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Abstract. We show that a number of key structural properties transfer between sufficiently
close II1 factors, including solidity, strong solidity, uniqueness of Cartan masas and prop-
erty Γ. We also examine II1 factors close to tensor product factors, showing that such factors

also factorize as a tensor product in a fashion close to the original.

1. Introduction

In [20], Kadison and Kastler equipped the collection of all operator algebras
acting on a Hilbert space with a metric which measures how close the unit balls
of two algebras are in operator norm. Using the operator norm in this fashion
makes closeness a very strong condition on a pair of operator algebras, lead-
ing Kadison and Kastler to conjecture that sufficiently close algebras should
be spatially isomorphic. Strong results for amenable von Neumann algebras
were obtained in the late 1970s in [7, 9, 36]: sufficiently close amenable von
Neumann algebras must arise from small unitary perturbations. A few years
ago corresponding results for separable nuclear C∗-algebras were obtained in
[13] (examples of Johnson from [18] show that one can only expect a small
unitary perturbation in the point norm topology in the C∗-setting). In [4] we
examined nonamenable algebras, providing the first nonamenable von Neu-
mann algebras which satisfy the Kadison–Kastler conjecture (an expository
account of this work can be found in [2]).

The driving theme of this paper is the transfer of structural properties
between close von Neumann algebras. This was the focus of the original pa-
per [20], which shows that close von Neumann algebras M and N have the
same nonzero summands in their type decomposition, and further that the
corresponding summands are again close. Subsequently close C∗-algebras were
shown to have isomorphic ideal lattices (and correspondingly close ideals) by
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Phillips in [28], and C∗-algebras which remain close under all matrix amplifica-
tions were shown to have isomorphicK-theories by Khoshkam in [22]. Recently
questions of this nature have been explored for more refined C∗-algebra invari-
ants in [12] (which demonstrates a strong connection between close operator
algebras and Kadison’s similarity problem from [19], which the authors ex-
tended in [3]) and [27]. In this paper we turn to von Neumann algebras, and
more precisely II1 factors, showing how the methods developed in [4] can be
used to examine properties such as (strong) solidity [24, 25] and uniqueness of
Cartan masas [25], which have come to the forefront as part of the revolution-
ary progress in the structure theory of II1 factors made over the last fifteen
years. We also consider Murray and von Neumann’s property Γ and tensorial
decompositions, transferring these properties to sufficiently close factors, and
examine the structure of masas within close factors.

Before proceeding, we recall the definitions of the Kadison–Kastler metric
and the closely related notion of near containments from [20] and [9] respec-
tively. Note that the metric is not quite obtained from symmetrizing the notion
of near inclusion.

Definition 1.1 (Kadison–Kastler, Christensen). Let M and N be von Neu-
mann algebras acting nondegenerately on a Hilbert space H. The distance,
d(M,N) is the infimum of those γ > 0 such that for every operator x in the
unit ball of one algebra, there exists y in the unit ball of the other algebra with
‖x− y‖ < γ. A near containment M ⊆γ N arises when for every x ∈ M , there
exists y ∈ N with ‖x − y‖ ≤ γ‖x‖. Write M ⊂γ N when there exists γ′ < γ
with M ⊆γ′ N .

We note that there is no assumption that ‖y‖ ≤ ‖x‖ in the definition of a
near containment. Consequently, the composition of near containments P ⊂α

Q ⊂β R becomes

(1) P ⊂(α+β+αβ) R,

easily obtained from the triangle inequality.
It is also natural to consider ‘completely bounded’ versions of the above

notions. Let dcb(M,N) = supn d(M ⊗Mn, N ⊗Mn), where one measures the
distance between M⊗Mn and N⊗Mn on H⊗Cn. Similarly, write M ⊂cb,γ N
when M ⊗Mn ⊂γ N ⊗Mn for all n ∈ N.

A key tool in the study of close von Neumann algebras is the embedding
theorem for a near containment of an amenable von Neumann algebra from
[9, Thm. 4.3, Cor. 4.4]. This is used repeatedly in this paper and so we recall
the statement here for the reader’s convenience.

Theorem 1.2 (Christensen). Let P be an amenable von Neumann subalgebra

of B(H) containing IH. Suppose that B is another von Neumann subalgebra

of B(H) and P ⊂γ B for a constant γ < 1/100. Then there exists a unitary

u ∈ (P ∪ B)′′ with uPu∗ ⊆ B, ‖IH − u‖ ≤ 150 γ and ‖uxu∗ − x‖ ≤ 100 γ‖x‖
for x ∈ P . If, in addition, γ < 1/101 and B ⊂γ P , then uPu∗ = B.
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In the next section we consider the structure of close masas, providing a one-
to-one correspondence between unitary equivalence classes of Cartan masas,
and transfer property Γ, solidity and strong solidity to close factors. These
results were originally given in the preprint version of [4] on the arXiv, but
were removed from the publication version. In Section 3 we consider tensor
product decompositions. The paper ends with a short list of open problems in
Section 4.

2. Masas, solidity and property Γ

We start with the structure of maximal abelian subalgebras (masas) in close
II1 factors. Recall that in [15] Diximer introduced a rough classification of
masas A in a II1 factor M through their normalizers, namely those unitaries
u ∈ M with uAu∗ = A. The collection of all normalizers is denoted by
N (A ⊆ M) and A is said to be Cartan when N (A ⊆ M) generates M as
a von Neumann algebra (general subalgebras P of M with N (P ⊆ M)′′ = M
are called regular). At the other extreme, A is said to be singular when
N (A ⊆ M) ⊆ A. The transfer of normalizers between close pairs of inclusions
provided a key tool in [4], which we use here to examine the behavior of close
masas in close algebras.

Since the breakthrough paper [25], there has been considerable interest in
how many Cartan masas a II1 factor contains, up to unitary conjugacy: [25]
gives the first class of factors with a unique Cartan masa up to unitary conju-
gacy, [14] provides the first examples of factors with two Cartan masas which
are not even conjugate by an automorphism, and [26] presents more examples
of factors with unique Cartan masas and also new factors with at least two Car-
tan masas. More recently, large classes of crossed products have been shown to
have unique Cartan masas [5, 32, 33]. At the other end of the spectrum, [38]
provides a II1 factor with unclassifiably many Cartan masas up to conjugacy
by an automorphism. Our first objective is to show that close II1 factors have
the same Cartan masa structure. Given a II1 factor M , let Cartan(M) be
the collection of equivalence classes of Cartan masas in M under the relation
A1 ∼ A2 if and only if there is a unitary u ∈ M with uA1u

∗ = A2.

Theorem 2.1. Let M and N be II1 factors with separable preduals acting

nondegenerately on a Hilbert space H with M ⊂γ N and N ⊂γ M for a

constant γ < 5.7× 10−16.

(i) Suppose P ⊆ M is an amenable regular von Neumann subalgebra with

P ′∩M ⊆ P and Q ⊆ N is a von Neumann subalgebra with P ⊂δ Q ⊂δ P
for some δ ≥ 0 such that 300 γ + δ < 1/8. Then Q is regular in N and

satisfies Q′ ∩N ⊆ Q.

(ii) If A is a Cartan masa in M , then there exists a Cartan masa B in N
satisfying d(A,B) < 100 γ.

(iii) There exists a canonical bijective map Θ : Cartan(M) → Cartan(N),
which is defined by θ([A]) = [B] where A ⊆ M and B ⊆ N are Cartan

masas with d(A,B) < 100 γ.
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(iv) If M has a unique Cartan masa up to unitary conjugacy, then the same

is true for N .

Proof. (i). Since γ < 1/100, we may apply the embedding theorem (The-
orem 1.2) to obtain a unitary u ∈ (P ∪ N)′′ satisfying ‖u − IH‖ ≤ 150 γ,
uPu∗ ⊆ N , and d(P, uPu∗) ≤ 100 γ. Define N1 = u∗Nu, so that P ⊆ M ∩N1

and M ⊂γ1
N1 ⊂γ1

M where γ1 = 301 γ. Then the bound on γ gives γ1 <
1.74 × 10−13, so we may apply [4, Lem. 4.10] to conclude that P is regular
in N1 and P ′ ∩ N1 ⊆ P . Thus Q1 := uPu∗ is regular in N and satisfies
Q′

1 ∩N ⊆ Q1. Now by [4, (2.1)], Q1 ⊂η Q ⊂η Q1 where η = 300 γ + δ < 1/8.
By [8, Thm. 4.1], Q and Q1 are unitarily conjugate inside N (strictly speaking,
the statement of [8, Thm. 4.1] requires the hypothesis d(Q,Q1) < 1

8 but, as
noted in [4, §3], the proof only needs the hypothesis in terms of near inclusions).
Thus Q inherits the desired properties from Q1.

(ii). Given a Cartan masa A inM , Theorem 1.2 gives a unitary u ∈ (A∪N)′′

such that the algebra B := uAu∗ lies in N and satisfies d(A,B) < 100 γ. Then
B is a masa in N by [4, Lem. 2.17] and so is Cartan by (i).

(iii). From (ii), we may associate to each Cartan masa A in M a Cartan
masa B in N so that d(A,B) < 100 γ. Let A1 be another Cartan masa in M
and choose a Cartan masa B1 in N with d(A1, B1) < 100 γ. If there exists
a unitary u ∈ M such that A1 = uAu∗, then by [4, Lem. 2.12 (i)], there is a

unitary v ∈ N with ‖u− v‖ <
√
2γ. Then

d(B1, vBv∗) ≤ d(B1, uBu∗) + 2‖u− v‖ < d(B1, uAu
∗) + 2

√
2γ + 100 γ

= d(B1, A1) + (100 + 2
√
2)γ < (200 + 2

√
2)γ < 1/8.

Thus B1 and vBv∗ are unitarily conjugate in N by [8, Thm. 4.1], and hence
B1 and B are unitarily conjugate in N . This shows that there is a well-
defined map Θ : Cartan(M) → Cartan(N), defined on [A] by choosing a
Cartan masa B as above and letting Θ([A]) = [B]. In the same way there is
a map Φ : Cartan(N) → Cartan(M) so that for each Cartan masa B in N ,
Φ([B]) = [A] where A ⊆ M is chosen so that d(B,A) < 100 γ. By construction
Φ is the inverse of Θ so Θ is bijective.

(iv). This is immediate from (iii). �

At the other end of the spectrum, one has the singular masas. Various
ad hoc methods have been used to determine whether certain explicit singular
masas are conjugate via an automorphism of the underlying factor; perhaps the
most successful is Pukànszky’s invariant, originating in [34], which associates
to a masa A ⊆ M a nonempty subset of N ∪ {∞} as follows: the relative
commutant of A inside the basic construction algebra 〈M, eA〉 gives a type I
von Neumann algebra A′∩〈M, eA〉 = (A∪JMAJM )′. This always has a type I1
summand, as eA is central in A′ ∩ 〈M, eA〉 with eA(A

′ ∩ 〈M, eA〉) = eAA. The
Pukánszky invariant Puk(A ⊆ M) consists of those n ∈ N ∪ {∞} such that
(1 − eA)(A

′ ∩ 〈M, eA〉) has a nonzero type In component. See [37, Chap. 7]
for more information on the Pukánszky invariant (including proofs of the facts
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above). In the next result we do not need the precise definitions of the basic
construction, just that the Pukánszky invariant is obtained from the relative
positions of eA, A and 〈M, eA〉. Note that the embedding theorem can be used
to provide algebras B ⊆ N satisfying the estimates of the next proposition,
when δ is sufficiently small.

Proposition 2.2. Let M and N be II1 factors with separable preduals acting

nondegenerately on a Hilbert space H with M ⊂γ N and N ⊂γ M for a

constant γ. Let A ⊆ M be a masa in M .

(i) Suppose that δ > 0 satisfies (4 + 2
√
2)(γ + 24 δ) < 1. If A is singular,

then any subalgebra B ⊆ N with d(A,B) < δ is a singular masa in N .

(ii) Suppose that δ > 0 satisfies (γ + 24 δ) < 1.74 × 10−13. Then any von

Neumann subalgebra B ⊆ N with d(A,B) < δ is a masa in N satisfying

Puk(A ⊆ M) = Puk(B ⊆ N).

Proof. First note that [6, Lem. 2.3] shows that B is abelian. Then [4, Lem.
2.16 (i)] gives

B′ ∩N ⊂2
√
2δ+γ A′ ∩M = A ⊂δ B

so that B′ ∩N ⊂η B ⊆ B′ ∩N , where η = 2
√
2δ + γ + (1 + γ + 2

√
2δ)δ using

(1). Since the hypothesis of (i) implies that η < 1, we have B = B′ ∩N (see
[13, Prop. 2.4]). Thus B is a masa in N . As both A and B are amenable,
by [9, Cor. 4.2 (c)] there exists a unitary u ∈ (A ∪ B)′′ with ‖u − 1‖ < 12 δ
and uAu∗ = B. Write N1 = u∗Nu so that A is a masa in N1 and the near
inclusions M ⊂γ+24 δ N1 and N1 ⊂γ+24 δ M hold.

Now suppose A ⊆ M is singular. If v ∈ N (A ⊆ N1) is any unitary normal-
izer, then [4, Lem. 3.4 (iii)] provides a unitary normalizer v′ ∈ N (A ⊆ M) with

‖v − v′‖ ≤ (4 + 2
√
2)(γ + 24 δ) < 1. By [4, Prop. 3.2], we have v′ = vu1u2

for unitaries u1 ∈ A and u2 ∈ A′ ∩ B(H). Thus vxv∗ = v′xv′∗ for all x ∈ A.
Since A ⊆ M is singular, it follows that vxv∗ = x for all x ∈ A, and so v ∈ A
since A is a masa in N1. Thus A is singular in N1, and so B is singular in N ,
proving (i).

For (ii), as M ⊂γ1
N1 and N1 ⊂γ1

M for γ1 = (γ+24 δ) < 1.74× 10−13, we
can use [4, Lem. 4.10] (with P = A) to simultaneously represent M and N1

on a new Hilbert space K such that both these algebras are simultaneously in
standard form with respect to the same trace vector, and have equal basic con-
structions 〈M, eA〉 = 〈N1, eA〉. It follows that Puk(A ⊆ M) = Puk(A ⊆ N1),
and hence Puk(A ⊆ M) = Puk(B ⊆ N). �

Recall from [24] that a II1 factor is said to be solid when every diffuse
unital von Neumann subalgebra P ⊆ M has an amenable relative commutant
P ′ ∩M . Note that to establish solidity of M it suffices to show that P ′ ∩M
is amenable when P is diffuse and amenable (or abelian), as given a general
diffuse subalgebra P of M , take a maximal abelian subalgebra P0 of P . This
will be diffuse and P ′ ∩M ⊆ P ′

0 ∩M so that P ′ ∩M will inherit amenability
from P ′

0 ∩M (since M is finite).
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Subsequently Ozawa and Popa generalized the concept of solidity further in
[25]: a II1 factor M is said to be strongly solid if every unital diffuse amenable
subalgebra B ⊆ M has an amenable normalizing algebra N (B ⊆ M)′′. Both
these properties transfer to sufficiently close factors, as we now show.

Proposition 2.3. Let M and N be II1 factors acting nondegenerately on a

Hilbert space H with d(M,N) < 1/3200. Then:

(i) M is solid if and only if N is solid.

(ii) M is strongly solid if and only if N is strongly solid.

Proof. LetM andN be II1 factors acting nondegenerately on a Hilbert spaceH
with d(M,N) < γ < 1/3200. We will assume that N is solid, or strongly solid,
and show that M has the same property, so take a diffuse unital amenable
subalgebra P of M . By Theorem 1.2, there exists a unital von Neumann
subalgebra Q ⊆ N isomorphic to P such that d(P,Q) ≤ 100 γ. When N is
strongly solid, let Q1 = N (Q ⊆ N)′′ ⊆ N , and when N is solid, let Q1 =
(Q ∪ (Q′ ∩ N))′′ ⊆ N . In both cases Q1 is amenable. This is the hypothesis
of strong solidity in the first case, while when N is solid, Q′ ∩N is amenable,
which implies that Q1 is amenable as it is the von Neumann algebra generated
by two commuting amenable subalgebras. (One way to see this is via the
equivalence of injectivity and hyperfiniteness, since certainly two commuting
finite-dimensional algebras generate another finite-dimensional algebra).

Applying Theorem 1.2 again gives a unitary u ∈ (Q1 ∪ M)′′ such that
uQ1u

∗ ⊆ M , ‖u− IH‖ < 150 γ and d(uQ1u
∗, Q1) ≤ 100 γ. Thus

d(P, uQu∗) ≤ d(P,Q) + 2‖u− IH‖ ≤ 400 γ.

Since 400 γ < 1/8, Theorem 4.1 of [8] gives a unitary u1 ∈ (P ∪ uQu∗)′′ ⊆ M
satisfying u1Pu∗

1 = uQu∗ and ‖u1 − IH‖ ≤ 7d(P, uQu∗) ≤ 2800 γ (here we
have crudely estimated the function δ appearing in [8, Thm. 4.1]).

Now write N1 = u∗
1uNu∗u1 so that P = u∗

1uQu∗u1 is a subalgebra of N1.
Since P ′ ∩ N1 = u∗

1u(Q
′ ∩ N)u∗u1, Q′ ∩ N ⊆ Q1, and u1 ∈ M , we have

P ′ ∩N1 ⊆ P ′ ∩M . As u1 ∈ M ,

d(M,N1) = d(u1Mu∗
1, uNu∗) = d(M,uNu∗)

≤ d(M,N) + 2‖u− IH‖ < 301 γ.

By [4, Lem. 2.16 (i)] (with δ = 0) we have P ′ ∩ M ⊆301 γ P ′ ∩ N1. So, as
301 γ < 1, we have P ′∩M = P ′∩N1 (this is a folklore Banach space argument,
see [13, Prop. 2.4] for the precise statement being used). In the case when N
is solid, Q′ ∩N is amenable, and hence P ′ ∩M = P ′ ∩N1 = u∗

1u(Q
′ ∩N)u∗u1

is amenable. This proves that M is solid.
In the case when N is strongly solid, note that

N (P ⊆ N1)
′′ = u∗

1uN (Q ⊆ N)′′u∗u1 = u∗
1uQ1u

∗u1 ⊆ M.

Now take a unitary v ∈ N (P ⊆ M). As 301 γ < 2−3/2, Lemma 3.4 (iii) of [4]

provides v′ ∈ N (P ⊆ N1) ⊆ M with ‖v − v′‖ ≤ (4 + 2
√
2)301 γ. We have

(4+2
√
2)301 γ < 1, so [4, Prop. 3.2] gives unitaries w ∈ P and w′ ∈ P ′∩B(H)
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satisfying v′ = vww′. Then w′ = w∗v∗v′ ∈ P ′ ∩ M since w, v, and v′ all lie
in M . Thus w′ ∈ P ′ ∩N1 ⊆ N (P ⊆ N1)

′′. Then v = v′w′∗w∗ ∈ N (P ⊆ N1),
so that N (P ⊆ M) ⊆ N (P ⊆ N1). Since N (P ⊆ N1)

′′ is amenable, so too is
its subalgebra N (P ⊆ M)′′. Thus M is strongly solid. �

To conclude this section, we turn to Murray and von Neumann’s property Γ.
Recall that a II1 factor M with trace τ has property Γ if for any finite set
{x1, . . . , xn} in M and ε > 0, there exists a unitary u ∈ M with τ(u) = 0 and
‖[xi, u]‖2 < ε (as is usual, ‖·‖2 denotes the norm induced by the trace: ‖x‖2 =
τ(x∗x)1/2). Equivalently (in the presence of a separable predual), property Γ
is characterized by the nontriviality of the central sequence algebra Mω ∩M ′,
where ω is a free ultrafilter (see [40, Thm. XIV.4.7]). For II1 factors with
nonseparable preduals this equivalence no longer holds (see [17, §3]) and instead
one must work with ultrafilters on sets of larger cardinality. For simplicity, we
restrict to the separable predual situation here. However the argument can be
modified to handle the nonseparable situation (with the same constants). To
reach our stability result we need an extension of [4, Lem. 2.15].

Lemma 2.4. Let M and N be II1 factors represented nondegenerately on a

Hilbert space H and let γ and η be positive constants. Suppose that d(M,N) <
γ < 1 and that we have x1, x2 in the unit ball of M and y1, y2 in the unit ball

of N with ‖xi − yi‖ ≤ η, i = 1, 2. Then

(2) ‖y1 − y2‖22,N ≤ ‖x1 − x2‖22,M + 8 η + (8
√
2 + 8)γ.

Proof. Define s = y1 − y2 ∈ N and t = x1 − x2 ∈ M , so that ‖s‖, ‖t‖ ≤ 2 and
‖s − t‖ ≤ 2 η. Let Φ be a state on B(H) extending τM . Then [4, Lem. 2.15]
gives

|τN (s∗s)− Φ(s∗s)| ≤ (2
√
2 + 2)γ‖s∗s‖ ≤ (8

√
2 + 8)γ.

We also have

|Φ(s∗s)− Φ(t∗t)| ≤ ‖(s∗ − t∗)s+ t∗(s− t)‖ ≤ 8 η,

so

‖s‖22,N = τN (s∗s) ≤ |Φ(s∗s)|+ |τN (s∗s)− Φ(s∗s)|
≤ |Φ(s∗s)− Φ(t∗t)|+Φ(t∗t) + (8

√
2 + 8)γ

≤ ‖t‖22,M + 8 η + (8
√
2 + 8)γ,

since Φ and τM agree on M . This is (2). �

Proposition 2.5. Let M and N be II1 factors with separable preduals acting

nondegenerately on a Hilbert space H with d(M,N) < γ for a constant γ <
1/190. Suppose that M has property Γ. Then N also has property Γ.

Proof. Suppose that M has property Γ and fix a free ultrafilter ω on N. By
definition, there is a sequence (un)

∞
n=1 of trace zero unitaries such that u = (un)

defines an element in Mω∩M ′. For each n, use [4, Lem. 2.12] to find a unitary
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vn ∈ N with ‖un − vn‖ <
√
2γ and let v denote the class of (vn) in Nω. Let Φ

denote a state on B(H) extending τN . Then [4, Lem. 2.15] gives the estimate

|τM (un)− Φ(un)| ≤ (2
√
2 + 2)γ, n ∈ N,

so that

|τM (un)− τN (vn)| ≤ |τM (un)− Φ(un)|+ |Φ(un)− Φ(vn)| ≤ (3
√
2 + 2)γ.

Thus

(3) |τNω (v)| ≤ (3
√
2 + 2)γ.

Given a unitary w ∈ N , use [4, Lem. 2.12] to find a unitary w′ ∈ M with

‖w′ − w‖ <
√
2γ. Then

‖w′un − wvn‖ ≤ ‖(w′ − w)un‖+ ‖w(un − vn)‖ ≤ 2
√
2γ

and similarly ‖unw
′ − vnw‖ ≤ 2

√
2γ. Taking η = 2

√
2γ in Lemma 2.4 with

x1 = w′un, x2 = unw
′, y1 = wvn and y2 = vnw gives

‖wvn − vnw‖22,N ≤ ‖w′un − unw
′‖22,M + (24

√
2 + 8)γ.

Since limn→ω ‖w′un − unw
′‖2,M = 0, we have the estimate

(4) ‖wvw∗ − v‖22,Nω = ‖wv − vw‖22,Nω ≤ (24
√
2 + 8)γ

in Nω. Let y be the unique element of minimal ‖ · ‖2,Nω -norm in

conv2,N
ω{wvw∗ | w ∈ U(N)}.

This y lies in Nω and uniqueness ensures that y ∈ N ′ ∩ Nω. It remains to
check that y is nontrivial.

Estimate (4) gives

(5) ‖y − v‖22,Nω ≤ (24
√
2 + 8)γ,

and so

‖y‖2,Nω ≥ 1− ((24
√
2 + 8)γ)1/2

as ‖v‖2,Nω = 1. We can estimate

|τNω(y)| ≤ |τNω (v)|+ |τNω (y − v)| ≤ (3
√
2 + 2)γ + ‖y − v‖2,Nω

≤ (3
√
2 + 2)γ + ((24

√
2 + 8)γ)1/2,

using (3), (5) and the Cauchy–Schwarz inequality. If y ∈ CINω , then y =
τNω (y)INω so ‖y‖2,Nω = |τNω (y)|, and it follows that

1− ((24
√
2 + 8)γ)1/2 ≤ ‖y‖2,Nω ≤ (3

√
2 + 2)γ + ((24

√
2 + 8)γ)1/2.

Direct computations show that this is a contradiction when γ < 1/190, so that
y is a nontrivial element of N ′ ∩Nω. Therefore N has property Γ. �
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Remark 2.6. As a consequence of the results of this section, factors close to
free group factors inherit a number of their properties. Assume d(M,LF2) is
sufficiently small. Then M is strongly solid by Proposition 2.3 and [25], and
every masa in M has infinite multiplicity (i.e. unbounded Pukánszky invariant)
by Proposition 2.2 and [16]. Further, there are masas A1 and A2 in M close
to the generator masas in LF2 and a masa B close to the radial masa in LF2.
These are singular with Pukánzksy invariant {∞} by Proposition 2.2 and [15,
35, 37]. The embedding theorem was used in Proposition 2.3 and can be
employed in a similar way to establish maximal injectivity of A1, A2 and B
in M since their counterparts in LF2 are known to be maximal injective [1, 31].

3. Tensor products

In [4, §5] we considered McDuff factors (those which absorb the hyperfinite
II1 factor tensorially), showing that this property transfers to sufficiently close
factors. In this section, we examine general tensor product factorizations,
transferring these to close factors. If P and Q are II1 factors, then M :=
P ⊗ Q is generated by two commuting infinite-dimensional subalgebras. As
shown in [23], this characterizes the property of being isomorphic to a tensor
product: if M is a II1 factor generated by two commuting infinite-dimensional
von Neumann subalgebras S and T , then M is isomorphic to S ⊗ T , and S
and T are automatically II1 factors. This result will prove useful below.

We begin with a technical observation.

Lemma 3.1. Let γ > 0 and suppose that M,N ⊆ B(H) are von Neumann

algebras acting nondegenerately on a Hilbert space H such that d(M,N) < γ.
Let A ⊆ M ′ ∩N ′ be an abelian von Neumann algebra. Then

d((M ∪ A)′′, (N ∪ A)′′) < γ.

Proof. Choose γ′ to satisfy d(M,N) < γ′ < γ. Let B ⊆ A be the span of
the projections in A, so that B is a ∗-subalgebra of A. If x ∈ Alg(M ∪ B),
‖x‖ ≤ 1, then there exist orthogonal projections p1, . . . , pn ∈ B and elements
x1, . . . , xn ∈ M with ‖xi‖ ≤ 1 so that x =

∑n
i=1 xipi. Choose elements

y1, . . . , yn ∈ N so that ‖yi‖ ≤ 1 and ‖xi − yi‖ ≤ γ′, and let y =
∑n

i=1 yipi ∈
Alg(N ∪B). Then ‖y‖ ≤ 1 and

‖x− y‖ =
∥

∥

∥

n
∑

i=1

(xi − yi)pi

∥

∥

∥
= max{‖xi − yi‖ | 1 ≤ i ≤ n} ≤ γ′.

The argument is symmetric in M and N , so d(C∗(M ∪ B), C∗(N ∪B)) ≤ γ′.
The result follows from the Kaplansky density theorem via [20, Lem. 5]. �

The next lemma takes a tensor product factor M = P ⊗ Q acting on
H1 ⊗H2 and considers close factors N generated by commuting II1 factors S
and T which are assumed close to P and Q respectively. The lemma shows
that, provided we have a reverse near containment of M ′ into N ′, then we can
make a small unitary perturbation of N , S and T so that S can be viewed as
acting on H1 and T on H2.
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Lemma 3.2. Let P ⊆ B(H1) and Q ⊆ B(H2) be II1 factors, let H = H1⊗H2,

and let M = P ⊗ Q. Suppose that N ⊆ B(H) is a II1 factor and has two

commuting subfactors S and T so that

d(M,N), d(P ⊗ IH2
, S), d(IH1

⊗Q, T ) < λ, M ′ ⊂kλ N ′,

for constants λ, k > 0 satisfying

(6) (90301 + 27180600 k)λ < 1/100.

Then there exists a unitary u ∈ B(H) such that

‖IH − u‖ < 150(90602+ 27271202 k)λ,

u∗Su ⊆ B(H1)⊗ IH2
, u∗Tu ⊆ IH1

⊗ B(H2), and

d(M,u∗Nu), d(P, u∗Su), d(Q, u∗Tu) ≤ (27180601+ 8181360600 k)λ.

Proof. Let A be a masa in (P ′ ∩ B(H1)) ⊗ IH2
. Then A ⊆ M ′ ⊂kλ N ′.

Since kλ < 1/100, there exists, by the embedding theorem (Theorem 1.2), a
unitary u1 ∈ (A ∪ N ′)′′ such that u1Au

∗
1 ⊆ N ′ and ‖IH − u1‖ ≤ 150 kλ. Let

N1 = u∗
1Nu1, S1 = u∗

1Su1 and T1 = u∗
1Tu1. Then A ⊆ (P ⊗ IH2

)′ ∩ S′
1 and

d(M,N1), d(P ⊗ IH2
, S1), d(IH1

⊗Q, T1) < (1 + 300 k)λ, M ′ ⊂301 kλ N ′
1.

By Lemma 3.1,

d
(

((P ⊗ IH2
) ∪ A)′′, (S1 ∪ A)′′

)

< (1 + 300 k)λ,

and ((P⊗IH2
)∪A)′′ is amenable since ((P⊗IH2

)∪A)′ = (A∪(IH1
⊗B(H2)))

′′,
which is amenable. By the embedding theorem (Theorem 1.2) there is a unitary
u2 ∈ (((P⊗IH2

)∪A)′′∪(S1∪A)′′)′′ such that u2((P⊗IH2
)∪A)′′u∗

2 = (S1∪A)′′
and ‖IH − u2‖ ≤ 150(1 + 300 k)λ. Let N2 = u∗

2N1u2, S2 = u∗
2S1u2 and

T2 = u∗
2T1u2. Then

d(M,N2), d(P ⊗ IH2
, S2), d(IH1

⊗Q, T2) ≤ 301(1 + 300 k)λ,

M ′ ⊂(300+90301 k)λ N ′
2.

Moreover,

(7) S2 ⊆ u∗
2(S1 ∪ A)′′u2 = ((P ⊗ IH2

) ∪A)′′ ⊆ B(H1)⊗ IH2
.

Now choose a masa B ⊆ IH1
⊗ (Q′ ∩ B(H2)). Then

B ⊆ M ′ ⊂(300+90301 k)λ N ′
2.

Estimate (6) allows Theorem 1.2 to be applied to give a unitary u3 ∈ (B∪N ′
2)

′′

so that u3Bu∗
3 ⊆ N ′

2 and ‖IH − u3‖ ≤ 150(300+ 90301 k)λ. Let N3 = u∗
3N2u3

and T3 = u∗
3T2u3, and note that S2 = u∗

3S2u3 since S2 commutes with B and
N ′

2. We also have the estimates

d(M,N3), d(Q, T3) ≤ (90301 + 27180600 k)λ.

By construction, B ⊆ (IH1
⊗Q)′ ∩ T ′

3, so by Lemma 3.1 and inequality (6),

d
(

((IH1
⊗Q) ∪B)′′, (T3 ∪B)′′

)

≤ (90301 + 27180600 k)λ < 1/100.
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As ((IH1
⊗ Q) ∪ B)′′ is amenable (it is the commutant of the amenable

algebra ((B(H1)⊗ IH2
)∪B)′′), Theorem 1.2 gives a unitary u4 ∈ (((IH1

⊗Q)∪
B)′′ ∪ (T3 ∪ B)′′)′′ with the property that u4((IH1

⊗Q) ∪B)′′u∗
4 = (T3 ∪ B)′′

and ‖IH−u4‖ ≤ 150(90301+27180600 k)λ. Since S2 commutes with IH1
⊗Q,

B and T3, we see that u∗
4S2u4 = S2. Also

(8) u∗
4T3u4 ⊆ ((IH1

⊗Q) ∪B)′′ ⊆ IH1
⊗ B(H2).

Consequently, the desired unitary u is u1u2u3u4, and

‖IH − u‖ ≤
4

∑

i=1

‖IH − ui‖ ≤ 150(90602+ 27271202 k)λ

from previous estimates, while

d(M,u∗Nu), d(P ⊗ IH2
, u∗Su), d(IH1

⊗Q, u∗Tu)

≤ (27180601+ 8181360600 k)λ.

We have u∗Su ⊆ B(H1) ⊗ 1H2
from (7) as u3 and u4 commute with S2 =

u∗
2u

∗
1Su1u2 and u∗Tu ⊆ IH1

⊗ B(H2) from (8). �

Lemma 2.16 of [4] considers near containments of relative commutants. We
will use the following version of this lemma in the context of distance estimates.
The proof is identical to part (i) of [4, Lem. 2.16], noting that if the y ∈ N
in the proof of that lemma lies in the unit ball, then this is also true for the
approximating elements EQ′∩N (y).

Lemma 3.3 (cp. [4, Lem. 2.16 (i)]). Let M and N be II1 factors acting non-

degenerately on a Hilbert space and suppose that P ⊆ M and Q ⊆ N are unital

von Neumann subalgebras. Then

d(P ′ ∩M,Q′ ∩N) ≤ d(M,N) + 2
√
2d(P,Q).

Lemma 3.4. Suppose that M and N are II1 factors acting nondegenerately

on a Hilbert space H and that dimM H = 1. If d(M,N) < 1/(301× 136209) =
1/40998909, then dimN H = 1.

Proof. Choose γ to satisfy d(M,N) < γ < 1/40998909 and choose a masa A ⊆
M . Then A ⊆γ N and γ < 1/100, so by the embedding theorem (Theorem 1.2),
there exists a unitary u ∈ (A∪N)′′ with ‖u− IH‖ ≤ 150 γ so that uAu∗ ⊆ N .
Let N1 = u∗Nu, so that d(M,N1) ≤ 301 γ < 1/136209. Since A ⊆ M ∩N1, we
may apply [4, Prop. 4.6] to M and N1 to conclude that dimN1

H = 1. Since
N is unitarily conjugate to N1, it follows that dimN H = 1 as required. �

We now turn to the tensor product decomposition in a II1 factor N close to
a tensor product M ∼= P ⊗ Q, using the reduction to standard form technique
of [4, §4]. We do this first under the assumption that both factors M and
N contain a suitable hyperfinite subfactor; this assumption is removed in the
subsequent theorem by means of the embedding theorem.
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Lemma 3.5. Let M and N be II1 factors acting nondegenerately on a Hilbert

space H with d(M,N) < γ. Suppose that M is generated by two commuting II1
factors P and Q and that there are hyperfinite II1 factors R1 ⊆ P and R2 ⊆ Q
with R′

1 ∩ P = CIP and R′
2 ∩Q = CIQ which further satisfy (R1 ∪R2)

′′ ⊆ N .

Write S = R′
2 ∩N and T = R′

1 ∩N . Then the following statements hold:

(i) d(P, S) < γ and d(Q, T ) < γ.

(ii) If γ < 1
2
√
2+2

, then S′ ∩N = T and T ′ ∩N = S.

(iii) If γ < 10−39, then N is generated by the commuting II1 factors S and T .

Proof. By [23] we may view M as P ⊗Q, and it follows from Tomita’s com-
mutation theorem (see [39, Thm. IV.5.9, Cor. IV.5.10]) that P = R′

2 ∩ M .
Similarly, Q = R′

1 ∩M . Part (i) then follows from Lemma 3.3.
For (ii), note that R1 ⊆ S, so that S′ ∩ N ⊆ R′

1 ∩ N = T . Applying
Lemma 3.3 to the close pairs (M,N) and (S, P ) gives

(9) Q = P ′ ∩M ⊆(2
√
2+1)γ S′ ∩N ⊆ T.

Since d(T,Q) < γ, it follows from (9) that

T ⊂(2
√
2+2)γ S′ ∩N ⊆ T.

By hypothesis, (2
√
2 + 2)γ < 1 and this ensures that S′ ∩ N = T (see [13,

Prop. 2.4]). The identity T ′ ∩N = S is obtained similarly.
Now we turn to (iii). Since γ < 1/87, Lemma 4.8 of [4] gives an integer n,

a nonzero projection e ∈ M ′, and a unitary u ∈ (M ′ ∪ N ′)′′ such that e ∈
(u∗Nu)′,

(10) ‖u− IH‖ ≤ 12
√
2(1 +

√
2)γ + 4

√
2((1 +

√
2)γ)1/2,

and dimMe(eH) = 1/n. Let K = (eH)⊗ Cn, and define factors by

M1 = (Me)⊗ ICn , P1 = (Pe)⊗ ICn , Q1 = (Qe)⊗ ICn ,

R3 = (R1e)⊗ ICn , R4 = (R2e)⊗ ICn ,

and also let

N1 = ((u∗Nu)e)⊗ ICn , S1 = ((u∗Su)e)⊗ ICn , T1 = ((u∗Tu)e)⊗ ICn .

Then M1 and N1 are faithful normal representations of M and N respectively
on K, and (R3 ∪R4)

′′ ⊆ N1 since u commutes with M ∩N .
Combining (10) and the inequality γ < 10−19γ1/2, we have the estimate

d(M1, N1) ≤ γ + 2‖u− IH‖(11)

≤ (49 + 24
√
2)γ + 8

√
2((1 +

√
2)γ)1/2

< 18 γ1/2.

Let γ1 denote the term in the last line of (11), so that d(M1, N1) ≤ γ1. By
construction, dimM1

K = 1 so M1 is in standard position on K. As the bound
on γ ensures that γ1 < 1/40998909, Lemma 3.4 shows that N1 is also in
standard position on K. If we represent P1 and Q1 in standard position on
Hilbert spaces K1 and K2 respectively, then P1 ⊗ Q1

∼= M1 is in standard
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position on K1 ⊗ K2. This allows us to assume that K = K1 ⊗ K2 and to
identify P1 with P1 ⊗ IK2

and Q1 with IK1
⊗ Q1. As both M1 and N1 are in

standard position, Lemma 4.1 (i) of [4] gives

M ′
1 ⊂2(1+

√
2)γ1

N ′
1, N ′

1 ⊂2(1+
√
2)γ1

M ′
1.

The hypotheses of Lemma 3.2 are now met by taking k = 2(1 +
√
2) and

λ = γ1 = 18 γ1/2. Thus there exists a unitary u1 ∈ B(K) such that

‖IK − u1‖ < 150(90602+ 54542404(1+
√
2))γ1.

If we define N2 = u∗
1N1u1, S2 = u∗

1S1u1, and T2 = u∗
1T1u1, then S2 ⊆ B(K1),

T2 ⊆ B(K2), and

d(M1, N2), d(P1, S2), d(Q1, T2) < (27180601+ 16362721200(1+
√
2))γ1

< 1/40998909,

from the choice of the bound on γ. By Lemma 3.4, S2 is in standard position
on K1 and similarly T2 is in standard position on K2. It follows that (S2∪T2)

′′,
which is canonically identified with S2 ⊗ T2 with respect to K = K1 ⊗ K2, is
also in standard position on K. Since (S2 ∪ T2)

′′ ⊆ N2 and dimN2
K = 1, we

conclude that (S2 ∪ T2)
′′ = N2, and hence also that (S ∪ T )′′ = N . �

We are now in a position to show that tensorial decompositions can be
transferred between close II1 factors.

Theorem 3.6. Let M and N be II1 factors with separable preduals, acting

nondegenerately on a Hilbert space H. If M is generated by two commuting II1
factors P and Q and d(M,N) < γ < 3.3× 10−42, then there exist commuting

II1 subfactors S and T which generate N and satisfy

d(P, S), d(Q, T ) < (200
√
2 + 1)γ < 284 γ, dcb(P, S), dcb(Q, T ) ≤ 601 γ.

Proof. By [30], choose amenable subfactors R1 ⊆ P and R2 ⊆ Q with trivial
relative commutants. Then (R1 ∪ R2)

′′ is also amenable, and we denote this
factor by R. Since R ⊂γ N , we may choose a unitary v ∈ (R ∪ N)′′ with
‖v − IH‖ ≤ 150γ, ‖x − vxv∗‖ ≤ 100 γ‖x‖ for x ∈ R and vRv∗ ⊆ N by the
embedding theorem (Theorem 1.2). Write N1 = v∗Nv so that R ⊆ M ∩ N1

and d(M,N1) < γ1 = 301 γ. Since 301 γ < 10−39, Lemma 3.5 (iii) can be
applied to conclude that N1 is generated by the commuting subfactors S1 =
R′

2∩N1 and T1 = R′
1∩N1. Hence N is generated by the commuting subfactors

S := (vR2v
∗)′ ∩N = vS1v

∗, T := (vR1v
∗)′ ∩N = vT1v

∗.

Since d(R1, vR1v
∗), d(R2, vR2v

∗) ≤ 100 γ, Lemma 3.3 shows that d(P, S) ≤
(200

√
2 + 1)γ and similarly d(Q, T ) ≤ (200

√
2 + 1)γ.

We now estimate the cb-distance between P and S, so fix n ∈ N and let F
denote a unital subalgebra of R2 isomorphic to a copy of the n × n matrices
Mn. By construction, F ⊆ R2 ⊆ Q ∩ T1, so there are induced factorizations
Q ∼= F ⊗Q0, T1

∼= F ⊗ T0 and R2
∼= F ⊗R0 where Q0 = F ′ ∩Q, T0 = F ′ ∩ T1

and R0 = F ′ ∩ R2. Thus M is generated by the two commuting factors
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P0 = (P∪F )′′ andQ0 (amounting to taking a copy ofMn fromQ and attaching
it to P ), and N1 is generated by the commuting factors S0 = (S1 ∪ F )′′ and
T0. We note that R0 ⊆ Q0 ∩ T0 and has trivial relative commutants in Q0

and T0. In this way (P ∪ F )′′ = R′
0 ∩M and (S1 ∪ F )′′ = R′

0 ∩ N1. Another
application of Lemma 3.3 gives

(12) d((S1 ∪ F )′′, (P ∪ F )′′) = d(R′
0 ∩N1, R

′
0 ∩M) ≤ d(M,N1) ≤ 301 γ.

Since F is a factor, there is an isometric ∗-isomorphism between (F ′∪F )′′ ⊆
B(H) and F ′ ⊗ F ∼= F ′ ⊗Mn ⊆ B(H)⊗Mn, defined on generators by f ′f 7→
f ′ ⊗ f , which carries (P ∪ F )′′ and (S1 ∪ F )′′ respectively to P ⊗ Mn and
S1⊗Mn. In this way (12) gives dcb(P, S1) ≤ 301 γ. As S = vS1v

∗ where v is a
unitary satisfying ‖v− IH‖ ≤ 150 γ, it follows that dcb(S, S1) ≤ 300 γ, whence
the triangle inequality gives dcb(P, S) ≤ 601 γ. The estimate on dcb(Q, T ) is
proved in the same way. �

The following corollary is a rewording of the last theorem.

Corollary 3.7. Let M and N be II1 factors with separable preduals, acting

nondegenerately on a Hilbert space H, and suppose that d(M,N) < 3.3×10−42.

If M is prime, then so too is N .

In [4], we encapsulated the weakest form of the Kadison–Kastler conjecture
by defining a II1 factor M to be weakly Kadison–Kastler stable if there exists
ε > 0 so that if π : M → B(H) is a normal representation and N ⊆ B(H) is a
II1 factor satisfying d(π(M), N) < ε, then π(M) and N are ∗-isomorphic. The-
orem 3.6 shows that this property is preserved under taking tensor products.

Corollary 3.8. Let P and Q be II1 factors with separable preduals and suppose

that both are weakly Kadison–Kastler stable. Then so too is M := P ⊗ Q.

Proof. Let ε > 0 be small enough to satisfy the definition of weak Kadison–
Kastler stability of both P and Q. Suppose that M and N are represented on
some Hilbert space. When d(M,N) is sufficiently small, Theorem 3.6 shows
that N is generated by two commuting II1 factors S and T such that d(P, S) <
ε and d(Q, T ) < ε. Thus P ∼= S and Q ∼= T , from which it follows that
M ∼= P ⊗ Q ∼= S ⊗ T ∼= N . Hence M is weakly Kadison–Kastler stable. �

We now turn to the strongest form of the Kadison–Kastler conjecture, which
asks that close von Neumann algebras arise from small unitary perturbations.
As in [4], we say that a II1 factor M is strongly Kadison–Kastler stable if, given
ε > 0, there exists δ > 0 with the following property: if π : M → B(H) is a
normal representation and N ⊆ B(H) is a II1 factor satisfying the inequality
d(π(M), N) < δ, then there exists a unitary u ∈ B(H) with ‖IH − u‖ < ε such
that uπ(M)u∗ = N . We need a standard observation regarding representations
of tensor products.
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Lemma 3.9. Let M and N be II1 factors and let π : M ⊗ N → B(H) be a

normal representation on a Hilbert space H. Then there exists a type I∞ factor

P such that

π(M ⊗ 1N) ⊆ P ⊆ π(1M ⊗N)′.

Proof. Let λ denote the standard representation ofM ⊗ N on L2(M)⊗L2(N).
From the general form of normal representations of von Neumann algebras,
there exists a Hilbert space K and a projection

p ∈ λ(M ⊗ N)′ ⊗ B(K) = JMMJM ⊗ JNNJN ⊗ B(K)

so that π is unitarily equivalent to the representation p(λ(x) ⊗ 1K), for x ∈
M ⊗ N . Since λ(M ⊗ N)′ ⊗ B(K) is a type II factor, the projection p is
Murray–von Neumann equivalent to p1 ⊗ q1 ⊗ f , where the projections p1,
q1 and f lie in JMMJM , JNNJN and B(K) respectively. A partial isometry
implementing this equivalence provides a unitary conjugacy between the rep-
resentations pλ(·) and (p1 ⊗ q1 ⊗ f)λ(·), so π is unitarily equivalent to π1 =
(p1 ⊗ q1 ⊗ f)λ(·). For this latter representation we can verify the statement of
the lemma with the I∞ factor P1 = p1B(L2(M))p1 ⊗ q1 ⊗ fB(K)f , and hence
an appropriate unitary conjugation provides the required P for the represen-
tation π. �

By the results of [3], strong Kadison–Kastler stability for a II1 factor M
implies that M has a positive solution to Kadison’s similarity problem. To
our knowledge, it is not known whether a tensor product of two II1 factors
with the similarity property necessarily also has the similarity property, so to
obtain preservation results for strongly Kadison–Kastler stable factors we need
to impose an additional hypothesis to take care of the similarity property. In
the next lemma, this is the condition that π(M)′ ⊂δ N

′.

Lemma 3.10. Let P and Q be strongly Kadison–Kastler stable II1 factors with

separable preduals and let M = P ⊗ Q. Then, for all ε > 0, there exists δ > 0
with the following property: if π : M → B(H) is a normal representation and

N ⊆ B(H) is a von Neumann algebra with d(π(M), N) < δ and π(M)′ ⊂δ N
′,

then there exists a unitary u∈B(H) with ‖u−IH‖<ε such that uπ(M)u∗ =N.

Proof. Fix ε < 1/50. If we apply the strong stability hypothesis to P and Q
with ε replaced by ε/4, then there exists δ0 > 0 with the following property: if
σ : P → B(H) is a normal representation and S ⊆ B(H) satisfies d(σ(P ), S) <
δ0, then σ(P ) and S are unitarily conjugate by a unitary u ∈ B(H) satisfying
‖IH − u‖ < ε/4, with a similar statement for Q. Now choose δ > 0 so small
that the following three inequalities are satisfied:

δ < 3.3× 10−42,

150(90602+ 27271202)× 284 δ < ε/2 < 1/100,(13)

(27180601+ 8181360600)× 284 δ < δ0.(14)

Let π : M → B(H) be a normal representation and let N ⊆ B(H) be
such that d(π(M), N) < δ. Let us write M1 = π(M), P1 = π(P ⊗ IQ) and
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Q1 = π(IP ⊗Q). Since δ < 3.3×10−42, Theorem 3.6 shows that N is generated
by two commuting subfactors S and T satisfying

d(P1, S), d(Q1, T ) < δ1 := 284 δ.

By Lemma 3.9, there is a type I∞ factor lying between P1 and Q′
1. By [21,

Thm. 9.3.2] there is, up to unitary equivalence, a decomposition ofH asH1⊗H2

such that this type I∞ factor is B(H1)⊗IH2
, whereupon P1 ⊆ B(H1)⊗IH2

and
Q1 ⊆ IH1

⊗B(H2). From (13), the inequalities in the hypotheses of Lemma 3.2
are satisfied for λ = δ1 and k = 1, so by that lemma there exists a unitary
u1 ∈ B(H) with the following properties. The inequality

(15) ‖IH − u1‖ < 150(90602+ 27271202)δ1

holds and, upon setting N1 = u∗
1Nu1, S1 = u∗

1Su1, T1 = u∗
1Tu1, we have

S1 ⊆ B(H1)⊗ IH2
and T1 ⊆ IH1

⊗ B(H2). Moreover, the estimates

d(M1, N1), d(P1, S1), d(Q1, T1) ≤ (27180601+ 8181360600)δ1 < δ0

are valid, where the last inequality is (14). Thus there exist unitaries v ∈ B(H1)
and w ∈ B(H2) such that

(v ⊗ IH2
)P1(v ⊗ IH2

)∗ = S1, (IH1
⊗ w)Q1(IH1

⊗ w)∗ = T1

and the inequalities ‖IH1
− v‖, ‖IH2

− w‖ < ε/4 hold. Let u2 = v ⊗ w and
observe that ‖IH − u2‖ < ε/2. If we define u = u2u1, then uπ(M)u∗ = N and

‖IH − u‖ ≤ ‖IH − u1‖+ ‖IH − u2‖
< 150(90602+ 27271202)δ1 + ε/2 < ε

from (15) and (13). �

The most general class of II1 factors known to have the similarity property
(see [10, 11, 29]) are those with Murray and von Neumann’s property Γ. By
definition, property Γ passes to tensor products, yielding the following result.

Theorem 3.11. Let P and Q be II1 factors with separable preduals and sup-

pose that both are strongly Kadison–Kastler stable. Suppose further that at

least one has property Γ. Then M := P ⊗ Q is strongly Kadison–Kastler

stable.

Proof. Let π : M → B(H) be a faithful normal representation. Let N ⊆ B(H)
be another II1 factor with d(π(M), N) < 1/190 so that N inherits property Γ
from M = P ⊗ Q from Proposition 2.5. Proposition 2.4 (ii) of [4] shows that
if d(π(M), N) < γ, then the near inclusion π(M)′ ⊂5 γ N ′ holds. Strong
Kadison–Kastler stability now follows from Lemma 3.10. �

Remark 3.12. The examples of strongly Kadison–Kastler stable II1 factors
constructed in [4] all have the form (P ⋊αG) ⊗ R where P is amenable and G
is SLn(Z) for n ≥ 3, and these have property Γ since they are McDuff. These
satisfy the hypothesis of Theorem 3.11 and thus new examples of strongly
Kadison–Kastler stable factors can be generated by taking finite tensor prod-
ucts of the existing ones of [4]. �
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4. Open questions

We end with a short list of open problems.

• Does property (T) transfer to sufficiently close subalgebras?
• What can be said about the fundamental group, or outer automorphism
group of close II1 factors?

• How do nonamenable subalgebras of close II1 factors, such as subfactors
behave? If M and N are sufficiently close II1 factors and M has an index-2
subfactor, must N also have an index-2 subfactor?

• Does a non-prime II1 factor have the similarity property? Less generally,
does the tensor product of two II1 factors with the similarity property have
the similarity property?

Acknowledgements. SW thanks Ionut Chifan for useful conversations about
von Neumann algebras close to tensor products which sparked the line of re-
search developed in Section 3.
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groups, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 1, 1–33. MR3087388
[6] E. Christensen, Perturbations of type I von Neumann algebras, J. London Math. Soc.

(2) 9 (1974/75), 395–405. MR0358373
[7] E. Christensen, Perturbations of operator algebras, Invent. Math. 43 (1977), no. 1, 1–13.

MR0512367
[8] E. Christensen, Perturbations of operator algebras. II, Indiana Univ. Math. J. 26 (1977),

no. 5, 891–904. MR0512368
[9] E. Christensen, Near inclusions of C∗-algebras, Acta Math. 144 (1980), no. 3-4, 249–

265. MR0573453
[10] E. Christensen, Similarities of II1 factors with property Γ, J. Operator Theory 15 (1986),

no. 2, 281–288. MR0833212
[11] E. Christensen, Finite von Neumann algebra factors with property Γ, J. Funct. Anal.

186 (2001), no. 2, 366–380. MR1864828
[12] E. Christensen et al., Perturbations of C∗-algebraic invariants, Geom. Funct. Anal. 20

(2010), no. 2, 368–397. MR2671282
[13] E. Christensen et al., Perturbations of nuclear C∗-algebras, Acta Math. 208 (2012),

no. 1, 93–150. MR2910797
[14] A. Connes and V. Jones, A II1 factor with two nonconjugate Cartan subalgebras, Bull.

Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 211–212. MR0640947
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