣ denote the canonical G-equivariant surjection. That is

˜̃ϕ : G/H ×W Σ̃ →MΣ, [gH, [eH, s]] 7→ [gH, s].

If ˜̃ϕ([gH, [eH, s]]) = ˜̃ϕ([g̃H, [eH, s̃]]), then [gH, s] = [g̃H, s̃]. Now g̃H = gn−1H and
s̃ = n · s for some n ∈ N . But this implies that

[g̃H, [eH, s̃]] = [gn−1H, [eH, n · s]]
= [gH, n · [eH, n · s]]
= [gH, [nH, n · s]]
= [gH, [eH, s]].

This shows that ˜̃ϕ is injective. By Theorem 3.1.2 (ii) we have G[eH,s] ⊆ N for all s ∈ Σ

and then (vi) of the same Theorem implies that ˜̃ϕ is a submersion. It follows that the
map is a G-equivariant diffeomorphism.

(iv) is an immediate consequence of (ii). �
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Remark 3.1.5.

(i) We do not know whether for a minimal section Σ of (G,M) it is actually
possible that copol(G,MΣ) < copol(G,M).

(ii) According to Corollary 2.5.8 (ii), the assumptions made in the Proposition
above are certainly satisfied if N is compact. We would also like to mention
that there are other natural ways to endow MΣ with a Riemannian metric
such that Σ̃ is totally geodesic, see for instance [Bes87, Theorem 9.59]. We
do not know however, if G then still acts isometrically on MΣ.

The following proposition generalizes [GS00, Proposition 2.6]. Basically, the proof
is the same as in loc. cit.

Proposition 3.1.6. Suppose that M is a Riemannian G-manifold with sectional
curvature bounded from below by k ≤ 0 and let G be a compact Lie group. For any fat
section Σ the resolution MΣ supports a G-invariant Riemannian metric whose sectional
curvature is bounded from below by k.

Proof. As before, we write N = NG(Σ), H = ZG(Σ) and W = N/Z. Assume
that G carries a bi-invariant Riemannian metric. Then the induced metric on G/H is
(G-W )-invariant and has non-negative curvature. On Σ we consider the Riemannian
metric induced from the ambient space. Since Σ is totally geodesic in M , it satisfies
the same curvature bound as M . The same holds for G/H×Σ with the product metric.
Since W acts isometrically on the product space G/H×Σ, the projection onto MΣ yields
a Riemannian submersion. According to O’Neills Theorem ([O’N66, Corollary 1]), MΣ

now has the same curvature bound k from below as M . �

Remark 3.1.7. As a concluding remark of this section, we show that for every triple
H EN ≤ G, where G is a lie group, H and N are closed subgroups of G and such that
N is compact, there exists some manifold Σ on which W = N/H acts isometrically,
with trivial principal isotropy group and such that M := G/H ×W Σ is a Riemannian
G-manifold with fat section Σ and fat Weyl group W . This generalizes the construction
in [PT88, 5.6.20]. In fact, since W is compact, there is some Euclidean vector space V
on which W acts faithfully. Then W acts with trivial principal isotropy group on the
k-fold inner direct sum Σ := k · V for some positive integer k. If now G/H is endowed
with a (G-W )-invariant Riemannian metric, then M := G/H ×W Σ with the submersed
metric from G/H ×Σ is a G-manifold. Similarly as in the proof of Proposition 3.1.4 (ii)
one can show that Σ̃ := {[eH, s] | s ∈ Σ} is a fat section with fat Weyl group W .



CHAPTER 4

Copolarity of Singular Riemannian Foliations

Since pre-sections are purely geometrical objects and since minimal sections can
be expressed as connected components of the intersections of certain pre-sections (see
Proposition 1.1.9 (iv)), there is a meaningful way to define these notions for singular
Riemannian foliations. This also leads to the notion of copolarity for the latter. A
reference for the following notions is [Mol88, Chapter 6]. A transnormal system F
on a Riemannian manifold M is a partition of M into complete connected immersed
submanifolds ofM such that every geodesic perpendicular to one leaf is perpendicular to
all other leaves it meets. A singular Riemannian foliation (SRF) is a transnormal
system such that the module ΞF of all vector fields, which are tangent to all leaves in
F , spans for every p ∈ M the tangent space TpF of the leaf F ∈ F through p. A leaf
F is called regular if it has maximal dimension, otherwise it is called singular.

The partition of a G-manifold M into the G-orbits is a transnormal system. Since
the tangent space of every orbit is spanned by the G-Killing fields, this partition is also
a singular Riemannian foliation. However, the principal and exceptional orbits are both
considered as regular leaves for the singular foliation.

We can now define pre-sections for an SRF with locally closed leaves just as we did
for a G-manifold:

Definition 4.1.1. Let M be a Riemannian manifold and let F be singular Rie-
mannian foliation with locally closed leaves on M . A submanifold Σ ⊆ M is called a
pre-section for F if the following three conditions are satisfied:

(i) Σ is complete, connected, embedded and totally geodesic in M ,
(ii) Σ intersects every leaf of F ,
(iii) for every regular leaf F ∈ F and all points p ∈ Σ ∩ F we have νp(F ) ⊆ TpΣ.

If p ∈ M is a point which lies on a regular leaf, then a pre-section of least dimension
which contains p is called a minimal section through p.

The properties of a singular Riemannian foliation together with the assumption that
the leaves are locally closed in M yield the following generalization of Lemma 1.1.6:

Lemma 4.1.2. If F ∈ F is an arbitrary leaf, then for every q ∈ F the set expq(νq(F ))
intersects any other leaf of F .

Let p be a point in some regular leaf. Using the above lemma, it is easy to see that,
if Σ1 and Σ2 are two pre-sections through p, then the connected component of Σ1 ∩Σ2

which contains p is again a pre-section. Hence, through every regular point p passes
a unique minimal section. From here on it is seems quite natural to assume that all
results on minimal sections of isometric group actions should carry over in one way or
another to the case of minimal sections of SFRs with locally closed leaves.

However, a noteworthy point is that a corresponding definition of canonical fat
sections (Definition 1.1.11) or cores ([GS00]) makes no sense for general singular Rie-
mannian foliations with locally closed leaves. Hence, the minimal sections we defined
above serve as a generalization of canonical fat sections.
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CHAPTER 5

Copolarity of Actions induced by Polar Actions on Symmetric
Spaces

In this section, our aim is to compute the copolarity of actions on compact lie groups
which are associated to certain polar actions on symmetric spaces of compact type.

We first recall some notions for symmetric spaces in order to fix our notation (for the
details we refer to Helgason’s monograph [Hel01]). A symmetric pair (G,K) consists
of a Lie group G and a closed subgroup K such that an involutive automorphism
σ : G→ G exists with Fix(σ)◦ ⊆ K ⊆ Fix(σ). If in addition AdG(K) is compact, then
the pair is called Riemannian. The involution σ induces an involution of the Lie algebra
g of G (also denoted by σ). This yields the so called Cartan-decomposition g = k⊕ p,
where k is the (+1)- and p the (−1)-eigenspace of σ. Note that k is at the same time
the Lie algebra of K. If π : G → G/K denotes the canonical projection, then TeKG/K
is identified with p via dπ(e).

It is well known that the complete connected totally geodesic submanifolds Σ of G/K
correspond bijectively to the Lie triple systems m of p. Furthermore, s := [m,m] ⊕ m
is a Lie subalgebra of g and its corresponding Lie subgroup S of G together with
L := SeK = S ∩K form a Riemannian symmetric pair. We have Σ = π(S) ' S/L, and
S is the smallest subgroup of G that acts transitively on Σ.

We could not find the following statement in the literature, although it seems natural
to consider.

Lemma 5.1.1. Let (G,K) be a Riemannian symmetric pair with G compact. Suppose
that Σ ⊆ G/K is a complete, connected and totally geodesic submanifold. Then Σ is
embedded in G/K if and only if S is closed in G.

Proof. If S is closed in G, then S acts isometrically on G/K. Therefore, its orbit
S · eK = Σ is an embedded submanifold of G/K.

Conversely, s = [m,m]⊕m is a compact Lie algebra because g is. Let s = z(s)⊕ [s, s]
denote the decomposition of s into its center z(s) and its semisimple part [s, s]. It follows
that exp([s, s]) is closed in G ([Mos50], p. 615) and hence compact. The same holds
for

exp([m,m]) = (exp([s, s]) ∩ Fix(σ))◦.

Since Σ is embedded in G/K, its image under φ : G/K → G, gK 7→ gσ(g)−1 yields the
compact submanifold exp(m) of G. Note that exp(m) is closed under forming rational
powers of elements. Applying σ to an element of exp(m) has the same effect as forming
its inverse. Clearly, exp(m) projects onto Σ under π.

We next claim that every element s ∈ S can be written as a product s = xy where
x ∈ exp(m) and y ∈ exp([m,m]). In fact, let s ∈ S be arbitrary and let st be a path
from e to s. Let then xt be a path in exp(m) which starts in e and satisfies

x2
t = stσ(st)

−1 = φ ◦ π(st) ∈ exp(m)
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for all t. We claim that yt := x−1
t st is a path in S, which is fixed by σ. In fact,

σ(yt) = σ(x−1
t )σ(st) = xtσ(st)s

−1
t st

= xt(x
2
t )
−1st = x−1

t st = yt.

This shows y ∈ exp([m,m]). It follows that S = exp(m) exp([m,m]) is closed in G. �

Now let G be a compact Lie group equipped with a bi-invariant metric. Viewed as a
symmetric space, G can be identified with (G×G)/∆(G), where ∆(G) = {(g, g) | g ∈ G}.
So g ∈ G is identified with the coset [g, e] = {(gh, h) | h ∈ G}. Let N ⊆ G be a totally
geodesic submanifold of G. Then n := TeN is a Lie triple system of g = L(G). As
before, a transitive group of isometries of N can be realized as a subgroup of G×G:
Let ñ := {(X,−X) | X ∈ n} ⊂ g×g. Obviously, ñ is a Lie triple system, hence we may
consider the Lie subalgebra

s := [ñ, ñ]⊕ ñ = 4([n, n])⊕ ñ = 〈([X, Y ] + Z, [X, Y ]− Z) | X, Y, Z ∈ n〉.

Lemma 5.1.2. Let S ⊆ G×G be the connected Lie subgroup of G×G with L(S) = s.
Then S is a group of isometries of N and we have for all (g, h) ∈ S : g ·N · h−1 = N
and therefore

Tgh−1N = g · TeN · h−1 = g · n · h−1.

In particular, (exp(X), exp(−X)) ∈ S for all X ∈ n, and hence

Texp(2X)N = exp(X) · n · exp(X).

Let now (G,K) be a Riemannian symmetric pair with G compact. The reason for
all the preliminary work is the following: Whenever H is a subgroup of G, the action ψ
of H on G/K by left translation lifts to an action ϕ of H×K on G in the following way:
(h, k) · g := hgk−1. If prH : H×K → H denotes the projection onto the first factor,
then the situation fits into the following commutative diagram:

(H×K)×G
ϕ //

prH×π
��

G

π

��
H ×G/K

ψ
// G/K.

The lift ϕ has certain distinctive features:

Proposition 5.1.3.

(i) π maps ϕ-orbits onto ψ-orbits: π(HgK) = H · (gK). The orbit spaces
(H×K)\G and H\G/K are canonically homeomorphic via HgK 7→ H · (gK).

(ii) For the isotropy subgroups of both actions we have

(H×K)g = {(h, g−1hg) | h ∈ H ∩ gKg−1} and

HgK = H ∩ gKg−1.

Therefore, both groups are isomorphic via prH : (H×K)g → HgK , (h, k) 7→ h.
(iii) The actions ψ and ϕ have the same cohomogeneity. More precisely, the slice

of ϕ through g ∈ G is given by νg(HgK) = g · (Adg−1(h⊥)∩ k⊥). The ϕ-orbits
contain the fibres of π and since they are mapped onto the orbits of ψ, the slice
through g · p is given by νgK(H · (gK)) = dπ(g)(νg(HgK)). Furthermore, the
slice representation ((H×K)g, νg(HgK)) of ϕ is equivariantly isomorphic to
the slice representation (HgK , νgK(H · (gK))) of ψ.

For the details we refer to [GT02].



5. COPOLARITY OF ACTIONS INDUCED BY POLAR ACTIONS ON SYMMETRIC SPACES 47

Theorem 5.1.4. Let (G,K) be a Riemannian symmetric pair with compact G. Let
H be a closed subgroup of G. If (H,G/K) is polar and Σ is a section through eK with
m := TeKΣ, then

copol(H×K,G) = dim([m,m]).

A minimal section through e is given by the connected Lie subgroup S corresponding to
the Lie subalgebra s := [m,m]⊕m.

Proof. We first show that S contains a minimal section. In a second step we show
that each minimal section contains S. Without loss of generality we may assume that
e is regular with respect to the (H×K)-action.

Clearly, S is totally geodesic and complete as it is a Lie subgroup of G. Since Σ is
embedded in G/K, Lemma 5.1.1 shows that S is embedded in G. Furthermore, since S
maps under the projection π : G→ G/K onto Σ, it intersects every orbit. Now suppose
that g ∈ S is regular with respect to the action ϕ. Then π(g) = gK is regular with
respect to ψ and the normal space νg(HgK) to the orbit HgK in g is given by

(h⊥ · g) ∩ (g · p) = g · (Adg−1(h⊥) ∩ p).

However, since the H-action on G/K is polar, we know that Adg−1(h⊥) ∩ p = m (see
[Gor04a, p. 195]). Since S is a Lie subalgebra of G, its tangent space in g is given by
left translation of s with g, i.e. TgS = g · s. Combining this with the above, we obtain:

νg(HgK) = g · (Adg−1(h⊥) ∩ p) = g ·m ⊆ g · s = TgS.

We have therefore established that any minimal section is contained in S.
Now assume that N ⊆ S is a minimal section through e and write n := TeN . In

particular we have the inclusion νg(HgK) = g · m ⊆ TgN for all regular g ∈ N and
therefore m ⊆ n. Since the set of regular points of the H×K-action on G is open and
dense in G and e is assumed to be a regular point, there is a small ε > 0, such that for all
t ∈ (−ε, ε) and X ∈ m with unit length, the value of g2 = exp(t·X) is regular. Applying
the tangent space formula from lemma 5.1.2 it follows that g2 ·m ⊆ Tg2N = g · n · g, or
in other words:

Adg(m) = Adexp(t/2·X)(m) ⊆ n.

Since Adexp(X) = eadX , it follows for all Y ∈ m and t ∈ R:

Adexp(t/2·X)(Y ) = et/2·adX (Y ) ∈ n.

Differentiating in t = 0 yields that adXY = [X, Y ] ∈ n. By linearity of the Lie bracket
we may thus conclude that [m,m] ⊆ n and therefore s ⊆ n which in turn implies
S ⊆ N . �

Remark 5.1.5. The Lie group S ⊆ G in the theorem above is a lift of the section
Σ ⊆ G/K, which is minimal in the sense that it is a minimal section of the action of
(H×K) on G. We have proved along the lines that, even if the action of H on G/K is
not polar, we still have the following inequality:

copol(H×K,G) ≤ copol(H,G/K) + dim([m,m]).

Here m is the tangent space of a minimal section through eK. To be more precise, if
Σ ⊆ G/K denotes a minimal section with respect to the action ψ and m = TeKΣ, then
S := exp([m,m]⊕m) contains a minimal section of the action ϕ.
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Corollary 5.1.6. With the assumptions and notation as in Theorem 5.1.4:

(i) Assuming that ψ is polar, then ϕ is polar if and only if it is hyperpolar.
(ii) If H = {e}, then copol(K,G) = dim([p, p]) (the action is by right translation),

and the copolarity is trivial.

We can also describe the relation between the generalized Weyl group of Σ and the
fat Weyl group of S:

Proposition 5.1.7. In addition to the assumptions of Theorem 5.1.4 let e be reg-
ular.

(i) NH×K(S) = {(h, k) ∈ H×K | hk−1 ∈ S} and ZH×K(S) = 4(H ∩K).
(ii) prH(NH×K(S)) = NH(Σ) and prH(ZH×K(S)) = ZH(Σ).
(iii) The following diagram is commutative

N(S)
prH // //

p1
����

N(Σ)

p2
����

W (S) prW

// // W (Σ),

where prW denotes the homomorphism induced by p2 ◦ prH . Hence, W (S) is
mapped canonically onto W (Σ) and has at least as many connected components
as the latter.

(iv) N(Σ) ' N(S)/({e}×(K ∩ S)) and W (Σ) ' W (S)/p1({e}×(K ∩ S)).

Proof. The description of the normalizer in (i) follows from property (D) of a fat
section. The centralizer of a minimal section coincides with the isotropy group of any
(H×K)-regular point of S. Since e is a regular point, ZH×K(S) = ∆(H ∩ K) follows
from Proposition 5.1.3 (ii).

Let (h, k) ∈ NH×K(S) be arbitrary. If we apply π to the equation hSk−1 = S we
obtain h · Σ = Σ. This proves h ∈ NH(Σ). Conversely, assume that h ∈ NH(Σ)
is an arbitrary element. In particular, hK ∈ Σ. Since π(S) = Σ, we can find an
element s ∈ S with hK = sK. It follows that k := s−1h ∈ K, which we rewrite as
hk−1 = s ∈ S. Since e is a regular point for the action ϕ, by assumption, we conclude
that (h, k) ∈ NH×K(S) by property (D) of a fat section. This completes the proof that
prH maps NH×K(S) onto NH(Σ).

The statement in (iii) is easily verified. The same is true in the case of (iv). In fact,
the kernel of prH is given by

ker(prH) = {(h, k) ∈ N(S) | h = 1, k ∈ S} = {e}×(K ∩ S).

�

Remark 5.1.8. With the assumptions made in Theorem 5.1.4, Proposition 5.1.3
(iii) shows that the assumptions made in Theorem 2.7.3 are satisfied. I.e. the basic
forms on S and G are naturally isomorphic to each other. In particular, the smooth
(H×K)-invariant functions on G correspond to the smooth N(S)-invariant functions
on S.

The polar, non-hyperpolar actions on compact rank one symmetric spaces yield
interesting examples where Theorem 5.1.4 is applicable. These actions have been clas-
sified in [PT99]. We will now discuss an example in greater detail in order to illustrate
our results so far.
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Example: A torus action on P2(C). In the following we identify the cyclic

groups Zn as canonical subgroups of S1 ⊂ C, that is Zn = {e 2πki
n | k ∈ Z}. Consider

the complex projective 2-space

M = P2(C) = {[z1 : z2 : z3] | (z1, z2, z3) ∈ S5 ⊆ C3}.

Viewed as a symmetric space, M can be naturally identified with the quotient

G/K = SU(3)/S(U(1)×U(2)).

A point [z] = [z1 : z2 : z3] ∈M is then mapped to the coset gK ∈ G/K in the following
manner: Let v1(z) and v2(z) be an orthonormal base of the orthocomplement of z with
respect to the standard hermitian form on C3, such that the 3×3-matrix g, whose
columns are given by z, v1(z) and v2(z) has determinant one. This process yields a
well defined smooth map, independent of the choices for v1 and v2. The inverse map is
given by assigning to the first column z of a representative g of the coset gK, the point
[z] ∈ P2(C). Now H = T 2 = {diag(λ, µ, λµ)|λ, µ ∈ S1} is a maximal torus in SU(3)
and it acts on M by

diag(λ, µ, λµ) · [z1 : z2 : z3] := [λz1 : µz2 : λµz3].

Since H is an Abelian group, conjugation is always the identity map. Hence, every
isotropy type consists of a single group. There are the following inclusions amongst the
isotropy subgroups:

H[z1:z2:0] � w

**TTTTTTTTTTTTTTTT

H[z1:z2:z3] ' Z3
� � //

* 


77ooooooooooo

� t

''OOOOOOOOOOO
H[z1:0:z2]

� � // H[1:0:0] = H[0:1:0] = H[0:0:1] = H,

H[0:z2:z3]

' �

44jjjjjjjjjjjjjjjj

where each z1, z2, z3 6= 0. Every isotropy of a point with exactly one “0” is isomorphic to
an S1. The orbit space is homeomorphic to a closed triangle, whose vertices correspond
to the three fixed points and whose edges correspond to the other sets of singular points.
The interior points correspond to the regular points. Also note that the action is almost
effective with kernel being equal to the principal isotropy group Z3 ' {(λ, λ, λ)|λ ∈ Z3}.

It is not difficult to see that the action ψ of T 2 on P2(C) is polar. A section through
[1 : 1 : 1] is given by the real projective space Σ := P2(R), sitting naturally in P2(C).
In particular, the cohomogeneity of ψ is 2. We now determine the generalized Weyl
group of ψ. The normalizer of Σ is given by

NH(Σ) = {diag(λ, λ, λ̄2)|λ ∈ Z6} ∪ {diag(λ,−λ,−λ̄2)|λ ∈ Z6} ' Z2×Z6.

Then the centralizer is

ZH(Σ) = {diag(λ, λ, λ)|λ ∈ Z3}.
Thus ZH(Σ) is entirely contained in the Z6-factor of the normalizer, which in turn
implies that the generalized Weyl group W (Σ) is isomorphic to Z2×Z2. So the whole
action of W on Σ is generated by the assignments

[x1 : x2 : x3] 7→ [−x1 : −x2 : x3] and [x1 : x2 : x3] 7→ [x1 : −x2 : −x3].
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According to Theorem 5.1.4, the action ϕ of H×K on G has S = SO(3) as a
minimal section and the copolarity of ϕ is 1. We write a general element (h, k) of H×K
as a pair of matrices:

h =

 λ 0 0
0 µ 0
0 0 λµ

 and k =

 τ 2 0 0
0 τ̄ a τ̄ b
0 −τb τa

 ,
where λ, µ, τ ∈ S1 and a, b ∈ C with |a|2+ |b|2 = 1. A regular point of the (H×K)action
on G is given by

g =
1√
6


√

2 −
√

3 1√
2 0 −2√
2

√
3 1


This follows from the recipe given above. Noting that g ∈ S, we may compute the
normalizer N(S) of S as the set of all pairs (h, k) such that hgk−1 ∈ S, which in our
current situation is equivalent to the condition that hgk−1 is a real valued matrix. A
computation shows

hgk−1 =
1√
6

 λτ̄ 2
√

2 λτ(b̄−
√

3ā) λτ(a+
√

3b)

µτ̄ 2
√

2 −2µτ b̄ −2µτa

λµτ̄ 2
√

2 λµτ(b̄+
√

3ā) λµτ(a−
√

3b)

 .
From this it follows that the normalizer is NH×K(S) ={(

diag(ε1δτ
2, ε2δτ

2, ε1ε2τ
2),

(
δτ2

τ2 cos(α) τ2 sin(α)
−δτ2 sin(α) δτ2 cos(α)

))∣∣∣∣∣ ε1, ε2, δ ∈ Z2,
τ ∈ Z3, α ∈ R

}
,

whereas the centralizer is given by

ZH×K(S) = {(diag(λ, λ, λ), diag(λ, λ, λ))|λ ∈ Z3}.
Therefore, NH×K(S) ' Z2×Z2×Z3×O(2) via the isomorphism

(ε1, ε2, τ, A) 7→
(

diag(ε1 det(A)τ 2, ε2 det(A)τ 2, ε1ε2τ
2),

(
det(A)τ 2 0

0 τ̄ · A

))
and ZH×K(S) ' Z3 is contained in the Z3-factor of the normalizer. This yields

W (S) ' Z2×Z2×O(2).



CHAPTER 6

An Infinite Dimensional Isometric Action

In [GOT04] it is shown that one may easily construct actions with prescribed fat
sections in the following way: Take a polar action (G1,M1) with section Σ1 and any
action (G2,M2) whose principal orbit has dimension k. Then

(G,M) := (G1×G2,M1×M2)

has Σ := Σ1×M2 as a k-section. If (G1,M1) is an infinite dimensional isometric Fredholm
action1 and G2 and M2 are finite dimensional, then it follows that Σ1×M2 has finite
dimension. Hence, copol(G,M) is also finite in this case. Besides these constructed
examples, one might ask if there exist isometric Fredholm actions of infinite dimensional
Lie groups on infinite dimensional manifolds with finite dimensional minimal sections.
A natural candidate is the action by gauge transformation, which we describe in the
following (see [PT88, TT95]). Let G be a compact Lie group with a bi-invariant
Riemannian metric and let H and K be closed subgroups of G. The action by gauge
transformation is defined as:

∗ : P(G,H×K)× V → V, (g, u) 7→ Adg(u)− g′g−1 = gug−1 − g′g−1.

Here P(G,H×K) denotes the Hilbert-Lie group of H1 paths g : I → G, emanating
from H ⊆ G and ending in K ⊆ G, and we let V = H0(I; g) = L2(I; g) denote the
Hilbert space of L2 integrable paths u : I → g in g = L(G), equipped with the inner
product

〈u, v〉0 :=
∫ 1

0
〈u(t), v(t)〉1 dt with 〈·, ·〉1 AdG-invariant.

We give a short summary of several facts concerning the gauge transformation with-
out proofs:

(i) ∗ is a smooth isometric Fredholm action by affine transformations.
(ii) The action of P(G, e×G) on V is simply transitive. In other words, the orbit

map α : P(G, e×G) → V, g 7→ g ∗ 0̂ = −g′g−1 is a diffeomorphism.
(iii) The map φ : V → G, u 7→ α−1(u)(1), obtained by mapping u into the group

P(G, e×G) and then evaluating the resulting path at t = 1, is a surjective
Riemannian submersion.

(iv) The following diagram is commutative:

P(G,H×K)× V
∗ //

π×φ
��

V

φ

��
(H×K)×G ϕ

// G,

where π denotes the map π : P(G,H×K) → H×K, g 7→ (g(0), g(1)). Thus, φ
is equivariant with respect to π. Furthermore, the isotropy subgroups of both
actions are isomorphic via π.

1A (proper) isometric action (G, M) is called Fredholm if cohom(G, M) < ∞.
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(v) For u ∈ V we have that P(G,H×K) ∗ u = φ−1((H×K) · φ(u)).
(vi) The fibres of φ coincide with the orbits of Ωe(G) = P(G, e×e). That is, for

any u ∈ V , we have:

φ−1(φ(u)) = Ωe(G) ∗ u.

In particular, we have φ−1(exp(Y )) = Ωe(G) ∗ Ŷ for all Y ∈ g.
(vii) For u ∈ V let M̃ := P(G,H×K) ∗ u. The tangent space on M̃ in u is:

Tu(M̃) = {[ξ, u]− ξ′ | ξ ∈ H1(I; g), ξ(0) ∈ h, ξ(1) ∈ k}.

(viii) If h ∈ P(G,H×K) with u = h ∗ 0̂ and x = φ(u), then:

νu(M̃) = {hbx−1h−1 | b ∈ νx(HxK)} = Adhx(Ad−1
x (h⊥) ∩ k⊥).

Hence, ν0̂(M̃) is the set of constant paths in Ad−1
x (h⊥) ∩ k⊥ = νx(HxK).

The next lemma shows that Lemma 1.1.6 also holds for the action by gauge trans-
formation.

Lemma 6.1.1. ν0̂(P(G,H×K) ∗ 0̂) intersects all orbits of the P(G,H×K)-action
on V .

Proof. Let P(G,H×K)∗u be an arbitrary orbit and put x := φ(u). Now consider
X ∈ Ad−1

x (h⊥) ∩ k⊥ = νx(HxK) such that (H×K) · x = (H×K) · exp(X). Such an X
exists, because exp(νx(HxK)) intersect every (H×K)-orbit on G. Using (v) above we
obtain

P(G,H×K) ∗ u = φ−1((H×K) · φ(u)) = φ−1((H×K) · exp(X)).

It follows, using (vi) above, that φ−1(exp(X)) = Ωe(G) ∗ X̂ ⊆ P(G,H×K) ∗ u. �

In the following, we assume that (G,K) is a Riemannian symmetric pair with com-
pact G and that H ⊆ G is a closed subgroup. As usual, we identify TeKG/K with p
from the Cartan decomposition g = k⊕ p. Our aim is to show that if H acts polarly on
G/K, then the action by gauge transformation is either polar (and hence hyperpolar),
or it has infinite dimensional minimal sections and hence infinite copolarity. This gives
a partial negative answer to the question we asked at the beginning of this section.

If l ⊆ g is an arbitrary subset of g, we denote by l̂ ⊆ V the set of constant paths
in V with value in l. It is clear that if l is a subspace (or subalgebra) of g, then l̂ is a
subspace (resp. subalgebra) of V which is canonically isomorphic to l. In particular, g
is embedded into V via ĝ.

Lemma 6.1.2. Suppose that H acts polarly on G/K and let m ⊆ p be the tangent
space of a section through eK. If eK is H-regular, then every fat section S ⊆ V of the
P(G,H×K)-action on V through 0̂ contains the linear subspace

span{t 7→ e(1−t)·adX (Y ) | X ∈ m regular, Y ∈ m}.
Here we call an element X ∈ g regular, if exp(X) ∈ G is regular with respect to the
(H×K)-action on G.

Proof. Since S ⊆ V is supposed to be a fat section through 0̂, it is complete,
connected, and totally geodesic in V . Hence, S has to be a linear subspace of V .

From m̂ = ν0̂(P(G,H×K) ∗ 0̂) ⊆ T0̂S = S and property (C) of a fat section we

may conclude that for all regular X̂ ∈ m̂ we have νX̂(P(G,H×K) ∗ X̂) ⊆ S. Let

h ∈ P(G, e×G) be the path defined by h(t) := exp(−t · X). Then X = h ∗ 0̂ and
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φ(X̂) = h(1)−1 = exp(X) is a regular element for the (H×K)-action on G. Since the
action of H on G/K is polar, it follows that Adexp(−X)(h

⊥) ∩ p = m. From (viii) above
we thus conclude that

νX̂(P(G,H×K) ∗ X̂) = Adh exp(X)(Adexp(−X)(h
⊥) ∩ (p)) = Adh exp(X)(m).

Since h exp(X) = exp(−t ·X) exp(X) = exp((1− t)X) and Adexp(X) = eadX , we obtain

Adh exp(X)(m) = {t 7→ e(1−t)·adX (Y ) | Y ∈ m}. This fact together with S being linear
completes the proof. �

Theorem 6.1.3. Let (G,K) be a Riemannian symmetric pair with compact G and
let H ⊆ G be a closed subgroup. Supposed that the action of H on G/K is polar, then
the following are equivalent:

(i) copol(P(G,H×K), V ) <∞.
(ii) copol(P(G,H×K), V ) = 0.
(iii) The action of P(G,H×K) on V is hyperpolar.
(iv) The action of H×K on G is hyperpolar.
(v) The action of H on G/K is hyperpolar.

Proof. The equivalence of (iii), (iv) and (v) is well known. Furthermore, since
sections in V are automatically flat and copol = 0 implies that an action is polar, (iii)
is equivalent to (ii). Certainly, (ii) implies (i).

Let Σ be a section of (H,G/K) through eK and assume that eK is H-regular. Then
e is H×K-regular and 0̂ is regular with respect to the action by gauge transformation.
Put m := TeKΣ. We now show that if copol(P(G,H×K), V ) 6= 0 then The copolarity
must already be infinite. Let X, Y ∈ m be elements with

(adX)2(Y ) = −δY 6= 0 and ‖Y ‖ = 1.

Such elements exist, since m is a Lie triple system and m is not Abelian. Otherwise,
m̂ would be a 0-section, which contradicts our assumption. Recalling that 0 is regular,
there is a ball of regular elements around 0 ∈ m. In fact, this is clear since e ∈ G is
regular and the set of regular points is open in G. We may thus further assume that ε·X
is regular for all ε ∈ [0, 1]. By lemma 6.1.2, every minimal section S of (P(G,H×K), V )
contains the infinite family

M := {t 7→ e(1−t)/pn·adX (Y ) | n ∈ N} ⊆ V,

where pn denotes the n-th odd prime number. We claim thatM is linearly independent.
Since every equivalence class in L2(I; g) has at most one continuous representative,
it suffices to show that the family M is linearly independent as a subset of C(I; g).
Furthermore, all members of M are analytic maps which can be extended analytically
to R and so we only need to show that they are linearly independent when viewed as
functions on R.

Now assume there exist λ1, . . . , λn ∈ R such that

t 7→
n∑
k=1

λke
(1−t)/pk·adX (Y ) = 0.
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For any s := (1− t) ∈ R, we then have:

0 =

〈
n∑
k=1

λke
s/pk·adX (Y ), Y

〉
=

n∑
k=1

λk〈es/pk·adX (Y ), Y 〉

=
n∑
k=1

λk
∞∑
l=0

sl

plk · l!
〈(adX)l(Y ), Y 〉

=
n∑
k=1

λk
∞∑
l=0

s2l

p2l
k · (2l)!

δ2l(−1)l

=
n∑
k=1

λk cos

(
sδ

pk

)
,

where we made use of the continuity of the Ad-invariant inner product 〈·, ·〉 and the
fact that

〈(adX)l(Y ), Y 〉 =

{
0 , for l odd

(−1)l/2δl , for l even.

By choosing

sk := π · (
n∏
l=1

pl)/(2δpk)

for k = 1, . . . , n, we obtain that λk = 0. We have thus shown, that for any n ∈ N the
first n members of M are linearly independent, which completes our proof. �



CHAPTER 7

Direct Sums of the Standard Representations ρn, µn, νn

In the following, let K denote one of the skew fields R,C or H. The aim of this
section is to compute the copolarity of the direct sums of the (real) standard represen-
tations ρn, µn, νn of SO(n),SU(n),Sp(n) on the corresponding Kn. It turns out that
in each case a minimal section is given by a canonical section (after enlarging the acting
group if necessary).

Lemma 7.1.1. Let n ≥ 2 be arbitrary and let 1 ≤ k ≤ n− 1. Then

(i) The representation k · ρn of SO(n) on k copies of Rn has the same orbits as
the corresponding representation of O(n) on k copies of Rn.

(ii) The representation k · µn of SU(n) on k copies of Cn has the same orbits as
the the corresponding representation of U(n) on k copies of Cn.

Proof. Concerning (i), it is enough to show that for an element J ∈ O(n)−SO(n)
and every v ∈ Rkn we can always find some A ∈ SO(n) such that A · v = J · v. In
fact, every element of O(n) can be written as a product B ·J for some B ∈ SO(n). We
consider the elements of Rkn as (n×k)-matrices. Then the elements of SO(n) or O(n)
act on Rkn by plain matrix multiplication from the left. Let

J := diag(−1, 1, . . . , 1) ∈ O(n) and J̃ := diag(−1, 1, . . . , 1,−1) ∈ SO(n).

Next, we consider for an arbitrary element v ∈ Rkn its QR-decomposition. That is,
v = QR where Q is an element of SO(n) and R is a real upper triangular n×k-matrix.
Since k ≤ n − 1 we have in particular that the bottom row of R is always zero. The
key observation now is, that because of this JR = J̃R. Let

A := JQJJ̃Qt.

Then A ∈ SO(n), because JQJ, J̃ and Q are each elements of SO(n). We have:

A · v = A ·QR = JQJJ̃R = JQR = J · v.
The proof of (ii) works in the same manner. �

Proposition 7.1.2. The k-fold direct sum representations of the standard repre-
sentations ρn, µn, νn have nontrivial copolarity if and only if 1 ≤ k ≤ n − 1. More
precisely, besides the polar case k = 1 we have for 2 ≤ k ≤ n− 1:

ϕ H cohom(G, V ) Σ copol(G, V ) W (Σ)

k · ρn SO(n− k) k(k+1)
2

Rk2 k(k−1)
2

O(k)

k · µn SU(n− k) k2 R2k2
k2 U(k)

k · νn Sp(n− k) k(2k − 1) R4k2
k(2k + 1) Sp(k)

Here H denotes a principal isotropy group along the minimal section Σ and we make
use of the following conventions: we consider the representation space V = Kn×k as
the (real) space of rectangular (n×k)-matrices with entries in K, corresponding to the
representations ρn, µn and νn. Then G = SO(n),SU(n), resp. Sp(n) acts on V by left
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multiplication. In each case, the elements of H are embedded into G as block matrices

of the form,

(
1 0
0 A

)
, with A ∈ H. Furthermore, Σ ⊆ V is the space of block matrices

of the form

(
B
0

)
, where B is a (k×k)-matrix with entries in K.

Proof. The first step of the proof, that the given Σ is indeed a minimal section, is
to construct the G-network Sv (see Definition 2.5.1) through a suitable G-regular point
v ∈ Σ. We then show that Σ is the R-linear span of Sv. The copolarity is of course
the difference between the dimension of Σ and the cohomogeneity of the representation.
For 2 ≤ k ≤ n− 1 let

v = (e1, . . . , ek) =

(
1
0

)
.

Then v ∈ Σ and it is a G-regular point with isotropy group equal to H in the table
above. From this we can compute the cohomogeneity of the representation ϕ. Let
A(K) denote the set of all skew-symmetric, skew-hermitian, resp. skew-quaternionic-
hermitian k×k-matrices and let S(K) denote the set of all symmetric, hermitian, resp.
quaternionic-hermitian k×k-matrices. Then the tangent space at the orbit through v
is described by:

g · v =

{(
A
B

)
| A ∈ A(K), B ∈ K(n−k)×k

}
.

The (real) inner product of two elements x, y ∈ V is given by

〈x|y〉 = Re(tr(x∗y)),

where ∗ denotes transposition, complex-conjugate transposition or quaternionic-conju-
gate transposition. The normal space of the G-orbit through v is:

νv(G · v) =

{(
C
0

)
| C ∈ S(K)

}
.

The point w = (e1, 2e2, . . . , kek) is G-regular and contained in νv(G · v) ⊆ Σ. In the
case of K = R we have

g · v ∩ g · w =

{(
0
B

)
| B ∈ R(n−k)×k

}
,

which coincides with the normal space of Σ in V . Therefore, in this case the formula

(U ∩W )⊥ = U⊥ +W⊥

for subspaces U,W ⊆ V already implies

Σ = νv(G · v) + νw(G · w)

and we are done with the proof. However, in the case of K = C or K = H we have

g · v ∩ g · w =

{(
D
B

)
| D ∈ Puk(K), B ∈ R(n−k)×k

}
,

where Puk(K) is the set of (k×k)-diagonal matrices with entries in the imaginary
numbers, resp. pure quaternions. In both cases let u ∈ νv(G · v) be the (n×k)-matrix

uij :=

{
0 if i = j or i > k,
1 else.
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It is clear that u is G-regular, since its rank is equal to k. We have

g · v ∩ g · w ∩ g · u =




λ 0

. . .
0 λ

B

 | λ ∈ Pu(K), B ∈ R(n−k)×k

 . (∗)

In fact, let a ∈ g be such that a · u ∈ g · v ∩ g · w. It then follows for all i, j:

(a · u)ij =
n∑
l=1

ailulj =
k∑

l = 1

l 6= j

ail. (∗∗)

For i 6= j in {1, . . . , k} this expression vanishes by assumption and it follows for a fixed
i ∈ {1, . . . , k}:

0 =
k∑

l = 1

l 6= j

ail −
k∑

l = 1

l 6= m

ail = aim − aij

for all j,m ∈ {1, . . . , k} − {i}. We thus have (k − 2)aij = −aii ∈ Pu(K), which implies
aij = −āij for all i 6= j (in the case of k = 2 this follows from (∗∗) and a ·u ∈ g ·v∩g ·w).
Together with aij = −āji we conclude that aij = aji holds for all i 6= j, and finally

(a · u)ii =
k∑

l = 1

l 6= i

ail = (n− 1)a12 for all i = 1, . . . , k,

which proves equation (∗).
The last element we consider is ũ := (2e2, e1, 3e3, . . . , kek) ∈ νw(G ·w). This is again

a G-regular point in the G-network through v and it is easily verified that

g · v ∩ g · w ∩ g · u ∩ g · ũ =

{(
0
B

)
| B ∈ R(n−k)×k

}
.

As in the case of K = R it now follows that

Σ = νv(G · v) + νw(G · w) + νu(G · u) + νũ(G · ũ).
For k ≥ n the proof is basically the same as above. The fat Weyl group is computed

as follows: the normalizer of Σ in G is given by

N(Σ) = S(O(k)×O(n− k)), S(U(k)×U(n− k)), resp. Sp(k)×Sp(n− k).

Since the centralizer is

Z(Σ) = H = {1}×SO(n− k), {1}×SU(n− k), resp. {1}×Sp(n− k),

we conclude that

W (Σ) = N(Σ)/Z(Σ) = O(k), U(k), resp. Sp(k),

and it acts in an obvious fashion on Σ. �

Remark 7.1.3. In [GOT04, Theorem 1.3] it is shown that an irreducible repre-
sentation of a compact Lie group is taut if and only if it has copolarity ≤ 1. Now
Gorodski showed in [Gor04b] that the (reducible) representations appearing in the ta-
ble of Proposition 7.1.2 are taut. Hence, the characterization of tautness by copolarity
≤ 1 is not true in the case of reducible representations.
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It is also possible to calculate the volume density function δE of Definition 2.6.2
explicitly in the case of the direct sums of the standard representations.

Proposition 7.1.4. Using the same notation as in Proposition 7.1.2, let ϕ be the
k-fold direct sum of one of the standard representation ρn, µn, νn and let d := dimR(K).
If p ∈ Σ is an arbitrary point, which we write as

p =

(
B
0

)
, B ∈ Kk2

,

then the density function of Definition 2.6.2 evaluated in p is equal to:

δE(p) =
1√

2dk(n−k)
| det(Bt)|d(n−k).

In the case that K = H, the determinant is to be understood in the sense of Dieudonné
[Die43] and only in this case does the transposition (·)t matter.

Proof. As before, we consider the scalar product 〈x|y〉 = Re(tr(x∗y)) on V . It
furthermore defines a scalar product on g, which induces an adapted (G-W )-invariant
Riemannian metric on G/H. The elements of n, resp. n⊥ are block matrices of the form(

A 0
0 D

)
, resp.

(
0 E∗

E 0

)
,

where A ∈ o(k), u(k), resp. sp(k), B ∈ o(n − k), u(n − k), resp. sp(n − k) and
tr(A) + tr(B) = 0, and E ∈ K(n−k)k is an arbitrary matrix. n⊥ is isometric to m/h and
the orbit map dωp(e) : n⊥ → νpΣ is simply matrix multiplication of p by elements of
n⊥ from the left

dωp(e)

(
0 E∗

E 0

)
=

(
0 E∗

E 0

)(
B
0

)
=

(
0
EB

)
.

For i = k + 1, . . . , n and j = 1, . . . , k let Eij ∈ R(n−k)k denote the corresponding
elementary matrix. Then

eij :=

(
0 −1√

2
(Eij)

∗

1√
2
Eij 0

)
and fij :=

(
0
Eij

)
form ON-bases of n⊥, resp. νpΣ, if we view both as K-vector spaces. Identifying fij
with eij yields a linear isometry between νpΣ and n⊥. We arrange the eij as follows:

ek+1,1, . . . , ek+1,k, ek+2,1, . . . , ek+2,k, . . . , en,1, . . . , en,k.

With respect to this ordering, dωp(e) now has the following matrix representation:
1√
2
Bt

. . .
1√
2
Bt

 .
The block 1√

2
Bt appears (n − k)-times. We are interested in the absolute value of the

determinant of dωp(e) as a map between real vector spaces. In [Asl96] one can find the
following relation for the determinant det(P ) of a complex, resp. quaternionic matrix
P and the determinant of its realification det R(P ):

det R(P ) = | det(P )|d.
Using this and the fact, that the determinant is multiplicative even for K = H yields
the claimed formula. �
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Invariant Metrics

In reminiscence of G-invariant metrics on G/H (cf. [CE75, Proposition 3.16]), we
now investigate left-G-invariant metrics on a homogeneous space G/H which are also
right-invariant under a certain group W . This concept is used in Sections 2.5, 2.6 and
Chapter 3. Since we could not find a proper reference in the literature, we give full
proofs of the statements made.

First recall that any triple (H E N ≤ G), where G is a Lie group, H and N are
closed subgroups of G and H is normal in N , gives rise to a W -principal bundle:

W ↪→ G/H � G/N,

where W = N/H. We have that G acts on G/H from the left and W acts properly and
freely on G/H from the right by (gH, nH) 7→ gnH. We are interested in the case that
these actions are isometric and so we are lead to consider Riemannian metrics on G/H
which are left-G- and right-W -invariant.

Definition 8.1.1. A Riemannian metric on G/H which is both left-G- and right-
W -invariant is called (G-W )-invariant.

Proposition 8.1.2.

(i) The (G-W )-invariant Riemannian metrics on G/H are in 1−1 correspondence
with the AdG(N)-invariant scalar products on g/h.

(ii) If N is connected, then a scalar product 〈·|·〉 on g/h is AdG(N)-invariant if
and only if adn is skew-symmetric with respect to 〈·|·〉.

(iii) If g/h admits a decomposition g/h = n/h ⊕ p with AdG(N)(p) ⊆ p, then the
AdG(N)-invariant scalar products on g/h, which satisfy (n/h)⊥p, are in 1− 1
correspondence with pairs (〈·|·〉n/h, 〈·|·〉p) of AdW -invariant scalar products on
n/h, resp. AdG(N)-invariant scalar products on p.

Such a pair exists if and only if W is covered by a product of a compact Lie
group with a vector group and if the image of N under n 7→ Adn|p in GL(p)
is relatively compact.

Conversely, if 〈·|·〉 on g/h is AdG(N)-invariant, then 〈·|·〉|n/h is AdW -in-
variant. If p := (n/h)⊥, then AdG(N)(p) ⊆ p and 〈·|·〉|p is AdG(N)-invariant.

(iv) If N is compact, then G/H admits a (G-W )-invariant Riemannian metric.

Proof. (i): Let h be a Riemannian metric on G/H and put 〈·|·〉 := heH . Then
it is well known that h is left-G-invariant if and only if 〈·|·〉 is AdG(H)-invariant. If
additionally h is right-W -invariant, then r∗nh = h for all n ∈ N . Hence, we have for all
X, Y ∈ TgHG/H:

hgnH(X · n, Y · n) = hgH(X, Y ).

Using the G-invariance we obtain

heH(n−1g−1 ·X · n, n−1g−1 ·X · n) = heH(g−1 ·X, g−1 · Y ).
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Under the natural identification TeHG/H ' g/h this is equivalent to

〈Adn(X) | Adn(Y )〉 = 〈X | Y 〉, for all X, Y ∈ g/h.

Conversely, if we are given an AdG(N)-invariant scalar product on g/h then, in par-
ticular, it is AdG(H)-invariant. It therefore gives rise to a left-G-invariant Riemannian
metric on G/H. Furthermore, it is easy to see, that it is right-W -invariant.

(ii): This is a standard consideration.
(iii): If 〈·|·〉 is an AdG(N)-invariant scalar product on g/h satisfying (n/h)⊥p, then

its restriction to n/h resp. p clearly yields the stated pair of invariant scalar products.
Conversely, we may patch such a pair of invariant scalar products together to form an
AdG(N)-invariant scalar product 〈·|·〉 on g/h by defining:

〈X + Y |Z +W 〉 := 〈X|Z〉n/h + 〈Y |W 〉p, for all X,Z ∈ n/h, Y,W ∈ p.

The AdW -invariance of 〈·|·〉n/h is equivalent to the existence of a bi-invariant Riemannian
metric on W . Using [CE75, Proposition 3.34] yields that this is the case if and only
if W is covered by the product of a compact Lie group and a vector group. Also, if
〈·|·〉p is AdG(N)-invariant, then the image of N under f : N → GL(p), n 7→ Adn|p
is contained in the compact group O(p) and therefore relatively compact. Conversely,
if K := f(N) ⊆ GL(p) is compact, then we may define by an averaging process a
K-invariant scalar product on p, which in turn is AdG(N)-invariant.

(iv) follows from (iii) and the fact that a representation of a compact Lie group is
completely reducible. �

The following Proposition shows that the concept of a (G-W )-invariant metric on
G/H is actually the same as that of a left-G-invariant metric on G/N . Nevertheless,
the notion of a (G-W )-invariant metric is useful in the context of metrics adapted to a
minimal section (Definition 2.5.9).

Proposition 8.1.3. The (G-W )-invariant metrics on G/H correspond to the left-
G-invariant metrics on G/N .

Proof. If we are given a (G-W )-invariant metric on G/H, then the submersed met-
ric on G/N under the canonical G-equivariant mapping gH 7→ gN is left-G-invariant.
Conversely, if we start with a left-G-invariant metric on G/N , then G admits a left
invariant metric which is right-N -invariant. This induces an AdG(N)-invariant scalar
product on g and since h is AdG(N)-invariant, the induced scalar product on g/h is
AdG(N)-invariant. Using Proposition 8.1.2 (i), this yields a (G-W )-invariant Riemann-
ian metric on G/H. �

The next result is basically [Bes87, Theorem 9.80].

Corollary 8.1.4. If G/H carries a (G-W )-invariant Riemannian metric, then the
principal fibre bundle G/H � G/N is a Riemannian submersion, where G/N is endowed
with the quotient metric. Its fibres are totally geodesic. In particular W , viewed as a
subset of G/H, is totally geodesic in G/H. Furthermore, the map

(n/h)⊥ → g/n, X + h 7→ X + n

is a linear isometry.

Proof. By left-G-invariance, the fibres of the principal bundle G/H � G/N are all
isometric to the fibre W over eN . Now W is the image of N under the canonical projec-
tion G→ G/H, which is a Riemannian submersion if G is endowed with a left-invariant
metric that is right-N -invariant. Such a metric exists due to, [CE75, Proposition 3.16].
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By the following lemma, N is a totally geodesic submanifold of G. Hence, its image W
under the Riemannian submersion G→ G/H is totally geodesic in G/H. �

Lemma 8.1.5. Let G be a Lie group and H ⊆ G a closed subgroup. If G carries
a left-invariant metric which is right H-invariant, then the induced metric on H is
bi-invariant and H is a totally geodesic submanifold of G.

Proof. Since the Riemannian metric on H is bi-invariant, it follows that the one-
parameter subgroups of left-invariant vector fields on H are geodesics on H. Let 〈·|·〉
denote the AdG(N)-invariant scalar product on g induced by the metric on G. We have
that adX is skew symmetric with respect to this scalar product for all X ∈ h. It follows
(see for instance [CE75, Proposition 3.18]) that

∇XY =
1

2
[X,Y ],

for all left invariant vector fields X, Y on G with Xe, Ye ∈ h. In particular, for Y = X,
it follows that the one-parameter subgroups of H are geodesics of G. �
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différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique,
Strasbourg, 1953, pages 137–141. Centre National de la Recherche Scientifique, Paris, 1953.

[Lan99] Serge Lang. Fundamentals of differential geometry, volume 191 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1999.

63



64 BIBLIOGRAPHY

[LT07a] Alexander Lytchak and Gudlaugur Thorbergsson. Curvature explosion in quotients and ap-
plications. 2007. Preprint.

[LT07b] Alexander Lytchak and Gudlaugur Thorbergsson. Variationally complete actions on non-
negatively curved manifolds. Illinois J. Math., 51(2):605–615 (electronic), 2007.

[Mag06] Frederick Magata. An integration formula for polar actions. 2006. Preprint.
[Mic96] Peter W. Michor. Basic differential forms for actions of Lie groups. Proc. Amer. Math. Soc.,

124(5):1633–1642, 1996.
[Mic97] Peter W. Michor. Basic differential forms for actions of Lie groups. II. Proc. Amer. Math.

Soc., 125(7):2175–2177, 1997.
[Mol88] Pierre Molino. Riemannian foliations, volume 73 of Progress in Mathematics. Birkhäuser
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