
Münster J. of Math. 8 (2015), 169–179 Münster Journal of Mathematics

DOI 10.17879/65219675730
urn:nbn:de:hbz:6-65219676099

c© Münster J. of Math. 2015

The de Rham cohomology of

Drinfeld’s half space

Sascha Orlik

(Communicated by Peter Schneider)

Abstract. Let X ⊂ Pd
K

be Drinfeld’s half space over a p-adic field K. The de Rham
cohomology of X was first computed by Schneider and Stuhler [20]. Afterwards there were
given different proofs by Alon, de Shalit, Iovita and Spiess [1, 5, 15]. This paper presents
yet another approach for the determination of these invariants by analyzing the de Rham

complex of X from the viewpoint of results given in [17, 18]. Moreover, we treat as a
generalization the dual BGG complex of a given algebraic representation in the sense of
Faltings [7] respectively Schneider [19].

1. Introduction

Let p be a prime number and let K be a finite extension of the field of p-adic
numbers Qp. We denote by

X = X
(d+1)
K = Pd

K \
⋃

H Kd+1

P(H)

(the complement of all K-rational hyperplanes in projective space) Drinfeld’s
half space [6] of dimension d ≥ 1 over K. It is a rigid analytic variety over K
which is equipped with an action of the p-adic Lie group G = GLd+1(K). In
[20] Schneider and Stuhler determined the cohomology of X for any “good”
cohomology theory (e.g. the étale and the de Rham cohomology) as G-rep-
resentations. Here they make only use of the “good” properties as homotopy
invariance, existence of a product structure etc. It turns out that the de Rham
cohomology is given by

(1) H∗
dR(X ) =

d
⊕

i=0

HomK(vGP(d+1−i,1,...,1)
,K)[−i].

Here P(d+1−i,1,...,1) is the (lower) standard parabolic subgroup of G which cor-
responds to the decomposition (d+1− i, 1, . . . , 1) of d+1. Further for a para-
bolic subgroup P ⊂ G, the smooth generalized Steinberg representation vGP is
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the unique irreducible quotient of the smooth unnormalized induced represen-
tation iGP = indGP (K) with respect to the trivial P -representation [3, 4]. A few
years later Alon, de Shalit, Iovita and Spiess [1, 5, 15] gave different proofs of
this result by relating differential forms on X with harmonic cochains on the
Bruhat–Tits building of G and considering logarithmic forms, respectively.

In this short notice we explain how we can determine the de Rham coho-
mology of X from its de Rham complex

(2) Ω•(X ) : 0 → O(X ) → Ω1(X ) → · · · → Ωd(X ) → 0

by applying some recent results given in [17, 18]. Here for i = 0, . . . , d, the
expression Ωi(X ) = H0(X ,Ωi) is the space of X -valued sections of the usual
homogeneous vector bundle Ωi on projective space Pd

K . Further the de Rham
cohomology of X is the ordinary homology of the above complex since X is a
Stein space. In contrast to the generalized Steinberg representations vGP the
contributions Ωi(X ) in the de Rham complex are much bigger objects. Indeed
they are reflexive K-Fréchet spaces with a continuous G-action [22]. Their
strong duals Ωi(X )′, i = 0, . . . , d, (i.e., the K-vector space of continuous linear
forms equipped with the strong topology of bounded convergence) are locally
analytic G-representations in the sense of Schneider and Teitelbaum [21]. More
generally, the same holds true for arbitrary homogeneous vector bundles on PK .
In [17] we constructed, for any such homogeneous vector bundle E , a decreasing
filtration by closed G-stable subspaces

(3) E(X )0 ⊃ E(X )1 ⊃ · · · ⊃ E(X )d−1 ⊃ E(X )d = H0(Pd, E)

on E(X )0 = E(X ). As we will see in the next section the filtration behaves
functorially in E . Hence we get a filtered de Rham complex

(4)
(

0 → O(X )j → Ω1(X )j → · · · → Ωd(X )j → 0
)

j=0,...,d
.

In this paper we analyze its induced spectral sequence

Ep,q
0 = grp(Ωp+q(X )) ⇒ Hp+q(Ω•(X )),

cp. [10]. In the case of d = 2 this was also carried out by Schraen [23]. The
main theorem of this paper is the following result.

Theorem 1.1. The spectral sequence E0 attached to the filtered de Rham

complex (4) degenerates at E1 and yields the cohomology formula (1).

In the final section we replace the de Rham complex by the dual BGG
complex attached to an algebraic representation in the sense of Faltings [7, 8]
respectively Schneider [19]. More precisely, let λ ∈ Zd+1 be a dominant weight
with corresponding irreducible algebraic representation V (λ). Then we con-
sider the complex

0 → Eλ(X ) → Ew1·λ(X ) → · · · → Ewd·λ(X ) → 0,

where the Ewi·λ are certain homogeneous vector bundles on Pd
K depending

on the weight wi · λ (for a precise description we refer to the final section).
Schneider [19] proved that it is quasi-isomorphic to the complex Ω•(X )⊗V (λ).
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It coincides with the de Rham complex (2) for λ = 0. In particular, the deter-
mination of the homology of E•·λ(X ) is not a surprising issue. Nevertheless,
we get with the same proof:

Theorem 1.2. Let λ ∈ X+. Then the spectral sequence E0 attached to the

attached filtered complex degenerates at E1 and one has

H∗(E•·λ(X )) =
d

⊕

i=0

HomK(vGP(d+1−i,1,...,1)
, V (λ))[−i].

2. The proof of Theorem 1.1

We begin by recalling some terminology used in [17]. The following lines
are an extract of [17, Section 1].

We consider the action of G on projection space Pd
K given by

g · [q0 : · · · : qd] := [q0 : · · · : qd]g
−1.

We fix a homogeneous vector bundle E on Pd
K and let g = LieG be the Lie

algebra of G. Then E is naturally a g-module, i.e., there is a homomorphism
of Lie algebras g → End(E) which extends to the universal enveloping algebra
U(g). Fix an integer 0 ≤ j ≤ d− 1 and let

P
j
K = V (Xj+1, . . . , Xd) ⊂ Pd

K

be the closed K-subvariety defined by the vanishing of the coordinate func-
tions Xj+1, . . . , Xd. Let Pj+1 = P(j+1,d−j) ⊂ G be the (lower) standard-
parabolic subgroup attached to the decomposition (j + 1, d− j) of d+ 1. It is

clearly the stabilizer of Pj
K under the above action. Both the Zariski cohomol-

ogy H∗(Pd
K \ Pj

k, E) and the algebraic local cohomology H∗
P
j

K

(Pd
K , E) are thus

equipped with an action of the semi-direct product P(j+1,d−j) ⋉ U(g). Here
the semi-direct product is as usual induced by the adjoint action of P(j+1,d−j)

on g. Further the natural long exact sequence

· · · → Hi−1(Pd
K \ Pj

K , E) → Hi
Pj
K

(Pd
K , E)(5)

→ Hi(Pd
K , E) → Hi(Pd

K \ Pj
K , E) → · · ·

is equivariant with respect to this action. By general arguments in local coho-
mology theory [12], one deduces that

(6) Hi
Pj
K

(Pd
K , E) =

{

0 for i < d− j,

Hi(Pd
K , E) for i > d− j.

In the case i = d− j, we have thus an exact sequence

0 → Hd−j−1(Pd
K , E) → Hd−j−1(Pd

K \ Pj
K , E)

→ Hd−j

Pj
K

(Pd
K , E) → Hd−j(Pd

K , E) → 0.
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We set

H̃d−j

Pj
K

(Pd
K , E) := ker

(

Hd−j

Pj
K

(Pd
K , E) → Hd−j(Pd

K , E)
)

(7)

∼= coker
(

Hd−j−1(Pd
K , E) → Hd−j−1(Pd

K \ Pj
K , E)

)

which is consequently a P(j+1,d−j) ⋉ U(g)-module.
For an arbitrary parabolic subgroup P ⊂ G, let Op be the full subcategory

of the category O (in the sense of Bernstein, Gelfand, Gelfand [2]) consisting
of U(g)-modules of type p = LieP . We let Op

alg be the full subcategory of Op

given by objects M such that all p-representations appearing in M are induced
by finite-dimensional algebraic P -representations, cp. [18].

Lemma 2.1. The U(g)-module H̃d−j

Pj
K

(Pd
K , E) lies in the category O

p(j+1,d−j)

alg .

Proof. This is an easy consequence of [17, Lem. 1.2.1] which states the ex-
istence of a finite-dimensional algebraic P(j+1,d−j)-module which generates
H̃d−j

Pj
K

(Pd
K , E) as U(g)-module. �

The next statement is the main result of [17]. For its formulation we need

some more notation. Denote by Repℓa
K (G) the category of locally analytic

G-representations with coefficients in K. For a parabolic subgroup P ⊂ G, let

IndGP : RepℓaK (P ) → Repℓa
K (G)

be the locally analytic induction functor [9]. Let Std−j = v
GLd−j

B be the smooth
Steinberg representation of GLd−j(K), j = 0, . . . , d. We consider Std−j as a
representation of P(j+1,d−j) via the trivial action of the unipotent radical of
P(j+1,d−j) and the factor GLj+1(K) ⊂ L(j+1,d−j), respectively. We equip Std−j

with the finest locally convex topology so that it becomes a locally analytic
P -representation [21]. Thus for any algebraic representation N of P(j+1,d−j),
the tensor product N⊗Std−j is a locally analytic representation. In particular,
this applies to the G-representation Hd−j(Pd

K , E)′ ⊗ vGP(j+1,1,...,1)
which we also

denote by vGP(j+1,1,...,1)
(Hd−j(Pd

K , E)′).

Theorem 2.2. For j = 0, . . . , d − 1, there are extensions of locally analytic

G-representations

0 → vGP(j+1,1,...,1)
(Hd−j(Pd

K , E)′) → (E(X )j/E(X)j+1)′ → IndGPj+1
(U ′

j)
dj → 0.

Proof. This is [17, Thm. 1]. �

Here the Pj+1-representation U ′
j is a tensor product N ′

j ⊗ Std−j of an alge-

braic Pj+1-representation N ′
j and Std−j. The symbol dj indicates a system of

differential equations depending on Nj . Here the representation Nj is charac-
terized by the property that it generates the kernel of the natural homomor-

phism Hd−j

Pj
K

(Pd
K , E) → Hd−j(Pd

K , E) as a module with respect to U(g).

This is exactly the starting point of the main construction in [18]. In fact,

the locally analytic G-representation IndGPj+1
(U ′

j)
dj above can be characterized

Münster Journal of Mathematics Vol. 8 (2015), 169–179
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as the image of the object H̃d−j

Pj
K

(Pd
K , E)× Std−j under a functor

FG
Pj+1

: Opj+1

alg × Rep∞K (Lj+1) → RepℓaK (G),

i.e.
IndGPj+1

(U ′
j)

dj = FG
Pj+1

(H̃d−j

P
j

K

(Pd
K , E), Std−j).

Here Rep∞K (Lj+1) is the category of smooth Lj+1-representations with coeffi-
cients over K.

Let us briefly recall the definition of this functor for an arbitrary parabolic
subgroup P ⊂ G with Levi decomposition P = L · U . Let M be an object of
Op

alg. Then there is a surjective map

φ : U(g)⊗U(p) W → M

for some finite-dimensional algebraic P -representation W ⊂ M . Let V be a
smooth L-representation. We consider V via the trivial action of U as a P -
representation. As explained above the tensor product representationW ′⊗KV
(where W ′ is the dual of W ) is a locally analytic P -representation. Then

FG
P (M,V ) = IndGP (W

′ ⊗K V )d

denotes the subset of functions f ∈ IndGP (W
′ ⊗K V ) which are killed by the

submodule d = ker(φ). In [18] it is shown that this subset is a well-defined G-

stable closed subspace of IndGP (W
′⊗K V ) and has therefore a natural structure

of a locally analytic G-representation. The resulting functor is contravariant in
the first and covariant in the second variable. It is proved in [18, Prop. 4.10 a]
that FG

P is exact in both arguments.
Now we come to the functoriality aspect concerning the filtration (3) men-

tioned in the introduction.

Lemma 2.3. Let f : E → F be a homomorphism of homogeneous vector

bundles on Pd
K . Then f is compatible with the filtrations, i.e., f induces G-

equivariant homomorphisms E(X )i → F(X )i, i ≥ 0.

Proof. The definition of the filtration involves only the geometry of X (being
the complement of a hyperplane arrangement) and not the homogeneous vector
bundle itself. In fact, the K-Fréchet space E(X ) = H0(X , E) appears in an
exact sequence

0 → H0(Pd
K , E) → H0(X , E) → H1

Y(P
d
K , E) → H1(Pd

K , E) → 0.

We consider the K-Fréchet space H1
Y(P

d
K , E), where Y ⊂ Pd

K is the “closed”
complement of X in Pd

K . The filtration is induced (by taking the preimage)
by a similar one on H1

Y(P
d
K , E) which we briefly review. Here all geometric

objects are considered as pseudo-adic spaces in the sense of [14].
Let {e0, . . . , ed} be the standard basis of V = Kd+1 and let ∆ be the

standard basis of simple roots with respect to the Borel subgroup of lower

triangular matrices. For any αi ∈ ∆, put Vαi
= Vi =

⊕i
j=0 K · ej and set

Yαi
= Yi = P(Vi). For any subset I ⊂ ∆ with ∆ \ I = {αi1 < · · · < αir}, let

YI = Yαi1
= P(Vi1 ). Furthermore, let PI be the lower parabolic subgroup of G,

Münster Journal of Mathematics Vol. 8 (2015), 169–179
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such that I coincides with the set of simple roots appearing in the Levi factor
of PI . Then gYI is a closed subset of Y and we denote by Φg,I : gYI →֒ Y
the corresponding embedding. Let Z be the constant sheaf on Y and set
Zg,I := (Φg,I)∗(Φ

∗
g,I(Z)). Then

∏′

g∈G/PI

Zg,I ⊂
∏

g∈G/PI

Zg,I

denotes the subsheaf of locally constant sections with respect to the topological
space G/PI . In [17, §2.1] we proved that there is an acyclic resolution

0 → Z →
⊕

I⊂∆
|∆\I|=1

∏′

g∈G/PI

Zg,I →
⊕

I⊂∆
|∆\I|=2

∏′

g∈G/PI

Zg,I

→ · · · →
⊕

I⊂∆
|∆\I|=d−1

∏′

g∈G/PI

Zg,I →
∏′

g∈G/P∅

Zg,∅ → 0

of the constant sheaf Z on Y. Let i : Y →֒ Pd
K be the closed immersion. By

applying the functor Hom(i∗(− ), E) to this complex, we get a spectral sequence
converging to H1

Y(P
d
K , E). Finally, the filtration on H1

Y(P
d
K , E) is just the one

induced by this spectral sequence. It follows now easily from the construction
that f is compatible with the filtrations on E(X ) and F(X ). �

The de Rham complex (2) together with Lemma 2.3 induces complexes

0 → O(X )j/O(X )j+1 → Ω1(X )j/Ω1(X )j+1 → · · · → Ωd(X )j/Ωd(X )j+1 → 0,

j = 0, . . . , d − 1, which form just the E0-term of the spectral sequence at-
tached to the filtered de Rham complex (4). Apart from the expressions
vGP(j+1,1,...,1)

(Hd−j(Pd
K ,Ωi)′), i = 0, . . . , d, appearing in Theorem 2.2, this com-

plex coincides by what we observed above with the dual of the complex

0 → FG
Pj+1

(H̃d−j

Pj
K

(Pd
K ,Ωd), Std−j)

→ · · · → FG
Pj+1

(H̃d−j

Pj
K

(Pd
K ,Ω1), Std−j) → FG

Pj+1
(H̃d−j

Pj
K

(Pd
K ,O), Std−j) → 0.

Proposition 2.4. The above complex is acyclic.

Proof. By the exactness of the functor FG
P in the first entry it suffices to prove

that the complex

0 → H̃d−j

P
j

K

(Pd
K ,O) → H̃d−j

P
j

K

(Pd
K ,Ω1) → · · · → H̃d−j

P
j

K

(Pd
K ,Ωd) → 0

of g-modules is acyclic. Hence we have reduced the whole issue to a computa-
tion in coherent cohomology of projective space. Set

V = Pd
K \ Pj

K =

d
⋃

k=j+1

D(Tk),

Münster Journal of Mathematics Vol. 8 (2015), 169–179
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where we denote as usual by T0, . . . , Td the homogeneous coordinate functions
on Ad+1

K . Then by identity (7) we have the description

H̃d−j

Pj
K

(Pd
K ,Ωi) ∼= coker

(

Hd−j−1(Pd
K ,Ωi) → Hd−j−1(V,Ωi)

)

for all i ≥ 0. On the other hand, we have the following well-known chain of
identities:

(8) K = H0(Pd
K ,O) = H1(Pd

K ,Ω1) = · · · = Hd(Pd
K ,Ωd),

cp. [13]. All other cohomology groups vanish. Therefore it is enough to prove
that the homology in degree d− j − 1 of the complex

0 → Hd−j−1(V,O) → Hd−j−1(V,Ω1) → · · · → Hd−j−1(V,Ωd) → 0

induces Hd−j−1(Pd
K ,Ωd−j−1) = K and vanishes elsewhere. For this issue, we

consider the double complex

d
⊕

k=j+1

Ωd(D(Tk)) //
⊕

j+1≤k<l≤d

Ωd(D(Tk) ∩D(Tl)) // · · · // Ωd
( d

⋂

k=j+1

D(Tk)
)

...

OO

...

OO

...

OO

d
⊕

k=j+1

Ωi(D(Tk)) //

OO

⊕

j+1≤k<l≤d

Ωi(D(Tk) ∩D(Tl)) //

OO

· · · // Ωi
( d

⋂

k=j+1

D(Tk)
)

OO

...

OO

...

OO

...

OO

d
⊕

k=j+1

Ω1(D(Tk)) //

OO

⊕

j+1≤k<l≤d

Ω1(D(Tk) ∩D(Tl)) //

OO

· · · // Ω1
( d

⋂

k=j+1

D(Tk)
)

OO

d
⊕

k=j+1

O(D(Tk)) //

OO

⊕

j+1≤k<l≤d

O(D(Tk) ∩D(Tl)) //

OO

· · · // O
( d

⋂

k=j+1

D(Tk)
)

.

OO

whose total complex gives rise to the de Rham cohomology of V , cp. [11]. Since
Hk
Pj
K

(Pd
K ,Ωi) = 0 for all k < d− j by identity (6), we see that

Hk(V,Ωi) = Hk(Pd,Ωi)

for all such indices k. Evaluating the double complex along the horizontal
lines, we get thus the following E1-term:

Münster Journal of Mathematics Vol. 8 (2015), 169–179
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0 // 0 // · · · // 0 // Hd−j−1(V,Ωd)

...

OO

...

OO

...

OO

...

OO

0 //

OO

0 //

OO

· · · // K //

OO

Hd−j−1(V,Ωd−j−2)

OO

...

OO

...

OO

...

OO

...

OO

0 //

OO

K //

OO

· · · // 0 //

OO

Hd−j−1(V,Ω1)

OO

K //

OO

0 //

OO

· · · // 0 //

OO

Hd−j−1(V,O).

OO

But the de Rham cohomology of V is easily computed in another way. In
fact, using the comparison isomorphism with Betti cohomology [11] and the
long exact cohomology sequence for constant coefficients (5), we see that

H∗
dR(V ) =

d−j−1
⊕

i=0

K[−2i].

The claim follows now easily. �

For the proof of Theorem 1.1, we recall that

Ep,q
0 = grp(Ωp+q(X )) ⇒ Hp+q(Ω•(X ))

is the induced spectral sequence of our filtered de Rham complex.

Corollary 2.5. The E1-term of the above spectral sequence has the shape

Ep,q
1 =

{

HomK(vGP(d+1−p,1,...,1)
,K) for q = 0,

0 for q 6= 0

for p ≥ 0. Hence it degenerates at E1 and we get formula (1).

This finishes the proof of Theorem 1.1.

3. A generalization: The dual BGG complex

In this final section we consider a generalization of what we have done before.
We replace the de Rham complex (2) by the dual BGG complex attached to
an algebraic representation in the sense of Faltings [7, 8] respectively Schneider
[19]. For introducing this complex we have to introduce some more notation.

Let G = GLd+1 considered as a linear algebraic group over K. Let T ⊂ G

be the diagonal torus and let B ⊂ G be the Borel subgroup of lower triangular
matrices. Denote by Φ ⊂ X∗(T) the corresponding set of roots of G. Let

Münster Journal of Mathematics Vol. 8 (2015), 169–179
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B+ ⊂ G the Borel subgroup of upper triangular matrices and let ∆+ ⊂ Φ be
the set of simple roots with respect to B+. We consider the set

X+ = {λ ∈ X∗(T) | (λ, α∨) ≥ 0 for all α ∈ ∆+}

of dominant weights in X∗(T). For λ ∈ X+, we denote by V (λ) the finite-
dimensional irreducible algebraic G-representation over K of highest weight λ,
cp. [16]. We consider V (λ) as a G-representation in the sequel.

Let P(1,d) be the stabilizer of the base point [1 : 0 : · · · : 0] ∈ Pd
K(K) and let

L = L(1,d) ⊂ P(1,d) be the Levi subgroup. Further let

X+
L = {λ ∈ X∗(T) | (λ, α) ≥ 0 for all α ∈ ∆+

L}

be the set of L-dominant weights where ∆+
L ⊂ ∆ consist of those simple roots

which appear in L. Every λ ∈ X+
L gives rise to a finite-dimensional irreducible

algebraic L-representation VL(λ). We consider it as a P-module by letting act
the unipotent radical trivially on it. Let

π : G → G/P(1,d)

be the projection map and identify G/P(1,d) with Pd
K . Let V be a finite-dimen-

sional algebraic representation of P(1,d). For a Zariski-open subset U ⊂ Pd
K ,

put

EV (U) :=
{

algebraic morphisms f : π−1(U) → V |

f(gp) = p−1f(g) for all g ∈ G(K), p ∈ P(1,d)(K)
}

.

Then EV defines a homogeneous vector bundle on Pd
K and every homogeneous

vector bundle is of this shape. We consider it at the same time as such an object
over the rigid-analytic space (Pd

K)rig. If λ ∈ X+
L , then we set Eλ := EVL(λ).

Let W be the Weyl group of G and consider the dot action · of W on X∗(T)
given by

w · χ = w(χ + ρ)− ρ,

where ρ = 1
2

∑

α∈Φ+ α. Let WL ⊂ W be the Weyl group of L. Consider the

set LW = WL\W of left cosets and the cycles

wi := (1, 2, 3, . . . , i+ 1) ∈ Sd+1
∼= W,

i = 0, . . . , d, which are just the representatives of shortest length in their cosets.
If λ ∈ X+ and w ∈ LW , then w · λ ∈ X+

L . The dual BGG-complex of λ ∈ X+

is given by the complex

0 → V (λ) → Eλ → Ew1·λ → · · · → Ewd·λ → 0.

Here V (λ) is the constant sheaf on Pd
K with values in V (λ). By considering

sections in X , we get a complex

0 → V (λ) → Eλ(X ) → Ew1·λ(X ) → · · · → Ewd·λ(X ) → 0.

It is proved in [19] that the complex E•·λ(X ) is quasi-isomorphic to the complex
Ω•(X ) ⊗ V (λ). The classical case is [7, 8]. For λ = 0, we get the usual de
Rham complex.

Münster Journal of Mathematics Vol. 8 (2015), 169–179
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Proof of Theorem 1.2. The proof is the same as above. Instead of the series of
identities (8) we use this time the Borel–Weil–Bott theorem, cp. [16]. Indeed
by considering the spectral sequence

(RmindGP )(R
nindP

B)(M) ⇒ RnindG
B(M)

(cp. [16, Prop. 4.5 c]), we deduce that Hi(Pd
K , Ew·λ) = Hi(G/B,Lw·λ) since

w · λ ∈ X+
L is L-dominant. Here Lw·λ is the line bundle on G/B attached to

the weight λ. Hence we get

Hi(Pd
K , Ewj·λ) =

{

H0(Pd
K , Eλ) for i = j,

0 for i 6= j.

Moreover, the latter object has the description H0(Pd
K , Eλ) = V (λ). As for

the interpretation of the de Rham cohomology of V we use the fact from [7, 8]
that the complex E•·λ(V ) is quasi-isomorphic to V (λ) ⊗ Ω•(V ) instead. The
claim follows. �
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Funkcional. Anal. i Priložen. 10 (1976), no. 2, 1–8. MR0407097

[3] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representa-
tions of reductive groups, second edition, Math. Surveys Monogr., 67, American Math-
ematical Society, Providence, RI, 2000.

[4] W. Casselman, A new nonunitarity argument for p-adic representations, J. Fac. Sci.
Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 907–928 (1982). MR0656064

[5] E. de Shalit, Residues on buildings and de Rham cohomology of p-adic symmetric
domains, Duke Math. J. 106 (2001), no. 1, 123–191. MR1810368

[6] V. G. Drinfel’d, Coverings of p-adic symmetric domains, Funkcional. Anal. i Priložen.
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