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Eulerian polynomials of spherical type

Arjeh M. Cohen
(Communicated by Linus Kramer)

Abstract. The Eulerian polynomial of a finite Coxeter system (W, S) of rank n records, for
each k € {1,...,n}, the number of elements w € W with an ascent set {s € S | l(ws) > l(w)}
of size k, where [(w) denotes the length of w with respect to S. The classical Eulerian
polynomial occurs when the Coxeter group has type An,, so W is the symmetric group on
n + 1 letters. Victor Reiner gave a formula for arbitrary Eulerian polynomials and showed
how to compute them in the classical cases. In this note, we compute the Eulerian polynomial
for any spherical type.

Let M be a Coxeter matrix of rank n. This means M is a symmetric n X n
matrix with entries in N such that M;; =1 and M;; > 1if ¢ # j. We also refer
to M as a diagram, that is, an edge-labeled graph with nodes {1,...,n} and
edge {i,7} labeled M;; whenever M;; > 2. Our setting will involve Coxeter
groups as introduced in [3]. Accordingly, we let (W,S) be a Coxeter system
of type M. Then {1,...,n} and the set S = {s1,..., s, } of simple reflections
are in bijective correspondence and we will often identify the two, so S can be
viewed as the set of nodes of M. We also write W (M) instead of W to record
the dependence on M. If W (M) is finite, then M is called spherical. The
connected spherical diagrams M are A, (n > 1), B,, (n >2), D, (n >4), E,
(n=6,7,8), F4, Go, H, (n=3,4), and Igm) (m > 3). The double occurrences
in this list are Ay = 153), Bsy = Ig4), and Gy = Iéﬁ). The nodes of these diagrams
are labeled as in [3]. In this note, we assume that M is spherical.

Two great assets of the study of Coxeter groups are the reflection representa-
tion p and the root system ®. Both are related to the vector space V = ®;Ra;
with formal basis o; (1 < ¢ < n) supplied with the symmetric bilinear form
(+,-) determined by

(i, o) = —2cos(2m /M)

for 1 < 4,5 < n. The reflection representation of W is the group homomor-
phism p from W to the orthogonal group on V' with respect to (-,-) for which

p(s)ozj =05 = (O‘jv as)as,

where j and s are nodes of M. This representation is faithful.
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As M is spherical, (-,-) is positive definite, so W may be viewed as a finite
real orthogonal group in n dimensions. Now ® = J,.q Wa is a root system
in the sense of [6]; its members are called roots. The elements «; for s € S are
called the simple roots. In the case of a Weyl group, a root system in the sense
of [3] can be obtained from ® by adjusting the length of certain roots. The set
of positive roots of @ is defined to be @ = & N (BsR>pa;). It is well known
that ® is the disjoint union of ®* and —®.

For j € {1,...,n}, define p; to be the number of elements w € W such
that {s € S | p(w)as € T} has size j. This number is related to the descent
statistics discussed in [2, 10]. The Eulerian polynomial of type M is

P(M,t)=> p;t’.
§=0

If M = A,, then, W = ¥, .1, the symmetric group on n + 1 letters, and,
as a W-set, ® can be identified with the set of distinct ordered pairs (4, j) for
1<4,j <n+1in such a way that the simple roots are the pairs (i,7 4+ 1) for
1 <4 < n, and the positive roots are all (i, j) with ¢ < j. In this case, p; is the
number of 7 € ¥,,41 such that 7(¢) < w(i + 1).

The coefficient of ¢* in the polynomial P(M,1 + t) equals the number of
i-dimensional faces of the polytope (permutahedron) associated to M. The
corresponding toric variety has only even-dimensional Betti numbers; these are
the coeflicients of P(M,t). The signature of the toric variety equals P(M, —1);
see [8, 1].

I am grateful to Prof. Hirzebruch for drawing my attention to this poly-
nomial and his inspiring lecture at the Killing meeting in Miinster, December
7, 2007, where he posed the problem of computing the Eulerian polynomial
for M = Eg. The results for Coxeter groups of classical types are known and
appear in Theorem 4 below; the results for the exceptional spherical types are
given in Table 1. We will derive all of these results from the following expres-
sion for the Eulerian polynomial in terms of standard parabolic subgroups of
W. Here a standard parabolic subgroup of W is a subgroup W; generated by
a subset J of S. The formula is a special case of [9, Theorem 1], of which we
give a proof that does not essentially differ from the original.

Proposition 1. The Eulerian polynomial for spherical type M is determined
by
Wit —1)Ix

POLY = 3 Wkl

KCS
where (W, S) is the Cozeter system of type M.

Proof. For J C S, define p; to be the number of elements w € W such that
{seS|plw)as € T} =J. For w € W, let [(w) be the minimum length ¢ of
an expression of w as a product 71 - - - r4 of members r; of S. The proof is based
on two facts, which are well known in Coxeter group theory (cf. [3, 5, 7]). The
first is the fact that p(w)a, € T is equivalent to I(ws) > I(w). The second is
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the fact that, for given J C S, the set of elements w € W with l(ws) > (w)
for each s € J is a complete set of distinguished coset representatives of Wy,
the subgroup of W generated by all members of J. In particular, its size is
|[W/W | and so, by inclusion/exclusion,

Py = Z (—1)\K\+|J||W/WK| for each J C .
KDJ

As a consequence,

P(M,t) = Zth\J\ — Z Z ‘K‘+|J||W/WK|HJ‘

JCS JCS KDJ
= S )Wy Y (-
KCS JCK

= 3 (D)WW |1 — 1)K
KCS

= 3 (W wl(e - 1)/
KCS

Here are some immediate observations on these polynomials.

Lemma 2. The Eulerian polynomial P(M,t) satisfies the following properties.
(i) P(M,1) = |W| and po = 1.
(i) P(Aq,t) =1+1.
(iii) PAS™ 1) = 1+ (2m — 2)t + 12,
(i) If M s the disjoint and disconnected union of the diagrams My and Ms
then P(M, t) = P(Ml,t)P(MQ,t)
(v) P(M,t) =t"P(M,t1).

Proof. (i) is clear from the definition. (ii) and (iii) follow directly from Propo-
sition 1. (iv) follows from the decompositions W (M) = W (M7) x W (Ms) and
O = P UPy. (v) is equivalent to p; = p,—; for each j € {0,...,n}, which
follows from left multiplication by the longest element wq. For, p(w)as € T
if and only if p(wow)as € —®, so, for each J C S, left multiplication by
wo gives a bijection between {w € W | {s € S | p(w)as € T} = J} and
{fweW|{seS|pw)a, e ®T} =5\ J}, proving p; = pg\s. O

If we apply Proposition 1 directly, we need to consider all 2" subdiagrams
of M. The following corollary of Proposition 1 reduces that number to the
number of connected components on a given node of M. Fix k € S and let
K(M, k) denote the collection of the empty set and the connected subsets of S
containing k. For I € K(M, k), write N(I) for the set of elements of S equal to
or connected with a member of I, with the understanding that N (@) = {k}.
For J C S, we write M \ J to denote the diagram induced by M on S\ J.
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Corollary 3. Let M be a spherical Cozxeter diagram and (W,S) a Cozeter
system. Then, for each k € S,

— 1)l
pory= Y VOZDT oo ney, o).
TeR(M,k) Wil Wsvwa|

Proof. Using Proposition 1, we first sum over the connected components I of
a subdiagram containing the node k and next over possible completions of I
to a subset J of S. If I is a nonempty member of (M, k), then, taking the
sum over all subsets of S of which I is a connected component yields precisely
the summand for I in the sum in the corollary. For I = &, the possible
completions are the subsets of S\ {k}. This explains the choice N(@) = {k}
and the summand for that value of N.

The following result gives efficient recursion formulas for the classical Weyl
groups. Part (iii) is due to Stembridge; cf. [10, Section 4].

Theorem 4. The polynomials P(M,t) for M one of A, (n ,
D, (n > 4) satisfy the following recursion, where P(A_1,t) = P(Ap,t) =

PO =) (?jf)zsmn_i_l,t)(t — 1),

IV
=
w
- 3
Y,
>

n In ]
P(B,,t) = 2" | P(Ap—im1, ) (E — 1)"
)= 32 () Pna. e 1)

P(D,,t) = P(B,,t) — 2" 'ntP(A, _»,t)
Proof. We apply Corollary 3. In all cases, the summation index i equals the
size of the connected component in K(M, n) whose induced subdiagram in M
is a straight path starting at n directed towards 1; it has type A;. For A,,, this
gives

WAt — 1)

(W(A)[ - [W(An—i-1)]

(n >P n—i— 1; t_l)
14+

(t —1)¢ ‘
Bnat Z |W ( o i_1)|P(An7zflat)

= ; 2"~ (ZL) P(Ap_i_1,t)(t — 1)".

As for D,,, we set aside the members @ and {n} of K(D,,,n); the corresponding
summands appear separately in the summation below. The summation index
J (3 < j < n) equals the size of the component in IC(D,,,n) distinct from the

P(A,,t) P(A,_;_1,t)

- 1

Il
=]

3

For B,,, we find
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straight path towards 1; it contains n — 2 and n — 1 and has type D;. Of
Lemma 2, we use (ii) for P(Ay,t) and (iv) for P(A,_3Aq,t).

__[w(D,)| (WDn)[(t — 1)
PDn,t) = gra— 5P A1) + s Ay An-shn )
WOl -1 |
! ; [W(A:)|- |W(An7172)|P(An_Z_2,t)
L WD)l 1Y |
+ 32:; |W(DJ)| . |W(An,j71)|P(An—J—1,t)

=2""1P(A, 1, t) + 2772 (Z) (#* = 1)P(An_s,1)
S (7 Yo rn
+Zwﬂ<)nnp%mqﬁ

We equate the two summations as P(A,,_1,t) and P(B,,,t) up to some scalars
and a few missing terms, as follows. By compensating for the i =0 and i = 1
terms, we find that the first summation, over i, contributes

—2"—1nP(An2,t)—2"_1(T2L) (t = Dp(An—s,t) + 2" P(An1,t),

and, by compensating for j = 0,1, 2, we find that the last summation, over 7,
contributes

—2"P(Ap_1,t) — 2" n(t — 1)P(A,_a,1)
—n—2 <;‘> (t —1)2P(A,_3,t) + P(By,t).

Substituting these contributions for the summations in the above expression
for P(D,,t), we find

P(D,,t) =2""'P(A,_1,t) +2" 2 <Z> (t* = 1)P(A,_3,t)
"L P(Ay g, t) — 27 <Z> (t — 1)p(An_s, )
+ 2" P(A, 1, t) = 2"P(A,_1,t) — 2" n(t — 1)P(A,_2,1)

—gn—2 <’2‘> (t = 1)2P(Ap_s,t) + P(Bpn, 1)

= —2""'ntP(A,_a,t) + P(B,,1).

Miinster Journal of Mathematics VoL. 1 (2008), 1-8



6 ARJEH M. COHEN

TABLE 1. Eulerian polynomials of non-classical connected types

M | P(M,1)

Hs | 1+ 59t +59¢2 + 3

F, | 14 236t + 678t% + 236t3 + t*

Hy | 1+ 1316t + 45662 + 1316¢° + t*

E¢ | 1+ 1272t 4+ 12183t% + 249283 + 12183t* + 12725 4 ¢6

E; | 14 17635t + 309969¢% + 1123915¢3 + 1123915t 4+ 309969t°
+17635t5 + ¢7

Eg | 1+ 881752t + 283363482 4 169022824t3 + 300247750t4

+ 1690228245 + 2833634815 + 881752t7 + ¢°

As Go = Igﬁ) has been dealt with by Lemma 2(iii), it remains to consider
the Coxeter diagram on non-classical types and rank at least 3.

Theorem 5. For connected non-classical Coxeter diagrams M of rank n > 3,
the polynomials P(M,t) are as in Table 1.

Proof. This follows from a systematic application of Corollary 3. For instance,
for Eg, with & = 6, we find nine components in K(Eg, 6), and compute

51840 51840
P(Eg,t) = MP(D&U + TOP(A;;,t)(t -1)
51840 51840
+ 5 P(Ai A2, )t = 1)° + — =P (A1)t — 1)°
51840 51840
et -1 4 b -1 5
+ 120 (t ) 720 (t )
51840 51840 51840
22 p(A A 2T 1) 22 )8
+ g0 PALOE 1) Tog = D7+ gt D

=1+ 1272t + 12183t% + 249283 + 12183t* + 1272t° + 6.

The polynomial P(Hs, ) can also be determined directly from Lemma 2(i), (v).
O
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