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Abstract

Let p be a prime and L a finite extension of the field of p-adic numbers Q, with
residue field IF,. With any smooth n-dimensional irreducible representation of the
absolute Galois group of L with coefficients in F, we associate a Deligne-Lusztig
character of GL,(IF,) over an algebraically closed field of characteristic 0. We re-
duce such a character to a virtual representation of GL,(F,) over F,. From this
virtual representation we can construct a virtual module over the pro-p Iwahori
Hecke algebra HY of GL, (L) over F,. If ¢ = p and n = 2, this establishes a
bijection between isomorphism classes of smooth irreducible 2-dimensional Galois
representations and irreducible supersingular 2-dimensional modules over H(M. We
will also compare our construction to Grofe-Klonne’s functor for general n when

L=Q,






Introduction

Let p be a prime, L a finite extension of the field Q, of p-adic numbers and Oy,
the corresponding valuation ring with prime element 7, and residue class field F,,.
Its absolute Galois group Gy, := Gal(L/L) is a very important object in number
theory. It is the aim of the Langlands program to understand this group via its
representations. More specifically, for each positive integer n, one aims to establish
a connection between Gj-representations and representations of the group GL,,(L).
In this thesis we will focus on those representations on Fp—vector spaces. The word
“representation” will always be used for a smooth representation over F, unless
otherwise stated. In the case of L = @, and n = 2 Breuil has established a bijec-
tive correspondence between isomorphism classes of supersingular representations
of GL2(Q,) and isomorphism classes of irreducible 2-dimensional representations of
GL»(Q,) in [Bre03|.

However the situation becomes more complicated when n > 2 or L # Q,.
Instead of representations of GL, (L) one can consider modules over appropri-
ate algebras, the so-called pro-p Iwahori Hecke algebras. Let I(!) be the stan-
dard pro-p Iwahori subgroup of GL, (L), i.e. the subgroup consisting of all matri-
ces in GL,(Or) which have unipotent upper triangular reduction mod 7. With
each representation M of GL, (L) one can associate its I™M-invariants M’ “ which
have a natural structure of a right module over the pro-p Iwahori Hecke algebra
HW = Endg 151 Fp[I"\G(L)]. However, the link provided by the functor of 1t)-
invariants between H-right modules and GL,(L)-representations with nonzero
IM-invariants is not as tight as the one afforded by the functor of invariants un-
der the Iwahori subgroup in characteristic 0. For example, if n = 2, it is not an
equivalence of categories if ¢ # p by [O1109].

We will disregard that problem in this thesis and aim to establish a connec-
tion between irreducible n-dimensional G ;-representations and supersingular simple
modules over the pro-p Iwahori Hecke algebra H") of GL,(L). In the last few years
correspondences between both sides have been set up. The first such correspondence
was of numerical nature: Vignéras and Ollivier have shown that the number of n-
dimensional simple supersingular modules (with fixed action of the double coset of
71, considered as an element of GL,, (L)) over HW is equal to the number of smooth
irreducible n-dimensional representations of G, (with fixed determinant of a Frobe-
nius). The arguments rely on combinatorics, explicitly computing the order of both
sides in [Vig05] and another characterization of supersingular modules by means of
the restriction of such a module to the affine subalgebra H((Llf)f of H) in [O1110]. In

|[GK13] GroRe-Klonne constructs a contravariant functor from the category of H -
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modules of finite length to étale (p, [')-modules over Fontaine’s ring O¢ for L = Q,
using the Bruhat-Tits tree. Composing with Fontaine’s equivalence of categories we
obtain a finite dimensional representation of Gg,. This functor induces a bijection
between the set of simple supersingular n-dimensional H"-modules and the set of
isomorphism classes of irreducible n-dimensional G, -representations.

In this thesis we use another approach. We proceed as follows: The purpose
of Chapter 1 is to collect general facts on reductive groups with an emphasis on
reductive groups over finite fields. Our main example will be the reductive group
GL,, for which we will introduce some notation that will be used throughout this
thesis.

In Chapter 2 we will consider representations of GGy. We start by introducing
the Weil group W, and its topology and will then show that the categories of finite
representations of G resp. Wy are equivalent. This allows us to work with W
representations from now on. Let I C Wp be the inertia subgroup and Pp its
unique pro-p Sylow subgroup. As irreducible representations of W, are trivial on
Py, we may restrict to considering representations of the factor group Wy /Pp. The
concept is now to express a representation of W /Py in terms of algebraic groups.
We will more generally consider a split reductive group G over F, with dual group
G* and a continuous homomorphism p : Wy /P, — G*. It turns out that the image
of the restriction of such a homomorphism to I,/ Py, is a semisimple cyclic subgroup
of G*, hence we may assume that it is contained in a fixed split maximal torus T™.
This is well-defined up to Weyl group conjugation, i.e. with p we can associate
a Frobenius-stable Weyl group orbit of continuous homomorphisms from I,/ P, to
T which we will be able to reinterpret as a Frobenius-stable Weyl group orbit of
homomorphisms from Y (T) ®z Z to F: where Y (7T') is the cocharacter group of the

split maximal torus 7" dual to 7" and Z := lim (pim)=1 pm(F,). This allows us to

construct a G(IF,)-conjugacy class of an in general non-split maximal torus 7;, C G
and a character 6 of T, (IF,). In the remainder of chapter 2 we will explicitly compute
T, and 0 for the case that p is an irreducible representation of GL,,, and consider
the case G = SL,,.

In Chapter 3 we will use the G(F,)-conjugacy class of the pair (7, 6) con-
structed in chapter 2 to construct a virtual representation of G(F,). Deligne and
Lusztig have assigned a virtual representation R?(w) over an algebraically closed
field in characteristic 0 to such a conjugacy class. We can view this virtual repre-
sentation as a virtual representation over L = @p in a canonical way which allows
us to reduce it to a virtual representation over Fq in a well-defined way. Jantzen has
given a formula how to compute these reductions in terms of restrictions of Weyl
modules which we shall make explicit for lower dimensional cases.

If p is an irreducible representation, we will see that +R’(w) is an irreducible
cuspidal representation of GL,,(F,) over an algebraically closed field of characteristic
0. For future calculations we will need a classification of the irreducible representa-
tions of the finite group GL,,(F,). We state two such classifications, one in terms of
the structure of GL,, as an algebraic group, the other in terms of the structure of
GL,(F,) as a group with BN-pair. Then we will illuminate the connection between
these two classifications. This will be helpful because the first one naturally arises
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in the reduction of R?(w) to F, and the second one is natural when we will establish
a connection to modules over Hecke algebras later.

We will start Chapter 4 by reviewing the definitions and presentations for
the finite Hecke algebras and pro-p Iwahori Hecke algebras. For us the three most
important Hecke algebras are the finite Hecke algebra 7—[(()1) of the group G(F,) with
respect to the unipotent radical of a Borel subgroup, the affine pro-p Iwahori Hecke
algebra ’Hg})f and the pro-p Iwahori Hecke algebra H("). Among them we have the

inclusions ’H(()l) C ’}-l((llf)f C HWM. We will give presentations of these algebras in
terms of appropriate Weyl groups and finite tori. With these presentations we can
examine the behavior of these algebras for varying fields L. For any finite extension
of L we will construct injective algebra homomorphisms between the corresponding
Hecke algebras.

The remainder of chapter 4 will be devoted to the study of supersingular mod-
ules: We start by reviewing a central theorem by Ollivier on supersingular modules
which states that simple supersingular modules are the same as simple modules
which contain "nontrivial” characters for the affine pro-p Iwahori Hecke algebra.
This allows us to carry on our construction: In chapter 3 we have constructed
a virtual representation of GL, (F,) from an irreducible n-dimensional Galois rep-
resentation. The irreducible representations of GL,(F,) are in bijection with the
simple right modules over the finite Hecke algebra 7—[(()1) by taking invariants under
the unipotent radical of the standard Borel subgroup. In particular, we obtain an
isomorphism of Grothendieck groups Go(F,[GL,(F,)]) = GO(H(()I)). Then we con-
struct a map from Go(HSY) to Go(?—[(glf)f). Further we can give a homomorphism

from GO(HSf)f) to Go(H™M) which uses another parameter, namely a unit of F,. For
this we will take the determinant of the image of a Frobenius under p. Combining
these constructions we have associated a virtual module of H") with our irreducible
Galois representation.

Finally, in Chapter 5 we examine the constructions of chapters 2, 3 and 4
by explicitly computing the image of p in Go(’H(l)). We will begin by discussing
the case G = GLy and ¢ = p. However, it turns out that our construction is
not even near being a correspondence between irreducible 2-dimensional Galois
representations and simple supersingular 2-dimensional H-modules. But with
a slight modification it will be: We introduce a "shift” map on Go(GL,(F,)) and
include it as an intermediate step of the construction. This way we obtain another
virtual module over H. We show that there exists a simple supersingular 2-
dimensional H"-module M (p) such that the virtual module associated with p by
this construction is either equal to M(p) or 2M (p). Further, we get:

Theorem. Assume that L/Q, is totally ramified, i.e. ¢ = p. The assignment
p — M(p) is a bijection between irreducible 2-dimensional Wp-representations and
irreducible 2-dimensional supersingular simple HM-modules. If L = Qp, this bijec-
tion coincides with the one afforded by Grofe-Klénne’s functor.

For G = GL3 we can imitate this behavior: In contrast to the GLs-case we
have to introduce 2 different shift maps depending on p. We will find (slight mod-
ifications) of the simple supersingular modules given by Grofse-Klonne’s functor
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appearing as summands in the virtual H"-module given by our construction and
compute their multiplicities which are always equal to 1, 2 or 3. Finally, we propose
a set of n different shift maps for general n and examine their behavior generically
for GL4
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Chapter 1

Reductive Groups

1.1 Notations and basic Definitions

Let p be a prime number. We fix some finite extension L of Q, with algebraic
closure L. Denote by Oy, and O7 the corresponding rings of integers and by my, mz
their maximal ideals. We will identify the residue fields Op/m;, and Op/m; with
F,, where ¢ = p" is a power of p, resp. Fq.

In this section, we review the results which we will need from the theory of
algebraic groups and of finite groups of Lie type. For proofs and more details, see

[Spr09] for the general case or [Car93] for the case of linear algebraic groups over
F,

Algebraic Groups

For the moment, let K be an algebraically closed field of arbitrary characteristic
and let GG be an algebraic group over K, i.e. an algebraic variety over K, which is
a group such that the multiplication map G — G, (z,y) — zy and the formation of
inverse elements G — G, g — ¢~ ! are morphisms of varieties. We will usually omit
the coordinate ring of the underlying algebraic variety from our notations.

An algebraic group is endowed with a topology, the Zariski topology. Hence,
we may speak of open, closed and connected subsets of G. A homomorphism of
algebraic groups is a morphism of varieties between two algebraic groups, which is
also a group homomorphism. If the underlying variety is affine, we call G a linear
algebraic group. A closed subgroup of an algebraic group has the structure of an
algebraic group such that the inclusion map is a morphism of algebraic groups. If
G is a linear algebraic group, then so is every closed subgroup.

Any linear algebraic group over K is isomorphic to a closed subgroup of GL,,(K)
for some positive integer n. As GL,(K) is an algebraic group itself, linear algebraic
groups are, up to isomorphism, exactly the closed subgroups of the groups GL,, (K).
This justifies the name linear algebraic group.
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Unipotent and Semisimple Elements

In the following, assume G to be a closed subgroup of GL,,(K') by a chosen embed-
ding. We call an element g € G semisimple, if it is diagonalizable (or, if K = Fq,
equivalently, the order of ¢ is prime to p) and unipotent if the matrix g—1 € M, (K)
is nilpotent (or, if K = Fq, equivalently, if the order of ¢ is a power of p). These
definitions do not depend on the chosen embedding G — GL,, (K). We call a linear
algebraic group unipotent, if all its elements are unipotent and for any linear alge-
braic group G, let GG, be the subset of unipotent elements in G. In general, this
is not a subgroup. Morphisms of algebraic groups respect semisimple and unipo-
tent elements. Each element in G has a Jordan decomposition, i.e. there exist
unique elements g; € G and g, € G, such that g, is semisimple, g, is unipotent and

9 = 9sGu = Guls-

Borel Subgroups, Parabolic Subgroups and Tori

A subgroup B of G is called a Borel subgroup if it is closed, connected, solvable
and maximal with these properties. There always exists a Borel subgroup and two
Borel subgroups are conjugate in G. Additionally, every element of G lies in some
Borel subgroup. A closed subgroup P of G containing a Borel subgroup is called
parabolic.

From now on, let G be a connected linear algebraic group. Then the set of
closed connected solvable normal subgroups of G has a unique maximal element.
We will call this subgroup the radical of G and denote it by R(G). Analogously, the
set of closed connected unipotent normal subgroups has a unique maximal element
R,(G), called the unipotent radical of G. We have R(G), = R,(G). G is called
semisimple, if R(G) = {1} and reductive, if R, (G) = {1}.

Denote by G,, the algebraic group K*. Then a torus is an algebraic group T
which is isomorphic to G, for some n > 1. Hence, a torus consists only of semisimple
elements. n is called the rank of T'. A subtorus 7" of GG is a closed subgroup, which
is a torus. We call it maximal, if it is not properly contained in any subtorus. Two
maximal subtori in G are conjugate and every semisimple element lies in a maximal
torus. Further, any maximal torus is contained in a Borel subgroup. The rank of
(G is by definition the rank of a maximal torus in G.

A character of GG is a homomorphism from G to G,, and dually, a cocharacter
of G is a homomorphism from G,, to G. We write X(G) = Hom(G,G,,) and
Y (G) = Hom(G,,, G). Pointwise multiplication makes X (G) an abelian group and,
if G is abelian, it makes Y (G) an abelian group. If G = T is a torus we will write
the group law additively because of the isomorphisms

X(T) = Hom(T, G,,) = Hom(G" , G,,) = Hom(G,,, G,,)" = Z"
and
Y(T) = Hom(G,,, T) = Hom(G,,, G™) = Hom(Gp, G,)" = Z7,

where n is the rank of 7T'.
If x € X(T) and v € Y(T), x oy € Hom(G,,,G,,) and hence there exists a
unique n, ., € Z such that x(y(z)) = ™ for all + € G,,. This allows us to



CHAPTER 1. REDUCTIVE GROUPS 3

define a pairing (-,-) : X(T) x Y(T') — Z by (x,7y) — n,,. This is a perfect
pairing, i.e. the homomorphisms X (7') — Hom (Y (7),Z), x — (x,-) and Y(T') —
Hom(X(T),Z),~v — (-,7) are isomorphisms.

We return to the situation of a general connected linear algebraic group G. Fix a
maximal torus 7" C G, denote by N(T) its normalizer and by C(T") its centralizer in
G. The quotient Wy := N(T')/C(T) is finite and we call it the finite Weyl group of
G with respect to T. If G is reductive we have C(T") = T and hence Wy = N(T')/T.
Wy acts from the left on T by setting “t = wtw ', where w € N(T) is any lift of
w. This does not depend on the choice of w. The action on 7" induces left-actions
of Wy by Z-linear automorphisms on X (7)) and Y (T)) by setting “x(t) = x(* t)
for all t € T and “~(z) = “(y(z)) for all x € X(T), v € Y(T), w € Wy, t € T and
z € Gy,. The pairing (-,-) is Wy-invariant, i.e., we have (*x,"v) = (x,~) for all
x € X(T),yeY(T) and w € Wj.

1.2 Root Data and Weyl Groups

Abstract Root Data

Here, we will summarize the theory of abstract root data. For proofs and a more
detailed treatment, see [Bor09, Kapitel 1].

Definition 1.2.1. A root datum is a quadruple (X,Y,®,®) with the following
properties:

(i) X and Y are free abelian groups of the same finite rank.

(ii) ® and ® are nonempty subsets of X resp. Y such that there exists a bijection
a = & from @ to ®.

(iii) There exists a perfect pairing (-,-) : X X Y — Z such that (a, &) = 2 for all
a € d.

(iv) For the endomorphisms s, € Endz(X) and s5 € Endz(Y') given by
So(z) =2 — (x,0)a for all x € X
and
sa(y) =y — (a,y)a forally € Y
we have 5,(®) = ® and s4(®) = ®.
In the following we will also consider the pairing (-, -) as part of the given datum.

A based root datum is a quintuple (X,Y, ®, ®, A) such that (X,Y,®, ®) is a root
datum and

(v) Ais a basis of the underlying root system, i.e. A C &, A is linearly independent
and for each a € ® there exist unique ng € Z such that a =, \ ngf. The
ng are either all nonnegative or all nonpositive.
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The elements of ® resp. ® are called the roots resp. coroots and those belonging
to A are the simple roots. Note that, if « is a root, —a = s,(«) is also a root. It
can be shown that for every root datum (X,Y, ®, Cﬁ) there exists a subset A C @
such that (X,Y,®,® A) is a based root datum. However, we will not need this
fact.

Given a based root datum, we can define the positive roots as all those roots
which are linear combination of simple roots with nonnegative coefficients and de-
note this set by ®*. On the other hand, if we have a system of positive roots defined
by A, we can reconstruct A as the set of all positive roots, which are not the sum
of two or more other roots. Additionally, we have the monoid

X,={reX:(z,a)>0foralla € A} ={re X :(z,a) >0forall a € ®*}.

This is a finitely generated submonoid of X. Its elements are called the dominant
weights.

A root datum is called irreducible if there are no nonempty subsets ®;, &, C &
such that (®;, ®y) = 0 and &, U dy = .

With every root datum, we can associate a dual given by (Y, X, D, D, A), where
A = {a:a € A}. This is again a based root datum.

Definition 1.2.2. Two based root data (X;,Y;, ®;, @1, A;) and (X, Ya, ®o, Oy, Ay)
are called isomorphic if there exist isomorphisms of Z-modules § : X; — X, and
€ : Y7 — Y5 such that the following conditions are satisfied:

(i
(ii

(iii

(i

(6(x), e(y)) = (x,y) for all z € X; and y € Y1,
§(®1) = Py and (D) = Dy,

5(a) = e(a) for all @ € @y,

5(Ay) = A,

Two root data are said to be dual if each of them is isomorphic to the dual root
datum of the other.

Another way to construct new root data from a given one is the following: We
can define the root lattice Q = Y° o Za = @, Za € X and the coroot lattice
Q= Y oacd Liv = @Pyep Za €Y. These induce Q-vector spaces Vg = QQ ®z Q and
Vo = Q) ®7 Q so that we can extend (-,+) to a perfect pairing from Vi x Vi to Q.
This allows us to define the weight lattice

)
)
)
v)

P={reVy:(x,y) € ZforallycQ}
and the coweight lattice
P:{yEVQ:<$,y>€ZforallazeQ}.

By definition, (-, ) induces perfect pairings @ X P — Z and P x Q) — 7Z. Hence, we
obtain new based root data (@, P, ®, ®,A) and (P, Q, ®, ®, A). We say that a root
datum is simply connected if X = P, and of adjoint type if X = Q.
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On X, we can introduce a partial order given by

r1 < x9 if and only if x5 — 21 € Z Nyav.
acdt

We denote the set of minimal elements of ® with respect to < by ®,,,. A root datum
is irreducible if and only if ®,, consists of exactly one element.

Root Data of Reductive Groups

For this subsection, let G be a connected reductive group and fix a maximal torus
T C G and a Borel subgroup B containing 7T'. In the following, we will construct a
root datum as before from these data.

B decomposes as the semidirect product B = TU, where U = R,(B) is its
unipotent radical, a subgroup of B. There exists a unique Borel subgroup B~ C GG
containing 7" such that BN B~ =T. We call B and B~ opposite Borel subgroups
of G. Denote by U™ = R, (B™) its unipotent radical. We have UN U~ = {1}.

Now, let X be a nontrivial subgroup of U or U~ normalized by 71" which is
minimal with these properties. Then X is isomorphic to the additive group G, = K.
Hence, conjugation induces a homomorphism 7" — Aut(G,) = G,,, i.e. character
of T'. This character does not depend on the choice of the isomorphism between X
and G,. We call these characters the roots of (G,7T) and denote by ® the set of
roots. Although a Borel subgroup was chosen to define the notion of a root, this
definition does not depend on the choice of this Borel subgroup. If o € ®, we denote
by U, the corresponding minimal subgroup and fix an isomorphism u, : G, — U,.
The U, are called the root subgroups of G with respect to 7. We will call the roots
corresponding to subgroups of U (resp. subgroups of U~) positive (resp. negative)
and denote the set of of those roots by ®* (resp. ®7). @ is the disjoint union of
Ot and ®~ and we have ®+ = —®~. Let A be the set of all positive roots, which
are not sum of two or more positive roots.

Let @« € ® be a root. Then, we have the subgroup (U,,U_,) of G. After
possibly replacing u_, by another isomorphism of that sort, there exists a unique
homomorphism ¢, : SLy(K) — (U, U_,), such that

ool 3 P mwaandon( 1 )=

for all x € K. We can now define a cocharacter & € Y(7') by

st =aul( g %))

for all t € K*. We call the elements obtained this way the coroots and denote the
set of coroots by ®. The quintuple (X (T),Y(T),®,®,A) is a based root datum
as defined before. Up to isomorphism, each connected reductive group is uniquely
determined by its root datum.

We can generalize the U, by

Uy, = H U,

acdt w1(a)ed—
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for w € Wy. This implies U, = U, for any simple a. With this, we obtain the
Bruhat decomposition:

Proposition 1.2.3. (i) G is the disjoint union of the double cosets { BwB }yew,
(ii) For any lift n of w € Wy, the map
Uyp-1 X B — BwB, (u,b) — unb

s an isomorphism of varieties.

Proof. See [Spr09][8.3.6 (ii) and 8.3.8|. O

The Finite Weyl Group

Given a based root datum (X, Y, ®, P, A), we can define its finite Weyl group W to
be the subgroup of GL(X) generated by {s4}ace. This is canonically isomorphic to
the finite Weyl group of the dual root datum, i.e. the subgroup of GL(Y") generated
by all s5. This isomorphism sends s, to ss for all @ € ®. We will identify these
groups and write s, instead of s4 in this case.

If a root datum arises from a reductive group, the Weyl group defined this way
is isomorphic to N(7')/T by identifying s, with the image of ¢a(( _01 (1) )) in
Wy. Thus, we may identify both these Weyl groups and it will cause no confusion
to call them both Wj.

Let So = {Sa}aca. We will call the elements of Sj simple reflections. It follows
from the general theory of root data that (W, Sy) is a Coxeter system, i.e. we have
52 =1 for all s € Sy and W, has the presentation

WO = <S() : (SS/>m5’sl = 1>7

where my ¢ is the order of ss’ in W, and s and s’ run through the elements of Sj.

For each w € Wy, there exists a minimal n € Ny such that there exist s1,...,s, €
Sp such that w = s1...s,. An expression of this kind with minimal n is called
reduced and n is called the length of w. This defines a length function [ : Wy —
Np. It can also be described by I(w) = #(®T Nw™'®~) and the set PT Nw 1d~
determines w uniquely. We have [(w) = [(w™?) for all w € W.

With respect to this length function, there exists a unique element of maximal
length in Wy which we will denote by wy. As wy ' is also an element of the same
length, we get wy = wy '. For any A’ C @, such that (X,Y, ®, &+, A’) is a based root
datum, and any numbering A" = {s1,...,sq}, the element v = s1-...- 54 is called a
Coxeter element of Wy. Obviously v depends on these choices, but it can be shown
that two Coxeter elements in W are conjugate (see [Hum90| Proposition 3.16). The
converse is obvious and hence the set of Coxeter elements is a full conjugacy class
in Wo.

In addition to the natural action of Wy on X, there exists another twisted action,
the so-called dot-action. To define this, let p € %Zaeqﬁ a+(XeQ)™ C X Q.
Using such an element, we can define

w-z=w(x+p) —p
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for w € Wy and x € X. It can easily be verified that this defines an action of W,
on the set X which does not depend on the choice of p.

Affine Weyl Groups

For this subsection, we are still given a based root datum (XY, ®, D, A). Recall
that Wo identifies with the subgroup of GL(Y") generated by all s5. It operates on
Y and () which allows us to define the groups

W =WoxQ

and
W:WOKY

Wy is a normal subgroup of W. We call W, ;s the affine Weyl group and W the
extended affine Weyl group or simply the Weyl group. For an element (w, y) of either
of these groups we shall write we?. This exponential notation has the advantage
that we can write the group law in Y resp. Q additively but multiplicatively in
Woyss resp. W. For example, we have e¥! - ¥ = ¢¥'*%2. By definition, we have

we¥ = Wy for all y € Y, w € W,

As in the case of the finite Weyl group it turns out that W, is a Coxeter group.
More precisely, setting Sarr = So U {sac® : a € @,,}, the tuple (Woss, Sury) is a
Coxeter system. We will call the elements of S,r; simple affine reflections. As in
the finite case, we obtain a length function on W,s¢. As this restricts to the length
function of Wy, there is no harm in denoting both by [.

Although the extended affine Weyl group W is not a Coxeter group in general,
it is not very far away from being one. Let (2 be the normalizer of S,f¢ in W. Then
we can write W as a semidirect product

W:Waff x Q.

This way we get a well defined extension of [ to W by setting [(uw) = [(w) for
u € Qand w € Wypp. We also have l[(wu) = I(w) for u € 2 and w € Wy and
Q={ueW:l(u) =0}. Note that 2 = Y/Q) is abelian.
The length function on W and W, can be expressed by affine roots. For this
let
(I>aff::<I>><Z§X><Z

and denote by
Dy =0 X ZsoUdT x {0}

resp.
D p =P X ZegUd™ x {0}
the subsets of positive resp. negative affine roots. W and W,y; operate on the set

of affine roots by
wey(av k) = (U}(OJ), k— <O[, y>)

As for the finite Weyl group, we have for w € W:
_ - —lg—
Hw) =#Pr Nw™ P
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1.3 Rationality

k-Group Functors

Now we will generalize the concept of algebraic groups by loosening the assumption
that K is an algebraically closed field. We follow [Jan87|[I.1 and I.2]. Let k be
any commutative ring with unit. A k-functor is a functor from the category of
commutative k-algebras to the category of sets. Similarly a k-group functor is a
functor from the category of commutative k-algebras to the category of groups. We
may regard every k-group functor as a k-functor by composing with the forgetful
functor from the category of groups to the category of sets. If G and H are two k-
functors (resp. k-group functors) we will denote by Mor(G, H) (resp. Hom(G, H))
the set of all natural transformations from G to H considered as k-functors (resp.
k-group functors). Hence, if f € Mor(G, H), f lies in Hom(G, H) if and only if
f(A) is a group homomorphism for every commutative k-algebra A.

Now let &' be any k-algebra. Then each commutative k’-algebra has a natural
structure as a k-algebra. Hence, every k-functor X defines a k’-functor X}, given by
X (A) = X(A) for any commutative k’-algebra A. This way we obtain a functor
from the category of k-functors to the category of k’-functors which we will call the
base chance from £ to k’. We will say that a &’-functor X’ is defined over k if there
exists a k-functor X such that X = Xj,.

For any k-algebra R we can define a k-functor Sp, R by (SppR)(A) := Hom(R, A),
where Hom(R, A) denotes the set of k-algebra homomorphism from R to A. For
v € Hom(A, A’) we define

(SpeR) () : Hom(R, A) — Hom(R, A"),a — o a.

A k-functor will be called an affine scheme over k if it is isomorphic to some Sp R.
For n > 1, we set A" := Spy(k[T1,...,T,]), where k[T, ..., T,]| denotes the polyno-
mial ring in n variables over k. This allows us to recover R form SpyR: Yoneda’s
Lemma yields the bijection Mor(SpyR, X) — X (R) given by f — f(R)(idg) for
every k-functor X. In particular, we get for X = Al

Mor(Sp,R,A') = A'(R) = Hom(k[T], R) = R.

For any affine k-functor, the set k[X] := Mor(X, A') has a natural structure as a k-
algebra: For example, we can define fi+ fo by (fi1+ f2)(A)(x) = f1(A)(x)+ fo(A) ()
for fi1, fo € k[X], any commutative k-algebra A and x € X(A). Multiplication and
scalar multiplication can be defined similarly. With this definition we get that
E[SprR] = R. We will call an affine scheme X algebraic if k[X] is isomorphic to a
k-algebra of the form k[T},...,T,]/I for some n € N and a finitely generated ideal
I CKk[Ty,...,T,]. We call X reduced if the ring k[X] is reduced.

A k-group scheme is a k-group which is an affine scheme when considered as a
k-group functor. We call an algebraic k-group scheme if it is algebraic considered
as an affine scheme. Similarly, a reduced algebraic k-group scheme is an algebraic
k-group scheme which is reduced. If k is an algebraically closed field the category
of linear algebraic groups identifies with the subcategory of all reduced algebraic
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k-groups. Hence, the concept of k-groups generalizes the concept of linear algebraic
groups presented before.

Frobenius maps

Now we turn to the special situation that k = F, is a finite field and K = F,, is its
algebraic closure. Assume we are given an linear algebraic group G over K, which
is defined over k, i.e. G = G’ for some reduced algebraic k-group G’. For each
commutative k-algebra A we have the k-linear Frobenius endomorphism ¢, of A
given by a +— a?. Hence A — G'(¢4) is an endomorphism of G’ which we shall
denote by Fgr, the Frobenius endomorphism of G’. By restriction this becomes
an endomorphism F' of GG, which we may view as a linear algebraic group. It
corresponds to the homomorphism

K[G] = k[G] @ K — K[G] = k[G] @ K, f ® a — f1®a.

When we speak of a group with a Frobenius map we mean a linear algebraic
group over F, which is defined over F, so the the corresponding reduced algebraic
[F,-group functor induces this Frobenius map. In this situation, the [ -rational
points G(F,) are given by the Frobenius fixed points G*'. Note that if X is a closed
subvariety of some affine space K", then F' is the map which raises each component
to its ¢-th power. A subvariety of GG is defined over I, if and only if it is stable
under the action of F'.

Let A: G — G,g+ g 'F(g). The following theorem by Lang and Steinberg is
very useful for studying linear algebraic groups with Frobenius maps:

Theorem 1.3.1. If G is a connected linear algebraic group with Frobenius map, the
map A is surjective.

Proof. See [Spr09, Thm. 4.4.17]. O

For example, this implies that a connected group G with a Frobenius map is
quasi-split, i.e. there exists a Borel subgroup in G which is defined over F,. To
see this, let B C G be any Borel subgroup. The two Borel subgroups B and F(B)
are conjugate in G, hence there exists an h € G such that "F(B) = B. By the
Lang-Steinberg Theorem, we find some g € G with ¢7'F'(g) = A(g) = h and obtain

F(“B)=F9WF(B)=9"F(B) =B,

hence 9B is defined over [F,.

Now, choosing a maximal torus 7" inside a Borel subgroup B defined over F,
and applying the Lang-Steinberg Theorem to the groups 7' C B as in the above
situation, one sees that each Borel defined over F, contains a maximal torus which
is defined over F,.

Let GG be a group with a Frobenius map F' and a maximal torus 7" contained
in an F-stable Borel subgroup. Then the action of F' on T induces actions on the
character and cocharacter groups which we will denote by F' again. Explicitly, we
have

(FO0))(t) = x(F(t)) for all x € X(T)
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and
(F(y)(z) = F(y(x)) for all z € Gy,.

This obviously implies that (F(x),v) = (x, F(7)) for x € X(T) and v € Y (7).
Note that F' also acts on the finite Weyl group: With 7' its normalizer N(T') is
F-stable and hence F acts on W by F(nT) = F(n)T for n € N(T). We have
Wt = NF/TF.

Now we can introduce the notion of duality for groups with Frobenius map. Let
G resp. G* be groups with Frobenius maps F' resp. F* and F-stable maximal tori T’
resp. 1™ which are contained in F-stable Borel subgroups. Denote their root data
by (X(T),Y(T); ®,®, A) resp. (X(T%),Y(T*); &*, &*, A*). We say that G and G*
are in duality if the root datum of G is isomorphic to the dual root datum of G* by
isomorphisms d : X (7') — Y(7*) and € : Y(T') — X (T™) compatible with F, i.e.

6(F(x)) = F"(6(x)) for all x € X(T™)

and similarly for e.

If Wy resp. Wy are the corresponding finite Weyl groups, there exists an iso-
morphism between Wy and W which we will also denote by 4. It is determined
by 6(sa) = S5(ay for all & € ®. This isomorphism is induced by the isomorphism

GL(X(T)) = GL(Y (7)) defined by ¢. Induction on the word length shows that we
have

d(w(x)) = 6(w)(5(x))
for all w € W,. Note that the formula looks a little different than the one in
[Car93, Prop. 4.2.3] where w has to be inverted on one side of the equation. This is
explained by the fact that we haven chosen to let Wj operate from the left on the
cocharacters rather than from the right.

Rationality for tori

Assume we are given a group G defined over k. A torus T defined over k is called
(k-)split if it is isomorphic to some G”, over k. We will usually only speak of split
tori if the corresponding field is clear from the context. We call G (k-)split if it
contains a maximal torus which is (k-)split.

Now assume again that we are given a group G with Frobenius map F and
a maximal torus Tj contained in an F-stable Borel subgroup in G. Each other
maximal torus in GG is conjugate to 7p, hence of the form 97, for some g € GG. This
torus is defined over F, if and only if it is invariant under the Frobenius map hence
if and only if

ITy = F(9Ty) = F(g)F(T(]) = o,

or equivalently if and only if A(g) = ¢ 'F(g) lies in the normalizer of Ty. The
reduction of A(g) modulo Tj defines an element of the finite Weyl group. We get
the following classification of G(IF,)-conjugacy classes of maximal tori in G.

Proposition 1.3.2. The map 9Ty — A(g) mod Ty induces a well-defined bijection
from the set of GF -conjugacy classes of mazimal tori in G to the F-conjugacy classes
m W.
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Proof. See |Car93, prop. 3.3.2, prop. 3.3.3]. O

1.4 Example: GL,

In this section we will illuminate all the constructions discussed before for the linear
algebraic group GL, (K), i.e. the group of all invertible n x n matrices over K, for
an algebraically closed field K. It can be realized as the closed subset

{(a11, ..., G, a) € K™ det((ay);;)a =1}

of K™*+!. Hence the corresponding affine algebra is K[T};, det(7};)~"].

Let B C GL,(K) be the subgroup of invertible upper triangular matrices and let
T be the subgroup of invertible diagonal matrices. Then T is contained in B, T' is a
maximal torus and B is a Borel subgroup of GL, (K). The corresponding opposite
Borel subgroup B~ is the subgroup of lower triangular matrices. The radical of
GL,(K) is its center, i.e. the set of nonzero scalar multiples of the identity matrix.
In particular, GL, (K) is reductive and not semisimple.

For 1 <7 <n denote by y; the character of T" given by

T

T2

—
Ty
and by 7, the cocharacter of T" given by
1
T x ,

1

where the ¢-th diagonal entry is x and all other diagonal entries are 1. The y;
resp. 7y; are a basis of X(T') resp. Y (T'), which we will both identify with Z"
by means of these bases and write (z1,...,x,) for the element > "  x;x; € X(T)
and (yi,...,y,) for the element Y " v;7; € Y(T). {xi}1<i<n is the dual basis of
{7 }1<i<n With respect to the pairing (-, ).

The roots of G with respect to T" are of the form o; ; = x;—x; with 1 <7 # j <n.
The associated coroots are &; ; = v; — ;. The choice of our Borel subgroup marks
the roots «;; for ¢ < j as positive and the roots a; = ;41 for 1 < i < n—1
as simple. Hence, Sy = {54, .-, 8a,_, . The root subgroup U,, , consists of those
matrices which have ones on their diagonal and all other entries except for possibly
the one in the i-th row and the j-th column are zero. We have the isomorphism

Ug,; * Go = U, ;0 = By + a0l j,
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where E,, is the n x n identity matrix and and F;; is the matrix with 1 in the
(1, 7)-position and zeros elsewhere.

For 1 <i # j < n, we have s,,;(xi) = x;j. Thus, for each w € W) there exists
a unique o € S, such that w(x;) = Xs@). The group homomorphism W, — S,
defined this way is surjective, because S,, is generated by the transpositions and
injective because the y; generate X (7). We will identify W, with S,.

For each o € S, we can define a permutation matrix P, = (p;;)i; by pij = i.0(j)-
We obtain a group homomorphism from Wy to GL, (K) given by o — P,. Its image
is obviously contained in the normalizer of T" and it is a splitting of the group
homomorphism N(T') — N(T)/T = W,. We emphasize the fact that the existence
of such a splitting is specific for GL,, and not true for general reductive groups. For

example in SLy(K), there exists no element of order 2 congruent to < _01 01 )

modulo the torus of diagonal matrices with determinant 1.

Via the isomorphism W, = §,,, the simple reflection s; := s,, identifies with the
transposition (i,7 + 1) of S,, for 1 <+i < n — 1. The longest element wy is given by
wo(Xi) = Xny1—i for 1 <7 < n and hence we have wy(o;) = —a,—; for 1 <7 <n-—1.
Our choice and numbering of A defines the Coxeter element v = sy...s,_1. This
identifies with the n-cycle (1,2,...,n) € S,, ie.

Xir1 ifl1<i<n-—1,
v(xi) = { e
X1 ifi=n
and we get the same statement with v instead of x. The set of Coxeter elements in
S, for different choices of A and numberings of the simple roots consists precisely
of the n-cycles.

Via the identifications X (7') = Z™ resp. Y (T) = Z", the root- and coroot-
lattices correspond to those elements (xy,...,x,) € Z" (resp. (y1,...,Yn) € Z")
with > a; =0 (resp. > y; = 0).

The unique minimal root is oy = a1 = —1,, = —X1 + Xn- This means that
the set of Coxeter generators S,y for W, is given by Sp U {s4,e%}, where

Xn ifi=1
Sap(Xi) =4 x; ifl<i<n

We set sg =: Sq,€%.

The group 2 is of a very simple nature in this case: Setting uy = e"v, we
have 2 = (ug) = Z. Additionally, the element uy permutes the simple affine reflec-
tions transitively. More precisely, we have ugs;ug, 1 — Sip1 for 0 <7 < n —2 and
Ups,_ 11Uy " = so. Of course, this behavior is specific to the case of GL,: For example
Q= Y(T)/Q is trivial for any simply connected semisimple linear algebraic group,
such as SL,,.

Let us fix some o = o;; € ®. Then, SLy becomes a subgroup of GL,, via
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b
¢o : SLy — GL,, ( CCL J ) > By +aEi; + bE;; + cEj; + dEj;
k#i,j
1

This yields the isomorphisms uq : G = Uy, 2 — E,, + 2 E; ;.

Now we turn to questions of rationality for K = F,. The F,-group functor GL,, is
obviously defined over I, and the corresponding Frobenius map raises each matrix
entry to its g-th power, i.e. F((ai;)i;) = (aj;)ij. As expected, the Fo-rational
points coincide with the invertible n x n matrixes with entries in [F,.

In the following, we will examine the GL,(IF,)-conjugacy classes of maximal
tori defined over F, in GL,(K). Recall from Proposition 1.3.2 that the GL,(F,)-
conjugacy classes are in bijection to the F-conjugacy classes of Wj. It is easily seen
that F' acts trivially on W and thus we can replace F-conjugacy classes by regular
conjugacy classes. For following applications, we will be particularly interested in
the torus, which corresponds to the conjugacy class of the Coxeter elements. One
representative is given by the n-cycle v defined above. Choosing g, € GL, (K) with
A(gy)T = v, one representative for the corresponding GL,(F,)-conjugacy class of
tori is given by 9°T. We could explicitly determine such an element g but this will
not be necessary in the following. A matrix % diag(ty,...,t,) € 9T is an F,-rational
point if and only if

Pdiag(ty, ... tn) = F(diag(ty, ... t,)) = Y9 diag(t?,.. . 19)
= M) diag(t?, .. 1) = 9diag(t!, .. 1)
= Pdiag(td,td,... 2 ).

’» Yn—1

It follows that the IF -rational points are given by the conditions

fo=t0 =19 = =t ="

q
n
From this, it is clear that 9T'(F,) = Fy. (in a non-unique way). In particular, the
torus 9°T" is not split. More precisely, the center is a maximal split subtorus of 97"
Hence, 9T is “as non-split as possible".
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1.5 Groups with BN-Pair

For a moment, let G be any group.

Definition 1.5.1. We say that (G, B, N, S) is a BN-pair, if the following conditions
are satisfied

(i) G is generated by the two subgroups B and N.

(i) BN N is a normal subgroup of N.
(iii) N/(B N N) is generated by a subset S consisting of elements of order 2.
(iv) For each s € S and w € N/(BN N), we have sBw C BwB U BswB.
(v) Forall s € S, sBs  B.

In points (iv) and (v) of the preceding definition, we view elements of N/(BNN)
as cosets modulo B N N, hence subsets of G. Hence, expressions like sBw make
sense as subsets of G. Sometimes, BN-pairs are also called Tits systems.

Now assume we are given a BN-pair (G, B, N,S). Then denote by Wy the
quotient N/(B N N) and by 7T the intersection B N N. From now on we will
write Sy instead of S for better compatibility with our notations in the case of
reductive groups. The tuple (W, Sp) is a Coxeter system (cf. [Bou02, Thm. 2 in
§2.4]). We can define a root system by means of (W, Sy) in the following way: Let
A ={ds:s € Sp} and let V' be the R-vector space with basis A equipped with the
symmetric bilinear form given by (4, ') := — Cos(s;;;/ ). Then Wy acts faithfully on
V' by the morphism which sends ss to the reflection at the hyperplane orthogonal to
J. We set @ := Wy(A). Clearly this returns the root system if W} is defined by a root
datum as introduced before. Each element of ® is an integral linear combination of
elements in A with either only nonnegative or only nonpositive coefficients. This
way, we can define positive resp. negative roots ®* resp. ®~.

Now assume that W) is finite. There exists a unique wy € W, of maximal length.
Further, let I C S be any subset and let W} be the subgroup generated by I. The
tuple (W, I) is again a Coxeter System. Let w; denote its longest element.

For each w € W,, we may write BY := w~!Bw, because B contains T and
U* = w 'Uw, because T normalizes U and T is abelian. For w € W, we set
B, = BN B"Y" and U, = U NUY™.

Definition 1.5.2. Let (G, B, N, S) be a BN-pair. We call it split of characteristic
p, if GG is finite and the following conditions are satisfied:

1. BNBY =T1T.

2. There exists a normal subgroup U of B such that B decomposes as a semidirect
product B = UT.

3. U is a p-group and T is of order prime to p.

We call (G, B, N, S) strongly split, if additionally for each subset I C S, U; :=
UNU" is normal in U.
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Now assume we are given a split BN-pair (G, B, N, T) of characteristic p with
finite Wy. If « is a simple root, we write B, for B, . Denote by X, the set of
p-elements in B,. For w € Wy and a € A, the subgroup “ X, only depends on wa
and will be denoted by X,,. Because each root is conjugate to a simple root by
Wy, we obtain subgroups X, for all a € ®. Let G, be the subgroup generated by
Xyand X_, and let T, =T N G,.

In our applications, we will always be in the strongly split case of characteristic

p:

Lemma 1.5.3. Let G be a connected reductive group defined and split over IF, with
split mazimal torus T' defined over F, contained in a Borel subgroup B defined over
F,. Further, let N be the normalizer of T' in G and let Sy be the system of simple
reflections defined by the choice of B. Then (G(F,), B(F,), N(F,),So) is a strongly
split BN -pair of characteristic p. Moreover, we have X, = U,(F,) for each a € ®.

Proof. This is basically contained in [Car93, 1.18|: With T, also N is defined over
F,, hence the statement makes sense. The only thing not shown there is the fact
that U(F,)NU(F,)"" is normal in U(F,) for each subset I C Sy, where B =TU. So,
let I C Sy, ®; be the subroot system of ® corresponding to I with corresponding
positive roots & = &; N dT.

By |[CE04, Thm. 2.21 (iii)|, there exists a sequence «y, ..., ay consisting of all
positive roots such that for any u € U(F,), there exist unique z,, € X,, with

U=Tqy - Tay-

For w € Wy, such u is contained in U(F,)" if and only if o; € w™'RT for each i
with z,, # 1 by [CE04, Lemma 2.22]. Writing

Rt nw; 'RY = R"\ (w; '"R™NRY) = RT\ R} ={a,,...,q;}
with 7; < ... < 1;, we obtain
UFy)r = Xa,, - X,

Hence, it suffices to show that X, normalizes X5 for « € RT and 8 € RT\ R}. As
T is split over F,, the root system of the algebraic group coincides with that of the
BN-pair, which is defined by means of the Weyl group W, = N(F,)/T(F,) = N/T.
Now, if {U, }acr are the root subgroups of the reductive group G relative to T, we
have U N UYo%» = U, for each simple o € A by [Spr09, Proposition 8.2.1], which
implies BN B*% = TU,. Hence, X,, the set of p-clements in B(F,) N B**«(F,) =
T(F,)Us(F,), is equal to U,(F,) for simple «, which implies the corresponding
equality for general a@ € ®, because “U, = U, for each w € Wj. This implies the
commutator relation

[Xa,Xﬁ] g <X’y Ly & (Z>0a + Z>0ﬁ) N R) g U(]Fq)[,

by [Spr09, Proposition 8.2.3], which shows that X, normalizes Xj, because  and
hence each v as above contains at least one simple root not corresponding to an

element of I.
]
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By |CE04, Prop. 6.3 (i)| there exist elements n, € X,X_,X, N N(F,) for all
a € A such that the image of n, = ng, in Wy is s,. We will fix such a system of
representatives and denote by S(()l) the set of all n,,.









Chapter 2

(Galois Representations

2.1 Representations of W/

We will now briefly review some generalities on absolute Galois groups over local
fields and the corresponding Weil groups. For more details, see [Tat79] and [Del73,
chap. 2|. Denote by G = Gal(L/L) the absolute Galois group of L, where L
still denotes a finite extension of Q,. We have a well defined surjective group
homomorphism from G, to Gz, = Gal(F F,/F,) given by o + [x +my — o(x) +mz].
Its kernel I, is called the inertia subgroup. Hence, we have the exact sequence

1— I, — G — Gal(F,/F,) —

The group Gal(F,/F,) is isomorphic to Z topologically generated by the (arith-
metic) Frobenius automorphism x — x9. Denote by ¢ a lift of this Frobenius in
Gr. We will also call ¢ a Frobenius. The choice of ¢ gives a unique continuous
homomorphism 7 — Gy mapping 1 to ¢, which allows us to speak of 7- powers
of . Each element of G is uniquely a product of a Z-power of ¢ and and an
element of I;,. In other words we obtain a splitting of the above exact sequence, i.e.
G = I, x 7 as abstract groups.

Definition 2.1.1. The Weil group W, of L is the subgroup of G, which is generated
by ¢ and I;. We endow W, with the unique topology such that I, is open in Wy,
and carries the profinite topology induced from G7.

I;, has a unique pro-p-Sylow subgroup Pp. This is a normal subgroup in Wi:
Any conjugate of Pp is contained in I, because [ is normal in W;. But this
conjugate is also pro-p, hence contained in Py,

The quotient I1,/ P is (non-canonically) isomorphic to [ ], Z; = 1'&1@ n)=1 Z/nZ.
Note that the definition of W}, does not depend on the choice of ¢ and that Wi C Gy,
is a dense subset in the profinite topology of GG,. We also remark that the topology
on Wy is strictly finer than the subspace topology induced from G, because I is
open in Wy but not open in Gy, as it is not of finite index in the compact group
GL-

Another way to phrase this definition of the Weil group is to define W, as the
preimage of Z under the projection G, — Gal(F,/F,) = Z which induces the exact

19
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sequence
11, W, —=>7Z—0.

Again, the choice of ¢ defines a splitting such that W, = I, x Z. The topology
described above is the product topology induced by any such splitting, where Z is
endowed with the discrete topology.

In the following, we will discuss the representation theory of Wy. We will begin
by comparing the representation theory of W in characteristic p to that of Gy.
Unless otherwise stated, a representation of Wy resp. G will always be a continuous
representation of W resp. (G on a finite dimensional Fq—vector space V' where
GL(V) carries the discrete topology.

Lemma 2.1.2. Each open subgroup of Wy, which is of finite index is also open in
the induced topology of G .

Proof. We first treat the case that our given subgroup is normal. So let U C W,
be such an open normal subgroup of finite index. As U is open and normal in W,
Iy := I, N U is open in [; and normal in W;. On the other hand, being of finite
index, U must contain some nontrivial power of ¢, say ¢™ for some m > 0. Hence,
U contains the subgroup cp"fZIo of Wr. A

Because of 021, = ™[, N Wy, it suffices to show that ™%, is open in G.
On the one hand, it is closed as it is the product of the compact subgroups /, and
¢©™Z. On the other hand its index in Gy, is m[I}, : Iy], hence finite. Both together
imply that it is an open subgroup of G.

Now we turn to the general case. Let {o1,...,0,} be a system of representatives
for U\Wy. Then all the subgroups o;Uc; ' have finite index in G. Hence their
intersection U’ := (", o;Uo; 1 C U is of finite index in Wy, by Poincaré’s Theorem.
On the other hand it is normal in W} by construction and the finite intersection of
the open subgroups o;Uc; ', hence open in W. By the first case U’ is open in the
induced topology and thus the same is true for U. m

Proposition 2.1.3. The category of finite-dimensional G -representations and the
category of finite-dimensional Wy -representations are equivalent.

Proof. First of all, any representation of GG, restricts to a representation of Wy,. This
restriction is also a continuous representation, because the topology of W is finer
than the subspace topology. Hence, we obtain a functor from G -representations
to Wy -representations.

On the other hand, we claim that each W-representation uniquely extends to
a representation of Gy. Then this will obviously define a quasi-inverse functor. As
Wy, is dense in G, it is clear that an extension will be unique, if it exists.

So, let p : W, — GL(V) be a continuous representation for some finite di-
mensional F,-vector space V. GL(V) is isomorphic to GL,(F,), where n is the
dimension of V. This implies, that every element, in particular p(¢), in GL(V) is
of finite order. Additionally, I is compact and hence its image under p is compact
and discrete, thus finite. We see that the image of p is a finite subgroup of GL(V).

By Lemma 2.1.2, ker(p) is also open in the subspace topology of Wj ob-
tained from G, which means that p is also continuous in the subspace topology.
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This implies Wy, N ker(p) = ker(p) and we get an injective group homomorphism
Wy /ker(p) — Gpr/ker(p). Because ker(p) contains some power of ¢, the quotient
is generated by ¢ and [, and the map is surjective. Now, we may extend p as the
composite

G — Gpr/ker(p) = Wi /ker(p) — Gr(V).
[

Note that the argumentation of the previous proposition relies only on the fact
that the image is finite. In particular, this equivalence of categories also holds if we
replace the coefficients of our representations by F; for any other prime .

The classification of irreducible Wp-representations resp. (Gp-representations
over F, is known, using Serre’s fundamental characters [Ser71]. See for exam-
ple |Vigd7, 1.14, 1.15] for Wp-representations or |Berl0, Lemma 2.1.4] for G-
representations. We will give a different method to phrase this classification which
suits our needs better. To do this, we begin by remarking that any irreducible repre-
sentation of Wy is trivial on Pp: On the one hand, every continuous representation
of a pro-p group has a non trivial fixed vector in characteristic p. On the other
hand, the vectors fixed by P, are a subrepresentation because Py, is normal in W
The irreducibility implies that P acts trivially.

The group W, /Py is topologically generated by a topological generator « of
I./Pp and ¢. The only relation between those generators is pap™ = af (cf.
[Iwab5, Thm. 2 (i)]). For the remainder of this section, we fix such an element « in
addition to our choice of ¢.

In the following, we will be interested in classifying the irreducible representa-
tions of Wp. However, parts of this can be done more generally for any reductive
group G* over Fq. We use the superscript * here to indicate that G* is supposed
to be understood as the dual group of another reductive group GG. By doing the
following more generally we also avoid the confusion which arises from the fact that
GL,, is dual to itself and hence it is difficult to see that representations should be
understood as homomorphisms into the dual group of GL,,.

Any continuous p : Wy, /P, — G*(F,) is given by a tuple (s,u) € G*(F,)?, where
s is the image of ¢ and w is the image of . As a consequence, we have sus~! = 9.
Note that this relation is invariant under conjugating s and u by the same element

of G*(F,). Also note that s and u both have finite order because we can embed G*
into some GL,,(F,) where every element has finite order.

Conversely, if we are given a tuple (s,u) € (G*)* with the relation sus™' = u?
this defines a continuous homomorphism from Wy /P, to G*. Let m be the order

of u. Then we obtain a continuous group homomorphism

1

IL/PL — (IL/PL)/(IL/PL)m gZ/TTLZ—> GLn(Fq)

sending « to uw bearing in mind that I,/P;, = H#p Z;. We can extend this to
Wy /Py = ot x I, /Pr, by determining the image of ¢ as s. This is indeed a homo-
morphism because of sus™ = u? and it is continuous because its kernel contains a
subgroup which is of finite index in I /Py.

Lemma 2.1.4. Let (s,u) € G* such that sus™* =u?. Then u is semisimple.
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Proof. Using Jordan decomposition, we can write © = uus with commuting u; and
Uy such that u; is semisimple and us is unipotent. Since any unipotent element is
of p-power order, we have ud =1 for sufficiently large r. Then,

_ T
sfus™" =u! =l ud =l
shows that u is conjugate to a semisimple element, hence semisimple itself. O]

Now suppose that G* is equipped with a Frobenius map F™* and has a split
maximal torus 7. Denote by W its Weyl group. Further let p: W, /P, — G* be
a continuous homomorphism. Then, Lemma 2.1.4 implies that there exists a g € G*
such that the image of I} /Py under 9p is contained in 7.

Recall, that we have actions of W and F™* on 7. These induce actions of W
and F* on Hom®"™ (I /Py, T*). Explicitly, we have

wip = [o = wip(o)]
for w € W¢ and ¢ € Hom*™(I,/Pp, T*) and

Fi = o= Fy(o)]
for all ¢ € Hom®"™ (I, /Pr, T*).

Lemma 2.1.5. Suppose we are given g1, 9o € G* such that 9 p(I/Pr) C T* and
2p(I/Pr) C T*. Then there exists a w € W such that 9 pr, /p, = 9pj1, /P, -

Proof. The proof can be done analogously to that of [Car93|[Prop. 3.7.1], which
states that the semisimple conjugacy classes in G* are in bijection with the Weyl
group orbits of T™.

It suffices to show that ¢; := 9 p(«) and ¢y := 9p(a) are conjugate by some
element of W for a topological generator o of Ir,/P. Let g := gog; ' so that we
have 9t; = t,. By the Bruhat decomposition there exists a unique w € Wy such that
g € U _ywB* and for a fixed lift n of w in the normalizer of T™ there are unique
uwe U, teT" and v € Uj_, such that

g = u'ntu.
This implies
u'ntut, = tou'ntu,

or equivalently
u'n(tt) (7 uty) = (tyu'ty Hn(n ™ ont)u

and by uniqueness we obtain
tty =n"tont

and hence ty = nt;n~! which yields the claim. O
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As a consequence of the lemma, p defines a W-orbit of homomorphisms from
I1,/Pp, to T* which we will denote by Wiresy, /p, (p).
As T™ is split, F* is the g-power map and we obtain

sus !t =ul = F*(u)

so that Wyres;, /p, (p) is F*-stable. We will denote the set of F*-stable Wy-orbits of
continuous homomorphisms from I,/ Py, to T* by (Hom“™ (I}, /Py, T*)/W;)F" . We
have constructed a well-defined map

Hom“™ (W /Py, G*) — (Hom ™ (I, /Py, T*)/W§)F.
On the other hand, we have a map
Hom®"(Wy/ Py, G*) — Hom™" (W /Pp, Hom(X (G*),F, ))
mapping p € Hom®“™" (W, /Py, G*) to 0 — eV, where ev,,) denotes the evalua-

tion at p(o).
Analogously, we can define a map

Honlcont(]L/PL7 T*) — Homcont(]L/PL, HOHI(X(G*),F;))

This map is constant on W-orbits because qu is commutative. Together, we obtain
a commutative diagram

Hom®™ (W /P, G*)  — Hom™™ (W, /Py, Hom(X (G*),F,))
\J \J
(Hom®™™(I,/ Py, T*)/Wo)¥  —  Hom®"(I,/ Py, Hom(X (G*),F,))

in which the right vertical map is given by restriction. This diagram allows us to
define the fiber product

(Hom®"™ (I, /Py, T*)/W5)" % Hom*™ (W, /Pp,, Hom(X (G*), F, )).

om ™ (I, /P, Hom(X (G*),F,))

In the following, we aim to describe the natural map from Hom®"™ (W /P, G*)
into this fiber product in the case of G = GL,, (and thus G* = GL,,).

Proposition 2.1.6. Let (s,u) € GL,(F,)? such that sus™* = u?.

(i) Assume that FZ has no nontrivial subspaces invariant under s and u. Then,
there exists some g € GL,(F,) such that
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and

gsg — = )

(—1)"z 0
where y € Fpn \ UpyepnFym and z € F:.

(ii) Let (s',u’) be another tuple as above defining elements y' and z' as in (i).

Then (s,u) and (s',u’) are conjugate by some element of GL,,(F,) if and only
if z=2"and the y and y' are Gal(F ;. /F,)-conjugate.

(i4) If we are given a tuple (s,u) as in part (i), F, has no nontrivial subspaces
stable under s and u.

Proof. (i): From Lemma 2.1.4, we know that w is semisimple. First of all, we will
show that the multiplicities of all its eigenvalues are one. So let y be an eigenvalue
of multiplicity m and j > 1 be maximal such that the elements y, y?,...,y? = are
pairwise distinct. By the relation sus™! = 49, the eigenvalues of v are stable under
taking ¢-th powers and all g-power-powers of y occur with the same multiplicity.
After conjugation, we may assume, that

@1

u:dza/.g(y?’y?yq’qu??y 7"'7y

-1
! ,SEl,...,LEl),

where all the powers of y appear m times and the z; are not of the form y? for any

7. Now write
(A B
*=\c p )

with A € Mjmxjm(Fq), B € Mjmxl(Fq), C e Mlxjm(Fq) and D € My (F,). Using
su = uls, we see in particular that

C-diag(y,. ...y, y% .. ..y%, .y ) = diag(z9,...,z}) - C.

Writing down the matrix multiplication and using that z; ¢ {y,... ,yqj_l} for all
1 <4 < g, we see that C' = 0. This gives us a nontrivial subspace stable by u and
sifl>1,s0l=0.

Now, if M is the diagonal m x m matrix having the unique eigenvalue y, we have
u = diag(M, M9,...,M%""). Let us write s = A = (A,4),., with m x m matrices
A, s. Then, the relation sus~! = u? is equivalent to

Ay - MT = M7 A, forall 1 <rs<j

or equivalently A, = M qr_qs_lAr,s, because M is central in GLm(Fq). The mini-
mality of j implies that M9 =" # 1 unless s = 7 4+ 1 und hence, we have A, , = 0
unless s = r + 1.

Write A, for A,_;, and A; for A;;. Now, let v; € F? be an eigenvector for
AjA;_1 ... AsAy and for 2 <7 < g, let

Vy = Ar_lAT_Q e A2A1U1.
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Denote by e; the standard basis of FZ resp. F;n and write

m

=m

vy = 5 Upi€; € ]Fq )
i=1

We define vectors w, € F;n by

m
Wy = E Vri€(r—1)m+i
=1

for 1 < r < j. This definition implies v; = w;, viewing qun as a subspace of FZ in
the natural way. We have sw, = w,1; for 2 <r < j and sw; = A;A;_1 ... AyAjvy,
viewing the element on the right hand side as a vector in FZ. But the latter lies

in quwl, because of the choice of v, as an eigenvector for A;A;_;... A;A;. This
means that the subspace generated by all w, is stable under s and it obviously is
stable under u. This is only possible if j = n. In particular, all the A, are nonzero
scalars. The choice of j ensures that y? # 1 for ¢t < n, i.e. y is not contained in
any proper subfield of F ..

So the only thing which remains to be shown is that we can achieve by conjuga-
tion that all the A; for i # 1 can be chosen to be 1. This can be done by conjugating
with

dzag(l, AQ, A2A3, “on ,AQ “en An>

This does not affect the form of u. Then, s obtains the form of the assumption with
VAR (_1)n+1A1 c. An-

(ii): Assume the tuples are conjugate. Then z = det(s) = det(s’) = 2.
As u and u' are conjugate, their eigenvalues are the same, so {y,y%,... yqnfl} =

n—1
{v.y'...yt b ,
On the other hand, assume that 2 = 2’ and y = ¢/ for some r. After conjuga-
tion, we may assume that

and

=}
—_

0 1
(=1)"z 0
By conjugating with a Weyl group element, we can assume that « = v’ at the cost
of interchanging one of the ones on the secondary diagonal with the entry (—1)"z
in the matrix s’. By conjugating with a diagonal matrix as in the proof of (i) we
can bring ¢ to its old form without changing u'.
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(iii): Let (s,u) be as in (i). We may assume g = 1. Let v € FZ be nonzero and
write v = > a;e;. If v is a multiple of some e;, we are done because then we get
all the e; up to scalar from applying u repeatedly to v.

Now, if v is not a multiple of e, v — y= " "o is nonzero, so we may assume
a, = 0. Similarly, v is either a scalar multiple of e,,_; or we may assume a, 1 =
a, = 0. Continuing this process, we are reduced to the case where v is either a
scalar multiple of some e; with 2 <i <noray, =... = a, =0, which means that v
is a scalar multiple of e;. In either case this proves our claim. O

We remark that, the conjugacy class of (s,u) depends on our choices for ¢ and
a. For both cases, this will be so even if n = 1. The difference between two
Frobenius lifts is an element of I,/ Pp. So, it will be sufficient to give a continuous
homomorphism W /P, — Fq which is not trivial on I,/ Pp. For this choose a prime
lp such that [y divides ¢ — 1 and consider the composite

Wi/PL2Zw [[2Zi — Zi, > Z/IZ — Z/(q — 1)Z = F},
l#p

where the first isomorphism is given by our generators and the injection can be
arbitrarily chosen.

This also gives an example for a homomorphism for which u depends on the
choice of a topological generator. To see this, we only need to observe that for any
a € Z;,, the element (1,...,1,a,1...)is a topological generator of Hl#p Z; and that
the projection map Z; — Z/IZ is not constant on Z;°.

Proposition 2.1.6 classifies irreducible Wp-representations up to isomorphism
depending on our choices. Now we can describe the image in the fiber product.

To do this we will slightly reinterpret the involved sets of homomorphisms. For
G = GL,, we have canonical isomorphisms

X(G*) = Hom(G*, G,,) = Hom(G*/(G*), G,,) = Hom(G,,,, G,,) = Z

where the third isomorphism is given by the determinant and this induces a canon-
ical isomorphisms

Hom®™ (W, / Pr, Hom(X (G*),F, )) = Hom*™ (W, /P.,F, )
and - _
Hom®" (I, / Py, Hom(X (G*),F, )) = Hom*™ (I /P, F, ).

Thus, we can reinterpret our fiber product as

(Hom®™ (I, /Py, T*) /W) x Hom*"(Wy/P.,F,).

Hom®"™ (I, /Py F,)
Now we can reformulate Proposition 2.1.6 to give a classification of irreducible
n-dimensional Wp-representations independent of our choices:

Theorem 2.1.7. The canonical map from irreducible Wy, / Pp-representations into
the fiber product

(Hom®™ (I, /Py, T*)/Wi)F x Hom*"(W,/Py,F, )

Hom®" (I, /Py F,)



CHAPTER 2. GALOIS REPRESENTATIONS 27

is injective. Its image consists of those pairs, such that the corresponding F*-stable
W -orbit consists of n! elements and F* acts by an n-cycle on each representative.

Proof. Firstly, we show the injectivity. If p : W /P, — GL,(F,) is an irreducible
representation, we need to show that we can recover the conjugacy class of (s, u)
as in Proposition 2.1.6 from the image of p in the fiber product. Let (¢1,1) be
the image of p. Then, we can recover y as in Proposition 2.1.6 up to Gal(F/F,)-
conjugacy as an eigenvalue of ¢ () and z as det()2(¢)). This defines (s,u) up to
conjugacy by part (ii) of Proposition 2.1.6.

It is an immediate consequence of Proposition 2.1.6 that for each irreducible p
the corresponding orbit is of length n! and that the Frobenius acts as an n-cycle on
each representative of that orbit.

Now, let (W11, 12) be a tuple in the claimed image with a chosen representative
Yy and let ¢y (a) = diag(yy, . .., yn). The fact that Wi, is of length n! means that
the y; are pairwise distinct. After renumbering the y;, i.e. choosing a different
representative of the orbit, the other condition translates as y] = y;41 for 1 <i <mn
where y,.1 := ;. Because all the y; are distinct, we get that all the y; lie in
Fn \ UppFym. Hence, we obtain an element u = diag(y, y?, ... ,yqn_l) € G*(F,)
where y = ;.

Now, if z = det(12(p)), we can define s as in Proposition 2.1.6 and obtain
sus~! = u?. Now this tuples gives as a preimage.

O

We remark that the map fails to be injective if we drop the assumption about
irreducibility. For example we may consider the semisimple non-irreducible repre-
sentations of dimension 2 give by the parameters

(10 (a0
*“lo1 )" o ot

with a € F. These are obviously all non-isomorphic, but have the same image in
the fiber product.

Having classified the irreducible Wp-representations, we will now discuss their
fields of definition.

Lemma 2.1.8. Let p be an irreducible Wy -representation of dimension n and let
z = det(p(a)). Then p can be defined over Fy(z).

Proof. Let x = tr(p) be the corresponding character. We may replace W by
W /ker(p) and assume that we are considering the representation of a finite group
this way. It is known that the Schur index of an irreducible representation of a finite
group over a finite field is 1 (see e.g. |Bra4b|, section 2), i.e. it can be defined over
the field F,[{x(g) : g € WL}].

Modulo ker(p), each element of W7, is of the form ¢'a™ for some I, m € Ny and
we get
0 if ntm

trFqn/]Fq(y)lz% if n|m

x(¢'a™) = {
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by Proposition 2.1.6 (i) for some y € F,n. The right hand side is contained in
Fq(2). O

We will conclude this section by comparing the classification given here to the one
given by Berger for L = Q, in [Ber10|. This is done as follows: For n > 1, we chose
elements 7, € Q, such that 72" ~* = —p. This allows us to define w, : Iy, — F; by

9(mn)

mapping g € Ig, to the residue class of =2 This definition does not depend on
the choice of m,. We call w,, the fundamental character of level n. The image of w,,
is equal to [F,». Note that w; is the mod-p cyclotomic character. Hence, it extends
to a character of Gg, by setting

w1 G, = (Z/pZ)* =F;, g+ k(g), where g((,) = C;(g)

for a p-th root of unity ¢,.

For a fixed integer n > 1, an integer 1 < h < p™ — 2 is called primitive if the
characters w!, WP, ... ,wg"‘lh are pairwise distinct. As the image of w,, is Fp» this is
equivalent to saying that for a generator « of Fn, all the elements z", 2", ... z"""
are pairwise distinct, i.e. 2" is not contained in any proper subfield of Fn.

For \ € Fp, let 11y be the unramified character which sends ¢ to A™*. Then, we

have the following classification of irreducible G, -representations:

Proposition 2.1.9. (i) For each n > 1 and each primitive 1 < h < p" — 2 there
exists a representation ind(w?) which is determined uniquely up to isomor-
phism by the conditions

o det(ind(wh)) = w
o ind(w})|r, = Bisy wi ™

(ii) Every absolutely irreducible n-dimensional Gg,-representation is isomorphic
to ind(wh) @ py for some primitive 1 < h < p" — 2 and some A € F,,.

Proof. This is Corollary 2.1.5 in [Ber10| and the preceding discussion. O]

Now, fix some n > 1 and let 1 < A < p" — 2 be primitive. We may assume
wi(p) = 1 by possibly changing ¢ by some element of Ig,, because the image of
wi is FX. Then the representation defined by y = w!(v) and z = wi(p) = 1 as in
Proposition 2.1.6 (i) is equal to det(ind(w")) by definition. The same conjugation
argument as in the proof of Proposition 2.1.6 (i) then shows, that the representation
defined by y = w"(v) and z = (—1)"A\™" is isomorphic to ind(w") @ u,.

2.2 Representations of I,

Let G and G* be algebraic groups with Frobenius maps F' and F* and maximal tori T’
and 7™ in duality to each other given by 0 : X(T') — Y/(7™) and e : Y/(T') — X (T™).
We may identify the finite Weyl groups of (G,T) and (G*,T*) leaving out the
isomorphism in our notation. Recall that d(w(x)) = w(d(x)) for x € X(T) with
this identification.
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We have to start with a lemma connecting inertia groups and the unit groups

of the corresponding fields: Let Z := Jim (pm)=1 pm(F,), where g, (F,) denotes the
group of m-th roots of unity of Fq and the transition maps are
— — my
fomy (Bg) = iy (Fy), @ = 22,

when msy divides my. Further, we can define V := 7 ® Q.

Lemma 2.2.1. There is a surjective homomorphism s : I — Z with kernel Py,
given by the congruence
o(z)

T
T

(5(9)")q

for all x € L modulo mz, where v(x) = - Hence, it induces an isomorphism

I,/ Py, — Z which we will also denote by s.

Proof. See |Del73, 2.2.2 b)]| for the existence of s and the assumption that Py, is its
kernel. Let (¢,), € Z be any element. Let L™ be the maximal unramified extension
of L and

L=L"(x/™: (m,p) = 1).

Then there exists o : L — L trivial on L™ such that o(7}/™) = z,72™, because 2

lies in the projective limit Z, and we can extend ¢ to an automorphism of L, which
1/m
we shall also call ¢. This lies in I} because it fixes L™ and we have U(WIL/m ) — Zm,-
TrL

This implies that s(o) = z. O

Lemma 2.2.2. (i) There exists a canonical isomorphism Q)7 @z, 7 = qu. It is
given by =@ x — (2"),.

(ii) There exists a canonical short exact sequence

0—>Z—>V—>qu—>0.

(iii) There exists a canonical short exact sequence

0=YT)®zZ —-Y(T)®,V —-T — 0.

(iv) There exists a canonical isomorphism
Y(T)®z Z))(F —1)=T".

Proof. (i): The given map is easily seen to be well-defined. On the other hand, we
can find a system of primitive m-th roots of unity ¢y, such that ¢ = ((n)(m,p)=1 lies
in Z. This way, we obtain a map from F: to Q/Z®z Z by sending a = (]}, to (@ .
Elementary calculations show that this map is well-defined and it is obviously an
inverse to the map of the assertion. In particular it does not depend on the choice

of .
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(ii): Since Z = [],,Z; is torsion free and hence flat as a Z-module, we obtain
this from the exact sequence

0-Z—->Q—-Q/Z—0

and (i).

(iii): This follows from tensoring (ii) with Y'(7)), the fact that Y(7') is free and
hence flat over Z and using the canonical isomorphism Y (T) @ F, = T.

(iv): We have the commutative diagram

TF
1
0 — Y(T) ®z Z — Y(T)®z,V — T — 0
\J 3 S
0 — Y(T) ®z Z — Y(T)®2,V — T — 0
!

Y(T)®z Z)/(F —1)

where the vertical maps are the ones induced by F' — 1 on T resp. Y (T') and the
identity on V resp. Z. Using the snake lemma, it suffices to show that the middle
vertical arrow is an isomorphism.

Some finite power of F acts as a p/-th power map (f > 1) on T and hence
on Y(T), so F, viewed as an endomorphism of Y (7)) ®7 Q does not have 1 as an
eigenvalue. Hence F' — 1 is injective and thus bijective on Y (7') ®7 Q. Thus, F — 1
is bijective on Y(T) @z V 2 Y (T) ®; Q ®z Z. O

Lemma 2.2.3. (i) There exists a (non-canonical) isomorphism

X

Hom*™ (I /P, F, ) =F,

depending on the choice of a topological generator of I /Py.
(ii) There is a canonical isomorphism
Hom*™(I,,/Py,F,)® 1, /P, =F,
given by f @ o — f(0).

Proof. (i): Let a be a topological generator of I1,/Pp. Then we take evaluation at
a as our map above. Clearly, the map is injective. Now let z € F, be of order

m. There exists a surjective continuous homomorphism 1,/ P, — Z/mZ, because
X

q

(m,p) = 1. Composing this homomorphism from Z/mZ to F,
image of v in Z/mZ to x yields a preimage of x.
(ii): Let « be as in the proof of (i) and denote by 7 the homomorphism

which maps the

of the assertion and by g the homomorphism =z — (o — z) ® « from qu to
Hom*™(I,,/P;.F, ) ® I/ Pyp.

Clearly yo 8 = id?:. On the other hand, let o € I, /P, and z € qu of order m.
Then there exists an n € Z such that 0 = o™ mod ({/P;)™. We have

fAr((a—2x)®@0))=FE" =(a— ") @a=(a—2)Ra"=(a—2)R0

and hence o~y =id [

om®" (I, /PLF )"
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For the upcoming proposition, we need to define Frobenius- and Weyl group
actions on the group Hom“™ (Y (T) @ Z, qu ). We do this by using the respective

actions on Y (T). Let ¢ € Hom*™™(Y(T) ® Z,F, ), v € Y(T) and z € Z. Then we
set

(F)(y @ z) = 9(F(y) @ 2)
and
(wp)(y @ 2) = Y(w™ 'y @ 2)

for w € Wy. Here we choose the sign in the Wy-action so that we can obtain a left
action again.

Proposition 2.2.4. There is a canonical isomorphism
Hom®™ (Ip,/ Py, T*) 2 Hom*™ (Y(T) ® Z,F,).
The image of ¢ € Hom™ (I, /Py, T*) is given by

7@ s(p) = e(v)p(p),

It is equivariant for the Weyl group and Frobenius actions on both sides.

Proof. We endow T*, F: and Y(T) ® F: with the discrete topology. Using the
previous lemma, we have

Hom®"(I,,/ Py, T*) = Hom*" (I, /P, Y (T*) ® F, )
= Hom*™ (I /P, F, ) @ Y (T")
= Hom*"(I,,/ P, F, ) ® X(T)
= Hom*"(I,/ Py, F, ) ® Hom(Y (T),Z)
= Hom (Y (T), Hom*™(I,,/P;,.F, ))
= Hom“""(Y(T) ® I,/ Py, Hom*™(I,/ P, F, ) @ I,/ ;)
= Hom*"(Y(T) ® I,/ P.,.F, )
= Hom“"(Y/(T) ® Z,F, ).

In the third line from the bottom, Y (T') ® I, /P, is equipped with the product
topology induced by the choice of a basis of Y(T'). The topology does not de-
pend on the choice of this basis. Hom®" (I, / PL,F:) ® I,/ Py, is endowed with the
discrete topology. It is then seen by a direct computation, that the map f — f®
idr, /p, is an isomorphism from Hom(Y (T'), Hom“" (1., / Py, F: )) to Hom®™(Y(T)®
I/ Py, Hom*"(I,/ P, F, ) @ I/ Pp).

For the explicit description it suffices to treat that case that v = ; is in an ele-
ment of a chosen Dbasis {y,...,7%} C Y(T) with related basis
{xXi = €em),. -, x5 = ely)} € X(T*). Additionally, let {~,...,v} C Y(T7)
be the basis dual to {x3,...,x%} with respect to the pairing (-,-). Following the
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above isomorphisms, one sees that if ¢(p) = [[ 77 () with t; € F,, the image 1 of
© is given by
(v @ s(p)) = ti = x; (0(p))-
We see the Frobenius equivariance by remarking that
F*(0)(p) = F*(2(p)) = [ F*(3)(t5)

and hence

F(@) (i ® s(p)) = (F (%) @ s(p) = F*(x;)(¢(p))
= [I67 =16 =T Fi )

= X; (F"(¢)(p))-

Now turning to the Wy-equivariance, we have for w € Wj:

(W) (7 @ s(p)) = p(w™'v @ s(p)) = w'x; (¢(p))

1% A%

- <w7 X; Y5 ) - <X?:w"/"f> * - *
||tj ! letj ! :Xi(”w%’(ti))
i=1 i=1

F(we(p)).

I I
X <

]

Corollary 2.2.5. We have a canonical isomorphism of sets of Frobenius stable Weyl
group orbits

(Hom®™ (I,/ Py, T*)/Wg)"" 2 (Hom™™ (Y (T) ® Z,F, )/ Wo)".
Proof. This is immediate by the previous proposition. O
Fix any ¢ € G. Then 97 C (G is a maximal torus. We obtain isomorphisms
X(T) = X(9T), x = 9 = [7t = x(#)

and
Y(T) = Y(T),y = 97y = [t = 99(t)]

The latter induces an isomorphism
Hom*™ (Y(T) ® Z,F,) — Hom*™ (Y (°T)  Z,F, )

given by p — gp = [97 ® z — p(y ® z)]. This is compatible with our notations
introduced before in the following way: If w € Wy and n € N(T) lifts w, we get
wp = np. In particular, we get tp =p forall t € T'.

Now suppose we are given an F*-stable W-orbit in Hom“™(I;,/ Py, T*), i.e. an
element of

(Hom™ (I, Py, T*)/Wg)" = (Hom™"(Y/(T) ® Z,F, ) /W)
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Recall that by Corollary 2.1.7 this can be obtained from an irreducible Wp-representation
in the case of G = GL,,. Let p be a representative in the right hand side. Then, we
can find a w € W, such that

F(p) =w"p.

By Lang’s Theorem we can find a g € G such that g7 F(g) is a lift of w. Then, we
get

F(gp) = F(9)F(p) = F(9)w™'p=F(g)F (9 ")gp
= gp € (Hom*™ (Y (°T) ® Z,F, ))".

We will write T, instead of 97" which will be justified by the upcoming lemma. From
Lemma 2.2.2 (iv), we get

X

Hom®™(Y (T,,) ® Z,F, )" = Hom™™ (Y (T,,) ® 2)/(F = 1),F,)

X

= Hom(T,(F,).F, ).

Thus, we get a pair (T, 6) with a torus 7, and a character 6 : T,,(F,) — F,. We
will say that we obtain T}, from twisting 7" with w. Indeed, up to G*-conjugacy, T,
only depends only on w and not on the choice of g above. More precisely, we have:

Lemma 2.2.6. The tuple (T,,0) defined above is well-defined up to G* -conjugacy.

Proof. This can be proven analogously to [Car93, Prop. 3.3.3 (i)]. For sake of
completeness we give a proof here. Hence, let p, p’ be different choices for represen-
tatives of an F-stable Wy-orbit in Hom®™ (Y (T) ® Z, F; ). Then, we can find some
n € N(T) such that p' = np. As before, let w € W, such that F(p) = w™'p. Then
we have F(p') = F(n)w n"1p.

We choose g, ¢ € G such that g~'F(g) resp. ¢’ F(g') lifts w resp. nwF(n)~'T.
This implies

nlg T F(g)F()F(gT g e T

or equivalently
gn~'g " F(g)F(n)F(g ") €°T.

By Lang’s Theorem applied to the group 97, there exists a t € T" such that
gt T F(g)F(n)F(gY) = (gtg™") " Fgtg™") = gt g F(g)F()F(g7"),

which simplifies to
gtn~'g' ™" = F(gtn"'g'™"),

ie. gtn~'¢" € GF. Hence, gp = gtn~'¢' '¢'p' and ¢'p' are conjugate over GF and
so are the corresponding tori and characters. O
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2.3 The GL,-Case

We will now continue making the construction of the previous subsection explicit
for irreducible Weil group representation of dimension n and show how to apply the
previous results to our situation. Suppose we are given an irreducible representation
po : Wr — GLn(Fq). As before, we write x; € X(7') for the character sending a
diagonal matrix to its i-th entry and -; € Y(7T') for the cocharacter which sends
y € F, to the diagonal matrix with (i,i)-entry y and all other diagonal entries 1.

Choose a generator « of I;/P;. By Proposition 2.1.6, the restriction of py to
I,/ Py, is given by a — diag(y,y?,...,y?" ) with some y € [Fy which is not contained
in any proper subfield. By the explicit description of Lemma 2.2.4, the restriction
of po to I,/ Py, corresponds to

6y = 1 ®s(a) = y* '] € Hom™™ (¥ (T) ® Z,F, ).

We have
F(¢y) = ng - ¢yq - w_1¢y'

with w = (1,2,...,n). This is a Coxeter element in W,. Note that by conjugating
po with Weyl group elements, i.e. replacing p by another isomorphic representation,
we could have obtained any Coxeter element, i.e. n-cycle. Moreover, we obtain the
same w element for any irreducible representation of W (up to conjugacy).

Let g € G such that g~'F(g) is a lift of w. If w is the F.-component of s(a),
w is a generator of F,.. Hence, there exists a unique primitive m € {1,...,¢" — 2}
such that y = w™. We can uniquely write

m:a1+a2q+...+anq"_1
with 0 < ay,...,a, <qg—1.

Lemma 2.3.1. With w as above, we habe TE = Fouo If p = aix1+ ...+ anXn, 0
is the restriction of 9y to T

Proof. We keep the notations introduced before the lemma. T, = 9T and hence
Idiag(ty,. .., t,) € TF if and only if

Idiag(ty, ... tn) = Odiag(t?, ... t9),
which is equivalent to
diag(ty, ... t,) ="diag(t],... t2) = diag(t:,t1,...,t2_ ).

y 'n—1

In particular, t‘fn =t € F,» and the points fixed by the Frobenius are the elements

diag(t,t9, ... t7"") with t € .. This gives an obvious isomorphism 7, = FJ..
To determine the character 6 of T, we have to make the constructions before

explicit. First of all, we will do this for the isomorphism

TF = (Y(T,) ®z Z2)/(F — 1)

w

given by Lemma 2.2.2 (iv). This is given by the snake lemma in the following way:
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Let 9diag(t,t?,...,t7""") € TF. This element is contained in T}, hence it is the
image of some element of Y (7},) ®7 V = Y(T,) ® Q ® Z under the natural map.
We may choose

- . 1
2:'% s 7 ®F E:q s q-—1®t

as a preimage, where ¢ is any element of Z with (¢),_1 = t. We need to apply F —1
to this element. Because of

F(o5) =% TOP(y%) = ¢- %% = ¢- 7ia

(where the indices are always supposed to be read modulo n), we obtain

F=1)0 ¢ " %) ®
=1

=0 d - )@
=1

) 1 )
®f=( Zq’l —%))®qn_1®t

t
q"—1®

t=9v®1®t,

= (qn - 1)'971

n_1

which is contained in Y (T,,) ® Z. Its residue class modulo F' — 1 is the image of
Idiag(t,te,... 19" ") e TF.

Now, pg defines a continuous homomorphism from I,/ Py, to F: , which is given
by y as above. It corresponds to the map v; @ s(a) — 7 by Lemma 2.2.4. Hence,
by the above calculation, 6 is given by

Idiag(w, ..., w" )y =w™ =9u((diag(w, ...,w?" )).
O

Corollary 2.3.2. 0 is in general position, i.e. no nontrivial element of N(T,,)* /TF

fizes 6.

Proof. A straight-forward calculation in the symmetric group shows that an element
n of N(T,) = 9N(T) is fixed by F' if and only if ¢ nT lies in the subgroup generated
by w. Hence, N(T,)" /T is a cyclic group of order n generated by the element
9w which maps 9x; to 9x;41 and no power of this element fixes 6 because of the
primitivity of m. m

2.4 Projective Representations

A projective W-representation of dimension n is a continuous homomorphism p :
Wy, — PGL,(F,), where PGL,(F,) is endowed with the discrete topology. We call
a projective representation irreducible if its image is not contained in a nontrivial
parabolic subgroup. Note that a representation pg : Wy — GLn(Fq) is irreducible
if and only if its image is not contained in a nontrivial parabolic subgroup. We
have the following relation between irreducible Wp-representations and irreducible
projective W -representations.
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Lemma 2.4.1. The map
{irreducible py : Wi, — GL,(F,)} — {irreducible p : W;, — PGL,(F,)}
induced by projection modulo the center is well-defined and surjective.

Proof. We first check that the map is well-defined. Assume that py maps to p and
the image of p is contained in a nontrivial parabolic subgroup. By conjugating p,
we may assume that the image of pg is contained in a parabolic subgroup containing
the standard Borel of PGL,(F,). The preimage of this is a parabolic subgroup of
GL,(F,) and hence p is not irreducible.

For the surjectivity, we remark that p, is given by a tuple (s,u) € PGL,(F,)
such that sus™' = u?. Thus, we can find (s, up) € GLn(Fq) such that soupsy ' = udz
for some z € Z(GL,(F,)). We can find 7 € Z(GL,(F,)) such that 2971 = 2, i.e.

so(uo?)sy ' = (up?)?.

Now assume that there are (sg, upZ)-stable subspaces of FZ. Then, sg and ugz are
contained in a nontrivial parabolic subgroup of GL,,(FF,) and hence their images s
and u are contained in a nontrivial parabolic subgroup of PGL,(F,) in contradiction
to our assumption. O

Denote by T” the standard split maximal torus of SL,(F,), i.e. T = TNSL,(F,)
and by T"* the standard split maximal torus of PGL,(F,), i.e. T"* is the projection
of T" in PGL,, (Fq). The choice of these tori induces a duality between the algebraic
groups PGL,, and SL,,. We may identify the finite Weyl groups of SL,,, PGL,, and
GL,,, but will continue to write W when we speak of the Weyl group of PGL,, or
of GL,, considered as the dual group.

Proposition 2.4.2. The diagram

{irreducible py : Wi, — GL,(F,)} — {irreducible p : W, — PGL,(F,)}

3 3
(Hom®™(Ir,/ P, T*)/WH)F  —  (Hom™™(I/Pp, T"™)/W;)E"
3 \J

(Hom™™(Y(T) ® Z.F, )/Wo)" — (Hom™™(Y(I") ® Z*,F, )/ Wy)"
18 commutative.

Proof. The commutativity of the upper square is obvious: We can conjugate the
respective restrictions to I /Pp into the respective tori by the “"same” element of
GL,(F,). The commutativity of the second diagram follows from the explicit de-
scription in Proposition 2.2.4.

O

Corollary 2.4.3. Let py : Wi, — PGL,(F,) be irreducible inducing p : W —
GL,(F;) such that py defines the tuple (T,,0). Then p defines the tuple (T,,0')
where 0’ is the restriction of 6 to T, = T, N SL,(F,). The tuple (T,,,0") is in

general position.
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X

Proof. Let ¢ be a representative of an F-stable Wy-orbit in Hom“™ (Y (I")® Z*,F,)

and ¢y € Hom“™ (Y (T) ® Z, F:) a lift. Then there exists some w € Wy such that
F¢o = w ¢y and hence F'¢p = w'¢. Then, we can choose g € SL,, such that
g 1 F(g) lifts w (considered as an element of the finite Weyl group of GL,, or SL,).
Then
T, =9T" = 9T NSL,(F,)) = T, N SL,(F,).

Finally, we see the assertion on the character by going through the construction of
the identification Hom“™ (Y (T,,) ® Z, F:)F = Hom(7,,(F,), qu ) given by the snake
lemma.

To see that @' is in general position, we need to show that no nontrivial element of
the group N(gT’)F/gT’F generated by the n-cycle w = 9(1,...,n) acts nontrivially
on 0. Let p € X(T) be a lift of § and ' € X (91") be its restriction. Assume
w' # 1 fixes @'. Then wiy/ — ' € (¢—1)X(9T"). We may even assume w'u' — ' =0
by changing p by some element of (¢ — 1) X (7") which does not change 6. Hence,

wiy—peQnNX(T)" =0,

which contradicts the fact that € is in general position by Corollary 2.3.2. [






Chapter 3

(G-Modules and Deligne-Lusztig
Characters

In the last chapter we have seen how to construct a G(F,)-conjugacy-class (7, )
from a continuous homomorphism p : Wy /P, — G* where T,, C GLn(Fq) is a
maximal torus and 6 : T,,(F,) — ¥ is a character of its F,-rational points. To such
a datum, Deligne and Lusztig have associated a virtual character of GL,(F,) over
an algebraically closed field in characteristic zero. We will use this in the following
to construct a virtual representation of G(F,) in characteristic p, which turns out to
be an irreducible representation if p is an irreducible representation. To do this we
have to start by repeating some generalities on algebraic representations of algebraic
groups and their Grothendieck groups.

3.1 G-Modules

As before, let G be a group with Frobenius map F' and fix a Borel subgroup B. By
a G-module, we mean an algebraic representation of G' over Fq. Any A € X(T) can
be considered as a character of B~ via inflation using the projection map B~ — T
Thus, for A € X (7)., we have the Weyl module

W) =ind§ (N
={f € Hom(G,G,) : f(bg) = A(b)f(g) for all g € G,b € B~ }.

It is a finite dimensional Fq—vector space. It becomes a G-module by right
translation. For a dominant A € X (7' let F'(\) = socgW (). This is a simple
G-module. Recall the partial order on X (T) given by

r1 < x9 if and only if 2y — 21 € Z Nyav.

acdt
We have the following classification of simple G-modules:

Theorem 3.1.1. (i) Any simple G-module is isomorphic to F(X\) for some X\ €
X(T)y. If F(N) = F(p) with A\, € X(T)+, we have A = p.

39
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(i) Let \,p € X(T)y. If F(p) is a composition factor of W(A), up < A. F()\)
occurs as a composition factor of W () with multiplicity one.

Proof. (i) is [Jan87, II, Cor. 2.7]. (ii) follows from [Jan87, II, Prop. 2.2 b)] and
[Jan87, II, Prop. 2.4 b)|. [

We call A the highest weight of F(\). Under an extra condition on G, this
induces a classification of the irreducible representations of the finite group G*. To
formulate this we need to introduce a subset of dominant weights. For this, let
r € N and set

X, (T)y={ e X(T):0< (N, a) <p" for all @ € A}.

Note that this is in general not a finite set: For example, if G = GL,,, we have
X(T)YWo ={XN e X(T): (\,a) =0forall « € A} =2 Z, and X,(T) is closed under
addition of these elements.

Theorem 3.1.2. Let r € N such that g = p" and suppose that G' = [G, G| is simply
connected. For A € X,(T), the G'-module F()\) is simple. Any simple G -module
is of this form. F(\) = F(u) as GF-modules if and only if X\ — pu € (¢ — 1) X (T)"°.

Proof. See [Her09, Thm. 3.10] O
Explicitly, this means for G = GL,:

Corollary 3.1.3. The irreducible GL,(F,)-modules are of the form F(ai,...,ay)
with 0 < a; — a;41 < q— 1. We have F(aq,...,a,) = F(by,...,b,) if and only if
(a1, .. an) — (by,....b,) €(q—1,...,q—1)Z.

3.2 p-Alcoves

For the representation theory of the groups G¥', it is convenient to consider alcoves
relative to p. We will introduce this language now. Everything below can be found
in greater detail in [Jan87|[IL.6] or [Her09][3.2].

For f € ® and n € Z, we can define the affine reflection sg,, on X(T') (or
X(T) ®R) by )

sn(A) = A= ((A, ) =n)B = s5(A) + nf

for all A € X(7'). Denote by W, the subgroup of Wy x X(7') generated by {sgn :
fednelZ}, ie W,=W;xpQ. We call W, the p-affine Weyl group. Note that
W, is isomorphic to the affine Weyl group Wy x @ of the dual root datum. However
it will be convenient for the following to include the p in the definition of the group
rather than the considered action. The groups Wy x X(T') and W, act on X(7')
and X (7") ® R naturally by affine maps.

As for the finite Weyl group we have the “dot“-action of W, on the sets X (T')
and X(T) ®@ R:

w-A:i=w(A+p) — p,



CHAPTER 3. G-MODULES AND DELIGNE-LUSZTIG CHARACTERS 41

where p € X(T) ® R is chosen such that (p,&) = 1 for a € & simple, e.g.
p= %Zaeqﬁ a. Using the dot action W), acts by affine reflections. In other words,
Spnp acts as the reflection with respect to the affine hyperplane

Hypp = (A€ X(T) @R : (A+ p, B) = np}.

As usual, we can define alcoves as the connected components of the complement
of all these affine hyperplanes in X (7)) ® R. To clarify that they are alcoves with
respect to the W-action, we will call them p-alcoves. There is a distinct p-alcove,
the so-called “lowest p-alcove™ given by

Co={NeX(T)@R:0< (A\+p,a) <pforal aecdt}.

This name is justified, because Cj is the unique minimal dominant p-alcove with
respect to the order relation 1 that will be introduced below. As in the usual affine
setting, one checks that W), operates on the set of p-alcoves and that Oy (and hence
the closure of any other p-alcove) is a fundamental domain for the WW,-action on the
set of p-alcoves.

We define the restricted region to be the set

Ares ={ e X(T)@R: 0 < (A +p,a) <pforall a € A}

and we call a p-alcove restricted if it is contained in A,.
We will now need an order relation on X(7') induced by the W,-action: Let
A€ X(T). We say that A 1 p if A = p or if there are {s; = s, pn, }1<i<, sSuch that

A< 81 A< 8981 A< ... <881 A= L.

Clearly, if A 1 p, we have A < pand A € W, - u. However the converse is not true
in general.

If additionally, Cy N X (T') is nonempty, and C,Cy are two p-alcoves, choose
some A € C; N X(T). Then there is a unique p € WA N Cy. We will define C; 1 Csy
if and only if A 1 . This is easily checked to be independent of the choice of \. For
small p it can happen that CoN X (7)) is empty. The definition can also be extended
to this case ([Jan87]{I1.6.5]) but we shall not need this generalization.

The first important application for the order relation 71 is the “strong linkage
principle®:

Proposition 3.2.1. Let A\, u € X(T),. If F(X) is a constituent of W (), we have
AT .

Proof. Se [Jan87|[11.6.13]. O

We are now going to treat the GL,-case in low dimensions as an example. This
is all contained in [Her09][3.2]. Let us first treat the GLy-case. Here we have

Apes =Co={(a,b) eR*: ~1 <a—b<p—1}.

The following proposition explicitly determines the simple GLy(IF,)-modules.
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Proposition 3.2.2. (i) Let (a,b) € Xi(T), i.e. 0 < a—0b<p—1. Then the
G-module W (a,b) = F(a,b) is simple and isomorphic to Syma_bFf? ® det?.

(ii) The irreducible GL,,(F,)-representations are precisely the Sym“_bFf,@detb with
(a,b) € X1(T), i.e. 0<a—b<p-—1.

Proof. (i): By the strong linkage principle (Proposition 3.2.1), the Weyl module
F(a,b) for (a,b) € X,(T') has no other constituents except for F'(a, b), because (a, b)
lies in Cp. Its multiplicity is one by [Jan87|[I1.6.16] and hence W (a,b) = F(a,b) is
simple.

If P is a homogeneous polynomial of degree a — b,

( g 92 ) — (9194 - 9293)bp(g1,92)
g3 g4

lies in W (a,b) and these elements form a nonzero subrepresentation which is iso-

morphic to Sym“_bF; ® det’. Since W (a, b) is irreducible, the claim follows.
(ii): This follows from (i) and Theorem 3.1.1 and part (i). O

Let us now turn to the case of GL3: The two restricted p-alcoves are
Co={(a,b,c) e X(T)®@R:-1<a—-b—-1<b—ca—c<p—1}

and
Cr={(a,b,c) eR*:p—1<a—-ca-b<p-Lb—c<p—1}.

Proposition 3.2.3. Let (a,b,c) € X1(T).
(i) If (a,b,c) € Cy, there is an exact sequence

0— F(a,b,¢c) = W(a,b,c) = F(c+p—2,b,a—p+2)—0.

(i1) If (a,b,c) ¢ C4, i.e. it is contained in Cy or in the boundary of Cy, we have
W(a,b,c) = F(a,b,c).

Proof. See [Her09][3.18]. O

If G = GLy4, the restricted p-alcoves are the following:

Co={(a,bc,d) —peZ*@R:0<a—b;0<b—c0<c—d;a—d<p},
Cy={(a,byc,d) —p€Z*'@R:0<b—c;p<a—d;a—c<p;b—d<p},
Cy={(a,bc,d) —p€Z*'@R:0<c—dip<a—c,a—b<pb—d<p},
Cs={(a,byc,d) —p€Z* @R:0<a—b;p<b—dic—d<p;a——c<p},
C’4:{(a,b,c,d)—p€Z4®R:p<a—c;p<b—d;b—c<p;a—d<2p},
Cs ={(a,b,c,d) —p€Z* @R :2p<a—d;a—b<pb—c<pyc—d<p}
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We define elements in W, by
Wo,1 = (Sa1+a2+a3ap(a1 + g + 053)),

Wy 1= W34 = (Sa;4ay, P(O1 + Q2)),
W3 = Way = (Sag+as, P(Ca + as)),
Was = (Saitastas, 2P(1 + ag + ag)),

Straightforward calculations show that
wi,j . Cl = Cj

whenever w; ; is defined. From this, one easily gets that

C
%TQT;T@T%.
3

3.3 Irreducible Representations of GL,(F,)

We know a classification of the irreducible representations of GL,(F,) from 3.1.2
(ii). In this section, we are going to give another classification in terms of BN-pairs
and illuminate the connection between those classifications. The reason for us to do
this, is that the second classification is suited better for establishing a connection
between representations of GL,,(F,) and modules over finite Hecke algebras later.

This classification is due to Curtis for a finite group with a restricted split BN-
pair in characteristic p. Let Sy be the system of simple reflections. For s = s, € Sy,
we have the subgroups Uy, = U, = U N*"U and B, = BN*"°B. We set Ty, =
T, = T N B,. Recall that there exist elements ny, = n, € X, X_oX, N N(F,) for
all @ € A such that the image of n, in Wy is s,.

Theorem 3.3.1. The irreducible representations of GL,(F,) are in bijective corre-
spondence to tuples (X, I) where X is a character of T(F,) and

IC{s€eS: NIL(F,)) = {1}}.

We denote this representation by Fix 1. It is characterized by the following property:
There exists an element m € Fi ) such that bm = X(b)m for all b € B(F,)
(viewing A as a character of B(F,) via inflation) and

{0, ifs¢l
Z ungm = , 7
weUn(Ey) —-m, ifsel.
Proof. All of this is contained in [Cur70|. Theorem 4.3 shows that any irreducible
representation is given by a weight m as above and that this weight determines

F(\ ) up to isomorphism. Theorem 5.7 states that the weights can be classified by
tuples (A, I) as above. O
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Since we have two classifications of the irreducible representations of GL,(F,)
any F'(aq,...,a,) as in Corollary 3.1.3 is isomorphic to precisely one F, ;). We now
make this bijection explicit:

Proposition 3.3.2. Let p= (a1,...,a,) € Z" with 0 < a; — a;41 < ¢ — 1 which we

view as a character of the algebraic torus T'. Assume that F'(u) = F ) for some
N:T(F,) = F, and I C {s € Sy: \(T,) = {1}}. Then, we have

A= pre, and I = {s; € S :a; — a1 = q— 1}.

Proof. By [Jan87, I1. Prop. 2.4|, F(u)V = F(p),, is one dimensional. So if we choose
0#m € F(u)V, B acts on m by p and hence B(F,) acts by A on m.

As there are no roots in the case n = 1 the statement about the set [ is trivially
true then. Let us now consider the case n = 2. If (a1,a2) = (a + (¢ — 1), a), let
M=F(a+(p—1),a) = Symp_IFz ® det”. Denote by M@ the representation with
underlying vector space M and the action of GL,(F,) being given by g-m := F}(g)m

where [}, is the p-power Frobenius map. Then Steinberg’s Tensor Product Theorem
[Jan87, IT Cor. 3.17| states that

Fla+(g—1),a) 2 M @ MY @5 ... @ M"Y,
hence has dimension ¢ = p". If a; —ay < ¢ — 1 we get an isomorphism
F(al, CLQ) =~ Mo ®Fq Ml(l) ®Fq e ®Fq M:i_ll)

where all M; are of dimension less or equal to p and at least one of them has
dimension strictly smaller than p by Steinberg’s Tensor Product Theorem. Hence,
the dimension of F'(ay,as) is strictly smaller than q.

Now, only two cases can occur. Either I = {s} = Sy or I = (). [CE04, Thm.
6.12 (ii)] states that we are in the first case if and only if F'(a1,az) is of dimension
q.

Let us now deduce the general case from this. Let s = (i,i+ 1) € Sy. [Jan87, II
2.11] states that F'(ay, ..., a,)" is the simple module with highest weight (a1, ..., a,)
for the Levi subgroup

Ly = diag(G,,, ...G,, GLy, G, ..., Gy),

where GLg is in the i-th and the (i 4+ 1)-st row and column. But F(a;, a;1) with
Lg-action given by

(tl, e ,tifl,g,tﬂ,g, ce ,tn) moi= H t?jgm

is a simple module of highest weight (a4, . .., a,) and thus isomorphic to F(ay, ..., a,)".

By the natural inclusion GLy C Ly, it becomes the simple module of highest weight
(a;i,a;+1). Now, the case of n = 2 yields the assumption for s, as the condition
defining if s € I can be read inside Lj. O
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3.4 Grothendieck Groups

Let C be any abelian category such that the isomorphism classes of objects in C
are a set. Denote by C the set of isomorphism classes of objects in C. Then the
Grothendieck group of C is defined by

A

Go(C)=2Z[C]/(B—A—-C:0— A— B— C — 0 is exact).

We will now apply this construction when C is either the category of finite dimen-
sional algebraic G-modules or the category of finite dimensional K-representations
of a finite group H for an algebraically closed field K. We will denote these groups
Go(G) resp. Go(K[H]). In both cases the isomorphism classes of simple objects of
the corresponding categories form a basis of the Grothendieck groups. We will call
elements of these groups virtual representations. Additionally, the tensor product of
representations defines a multiplication which endows the respective Grothendieck
groups with ring structures in both cases.

In the second case, we can consider the character of any representation of H over
K by mapping h € H to its trace. This extends canonically to the Grothendieck
group. The characters afforded by the isomorphism classes of irreducible represen-
tations are linearly independent (cf. [CR90|[Thm. 17.3]). Hence, the map from
Go(K[H]) to the set of class functions on H mapping a virtual representation to its
character is injective.

{F(N)}aexr), forms a basis of the Grothendieck group of G-modules by Theo-
rem 3.1.1. If G’ is simply connected, let X,.(T')? be a system of representatives for
X, (T) modulo the equivalence relation

A=pe X—pe(g—1)X(T).

By Theorem 3.1.2, the {F(\)}rex, (ryo are a basis for Go(F,[GF]).
For any G-module M and A € X(T') we can consider the T-submodule

My ={m e M :tm = \t)m for all t € T}.
This allows us to define the formal character

ch(M):= > dim(My)e* € Z[X(T)]".
AEX(T)

Here, we use e* as a symbol for the character A considered as an element of Z[X (T')].

We do this because we write the group law in X (7) additively which corresponds
to the multiplication in Z[X (7T")]. This results in formulas like eMe?? = et t22,

Proposition 3.4.1. The formal character induces a ring isomorphism
ch : Go(G) — Z[X(T)]".

Proof. See [Jan87, II, 5.7]. O
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For A € X(T), we can define a Weyl module in the Grothendieck group of
G-modules by

W) =Y (~1)(R'indg-)(\),
where R'F denotes the ith right derived functor of F for any additive functor F.
Note that we do not require A to be dominant. This is consistent with the previous

definition for dominant \ as .
(R'ind5-)(\) =0

for ¢ > 0 in this case. There should be no confusion whether we mean the genuine
representation or the element of the Grothendieck group by W(A). The formal
character of a G-module can be computed using Weyl’s Character-Formula:

Proposition 3.4.2. For A € X(T') we have

T (— 1)) e O
weWo
> wewe (— 1)) - ewla)

Proof. See [Jan87, 11, Prop. 5.10]. O

ch(W(N)) =

Recall the dot-action of Wy on X (T"). Then this formula implies that
W(w-A) = (=1)@W(N).

As the restriction is an exact functor from the category of finite G-modules to
the category of finite dimensional G*'-representations, we obtain a homomorphism

resgp . Go(G) — Go(Fq[GF])

This allows us to view F(\) or W () as an element of Go(F,[G]). To avoid mis-
understandings, we may write Fg(\) resp. Fgr(A) and similarly for Weyl modules.
Note that Fgr(A) is not simple in general.

Now let us assume G = GL,, such that G’ = SL,,. Again, the restriction to
G’ C Gresp. G'F C GF induces homomorphisms res$, and resg,FF. ThenT" = TNG
is a split maximal torus in G'. We have a (non-canonically) split exact sequence

0— X(T)"° - X(T) = X(T") =0
where the right map is given by restriction of characters. We will denote this map
by A — A

G G

. /
Lemma 3.4.3. (i) res% ; oresg, = res G ¢

F
onF OTeSGr =TS, p.

(ii) resS, (Fa(N\)) = Far(X) for A € X(T),. In particular, resG, is surjective.
(iii) res&,(Wa(N)) = Wer(N) for X € X(T),.

(iv) resgva(ng()\)) = For()\) for \€ X(T),. In particular, resng is surjective.

(v) resC . (Wer (M) = Wer(N) for X € X(T),.
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Proof. (i) is obvious.

(ii): We have G = G'Z(G). By [Jan87|[Prop. 2.8|, Z(G) acts by a character.
Hence, F()) is a simple module for G’ by restriction. Clearly, X is the highest weight
for the restriction of F(\) to T" which shows (ii).

(iii): We can identify the finite Weyl groups of G and G’. X + X is Wy-
equivariant and hence induces a map

resy, : Z[X(T)]"o — Z[X(T")]".
Obviously, this commutes with the formal character map, i.e.
rest, o chg = cher o resS,.

But it is clear from Weyl’s character formula 3.4.2 that resj, maps ch(Wg(A)) to

ch(Wgr(N)).
(iv):

For(N) = resng (Far(N)) @ resng oresS (Fg()))

© resg,FF orestr(Fg())) = resg,FF(FGF (N)).
The second claim follows from the fact that every irreducible G'*-representation is
of the form F,r(p) for some p € X (77).
(v) follows similarly from (i) and (iii). O

Proposition 3.4.4. (i) The Weyl modules {We(A) }rex(r), are a basis of Go(G).

+

(it) The Weyl modules {Wgr(X\)}rex, ryp are a basis of Go(F,[GF]). More pre-
cisely, there exists a total ordering extending < such that the base change
matriz between {Wear (N aex, (o and {Fgr(X)}acx, rypo is upper triangular
with ones on the diagonal.

Proof. (i): Consider the endomorphism of the abelian group Go(G) given by F/(\) —
W(A) for all A € X(T),. We need to show that it is an isomorphism. But by
Theorem 3.1.1 (ii), the matrix representing this endomorphism is upper triangular
with ones on the diagonal in any total order extending < on X (7).

(ii): We first show this for G’ instead of G. Let V/(\) = W(—wo\)*. By [Jan87,
IT, 2.13], V(\) = W(A) in Go(F,[G""]). Hence, they have the same composition
factors. By [Won72, Thm. 3E| any composition factor Fir(p) of Vir(A) (and
thus of W,r(N)) for A € X, (T') satisfies p < A and p € X, (7). Moreover, by the
same source, Fg/(A) occurs with multiplicity one. Now the claim follows for G’ as
in (i).

In the general case, choose a splitting X(7) = X(T") ® X(T)"°. We endow
X (T)"o with the order relation given by equality and X (7") with the lexicographical
order coming from this and the natural order on X (7”), i.e.

A<
(A0, A) = (o, 71) = q or
A =7 and \g = fio.
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Now, let
Wear(A\) = Z a,For(p)

peX,(T)°

and
Werr(A) = Z b P (1),

weX (T
Note that all a, and b, are non-negative integers as they are multiplicities of com-
position factors of the genuine modules Wgr () resp. W r(X). By replacing some
p by other representatives of their equivalence classes modulo (¢ — 1) X (T)"0, we
may assume that p < A for all g with a, # 0. Let po € X,(T)° such that a,, # 0.
Applying Liemma 3.4.3 (iv) and (v), we see that ZZ‘TO = Zﬁ=% a,.

If fig < A, we have py < A by construction. If A = jiy, the simply connected case
yields bzz = 1. But as Fg(\) occurs with multiplicity one in W (), we have ay > 1
which enforces a), = 1 and hence 1y = A.

This shows that the matrix representing F/(\) — W(\) for A € X,.(T)° is upper
triangular with ones on the diagonal for any total order extending < and we are
done as before. O

3.5 Deligne-Lusztig Characters and Jantzen’s For-
mula

As before, let G be a reductive group with Frobenius map F and suppose we are
given a G'-conjugacy class (T}, f) with a maximal (possibly non-split) torus 7,, C G
obtained from twisting 7" with w € Wy and a character 0 : T,,(F,) — qu .

Once and for all, we fix some prime [ # p and an isomorphism of abstract
fields L = @p =~ Q,. Then, the Teichmiiller map qu — @; defines an embedding
F: — @IX by which we will view 6 as a character with values in @IX . To such a
tuple (T,,0), Deligne and Lusztig assign a virtual representation

R’ (w) € Go(Q,[G"]) = Go(Q,[G"])

(cf. [DL76, Def. 1.9]). Using the theory developed by Deligne and Lusztig, we get
an immediate consequence of what we have calculated before:

The resulting virtual @p—representation is in fact independent of the chosen
isomorphism: If we denote by [ : F; — @; the Teichmiiller map and by ¢ : @p —
@Q, the chosen isomorphism, R(w), considered as a character with values in Q; is
given by .

i 3 Gl

teT¥
with integers L£(g,t), the Lefschetz numbers of (g,t) acting on the affine algebraic
variety X = A~1(U). Hence, if we view R?(w) as a character with values in @, it
will be given by

R'(w)(g) =

LN e, ),

R(w)lo) = 27
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which is independent of the chosen isomorphism.

Corollary 3.5.1. The wvirtual character associated with an irreducible representa-
tion of Wy, resp. irreducible projective Wy -representation is a cuspidal GL,(FF,)
resp. SL,(F,)-representation after possibly multiplying with —1.

Proof. In both cases (1),,60) resp. (1},,0') is in general position. As the F -rank
of T,, resp. T is 1 resp. 0 those tori cannot be contained in nontrivial parabolic
subgroups defined over F,. Now Theorem 8.13 in [DL76] yields the claim. O

From now on we will always view the R?(w) as virtual representations over Q,
because this enables us to reduce them to Fq: Let V' be such a @p—representation
of G¥ and choose a lattice M C V. Then we can can define its reduction mod p as
M /Z,M. However, this depends on the choice of M, but its image in Go(F,[GF])
does not by the Brauer-Nesbitt Theorem: This is for example stated in [CR90][16.16]
in a slightly differing setting: There @p is replaced by the quotient field K of a
discrete valuation ring R which has a residue field of characteristic p. By taking K
large enough we can achieve that M is defined over Oy, say M = My ®o, Z, for
some lattice M inside a finite dimensional K-representation Vy with Vi ® g @p =V,
and that the residue field of K contains Fq. After possibly enlarging K (e.g. if K
is a splitting field for G¥'), the isomorphism-class of V; does not depend on any
choices. But then the characters of M/Z,M and My /7 M, are obviously the same
and the latter is independent of any choices by [CR90||Prop. 16.16].

Jantzen has examined how those virtual representations reduce to virtual repre-

sentations over Fq. We begin with giving them a different parametrization. Firstly,
let g € G such that g71F(g) is a lift of w in G. Recall that T,, = 9T. By [DM91,

Prop. 13.7 (i)] the restriction X (T,,) — Hom(Tf,FqX) is surjective. Hence, we find
a € X(T) such that

0 =Ty =T, .t plg'tg)].

We can multiply RY(w) with 41 such that its value at 1 becomes positive and denote
the resulting character by R, ().

From now on assume for simplicity that G is split. The group X (7') x Wy acts
on the set Wy x X (1) by

(Xao—)(w, M) — (CJ"LUO'_l7 O‘M + (q - O-wo-_1>X)

If two elements of (w, 1) and (w’, ') in Wy x X (T') are conjugate under this action,
they define the same Deligne-Lusztig character, i.e. we have R, (u) = Ry (') (cf.
[Jan81][3.1]).

Jantzen has given a formula for the reductions of the virtual representations
R, (p) mod p if G is a connected semisimple simply connected algebraic group
defined and split over F,. He has also deduced the more general case where only G’
needs to be simply connected. This has been published by Herzig. From now on,
assume that either G = GL,, or G = SL,,.

So, let T be the standard split torus in G. Since G' = SL,, is simply connected,

we can find elements w, € X (T) for any simple root « such that (w,, ) = da for
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any simple root 3. For o € W, we set

Po = Z we and €, = 0 1 p,.

aeB
o~ lacR~

We set p := py, where wy is the longest element of W,. This goes hand in hand

with our notation above because (p,3) = 1 for each simple root 5. Consider the
matrix

(ma,T)U,TGWQ L= (det(T)ChW(_EwOU + € — p))O,TGWO
= (chW(T(—€woo + €7) = p))orew,
with entries in Z[X(T")]. It is upper triangular and unipotent in some ordering of
Wy and hence invertible (See [Her09|[Appendix 3.3|). We can consider the inverse

matrix with entries 7, .. With this matrix we can express the reduction of R, ()
by the restrictions of Weyl modules to the finite groups GL,,(F,) resp. SL,(F,).

Proposition 3.5.2. Let G = GL, or G = SL,,. In Go(F,[G(F,)]), we have

Ry(p) = Z Ch_l(VU,T)W(U(N — Wewyr) = P+ 4Ps)-

o,reWy
Proof. See [Her09, Thm. 5.2]. ]

This formula becomes very complicated for growing n. However it is quite
manageable and useful for explicit computations in low dimensions. We will now
give its explicit form for G = GLy and G = GL3 when w = s = (1,2) resp.
w = (1,2,3) in which case we shall apply it later.

We start with the GLs-case. For the unique root o, we may choose w, = x; and
we get pp =0, p = ps = x1, €1 = 0 and €, = sy; = x2. So, using Weyl‘s character
formula, we can calculate

mi1 = ChW<_€5 + € — p) = ChW(_Xl — XQ) — €_X1_X27
my s = —chW(—€s+ €, —p) =0,
ms1 = ChW(—El + € — p) = 0’
ms s = det(s)chW (—e; + €, — p) = chW (s - (5 — p))
= chW (se, — p) = chW (0) = €.

Inserting this into the statement of the proposition, we get

Ry(w) =W (u—ses —p+x1+ x2) + W(sp+ (¢ —1)p)
=W(p—p+sp)+Wisp+(¢g—1)p).
Let us now give the explicit version of Jantzen’s formula for GL3. We identify

X(T) with Z* by the choice of the basis {x1,x2,x3}. Let a = (1,—1,0) and
f = (0,1, —1) be the simple roots and s; = s,, S2 = sp the corresponding simple
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reflections. We may take w, = (1,0,0) and ws = (1,1,0) which implies p; = 0,
ps; = wa = (1,0,0), ps, = wp = (1,1,0), ps;s, = wa = (1,0,0), ps,s; = wp = (1,1,0)
and py, = wa +ws = (2,1,0) and hence ¢ = 0, ¢;, = (0,1,0), €5, = (1,0,1),
€550 = (0,0,1), €5,5, = (0,1,1) and €,, = (0,1,2). The matrix (m,,), is diagonal
for GL3 (cf. [Her09]|5.1]) and hence we only need to calculate the diagonal entries:

my1 = chW(—ey, — p) = chW (-2, -2, —2),
M5, = ChW (s1(—€5y5, + €5,) — p) = chW( 1,—1,-1),
My 5, = ChW (S2(—€5y5, + €5,) — p) = chW (-1, — )
Mgy 9,515 = ChW (5152(—€5; + €5,5,) — ) ChW( , —1),
Misysy sos1 = COW (8251(—€5, + €5y5,) — p) = chW (—1, —1),
Mg o = ChW (wo€y, — p) = ch¥(0,0,0).

Inserting our calculations before into the formula from Proposition 3.5.2 for
= (a,b,c), we obtain

Ry(a,b,c) =W(a—2,b+1,c+1)+W(b+q—1,a—1,c+1)
+W(a+q—2,c+q—1,b+1)+W(c+q—2,a,b+1)
+W(hb+q—2,c+q,a) +W(c+2(qg—1),b+q—1,a).

This illustrates that Jantzen’s formula becomes more complicated even when
moving from n = 2 to n = 3. This effect is only due to the growth of the Weyl
group. Obviously alone the order of W becomes very big quickly. For n > 3 there
arises another difficulty: The matrix (m,, 7). is no longer diagonal, so that there
are way more nonzero summands.

Despite this, the Jordan-Holder constituents of R,,(x) can still be described in
generic situations with results by Herzig. For the remainder of this section assume
q = p. We begin by remarking that we can identify the p-alcoves for varying p with
each other by the bijective map X(T) @R — X(T) @R, u—p— p~tpu—p. If

C={peXT)OR :n, <{u+p,d)<(n,+1)pforalacd}

is any p-alcove with integers n, € Z we will say that p € X(7) ® R lies d-deep in
Cif

Na + 0 < {u+p, &) < (ng,+1)p—24 for all « € .
A statement formulated for varying p is said to be true for u sufficiently deep in
C if there is a 6 > 0, independent of p, such that the statement is true for all
0-deep p € C. The following proposition describes the Jordan-Holder constituents
of Ry, (1) if yu lies sufficiently deep in an p-alcove.

Proposition 3.5.3. Suppose that C is a p-alcove and that u € X (T') lies sufficiently
deep in C. Then the Jordan-Hélder constituents of R, (u) are the F(X) with A
restricted such that there exist o € Wy, v € X(T) with o - (u + (w — p)v — p)
dominant and

o (p+(w—plv—p)Tw (A—pp).
Proof. See [Her09][5.7]. O






Chapter 4

Hecke Algebras

4.1 The finite Hecke Algebra

Let G be a connected reductive group defined and split over I, with corresponding
Frobenius map F. We keep the notations B, U and T as introduced before. We
have the representation F,[UF\G¥], where g € G¥ acts by multiplication with g~!
from the right. Note that F,[U\GF] is isomorphic to the induced representation
Indgiﬁq.

Recall that (GF, BY, N¥' Sy) is a strongly split BN-pair of characteristic p by
Lemma 1.5.3. In the context of finite Hecke algebras, we will write Wo(l) instead
of N(F,). We are doing this because the superscript 7 will always denote an
extension of a group by the torus 7'(F,). The length function extends from Wj to

Wél) by inflation. Recall that for each simple root o, we have defined the subgroups
X, =Ul G, = ¢,(SLy)! and T, = TF NG, of GF'. If s = s, is the corresponding
simple reflection, we will also replace the subscript a by s, i.e. we will write T for
T,, and so on.

Definition 4.1.1. The F,-algebra
H = Endgr (F,[UN\GT))
is called the finite Hecke algebra of G.

Recall that

Ny = iy (1)tte (= 1)t (1) = e ( Y ) € XoX_oXo N N(T)"

for all @ € A and the image of n, = n,, in Wy is s,. Denote by S((]l) the set of all
ne for a € A.

Theorem 4.1.2. There exist elements (Tn>n€W(1) n "Hél) such that H((]l) has the
0

following presentation:

1 _ im T
o Hy' = @nEWél) F,7, as IF,-vector spaces.

93
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o 72 = _#Ta_l(ZteTa Tnt) for alln =n, € Sé”.
® Ty Ty = Tniny, if L(ning) = 1(ny) + l(ng).

Proof. See [CE04, Prop. 6.8 (i)] and [CE04, Thm. 6.10 (ii)|. O

In the following, by an ’Hél)—module, we will always mean a right module and

denote by GO(H(()U) the Grothendieck group of finitely generated 7-[(()1) right-modules.
This convention is due to the fact that the functor Homg jor) (IF[U \GT],+) makes

a representation M of G to an Hél)—right module by

Homs e (F[UT\GT], M) x HY — Homg (o (F,[UT\GT], M :
omg, or) (B [UT\GT], M) x HEY — Honng, e (B [UT\GT], M), (£,7) = (7)),

By Frobenius reciprocity we have canonical isomorphisms

HomE[GF](Fq[UF\GF], M) = Hoqu[UF](Fq, M)~ MU".

A classification for the simple H(()l)—modules is known, which we are going to
describe in the following. Let A : TF — F: be a character. We can consider the set

Sy ={s € Sy: \NT,) =1}
and some subset I C S3. Then, we obtain a character ¢, py : ’H((]l) — F, defined by

(=DIAYt), ifn=mn, ...ngtwiths,,...,s5€l,teT

Y0 () = {O, if n ¢ ((ni)ier, T).

Theorem 4.1.3. FEvery simple module of 7—[((]1) is of the form 1\ 1y for some char-
acter A : T(F,) — qu and a subset I C S3. They are pairwise non-isomorphic.

Proof. See [CE04, Thm. 6.10 (iii)]. O

Theorem 4.1.4. (i) The functor Homg o (Fy[UF\GF],-) from the category of

finite dimensional representations of G to the category of finitely generated
H((]l)—right modules induces a bijection between the isomorphism classes of sim-
ple objects of both categories.

(1) Under the bijection of (i) the simple module Fiy 1y is mapped to Y py.
Proof. See [CE04, Thm. 6.12]. O

Corollary 4.1.5. The assignment F(\ 1y = Y1) induces an isomorphism between
the Grothendieck groups Go(F,[G(F,)]) and GO(H(()I)).
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4.2 The pro-p Iwahori Hecke Algebra

In this section, we describe the structure of pro-p Iwahori Hecke algebras. For more
details on anything stated here, see [Vig05|. Let G be a split connected reductive
group split over L. For convenience, further assume that the root datum of G is
irreducible. As before, let T be a maximal torus split over L, N the normalizer of T’
and B = TU a Borel subgroup defined over L containing 7" with unipotent radical
U.

The groups G, T and U can be defined over O;. We fix such a model. Hence,
we may speak of Op- and F,-rational points.

The Iwahori subgroup I C G(QOy) is the preimage of B(F,) with respect to the
reduction map and its unique pro-p Sylow subgroup IV, the preimage of U (F,), is
called the pro-p Iwahori subgroup.

N(L)/T(L) identifies with the finite Weyl group W, of G. The group N(L)/T(OL)
is isomorphic to the semidirect product Wy x Y (T') with the natural action of W}
on Y(T). We can consider Y (T') as a subgroup of W by mapping a cocharacter -y
to y(mr), where 7y, € L is a prime element.

As before, we will use the notation we? for the element (w,y) € Wy x Y(T)).
This has the advantage that we can write the multiplication of cocharacters multi-
plicatively in W and additively in Y(7), i.e. ee¥ = e"*¥,

We will need to consider the group W = N(L)/T(1 + 7;Op). It is related to
W by the exact sequence

1= TF) WY W - 1.

Note that this sequence does not split in general. However, it splits for G = GL,,.

As before, we have the elements n,, = n, = ¢a< _01 (1) > and h,(t) =

N ( é t91 ) = a(t) for a« € . We will write ng for n, if s = s, € Sy and
Ns = Nao(TL )Ny if § = so and hy = h, for s = s, € Sy and hg, = ha,. We set
Ty(F,) := hs(FY) if s is either a reflection, i.e. of the form s, for some a € ® or
s = 8g. This is compatible with the notations of the previous section.

Definition 4.2.1. The integral pro-p Hecke algebra is the ring
H(Zl) = EndZ[G(L)]Z[I(l)\G(L)],

where g € G acts on IMW\G(L) by multiplying with g~' from the right. Its scalar
extension H(1) = H(Zl) ®z Fq is the pro-p Iwahori Hecke algebra.

Both of these algebras have a nice description in terms of generators and rela-
tions. We have the decomposition G(L) = [], ooy IMwI® (cf. [Vig5, Thm.6]),

which implies that 7—[%) identifies with the free Z-module generated by the double

cosets I(WwIW for w € WU, Denote by 7, € "H(Zl) the element corresponding to
IMwIM and also its image in HM.

Theorem 4.2.2. ’H(Zl) has the following presentation:
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- HY = D, cww) Zry as Z-modules.

-T2 =Ty + Ty D ety (ky) Tinslo for all o € SW lifting s € S.

- Twy Tws = Twyws of H(wiwg) = 1(wy) + 1(ws).

Proof. See |[Vig05, Thm. 1] O

Corollary 4.2.3. H"Y has the following presentation.:
-HY =B, e Forw as Fy-vector spaces.

-T2=1, ZteTs (¥, Tns 1o for all o € S lifting s € S.
- Ty Tws = Twyws U L{(wiws) = L(wy) + 1(ws).

We will refer to the relation in the the second line of the presentation as the
quadratic relations and those in the third line as the braid relations.
In particular, we see that 7-[(()1) identifies with the subalgebra of H() generated

by all {7, }ses, and all {7; }sep(r,), which is isomorphic to 7-[(()1).

4.3 Idempotents and Inclusions

The non pro-p affine Iwahori Hecke algebras of split reductive groups over p-adic
fields do not change when L is replaced by a finite extension: They are given by a
presentation only depending on the root datum. However, this is no longer true for
pro-p Iwahori Hecke algebras because the finite torus is involved in the presentation
of HM

Let L’ be a finite extension with inertia degree f and let

W = N /T(1+ 7p0p) =W x T(Fyr).

Then, W) and hence the pro-p Iwahori Hecke algebra only depends on the inertia
degree of L'/L. Thus we may speak of pro-p Iwahori Hecke algebras H for each
integer ¢ > 1. If we want to specify in which algebra an expression is supposed to
be read, we write ﬂ(f ) instead of Tow-

One could naively try to use the 1n3ect1ve homomorphlsm 7 s 7 of vector
spaces induced by the inclusion W1 C W® to obtain an injection of algebras.
However, this is not compatible with the quadratic relation, because the sum in
this relation depends on the residue field.

Now, let m be the rank of 7" and denote by T(]Fqi) the set of characters from

T(F,) to F;. For each \ € T(Fqi), we can define

& = (—1)" > AN eF,[T(F,)] € HO.

teT(F ;)

An immediate calculation shows that {ef\i)} \eT(F ;) 18 @ system of pairwise orthog-
qZ
onal idempotents with 1 = >, 75 ) €x. W operates on T'(F,:) from the left by
q'L

(w)(t) := AMw ™ tw). Note that A\(w'tw) makes sense because T'(F:) is normal in
wa,
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Lemma 4.3.1. For )\ € T(]Fqi) and w € WO we have (—:g\)ﬂg) = T&)e(z) 1y

Proof. 1t suffices to treat the case i = 1. Since the length of each t € T'(F,) is zero,
we get by the braid relations:

et = (=1 D> AN W) = (1" D A ()7

teT(Fy) teT(Fq)
Z A () Tww—1t0 = (—1)™ Z A () T T4
teT(F,) teT(F,)
Z At (t)Tw-140 = Z At (wtw™ Tt
teT(F,) teT(F,)
= TwCw—1)

Denote by S the set of all elements of s, € Wy, i.e. the set of all conjugates of Sy
in Wy. As Wy is a factor group of W, WM acts on S by conjugation. Recall that
we have defined a torus T for each s E S. For s € S, and two integers i dividing 7,
we set

egi’j) 1= Z ef\j) + Z e&j)

XET(F i) M (Ts(F5))=1 AET(F ) MTs(F i) #

S > e,

NET(F ) MTo(F 5 ) ALNT(F ))=1

Because all summands are pairwise orthogonal idempotents, the egi’j ) are idem—
potents These will help us to define an injective algebra homomorphlsm from H
to HU). The plan is to use the naive map but multiplying by elhd . “Leaving out*
the idempotents in the sum in the second line fixes the quadratic relatlon but the

map will still remain injective because we have not left out too much.

Lemma 4.3.2. (i) For s € S and w € W9 we have: B 0) — 20 (09)

wlsw”

(ii) €s ’])Tr(i = TT(LZ L) for all s € Sy and es quig) nﬁ%ega’f}).
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Proof. (i): Using Lemma 4.3.1 we obtain

egi’j)ﬂg}j) = Z ef\j) + Z e&j) Tg)

AET(F 5) A(Ts(F 5))=1 NET(F ) (T (F i)
AT (F ) MTL(F,;)=1 AT (F, ;) MTL(F )1
S R BT T VR
AeT(F ) AW T (F 5 )w)=1 AET(qu),A(w*lTS(Fqi)w);«él
NET( ) ATy 1 4 (F 5 )=1 NET(F ) ATy 1 4 (F i Ju) 1
= Tlsfj)egzlsw
(ii): This follows from (i) taking w = ng for for s € S. O

Recall that W o7 1s the preimage of Wyzr in WM and that Q@ is the preimage

of Q. Let HY o7 be the subspace of basis () Using induction on the word

wew !y,

length and the presentation of H® one sees that ’Haf s 1s a subalgebra of H
have an isomorphism

HO = F, Q0 ]@F ]Haff

where @ denotes the usual tensor product as a module over F,[T(F,)] and the
multiplication is twisted such that

Tu @ Tw * T @ Ty = Ty @ Ty =1 Tw!

(see Corollary 3 in [Vig05]).

We will now use this decomposition to construct our map from HO to HU) by
constructing it first on the affine part. So, define ¢; ; ’Ha e ’Ha 1 as the F,-linear
extension of

ce = T 4|

(k)EDS, Nwd
where WCE})f acts on ®,s¢ by inflation. We can make this definition more explicit:
If w=tng, ...n, is reduced we know the positive affine roots mapped to negative
affine roots by w™! (see [Bor09||Lemma 2.2.13]) and we obtain

pi(r)) = el )
For example, we have gom(ﬂ(l?) = 520 for any simple reflection s. This is

obviously F,[T(F)]-linear. Our first goal is to show that this map is multiplicative.
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Lemma 4.3.3. (i) Let T" C T( i) be any subgroup, A a character of T' and
ex=(#T") "> ep XNt ).Further let p € T(]qu). Then we have

erel) = e, if pr = A,
g 07 Zf [ 7£ A
(ii) For s € S, we set egz)s =1 as in part (i) for T" = Ty(F,)); then

(@) (i) — (9) (i)
61,565 - 6l,ses .

Proof. (i): Let t1,...,t, be a system of representatives for T'(F)/T". We get

eAeff):eA(—l)m Z /L_l(t)Tt(j)

teT(]F i)

= 6,\ Z Z /L ttl Tttl
tel” =1

=ex(— Z pt ]) Z pot Tt,
teT’

= ExCu E W tl Ttl .

Now the product Xy is either 0 or €y. In the first case this yields the result
immediately and in the second case we have to read the above calculation backwards
without the factor € at the beginning of each hne

(ii): Using part (i) and the definition of el we get

D MK
XET(F ) N(Ts(Fi))=1
O
Proposition 4.3.4. ¢, ; : Hg’}f — H((ff)f is a homomorphism of F,[T(F,)]-algebras.
Proof. By F,[T(F,)]-linearity it suffices to show that
SOi,j(TTS)) = ¢ii(T)i (Twi))
for 7 € H(ff and w € Wéff By induction on the length of w it suffices to treat the

case w = n, € SW, because this case implies for [(wn,) = l(w) — 1

Pi,j (7'71(,];)) = @i,j(TTS,)l—lﬂg?) = SOi,j(TT(Z);l)SO(Tys?)

= @i,j(7)90i9< v )9013( (l)) = Soi,j<7->901',j(7-15}z7)ls—177$?)

= %‘,j(ﬂ%‘,j(T

—

.

=
~—

g
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Hence we are reduced to showing the "w = n,’-case and we may assume that
7 =7 for some v € W by linearity.

Let us first assume that l(vns) = I(v) + 1 and assume that v = tng, ...ng, is
reduced such that vng = tng, ...ng ng is reduced. We obtain using Lemma 4.3.2 (i):

iy (TOT0) = (70 ) = () | () () -0)

ns vns 81...8p...81 ~81...898Sp...81 ' UNg

= i) i) D) = (7Y, (D).

8§1...8p...81 'V €s

On the other hand, if I(vng) = I(v) — 1, we have

(4) (i))

%’,j(% Ths (i) (l) )

—ig (T ey 070

_SOZ'J'( —1 N €15

By the first case this becomes

2ig(r0T0) = —us ()@ (Rl = =iy (7)) el )

)

With Lemma 4.3.3 (ii) we can conclude that

i), (i i i i 2 i
ig(rT0) = =1 (1) DN = 5 (7Ol 7 0* = 5, (20 )ipy (702
and using the first case again we obtain

i (T = 15T )i (r)ipi s (D) = 01 (T D) g5 (D)
= Pij (Tv(z))%,j (ﬂg))
This finished the proof. O

Our next goal is to see that ¢;; is injective. For this we have to examine how

much information is lost by multiplying with ") and compute their product.

Lemma 4.3.5. (i) Let I C S be a nonempty subset. For J C I, denote by M ;
the set of all \ € T(Fy;) such that N(To(Fy)) = 1 for s € J and M(To(Fy)) # 1

for s e I\ J. Then
-3 3 &

sel JCI )\EM]’J

(1) e(;) [Le; e £ 0 for any A € T(F,).

Proof. (i): We proceed by induction on the cardinality of I. If I consists of a single
reflection, the claim is precisely the definition of ¢ For the general case fix some

se€ I and let Iy := I\ {5}. By the induction hypothesis, we get

[[€7 =T = > X >

s€l s€lo JCIo NeMyy, g JC{5} AeM (5,5

ST AT T T

JCIp AEMI,JU{E} )\GM]’J JCI AEM]VJ
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(ii): Let Jo = {s € I : N(T5(F,)) = 1}. It suffices to show that there exists
a pu € T(F,) such that pre,) = A and p(Ty(Fy)) = 1if s € Jy, because then
eE\i) [Leer ") is a sum of orthogonal idempotents which contains eg) precisely once
as a summand by Lemma 4.3.3 (i) and part (i) due to the fact that y € M; 5 and
all the M ; are pairwise disjoint.

Now, after the choice of a basis of X(T'), A is given by m integers well-defined

modulo ¢ — 1. If we choose these integers all in {0,...,¢™ — 2} and restrict the
corresponding algebraic character to T'(F ;) we obtain a lift with the needed prop-
erties. O

Proposition 4.3.6. The F,[T(F)]-algebra homomorphism ¢; ; : ’Hgff — Haff is
injective.

Proof. We choose a system of representatives W, ; = {1 }wew, ;; for Wa})f JT(F ).
Then 7-1,((3 s 1s a free F,[T(F,)]-module with basis {TS) Ywew,; ;- Now let

0=wi;( D (Y o))

WEW, 1 )\ET(IFqi)

- Z ( Z Cw,,\GE\i))( H ng;j))ﬂgj).

WeWass AT(F ;) (ak)e®}, Nwd,
Then
Z Cw Ae/\ H egzj)) =0
XET(F ;) (a k)EDS, NP
for each w € W,ss and hence all ¢,, , = 0 by Lemma 4.3.5 (ii). O

Now we can extend ¢; ; to H® by
i) _ d®pij =ty (i j
HO =F,[Q%)] OF, (1 Haff —5F,[Q%] @F o T(F )] H(])
=F,[Q"] 5 o[ T(F )] Fy[T(Fy)] ©F J[T(F Haff
:Fq[Q( )] OF, (1 (F )] Haff HY.
We will also denote this homomorphism by ¢; ;.
Theorem 4.3.7. ¢, ; : HY — HY) an injective homomorphism of F,[T(F)]-
algebras.

Proof. The injectivity follows from the injectivity of ¢;; : Hgff — 'Ha 7 and the

fact that F,[Q7)] is free and hence flat over F,[T(F:)]. For u € Q) and w € Wé?f

we have

i () = i (T

by Lemma 4.3.2 (ii) and the definition of ¢; ;. This shows that ¢; ; is indeed multi-
plicative. O

( /)

Remark 4.3.8. An analogous construction yields injective algebra homomorphisms
for the case of finite Hecke algebras. It is even simpler in this case because the
intermediate step using the affine Hecke algebra is not needed because of the absence
of the group Q¥ in this setting.
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4.4 Supersingular H#Y-Modules

For any commutative ring R with unit, let Hg) be the R-algebra H(Zl) ®z R. We

take R = Z[g~*/?]. As R is torsion free and hence flat over Z, H}) C H'V is a
subalgebra. According to [Vig05, Prop. 4], there exists a unique ring morphism 6 =

0~ : RY/(T)V] — Hg) such that 0(y) = 7, whenever y € V(7)™ is antidominant,
by which we mean that its image in Y (T') is antidominant. If w = eYv € W) with
ve W and y € Y(T)D, we set

Yw)—1(e¥)~1(v)
2

Ew =dq y)Tv-

It can be shown (cf. [Vig05, Prop. 7|) that the elements E,, lie in ’H(Zl). We will
write shortly E, for E., when y € Y/(T)W.

Theorem 4.4.1. (i) (Ey)pew is a Z-basis of ’H(Zl). It is called the Bernstein-
basis.

1) (B a) 18 a Z-basis o AV —ime) nHY . AY s presented by the
y)yey (T) z zZ 7
relations

1(eY1)+1(e¥2)—1(e¥11Y2)
2

E, E, =q Ey 1y, foryi,ys € Y(T)(l).

Proof. See [Vig05, Thm. 2, Lemma 3]. O
The Bernstein basis allows us to define an operation of Wy on .A(Zl) by
why = Ey ).
Using this we can describe the center of ’H(Zl).

Theorem 4.4.2. (i) The center Zg) of .A(Zl) is equal to (.A(Zl))w‘). It has the Z-
basis 2y} =D cwyy Lar where y runs through the Wo-orbits in Y (T)W. A(Zl)

and H(Zl) are finitely generated Zg)—modules.
(ii) The center of HY is 20 = 2V @, F,.
Proof. See [Vigl4, Thm. 1.2, 1.3|. [

By an H( (or Hglf)f)—module we will always denote a right module. This conven-
tion is due to the fact that the functor of I(V-invariants naturally yields HM-right
modules. Now, let M be any H(Y-module with a central character. This will be the
case in particular, if M is simple and finite dimensional (the last assumption being
a consequence of the first). As Z() is the center of HM, Z() acts by a character
w=wy: 2L Fq on M which we will call the central character of M.

Definition 4.4.3. (i) A characterw : Z) — F, is called supersingular if w(zg,}) =
0 for each y € Y(T)V) with I(y) > 0.
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(ii) A nonzero HM-module M with a central character wy, is called supersingular
if wy is supersingular.

The notion of supersingularity can also be extended to modules without a central
character (see [Ol112][5.10]). However, this is technically more complicated and we
shall not need the definition in this generality because we will only be interested in
simple supersingular modules. There is a nice description of simple supersingular
modules involving characters of H((llf)f Let us first give a classification of characters
of the affine Hecke algebra. For this, we consider the set of all tuples (A, ) such

that A : T'(F,) — qu is a character and I C S.

Proposition 4.4.4. The ﬁq—chamcters of Hélf)f are all defined over F,. They are
parametrized by pairs (A, I) such that I C S* := {s € S : \N(T\(F,)) = 1}. The
character x = x (1) associated with (X, I) is given by:

o X(1) =A"!¢) for allt € T(F,).
o \(1m,)=01ifseS\I.
e X(n,)=—-1ifsel.

Proof. See |Vig05, Prop. 2|. O

Note that this classification induces an obvious map from characters of 7-[(()1) to
characters of ’Hsf)f

There are two distinguished characters of H((Llf)f, namely Xrio = X(1,0) a0d Xsign =
X(1,5), Where 1 denotes the trivial character of T'(IF;). Now suppose, A is a character
of T'(IF,) trivial on T} for each s € S. Then, we can define the twist of x(x1) by Ao
as X(xn1)- Note that we still have I C 52X because of the condition imposed on
Ao- We will say that y is a twist of x/, if there exists some \q as above such that y’
is the twist of x by A\g. This yields a classification of supersingular simple modules:

Theorem 4.4.5. Suppose that the root system of G is irreducible. A simple HM)-
module is supersingular if and only if it contains a character of Hélf)f that is not a

twist of Xtriv OT Xsign-

Proof. This is [Oll12] Thm. 5.14. O

We will now give an operation of Q on the tuples (A, ). For u € 2, we set
u] := ywlu~! which is at least contained in S, as 2 normalizes S. Additionally,
we let Q act on the characters of T'(F,) by the projection to Wy, i.e. if u = we?,
“A(t) = Mw ™ tw). So, we can define “(\,I) = (“\,*1).

Lemma 4.4.6. (i) The Q-action restricts to an action on those tuples (X, I) such
that I C S* :={s € S : \N(T(F,)) = 1}.

(ii) QNY (T) acts trivially on the tuples (X, I) such that I C S*.
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Proof. (i): Let u = we¥ € Q, s € S and o € ¢ such that hy = & We need to show
that “A(Tus(F,)) = 1. We have

— — _ w
Tus =T, ley — 711usauﬁ1 =T

WSqW ™ = iHl(('LUCY)V) = 1m(d) = wT57

w(a)

where 3/ = 0 if s € Sy and ¢ = g if “s = s¢. This implies
T“S(Fq) = wTS(Fq)a

and hence 1
UMTus(Fy)) = MY Ts(Fy)) = MTs(F,)) = 1.

(ii): By definition, Q NY (7)) acts trivially on all A. Hence, it suffices to show
that QNY(T) is central in W. For this it suffices that any y € QN Y (T') commutes
with any s € Sy, as Y (T') is abelian. We can compute the length of y by

0=1() =Y ()

aeRt

(cf. [Bor09, Satz 2.3.4|). This yields («,y) = 0 for all @ € A and hence s,(y) = 0,
which implies e¥s, = s,€Y. ]

Part (ii) of the previous lemma shows that the image of 2 under the projection
W — W, acts on the tuples (A, I) such that I C S*. We will denote this image by
. This is a finite abelian group. Denote its order by n. Note that this will not
cause any confusion when G = GL,,, as () is generated by an n-cycle in this case.

Lemma 4.4.7. (i) (Y(T)M)"o is contained in the center of W),
(it) (Y(T)M)" c oW,
(iii) QY N Y (T)V = (T(F,), (Y(T)M)"0) and (Y (T))"o N T(F,) = T(F,)"".

Proof. (i): This follows immediately from the facts that Y (7)) is commutative as
a quotient of T'(L), and that W) is generated by Wo(l) and Y(T)W.

(ii): Let y € (Y/(T)M)" with image yo € Y/(T)"°. Then I(yo) = 0, which
implies yo € 2 and hence y € Q).

(iii): The inclusion from the right to the left is clear by (ii). Any element
QW N Y(T)WY has its image in QN Y(T) = Y(T)"° under the natural projection
by definition. Hence it is congruent to some element of (Y (7))o modulo T(F,).
We have the second equality as

Y(T))™ N T(E,) = V()Y NT(E,))"™ = T(F,)".

Proposition 4.4.8. There exists a canonical bijection between

o the Qq-orbits of cardinality n of triples (\,I,w) such that I C S* and w :
(Y(T)D)Wo qu is a character which coincides with A= on T(F,)"° and
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o the isomorphism classes of simple HY -modules of dimension n containing a
character of ’H((l?f

Such a module M associated with (X, I,w) satisfies

M = @ X(p,J)

(1, 1) E€Q0 (A T)

as an Hé})f-module. If M is supersingular, and given by a triple (X, I,w), its central
character Xy, s determined by

W) Ypewe AN ), ify = tu with t € T(F,),
Xaw(Zyy) = we (Y(T)YNWo e I(y)=0

Proof. This is [Vig05, Prop. 3|. As this proposition is of central importance for us,
we will give a detailed proof here. We first construct a map from the first to the
second set. So let (A, 1, w) be a representative of such an orbit and x = x(np. Let
HD be the submodule of H") generated by the elements 7,,, with u € (Y (7))o

(viewed as an element of W) and w € W;})f This is indeed a subalgebra of H(),
as (Y/(T)M)"o € QM normalizes Wa(})f Since (Y (T)™)Wo is contained in the center
of W, there exists a unique extension of x and w to a character of (), which we

will denote by x,.
Now we set

M (Xe) = Xw @z HW.
As v:=1®1 is an eigenvector for the character x of H((llf)f, this module contains a

character of Hg?f If u; € QW is a lift of u € Q, vr,, is an eigenvector for Xu=1 (a1

As these elements are a basis of M(x,,) as an F,-vector space, and the number of
those characters is precisely n by assumption, we have dimM x,,) = n.

So, it remains to show that M(x,) is simple. Let M’ C M(x,) be a nonzero
submodule and v = Z;l via; € M', where r > 1, all v; are characters of ”Hsf)f
associated with elements of the Qg-orbit of (A, 7) and all a; # 0. If r = 1, we are
done, because this implies that M’ contains all the y-conjugates of x. This shows
in particular, that M (x,,) does not depend on our initial choice of a representative
(A, I). Thus, we may assume r > 2. As the v; are distinct, we can find an f € ch)f
such that v,.(f) # v,_1(f) and assume v,.(f) # 0 without loss of generality. This
implies

r—1
1 —
0 —vf——r M'ﬁg Iy,
#v var(f)e iZIU q

Induction leads to the case r = 1.

Conversely, let M be a module as in the statement of the proposition and y =
X(»1) a character contained in M. As above, M contains all the yu(y ) for u € €
and the vector space generated by those characters is a submodule. Hence, its
dimension, which coincides with the length of the Qg-orbit of (A, ), must be n
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and as there is only one orbit, this does not depend on the choice of the character
x.- As M is simple, it contains a central character and by restriction, we obtain
w: (Y(T)W)Wo - F,.

Now, we check that these constructions are inverse to each other. Obviously,
the first one followed by the second one yields the identity. So let us start with a
simple n-dimensional module M containing x = x(x,7) on which (Y (T)D)Wo acts by
w. As M and M/(x,,) are simple, it suffices to show, that there exists a nontrivial
homomorphism between them. For this we observe that

0 # Homy ) (Xw, M) = Homg ) (Xw, Homy, o (7—[(1), M))
= Homy,m (Yw @500 HY, M) = Homyyo) (M (xw), M).

The description of the central characters is obvious. O

Note that if n > 1 in the previous proposition, the supersingularity of M is
automatically given by Theorem 4.4.5 because sign- and trivial characters have
Qp-orbits of length 1.

4.5 Supersingular Modules for GL,

We will now specialize to the case, where G = GL, with n > 2. As there is a
canonical splitting of W — W® we may view Y(T) and (Y (7))"° as subgroups
of Y/(T)W.

Fix \: T(F,) — qu and w : (Y(T))"o — qu. Note that, by the choice of 7, fix-
ing w is the same as fixing z = w(diag(7y,...,m)) € F:. We have a homomorphism
of F,-vector spaces yy, : 21 — F, given by

w(t) Y pew X)), if y = tu with t € T(F,),
Xow(2(yy) = ue (Y(T)"o, ie. l(y) =0
0, if {(y) > 0.

Note that xw = Xwa. for all w € Wy. We know that x,, is a character if there
is an I C S* such that #Qy(\,I) = n by Proposition 4.4.8. This will not be
true in general. However, we can always achieve this by replacing A by another
representative of its Wy-orbit, which leads to the same x)

First consider the case that “A # A for all w € Wy \ {1}. Then the elements
U\ for u € € are all distinct and we may take I = (). Now assume, that we can
find 1 # w € Wy such that YA = A. This means that we can find 1 <i < j < n
such that (7, 7) acts trivially on \. By conjugation, we can assume ¢ = 1 and j = 2.
Then, (1,2) € S* and we can take I = {(1,2)} which gives the desired result as
#Qol = n. As the map x,, does not depend on the representative A € Wy, this
shows that they are all supersingular characters of Z(1),

Now we want to answer the question when two such supersingular characters
coincide. First we need a technical lemma:
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Lemma 4.5.1. Let R be any integral domain and ay,...,a, € R. For any 1 <i <
n, the multiplicity of a; as a root of

n

Z(_l)iXi Z ]jajk

1=0 J1<ee<Jn—i k=1
is precisely #{j € {1...,n} :a;, = a;}.
Proof. We have to show

n

S0x S [Ta =TT x)

i=0 1< <ini k=1 i=1

We proceed by induction on n. For n = 1, the claim is trivial and by induction, it
suffices to remark that

n—1 n—1—i

Qo=vxt Y I wdlan —X)

1=0 J1<e.<jn-1-i k=1
n—1 n—i
=> uxt > [faw
=0 J1<<Jn—i=n k=1
n—1 n—1—i
IR S K
1=0 J1<<jn—1—s k=1
n—1

Xt Y e

Nn<..<jn—i=nk=1

xS [

J1<..<jn—iFn k=1

Xt Y [la

=0 J1<...<Jn—i j=1

il i
s s I

[]

Proposition 4.5.2. FEvery supersingular character of ZW is of the the form Xhw
for some X\ : T(F,) — F: and w : (Y/(T))"o — qu. We have Xx,w = Xasws if and
only if w1 = wy and Woky = Wyls.

Proof. As H( is finitely generated as a Z(M-module every supersingular character
x of Z(M) is the central character of some supersingular simple finite dimensional
module, a quotient of x ®za) HD. But those are of the form Xxw by Proposition
4.4.8.

Additionally, we already know the "if -statement. As (Y (7"))"° is a subgroup of
ZW™ we can recover w from . So it suffices to show that Wy can be recovered
from . Let a be a generator of F¢. Let t; be the diagonal matrix with (7, 7)-entry o
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and all other diagonal entries equal to 1. If we let a™ = A71(¢;), Wy is determined
by the numbers m; modulo ¢ — 1 with their multiplicities. Denoting by M the
diagonal matrix with the first ¢ entries equal to @ and the other ones equal to 1, we
get these from y by considering the polynomial

F0 = S DX Gy = DX S J[am

1§j1<---<jn7i§n k=1
and using the previous lemma. O]

With the help of x,,., we can define the algebra
”H(;L =HY @:0) Xow-

This is a finite dimensional Fq-algebra by Theorem 4.4.2. There is an obvious
dimension-preserving bijection between (simple) modules with central character x .,
over HW and (simple) modules over ’Hg\ll Thus, studying n-dimensional simple
supersingular HM-modules is equivalent to studying n-dimensional simple ’H(;L—
modules for all (\,w). ’

We will now examine how simple supersingular modules behave under our in-
clusion construction of section 4.3. Let ¢ = ¢, : HD — HO be that inclusion
for some i > 1. For a simple supersingular H¥-module M of dimension n we can
ask the question if M is also simple and supersingular considered as a module over
HW. Let x(.n be a character of ”Hg} s contained in M and let A be the restriction
of p to T(F,). Clearly, I C S*. However it is not necessary that the Qg-orbit of
(X, 1) consists of n elements. For example, if i > 1 and p(diag(ty, ..., t,)) = 7",
and I = (), we have #Qy(u, I) = n and #Qy(A\, I) = 1 if i > 1. As it turns out this
condition already decides our question:

Proposition 4.5.3. With the notations above, the following are equivalent:
(i) M is simple over HW

(ii) M is simple and supersingular over H"

(iii) #Q0(N\, 1) =n

Proof. Assume (i) and let v € M be an eigenvector for 1), ;) with some u € T(Fqi>
and I C S*. We will show that v is an eigenvector for x(» ) which proves (ii). As

(7' = 79 for t € T(F,), we have v\ = vA~1(t). If s ¢ I, we have

vp(1t)) = w70 = 7ML — .

Ns Ns

On the other hand, if s € I we need to show that vel" = v. Recall that

egl’i) = Z eg) + Z 69

o€T(F;),0(Ts(F i))=1 o€T(F;i),0(Ts(Fq))#1
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For any o € T(]Fqi), we have

Xn (€)= (=1)"xun( > o' t)m) = (=" > pw (B (t) = b4,

tET(]Fqi) tET(]Fqi)

As se I, u(Ts(F,)) =1 and hence X(H,I)(egl’i)) = 1, which yields vel"” = v.

Let us now assume (ii). As before, M contains the character 1y 1) as an Hfllf)f—
submodule. By the description of Proposition 4.4.8, we have

M = @ X(o,J)

(0,J)€Qo(N,I)

and we get #Q(A, ) = dim(M) = n.
Finally, (i) follows from (iii) as in the proof of Proposition 4.4.8 where it is shown
that M (y,) is simple.
[

4.6 Computations on Grofte-Klonne’s Functor

For this section, assume that G = GL,, and L = Q,. In [GK13|, Grofe-Klonne has
constructed two contravariant functors — each corresponding to one of the extremal
simple roots in the Dynkin diagram of GL, and a generator of the group 2 — from
the category of HM-modules of finite length to étale (i, I')-modules over Fontaine’s
ring Q¢ which induces a bijection between simple supersingular H®M-modules of
dimension n and irreducible n-dimensional Galois representations. In this section
we will make this bijection explicit so that we can compare our results with it later.

The proofs of Theorem 8.5 and 8.7 in [GK13| give an explicit description how
to compute the tuple (A, 1) from a given Galois representation. We start with a
Galois representation p = ind(w!) @ ug as in Proposition 2.1.9 with 0 < hg < p"—1
primitive and § € F: . The corresponding simple supersingular #Y-modules are de-
fined by triples (A, I,w) as in Proposition 4.4.8. Denote those tuples afforded by the
choice of the root a; resp. a,—1 by (A1 (p), I+ (p),wi(p)) resp. (A_(p), I-(p),w—(p)).
In the following, we shall restrict to carrying out the calculations for the bijection
given by the choice of a;. The other one is calculated completely analogously.

We can write the p-adic expansion of hg

h(_) =a)t+ap+... —i—anp”*l.
As ind(w"0) does not change when we multiply ho by p by Proposition 2.1.9 (i),

we may permute the coefficients a; cyclically and thus assume that a,, is minimal
among the a;. We get
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where all coefficients are between 0 and p — 1 because of the minimality of a,,. Let

pt—1
R n—1 j—1 p—1
h:=>%""")(a; —a,)p’~". Because of wy"' = w; we get
pt—1

n

ind(w") ® s = ind(wn ) ® pp = ind(w?) ® Wi ps.

The associated supersingular H-module is described as follows: Let

h(p—1)=idg+i1p... +in1p" !

with 0 <i4; <p—-1land k; =p—1—1i,_; for 1 <j <n. Then A\, is the unique
character of T'(F,) such that A\, (hs,_,(x)) = 2% and A\ (diag(1,...,1,z)) = z for

NS F;. Here the s; are given as in section 1.4. Further set I, := {s; € S :
kiyn = p— 1} and let b = (=1)""N(diag(—1,...,—1)) [/ k!B". Let wy be
character of Y (T)V) which maps diag(rz,...,7.) to b and extends the restric-

tion of A\ to T'(F,)"o. Then the associated H-module is given by the tuple

(A (p), I (p), wi(p) = (Mg, Lo, wep).
Now we will give explicit formulas for A and [ involving the a;. We have

n—1 n—1 n—1
hp—1)=> (a;—a)p’ = > (a;—a)p’" = (a;— a;11)p
j=1 j=1 §=0
where we set ag := a,,. Let us define numbers dy, . .., d,_1 inductively by §y = 0 and

1, ifaj—aj+1—5j<0
Ojy1 = .
O, 1faj—aj+1—(5j20

and set 0, = 0. By construction,

h(p—1) =Y (641 + a; — aj41 — 6;)p’

<
Il
o

is the p-adic expansion of h(p — 1) and hence we get i; = pd;+1 + a; — a;j+1 — 6; and
k?j =p— 1-— Z'n—j = p(l — 5n—j—1) — (1 — (5n_j>an_j + Qp—j—1-
This way we can compute the character

/\+(diag(t1, e ,tn)) = /\<hsl (tl)h32 (tltg) e h8n71 (tl e tn_l)diag(L <oy 1, tl e tn))

— R (1) () )
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We can further calculate the exponents: For [ > 2 we have

[y

n—

ki+...+k,=n—-1+1)(p-1)—> i

<
Il
o

n—l n—1 n—I n—I+1
=(n—1+1)(p—1)— (i + Y poi— D G;—08+ Y a;— Y a)
j=1 j=1 =0 j=1

n—I

- (n -1+ 1)(}? - 1) - (p(sn—l—l-l + (p - 1) Z 5]' + a, — an—l+1)

j=1
and hence
n—I
ki+...+kn+ta,=n—I0l+1)(p-1)—(p— 1)Z—p5n,l+1+an,l+1
j=1

n—I+1
=(p-Dn—1+1= > &)= bnis1 + anig1.
j=1

So, the character A is given by
Ao (diag(ty, ... t,)) = (3270 tygn2™one2 g dgan o

and s; € I, if and only if k11 =p — 1.
The tuple (A4, I) obtained in this way is 2g-conjugate to the tuple (i, J) given
by
p(diag(ty, . .. t,) =t Onggrot=0n=1  jaz=dagai—by

and s; € J if and only if k; =p — 1.
We can summarize the results of our calculations:
Lemma 4.6.1. With our notations above, we have

A (p)(diag(ty, . .. t,) =t onggnt70n=1 | poas pegar=bn,

I+(p) - {Si € SO :p5"*i+1 — Qp—j — Ap—i+1 — (5n7i = 0}7
and w, (p) is the character of Y (T)W) given by )‘-T—l<p)|T(IFq)W0 on T(F,)Wo such that

wy (p)(diag(my, ..., 7)) = (=) "N(diag(—1,...,—1)) 1:[ k"

Additionally, we have

A_(p)(diag(ty, ... t,) = ty0 0 ot | g an-iton-ty—anton

*¥n—1
I_(p) = {si € So:pdi — aj41 — a; — ;11 = 0},
and w_(p) is the character of Y (T)Y given by X\="(p)ir,ywo on T(Fg)™> such that

n—1

w_(p)(diag(ry,...,m)) = (=1)" *N(diag(—1,...,—1)) H k\B".

=1
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Proof. We have seen the "+"-case and the other case is treated completely analo-
gously. O

We emphasize the fact that, even in the GLs-case, one obtains two different
functors. This is due to the fact that these functors are defined by the choice of the
same root but different choices for the generator of €.

4.7 Maps between Grothendieck Groups

For this section, assume that G = GLn and n > 2. Let HY Dbe the subalgebra
of H(V) generated by ’Hglf) and 75 This is the subalgebra called H™ in the

7rzd

proof of Proposition 4.4.8 because the subgroup generated by 7y, - id identifies with
Y(T)"o. It is the unique subgroup of index n in . Then, we have inclusions of
Hecke algebras

H[()l) C Hl(ll) C 7_[;_1) C H(l)

For each of these algebras denote by Gg(?) the Grothendieck group of the category
of finite dimensional right modules over these algebras. As restriction of modules to
a subalgebra is an exact functor, we obtain homomorphisms of Grothendieck groups

Go(HV) = Go(HY) = Go(HY;) — Go(HSY).
We will denote each of these maps by res, e.g. we have
reszgi cGo(HW) = Go(HW).

We will now construct maps in the other direction. Recall that the characters vy r

are a basis for H{") by Theorem 4.1.3. Here ) is a character of T(F,) and I C S.

Now, we may also view I as a subset of S* and thus define the character X1y of
”Hglf)f by this pair. Hence, we obtain a homomorphism from GO(H(()l)) to GO(Ha ff)
&

as the linear extension of ¥\ ) — x(x,r which we will denote by mCH‘(‘lf)f .

For the map from GO(H ff) to Go(HY) fix some z € IF 72 4 identifies with

the subgroup Y (T)"° = Y(T) N Q of Q. Hence HY s 1somorph1c to the algebra
F,[Y (T)"] ®F, ”H((zlf)f and each /Hglf)f—module has a unique extension to a module

over 7—[7(}) such that 7, acts by multiplication with z. This defines an exact functor
and hence a homomorphism

, )
1nc[z]z’{1f)f : GO(HC(L?f) — Go(HWM).

Finally, HY = F,[Q)] ®F, ’H(lf)f is a free module of rank n over H{) = F, [N

Y(T)] ®5 #H'). So the functor @ (1)7-[ is exact and respects finite dimensional
Fq "Faff:

modules. Hence we obtain a group homomorphism indzgi : Go(’HSrl)) — Go(HW).
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Now assume that we are given a character v, ) of H((Jl) such that the Qy-orbit
of (A, I) has cardinality n when we view I as a subset of S*. The proof of Propo-
sition 4.4.8 shows that the image of 1, ) in Go(HW) is the simple supersingular

module associated with the triple (A, [,w), where w : Y(T)"0 — F: is given by
w(diag(ry,...,m1)) = z. However this does not work when the Qg-orbit of (A, I) is
not of maximal length.

There are tuples (A, I) with I C S such that #Q(\, I) = n but #Qy(\, INSy) <
n. For example we can take (A = 1,1 = {sp}). But it is true that each simple

supersingular module of dimension n such that 7, acts by multiplication with z is
(1) )

L . oy A
contained in the image of dem o 1110[2]:?1) o 1ncH(1f)
4 a 0

/. To see this it suffices to show
that each Qg-orbit of cardinality n contains some (A, I) such that sy ¢ I. Assume
the contrary. Because () acts transitively on S, each representative of the orbit is of
the form (A, S) for some A. This means that A is invariant under conjugation with
cach simple reflection and hence with Wy. So we have Qy()\, S) = 1 in contradiction

to our assumption.






Chapter 5

H(L_Modules associated with Weil
Group Representations

5.1 The Strategy

Let G = GL, and keep the notations that were introduced in the previous chap-
ters. So far, we have done the following: The irreducible Galois representations of
dimension n are given by a subset of the fibre product

(Hom®™ (I, /Py, T*)/Wi)F x Hom®" (W /P, F, )

Hom®"™ (I, /Py F,)

by Theorem 2.1.7. Then we have reinterpreted the first factor as
(Hom™™ (Y (T) @ 2, ) /Wo)"

in Proposition 2.2.4 and its corollary. By Lemma 2.2.6, this defines a GL,(F,)-
conjugacy class of a tuple (7,,6) where T, is a torus of F,-rank 1 and 6 is a
character of T,,(IF,). We have explicitly determined this tuple in section 2.3.

By section 3.5, we obtain a virtual representation of GL,(F,) over L which we

can reduce modulo p to Go(F,[GL,(F,)]) = GO(H(()D). From there we can proceed
as described in section 4.7 to obtain an element of Go(HWM). For this we need an
element z € IF, in order to declare the action of 7,,. We obtain this from the other

factor of our fibre product Hom*™ (W /P;,F, ) = Hom*™ (W, F,) in the begin-
ning: If ¢ is the Frobenius corresponding to 7, and the reciprocity isomorphism
L* =2 W of local class field theory, we define 2 as the image of ¢ in F: .

Now we have constructed a map from irreducible n-dimensional Galois repre-
sentations to the Grothendieck group of finite dimensional modules over H"). As
it turns out, this composite does not behave in a nice way as will be illustrated for
the GLs-case in the next section. However, we will see that a little tweak, a “shift“-
map on Go(F,[GL,(F,)]) will give us a way nicer behavior and establish a bijection
between irreducible n-dimensional Galois representations and simple supersingular
modules of dimension n in the case n = 2.

75
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5.2 The GLy-Case

Now we will examine the construction given in the previous section for GLy by
making everything explicit. Let p be a continuous irreducible representation of Wy,
of dimension 2 and m = a + bq as in section 2.3. By Proposition 2.1.6, m is not
a multiple of ¢ + 1, i.e. a # b. We may assume that a > b without changing the
isomorphism class of p.

By Lemma 2.3.1 and the preceding discussion, the tuple (7}, 0) is given in the
following way: w = s is the non trivial element of Wy = S, and if g € GLy(F,)
such that g71F(g) is a lift of s and 6 is given as the restriction of 9(ax; + bys) to
T,(F,) = 9T(F,). We can now use Jantzen‘s formula (Proposition 3.5.2) and the
explicit version of the discussion afterwards to calculate the reduction mod p of the
corresponding Deligne-Lusztig character. We will now identify X (7) with Z?2, so
that we will write W (m,n) instead of W (my; + nx2). Hence, we have

Ri(p) =W(a—-1b+1)+W(b+q—1,a).

If a—b > 2, both weights occurring in the formula above are dominant. If a = b+1,
the formula

—Wi(a—1,a) =det(s)W(a—1,a) =W(s-(a—1,a)) = W(a—1,a)

implies that the first summand is 0.

Given that we are aiming for a bijection between irreducible 2-dimensional Galois
representations and supersingular 2-dimensional H(-modules, the first problem
becomes apparent. For simplicity let us stick to the case ¢ = p. We have

W(a—-1,b+1)=F(a—1,b0+1)
(unless a = b+ 1) and
Wh+p—1,a)=F0b+p—1,a)

and the inequalities a — 1 — (b+1) =a—b—2 < p— 1, because a —2 < p — 1,
and b+p—1—a < p—1, because a > b. By Proposition 3.3.2 this means that
the corresponding characters for the finite Hecke algebra are always of the form
Yr0). Hence, by construction, surjectivity cannot be achieved. Additionally, the
two summands correspond to different characters of the finite torus and not all
characters of the finite torus arise in this way. Namely, those trivial on T,(F,) are
missing.

Now let ¢ = p" be a general power of p again. We will introduce a “shift“-map

on Go(F,[GLy(FF,)]) which fixes all of these problems. Let
(a,b) € X,.(T) = {(a,b) € X(T): 0<a—b<q}.

Then (a,b — 1) € Xi(T) unless a — b = ¢ — 1. Thus, we can define the map
X Go(Fy[GL, (Fy)]) = Go(Fy[GLy(F,)]) by

F(a,b—1), ifa—b#q—1

X(F(a,b)) := {0 ifa—b=q—1.
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When we want to apply this definition to reductions of Deligne-Lusztig characters
obtained as above, we are always in the first case: If F(c,d) is a summand of
Wi(a—1,b+1) (with a > b+1) resp. W(b+q—1,a), then (¢,d) < (a—1,b+1) resp.
(¢,d) < (b+q—1,a) by the strong linkage principle, so that c—d < a—1—(b—1) <
qg—2resp. c—d<b+qg—1—a<qg—2. So the second part of the definition is
rather for the sake of completeness and not relevant in our applications.

So now, we can include the shift map y in our construction by applying it to
Rs(p) and then using the constructions from section 4.7. Let us treat the simpler

case ¢ = p first. Assume that @ = b+ 1. Then Ry (u) = F(a — 2+ p,a) and hence

X(Rs(p)) =Fla—1+(p—1),a—1).
By Proposition 3.3.2 the corresponding Hél)—module is Y\ {s3) With
Mdiag(t,t9)) = ¢4 1571

So, we get that

.M. HD Hilf)f
deSTl)mc[z]H(lf)fmCHél) (X(Rs())) = M gs},2)5

where My .) is the 2-dimensional supersingular HM-module given by the tuple
(A, I) on which 7., acts by z.
On the other hand assume that a > b+ 1. Then we have

X(Rs(p)) =F(a—1,0) + F(b+p—1,a—1).

Using Proposition 3.3.2 again, we see that the corresponding ’H((]I)—modules are Yy p)
and 1) ) where A(diag(ty,t2)) = t§7't5, which implies that

. . W, HWY
ind 0 incl=] 15, ey o (c(R())) = 2Mov

In each of the cases we can speak of the supersingular simple 2-dimensional H -
module associated with an irreducible 2-dimensional Galois-representation p and
denote it by M (p).

Theorem 5.2.1. Assume that L/Q, is totally ramified, i.e. ¢ = p. The assignment
p— M(p) is a bijection between irreducible 2-dimensional Wi -representations and
irreducible 2-dimensional supersingular simple HW-modules. If L = Q,, we have

M(/)) = M(>\+(p)71+(0)7w+(ﬂ))'

Proof. All of this follows from the above explicit descriptions. It suffices to show
that the Galois representations such that the determinant of the Frobenius is z
correspond to the supersingular modules on which 7, operates by z. The above
calculations show that we can reconstruct a and b from the character A associated
with a supersingular simple module of dimension 2 and thus p — M (p) is injective.
In the “a = b+ 1“-case, a ranges from 1 to p — 1, so the characters A obtained from
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this are all the characters with S* = S. In the “a > b + 1“case, \ ranges over all
characters with S* = ().

That p +— M(p) coincides with Grofe-Klonne’s functor follows from the explicit
descriptions given in this section and in 4.6, because a > b implies §; = 1 and
do = 0. Of course, this also implies bijectivity with Grofse-Klonne’s results. ]

& .

Remark 5.2.2. If ¢ is a general power of p, indzziiinc[z];‘é) incz?f)f (X(Rs(p))) is
4 a 0

no longer a multiple of a simple supersingular module. This is due to the fact that

W(a—1,b) and W(b+p—1,a—1) are not simple in this case. But by Proposition

3.4.4, there exists an automorphism ¢ of Go(F,[GLa(F,)]) mapping W () to F(\)

1 (1) 1) -
for A € X,(T)° such that indzgliinc[z]Z’@) inczagf(X@(Rs(ﬂ)))) is the multiple of
7r a 0

supersingular simple module of dimension 2 with the same argument as above. ¢
is represented by a upper triangular unipotent matrix with respect to the basis
given by the irreducible representations (in a suitable ordering). As a consequence
we obtain that there exists an automorphism ® of Go(H")) given by an upper
triangular unipotent mat)rix in the basis given by the simple #(!)-modules such that
1
@(indzginc[z}Z%if;finczg{)f (x(Rs(p)))) is simple, supersingular and of dimension 2.
The case of G = SLy can be treated similarly. For this, assume that ¢ = p. Let
p : Wi — PSLy(IF,) be a projective Weil group representation. By Lemma 2.4.1,
there exists some py : Wy, — GL,(F,) which reduces to p modulo the center of
GL,(F,). As in section 2.3 we associate with it the integer m = a + bp such that
0 <b<a<p-—2 Let T be the standard split torus of SL,. Further denote
by (7%, 0) resp. (T.,0') the associated tuples consisting of a maximal torus and a
character of F-rational points of that torus for GL,, resp. SL,. Further let px resp.
i’ be algebraic characters of T resp. T” which give rise to 6 resp. ¢ after conjugation
to Ty resp. T%. From Proposition 3.5.2 and Corollary 3.4.3 we can deduce that

R, () = Rw(ﬂ)\SLn(IFp)'

If we identify X (7") with Z by mapping the unique simple root o to 2, we thus
obtain

Ri(p)=W(a—-b—-2)+W(p—1—a+b).

As in the GLs-case, the first summand is 0 if a = b+ 1.
Again, we can define a shift map x : Go(F,[SL,.(F,)]) — Go(F,[SL,(F,)]) by

Fla+1), ifa#p—1
0, ifa=p—1.

X(F(a)) = {

This shift is compatible with the shift map for GLs such that the obvious dia-
gram involving shift maps and restrictions commutes. As for GL,,, one obtains a

homomorphism incZS;: from GO(H(()D/) to GO(HSf)f/) = Go(HW') where we denote
0
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the corresponding Hecke algebras for SLy by 7. Defining A : T'(F,) — F) by
Mdiag(t,t=1) = t*=91 we obtain

- N X(1.{s})5 ifa=b+1
inc?,) (0 (R, (1) = 4~ ‘
bk X0 + Xeao, ifa#b+ 1

The modules occurring here as summands are all supersingular and the only
supersingular simple module not occurring here is x(1,1s,}) by Theorem 4.4.5. The
"missing” supersingular character is due to our construction exactly as we have seen
in the GL,-cases. /

Also, we immediately see that the map p — incZng(X(Rs(u’)) from irreducible

0

projective Wp-representations of dimension 2 to G (”H(l)/) is injective. The charac-
ters which are the summands in the second case are an L-packet as introduced by
Koziol in [Koz13| Def. 6.4.

5.3 The GL3-Case

Now we will imitate the phenomena we have seen using the shift map for GL, for
the GLgs-situation. For the whole of this section, assume ¢ = p. So, let p be an
irreducible continuous representation of W;, of dimension 3 and let m = a+ bp + cp?
be as in section 2.3.

Recall from 3.5 that

Ry(a,b,c) =W(a—2,b+1,c+1)+W({b+q—1,a—1,c+1)
+W(a+q—2,c+q—1,b+1)+W(c+q—2,a,b+1)
+W(b—|—q—2,c+q,a)+W(c+2(q—1),b+q—1,a)

with w = (1,2, 3) = 5152, is the reduction of the associated Deligne-Lusztig charac-
ter mod p. As cyclic permutation does not change the isomorphism class of p, we
may assume that either

(I) a>b>cor
(I) a<b<ec.

The primitivity of m implies that a = b = ¢ cannot occur. Thus, we may assume
that either a > b > ¢ in case (I) or a < b < ¢ in case (II).

We will begin by evaluating Jantzen’s formula in the first case. So assume for
now that we are in case (I), i.e. @ > b > ¢. We can use Proposition 3.2.3 and the
identity det(o)W(A) = W(o - A) to express the Weyl modules as sums of simple
modules. This is quite tedious but simple work so we will only do it for the first
summand in the formula. Recall that the two restricted p-alcoves are

Co={(a,b,c) e X(T)®R:-1<a—-b—-1<b—ca—c<p-—1}

and
Cy={(a,bc) eR*:p—1<a—-ca—-b<p—1;b—c<p—1}.
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So we are considering the Weyl-module W(a —2,b+ 1,¢+ 1). We can have the
following cases:

(1) a=b+1,c=b:
W(a—-2,b+1,c+1)=W(c—1,c+1,c+1)
=det(s))W(s1-(c—1,c+1,c+1))
=—-W(e,c,c+ 1) = —det(sg)W(sq - (¢,c,c+ 1))
=Wi(c,c,c+1),
so W(a—2,b+1,c+1)=0.
(2) a=b+1,c<b:
W(a—-2,b+1,c+1)=W(a—2,a,c+1)=det(s;))W(a—1,a—1,c+1)
= —Fla—1,bc+1)
because (a — 1,a — 1,¢+ 1) € Cy.
(3) a=b+2:
W(a—2,b+1,c+2)=W(b,b+1,c+1) =det(s))W(sy - (b,b+1,c+1))
=-W(bb+1,c+1),
so W(a—2,b+1,c¢+1)=0.
(4) a > b+ 3 (the generic case)
W(a—2,b+1,c+1)=F(a—2,b+1,c+1).

Note that in all of the first three cases, the weight (a,b,c) lies "close” to the
boundary of Cy. That is why we can consider case (4) as the generic one. Now we can
do completely analogous calculations for all six summands. Instead of giving these
calculations in detail we will list all cases which can occur by different numerical
relations between the parameters. We have the following possibilities:

(A) a>b+2,b>c+1,a —c <p—1 (the generic case):

Ry(a,b,c) =F(a—2,b+1,c+1)+ Flc4+p—2,a,b+1)
+Fb+p—2,c+pa)+Flc+2(p—1),b+p—1,a)
+Fla—1,b,ce+ 1)+ Flb+p—1,a—1,c+1)
+Flc+p—l,a—1,b+1)+F(a+p—2,c+p—1,0+1)
+Fb+p—1,c+p—1,a).

B) a>b+2,b>c+1l,a—c=p—1:

Ry(a,b,c) =F(a—2,b+1,c+1)+ F(b+p—2,c+p,a)
+ Flc+2(p—1),b+p—1,a)+ Fla—1,b,c+1)
+Fb+p—1l,a—1l,c+1)+F(c+p—1,a—1,b+1)
+Fla+p—2,c+p—1b+1)+Fb+p—1,c+p—1,a).
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(C)a>b+2b=c+la—c<p-—1:

Ry(a,b,c) =F(a—2,b+1,c+1)+ Flc4+p—2,a,b+1)
+Fle+2(p—1),b+p—1,a)+ Fla—1,b,c+1)
+Fb+p—l,a—1l,c+1)+F(c+p—1,a—1,b+1)
+Fla+p—2,c+p—1,b+1)+Fb+p—1,c+p—1,a).

D)a>b+2,b=c+1l,a—c=p—1:

Ry(a,b,¢) =F(a—2,b+1,c+ 1)+ F(c+2(p—1),b+p—1,a)
+ Fla—1,b,e+ 1)+ F(b+p—1,a—1,c+1)
+Flc+p—la—1,b+1)+Fla+p—2,c+p—1,b+1)
+Fb+p—1,c+p—1,a).

(E) a>b+2,b=ca—c<p-—1:

Ry(a,b,¢c) =F(a—2,b+1,c+ 1)+ F(c+p—2,a,b+1)
+Flc+2(p—1),b+p—1,a)+ Flb+p—1,a—1,c+1)
+Fla+p—2,c+p—1,b+1).

(F) a>b+2,b=ca—c=p—1:

Ry(a,b,c) =F(a—2,b+1,c+ 1)+ F(c+2(p—1),b+p—1,a)
+Fb+p—la—l,c+ 1)+ Fla+p—2,c+p—1,b+1).

(G) a=b+2,b>c+1l,a—c<p-—1:

Ry(a,b,c) =F(c+p—2,a,b+1)+ F(b+p—2,c+p,a)
+F(c+2(p—-1),b+p—1,a)+ F(a—1,b,c+1)
+Fb+p—1l,a—l,e+ 1)+ Flc+p—1,a—1,b+1)
+Fla+p—2,c+p—1b+1)+Fb+p—1,c+p—1,a).

(H a=b+2,b>c+1l,a—c=p—1:

Ry(a,b,c) =F(b+p—2,c+p,a)+ Flc+2(p—1),b+p—1,a)
+Fla—1,bce+ 1)+ F(b+p—1,a—1,c+1)
+Flc+p—1l,a—1,b+ 1)+ Fla+p—2,c+p—1,b+1)
+Fb+p—1,c+p—1,a).

() a=b+2,b=c+1l,a—c<p—1:
Ry(a,b,c) =F(c+p—2,a,b+ 1)+ F(c+2(p—1),b+p—1,a)
+Fla—1,bce+ 1)+ F(b+p—1,a—1,c+1)

+Flc+p—1l,a—1,b+1)+Fla+p—2,c+p—1,b+1)
+Fb+p—1,c+p—1,a).
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J)a=b+2b=c+1l,a—c=p—1:

Ry(a,b,c) =F(c+2(p—1),b+p—1,a)+ F(a—1,b,c+1)
+Fb+p—1l,a—1l,c+ 1)+ Flc+p—1,a—1,b+1)
+Fla+p—2,c+p—1,b+1)+Fb+p—1,c+p—1,a).

(K)a=b+2,b=ca—c<p-—1:

Ry(a,b,c) =F(c+p—2,a,b+ 1)+ F(c+2(p—1),b+p—1,a)
+F(b+p—1,a—1,c—|—1)+F(a—|—p—2,c+p—1,b—|—1).

(L) a=b+2b=c,a—c=p—1:

Ry(a,b,c) =F(c+2(p—1),b+p—1,a)+ F(b+p—1,a—1,c+1)
+Fla+p—2,c+p—1,b+1).

(M) a=b+1,b>c+1l,a—c<p-—1:

Ry(a,b,c) =F(c+p—2,a,b+1)+ F(b+p—2,c+p,a)
+ Flec+2(p—1),b+p—1La)+ Flb+p—1,a—1,c+1)
+Fla+p—2,c+p—1,b+1).

(N)a=b+1,b>c+1l,a—c=p—1:

Ry(a,b,c) =F(b+p—2,c+p,a)+ F(c+2(p—1),b+p—1,a)
+Fb+p—1l,a—l,c+ 1)+ Fla+p—2,c+p—1,b+1).

(O) a=b+1,b=c+1l,a—c<p-—1:

Ry(a,b,c) =F(c+p—2,a,b+1)+ F(c+2(p—1),b+p—1,a)
—|—F(b—|—p—1,a—1,c+1)—|—F(a—|—p—2,c—|—p—1,b—|—1).

(P)a=b+1,b=c+1l,a—c=p—1:

Ry(a,b,c) =F(c+2(p—1),b+p—1,a)+ F(b+p—1l,a—1,c+1)
+Fla+p—2,c+p—1,b+1).

Q) a=b+1,b=ca—c<p-—1:
Ry(a,b,c) =F(c+p—2,a,b+1)+ F(c+2(p—1),b+p—1,a).
(R) a=b+1,b=cia—c=p—1:

Ry(a,b,c) = F(c+2(p—1),b+p—1,a).
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Although this is all quite technical, the upshot is the following: The generic
case is case (A). In all other cases, the weight (a,b,c) lies close to the boundary
of Cy. The closer we move towards the boundary of the p-alcove Cj, the more
summands become 0. Also there is one summand which “survives® in any case,
namely F(c+2(p—1),b+p—1,a). This summand is connected to the character u =
(a,b, c) in a simple way: We have wou = (¢, b, a) and hence (¢c+2(p—1),b+p—1,a)
and wop induce the same character on T'(F,). More precisely, (¢c+2(p—1),b+p—1,a)
is the unique restricted weight, inducing the same character as wou on T'(F)).

Now, let us turn to the case (II) where a < b < ¢. We have the problem that the
weights occurring in the Weyl modules are not restricted anymore. We can solve
this by taking duals. Lemma 2.1 and Lemma 10.1 of [Her06] explicitly describe the
characters of the cuspidal representations R,,(x). This explicit description makes it
clear that the character of the dual of R, (x) is the character of R, (—pu). We shall
denote the dual by the superscript *. On the other hand, W(A)* = W (—wg\) by
[Jan87, 1T 2.13| and thus, the same is true for the simple modules. So we can derive
the decomposition into simple modules.

For example, we have in the case (A’) where b >a+2,¢c>b+1,c—a<p—1:

k

Ry(a,b,¢) = Ry(—a, —b, —c)
=(F(-a—2,-b+1,—c+ 1)+ F(—c+p—2,—a,—b+1)

+F(—b—i—p—2,—c+p,—a)+F(—c+2(p—1),—b+p—1,—@)
F(—a—1,-b,—c+ 1)+ F(-b+p—1,—a—1,—c+1)
F( c+p—1,—a—1,-b+1)+F(—a+p—2,—c+p—1,-b+1)
+F(=b+p—1,—c+p—1,—a))

=Flc-1,b-1,a+2)+F(b—1,a,c—p+2)

+ Fla,c—p,b—p+2)+ F(a,b—(p—1),c—2(p—1))

+ Fc—1,bya+ 1)+ Fc—1,a+1,b—(p—1))

+Fb—-1l,a+1l,c—(p—-1)+F0b—-1,c—(p—1),a—p+2)

+ F(a,c—(p—1),b—(p—1).

We can proceed in a completely analogous way in all other cases (which we shall
omit here) and obtain cases (B’)-(R’) in the obvious way, i.e. we interchange the
variables in each of the defining inequalities.

As it turns out we need to define two different shift maps depending on whether
we are in case (I) or (II). So let us define

F(a,b,c—1), if (a,b,c—1) € X (T),

0, if (a,b,c—1) ¢ X(T).
and

Y_(F(a,b,c)) = F(a,b—1,c—1), %f (a,b—1,c—1) € X{(T),

0, if (a,b—1,¢—1) ¢ X{(T).

As in the GLy-case one sees that the second part of the definition does not occur
applying the shift maps to R, () by going through the cases. Now we can apply
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the respective shift maps and consider the corresponding elements of GO(’Hél)).
The cases are discussed similarly. We will discuss examples so that all occurring
phenomena can be seen in these examples.

For example in case (A) this yields the following: For (i,j, k) € Z* let ¥ ju.1
be the character ¢, with A jx)(diag(ti,ta,t3)) = tithth. Then we get

ik D)

X—i—(Rw(a’ b, C)) - w(c,b,a—l),ﬂ) + ¢w(c,b,a—1),0 + ¢w2((},b,a—1),®
+ 7w/}(a—l,b,c),(b + ¢’w (a—1,b,c),0 + wa (a—1,b,c),0
+ Ya—26+1,0),0 T V@e—1,a,6),0 + V(o—1,c+1,0-1),0-

So, the summands in the first and the second line are the restrictions of the supersin-
gular modules defined by the tuples (Acpa-1),?) resp. (Aa—1,,),0) (and an action
of 7., which is not seen anymore after restricting to 7-[(()1)). Also these are the re-
strictions of the two simple supersingular 3-dimensional modules M (p).1, (p).ws (p))
and Mx_(p)-1.1_(p)w_(p)) Obtained by Grofe-Klonne’s functors. This follows imme-
dlately from the explicit description in Lemma 4.6.1. Note that it is however not
true that the supersinglil)ar modules given by Grofe-Klonne’s functors are contained
in indzginc[ ]Hilz 1ncH‘§f)f(X+(Rw(u))). This is due to the fact that 7,, does not

aff

operate by the determlnant of the Frobenius in Grofte-Klonne’s construction which
is true for our construction by definition. For the other three summands we cannot
give a similar interpretation. We have

o)

1)
)lnc[ ]H( 1) lnc ff <X+<R (u))) - 3M)\(Cyb,a_1),@,z + BMA(a—l,b,c)vm»z + st
aff

n
s

= 3M\ (p).11(p)2) T 3Ma_(p)-1,1-(p)2) T - -

where the dots symbolize the image of the three summands in the bottom line. In
the case (A’), the situation behaves completely analogously. Namely, we get

x,(Rw(a, b7 C)) = w(c—l,b—l,a),(i) + ¢w(6—1,b—1,a),0 + wa (c—1,b—1,a),0
+ ¢(a,b—1,c—1),@ + ¢w(a,b—l,c—l),@ + ¢w2(a,b—1,c—1),®
+ w(c—l,b—Z,a—‘rl),@ + wb—l,a—l,c),@ + w(a,c—Q,b),@'

Again, this contains the restrictions of the supersingular simple modules

Mox, (0),14 () w+ (0))

and
M (p)=1,1-(p) - ()}

we have

W, HY —_—
ind?yincz ]Z(lj}flncﬂ({;f(x (Ru(1)) = 3My ,, 4 oie +3Mag, o e+

= 3M, (p), 1. (p),2) T 3Mr_(p)~1,1_(p)2) T+ - -
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So, in the generic cases we obtain two supersingular simple three-dimensional
H-modules corresponding to each irreducible three-dimensional Galois represen-
tation. Note that we always have I = () in the generic cases. As for GLs, the cases
with nonempty I occur when p is close to the boundary of its p-alcove. An example
for this is the case (E) where b = ¢: We get

X+<Rw(a7 ba C)) - w(c,b,a—l),{sﬂ + 2/}(a—l,c,b),{sg} + 1/}(17,(1—1,0),@
+ Va—2p11,0),0 T V(e—1,a,)0-

Similar to the generic case, X+(m) contains all the restrictions of
M)‘(c,b,aﬂ),{sl},zi We have

~
M)‘(c,b,a—l)z{sl}’z - XA(c,b,a—l)v{sl} @ X)‘(a—l,c,b)’{SQ} @ X)‘(b,a—l,c,)’{s()}

as H((llf)f—modules. As the affine reflection sy cannot be “seen” by ’H[(]l), we obtain
the odd looking summand 9@ 4—1,)9. Again, the reductions of M, (p).1, (p)w-(0))
and M(x_(p)-1,1_(p)w_(p)) are all contained in xi(R,(a,b,c)). Note that this time
Moy, ()14 (p) s (p)) AN Mx_ ()11 (p - () coincide: They are given by (A (p) =
)‘(c,b,a—1)7]+< ) = {s1}) and ()\ ( )7 I-(p) = (Na—1b.), {52}). But now b = ¢ so
both those tuples are €y conjugate.

The only cases where the restrictions of the modules assigned to p do not all
occur in x4 (Ry(a,b,c)) resp. x_(Ry(a,b,c)) are the cases closest to the boundary,
namely (Q), (R); (Q’) and (R’). For example in case (R), we have

X+(Rw(a> b, C)) = F<C + 2( ) b+p—1 a)) = MA(c,b,a—1)7{31a52}
This is the restriction of one of the three summands of

Mx, (o)1 () w4 (0)) = MA_(0)~1,1- (0) w—(p))-

All other cases are treated similarly and no phenomena we have not discussed yet
occur. We summarize the results:

Theorem 5.3.1. Denote by

X+(Rw(a,b,c)) in case (I)

X+ (Ry(a, b, c)) == {X(W) in case (1I).

Then M, (p),1,.(p),2) and M_(p)-1,1_(p),z) are contained in the wvirtual module
de(l inc[z ]Hz“l) mCH‘Zlf)f (x+(Ry(a,b,c))). Their multiplicities are:
aff
e 3 in the cases (A), (B), (C), (D), (G), (H), (I), (J) and the corresponding

“nrime’-cases,

e 2 in the cases (E), (F), (K), (L), (M), (N), (O), (P) and the corresponding

“prime’-cases,
e 1 in the cases (Q), (R), (Q’) and (R’).

In particular, each supersingular irreducible HY -module is contained in one

il (X:I: (Rw(a’ bv C)))

1ndH<1)1nc[z]H(1) inc
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5.4 The generic Case for GL4

Let G = GL,, ¢ = p and p be an irreducible n-dimensional Galois representation
with corresponding w = (1,2,...,n) and u = (ay,...,a,). For the remainder of
this section, assume that y lies sufficiently deep in a p-alcove.

Lemma 5.4.1. Assume that pu lies sufficiently deep in Cy. Then F(wop+ (p—1)p)
occurs as a summand of R, ().

Proof. Here we use Proposition 3.5.3. Taking v = 0 and and ¢ = 1, we have to
show that

p—p T wo - (wop + (p—1)p — pp).

But we even have equality here. O

The cases where p cannot be chosen inside Cjy are more complicated. Without
changing the isomorphism-class of p, we may assume that a, is already minimal
among the a;. Further, there exists a 7 € Wy such 7p lies in Cjy. Assume again that
7 lies sufficiently deep in Cy. We have

Ry(p) = Ryyr1 (TH).

We will try to answer the question if R, (u) contains F(\) for some A\ € X;(7T)
which restricts to the same character of T'(F,) as wou. Up to X (T)"°, we can only
have A = wop + (p — 1) puyr—1. To use Proposition 3.5.3, we need to find v € X(T')
and o € Wy as in that proposition. For this set v := 7w wopu,r-14, and choose
o € Wy such that o(7p — pr) is dominant. As 7pu lies sufficiently deep in Cp,
o-(ti—p+ (Twr v — pr) is also dominant, because the difference is independent
of p. By Proposition 3.5.3, we have to show that

o (T —p+ (Twr™ v —pv) T wo - (A = pp).
We can at least show the following:

Lemma 5.4.2. There exists w € W, such that
W0 (T —p+ (Twr v — pr) = wp - (A — pp).

Proof. We define w as an element of Wy x X (7):

W = woe PPTPPwor o LeP gt

— epwo(pwo.rfl —p),r—lepuo_—l

1 1

= Ul r—tug =151
To show that @ lies in W),, we have to show wo(w — 1) puyr_ 1w, € @ and that means
that it suffices to show (w — 1)puer_yuw, € @- This is actually a general fact about
root data: For each x € X (T) and w € Wy, (w — 1)z € @, see e.g. Lemma 1.1.11

in [Bor09|. Hence, w € W,
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Now we show that w satisfies the equation from the claim. We have

PP Lpor L (T — p + TwT )

W0 (T —p+ (Twr My — pr) = wee
= wy - (Wopt + WowT ™'V — p + PPuyr-1 — Pp)
= wo * (Wopt + (P — 1) puyr—1 — pp)
=wo - (A = pp).

In the second line from the bottom, we have used that

-1 _ —
WoWT "V = P = Puwyr=lwyg = P = —Puwer—1-

O

Proposition 5.4.3. If G = GL4 and p lies sufficiently deep in a p-alcove, Ry (i)
contains F(X) with A = wop + (p — 1) pugr-1-

Proof. By the discussion before, we have to show that
o (T —p+ (Twr™ )y —pv) T wo - (A = pp).

By the previous lemma, it is enough to show that the p-alcove of the left hand-side
lies below the p-alcove of the right hand side with respect to 1. As pu lies sufficiently
deep in its p-alcove, we may replace the right hand side by o(7u — pr) without
changing its p-alcove. Because a4 is minimal among the a;, we get 7(4) = 4.

The case where 7 = 1 is Lemma 5.4.1. If 7 = 51, we get

A=wop + (p— 1) (Wa, + was)
and
wo - (A=pp) = p— (p— Dwowa; = p
= (a1, a2 = (p—1),a3 = (p—1),as = (p—1)) —p € Ca.
On the other hand, we get v = w,,, 0 = w and this leads to
o(tp —pv) = (as,a2 — p,ar — p,az — p) € Co 1 Co.

Analogous calculations yield the claim in the other cases: If 7 = s9,

o(tu—pr) € Cyt Cy 3wy - (A—pp).

If 7 = 518981,

o(tp—pr) € Cy T C5 2wy - (A —pp).
If 7 = 5189,

o(tp—prv) € Co 1 C5 3wy - (A —pp).
If 7 = s951,

o(tu—pr) € Cy 1t C1 3w+ (A—pp).
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It is now tentative to define shift maps in the following way: We define integers
for 7 >0
1, if T € Q)+
5j+1 = . _
0, ifra; €@

and 0 := 9, := (J,,...,01). Note that these 9; are exactly those from 4.6. We define

F(/j, - 57')7 lf//J - 67' S X1<T)

Xr(F(p)) = {07 it - 6, ¢ X0(T)

The following is an immediate consequence from the calculations of 4.6 and
Proposition 5.4.3:

Corollary 5.4.4. Assume G = GLy4, and that p lies sufficiently deep in a p-alcove
such that Ty is dominant. Then,

. d'H(l). H . Hfllf)f
m ngl)mc[z]ﬂfllf)fmcﬂén (XT(Rw(H)))

contains Mx, (p),14(p).2)-

It is however not true that x.(R,(x)) contains the restriction of Mo, (p),1. (p).2)-
This is shown by the following counterexample, Assume that 7 = s,. The restriction
of the associated module contains F'(A) with A\ = wwop + (p — 1) puwyr—1 + 0 — wd

which we will show not be contained in R, (1) = R,,—1(7p). Assume the contrary:
We have § = (0,1,0,1). and pyuwyr—1 = wa, which implies

wo - (A —=pp) = (a2 +1,a3 —p,as —p+2,a1 = 2p+ 1) — p € Cs.
By assumption, there exists 0 € Wy and v € X(7T) such that
o (T —p+ (rwr™ )y —pr) T wo - (A = pp),

so the left hand side must be contained in Cy, C; or Cs.

In the Cs-case we have to choose o such that oru = wowwop, ie. o =
wowwyT ', because otherwise, say for example s;0 = wowwyr ! we would have
for v = (11, 19, 13, 14):

510 - (Tp — p+ (Twr v — pv) = wo - (A — pp),
or explicitly
(a3—pratvs, as—prs+vy, as—pra+v—242, ay—pri+vy) = (as+1, ag—p, as—p+2, a;—2p+1).

For a; << p this implies v = (2,0,1,1) which implies again a3 = ay + 1 which
we can avoid by choosing a p further apart from the boundary of its p-alcove.
This way one sees that ¢ = wowwyr ! in the Cy-case and similarly one shows
that 0 = Sa, rayWowwer ! in the Ci-case and 0 = Su, oy tasSa; +asWoWWeT + in the
Cp-case. Let us go through these cases:
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Case 1: o (tpu—p+(twr™')v—pr) € Cy. In order for o+ (Tp—p+ (Twr ) —pr)
to be dominant, we have to choose v = (2,1,0,1) and we obtain

o-(tp—p+(rwr v —pv) = (az+2,a3—p, as—(p—1), a1 —2p+1)—p # wo-(A—pp).

Case 2: o+ (Tpu—p+(rwr™')v—pv) € Cy. In order for o+ (Tp—p+ (Twr ) —pr)
to be dominant, we have to choose v = (2,1, 1,0) and we obtain

o (tu—p+(Twr Hv—pr) = (a3 +2,a3—p+1,a5— (p—1), a1 —2p) — p # wo-(A—pp).

Case 3: o+ (Tpu—p+(Twr™Y)v—pv) € Cy. In order for o+ (Tp—p+(Twr=1)v—pr)
to be dominant, we have to choose v = 0 and we obtain

o-(tp—p+ (Twr v —pv) = (a2 + p,as,as,a1 — p) — p # wo - (A — pp).
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