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Abstract. Let F be a nonarchimedean locally compact field with residue characteristic p

and G(F) the group of F-rational points of a connected reductive group. In [12], Schneider
and Stuhler realize, in a functorial way, any smooth complex finitely generated representation
of G(F) as the 0-homology of a certain coefficient system on the semisimple building of G.
It is known that this method does not apply in general for smooth mod p representations
of G(F), even when G = GL2. However, we prove that a principal series representation of
GLn(F) over a field with arbitrary characteristic can be realized as the 0-homology of the
corresponding coefficient system as defined in [12].
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1. Introduction

Let F be a nonarchimedean locally compact field with residue characteristic
p and G(F) the group of F-rational points of a connected reductive group
G. By a result of Bernstein, the blocks of the category of smooth complex
representations of G(F) have finite global dimension. The G(F)-equivariant
coefficient systems on the semisimple building X of G introduced in [12] allow
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Schneider and Stuhler to construct explicit projective resolutions for finitely
generated representations in this category. One of the key ingredients for their
result is the following fact, which is valid over an arbitrary field k: consider
the (level 0) universal representation X = k[I\G(F)] where I is a fixed pro-p
Iwahori subgroup of G(F), then the attached coefficient system X on X gives
the following exact augmented chain complex

(1) 0 −→ Cor
c (X(d),X)

∂
−−→ . . .

∂
−−→ Cor

c (X(0),X)
ǫ
−→ X −→ 0

of G(F)-representations and of left H := k[I\G(F)/I]-modules (see Section 3
below for the notation).

If k has characteristic p, it is no longer true that the category of smooth
representations of G(F) generated by their pro-p Iwahori fixed vectors has
finite global dimension: in the case of PGL2(Qp), this category is equivalent
to the category of modules over H ([5]) and it is proved in [8] that the latter
has infinite global dimension.

Still if k has characteristic p, it is also no longer true that any G(F)-
representation V generated by its I-invariant subspace can be realized as the
0-homology of the coefficient system V defined as in [12]: it is true for the

universal representation X as noted above, but [8, Rem. 3.2] points out a
counterexample when V is a supercuspidal representation of GL2(Qp). How-
ever, realizing any smooth irreducible k-representation of GL2(Qp) as the 0-
homology of some finite dimensional coefficient system is important in Colmez’s
construction of a functor yielding the p-adic local Langlands correspondence
([2]). As explained in [9], the resolutions in [2] can be retrieved in the following
way: let V be a smooth representation of GL2(Qp) with a central character
and generated by its I-invariant subspace VI, then by the equivalence of cat-
egories of [5], tensoring (1) by the H-module VI gives an exact resolution of
V ≃ VI ⊗HX. But the equivalence of categories does not hold in general. For
arbitrary F, Hu attaches to any irreducible representation of GL2(F) with cen-
tral character a coefficient system on the tree whose 0-homology is isomorphic
to V ([4]). This coefficient system, although not finite dimensional in general,
turns out to be finite dimensional when F = Qp and one retrieves, once again,
the resolutions of [2]. But if F has positive characteristic (respectively if F/Qp

is a quadratic unramified extension), then for V supercuspidal, there is no
finite dimensional coefficient system whose 0-homology is isomorphic to V as
proved in [4] (respectively in [14]).

Most of the surprising phenomena occurring in the smooth mod p repre-
sentation theory of G(F) are related to the properties of the supercuspidal
representations, whereas the behavior of the principal series representations is
easier to analyze and is somewhat similar to what is observed in the setting of
complex representations. To formalize this remark, Peter Schneider asked me
the following question: the Hecke algebra H contains a copy Aanti of the k-
algebra of the semigroup of all (extended) antidominant cocharacters of a split
torus of G; is H free as a Aanti-module when localized at a regular character of
Aanti? (see Subsection 2.3 and Section 4 for the definitions and Propositions

Münster Journal of Mathematics Vol. 7 (2014), 225–240



Resolutions for principal series representations of p-adic GLn 227

4.3 and 4.4 for the link between regular characters of Aanti and principal series
representations). The answer is yes and the present note is largely inspired by
this question. We prove the following theorem, where n is an integer ≥ 1.

Theorem 1.1. Let k be an arbitrary field and V a smooth principal series
representation of GLn(F) over k. Let V be the coefficient system associated to

V as in [12]. Then the following augmented chain complex

(2) 0 −→ Cor
c (X(n−1),V)

∂
−−→ . . .

∂
−−→ Cor

c (X(0),V)
ǫ
−→ V −→ 0

yields an exact resolution of V as a representation of GLn(F).

This theorem is proved in Section 5. In the previous sections, the arguments
are written in the setting of a general split group. However, in Section 5, we
need an extra geometric condition on the facets of the standard apartment to
be able to fully use Iwasawa decomposition. Therefore, we restrict ourselves
to the case of GLn. We suspect that Theorem 1.1 is true in general.

A generalization of Colmez’ functor to reductive groups over Qp is proposed
by Schneider and Vignéras in [13]. The first fundamental construction is the
one of a universal δ-functor V 7→ Di(V ) for i ≥ 0, from the categoryMo-tor(B)
to the category Met(Λ(B

+)). The ring o is the ring of integers of a fixed finite
extension of Qp and Mo-tor(B) is the abelian category of smooth representa-
tions of B in o-torsion modules, where B is a fixed Borel subgroup in G(Qp).
We do not describe the category Met(Λ(B

+)) explicitly here. The restriction
V to B of a principal series representation of G(Qp) over a field with charac-
teristic p is an example of an object in Mo-tor(B) for a suitable ring o. Using
Theorem 1.1, we prove the following result (Section 6):

Proposition 1.2. Suppose that k is a field with characteristic p. Let V be the
restriction to B of a principal series representation of GLn(Qp) over k. Then
Di(V ) = 0 for i ≥ n− 1.

2. Notations and preliminaries

2.1. From now on we suppose that G is F-split and we denote G(F) by G.
We fix a uniformizer ̟ for F and choose the valuation valF on F normalized
by valF(̟) = 1. The ring of integers of F is denoted by O and its residue field
with cardinality q = pf by Fq.

In the semisimple building X of G, we choose the chamber C corresponding
to the Iwahori subgroup I′ that contains the pro-p Iwahori subgroup I. This
choice is unique up to conjugacy by an element of G. Since G is split, C has at
least one hyperspecial vertex x0 and we denote by K the associated maximal
compact subgroup of G. We fix a maximal F-split torus T in G such that the
corresponding apartment A in X contains C.

Let Gx0
and GC denote the Bruhat–Tits group schemes over O whose O-

valued points are K and I′ respectively. Their reductions over the residue field
Fq are denoted by Gx0

and GC . Note that G = Gx0
(F) = GC(F). By [16,

3.4.2, 3.7 and 3.8], Gx0
is connected reductive and Fq-split. Therefore we have
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G◦
C(O) = GC(O) = I′ and G◦

x0
(O) = Gx0

(O) = K. Denote by K1 the pro-
unipotent radical of K. More generally we consider the fundamental system of
open normal subgroups

Km := ker
(
Gx0

(O)
pr
−−→ Gx0

(O/̟mO)
)
for m ≥ 1

of K. The quotient K/K1 is isomorphic to Gx0
(Fq). The Iwahori subgroup I′

is the preimage in K of the Fq-rational points of a Borel subgroup B with Levi

decomposition B = TN. The pro-p Iwahori subgroup I is the preimage in I′

of N(Fq). The preimage of T(Fq) is the the maximal compact subgroup T0 of

T. Note that T0/T1 = I′/I = T(Fq) where T1 := T0 ∩ I.

To the choice of T is attached the root datum (Φ,X∗(T), Φ̌,X∗(T)). This
root system is reduced because the group G is F-split. We denote by W the
finite Weyl group NG(T)/T, quotient by T of the normalizer of T. Let 〈 . , . 〉
denote the perfect pairing X∗(T) × X∗(T) → Z. The elements in X∗(T) are
the cocharacters of T and we will call them the coweights. We identify the set
X∗(T) with the subgroup T/T0 of the extended Weyl group W = NG(T)/T

0

as in [16, I.1] and [12, I.1]: to an element g ∈ T corresponds a vector ν(g) ∈
R⊗Z X∗(T) defined by

(3) 〈ν(g), χ〉 = − valF(χ(g)) for any χ ∈ X∗(T)

and ν induces the required isomorphism T/T0 ∼= X∗(T). Recall that A denotes
the apartment of the semisimple building attached to T ([16] and [12, I.1]).
The group T/T0 acts by translation on A via ν. The actions of W and T/T0

combine into an action of W on A as recalled in [12, p. 102]. Since x0 is
a special vertex of the building, W is isomorphic to the semidirect product
X∗(T)⋊W where we see W as the fixator in W of any point in the extended
apartment lifting x0 ([16, 1.9]). A coweight λ will sometimes be denoted by eλ

to underline that we see it as an element in W, meaning as a translation on
the semisimple apartment A .

We see the roots Φ as the set of affine roots taking value zero at x0. Then Φ+

is the set of roots in Φ taking non negative values on C. The set of dominant
coweights X+

∗ (T) is the set of all λ ∈ X∗(T) such that 〈λ, α〉 ≥ 0 for all α ∈ Φ+.
A coweight is called antidominant if its opposite is dominant. A coweight λ
such that 〈λ, α〉 < 0 for all α ∈ Φ+ is called strongly antidominant.

2.2. We fix a lift ŵ ∈ NG(T) for any w ∈ W. By Bruhat decomposition, G
is the disjoint union of all I′ŵI′ for w ∈ W. Recall that T1 is the pro-p Sylow
subgroup of T0. We denote by W̃ the quotient of NG(T) by T1 and obtain the
exact sequence

0 → T0/T1 → W̃ → W → 0.

The group W̃ parametrizes the double cosets of G modulo I. We fix a lift
ŵ ∈ NG(T) for any w ∈ W̃. For Y a subset of W, we denote by Ỹ its preimage

in W̃. In particular, we have the preimage X̃∗(T) of X∗(T). As well as those of
X∗(T), its elements will be denoted by λ or eλ and called coweights. Note that
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a system of representatives of T/T1 is given by the set of all êλ for λ ∈ X̃∗(T).
In fact, we recall that the map

(4) λ ∈ X∗(T) → [λ(̟−1)modT1] ∈ X̃∗(T)

is a W-equivariant splitting for the exact sequence of abelian groups

(5) 0 −→ T0/T1 −→ X̃∗(T) −→ X∗(T) −→ 0.

We will identify X∗(T) with its image in X̃∗(T) via (4).

For α ∈ Φ, we inflate the function 〈 . , α〉 defined on X∗(T) to X̃∗(T). We
still call dominant coweights (resp. antidominant coweights) the elements in

the preimage X̃+
∗ (T) (resp. X̃

−
∗ (T)) of X

+
∗ (T) (resp. X

−
∗ (T)).

The group W̃ is equipped with a length function ℓ : W̃ → N that inflates
the length function on W ([18, Prop. 1]).

2.3. Let k be an arbitrary field. We consider the pro-p Iwahori–Hecke algebra

H = k[I\G/I]

of k-valued functions with compact support in I\G/I under convolution. For

w ∈ W̃, denote by τw the characteristic function of the double coset IŵI. The
set of all (τw)w∈W̃ is a k-basis for H. For g ∈ G, we will also use the notation
τg for the characteristic function of the double coset IgI. In H we have the

following relation, for w, w′ in W̃ ([18, Thm. 50]):

(6) τwτw′ = τww′ if ℓ(w) + ℓ(w′) = ℓ(ww′).

It implies in particular that in H we have, for λ and λ′ in X̃∗(T):

(7) τeλτeλ′ = τeλ+λ′ if λ and λ′ are both antidominant.

We denote by Aanti the commutative sub-k-algebra of H with k-basis the set
of all {τeλ , λ ∈ X̃−

∗ (T)}.

2.4. Let U be the unipotent subgroup of G generated by all the root subgroups
Uα for all α ∈ Φ+ and B the Borel subgroup with Levi decomposition B =
TU. Recall that we have G = BK since x0 is a special vertex. Furthermore,
B ∩K = I′ ∩ B.

Let U− denote the opposite unipotent subgroup of G generated by all the
root subgroups Uα for −α ∈ Φ+. The pro-p Iwahori subgroup I has the
following decomposition:

I = I+ I0 I− where I+ := I ∩ U, I0 := I ∩ T = T1, I− := I ∩ U−.

An element t ∈ T contracts I+ and dilates I− if it satisfies the conditions
(see [1, (6.5)]):

(8) t I+t−1 ⊆ I+, t−1I−t ⊆ I−.

Denote by T++ the semigroup of such t ∈ T.

Lemma 2.5. We have T++ =
∐

λ∈X̃−
∗ (T) T

1êλ.
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Proof. Let λ ∈ X̃∗(T). It is proved in [7, Lemma 5.20] that the element êλ

satisfies (8) if and only if λ is antidominant. �

2.6. We consider the k-basis (E(w))w∈W̃ for H as introduced in [18]. Recall

that E(eλ) = τeλ for all λ ∈ X̃−
∗ (T). For w ∈ W̃, there is λ0 ∈ X̃∗(T) and

w0 ∈ W̃ such that w = eλ0w0. Let λ ∈ X̃−
∗ (T) such that λ+ λ0 ∈ X̃−

∗ (T). We
claim that

(9) τeλ E(w) = q(ℓ(w)+ℓ(eλ)−ℓ(eλw))/2E(eλ0+λ)τw0
∈ Aanti τw0

.

The proof of this equality given in the case of GLn in [6, Prop. 4.8] works in
the general case with no modification.

2.7. Let t ∈ T such that the double class I t I corresponds to a strongly an-
tidominant element in X−

∗ (T). The following lemma proved in [11, Prop. 8,
p. 78] is valid in the case of a general split reductive group.

Lemma 2.8. An open compact subset of B\G decomposes into a finite disjoint
union of subsets of the form BItnk = BI−tnk for n large enough, where k ranges
over a finite subset of K.

Lemma 2.9. A system of neighborhoods of the identity in U− is given by the
set of all t−mI−tm for m ∈ N.

Proof. A system of neighborhoods of the identity in U− is given by the set of
all Km ∩ U− and one checks that t−mI−tm ⊆ Km+1 ∩ U− for all m ∈ N. �

3. Resolution of the level 0 universal representation of G(F)

We gather here results from [12] and use the notations of [8]. We recall
(see [12, I.1–2] for a brief overview) that the semisimple building X is (the
topological realization of) a G-equivariant polysimplicial complex of dimension
equal to the semisimple rank d of G. The (open) polysimplices are called facets
and the d-dimensional, resp. zero dimensional, facets chambers, resp. vertices.
For i ∈ {0, . . . , d}, we denote by X(i) the set of oriented facets of dimension
i. Associated with each facet F is, in a G-equivariant way, a smooth affine
O-group scheme GF whose general fiber is G and such that GF (O) is the
pointwise stabilizer in G of the preimage of F in the extended building of G.

Its connected component is denoted by G◦
F so that the reduction G

◦

F over Fq

is a connected smooth algebraic group. The subgroup G◦
F (O) of G is compact

open. Let

IF := {g ∈ G◦
F (O) | (g mod ̟) ∈ unipotent radical of G

◦

F }.

The IF are compact open pro-p subgroups in G which satisfy IC = I, Ix0
=

K1,

(10) gIF g
−1 = IgF for any g ∈ G,

and

(11) IF ′ ⊆ IF whenever F ′ ⊆ F .
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For any smooth k-representationV of G, the family {VIF }F of subspaces of
IF -fixed vectors in V forms a G-equivariant coefficient system on X which we
will denote by V ([12, II.2]). Let X be the space k[I\G] of k-valued functions

with finite support in I\G. It is a natural left H-module. Let X be the
associated coefficient system. The corresponding augmented oriented chain
complex

(12) 0 −→ Cor
c (X(d),X)

∂
−−→ . . .

∂
−−→ Cor

c (X(0),X)
ǫ
−→ X −→ 0

is a complex of G-representations and of left H-modules.
As noticed in [8, Rem. 3.2], the following result is contained in the proof of

[12, Thm. II.3.1]:

Theorem 3.1 ([12, Thm. II.3.1]). The complex (12) is exact.

Let F be a facet in C. Extending functions on G◦
F (O) by zero to G induces

a G◦
F (O)-equivariant embedding

XF := k[I\G◦
F (O)] →֒ X

and we consider the subalgebra

HF := k[I\G◦
F (O)/I]

of the functions in H with support in G◦
F (O).

Lemma 3.2. The natural maps of respectively (G◦
F (O),Hopp

x0
)-bimodules and

(G◦
F (O),Hopp)-bimodules

(13) Hx0
⊗HF

XF → XIF
x0

(14) H⊗HF
XF → XIF

are bijective.

Proof. The isomorphism (14) is proved in [8, Prop. 4.25]. The proof of the
bijectivity of (13), is obtained similarly as follows. Let Φ+

F denote the set of
positive roots that take value zero on F and DF the subset of all elements d
in W such that dΦ+

F ⊆ Φ+. Choose a lift d̃ ∈ W̃ for each such d. Then it is
classical to establish that Hx0

is a free right HF -module with basis {τd̃}d∈DF
.

Since HF is Frobenius ([10, Thm. 2.4] and [15, Prop. 3.7]), it is self-injective:
this implies that the HF -module Hx0

is a direct summand of H and the com-
position Hx0

⊗HF
XF → H ⊗HF

XF is an injective map inducing the natural
injection

Hx0
⊗HF

XF → XIF
x0
.

To prove that it is surjective, we argue (again as in [8, Prop. 4.25]) using the

fact that the set of all d̃ for d ∈ DF yields a system of representatives for the
double cosets I\K/G◦

F (O) and that Id̃IF = Id̃I. �
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We define P
†
F to be the stabilizer of F in G. For g ∈ P

†
F , set ǫF (g) = +1,

respectively −1, if g preserves, respectively reverses, a given orientation of F .

For any representation V of P†
F , we denote by V ⊗ ǫF the space V endowed

with the structure of a representation of P†
F where the action of P†

F is twisted
by the character ǫF .

For i ∈ {0, . . . , d}, we fix a (finite) set of representatives Fi for the G-orbits
in Xi such that every member in Fi is contained in C. As explained in [8,
3.3.2]:

Proposition 3.3. Let i ∈ {0, . . . , d}.

(i) The (G,Hopp)-bimodule Cor
c (X(i),X) is isomorphic to the direct sum

⊕

F∈Fi

indG
P

†
F

(XIF ⊗ ǫF ).

(ii) In particular, as a left Aanti-module, it is isomorphic to a direct sum of
modules of the form XIF for F ∈ Fi.

4. Principal series representations over a ring

Let R be a commutative k-algebra. Given a topological group H , we con-
sider R-representations of H that is to say R-modules endowed with a R-linear
action of H . If the stabilizers of the points are open in H , then such a repre-
sentation is called smooth. Let R× be the group of invertible elements in R. A
morphism of k-algebras Aanti → R is called a character. If the image of every
element τeλ , λ ∈ X̃−

∗ (T) lies in R×, then the character is called regular.

Lemma 4.1. There is a bijection φ 7→ φ from the set of morphisms T/T1 7→
R× into the set of regular characters Aanti → R such that

φ(τeλ) := φ(ê−λ) for all λ ∈ X̃−
∗ (T).

We denote the inverse map by ψ 7→ ψ.

Proof. We use (7) repeatedly to justify the following arguments. The formula

given for φ defines a regular character Aanti → R. Now consider ψ : Aanti → R
a regular character. Let t ∈ T and denote by λ the element in X̃∗(T) such that

ItI = IêλI. There are λ1, λ2 ∈ X̃−
∗ (T) such that λ = λ1 − λ2 and we set

ψ(t) := ψ(τeλ1 )ψ(τeλ2 )
−1

which is well defined because ψ is regular. Furthermore, one checks that it
defines a morphism T → R× which is trivial on T1. �

Consider a regular R-character ξ : Aanti → R and the corresponding mor-
phism ξ which we see as a map T → R× trivial on T1. Inflating ξ to a character
of the Borel B, we consider the R-module of the functions f : G → R satisfying
f(bg) = ξ(b)f(g) for all g ∈ G, b ∈ B. It is endowed with a R-linear action of

G by right translations namely (g, f) 7→ f( . g). We denote by

IndGB(ξ)

Münster Journal of Mathematics Vol. 7 (2014), 225–240
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its smooth part and obtain a smooth R-representation of G.

Lemma 4.2. Let Ω be a pro-p subgroup of K. The space of Ω-invariant func-
tions

(IndG
B(ξ))

Ω

is a free R-module of finite rank equal to |B\G/Ω|.

Proof. The morphism ξ can be seen as a k-representation of T over the k-
vector space R and therefore, by the classical theory of k-representations of G,
if Ω is a compact open subgroup of G, we have a k-linear isomorphism

(IndG
B(ξ))

Ω ∼=
∏

k∈B\G/Ω

RB∩kΩk−1

given by the evaluation of f ∈ (IndG
B(ξ))

Ω at all k in a chosen system of
representatives of B\G/Ω. If Ω is a pro-p subgroup of K then, by Cartan
decomposition, one can choose k ∈ K and then B ∩ kΩk−1 ⊆ B ∩ K = B ∩ I′.
But B∩kΩk−1 is a pro-p group so it is contained in B∩ I on which ξ is trivial.
We therefore have a k-linear isomorphism

(IndGB(ξ))
Ω ∼=

∏

k∈B\G/Ω

R

given by the evaluation of f ∈ (IndG
B(ξ))

Ω at all k in a chosen system of
representatives of B\G/Ω. This map being obviously R-equivariant, we have

proved that (IndG
B(ξ))

Ω is a free R-module of rank |B\G/Ω|. �

Proposition 4.3. We have an isomorphism of R-representations of G

ξ ⊗Aanti
X ∼= IndGB(ξ).

Proof. The proof follows closely the strategy of [11, Prop. 11, p. 80] which
considers the case of the principal series representation induced by the trivial
character with values in Z in the case of G = GLn. In the case of unramified
principal series representations of GLn over a ring, and respectively, for more
general comparison between compact and parabolic induction over an alge-
braically closed field with characteristic p, [17, 4.5] and [3, Thm. 3.1, Cor. 3.6]
use similar techniques inspired by [11].

Denote by f1 the I-invariant function in IndGB(ξ) with support BI and value

1R at 1G. Since ξ is trivial on B ∩ I, it is well defined by the formula f1(bu) =
ξ(b) for all b ∈ B and u ∈ I.

1/ We consider the morphism of k-representations of G

Φ : X −→ IndGB(ξ)

sending the characteristic function charI of I onto f1. Let λ ∈ X̃−
∗ (T). We

compute f1τeλ . Decompose IêλI into simple right cosets mod I. By Lemma

2.5, one can find such a decomposition IêλI =
∐

k Iê
λk with k ranging over some

Münster Journal of Mathematics Vol. 7 (2014), 225–240
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finite subset of I−. Now f1τeλ is I-invariant with support in BI−êλI− = BI.

To compute its value at 1, one checks that for k ∈ I−, we have 1 ∈ BI−êλk if

and only if Iêλk = Iêλ and therefore

f1τeλ(1) = [êλ
−1
.f1](1) = ξ(ê−λ) = ξ(τeλ ).

We have proved that Φ(τeλ) = ξ(τeλ )Φ(charI). It proves that Φ induces a
morphism of R-representations of G

Φ′ : ξ ⊗Aanti
X −→ IndGB(ξ).

2/ We show that f1 generates IndGB(ξ) as a R-representation of G. Let

f ∈ IndGB(ξ). Its support is open and compact in B\G and by Lemma 2.8,

we can suppose (after restricting and translating) that f has support in BU−.
The restriction f |U− is locally constant and we can suppose (after restrict-
ing the support more) that f |U− is constant on some compact open sub-
set C. By Lemma 2.9, this set C is the finite union of subsets of the form
t−nI−tnu for n large enough and u ∈ U−, where t is defined in Subsection
2.7. Restricting again (and translating), one can suppose that f |U− has sup-
port t−nI−tn and is constant with value r ∈ R on this subset. Now for all
(b, u) ∈ B × I, write u = u+u0u

− ∈ I+I0I− and recall that ξ(u+u0) = 1. We
have (tnf)(bu) = f(bu+u0t

nt−nu−tn) = ξ(bu+u0t
n)r = ξ(b)ξ(tn)r. Therefore,

f = ξ(tn)r (t−n.f1) lies in the sub-R-representation generated by f1. This

proves that Φ′ is surjective.

3/ To prove that Φ′ is injective we follow the strategy of [11, pp. 80 and 81].
For n ∈ N, denote by Yn the subspace of X of the functions with support in
ItnK.

Fact i. Consider an element in ξ ⊗Aanti
X. There is n ∈ N such that it can be

written as a sum of elements of the form r ⊗ f where r ∈ R and f ∈ Yn.

Fact ii. For k ∈ K and n ∈ N, we have BItnk ∩ BItn 6= ∅ if and only if
Itnk = Itn.

The facts together prove the injectivity of Φ′. �

Proof of the facts. The proof of Fact ii in the case of G = GLn given in [11,
p. 81] and [11, Prop. 7, p. 77] is the same in the general case of a split group.
For Fact i, we first notice that the statement of [11, Lemma 12, p. 80] holds
in the case of a general split group since (G, I′, NG(T)) is a generalized Tits
system. Therefore, for any g ∈ G, there is y ∈ T++ such that IyIg ⊆ IT++K.
The element 1⊗charIg can be written ξ(τy)

−1⊗charIyIg. Therefore, an element
in ξ ⊗Aanti

X can be written as a sum of elements of the form r′ ⊗ f ′ where
r′ ∈ R and f ′ has support in IT++K. Now let y′ ∈ T++ and k ∈ K. One

can find n ∈ N large enough such that tny′
−1

= y′′ ∈ T++. Hence the
element r⊗ charIy′k can be written rξ(τy′′ )−1⊗ charIy′′Iy′k and by (7) we have
Iy′′Iy′k ⊆ Iy′′Iy′Ik = ItnIk ⊆ ItnK. �
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Proposition 4.4. As a right R ⊗k H-module, (IndG
B(ξ))

I is isomorphic to
ξ ⊗Aanti

H.

Proof. By Lemma 4.2, the R-module (IndGB(ξ))
I is free of rank |B\G/I| = |W|.

More precisely, for any w ∈ W, fix lifts w̃ ∈ W̃ and ˆ̃w ∈ NG(T) for w, and

denote by fw the function in (IndGB(ξ))
I with support B ˆ̃wI and value 1R at

ˆ̃w. The family (fw)w∈W is a basis for the free R-module (IndGB(ξ))
I (see for

example [7, 5.5.1] for more detail). By [7, Prop. 5.16], the composition

(15) ξ ⊗Aanti
H −→ (ξ ⊗Aanti

X)I
Φ′

−→ (IndGB(ξ))
I

is a surjective morphism of R⊗kH-modules since the image of 1R⊗ τw̃ is equal
to fw for all w ∈ W. From (9) and since ξ is regular, we deduce that ξ⊗Aanti

H
is generated as an R-module by the set of all 1R ⊗ τw̃ for w ∈ W. This is
enough to prove that (15) is injective. �

By Propositions 4.3 and 4.4, there are natural isomorphisms of R-representa-
tions of G

(16) ξ ⊗Aanti
X ∼= (IndG

B(ξ))
I ⊗H X ∼= IndGB(ξ).

For any facet F of C containing x0 in its closure, they induce morphisms of

R-representations of P†
F :

(17) ξ ⊗Aanti
XIF ∼= (IndGB(ξ))

I ⊗H XIF −→ (IndG
B(ξ))

IF .

We identify k[T0/T1] with its image in Aanti via t 7→ τt−1 . The Aanti-
module R therefore inherits a structure of k[T0/T1]-module and this structure
is given by the restriction of ξ to T0/T1. Below, we also consider ξ (or rather

its restriction to T0/T1) as a character of I′ trivial on I.

Lemma 4.5. Let F be a facet of C containing the hyperspecial vertex x0 in
its closure. There is a natural isomorphism of R[[K]]-modules

R⊗k[T0/T1] Xx0
∼= IndKI′ (ξ).

It induces an isomorphism of R[[G◦
F (O)]]-modules

R⊗k[T0/T1] X
IF
x0

∼= (IndKI′ (ξ))
IF .

Proof. The first abstract isomorphism is clear because, as representations of K,
we have Xx0

∼= IndKI′k[T
0/T1] and the tensor product commutes with compact

induction. We describe this isomorphism explicitly in order to deduce the
second one. Denote by ϕ the function in IndKI′ (ξ) with support I′ and value 1R
at 1K. It is I-invariant.

The following well defined map realizes the first isomorphism of R[[K]]-
modules:

R⊗k[T0/T1] Xx0
−→ IndKI′ (ξ).

r ⊗ charI 7−→ rϕ.
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Consider the k[T0/T1]-module XIF
x0
. It is free with basis the set of all

charIxIF for x ranging over a system of representatives of I′\K/IF . This can be
seen by noticing that I′xIF is the disjoint union of all ItxIF for t ∈ T0/T1. In
particular, XIF

x0
is projective and therefore injective over the Frobenius algebra

k[T0/T1]: it is a direct summand of Xx0
and we have an injective morphism

of R[[G◦
F (O)]]-modules

(18) R⊗k[T0/T1] X
IF
x0

→֒ (R⊗k[T0/T1] Xx0
)IF ∼= (IndK

I′ (ξ))
IF .

For x ∈ K, the IF -invariant function in (IndK
I′ (ξ))

IF with support I′xIF and
value r ∈ R at x is the image by (18) of r ⊗ charIxIF . Therefore (18) is
surjective. �

Proposition 4.6. If F is a facet of C containing x0 in its closure, then (17)
is a chain of isomorphisms

(19) ξ ⊗Aanti
XIF ∼= (IndGB(ξ))

I ⊗H XIF ∼= (IndGB(ξ))
IF .

of R-representations of P†
F . In particular, the R-module ξ ⊗Aanti

XIF is free.

Proof. There is a well defined morphism of R-representations of K

(20) IndK
I′ (ξ) −→ (IndG

B(ξ))
K1

defined by sending the function ϕ onto the function f1 ∈ (IndG
B(ξ))

I (notations
of the proof of Lemma 4.5 and Proposition 4.3). It is injective since for k ∈ K,
the equality BIk ∩ BI 6= ∅ implies k ∈ I′. By Iwasawa decomposition and
since K1 is normal in K, the R[[K]]-module (IndGB(ξ))

K1 is generated by the
K1-invariant function with support in BK1 = BI and value 1R at 1G. This
function is in fact equal to f1 because ξ is trivial on I+. Therefore (20) is an
isomorphism.

We want to show that the natural morphism of R-representations of P†
F

(21) (IndGB(ξ))
I ⊗H XIF −→ (IndGB(ξ))

IF

is bijective. By (14), it is enough to show that the natural morphism of
R[[G◦

F (O)]]-modules

(22) (IndG
B(ξ))

I ⊗HF
XF −→ (IndG

B(ξ))
IF

is bijective. Since x0 is in the closure of F , passing to I-invariant vectors in (20)
yields an isomorphism of right R⊗kHx0

-modules and therefore of right R⊗kHF -
modules. Likewise, passing to IF -invariant vectors yields an isomorphism of
R[[G◦

F (O)]]-modules. Therefore we want to show that the natural morphism
of R[[G◦

F (O)]]-modules

(23) (IndKI′ (ξ))
I ⊗HF

XF −→ (IndK
I′ (ξ))

IF

is bijective. Now by Lemma 4.5 and using (13), we check that (23) can be
decomposed into the following chain of isomorphisms

(IndK
I′ (ξ))

I⊗HF
XF ≃ R⊗k[T0/T1]Hx0

⊗HF
XF

∼= R⊗k[T0/T1]X
IF
x0

∼= (IndKI′ (ξ))
IF .

�
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Proposition 4.7. The R-module IndGB(ξ) ≃ ξ ⊗Aanti
X is free.

Proof. As an R-module, IndGB(ξ) is the inductive limit of the family ((IndG
B

(ξ))Km)m≥0 where we set K0 = I. We prove the proposition by first invok-

ing Lemma 4.2 which ensures that IndG
B(ξ)

K0 is a free (finitely generated)

R-module, and then by proving that for all m ≥ 0, the quotient (IndG
B(ξ))

Km+1

/(IndGB(ξ))
Km is a free (finitely generated) R-module. For this, let m ≥ 0.

For g ∈ G, denote by IndBgKm

B (ξ) the subspace of the functions in IndGB(ξ)
with support in BgKm and decompose the latter into a finite disjoint union
BgKm =

∐s
i=1 BgkiKm+1. By Lemma 4.2, the map

(IndBgKm

B (ξ))Km+1 −→ Rs

f 7−→ (f(gki))1≤i≤s(24)

is a R-linear isomorphism. A function f ∈ (IndBgKm

B (ξ))Km+1 is Km-invariant

if and only if its image by (24) lies in the submodule D of Rs generated by

(1)1≤i≤s. Since Rs/D is a free R-module and (IndG
B(ξ))

Km+1/(IndGB(ξ))
Km is

isomorphic to the direct sum of all (IndBgKm

B (ξ))Km+1/(IndBgKm

B (ξ))Km for g

in the (finite) set B\G/Km, we obtain the expected result. �

5. Resolutions for principal series representations of GLn(F) in
arbitrary characteristic

Let χ : T → k× a morphism of groups which we suppose to be trivial on
T1. We are interested in the principal series k-representation of G

V = IndGB(χ)

and the associated coefficient system V defined in Section 3. As in Section
4, we consider the sub-k-algebra Aanti of H and we attach to χ the regular
k-character χ : Aanti → k as in Lemma 4.1. Define R to be the localization
of Aanti at the kernel of χ and ξ : Aanti → R to be the natural morphism of
localization. It is a regular character ofAanti. There is a k-character χ : R → k

satisfying χ ◦ ξ = χ. Since R is a flat Aanti-module, tensoring the complex of
left Aanti-modules (12) by R yields an exact sequence of R-representations of
G:

(25) 0 −→ ξ ⊗Aanti
Cor

c (X(d),X) −→ . . .

. . . −→ ξ ⊗Aanti
Cor

c (X(0),X) −→ ξ ⊗Aanti
X −→ 0.

Suppose that G = GLn for n ≥ 1. Then for any i ∈ {0, . . . , d}, we can
choose the facets in Fi to contain x0 in their closure. Therefore, by Propo-
sitions 3.3, 4.6 and 4.7, all the terms of the exact complex (25) are free R-
modules. The complex splits as a complex of R-modules and it remains exact
after tensoring by the k-character χ of R. But χ ⊗R ξ is isomorphic to the
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space k endowed with the structure of Aanti-module given by χ : Aanti → k.
By Proposition 4.3, this gives a G-equivariant resolution of IndGB(χ):

(26) 0 −→ χ⊗Aanti
Cor

c (X(d),X) −→ . . .

. . . −→ χ⊗Aanti
Cor

c (X(0),X) −→ IndGB(χ) −→ 0.

This complex is isomorphic to the augmented complex associated to the
coefficient system on X denoted by χ⊗Aanti

X and defined by F 7−→ χ⊗Aanti

XIF for any facet in X . By Proposition 4.6, χ ⊗Aanti
X is isomorphic to V.

Therefore, the exact complex (26) is isomorphic to the complex (2) and we
have proved Theorem 1.1. Note that by Proposition 3.3, the exact resolution
(2) is of the form:

(27) 0 −→
⊕

F∈Fd

indG
P

†
F

((IndG
Bχ)

IF ⊗ ǫF ) −→ . . .

. . . −→
⊕

F∈F0

indG
P

†

F

((IndG
B(χ))

IF ⊗ ǫF ) −→ IndGB(χ) −→ 0.

Here since G = GLn, the semisimple rank is d = n− 1.

6. A remark about the Schneider–Vignéras functor

Assume that G = GLn(Qp) with n ≥ 2, and denote by Z its center. We set
B0 := B ∩K. It is a subgroup of I′.

Lemma 6.1. Let F be a facet of the standard apartment A containing x0 in

its closure. We have P
†
F ∩ B ⊂ B0Z.

Proof. Any vertex in the closure of F is of the form êλx0 for some λ ∈ X∗(T)

and this vertex coincides with x0 if and only if êλ is in the center Z that is to

say if λ ∈ X∗(Z). Let b ∈ P
†
F∩B. There is λ1 ∈ X∗(T) such that êλ1x0 ∈ F and

bx0 = êλ1x0. Therefore b ∈ êλ1KZ∩B = êλ1B0Z. Write b = êλ1uz with u ∈ B0

and z ∈ Z. Inductively, we construct a sequence (λm)m≥1 in X∗(T) such that

êλmx0 ∈ F and bêλmx0 = êλm+1x0. It implies ̂eλ1−λm+1uêλm ∈ KZ. Looking at
the diagonal of this element, we find λm+1 = λ1+λm mod X∗(Z) and therefore
λm = mλ1 mod X∗(Z) for any m ≥ 1. If λ1 6∈ X∗(Z), then the family of all

êλmx0 is infinite: we obtain a contradiction. Therefore b ∈ B0Z. �

We can identify W with a subgroup of G and W yields a system of repre-
sentatives of the double cosets I\G/B. For any i ∈ {0, . . . , n− 1}, choose the
facets in Fi to contain x0 in their closure. For F ∈ Fi, we choose a system

of representatives of P†
F \G/B in W. For w ∈ W, we can apply Lemma 6.1. to

the facet w−1F of A .
Let χ : T → k× a morphism of groups which is trivial of T1. Restricting

(27) to a complex of k-representations of B, we obtain an exact complex:
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0 →
⊕

F∈Fn−1,

w∈P
†

F
\G/B

indB
w−1P

†
F
w∩B

(w ⋆ ((IndG
B(χ))

IF ⊗ ǫF )) → . . .

. . .→
⊕

F∈F0,

w∈P
†
F
\G/B

indB
w−1P

†

F
w∩B

(w ⋆ ((IndG
B(χ))

IF ⊗ ǫF )) → IndGB(χ)|B → 0

where w⋆((IndG
B(χ))

IF ⊗ǫF ) denotes the space (Ind
G
B(χ))

IF ⊗ǫF with the group

w−1P
†
Fw ∩ B acting through the homomorphism w−1P

†
Fw ∩ B

w .w−1

−−−−−→ P
†
F .

Therefore, applying Lemma 6.1, there exist smooth k-representations V0, . . . ,
Vn−1 of B0Z and an exact resolution of the restriction to B of IndGB(χ) of the
form:

(28)

I• : 0 −→ indBB0Z(Vn−1)
∂n−1

−−−−→ . . . −−→ indBB0Z(V0)
∂0−−→ IndG

B(χ)|B −→ 0.

From now on, k has characteristic p. As noted by Zabradi in [19, §4], the
argument of [13, Lemma 11.8] generalizes to the case of GLn(Qp). Therefore,

we can compute the image of IndGB(χ)|B by the universal δ-functor V 7→ Di(V ),
i ≥ 0, defined in [13] using the cohomology of the complex D(I•): for i ≥ 0

Di(IndGB(χ)|B) = hi
(
D(indBB0Z(V0))

D(∂0)
−−−−→ D(indBB0Z(V1)) → . . .

. . .
D(∂n−1)
−−−−−−→ D(indB

B0Z(Vn−1)) → 0 → 0 . . .

)
.

By [13, Rem. 2.4, i], the map D(∂n−1) is surjective. Therefore, we have proved
that

Di(IndGB(χ)|B) = 0 for all i ≥ n− 1.
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[17] M.-F. Vignéras, Representations modulo p of the p-adic group GL(2, F ), Compos. Math.
140 (2004), no. 2, 333–358. MR2027193 (2004m:22028)
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